
Numerical Methods for 
Engineers and Scientists 

Ramin S. Esfandiari, PhD

Using MATLAB
Second Edition



CRC Press
Taylor & Francis Group,
6000 Broken Sound Parkway NW, Suite 300,
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

International Standard Book Number-13: 978-1-4987-7742-1 (Hardback)

Library of Congress Cataloging–in–Publication Data

Names: Esfandiari, Ramin S., author.
Title: Numerical methods for engineers and scientists using  MATLAB / Ramin 

S. Esfandiari.
Description: Second edition. | Boca Raton : a CRC title, part of the Taylor & 

Francis imprint, a member of the Taylor & Francis Group, the academic 
division of T&F Informa, plc, [2017]

Identifiers: LCCN 2016039623 | ISBN 9781498777421 (hardback : alk. paper)
Subjects: LCSH: Engineering mathematics. | Numerical analysis.
Classification: LCC TA335 .E843 2017 | DDC 620.00285/53--dc23
LC record available at https://lccn.loc.gov/2016039623

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



Contents

Preface..............................................................................................................................................xv
Acknowledgments....................................................................................................................... xix
Author............................................................................................................................................ xxi

	 1.	 Background and Introduction...............................................................................................1
Part 1: Background...................................................................................................................1
1.1	 Differential Equations...................................................................................................1

1.1.1	 Linear, First-Order ODEs.................................................................................1
1.1.2	 Second-Order ODEs with Constant Coefficients.........................................2

1.1.2.1	 Homogeneous Solution....................................................................2
1.1.2.2	 Particular Solution............................................................................3

1.1.3	 Method of Undetermined Coefficients..........................................................3
1.2	 Matrix Analysis..............................................................................................................4

1.2.1	 Matrix Operations............................................................................................5
1.2.2	 Matrix Transpose..............................................................................................5
1.2.3	 Special Matrices................................................................................................6
1.2.4	 Determinant of a Matrix..................................................................................6
1.2.5	 Properties of Determinant...............................................................................6

1.2.5.1	 Cramer’s Rule.....................................................................................7
1.2.6	 Inverse of a Matrix............................................................................................8
1.2.7	 Properties of Inverse.........................................................................................9
1.2.8	 Solving a Linear System of Equations...........................................................9

1.3	 Matrix Eigenvalue Problem..........................................................................................9
1.3.1	 Solving the Eigenvalue Problem................................................................... 10
1.3.2	 Similarity Transformation............................................................................. 11
1.3.3	 Matrix Diagonalization.................................................................................. 11
1.3.4	 Eigenvalue Properties of Matrices................................................................ 12

Part 2: Introduction to Numerical Methods........................................................................ 12
1.4	 Errors and Approximations........................................................................................ 12

1.4.1	 Sources of Computational Error................................................................... 12
1.4.2	 Binary and Hexadecimal Numbers............................................................. 13
1.4.3	 Floating Point and Rounding Errors............................................................ 13
1.4.4	 Round-Off: Chopping and Rounding.......................................................... 14
1.4.5	 Absolute and Relative Errors........................................................................ 15
1.4.6	 Error Bound..................................................................................................... 16
1.4.7	 Transmission of Error from a Source to the Final Result.......................... 16
1.4.8	 Subtraction of Nearly Equal Numbers........................................................ 17

1.5	 Iterative Methods......................................................................................................... 19
1.5.1	 Fundamental Iterative Method..................................................................... 20
1.5.2	 Rate of Convergence of an Iterative Method............................................... 21

Problem Set (Chapter 1).........................................................................................................22

	 2.	 Introduction to MATLAB®.................................................................................................. 27
2.1	 MATLAB Built-In Functions...................................................................................... 27



2.1.1	 Rounding Commands.................................................................................... 27
2.1.2	 Relational Operators.......................................................................................28
2.1.3	 Format Options...............................................................................................28

2.2	 Vectors and Matrices................................................................................................... 29
2.2.1	 Linspace...........................................................................................................30
2.2.2	 Matrices............................................................................................................30
2.2.3	 Determinant, Transpose, and Inverse.......................................................... 32
2.2.4	 Slash Operators...............................................................................................33
2.2.5	 Element-by-Element Operations...................................................................33
2.2.6	 Diagonal Matrices and Diagonals of a Matrix............................................34

2.3	 Symbolic Math Toolbox...............................................................................................36
2.3.1	 Anonymous Functions...................................................................................38
2.3.2	 MATLAB Function.........................................................................................38
2.3.3	 Differentiation................................................................................................. 39
2.3.4	 Partial Derivatives..........................................................................................40
2.3.5	 Integration........................................................................................................40

2.4	 Program Flow Control................................................................................................. 41
2.4.1	 for Loop.......................................................................................................... 41
2.4.2	 The if Command...........................................................................................42
2.4.3	 while Loop.....................................................................................................43

2.5	 Displaying Formatted Data........................................................................................43
2.5.1	 Differential Equations....................................................................................44

2.6	 Plotting..........................................................................................................................45
2.6.1	 subplot...........................................................................................................45
2.6.2	 Plotting Analytical Expressions...................................................................46
2.6.3	 Multiple Plots...................................................................................................46

2.7	 User-Defined Functions and Script Files.................................................................. 47
2.7.1	 Setting Default Values for Input Variables.................................................. 49
2.7.2	 Creating Script Files.......................................................................................50

Problem Set (Chapter 2)......................................................................................................... 51

	 3.	 Numerical Solution of Equations of a Single Variable..................................................55
3.1	 Numerical Solution of Equations...............................................................................55
3.2	 Bisection Method.........................................................................................................55

3.2.1	 MATLAB Built-In Function fzero..............................................................60
3.3	 Regula Falsi Method (Method of False Position)..................................................... 61

3.3.1	 Modified Regula Falsi Method.....................................................................64
3.4	 Fixed-Point Method.....................................................................................................65

3.4.1	 Selection of a Suitable Iteration Function....................................................66
3.4.2	 A Note on Convergence................................................................................. 67
3.4.3	 Rate of Convergence of the Fixed-Point Iteration....................................... 71

3.5	 Newton’s Method (Newton–Raphson Method)......................................................72
3.5.1	 Rate of Convergence of Newton’s Method.................................................. 76
3.5.2	 A Few Notes on Newton’s Method..............................................................77
3.5.3	 Modified Newton’s Method for Roots with Multiplicity 
	 2 or Higher....................................................................................................... 78

3.6	 Secant Method.............................................................................................................. 81
3.6.1	 Rate of Convergence of Secant Method.......................................................83
3.6.2	 A Few Notes on Secant Method...................................................................83



3.7	 Equations with Several Roots.....................................................................................83
3.7.1	 Finding Roots to the Right of a Specified Point..........................................83
3.7.2	 Finding Several Roots in an Interval Using fzero...................................84

Problem Set (Chapter 3).........................................................................................................88

	 4.	 Numerical Solution of Systems of Equations.................................................................. 95
4.1	 Linear Systems of Equations...................................................................................... 95
4.2	 Numerical Solution of Linear Systems..................................................................... 96
4.3	 Gauss Elimination Method......................................................................................... 96

4.3.1	 Choosing the Pivot Row: Partial Pivoting with Row Scaling.................. 98
4.3.2	 Permutation Matrices.....................................................................................99
4.3.3	 Counting the Number of Operations......................................................... 102

4.3.3.1	 Elimination..................................................................................... 102
4.3.3.2	 Back Substitution........................................................................... 103

4.3.4	 Tridiagonal Systems..................................................................................... 103
4.3.4.1	 Thomas Method............................................................................ 104
4.3.4.2	 MATLAB Built-In Function "\".................................................. 106

4.4	 LU Factorization Methods........................................................................................ 107
4.4.1	 Doolittle Factorization.................................................................................. 107
4.4.2	 Finding L and U Using Steps of Gauss Elimination................................ 108
4.4.3	 Finding L and U Directly............................................................................ 108

4.4.3.1	 Doolittle’s Method to Solve a Linear System............................. 110
4.4.3.2	 Operations Count.......................................................................... 112

4.4.4	 Cholesky Factorization................................................................................. 112
4.4.4.1	 Cholesky’s Method to Solve a Linear System............................ 113
4.4.4.2	 Operations Count.......................................................................... 115
4.4.4.3	 MATLAB Built-In Functions lu and chol................................ 115

4.5	 Iterative Solution of Linear Systems........................................................................ 116
4.5.1	 Vector Norms................................................................................................. 116
4.5.2	 Matrix Norms................................................................................................ 118

4.5.2.1	 Compatibility of Vector and Matrix Norms.............................. 119
4.5.3	 General Iterative Method............................................................................. 120

4.5.3.1	 Convergence of the General Iterative Method.......................... 120
4.5.4	 Jacobi Iteration Method................................................................................ 121

4.5.4.1	 Convergence of the Jacobi Iteration Method............................. 122
4.5.5	 Gauss–Seidel Iteration Method................................................................... 125

4.5.5.1	 Convergence of the Gauss–Seidel Iteration Method................ 127
4.5.6	 Indirect Methods versus Direct Methods for Large Systems................. 130

4.6	 Ill-Conditioning and Error Analysis....................................................................... 131
4.6.1	 Condition Number....................................................................................... 131
4.6.2	 Ill-Conditioning............................................................................................ 132

4.6.2.1	 Indicators of Ill-Conditioning...................................................... 133
4.6.3	 Computational Error.................................................................................... 133

4.6.3.1	 Consequences of Ill-Conditioning.............................................. 135
4.6.4	 Effects of Parameter Changes on the Solution......................................... 136

4.7	 Systems of Nonlinear Equations.............................................................................. 138
4.7.1	 Newton’s Method for a System of Nonlinear Equations......................... 138

4.7.1.1	 Newton’s Method for Solving a System of 
Two Nonlinear Equations............................................................ 138



4.7.1.2	 Newton’s Method for Solving a System of n Nonlinear 
Equations........................................................................................ 142

4.7.1.3	 Convergence of Newton’s Method.............................................. 142
4.7.2	 Fixed-Point Iteration Method for a System of Nonlinear Equations..... 143

4.7.2.1	 Convergence of the Fixed-Point Iteration Method.................... 143
Problem Set (Chapter 4)....................................................................................................... 146

	 5.	 Curve Fitting and Interpolation....................................................................................... 161
5.1	 Least-Squares Regression......................................................................................... 161
5.2	 Linear Regression....................................................................................................... 162

5.2.1	 Deciding a “Best” Fit Criterion................................................................... 163
5.2.2	 Linear Least-Squares Regression................................................................ 164

5.3	 Linearization of Nonlinear Data.............................................................................. 167
5.3.1	 Exponential Function................................................................................... 167
5.3.2	 Power Function............................................................................................. 167
5.3.3	 Saturation Function...................................................................................... 168

5.4	 Polynomial Regression.............................................................................................. 172
5.4.1	 Quadratic Least-Squares Regression......................................................... 174
5.4.2	 Cubic Least-Squares Regression................................................................. 176
5.4.3	 MATLAB Built-In Functions Polyfit and Polyval............................. 178

5.5	 Polynomial Interpolation.......................................................................................... 179
5.5.1	 Lagrange Interpolating Polynomials......................................................... 180
5.5.2	 Drawbacks of Lagrange Interpolation....................................................... 183
5.5.3	 Newton Divided-Difference Interpolating Polynomials........................ 184
5.5.4	 Special Case: Equally-Spaced Data............................................................ 190
5.5.5	 Newton Forward-Difference Interpolating Polynomials........................ 191

5.6	 Spline Interpolation................................................................................................... 193
5.6.1	 Linear Splines................................................................................................ 194
5.6.2	 Quadratic Splines.......................................................................................... 195

5.6.2.1	 Function Values at the Endpoints (2 Equations)....................... 195
5.6.2.2	 Function Values at the Interior Knots (2n − 2 Equations)........ 196
5.6.2.3	 First Derivatives at the Interior Knots (n − 1 Equations)......... 196
5.6.2.4	 Second Derivative at the Left Endpoint is Zero (1 Equation).....196

5.6.3	 Cubic Splines................................................................................................. 198
5.6.3.1	 Clamped Boundary Conditions.................................................. 199
5.6.3.2	 Free Boundary Conditions........................................................... 199

5.6.4	 Construction of Cubic Splines: Clamped Boundary Conditions........... 199
5.6.5	 Construction of Cubic Splines: Free Boundary Conditions.................... 204
5.6.6	 MATLAB Built-In Functions interp1 and spline............................... 205
5.6.7	 Boundary Conditions................................................................................... 207
5.6.8	 Interactive Curve Fitting and Interpolation in MATLAB....................... 208

5.7	 Fourier Approximation and Interpolation............................................................. 209
5.7.1	 Sinusoidal Curve Fitting.............................................................................. 209

5.7.1.1	 Fourier Approximation................................................................ 210
5.7.1.2	 Fourier Interpolation.................................................................... 210

5.7.2	 Linear Transformation of Data................................................................... 210
5.7.3	 Discrete Fourier Transform......................................................................... 215
5.7.4	 Fast Fourier Transform................................................................................. 216

5.7.4.1	 Sande–Tukey Algorithm (N = 2p, p = integer)............................ 217



5.7.4.2	 Case Study: N = 23 = 8................................................................... 218
5.7.4.3	 Cooley–Tukey Algorithm (N = 2p, p = integer)........................... 219

5.7.5	 MATLAB Built-In Function fft................................................................. 220
5.7.5.1	 Interpolation Using fft............................................................... 220

Problem Set (Chapter 5).......................................................................................................223

	 6.	 Numerical Differentiation and Integration................................................................... 249
6.1	 Numerical Differentiation........................................................................................ 249
6.2	 Finite-Difference Formulas for Numerical Differentiation................................. 249

6.2.1	 Finite-Difference Formulas for the First Derivative................................250
6.2.1.1	 Two-Point Backward Difference Formula.................................250
6.2.1.2	 Two-Point Forward Difference Formula.................................... 251
6.2.1.3	 Two-Point Central Difference Formula...................................... 251
6.2.1.4	 Three-Point Backward Difference Formula.............................. 252
6.2.1.5	 Three-Point Forward Difference Formula.................................253

6.2.2	 Finite-Difference Formulas for the Second Derivative............................254
6.2.2.1	 Three-Point Backward Difference Formula..............................254
6.2.2.2	 Three-Point Forward Difference Formula.................................254
6.2.2.3	 Three-Point Central Difference Formula...................................255
6.2.2.4	 Summary of Finite-Difference Formulas for First to 

Fourth Derivatives........................................................................256
6.2.3	 Estimate Improvement: Richardson’s Extrapolation...............................256
6.2.4	 Richardson’s Extrapolation for Discrete Sets of Data.............................. 259
6.2.5	 Derivative Estimates for Non-Evenly Spaced Data.................................. 259
6.2.6	 MATLAB Built-In Functions diff and polyder.................................... 260

6.3	 Numerical Integration: Newton–Cotes Formulas................................................. 261
6.3.1	 Newton–Cotes Formulas............................................................................. 262
6.3.2	 Rectangular Rule.......................................................................................... 262

6.3.2.1	 Composite Rectangular Rule....................................................... 262
6.3.3	 Error Estimate for Composite Rectangular Rule......................................264
6.3.4	 Trapezoidal Rule........................................................................................... 266

6.3.4.1	 Composite Trapezoidal Rule........................................................ 267
6.3.4.2	 Error Estimate for Composite Trapezoidal Rule....................... 267

6.3.5	 Simpson’s Rules............................................................................................. 269
6.3.5.1	 Simpson’s 1/3 Rule........................................................................ 269
6.3.5.2	 Composite Simpson’s 1/3 Rule.................................................... 270
6.3.5.3	 Error Estimate for Composite Simpson’s 1/3 Rule................... 270
6.3.5.4	 Simpson’s 3/8 Rule........................................................................ 271
6.3.5.5	 Composite Simpson’s 3/8 Rule.................................................... 272
6.3.5.6	 Error Estimate for Composite Simpson’s 3/8 Rule................... 273

6.3.6	 MATLAB Built-In Functions quad and trapz........................................ 273
6.4	 Numerical Integration of Analytical Functions: Romberg Integration, 

Gaussian Quadrature................................................................................................ 275
6.4.1	 Romberg Integration.................................................................................... 275

6.4.1.1	 Richardson’s Extrapolation.......................................................... 275
6.4.1.2	 Romberg Integration..................................................................... 278

6.4.2	 Gaussian Quadrature...................................................................................280
6.5	 Improper Integrals.....................................................................................................285
Problem Set (Chapter 6)....................................................................................................... 286



	 7.	 Numerical Solution of Initial-Value Problems.............................................................. 301
7.1	 Introduction................................................................................................................ 301
7.2	 One-Step Methods..................................................................................................... 301
7.3	 Euler’s Method............................................................................................................302

7.3.1	 Error Analysis for Euler’s Method.............................................................305
7.3.2	 Calculation of Local and Global Truncation Errors.................................305
7.3.3	 Higher-Order Taylor Methods.................................................................... 307

7.4	 Runge–Kutta Methods..............................................................................................309
7.4.1	 Second-Order Runge–Kutta (RK2) Methods............................................ 310

7.4.1.1	 Improved Euler’s Method............................................................ 311
7.4.1.2	 Heun’s Method.............................................................................. 311
7.4.1.3	 Ralston’s Method........................................................................... 312
7.4.1.4	 Graphical Representation of Heun’s Method............................ 312

7.4.2	 Third-Order Runge–Kutta (RK3) Methods............................................... 315
7.4.2.1	 The Classical RK3 Method........................................................... 315
7.4.2.2	 Heun’s RK3 Method...................................................................... 315

7.4.3	 Fourth-Order Runge–Kutta (RK4) Methods............................................. 316
7.4.3.1	 The Classical RK4 Method........................................................... 317

7.4.4	 Higher-Order Runge–Kutta Methods....................................................... 319
7.4.5	 Selection of Optimal Step Size: Runge–Kutta Fehlberg (RKF) 

Method........................................................................................................... 320
7.4.5.1	 Adjustment of Step Size............................................................... 321

7.5	 Multistep Methods..................................................................................................... 322
7.5.1	 Adams–Bashforth Method.......................................................................... 323

7.5.1.1	 Second-Order Adams–Bashforth Formula................................ 324
7.5.1.2	 Third-Order Adams–Bashforth Formula.................................. 324
7.5.1.3	 Fourth-Order Adams–Bashforth Formula................................ 324

7.5.2	 Adams–Moulton Method............................................................................ 325
7.5.2.1	 Second-Order Adams–Moulton Formula.................................. 326
7.5.2.2	 Third-Order Adams–Moulton Formula.................................... 326
7.5.2.3	 Fourth-Order Adams–Moulton Formula.................................. 326

7.5.3	 Predictor–Corrector Methods..................................................................... 326
7.5.3.1	 Heun’s Predictor–Corrector Method.......................................... 327
7.5.3.2	 Adams–Bashforth–Moulton (ABM) 

Predictor–Corrector Method....................................................... 327
7.6	 Systems of Ordinary Differential Equations.........................................................330

7.6.1	 Transformation into a System of First-Order ODEs.................................330
7.6.1.1	 State Variables................................................................................330
7.6.1.2	 Notation..........................................................................................330
7.6.1.3	 State-Variable Equations...............................................................330

7.6.2	 Numerical Solution of a System of First-Order ODEs............................. 332
7.6.2.1	 Euler’s Method for Systems......................................................... 332
7.6.2.2	 Heun’s Method for Systems.........................................................335
7.6.2.3	 Classical RK4 Method for Systems.............................................336

7.7	 Stability........................................................................................................................340
7.7.1	 Euler’s Method.............................................................................................. 341
7.7.2	 Euler’s Implicit Method................................................................................ 341

7.8	 Stiff Differential Equations.......................................................................................343
7.9	 MATLAB Built-In Functions for Solving Initial-Value Problems........................345



7.9.1	 Non-Stiff Equations......................................................................................345
7.9.2	 A Single First-Order IVP..............................................................................345
7.9.3	 Setting ODE Solver Options........................................................................347
7.9.4	 A System of First-Order IVPs......................................................................348
7.9.5	 Stiff Equations...............................................................................................349

Problem Set (Chapter 7).......................................................................................................350

	 8.	 Numerical Solution of Boundary-Value Problems....................................................... 367
8.1	 Second-Order BVP..................................................................................................... 367
8.2	 Boundary Conditions................................................................................................ 367
8.3	 Higher-Order BVP.....................................................................................................368
8.4	 Shooting Method........................................................................................................368
8.5	 Finite-Difference Method......................................................................................... 374

8.5.1	 Boundary-Value Problems with Mixed Boundary Conditions.............. 379
8.6	 MATLAB Built-In Function bvp4c for Boundary-Value Problems.................... 381

8.6.1	 Second-Order BVP........................................................................................ 382
Problem Set (Chapter 8).......................................................................................................386

	 9.	 Matrix Eigenvalue Problem............................................................................................... 393
9.1	 Matrix Eigenvalue Problem...................................................................................... 393
9.2	 Power Method: Estimation of the Dominant Eigenvalue.................................... 393

9.2.1	 Different Cases of Dominant Eigenvalue.................................................. 395
9.2.2	 Algorithm for the Power Method............................................................... 395

9.3	 Inverse Power Method: Estimation of the Smallest Eigenvalue.......................... 398
9.4	 Shifted Inverse Power Method: Estimation of the Eigenvalue 

Nearest a Specified Value.......................................................................................... 399
9.4.1	 Notes on the Shifted Inverse Power Method............................................400

9.5	 Shifted Power Method............................................................................................... 401
9.5.1	 Strategy to Estimate All Eigenvalues of a Matrix.................................... 401

9.6	 MATLAB Built-In Function eig..............................................................................403
9.7	 Deflation Methods.....................................................................................................403

9.7.1	 Wielandt’s Deflation Method......................................................................404
9.7.2	 Deflation Process...........................................................................................405

9.8	 Householder Tridiagonalization and QR Factorization Methods...................... 407
9.8.1	 Householder’s Tridiagonalization Method 
	 (Symmetric Matrices)...................................................................................408
9.8.2	 Determination of Symmetric Orthogonal Pk (k = 1,2, … , n − 2).............409
9.8.3	 QR Factorization Method............................................................................ 411
9.8.4	 Determination of Qk and Rk Matrices........................................................ 412
9.8.5	 Structure of Lk (k = 2,3,…, n)......................................................................... 412

9.9	 MATLAB Built-In Function qr................................................................................ 413
9.10	 A Note on the Terminating Condition Used in HouseholderQR..................... 414
9.11	 Transformation to Hessenberg Form (Nonsymmetric Matrices)........................ 417
Problem Set (Chapter 9)....................................................................................................... 418

	10.	 Numerical Solution of Partial Differential Equations................................................423
10.1	 Introduction................................................................................................................423
10.2	 Elliptic Partial Differential Equations..................................................................... 424

10.2.1	 Dirichlet Problem.......................................................................................... 424



10.2.2	 Alternating Direction Implicit (ADI) Methods.........................................428
10.2.2.1	 Peaceman–Rachford Alternating Direction 

Implicit (PRADI) Method.............................................................429
10.2.3	 Neumann Problem.......................................................................................433

10.2.3.1	 Existence of a Solution for the Neumann Problem..................435
10.2.4	 Mixed Problem..............................................................................................436
10.2.5	 More Complex Regions................................................................................ 437

10.3	 Parabolic Partial Differential Equations.................................................................440
10.3.1	 Finite-Difference Method............................................................................440

10.3.1.1	 Stability and Convergence of the Finite-Difference 
Method........................................................................................ 441

10.3.2	 Crank–Nicolson Method..............................................................................443
10.3.2.1	 Crank–Nicolson (CN) Method versus Finite-Difference 

(FD) Method...................................................................................446
10.4	 Hyperbolic Partial Differential Equations.............................................................448

10.4.1	 Starting the Procedure.................................................................................449
Problem Set (Chapter 10)..................................................................................................... 452

Index.............................................................................................................................................. 461



Preface

It has been nearly 4 years since the first edition of Numerical Methods for Engineers and 
Scientists Using MATLAB® was published. During this time, most of the material in the 
first edition has been rigorously class tested, resulting in many enhancements and modifi-
cations to make the new edition even more effective and user-friendly.

As in the first edition, the primary objective of this book is to provide the reader 
with a broad knowledge of the fundamentals of numerical methods utilized in various 
disciplines  in engineering and science. The powerful software MATLAB is introduced 
at the outset and is assimilated throughout the book to perform symbolic, graphical, and 
numerical tasks. The textbook, written at the junior/senior level, methodically covers a 
wide array of techniques ranging from curve fitting a set of data to numerically solving 
initial- and boundary-value problems. Each method is accompanied by at least one fully 
worked-out example, followed by either a user-defined function or a MATLAB script file. 
MATLAB built-in functions are also presented for each main topic covered.

This book consists of 10 chapters. Chapter 1 presents the necessary background material 
and is divided into two parts: (1) differential equations, matrix analysis, and the matrix 
eigenvalue problem, and (2) computational errors, approximations, iterative methods, and 
rates of convergence.

Chapter 2 gives an in-depth introduction to the essentials of MATLAB as related 
to numerical methods. The chapter addresses fundamental features such as built-in 
functions and commands, formatting options, vector and matrix operations, program flow 
control, symbolic operations, and plotting capabilities. The reader also learns how to write 
a user-defined function or a MATLAB script file to perform specific tasks.

Chapters 3 and 4 introduce numerical methods for solving equations. Chapter 3 focuses 
on finding roots of equations of a single variable, while Chapter 4 covers methods for 
solving linear and nonlinear systems of equations.

Chapter 5 is completely devoted to curve fitting and interpolation techniques, includ-
ing the fast Fourier transform (FFT). Chapter 6 covers numerical differentiation and 
integration methods. Chapters 7 and 8 present numerical methods for solving initial-value 
problems and boundary-value problems, respectively.

Chapter 9 covers the numerical solution of the matrix eigenvalue problem, which entails 
techniques to approximate a few or all eigenvalues of a matrix.

Chapter 10 presents numerical methods for solving elliptic, parabolic, and hyperbolic 
partial differential equations, specifically those that frequently arise in engineering and 
science.

Pedagogy of the Book

The book is written in a user-friendly fashion that intends to make the material easy to 
follow and understand by the reader. The topics are presented systematically using the 
following format:



•	 Each newly introduced method is accompanied by at least one fully worked-out 
example showing all details.

•	 This is followed by a user-defined function, or a script file, that utilizes the method 
to perform a desired task.

•	 The hand-calculated results are then confirmed through the execution of the user-
defined function or the script file.

•	 When available, built-in functions are executed for reconfirmation.
•	 Plots are regularly generated to shed light on the accuracy and implication of the 

numerical results.

Exercises

A large set of exercises, of various levels of difficulty, appears at the end of each chapter 
and can be worked out either using a

 Hand calculator, or

 MATLAB.

In many instances, the reader is asked to prepare a user-defined function, or a script 
file, that implements a specific technique. In many cases, these require simple revisions to 
those already presented in the chapter.

Ancillary Material

The following will be provided to the instructors adopting the book:

•	 An instructor’s solutions manual (in PDF format), featuring complete solution 
details of all exercises, prepared by the author.

•	 A web download containing all user-defined functions used throughout 
the book, available at https://www.crcpress.com/Numerical-Methods-for-
Engineers-and-Scientists-Using-MATLAB-Second-Edition/Esfandiari/p/
book/9781498777421.

New to This Edition

•	 Chapter 2 (Introduction to MATLAB) has been extensively reinforced so that it 
now covers virtually all features of MATLAB that are consistently used through-
out the book.

https://www.crcpress.com/Numerical-Methods-for-Engineers-and-Scientists-Using-MATLAB-Second-Edition/Esfandiari/p/book/9781498777421
https://www.crcpress.com/Numerical-Methods-for-Engineers-and-Scientists-Using-MATLAB-Second-Edition/Esfandiari/p/book/9781498777421
https://www.crcpress.com/Numerical-Methods-for-Engineers-and-Scientists-Using-MATLAB-Second-Edition/Esfandiari/p/book/9781498777421


•	 Many of the user-defined functions have been revised to become more robust and 
versatile.

•	 Several worked-out examples have been either entirely changed or modified to 
illustrate the important details of the methods under consideration.

•	 A large proportion of the end-of-chapter exercises have been carefully revamped 
so that not only their objectives are clear to the reader, but also they better repre-
sent a wide spectrum of the ideas presented in each chapter.

Ramin S. Esfandiari, PhD
June 2016



1
Background and Introduction

This chapter is divided into two parts. In Part 1, a review of some essential mathematical 
concepts as related to differential equations and matrix analysis is presented. In Part 2, 
fundamentals of numerical methods, such as sources of computational errors, as well as 
iterations and rates of convergence are introduced. The materials presented here will be 
fully integrated throughout the book.

Part 1: Background

1.1  Differential Equations

Differential equations are divided into two main groups: ordinary differential equations 
(ODEs) and partial differential equations (PDEs). An equation involving an unknown 
function and one or more of its derivatives is called a differential equation. When there is 
only one independent variable, the equation is called an ODE. If the unknown function is 
a function of several independent variables, the equation is a PDE. For example, 2 �x x e t+ = −  
is an ODE involving the unknown function x(t), its first derivative with respect to t, as well 
as a given function e−t. Similarly, tx x x t�� �− =2 sin  is an ODE relating x(t) and its first and sec-
ond derivatives with respect to t, as well as the function sin t. The derivative of the highest 
order of the unknown function with respect to the independent variable is the order of 
the ODE. For instance, 2 �x x e t+ = −  is of order 1, while tx x x t�� �− =2 sin  is of order 2. PDEs are 
discussed in Chapter 10.

Consider an nth-order ODE in the form

	 a x a x a x a x F tn
n

n
n( ) ( ) ( )+ + + + =−

−
1

1
1 0� � 	 (1.1)

where x = x(t) and x(n) = dnx/dtn. If all coefficients a0, a1, … , an are either constants or func-
tions of the independent variable t, then the ODE is linear. Otherwise, it is nonlinear. If 
F(t) ≡ 0, the ODE is homogeneous. Otherwise, it is nonhomogeneous. Therefore 2 �x x e t+ = −  
is linear, tx x x t�� �− =2 sin  is nonlinear, and both are nonhomogeneous.

1.1.1  Linear, First-Order ODEs

A linear, first-order ODE can be expressed as

	 a x a x F t x g t x f t
a

1 0

1

� �+ = ⇒ + =( ) ( ) ( )
Divide by 

	
(1.2)
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A general solution for Equation 1.2 is obtained as

	
x t e e f t dt c h t g t dt c consth h( ) ( ) , ( ) ( ) ,= +





= =− ∫ ∫ 	
(1.3)

A particular solution is obtained when an initial condition is prescribed. Assuming t0 is 
the initial value of t, a first-order initial-value problem (IVP) is described as

	 �x g t x f t x t x+ = =( ) ( ), ( )0 0 	

EXAMPLE 1.1:  LINEAR, FIRST-ORDER IVP

Find the particular solution of the following IVP:

	 3 2 02 1
3�x x e xt+ = =− / , ( ) 	

Solution

We first rewrite the ODE is the standard form of Equation 1.2, as �x x e t+ = −2
3

1
3

2/  so that 
g t( ) = 2

3 , f t e t( ) /= −1
3

2 . By Equation 1.3, a general solution is obtained as

	
h dt t x t e e e dt c e cet t t t= = = +





= +∫ ∫− − − −2
3

2
3

2 3 2 3 2 2 21
3 2, ( ) / / / / tt/3

	

Applying the initial condition, we find

	 x c c( )0 2 1
3

5
3= + = ⇒ = − 	

Therefore,

	 x t e et t( ) / /= −− −2 2 5
3

2 3

	

1.1.2  Second-Order ODEs with Constant Coefficients

A second-order ODE in the standard form, with constant coefficients, is expressed as

	 �� �x a x a x f t a a const+ + = =1 0 1 0( ), , 	 (1.4)

The corresponding second-order IVP consists of Equation 1.4 accompanied by two ini-
tial conditions. A general solution of Equation 1.4 is a superposition of the homogeneous 
solution xh(t) and the particular solution xp(t).

1.1.2.1  Homogeneous Solution

The homogeneous solution is the solution of the homogeneous equation

	 �� �x a x a x+ + =1 0 0 	 (1.5)
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Assuming a solution in the form x(t) = eλt, with λ to be determined, substituting into 
Equation 1.5, and using the fact that eλt ≠ 0, we find

	 λ λ2
1 0 0+ + =a a 	

This is known as the characteristic equation. The solution of Equation 1.5 is determined 
according to the nature of the two roots of the characteristic equation of the ODE. These 
roots, labeled λ1 and λ2, are called the characteristic values.

	 1.	When λ1
 ≠ λ2 (real), the homogeneous solution is

	 x t c e c eh
t t( ) = +1 2

1 2λ λ
	

	 2.	When λ1 = λ2, we have

	 x t c e c teh
t t( ) = +1 2

1 1λ λ
	

	 3.	When λ λ1 2=  (complex conjugates), and λ1 = σ + iω, we find

	 x t e c t c th
t( ) ( cos sin )= +σ ω ω1 2 	

EXAMPLE 1.2:  HOMOGENEOUS, SECOND-ORDER 
ODE WITH CONSTANT COEFFICIENTS

Find a general solution of

	 �� �x x x+ + =5 4 0 	

Solution

The characteristic equation is formed as λ2 + 5λ + 4 = 0 so that the characteristic values 
are λ1 = −1, λ2 = −4, and

	 x t c e c et t( ) = +− −
1 2

4
	

1.1.2.2  Particular Solution

The particular solution of Equation 1.4 is determined by the function f(t) and how it is 
related to the independent functions that constitute the homogeneous solution. The par-
ticular solution is obtained by the method of undetermined coefficients. This method is 
limited in its applications only to cases where f(t) is a polynomial, an exponential function, 
a sinusoidal function, or any of their combinations.

1.1.3  Method of Undetermined Coefficients

Table 1.1 lists different scenarios and the corresponding recommended xp(t). These recom-
mended forms are subject to modification in some special cases as follows. If xp(t) contains 
a term that coincides with a solution of the homogeneous equation, and that the solution 
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corresponds to a non-repeated characteristic value, then the recommended xp(t) must be 
multiplied by t. If the said characteristic value is repeated, then xp(t) is multiplied by t2.

EXAMPLE 1.3:  SECOND-ORDER IVP

Solve the following second-order IVP:

	
�� � �x x x e x xt+ + = = = −−5 4 0 0 01

4
1
6, ( ) , ( ) 	

Solution

The homogeneous solution was previously found in Example 1.2, as xh(t) = c1e−t + c2e−4t. 
Since f t e t( ) = −1

4 , Table 1.1 recommends xp(t) = Ke−t. However, e−t is one of the indepen-
dent functions in the homogeneous solution, thus xp(t) must be modified. Since e−t is 
associated with a non-repeated characteristic value (λ = −1), we multiply the recom-
mended xp(t) by t to obtain xp(t) = Kte−t. Substitution into the ODE, and collecting like 
terms, yields

	 3 1
4

1
12

1
12Ke e K x t tet t

p
t− − −= ⇒ = ⇒ =( ) 	

Therefore, a general solution is formed as x t c e c e tet t t( ) = + +− − −
1 2

4 1
12 . Applying the ini-

tial conditions,

	

c c

c c
c

c
1 2

1 2
1

12
1
6

1
1

12

2
1

12

0
3
+ =

− − + = −
⇒

= −
=

Solve

	

Therefore, x t e e tet t t( ) ( )= − +− − −1
12

4 .

1.2  Matrix Analysis

An n-dimensional vector v is an ordered set of n scalars, written as

	

v =
…



















v

v

vn

1

2

	

TABLE 1.1

Method of Undetermined Coefficients

Term in f(t) Recommended xp(t)

Antn + An−1tn−1 + … + A1t + A0 Kntn + Kn−1tn−1 + … + K1t + K0

Aeat Keat

A cos αt or A sin αt K1 cos αt + K2 sin αt

Aeat cos αt or Aeat sin αt eat(K1 cos αt + K2 sin αt)
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where each vi (i = 1, 2, …, n) is a component of vector v. A matrix is a collection of numbers 
(real or complex) or possibly functions, arranged in a rectangular array and enclosed by 
square brackets. Each of the elements in a matrix is called an entry of the matrix. The 
horizontal and vertical levels are the rows and columns of the matrix, respectively. The 
number of rows and columns of a matrix determine its size. If a matrix A has m rows and 
n columns, then its size is m × n. A matrix is called square if the number of its rows and 
columns are the same. Otherwise, it is rectangular. Matrices are denoted by bold-faced 
capital letters, such as A. The abbreviated form of an m × n matrix is

	 A = ×[ ]aij m n 	

where aij is known as the (i, j) entry of A, located at the intersection of the ith row and the 
jth column of A. For instance, a32 is the entry at the intersection of the third row and the 
second column of A. In a square matrix An×n, the elements a11, a22, … , ann are the diagonal 
entries.

Two matrices A = [aij] and B = [bij] are equal if they have the same size and the same 
respective entries. A submatrix of A is generated by deleting some rows and/or columns 
of A.

1.2.1  Matrix Operations

The sum of A = [aij]m×n and B = [bij]m×n is

	 C = = +× ×[ ] [ ]c a bij m n ij ij m n 	

The product of a scalar k and matrix A = [aij]m×n is

	 k kaij m nA = ×[ ] 	

Consider A = [aij]m×n and B = [bij]n×p so that the number of columns of A is equal to the 
number of rows of B. Then, their product C = AB is m × p whose entries are obtained as

	
c a b i m j pij ik kj

k

n

= = … = …
=

∑
1

1 2 1 2, , , , , , , ,
	

1.2.2  Matrix Transpose

Given Am×n, its transpose, denoted by AT, is an n × m matrix such that its first row is the 
first column of A, its second row is the second column of A, and so on. Provided all matrix 
operations are valid,

	 ( )A B A B+ = +T T T

	

	 ( ) ,k k kT TA A= = scalar 	

	 ( )AB B AT T T= 	
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1.2.3  Special Matrices

A square matrix A = [aij]n×n is symmetric if AT = A, and skew-symmetric if AT = −A. It is 
upper triangular if aij = 0 for all i > j, that is, all entries below the main diagonal are zeros. 
It is lower triangular if aij = 0 for all i < j, that is, all elements above the main diagonal are 
zeros. It is diagonal if aij = 0 for all i ≠ j. In the upper and lower triangular matrices, the 
diagonal elements may be all zeros. However, in a diagonal matrix, at least one diagonal 
entry must be nonzero. The n × n identity matrix, denoted by I, is a diagonal matrix whose 
every diagonal entry is equal to 1.

1.2.4  Determinant of a Matrix

The determinant of a square matrix A = [aij]n×n is a real scalar denoted by |A| or det(A). For 
n ≥ 2, the determinant may be calculated using any row or column—with preference given 
to the row or column with the most zeros. Using the ith row, the determinant is found as

	
A = − = …+

=
∑ a M i nik

i k
ik

k

n

( ) , , , ,1 1 2
1 	

(1.6)

In Equation 1.6, Mik is the minor of the entry aik, defined as the determinant of the 
(n−1) × (n−1) submatrix of A obtained by deleting the ith row and the kth column of A. 
The quantity (−1)i+k Mik is the cofactor of aik and is denoted by Cik. Also note that (−1)i+k is 
responsible for whether a term is multiplied by +1 or −1. A square matrix is non-singular 
if its determinant is nonzero. Otherwise, it is called singular.

EXAMPLE 1.4:   DETERMINANT

Calculate the determinant of

	

A =

− − −

−
−





















1 2 1 3
2 0 1 4
1 1 5 2

3 4 2 3
	

Solution

We will use the second row since it contains a zero entry.

	

A = −
− −

−
−

− − −
−

−
+

− −
−

−
= − − − −2

2 1 3
1 5 2
4 2 3

1 2 3
1 1 2

3 4 3
4

1 2 1
1 1 5

3 4 2
2 99 3( ) ( 22 4 55 10) ( )+ − =

	

Note that each of the individual 3 × 3 determinants is calculated via Equation 1.6.

1.2.5  Properties of Determinant

•	 The determinant of a matrix product is the product of individual determinants: 
|AB| = |A||B|.
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•	 The determinant of a matrix and its transpose are the same: |AT| = |A|.
•	 The determinant of a lower triangular, upper triangular, or diagonal matrix is the 

product of the diagonal entries.
•	 If any rows or columns of A are linearly dependent, then |A| = 0.

1.2.5.1  Cramer’s Rule

Consider a linear system of n algebraic equations in n unknowns x1, x2, …, xn in the form

	

a x a x a x b

a x a x a x b

a x a x

n n

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =
+ + + =

+ +

�
�
�
�++ =








 a x bnn n n 	

(1.7)

where aij (i, j = 1, 2, …, n) and bi (i = 1, 2, …, n) are known constants, and aij’s are the coef-
ficients. Equation 1.7 can be expressed in matrix form, as

	 Ax b= 	

with

	

A x=

…
…

… … … …
…



















=

×

a a a

a a a

a a a

x

x
n

n

n n nn n n

11 12 1

21 22 2

1 2

1

2
,

……



















=
…



















× ×
x

b

b

bn n n n1

1

2

1

, b

	

Assuming A is non-singular, each unknown xk (k = 1, 2, …, n) is uniquely determined via

	
xk

k= ∆
∆ 	

where determinants Δ and Δk are described as

	

∆ ∆=

…
…

… … … …
…

=

…a a a

a a a

a a a

a b
n

n

n n nn

k

k

11 12 1

21 22 2

1 2

11 1

,

th column off ∆
…

… …
… … … … …
… … … … …

… …

a

a b a

a b a

n

n

n n nn

1

21 2 2

1 	

EXAMPLE 1.5:   CRAMER’S RULE

Solve the following system using Cramer’s rule:

	

2 3 1
1 2 1

1 3 2

3
6

9

1

2

3

−
−

− −

































=
−
−

















x

x

x
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Solution

The determinants are calculated as

	

∆ ∆ ∆=
−

−
− −

= − =
− −
−

− −
= − =

− −
− −

−
=

2 3 1
1 2 1

1 3 2
6

3 3 1
6 2 1

9 3 2
6

2 3 1
1 6 1

1 9 2
1 2, , 112

2 3 3
1 2 6

1 3 9
63

,

 ∆ =
−

− −
−

=

	

The unknowns are then found as

	

x x x1
1

2
2

3
31 2 1

1
2
1

= = = = − = = − ⇒ −
−
















∆
∆

∆
∆

∆
∆

, ,
Solution vector


	

1.2.6  Inverse of a Matrix

The inverse of a square matrix An×n is denoted by A−1 with the property AA−1 = A−1A = I 
where I is the n × n identity matrix. The inverse of A exists only if A is non-singular, 
|A| ≠ 0, and is obtained by using the adjoint matrix of A, denoted by adj(A).

1.2.6.1  Adjoint Matrix

If A = [aij]n×n, then the adjoint of A is defined as

adj( )

( ) ( ) ( )
( ) ( )

A =

− − … −
− −

+ + +

+ +

1 1 1
1 1

1 1
11

2 1
21

1
1

1 2
12

2 2
22

M M M

M M

n
n

…… −
… … … …

− − … −


















+

+ + +

( )

( ) ( ) ( )

1

1 1 1

2
2

1
1

2
2

n
n

n
n

n
n

n n
nn

M

M M M





=

…
…

… … … …
…



















C C C

C C C

C C C

n

n

n n nn

11 21 1

12 22 2

1 2 	

(1.8)

where Mij is the minor of aij and Cij = −(1)i+j Mij is the cofactor of aij. Note that each minor Mij 
(or cofactor Cij) occupies the (j, i) position in the adjoint matrix. Then,

	
A

A
A− =1 1

adj( )
	

(1.9)

EXAMPLE 1.6:   INVERSE

Find the inverse of

	

A = −
















3 1 0
1 1 2
1 1 1 	
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Solution

We first calculate |A| = −8. Following the strategy outlined in Equation 1.8, the adjoint 
matrix of A is obtained as

	

adj( )A =
− −

−
− −

















3 1 2
1 3 6
2 2 4 	

Finally, by Equation 1.9, we have

	

A− =
−

− −
−

− −

















=
−

−1 1
8

3 1 2
1 3 6
2 2 4

0.3750 0.1250 0.2500
0.1250 −−

−

















0.3750 0.7500
0.2500 0.2500 0.5000 	

1.2.7  Properties of Inverse

•	 ( )A A− − =1 1

•	 ( )AB B A− − −=1 1 1

•	 ( ) ( ) ,A A− −= = >1 1 0p p p integer

•	 A A− =1 1/

•	 ( ) ( )A A− −=1 1T T

•	 Inverse of a symmetric matrix is symmetric.
•	 Inverse of a diagonal matrix is diagonal whose entries are the reciprocals of the 

entries of the original matrix.

1.2.8  Solving a Linear System of Equations

A linear system of equations Ax = b, where A is non-singular, can be solved as

	
Ax b x A b

A
= ⇒ =

−

−

both sides by 

Pre-multiply

1

1

	

1.3  Matrix Eigenvalue Problem

Consider an n × n matrix A, a scalar λ (generally complex), and a nonzero n × 1 vector v. 
The eigenvalue problem associated with matrix A is defined as

	 Av v v 0= ≠λ , 	 (1.10)

where λ is an eigenvalue of A, and v is the eigenvector of A corresponding to λ. Note that 
an eigenvector cannot be a zero vector.
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1.3.1  Solving the Eigenvalue Problem

Rewriting Equation 1.10, we have

	
Av v 0 A I v 0

v
− = ⇒ − =λ λ

from the right side

Factor 
[ ]

	
(1.11)

where the identity matrix I has been inserted to make the two terms in brackets size com-
patible. Equation 1.11 has a non-trivial (nonzero vector) solution if and only if the coeffi-
cient matrix is singular, that is,

	 A I− =λ 0 	 (1.12)

This gives the characteristic equation of matrix A. Since A is n × n, Equation 1.12 has n 
roots, which are the eigenvalues of A. The corresponding eigenvector for each λ is obtained 
by solving Equation 1.11. Since A−λI is singular, it has at least one row dependent on other 
rows. Therefore, for each λ, Equation 1.11 has infinitely many solutions. A basis of solu-
tions will then represent all eigenvectors associated with λ.

EXAMPLE 1.7:   EIGENVALUE PROBLEM

Find the eigenvalues and eigenvectors of

	

A =
















1 0 1
0 1 0
1 0 1 	

Solution

The characteristic equation yields the eigenvalues:

	

A I− =
−

−
−

= − − = ⇒ =λ
λ

λ
λ

λ λ λ λ
1 0 1

0 1 0
1 0 1

1 2 0 0 1 2( )( ) , ,

	

Solving Equation 1.11 with λ1 = 0, we have

	

A I v 0 v−[ ] = ⇒
















=
















λ1 1 1

1 0 1
0 1 0
1 0 1

0
0
0 	

Let the three components of v1 be a, b, c. Then, the above system yields b = 0 and 
a + c = 0. This implies there is a free variable, which can be either a or c. Letting a = 1 
leads to c = −1, and consequently the eigenvector associated with λ1 = 0 is deter-
mined as
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v1

1
0
1

=
−

















	

Similarly, the eigenvectors associated with the other two eigenvalues (λ2 = 1, λ3 = 2) 
will be obtained as

	

v v2 3

0
1
0

1
0
1

=
















=
















,

	

1.3.2  Similarity Transformation

Consider a matrix An×n and a non-singular matrix Sn×n and suppose

	 S AS B− =1
	 (1.13)

We say B has been obtained through a similarity transformation of A, and that matrices 
A and B are similar. Similar matrices have the same set of eigenvalues. That is, eigenvalues 
are preserved under a similarity transformation.

1.3.3  Matrix Diagonalization

Suppose matrix An×n has eigenvalues λ1, λ2, …, λn and linearly independent eigenvectors v1, 
v2, …, vn. Then, the modal matrix P v v v= … ×[ ]1 2 n n n  diagonalizes A by means of a 
similarity transformation:

	

P AP D− = =
…



















1

1

2

λ
λ

λn 	

(1.14)

EXAMPLE 1.8:   MATRIX DIAGONALIZATION

Consider the matrix in Example 1.7. The modal matrix is formed as

	

P v v v=   =
−

















1 2 3

1 0 1
0 1 0
1 0 1 	

Subsequently,

	

P AP− =



















=



















1

1

2

3

0 0 0

0 1 0

0 0 2

λ

λ

λ
	



12 Numerical Methods for Engineers and Scientists Using MATLAB®, Second Edition

1.3.4  Eigenvalue Properties of Matrices

•	 The determinant of a matrix is the product of its eigenvalues.
•	 Eigenvalues of lower triangular, upper triangular, and diagonal matrices are the 

diagonal entries of the matrix.
•	 Similar matrices have the same set of eigenvalues.
•	 Eigenvalues of a symmetric matrix are all real.
•	 Every eigenvalue of an orthogonal matrix (A−1 = AT ) has an absolute value of 1.

Part 2: Introduction to Numerical Methods

1.4  Errors and Approximations

Numerical methods are procedures that allow for efficient solution of a mathematically 
formulated problem in a finite number of steps to within an arbitrary precision. Although 
scientific calculators can handle simple problems, computers are needed in most cases. 
Numerical methods commonly consist of a set of guidelines to perform predetermined 
mathematical (algebraic and logical) operations leading to an approximate solution of a 
specific problem. Such set of guidelines is known as an algorithm.

1.4.1  Sources of Computational Error

While investigating the accuracy of the results of a certain numerical method, two key 
questions arise: (1) what are the possible sources of error, and (2) to what degree do these 
errors affect the ultimate result? In numerical computations, there exist three possible sources 
of error:

	 1.	Error in the initial model
	 2.	Truncation error
	 3.	Round-off error

The first source occurs in the initial model of the problem. These include, for example, 
when simplifying assumptions are made in the derivation of a physical system model, or 
using approximate values such as 2.7183 and 3.1416 for mathematical numbers such as e 
and π, respectively, and 9.81 (or 32.2) for g, the gravitational acceleration.

The second source is due to truncation, which occurs whenever an expression is approx-
imated by some type of a mathematical method. As an example, suppose we use the 
Maclaurin series representation of the sine function

	

sin
( )

! ! !
( )

!

( )/ ( )/

α α α α α α= − = − + − + −−

=

∞ −

∑ 1 1
3

1
5

11 2
3 5

1 2n
n

n odd

m

n m
� mm

mE+
	

where Em is the tail end of the expansion, neglected in the process, and known as the trun-
cation error.
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The third type of computational error is caused by the computer during the process of 
translating a decimal number to a binary number. This is because unlike humans who use 
the decimal number system (in base 10), computers mostly use the binary number system 
(in base 2 or base 16). In doing so, the inputted number is first converted to base 2, arithme-
tic is done in base 2, and the outcome is converted back to base 10.

1.4.2  Binary and Hexadecimal Numbers

For ordinary purposes, base 10 is used to represent numbers. For example, the number 147 
is expressed as

	 147 1 10 4 10 7 102 1 0
10= × + × + ×[ ] 	

where the subscript is usually omitted when the base is 10. This is known as decimal nota-
tion. The so-called normalized decimal form of a number is

	 ± … × ≤ ≤ ≤ … ≤0.   1 ,d d d d d d dm
p

m1 2 1 2 310 9 0 9, , , , 	 (1.15)

The form in Equation 1.15 is also known as the floating-point form, to be explained 
shortly. On the other hand, most computers use the binary system (in base 2). For instance, 
the number 147 is expressed in base 2 as follows. First, we readily verify that

	 147 1 2 0 2 0 2 1 2 0 2 0 2 1 2 1 27 6 5 4 3 2 1 0
2= × + × + × + × + × + × + × + ×[ ] 	

Then, in base 2, we have

	 147 10010011 2= ( ) 	

We refer to a binary digit as a bit. This last expression represents a binary number. 
Similarly, the same number can be expressed in base 16, as

	 147 9 16 3 16 147 931 0
16 16= × + × ⇒ =[ ] ( )

In base 16

	

This last expression represents a hexadecimal number. While the binary system consists 
of only two digits, 0 and 1, there are 16 digits in the hexadecimal system; 0, 1, 2, …, 9, A, B, …, 
F,  where A–F represent 10–15. We then sense that the hexadecimal system is a natural 
extension of the binary system. Since 24 = 16, for every group of four bits, there is one hexa-
decimal digit. Examples include C = (1100)2, 3 = (0011)2, and so on.

1.4.3  Floating Point and Rounding Errors

Because only a limited number of digits can be stored in computer memory, a number 
must be represented in a manner that uses a somewhat fixed number of digits. Digital 
computers mostly represent a number in one of two ways: fixed point and floating point. 
In a fixed-point setting, a fixed number of decimal places are used for the representation 
of numbers. For instance, in a system using 4 decimal places, we encounter numbers like 
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−2.0000, 131.0174, 0.1234. On the other hand, in a floating-point setting, a fixed number of 
significant digits* are used for representation. For instance, if four significant digits are 
used, then we will encounter numbers such as†

	 0.2501 0.7012× − ×−10 102 5, 	

Note that these two numbers fit the general form given by Equation 1.15. In the floating-
point representation of a number, one position is used to identify its sign, a prescribed 
number of bits to represent its fractional part, known as the mantissa, and another pre-
scribed number of bits for its exponential part, known as the characteristic. Computers 
that use 32 bits for single-precision representation of numbers, use 1 bit for the sign, 24 bits 
for the mantissa, and 8 bits for the exponent. Typical computers can handle wide ranges 
of exponents. As one example, the IEEE‡ floating-point standard range is between −38 and 
+38. Outside of this range, the result is an underflow if the number is smaller than the 
minimum and an overflow if the number is larger than the maximum.

1.4.4  Round-Off: Chopping and Rounding

Consider a positive real number N expressed as

	 N d d d dm m
p= … …×+0. 1 2 1 10 	

The floating-point form of N, denoted by FL(N), in the form of Equation 1.15, is obtained 
by terminating its fractional part at m decimal digits. There are two ways to do this. The 
first method is called chopping, and involves chopping off the digits to the right of dm to 
get

	 FL( 0.N d d dm
p) = … ×1 2 10 	

The second method is known as rounding, and involves adding 5 × 10p−(m+1) to N and 
then chopping. In this process, if dm+1 < 5, then all that happens is that the first m digits are 
retained. This is known as rounding down. If dm+1 ≥ 5, then FL(N) is obtained by adding 
one to dm. This is called rounding up. It is clear that when a number is replaced with its 
floating-point form, whether through rounding down or up, an error results. This error is 
called round-off error.

EXAMPLE 1.9:   CHOPPING AND ROUNDING

Consider e = 2.71828182 …  = 0.271828182 …  ×101. If we use 5-digit chopping (m = 5), 
the floating-point form is FL(e) = 0.27182 × 101 = 2.7182. We next use rounding. Since the 
digit immediately to the right of d5 is d6 = 8 > 5, we add 1 to d5 to obtain

	 FL( 0.27183 2.7183e) = × =101
	

*	 Note that significant digits are concerned with the first nonzero digit and the ones to its right. For example, 
4.0127 and 0.088659 both have five significant digits.

†	 Also expressed in scientific notation, as 0.2501E - 2 and -0.7012E + 5.
‡	 Institute of Electrical and Electronics Engineers.
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so that we have rounded up. The same result is obtained by following the strat-
egy of adding 5 × 10p−(m+1) to e and chopping. Note that p = 1 and m = 5, so that 5 × 
10p−(m+1) = 5 × 10−5 = 0.00005. Adding this to e, we have

	 e + = … + = … = … ×0.00005 2.71828182 0.00005 2.71833 0.271833 101

	

Five-digit chopping yields FL(e) = 0.27183 × 101 = 2.7183, which agrees with the result 
of rounding up.

1.4.5  Absolute and Relative Errors

In the beginning of this section, we discussed the three possible sources of error in com-
putations. Regardless of what the source may be, computations generally yield approxi-
mations as their output. This output may be an approximation to a true solution of an 
equation, or an approximation of a true value of some quantity. Errors are commonly mea-
sured in one of two ways: absolute error and relative error. If �x is an approximation to a 
quantity whose true value is x, the absolute error is defined as

	 e x xabs = − � 	 (1.16)

On the other hand, the true relative error is given by

	
e

e
x

x x
x

xrel
absAbsolute error

True value
= = = − ≠

�
, 0

	
(1.17)

Note that if the true value happens to be zero, the relative error is regarded as undefined. 
The relative error is generally of more significance than the absolute error, as we will dis-
cuss in Example 1.10. And because of that, whenever possible, we will present bounds for 
the relative error in computations.

EXAMPLE 1.10:   ABSOLUTE AND RELATIVE ERRORS

Consider two different computations. In the first one, an estimate �x1 = 0.003 is obtained 
for the true value x1 = 0.004. In the second one, �x2 = 1238 for x2 = 1258. Therefore, the 
absolute errors are

	 ( ) , ( )e x x e x xabs abs0.001 201 1 1 2 2 2= − = = − =� � 	

The corresponding relative errors are

	
( )

( )
( )

( )
e

e
x

e
e
x

rel
abs

rel
abs0.001

0.004
0.25,

20
1258

1
1

1
2

2

2
= = = = = == 0.0159

	

We notice that the absolute errors of 0.001 and 20 can be rather misleading, judging by 
their magnitudes. In other words, the fact that 0.001 is much smaller than 20 does not 
make the first error a smaller error relative to its corresponding computation. In fact, 
looking at the relative errors, we see that 0.001 is associated with a 25% error, while 20 
corresponds to 1.59% error, much smaller than the first. Because they convey a more 
specific type of information, relative errors are considered more significant than abso-
lute errors.
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1.4.6  Error Bound

It is customary to use the absolute value of eabs so that only the upper bound needs to be 
obtained, since the lower bound is clearly zero. We say that α is an upper bound for the 
absolute error if

	 e x xabs = − ≤� α 	

Note that α does not provide an estimate for x x− � , and is simply a bound. Similarly, we 
say that β is an upper bound for the relative error if

	
e

x x
x

xrel =
−

≤ ≠
�

β , 0
	

EXAMPLE 1.11:  ERROR BOUND

Find two upper bounds for the relative errors caused by the 5-digit chopping and 
rounding of e in Example 1.9.

Solution

Using the results of Example 1.9, we have

	
e

e e
e

rel Chopping

FL 0.000008182 
0.271828182 

0=
−

= … ×
… ×

=
( ) 10

10

1

1

..8182 
0.271828182 

…
…

× ≤− −10 105 4

	

Here, we have used the fact that the numerator is less than 1, while the denominator 
is greater than 0.1. It can be shown that in the general case, an m-digit chopping results 
in an upper bound relative error of 101−m. For the 5-digit rounding, we have

	
e

e e
e

rel Rounding

FL 0.000001818 
0.271828182 

0=
−

= … ×
… ×

=
( ) 10

10

1

1

..1818 
0.271828182 

0.5
…

…
× ≤ ×− −10 105 4

	

where we used the fact that the numerator is less than 0.5 and the denominator is greater 
than 0.1. In general, an m-digit rounding corresponds to an upper bound relative error 
of 0.5 × 101−m.

1.4.7  Transmission of Error from a Source to the Final Result

Now that we have learned about the sources of error, we need to find out about the degree 
to which these errors affect the outcome of a computation. Depending on whether addition 
(and/or subtraction) or multiplication (and/or division) is considered, definite conclusions 
may be drawn.

Theorem 1.1: Transmission of Error

Suppose in a certain computation the approximate values �x1 and �x2 have been generated 
for true values x1 and x2, respectively, with absolute and relative errors (eabs)i and (erel)i, 
i = 1, 2, and
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	 ( ) , ( ) , ( ) , ( )e e e eabs abs rel rel1 1 2 2 1 1 2 2≤ ≤ ≤ ≤α α β β 	

	 1.	The upper bound for the absolute error eabs in addition and subtraction is the sum 
of the upper bounds of the absolute errors associated with the quantities involved. 
That is,

	 e x x x xabs = ± − ± ≤ +( ) ( )1 2 1 2 1 2� � α α 	

	 2.	The upper bound for the relative error erel in multiplication and division is approx-
imately equal to the sum of the upper bounds of the relative errors associated with 
the quantities involved. That is,

	
Multiplication e

x x x x
x x

rel = − ≤ +1 2 1 2

1 2
1 2

� �
β β

	
(1.18)

	
Division e

x x x x
x x

rel
/ /

/
= − ≤ +1 2 1 2

1 2
1 2

� �
β β

	
(1.19)

Proof

	 1.	We have

	
e x x x x x x x x x x x xabs = ± − ±( ) = −( ) ± −( ) ≤ − + − ≤ +( )1 2 1 2 1 1 2 2 1 1 2 2 1� � � � � � α αα2 	

	 2.	We will prove Equation 1.18. Noting that ( )e x xi i iabs = − �  for i = 1, 2, we have 
�x x ei i i= − ( )abs . Insertion into the left side of Equation 1.18 yields

	
e

x x x x
x x

x x x e x e
x x

e
rel

abs abs= − = − − − = −1 2 1 2

1 2

1 2 1 1 2 2

1 2

� � [ ( ) ][ ( ) ] ( aabs abs abs abs) ( ) ( ) ( )1 2 2 1 1 2

1 2

e e x e x
x x

+ +

	

But (eabs)1(eabs)2 can be assumed negligible relative to the other two terms in the numera-
tor. As a result,

	
e

e x e x
x x

e
x

e
x

e
x

rel
abs abs abs abs abs≅ + = + ≤( ) ( ) ( ) ( ) ( )2 1 1 2

1 2

1

1

2

2

1

1
++ ≤ +( )e

x
abs 2

2
1 2β β

	

as asserted.

1.4.8  Subtraction of Nearly Equal Numbers

There are two particular instances leading to unacceptable inaccuracies: division by a num-
ber that is very small in magnitude, and subtraction of nearly equal numbers. Naturally, 
if this type of subtraction takes place in the denominator of a fraction, the latter gives rise 
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to the former. Consider two numbers N1 and N2 having the same first k decimal digits in 
their floating-point forms, that is,

	

FL 0.

FL 0.

( )

( )

N d d d a a

N d d d b b

k k m
p

k k m
p

1 1 2 1

2 1 2 1

10

10

= … … ×

= … … ×
+

+ 	

The larger the value of k, the more “nearly equal” the two numbers are considered to be. 
Subtraction yields

	 FL FL FL 0.( ( ) ( ))N N c ck m
p k

1 2 1 10− = … ×+
−

	

where ck+1, …, cm are constant digits. From this expression we see that there are only m−k 
significant digits in the representation of the difference. In comparison with the m signifi-
cant digits available in the original representations of the two numbers, some significant 
digits have been lost in the process. This is precisely what contributes to the round-off 
error, which will then be propagated throughout the subsequent computations. This can 
often be remedied by a simple reformulation of the problem, as illustrated in the following 
example.

EXAMPLE 1.12:   THE QUADRATIC FORMULA WHEN b2 ≫ 4ac

Consider x2 + 52x + 3 = 0 with approximate roots x1 = −0.05775645785, x2 = −51.94224354. 
Recall that the quadratic formula generally provides the solution of ax2 + bx + c = 0, as

	
x

b b ac
a

x
b b ac

a
1

2

2

24
2

4
2

= − + − = − − −
,

	

But in our example, b2 ≫ 4ac so that b ac b2 4− ≅ . This means that in the calculation 
of x1 we are subtracting nearly equal numbers in the numerator. Now, let us use a 4-digit 
rounding for floating-point representation. Then,

	
FL

00 52.00 1.000)(3.000)
1.000)

52.00 51.8
( )

. ( ) (
(

x1

252 4
2

=
− + −

= − + 88
2.000

0.0600= −
	

and

	
FL

0 52.00 1.000)(3.000)
1.000)

51.94( )
. ( ) (

(
x2

252 0 4
2

=
− − −

= −
	

The corresponding relative errors, in magnitude, are computed as

	
e

x x
xxrel
FL

0.0388 or 3 88
1

1 1

1
=

−
≅

( )
. %

	

	
e

x x
xxrel
FL

0.0043 or 43
2

2 2

2
0=

−
≅

( )
. %

	

Thus, the error associated with x1 is rather large compared to that for x2. We antici-
pated this because in the calculation of x2 nearly equal numbers are added, causing no 
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concern. As mentioned above, reformulation of the problem often remedies the situa-
tion. Also note that the roots of ax2 + bx + c = 0 satisfy x1x2 = c/a. We will retain the value 
of FL(x2) and calculate FL(x1) via

	
FL

FL
3.000

(1.000)( 51.94)
0.05775( )

( )
x

c
a x

1
2

= =
−

= −
	

The resulting relative error is

	
e

x x
xxrel
FL

0.00011 or 11
1

1 1

1
0 0=

−
≅

( )
. %

	

which shows a dramatic improvement compared to the result of the first trial.

1.5  Iterative Methods

Numerical methods generally consist of a set of directions to perform predetermined alge-
braic and logical mathematical operations leading to an approximate solution of a specific 
problem. These sets of directions are known as algorithms. In order to effectively describe 
a certain algorithm, we will use a code. Based on the programming language or the soft-
ware package used, a code can easily be modified to accomplish the task at hand. A code 
consists of a set of inputs, the required operations, and a list of outputs. It is standard 
practice to use two types of punctuation symbols in an algorithm: the period (.) proclaims 
that the current step is terminated, and the semicolon (;) indicates that the step is still in 
progress. An algorithm is stable if a small change in the initial data will correspond to a 
small change in the final result. Otherwise, it is unstable.

An iterative method is a process that starts with an initial guess and computes succes-
sive approximations of the solution of a problem until a reasonably accurate approxima-
tion is obtained. As we will demonstrate throughout the book, iterative methods are used 
to find roots of algebraic equations, solutions of systems of algebraic equations, solutions 
of differential equations, and much more. An important issue in an iterative scheme is the 
manner in which it is terminated. There are two ways to stop a procedure: (1) when a ter-
minating condition is satisfied, or (2) when the maximum number of iterations is exceeded. 
In principle, the terminating condition should check to see whether an approximation cal-
culated in a step is within a prescribed tolerance of the true value. In practice, however, 
the true value is not available. As a result, one practical form of a terminating condition 
is whether the difference between two successively generated quantities by the iterative 
method is within a prescribed tolerance. The ideal scenario is when an algorithm meets 
the terminating condition, and at a reasonably fast rate. If it does not, then the total number 
of iterations performed should not exceed a prescribed maximum number of iterations.

EXAMPLE 1.13:   AN ALGORITHM AND ITS CODE

Approximate e−2 to seven significant digits with a tolerance of ε = 10−6.

Solution

Retaining the first n + 1 terms in the Maclaurin series of f(x) = ex yields the nth-degree 
Taylor’s polynomial
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T x
i

xn
i

i

n

( )
!

=
=
∑ 1

0 	

(1.20)

We want to evaluate e−2 by determining the least value of n in Equation 1.20 such that

	
e Tn

− − − <2 2( ) ε
	

(1.21)

Equation 1.21 is the terminating condition. To seven significant digits, the true value is 
e−2 = 0.1353353. Let us set the maximum number of iterations as N = 20, so that the pro-
gram is likely to fail if the number of iterations exceeds 20 and the terminating condition 
is not met. As soon as an approximate value within the given tolerance is reached, the 
terminating condition is satisfied and the program is terminated. Then the outputs are 
n and the corresponding value for e−2. We write the algorithm listed in Table 1.2. It turns 
out that 14 iterations are needed before the terminating condition is satisfied, that is, 
n = 13. The approximate value for e−2 is 0.1353351 with an absolute error of 0.2 × 10−6 < ε.

1.5.1  Fundamental Iterative Method

A fundamental iterative method is the one that uses repeated substitutions. Suppose that 
a function g(x) and a starting value x0 are known. Let us generate a sequence of values x1, 
x2, … via an iteration defined by

	 x g x n xn n+ = = …1 00 1 2( ) , , , ,, is known 	 (1.22)

There are a few possible scenarios. The iteration may exhibit convergence, either at a fast 
rate or a slow rate. It is also possible that the iteration does not converge at all. Again, its 

TABLE 1.2

Algorithm in Example 1.13

Input      x = 2, ε = 10−6, N = 20
Output  An approximate value of e−2 accurate to within ε, or a message of “failure”
Step 1    Set n = 0

Tval = e−x     True value
Term = 1
Psum = 0    Initiate partial sum
Sgn = 1    Initiate alternating signs

Step 2    While n ≤ N, do Step 3–Step 5

Step 3  Psum = Psum + Sgn*Term/n!
Step 4  If |Psum − Tval| < ε, then Output(n)    Terminating condition

Stop
Step 5  n = n + 1    Update n

Sgn = −Sgn    Alternate sign
Term = Term*x    Update Term

Step 6  Output(failure)
Stop

End
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divergence may happen at a slow or a fast rate. These all depend on critical factors such as 
the nature of the function g(x) and the starting value, x0. We will analyze these in detail in 
Chapter 3.

EXAMPLE 1.14:   ITERATION BY REPEATED SUBSTITUTIONS

Consider the sequence described by x nn
n= ( ) = …1

3 0 1 2, ., , ,  In order to generate the same 
sequence of elements using iteration by repeated substitutions, we need to reformulate 
it to agree with Equation 1.22. To that end, we propose

	 x x n xn n+ = ( ) = … =1
1
3 00 1 2 1, , , , , 	

This way, the sequence starts with x0 = 1, which matches the first element of the origi-
nal sequence. Next, we calculate

	 x x x x x x1
1
3 0

1
3 2

1
3 1

1
9 3

1
3 2

1
27= = = = = = …, , , 	

which agree with the respective elements in the original sequence. Therefore,

	 x g x n xn n+ = = … =1 00 1 2 1( ) , , , ,, 	

where g x x( ) = 1
3 .

1.5.2  Rate of Convergence of an Iterative Method

Consider a sequence {xn} that converges to x. The error at the nth iteration is then defined as

	 e x x nn n= − = …, , , ,0 1 2 	

If there exists a number R and a constant K ≠ 0 such that

	
lim
n

n

n
R

e

e
K

→∞

+ =1

	
(1.23)

then we say that R is the rate of convergence of the sequence. There are two types of con-
vergence that we encounter more often than others: linear and quadratic. A convergence 
is linear if R = 1, that is,

	
lim
n

n

n

e
e

K
→∞

+ = ≠1 0
	

(1.24)

A convergence is said to be quadratic if R = 2, that is,

	
lim
n

n

n

e

e
K

→∞

+ = ≠1
2 0

	
(1.25)
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Rate of convergence is not always an integer. We will see in Section 3.6, for instance, that 
the secant method has a rate of 1

2 1 5( )+ ≅ 1.618.

EXAMPLE 1.15:   RATE OF CONVERGENCE

Determine the rate of convergence for the sequence in Example 1.14.

Solution

Since xn
n

= ( ) →1
3 0 as n → ∞, the limit is x = 0. With that, the error at the nth iteration is

	 e x xn n
n n

= − = − ( ) = −( )0 1
3

1
3 	

We will first examine R = 1, that is, Equation 1.24:

	

lim lim
n

n

n n

n

n

e
e→∞

+

→∞

+

=
−( )
−( )

= ≠1
1
3

1

1
3

1
3

0

	

Therefore, R = 1 works and convergence is linear. Once a value of R satisfies the condi-
tion in Equation 1.23, no other values need be inspected.

PROBLEM SET (CHAPTER 1)

Differential Equations (Section 1.1)

 In Problems 1 through 8, solve each IVP.

	 1.	 �y y t y+ = = −1
3 0 1, ( )

	 2.	 �y ty t y+ = =, ( )0 1
2

	 3.	 1
2 0 1 1�y y y+ = =, ( )

	 4.	 �y y e yt+ = =−2 0 1, ( )
	 5.	 �� � �y y y y y+ + = = =2 2 0 0 0 0 1, ( ) , ( )
	 6.	 �� � �y y y e y yt+ + = = =−2 0 1 0 0, ( ) , ( )
	 7.	 �� � �y y t y y+ = = =2 0 0 0 1sin , ( ) , ( )
	 8.	 �� � �y y t y y+ = = =2 0 1 0 1, ( ) , ( )

Matrix Analysis (Section 1.2)

 In Problems 9 through 12, calculate the determinant of the given matrix.

	 9.	A =
−

















1 5 1
3 0 2
4 2 6

	 10.	A =
−

−

















8 2 1
1 0 4
3 4 5
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	 11.	A =

−
−

−



















1 3 1 2
1 1 4 3
1 0 1 0
2 3 4 5

	 12.	A =

−
− −

−



















0 6 1 0
1 2 4 3

2 0 1 1
4 5 3 1

 In Problems 13 through 16, solve each system using Cramer’s rule.

	 13.	 Ax b A x= =

−
−
−



















=












, , 

2 1 0 1
1 3 1 3
0 1 3 2
2 0 1 4

1

2

3

4

x

x

x

x








=

−

















,  b

3
13
5
11

	 14.	 Ax b A x= =

−
−

− −



















=










, , 

1 0 4 2
5 1 3 1
1 0 2 2
3 2 0 2

1

2

3

4

x

x

x

x










=

−



















, b

3
22
5
7

	 15.	
x x x

x x x

x x

1 2 3

1 2 3

2 3

4 1
2 3 0

5 6

+ − = −
− + + =

+ =









	 16.	
4x x x

x x x

x x

1 2 3

1 2 3

1 3

3 13
2 6 13

7 4

+ − = −
− + + =

+ =









 In Problems 17 through 20, find the inverse of each matrix.

	 17.	A = −
− − −

















4 0 1
0 3 2
1 2 1

	 18.	A =
















0 1 0
0 0 1
1 2 1

	 19.	A =
−

















1 0 0
0 5 0
4 3 2
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	 20.	 A =
−

+
+

















=
α

α
α

α
0 1

0 1 2
1 0 2

, parameter

Matrix Eigenvalue Problem (Section 1.3)

 In Problems 21 through 24, find the eigenvalues and the corresponding eigenvectors of 
each matrix.

	 21.	A =
−
−











3 0
2 1

	 22.	A =
















2 2 0
1 1 0
0 0 1

	 23.	A = −
−

















1 2 1
0 2 3
0 0 1

	 24.	A =
















1 0 0
1 2 0
2 3 3

	 25.	  Prove that a singular matrix has at least one zero eigenvalue.

 In Problems 26 through 28, diagonalize each matrix by using an appropriate modal 
matrix.

	 26.	A =
− − −















2 1 1
3 2 1
1 1 0

	 27.	A =
















3 2 1
0 2 0
0 0 2

	 28.	A = −
−

















1 2 1
0 2 3
0 0 1

Errors and Approximations (Section 1.4)

 In Problems 29 through 32, convert each decimal number to a binary number.

	 29.	67
	 30.	234
	 31.	45.25
	 32.	1127
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 In Problems 33 through 36, convert each decimal number to a hexadecimal number.

	 33.	596
	 34.	1327
	 35.	23.1875
	 36.	364.5

 In Problems 37 through 40, convert each hexadecimal number to a binary number.

	 37.	 (2B5.4)16

	 38.	 (143)16

	 39.	 (3D.2)16

	 40.	 (12F.11)16

 In Problems 41 through 45, write the floating-point form of each decimal number by 
m-digit rounding for the given value of m.

	 41.	−0.00031676 (m = 4)
	 42.	11.893 (m = 4)
	 43.	200.346 (m = 5)
	 44.	−1203.423 (m = 6)
	 45.	22318 (m = 4)
	 46.	  Suppose m-digit chopping is used to find the floating-point form of

	 N d d d dm m
p= … … ×+0. 1 2 1 10 	

		  show that

	
e

N N
N

m
rel Chopping

FL( )
=

−
≤ −101

	

	 47.	  Suppose in Problem 46 we use m-digit rounding. Show that

	
e

N N
N

m
rel Rounding

FL( )
0.5=

−
≤ × −101

	

Iterative Methods (Section 1.5)

	 48.	  Consider the sequence described by x
n

nn =
+

= …1
1

0 1 2, , , , .

	 a.	 Find a suitable function g(x) so that the sequence can be generated by means of 
repeated substitution in the form xn+1 = g(xn), n = 0, 1, 2, … .

	 b.	 Determine the rate of convergence of the sequence to its limit.



2

This chapter presents features and capabilities of MATLAB pertinent to numerical meth-
ods. These range from vector and matrix operations and symbolic calculations to plot-
ting options for functions and sets of data. Several MATLAB built-in functions and their 
applications will also be introduced. The chapter concludes with guidelines to prepare 
user-defined functions and script files to perform specific tasks.

2.1  MATLAB Built-In Functions

MATLAB has a large number of built-in elementary functions, each accompanied by a 
brief but sufficient description through the help command. For example,

>> help sqrt
 sqrt   Square root.
    sqrt(X) is the square root of the elements of X. Complex
    results are produced if X is not positive.

    See also sqrtm, realsqrt, hypot.

    Reference page in Help browser
       doc sqrt

>> (1+sqrt(5))/2     % Calculate the golden ratio

ans =

    1.6180

The outcome of a calculation can be stored under a variable name, and suppressed by 
using a semicolon at the end of the statement:

>> g_ratio = (1+sqrt(5))/2;

If the variable is denoted by “a”, other elementary functions include abs(a) for |a|, 
sin(a) for sin(a), log(a) for ln a, log10(a) for log10(a), exp(a) for ea, and many more. 
Descriptions of these functions are available through the help command.

2.1.1  Rounding Commands

MATLAB has four built-in functions that round decimal numbers to the nearest integer 
via different rounding techniques. These are listed in Table 2.1.

Introduction to MATLAB
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2.1.2  Relational Operators

Table 2.2 gives a list of the relational and logical operators used in MATLAB.

2.1.3  Format Options

The format built-in function offers several options for displaying output. The pre-
ferred option can be chosen by selecting the following in the pull-down menu: 
File → Preferences → Command Window. A few of the format options are listed in 
Table 2.3.

TABLE 2.1

MATLAB Rounding Functions

MATLAB Function Example

round(a)
Round to the nearest integer

round(1.65) = 2, round(−4.7) = −5

fix(a)
Round toward zero

fix(1.65) = 1, fix(−4.7) = −4

ceil(a)
Round up toward infinity

ceil(1.65) = 2, ceil(−4.7) = −4

floor(a)
Round down toward minus infinity

floor(1.65) = 1, floor(−4.7) = −5

TABLE 2.2

MATLAB Relational Operators

Mathematical Symbol MATLAB Symbol

= ==
≠ ∼=
< <
> >
≤ <=
≥ >=
AND & or &&
OR | or ||
NOT ∼

TABLE 2.3

MATLAB Format Options

Format Option Description Example: 73/7

format short (default) Fixed point with 4 decimal digits 10.4286

format long Fixed point with 14 decimal digits 10.428571428571429

format short e Scientific notation with 4 decimal digits 1.0429e+001

format long e Scientific notation with 14 decimal digits 1.042857142857143e+001

format bank Fixed point with 2 decimal digits 10.43
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2.2  Vectors and Matrices

Vectors can be created in several ways in MATLAB. The row vector v = [ ]1 4 6 7 10  
is created as

>> v = [1 4 6 7 10]

v =
     1     4     6     7     10

Commas may be used instead of spaces between elements. For column vectors, the ele-
ments must be separated by semicolons.

>> v = [1;4;6;7;10]

v =
      1
      4
      6
      7
     10

The length of a vector is determined by using the length command:

>> length(v)

ans =
     5

The size of a vector is determined by the size command. For the last (column) vector 
defined above, we find

>> size(v)

ans =
     5     1

Arrays of numbers with equal spacing can be created more effectively. For example, a 
row vector whose first element is 2, its last element is 17, with a spacing of 3 is created as

>> v = [2:3:17]     or     >> v = 2:3:17

v =
     2     5     8     11     14     17

To create a column vector with the same properties

>> v = [2:3:17]'

v =
      2
      5
      8
     11
     14
     17
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Any component of a vector can be easily retrieved. For example, the third component of 
the above vector is retrieved by typing

>> v(3)

ans =
     8

A group of components may be retrieved as well. For example, the last three components 
of the row vector defined earlier are recovered as

>> v = 2:3:17;
>> v(end−2:end)

ans =

     11     14     17

2.2.1  Linspace

Another way to create vectors with equally spaced elements is by using the linspace 
command.

>> x = linspace(1,5,6)    % 6 equally-spaced points between 1 and 5

x =
    1.0000    1.8000    2.6000    3.4000    4.2000    5.0000

The default value for the number of points is 100. Therefore, if we use x = linspace(1,5), 
then 100 equally spaced points will be generated between 1 and 5.

2.2.2  Matrices

A matrix can be created by using brackets enclosing all of its elements, rows separated by 
a semicolon.

>> A = [1 −2 3;−3 0 1;5 1 4]

A =
     1    −2    3
    −3     0    1
     5     1    4

An entry can be accessed by using the row and column number of the location of that 
entry.

>> A(3,2)     % Entry at the intersection of the 3rd row and 2nd column

ans =

    1

An entire row or column of a matrix is accessed by using a colon.
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>> Row_2 = A(2,:)     % 2nd row of A

Row_2 =

    −3    0    1

>> Col_3 = A(:,3)    % 3rd column of A

Col_3 =

    3
    1
    4

To replace an entire column of matrix A by a given vector v, we proceed as follows:

>> v = [1;0;1];
>> A_new = A;        % Pre-allocate the new matrix
>> A_new(:,2) = v    % Replace the 2nd column with v

A_new =

     1    1    3
    −3    0    1
     5    1    4

The m × n zero matrix is created by using zeros(m,n); for instance, the 3 × 2 zero 
matrix:

>> A = zeros(3,2)

A =
    0    0
    0    0
    0    0

The m × n zero matrix is commonly used for pre-allocation of matrices to save mem-
ory space. In the matrix A defined above, any entry can be altered while others remain 
unchanged.

>> A(2,1) = −3; A(3,2) = −1

A =
     0     0
    −3     0
     0    −1

Size of a matrix is determined by using the size command:

>> size(A)

ans =

    3    2
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The n × n identity matrix is created by eye(n):

>> I = eye(3)

I =

    1    0    0
    0    1    0
    0    0    1

Matrix operations (Section 1.2) can be easily performed in MATLAB. If the sizes are not 
compatible, or the operations are not defined, MATLAB returns an error message to that 
effect.

>> A = [1 2;2 −2;4 0]; B = [−1 3;2 1]; % A is 3-by-2, B is 2-by-2
>> C = A*B    % Operation is valid

C =
     3     5
    −6     4
    −4    12

2.2.3  Determinant, Transpose, and Inverse

The determinant of an n × n matrix is calculated by the det command.

>> A = [1 2 −3;0 2 1;1 2 5]; det(A)

ans =

    16

The transpose of a matrix is found as

>> At = A.'

At =

     1    0    1
     2    2    2
    −3    1    5

The inverse of a (non-singular) matrix is calculated by the inv command

>> Ai = inv(A)

Ai =

     0.5000    −1.0000     0.5000
     0.0625     0.5000    −0.0625
    −0.1250          0     0.1250
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2.2.4  Slash Operators

There are two slash operators in MATLAB: backslash (\) and slash (/).

>> help \

 \   Backslash or left matrix divide.

    A\B is the matrix division of A into B, which is roughly the
    same as INV(A)*B , except it is computed in a different way.
    If A is an N-by-N matrix and B is a column vector with N
    components, or a matrix with several such columns, then
    X = A\B is the solution to the equation A*X = B. A warning
    message is printed if A is badly scaled or nearly singular.
    A\EYE(SIZE(A)) produces the inverse of A.

The backslash (\) operator is employed for solving a linear system of algebraic equations 
Ax = b, whose solution vector is obtained as x = A−1b. However, instead of performing 
x=inv(A)*b, it is most efficient to find it as follows:

>> A = [1 −1 2;2 0 3;1 −2 1]; b = [2;8;−3];
>> x = A\b

x =
    1
    3
    2

The description of the slash (/) operator is given below.

>> help /

 /   Slash or right matrix divide.

    A/B is the matrix division of B into A, which is roughly the
    same as A*INV(B) , except it is computed in a different way.
    More precisely, A/B = (B'\A')'. See MLDIVIDE for details.

2.2.5  Element-by-Element Operations

Element-by-element operations are summarized in Table 2.4. These are used when opera-
tions are performed on each element of a vector or matrix.

TABLE 2.4

Element-by-Element Operations

MATLAB Symbol Description

.* Multiplication

./ (right) Division

.^ Exponentiation
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For example, suppose we want to raise each element of a vector to power of 2.

>> x = 0:2:10

x =
    0    2    4    6    8    10

>> x.^2    % If we use x^2 instead, an error is returned by MATLAB

ans =

    0    4    16    36    64    100

Now consider (1 + x)/(2 + x) where vector x is as defined above. This fraction is to be evalu-
ated for each value of x:

>> (1.+x)./(2.+x)

ans =

    0.5000    0.7500    0.8333    0.8750    0.9000    0.9167

If two arrays are involved in the element-by-element operation, they must be of the same 
size.

>> v = [1;2;3];
>> w = [2;3;4];
>> v.*w

ans =

     2
     6
    12

2.2.6  Diagonal Matrices and Diagonals of a Matrix

If A is an n × n matrix, then diag(A) creates an n × 1 vector whose components are the 
(main) diagonal entries of A. To construct a diagonal matrix whose main diagonal matches 
that of A, we use diag(diag(A)):

>> A = [−1 0 1 3;1 2 1 −4;0 2 4 1;1 0 −2 5]

A =

    −1    0     1     3
     1    2     1    −4
     0    2     4     1
     1    0    −2     5

>> diag(A)    % Returns a vector of the diagonal entries of A
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ans =

    −1
     2
     4
     5

>> D = diag(diag(A))    % Constructs a diagonal matrix with diagonal entries of A

D =
    −1    0    0    0
     0    2    0    0
     0    0    4    0
     0    0    0    5

The command diag(A,1) creates a vector consisting of the entries of A that are one 
level higher than the main diagonal. Of course, the dimension of this vector is one less 
than the dimension of A itself. Then diag(diag(A,1),1) creates a matrix (size of A) 
whose entries one level higher than the main diagonal are the components of the vector 
diag(A,1).

>> diag(A,1)

ans =
    0
    1
    1

>> diag(diag(A,1),1)

ans =

    0    0    0    0
    0    0    1    0
    0    0    0    1
    0    0    0    0

Similarly, diag(A,−1) creates a vector whose components are the entries of A that are one 
level lower than the main diagonal. Subsequently, diag(diag(A,−1),−1) generates a 
matrix (size of A) whose entries one level lower than the main diagonal are the components 
of the vector diag(A,−1).

>> diag(A,−1)

ans =
       1
       2
      −2

>> diag(diag(A,−1),−1)

ans =

    0    0    0    0
    1    0    0    0
    0    2    0    0
    0    0   −2    0
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Other commands such as diag(A,2), diag(A,−2), and so on can be used for simi-
lar purposes. The command triu(A) returns the upper-triangular version of A, that is, 
matrix A with all entries below the main diagonal set to zero.

>> triu(A)

ans =

    −1    0    1     3
     0    2    1    −4
     0    0    4     1
     0    0    0     5

Similarly, tril(A) returns the lower-triangular version of A, that is, matrix A with all 
entries above the main diagonal set to zero.

>> tril(A)

ans =

    −1    0     0    0
     1    2     0    0
     0    2     4    0
     1    0    −2    5

2.3  Symbolic Math Toolbox

The Symbolic Math toolbox allows for manipulation of symbols to perform operations 
symbolically. Symbolic variables are created by using the syms command. Consider, for 
example, the function g = 4.81 sin(a/3) + 3e−b/c where c = 2.1. This function can be defined 
symbolically as follows:

>> syms a b
>> c = 2.1;
>> g = 4.81*sin(a/3)+3*exp(−b/c)

g =

3/exp((10*b)/21) + (481*sin(a/3))/100    % Value of c has been substituted!

In symbolic expressions, numbers are always converted to the ratio of two integers, as it 
is observed here as well. For decimal representation of numbers, we use the vpa (variable 
precision arithmetic) command. The syntax is

>> vpa(g,n)

where n is the number of desired digits. For example, if four digits are desired in our cur-
rent example, then
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>> g4 = vpa(4.81*sin(a/3)+3*exp(−b/c),4)

g4 =

4.81*sin(0.3333*a) + 3.0/exp(0.4762*b)

To evaluate the symbolic function g for specified values of a and b, we use the subs 
command which replaces all variables in the symbolic expression g with values obtained 
from the MATLAB workspace. For instance, to evaluate g when a=1 and b=2,

>> a = 1; b = 2; subs(g)

ans =

3*exp(−20/21) + (481*sin(1/3))/100

The command double may then be used to convert to double precision

>> double(ans)

ans =

    2.7313

The function g = 4.81 sin(a/3) + 3e−b/c in the current example may also be defined sym-
bolically via

>> g = sym('4.81*sin(a/3)+3*exp(−b/c)')

g =

4.81*sin(a/3) + 3*exp(−b/c)

Note that a, b, and c do not need to be declared symbols, as this is handled automati-
cally by sym in the definition of g. Also, assignment of a specific value (such as c=2.1) to 
a variable will not be taken into account when using sym. Instead, we can use the subs 
command at this stage:

>> c = 2.1; g = subs(g)

g =

3*exp(−(10*b)/21) + 4.81*sin(a/3)

This agrees with what we saw at the outset of this discussion. The symbolic function g 
can be evaluated for a list of specific parameter values as follows:

>> a = 1; b = 2; double(subs(g))

ans =

    2.7313    % Agrees with previous result
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2.3.1  Anonymous Functions

An anonymous function offers a way to create a function for simple expressions with-
out creating an M file. Anonymous functions can only contain one expression and can-
not return more than one output variable. They can either be created in the Command 
Window or as a script. The generic form is

My_function = @(arguments)(expression)

As an example, let us create an anonymous function (in the Command Window) to eval-

uate R e bx= + −1 2/  when b = 1 and x = 2.

>> R = @(b,x)(sqrt(1+exp(−b*x/2)));

This creates R(b,x), which is then evaluated for specific values of b and x. For example,

>> R(1,2)

ans =

    1.1696

An anonymous function can be used in another anonymous function. For example, to 
evaluate L e bx= + −ln /1 2 ,

>> R = @(b,x)(sqrt(1+exp(−b*x/2)));
>> L = @(b,x)(log(R(b,x)));
>> L(1,2)

ans =

    0.1566

2.3.2  MATLAB Function

The built-in matlabFunction allows us to generate a MATLAB file or anonymous func-
tion from sym object. The generic form G = matlabFunction(F) converts the symbolic 
expression or function F to a MATLAB function with the handle G.

Let us consider the example involving the evaluation of R e bx= + −1 2/  when b = 1 and 
x = 2.

>> syms b x
>> R = matlabFunction(sqrt(1+exp(−b*x/2)))

R =

    @(b,x)sqrt(exp(b.*x.*(−1.0./2.0))+1.0) % Inputs are arranged in alphabetical order

>> R(1,2)

ans =

    1.1696
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As expected, this agrees with the earlier result using the anonymous function. Note that 
if the desired order of variables is not specified by the user, MATLAB will list them in 
alphabetical order. In the above example, omitting the list of variables would still result in 
R(b,x). If, however, R(x,b) is desired, the 'vars' option is utilized as follows:

>> R = matlabFunction(sqrt(1+exp(−b*x/2)),'vars',[x b])

R =

    @(x,b)sqrt(exp(b.*x.*(−1.0./2.0))+1.0)

In the previous example, where the function was defined as R(b,x), suppose b is a 
scalar and x is a vector. Let b = 1 and x = [1 2 3]. Then,

>> b = 1; x = [1 2 3];
>> R(b,x)

ans =

    1.2675    1.1696    1.1060

Three outputs are returned, one for each component in the vector x. Note that, since the 
second component of x happens to be 2, the second returned output matches what we got 
earlier for the case of b = 1 and x = 2.

2.3.3  Differentiation

In order to find the derivative of a function with respect to any of its variables, the function 
must be defined symbolically. For example, consider f(t) = t3−sin t, a function of a single 
variable. To determine df/dt, we proceed as follows:

>> f = sym('t^3-sin(t)');
>> dfdt = diff(f)

dfdt =

3*t^2 - cos(t)

The second derivative d2f/dt2 is found as

>> dfdt2 = diff(f,2)

dfdt2 =

6*t + sin(t)

The symbolic derivatives can be converted to MATLAB functions for convenient 
evaluation. For example, to evaluate df/dt when t = 1.26,

>> f = sym('t^3-sin(t)');           % Define function symbolically
>> fd = matlabFunction(diff(f));    % �Convert the derivative to a MATLAB 

function
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>> fd(1.26)                         % Evaluate the derivative

ans =

    4.4570

2.3.4  Partial Derivatives

The diff command can also handle partial differentiation. Consider h(x, y) = 2x + y2, a 
function of two variables. The first partial derivatives of h with respect to its variables x 
and y are found as follows:

>> h = sym('2*x+y^2');
>> hx = diff(h,'x')

hx =

2

>> hy = diff(h,'y')

hy =

2*y

To find the second partial derivative with respect to y, the diff command is applied to 
the first partial:

>> hy2 = diff(hy,'y')

hy2 =

2

2.3.5  Integration

Indefinite and definite integrals are calculated symbolically via the int command. 
For example, the indefinite integral ( cos )2 3t t dt+∫  is calculated as

>> f = sym('2*t+cos(3*t)');
>> int(f)

ans =

sin(3*t)/3 + t^2

The definite integral ( )/at e dtt−∫ 2

1

3

, where a is a parameter, is calculated as follows:

>> g = sym('a*t-exp(t/2)');
>> syms t
>> I = int(g,t,1,3)    % t is the integration variable, and 1 and 3 are limits of integration

I =

4*a - 2*exp(1/2)*(exp(1) - 1)
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To evaluate the integral when a = 1, we proceed as follows:

>> a = 1; double(subs(I))

ans =

    −1.665935599275873

Note that the default integration variable here is t. Thus, in the above example, it could 
have been omitted to yield the correct result:

>> int(g,1,3)

ans =

4*a - 2*exp(1/2)*(exp(1) - 1)

2.4  Program Flow Control

Program flow can be controlled with the following three commands: for, if, and 
while.

2.4.1  for Loop

A for/end loop repeats a statement, or a group of statements, a specific number of times. 
Its generic form is

for i = first:increment:last,
    statements
end

The loop is executed as follows. The index i assumes its first value, all statements in the 
subsequent lines are executed with i = first, then the program goes back to the for 
command and i assumes the value i = first + increment and the process continues 
until the very last run corresponding to i = last.

As an example, suppose we want to generate a 5 × 5 matrix A with diagonal 
entries all equal to 1, and upper diagonal entries all equal to 2, while all other entries 
are zero.

A = zeros(5,5);    % Pre-allocate
for i = 1:5,
    A(i,i) = 1;    % Diagonal entries
end
for i = 1:4,
    A(i,i+1) = 2;    % Upper diagonal entries
end
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Execution of this script returns

>> A

A =

    1    2    0    0    0
    0    1    2    0    0
    0    0    1    2    0
    0    0    0    1    2
    0    0    0    0    1

2.4.2  The if Command

The most general form of the if command is

if condition 1
    set of expressions 1
else if condition 2
    set of expressions 2
else
    set of expressions 3
end

The simplest form of a conditional statement is the if/end structure. For example,

syms x
f = matlabFunction(log(x/3)); x = 1;
if f(x) ∼= 0,
error('x is not a root')
end

Execution of this script returns

x is not a root

The if/else/end structure allows for choosing one group of expressions from two 
groups. The most complete form of the conditional statement is the if/elseif/else/
end structure. Let us create the same 5 × 5 matrix A as above, this time employing the 
if/elseif/else/end structure.

A = zeros(5,5);
for i = 1:5,
  for j = 1:5,
    if j == i+1,
      A(i,j) = 2;
elseif j == i,
    A(i,j) = 1;
end
end
end

Note that each for statement is accompanied by an end statement. Execution of this script 
returns
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>> A

A =

    1    2    0    0    0
    0    1    2    0    0
    0    0    1    2    0
    0    0    0    1    2
    0    0    0    0    1

2.4.3  while Loop

A while/end loop repeats a statement, or a group of statements, until a specific condition 
is met. Its generic form is

while condition
  statements
end

We will generate the same 5 × 5 matrix A as before, this time with the aid of the while loop.

A = eye(5); i = 1;
while i < 5,
    A(i,i+1) = 2;
    i = i+1;
end

Executing this script returns the same matrix as above.

>> A

A =

    1    2    0    0    0
    0    1    2    0    0
    0    0    1    2    0
    0    0    0    1    2
    0    0    0    0    1

2.5  Displaying Formatted Data

Formatted data can be displayed by using either disp or fprintf. An example of how 
the disp command is used is

>> v = [1.2 −9.7 2.8];
>> disp(v)

    1.2000    −9.7000    2.8000

Formatted data may be better controlled via fprintf. Let us consider the script below. 
A function f(x) = xcos x + 1 is defined. For k = 1, 2, 3, 4, 5 we want to calculate each c

k
= ( )1

2  as 
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well as the corresponding function value f(c). The output is to be displayed in tabulated 
form containing the values of k, c, and f(c) for each k = 1, 2, 3, 4, 5.

syms x
f = matlabFunction(x*cos(x)+1);
disp(' k    c    f(c)')
for k = 1:5,
    c = (1/2)^k;
    fc = f(c);
    fprintf(' %2i    %6.4f    %6.4f\n',k,c,fc)
end

Execution of this script returns

    k       c       f(c)
    1    0.5000    1.4388
    2    0.2500    1.2422
    3    0.1250    1.1240
    4    0.0625    1.0624
    5    0.0313    1.0312

The disp command simply displays all contents inside the single quotes. The fprintf 
command is used inside for loop. For each k in the loop, fprintf writes the value of 
k, the calculated value of c, as well as f(c). The format %2i means integer of length 2, 
which is being used for displaying the value of k. In %6.4f, the letter f represents the 
fixed-point format, 6 is the length, and the number 4 is the number of digits to the right of 
the decimal. Finally, \n means new line. A more detailed description is available through 
the help command.

2.5.1  Differential Equations

Differential equations and initial-value problems can be solved by the dsolve 
function.  For example, the solution of the differential equation ′ + + =y x y( )1 0 is 
obtained as

>> y = dsolve('Dy+(x+1)*y=0','x')

y =

C4/exp((x + 1)^2/2)    % C4 is some constant

Note that the default independent variable in dsolve is t. Since in our example the 
independent variable is x, we needed to specify that in single quotes. The initial-value 
problem �� � �x x x e x xt+ + = = =−2 2 0 0 0 1, ( ) , ( )   is solved as

>> x = dsolve('D2x+2*Dx+2*x=exp(−t)','x(0)=0, Dx(0)=1')

x =

1/exp(t) - cos(t)/exp(t) + sin(t)/exp(t)
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2.6  Plotting

Plotting a vector of values versus another vector of values is done by using the plot com-
mand. For example to plot the function x(t) = e−t(cos t + sin t) over the interval [0, 5] using 
100 points:

>> t = linspace(0,5);    % 100 values for 0 ≤ t ≤ 5
>> x = exp(-t).*(cos(t)+sin(t));    % Corresponding 100 values for x
>> plot(t,x)    % Figure 2.1

The Figure Window can be used to edit the figure. These include adding grid, adjusting 
thickness of lines and curves, adding text and legend, axes titles, and much more.

2.6.1  subplot

The built-in function subplot is designed to create multiple figures in tiled positions. 
Suppose we want to plot the function z(x, t) = e−xsin(t + 2x) versus 0 ≤ x ≤ 5 for four values 
of t = 0, 1, 2, 3. Let us generate the four plots and arrange them in a 2 × 2 formation.

x = linspace(0,5); t = 0:1:3;
for i = 1:4,
    for j = 1:100,
    z(j,i) = exp(-x(j))*sin(t(i)+2*x(j));    % Generate 100 values of z for each t
    end
end

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–0.2
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0.2

0.4
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1.2

t

x

FIGURE 2.1
Plot of a function versus its variable.
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% Initiate Figure 2.2
subplot(2,2,1), plot(x,z(:,1)), title('t = 0')
subplot(2,2,2), plot(x,z(:,2)), title('t = 1')
subplot(2,2,3), plot(x,z(:,3)), title('t = 2')
subplot(2,2,4), plot(x,z(:,4)), title('t = 3')

2.6.2  Plotting Analytical Expressions

An alternative way to plot a function is to use the ezplot command, which plots the 
function without requiring data generation. As an example, consider the function 
x(t) = e−t(cos t + sin t) that we previously plotted over the interval [0, 5]. The plot in Figure 2.1 
can be regenerated using ezplot as follows:

>> x = sym('exp(-t)*(cos(t)+sin(t))');
>> ezplot(x,[0,5]) % Figure 2.1

2.6.3  Multiple Plots

Multiple plots can also be created using ezplot. Suppose the two functions 
y e tt

1
2 3 2= −0.7 / sin  and y e tt

2
3 3= − / sin  are to be plotted versus 0 ≤ t ≤ 5 in the same graph.

>> y1 = sym('0.7*exp(−2*t/3)*sin(2*t)');
>> y2 = sym('exp(−t/3)*sin(3*t)');
>> ezplot(y1,[0,5])    % Initiate Figure 2.3
>> hold on
>> ezplot(y2,[0,5])    % Complete Figure 2.3
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FIGURE 2.2
Subplot in a 2 × 2 formation.
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Executing the preceding script generates a figure which does not exactly match Figure 2.3. 
To enable the interactive plot editing mode in the MATLAB figure window, click the Edit 
Plot button () or select Tools > Edit Plot from the main menu. If you enable plot editing 
mode in the MATLAB figure window, you can perform point-and-click editing of your 
graph. In this mode, you can modify the appearance of a graphics object by double-clicking 
the object and changing the values of its properties.

2.7  User-Defined Functions and Script Files

User-defined M file functions and scripts may be created, saved, and edited in MATLAB 
using the edit command. For example, suppose we want to create a function called Circ 
that returns the area of a circle with a given radius. The function can be saved in a folder 
on the MATLAB path or in the current directory. The current directory can be viewed 
and/or changed using the drop down menu at the top of the MATLAB command window. 
Once the current directory has been properly selected, type

>> edit Circ

A new window (Editor Window) will be opened where the function can be created. The 
generic structure of a function is

function [output variables] = FunctionName(input variables)
% Comments
Expressions/statements
Calculation of all output variables
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FIGURE 2.3
Multiple plots.
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Our user-defined function Circ is specifically created as follows.

To compute the area of a circle with radius 1.3, we simply execute

>> A = Circ(1.3)

A =

   5.3093

Often, functions with multiple outputs are desired. For example, suppose our function 
Circ is to return two outputs: area of the circle and the perimeter of the circle. We create 
this as follows.

Executing this function for the case of radius 1.3, we find

>> [A, P] = Circ(1.3)

A =

    5.3093    % Of course, this agrees with last result

P =

    8.1681

function [A, P] = Circ(r)
%
% Circ calculates the area and the perimeter of a circle of a given radius.
%
%   [A, P] = Circ(r), where
%
%     r is the radius of the circle,
%
%     A is the area,
%     P is the perimeter.
%
A = pi*r^2; P = 2*pi*r;

function A = Circ(r)
%
% Circ calculates the area of a circle of a given radius.
%
%   A = Circ(r), where
%
%     r is the radius of the circle,
%
%     A is the area.
%
A = pi*r^2;
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2.7.1  Setting Default Values for Input Variables

Sometimes, default values are declared for one or more of the input variables of a func-
tion. As an example, consider a function y_int that returns the y-intercept of a straight 
line that passes through a specified point with a given slope. Suppose the slope is 1 unless 
specified otherwise; that is, the default value for slope is 1. If the specified point has coordi-
nates (x0, y0) and the slope is m, then the y-intercept is found as y = y0 − mx0. Based on this 
we write the function as follows.

The MATLAB command nargin (number of function input arguments) is used for the 
purpose of setting default values for one or more of the input variables. The if statement 
here ensures that if the number of input arguments is less than 3, or that the third input 
argument is empty, then the default value of 1 will be used for m. As an example, to find 
the y-intercept of the line going through the point (−1, 2) with slope 1, either one of the fol-
lowing two statements may be executed:

>> y = y_int(−1,2)       % Number of input arguments is less than 3

y =
    3

OR

>> y = y_int(−1,2,[])    % The third argument is empty

y =
    3

In many cases, at least one of the input variables of a user-defined function happens to 
be either a MATLAB function or an anonymous function. Consider the following exam-
ple. Suppose we want to create a user-defined function with the function call [r, k] 
= My_func(f,x0,tol,kmax) where f is an anonymous function, x0 is a given initial 
value, tol is the tolerance (with default value 1e-4), and kmax is the maximum number 
of steps (with default value 20) to be performed. The function calculates x1 = f(x0), 
followed by x2  = f(x1), x3 = f(x2), and so on. Operations stop as soon as the 
distance between two successive elements generated in this manner is less than tol. The 
outputs of the function are the last element generated when the tolerance condition is met, 
as well as the number of steps required to achieve that.

function y = y_int(x0,y0,m)
%
%    �y_int finds the y-intercept of a line passing through a point (x0,y0)
%    with slope m.
%
%      y = y_int(x0,y0,m), where
%
%        x0, y0 are the coordinates of the given point,
%        m is the slope of the line (default 1),
%
%        y is the y-intercept of the line.
%
if nargin < 3 || isempty(m), m = 1; end
y = y0 - m*x0;
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Let us now use My_func for f(x) = 3−x with x0=0, tol=1e-3, and kmax=20.

>> f = @(x)(3^(-x));
>> [r, k] = My_func(f,0,1e-3)    % kmax uses default value of 20

r =

    0.5473

k =

    15

It turns out that the number of steps is 15, which is lower than the maximum of 20. If the 
returned value for k happens to be 20, further inspection must be conducted. It is possible 
that exactly 20 steps were needed to meet the desired condition. It is also possible that the 
maximum number of steps has been exhausted without having the tolerance met. That 
is why the function needs to be reexecuted with a larger value of kmax than the default 
(in this case, 20) to gather more precise information.

The user-defined function My_func has two outputs: r and k. We may retrieve the 
value of r only by executing

>> r = My_func(f,x0,tol,kmax)

This is possible because r is the first output. To have access to the value of k, however, 
we must execute

>> [r, k] = My_func(f,x0,tol,kmax)

2.7.2  Creating Script Files

A script file comprises a list of commands as if they were typed at the command line. Script 
files can be created in the MATLAB Editor, and saved as an M file. For example, typing

>> edit My_script

opens the Editor Window, where the script can be created and saved under the name 
My_script. It is recommended that a script start with the functions clear and clc. 
The first one clears all the previously generated variables, and the second one clears the 
Command Window. Suppose we type the following lines in the Editor Window:

function [r, k] = My_func(f,x0,tol,kmax)

if nargin < 3 || isempty(tol), tol = 1e-4; end
if nargin < 4 || isempty(kmax), kmax = 20; end

x = zeros(kmax); % Pre-allocate
x(1) = x0;       % Define the first element in the array
for k = 1:kmax,
    x(k+1) = f(x(k));
    if abs(x(k+1)-x(k)) < tol,    % Check tolerance condition
        break
    end
    r = x(k+1); % Set the output as the very last element generated
end
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clear
clc
x = 2; N = 10;
a = cos(x)*N^2;

While in the Editor Window, select “Run My_script.m” under the Debug pull-down 
menu. This will execute the lines in the script file and return the Command Prompt. 
Simply type a at the prompt to see the result.

>> My_script
>> a

a =

    −41.6147

This can also be done by highlighting the contents and selecting “Evaluate Selection.” An 
obvious advantage of creating a script file is that it allows us to simply make changes to the 
contents without having to retype all the commands.

PROBLEM SET (CHAPTER 2)

All calculations must be performed in MATLAB.

	 1.	Evaluate the function g x y e yx( , ) tan( )/= +−1
2

2 3 1  for x = 0.3, y = −0.7
	 a.	 Using the subs command.
	 b.	 By conversion into a MATLAB function.
	 2.	Evaluate the function h x y x y( , ) cos sin= −( ) +( )1

3
1
21  for x y= =3

4 1,  using
	 a.	 The subs command.
	 b.	 An anonymous function.

	 3.	Evaluate the vector function f x y
x

y x
( , ) =

−
+









1
2

 for x y= =2 2
3,  using

	 a.	 The subs command.
	 b.	 An anonymous function.

	 4.	Evaluate the matrix function f x y
x x y

y
( , )

cos
=

− +









1 2
0

 for x = 1, y = −1
	 a.	 Using the subs command.
	 b.	 By conversion into a MATLAB function.

	 5.	Consider g t t t t( ) sin ln( )= ( ) + −1
2 1 . Evaluate dg/dt at t = 4

3

	 a.	 Using the subs command.
	 b.	 By conversion into a MATLAB function.
	 6.	Consider h x x ex x( ) sin= +− −3 2 2

3
1 2 . Evaluate dh/dx at x = −0.3

	 a.	 Using the subs command.
	 b.	 By conversion into a MATLAB function.

	 7.	Evaluate x e a x2 1 1 3
+ 

− +( ) /
 when a = −1, x = 3 using an anonymous function in 

another anonymous function.



52 Numerical Methods for Engineers and Scientists Using MATLAB®, Second Edition

	 8.	Evaluate x e a x+ − +ln ( ) /1 2 3  when a = −3, x = 1 using an anonymous function in 
another anonymous function.

In Problems 9 through 12 write a script file that employs any combination of the flow 
control commands to generate the given matrix.

	 9.	A =

−
−

−
−























1 0 1 0 0 0
0 2 0 1 0 0
2 0 3 0 1 0
0 2 0 4 0 1
0 0 2 0 5 0
0 0 0 2 0 6






	 10.	A =

−
−

−
−























4 1 2 3 0 0
0 4 1 2 3 0
0 0 4 1 2 3
0 0 0 4 1 2
0 0 0 0 4 1
0 0 0 0 0 4






	 11.	B =

−
−

−
−

−






















1 1 0 0 0 0
0 2 2 0 0 0
1 0 3 3 0 0

0 1 0 4 4 0
0 0 1 0 5 5
0 0 0 1 0 6







	 12.	B =

−
− −

−
−























0 0 1 0 0
0 1 0 2 0
4 0 2 0 3
0 5 0 3 0
0 0 6 0 4

	 13.	Using any combination of commands diag, triu, and tril, construct matrix B 
from A.

	

A B=

−

−



















=










2 1 1 2
3 0 4 1
1 5 1 3
0 2 6 1

0 0 0 0
3 0 0 0
1 5 0 0
0 2 6 0

 ,









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	 14.	Using any combination of commands diag, triu, and tril, construct matrix B 
from A.

	

A B=

−

−



















=

−







2 1 1 2
3 0 4 1
1 5 1 3
0 2 6 1

0 1 1 2
3 0 4 1
0 5 0 3
0 0 6 0

 ,












	

	 15.	Plot e xdxt x

t

−∫ 2

1

sin  versus −1 ≤ t ≤ 1, add grid and label.

	 16.	Plot ( ) ( )x t e dxt x

t

+ − −∫ 2

0

 versus −2 ≤ t ≤ 1, add grid and label.

	 17.	Plot y e tt
1

1
3 2= ( )− sin  and y e t

2
2= − /  versus 0 ≤ t ≤ 5 in the same graph. Add grid, 

and label.
	 18.	Generate 100 points for each of the two functions in Problem 17 and plot versus 

0 ≤ t ≤ 5 in the same graph. Add grid, and label.

	 19.	Evaluate 
sin

.
ω

ω
ω

0

∞

∫ d

	 20.	Plot u(x, t) = cos(1.7x) sin(3.2t) versus 0 ≤ x ≤ 5 for four values of t = 1, 1.5, 2, 2.5 in a 
2 × 2 tile. Add grid and title.

	 21.	Plot u(x, t) = (1 − sin x)e−(t+1) versus 0 ≤ x ≤ 5 for two values of t = 1, 3 in a 1 × 2 tile. 
Add grid and title.

	 22.	Given that f(x) = e−2x + cos(x + 1), plot ′f x( ) versus 0 ≤ x ≤ 8.
	 23.	Write a user-defined function with function call val = f_eval(f,a,b) where 

f is an anonymous function, and a and b are constants such that a < b. The func-
tion calculates the midpoint m of the interval [a, b] and returns the value of 
f a f m f b( ) ( ) ( )+ +1

2
. Execute f_eval for f = e−x/3, a = −4, b = 2.

	 24.	Write a user-defined function with function call m = mid_seq(a,b,tol) where 
a and b are constants such that a < b, and tol is a specified tolerance. The function 
first calculates the midpoint m1 of the interval [a, b], then the midpoint m2 of [a, m1], 
then the midpoint m3 of [a, m2], and so on. The process terminates when two suc-
cessive midpoints are within tol of each other. Allow a maximum of 20 iterations. 
The output of the function is the sequence m1, m2, m3, …. Execute the function for 
a = −4, b = 10, tol = 10−3.

	 25.	Write a user-defined function with function call C = temp_conv(F) where F 
is temperature in Fahrenheit, and C is the corresponding temperature in Celsius. 
Execute the function for F = 87.

	 26.	Write a user-defined function with function call P = partial_eval(f,a) where 
f is a function defined symbolically, and a is a constant. The function returns the 
value of ′ + ′′f f  at x = a. Execute the function for f = 3x2 − ex/3, and a = 1.

	 27.	Write a user-defined function with function call P = partial_eval2(f,g,a) 
where f and g are functions defined symbolically, and a is a constant. The function 
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returns the value of ′ + ′f g  at x = a. Execute the function for f = x2 + e−x, g = sin(0.3x), 
and a = 0.8.

	 28.	Write a user-defined function with function call [r, k] = root_finder(f,​
x0,kmax,tol) where f is an anonymous function, x0 is a specified value, 
kmax is the maximum number of iterations, and tol is a specified tolerance. The 
function sets x1 = x0, calculates |f(x1)|, and if it is less than the tolerance, then x1 
approximates the root r. If not, it will increment x1 by 0.01 to obtain x2, repeat the 
procedure, and so on. The process terminates as soon as |f(xk)|< tol for some k. 
The outputs of the function are the approximate root and the number of iterations 
it took to find it. Execute the function for f(x) = x2 − 3.3x + 2.1, x0 = 0.5, kmax = 50 
tol = 10−2.

	 29.	Repeat Problem 28 for f(x) = 3 + ln(2x − 1)−ex, x0 = 1, kmax = 25 tol = 10−2.
	 30.	Write a user-defined function with function call [opt, k] = opt_finder(fp,​

x0,kmax,tol) where fp is the derivative (as a MATLAB function) of a given 
function f, x0 is a specified value, kmax is the maximum number of iterations, 
and tol is a specified tolerance. The function sets x1 = x0, calculates |fp(x1)|, and 
if it is less than the tolerance, then x1 approximates the critical point opt at which 
the derivative is near zero. If not, it will increment x1 by 0.1 to obtain x2, repeat the 
procedure, and so on. The process terminates as soon as |fp(xk)| < tol for some 
k. The outputs are the approximate optimal point and the number of iterations it 
took to find it. Execute the function for f(x) = x + (x − 2)2, x0 = 1, kmax = 50 tol = 10−3.



3
Numerical Solution of Equations of a Single Variable

This chapter focuses on numerical solution of equations of a single variable, which appear 
in the general form

	 f x( ) = 0 	 (3.1)

Graphically, a solution (or root) of f(x) = 0 refers to the point of intersection of f(x) and 
the x-axis. Therefore, depending on the nature of the graph of f(x) in relation to the x-axis, 
Equation 3.1 may have a unique solution, multiple solutions, or no solution. A root of an 
equation can sometimes be determined analytically resulting in an exact solution in closed 
form. For instance, the equation e3x − 2 = 0 can be solved analytically to obtain a unique 
solution x = 1

3 2ln . In most situations, however, this is not possible and the root(s) must be 
found numerically. As an example, consider the equation 2 − x + cos x = 0. Figure 3.1 shows 
that this equation has one solution only, which may be approximated to within a desired 
accuracy with the aid of a numerical method.

3.1  Numerical Solution of Equations

As described in Figure 3.2, numerical methods for solving an equation are divided into 
three main categories: bracketing methods, open methods, and using the built-in MATLAB 
function fzero.

Bracketing methods require that an interval containing the root first be identified. 
Referring to Figure 3.3, this means an interval [a, b] with the property that f(a)f(b) < 0 so that 
a root lies in [a, b]. The length of the interval is then reduced in succession until a desired 
accuracy is satisfied. Exactly how this interval gets narrowed in each step depends on the 
specific method used. It is readily seen that bracketing methods always converge to the root. 
Open methods require an initial estimate of the solution, somewhat close to the intended 
root. Subsequently, more accurate estimates are successively generated by a specific method; 
Figure 3.4. Open methods are more efficient than bracketing methods, but do not always 
generate a sequence that converges to the root. The built-in function fzero finds the root of 
a function f near a specified point, or in a specified interval [a, b] such that f(a)f(b) < 0.

3.2  Bisection Method

The bisection method is the simplest bracketing method to find a root of f(x) = 0. It is 
assumed that f(x) is continuous on an interval [a, b] and has a root there so that f(a) and f(b) 
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have opposite signs, hence f(a)f(b) < 0. The procedure goes as follows: Locate the midpoint 
of [a, b], that is, c a b1

1
2= +( ), Figure 3.5. If f(a) and f(c1) have opposite signs, the interval [a, c1] 

contains the root and will be retained for further analysis; that is, the left end is retained 
while the right end is adjusted. If f(b) and f(c1) have opposite signs, we continue with [c1, b]; 
that is, the right end is kept while the left end is adjusted. In Figure 3.5 it so happens that 
the interval [c1, b] brackets the root and is retained. Since the right endpoint is unchanged, 
we update the interval [a, b] by resetting the left endpoint a = c1. The process is repeated 
until the length of the most recent interval [a, b] satisfies the desired accuracy.

The initial interval [a, b] has length b − a. Beyond that, the first generated interval has 
length 1

2 ( )b a− , the next interval 1
4 ( )b a− , and so on. Thus, the n-th interval constructed 
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Approximate solution of 2 − x + cos x = 0.
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FIGURE 3.2
Classification of methods to solve an equation of one variable.
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in this manner has length (b − a)/2n−1, and because it brackets the root, the absolute error 
associated with the nth iteration satisfies

	
| | ( )e

b a
b an n≤ − >−2 1

	

This upper bound is usually larger than the actual error at the nth step. If the bisection 
method is used to approximate the root of f(x) = 0 within a prescribed tolerance ε > 0, then 
it can be shown that the number N of iterations needed to meet the tolerance condition 
satisfies

	
N

b a> − −ln( ) ln
ln

ε
2 	

(3.2)

The user-defined function Bisection shown below generates a sequence of values 
(midpoints) that ultimately converges to the true solution. The iterations terminate when 
1
2 ( )b a− < ε, where ε is a prescribed tolerance. The output of the function is the last gener-

ated estimate of the root at the time the tolerance was met. It also returns a table that com-
prises iteration counter, interval endpoints, and interval midpoint per iteration, as well as 
the value of 1

2 ( )b a−  to see when the terminating condition is satisfied.
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Philosophy of bracketing methods.
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EXAMPLE 3.1:  BISECTION METHOD

The equation x cos x + 1 = 0 has a root in the interval [−2, 4], as shown in Figure 3.6:

>> f = @(x)(x*cos(x)+1);
>> ezplot(f,[-2,4])

Define f(x) = x cos x + 1 so that f(−2) > 0 and f(4) < 0. We will perform two steps of the 
bisection method as follows. The first midpoint is found as c1

1
2 2 4 1= − + =( ) . Since the 

function value at this point is f(c1) = f(1) > 0, the root must be in [1, 4]. This means the left 
end is adjusted as a = c1 = 1 while b = 4 remains unchanged. The next midpoint is then 
calculated as c2

1
2 1 4= + =( ) 2.5. Since f(c2) = f(2.5) < 0, the root must lie in [1, 2.5]. This 

process continues until a desired accuracy is achieved. In particular, if we execute the 
user-defined function Bisection with ε = 10−2 and maximum 20 iterations, the follow-
ing results are obtained.

function c = Bisection(f, a, b, kmax, tol)
%
% Bisection uses the bisection method to find a root of f(x) = 0
% in the interval [a,b].
%
%   c = Bisection(f, a, b, kmax, tol), where
%
%     f is an anonymous function representing f(x),
%     a and b are the endpoints of interval [a,b],
%     kmax is the maximum number of iterations (default 20),
%     tol is the scalar tolerance for convergence (default 1e-4),
%
%     c is the approximate root of f(x) = 0.
%
if nargin < 5 || isempty(tol), tol = 1e-4; end
if nargin < 4 || isempty(kmax), kmax = 20; end
if f(a)*f(b) > 0
     c = 'failure';
     return
end
disp(' k     a     b     c     (b-a)/2')
for k = 1:kmax,
   c = (a+b)/2;    % Find the first midpoint
   if f(c) == 0,   % Stop if a root has been found
     return
   end
fprintf('%3i   %11.6f%11.6f%11.6f%11.6f\n',k,a,b,c,(b-a)/2)
   if (b-a)/2 < tol,   % Stop if tolerance is met
     return
   end
   if f(b)*f(c) > 0   % Check sign changes
     b = c;           % Adjust the endpoint of interval
   else a = c;
   end
end
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>> c = Bisection(f, -2, 4, [], 1e-2)

   k          a             b             c           (b-a)/2
   1     -2.000000      4.000000      1.000000      3.000000
   2      1.000000      4.000000      2.500000      1.500000
   3      1.000000      2.500000      1.750000      0.750000
   4      1.750000      2.500000      2.125000      0.375000
   5      1.750000      2.125000      1.937500      0.187500
   6      1.937500      2.125000      2.031250      0.093750
   7      2.031250      2.125000      2.078125      0.046875
   8      2.031250      2.078125      2.054688      0.023438
   9      2.054688      2.078125      2.066406      0.011719
  10      2.066406      2.078125      2.072266      0.005859

c =
     2.0723

The data in the first three rows confirm the hand calculations. Iterations stopped 
when 1

2 0 005859 0 01( ) . .b a− = < =ε . Note that by Equation 3.2, we have

	
N

b a a b
> − − = − =

=

=− =ln( ) ln
ln

ln ln
ln

,ε
ε2

6
2

2 4
   

0.01
9.23

0.01

 

	

which means at least 10 iterations are required for convergence. This is in agree-
ment with  the findings here, as we saw that tolerance was met after 10 iterations. 
The accuracy of the solution estimate will improve if a smaller tolerance is imposed.

3.2.1  MATLAB Built-In Function fzero

The fzero function in MATLAB finds the roots of f(x) = 0 for a real function f(x).

FZERO Scalar nonlinear zero finding.

     X = FZERO(FUN,X0) tries to find a zero of the function FUN near X0,
     if X0 is a scalar.
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FIGURE 3.6
Location of the root of x cos x + 1 − 0 in [−2, 4].
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The fzero function uses a combination of the bisection, secant, and inverse quadratic 
interpolation methods. If we know two points where the function value differs in sign, we 
can specify this starting interval using a two-element vector for x0. This algorithm is guar-
anteed to return a solution. If we specify a scalar starting point x0, then fzero initially 
searches for an interval around this point where the function changes sign. If an interval 
is found, then fzero returns a value near where the function changes sign. If no interval 
is found, fzero returns a NaN value.

The built-in function fzero can be used to confirm the approximate root in Example 3.1. 
This can be done in one of two ways. As a first option, we may specify a point near which 
the root must be found. For instance, selecting x0 = 1 leads to

>> fzero(f,1)

ans =

      2.0739

As a second option, we may identify two points where the function value differs in sign. 
For instance, choosing the interval [1, 3] leads to

>> fzero(f,[1,3])

ans =

     2.0739

The accuracy of the approximate root (2.0723) returned by the user-defined func-
tion Bisection can be improved by choosing a smaller tolerance. For example, the 
reader can verify that executing Bisection with tol = 1e-8 returns a root esti-
mate  (2.0739)  that agrees with fzero to at least 4 decimal places, but requires 30 
iterations.

3.3  Regula Falsi Method (Method of False Position)

The regula falsi method is another bracketing method to find a root of f(x) = 0. Once 
again, it is assumed that f(x) is continuous on an interval [a, b] and has a root there so 
that f(a) and f(b) have opposite signs, f(a)f(b) < 0. The technique is geometrical in nature 
and described as follows. Let [a1, b1] = [a, b]. Connect points A:(a1, f(a1)) and B:(b1, f(b1)) by a 
straight line as in Figure 3.7 and let c1 be its x-intercept. If f(a1)f(c1) < 0, then [a1, c1] brackets 
the root. Otherwise, the root is in [c1, b1]. In Figure 3.7 it just so happens that [a1, c1] brack-
ets the root. This means the left end is unchanged, while the right end is adjusted to c1. 
Therefore, the interval that is used in the next iteration is [a2, b2] where a2 = a1 and b2 = c1. 
Continuing this process generates a sequence c2, c3, … that eventually converges to the 
root. In the case shown in Figure 3.7 the curve of f(x) is concave up and the left end of the 
interval remains fixed at least through the first three iterations shown. This issue will be 
addressed shortly.
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Analytically, the procedure is illustrated as follows. The equation of the line connecting 
points A and B is

	
y f b

f b f a
b a

x b− = −
−

−( )
( ) ( )

( )1
1 1

1 1
1

	

To find the x-intercept, set y = 0 and solve for x = c1:
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Generalizing this result, the sequence of points that converges to the root is 
generated via

	
c

a f b b f a
f b f a

nn
n n n n

n n
= −

−
= …( ) ( )

( ) ( )
, , , ,1 2 3

	
(3.3)

The user-defined function RegulaFalsi generates a sequence of elements that eventu-
ally converges to the root of f(x) = 0. The iterations stop when two consecutive x-intercepts 
are within an acceptable distance from one another. That is, the terminating condition is 
|cn+1 − cn| < ε, where ε is the imposed tolerance. The outputs are the approximate root and 
the number of iterations required to meet the tolerance. The function also returns a table 
comprised of the intervals containing the root in all iterations performed.

function [r, k] = RegulaFalsi(f, a, b, kmax, tol)
%
% RegulaFalsi uses the regula falsi method to approximate a root of f(x) = 0
% in the interval [a,b]. 
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FIGURE 3.7 
Method of false position (regula falsi).
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EXAMPLE 3.2:  REGULA FALSI METHOD

Reconsider the equation x cos x + 1 = 0 and the interval [−2, 4] that contains its root. 
Letting f(x) = x cos x + 1, we have f(−2) > 0 and f(4) < 0. We will perform two steps of the 
regula falsi method. First, set [a1, b1] = [−2, 4]. Then,

	
c

a f b b f a
f b f a

1
1 1 1 1

1 1
= −

−
=( ) ( )

( ) ( )
1.189493

	

Since f(c1) > 0, the root must lie in [c1, b1] so that the left endpoint is adjusted to a2 = c1 
and the right end remains unchanged, b2 = b1. Therefore, the updated interval is 
[a2, b2] = [1.189493, 4]. Next,

	
c

a f b b f a
f b f a

2
2 2 2 2

2 2
= −

−
=( ) ( )

( ) ( )
2.515720

	

%
%     [r, k] = RegulaFalsi(f, a, b, kmax, tol), where
%
%       f is an anonymous function representing f(x),
%       a and b are the limits of interval [a,b],
%       kmax is the maximum number of iterations (default 20),
%       tol is the scalar tolerance for convergence (default 1e-4),
%
%       r is the approximate root of f(x) = 0,
%       k is the number of iterations needed for convergence.
%
if nargin < 5 || isempty(tol), tol = 1e-4; end
if nargin < 4 || isempty(kmax), kmax = 20; end
c = zeros(1,kmax);      % Pre-allocate
if f(a)*f(b) > 0
     r = 'failure';
     return
end
disp(' k      a           b')
for k = 1:kmax,
    c(k) = (a*f(b)-b*f(a))/(f(b)-f(a));      % Find the x-intercept
    if f(c(k)) == 0      % Stop if a root has been found
        return
    end
   fprintf('%2i      %11.6f%11.6f\n',k,a,b)
    if f(b)*f(c(k)) > 0      % Check sign changes
        b = c(k);          % Adjust the endpoint of interval
    else a = c(k);
    end
    c(k+1) = (a*f(b)-b*f(a))/(f(b)-f(a));   % Find the next x-intercept
    if abs(c(k+1)-c(k)) < tol,     % Stop if tolerance is met
        r = c(k+1);
        return
    end
end
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This process continues until a desired accuracy is achieved. In particular, if we exe-
cute the user-defined function RegulaFalsi with ε = 10−2 and maximum 20 iterations, 
the following results are obtained.

>> f = @(x)(x*cos(x)+1);
>> [r, k] = RegulaFalsi(f, -2, 4, [], 1e-2)

 k          a             b
 1     -2.000000      4.000000
 2      1.189493      4.000000
 3      1.189493      2.515720
 4      1.960504      2.515720

r =
    2.0738

k =
      4

The boxed entries confirm the hand calculations. We observe that, for the same toler-
ance (1e-2), the root estimate returned by RegulaFalsi is reached faster and is more 
accurate than the one returned by Bisection. Also note that the functions Bisection 
and RegulaFalsi use different criteria to terminate the respective iterations.

3.3.1  Modified Regula Falsi Method

In many cases, the curve representing f(x) happens to be concave up or concave down. 
In these situations, when regula falsi is employed, one of the endpoints of the interval 
remains the same through all iterations, while the other endpoint advances in the direction 
of the root. For instance, in Figure 3.7, the function is concave up, the left endpoint remains 
unchanged, and the right endpoint moves toward the root. The regula falsi method can be 
modified such that both ends of the interval move toward the root, thus improving the rate 
of convergence. Among many proposed modifications, there is one that is presented here. 
Reconsider the scenario portrayed in Figure 3.7 now shown in Figure 3.8. If endpoint a 
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FIGURE 3.8
Modified regula falsi method.
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remains stagnant after, say, three consecutive iterations, the usual straight line is replaced 
with one that is less steep, going through the point at 1

2 f a( ) instead of f(a), which causes the 
x-intercept to be closer to the actual root. It is possible that this still does not force the end-
point a to move toward the root. In that event, if endpoint a remains the same after three 
more iterations, the modified line will be replaced with yet a less steep line going through 
1
4 f a( ), and so on; See Problem Set.

3.4  Fixed-Point Method

The fixed-point method is an open method to find a root of f(x) = 0. The idea is to rewrite 
f(x) = 0 as x = g(x) for a suitable g(x), which is called an iteration function. A point of inter-
section of y = g(x) and y = x is called a fixed point of g(x). A fixed point of g(x) is also a root 
of the original equation f(x) = 0. As an example, consider e−x/2 − x = 0 and its root as shown 
in Figure 3.9. The equation is rewritten as x = e−x/2 so that g(x) = e−x/2 is an iteration func-
tion. It is observed that g(x) has only one fixed point, which is the only root of the original 
equation. It should be noted that for a given equation f(x) = 0 there usually exist more than 
one iteration function. For instance, e−x/2 − x = 0 can also be rewritten as x = −2 ln x so that 
g(x) = −2 ln x.

A fixed point of g(x) is found numerically via the fixed-point iteration:

	 x g x n xn n+ = = … =1 11 2 3( ) , , ,,  , initial guess 	 (3.4)

The procedure begins with an initial guess x1 near the fixed point. The next point x2 
is found as x2 = g(x1), followed by x3 = g(x2), and so on. This continues until convergence 
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0 xRoot

Fixed point

y = x

f(x) = e–x/2 –x

g(x) = e–x/2

FIGURE 3.9
Root of an equation interpreted as a fixed point of an iteration function.
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is observed, that is, until two successive points are within a prescribed distance of one 
another, or

	 | |x xn n+ − <1 ε 	

Two types of convergence can be exhibited by the fixed-point iteration: monotone and 
oscillatory, as illustrated in Figure 3.10. In a monotone convergence, the elements of the 
generated sequence converge to the fixed point from one side, while in an oscillatory 
convergence, the elements bounce from one side of the fixed point to the other as they 
approach it.

3.4.1  Selection of a Suitable Iteration Function

As mentioned above, there is usually more than one way to rewrite a given equation 
f(x) = 0 as x = g(x). An iteration function g(x) must be suitably selected so that when used in 
Equation 3.4, the iterations converge to the fixed point. In some cases, more than one of the 
possible forms can be successfully used. Sometimes, none of the forms is suitable, which 
means that the root cannot be found by the fixed-point method. When there are multiple 
roots, one possible form may be used to find one root, while another form leads to another 
root. As demonstrated in Theorem 3.1, there is a way to decide whether a fixed-point itera-
tion converges or not for a specific choice of iteration function.

Theorem 3.1: Convergence of Fixed-Point Iteration

Let r ∈I be a fixed point of g(x). Assume that g(x) has a continuous derivative in interval I, 
and |g′(x)| ≤ K < 1 for all x ∈I. Then, for any initial point x1 ∈I, the fixed-point iteration in 
Equation 3.4 generates a sequence {xn} that converges to r. Furthermore, if e1 = x1 − r and 
en = xn − r denote the initial error and the error at the nth iteration, we have

	 | | | |e K en
n≤ 1 	 (3.5)
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FIGURE 3.10
Fixed-point iteration: (a) monotone convergence, and (b) oscillatory convergence.
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Proof

Suppose x ∈I. Then, by the mean value theorem (MVT) for derivatives, there exists a point 
ξ ∈(x, r) such that

	 g x g r g x r( ) ( ) ( )( )− = ′ −ξ 	

Next, let us consider the left side of Equation 3.5. Noting that r = g(r) and xn = g(xn−1), we 
have
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Since K < 1 by assumption, |en| = |xn − r|→ 0 as n → ∞. That completes the proof.

3.4.2  A Note on Convergence

Following Theorem 3.1, if |g′(x)| < 1 near a fixed point of g(x), convergence is guaranteed. 
In other words, if in a neighborhood of a root, the curve representing g(x) is less steep than the line 
y = x, then the fixed-point iteration converges to that root. Note that this is a sufficient, and not 
necessary, condition for convergence.

The user-defined function FixedPoint uses an initial point x1 and generates a sequence 
of elements {xn} that eventually converges to the fixed point of g(x). The iterations stop 
when two consecutive elements are sufficiently close to one another, that is, |xn+1 − xn| < ε, 
where ε is the tolerance. The outputs are the approximate value of the fixed point and the 
number of iterations needed to meet the tolerance.

function [r, n] = FixedPoint(g, x1, kmax, tol)
%
%  FixedPoint uses the fixed-point method to approximate a fixed point
%  of g(x).
%
%   [r, n] = FixedPoint(g, x1, kmax, tol), where
%
%     g is an anonymous function representing g(x),
%     x1 is the initial point,
%     kmax is the maximum number of iterations (default 20),
%     tol is the scalar tolerance for convergence (default 1e-4),
%
%     r is the approximate fixed point of g(x),
%     n is the number of iterations needed for convergence.
%
if nargin < 4 || isempty(tol), tol = 1e-4; end
if nargin < 3 || isempty(kmax), kmax = 20; end
x = zeros(1,kmax);
x(1) = x1;
for n = 1:kmax,
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EXAMPLE 3.3:   FIXED-POINT METHOD

The objective is to find the roots of x − 2−x = 0 using the fixed-point method. Rewrite the 
equation as x = 2−x so that g(x) = 2−x. The (only) fixed point can be roughly located as in 
Figure 3.11.

>> g = @(x)(2ˆ(-x));
>> ezplot(g,[0,2])
>> hold on
>> syms x
>> ezplot(x,[0,2])      % Figure 3.11

Before applying the fixed-point iteration, we need to check the condition of conver-
gence, Theorem 3.1, as follows:

	 | ( )| | ln | lng x xx x′ = − = < ⇒ >− −2 2 2 2 1 0.5288 	

    x(n+1) = g(x(n));
    if abs(x(n+1) - x(n)) < tol
        r = x(n+1);
        return
    end
end
r = 'failure'; % Failure to converge after kmax iterations
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y = x
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Fixed
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FIGURE 3.11
Location of the fixed point of g(x) = 2−x.
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This means if the fixed point is in an interval comprised of values of x larger than 
0.5288, the fixed-point iteration is guaranteed to converge. Figure 3.11 confirms that this 
condition is indeed satisfied.

We will execute the user-defined function FixedPoint with x1 = 0 and default values 
for kmax and tol.

>> [r, n] = FixedPoint(g, 0)

r =

      0.6412

n =

      13

Therefore, the fixed point of g(x) = 2−x, which is the root of x − 2−x = 0, is found after 13 
iterations. The reader may verify that the convergence is oscillatory. In fact, the sequence 
of elements generated by the iteration is

     �0.0000   1.0000   0.5000   0.7071   0.6125   0.6540   0.6355   0.6437

     0.6401   0.6417   0.6410   0.6413   0.6411   0.6412

EXAMPLE 3.4:   SELECTION OF A SUITABLE ITERATION FUNCTION

Consider the quadratic equation x2 − 4x + 1 = 0. As stated earlier, there is more than one 
way to construct an iteration function g(x). For instance, two such forms are

	
g x x g x

x
1

2
2

1
4

1 4
1

( ) ( ), ( )= + = −
	

Let us first consider g1(x), Figure 3.12. The portion of the curve of g1(x) below point A is 
less steep than y = x. Starting at any arbitrary point in that region, we see that the itera-
tion always converges to the smaller root B. On the other hand, above point A, the curve 
is steeper than the line y = x. Starting at any point there, the iteration will diverge. Thus, 
only the smaller of the two roots can be approximated if g1(x) is used. Now, referring to 
Figure 3.13, the curve of g2(x) is much less steep near A than it is near B. And, it appears 
that starting at any point above or below A (also above B), the iteration converges to the 
larger root.

Let us inspect the condition of convergence as stated in Theorem 3.1. In relation to 
g1(x), we have

	 | ( )| | |′ = < ⇒ < ⇒ − < <g x x x x1
1
2 1 2 2 2 	

The fixed point B falls inside this interval, and starting at around x1 = 2 (Figure 3.12), 
the sequence did converge toward B. When we started at around x1 = 4, however, the 
sequence showed divergence. In relation to g2(x),

	
| ( )| | |′ = < ⇒ > ⇒ < − >g x

x
x x x2 2

21
1 1 1 1or

	



70 Numerical Methods for Engineers and Scientists Using MATLAB®, Second Edition

Figure 3.13 shows that the fixed point A certainly falls in the interval x > 1. However, 
we see that our starting choice of around x1 = 0.3 led to convergence, even though it was 
not inside the required interval. This of course is due to the fact that the condition of 
convergence is only sufficient and not necessary.
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>> g1 = @(x)((xˆ2+1)/4); g2 = @(x)(4-1/x);
>> [r1, n] = FixedPoint(g1, 2)

r1 =

      0.2680      % First root found by using iteration function g1

n =

      8

>> [r2, n] = FixedPoint(g2, 0.3)

r2 =

      3.7320      % Second root found by using iteration function g2

n =

      7

The original equation is x2 − 4x + 1 = 0 so that we are looking for the roots of a polyno-
mial. MATLAB has a built-in function roots, which performs this task:

>> roots([1 -4 1])

ans =

      3.7321
      0.2679

Of course, the approximate values returned by the FixedPoint function may be 
improved, and closer to those returned by roots, if a smaller tolerance than the default 
1e-4 is employed.

3.4.3  Rate of Convergence of the Fixed-Point Iteration

Suppose r is a fixed point of g(x), and that g(x) satisfies the hypotheses of Theorem 3.1 in 
some interval I. Also assume the (k + 1)th derivative of g(x) is continuous in I. Expanding 
g(x) in a Taylor’s series about x = r, and noting that r = g(r), xn+1 = g(xn), and en = xn − r, the 
error at the (n + 1)th iteration is obtained as
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(3.6)

where Ek,n, the error due to truncation, is described by
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Assume g′(x) ≠ 0 ∀x ∈I. Then, for k = 0, Equation 3.6 yields en+1 = g′(ξn)en. But since xn → r 
as n → ∞ (by Theorem 3.1), we have ξn → r as well. Consequently,

	
lim lim ( ) ( )
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n

n n
n

e
e
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= ′ = ′ ≠1 0ξ

	

Therefore, convergence is linear. The rate of convergence will be improved if g’(r) = 0 and 
g″(x) ≠ 0 ∀x ∈I. In that case, it can be shown that
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so that convergence is quadratic. We will see shortly that Newton’s method falls in this 
category. From the foregoing analysis it is evident that the more derivatives of g(x) vanish 
at the root, the faster the rate of the fixed-point iteration.

3.5  Newton’s Method (Newton–Raphson Method)

Newton’s method is the most commonly used open method to solve f(x) = 0, where f′ is 
continuous. Consider the graph of f(x) in Figure 3.14. Start with an initial point x1 and locate 
the point (x1, f(x1)) on the curve. Draw the tangent line to the curve at that point, and let its 
x-intercept be x2. The equation of this tangent line is

	 y f x f x x x− = ′ −( ) ( )( )1 1 1 	

Therefore, its x-intercept is found by setting y = 0 and solving for x:

	
x x

f x
f x

2 1
1

1
= −

′
( )
( ) 	

Once x2 is available, locate the point (x2, f(x2)), draw the tangent line to the curve at that 
point, and let x3 be its x-intercept, which is found as

	
x x

f x
f x

3 2
2

2
= −

′
( )
( ) 	

Continue this process until the sequence {xn} converges to the intended root r. In general, 
two consecutive elements xn and xn+1 are related via

	
x x

f x
f x

n xn n
n

n
+ = −

′
= … =1 11 2 3

( )
( )

, , ,,  , initial point
	

(3.7)

The user-defined function Newton uses an initial x1 and generates a sequence of elements 
{xn} via Equation 3.7 that eventually converges to the root of f(x) = 0. The function accepts 
f(x) symbolically as an input so that it can calculate f ′(x) using the diff command; see 
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Chapter 2. Both f and f ′ are subsequently converted to MATLAB functions for evaluation 
purposes. The iterations stop when two consecutive generated elements are sufficiently 
close to one another, that is, |xn+1 − xn| < ε, where ε is a prescribed tolerance. The outputs are 
the approximate value of the root and the number of iterations needed to meet the tolerance.

function [r, n] = Newton(f, x1, tol, N)
%
%  Newton uses Newton’s method to approximate a root of f(x) = 0.
%
%   [r, n] = Newton(f, x1, tol, N), where
%
%     f is a symbolic function representing f(x),
%     x1 is the initial point,
%     tol is the scalar tolerance for convergence (default 1e-4),
%     N is the maximum number of iterations (default 20),
%
%     r is the approximate root of f(x) = 0,
%     n is the number of iterations required for convergence.
%
if nargin < 4 || isempty(N), N = 20; end
if nargin < 3 || isempty(tol), tol = 1e-4; end
% Find f' and convert to MATLAB function for evaluation
fp = matlabFunction(diff(f)); 
% Convert f to MATLAB function for evaluation
f = matlabFunction(f);
x = zeros(1, N+1);      % Pre-allocate
x(1) = x1;
for n = 1:N,
    if fp(x(n)) == 0,
        r ='failure';
        return
    end
    x(n+1) = x(n) - f(x(n))/fp(x(n));
    if abs(x(n+1) - x(n)) < tol,
        r = x(n+1);
        return
    end
end

x
Root0

x3f(x)
x2 x1

Slope = f ′(x1)

FIGURE 3.14
Geometry of Newton’s method.
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EXAMPLE 3.5:  NEWTON’S METHOD

Consider x cos x + 1 = 0 of Examples 3.1 and 3.2.

	 1.	 Using Newton’s method with x1 = 1, calculate x2 and x3 of the sequence that 
eventually converges to the root.

	 2.	 Find the root by executing the user-defined function Newton with ε = 10−4 and 
maximum 20 iterations.

Solution

	 1.	 Since f(x) = x cos x + 1, we find f ′(x) = cos x − x sin x. To calculate x2 we apply 
Equation 3.7 with n = 1, that is,

	
x x
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f x
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Applying Equation 3.7 with n = 2,

	
x x

f x
f x

3 2
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2
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′
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( )
2.6230

	

	 2.	 We will execute Newton with initial point x1=1 while omitting the next two 
variables since they assume their default values in this example.

>> f = sym('x*cos(x)+1');
>> [r, n] = Newton(f, 1)      % Default values for tol and N

r =

      2.0739

n =

      6

The result agrees to at least four decimal places with the highly accurate estimate 
returned by fzero earlier. Recall that for a bracketing method such as bisection, a simi-
lar accuracy was achieved by using a tolerance of 10−8 and performing 30 iterations.

EXAMPLE 3.6:  NEWTON’S METHOD

Find the roots of 8x3 − 18x2 + x + 6 = 0 using Newton’s method with ε = 10−4 and maxi-
mum 20 iterations.

Solution

We first plot f(x) = 8x3 − 18x2 + x + 6 using the ezplot function to find approximate loca-
tions of its roots. The default range for ezplot is [−2π, 2π], but by inspection the range 
is narrowed down to [−1, 2.5].

>> f = sym('8*xˆ3-18*xˆ2+x+6');
>> ezplot(f,[-1,2.5])               % Figure 3.15
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Inspired by Figure 3.15, we will execute the user-defined function Newton three sepa-
rate times, once with initial point x1 = −1, a second time with x1 = 0.5, and a third time with 
x1 = 1.5.

>> [r1, n1] = Newton(f, -1)      % f was defined (symbolically) earlier

r1 =

      -0.5000      % First root

n1 =

      5

>> [r2, n2] = Newton(f, 0.5)

r2 =

      0.7500      % Second root

n2 =

      3

>> [r3, n3] = Newton(f, 1.5)
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FIGURE 3.15
Location of the three roots of 8x3 − 18x2 + x + 6 = 0.
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r3 =

      2.0000      % Third root

n3 =

      10

Since f(x) is a polynomial here, the built-in MATLAB function roots can be used to find 
its roots.

>> roots([8 -18 1 6])

ans =

      2.0000
      0.7500
     -0.5000

3.5.1  Rate of Convergence of Newton’s Method

It turns out that the speed of convergence of Newton’s method depends on the multiplicity 
of an intended root of f(x) = 0. We say that a root r of f(x) = 0 is of multiplicity (or order) m 
if and only if

	 f r f r f r f r f rm m( ) ( ) ( ) ( ) , ( )( ) ( )= ′ = ′′ = … = ≠−0 0 0 0 01 ,  ,  ,  ,   	

A root of order 1 is commonly known as a simple root.

Theorem 3.2: Rate of Convergence of Newton’s Method

Let r be a root of f(x) = 0, and in Newton’s iteration, Equation 3.7, let x1 be sufficiently close 
to r.

	 a.	 If f″(x) is continuous and r is a simple root, then
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(3.8)

and convergence {xn} → r is quadratic.

	 b.	 If {xn} → r, where r is root of order m > 1, then
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(3.9)

and convergence is linear.
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EXAMPLE 3.7:  QUADRATIC CONVERGENCE; NEWTON’S METHOD

Suppose Newton’s method is employed to find the two roots of x2 − 3x − 4 = 0, which are 
r = −1, 4. Let us focus on the task of finding the larger root, r = 4. Since the root is simple, 
by Equation 3.8 we have
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This indicates that convergence is quadratic, as stated in Theorem 3.2. While finding 
the smaller root r = −1, this limit is once again 0.2, thus confirming quadratic conver-
gence again. The reader can readily verify this by tracking the ratio |en+1|/|en|2 while 
running Newton’s method.

3.5.2  A Few Notes on Newton’s Method

•	 When Newton’s method works, it generates a sequence that converges rapidly to 
the intended root.

•	 Several factors may cause Newton’s method to fail. A usual factor is that the ini-
tial point x1 is not sufficiently close to the intended root. Another one is that at 
some point in the iterations, f ′(xn) may be close to or equal to zero. Other scenarios, 
where the iteration simply halts or the sequence diverges, are shown in Figure 3.16 
and explained in Example 3.8.

•	 If f(x), f ′(x), and f″(x) are continuous, f ′(root) ≠ 0, and the initial point x1 is close to 
the root, then the sequence generated by Newton’s method converges to the root.

•	 A downside of Newton’s method is that it requires the calculation of f ′(x), which 
at times may be difficult. In these cases, the secant method (described below in 
Section 3.6) can be used instead.

EXAMPLE 3.8:  NEWTON’S METHOD

Apply Newton’s method to find the root of 2/(x + 1) = 1. For the initial point use (1) x1 = 3, 
and (2) x1 = 4.

1
Root x

1
Root x

Sequence diverges

(a) (b)f (x) f (x)

x2 = –1 x2 = –3.5x1 = 3 x1 = 4

 f (x2) is undefined

FIGURE 3.16 
Two cases where Newton’s method fails: (a) sequence halts, and (b) sequence diverges.
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Solution
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	 1.	 Starting with x1 = 3, we find
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		  The iterations halt at this point because f(−1) is undefined. This is illustrated in 
Figure 3.16a.

	 2.	 Starting with x1 = 4, we find
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		  The sequence clearly diverges. This is illustrated in Figure 3.16b.

3.5.3  Modified Newton’s Method for Roots with Multiplicity 2 or Higher

If r is a root of f(x) and r has a multiplicity 2 or higher, then convergence of the sequence 
generated by Newton’s method is linear; see Theorem 3.2. In these situations, Newton’s 
method may be modified to improve the speed of convergence. The modified Newton’s 
method designed for roots of multiplicity 2 or higher is described as
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(3.10)

The user-defined function NewtonMod uses an initial x1 and generates a sequence of 
elements {xn} via Equation 3.10 that eventually converges to the root of f(x) = 0, where the 
root has multiplicity 2 or higher. The iterations stop when two consecutive elements are 
sufficiently close to one another, that is, |xn+1 − xn| < ε, where ε is the prescribed tolerance. 
The outputs are the approximate value of the root and the number of iterations needed to 
meet the tolerance.

function [r, n] = NewtonMod(f, x1, tol, N)
%
%  NewtonMod uses modified Newton’s method to approximate a root (with
%  multiplicity 2 or higher) of f(x) = 0.
%
%   [r, n] = NewtonMod(f, x1, tol, N), where
%
%     f is a symbolic function representing f(x),
%     x1 is the initial point,
%     tol is the scalar tolerance for convergence (default 1e-4),
%     N is the maximum number of iterations (default 20),
%
%     r is the approximate root of f(x) = 0,
%     n is the number of iterations required for convergence.
%
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EXAMPLE 3.9:  MODIFIED NEWTON’S METHOD

Find the roots of 4x3 + 4x2 − 7x + 2 = 0 using Newton’s method and modified Newton’s 
method. Discuss the results.

Solution

Figure 3.17 reveals that f(x) = 4x3 + 4x2 − 7x + 2 has a simple root at −2 and a double 
root (multiplicity 2) at 0.5 since it is tangent to the x-axis at that point. We will execute 
NewtonMod with default parameter values and x1 = 0.

if nargin < 4 || isempty(N), N = 20; end
if nargin < 3 || isempty(tol), tol = 1e-4; end
% Find f', f" and convert to MATLAB functions for evaluation
fp = matlabFunction(diff(f));
f2p = matlabFunction(diff(f,2));
% Convert f to MATLAB function for evaluation
f = matlabFunction(f);
x = zeros(1,N+1);      % Pre-allocate
x(1) = x1;
for n = 1:N,
    x(n+1) = x(n) - (f(x(n))*fp(x(n)))/(fp(x(n))ˆ2-f(x(n))*f2p(x(n)));
    if abs(x(n+1)-x(n)) < tol,
        r = x(n+1);
        return
    end
end
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multiplicity 2
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FIGURE 3.17
A simple and a double root of 4x3 + 4x2 − 7x + 2 = 0.
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>> f = sym('4*xˆ3+4*xˆ2-7*x+2');
>> ezplot(f,[-3,2])      % Figure 3.17
>> [r, n] = NewtonMod(f, 0)

r =

      0.5000

n =

      4

Executing Newton with default parameters and x1 = 0 yields

>> [r, n] = Newton(f, 0)

r =

     0.4999

n =

     12

The modified Newton’s method is clearly superior to the standard Newton’s method 
when approximating a multiple root. The same, however, is not true for simple roots. 
Applying both methods with x1 = −3 and default parameters yields

>> [r, n] = NewtonMod(f, -3)

r =

      -2.0000

n =

      6

>> [r, n] = Newton(f, -3)

r =

      -2.0000

n =

      5

The standard Newton’s method generally exhibits a faster convergence (quadratic, by 
Theorem 3.2) to the simple root. The modified Newton’s method outperforms the standard 
one when finding multiple roots.
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3.6  Secant Method

The secant method is another open method to solve f(x) = 0. Consider the graph of f(x) in 
Figure 3.18. Start with two initial points x1 and x2, locate the points (x1, f(x1)) and (x2, f(x2)) 
on the curve, and draw the secant line connecting them. The x-intercept of this secant line 
is x3. Next, use x2 and x3 to define a secant line and let the x-intercept of this line be x4. 
Continue the process until the sequence {xn} converges to the root. In general, two consecu-
tive elements xn and xn+1 generated by secant method are related via

	
x x

x x
f x f x

f x n x xn n
n n

n n
n+

−

−
= − −

−
= … =1

1

1
1 22 3 4

( ) ( )
( ) , , , ,,  , initial  points

	
(3.11)

Comparing with Newton’s method, we see that f ′(xn) in Equation 3.7 is essentially 
approximated by, and replaced with, the difference quotient

	

f x f x
x x
n n

n n

( ) ( )−
−

−

−

1

1 	

The user-defined function Secant uses initial points x1 and x2 and generates a sequence 
of elements {xn} that eventually converges to the root of f(x) = 0. The function accepts f(x) 
symbolically as an input and converts it to a MATLAB function for evaluation purposes. 
The iterations stop when two consecutive elements are sufficiently close to one another, 
that is, |xn+1 − xn| < ε, where ε is the prescribed tolerance. The outputs are the approximate 
value of the root and the number of iterations needed to meet the tolerance.

function [r, n] = Secant(f, x1, x2, tol, N)
%
% Secant uses secant method to approximate roots of f(x) = 0.
%
%   [r, n] = Secant(f, x1, x2, tol, N), where
%
%   f is a symbolic function representing f(x),
%   x1 and x2 are the initial values of x,

x
Root0

Secant line

x3f(x) x2 x1

FIGURE 3.18
Geometry of secant method.
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EXAMPLE 3.10:  SECANT METHOD

Consider x cos x + 1 = 0.

	 1.	 Using secant method with x1 = 1 and x2 = 1.5, calculate x3 and x4 of the sequence 
that eventually converges to the root

	 2.	 Find the root by executing the user-defined function Secant with ε = 10−4 and 
maximum 20 iterations

Solution

	 1.	 Let f(x) = x cos x + 1. To calculate x3 we apply Equation 3.11 with n = 2, that is,

	
x x

x x
f x f x

f x
f f

f3 2
2 1

2 1
2

1
1

= − −
−

= − −
−

=
( ) ( )

( )
( ) ( )

( )1.5
1.5

1.5
1.5 2.77737

	

		  Applying Equation 3.11 with n = 3,

	
x x

x x
f x f x

f x4 3
3 2

3 2
3= − −

−
=

( ) ( )
( ) 2.0229

	

	 2.	

>> f = sym('x*cos(x)+1');
>> [r, n] = Secant(f, 1, 1.5)

r =
      2.0739

n =
      6

%   tol is the scalar tolerance of convergence (default 1e-4),
%   N is the maximum number of iterations (default 20),
%
%   r is the approximate root of f(x) = 0,
%   n is the number of iterations required for convergence.
%
if nargin < 5 || isempty(N), N = 20; end
if nargin < 4 || isempty(tol), tol = 1e-4; end
f = matlabFunction(f);
x = zeros(1, N+1); % Pre-allocate
for n = 2:N,
    if x1 == x2,
        r='failure';
         return
    end
       x(1) = x1; x(2) = x2;
       x(n+1) = x(n) - ((x(n)-x(n-1))/(f(x(n))-f(x(n-1))))*f(x(n));
       if abs(x(n+1)-x(n)) < tol,
           r = x(n+1);
            return
       end
end
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Recall that Newton’s method starting with x1 = 1 also required six (6) iterations. 
Therefore, for this particular problem at least, the secant and Newton’s methods have 
similar rates of convergence.

3.6.1  Rate of Convergence of Secant Method

Assuming a simple root r, the rate of convergence of secant method is 1
2 1 5+( ) ≅ 1.618. 

More exactly,

	
lim

| |
| |

( )
( )n

n

n

e
e

f r
f r→∞

+ = ′′
′

≠1

2
0

 1.618

0.618

	
(3.12)

3.6.2  A Few Notes on Secant Method

•	 The sequence generated by the secant method is not guaranteed to converge to the 
intended root because the root is not bracketed in each step.

•	 For the case of a simple root, the rate of convergence for the secant method is 
1.618, thus the generated sequence converges faster than the linear but slower than 
the quadratic. Therefore, it is slower than Newton’s method—which has quadratic 
convergence for simple root—but f ′(x) does not need to be calculated.

•	 If f(x), f ′(x), and f″(x) are continuous on an interval I, which contains the root, 
f ′(root) ≠ 0, and the initial points x1 and x2 are close to the root, then the secant 
method converges to the root.

3.7  Equations with Several Roots

The bracketing and open methods presented in this chapter are capable of finding as many 
roots of f(x) = 0 as desired, but they can only achieve this by finding one root at a time. And 
because in many applications several roots of an equation are sought, this approach proves 
to be quite ineffective. In what follows we will present two practical options to find several 
roots of f(x) = 0.

3.7.1  Finding Roots to the Right of a Specified Point

The user-defined function Nzeros finds n roots of function f to the right of the specified 
initial point x0 by starting at x0 and incrementing x by Δx and inspecting the sign of the 
corresponding f. A root is identified when |Δx/x| < ε, where ε is a prescribed tolerance. 
The output is the list of the desired number of approximate roots.

function Nroots = Nzeros(f, n, x0, tol, delx)
%
%  Nzeros approximates a desired number of roots of f(x) on the right of
%  a specified point.
%
%    Nroots = Nzeros(f, n, x0, tol, delx), where
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EXAMPLE 3.11:  ROOTS TO THE RIGHT OF A POINT

Find the first three positive roots of x cos x + 1 = 0.

Solution

We will execute the user-defined function Nzeros with x0 = 0 (to find positive roots) 
and default values for tol and delx.

>> f = @(x)(x*cos(x)+1);
>> Nroots = Nzeros(f, 3, 0)

Nroots =

      2.0739
      4.4877
      7.9796

Figure 3.19 clearly confirms the numerical values returned by Nzeros.

3.7.2 � Finding Several Roots in an Interval Using fzero

Discretize f over the given interval, identify several subintervals where the function f expe-
riences sign changes, and subsequently apply the built-in MATLAB function fzero to find 
a root in each identified interval. The following example will demonstrate the details of 
this approach.

%
%       f is an anonymous function representing f(x),
%       n is the number of desired roots,
%       x0 is the starting value,
%       tol is the scalar tolerance (default is 1e-6),
%       delx is the increment in x (default is 0.1),
%
%       Nroots is the list of n roots of f(x) to the right of x0.
%
if nargin < 5 || isempty(delx), delx = 0.1; end
if nargin < 4 || isempty(tol), tol = 1e-6; end
x = x0; dx = delx;
Nroots = zeros(n,1);      % Pre-allocate
for i = 1:n,
%    sgn1 = sign((f(x)));
   while abs(dx/x) > tol, 
        if sign((f(x))) ∼= sign((f(x+dx))),
            dx = dx/2;
        else
            x = x + dx;
        end
   end
Nroots(i) = x; dx = delx;
x = x + abs(0.05*x);
end
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EXAMPLE 3.12:  SEVERAL ROOTS

Find all roots of x sin x = 0 in [−10, 10].

Solution

There are several roots in the given range, and each root must be found individually 
using an appropriate initial guess. These initial guesses can be generated by evaluating 
the function at a few points in the given range, and identifying any sign changes.

>> fun = @(x)(x.*sin(x));
>> x = linspace(-10,10,20);    % Generate 20 points in the given range
>> f = fun(x);      % Evaluate function at the selected points
>> plot(x,f)       % Figure 3.20

The vector f has the following 20 components:

f =

	 -5.4402	 4.1111	 7.8882	 3.6282	 -2.7436	 -4.7354	 -1.9025	 1.2847

	 1.5789	 0.2644	 0.2644	 1.5789	 1.2847	 -1.9025	 -4.7354	 -2.7436

	 3.6282	 7.8882	 4.1111	 -5.4402
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FIGURE 3.19
The first three positive roots of x cos x + 1 = 0.
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Any sign changes in f can be identified by

>> I = find(sign(f(2:end)) ∼= sign(f(1:end-1)))

I =

      1      4      7      13      16      19

These values refer to the locations of the elements of f representing sign changes, that 
is, the boxed entries shown above. To find the first root, we use fzero with the two-
element initial guess x([I(1) I(1)+1]), which in this case translates to

>> x([1 2])

ans =

     -10.0000      -8.9474

This means the first root will be located in the interval [-10.0000, -8.9474], and is 
found as

>> r(1) = fzero(fun, x([1 2]))

r =

   -9.4248      % First root
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FIGURE 3.20
Several roots of x sin x = 0 in [−10, 10].
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The next root will be found using fzero with the two-element initial guess 
x([I(2) I(2)+1]), which is

>> x([4 5])

ans =

    -6.8421      -5.7895

Therefore, the second root is in the interval [-6.8421, -5.7895], found via

>> r(2) = fzero(fun, x([4 5]))

r =

  -6.2832      % Second root

This process continues until all roots have been identified.

>> for n = 1:length(I),
    r(n) = fzero(fun, x([I(n) I(n)+1]));     % Approximate roots
>> end

>> disp(r)     % Display all roots

r =

   -9.4248   -6.2832   -3.1416    3.1416    6.2832    9.4248

These six roots agree with those in Figure 3.20. However, the equation x sin x = 0 has 
an obvious root at x = 0 which has not been identified here. For a better understanding 
of the situation, we plot our function x sin x using 100 points:

>> x = linspace(-10,10); f = fun(x);
>> plot(x, f)    % Figure 3.21

It is then clear that x = 0 is a point of tangency, hence no sign changes experienced by 
f on its two sides. This explains why this root was missed, as fzero only finds roots 
where the function changes sign.

EXAMPLE 3.13:  POINTS OF DISCONTINUITY

Find all roots of tan x = tanh x in [−2, 2].

Solution

Following the strategy employed in Example 3.12, we execute the script below to iden-
tify the roots:

>> fun = @(x)(tan(x)-tanh(x));
>> ezplot(fun,[-2,2])      % Figure 3.22
>> x = linspace(-2,2);
>> f = fun(x);
>> I = find(sign(f(2:end)) ∼= sign(f(1:end-1)));
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>> for n = 1:length(I)
    r(n) = fzero(fun, x([I(n) I(n)+1]));
end

>> r

r =

    -1.5708      -0.0000      1.5708

Figure 3.22 shows the only legitimate root to be at 0, while the other two are merely 
points of discontinuity. Obviously, the two erroneous values are returned by the script 
because the function experience sign changes at the points of discontinuity.

PROBLEM SET (CHAPTER 3)

Bisection Method (Section 3.2)

 In Problems 1 through 6, the given equation has a root in the indicated interval.

	 a.	  Using the bisection method, generate the first three midpoints and intervals 
(in addition to the one given).

	 b.	  Find the root estimate by executing the user-defined function Bisection 
with default values for kmax and tol.

	 1.	x2 − 4x + 2 = 0, [3, 4]
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FIGURE 3.21
All roots of x sin x = 0 in [−10, 10].
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	 2.	 cos sin , [ , ]2 0 0 22
3x x+ =  

	 3.	ex/3 − 3x = 2, [−2, 0]
	 4.	1 + cos x cosh x = 0, [−5, −4]
	 5.	 1

3 1 1 2x x+ =ln , [ , ] 
	 6.	 tan(0.4x) + x = −1, [−2, 0]

	 7.	  Modify the user-defined function Bisection so that the table is not gener-
ated and the outputs are the approximate root and the number of iterations needed 
for the tolerance to be met. All other parameters, including default values, are to 
remain as in Bisection. Save this function as Bisection_New. Apply 
Bisection_New to the following problem: ex + cos x = 3, [0, 1].

	 8.	  Apply the user-defined function Bisection_New (Problem 7) to find the root 
in the indicated interval: 31−x = 2x3, [0, 2].

	 9.	  The goal is to find all roots of sin sinhx x = 3
2  in [−2, 2] using the bisection 

method, as follows: First, locate the roots graphically and identify the intervals 
containing the roots. The endpoints of each interval must be chosen as the integers 
closest to the root on each side of that root. Then apply the user-defined function 
Bisection_New (Problem 7) with default values for tol and kmax to find one 
root at a time.

	 10.	  Repeat Problem 9 for the roots of e−x/3 sin x = 0 in [1, 10].
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FIGURE 3.22
Discontinuity points mistaken for roots.
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Regula Falsi Method (Section 3.3)

In Problems 11 through 16, the given equation has a root in the indicated interval.

	 a.	  Using the regula falsi method, find the first three elements in the sequence 
that eventually converges to the root.

	 b.	  Find the root by executing the user-defined function RegulaFalsi with 
kmax=20 and tol=1e-3.

	 11.	 e xx− + ( ) =2 3 1
2

/ ln 0, [1, 2]

	 12.	cos x cosh x = 1, [4, 5]
	 13.	cos x + cos 2x = 1, [0, 2]
	 14.	x3 − 5x + 3 = 0, [1, 2]
	 15.	e−x = x2, [0, 2]
	 16.	x2 + ex/2 = 5, [1, 2]

	 17.	  The goal is to find all roots of sin ln1
2

1
2 1x x( ) + =  in [5, 20] using the regula falsi 

method, as follows: First, locate the roots graphically and identify the intervals 
containing the roots. The endpoints of each interval must be chosen as the integers 
closest to the root on each side of that root. Then apply the user-defined function 
RegulaFalsi (but suppress the table) with default values for tol and kmax to 
find one root at a time.

Modified Regula Falsi

	 18.	  Modify the user-defined function RegulaFalsi so that if an endpoint remains 
stationary for three consecutive iterations, 1

2 f ( )endpoint  is used in the calculation 
of the next x-intercept, and if the endpoint still remains stationary for three 
consecutive iterations, 1

4 f ( )endpoint  is used, and so on. All other parameters, 
including the default values, and the terminating condition are to remain the same 
as in RegulaFalsi. Save this function as RegulaFalsi_Mod.

		  Apply RegulaFalsi to find a root of 1
3

22 3 0( )x − − =  in [−6, 2]. Next apply 
RegulaFalsi_Mod and compare the results.

Fixed-Point Method (Section 3.4)

	 19.	The two roots of x + 3−x = 4 are to be found by the fixed-point method as follows: 
Define two iteration functions g1(x) = 4 − 3−x and g2(x) = −log3(4 − x).

	 a.	  Locate the fixed points of g1(x) and g2(x) graphically.
	 b.	  Referring to the figure showing the fixed points of g1, set x1 to be the near-

est integer to the left of the smaller fixed point and perform four iterations 
using the fixed-point method. Next, set x1 to be the nearest integer to the right 
of the same fixed point and perform four iterations. If both fixed points were 
not found this way, repeat the process applied to g2. Discuss any convergence 
issues as related to Theorem 3.1.
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	 20.	  The two roots of 3x2 + 2.72x − 1.24 = 0 are to be found using the fixed-point 
method as follows: Define iteration functions

	 g x
x

1

23
( ) = − + 1.24

2.72
,  g x

x
x

2 3
( ) = − +2.72 1.24

	 a.	 Locate the fixed points of g1(x) and g2(x) graphically.
	 b.	 Focus on g1 first. Execute the user-defined function FixedPoint with initial 

point x1 chosen as the nearest integer to the left of the smaller fixed point. 
Execute a second time with x1 an integer between the two fixed points. Finally, 
with x1 to the right of the larger fixed point. In all cases, use the default toler-
ance, but increase kmax if necessary. Discuss all convergence issues as related 
to Theorem 3.1.

	 c.	 Repeat Part (b), this time focusing on g2.
	 21.	Consider the fixed-point iteration described by

	
x g x x

a
x

n an n n
n

+ = = +





= … >1
1
2

1 2 3 0( ) , , , , ,
	

	 a.	  Show that the iteration converges to a  for any initial point x1 > 0, and that the 
convergence is quadratic.

	 b.	  Apply this iteration function g(x) to approximate 5 . Execute the user-defined 
function FixedPoint using default values for kmax and tol, and x1 chosen as the 
nearest integer on the left of the fixed point.

	 22.	  The goal is to find the root of 0.3x2 − x1/3 = 1.4 using the fixed-point method.

	 a.	 As a potential iteration function, select g x
x

x
1

1 3

( )
/

= + 1.4
0.3

. Graphically locate the 

fixed point of g1(x). Execute the user-defined function FixedPoint twice, once 
with initial point chosen as the integer nearest the fixed point on its left, and a 
second time with the nearest integer on its right. Use default values for kmax 
and tol, but increase kmax if necessary. Fully discuss convergence issues as 
related to Theorem 3.1.

	 b.	 Next, as the iteration function select g2(x) = (0.3x2 − 1.4)3 and repeat all steps in 
Part (a).

	 23.	  The two roots of x2 − 3.13x + 2.0332 = 0 are to be found using the fixed-point 
method as follows: Define iteration functions 

	 g x
x

x
1( ) = −3.13 2.0332

,  g x
x

2

2

( ) = + 2.0332
3.13

	 a.	 Locate the fixed points of g1(x) and g2(x) graphically.
	 b.	 Focus on g1 first. Execute the user-defined function FixedPoint with initial 

point x1 chosen as the nearest integer to the left of the smaller fixed point. 
Execute a second time with x1 an integer between the two fixed points. Finally, 
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with x1 to the right of the larger fixed point. In all cases, use the default 
tolerance, but increase kmax if necessary. Discuss all convergence issues as 
related to Theorem 3.1.

	 c.	 Repeat Part (b), this time focusing on g2.
	 24.	The two roots of 2−x/3 + ex = 2.2 are to be found by the fixed-point method as follows: 

Define two iteration functions g1(x) = −3 log2(2.2 − ex) and g2(x) = ln(2.2 − 2−x/3).

	 a.	  Locate the fixed points of g1(x) and g2(x) graphically.
	 b.	  Referring to the figure showing the fixed points of g1, choose x1 to be the 

nearest integer to the left of the smaller fixed point and perform four iterations 
using the fixed-point method. Next, let x1 be the nearest integer to the right of 
the same fixed point and perform four iterations. If both fixed points were not 
found, repeat the process with g2. Discuss any convergence issues as related to 
Theorem 3.1.

Newton’s Method (Section 3.5)

In Problems 25 through 30, the given equation has a root in the indicated interval.

	 a.	  Using Newton’s method, with the initial point set to be the left end of the 
interval, generate the next four elements in the sequence that eventually converges 
to the root.

	 b.	  Find the root by executing the user-defined function Newton with kmax=20 
and tol=1e-6.

	 25.	x3 + 2x2 + x + 2 = 0, [−3, −1]
	 26.	3x2 − x − 4 = 0, [−2, 0]
	 27.	cos x = 2x − 1, [0, 2]
	 28.	 ln( ) , [ , ]1

3 1 2 1 1 0x x+ = + −  
	 29.	e−(x−1) = 2.6 + cos(x + 1), [−1, 1]
	 30.	sin x sinh x + 1 = 0, [3, 4]

	 31.	  Determine graphically how many roots the equation 0.4x3 − x3/2 = 1.3 has. Then 
find each root by executing the user-defined function Newton with default param-
eter values and x1 chosen as the closest integer on the left of the root.

	 32.	  The goal is to find two roots of cos x cosh x = −1.3 in [−4, 4].
	 a.	 Graphically locate the roots.
	 b.	 To approximate each root, execute the user-defined function Newton with 

default parameter values and x1 chosen as the closest integer on the left of the 
root. If the intended root is not found this way, set x1 to be the integer closest to 
the root on its right and re-execute Newton. Discuss the results.

	 33.	  All three roots of the equation x3 − 0.8x2 − 1.12x − 0.2560 = 0 lie inside the inter-
val [−2, 2].

	 a.	 Graphically locate the roots, and decide whether each root is simple or of 
higher multiplicity.
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	 b.	 Approximate the root with higher multiplicity by executing the user-defined 
function NewtonMod and the simple root by executing Newton. In both cases 
use default parameter values, and x1 chosen as the closest integer on the left of 
the root.

	 34.	  Roots of x3 − 0.9x2 + 0.27x − 0.027 = 0 lie inside [−1, 1].
	 a.	 Graphically locate the roots, and determine if a root is simple or of higher 

multiplicity.
	 b.	 Estimate the root with higher multiplicity by executing the user-defined 

function NewtonMod. Use default parameter values, and let x1 be the closest 
integer on the left of the root.

	 35.	  Locate the root(s) of 0.2[x − 3 sin(x + 1)] = x3 graphically, and depending on 
multiplicity, use Newton’s method or the modified Newton’s method to find the 
root(s). Use default parameter values, and let x1 be the closest integer on the left of 
the root. Verify the result by using the built-in fzero function.

Secant Method (Section 3.6)

In Problems 36 through 42,

	 a.	   Apply the secant method with the given initial points x1 and x2 to generate the 
next four elements in the sequence that eventually converges to the root.

	 b.	  Estimate the root by executing the user-defined function Secant with 
kmax=20 and tol=1e-6.

	 36.	x3 − x1/4 = 3.45, x1 = 4, x2 = 3.5
	 37.	x3 + 2.7x + 2.6 = 0, x1 = −2, x2 = −1.8
	 38.	e−x/2 + ln(x + 2) = 2, x1 = 0, x2 = 1
	 39.	sin( ) , ,x x x x− = = =1 5 43

2 1 2  
	 40.	sinh(0.6x − 1) − 1.3x + 3.2 = 0, x1 = −5, x2 = −4
	 41.	cosh , ,2

5 1 24 2x x x x( ) = = − = −  

	 42.	x x x x2
1 2250 450 10 12+ = = =, ,  

	 43.	  Graphically locate the root of 10x3 + 15x2 + 6x + 9 = 0. Find the root numerically 
by applying the user-defined function Secant [with x1 = 1.5, x2 = 1]. Next, apply 
the function Newton with x1 = 1.5. In both cases, use default parameter values. 
Compare the results.

	 44.	  Graphically locate the roots of x2 + x + 0.4x−1/3 = 1. Find the roots numerically 
by applying the user-defined function Secant and properly selected initial points. 
Use default parameter values for tolerance and maximum number of iterations. 

Equations with Several Roots (Section 3.7)

	 45.	  Find the first five positive roots of sin x + (1/x2)cos 2x = 0 and confirm the 
numerical results graphically.
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	 46.	  Using the user-defined function Nzeros find all roots of sin( )1
2

1
3πx =  in [−4, 4].

	 47.	  A very important function in engineering applications is the Bessel function 
of the first kind. The Bessel function of the first kind of order 0, denoted by J0(x), is 
represented in MATLAB by besselj(0,x). The zeros of Bessel functions arise in 
applications such as vibration analysis of circular membranes. Find the first four 
positive zeros of J0(x), and verify them graphically.

	 48.	  Find the first four positive zeros of the Bessel function of the first kind of order 
1, denoted by J1(x), represented in MATLAB by besselj(1,x), and verify them 
graphically.

	 49.	  The natural frequencies of a beam are directly related to the roots of the fre-
quency equation. For a beam fixed at both of its ends, the frequency equation is 
derived as cos x cosh x = 1. Find the first five positive roots of this frequency 
equation

	 a.	 Using the user-defined function Nzeros.
	 b.	 By identifying the intervals where sign changes occur, followed by the applica-

tion of fzero with two-element initial guesses.

	 50.	  The natural frequencies of a beam are directly related to the roots of the 
frequency equation. For a beam fixed at its left end and pinned (hinged) at its right 
end, the frequency equation is derived as tan x = tanh x. Find the first three 
positive roots of this frequency equation

	 a.	 Using the user-defined function Nzeros.
	 b.	 By identifying the intervals where sign changes occur, followed by the applica-

tion of fzero with two-element initial guesses.

 In Problems 51 through 54 find all the roots of the polynomial equation by identifying 
the intervals where sign changes occur, followed by the application of fzero with two-
element initial guesses. Verify the findings by using the MATLAB built-in function roots.

	 51.	0.2x4 + 0.58x3 − 12.1040x2 + 20.3360x − 6.24 = 0
	 52.	x4 − 3.9x3 + 1.2625x2 + 1.4250x + 0.2125 = 0
	 53.	8x5 − 44x4 + 86x3 − 73x2 + 28x − 4 = 0
	 54.	4x4 + 15x3 + 13.5x2 − 6.75x − 10.125 = 0



4
Numerical Solution of Systems of Equations

This chapter covers the numerical solution of linear and nonlinear systems of equations. 
Linear systems are discussed first, followed by more specialized methods to efficiently 
handle large linear systems. Ill-conditioning symptoms, as well as pertinent remedies are 
also introduced. The chapter ends with iterative solution of nonlinear systems of equations.

4.1  Linear Systems of Equations

A linear system of n algebraic equations in n unknowns x1, x2, …, xn is in the form

	

a x a x a x b

a x a x a x b

a x a x

n n

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =
+ + + =

+ +

�
�
�
�++ =








 a x bnn n n 	

(4.1)

where aij (i, j = 1, 2, …, n) and bk (k = 1, 2, …, n) are known constants, and aij’s are the coef-
ficients. If every bk is zero, the system is homogeneous, otherwise it is nonhomogeneous. 
Equation 4.1 can be conveniently expressed in matrix form, as

	 Ax b= 	 (4.2)

with

	

A x=

…
…

… … … …
…



















=

×

a a a

a a a

a a a

x

x
n

n

n n nn n n

11 12 1

21 22 2

1 2

1

2
,

……



















=
…



















× ×
x

b

b

bn n n n1

1

2

1

, b

	

where A is the coefficient matrix. A set of values for x1, x2, …, xn satisfying Equation 4.1 
forms a solution of the system. The vector x with components x1, x2, … , xn is the solu-
tion vector for Equation 4.2. If x1 = 0 = x2 =  … = xn, the solution x = 0n×1 is called the trivial 
solution. The augmented matrix for Equation 4.2 is defined as

	

[ | ]A b =

…
…

… … … …
…

…


















a a a

a a a

a a a

b

b

b

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2



 × +n n( )1 	

(4.3)
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4.2  Numerical Solution of Linear Systems

As described in Figure 4.1, numerical methods for solving linear systems of equations are 
divided into two categories: direct methods and indirect methods.

A direct method computes the solution of Equation 4.2 by performing a pre-determined 
number of operations. These methods transform the original system into an equivalent 
system in which the coefficient matrix is upper-triangular, lower-triangular, or diago-
nal, making the system much easier to solve. Indirect methods use iterations to find the 
approximate solution. The iteration process begins with an initial vector and generates 
successive approximations that eventually converge to the actual solution. Unlike direct 
methods, the number of operations required by iterative methods is not known in advance.

4.3  Gauss Elimination Method

Gauss elimination is a procedure that transforms a linear system of equations into upper-
triangular form, the solution of which is found by back substitution. It is important to 
note that the augmented matrix [A|b] completely represents the linear system Ax = b, 
therefore all modifications must be applied to the augmented matrix and not matrix A 
alone. The transformation into upper-triangular form is achieved by using elementary 
row operations (EROs) listed below.

ERO1  Multiply a row of the augmented matrix by a nonzero constant,
ERO2  Interchange any two rows of the augmented matrix,
ERO3 � Multiply the ith row of the augmented matrix by a constant α ≠ 0 and add the 

result to the kth row, then replace the kth row with the outcome. The ith row 
is called the pivot row.

The nature of a linear system is preserved under EROs. If a linear system undergoes a 
finite number of EROs, then the new system and the original one are called row-equivalent.

Consider the system in Equation 4.1. The first objective is to eliminate x1 in all equations 
below the first, thus the first row is the pivot row. The entry that plays the most important 

Numerical solution
of linear systems

Ax=b

Direct methods
(use pre-determined

number of operations)

Indirect methods
(use iterations, ideal

for large systems)

Gauss elimination method

LU factorization methods

Jacobi method

Gauss–Seidel method

Doolittle’s method

Cholesky’s method

FIGURE 4.1
Classification of methods to solve a linear system of equations.
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role here is a11, known as the pivot, the coefficient of x1 in the first row. If a11 = 0, the first 
row must be interchanged with another row (ERO2) to ensure that x1 has a nonzero coef-
ficient. This is called partial pivoting. Another situation that may lead to partial pivoting 
is when a pivot is very small in magnitude, with a potential to cause round-off errors. 
Suppose x1 has been eliminated via EROs, so that we now have a new system in which the 
first equation is as in the original, while the rest are generally changed, and are free of x1. 
The next step is to focus on the coefficient of x2 in the second row of this new system. If it 
is nonzero, and not very small, we use it as the pivot and eliminate x2 in all the lower-level 
equations. Here, the second row is the pivot row and remains unchanged. This continues 
until an upper-triangular system is formed. Finally, back substitution is used to find the 
solution.

EXAMPLE 4.1:  GAUSS ELIMINATION WITH PARTIAL PIVOTING

Using Gauss elimination, find the solution x1, x2, x3, x4 of the system whose augmented 
matrix is

	

−
−

− −
−

−

−





















1 2 3 1
2 4 1 2
3 8 4 1

1 4 7 2

3
1

6
4

	

Solution

Because the (1, 1) entry is nonzero, we use it as the pivot to eliminate the entries directly 
below it. For instance, multiply the first row (pivot row) by 2 and add the result to the 
second row, then replace the second row by the outcome; ERO3. All details are shown 
in Figure 4.2. Next, we focus on the (2, 2) entry in the second row of the new system. 
Because it is zero, the second row must be switched with any other row below it, say, 
the third row. As a result, the (2, 2) element is now 2, and is used as the pivot to zero out 
the entries below it. Since the one directly beneath it is already zero, by design, only one 
ERO3 is needed. Finally, the (3, 3) entry in the latest system is 7, and applying one last 
ERO3 yields an upper-triangular system as shown in Figure 4.3.

2
+

–1
–4

–3 –1
–

–1

–4

2 3 1
2 1 2

8 4
1 4 7 2

3

6

–3

+

1

+

Pivot row –1

–5 –4
–1

–3
–1

2 3 1
0 0 7 4
0 2
0 6 10

3
5

FIGURE 4.2
First three operations in Example 4.1.

–3 Pivot row

+ –25/7 Pivot row

7

–1
–5 –4

–1

–3

–1

2 3 1

0 0 7 4
0 2

0 6 10

3

5

–1
–5 34 –3

2 3 1
0 2
0 0 7 4
0 0 25 11

3

5
8

–1
–5 –4

–23

–3

–

2 3 1
0 2
0 0 7 4
0 0 0

3

5
69
7

+

FIGURE 4.3
Transformation into upper-triangular form in Example 4.1.
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The solution is then found by back substitution as follows. The last row gives

	 − = − ⇒ =23
7 4

69
7 4 3x x 	

Moving up one row at a time, each time using the latest information on the unknowns, 
we find

	

x x

x x x

x x x x

x

x

3
1
7 4

2
1
2 3 4

1 2 3 4

1

2

5 4 1

5 4 3 2

2 3 3 1

1= −( ) = −

= + −( ) =

= + + − =

⇒

=

= 22

13x = − 	

Therefore, the solution is x1 = 1, x2 = 2, x3 = −1, x4 = 3.

4.3.1 � Choosing the Pivot Row: Partial Pivoting with Row Scaling

When using partial pivoting, in the first step of the elimination process, it is common 
to choose as the pivot row the row in which x1 has the largest (in absolute value) coef-
ficient. The subsequent steps are treated in a similar manner. This is mainly to handle 
round-off error while dealing with large matrices. There is also total pivoting where the 
idea is to locate the entry of the coefficient matrix A that is the largest in absolute value. 
This entry corresponds to one of the unknowns, say, xm. Then, the first variable to be 
eliminated is xm. A similar logic applies to the new system to decide which variable has 
to be eliminated next. However, total pivoting is not very practical because it requires 
much more computational effort than partial pivoting. Instead, partial pivoting with 
scaling is used where we choose the pivot row to be the row in which x1 has the largest 
(absolute value) coefficient relative to the other entries in that row. More specifically, 
consider the first step, where x1 is to be eliminated. We will choose the pivot row as fol-
lows. Assume A is n × n.

	 1.	 In each row i of A, find the entry with the largest absolute value, and call it Mi.

	 2.	 In each row i, find the ratio of the absolute value of the coefficient of x1 to the 
absolute value of Mi, that is,

	
r

a
M

i
i

i
= 1

	

	 3.	Among ri (i = 1, 2, … , n) pick the largest. Whichever row is responsible for 
this maximum value is picked as the pivot row. Eliminate x1 to obtain a new 
system.

	 4.	 In the new system, consider the (n−1) × (n−1) submatrix of the coefficient matrix 
occupying the lower right corner. In this matrix use the same logic as above to 
choose the pivot row to eliminate x2, and so on.
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EXAMPLE 4.2:  PARTIAL PIVOTING WITH SCALING

Use partial pivoting with scaling to solve the 3 × 3 system with the augmented matrix

	

A b   =
− −

−
−

















4 3 5
6 7 3
2 1 1

0
2
6

	

Solution

The three values of ri are found as

	
r r r1 2 3

4
5

4
5

6
7

6
7

2
2

1=
−

= = = = =,     ,     
	

Since r3 is the largest, it is the third row that produces the maximum value hence it 
is chosen as the pivot row. Switch the first and the third row in the original system and 
eliminate x1 using EROs to obtain Figure 4.4.

To eliminate x2, consider the 2 × 2 submatrix B and compute the corresponding ratios,

	

10
10

1
5

7
5
7

=
−

=,    
	

so that the first row (in matrix B) is picked as the pivot row. Row operations yield

	

2 1 1
0 10 6
0 0 4

6
16
4

−
− −

















	

and back substitution gives the solution; x3 = 1, x2 = −1, x1 = 2.

4.3.2  Permutation Matrices

In the foregoing analysis, a linear n × n system was solved by Gauss elimination via 
EROs. In the process, the original system Ax = b was transformed into Ux b= �  where U 
is an upper-triangular matrix with nonzero diagonal entries. So, there must exist an n × n 
matrix P so that pre-multiplication of the original system by P yields

	 P Ax Pb PA x Pb Ux b[ ] = ⇒ [ ] = ⇒ = � 	 (4.4)

6
2
0

2 1
6 7

5

–1
–3

–4 –3

2 1
0 10
0 7

6

12

–1
–6

–5
–16

B

Eliminate x1

FIGURE 4.4
Partial pivoting with scaling.
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where U = PA and b Pb� = . In order to identify this matrix P, we need permutation matri-
ces. The simplest way to describe these matrices is to go through an example. Let us refer 
to the 4 × 4 system in Example 4.1. Because the size is 4, we start with the 4 × 4 identity 
matrix,

	

I =



















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 	

Consider the three EROs in the first step of Example 4.1; see Figure 4.2. Apply them to I 
to get the matrix P1 (shown below). Next, focus on the second step, where there was only 
one ERO; the second and third rows were switched. Apply that to I to obtain P2. The third 
step also involved one ERO only. Apply to I to get P3. Finally, application of the operation 
in the last step to I gives P4.
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7 1 	

Each Pi is called a permutation matrix, reflecting the operations in each step of 
Gauss elimination. Then,

P1A yields the coefficient matrix at the conclusion of the first step in Example 4.1
P2(P1A) gives the coefficient matrix at the end of the second step
P3(P2P1A) produces the coefficient matrix at the end of the third step
P4(P3P2P1A) gives the upper-triangular coefficient matrix U at the end of the fourth 

step

Letting P = P4P3P2P1, then
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Subsequently, the final triangular system has the augmented matrix [ ]U b� , as suggested 
by Equation 4.4.

The user-defined function GaussPivotScale uses Gauss elimination with partial 
pivoting and row scaling to transform a linear system Ax = b into an upper-triangular 
system, and subsequently finds the solution vector by back substitution. The user-defined 
function BackSub performs the back substitution portion and is given below.
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function x = GaussPivotScale(A,b)
%
% GaussPivotScale uses Gauss elimination with partial pivoting and
% row scaling to solve the linear system Ax = b.
%
%   x = GaussPivotScale(A,b), where
%
%     A is the n-by-n coefficient matrix,
%     b is the n-by-1 result vector,
%
%     x is the n-by-1 solution vector.
%
n = length(b); 
A = [A b];       % Define augmented matrix
for k = 1:n-1, 
    % Find maximum magnitude in each row
    M = max(abs(A(k:end, k:end-1)), [], 2);
    a = abs(A(k:end, k));       % Find maximum in kth column
    I = max(a./M);    % Find row with maximum ratio
    I = I + k - 1;    % Adjust relative row to actual row
    if I > k
        A([k I], :)= A([I k], :);    % Pivot rows
    end
    m = A(k+1:n, k)/A(k, k);           % Construct multipliers
    [Ak, M] = meshgrid(A(k, :), m);    % Create mesh
    A(k+1:n, :) = A(k+1:n, :) - Ak.*M;
end
Ab = A;
% Find the solution vector using back substitution
x = BackSub(Ab);

function x = BackSub(Ab)
%
% BackSub returns the solution vector of the upper triangular augmented
% matrix Ab using back substitution.
%
%   x = BackSub(Ab), where
%
%     Ab is the n-by-(n+1) augmented matrix,
%
%     x is the n-by-1 solution vector.
%
n = size(Ab, 1);
for k = n:-1:1,
    Ab(k, :) = Ab(k, :)./Ab(k, k);    % Construct multipliers
    Ab(1:k-1, n+1) = �Ab(1:k-1, n+1)-Ab(1:k-1, k)*Ab(k, n+1);  % Adjust rows
end
x = Ab(:, end);
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EXAMPLE 4.3:  PARTIAL PIVOTING WITH SCALING

The linear system in Example 4.2 can be solved by executing the under-defined function 
GaussPivotScale:

>> A = [-4 -3 5;6 7 -3;2 -1 1]; b = [0;2;6];
>> x = GaussPivotScale(A,b)

x =
     2
    -1
     1

4.3.3  Counting the Number of Operations

The objective is to determine approximately the total number of operations required by 
Gauss elimination for solving an n × n system. We note that the entire process consists of 
two parts: (1) elimination, and (2) back substitution.

4.3.3.1  Elimination

Suppose the first k−1 steps of elimination have been performed, and we are in the kth step. 
This means that the coefficients of xk must be made into zeros in the remaining n−k rows 
of the augmented matrix. There,

n−k divisions are needed to figure out the multipliers
(n−k)(n−k + 1) multiplications
(n−k)(n−k + 1) additions

Noting that the elimination process consists of n−1 steps, the total number of operations 
Ne is
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(4.5)

Equation 4.5 may be rewritten as (verify)
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(4.6)

Using the well-known identities
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in Equation 4.6, the total number of operations in the elimination process is given by

	
N

n n n n n
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n

= − + − − ≅3
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2
2
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(4.7)
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where we have neglected lower powers of n. The approximation is particularly useful for a 
large system. With the above information, we can show, for example, that the total number 
of multiplications is roughly 1

3
3n .

4.3.3.2  Back Substitution

When back substitution is used to determine xk, one performs

n−k multiplications
n−k subtractions
1 division

In Example 4.1, for instance, n = 4, and solving for x2 (so that k = 2) requires two multi-
plications (n−k = 2), two subtractions, and 1 division. So, the total number of operations Ns 
for the back substitution process is
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(4.8)

If n is large, Ne dominates Ns, and the total number of operations in Gauss elimination 
(for a large system) is

	 N N N no e s= + ≅ 2
3

3

	

4.3.4  Tridiagonal Systems

Tridiagonal systems arise often in engineering applications and appear in the special form
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(4.9)

where di (i = 1, 2, … ,n) are the diagonal entries, li (i = 2, … ,n) the lower diagonal entries, 
and ui (i = 1, 2, … ,n−1) the upper diagonal entries of the coefficient matrix. Gauss elimina-
tion can be used for solving such systems, but is not recommended. This is because Gauss 
elimination does not take into account the very special structure of a tridiagonal coefficient 
matrix, and as a result will perform unnecessary operations to find the solution. Instead, 
we use an efficient technique known as the Thomas method, which takes advantage of the 
fact that the coefficient matrix has several zero entries. The Thomas method uses Gauss 
elimination with the diagonal entry scaled to 1 in each step.
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4.3.4.1  Thomas Method

Writing out the equations in Equation 4.9, we have

	

d x u x b

l x d x u x b

ln

1 1 1 2 1

2 1 2 2 2 3 2

1

+ =
+ + =

−

           ...           
xx d x u x b

l x d x b
n n n n n n

n n n n n

− − − − −

−

+ + =
+ =
2 1 1 1 1

1 	

In the first equation the diagonal entry is scaled to 1, that is, multiply the equation by 
1/a11. Therefore, in the first equation the modified elements are

	
u

u
d

b
b
d

1
1

1
1

1

1
= =,

	

All remaining equations, except the very last one, involve three terms. In these equations 
the modified elements are

	
u

u
d u l

b
b b l
d u l

i ni
i

i i i
i

i i i

i i i
=

−
= −

−
= … −

−

−

−1

1

1
2 3 1, , , , ,

	

Note that in every stage, the (latest) modified values for all elements must be used. 
In the last equation,

	
b

b b l
d u l

n
n n n

n n n
= −

−
−

−

1

1 	

Finally, use back substitution to solve the system:

	

x b

x b u x i n n
n n

i i i i

=
= − = − − …+1 1 2 2 1,     , , , , 	

EXAMPLE 4.4:  THOMAS METHOD

Solve the following tridiagonal system using the Thomas method:

	

3 1 0
1 2 1
0 1 3

6
4

0

1

2

3

−

− −

































= −
















x

x

x 	

Solution
We first identify all elements:

	 d d d l l u u b b b1 2 3 2 3 1 2 1 2 33 2 3 1 1 1 1 6 4 0= = = − = = − = − = = = − =, , , , , , , , , . 	
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In the first equation, the modified elements are

	
u

u
d

b
b
d

1
1

1
1

1

1

1
3

6
3

2= = − = = =,
	

In the second equation,

	
u

u
d u l

b
b b l
d u l

2
2

2 1 2
1
3

2
2 1 2

2 1 2

1
2 1

3
7

4 2 1=
−

=
− −( ) = = −

−
= − −

( )
( )(

,    
))

( )2 1
18
71

3− −( ) = −
	

In the last equation,

	
b

b b l
d u l

3
3 2 3

3 2 3

18
7
3
7

0 1
3 1

1= −
−

=
− −( ) −

− − ( ) −
=

( )
( )

	

Back substitution yields

	

x b

x b u x

x b u x

3 3

2 2 2 3
18
7

3
7

1 1 1 2
1
3

1

1 3

2 3 1

= =

= − = − − ( ) = −

= − = − −( ) − =

⇒( )

( )

SSolution vector
x

x

x

1

2

3

1
3

1

















= −
















	

The user-defined function ThomasMethod uses the Thomas method to solve an n × n 
tridiagonal system Ax = b. The inputs are matrix A and vector b. From A, three n × 1 
vectors will be constructed:

	 d = … a a a ann
T

11 22 33 	

	 l = … −0 21 32 1a a an n
T

, 	

	 u = … −a a an n
T

12 23 1 0, 	

These are subsequently used in the procedure outlined above to determine the solution 
vector x.

function x = ThomasMethod(A,b)
%
% ThomasMethod uses Thomas method to find the solution vector x of a
% tridiagonal system Ax = b.
%
%   x = ThomasMethod(A,b), where
%
%     A is a tridiagonal n-by-n coefficient matrix,
%     b is the n-by-1 vector of the right-hand sides,
%
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The result obtained in Example 4.4 can be verified by executing this function, as

>> A = [3 -1 0;1 2 1;0 -1 -3]; b = [6;-4;0];
>> x = ThomasMethod(A,b)

x =
    1.0000
   -3.0000
    1.0000

4.3.4.2  MATLAB Built-In Function "\"

The built-in function in MATLAB for solving a linear system Ax = b is the backslash (\), 
and the solution vector is obtained via x = A\b. It is important to note that x = A\b computes 
the solution vector by Gauss elimination and not by x = A−1b.

For the linear system in Example 4.4, this yields

>> x = A\b

ans =

    1.0000
   -3.0000
    1.0000

%     x is the n-by-1 solution vector.
%
n = size(A,1);
d = diag(A);         % Vector of diagonal entries of A
l = [0;diag(A,-1)];  % Vector of lower diagonal elements
u = [diag(A,1);0];   % Vector of upper diagonal elements

u(1) = u(1)/d(1); b(1) = b(1)/d(1);	 % First equation

for i=2:n-1,     % The next n-2 equations
    den = d(i) - u(i-1)*l(i);
    if den == 0,
        x = 'failure, division by zero';
        return
    end
 u(i) = u(i)/den; b(i) = (b(i)-b(i-1)*l(i))/den;
end

b(n)=(b(n)-b(n-1)*l(n))/(d(n)-u(n-1)*l(n));   % Last equation
x(n) = b(n);
for i=n-1:-1:1,
    x(i) = b(i) - u(i)*x(i+1);
end
x = x’;
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4.4  LU Factorization Methods

In the last section, we learned that solving a large n × n system Ax = b using Gauss elimina-
tion requires approximately 2

3
3n  operations. There are other direct methods that require 

fewer operations than Gauss elimination. These methods make use of the LU factorization 
of the coefficient matrix A.

LU factorization (or decomposition) of a matrix An×n means expressing the matrix as 
A = LU, where Ln×n is a lower triangular matrix and Un×n is upper triangular. Subsequently, 
the original system Ax = b is rewritten as

	
LU x = b L Ux = b L Ux = b

y
[ ] ⇒ [ ] ⇒               

Letting Ux = yn×1, the above can be solved in two steps:

	

Ly b y

Ux y

= ⇒
= ⇒

        
     

Forward substitution

Back substitutiion
      x





 	

Note that each of the two systems is triangular, hence easy to solve. Because Ly = b is a 
lower triangular system, it can be solved using forward substitution. The system Ux = y is 
upper triangular and is solved via back substitution.

There are different ways to accomplish the factorization of matrix A, depending on the 
specific restrictions imposed on L or U. For example, Crout factorization (see Problem Set) 
requires the diagonal entries of U be 1’s, while L is a general lower triangular matrix. 
Another technique, known as Doolittle factorization, uses the results from different steps 
of Gauss elimination. These two approaches have similar performances, but we will 
present Doolittle factorization here.

4.4.1  Doolittle Factorization

Doolittle factorization of A is A = LU, where L is lower triangular consisting of 1’s along 
the diagonal, and U is upper triangular. That the diagonal elements of L are chosen as 1’s 
can be explained using a generic 3 × 3 matrix

	

A =
















a a a

a a a

a a a

11 12 13

21 22 23

31 32 33 	

If L and U are selected in their most general forms, then

	

A LU= ⇒
















=
a a a

a a a

a a a

l

l l

l
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31

0 0
0

ll l

u u u

u u

u32 33

11 12 13
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0 0
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









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
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
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This implies that there are nine known quantities (entries of A), but 12 unknown 
quantities: six in matrix L and six in matrix U. By selecting the diagonal entries l11, 
l22, and l33 to be 1’s, the number of unknown quantities is reduced to the number of 
known quantities. The same strategy remains valid for any n × n matrix A.

4.4.2  Finding L and U Using Steps of Gauss Elimination

The lower triangular matrix L comprises 1’s along the main diagonal and negatives of 
the multipliers (from Gauss elimination) below the main diagonal. The upper triangular 
matrix U is the upper triangular form of A in the final step of Gauss elimination.

EXAMPLE 4.5:  DOOLITTLE FACTORIZATION USING STEPS 
OF GAUSS ELIMINATION

Find the Doolittle factorization of

	

A = −
−

















1 3 6
2 1 1
4 2 3

	

Solution

Imagine A as the coefficient matrix in a linear system, which is being solved by Gauss 
elimination. Figure 4.5 shows a sequence of EROs that transform A into an upper 
triangular matrix.

The final upper triangular form is U. Three multipliers, −2, −4, and −2, have been used 
to create zeros in the (2,1), (3,1), and (3,2) positions, respectively. Therefore, 2, 4, and 2 will 
occupy the respective slots in matrix L. As a result,

	

L U=
















= − −
















1 0 0
2 1 0
4 2 1

1 3 6
0 7 11
0 0 1

,    

4.4.3  Finding L and U Directly

A more efficient way to find L and U is a direct approach, as demonstrated in the following 
example.

EXAMPLE 4.6:  DIRECT CALCULATION OF L AND U IN DOOLITTLE 
FACTORIZATION

Consider the matrix in Example 4.5,

	

A = −
−

















1 3 6
2 1 1
4 2 3

	

Based on the structures of L and U in Doolittle factorization, we write

	

L U=
















=












1 0 0
1 0

1
0
0 0

21

31 32

11 12 13

22 23

33

l

l l

u u u

u u

u

, 


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Setting A = LU, we find

	

a a a

a a a

a a a

u u u

l u l u
11 12 13

21 22 23

31 32 33

11 12 13

21 11 21 1










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



= 22 22 21 13 23

31 11 31 12 32 22 31 13 32 23 33

+ +
+ + +










u l u u

l u l u l u l u l u u 





	

Each entry on the left must be equal to the corresponding entry on the right. This 
generates nine equations in nine unknowns. The entries in the first row of U are found 
immediately, as

	 u a u a u a11 11 12 12 13 13= = =, , 	

The elements in the first column of L are found as

	
l

a
u

l
a
u

21
21

11
31

31

11
= =,

	

The entries in the second row of U are calculated via

	 u a l u u a l u22 22 21 12 23 23 21 13= − = −, 	

The element in the second column of L is found as

	
l

a l u
u

32
32 31 12

22
= −

	

Finally, the entry in the third row of U is given by

	 u a l u l u33 33 31 13 32 23= − − 	

Using the entries of matrix A and solving the nine equations just listed, we find

	

L U=
















= − −
















1 0 0
2 1 0
4 2 1

1 3 6
0 7 11
0 0 1

,

	

This clearly agrees with the outcome of Example 4.5.
The direct calculation of the entries of L and U in Doolittle factorization can 

be  performed systematically for an n × n matrix A using the steps outlined in 
Example  4.6. The user-defined function DoolittleFactor performs all the 
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FIGURE 4.5
Reduction to an upper triangular matrix.



110 Numerical Methods for Engineers and Scientists Using MATLAB®, Second Edition

operations in the order suggested in Example 4.6 and returns the appropriate L and U 
matrices.

The findings of the last example can readily be confirmed by executing this function.

>> A = [1 3 6;2 -1 1;4 -2 3];
>> [L, U] = DoolittleFactor(A)

L =
     1     0     0
     2     1     0
     4     2     1

U =
     1     3     6
     0    -7   -11
     0     0     1

4.4.3.1  Doolittle’s Method to Solve a Linear System

Doolittle’s method uses Doolittle factorization of A to solve Ax = b:

	 LU x b L Ux b[ ] = ⇒ [ ] = 	

This will be solved in two steps: Solving a lower-triangular system by forward substitu-
tion, followed by solving an upper-triangular system by back substitution.

	

Ly b

Ux y

y

x

=
=

⇒
⇒



 	

(4.10)

The user-defined function DoolittleMethod uses Doolittle factorization of the coef-
ficient matrix, and subsequently solves the two triangular systems in Equation 4.10 using 
forward and back substitution, respectively, to find the solution vector x.

function [L, U] = DoolittleFactor(A)
%
% DoolittleFactor returns the Doolittle factorization of matrix A.
%
%   [L, U] = DoolittleFactor(A), where
%
%     A is an n-by-n matrix,
%
%     L is the lower triangular matrix with 1’s along the diagonal,
%     U is an upper triangular matrix.
%
n = size(A,1);
L = eye(n); U = zeros(n,n);    % Initialize
for i = 1:n,
    U(i,i) = A(i,i)-L(i,1:i-1)*U(1:i-1,i);
    for j = i+1:n,
        U(i,j) = A(i,j)-L(i,1:i-1)*U(1:i-1,j);
        L(j,i) = (A(j,i)-L(j,1:i-1)*U(1:i-1,i))/U(i,i);
    end
end
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EXAMPLE 4.7:  DOOLITTLE’S METHOD TO SOLVE A LINEAR SYSTEM

Using Doolittle’s method, solve Ax = b where

	

A b x= −
−

















=



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
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

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


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





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

1 3 6
2 1 1
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9
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, ,
x

x

x 
	

Solution

Doolittle factorization of A was done in Examples 4.5 and 4.6. Using L and U in 
Equation 4.10,

	

Ly b=




















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
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

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
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function x = DoolittleMethod(A,b)
%
% DoolittleMethod uses the Doolittle factorization of matrix A and 
% solves the ensuing triangular systems to find the solution vector x.
% 
%   x = DoolittleMethod(A,b), where
% 
%     A is the n-by-n coefficient matrix,
%     b is the n-by-1 vector of the right-hand sides,
%
%     x is the n-by-1 solution vector.
%
[L, U] = DoolittleFactor(A);     % Find Doolittle factorization of A
n = size(A,1);
 
% Solve the lower triangular system Ly = b (forward substitution)
y = zeros(n,1);
y(1) = b(1);
for i = 2:n,
    y(i) = b(i)-L(i,1:i-1)*y(1:i-1);
end

% Solve the upper triangular system Ux = y (back substitution)
x = zeros(n,1);
x(n) = y(n)/U(n,n);
    for i = n-1:-1:1,
        x(i) = (y(i)-U(i,i+1:n)*x(i+1:n))/U(i,i);
    end
end
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The result can be verified by executing the user-defined function DoolittleMethod.

>> A = [1 3 6;2 -1 1;4 -2 3]; b = [3;9;19];
>> x = DoolittleMethod(A,b)

x =
     3
    -2
     1

4.4.3.2  Operations Count

Doolittle’s method comprises two phases: LU factorization of the coefficient matrix and 
forward/back substitution to solve the two subsequent triangular systems. For a large 
system Ax = b, the Doolittle factorization of A requires roughly 1

3
3n  operations. The ensu-

ing triangular systems are simply solved by forward and back substitutions, each of which 
requires n2 operations; Section 4.3. Therefore, the total number of operations is 1

3
3 2n n+ , 

which is approximately 1
3

3n  since n is large. This implies that Doolittle’s method requires 
half as many operations as the Gauss elimination method.

4.4.4  Cholesky Factorization

A very special class of matrices encountered in many engineering applications is symmet-
ric, positive definite matrices. A matrix A = [aij]n×n is positive definite if all of the following 
determinants are positive:

	

D a D
a a

a a
D

a a a

a a a

a a a

1 11 2

11 12

21 22

3

11 12 13

21 22 23

31 32 33

0 0= > = > = >, , 00 0, ,… = >Dn A

	

Of course, A is symmetric if A = AT. For a symmetric, positive definite matrix there is a 
very special form of LU factorization, where the lower triangular matrix L is in the general 
form (with no restrictions on the diagonal entries) and the upper triangular matrix U is the 
transpose of L. This is known as Cholesky factorization,

	 A LL= T
	

For instance, in the case of a 3 × 3 matrix,
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(4.11)

Owing to symmetry, only six equations—as opposed to nine for Doolittle—need to be 
solved. The user-defined function CholeskyFactor performs all the operations and 
returns the appropriate L and U = LT matrices.



113Numerical Solution of Systems of Equations

4.4.4.1  Cholesky’s Method to Solve a Linear System

Cholesky’s method uses Cholesky factorization of A to solve Ax = b. Substitution of A = LLT 
into the system yields

	
LL x b L L x bT T  = ⇒   =

	

which will be solved in two steps:

	

Ly b

L x y

y

x

=
=

⇒
⇒





T

	
(4.12)

Both systems are triangular, for which the solutions are found by forward and back 
substitutions. The user-defined function CholeskyMethod uses Cholesky factorization of 
the coefficient matrix, and subsequently solves the two triangular systems in Equation 4.12 
to find the solution vector x.

function [L, U] = CholeskyFactor(A)
%
% CholeskyFactor returns the Cholesky factorization of matrix A.
% 
%   [L, U] = CholeskyFactor(A), where
% 
%     A is a symmetric, positive definite n-by-n matrix,
%
%     L is a lower triangular matrix,
%     U = L' is an upper triangular matrix.
%
n = size(A,1);
L = zeros(n,n);    % Initialize
for i = 1:n,
    L(i,i) = sqrt(A(i,i)-L(i,1:i-1)*L(i,1:i-1)');
    for j = i+1:n,
        L(j,i) = (A(j,i)-L(j,1:i-1)*L(i,1:i-1)')/L(i,i);
    end
end
U = L';

function x = CholeskyMethod(A,b)
%
% CholeskyMethod uses the Cholesky factorization of matrix A and 
% solves the ensuing triangular systems to find the solution vector x.
% 
%   x = CholeskyMethod(A,b), where
% 
%     A is a symmetric, positive definite n-by-n coefficient matrix,
%     b is the n-by-1 vector of the right-hand sides,
%
%     x is the n-by-1 solution vector.
%
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EXAMPLE 4.8:  CHOLESKY’S METHOD TO SOLVE A LINEAR SYSTEM

Using Cholesky’s method solve Ax = b where

	

A b x=
−
−

− −


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


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
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
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x

x

x
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







	

Solution

The matrix A is clearly symmetric since A = AT, and it is positive definite because

	
D D D1 2 39 0

9 6
6 13

81 0 1296 0= > = = > = = >, , A
	

The elements listed in Equation 4.11 can be directly used to determine the six entries 
of L. For instance,

	 l a l l11
2

11 11
2

119 3= ⇒ = ⇒ = 	

	
l l a l

a
l

l11 21 12 21
12

11
21

6
3

2= ⇒ = = ⇒ =
	

and so on. Continuing this process, we find

	

L =
− −

















3 0 0
2 3 0
1 1 4

	

[L, U] = CholeskyFactor(A);  % Find Cholesky factorization of A
n = size(A,1);

% Solve the lower triangular system Ly = b (forward substitution)
y = zeros(n,1);
y(1) = b(1)/L(1,1);
for i = 2:n,
    y(i) = (b(i)-L(i,1:i-1)*y(1:i-1))/L(i,i);
end

% Solve the upper triangular system L'x = y (back substitution)
x = zeros(n,1);
x(n) = y(n)/U(n,n);
    for i = n-1:-1:1,
        x(i) = (y(i)-U(i,i+1:n)*x(i+1:n))/U(i,i);
    end
end
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Using L and LT in Equation 4.12, yields

Ly b=
− −
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The result can be verified by executing the user-defined function CholeskyMethod.

>> A = [9 6 -3;6 13 -5;-3 -5 18]; b = [-18;-45;97];
>> x = CholeskyMethod(A,b)

x =
     1
    -2
     5

4.4.4.2  Operations Count

Cholesky’s method comprises two parts: LU factorization of the coefficient matrix and 
forward/back substitutions to solve the two triangular systems. For a large system Ax = b, 
the Cholesky factorization of A requires roughly 1

3
3n  operations. The ensuing triangu-

lar systems are solved by forward and back substitutions, each requiring n2 operations. 
Therefore, the total number of operations is roughly 1

3
3 2n n+ , which is approximately 1

3
3n  

since n is large. This implies that Cholesky’s method requires half as many operations as 
Gauss elimination method.

4.4.4.3  MATLAB Built-In Functions lu and chol

MATLAB has built-in functions to perform LU factorization of a square matrix: lu for 
general square matrices, and chol for symmetric, positive definite matrices. There are 
different ways of calling the function lu. For example, the outputs in [L,U]= lu(A) are 
U, which is upper triangular and L, which is the product of a lower triangular matrix and 
permutation matrices such that LU = A. On the other hand, [L,U,P]= lu(A) returns a 
lower triangular L, an upper triangular U, and permutation matrices P such that LU = PA. 
Other options in lu allow for the control of pivoting when working with sparse matrices 
(large matrices with a large number of zero entries).

For a symmetric, positive definite matrix A, the function call U=chol(A) returns an 
upper triangular matrix U such that UTU = A. If the matrix is not positive definite, chol 
returns an error message.

EXAMPLE 4.9:  BUILT-IN FUNCTION "LU"

Consider

	

A =
−

− −
















4 1 0
1 3 5

2 5 6 	
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>> A = [4 -1 0;-1 3 -5;2 5 6];
>> [L,U,P] = lu(A)

L =
    1.0000         0         0
    0.5000    1.0000         0
   -0.2500    0.5000    1.0000

U =
    4.0000   -1.0000         0
         0    5.5000    6.0000
         0         0   -8.0000

P =
     1     0     0
     0     0     1
     0     1     0

It is readily seen that LU = PA,

>> L*U, P*A

ans =
     4    -1     0
     2     5     6
    -1     3    -5

ans =
     4    -1     0
     2     5     6
    -1     3    -5

Note that the permutation matrix P is the 3 × 3 identity matrix with its second and third 
rows interchanged. This indicates that the second and third rows of matrix A were first inter-
changed to obtain PA A= � , followed by the Doolittle factorization of �A, that is, �A LU= .

4.5  Iterative Solution of Linear Systems

In Sections 4.3 and 4.4, we introduced direct methods for solving Ax = b, which included 
the Gauss elimination and methods based on LU factorization of the coefficient matrix 
A. We now turn our attention to indirect, or iterative, methods. In principle, a successful 
iteration process starts with an initial vector and generates a sequence of successive vectors 
that eventually converges to the solution vector x.

Unlike direct methods, where the total number of operations is known in advance, the 
number of operations required by an iterative method depends on how many iteration 
steps must be performed for satisfactory convergence, as well as the nature of the system 
at hand. What is meant by convergence is that the iteration must be terminated as soon as 
two successive vectors are close to one another. A measure of the proximity of two vectors 
is provided by a vector norm.

4.5.1  Vector Norms

Norm of a vector vn×1, denoted by ∙v∙, provides a measure of how small or large v is, and has 
the following properties:

•	 ∙v∙ ≥ 0 for all v, and ∙v∙ = 0 if and only if v = 0n×1
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•	 ∙αv∙ = |α∙|v∙, α = scalar
•	 ∙v + w∙ ≤ ∙v∙+∙w∙ for all vectors v and w

There are three commonly used vector norms, listed below. In all cases, vector v is 
assumed in the form

	

v =
…



















v

v

vn

1

2

	

l1-norm, denoted by ∙v∙1, is the sum of the absolute values of all components of v:

	 v
1 1 2= + + +v v vn� 	 (4.13)

l∞-norm, denoted by ∙v∙∞, is the largest (in absolute value) of all components of v:

	
v ∞ = { }max , , ,v v vn1 2 … 	

(4.14)

l2-norm, denoted by ∙v∙2, is the square root of the sum of the squares of all 
components of v:

	
v

2 1
2

2
2 2 1 2

= + + + v v vn�
/

	
(4.15)

EXAMPLE 4.10:  VECTOR NORMS

Find the three norms of

	

v =
−
−





















8 3
2 9
12

6 7

.
.

.
	

	 1.	 Using Equations 4.13 through 4.15.
	 2.	 Using the MATLAB built-in function norm.

Solution

	 1.	 By Equations 4.13 through 4.15,

	

v

v

v

1

2

8 3 2 9 12 6 7 29 9

8 3 2 9 12 6 7 12

8 3

= + − + − + =

= − −{ } =

=
∞

. . . .

. , . , , .

( .

max

)) ( . ) ( ) . .2 2 2 22 9 12 6 7 16 3153+ − + − + =
	

	 Note that all three norms return values that are of the same order of magnitude, 
as is always the case. If a certain norm of a vector happens to be small, the 
other norms will also be somewhat small, and so on.
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	 2.	 MATLAB built-in function norm calculates vector and matrix norms.

>> v = [8.3;-2.9;-12;6.7];
>> [norm(v,1), norm(v,inf), norm(v,2)]

ans =

29.9000 12.0000 16.3153

4.5.2  Matrix Norms

Norm of a matrix An×n, denoted by ∙A∙, is a nonnegative real number that provides a mea-
sure of how small or large A is, and has the following properties:

•	 ∙A∙ ≥ 0 for all A, and ∙A∙ = 0 if and only if A = 0n×n A = 0n×n

•	 ∙αA∙ = |α|∙A∙, α = scalar
•	 ∙A + B∙ ≤ ∙A∙ + ∙B∙ for all n × n matrices A and B
•	 ∙AB∙ ≤ ∙A∙ ∙B∙ for all n × n matrices A and B

There are three commonly used matrix norms, listed below. In all cases, matrix A is in 
the form A = [aij]n×n.

1-norm (column-sum norm), denoted by ∙A∙1, is defined as

	

A
1 1

1

=










≤ ≤
=

∑max
j n

ij

i

n

a

	
(4.16)

The sum of the absolute values of entries in each column of A is calculated, and the 
largest is selected.

Infinite-norm (row-sum norm), denoted by ∙A∙∞, is defined as

	

A ∞ ≤ ≤
=

=











∑max

1
1

i n
ij

j

n

a

	

(4.17)

The sum of the absolute values of entries in each row of A is calculated, and the largest 
is selected.

Euclidean norm (2-norm, Frobenius norm), denoted by ∙A∙E, is defined as

	

A
E ij

j

n

i

n

a=












==
∑∑ 2

11

1 2/

	

(4.18)

EXAMPLE 4.11:  MATRIX NORMS

Find the three norms of

	

A =

−
−

−
− −





















3 1 26 2 5
1 0 5 4 4 8

0 93 4 1 3 6
2 4 5 6 10

.
. .

. .
.
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	 1.	 Using Equations 4.16 through 4.18.
	 2.	 Using the MATLAB built-in function norm.

Solution

	 1.	 By Equations 4.16 through 4.18,

	

A
1 1 4
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
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/

.

	

	 As it was the case with vector norms, the values returned by all three matrix 
norms are of the same order of magnitude.

	 2.	

	 >> A = [3 1.26 -2 5;-1 0 5.4 4.8;0.93 -4 1 3.6;-2 -4.5 6 10];
	 >> [norm(A,1), norm(A,inf), norm(A,'fro')]

	 ans =

	    23.4000 22.5000 16.8482

4.5.2.1  Compatibility of Vector and Matrix Norms

The three matrix norms above are compatible with the three vector norms introduced 
earlier, in the exact order they were presented. More specifically, the compatibility 
relations are

	

Av A v

Av A v

Av A v

1 1 1

2 2

≤
≤
≤

∞ ∞ ∞

E 	

(4.19)

EXAMPLE 4.12:  COMPATIBILITY RELATIONS

The relations in Equation 4.19 can be verified for the vector and the matrix used in 
Examples 4.10 and 4.11 as follows:

	

Av =
−

−





















⇒

78 7460
40 9400

31 4390
8 5500

.
.

.

.

Calculate veector norms
Av Av Av

1 2
159 6750 78 7460 94 5438= = =∞. , . , .
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Then, the compatibility relations in Equation 4.19 are readily verified as follows.

	 159 6750 23 4 29 9 78 7460 22 5 12 94 5438 16 8482. ( . )( . ), . ( . )( ), . ( . )≤ ≤ ≤ (( . )16 3153 	

4.5.3  General Iterative Method

The general idea behind iterative methods to solve Ax = b is outlined as follows: Split the 
coefficient matrix as A = Q – P, with the provision that Q is non-singular so that Q−1 exists, 
and substitute into Ax = b to obtain

	 Q P x b Qx Px b−[ ] = ⇒ = + 	

Of course, this system cannot be solved in its present form, as the solution vector x 
appears on both sides. Instead, it will be solved by iterations. Choose an initial vector x(0) 
and solve the following system for the new vector x(1):

	 Qx Px b( ) ( )1 0= + 	

Next, use x(1) to find the new vector x(2):

	 Qx Px b( ) ( )2 1= + 	

and so on. In general, a sequence of vectors is generated via

	 Qx Px b( ) ( ) , , , ,k k k+ = + = …1 0 1 2 	 (4.20)

Since Q is assumed non-singular, Equation 4.20 is easily solved at each step for the 
updated vector x(k+1), as

	 x Q Px Q b( ) ( ) , , , ,k k k+ − −= + = …1 1 1 0 1 2 	 (4.21)

In the general procedure, splitting of A is arbitrary, except that Q must be non-singular. 
This arbitrary nature of the split causes the procedure to be generally ineffective. In specific 
iterative methods presented shortly, matrices P and Q obey very specific formats for 
successful implementation.

4.5.3.1  Convergence of the General Iterative Method

The sequence of vectors obtained through Equation 4.21 converges if the sequence of 
error vectors associated the iteration steps approaches the zero vector. The error vector at 
iteration k is defined as

	 e x x x( ) ( ) ,k k
a a= − = Actual solution vector 	

Note that the actual solution xa is unknown, and the notation is being used in the analy-
sis merely for the development of the important theoretical results. That said, since xa is the 
actual solution of Ax = b, then
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	 Ax b Q P x ba a= ⇒ − =[ ] 	

Inserting this into Equation 4.20, yields

	
Qx Px Q P x Q x x P x x( ) ( ) ( ) ( )[ ]k k

a
k

a
k

a
+ += + − ⇒ −  = − 

1 1

	

Noting that the bracketed quantities are simply the error vectors at iteration k and k + 1, 
the above is written as

	 Qe Pe( ) ( )k k+ =1
	

Pre-multiplication of this equation by Q−1, and letting M = Q−1P, results in

	 e Q Pe Me( ) ( ) ( ) , , , ,k k k k+ −= = = …1 1 0 1 2 	

so that

	 e Me e Me M e e M e( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,1 0 2 1 2 0 0= = = … =k k

	

Taking the infinite-norm of both sides of the last equation and k applications of the 
second compatibility relation in Equation 4.19, we find

	
e M e( ) ( )k k

∞ ∞ ∞
≤ 0

	

Thus, a sufficient condition for e( )k

∞
→ 0 as k → ∞ is that M ∞ →k 0 as k → ∞, which 

is satisfied if M ∞ < 1. The matrix M = Q−1P plays a key role in the convergence of 

iterative schemes. The above analysis suggests that in splitting matrix A, matrices 
Q and P must be selected so that the infinite norm of M = Q−1P is less than one. We 
note that ∙M∙∞ < 1 is only a sufficient condition and not necessary. This means that if it 
holds, the iteration converges, but if it does not hold, convergence is not automatically 
ruled out.

4.5.4  Jacobi Iteration Method

Let D, L, and U be the diagonal, lower, and upper triangular portions of matrix A = [aij]n×n, 
respectively, that is,
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In the Jacobi method, A is split as

	

A Q P

D L U

Q D

P L U

= −
= + +[ ]

=
= − +[ ]so that

	

Subsequently, Equation 4.20 takes the specific form

	 Dx L U x b( ) ( ) , , , ,k k k+ = − +[ ] + = …1 0 1 2 	 (4.22)

For D−1 to exist, the diagonal entries of D, and hence of A, must all be nonzero. If a 
zero entry appears in a diagonal slot, the responsible equation in the original system 
must be switched with another equation so that no zero entry appears along the diago-
nal in the resulting coefficient matrix. Then, pre-multiplication of Equation 4.22 by D−1, 
yields

	
x D L U x b( ) ( ) , , , ,k k k+ −= − +[ ] +{ } = …1 1 0 1 2

	
(4.23)

known as the Jacobi method. Note that L + U is exactly matrix A but with zero diago-
nal entries, and that the diagonal entries of D−1 are 1/aij for i = 1,2, … , n. Denoting the 
vector generated at the kth iteration by x( ) ( ) ( )[ ]k k

n
k Tx x= …1 , Equation 4.23 can be expressed 

component-wise, as
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(4.24)

The important matrix M = Q−1P takes the special form

	 M D L UJ = − +[ ]−1

	

and is called the Jacobi iteration matrix. A sufficient condition for Jacobi iteration to con-
verge is that ∙MJ∙∞ < 1.

4.5.4.1  Convergence of the Jacobi Iteration Method

Convergence of the Jacobi method relies on a special class of matrices known as diagonally 
dominant. An n × n matrix A is diagonally dominant if in each row, the absolute value of 
the diagonal entry is greater than the sum of the absolute values of all the off-diagonal 
entries, that is,

	

a a i nii ij

j

j i

n

> = …
=
≠

∑ , , , ,1 2
1

	

(4.25)
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or equivalently,

	

a

a
i n

ij

iij

j i

n

< = …
=
≠

∑ 1 1 2
1

, , , ,

	

(4.26)

Theorem 4.1: Convergence of Jacobi Iteration

�Let A be diagonally dominant. Then, the linear system Ax = b has a unique solution xa, 
and the sequence of vectors generated by Jacobi iteration, Equation 4.23, converges to xa 
regardless of the choice of the initial vector x(0).

Proof

The Jacobi iteration matrix is formed as

	

M D L UJ

n

n

n n

a a a a

a a a a

a
= − +[ ] =
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Since A is diagonally dominant, Equation 4.26 holds. In each row of MJ, the sum of the 
magnitudes of all entries is less than 1 by Equation 4.26. This means the row-sum norm 
of MJ is less than 1, that is, ∙MJ∙∞ < 1. Since this is a sufficient condition for convergence of 
Jacobi method, the proof is complete.

The user-defined function Jacobi uses the Jacobi iteration method to solve the linear 
system Ax = b, and returns the approximate solution vector, the number of iterations 
needed for convergence, and ∙MJ∙∞. The terminating condition is ∙x(k+1) − x(k)∙ < ε for a pre-
scribed tolerance ε.

function [x, k, MJnorm] = Jacobi(A, b, x0, tol, kmax)
%
%  Jacobi uses the Jacobi iteration method to approximate the solution
%  of Ax = b.
%
%   [x, k, MJnorm] = Jacobi(A, b, x0, tol, kmax), where
%
%     A is the n-by-n coefficient matrix,
%     b is the n-by-1 right-hand side vector,
%     x0 is the n-by-1 initial vector (default zeros),
%     tol is the scalar tolerance for convergence (default 1e-4),
%     kmax is the maximum number of iterations (default 100),
%
%     x is the n-by-1 solution vector,
%     k is the number of iterations required for convergence,
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EXAMPLE 4.13:  JACOBI ITERATION

Consider the linear system
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	 1.	 Find x(1) using both forms of the Jacobi method in Equations 4.23 and 4.24, and 
confirm the results by executing the user-defined function Jacobi.

	 2.	 Solve the system by executing the user-defined function Jacobi with default 
values for tol and kmax.

Solution

	 1.	 It is readily verified that the coefficient matrix A is diagonally dominant since

	 4 1 1 5 2 6 2 1> + − > − > +, , 	

	 This implies Theorem 4.1 guarantees convergence of the sequence of vec-
tors generated by Jacobi iteration method to the actual solution. We will find 
the components of the next vector x(1) generated by Jacobi iteration using 
Equations 4.23 and 4.24. Before using Equation 4.23, we first form
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	 Then, Equation 4.23 with k = 0 yields
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%     MJnorm is the infinite norm of the Jacobi iteration matrix.
%
if nargin < 3 || isempty(x0), x0 = zeros(size(b)); end
if nargin < 4 || isempty(tol), tol = 1e-4; end
if nargin < 5 || isempty(kmax), kmax = 100; end
x(:, 1) = x0;
D = diag(diag(A)); At = A - D;
L = tril(At); U = triu(At);
% Norm of Jacobi iteration matrix
M = -D\(L + U); MJnorm = norm(M, inf); B = D\b;
% Perform iterations up to kmax
for k = 1:kmax,
   x(:, k+1)= M*x(:, k) + B; % Compute next approximation
   if norm(x(:, k+1) - x(:, k)) < tol, break; end   % Check convergence
end
x = x(:, end);
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	 The vector x(1) can also be found by using Equation 4.24 with k = 0,
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	 Specifically,

	

x
a

a x a x b1
1

11
12 2

0
13 3

0
1

1
4

1
1 1 1 1( ) ( ) ( ) ( )( ) ( )( )= − +  +{ } = − + −[ ] + 11 0 25

1
2 02

1

22
21 1

0
23 3

0
2

1
5

{ } =

= − +  +{ } = − − +

.

( )( )( ) ( ) ( )x
a

a x a x b (( )( ) ( ) .

( ) ( ) ( )

0 1 7 1 4

1
3
1

33
31 1

0
32 2

0
3

[ ] + −{ } = −

= − +  +{ }x
a

a x a x b == − +[ ] +{ } =1
6 2 0 1 1 13 2( )( ) ( )( )

	

	 Therefore,
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	 The vector x(1) can be verified by executing the user-defined function Jacobi 
with kmax = 1 to allow one iteration only.

>> A = [4 1 -1;-2 5 0;2 1 6]; b = [1;-7;13]; x0 = [0;1;1];
>> x = Jacobi(A, b, x0, [], 1)

x =
    0.2500
   -1.4000
    2.0000      % Agrees with hand calculations

	 2.	

>> [x, k, MJnorm] = Jacobi(A, b, x0)   % Default values for tol and kmax

x =
    1.0000
   -1.0000
    2.0000

k =
    13

MJnorm =

	 0.5000

	 Note that the condition ∙MJ∙∞ < 1 is satisfied because the coefficient matrix A is 
diagonally dominant.

4.5.5  Gauss–Seidel Iteration Method

Based on Equations 4.23 and 4.24, every component of x(k+1) is calculated entirely from x(k) of 
the previous iteration. In other words, to access x(k+1), the kth iteration has to be completed 
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so that x(k) is entirely available. Performance of Jacobi iteration can be improved if the most 
updated components of a vector are utilized, as soon as they are available, to compute the 
subsequent components of the same vector. Consider two successive vectors, as well as the 
actual solution,
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Generally, xp
k( )+1  is expected to be a better estimate of xp than xp

k( ) is. And as such, using 
xp

k( )+1  instead of xp
k( ) should lead to a better approximation of the next component, xp

k
+
+
1
1( ) , 

in the current vector. This is the reasoning behind Gauss–Seidel iteration method, which 
is considered a refinement of Jacobi method. To fulfill this logic, the coefficient matrix A is 
split as

	

A Q P

D L U
Q D L

P U

= −
= +[ ] +

= +
= −

so that
	

As a result, Equation 4.20 takes the specific form

	 D L x Ux b+[ ] = − + = …+( ) ( ) , , , ,k k k1 0 1 2 	 (4.27)

But, D + L is a lower-triangular matrix whose diagonal entries are those of A. Thus, 
[D + L]−1 exists if A has nonzero diagonal entries. If a diagonal entry is zero, the respon-
sible equation in the original system must be switched with another equation so that no 
zero entry appears along the diagonal in the resulting coefficient matrix. Subsequently, 
pre-multiplication of Equation 4.27 by [D + L]−1 yields

	
x D L Ux b( ) ( ) , , , ,k k k+ −= +[ ] − +{ } = …1 1 0 1 2

	
(4.28)

known as the Gauss–Seidel iteration method. Denoting the vector at the kth iteration by 
x( ) ( ) ( )[ ]k k

n
k Tx x= …1 , Equation 4.28 can be expressed component wise, as
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(4.29)

where the first sum on the right side is considered zero when i = 1. The important matrix 
M = Q−1P now takes the special form

	 M D L UGS = − +[ ]−1
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known as the Gauss–Seidel iteration matrix. A sufficient condition for the Gauss–Seidel 
iteration to converge is ∙MGS∙∞ < 1.

4.5.5.1  Convergence of the Gauss–Seidel Iteration Method

Since the Gauss–Seidel method is a refinement of the Jacobi method, it converges 
whenever  the Jacobi method does, and usually faster. Recall that if A is diagonally 
dominant, the Jacobi iteration is guaranteed to converge to the solution vector. This implies 
that if A is diagonally dominant, the Gauss–Seidel iteration is also guaranteed to converge, 
and faster than the Jacobi.

If A is not diagonally dominant, the convergence of the Gauss–Seidel method relies on 
another special class of matrices known as symmetric, positive definite (Section 4.4).

Theorem 4.2: Convergence of Gauss–Seidel Iteration

�Let A be symmetric, positive definite. Then, the linear system Ax = b has a unique solu-
tion xa, and the sequence of vectors generated by the Gauss–Seidel iteration, Equation 4.28, 
converges to xa regardless of the choice of the initial vector x(0).

The user-defined function GaussSeidel uses the Gauss–Seidel iteration method to solve 
the linear system Ax = b, and returns the approximate solution vector, the number of 
iterations needed for convergence, and ∙MGS∙∞. The terminating condition is ∙x(k+1) − x(k)∙ < ε 
for a prescribed tolerance ε.

function [x, k, MGSnorm] = GaussSeidel(A, b, x0, tol, kmax)
%
%  GaussSeidel uses the Gauss-Seidel iteration method to approximate the
%  solution of Ax = b.
% 
%  [x, k, MGSnorm] = GaussSeidel(A, b, x0, tol, kmax), where
%
%     A is the n-by-n coefficient matrix,
%     b is the n-by-1 right-hand side vector,
%     x0 is the n-by-1 initial vector (default zeros),
%     tol is the scalar tolerance for convergence (default 1e-4),
%     kmax is the maximum number of iterations (default 100),
%
%     x is the n-by-1 solution vector,
%     k is the number of iterations required for convergence,
%     MGSnorm is the infinite norm of the Gauss-Seidel iteration matrix.
%
if nargin < 3 || isempty(x0), x0 = zeros(size(b)); end
if nargin < 4 || isempty(tol), tol = 1e-4; end
if nargin < 5 || isempty(kmax), kmax = 100; end
x(:, 1) = x0;
D = diag(diag(A)); At = A - D;
L = tril(At); U = At - L;
% Norm of Gauss-Seidel iteration matrix
M = -(D + L)\U; MGSnorm = norm(M, inf); B = (D + L)\b;
% Perform iterations up to kmax
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EXAMPLE 4.14:  GAUSS–SEIDEL ITERATION: DIAGONALLY 
DOMINANT COEFFICIENT MATRIX

Consider the linear system of Example 4.13,
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	 1.	 Find x(1) using both forms of the Gauss–Seidel method in Equations 4.28 
and 4.29, and confirm the results by executing the user-defined function 
GaussSeidel.

	 2.	 Solve the system by executing the user-defined function GaussSeidel 
with default values for tol and kmax.

Solution

	 1.	 We will find the components of the next vector x(1) generated by the Gauss–
Seidel iteration using Equations 4.28 and 4.29. Before using Equation 4.28, 
we first form
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Equation 4.28 with k = 0 yields
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The vector x(1) may also be found by using Equation 4.29 with k = 0,
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	 As previously mentioned, the first sum on the right side is considered 
zero when i = 1. For the problem at hand,

for k = 1:kmax,
   x(:, k+1) = M*x(:, k) + B;
   if norm(x(:,k+1)-x(:, k)) < tol,
      break
   end
end
x = x(:, end);
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	 This vector can be verified by executing GaussSeidel with kmax=1 so that 
one iteration only is performed.

>> A = [4 1 -1;-2 5 0;2 1 6]; b = [1;-7;13]; x0 = [0;1;1];
>> x = GaussSeidel(A, b, x0, [], 1)

x =
    0.2500
   -1.3000

    2.3000      % Agrees with hand calculations

	 2.	 Since A is diagonally dominant, the Gauss–Seidel iteration is guaranteed to 
converge because the Jacobi method is guaranteed to converge.

>> [x, k, MGSnorm] = GaussSeidel(A, b, x0)

x =
    1.0000
   -1.0000
    2.0000

k =
    8

MGSnorm =

   0.5000

	 As expected, Gauss–Seidel exhibits a faster convergence (eight iterations) than 
Jacobi (13 iterations).

EXAMPLE 4.15:  GAUSS–SEIDEL ITERATION: SYMMETRIC, 
POSITIVE-DEFINITE COEFFICIENT MATRIX

Consider
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The coefficient matrix is symmetric since A = AT. It is also positive definite because
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Thus, the Gauss–Seidel iteration will converge to the solution vector for any initial 
vector. Executing the user-defined function GaussSeidel with default values for tol 
and kmax, we find

>> A = [1 1 -2;1 10 4;-2 4 24]; b = [5.5;17.5;-19];
>> [x, k, MGSnorm] = GaussSeidel(A, b)

x =
    1.5000
    2.0000
   -1.0000

k =
    15

MGSnorm =
     3 

The input argument x0 was left out because the initial vector happens to be the zero 
vector, which agrees with the default. Also note that ∙MGS∙ = 3 > 1 even though itera-
tions did converge. This is because the condition ∙MGS∙∞ < 1 is only sufficient and not 
necessary for convergence of the Gauss–Seidel iteration. Also note that unlike the fact 
that a diagonally dominant coefficient matrix guarantees ∙MJ∙∞ < 1, a symmetric, posi-
tive definite coefficient matrix does not guarantee ∙MGS∙∞ < 1, but does guarantee con-
vergence for the Gauss–Seidel method.

4.5.6  Indirect Methods versus Direct Methods for Large Systems

Indirect methods such as Gauss–Seidel are commonly used for large linear systems Ax = b. 
Suppose a large system is being solved by the general iterative method, Equation 4.21,

	 x Q Px Q b( ) ( ) , , , ,k k k+ − −= + = …1 1 1 0 1 2 	

and that convergence is observed after m iterations. Because each iteration requires roughly 
n2 multiplications, a total of n2m multiplications are performed by the time convergence 
is achieved. On the other hand, a direct method such as Gauss elimination requires 1

3
3n  

multiplications to find the solution. Therefore, an indirect method is superior to a direct 
method as long as 

	 n m n m n2 1
3

3 1
3< ⇒ <

For example, for a 100 × 100 system, this yields m < 1
3 100( )  so that an iterative method is 

preferred as long as it converges within 33 iterations. In many physical applications, not 
only the coefficient matrix A is large, it is also sparse, that is, it contains a large number of 
zero entries. As one example, consider the numerical solution of partial differential equa-
tions using the finite-differences method (Chapter 10). In these cases, we encounter a large, 
sparse system where the coefficient matrix has at most five nonzero entries in each row. 
Therefore, based on Equations 4.24 and/or 4.29, six multiplications must be performed to 
find each component xi

k( )+1  of the generated vector. But each vector has n components, thus 
a total of 6n multiplications per iteration are performed. If it takes m iterations for conver-
gence, then a total of 6nm multiplications are required for the indirect method. Therefore, 
the indirect method is computationally more efficient than a direct method as long as

	 6 1
3

3 1
18

2nm n m n< ⇒ < 	
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For a 1000 × 1000 system with a sparse coefficient matrix, this translates to m < 1
18

21000( )  
so that an iterative method such as Gauss–Seidel is superior to Gauss elimination if it 
converges within 55,556 iterations, which is quite likely.

4.6  Ill-Conditioning and Error Analysis

So far this chapter has focused on methods to find the solution vector for linear systems 
in the form Ax = b. In this section we study the conditioning of a linear system and how 
it may impact the error associated with a computed solution.

4.6.1  Condition Number

The condition number of a non-singular matrix An×n is defined as

	
κ( )A A A= −1

	
(4.30)

where the same matrix norm is used for both A and A−1. It can be shown that for any An×n,

	 κ( )A ≥ 1 	

It turns out that the smaller the condition number of a matrix, the better the condition 
of the matrix. A useful measure of the condition of a matrix is provided by the ratio of the 
largest (magnitude) to the smallest (magnitude) eigenvalue of the matrix.

EXAMPLE 4.16:  CONDITION NUMBER

Calculate the condition number of the following matrix using all three norms, and 
verify the results using the MATLAB built-in command cond.
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In MATLAB, cond(A,P) returns the condition number of matrix A in P-norm.

>> A = [6 4 3;4 3 2;3 4 2];
>> [cond(A,1), cond(A,inf), cond(A,’fro’)] % Using three different matrix norms

ans =
  247.0000    273.0000    165.7981

Note that all three returned values are of the same order of magnitude, regardless of 
the choice of norm used.

4.6.2  Ill-Conditioning

The system Ax = b is said to be well-conditioned if small errors generated during the 
solution process, or small changes in the coefficients, have small effects on the solu-
tion. For  instance, if the diagonal entries of A are much larger in magnitude than the 
off-diagonal ones, the system is well-conditioned. If small errors and changes during 
the solution process have large impacts on the solution, the system is ill-conditioned. Ill-
conditioned systems often arise in areas such as statistical analysis and least-squares fits 
(Chapter 5).

EXAMPLE 4.17:  ILL-CONDITIONING

Investigate the ill-conditioning of

	
Ax b A b= =

−
−









 =









,
. .

,
1 2

1 0001 1 9998
2
2

	

Solution

The actual solution of this system can be easily verified to be

	
xa =

−








1
0 5.

	

Suppose the first component of vector b is slightly perturbed by a very small ε > 0 so 
that the new vector is

	

�b =
+








2
2

ε

	

The ensuing system Ax b� �=  is then solved via Gauss elimination, as

1 2
1 0001 1 9998

2
2

1 2
0 0 0004

21 0001 1 2−
−

+











→
−− +

. . .

. ( )ε row row ++
− −













→
− +

− −












ε
ε

ε
ε0 0002 1 0001

1 2
0 1

2
0 5 2500 25. . . .

	

so that

	
�x =

−
− −









=
−









−
1 4999 50
0 5 2500 25

1
0 5

4999 5
2500

.
. . .

.
.

ε
ε 225

4999 5
2500 25









= −








ε εxa

.
.
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Therefore, even though one of the components of b was subjected to a very small 
change of ε, the resulting solution vector shows very large relative changes in its 
components. This indicates that the system is ill-conditioned.

4.6.2.1  Indicators of Ill-Conditioning

There are essentially three indicators of ill-conditioning for a linear system Ax = b:

	 1.	det(A) is very small in absolute value relative to the largest entries of A and b in 
absolute value.

	 2.	The entries of A−1 are large in absolute value relative to the components of the 
solution vector.

	 3.	κ(A) is very large.

EXAMPLE 4.18:  INDICATORS OF ILL-CONDITIONING

Consider the system in Example 4.17:

	
Ax b A b= =

−
−









 =









,
. .

,
1 2

1 0001 1 9998
2
2

	

We will see that this system is ill-conditioned by verifying all three indicators listed 
above.

	 1.	 det(A) = 0.0004, which is considerably smaller than the absolute values of 
entries of A and b.

	 2.	 The inverse of A is found as

	
A− =

−
−











1 4999 50 5000
2500 25 2500

.

.
	

	 The entries are very large in magnitude relative to the components of the solu-
tion vector

	
xa =

−








1
0 5.

.
	

	 3.	 Using the 1-norm, we find the condition number of A as

	
A A A

1
1

1
3 9998 7500 29 998 5= = ⇒ =−. , ( ) , .κ

	

which is quite large.

4.6.3  Computational Error

Suppose xc is the computed solution of a linear system Ax = b, while xa represents the actual 
solution. Note that in practice the actual solution xa is not available and that the notation 
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is merely used to establish an important result concerning possible error bounds on the 
computed solution. The residual vector is defined as

	 r Ax b= −c 	

The norm of the residual vector ∙r∙ gives a measure of the accuracy of the computed solu-
tion, so does the absolute error defined by ∙xc − xa∙. The most commonly used measure is 
the relative error

	

x x
x

c a

a

−

	

Theorem 4.3: Relative Error Bounds

Let xa and xc be the actual and computed solutions of Ax = b, respectively. If r = Axc − b is 
the residual vector and κ(A) is the condition number of A, then

	

1
κ

κ
( )

( )
A

r
b

x x
x

A
r
b

≤
−

≤c a

a 	
(4.31)

A selected matrix norm and its compatible vector norm must be used throughout.

Proof

We first write

	 r Ax b Ax Ax A x x x x A r= − = − = −( ) ⇒ − = −
c c a c a c a

1

	

so that

	
x x A r A r

x x
x

A
r
xx

c a
c a

a aa
− = ≤ ⇒

−
≤− − −1 1 1

by

Divide both sides

	
(4.32)

But by Equation 4.30,

	
A

A
A

− =1 κ( )

	

and

	
b Ax b A x

x
A
b

= ⇒ ≤ ⇒ ≤a a
a

1

	

Inserting these into Equation 4.32, yields

	

x x
x

A
r
b

c a

a

−
≤ κ( )
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which establishes the upper bound for relative error. To derive the lower bound, we 
first note that

	
r Ax Ax r A x x x x

r
AA A

A

= − ⇒ ≤ − ⇒ − ≥
>

c a c a c a
0 for any nonzero

Divide by

 
	

Also,

	
x A b x A b

x A b
a a

a
= ⇒ ≤ ⇒ ≥− −

−
1 1

1

1 1

	

Multiplication of the last two inequalities results in

	

x x
x A

r
b

c a

a

−
≥ 1

κ( ) 	

This completes the proof.

4.6.3.1  Consequences of Ill-Conditioning

Ill-conditioning has an immediate impact on the accuracy of the computed solution. 
Consider the relative error bounds given in Equation 4.31. For a computed solution, it is 
safe to assume that the norm of the residual vector ∙r∙ is relatively small compared to ∙b∙. 
A small value for κ(A) raises the lower bound while lowering the upper bound, thus nar-
rowing the interval for relative error. A large value for κ(A), on the other hand, lowers the 
lower bound and raises the upper bound, thus widening the interval and allowing for a 
large relative error associated with the computed solution.

Another consequence of ill-conditioning is less conspicuous in the sense that a poor 
approximation of the actual solution vector may come with a very small residual vector 
norm. Once again, refer to the system in Examples 4.17 and 4.18, and consider

	
ˆ

.
x =









2
0 0002 	

which is clearly a poor approximation of the actual solution

	
xa =

−








1
0 5. 	

The corresponding residual vector is

	
r Ax b= − =

−
−



















−








=
−

ˆ
. . .

.1 2
1 0001 1 9998

2
0 0002

2
2

0 00004
0 0002−







. 	
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Any one of the three vector norms returns a very small value for ∙r∙, incorrectly 
suggesting x̂ may be a valid solution.

4.6.4  Effects of Parameter Changes on the Solution

The following theorem illustrates how changes in the entries of A or components of b may 
affect the resulting solution vector x, as well as the role of condition number of A.

Theorem 4.4: Percent Change

Consider the linear system Ax = b. Let ΔA, Δb, and Δx reflect the changes in the entries or 
components of A, b, and x, respectively. Then

	

∆ ∆x
x

A
A

A≤ κ( )
	

(4.33)

and

	

∆ ∆x
x

b
b

A≤ κ( )
	

(4.34)

A selected matrix norm and its compatible vector norm must be used throughout.

Proof

Suppose entries of A have been changed and these changes are recorded in matrix ΔA. 
As a result, the solution x will also change, say, by Δx. In Ax = b, insert A + ΔA for A and 
x + Δx for x to obtain

	

( )( ) ( ) [ ] [ ]( )A A x x b Ax A x A x A x b+ + = ⇒ + + + =

⇒

∆ ∆ ∆ ∆ ∆ ∆
Expand

from both sidees

Cancel Ax b

A x A x A x 0
=

+ + =( ) [ ] [ ]( )∆ ∆ ∆ ∆
	

Solving for Δx, we have 

	 A x A x x x A A x x∆ ∆ ∆ ∆ ∆ ∆( ) = −[ ] +( ) ⇒ = − [ ] +( )−1

	

Taking the (vector) norm of both sides, and applying compatibility relations, Equation 
4.19, twice, we have

	
∆ ∆ ∆ ∆ ∆x A A x x A A x x= − [ ] +( ) ≤ +− −1 1

	

Inserting ∙A−1∙ = κ(A)/∙A∙ in this last equation, and dividing both sides by ∙x + Δx∙, 
yields
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∆
∆

∆x
x x

A
A

A
+

≤ κ( )
	

Since Δx represents small changes in x, then

	
x x x

x
x x

x
x

+ ≅ ⇒
+

≅∆
∆

∆
∆

	

Using this in the previous equation establishes Equation 4.33. In order to verify Equation 4.34, 
insert b + Δb for b, and x + Δx for x in Ax = b and proceed as before. This completes the 
proof.

Equations 4.33 and 4.34 assert that if κ(A) is small, then small percent changes in A or 
b will result in small percent changes in x. This, of course, is in line with the previous 
findings in this section. Furthermore, Equations 4.33 and 4.34 only provide upper bounds 
and not estimates of the percent change in solution.

EXAMPLE 4.19:  PERCENT CHANGE

Consider the linear system

	
Ax b A b x= =









 =

−
−









⇒ =
−





,
.

,
.

1 2
2 4 0001

1
2 0002

3
2solution



 	

Suppose the (1,2) entry of A is reduced by 0.01 while its (2,1) entry is increased by 0.01 
so that

	
∆ ∆A A A A=

−







 ⇒ = + =

0 0 01
0 01 0

1 1 99
2 0

.
.

.
.

New coefficient matrix

11 4 0001.










	

Solving the new system yields

	
Ax b x x x x= ⇒ =

−







= − =
−









98 51
49

101 51
51

. .
so that ∆

	

From this point forward, the 1-norm will be used for all vectors and matrices. 
The condition number of A is calculated as κ(A) = 3.6001 × 105 indicating ill-conditioning. 
The upper bound for the percent change in solution can be found as

	

∆ ∆x

x

A

A
A1

1

1

1

50 01
6 0001

3 6001 10 600 0100≤ = ×( ) =κ( )
.

.
. .
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The upper bound is rather large as a consequence of ill-conditioning. The actual 
percent change is calculated as

	

∆x

x
1

1

152 51
5

30 5020= =.
.

	

which is much smaller than the upper bound offered by Equation 4.33, thus asserting 
that the upper bound is in no way an estimate of the actual percent change.

4.7  Systems of Nonlinear Equations

Systems of nonlinear equations can be solved numerically by either using Newton’s 
method (for small systems) or the fixed-point iteration method* (for large systems).

4.7.1  Newton’s Method for a System of Nonlinear Equations

Newton’s method for solving a single nonlinear equation was discussed in Chapter 3. 
An extension of that technique can be used for solving a system of nonlinear equations. 
We will first present the idea and the details as pertained to a system of two nonlinear 
equations, followed by a general system of n nonlinear equations.

4.7.1.1  Newton’s Method for Solving a System of Two Nonlinear Equations

A system of two (nonlinear) equations in two unknowns can generally be expressed as

	

f x y

f x y
1

2

0
0

( , )
( , )

=
= 	

(4.35)

We begin by selecting (x1, y1) as an initial estimate of the solution. For the current 
two-dimensional case, for instance, (x1, y1) may be selected by first plotting f1 and f2, then 
picking a point near their point of intersection (the solution of the system). Suppose 
(x2, y2) denotes the actual solution so that f1(x2, y2) = 0 and f2(x2, y2) = 0. If x1 is sufficiently 
close to x2, and y1 to y2, then x2 − x1 and y2 − y1 are small and by Taylor series expansion 
we have

	

f x y f x y
f
x

x x
f
y

y y
x y x y

1 2 2 1 1 1
1

2 1
1

2 1

1 1 1 1

( , ) ( , ) ( ) (
, ,

= + ∂
∂

− + ∂
∂

−
( ) ( )

))

( , ) ( , ) ( ) (
, ,

+

= + ∂
∂

− + ∂
∂( ) ( )

�

f x y f x y
f
x

x x
f
y

y
x y x y

2 2 2 2 1 1
2

2 1
2

1 1 1 1

22 1− +y ) �

	

*	 Refer to Newton’s method and fixed-point iteration method for a single nonlinear equation, Chapter 3.
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where the terms involving higher powers of small quantities x2 − x1 and y2 − y1 have been 
neglected. Let Δx = x2 − x1 and Δy = y2 − y1 and recall that f1(x2, y2) = 0 and f2(x2, y2) = 0 to 
rewrite the above equations as

	

∂
∂

+ ∂
∂

+ = −

∂
∂

+ ∂

( ) ( )

( )

f
x

x
f
y

y f x y

f
x

x

x y x y

x y

1 1
1 1 1

2

1 1 1 1

1 1

, ,

,

( , )∆ ∆

∆

�

ff
y

y f x y
x y

2
2 1 1

1 1
∂

+ = −
( ),

( , )∆ �

	

which can be expressed as

	

∂
∂

∂
∂

∂
∂

∂
∂
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
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










=
−
−




( )

f
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f
y

f
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f
y
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y
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f

x y

1 1

2 2

1

2

1 1,

∆
∆ 



( )x y1 1,

	

(4.36)

This is a linear system and can be solved for Δx and Δy as long as the coefficient matrix 
is non-singular. The matrix

	

J f f

f
x

f
y

f
x

f
y

1 2

1 1

2 2
,( ) =

∂
∂

∂
∂

∂
∂

∂
∂



















	

is called the Jacobian matrix of f1 and f2. Therefore, for Equation 4.36 to have a non-trivial 
solution, we must have

	
det J f f

x y
1 2

1 1
0,

,
( ) { } ≠

( ) 	

Once Equation 4.36 is solved, the values of x2 = x1 + Δx and y2 = y1 + Δy become available. 
And they clearly do not describe the actual solution because higher-order terms in Taylor 
series expansions were neglected earlier. Since (x2, y2) is closer to the actual solution than 
(x1, y1) was, we use (x2, y2) as the new estimate to the solution and solve Equation 4.36, 
with (x2, y2) replacing (x1, y1), and continue the process until values generated at successive 
iterations meet a prescribed tolerance condition. A reasonable terminating condition is

	

∆
∆

x

y








≤
2

ε
	

(4.37)

where ε is a specified tolerance. Keep in mind that in each iteration step, the Jacobian 
matrix must be non-singular.
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EXAMPLE 4.20:  NEWTON’S METHOD

Solve the nonlinear system below using Newton’s method, terminating condition as in 
Equation 4.37 with tolerance ε = 10−4 and maximum number of iterations set to 20:

	

3 2 1 8 24 43 0

2 3 5 92

3 2

2 3

. . .

.

x y

x y

+ + =

− + =





 	

Solution

The original system is written in the form of Equation 4.35 as

	

f x y x y

f x y x y

1
3 2

2
2 3

3 2 1 8 24 43 0

2 3 5 92 0

( , ) . . .

( , ) .

= + + =

= − + − =





 	

First we need to find approximate locations of the roots graphically.

>> syms x y
>> f1 = 3.2*xˆ3+1.8*yˆ2+24.43; f2 = -2*xˆ2+3*yˆ3-5.92;
>> ezplot(f1,[-4,0,-4,6])
>> hold on
>> ezplot(f2,[-4,0,-4,6]) % Figure 4.6

Based on Figure 4.6, there is only one solution, and an appropriate initial estimate is 
(−2, 2). Performing partial differentiations in Equation 4.36, we find

	

9 6 3 6
4 9

2

2
2 2

1

2 2 2

. .

( , ) ( , )

x y

x y

x

y

f

f−


















=
−
−







− −

∆
∆

⇒⇒








Solve ∆
∆

x

y
	

x

y

–4 –3.5 –3 –2.5 –2 –1.5 –1 –0.5 0
–4

–3

–2

–1

0

1

2

3

4

5

6

Root

Initial
point

FIGURE 4.6
Graph of the nonlinear system in Example 4.20.
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The next solution estimate is then found as
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∆

	

Hand calculation of the first iteration can be performed as follows:
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Then
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To solve the problem entirely, the following MATLAB script will be used. In addition 
to the terminating condition in Equation 4.37, the script includes a segment that checks 
to see if |f1(x, y)| < ε and |f2(x, y)| < ε after each iteration. This is because sometimes 
an acceptable estimate of a root may have been found, but because of the nature of f1 
and/or f2, the current vector and the subsequent vector do not yet meet the terminating 
condition in Equation 4.37. The MATLAB built-in function jacobian is effectively used 
to generate the coefficient matrix in Equation 4.36.

f = [f1;f2]; % Note that f1 and f2 were already defined symbolically above
J = matlabFunction(jacobian(f,[x,y])); 
F = matlabFunction(f);

tol = 1e-4; kmax = 20; v(:,1) = [-2;2];

for k = 1:kmax,
    A = J(v(1,k),v(2,k));
    b = -F(v(1,k),v(2,k));

% The components of vector b are -f1 and -f2. 
  if norm(b,inf) < tol, 
        root = v(:,k); 
    return
  end

   if det(A) = = 0,
       break
   end

    delv = A\b;
    v(:,k+1) = v(:,k) + delv; 
    if norm(delv) < tol, 
      root = v(:,k+1);
        break
    end
end

Execution of this code results in

>> v

v =

   −2.0000   -2.1091   −2.1001   −2.0999
    2.0000    1.7442    1.7012    1.7000

After three iterations, the solution is computed as (−2.0999, 1.7000). The shaded values 
agree with the hand calculations presented earlier.
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4.7.1.2 � Newton’s Method for Solving a System of n Nonlinear Equations

A system of n (nonlinear) equations in n unknowns can in general be expressed as

	

f x x x

f x x x

f x x x
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n

n n
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2 1 2

1 2

0
0

0

( , , , )
( , , , )

( , , , )

… =
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…
… = 	

(4.38)

Choose (x1,1, x2,1, … , xn,1) as the initial estimate and follow the steps that led to Equation 
4.36 to arrive at
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(4.39)

Solve this system to obtain the vector comprised of increments Δx1, … , Δxn. Then update 
the solution estimate
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
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


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

	

If a specified terminating condition is not met, solve Equation 4.39 with (x1,2, x2,2, …, 
xn,2) replacing (x1,1, x2,1, …, xn,1) and continue the process until the terminating condition is 
satisfied.

4.7.1.3  Convergence of Newton’s Method

Convergence of Newton’s method is not guaranteed, but it is expected if these conditions 
hold:

•	 f1, f2, …, fn and their partial derivatives are continuous and bounded near the actual 
solution.

•	 The Jacobian matrix J( f1, f2, …, fn) is non-singular near the solution.
•	 The initial solution estimate is sufficiently close to the actual solution.

As it was the case with a single nonlinear equation, if Newton’s method does not exhibit 
convergence, it is usually because the initial solution estimate is not sufficiently close to 
the actual solution.
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4.7.2  Fixed-Point Iteration Method for a System of Nonlinear Equations

The fixed-point iteration to solve a single nonlinear equation (Chapter 3) can be 
extended to handle systems of nonlinear equations in the form of Equation 4.38. The 
idea is to  find  suitable iteration functions gi(x1, x2, …, xn), i = 1, 2, …, n and rewrite 
Equation 4.38 as

	

x g x x x

x g x x x

x g x x x

n

n

n n n

1 1 1 2

2 2 1 2

1 2

= …
= …

…
= …

( , , , )
( , , , )

( , , , ) 	

(4.40)

or in vector form,
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(4.41)

Choose (x1,1, x2,1, …, xn,1) as the initial estimate and substitute into the right sides of the 
equations in Equation 4.40. The updated estimates are calculated as

	

x g x x x

x g x x x

x g

n

n

n n

1 2 1 1 1 2 1 1

2 2 2 1 1 2 1 1

2

, , , ,

, , , ,

,

( , , , )
( , , , )

= …
= …

…
= (( , , , ), , ,x x xn1 1 2 1 1… 	

These new values are then inserted in the right sides of Equation 4.40 to generate the 
new updates, and so on. The process continues until convergence is observed.

4.7.2.1  Convergence of the Fixed-Point Iteration Method

The conditions for convergence of the fixed-point iteration

	
x g x( ) ( ) , , , ,k k k+ = ( ) = …1 0 1 2

	
(4.42)

are similar to those for the case of a function of one variable. Let R be an n-dimensional 
rectangular region comprised of points x1, x2, …, xn such that ai ≤ xi ≤ bi (i = 1, 2, …, n) for 
constants a1, a2, …, an and b1, b2, …, bn. Suppose g(x) is defined on R. Then the sufficient 
conditions for convergence of the fixed-point iteration method, Equation 4.42, are*:

•	 Iteration functions g1, g2, …, gn and their partial derivatives with respect to x1, x2, 
…, xn are continuous near the actual solution.

*	 Refer to Atkinson, K.E., An Introduction to Numerical Analysis, 2nd ed., John Wiley, NY, 1989
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•	 There exists a constant K < 1 such that for each x ∈R ,

	

∂
∂

≤ = … = …
g

x
K
n

j n i nj

i

( )
, , , , , , , ,

x
1 2 1 2

	
(4.43)

which may also be interpreted as
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(4.44)

•	 The initial estimate (x1,1, x2,1, …, xn,1) is sufficiently close to the actual solution.

EXAMPLE 4.21:  FIXED-POINT ITERATION

Using the fixed-point iteration method, solve the nonlinear system in Example 4.20:

	

3 2 1 8 24 43 0

2 3 5 92

3 2

2 3

. . .

.

x y

x y

+ + =

− + =





 	

Use the same initial estimate and terminating condition as before.

Solution

We first need to rewire the given equations in the form of Equation 4.40 by select-
ing suitable iteration functions. Recall that these iteration functions are not unique. 
One way to rewrite the original system is

	

x g x y
y

y g x y
x

= = − +





= = +





1

2 1 3

2

2

1 8 24 43
3 2

2 5 92
3

( , )
. .

.

( , )
.

/



1 3/

	

Based on Figure 4.6, a reasonable rectangular region R is chosen as −4 ≤ x ≤ −2, 
0 ≤ y ≤ 2. We next examine the conditions listed in Equation 4.43 in relation to our 
choices of g1 and g2. Noting n = 2 in this example, the four conditions to be met are

	

∂
∂

< ∂
∂

< ∂
∂

< ∂
∂

<g
x

g
y

g
x

g
y

1 1 2 21
2

1
2

1
2

1
2

, , ,
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Of course, ∂ ∂ = <g x1
1
20/  and ∂ ∂ = <g y2

1
20/  satisfy two of the above. The other 

two may be inspected with the aid of MATLAB as follows:

>> syms x y
>> g1 = sym('-((1.8*yˆ2+24.43)/3.2)ˆ(1/3)');
>> g2 = sym('((2*xˆ2+5.92)/3)ˆ(1/3)');
>> subplot(2,1,1), ezplot(abs(diff(g1,'y')),[0 2]) % First plot in Figure 4.7
>> subplot(2,1,2), ezplot(abs(diff(g2,'x')),[-4 -2]) % Complete Figure 4.7

The two plots in Figure 4.7 clearly indicate that the two remaining partial derivatives 
satisfy their respective conditions as well. This means that the vector function

	
g =









g

g
1

2 	

has a fixed point in region R, and the fixed-point iteration in Equation 4.42 is guaranteed 
to converge to this fixed point.

The following code will use the fixed-point iteration to generate a sequence of values 
for x and y and terminates the iterations as soon as the tolerance is met. For simplicity, 
we define a vector

	
v =









x

y
	

and subsequently define g1 and g2 as functions of the components of vector v.

% Define the iteration functions g1 and g2
g1 = @(v) (-((24.43+1.8*v(2,1)ˆ2)/3.2)ˆ(1/3));
g2 = @(v) (((5.92+2*v(1,1)ˆ2)/3)ˆ(1/3));
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FIGURE 4.7
Graphical inspection of upper bounds for |∂g1/∂y| and ≤ft|∂g2/∂x\right|.
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tol = 1e-4; kmax = 20;
v(:,1) = [-1;-2]; % Initial estimate
for k = 1:kmax,
    v(:,k+1) = [g1(v(:,k));g2(v(:,k))]; % Fixed-point iteration
    if norm(v(:,k+1)-v(:,k)) < tol,
        break
    end
end

Execution of this code results in

>> v

v =

  -1.0000  -2.1461  -2.0574  -2.1021  -2.0980  -2.1000  -2.0998  -2.0999 -2.0999
  -2.0000  1.3821  1.7150  1.6863  1.7007   1.6994  1.7000   1.7000 1.7000

Convergence to the true solution is observed after eight (8) iterations. The estimated 
solution agrees with that in Example 4.20.

PROBLEM SET (CHAPTER 4)

Gauss Elimination Method (Section 4.3)

 In Problems 1 through 12 solve the linear system using basic Gauss elimination with 
partial pivoting, if necessary.

	 1.	
3 2 0

2 8
1 2

1 2

x x

x x

+ =
− + =





	 2.	
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
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

	 4.	
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	 8.	
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1 8 1
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	 13.	Consider the linear 2 × 2 system

	
Ax b A b x= =
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where ε > 0 is a very small constant.
	 a.	 Solve by Gauss elimination without partial pivoting.
	 b.	 Solve by Gauss elimination with partial pivoting. Compare the results and 

discuss their validity.

In Problems 14 through 18, a linear system is given.

 a.	   Solve using Gauss elimination with partial pivoting and row scaling.

 b.	   Solve by executing the user-defined function GaussPivotScale.

	 14.	
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	 16.	
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Tridiagonal Systems

In Problems 19 through 24, a tridiagonal system is given.

 a.	   Solve using the Thomas method.

 b.	   Solve by executing the user-defined function ThomasMethod.
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	 25.	Finite difference methods are used to numerically solve boundary-value problems; 
Chapter 8. These methods are designed so that tridiagonal systems are generated 
in their solution process. In one such application, the following tridiagonal system 
has been created:
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
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
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. .
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
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
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
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

	

	 a.	  Solve using the Thomas method. Use 4-digit rounding up.

	 b.	  Solve by executing the user-defined function ThomasMethod. Compare 
with the results in (a).

	 26.	Alternating direct implicit (ADI) methods are used to numerically solve a certain 
type of partial differential equation in a rectangular region; Chapter 10. These 
methods are specifically designed to generate tridiagonal systems in their solution 
process. In one such application, the following tridiagonal system has been created:

	

−
−

−
−

−
−























4 1 0 0 0 0
1 4 1 0 0 0
0 1 4 0 0 0
0 0 0 4 1 0
0 0 0 1 4 1
0 0 0 0 1 4




































=

−
−
−

x

x

x

x

x

x

1

2

3

4

5

6

0 6056
1 0321
1 1

.

.

. 3389
0 2563
0 4195
0 3896

−
−
−































.

.

. 	
	 a.	  Solve using the Thomas method. Use 4-digit rounding up.
	 b.	 Solve by executing the user-defined function ThomasMethod. Compare with 

the results in (a).

LU Factorization Methods (Section 4.4)

Doolittle Factorization

 In Problems 27 through 30 find the Doolittle factorization of each matrix using the 
steps of Gauss elimination method.

	 27.	A =
−

− −
−

















1 2 2
3 4 5
2 6 3

	 28.	A =
− −

−
















1 3 5
4 1 0
2 5 6

	 29.	A =

−

−



















2 4 2 6
1 3 2 5
4 7 3 10
3 5 1 11
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	 30.	A =
− − −



















3 6 3 9
1 5 4 7
2 1 2 3

3 0 1 7

In Problems 31 through 38,

 a.	   Using Doolittle’s method solve each linear system Ax = b.

 b.	   Confirm the results by executing DoolittleMethod.

	 31.	 A b= − −
−

















= −
















3 1 1
3 3 1

3 3 6

2
4

0
,

	 32.	 A b= −
− −

















= −
−

















2 2 1
1 1
2 6

6
15
24

13
2

10
3

,

	 33.	 A b=
−

−
−

















=
−















1 3 3
5 2

14 3

9
0
3

1
3
2
3

,

	 34.	A b=
−

− −
−

















=
−

−

















4 2 8
4 5 13

1 19

8
19
3719

2

,

	 35.	A b=
− −

−
















=
−















1 3 5
4 1 0
2 5 6

14
5
9

,

	 36.	A b=
−

− −
−

















=
−

−

















1 2 2
3 4 5
2 6 3

8
21
13

,

	 37.	A b=

−
−

− − −
−



















=
−

















3 0 1 2
3 2 2 1

0 2 5 2
6 6 7 20

4
1

6
40

,



	 38.	A b=

− −
−

− − −
− −



















=
−










2 1 3 1
4 5 6 0

4 2 1 1
2 13 12 18

0
7
11

65

,









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Cholesky Factorization Method

In Problems 39 through 44,

 a.	   Using Cholesky’s method solve each linear system Ax = b.

 b.	   Confirm the results by executing CholeskyMethod.

	 39.	A b=
−

−

















=
−












1 1 2
1 10 4
2 4 24

3
33
78

,

	 40.	A b=
−

−
















=
−












9 6 3
6 13 1

3 1 6

30
53
9

,

	 41.	A b=
−

−

















=
−












4 2 6
2 17 5
6 5 17

14
17
45

,

	 42.	A b=
− −

−
−

















=
−












1 2 3
2 5 7
3 7 26

6
13
83

,

	 43.	A b=

−
−
−

− − −



















=

−
−
−








4 2 6 4
2 2 2 6
6 2 11 3
4 6 3 25

16
26
12

114

,












	 44.	A b=



















= −



















9 6 3 6
6 5 6 7
3 6 21 18
6 7 18 18

3
1
3

1

,

Crout Factorization

	 45.	  Crout LU factorization requires the diagonal entries of U be 1’s, while L is a 
general lower triangular matrix. Perform direct calculation of the entries of L and 
U for the case of a 3 × 3 matrix, similar to that in Example 4.6. Based on the find-
ings, write a user-defined function with function call [L, U] = Crout_Factor(A) 
that returns the desired lower and upper triangular matrices for any n × n matrix. 
Apply Crout_Factor to

	

A = −
− − −

















4 1 7
2 3 6
5 1 5 	

Crout’s Method

	 46.	  Crout’s method uses Crout factorization (Problem 45) of the coefficient 
matrix A of the linear system Ax = b and generates two triangular systems, which 
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can be solved by back and forward substitution. Write a user-defined function 
with function call x = Crout_Method(A,b). Apply Crout_Method to

	

4 1 7
2 3 6
5 1 5

11
11
6

−
− − −

















= −
−

















x

	

Iterative Solution of Linear Systems (Section 4.5)

Vector/Matrix Norms

In Problems 47 through 54,

 a.	   Calculate the three norms of each vector or matrix.

 b.	   Verify the results by using the MATLAB built-in function norm.

	 47.	 v =








1
2

1
1

	 48.	 v = −
















3
2
3

1

	 49.	 v =
















1
3
2
3
1
4

	 50.	 v =

−

−



















1
0
3
4

	 51.	 A = −

−



















1
2

1
2

1
2

1 0

1 1

0 2

	 52.	A =
−

−

















10 0 3 0 7
0 2 7 1 2
0 9 1 1 5

. .
. .
. .

	 53.	 A =

−
−

−
−





















1
5

1
2

1
3

2
3

1
5

1
3

1
3

1
5

2
3

2
5

1
3

1
5

0
1

1
0
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	 54.	 A =

−
−

− −
−





















2 0
1

3
0 4

1
2

1
3

1
2

1
5

1
3

1
3

1
5

2
3

1
3

2
3

	 55.	  Write a user-defined function with function call [x,k,Mnorm] = 
GenIter_1(A,b,x0,tol,kmax) to solve Ax = b using the general iterative 
method as follows: The coefficient matrix is split as A = Q − P where Q has the 
same diagonal and upper diagonal (one level higher than the diagonal) entries as 
A with all other entries zero. The input/output arguments, as well as the terminat-
ing condition are as in functions Jacobi and GaussSeidel with the same 
default values. The output Mnorm is the infinite norm of the corresponding itera-
tion matrix. Apply GenIter_1 to the linear system

	

− −
−

−
−

− −























=

−

6 2 0 1 1
1 7 2 1 1
2 0 9 3 3
0 2 3 8 2
2 4 1 5 14

16
1
8
2
9

x



























=



























= −, ,( )x 0 6

0
1
0
1
0

10ε

	

	 56.	  Write a user-defined function with function call [x,k,Mnorm] = 
GenIter_2(A,b,x0,tol,kmax) to solve Ax = b using the general iterative 
method as follows: The coefficient matrix must be split as A = Q − P where Q has 
the same diagonal, upper diagonal (one level higher than the diagonal), and lower 
diagonal (one level lower than the diagonal) entries as A with all other entries 
zero. The input/output arguments, as well as the terminating condition are as in 
functions Jacobi and GaussSeidel with the same default values. The output 
Mnorm is the infinite norm of the corresponding iteration matrix. Apply GenIter_2 
to the linear system

	

8 0 1 1 4
0 6 0 1 4
2 1 5 0 1
3 2 1 7 0
1 3 4 1 11

11
16

9

−

− − −
−

− −























=

−

−x
−−



























=



























= −

10
1

0
1
1
0
1

100, ,( )x ε 66

	

Jacobi Iteration Method

In Problems 57 through 60,

 a.	 �   For each linear system find the components of the first vector generated by 
the Jacobi method.

 b.	 �   Find the solution vector by executing the user-defined function Jacobi with 
default values for tol and kmax.
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	 57.	
1 9 0 7 0 9
0 6 2 3 1 2
0 8 1 3 3 2

1 5
0 7
9 1

. . .

. . .
. . .

.

.

.

−

−

















=











x




=
















, ( )x 0

1
0
1

	 58.	
−

−
−

















=
−
−

















= ×

4 1 0
1 3 1
0 1 5

6
6

7

0
3 1x x 0, ( )

	 59.	

3 0 1 1
0 4 2 1
1 2 5 0
1 3 2 6

5
3
4

16

−
−
−

−



















=
−
−



















x x, (00

0
1
1
0

) =



















	 60.	

6 2 1 2
2 5 1 0
1 3 7 1
2 1 4 8

5
7
28
6

0

−
−

−
− −



















=



















x x, ( )) =



















0
0
1
1

 

 In Problems 61 and 62, calculate the first two vectors generated by the Jacobi method.

	 61.	
−

−
−

















= −
















=















3 1 2
2 4 1
1 2 4

24
5

12

1
0
1

0x x, ( )



	 62.	
−

−
−

















=
















=
















5 4 0
2 6 3
1 2 3

18
11
3

0
1
0

0x x, ( )

Gauss–Seidel Iteration Method

In Problems 63 through 66,

 a.	 �   For each linear system find the components of the first vector generated by 
the Gauss–Seidel method.

 b.	 �   Solve the system by executing the user-defined function GaussSeidel with 
default values for tol and kmax.

	 63.	
4 2 6
2 12 5
6 5 17

2
15
5

0
1
0

0

−

−

















=
















=
















x x, ( )

	 64.	
1 1 2
1 10 4
2 4 18

6
15
46

1
1
0

0

−

−

















=
−















=











x x, ( )



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	 65.	

6 3 2 0
3 7 1 2
2 1 8 3

0 2 3 9

9
5

1
20

0

−
−

−
−



















=
−



















x x, ( )) =



















0
0
1
1

	 66.	

5 1 1 2
2 10 1 3

0 4 10 1
3 3 2 10

6 5
7
9

12 5

−
−

−
−



















=

















x

.

.



=



















, ( )x 0

0
0
1
1

 

 In Problems 67 and 68, calculate the first two vectors generated by the Gauss–Seidel 
method.

	 67.	
1 2 3
2 10 4
3 4 30

1
30
48

1
0
0

0
−

−

















=











=












x x, ( )



	 68.	
6 2 6
2 18 5
6 5 16

28
2
45

1
1
0

0
















=
−

−












=












x x, ( )


 

In Problems 69 and 70 solve the linear system by executing user-defined functions 
Jacobi and GaussSeidel with the initial vector and tolerance as indicated, and default 
kmax. Compare the results and discuss convergence.
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Ill-Conditioning and Error Analysis (Section 4.6)

Condition Number

In Problems 71 through 76,

 a.	   Calculate the condition number using all three matrix norms.

 b.	  Verify the results using the MATLAB built-in function cond.

	 71.	A =










1 0 4
3 1 1

.

.
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	 72.	A = −
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Ill-Conditioning

In Problems 77 through 80, a linear system Ax = b, its actual solution xa, and a poor 
approximation x̂ of the solution are given. Perform all of the following to inspect the ill-
conditioning or well-conditioning of the system.

 a.	 �   Perturb the second component of b by a small ε > 0 and find the solution of 
the ensuing system.

 b.	   Find the condition number of A using the 1-norm.
 c.	 �   Calculate the 1-norm of the residual vector corresponding to the poor 

approximation x̂.
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Percent Change

	 81.	  Consider the system in Example 4.19 and suppose the second component of 
vector b is increased by 0.0001, while the coefficient matrix is unchanged from its 
original form. Find the upper bound for, and the actual value of, the percent 
change in solution. Use the vector and matrix 1-norm.

	 82.	  Consider

	 Ax b A b= =








 =

−
−









, ,
5 9
6 11

1
1

	 a.	 Increase each of the second-column entries of A by 0.01, solve the ensuing 
system, and calculate the actual percent change in solution. Also find an upper 
bound for the percent change. Use matrix and vector 1-norm.

	 b.	 In the original system, increase each of the components of b by 0.01, and repeat 
Part (a).

Systems of Nonlinear Equations (Section 4.7)

	 83.	  Consider

	

x y

xy x

2 2

2

1 2
1 0

+ − =
+ − =







( )
( )

	

		  Starting with the initial estimate (x1, y1) = (1.4, 1), use Newton’s method to find 
(x2, y2).

	 84.	  Consider

	

y
x

x y

− =

+ − =







1
1

1 21
2

2 1
3

2( )
	

	 Starting with the initial estimate (x1, y1) = (2, 0), use Newton’s method to find (x2, y2) 
and (x3, y3).

	 85.	  Consider

	

( )

sin

x y

xy x

− = −

=







1 13

2

	

	 First locate the roots graphically. Then find an approximate value for one of the 
roots using Newton’s method with initial estimate (2, −2), a terminating condition 
with ε = 10−4, and allow a maximum of 20 iterations.

 In Problems 86 through 91, solve the nonlinear system as follows: Locate the roots 
graphically. Then find the approximate values for all the roots using Newton’s method 
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with suitable initial estimates. In all cases, use a terminating condition with ε = 10−4 and 
allow a maximum of 20 iterations.

	 86.	
y x

x y

− + =
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
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	 87.	
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	 90.	
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	 91.	
x y x

y xy x

2

3

2 0 4
2 3 2 0

+ − =
+ − =







.

	 92.	  A two-link robot arm in plane motion is shown in Figure 4.8. The coordinate 
system xy is the tool frame and is attached to the end-effector. The coordinates of 
the end-effector relative to the base frame are expressed as

	

x L L

y L L

= + +( )
= + +( )






1 1 2 1 2

1 1 2 1 2

cos cos
sin sin

θ θ θ
θ θ θ

	

	 Suppose the lengths, in consistent physical units, of the two links are L1 = 1 and 
L2 = 2, and that x = 2.5, y = 1.4. Find the joint angles θ1 and θ2 (in radians) using 
Newton’s method with an initial estimate of (0.8, 0.9), tolerance ε = 10−4, and 
maximum number of iterations set to 10.

Base frame

x

y
θ1

θ2

Tool frame
x

y

L1

L2

FIGURE 4.8
A two-link arm in plane motion.



159Numerical Solution of Systems of Equations

	 93.	  Solve the following system of three nonlinear equations in three unknowns

	

x y z

x z

x y z

2 2

2 2 1
3

2 2 2

2

1

+ =

+ =

+ + =









	

	 using Newton’s method with initial estimate (1, 1, 0.1), tolerance ε = 10−4, and 
a maximum of 10 iterations.

	 94.	  Solve the following nonlinear system using Newton’s method, with initial 
estimate (0, 1, 1), tolerance ε = 10−3, and kmax = 10.

	

xy x z

x y z

x y z

− + =

− + =
+ =









cos .

.
sin .

2

2 2

3 6

2 2 8
3 2 8

	

	 95.	  Consider the nonlinear system

	

xy x

x y

2

3

0

1 1 0

− =

− + =







sin

( )
	

	 With iteration functions

	
g x y

x
y

g x y
x

1 2 2 3

1
1

( , )
sin

, ( , )
( )

= = −
− 	

	 use the fixed-point iteration method with initial estimate (2, −2), tolerance ε = 10−3, 
and maximum 20 iterations to estimate one solution of the system.

	 96.	  Consider the system

	

y x

x y

= −

+ =







2

2 2

4

10
	

	 a.	 Locate the roots graphically.
	 b.	 Find the root in the first quadrant by using the fixed-point iteration with 

iteration functions

	 g x y y g x y x1 2
24 10( , ) , ( , )= + = − 	

	 with (2, 0) as initial estimate, ε = 10−3, and maximum number of iterations 
set to 20.

	 c.	 There are three other roots, one in each quadrant. Find these roots by using 
combinations of the same g1 and g2 with positive and negative square roots.
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	 97.	  Consider the nonlinear system

	

2 0

3 4 82 2

e y

x y

x + =

+ =





 	

	 a.	 Locate the roots graphically.
	 b.	 Based on the location of the roots, select suitable iteration functions g1 and g2 

and apply the fixed-point iteration method with (−1, −2) as the initial estimate, 
ε = 10−4, and number of iterations not to exceed 20, to find one of the two roots.

	 c.	 To find the other root, write the original equations in reverse order, suitably 
select g1 and g2, and apply fixed-point iteration with all information as in (b).

	 98.	  Consider the nonlinear system

	

x y

x y

2 2

2 2

1 2

2 3 3

+ =

+ =







.

	

	 a.	 Locate the roots using a graphical approach.
	 b.	 Select iteration functions

	
g x y y g x y

x
1

2
2

2

1 2
3 2

3
( , ) . , ( , )= − = −

	

	 and apply the fixed-point iteration method with initial estimate (0.25, 1) and 
tolerance ε = 10−4 to find a root. Decide the maximum number of iterations to 
be performed.

	 c.	 There are three other roots, one in each of the remaining quadrants. Find these 
roots by using combinations of the same g1 and g2 with positive and negative 
square roots.



5
Curve Fitting and Interpolation

A set of data may emanate from various sources. In many engineering and scientific 
applications, the data originates from conducting experiments that involve measure-
ment of physical quantities; for instance, measuring the displacement of a coiled spring 
when subjected to tensile or compressive force. In other cases, the data may be generated 
as a result of using numerical methods; for instance, numerical solution of differential 
equations (Chapters 7, 8, and 10).

An available set of data can be used for different purposes. In some cases, the data is 
represented by a function, which in turn can be used for numerical differentiation or 
integration (Chapter 6). Such function may be obtained through curve fitting, or approxi-
mation, of the data. Curve fitting is a procedure where a function is used to fit a given 
set of data in the “best” possible manner without having to match the data exactly. As a 
result, while the function does not necessarily yield the exact value at the data points, 
overall it fits the set of data well. Several types of functions and polynomials of different 
degrees can be used for curve fitting purposes. Curve fitting is normally used when the 
data has substantial inherent error, such as data gathered from experimental measure-
ments. The  aforementioned function or polynomial can then be used for interpolation 
purposes; that is, to find estimates of values at intermediate points (points between the 
given data points) where the data is not directly available.

In other situations, a single interpolating polynomial is sought that agrees exactly with 
the data points, and used to find estimates of values at intermediate points. For a small set 
of data, a single interpolating polynomial may be adequate. For large sets of data, however, 
different polynomials are used in different intervals of the whole data. This is referred to 
as spline interpolation.

5.1  Least-Squares Regression

As mentioned above, a single polynomial may be sufficient for interpolation of a small set 
of data. However, when the data has substantial error, even if the size of data is small, this 
may no longer be appropriate. Consider Figure 5.1, which shows a set of seven data points 
collected from an experiment. The nature of the data suggests that, for the most part, the 
y values increase with the x values. A single interpolating polynomial goes through all of 
the data points, but displays large oscillations in some regions. As a result, the interpo-
lated values near x = 1.2 and x = 2.85, for instance, will be well outside of the range of the 
original data.

In these types of situations, it makes more sense to find a function that does not 
necessarily go through all of the data points, but fits the data well overall. One option, 
for example, is to fit the “best” straight line into the data. This line is not random and 
can be generated systematically via least-squares regression.
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5.2  Linear Regression

The simplest case of a least-squares regression involves finding a straight line (linear func-
tion) in the form

	 y a x a= +1 0 	 (5.1)

that best fits a set of n data points (x1, y1), …, (xn, yn). Of course, the data first needs to be 
plotted to see whether the independent and dependent variables exhibit a somewhat lin-
ear relationship. If this is the case, then the coefficients a1 and a0 are determined such that 
the error associated with the line is minimized. As shown in Figure 5.2, at each data point 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Linear regression fit

Data

Single interpolating polynomial

FIGURE 5.1
Interpolation by a single polynomial, and linear regression fit of a set of data.

x

y

...(x1, y1)
(x2 , y2) (xn, yn)

a1xi + a0

(xi , yi)
ei

en

y = a1x + a0

yi

xi

e1
e2 ...

FIGURE 5.2
A linear fit of data, and individual errors.
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(xi, yi) the error ei is defined as the difference between the true value yi and the approximate 
value a1xi + a0,

	 e y a x ai i i= − +( )1 0 	 (5.2)

These individual errors will be used to calculate a total error associated with the line 
y = a1x + a0.

5.2.1  Deciding a “Best” Fit Criterion

Different strategies can be considered for determining the best linear fit of a set of n data 
points (x1, y1), …, (xn, yn). One strategy is to minimize the sum of all the individual errors,

	
E e y a x ai

i

n

i i

i

n

= = − +
= =

∑ ∑
1

1 0

1

[ ( )]
	

(5.3)

This criterion, however, does not offer a good measure of how well the line fits the data 
because, as shown in Figure 5.3, it allows for positive and negative individual errors—even 
very large errors—to cancel out and yield a zero sum.

Another strategy is to minimize the sum of the absolute values of the individual errors,

	
E e y a x ai

i

n

i i

i

n

= = − +
= =

∑ ∑| | | ( )|
1

1 0

1 	
(5.4)

As a result, the individual errors can no longer cancel out and the total error is always 
positive. This criterion, however, is not able to uniquely determine the coefficients that 
describe the best line fit because for a given set of data, several lines can have the same 
total error. Figure 5.4 shows a set of four data points with two line fits that have the 
same total error.

The third strategy is to minimize the sum of the squares of the individual errors,
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(5.5)

e4

x

y

e3

e1

e2

FIGURE 5.3
Zero total error based on the criterion defined by Equation 5.3.
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This criterion uniquely determines the coefficients that describe the best line fit for a 
given set of data. As in the second strategy, individual errors cannot cancel each other 
out and the total error is always positive. Also note that small errors get smaller and large 
errors get larger. This means that larger individual errors have larger contributions to 
the total error being minimized so that this strategy essentially minimizes the maximum 
distance that an individual data point is located relative to the line.

5.2.2  Linear Least-Squares Regression

As decided above, the criterion to find the line y = a1x + a0 that best fits the data (x1, y1), …, 
(xn, yn) is to determine the coefficients a1 and a0 that minimize

	
E y a x ai i

i

n

= − +
=

∑[ ( )]1 0
2

1 	
(5.6)

Noting that E is a (nonlinear) function of a0 and a1, it attains its minimum where ∂E/∂a0 
and ∂E/∂a1 vanish, that is,
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Expanding and rearranging the above equations, yield a system of two linear equations 
to be solved for a0 and a1:
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FIGURE 5.4
Two linear fits with the same total error calculated by Equation 5.4.
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By Cramer’s rule, the solutions are found as
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The user-defined function LinearRegression uses the linear least-squares regression 
approach to find the straight line that best fits a set of data. The function plots this line, 
as well as the original data.

EXAMPLE 5.1:  LINEAR LEAST-SQUARES REGRESSION

Consider the data in Table 5.1.

function [a1, a0] = LinearRegression(x,y)
%
% LinearRegression uses linear least-squares approximation to fit a data
% by a line in the form y = a1*x + a0. It also returns the plot of the
% original data together with the best line fit.
% 
%   [a1, a0] = LinearRegression(x,y), where
% 
%     x, y are n-dimensional row or column vectors of data,
%
%     a1 and a0 are the coefficients that describe the linear fit.
%
n = length(x); 
Sumx = sum(x); Sumy = sum(y); Sumxx = sum(x.*x); Sumxy = sum(x.*y);
den = n*Sumxx - Sumx^2;
a1 = (n*Sumxy - Sumx*Sumy)/den; a0 = (Sumxx*Sumy - Sumxy*Sumx)/den;
% Plot the data and the line fit
l = zeros(n,1);  % Pre-allocate
for i = 1:n,
    l(i) = a1*x(i) + a0;   % Calculate n points on the line
end
plot(x,y,'o')
hold on
plot(x,l)
end

TABLE 5.1

Data in Example 5.1

xi yi

0.2 8.2
0.4 8.4
0.6 8.5
0.8 8.6
1.0 8.8
1.2 8.7
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	 1.	 Using least-squares regression, find a straight line that best fits the data.
	 2.	 Confirm the results by executing the user-defined function 

LinearRegression.

Solution

	 1.	 Noting n = 6, we first calculate all the essential sums involved in Equation 5.7:

	

x yi

i

i

i= =
∑ ∑= + + + = = + + + =

1

6

1

6

510.2 0.4   1.2 4.2, 8.0 8.4   8.7 2� � .

	

	

xi

i

2

1

6
2 2 2

=
∑ = + + + =( ( (0.2) 0.4)   1.2) 3.64�

	

	

x yi
i

i

=
∑ = + + + =

1

6

( ( (0.2)(8.0) 0.4)(8.4)   1.2)(8.7) 36.22�

	

	 Then, following Equation 5.7, the coefficients are found as

	
a a1 2 0

6 51
6

= −
−

= =( )( ) ( )( . )
( )( ) ( )

( )36.22 4.2 2
3.64 4.2

0.5429,
3.64 (( . ) ( )( )

( )( ) ( )
51

6 2

2 4.2 36.22
3.64 4.2

8.1533
−

−
=

	

	 Therefore, the line that best fits the data is described by

	 y x= +0.5429 8.1533 	

	 2.	 Execution of LinearRegression yields the coefficients a1 and a0, which 
describe the best line fit, as well as the plot of the line and the original set of 
data; Figure 5.5.
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8.9

x

y

Data

Data

Linear regression
y = 0.5429x + 8.1533

FIGURE 5.5
Data and the best line fit in Example 5.1.
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>> x = 0.2:0.2:1.2; y = [8.2 8.4 8.5 8.6 8.8 8.7];
>> [a1, a0] = LinearRegression(x,y)

a1 =

    0.5429

a0 =

    8.1533

5.3  Linearization of Nonlinear Data

If the relationship between the independent and dependent variables is not linear, curve-
fitting techniques other than linear regression must be used. One such method is polyno-
mial regression, to be discussed in Section 5.4. Others involve conversion of the data into 
a form that could be handled by linear regression. Three examples of nonlinear functions 
that are used for curve fitting are as follows.

5.3.1  Exponential Function

The exponential function is in the form

	 y ae a b constbx= = ( , ) 	 (5.8)

Because differentiation of the exponential function returns a constant multiple of the 
exponential function, this technique applies to situations where the rate of change of a 
quantity is directly proportional to the quantity itself; for instance, radioactive decay. 
Conversion into linear form is made by taking the natural logarithm of Equation 5.8 to 
obtain

	 ln lny bx a= + 	 (5.9)

Therefore, the plot of lny versus x is a straight line with slope b and intercept lna; 
see Figure 5.6a and d.

5.3.2  Power Function

Another example of a nonlinear function is the power function

	 y ax a b constb= = ( , ) 	 (5.10)

Linearization is achieved by taking the standard (base 10) logarithm of Equation 5.10,

	 log log logy b x a= + 	 (5.11)

so that the plot of log y versus log x is a straight line with slope b and intercept log a; see 
Figure 5.6b and e.
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5.3.3  Saturation Function

The saturation function is in the form

	
y

x
ax b

a b const=
+

= ( , )
	

(5.12)

Inverting Equation 5.12 yields

	

1 1
y

b
x

a= 



 +

	
(5.13)

so that the plot of 1/y versus 1/x is a straight line with slope b and intercept a; see 
Figure 5.6c and f.

EXAMPLE 5.2:  LINEARIZATION OF NONLINEAR DATA

Consider the data in Table 5.2.
The data must first be plotted before any specific approach is selected. Plot of the data 

(Figure 5.7 [left]) reveals that the saturation function may be suitable for a curve fit. To 
confirm that the saturation function is indeed the right choice, we need to determine 
whether the plot of 1/y versus 1/x is somewhat linear.

>> x = 10:10:100; y = [1.9 3.0 3.2 3.9 3.7 4.2 4.1 4.4 4.5 4.4];
>> xx = 1./x; yy = 1./y;    % Element-by-element reciprocals
>> subplot(1,2,1), plot(x,y,'o')   % Figure 5.7
>> subplot(1,2,2), plot(xx,yy,'o')

The plot of 1/y versus 1/x (Figure 5.7 [right]) in fact shows that the converted data 
behaves in a somewhat linear manner. Therefore, we will proceed with the saturation 
function fit. We will apply linear regression to this converted data to find the slope and 

y
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x x

1/a

y = axb
y = x/(ax + b)
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(a) (b) (c)

(d) (e) (f)lny

lna loga
logx 1/x

1

b

1
b

1
b

a
x

logy 1/y

y

y = aebx

FIGURE 5.6
Linearization of three nonlinear functions for curve fitting. (a,d) Exponential function, (b,e) Power function, 
(c,f) Saturation function.
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the intercept of the line fit. Execution of LinearRegression provides this information 
and also plots the result; Figure 5.8.

>> [a1, a0] = LinearRegression(xx,yy)

a1 =
    3.3052

a0 =
    0.1890    % Figure 5.8 is returned by the function

Based on the form in Equation 5.13, we have b = 3.3052 (slope) and a = 0.1890 (intercept). 
Consequently, the saturation function of interest is formed as

	
y

x
ax b

x
x

=
+

=
+0.1890 3.3052 	

TABLE 5.2

Data in Example 5.2

x y

10 1.9
20 3.0
30 3.2
40 3.9
50 3.7
60 4.2
70 4.1
80 4.4
90 4.5
100 4.4
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1/xx

FIGURE 5.7
Plot of the data in Table 5.2 (left) and converted data (right).
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The plot of this function together with the original data (Figure 5.9) clearly shows that 
the saturation function provides a reasonable fit of the given data.

x_fit = linspace(10,100);
for i = 1:100,
y_fit(i) = x_fit(i)/(0.1890*x_fit(i)+3.3052);
end
plot(x,y,'o')
hold on
plot(x_fit,y_fit)   % Figure 5.9

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1/x

1/
y

Converted data
1/y = 3.3052(1/x) + 0.1890

FIGURE 5.8
Linear fit of the converted data in Example 5.2.
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y = x/(0.1890x + 3.3052)

Original data

FIGURE 5.9
Curve fit using the saturation function; Example 5.2.
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EXAMPLE 5.3:  LINEARIZATION OF NONLINEAR DATA

Consider the data in Table 5.3.
The data is first plotted before any specific approach is selected. Plot of the data 

(Figure 5.10 [left]) suggests that the power function may be suitable for a curve fit. To confirm 
this, we need to determine whether the plot of log y versus log x is somewhat linear.

>> x = 0.1:0.1:1; y = [0.02 0.1 0.2 0.35 0.56 0.75 1.04 1.3 1.7 2.09];
>> xx = log10(x); yy = log10(y);
>> subplot(1,2,1), plot(x,y,'o')   % Figure 5.10
>> subplot(1,2,2), plot(xx,yy,'o')

Since the plot of log y versus log x (Figure 5.10 [right]) confirms a somewhat linear 
relationship, we proceed with the power function fit. We will apply linear regression 

TABLE 5.3

Data in Example 5.3

x y

0.1 0.02
0.2 0.10
0.3 0.20
0.4 0.35
0.5 0.56
0.6 0.75
0.7 1.04
0.8 1.30
0.9 1.70
1.0 2.09

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

x

y

–1 –0.8 –0.6 –0.4 –0.2 0–2

–1.5

–1

–0.5

0

0.5

log(x)

lo
g(

y)

Converted data
Original data

FIGURE 5.10
Plot of the data in Table 5.3 (left) and converted data (right).
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to this converted data to find the slope and the intercept of the line fit. Execution of 
LinearRegression returns this information and also plots the result; Figure 5.11.

>> [a1, a0] = LinearRegression(xx,yy)

a1 =
    1.9769

a0 =
    0.3252

Based on the form in Equation 5.11, we have b = 1.9769 (slope) and log a = 0.3252 
(intercept) so that a = 2.1145. The corresponding power function is

	 y ax xb= = 2.1145 1.9769

	

The plot of this function together with the original data (Figure 5.12) clearly shows 
that the power function provides a reasonable fit of the given data.

x_fit = linspace(0.1,1);
for i = 1:100,
y_fit(i) = 2.1145*x_fit(i)^1.9769;
end
plot(x,y,'o')
hold on
plot(x_fit,y_fit)   % Figure 5.12

5.4  Polynomial Regression

In the previous section we learned that a curve can fit into nonlinear data by transform-
ing the data into a form that can be handled by linear regression. Another method is to fit 
polynomials of different orders to the data by means of polynomial regression.

–1 –0.9 –0.8 –0.7 –0.6 –0.5 –0.4 –0.3 –0.2 –0.1 0
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–1.5
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–0.5

0

0.5

log(x)

lo
g(

y)

Converted data

log(y) = 1.9769 log(x) + 0.3252

FIGURE 5.11
Linear fit of the converted data in Example 5.3.
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The linear least-squares regression of Section 5.2 can be extended to fit a set of n data 
points (x1, y1), …, (xn, yn) with an mth-degree polynomial in the form

	 y a x a x a x a x am
m

m
m= + + + + +−

−
1

1
2

2
1 0  � 	
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(5.14)

The coefficients am, …, a2, a1, a0 are determined such that E is minimized. A necessary 
condition for E to attain a minimum is that its partial derivative with respect to each of 
these coefficients vanishes, that is,
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(5.15)
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FIGURE 5.12
Curve fit using the power function; Example 5.3.
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Manipulation of these equations yields a system of m + 1 linear equations to be solved 
for am, …, a2, a1, a0:
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5.4.1  Quadratic Least-Squares Regression

The objective is to fit a set of n data points (x1, y1), …, (xn, yn) with a second-degree polynomial
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is minimized. Following the procedure outlined above, which ultimately led to Equation 
5.16, the coefficients a2, a1, a0 are determined by solving a system of three linear equations:
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The user-defined function QuadraticRegression uses the quadratic least-squares 
regression approach to find the second-degree polynomial that best fits a set of data. The 
coefficients a2, a1, a0 are found by writing Equation 5.17 in matrix form and applying the 
built-in backslash “\” operator in MATLAB. The function also returns the plot of the data 
and the best quadratic polynomial fit.
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EXAMPLE 5.4:  QUADRATIC REGRESSION

Using quadratic least-squares regression find the second-degree polynomial that best 
fits the data in Table 5.4.

Solution
>> x = 0:0.4:1.6; y = [2.90 3.10 3.56 4.60 6.70];
>> [a2, a1, a0] = QuadraticRegression(x,y)

a2 =
    1.9554

a1 =
   -0.8536

a0 =
    2.9777

The plot returned by the user-defined function is shown in Figure 5.13.

function [a2, a1, a0] = QuadraticRegression(x,y)
%
% QuadraticRegression uses quadratic least-squares approximation to fit a
% data by a 2nd-degree polynomial in the form y = a2*x^2 + a1*x + a0.
%
%  [a2, a1, a0] = QuadraticRegression(x,y), where
%
%    x, y are n-dimensional row or column vectors of data,
%
%    a2, a1 and a0 are the coefficients that describe the quadratic fit.
%
n = length(x);
Sumx = sum(x); Sumy = sum(y);
Sumx2 = sum(x.^2); Sumx3 = sum(x.^3); Sumx4 = sum(x.^4);
Sumxy = sum(x.*y); Sumx2y = sum(x.*x.*y);

% Form the coefficient matrix and the vector of right-hand sides
A = [n Sumx Sumx2;Sumx Sumx2 Sumx3;Sumx2 Sumx3 Sumx4];
b = [Sumy;Sumxy;Sumx2y];
w = A\b;   % Solve for the coefficients
a2 = w(3); a1 = w(2); a0 = w(1);
% Plot the data and the quadratic fit
xx = linspace(x(1),x(end)); % Generate 100 points for plotting purposes
p = zeros(100,1); % Pre-allocate
for i = 1:100,
   p(i) = a2*xx(i)^2 + a1*xx(i) + a0; % Calculate 100 points
end
plot(x,y,'o')
hold on
plot(xx,p)
end
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5.4.2  Cubic Least-Squares Regression

The objective is to fit a set of n data points (x1, y1), …, (xn, yn) with a third-degree polynomial
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is minimized. Proceeding as always, a3, a2, a1, a0 are determined by solving a system of four 
linear equations generated by Equation 5.16.

A user-defined function (see Problem Set) with function call [a3, a2, a1, a0] = Cubic​
Regression (x, y) can then be written that uses the cubic least-squares regression 
approach to find the third-degree polynomial that best fits a set of data. The coefficients a3, a2, 
a1, a0 are found by expressing the appropriate 4 × 4 system of equations in matrix form and 
solving by “\” in MATLAB. The function should also return the plot of the original data and 
the best cubic polynomial fit.
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FIGURE 5.13
Quadratic polynomial fit in Example 5.4.

TABLE 5.4

Data in Example 5.4

x y

0 2.90
0.4 3.10
0.8 3.56
1.2 4.60
1.6 6.70
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EXAMPLE 5.5:  CUBIC REGRESSION

Find the cubic polynomial that best fits the data in Example 5.4. Plot the quadratic and 
cubic polynomial fits in one graph and compare.

Solution
>> x = 0:0.4:1.6; y = [2.90 3.10 3.56 4.60 6.70];
>> [a3, a2, a1, a0] = CubicRegression(x,y)     % See Problem Set

a3 =
    1.0417

a2 =
   -0.5446

a1 =
    0.5798

a0 =
    2.8977

>> hold on
>> [a2, a1, a0] = QuadraticRegression(x,y)  % Previously done in Example 5.4

a2 =
    1.9554

a1 =
   -0.8536

a0 =
    2.9777

Figure 5.14 clearly shows that the cubic polynomial fit is superior to the quadratic 
one. The cubic polynomial fit almost goes through all five data points, but not exactly. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

x

y

Cubic regression

Quadratic regression

Data

FIGURE 5.14
Quadratic and cubic polynomial fits; Example 5.5.
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This is because a third-degree polynomial has four coefficients but the data contains 
five points. A fourth-degree polynomial, which has five coefficients, would exactly 
agree with the data in this example. In general, if a set of n data points is given, then 
the (n − 1)th-degree polynomial that best fits the data will agree exactly with the data 
points. This is the main idea behind interpolation, and such polynomial is called an 
interpolating polynomial. We will discuss this topic in Section 5.5.

5.4.3  MATLAB Built-In Functions Polyfit and Polyval

A brief description of the MATLAB built-in function polyfit is given as:

POLYFIT Fit polynomial to data.

    P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) of
    degree N that fits the data Y best in a least-squares sense. P is a
    row vector of length N + 1 containing the polynomial coefficients in
    descending powers, P(1)*X^N + P(2)*X^(N-1) + ⋯ + P(N)*X + P(N + 1).

This polynomial is then evaluated at any x using the built-in function polyval. 
Specifically, yi = polyval(P,xi) returns the value of polynomial P evaluated at xi.

EXAMPLE 5.6:  CURVE FIT—POLYFIT FUNCTION

Using the polyfit and polyval functions find and plot the second-degree 
polynomial that best fits the data in Table 5.5. Apply the user-defined function 
QuadraticRegression and compare the results.

Solution
>> x = 0:0.3:1.2; y = [3.6 4.8 5.9 7.6 10.9];
>> P = polyfit(x,y,2)

P =

   3.8095  1.2286  3.7657    % Coefficients of the second-deg polynomial fit

>> xi = linspace(0,1.2);  % Generate 100 points for plotting purposes
>> yi = polyval(P,xi);    % Evaluate the polynomial at these points
>> plot(xi,yi,x,y,'o')    % Figure 5.15

Execution of QuadraticRegression yields:

>> [a2, a1, a0] = QuadraticRegression(x,y)

a2 =
    3.8095

a1 =
    1.2286

a0 =
    3.7657

The coefficients of the second-degree polynomial are precisely those returned by polyfit.
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5.5  Polynomial Interpolation

Given a set of n + 1 data points (x1, y1), …, (xn+1, yn+1), there is only one polynomial of degree 
at most n in the form

	 p x a x a x a x a x an
n

n
n( ) = + + + + ++

−
1

1
3

2
2 1  � 	

that goes through all the points. Although this polynomial is unique, it can be expressed 
in different forms. The two most commonly used forms are provided by Lagrange inter-
polating polynomials and Newton interpolating polynomials, which are presented in this 
section.

TABLE 5.5

Data in Example 5.6

x y

0 3.6
0.3 4.8
0.6 5.9
0.9 7.6
1.2 10.9

0 0.2 0.4 0.6 0.8 1 1.2 1.4
3

4

5

6

7

8

9

10

11

x

y

Second-degree polynomial fit
using 'polyfit'

Data

FIGURE 5.15
Cubic polynomial fit using polyfit.
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5.5.1  Lagrange Interpolating Polynomials

The first-degree Lagrange interpolating polynomial that goes through the two points 
(x1, y1) and (x2, y2) is in the form

	 p x L x y L x y1 1 1 2 2( ) ( ) ( )= + 	

where L1(x) and L2(x) are the Lagrange coefficient functions described by

	
L x

x x
x x

L x
x x
x x

1
2

1 2
2

1

2 1
( ) ( )= −

−
= −

−
,

	

Then L1(x1) = 1 and L1(x2) = 0, while L2(x1) = 0 and L2(x2) = 1. Consequently, p1(x1) = y1 and 
p1(x2) = y2, which means the polynomial, in this case a straight line, passes through the two 
points; see Figure 5.16a.

The second-degree Lagrange interpolating polynomial that goes through the three 
points (x1, y1), (x2, y2), and (x3, y3) is in the form

	 p x L x y L x y L x y2 1 1 2 2 3 3( ) ( ) ( ) ( )= + + 	

where

	
L x

x x x x
x x x x

L x
x x x x

x x
1

2 3

1 2 1 3
2

1 3

2 1
( )

( )( )
( )( )

( )
( )( )

( )
= − −

− −
= − −

−
,

(( )
( )

( )( )
( )( )x x

L x
x x x x

x x x x2 3
3

1 2

3 1 3 2−
= − −

− −
,

	

Therefore, L1(x1) = 1 = L2(x2) = L3(x3), while all other Li(xj) = 0 for i≠j. This yields 
p2(x1) = y1, p2(x2) = y2, and p2(x3) = y3 so that the polynomial goes through the three points; 
see Figure 5.16b.

In general, the nth-degree Lagrange interpolating polynomial that goes through n + 1 
points (x1, y1), …, (xn+1, yn+1) is formed as

	
p x L x y L x y L x yn n n i i

i

n

( ) ( ) ( ) ( )= + + =+ +

=

+

∑1 1 1 1

1

1

  �
	

(5.18)

x

y

x

y

p1(x)

p2(x)

(x2, y2)

(a) (b)

(x2, y2)
(x1, y1) (x1, y1)

(x3, y3)

FIGURE 5.16
(a) First-degree and (b) second-degree Lagrange interpolating polynomials.
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where each Li(x) is defined as

	

L x
x x
x x

i
j

i jj

j i

n

( ) =
−
−=

≠

+

∏  
1

1

	

(5.19)

and “Π” denotes the product of terms.
The user-defined function LagrangeInterp finds the Lagrange interpolating polyno-

mial that fits a set of data (x, y) and uses this polynomial to calculate the interpolated value 
yi at a specified point xi.

EXAMPLE 5.7:  LAGRANGE INTERPOLATION

Consider the data in Table 5.6 generated by the function y = 1 + e−x.

	 1.	 Find the first-degree Lagrange interpolating polynomial that goes through 
the first two data points, and use it to find the interpolated value at x = 0.35. 
Confirm the result by executing LagrangeInterp.

function yi = LagrangeInterp(x,y,xi)
%
% LagrangeInterp finds the Lagrange interpolating polynomial that goes
% through the data (x,y) and uses it to find the interpolated value
% at xi.
%
%   yi = LagrangeInterp(x,y,xi), where
%
%     x, y are n-dimensional row or column vectors of data,
%     xi is a specified point,
%
%     yi is the interpolated value at xi.
%
n = length(x);
L = zeros(1,n); % Pre-allocate
for i = 1:n,
    L(i) = 1;
    for j = 1:n,
        if j ∼= i,
            L(i) = L(i)*(xi - x(j))/(x(i) - x(j));
        end
    end
end
yi = sum(y.*L);

TABLE 5.6

Data in Example 5.7

x y = 1 + e−x

0.1 1.9048
0.5 1.6065
0.8 1.4493
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	 2.	 Find the second-degree Lagrange interpolating polynomial that goes through 
all three data points, and use it to find the interpolated value at x = 0.35. 
Confirm the result by executing LagrangeInterp.

	 3.	 Calculate the % relative errors associated with the two estimates in (1) and (2), 
and comment.

	 4.	 Using LagrangeInterp, plot the first-degree Lagrange interpolating polyno-
mial generated in (1), the second-degree polynomial generated in (2), and the 
original data in the same graph.

Solution

	 1.	 The two Lagrange coefficient functions are

	
L x

x x
x x

x
L x

x x
x x

x
1

2

1 2
2

1

2 1
( ) ( )= −

−
= −

−
= −

−
= −

−
0.5

0.1 0.5
,

0.1
0.5 0.1 	

	 The first-degree polynomial is then formed as

	

p x L x y L x y

x x
1 1 1 2 2( ) ( ) ( )

( ) (

= +

= −
−

+ −
−

0.5
0.1 0.5

1.9048
0.1

0.5 0.1
1.66065  0.7458 1.9794

simplify

) = − +x
	

	 Using this polynomial, we can interpolate at x = 0.35 to find

	 p1( )0.35 1.7184= 	

	 The result can be readily verified in MATLAB as follows.

% Input the first two data points only
>> x = [0.1 0.5]; y = [1.9048 1.6065];
>> yi = LagrangeInterp(x,y,0.35)

yi =
    1.7184

	 2.	 The three Lagrange coefficient functions are

	
L x

x x x x
x x x x

x x
1

2 3

1 2 1 3
( )

( )( )
( )( )

( )( )
( )(

= − −
− −

= − −
−

0.5 0.8
0.1 0.5 0..1 0.8− ) 	

	
L x

x x x x
x x x x

x x
2

1 3

2 1 2 3
( )

( )( )
( )( )

( )( )
( )(

= − −
− −

= − −
−

0.1 0.8
0.5 0.1 0..5 0.8− ) 	

	
L x

x x x x
x x x x

x x
3

1 2

3 1 3 2
( )

( )( )
( )( )

( )( )
( )(

= − −
− −

= − −
−

0.1 0.5
0.8 0.1 0..8 0.5− ) 	

	 The second-degree polynomial is then formed as

	

p x L x y L x y L x y

x x
2 1 1 2 2 3 3( ) ( ) ( ) ( )

( )( )
( )(

= + +

= − −
− −

0.5 0.8
0.1 0.5 0.1 00.8

1.9048
0.1 0.8

0.5 0.1 0.5 0.8
1.6065

)
( )

( )( )
( )( )

( )
(+ − −

− −
+ −x x x 00.1 0.5

0.8 0.1 0.8 0.5
1.4493

0.3168 0.
simplify

)( )
( )( )

( )
x

x

−
− −

= −2 99358 1.9952x + 	
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	 Using this polynomial, we can interpolate at x = 0.35 to find

	 p2( )0.35 1.7065= 	

	 The result is confirmed in MATLAB as

>> x = [0.1 0.5 0.8]; y = [1.9048 1.6065 1.4493];
>> yi = LagrangeInterp(x,y,0.35)

yi =
    1.7065

	 3.	 In calculating the errors we will use the entire values as stored in a calculator, 
as opposed to the values displayed showing only four decimal places. Noting 
yexact = 1 + e−0.35, the % relative errors are found as

	

p y
y

exact

exact

1 100 0
( )

.
0.35

8026%
− × =

	

p y
y

exact

exact

2 100 0
( )

.
0.35

1050%
− × =

	 The estimate provided by p2(x) is clearly superior because the data was more 
effectively utilized for interpolation.

	 4.	

x = [0.1 0.5 0.8]; y = [1.9048 1.6065 1.4493];

% Specific data to build the first-degree polynomial
x1 = [0.1 0.5]; y1 = [1.9048 1.6065];

% 100 points for plotting over the entire (original) data
xi = linspace(0.1,0.8);

% Use the first-degree polynomial [based on (x1,y1)] to evaluate at
% the 100 points 
for i = 1:100,
yi(i) = LagrangeInterp(x1,y1,xi(i));
end

% Plot
plot(xi,yi,x,y,'o')   % Figure 5.17
hold on

% Use the second-degree polynomial [based on (x,y)] to evaluate at
% the 100 points 
for i = 1:100,
yi(i) = LagrangeInterp(x,y,xi(i));
end

% Complete the figure
plot(xi,yi)

5.5.2  Drawbacks of Lagrange Interpolation

As observed in Example 5.7, none of the information gathered in the construction of p1(x) 
was saved and used in the construction of p2(x). This is always true when working with 
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Lagrange interpolating polynomials; that the quantities calculated while constructing a 
Lagrange polynomial cannot be stored and used in the construction of a higher-degree 
polynomial. This is particularly inconvenient in two situations: (1) when the exact degree 
of the interpolating polynomial is not known in advance; for instance, it might be better to 
use a portion of the set of data, or (2) when additional points are added to the data. In these 
cases, a more suitable form is provided by the Newton interpolating polynomials.

5.5.3  Newton Divided-Difference Interpolating Polynomials

Recall the notations we used in relation to Figure 5.16, that is, p1(x) is the first-degree 
polynomial that goes through (x1, y1) and (x2, y2), while p2(x) is the second-degree polyno-
mial that goes through (x1, y1), (x2, y2), and (x3, y3), etc. The Newton interpolating polynomi-
als are recursively constructed as

	

p x a a x x

p x p x a x x x x

p x p x a

1 1 2 1

2 1 3 1 2

3 2 4

( ) ( )
( ) ( ) ( )( )
( ) ( ) (

= + −
= + − −
= + xx − − −

…
= + − − −− +

x x x x x

p x P x a x x x x x xn n n n

1 2 3

1 1 1 2

)( )( )

( ) ( ) ( )( ) ( )… 	

(5.20)

where the coefficients a1, a2, …, an+1 are determined inductively as follows: Since p1(x) must 
agree with the data at (x1, y1) and (x2, y2), we have

	 p x y p x y1 1 1 1 2 2( ) ( )= =, 	

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

y Data

Second-deg
Lagrange poly

First-deg
Lagrange poly

FIGURE 5.17
First-degree and second-degree Lagrange interpolating polynomials in Example 5.7.
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so that

	

a a x x y

a a x x y
a y a

y y
x x

1 2 1 1 1

1 2 2 1 2
1 1 2

2 1

2 1

+ − =
+ − =

⇒ = = −
−

( )
( )

,
	

Similarly, p2(x) must agree with the data at (x1, y1), (x2, y2), and (x3, y3), hence

	 p x y p x y p x y2 1 1 2 2 2 2 3 3( ) ( ) ( )= = =, , 	

But the added term in p2(x) is a3(x − x1)(x − x2), which vanishes when x = x1 or x = x2. Thus,

	 p x p x p x p x2 1 1 1 2 2 1 2( ) ( ) ( ) ( )= =, 	

As a result, the two conditions p2(x1) = y1 and p2(x2) = y2 are simply p1(x1) = y1 and p1(x2) = y2, 
which already led to a1 and a2 in constructing p1(x). The third condition p2(x3) = y3 yields

	
p1 3 3 3 1 3 2 3 1 2 3 1 3 3 1( ) ( )( ) ( ) ( )(x a x x x x y a a x x a x x+ − − = ⇒ + − + −        xx x y3 2 3− =)

Using the values of a1 and a2 obtained earlier, this equation then gives

	
a

y y x x y y x x
x x

3
3 2 3 2 2 1 2 1

3 1
= − − − − −

−
( ) ( ) ( ) ( )/ /

	

Continuing this process yields all remaining coefficients. In the meantime, we observe 
that these coefficients follow a systematic pattern. First off, a1 is simply the first data y1. 
Then,  a2 is the difference quotient involving the first two data points, a3 is the differ-
ence quotient of difference quotients involving the first three data points, and so on. 
Even  though these coefficients can be readily formed using the cited pattern, they do 
tend to get very complicated beyond the first few. To remedy this, we introduce Newton’s 
divided differences for easier handling of the coefficients.

The first divided difference at xi is denoted by f[xi+1, xi] and defined as the slope of the line 
connecting (xi, yi) and (xi+1, yi+1), that is,

	
f x x

y y
x x

i i
i i

i i
[ , ]+

+

+
= −

−1
1

1 	

The second divided difference at xi is denoted by f[xi+2, xi+1, xi] and defined as

	

f x x x
f x x f x x

x x
y y

i i i
i i i i

i i

i i

[ , , ]
[ , ] [ , ]

( )

+ +
+ + +

+

+ +

= −
−

= −

2 1
2 1 1

2

2 1 // /( ) ( ) ( )x x y y x x
x x

i i i i i i

i i

+ + + +

+

− − − −
−

2 1 1 1

2 	
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Note that the first divided differences are directly involved in the construction of the 
second divided difference. If instead of xi we focus on x1, it is then clear that the first 
divided difference at x1 is

	
f x x

y y
x x

a[ , ]2 1
2 1

2 1
2= −

−
=   

As shown earlier

	

The second divided difference at x1 is

	
f x x x

f x x f x x
x x

y y
x x

y y
x x

x
[ , , ]

[ , ] [ , ]
3 2 1

3 2 2 1

3 1

3 2

3 2

2 1

2 1

3
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−
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−
−

− −
−

−−
=

x
a

1
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As shown earlier

	

In general, the kth divided difference at x1 is described by

	
f x x x x

f x x x x f x x x
k k

k k k k[ , , , , ]
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(5.21)

Ultimately, the nth-degree Newton divided-difference interpolating polynomial for the 
data (x1, y1), …, (xn+1, yn+1) is formed as

	
p x a a x x a x x x xn

y x x f x x x

( ) ( ) ( )(
[ , ] [ , , ]

= + − + − −1 2 1 3 1 2
1 2 1 3 2 1

      
f

)) ( )( ) ( )
[ , , ]

+ + − − −+
+

      � …
…

a x x x x x xn
f x x

n

n

1 1 2

1 1

� (5.22)

where the coefficients a1, …, an+1 are best calculated with the aid of a divided-differences 
table. A typical such table is presented in Table 5.7 corresponding to a set of five data 
points.

TABLE 5.7

Divided Differences Table

xi yi

First 
Divided Diff

Second Divided 
Diff

Third Divided 
Diff Fourth Divided Diff

x1 y a1 1=

f x x a[ , ]2 1 2=

x2 y2 f x x x a[ , , ]3 2 1 3=

f[x3, x2] f x x x x a[ , , , ]4 3 2 1 4=

x3 y3 f[x4, x3, x2] f x x x x x a[ , , , , ]5 4 3 2 1 5=

f[x4, x3] f[x5, x4, x3, x2]
x4 y4 f[x5, x4, x3]

f[x5, x4]
x5 y5
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The user-defined function NewtonInterp finds the Newton divided-difference 
interpolating polynomial that fits a set of data and uses this polynomial to calculate the 
interpolated value at a specific point.

EXAMPLE 5.8:  NEWTON INTERPOLATION, DIVIDED DIFFERENCES

Consider the data in Table 5.8.

	 1.	 Use the second-degree Newton interpolating polynomial that goes through the 
second, third, and fourth data points to find the interpolated value at x = 0.35. 
Confirm the result by executing the user-defined function NewtonInterp.

	 2.	 Use the fourth-degree Newton interpolating polynomial that goes through all 
five data points to find the interpolated value at x = 0.35. Confirm the result 
by executing NewtonInterp.

function yi = NewtonInterp(x,y,xi)
%
% NewtonInterp finds the Newton divided-difference interpolating 
% polynomial that agrees with the data (x,y) and uses it to find the 
% interpolated value at xi. 
% 
%   yi = NewtonInterp(x,y,xi), where
% 
%     x, y are n-dimensional row or column vectors of data,
%     xi is a specified point,
%
%     yi is the interpolated value at xi.
%
n = length(x); 
a = zeros(1,n);    % Pre-allocate
a(1) = y(1);
DivDiff = zeros(1,n-1);    % Pre-allocate
for i = 1:n-1,
 DivDiff(i,1) = (y(i+1) - y(i))/(x(i+1) - x(i));
end
for j = 2:n-1,
    for i = 1:n-j,
        DivDiff(i,j) = (DivDiff(i+1,j-1) - DivDiff(i,j-1))/(x(j+i) - x(i));
    end
end
for k = 2:n,
    a(k) = DivDiff(1,k-1);
end
yi = a(1);
xprod = 1;
for m = 2:n,
    xprod = xprod*(xi - x(m-1));
    yi = yi + a(m)*xprod;
end
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Solution

	 1.	 If a second-degree polynomial is to be used for interpolation at x = 0.35, then 
the one going through the second, third, and fourth data points is the most 
suitable due to the location of x = 0.35 relative to the data. The corresponding 
divided differences are calculated according to Equation 5.21 and recorded 
in Table 5.9. The second-degree interpolating polynomial is then formed via 
Equation 5.22, as

	

p x a a x x a x x x x

x
2 1 2 1 3 1 2

0 0
( ) ( ) ( )( )

. . ( . ) .
= + − + − −
= + − −1210 1 0480 1 0 62668 1 0 2( . )( . )x x− −0 	

	 Substitution of x = 0.35 yields p2(0.35) = 0.3595. The result is confirmed in 
MATLAB as follows.

>> x = [0.1 0.2 0.5]; y = [0.1210 0.2258 0.4650];
>> yi = NewtonInterp(x,y,0.35)

yi =
    0.3595

TABLE 5.9

Divided Differences Table for Example 5.8, Part (1)

xi yi 1st Divided Diff 2nd Divided Diff

0.1 0.1210
a1

0.2258 0.1210
0.2 .1

 1.0480

−
−

=

0
2a

0.2 0.2258
0.7973 1.0480

0.5 .1

0.6268

−
−

= −

0
3a

0.4650 0.2258
0.5 0.2

0.7973
−
−

=

0.5 0.4650

TABLE 5.8

Data in Example 5.8

x y

0 0
0.1 0.1210
0.2 0.2258
0.5 0.4650
0.8 0.6249
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	 2.	 The divided differences are calculated according to Equation 5.21 and recorded 
in Table 5.10. The fourth-degree interpolating polynomial is then formed via 
Equation 5.22, as

	

p x a a x x a x x x x a x x x x x x

a x
4 1 2 1 3 1 2 4 1 2 3

5

( ) ( ) ( )( ) ( )( )( )
(

= + − + − − + − − −
+ −− − − − = + − − − −
+

x x x x x x x x x x1 2 3 4 0 0 0)( )( )( ) ( ) ( )( )1.2100 0.8100 0.1
0..3664 0.1 0.2 0.1254 0.1 0.2 0.5( )( )( ) ( )( )( )( )x x x x x x x− − − − − − − −0 0

	

	 Substitution of x = 0.35 yields p4(0.35) = 0.3577. The result is confirmed in 
MATLAB as follows.

>> x = [0 0.1 0.2 0.5 0.8]; y = [0 0.1210 0.2258 0.4650 0.6249];
>> yi = NewtonInterp(x,y,0.35)

yi =
    0.3577

	 This interpolated value is considered a better estimate at x = 0.35 than that 
obtained in (1) because the data was utilized more effectively.

TABLE 5.10

Divided Differences Table for Example 5.8, Part (2)

xi yi 1st Divided Diff 2nd Divided Diff 3rd Divided Diff 4th Divided Diff

0 0
1a

0.1210
0.1

 1.2100

−
−

=

0
0

2a

0.1 0.1210
1.0480 1.2100

0.2

 0.8100

−
−

= −

0
3a

0.2258 0.1210
0.2 0.1

1.0480
−
−

= − − −
−

=

0.6268 0.8100
0.5

 0.3664

( )
0

4a

0.2 0.2258
0.7973 1.0480

0.5 0.1
0.6268

−
−

= − 0.2661 0.3664
0.8

 0.1254

−
−

= −

0
5a

0.4650 0.2258
0.5 0.2

0.7973
−
−

= − − −
−

=0.4405 0.6268
0.8 0.1

0.2661
( )

0.5 0.4650
0.5330 0.7973

0.8 0.2
0.4405

−
−

= −

0.6249 0.4650
0.8 0.5

0.5330
−
−

=

0.8 0.6249
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5.5.4  Special Case: Equally-Spaced Data

In the derivation of Newton divided difference interpolating polynomial, Equation 5.22, 
no restriction was placed on how the data was spaced. In the event that the data is equally 
spaced, as it is often the case in practice, the divided differences reduce to simpler forms. 
Let every two successive x values in the data (x1, y1), …, (xn+1, yn+1) be separated by distance 
h so that

	 x x h i ni i+ − = = …1 1 2,  , , , 	

Consequently,

	 x x h x x h x x nhn2 1 3 1 1 12= + = + … = ++, , , 	

The first forward difference at xi is denoted by Δyi and defined as

	 ∆y y y i ni i i= − = …+1 1 2,  , , , 	

The second forward difference at xi is denoted by Δ2yi and defined as

	 ∆ ∆ ∆2
1 1 2y y y i ni i i= − = …+ ,  , , , 	

Note that the first forward differences are directly involved in the construction of the 
second forward difference. In general, the kth forward difference at xi is described as

	 ∆ ∆ ∆k
i

k
i

k
iy y y= −−

+
−1

1
1

	 (5.23)

If instead of xi we focus on x1, then the first forward difference at x1 is

	 ∆y y y1 2 1= − 	

The second forward difference at x1 is

	 ∆ ∆ ∆2
1 2 1y y y= − 	

and so on. We next find out how the divided differences and forward differences are 
related. The first divided difference at x1 can be written as

	
f x x

y y
x x

y
h

[ , ]2 1
2 1

2 1

1= −
−

= ∆

	

The second divided difference at x1 is

	
f x x x

y y
x x

y y
x x

x x

y y
h
h

y y
[ , , ]3 2 1

3 2

3 2

2 1

2 1

3 1

2 1

2 1

2 2
=

−
−

− −
−

−
=

−

= −
∆ ∆

∆ ∆
hh2

2
1

22
= ∆ y

h 	
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In general, the kth divided difference at x1 can be expressed as

	
f x x x x

y
k h

k k

k

k[ , , , , ]
!+ … =1 2 1

1  
∆

	

5.5.5  Newton Forward-Difference Interpolating Polynomials

Any arbitrary x between x1 and xn+1 can be expressed as x = x1 + mh for a suitable real 
value m. Then

	

x x x mh x mh x x mh h m h

x x m h

x x mn

− = + − = − − = − = −
− = −

…
− = −

2 1 2 2 1

3

1
2

( ) ( ) ( )
( )

( (( ))n h− 1 	

Substitution of these, together with the relations between divided differences and 
forward differences established above, into Equation 5.22, yields the Newton forward-
difference interpolating polynomial as

 

p x y
y
h

mh
y

h
mh m h

y
n h

mh mn

n

n( ) ( ) ( )(( ) )
!

( )((= + + − + + −1
1

2
1

2
1

2
1

∆ ∆ ∆
  � 11 1

1
2

1
1 1

2
1

) ) ( ( ))

( )
!

( ) ( (

h m n h

y m y
m m

y
m m m n

  

  
  

… − −

= + + − + + − … −∆ ∆ �
−− = −1

1
1))

!n
y m

x x
h

n∆ ,

� (5.24)

This polynomial is best formed with the aid of a forward-differences table, as in 
Table 5.11.

A user-defined function with function call yi = Newton_FD(x,y,xi) can be written 
(see Problem Set) that finds the Newton forward-difference interpolating polynomial for 
the equally spaced data (x,y) and uses this polynomial to interpolate at xi and returns 
the interpolated value in yi. Of course, NewtonInterp works for the equally spaced data 
as well, but is not recommended as it will perform unnecessary calculations.

TABLE 5.11

Forward Differences Table

xi yi

First Forward 
Diff

Second Forward 
Diff

Third Forward 
Diff

x1 y1

∆y1

x2 y2 ∆2
1y

Δy2 ∆3
1y

x3 y3 Δ2y2

Δy3

x4 y4



192 Numerical Methods for Engineers and Scientists Using MATLAB®, Second Edition

EXAMPLE 5.9:  NEWTON INTERPOLATION, FORWARD DIFFERENCES

For the data in Table 5.12, interpolate at x = 0.64 using the fourth-degree Newton 
forward-difference interpolating polynomial. Confirm the result by executing the user-
defined function NewtonInterp.

Solution

The forward differences are calculated according to Equation 5.23 and recorded in 
Table 5.13. Since we are interpolating at x = 0.64, we have

	
m

x x
h

= − = − =1 0.64 0.4
0.1

2.4
	

The fourth-degree Newton forward-difference interpolating polynomial is given by 
Equation 5.24, as

	
p x y m y

m m
y

m m m
y

m m m m
4 1 1

2
1

3
1

1
2

1 2
3

1 2
( )

( )
!

( )( )
!

( )( )(= + + − + − − + − −∆ ∆ ∆ −− 3
4

4
1

)
!

∆ y
	

TABLE 5.13

Forward Differences Table for Example 5.9

xi yi

1st Forward 
Diff

2nd Forward 
Diff

3rd Forward 
Diff

4th Forward 
Diff

0.4 0.921061

−0.043478
∆y1

0.5 0.877583 −0.008769
∆2

1y

−0.052247 0.000522
∆3

1y

0.6 0.825336 −0.008247 0.000084
∆4

1y

−0.060494 0.000606
0.7 0.764842 −0.007641

−0.068135
0.8 0.696707

TABLE 5.12

Data in Example 5.9

x y = cos x

0.4 0.921061
0.5 0.877583
0.6 0.825336
0.7 0.764842
0.8 0.696707
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Inserting m = 2.4 and the proper (boxed) entries of Table 5.13 into this equation, the 
interpolated value is found as

p4
1

2
( ) (0.64 0.921061 2.4( 0.043478)

(2.4)(2.4 )
0.008769)= + − + − −

+ ((2.4)(2.4 )(2.4 )
(0.000522) + 

(2.4)(2.4 )(2.4 )(2.4− − − − −1 2
6

1 2 33
24

)
(0.000084)

0.8020959856= 	

Noting the actual value is cos(0.64) = 0.8020957579, the above interpolation yielded a 
6-decimal place accuracy. The result can be verified in MATLAB using the user-defined 
function NewtonInterp.

>> format long
>> x = [0.4 0.5 0.6 0.7 0.8]; 
>> y = [0.921061 0.877583 0.825336 0.764842 0.696707];
>> yi = NewtonInterp(x,y,0.64)

yi =

   0.802095985600000

5.6  Spline Interpolation

In Section 5.5, we used nth-degree polynomials to interpolate n + 1 data points. For exam-
ple, we learned that a set of 11 data points can be interpolated by a single polynomial of 
at most degree 10. When there are a small number of points in the data, the degree of 
the interpolating polynomial will also be small, and the interpolated values are generally 
accurate. However, when a high-degree polynomial is used to interpolate a large number 
of points, large errors in interpolation are possible, as shown in Figure 5.18. The main 

1 2 3 4 5 6 7 8 9 10 11
3

4

5

6

7

8

9

10

11

12

13

14

10th-degree interpolating
polynomial

Cubic spline

Data

Large possible errors in
interpolated values

FIGURE 5.18
A 10th-degree interpolating polynomial and cubic splines for a set of 11 data points.
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contributing factor is the large number of peaks and valleys that accompany a high-degree 
polynomial. These situations may be avoided by using several low-degree polynomials, 
each of which is valid in one interval between one or more data points. The low degree of 
each polynomial in turn limits the number of peaks and valleys to a low number, hence 
reducing the possibility of large deviations from the main theme of the data. These low-
degree polynomials are known as splines. The term “spline” originated from a thin, flex-
ible strip, known as a spline, used by draftsmen to draw smooth curves over a set of points 
marked by pegs or nails. The data points at which two splines meet are called knots.

The most commonly used splines are cubic splines, which produce very smooth connections 
over adjacent intervals. Figure 5.18 shows the clear advantage of using several cubic splines as 
opposed to one single high-degree polynomial for interpolation of a large set of data.

5.6.1  Linear Splines

With linear splines, straight lines (linear functions) are used for interpolation between the 
data points. Figure 5.19 shows the linear splines used for a set of four data points, as well 
as the corresponding third-degree interpolating polynomial. If the data points are labeled 
(x1, y1), (x2, y2), (x3, y3), and (x4, y4), then, using the Lagrange form, the linear splines are sim-
ply three linear functions described by

	

S x
x x
x x

y
x x
x x

y x x x

S x
x x
x x

y
x x

1
2

1 2
1

1

2 1
2 1 2

2
3

2 3
2

( )

( )

= −
−

+ −
−

≤ ≤

= −
−

+ −

,

22

3 2
3 2 3

3
4

3 4
3

3

4 3
4 3 4

x x
y x x x

S x
x x
x x

y
x x
x x

y x x x

−
≤ ≤

= −
−

+ −
−

≤ ≤

,
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3rd-degree
interpolating polynomial

Data

FIGURE 5.19
Linear splines.
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This is clearly the same as linear interpolation as discussed in Section 5.5. The obvi-
ous drawback of linear splines is that they are not smooth so that the slope experiences 
sudden changes at the knots. This is because the first derivatives of neighboring linear 
functions do not agree. To circumvent this problem, higher-degree polynomial splines 
are used such that the derivatives of every two successive splines agree at the point (knot) 
they meet. Quadratic splines ensure continuous first derivatives at the knots, but not the 
second derivatives. Cubic splines ensure continuity of both first and second derivatives at 
the knots, and are most commonly used in practice.

5.6.2  Quadratic Splines

With quadratic splines, a second-degree polynomial is employed to interpolate over each 
interval between data points. Suppose there are n + 1 data points (x1, y1), … , (xn+1, yn+1) so 
that there are n intervals and thus n quadratic polynomials; see Figure 5.20. Each quadratic 
polynomial is in the form

	 S x a x b x c i ni i i i( ) , , ,= + + = …2 1 2,  	 (5.25)

where ai, bi, ci (i = 1, 2, …, n) are unknown constants to be determined. Since there are n 
such polynomials, and each has three unknown constants, there are a total of 3n unknown 
constants. Therefore, exactly 3n equations are needed to determine all the unknowns. 
These equations are generated as follows:

5.6.2.1  Function Values at the Endpoints (2 Equations)

The first polynomial S1(x) must go through (x1, y1) and the last polynomial Sn(x) must go 
through (xn+1, yn+1):

	

S x y

S x yn n n

1 1 1

1 1

( )
( )

=
=+ + 	

More specifically,

	

a x b x c y

a x b x c yn n n n n n

1 1
2

1 1 1 1

1
2

1 1

+ + =
+ + =+ + + 	

(5.26)

(x1, y1)

(x3, y3)

...

(x2, y2)
(xn, yn)

(xn+1, yn+1)S2(x) = a2x2 + b2x + c2
Sn(x) = anx2 + bnx + cn

S1(x) = a1x2 + b1x + c1

x1 x2 x3 xn xn+1

FIGURE 5.20
Quadratic splines.
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5.6.2.2  Function Values at the Interior Knots (2n − 2 Equations)

At the interior knots, two conditions must hold: (1) polynomials must go through the data 
points, and (2) adjacent polynomials must agree at the data points:

	

S x y S x y S x y

S x y S x y
n n n1 2 2 2 3 3 1

2 2 2 3 3 3

( ) ( ) ( )
( ) ( )

= = … =
= =

−, , , 
, , …… =, S x yn n n( ) 	

More specifically,

	

S x y i n

S x y i n
i i i

i i i

( ) , , ,
( ) , , ,

+ += = … −
= = …

1 1 1 2 1
2 3

,   
,   	

so that

	

a x b x c y i n

a x b x c y i
i i i i i i

i i i i i i

+ + ++ + = = … −
+ + = =
1

2
1 1

2

1 2 1
2 3

, , , ,
, ,,  ……  , n 	

(5.27)

Note that each of the above contains n − 1 equations so that 2n − 2 equtions are generated 
in this stage.

5.6.2.3  First Derivatives at the Interior Knots (n − 1 Equations)

At the interior knots, the first derivatives of adjacent quadratic polynomials must agree:

	 ′ = ′ ′ = ′ … ′ = ′−S x S x S x S x S x S xn n n n1 2 2 2 2 3 3 3 1( ) ( ) ( ) ( ) ( ) ( ), , , 	

More specifically,

	 ′ = ′ = … −+ + +S x S x i ni i i i( ) ( ) , , ,1 1 1 1 2 1,   	

Noting that ′ = +S x a x bi i i( ) 2 , the above yields

	 2 2 1 2 11 1 1 1a x b a x b i ni i i i i i+ + + ++ = + = … −,   , , , 	 (5.28)

This contains n − 1 equations. So far, we have managed to generate  2 + − + − =2 2 1n n  
3n − 1 equations. One more equation is needed to complete the task. Among several avail-
able choices, we select the following:

5.6.2.4  Second Derivative at the Left Endpoint is Zero (1 Equation)

	 ′′ =S x1 1 0( ) 	

Noting that ′′ =S x a1 1 12( ) , this yields

	 a1 0= 	 (5.29)
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A total of 3n equations have therefore been generated.
In summary, one equation simply gives a1 = 0 and the remaining 3n − 1 unknowns are 

found by solving the 3n − 1 equations provided by Equations 5.26 through 5.28.

EXAMPLE 5.10:  QUADRATIC SPLINES

Construct the quadratic splines for the data in Table 5.14.

Solution

Since there are four data points, we have n = 3 so that there are three quadratic splines 
with a total of nine unknown constants. Of these, one is given by a1 = 0. The remaining 
eight equations to solve are provided by Equations 5.26 through 5.28 as follows.

Equation 5.26 yields

	

a b c

a b c
1

2
1 1

3
2

3 3

2 2 5( ) ( )
( ) ( )

+ + =
+ + =

 
7.5 7.5 1.5 	

Equation 5.27 yields

	

a b c

a b c

a b c

1
2

1 1

2
2

2 2

2
2

2 2

3 3
5 5
3 3

( ) ( )
( ) ( )
( ) ( )

+ + =
+ + =
+ + =

2.3 
5.1 
2.33 
5.1 a b c3

2
3 35 5( ) ( )+ + = 	

Finally, Equation 5.28 gives

	

2 3 2 3
2 5 2 5

1 1 2 2

2 2 3 3

a b a b

a b a b

( ) ( )
( ) ( )

+ = +
+ = + 	

Substituting a1 = 0 and writing the above equations in matrix form, we arrive at

	

2 1 0 0 0 0 0 0
0 0 0 0 0 1
3 1 0 0 0 0 0 0
0 0 25 5 1 0 0 0
0 0 9 3 1 0 0 0
0 0 0 0 0 25 5 1
1 0

56.25 7.5

−− −
− −
















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
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




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b
c
a
b
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a
b
c33

5

0
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
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




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

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






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


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

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

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


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


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



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TABLE 5.14

Data in Example 5.10

x y

2 5
3 2.3
5 5.1
7.5 1.5
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This system is subsequently solved to obtain

	

a

b

c

a

b

c

a1

1

1

2

2

2

30
15

=
= −
=

=
= −
=

= − 
2.7

10.4
      

2.05
  

28.85
     

2..776
33.26   

91.8  
b

c
3

3

=
= −

Therefore, the quadratic splines are completely defined by the following three 
second-degree polynomials:

	

S x x x

S x x x x

S x

1

2
2

3

2 3

15 5

( )

( )

( )

= − + ≤ ≤

= − + ≤ ≤

= −

2.7 10.4,

2.05 28.85, 3

2..776 33.26 91.8, 5 7.5x x x2 + − ≤ ≤ 	

Results are shown graphically in Figure 5.21. Note that the first spline, S1(x), describes 
a straight line since a1 = 0.

5.6.3  Cubic Splines

In cubic splines, third-degree polynomials are used to interpolate over each interval 
between data points. Suppose there are n + 1 data points (x1, y1), …, (xn+1, yn+1) so that there 
are n intervals and thus n cubic polynomials. Each cubic polynomial is conveniently 
expressed in the form

	 S x a x x b x x c x x d i ni i i i i i i i( ) ( ) ( ) ( ) , , ,= − + − + − + = …3 2 1 2,   	 (5.30)

where ai, bi, ci, di (i = 1, 2, …, n) are unknown constants to be determined. Since there are n 
such polynomials, and each has four unknown constants, there are a total of 4n unknown 
constants. Therefore, 4n equations are needed to determine all the unknowns. These 
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FIGURE 5.21
Quadratic splines in Example 5.10.
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equations are derived based on the same logic as quadratic splines, except that second 
derivatives of adjacent splines also agree at the interior knots and two boundary condi-
tions are required.

Splines go through the endpoints and interior knots, and adjacent splines agree at the interior 
knots (2n equations)

	

S x y S x y

S x S x i n

S

n n n

i i i i

1 1 1 1 1

1 1 1 1 2 1
( ) ( )

( ) ( ) , , ,
= =

= = … −
+ +

+ + +

,  
,   

ii i ix y i n( ) , , ,= = …,    2 3 	

(5.31)

First derivatives of adjacent splines agree at the common interior knots (n − 1 equations)

	 ′ = ′ = … −+ + +S x S x i ni i i i( ) ( ) , , ,1 1 1 1 2 1,   	 (5.32)

Second derivatives of adjacent splines agree at the common interior knots (n − 1 equations)

	 ′′ = ′′ = … −+ + +S x S x i ni i i i( ) ( ) , , ,1 1 1 1 2 1,   	 (5.33)

A total of 2 1 1 4 2n n n n+ − + − = −  equations have been generated up to this point. The 
other two are provided by the boundary conditions. Boundary conditions indicate the manner 
in which the first spline departs from the first data point and the last spline arrives at the last data 
point. There are two sets of boundary conditions that are generally used for this purpose.

5.6.3.1  Clamped Boundary Conditions

The slopes with which S1 departs from (x1, y1) and Sn arrives at (xn+1, yn+1) are specified:

	 ′ = ′ =+S x p S x qn n1 1 1( ) ( ), 	 (5.34)

5.6.3.2  Free Boundary Conditions

	 ′′ = ′′ =+S x S xn n1 1 10 0( ) ( ), 	 (5.35)

The clamped boundary conditions generally yield more accurate approximations because 
they contain more specific information about the splines; see Example 5.12.

5.6.4  Construction of Cubic Splines: Clamped Boundary Conditions

The coefficients ai, bi, ci, di (i = 1, 2, …, n) will be determined by Equations 5.31 through 5.33, 
together with clamped boundary conditions given by Equation 5.34.

By Equation 5.30 Si(xi) = di (i = 1, 2, …, n). The first and last equations in Equation 5.31 
yield Si(xi) = yi (i = 1, 2, …, n). Therefore,

	 d y i ni i= = …,   1 2, , , 	 (5.36)

Let hi = xi+1 − xi (i = 1, 2, …, n) define the spacing between the data points. Using this in the 
second equation in Equation 5.31, while noting Si+1(xi+1) = di+1, we have

	 d a h b h c h d i ni i i i i i i i+ = + + + = … −1
3 2 1 2 1,   , , , 	
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If we define dn+1 = yn+1, then the above equation will be valid for the range i = 1, 2, …, n 
since Sn(xn+1) = yn+1. Thus,

	 d a h b h c h d i ni i i i i i i i+ = + + + = …1
3 2 1 2,   , , , 	 (5.37)

Taking the first derivative of Si(x) and applying Equation 5.32, we find

	 c a h b h c i ni i i i i i+ = + + = … −1
23 2 1 2 1,   , , , 	

If we define c S xn n n+ += ′1 1( ), then the above equation will be valid for the range i = 1, 2, …, n. 
Therefore,

	 c a h b h c i ni i i i i i+ = + + = …1
23 2 1 2,   , , , 	 (5.38)

Taking the second derivative of Si(x) and applying Equation 5.33, yields

	 2 6 2 1 2 11b a h b i ni i i i+ = + = … −,   , , , 	

If we define b S xn n n+ += ′′1
1
2 1( ), then the above equation will be valid for the range i = 1, 

2, …, n. Therefore,

	 b a h b i ni i i i+ = + = …1 3 1 2,   , , , 	 (5.39)

The goal is to derive a system of equations for bi (i = 1, 2, …, n + 1) only. Solve Equation 
5.39 for ai = (bi+1 − bi)/3hi and substitute into Equations 5.37 and 5.38 to obtain

	 d b b h c h d i ni i i i i i i+ += + + + = …1
1
3 1

22 1 2( ) , , ,,   	 (5.40)

and

	 c b b h c i ni i i i i+ += + + = …1 1 1 2( ) , , ,,   	 (5.41)

Solve Equation 5.40 for ci:

	
c

d d
h

b b hi
i i

i
i i i= − − ++

+
1

1
1
3

2( )
	

(5.42)

Change i to i − 1 and rewrite the above as

	
c

d d
h

b b hi
i i

i
i i i−

−

−
− −= − − +1

1

1
1 1

1
3

2( )
	

(5.43)

Also change i to i − 1 and rewrite Equation 5.41 as

	 c b b h ci i i i i= + +− − −( )1 1 1 	 (5.44)
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Finally, insert Equations 5.42 and 5.43 into Equation 5.44 to derive

	
b h b h h b h

d d
h

d d
h

ii i i i i i i
i i

i

i i

i
− − − +

+ −

−
+ + + = − − −

1 1 1 1
1 1

1
2

3 3
( )

( ) ( )
, == …2 3, , ,  n

	
(5.45)

This describes a system whose only unknowns are bi (i = 1, 2, …, n + 1) because di (i = 1, 
2, …, n + 1) are simply the values at the data points and hi (i = 1, 2, …, n) define the spacing of 
the data. Equation 5.45, however, generates a system of n − 1 equations in n + 1 unknowns, 
which means two more equations are still needed. These come from the clamped boundary 
conditions, Equation 5.34. First, Equation 5.42 with i = 1 gives

	
c

d d
h

b b h1
2 1

1
1 2 1

1
3

2= − − +( )
	

But c S x p1 1 1= ′ =( ) . Then, the above equation can be rewritten as

	
( )

( )
2

3
31 2 1

2 1

1
b b h

d d
h

p+ = − −
	

(5.46)

By Equation 5.41,

	 c b b h cn n n n n+ += + +1 1( ) 	

Knowing that c S x qn n n+ += ′ =1 1( ) , we have

	 c q b b hn n n n= − + +( )1 	 (5.47)

Equation 5.42 with i = n gives

	
c

d d
h

b b hn
n n

n
n n n= − − ++

+
1

1
1
3
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Substituting Equation 5.47 into the above, we have

	
( )

( )
2

3
31

1b b h
d d

h
qn n n

n n

n
+

++ = − − +
	

(5.48)

Combining Equations 5.45, 5.46, and 5.48 yields a system of n + 1 equations in n + 1 
unknowns bi (i = 1, 2, …, n + 1).

In summary, the coefficients in Equation 5.30 are determined as follows: First,

	 d y i ni i= = …,   1 2, , , 	
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Next, bi’s are obtained by solving the system

	

( )
( )

( )
(

2
3

3

2
3

1 2 1
2 1

1

1 1 1 1

b b h
d d

h
p

b h b h h b h
d

i i i i i i i
i

+ = − −

+ + + =− − − +
+11 1

1

1
1

3
2 3

2
3

− − − = …

+ = − −

−

−

+
+

d
h

d d
h

i n

b b h
d d

i

i

i i

i

n n n
n n

) ( )
, , ,

( )
(

,   

))
h

q
n

+ 3
	

(5.49)

This system contains a total of n + 1 equations: the first and last are two single equations, 
while the one in the middle generates n − 1 equations. Recall that hi (i = 1, 2, …, n) defines 
the spacing of the data. The system is tridiagonal (see Section 4.3) with a unique solution. 
Once bi’s are known, Equation 5.42 is used to find ci’s:

	
c

d d
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(5.50)

Finally, Equation 5.39 is used to determine ai’s:
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b b
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i ni
i i

i
= − = …+1

3
1 2,   , , ,

	
(5.51)

EXAMPLE 5.11:  CUBIC SPLINES, CLAMPED BOUNDARY CONDITIONS

For the data in Table 5.14 of Example 5.10 construct the cubic splines with clamped 
boundary conditions

	 p q= − =1 1, 	

Solution

Since there are four data points, we have n = 3 so that there are three cubic polynomials

	 S x a x x b x x c x x d ii i i i i i i i( ) ( ) ( ) ( ) , ,= − + − + − + =3 2 1 2 3, 	

Following the summarized procedure outlined above, we first find bi’s by solving the 
system in Equation 5.49:
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Note that di’s are simply the values at data points, hence

	 d d d d1 2 3 45= = = =, , , 2.3  5.1  1.5 	

Also h1 = 1, h2 = 2, and h3 = 2.5. Substituting these, together with p = −1 and q = 1, the 
system reduces to
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which is tridiagonal, as asserted, and its solution is

	 b b b b1 2 3 4= − = = − =4.3551  3.6103  2.5033  2.7157, , , 	

Next, ci’s are found by solving Equation 5.50:

	

c
d d

h
b b h

c
d d

h
b b h

1
2 1

1
1 2 1

2
3 2

2
2 3 2

1
3

2 1

1
3

2

= − − + = −

= − − + = −

( )

( )

 

1.7449

cc
d d

h
b b h3

4 3

3
3 4 3

1
3

2= − − + =( ) 0.4691 
	

Finally, ai’s come from Equation 5.51:
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Therefore, the three cubic splines are determined as
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The results are illustrated in Figure 5.22, where it is clearly seen that cubic 
splines are much more desirable than the quadratic splines obtained for the same 
set of data.
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5.6.5  Construction of Cubic Splines: Free Boundary Conditions

Recall that free boundary conditions are ′′ = ′′ =+S x S xn n1 1 10 0( ) ( ),  so that the first and 
last data points act as inflection points for the first and last cubic spline, respectively. 
Knowing ′′ = − +S x a x x b1 1 1 16 2( ) ( ) , the first condition yields b1 = 0. From previous work, 
b S xn n n+ += ′′( )1

1
2 1  so that the second condition implies bn+1 = 0. Combining these with 

Equation 5.45 forms a system of n + 1 equations in n + 1 unknowns that can be solved 
for bi’s:
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(5.52)

Once bi’s are available, all other unknown constants are determined as in the case of 
clamped boundary conditions. In summary, di (i = 1, 2, …, n + 1) are the values at the data 
points, hi (i = 1, 2, …, n) define the spacing of the data, bi’s come from Equation 5.52, ci’s from 
Equation 5.50, and ai’s from Equation 5.51.

EXAMPLE 5.12:  CUBIC SPLINES, FREE BOUNDARY CONDITIONS

For the data in Table 5.14 of Examples 5.10 and 5.11 construct the cubic splines with free 
boundary conditions.

Solution

The free boundary conditions imply b1 = 0, b4 = 0. Consequently, the system in Equation 
5.52 simplifies to

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

1

2

3

4

5

6

7

8

x

y

Data

Cubic spline

Quadratic spline

FIGURE 5.22
Cubic and quadratic splines for the same set of data.
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Next, ci’s are found by solving Equation 5.50:
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Finally, ai’s come from Equation 5.51:
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Therefore, the three cubic splines are determined as
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The graphical results are shown in Figure 5.23, where it is observed that the clamped 
boundary conditions lead to more accurate approximations, as stated earlier.

5.6.6  MATLAB Built-In Functions interp1 and Spline

Brief descriptions of the MATLAB built-in functions interp1 and spline are given as:

YI = INTERP1(X,Y,XI,METHOD) specifies alternate methods.
    The default is linear interpolation. Use an empty matrix [] to specify
    the default. Available methods are:

      'nearest'—nearest neighbor interpolation
      'linear'—linear interpolation
      'spline'—piecewise cubic spline interpolation (SPLINE)
      'pchip'—shape-preserving piecewise cubic Hermite interpolation

Of the four methods, the nearest neighbor interpolation is the fastest, and does not 
generate new points. It only returns values that already exist in the Y vector. The lin-
ear method is slightly slower than the nearest neighbor method and returns values that 
approximate a continuous function. Each of t+he pchip and spline methods generates 
a different cubic polynomial between any two data points, and uses these points as two 
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of the constraints when determining the polynomial. The difference between these two 
methods is that pchip seeks to match the first-order derivatives at these points with those 
of the intervals before and after, which is a characteristic of Hermite interpolation. The 
spline method tries to match the second-order derivatives at these points with those of 
the intervals before and after.

The pchip method produces a function whose minimums match the minimums of 
the data. Also, the function is monotonic over intervals where the data are monotonic. 
The spline method produces a smooth (twice-continuously differentiable) function, but 
will overshoot and undershoot the given data.

EXAMPLE 5.13:  MATLAB FUNCTION INTERP1

Consider the data for x = −2:0.5:2 generated by y x x= − +1
4

4 1
2

2. Interpolate and plot 
using the four different methods listed in interp1.

Solution
>> x = -2:0.5:2;
>> y = -1./4.*x.^4+1./2.*x.^2;
>> xi = linspace(-2, 2);
>> ynear = interp1(x, y, xi, 'nearest');
>> ylin = interp1(x, y, xi, 'linear');
>> ypc = interp1(x, y, xi, 'pchip');
>> yspl = interp1(x, y, xi, 'spline');
% Start Figure 5.24
>> subplot(2,2,1), plot(xi,ynear,x,y,'o'), title('Nearest neighbor 
interpolation')
>> hold on
>> subplot(2,2,2), plot(xi,ylin,x,y,'o'), title('Linear interpolation')
>> subplot(2,2,3), plot(xi,ypc,x,y,'o'), title('Piecewise cubic Hermite 
interpolation')
>> subplot(2,2,4), plot(xi,yspl,x,y,'o'), title('Cubic spline 
interpolation')

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x

y

Data

Cubic splines
(clamped BCs)

end slopes –1 and 1

Cubic splines
(free BCs)

FIGURE 5.23
Cubic splines with clamped and free boundary conditions; Example 5.12.



207Curve Fitting and Interpolation

5.6.7  Boundary Conditions

YI = INTERP1(X,Y,XI,'spline') uses piecewise cubic splines interpolation. 
Note that the option 'spline' does not allow for specific boundary 
conditions.

PP = SPLINE(X,Y) provides the piecewise polynomial form of the cubic 
spline interpolant to the data values Y at the data sites X. Ordinarily, 
the not-a-knot end conditions* are used. However, if Y contains two more 
values than X has entries, then the first and last value in Y are used as 
the end slopes for the cubic spline.

We will apply these two functions to the set of data considered in Examples 5.10 through 
5.12.

>> x = [2 3 5 7.5]; y = [5 2.3 5.1 1.5];
>> xi = linspace(2,7.5);
>> yi = interp1(x,y,xi,'spline'); % No control over boundary conditions
>> plot(x,y,'o',xi,yi)
>> cs = spline(x,[-1 y 1]); % Specify end slopes of -1 and 1
>> hold on 
>> plot(x,y,'o',xi,ppval(cs,xi),'-'); % Figure 5.25

*	 Not-a-knot condition requires that the third derivatives of neighboring splines agree at the second and the 
one to the last data points. This happens to be the default condition used in MATLAB function interp1. “No 
control over theboundary conditions” refers to this situation.

–2

–1.5

–1

–0.5

0

0.5
Nearest neighbor interpolation

–2

–1.5

–1

–0.5

0

0.5
Linear interpolation

–2 –1 0 1 2
–2

–1.5

–1

–0.5

0

0.5
Piecewise cubic Hermite interpolation

–2 –1 0 1 2

–2 –1 0 1 2 –2 –1 0 1 2

–2

–1.5

–1

–0.5

0

0.5
Cubic spline interpolation

FIGURE 5.24
Interpolation by interp1 using four methods—Example 5.13.
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5.6.8  Interactive Curve Fitting and Interpolation in MATLAB

The basic fitting interface in MATLAB allows for interactive curve fitting of data. First 
plot the data. Then, under the “tools” menu choose “basic fitting.” This opens a new win-
dow on the side with a list of fitting methods, including spline interpolation and differ-
ent degree polynomial regression/interpolation. By simply checking the box next to the 
desired method, the corresponding curve is generated and plotted. Figure 5.26 shows the 
spline interpolation and 7th-degree polynomial regression of a set of 21 data points.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
1

2

3

4

5

6

7

x

y

Data

'Interp1' function
no control over

boundary conditions

'Spline' function
with end slopes –1 and 1

FIGURE 5.25
Cubic splines using MATLAB built-in functions.

0 2 4 6 8 10 12 14 16 18 20
–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Data Spline interpolant 7th-degree polynomial

FIGURE 5.26
Basic fitting interface in MATLAB.
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5.7  Fourier Approximation and Interpolation

So far in this chapter we have mainly discussed curve fitting and interpolation of data 
using polynomials. But in many engineering applications we encounter systems that 
oscillate, and consequently, the collected data exhibits oscillatory behavior. These types of 
systems are hence modeled via trigonometric functions 1, cos t, cos 2t, …, sin t, sin 2t, …. 
Fourier approximation/interpolation outlines the systematic use of trigonometric series 
for this purpose.

5.7.1  Sinusoidal Curve Fitting

To present the idea we first consider a very special set of equally spaced data. Later, we will 
use a linear transformation to apply the results to any given equally spaced data.

Consider N data points (σ1, x1), (σ2, x2), …, (σN, xN), where σk (k = 1, 2, …, N) are assumed 
to be equally spaced along the interval [0, 2π), that is,

	
σ σ π σ π σ π
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2
2
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It is desired to interpolate or approximate this set of data by means of a function in the 
form
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where f(σ) is a trigonometric polynomial of degree m if am and bm are not both zero. 
Interpolation requires f(σ) to go through the data points, while approximation (curve fit) 
is in the sense of least squares, Section 5.4. More specifically, the coefficients a0, a1, …, am, 
b1, …, bm are determined so as to minimize
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(5.54)

A necessary condition for Q to attain a minimum is that its partial derivatives with 
respect to all coefficients vanish, that is,
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The ensuing system of 2m + 1 equations can then be solved to yield
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(5.55)

5.7.1.1  Fourier Approximation

If 2m + 1 < N (there are more data points than unknown coefficients), then the least-
squares approximation of the data is described by Equation 5.53 with coefficients given 
by Equation 5.55.

5.7.1.2  Fourier Interpolation

For interpolation, the suitable form of the trigonometric polynomial depends on whether 
N is odd or even.

•	 Case 1: N = odd = 2m + 1
		  In this case, the interpolating trigonometric polynomial is exactly in the form of 

the approximating polynomial.
•	 Case 2: N = even = 2m

		  The interpolating polynomial is in the form

	

f a a a a m a m

b
m m( ) cos cos cos( ) cos

sin
σ σ σ σ σ

σ
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−

1
2 0 1 2 1

1
2

1

2 1�
bb b mm2 12 1sin sin( )σ σ+ + −−� 	 (5.56)

		  where the coefficients are once again given by Equation 5.55.

5.7.2  Linear Transformation of Data

Fourier approximation or interpolation of an equally spaced data (t1, x1), (t2, x2), …, (tN, xN) 
is handled as follows. First assume the data is (σ1, x1), (σ2, x2), …, (σN, xN) equally spaced 
over [0, 2π) and apply the results presented above. Then transform the data back to its 
original form. Such linear transformation is completely described by the connecting line 
from (σ1, t1) to (σN, tN) in the σ − t coordinate system; see Figure 5.27. The equation of this 
connecting line is
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(5.57)
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The user-defined function TrigPoly finds the appropriate Fourier approximation 
or interpolation of an equally spaced data by first assuming the data is equally spaced 
over [0, 2π) and then transforming the data to agree with the range of the original set. 
The  function also returns the plot of the interpolating/approximating trigonometric 
polynomial and the given set of data.

function [a, b] = TrigPoly(x, m, t1, tN)
%
% TrigPoly approximates or interpolates a set of equally spaced
% data (t1, x1), …, (tN, xN) by a trigonometric polynomial of degree m.
%
%     [a, b] = TrigPoly(x, m, t1, tN), where
%
%       x = [x1 x2 … xN],
%       m is the degree of the trigonometric polynomial,
%       t1 and tN define the interval endpoints (interval open at tN),
%
%       a and b are the vectors of coefficients of the polynomial.
% 
%  Case(1) Approximation if 2*m + 1 < N,
%  Case(2) Interpolation if 2*m + 1 = N or 2*m = N.
%
N = length(x);
% Consider an equally-spaced data from s=0 to s=2*pi
h = 2*pi/N; s = 0:h:2*pi-h; s = s';
a = zeros(m,1); % Pre-allocate
b = a;
for i = 1:m,
     a(i) = x*cos(i*s);
     b(i) = x*sin(i*s);
end
a = 2*a/N; b = 2*b/N; a0 = sum(x)/N;

0

σN

σ

tNt1

t

σ = (N – 1)2π
N(tN – t1)

(t – t1)

FIGURE 5.27
Linear transformation of data.
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EXAMPLE 5.14:  FOURIER APPROXIMATION

Find the first-degree approximating or interpolating trigonometric polynomial for the 
data in Table 5.15. Confirm the results by executing the user-defined function TrigPoly.

Solution

First treat the data as (σ1, x1), (σ2, x2), …, (σ5, x5), equally spaced over [0, 2π). That is,
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Since m = 1 and N = 5, we have 2m + 1 < N so that the polynomial in Equation 5.53 
is the suitable form for approximation; in particular, f a a b( ) cos sinσ σ σ= + +1

2 0 1 1 . 
The coefficients are provided by Equation 5.55 as
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if N == 2*m,
    a(m) = a(m)/2;
end
ss = linspace(0,2*pi*(N-1)/N,500); % 500 points for plotting
xx = a0 + a(1)*cos(ss) + b(1)*sin(ss);
for i = 2:m,
    xx = xx + a(i)*cos(i*ss) + b(i)*sin(i*ss);
end
% Transform from s to t
t = N*((tN-t1)/(2*pi*(N-1)))*s + t1;
tt = N*((tN-t1)/(2*pi*(N-1)))*ss + t1;
plot(tt,xx,t,x,'o')
a = [a0;a];

TABLE 5.15

Data in Example 5.14

t x

0.5 6.8
0.7 3.2
0.9 −4.1
1.1 −3.9
1.3 3.3
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Therefore, the least-squares approximating polynomial is f(σ) = 1.06 + 6.1123 
cos σ − 0.0851 sin σ. But variables t and σ are related via Equation 5.57,

	
σ π= −

−
− = −( )

(
( ) ( )

5 1 2
5 1.3 0.5)

0.5 6.2832 0.5t t
	

The approximating trigonometric polynomial is then formed as

	
f t t t( ) cos ( ) sin ( )= + −( ) − −(1.06 6.1123 6.2832 0.5 0.0851 6.2832 0.5 )) 	

Executing the user-defined function TrigPoly yields the coefficients of the trigono-
metric polynomial as well as the plot of this polynomial and the original data. This is 
shown in Figure 5.28.

>> x = [6.8 3.2 -4.1 -3.9 3.3];
>> [a, b] = TrigPoly(x, 1, 0.5, 1.3)

a =
    1.0600
    6.1123

b =
   -0.0851

EXAMPLE 5.15:  FOURIER INTERPOLATION

Find the third-degree approximating or interpolating trigonometric polynomial for 
the data in Table 5.16. Confirm the results by executing the user-defined function 
TrigPoly. Find the interpolated value at t = 0.66.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
–6

–4

–2

0

2

4

6

8

t

x
Data

1st-degree approximating
trigonometric polynomial

FIGURE 5.28
Fourier approximation of the data in Example 5.14.
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Solution

First treat the data as (σ1, x1), (σ2, x2), …, (σ6, x6), equally spaced over [0, 2π). That is,

	
σ σ π σ π σ π σ π σ π

1 2 3 4 5 60
3

2
3

4
3

5
3

= = = = = =, , , , ,     
	

Since m = 3 and N = 6, we have 2m = N so that the trigonometric polynomial interpo-
lates the data and is given by Equation 5.56, more specifically

	 f a a a a b b( ) cos cos cos sin sinσ σ σ σ σ σ= + + + + +1
2 0 1 2

1
2 3 1 22 3 2 	

The coefficients are provided by Equation 5.55 as

	

a x a x a xk

k

k k

k

k k

k

0
2
6

1

6

1
2
6

1

6

2
2
6

1

6

1 2= = = = − =
= = =

∑ ∑, 0.3333,cos cosσ σ∑∑

∑ ∑

=

= = − = = −
= =

0

33
2
6

1

6

1
2
6

1

6

a x b x bk k

k

k k

k

cos sinσ σ0.3333, 0.5774, 22
2
6

1

6

2 0= =
=

∑xk k

k

sin σ
	

This yields f ( ) cos cos sinσ σ σ σ= − − −1
2 30.3333 0.1667 0.5774 . But variables t and σ 

are related via Equation 5.57,

	
σ π= −

−
− = −( )

(
( ) ( )

6 1 2
6 0.85 0.10)

0.10 6.9813 0.1t t
	

Therefore, the interpolating trigonometric polynomial is formed as

f t t t( ) cos( ( )) cos( (= − − − × −1
2 0.3333 6.9813 0.10 0.1667 3 6.9813 0.100 0.5774 6.9813 0.10)) sin( ( ))− −t 	

The interpolated value at t = 0.66 is

	 f ( )0.66 1.0293= 	

Executing the user-defined function TrigPoly yields the coefficients of the trigono-
metric polynomial as well as the plot of this polynomial and the original data. This is 
shown in Figure 5.29.

>> x = [0 0 0 1 1 1];
>> [a, b] = TrigPoly(x, 3, 0.10, 0.85)

TABLE 5.16

Data in Example 5.15

t x

0.10 0
0.25 0
0.40 0
0.55 1
0.70 1
0.85 1
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a =
    0.5000
   -0.3333
   -0.0000
   -0.1667

b =
   -0.5774
    0.0000
    0.0000

The numerical results agree with those obtained earlier.

5.7.3  Discrete Fourier Transform

Periodic functions can conveniently be represented by Fourier series. But there are many 
functions or signals that are not periodic; for example, an impulsive force applied to a 
mechanical system will normally have a relatively large magnitude and will be applied 
for a very short period of time. Such non-periodic signals are best represented by the 
Fourier integral. The Fourier integral of a function can be obtained while taking the 
Fourier transform of that function. The Fourier transform pair for a continuous function 
x(t) is defined as

	

ˆ( ) ( )

( ) ˆ( )

x x t e dt

x t x e d

i t

i t

ω

π
ω ω

ω

ω

=

=

−

−∞

∞

−∞

∞

∫

∫

 

 
1

2
	

(5.58)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x

3rd-degree interpolating
trigonometric polynomial

Data

1.0293

0.66

FIGURE 5.29
Fourier interpolation of the data in Example 5.15.
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The first equation gives the Fourier transform ˆ( )x ω  of x(t). The second equation uses 
ˆ( )x ω  to represent x(t) as an integral known as the Fourier integral. In applications, the 
data is often collected as a discrete set of values and hence x(t) is not available in the 
form of a continuous function. To that end, a discretized version of Equation 5.58 must be 
formulated.

Divide an interval [0, T] into N equally spaced subintervals, each of width h = T/N. 
Consider the set of data chosen as (t0, x0), …, (tN−1, xN−1) such that t0 = 0, t1 = t0 + h, …, 
tN−1 = t0 + (N − 1)h. Note that the point tN = T is not included.* Equation 5.58 is then dis-
cretized as

	

ˆ , , ,x x e k N
N

k n
ik n

n

N

= = … − =−

=

−

∑ ω ω π

0

1

0 1 1
2

, ,
	

(5.59)

	
x

N
x e n Nn k

ik n

k

N

= = … −
=

−

∑1
0 1 1

0

1

ˆ , , ,ω ,   
	

(5.60)

where x̂k is known as the discrete Fourier transform (DFT). Equations 5.59 and 5.60 can 
be used to compute the Fourier and inverse Fourier transform for a set of discrete data. 
Calculation of the DFT in Equation 5.59 requires N2 complex operations. Therefore, even 
for data of moderate size, such calculations can be quite time-consuming. To remedy that, 
the fast Fourier transform (FFT) is developed for efficient computation of the DFT. What 
makes FFT computationally attractive is that it reduces the number of operations by using 
the results of previous calculations.

5.7.4  Fast Fourier Transform

The FFT algorithm requires roughly N log2 N operations as opposed to N2 by the DFT; and 
it does so by using the fact that trigonometric functions are periodic and symmetric. For 
instance, for N = 100, the FFT is roughly 15 times faster than the DFT. For N = 500, it is about 
56 times faster. The first major contribution leading to an algorithm for computing the FFT 
was made by J. W. Cooley and J. W. Tukey in 1965, known as the Cooley–Tukey algorithm. 
Since then, a number of other methods have been developed that are essentially conse-
quences of their approach.

The basic idea behind all of these techniques is to decompose, or decimate, a DFT of 
length N into successively smaller length DFTs. This can be achieved via decimation-in-
time or decimation-in-frequency techniques. The Cooley–Tukey method, for example, is a 
decimation-in-time technique. Here, we will discuss an alternative approach, the Sande–
Tukey algorithm, which is a decimation-in-frequency method. The two decimation tech-
niques differ in how they are organized, but they both require N log2 N operations. We will 
limit our presentation to the case N = 2p (integer p) for which the techniques work best, but 
analogous methods will clearly work for the general case N = N1N2 … Nm where each Ni is 
an integer.

*	 Refer to R.W. Ramirez, The FFT, Fundamentals and Concepts, Prentice-Hall, 1985.
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5.7.4.1  Sande–Tukey Algorithm (N = 2p, p = integer)

We will present the simplified algorithm for the special case N = 2p where p is some integer. 
Recall from Equation 5.59 that the DFT is given by

	

ˆ , , ,( / )x x e k Nk n
ik N n

n

N

= = … −−

=

−

∑ 2

0

1

0 1 1π ,   
	

(5.61)

Define the weighting function W = e−(2π/N)i so that Equation 5.61 may also be written as

	

ˆ , , ,x x W k Nk n
kn

n

N

= = … −
=

−

∑
0

1

0 1 1,   
	

(5.62)

We next divide the sample of length N in half, each half containing N/2 points, and write 
Equation 5.61 as

	

ˆ ( / )
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Since summations can only be combined if their indices cover the same range, introduce 
a change of variables in the second summation and rewrite this last equation as
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π π

	
(5.63)

But

	
e k i k

k even

k odd
i k k− = − = − =

=
− =





π π πcos sin ( )1
1
1

if 
if 	

Therefore, the expression for x̂k will depend on whether the index is even or odd. 
For even index, Equation 5.63 yields

	

ˆ [ ]/
( ) /

( / )

x x x ek
k k

n n N
k ni N

n

N

2
2

2
2 2

0

2

   
 for 

Substitute
= + +

−

=

−
π

11

2
2 2

0

2 1

∑ ∑= + +
−

=

−

   
Rewrite

[ ]/
[( / ) ]

( / )

x x en n N
N i kn

n

N
π

	

For odd index,
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In terms of W = e−(2π/N)i, defined earlier,

	

ˆ [ ]/

( / )

x x x Wk n n N
kn

n

N

2 2
2

0

2 1

= + +

=

−

∑
	

(5.64)
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Next, define

	

y x x

z x x W
n N

n n n N

n n n N
n

= +
= −

= … −+

+
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2

2
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(5.66)

Inspired by Equation 5.62, it is easy to see that the summations in Equations 5.64 and 5.65 
simply represent the transforms of yn and zn. That is,

	

ˆ ˆ
ˆ ˆ

, , , ( )
x y

x z
k N

k k

k k
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2 1
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=
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Consequently, the original N-point computation has been replaced by two (N/2)-point 
computations, each requiring (N/2)2 = N2/4 operations for a total of N2/2. Comparing with 
N2 for the original data, the algorithm manages to reduce the number of operations by a 
factor of 2. The decomposition continues, with the number of sample points divided by 
two in each step, until N/2 two-point DFTs are computed. To better understand how the 
scheme works, we present the details involving an 8-point sample.

5.7.4.2  Case Study: N = 23 = 8

An 8-point DFT is to be decomposed successively using Sande–Tukey algorithm (decima-
tion-in-frequency) into smaller DFTs. Figure 5.30 shows the details in the first stage where 
two 4-point DFTs are generated. The intersections that are accompanied by “+” and/or “−” 
signs act as summing junctions. For example, by Equation 5.66 we have

	 y x x z x x W0 0 4 0 0 4
0= + = −, ( ) 	

The operation y0 = x0 + x4 is handled by a simple addition of two signals. To obtain z0, we 
first perform x0 − x4, then send the outcome to a block of W0. The same logic applies to the 
remainder of the sample.

Next, each of the four-point DFTs will be decomposed into two 2-point DFTs, which will 
mark the end of the process for the case of N = 8; see Figure 5.31. Also N = 2p = 8 implies 
p = 3, and there are exactly three stages involved in the process. Furthermore, since N = 8 
we have W = e−(2π/N)i = e−(π/4)i, and

	 W W e i W e i W ei i i0 1 4 2
2

2 2 3 3 4 2
21 1 1= = = − = = − = =− − − −, , ,( / ) ( / ) ( / )( ) (π π π ++ i) 	
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The computed Fourier coefficients appear in a mixed order but can be unscrambled using 
bit reversal as follows: (1) express the subscripts 0 through 7 in binary form,* (2) reverse the 
bits, (3) express the reversed bits in decimal form. The details are depicted in Table 5.17.

5.7.4.3  Cooley–Tukey Algorithm (N = 2p, p = integer)

The flow graph for the Cooley–Tukey algorithm is shown in Figure 5.32. The initial sample 
is divided into groups of even-indexed and odd-indexed data points, but the final outcome 
appears in correct order.

*	 For example, 5 2 2 22 1 0
2= × + × + × =1 0 1 101( ) . 
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FIGURE 5.30
First stage of decomposition (decimation-in-frequency) of an 8-point DFT into two four-point DFTs.
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FIGURE 5.31
Complete decomposition (decimation-in-frequency) of an 8-point DFT.
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5.7.5  MATLAB Built-In Function fft

The MATLAB built-in function fft computes the DFT of an N-dimensional vector using 
the efficient FFT method. The DFT of the evenly spaced data points x(1), x(2), …, x(N) is 
another N-dimensional vector X(1), X(2), …, X(N) where

	
X k x n e k Nk n i N

n

N

( ) ( ) , , ,( )( ) /= = …− − −

=
∑ 2 1 1

1

1 2π ,   
	

5.7.5.1  Interpolation Using fft

A set of equally spaced data (tk, xk), k = 1, 2, …, N is interpolated using fft as follows. The 
data is first treated as

	 ( , ), ( , ), , ( , )σ σ σ1 1 2 2x x xN N  … 	

TABLE 5.17

Bit Reversal Applied to the Scenario in Figure 5.31

Mixed 
Order

Binary 
Subscripts

Reverse 
Bits

Unscrambled 
Order

x̂0 0→000 000→0 x̂0

x̂4 4→100 001→1 x̂1

x̂2 2→010 010→2 x̂2

x̂6 6→110 011→3 x̂3

x̂1 1→001 100→4 x̂4

x̂5 5→101 101→5 x̂5

x̂3 3→011 110→6 x̂6

x̂7 7→111 111→7 x̂7
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FIGURE 5.32
Complete decomposition (decimation-in-time) of an 8-point DFT.
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where σk (k = 1, 2, …, N) are equally spaced along the interval [0, 2π), that is,

	
σ σ π σ π σ π

1 2 30
2

2
2

1
2= = = 



 … = − 



, ,    

N N
N

N
N, , ( )

	

The FFT of the vector x x xN1 2 …   is computed using MATLAB built-in function 
fft. The resulting data is then used in Equation 5.60, with index ranging from 1 to N, to 
reconstruct xk. Finally, the data is transformed to its original form and plotted.

EXAMPLE 5.16:  INTERPOLATION USING FFT

Table 5.18 contains the equally spaced data for one period of a periodic waveform. 
Construct and plot the interpolating function for this data using the MATLAB 
function fft.

Solution

We will accomplish this in two steps: First we compute the FFT of the given data, and 
then use the transformed data to find the interpolating function by essentially recon-
structing the original waveform. Note that the reconstruction is done via Equation 5.60, 
rewritten as

	

x x en k
i k n

k

= − −

=
∑1

16
2 1 1 16

1

16

ˆ ( )( )/π

	

where we will use n = 1:200 for plotting purposes. The 16 values of x̂k are obtained as 
follows:

>> x = [2.95 2.01 0.33 .71 .11 .92 -.16 .68 -1.57 -1.12 -.58 -.69 -.21 
-.54 -.63 -2.09];
>> Capx = fft(x)'

Capx =

   0.1200
   5.1408 + 6.1959i

TABLE 5.18

Data in Example 5.16

t x t x

0.0 2.95 0.8 −1.57
0.1 2.01 0.9 −1.12
0.2 0.33 1.0 −0.58
0.3 0.71 1.1 −0.69
0.4 0.11 1.2 −0.21
0.5 0.92 1.3 −0.54
0.6 −0.16 1.4 −0.63
0.7 0.68 1.5 −2.09
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   0.8295 + 1.9118i
   4.4021 + 5.0122i
   2.3200 + 2.6600i
   4.0157 + 3.7006i
   2.1305 + 0.8318i
   4.5215 + 3.6043i
   0.3600          
   4.5215 - 3.6043i
   2.1305 - 0.8318i
   4.0157 - 3.7006i
   2.3200 - 2.6600i
   4.4021 - 5.0122i
   0.8295 - 1.9118i
   5.1408 - 6.1959i

Let x̂ ik k k= +α β  so that

x x e i k nn k
i k n

k

k k= = + −− −

=
∑1

16
2 1 1 16

1

16

1
16 2 1ˆ [ ][cos( ( )(( )( )/π α β π −− + − −

=
∑ 1 16 2 1 1 16

1

16

) ) sin( ( )( ) )]/ /i k n
k

π
	

Note that α2 = α16, …, α8 = α10 and β2 = −β16, …, β8 = −β10. Also α9 multiplies cos((n − 1)π) 
which alternates between 1 and −1 so that over a range of 200 values for n will cancel 
out. Finally, α1 multiplies cos 0 = 1. Then, the above can be written as

	
x k n k nn k k= + − − − − −1

16 1
1
8 2 1 1 16 2 1 1 16α α π β π[ cos( ( )( ) ) sin( ( )( ) )]/ /

kk =
∑

2

8

	

The following MATLAB code will use this to reconstruct the original waveform.

x = [2.95 2.01 .33 .71 .11 .92 -.16 .68 -1.57 -1.12 -.58 -.69 -.21 -.54 -.63 -2.09];
N = length(x);
tN = 1.5; t1 = 0;
Capx = fft(x);    % Compute FFT of data
% Treat data as equally spaced on [0, 2*pi)
h = 2*pi/N; s = 0:h:2*pi-h; s = s';  
ss = linspace(0,2*pi*(N-1)/N,200);   % 200 points for plotting purposes
y = zeros(200,1);    % Pre-allocate
% Start reconstruction & interpolation
for i = 1:200,
    y(i) = Capx(1)/2;
    for k = 1:8,
     y(i) = y(i) + real(Capx(k+1))*cos(k*ss(i)) - imag(Capx(k+1))*sin(k*ss(i));
    end
    y(i) = (1/8)*y(i);
end
% Transform data to original form
t = N*((tN-t1)/(2*pi*(N-1)))*s + t1; 
tt = N*((tN-t1)/(2*pi*(N-1)))*ss + t1;

plot(tt,y,t,x,'o')  % Figure 5.33
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PROBLEM SET (CHAPTER 5)

Linear Regression (Section 5.2)

In Problems 1 through 9, for each set of data,

	 a.	   Using least-squares regression, find a straight line that best fits the data.

	 b.	   Confirm the results by executing LinearRegression.

	 1.	Table P1

	 2.	Table P2

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.125 1.25 1.375 1.5
–3

–2.5
–2

–1.5
–1

–0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

t

x

Data

Interpolating polynomial using FFT

FIGURE 5.33
Interpolations using FFT in Example 5.16.

TABLE P1

x y

0.5 0.22
0.6 0.41
0.7 0.69
0.8 0.88
0.9 1.14

TABLE P2

x y

0.1 3.4
0.4 3.78
0.7 4.01
1.0 4.35
1.3 4.57
1.6 4.88
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	 3.	Table P3

	 4.	Table P4

	 5.	Table P5

	 6.	Table P6

TABLE P3

x y

−2 2.2
0 1.5
2 0.8
4 −0.1
6 −0.8
8 −1.3

TABLE P4

x y

−1.2 −0.43
−0.8 0.02

−0.4 0.51
0.0 1.05
0.4 1.60

TABLE P5

x y

2 2.5
3 3.1
5 3.4
7 4.7
8 5.1
9 4.9
11 6.1

TABLE P6

x y

5 6.8
11 19.7
14 26
26 46.5
30 60
41 80.4
46 88.1
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	 7.	Table P7

	 8.	Table P8

	 9.	Table P9

TABLE P9

x y

−3.2 5.89

−2.1 4.57

−0.5 2.82
0.8 1.23
1.9 −0.07
3.2 −1.69
4.2 −2.92
4.9 −3.74
5.5 −4.51
6.8 −5.91

TABLE P7

x y

1 7.27
2 9.7
3 10.2
4 12.3
5 16.6
6 19
7 21.4
8 24
9 25.9
10 29

TABLE P8

x y

−1 2.3
1 2.9
2 3.5
4 4.7
5 5.0
7 5.9
8 6.7
10 7.4
11 8.1
13 9.3
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	 10.	  The yield of a chemical reaction (%) at several temperatures (°C) is recorded in 
Table P10.

	 a.	 Execute the user-defined function LinearRegression to find and plot a 
straight line that best fits the data.

	 b.	 Using the line fit, find an estimate for the yield at 280°C.

	 11.	 In a linear coiled spring, the relation between spring force (F) and displacement (x) 
is described by F = kx, where k is the (constant) coefficient of stiffness of the spring. 
Testing on a certain spring has led to the data recorded in Table P11. All parameter 
values are in consistent physical units.

	 a.	  Execute the user-defined function LinearRegression to find and plot a 
straight line that best fits the data.

	 b.	 Using (a), find the estimated value for the coefficient of stiffness, and the dis-
placement corresponding to F = 150.

TABLE P10

x (Temperature °C) y (Yield %)

165 79.4
190 83.5
215 84.7
230 86.2
245 88.1
260 89.4
275 91.9
290 92.9
300 95.1
310 96.3

TABLE P11

x (Displacement) F (Force)

0.2 43.5
0.3 65.7
0.5 109.8
0.6 133
0.8 176.2
0.9 198.2
1.1 242.3
1.3 285.8
1.4 307.8
1.6 352.2
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	 12.	  Students’ scores on the mathematics portion of the SAT exam and their GPA 
follow a linear probabilistic model. Data from 10 students have been collected and 
recorded in Table P12.

	 a.	 Execute the user-defined function LinearRegression to find and plot a 
straight line that best fits the data.

	 b.	 Using the line fit, find an estimate for the GPA of a student whose test score 
was 560.

Linearization of Nonlinear Data (Section 5.3)

	 13.	  Show that in Example 5.3 an exponential function is not a suitable fit for the 
data. 

 In Problems 14 through 18, fit an appropriate function (exponential, power, or satura-
tion) to the given data.

	 14.	Data in Table P14

TABLE P12

x (Test score) y (GPA)

360 1.70

400 1.80

450 1.90

480 1.95

500 2.15

520 2.30

590 2.80

610 3.00

640 3.25

740 3.80

TABLE P14

x y

0.5 0.11
1 0.19
1.5 0.27
2 0.34
2.7 0.40
3.5 0.50
4.2 0.52
5 0.56
6 0.60
7 0.66
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	 15.	Data in Table P15

	 16.	Data in Table P16

	 17.	Data in Table P17

TABLE P15

x y

0 1.3

0.2 2.1

0.4 3.0

0.6 5.2

0.8 8.4

1.0 13.5

1.2 22

1.4 33.5

1.6 53

1.8 85.4

TABLE P16

x y

0.2 2.8

0.3 3.6

0.5 5.3

0.6 6.4

0.8 8.5

1.0 12.4

1.1 15.3

1.3 22.2

TABLE P17

x y

1 0.27

2 0.51

3.5 0.60

5 0.74

6 0.79

8 0.82

9.5 0.90

10 0.87
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	 18.	Data in Table P18

	 19.	  In many applications involving chemical processes, the experimental data fol-
lows an s-shaped curve as in Figure 5.34, where the data approaches a steady-state 
value of 1. For these cases, curve fitting is done by approximating the s-shaped 
curve by y = 1 + Ae−αt where A < 0 since y < 1 for all data, and α > 0. Rearrange and 
take the natural logarithm to obtain

	 ln| | ln| |y t A− = − +1 α 	

	 so that ln|y − 1| versus t is linear with a slope of −α and an intercept of ln|A|. The 
slope and the intercept can be found by linear regression. Apply this procedure to 
the data in Table P19 to determine the parameters A and α. Plot the original data 
and the curve fit just obtained.

TABLE P18

x y

1 3.0

1.6 3.4

2 3.7

2.5 3.8

3 4.2

3.4 4.5

4 4.7

4.6 4.8

5 5.0

5.8 5.2

t

y

1

0

Steady state

FIGURE 5.34
An s-shaped curve—chemical process.
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	 20.	  Repeat Problem 19 for the data in Table P20.

Polynomial Regression (Section 5.4)

	 21.	  Write a user-defined function [a3, a2, a1, a0] = CubicRegression (x, y) 
that uses the cubic least-squares regression approach to find the third-degree 
polynomial that best fits a set of data. The coefficients a3, a2, a1, a0 are found by 
expressing the appropriate 4 × 4 system of equations in matrix form and solving 
by “\” in MATLAB. The function also should return the plot of the data and the 
best cubic polynomial fit.

	 22.	  Using LinearRegression and CubicRegression (Problem 21) find and 
plot (same figure) the first- and third-order polynomials that best fit the data in 
Table P22.

TABLE P19

t y

1 0.38

1.5 0.43

2.5 0.68

3 0.79

4 0.90

5.5 0.94

7 0.96

8 0.97

9 0.98

10 0.99

TABLE P20

t y

1 0.68

3 0.79

5 0.83

7 0.92

9 0.95

11 0.97

13 0.97

15 0.98

17 0.98

19 0.99
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	 23.	  Repeat Problem 22 for the data in Table P23.

	 24.	  Using the user-defined functions of Section 5.4 find and plot (same figure) the 
straight line and the second-order polynomial that best fit the data in Table P24. 
Discuss the results.

	 25.	  Repeat Problem 24 for the data in Table P25.

TABLE P22

x y

0.8 4.9
2.6 5.7
4 6.3
4.8 6.1
6.5 7.2

TABLE P23

x y

0.0 1.2
0.3 1.8
0.6 2.8
0.9 3.6
1.1 4.4
1.4 4.1

TABLE P24

x y

0 2.0
1 4.2
2 5.7
3 6.7
4 7.9
5 9.1

TABLE P25

x y

0.1 0.8
0.3 1.0
0.5 1.5
0.7 2.2
0.9 3.3
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	 26.	  Using the polyfit and polyval functions find and plot (same figure) the 
third- and fourth-degree polynomials that best fit the data in Table P26.

	 27.	  Using the polyfit and polyval functions find and plot (same figure) the 
third- and fifth-degree polynomials that best fit the data in Table P27. Discuss 
the results.

	 28.	  During the free fall of a heavy object, the relationship between the velocity v of 
the object and the force r resisting its motion—both in consistent physical units—
is described by the data in Table P28.

	 a.	 Using the polyfit and polyval functions find and plot the second-degree 
polynomial that best fits the data.

	 b.	 Using the result of (a) find the force of resistance corresponding to a velocity 
of 1.75.

TABLE P26

x y

1 1.2
2 4
3 4.8
4 6
5 7.1
6 8

TABLE P27

x y

0 3.4
1 5.1
2 6.0
3 7.2
4 9.3
5 10.1

TABLE P28

Velocity (v) Resistance (r)

0 0
0.4 0.11
0.8 0.52
1.2 1.03
1.6 1.78
2.0 2.72
2.4 4.03
2.8 5.46
3.2 7.24
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	 29.	  Consider the data in Table P29 generated by the function y = 3x−0.4. Using the 
polyfit and polyval functions find the estimated value at x = 1.3 given by a 
third-degree and a fourth-degree polynomial fit, calculate the % relative error for 
each estimate, and comment on accuracy.

	 30.	  Using the polyfit and polyval functions find and plot the second-degree 
polynomial that best fits the data in Table P30. Also find the estimated value at 
x = 1.85.

Polynomial Interpolation (Section 5.5)

Lagrange Interpolation

	 31.	Given the data in Table P31,
	 a.	  Interpolate at x = 0.75 using the second-degree Lagrange interpolating 

polynomial.

	 b.	  Confirm the results by executing LagrangeInterp.

TABLE P29

x y = 3x−0.4

0.20 0.8027
0.50 1.1161
0.90 1.7321
1.20 2.4082
1.40 3.0000
1.70 4.1712

TABLE P30

x y

0.53 8.03
0.95 6.69
1.30 5.62
1.72 4.61
2.01 3.89
2.34 3.38
2.93 2.61
3.12 2.36
4.08 1.98
4.40 2.12

TABLE P31

x y

0.2 0.43
0.5 0.32
0.9 0.13
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	 32.	Given the data in Table P32,
	 a.	  Interpolate at x = 0.85 using the second-degree Lagrange interpolating 

polynomial.

	 b.	  Confirm the results by executing LagrangeInterp.

	 33.	  Given the data in Table P33,
	 a.	 Interpolate at x = 3 with a first-degree Lagrange polynomial using two most 

suitable data points.
	 b.	 Interpolate at x = 3 with a second-degree Lagrange polynomial using three 

most suitable data points.
	 c.	 Calculate the % relative errors for the results of (a) and (b), and discuss.

	 34.	  Given the data in Table P34,
	 a.	 Interpolate at x = 2.5 with a first-degree Lagrange polynomial using two most 

suitable data points.
	 b.	 Interpolate at x = 2.5 with a second-degree Lagrange polynomial using three 

most suitable data points.
	 c.	 Calculate the % relative errors for the results of (a) and (b), and discuss.

TABLE P32

x y

0.3 −0.25
0.7 −0.41
1.0 −0.16

TABLE P33

x y = sin(x/3)

0 0
1 0.3272
2 0.6184
4 0.9719

TABLE P34

x y = log10(x)

1 0
1.5 0.1761
2 0.3010
3 0.4771
5 0.6990
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	 35.	  Using format long and the user-defined function LagrangeInterp, given 
the data in Table P35, determine the four most suitable data points to interpolate at 
x = 0.6 with a third-degree Lagrange polynomial.

	 36.	  Using format long and the user-defined function LagrangeInterp, given 
the data in Table P36, determine the four most suitable data points to interpolate at 
x = 0.5 with a third-degree Lagrange polynomial.

	 37.	Consider the data in Table P37.
	 a.	  Interpolate at x = 1.7 via a second-degree Lagrange polynomial by using 

two suitable sets of three data points, and calculate the % relative errors for 
both cases.

	 b.	  Confirm the results of (a) in MATLAB.

	 38.	  The measured velocity of a moving object is recorded in Table P38. It is desired 
to estimate the velocity at t = 12 seconds, between the last two data points where 
there exists a relatively large gap. Plot the entire data. In the same graph, plot the 

TABLE P35

x y = e−2x/3

0.2 0.8752
0.4 0.7659
0.5 0.7165
0.8 0.5866
1.1 0.4803
1.3 0.4204

TABLE P36

x y = 3−x

0.1 0.8960
0.2 0.8027
0.4 0.6444
0.7 0.4635
0.9 0.3720
1.1 0.2987

TABLE P37

x y = x2/3

0.2 0.3420
1.2 1.1292
3 2.0801
6 3.3019
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second-degree Lagrange interpolating polynomial that goes through the last three 
data points, and the third-degree Lagrange interpolating polynomial that goes 
through the last four data points. Also find the interpolated values at t = 12 given 
by the two polynomials.

Newton Interpolation (Divided Differences)

	 39.	Given the data in Table P39,
	 a.	  Construct the divided differenes table and use Newton interpolating 

polynomials to interpolate at x = 0.25 using the first two points, the first three 
points, and the entire data.

	 b.	  Confirm the results of (a) by executing NewtonInterp.

	 40.	Given the data in Table P40,
	 a.	  Construct the divided differenes table and use Newton interpolating poly-

nomials to interpolate at x = 0.3 using the first two points, the first three points, 
and the entire data.

	 b.	  Confirm the results of (a) by executing NewtonInterp.

TABLE P38

Time (t), s Velocity (v), ft/s

2 120
4 564
7 873
9 1012
15 1670

TABLE P39

x y

0 1
0.5 0.9098
0.9 0.7725
1.2 0.6626

TABLE P40

x y

0 1
0.4 2.68
0.8 5.79
1 8.15
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	 41.	  Consider the data in Table P41.
	 a.	 Construct a divided differences table and interpolate at x = 1.75 using the 

third-degree Newton interpolating polynomial p3(x).
	 b.	 Suppose one more point (x = 3, y = 9.11) is added to the data. Update the 

divided differences table of (a) and interpolate at x = 1.75 using the fourth-
degree Newton interpolating polynomial p4(x).

	 42.	  Consider the data in Table P42.
	 a.	 Construct a divided differences table and interpolate at x = 4 using the third-

degree Newton interpolating polynomial p3(x).
	 b.	 Suppose one more point (x = 7, y = 0.18) is added to the data. Update the 

divided-difference table from (a) and interpolate at x = 4 using the fourth-
degree Newton interpolating polynomial p4(x).

	 43.	Given the data in Table P43,
	 a.	  Construct a divided differences table and interpolate at x = 2.6 and x = 4.4 

using the fourth-degree Newton interpolating polynomial p4(x).

	 b.	  Confirm the results by executing the user-defined function NewtonInterp.

	 44.	Given the data in Table P44,
	 a.	  Construct a divided differences table and interpolate at x = 2.7 and x = 5.3 

using the fourth-degree Newton interpolating polynomial p4(x).

TABLE P41

x y

1 1.22
1.5 2.69
2 4.48
2.5 6.59

TABLE P42

x y

1 1
3 0.45
5 0.26
6 0.21

TABLE P43

x y

1 0.69
2 1.10
3 1.39
4 1.61
6 1.95
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	 b.	  Confirm the results by executing the user-defined function NewtonInterp.

	 45.	  Consider the data in Table P45. It is desired to find an estimate at x = 10, 
between the last two data points where there exists a relatively large gap. Plot the 
entire data. In the same graph, plot the second-degree Newton interpolating poly-
nomial that goes through the last three data points, and the third-degree Newton 
interpolating polynomial that goes through the last four data points. Also find the 
interpolated values at x = 10 given by the two polynomials.

	 46.	  Consider the data in Table P46. It is desired to find an estimate at x = 7. Plot the 
entire data. In the same graph, plot the first-degree Newton interpolating poly-
nomial that goes through the last two data points, the second-degree polynomial 
that goes through the last three data points, and the third-degree polynomial that 
goes through the last four data points. Also find the interpolated values at x = 7 
given by the three polynomials. Comment on the accuracy of each estimate.

Newton Interpolation (Forward Differences)

	 47.	  For the data in Table P47, construct a forward-differences table and interpolate 
at x = 2.3 using Newton interpolating polynomial p4(x).

TABLE P44

x y

1 0.89
2 1.81
3 2.94
4 4.38
6 8.72

TABLE P45

x y

1 1
2 1.4142
3.5 1.8708
5 2.2361
7 2.6458
12 3.4641

TABLE P46

x y = ex/3

1 1.3956
3 2.7183
4 3.7937
5 5.2945
6 7.3891
8 14.3919
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	 48.	  Consider the data in Table P48.
	 a.	 Construct a forward-differences table and interpolate at x = 1.26 using Newton 

interpolating polynomials p3(x), going through the first four data points, and 
p4(x).

	 b.	 Suppose a new point (x = 1.5, y = 4.27) is added to the data. Interpolate at 
x = 1.26 using Newton interpolating polynomial p5(x).

	 49.	  For the data in Table P49, construct a forward-differences table and interpolate 
at x = 2.75 using Newton interpolating polynomial p5(x).

	 50.	  Write a user-defined function with syntax yi = Newton_FD(x,y,xi) that 
finds the Newton forward-difference interpolating polynomial for the equally-
spaced data (x,y) and uses this polynomial to interpolate at xi and returns the 
interpolated value in yi. For the data in Table P50, use the entire data to find the 
interpolated values at x = 3.7 and x = 7.3 by executing Newton_FD. Confirm both 
results by executing NewtonInterp.

TABLE P47

x y

1 1.25
2 3.25
3 7.25
4 13.25
5 21.25

TABLE P48

x y

1.0 1.30
1.1 1.75
1.2 2.27
1.3 2.86
1.4 3.52

TABLE P49

x y

1 0.92
1.5 0.80
2 0.64
2.5 0.46
3 0.29
3.5 0.14
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	 51.	  The user-defined function Newton_FD (Problem 50) is to be used throughout. 
Given the data in Table P51, interpolate at x = 11 by using p5(x), which goes through 
the first six data points, and p9(x).

	 52.	  The user-defined function Newton_FD (Problem 50) is to be used through-
out. Consider the data in Table P52. Plot the entire data. In the same graph, plot 

TABLE P50

x y

1 1.0000
2 0.4414
3 0.2598
4 0.1818
5 0.1381
6 0.1095
7 0.0939
8 0.0753
9 0.0675
10 0.0497

TABLE P51

x y

2 1.6840
4 2.1012
6 2.3465
8 2.6913
10 2.8469
12 3.1246
14 3.4723
16 3.6327
18 3.9543
20 4.2185

TABLE P52

x y

1 1.4422
2 1.8171
3 2.2240
4 2.6207
5 3.0000
6 2.3875
7 2.0986
8 1.6749
9 1.8903
10 2.3458
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the third-degree Newton interpolating polynomial that goes through the last four 
data points, the fourth-degree polynomial that goes through the last five data 
points, and the ninth-degree polynomial that goes through the entire data. Also 
find the interpolated values at x = 7.5 given by the three polynomials.

Spline Interpolation (Section 5.6)

 In Problems 53 through 56, find the quadratic splines for the given data and inter-
polate at the specified point(s). Assume ′′ =S x1 1 0( ) .

 Plot the resulting splines in MATLAB.

	 53.	Table P53, x = 0.8, x = 2.6

	 54.	Table P54, x = 3.75

	 55.	Table P55, x = 5.5, x = 9

	 56.	Table P56, x = 5.2, x = 7.8

TABLE P53

x y

0 1
1 2
2 5
3 9

TABLE P54

x y

1 1.2
3 2.3
4 1.2
6 2.9

TABLE P55

x y

3 1
7 4
10 5
13 2

TABLE P56

x y

1 10
4 8
6 12
9 14
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	 57.	  Consider the data in Table P57.
	 a.	 Find the quadratic splines, assuming ′′ =S x1 1 0( ) .
	 b.	 Find the cubic splines with clamped boundary conditions p = 1, q = −1.
	 c.	 Plot the splines obtained in (a) and (b).
	 d.	 Find the interpolated value at x = 1.6 using the splines of (a) and (b), compare 

with the true value, and discuss.

	 58.	  Repeat Problem 57 but this time assume the cubic splines satisfy free bound-
ary conditions.

	 59.	  For the data in Table P59 construct and plot cubic splines that satisfy
	 a.	 Clamped boundary conditions p = −1, q = −0.5.
	 b.	 Free boundary conditions.

	 60.	  For the data in Table P60 construct and plot cubic splines that satisfy
	 a.	 Clamped boundary conditions p = 0, q = 0.3.
	 b.	 Free boundary conditions.

	 61.	  The yield of a certain chemical reaction at various temperatures is recorded in 
Table P61. Find the reaction yield at 270°C by using

TABLE P59

x y

1 5
4 1
6 2
8 0.5

TABLE P57

x y = 10 − e−x/2

0.1 9.0488
0.5 9.2212
1 9.3935
2 9.6321

TABLE P60

x y

1 1
3 2
5 5
8 6



243Curve Fitting and Interpolation

	 a.	 interp1 with the “spline” option.
	 b.	 Clamped (p = −1, q = 1) cubic spline interpolation. Plot this spline, the one from 

(a), and the original data in a single graph.
	 c.	 Clamped (p = −0.5, q = 0.5) cubic spline interpolation. Plot this spline, the one 

from (a), and the original data in a single graph. Compare with (b) and discuss 
the results.

	 62.	  In an exercise session, maximum heart rates for eight individuals of different 
ages have been recorded as shown in Table P62. Find the maximum heart rate of a 
43-year-old individual by using

	 a.	 interp1.
	 b.	 Clamped (p = −1, q = −1) cubic spline interpolation.

	 63.	  The data in Table P63 is generated by the function f(x) = 1/(1 + 2x2).
	 a.	 Construct and plot the cubic splines with clamped boundary conditions 

p = 0.1, q = −0.1. Also plot the original function and the given data. Interpolate 
at x = 1.8 and compare with the true value at that point.

	 b.	 Repeat (a) for boundary conditions p = 0.2, q = −0.2. Discuss the results.

TABLE P62

Age x
Max. Heart 

Rate y

15 202
20 195
25 190
30 184
35 178
40 173
45 169
50 160

TABLE P61

Temperature 
(°C) x

Reaction 
Yield (%) y

160 78.3
180 81.4
195 84.5
225 85.1
250 89.3
280 91.7
300 94.8
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	 64.	  For the data in Table P64 construct and plot the cubic splines using interp1 
and find the interpolated value at x = 3.5. Repeat for cubic splines with clamped 
boundary conditions p = −0.2, q = 0.2, and compare the results.

	 65.	  The data in Table P65 shows the (experimental) compressibility factor for air 
at several pressures when temperature is fixed at 180°K. Construct and plot the 
cubic splines using interp1 and find the interpolated value at x = 275. Repeat for 
a third-degree polynomial using polyfit and compare the results.

	 66.	  Consider the data for x = 0:20 generated by the Bessel function of the first kind 
of order one J1(x), which in MATLAB is handled by besselj(1,x). Construct 

TABLE P63

x y

−2 0.1111

−1 0.3333
0 1.0000
1 0.3333
2 0.1111

TABLE P64

x y

−4 0

−3 0

−2 0

−1 2.3
0 4
1 2.3
2 0
3 0
4 0

TABLE P65

Pressure (bars) x Comp. Factor y Pressure (bars) x Comp. Factor y

1 0.9967 100 0.7084
5 0.9832 150 0.7180
10 0.9660 200 0.7986
20 0.9314 250 0.9000
40 0.8625 300 1.0068
60 0.7977 400 1.2232
80 0.7432 500 1.4361

Source:	 Perry’s Chemical Engineers’ Handbook (6th edition), McGraw-Hill. 1984.
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and plot the cubic splines using interp1, interpolate at x = 9.5 and compare with 
the actual value at that point.

Fourier Approximation and Interpolation (Section 5.7)

In Problems 67 through 74, for each given set of data,

	 a.	   Find the approximating or interpolating trigonometric polynomial of the 
indicated degree.

	 b.	   Confirm the results of (a) by executing the user-defined function TrigPoly.

	 67.	Table P67, m = 2

	 68.	Table P68, m = 2

	 69.	Table P69, m = 2

TABLE P69

t x

0.6 −0.60
0.8 0.52
1.0 0.98
1.2 0.75
1.4 1.03

TABLE P68

t x

0.3 1
0.4 0.9
0.5 0
0.6 0.1
0.7 0.8
0.8 0.9

TABLE P67

t x

1 0.9
1.3 1
1.6 −1
1.9 −0.8
2.2 0.9
2.5 1
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	 70.	Table P70, m = 3

	 71.	Table P71, m = 3

	 72.	Table P72, m = 2

	 73.	Table P73, m = 3

TABLE P70

t x

2 1.40
2.3 1.06
2.6 0.77
2.9 0.15
3.2 −0.62
3.5 0.31

TABLE P71

t x

1.5 1.05
1.7 1.85
1.9 1.40
2.1 0.35
2.3 1.50
2.5 0.80

TABLE P72

t x

2.4 4.15
2.6 2.05
2.8 6.20
3.0 4.30
3.2 5.80

TABLE P73

t x t x

0.7 −0.20 1.9 1.02
1.0 −0.54 2.2 0.92
1.3 −0.12 2.5 0.56
1.6 0.38 2.8 0.19
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	 74.	Table P74, m = 4

	 75.	  Write a user-defined function xi = TrigPoly_mod(x, m, t1, tN, ti) that 
approximates or interpolates a set of equally spaced data (t1,x1), …, (tN,xN) 
by a trigonometric polynomial of degree m and returns the interpolated value xi 
at a given point ti. Apply TrigPoly_mod to the data in Problem 67 to find the 
interpolated value at t = 2 using a trigonometric polynomial of degree 2.

	 76.	  Apply the user-defined function TrigPoly_mod (Problem 75) to the data in 
Problem 74 to find the interpolated value at t = 3.25 using a trigonometric poly-
nomial of degree 4.

 In Problems 77 through 80, for each given set of data, find the interpolating function 
using the MATLAB function fft.

	 77.	Table P77

	 78.	Table P78

TABLE P77

t x t x

1 1 3 0
1.5 1 3.5 0
2 0 4 1
2.5 0 4.5 1

TABLE P78

t x t x

0.4 0 1.6 0
0.7 1 1.9 −1
1.0 2 2.2 −2
1.3 1 2.5 −1

TABLE P74

t x t x

1.0 1.00 3.0 0.95
1.5 0.82 3.5 1.16
2.0 0.13 4.0 0.85
2.5 0.74 4.5 −0.25
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	 79.	Table P79

	 80.	Table P80

TABLE P79

t x t x

1.0 5.024 1.8 0.543
1.1 5.536 1.9 0.510
1.2 3.023 1.0 0.702
1.3 1.505 2.1 0.189
1.4 1.559 2.2 0.176
1.5 1.021 2.3 −0.096
1.6 0.965 2.4 −1.112
1.7 0.998 2.5 0.465

TABLE P80

t x t x

0.0 4.001 0.8 0.102
0.1 3.902 0.9 0.251
0.2 1.163 1.0 0.229
0.3 0.997 1.1 0.143
0.4 0.654 1.2 0.054
0.5 0.803 1.3 0.001
0.6 0.407 1.4 −0.583
0.7 0.706 1.5 −0.817



6
Numerical Differentiation and Integration

Numerical methods to find estimates for derivatives and definite integrals are presented 
and discussed in this chapter. Many engineering applications involve rates of change of 
quantities with respect to variables such as time. For example, linear damping force is 
directly proportional to velocity, which is the rate of change of displacement with respect 
to time. Other applications may involve definite integrals. For example, the voltage across 
a capacitor at any specified time is proportional to the integral of the current taken from 
an initial time to that specified time.

6.1  Numerical Differentiation

Numerical differentiation is desirable in various situations. Sometimes the analytical 
expression of the function to be differentiated is known but analytical differentiation 
proves to be either very difficult or even impossible. In that case, the function is dis-
cretized to generate several points (values), which are subsequently used by a numeri-
cal method to approximate the derivative of the function at any of the generated points. 
Often, however, data are available only in the form of a discrete set of points. These points 
may be recorded data from experimental measurements or generated as a result of some 
type of numerical computation. In these situations, the derivative can be numerically 
approximated in one of two ways. One way is to use finite differences, which utilize the 
data in the neighborhood of the point of interest. In Figure 6.1a, for instance, the deriva-
tive at the point xi is approximated by the slope of the line connecting xi−1 and xi+1. The 
other approach is to fit a suitable, easy to differentiate function into the data (Chapter 5) 
and then differentiate the analytical expression of the function and evaluate at the point 
of interest; see Figure 6.1b.

6.2  Finite-Difference Formulas for Numerical Differentiation

Finite-difference formulas are used to approximate the derivative at a point by using the 
values at the neighboring points. These formulas can be derived to approximate deriva-
tives of different orders at a specified point by using the Taylor series expansion. In this 
section, we present the derivation for finite-difference formulas to approximate first and 
second derivatives at a point, but those for the third and fourth derivatives will be pro-
vided without derivation.
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6.2.1  Finite-Difference Formulas for the First Derivative

There are several methods to approximate the first derivative at a point using the values at 
two or more of its neighboring points. These points can be chosen to the left, to the right, 
or on both sides of the point at which the first derivative is to be approximated.

6.2.1.1  Two-Point Backward Difference Formula

The value of f(xi−1) can be approximated by a Taylor series expansion at xi. Letting h = xi − xi−1, 
we have

	 f x f x hf x h f x h f xi i i i i( ) ( ) ( ) ( ) ( )! !− = − ′ + ′′ − ′′′ +1
1
2

2 1
3

3 � 	

Retaining the linear terms only, yields

	
f x f x hf x h fi i i( ) ( ) ( ) ( )!− = − ′ + ′′1

1
2

2 ξ
Remainder 	

where x xi i− ≤ ≤1 ξ . Solving for f ′(xi), we find

	
′ = − + ′′−f x

f x f x
h

hfi
i i( )

( ) ( )
( )!

1 1
2 ξ

Truncation error 	
(6.1)

Approximating the first derivative can be done by neglecting the second term on the 
right side, which produces a truncation error. Since this is proportional to h, we say the 
truncation error is of the order of h and express it as O(h),

	
′ = − +−f x

f x f x
h

O hi
i i( )

( ) ( )
( )1

	
(6.2)

Note that in many applications, we only have access to a set of data (xi, yi) and no func-
tion f(x) is available. In those cases, Equation 6.2 is simply replaced with

	
′ = − +−y

y y
h

O hi
i i 1 ( )

	

x

f

x

(a) (b) f

Tangent line

Curve fit
Data

xi–1 xi+1xi xi

f ′(xi) approximated
by the slope of the tangent
line to the curve fit

f ′(xi) approximated
by the slope of the line
connecting two neighboring
data points

FIGURE 6.1
Approximating f′(xi) using (a) finite difference and (b) the curve fit.
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A similar tactic is employed for all formulas derived in the remainder of this section. 
The actual value of the truncation error is not available because the value of ξ in Equation 
6.1 is not exactly known. However, O(h) signifies that the error gets smaller as h gets 
smaller.

6.2.1.2  Two-Point Forward Difference Formula

The value of f(xi+1) can be approximated by a Taylor series expansion at xi. Letting h = xi+1 − xi,

	 f x f x hf x h f x h f xi i i i i( ) ( ) ( ) ( ) ( )! !+ = + ′ + ′′ + ′′′ +1
1
2

2 1
3

3 � 	

Retaining the linear terms only,

	
f x f x hf x h fi i i( ) ( ) ( ) ( )!+ = + ′ + ′′1

1
2

2 ξ
Remainder 	

where x xi i≤ ≤ +ξ 1. Solving for f′(xi), we find

	
′ = − − ′′+f x

f x f x
h

hfi
i i( )

( ) ( )
( )!

1 1
2 ξ

	
(6.3)

The first term on the right side of Equation 6.3 provides an approximation for the first 
derivative, while the neglected second term is of the order of h so that

	
′ = − ++f x

f x f x
h

O hi
i i( )

( ) ( )
( )1

	
(6.4)

6.2.1.3  Two-Point Central Difference Formula

To derive the central difference formula, we retain up to the quadratic term in the Taylor 
series. Therefore,

	 f x f x hf x h f x h f x xi i i i i i( ) ( ) ( ) ( ) ( ) ,! !− −= − ′ + ′′ − ′′′ ≤ ≤1
1
2

2 1
3

3
1ξ ξ 	

and

	 f x f x hf x h f x h f x xi i i i i i( ) ( ) ( ) ( ) ( ) ,! !+ += + ′ + ′′ + ′′′ ≤ ≤1
1
2

2 1
3

3
1η η 	

Subtracting the first equation from the second, we find

	 f x f x hf x h f fi i i( ) ( ) ( ) [ ( ) ( )]!+ −− = ′ + ′′′ + ′′′1 1
1
3

32 η ξ 	

Solving for f ′(xi) and proceeding as before,

	
′ = − ++ −f x

f x f x
h

O hi
i i( )

( ) ( )
( )1 1 2

2 	
(6.5)
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Equation 6.5 reveals that the central difference formula provides a better accuracy than 
the backward and forward difference formulas. Figure 6.2 supports this observation.

Consider a set of data with x1, x2, …, xn. Since the two-point backward difference formula 
uses xi and the point to its left, xi−1, it cannot be applied at the first data point x1. But it can 
be used to approximate the first derivative at all interior points, as well as the last point 
xn, with a truncation error of O(h). The two-point forward difference formula cannot be 
applied at the last point xn, but it can be used to approximate the first derivative at the first 
point x1 and all the interior points with a truncation error of O(h). The central difference 
formula approximates the first derivative at the interior points with a truncation error 
of O(h2) but cannot be applied at the first and last points. The central difference formula 
is therefore the preferred choice since it gives better accuracy, but cannot be used at the 
endpoints. This means the approximation of the first derivative at the interior points has 
an error of O(h2), while those at the endpoints come with O(h). In order to have compatible 
accuracy, it is desired that the approximations at the endpoints also come with O(h2). These 
are provided by three-point difference formulas.

6.2.1.4  Three-Point Backward Difference Formula

We first approximate the value of f(xi−1) by a Taylor series expansion at xi,

	 f x f x hf x h f x h f x xi i i i i i( ) ( ) ( ) ( ) ( ) ,! !− −= − ′ + ′′ − ′′′ ≤ ≤1
1
2

2 1
3

3
1ξ ξ 	

x

f

Tangent line

Backward finite difference

x

f

Tangent line

Forward finite difference

x

f

Tangent line

Central finite difference

xi–1 xi+1xi xi–1 xi+1xi

xi–1 xi+1xi

FIGURE 6.2
Two-point finite differences to approximate the first derivative.
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We also approximate the value of f(xi−2) by a Taylor series expansion at xi,

	 f x f x h f x h f x h f xi i i i( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,! !− = − ′ + ′′ − ′′′2
1
2

2 1
3

32 2 2 η ii ix− ≤ ≤2 η 	

Multiplying the first equation by 4 and subtracting the result from the second equation, 
yields

	 f x f x f x hf x h f h fi i i i( ) ( ) ( ) ( ) ( ) (! !− −− = − + ′ + ′′′ − ′′′2 1
4
3

3 8
3

34 3 2 ξ η)) 	

Solving for f ′(xi), we arrive at

	
′ = − + − ′′′ + ′′′− −f x

f x f x f x
h

h f h fi
i i i( )
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( ) ( )2 1 1

3
2 2

3
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ξ η

	

Then, f ′(xi) can be approximated by neglecting the last two terms, which introduces a 
truncation error of the order of h2, that is,

	
′ = − + +− −f x

f x f x f x
h

O hi
i i i( )

( ) ( ) ( )
( )2 1 24 3

2 	
(6.6)

Therefore, the three-point backward difference formula approximates the first deriva-
tive at xi by using the values at the points xi, xi−1, and xi−2.

6.2.1.5  Three-Point Forward Difference Formula

The three-point forward difference formula approximates the first derivative at xi by using 
the values at the points xi, xi+1, and xi+2. The derivation is similar to that presented for the 
backward difference, except that the values of f(xi+1) and f(xi+2) are now considered as Taylor 
series expanded at xi. This ultimately leads to

	
′ = − + − ++ +f x

f x f x f x
h

O hi
i i i( )

( ) ( ) ( )
( )

3 4
2

1 2 2

	
(6.7)

EXAMPLE 6.1:   FINITE-DIFFERENCE FORMULAS FOR THE FIRST DERIVATIVE

Consider the data generated by the function f(x) = e−x sin(x/2) at x = 1.2, 1.4, 1.6, 1.8. 
Approximate f ′(1.4) using

•	 Two-point backward difference formula
•	 Two-point forward difference formula
•	 Two-point central difference formula
•	 Three-point forward difference formula

Find the percentage relative error in each case.

Solution

Since ′ = − 
−f x e x xx( ) cos( ) sin( )1

2 2 2/ / , the actual value is f ′(1.4) = −0.0646. The approxi-
mate first derivative is calculated via the four difference formulas listed above and are 
summarized in Table 6.1. As expected, the two-point central difference and three-point 
forward difference formulas provide better accuracy than the other two techniques.
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6.2.2  Finite-Difference Formulas for the Second Derivative

The second derivative at xi can also be approximated by finite difference formulas. These 
formulas are derived in a similar manner as those for the first derivative. Below, we pres-
ent three-point backward and forward difference, as well as three-point central difference 
formulas for approximating the second derivative.

6.2.2.1  Three-Point Backward Difference Formula

The values of f(xi−1) and f(xi−2) are first approximated by Taylor series expansions about xi

	 f x f x hf x h f x h f x xi i i i i i( ) ( ) ( ) ( ) ( ) ,! !− −= − ′ + ′′ − ′′′ ≤ ≤1
1
2

2 1
3

3
1ξ ξ 	

	 f x f x h f x h f x h f xi i i i( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,! !− = − ′ + ′′ − ′′′2
1
2

2 1
3

32 2 2 η ii ix− ≤ ≤2 η 	

Multiplying the first equation by 2 and subtracting from the second equation results in

	 f x f x f x h f x h f h fi i i i( ) ( ) ( ) ( ) ( ) ( )− −− = − + ′′ − ′′′ + ′′′2 1
2 4

3
3 1

3
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Proceeding as before, we find

	
′′ = − + +− −f x

f x f x f x
h

O hi
i i i( )

( ) ( ) ( )
( )2 1

2

2

	
(6.8)

6.2.2.2  Three-Point Forward Difference Formula

The values of f(xi+1) and f(xi+2) are first approximated by Taylor series expansions about xi

	 f x f x hf x h f x h f x xi i i i i i( ) ( ) ( ) ( ) ( ) ,! !+ += + ′ + ′′ + ′′′ ≤ ≤1
1
2

2 1
3

3
1ξ ξ 	

	 f x f x h f x h f x h f xi i i i( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,! !+ = + ′ + ′′ + ′′′2
1
2

2 1
3
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Multiplying the first equation by 2 and subtracting from the second equation results in

	 f x f x f x h f x h f h fi i i i( ) ( ) ( ) ( ) ( ) ( )+ +− = − + ′′ + ′′′ − ′′′2 1
2 4

3
3 1

3
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TABLE 6.1

Summary of Calculations in Example 6.1

Difference Formula Approximate f′(1.4) % Relative Error

Two-point backward
f f( . ) ( . )

.
.

1 4 1 2
0 2

0 0560
−

= − 13.22

Two-point forward
f f( . ) ( . )

.
.

1 6 1 4
0 2

0 0702
−

= − 8.66

Two-point central
f f( . ) ( . )

( . )
.

1 6 1 2
2 0 2

0 0631
−

= − 2.28

Three-point forward
− + −

= −
3 1 4 4 1 6 1 8

2 0 2
0 0669

f f f( . ) ( . ) ( . )
( . )

. 3.56
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Therefore,

	
′′ = − + ++ +f x

f x f x f x
h

O hi
i i i( )
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2
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6.2.2.3  Three-Point Central Difference Formula

Expanding f(xi−1) and f(xi+1) in Taylor series about xi and retaining up to the third derivative 
terms, we find

	 f x f x hf x h f x h f x h fi i i i i( ) ( ) ( ) ( ) ( )! ! !
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Adding the two equations and proceeding as always, we have

	
′′ = − + +− +f x

f x f x f x
h

O hi
i i i( )

( ) ( ) ( )
( )1 1

2
22

	
(6.10)

Therefore, in approximating the second derivative, the three-point central difference for-
mula has a truncation error of O(h2) compared to O(h) for the three-point backward and 
forward difference formulas.

EXAMPLE 6.2:  FINITE-DIFFERENCE FORMULAS FOR THE 
SECOND DERIVATIVE

Consider the data in Example 6.1. Approximate f″(1.4) using

•	 Three-point backward difference formula (h = 0.2)
•	 Three-point forward difference formula (h = 0.2)
•	 Three-point central difference formula (h = 0.2)
•	 Three-point central difference formula (h = 0.1)

Find the percentage relative error in each case.

Solution

Since ′′ = − 
−f x e x xx( ) sin( ) cos( )3

4 2 2/ / , the actual value is f ″(1.4) = −0.0695. The 
numerical results are summarized in Table 6.2, where it is readily seen that the three-
point central difference formula produces the most accurate estimate. It is also observed 
that reducing the spacing size significantly improves the accuracy.

TABLE 6.2

Summary of Calculations in Example 6.2

Difference Formula Approximate f″(1.4) % Relative Error

Three-point backward h = 0.2
f f f( ) ( . ) ( . )

( . )
.

1 2 1 2 1 4
0 2

0 12252

− +
= − 76.4

Three-point forward h = 0.2
f f f( . ) ( . ) ( . )

( . )
.

1 4 2 1 6 1 8
0 2

0 03302

− +
= − 52.6

Three-point central h = 0.2
f f f( . ) ( . ) ( . )

( . )
.

1 2 2 1 4 1 6
0 2

0 07062

− +
= − 1.69

Three-point central h = 0.1
f f f( . ) ( . ) ( . )

( . )
.

1 3 2 1 4 1 5
0 1

0 06982

− +
= − 0.42
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6.2.2.4  Summary of Finite-Difference Formulas for First to Fourth Derivatives

Table 6.3 lists the difference formulas presented earlier, as well as additional formulas for 
the first and second derivatives. It also includes formulas that can similarly be derived for 
the third and fourth derivatives at a point xi.

6.2.3  Estimate Improvement: Richardson’s Extrapolation

Derivative estimates using finite differences can clearly be improved by either reducing 
the spacing size or using a higher-order difference formula which involves more points. A 
third method is to use Richardson’s extrapolation, which combines two derivative approx-
imations to obtain a more accurate estimate. The idea is best understood through a specific 
example.

Consider the approximation of the first derivative using the two-point central difference 
formula. We will repeat some of the analysis done earlier, but show more terms in Taylor 
series expansions for our purpose.

	 f x f x hf x h f x h f x h fi i i i i( ) ( ) ( ) ( ) ( )! ! !
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and
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Subtracting the first equation from the second, and solving for f ′(xi), yields
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We next repeat this process with step size 1
2 h. In the meantime, we introduce the nota-

tions f x f x hi i( )/− = −( )1 2
1
2  and f x f x hi i( )/+ = +( )1 2

1
2 . Then, it can be shown that
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(6.12)

Multiply Equation 6.12 by 4 and subtract Equation 6.11 from the result to obtain
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f x f x

h
i

i i( )
( ) ( )/ /4

3
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(6.13)

Therefore, two approximations provided by the two-point central difference formula, 
one with spacing h and the other 1

2 h, each with error O(h2), are combined to obtain a more 
accurate estimate of the first derivative with error O(h4).

Equation 6.13 can be expressed in a general form as

	
D D D O hh h= − +4

3
1
32

4
/ ( )

	
(6.14)
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TABLE 6.3

Summary of Finite Difference Formulas for First, Second, Third, and Fourth Derivatives

Difference 
Formula First Derivative

Truncation 
error

Two-point 
backward ′ =

− −f x
f x f x

h
i

i i( )
( ) ( )1 O(h)

Two-point 
forward ′ =

−+f x
f x f x

h
i

i i( )
( ) ( )1 O(h)

Two-point 
central ′ =

−+ −f x
f x f x

h
i

i i( )
( ) ( )1 1

2
O(h2)

Three-point 
backward ′ =

− +− −f x
f x f x f x

h
i

i i i( )
( ) ( ) ( )2 14 3

2
O(h2)

Three-point 
forward ′ =

− + −+ +f x
f x f x f x

h
i

i i i( )
( ) ( ) ( )3 4

2
1 2 O(h2)

Four-point 
central ′ =

− + −− − + +f x
f x f x f x f x

h
i

i i i i( )
( ) ( ) ( ) ( )2 1 1 28 8

12
O(h4)

Difference 
Formula Second Derivative

Truncation 
Error

Three-point 
backward ′′ =

− +− −f x
f x f x f x

h
i

i i i( )
( ) ( ) ( )2 1

2

2 O(h)

Three-point 
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f x f x f x
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i i i( )
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2 O(h)
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− + − +− − −f x
f x f x f x f x

h
i

i i i i( )
( ) ( ) ( ) ( )3 2 1

2

4 5 2 O(h2)

Four-point 
forward ′′ =

− + −+ + +f x
f x f x f x f x

h
i

i i i i( )
( ) ( ) ( ) ( )2 5 41 2 3

2
O(h2)

Five-point 
central ′′ =

− + − + −− − + +f x
f x f x f x f x f x

h
i

i i i i i( )
( ) ( ) ( ) ( ) ( )2 1 1 2

2

16 30 16
12

O(h4)

Difference 
Formula Third Derivative
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(Continued)
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where
D = Value of the derivative
Dh = A function that approximates the derivative using h and has an error of O(h2)
Dh/2 = A function that approximates the derivative using 1

2 h and has an error of O(h2)

Note that Equation 6.14 can be used in connection with any difference formula that has 
an error of O(h2). Also note that the coefficients in Equation 6.14 add up to 1, hence act as 
weights attached to each estimate. With increasing accuracy, they place greater weight on 
the better estimate. For instance, using spacing size 1

2 h generates a better estimate than the 
one using h, and consequently Dh/2 has a larger weight attached to it than Dh does.

EXAMPLE 6.3:  RICHARDSON’S EXTRAPOLATION

Consider the data in Example 6.2. We approximated f″(1.4) using the three-point 
central  difference formula, which has an error of O(h2). Using h = 0.2, we found the 
estimate to be −0.0706. Using h = 0.1, the estimate was −0.0698. Therefore, Dh = −0.0706 
and Dh/2 = −0.0698. By Equation 6.14,

	 D ≅ − − − = −4
3

1
30 0698 0 0706 0 0695( . ) ( . ) . 	

which agrees with the actual value to four decimal places and is a superior estimate to 
the first two.

Richardson’s extrapolation can also be used in connection with estimates that have 
higher-order errors. In particular, it can combine two estimates, each with error O(h4), to 
compute a new, more accurate estimate with error O(h6)

	
D D D O hh h= − +16

15
1

15
2

6
/ ( )

	
(6.15)

where
D = Value of the derivative
Dh = A function that approximates the derivative using h and has an error of O(h4)
Dh/2 = A function that approximates the derivative using 1

2 h and has an error of O(h4).

TABLE 6.3 (Continued)

Summary of Finite Difference Formulas for First, Second, Third, and Fourth Derivatives

Difference 
Formula Fourth Derivative

Truncation 
error

Five-point 
backward f x

f x f x f x f x f x
h

i
i i i i i( )( )

( ) ( ) ( ) ( ) ( )4 4 3 2 1
4

4 6 4
=

− + − +− − − − O(h)

Five-point 
forward f x

f x f x f x f x f x
h

i
i i i i i( )( )

( ) ( ) ( ) ( ) ( )4 1 2 3 4
4

4 6 4
=

− + − ++ + + + O(h)
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central f x

f x f x f x f x f x
h

i
i i i i i( )( )

( ) ( ) ( ) ( ) ( )4 2 1 1 2
4

4 6 4
=

− + − +− − + + O(h2)
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backward f x

f x f x f x f x f x
i

i i i i i( )( )
( ) ( ) ( ) ( ) ( )4 5 4 3 2 12 11 24 26 14

=
− + − + −− − − − − ++ 3

4

f x
h

i( ) O(h2)

Six-point 
forward f x

f x f x f x f x f x f
i

i i i i i( )( )
( ) ( ) ( ) ( ) ( )4 1 2 3 43 14 26 24 11 2

=
− + − + −+ + + + (( )x

h
i+5

4
O(h2)

Seven-point 
central f x

f x f x f x f x f x f
i

i i i i i( )( )
( ) ( ) ( ) ( ) ( )4 3 2 1 112 39 56 39 12

=
+ − + + +− − − + (( ) ( )x f x

h
i i+ +−2 3

46
O(h4)



259Numerical Differentiation and Integration

Once again, as mentioned before, the coefficients add up to 1 and act as weights attached 
to the two estimates, with greater weight placed on the better estimate.

6.2.4  Richardson’s Extrapolation for Discrete Sets of Data

Applications of extrapolation formulas given in Equations 6.14 and 6.15 are rather straight-
forward when a function f(x) generates the data, as observed in Example 6.3. However, in 
the absence of f(x), we can no longer change the value of the step size from h to 1

2 h  and 
analyze the generated data. For discrete data, Dh is calculated using a set comprised of 
every other data in the original set, while Dh/2 is calculated using the entire original set.

6.2.5  Derivative Estimates for Non-Evenly Spaced Data

The finite-difference formulas to approximate derivatives of various orders require that 
the data be equally spaced. Also, Richardson’s extrapolation is applicable only to evenly 
spaced data and it computes better estimates by sequentially reducing the spacing by half. 
These techniques are appropriate if the data are equally spaced or if the data are generated 
by uniform discretization of a known function, such as that in Examples 6.1 and 6.2.

Empirical data—such as data resulting from experimental measurements—on the 
other hand, are sometimes not evenly spaced. For these situations, one possible way to 
approximate the derivative is as follows: (1) consider a set of three consecutive data points 
that contains the point at which the derivative is to be estimated, (2) fit a second-degree 
Lagrange or Newton interpolating polynomial (Chapter 5) to the set, and (3) differentiate 
the polynomial and evaluate at the point of interest. The derivative estimate obtained in 
this manner has the same accuracy as that offered by the central difference formula, and 
exactly matches it for the case of equally spaced data.

EXAMPLE 6.4:  NON-EVENLY SPACED DATA

For the data in Table 6.4, approximate the first derivative at x = 0.7 using the data at 0.3, 
0.8, and 1.1.

Solution

The data are not evenly spaced. We will consider the set of three consecutive points 0.3, 
0.8, and 1.1, which includes the point of interest x = 0.7, and fit a second-degree Lagrange 
interpolating polynomial to the set. Letting x1 = 0.3, x2 = 0.8, and x3 = 1.1, we find

	

p x
x x x x

x x x x
x x x x

x x
2

2 3

1 2 1 3

1 3

2
0 8228( )

( )( )
( )( )

( . )
( )( )

(
= − −

− −
+ − −

− 11 2 3

1 2

3 1 3 2
0 4670 0 2617

0 03

)( )
( . )

( )( )
( )( )

( . )

.

x x
x x x x

x x x x−
+ − −

− −
= 441 0 7491 1 04452x x− +. . 	

Differentiation yields ′ = −p x x2 0 0682 0 7491( ) . .  so that ′ = −p2 0 7 0 7014( . ) . .

TABLE 6.4

Data in Example 6.4

x y

0 1
0.3 0.8228
0.8 0.4670
1.1 0.2617
1.3 0.1396
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6.2.6  MATLAB Built-In Functions diff and polyder

The MATLAB built-in function diff can be used to estimate derivatives for both cases of 
equally spaced and not equally spaced data. A brief description of diff is given as

diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element shorter than 
X, of differences between adjacent elements

[X(2)-X(1) X(3)-X(2) … X(n)-X(n-1)]

diff(X,n) applies diff recursively n times, resulting in the nth 
difference. Thus, diff(X,2) is the same as diff(diff(X)).

Equally spaced data. Consider a set of equally spaced data (x1, y1), …, (xn, yn), where 
xi+1 − xi = h (i = 1, …, n − 1). Then, by the description of diff, the command diff(y)./h 
returns the (n − 1)-dimensional vector

	

y y
h

y y
h

n n2 1 1− … −





−

	

The first component is the first-derivative estimate at x1 using the forward-difference 
formula; see Equation 6.4. Similarly, the second component is the derivative estimate at x2. 
The last entry is the derivative estimate at xn−1. As an example consider f(x) = e−x sin(x/2), 
x = 1.2, 1.4, 1.6, 1.8, of Example 6.1. We find an estimate for f ′(1.4) as follows:

>> h = 0.2; x = 1.2:h:1.8;
>> y = [0.1701 0.1589 0.1448 0.1295]; % Values of f at the discrete x values
>> y_prime = diff(y)./h

y_prime =

   -0.0560   -0.0702   -0.0767

Since 1.4 is the second point in the data, it is labeled x2. Which means an estimate for f ′(1.4) 
is provided by the second component of the output y_prime. That is, f ′(1.4) ≅ −0.0702. This 
agrees with the earlier numerical results in Table 6.1.

Non-equally spaced data. Consider a set of non-evenly spaced data (x1, y1), …, (xn, yn). 
Then, by the description of diff, the command diff(y)./diff(x) returns the (n − 1)-​
dimensional vector

	

y y
x x

y y
x x

n n

n n

2 1

2 1

1

1

−
−

… −
−







−

− 	

The first component is the first-derivative estimate at x1 using the forward-difference 
formula, the second one is the derivative estimate at x2, while the last entry is the deriva-
tive estimate at xn−1.
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As mentioned in the description of diff above, diff(y,2) is the same as 
diff(diff(y)). So, if y y yn= …[ ]1 , then diff(y) returns

	
y y y y y yn n n2 1 3 2 1 1

− − … − − − −( ) dim 	
and diff(y,2) returns

	
( ) ( ) ( ) ( ) ( ) ( )

(
y y y y y y y y y y y yn n n n n3 2 2 1 4 3 3 2 1 1 2− − − − − − … − − − − − − −− −2) dim 	

which simplifies to

	 y y y y y y y y yn n n3 2 1 4 3 2 1 22 2 2− + − + … − + − − 	

The first component is the numerator in the three-point forward difference formula for 
estimating the second derivative at x1; see Equation 6.9. Similarly, the remaining compo-
nents agree with the numerator of Equation 6.9 at x2, …, xn−2. Therefore, for an equally 
spaced data (x1, y1), …, (xn, yn), an estimate of the second derivative at x1, x2, …, xn−2 is pro-
vided by

diff(y,2)./h^2

The MATLAB built-in function polyder finds the derivative of a polynomial:

polyder Differentiate polynomial.

    polyder(P) returns the derivative of the polynomial whose
    coefficients are the elements of vector P.

    polyder(A,B) returns the derivative of polynomial A*B.

    [Q,D] = polyder(B,A) returns the derivative of the
    polynomial ratio B/A, represented as Q/D.

For example, the derivative of a polynomial such as 2x3 − x + 3 is calculated as follows:

>> P = [2 0 -1 3];
>> polyder(P)

ans =

    6    0    -1

The output corresponds to 6x2 − 1.

6.3  Numerical Integration: Newton–Cotes Formulas

We encounter definite integrals in a wide range of applications, generally in the form

	

f x dx
a

b

( )∫
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where f(x) is the integrand and a and b are the limits of integration. The value of this definite 
integral is the area of the region between the graph of f(x) and the x-axis, bounded by the 
lines x = a and x = b. As an example of a definite integral, consider the relation between the 
bending moment M and shear force V along the longitudinal axis x of a beam, defined by

	

M M V x dx
x

x

2 1

1

2

− = ∫ ( )

	

where M2 is the bending moment at position x2 and M1 is the bending moment at x1. In this 
case, the integrand is shear force V(x) and the limits of integration are x1 and x2.

The integrand may be given analytically or as a set of discrete points. Numerical integra-
tion is used when the integrand is given as a set of data or, the integrand is an analytical 
function, but the antiderivative is not easily found. In order to carry out numerical integra-
tion, discrete values of the integrand are needed. This means that even if the integrand is 
an analytical function, it must be discretized and the discrete values will be used in the 
calculations.

6.3.1  Newton–Cotes Formulas

Newton–Cotes formulas provide the most commonly used integration techniques and 
are divided into two categories: closed form and open form. In closed-form schemes, the 
data points at the endpoints of the interval are used in calculations; the trapezoidal and 
Simpson’s rules are closed Newton–Cotes formulas. In open-form methods, limits of inte-
gration extend beyond the range of the discrete data; the rectangular rule and the Gaussian 
quadrature (Section 6.4) are open Newton–Cotes formulas.

The main idea behind Newton–Cotes formulas is to replace the complicated integrand 
or data with an easy-to-integrate function, usually a polynomial. If the integrand is an 
analytical function, it is first discretized, and then the polynomial that interpolates the 
discretized set is found and integrated. If the integrand is a set of data, the interpolating 
polynomial is found and integrated.

6.3.2  Rectangular Rule

In the rectangular rule, the definite integral ∫a
b

f x dx( )  is approximated by the area of a 
rectangle. This rectangle may be built using the left endpoint, the right endpoint, or the 
midpoint of the interval [a, b] (Figure 6.3). The one that uses the midpoint is sometimes called the 
midpoint method and is only applicable when the integrand is an analytical expression. All three 
cases are Newton–Cotes formulas, where the integrand is replaced with a horizontal line 
(constant), that is, a zero-degree polynomial. But it is evident by Figure 6.3 that the error of 
approximation can be quite large depending on the nature of the integrand. The accuracy 
can be improved considerably by using the composite rectangular rule.

6.3.2.1  Composite Rectangular Rule

In applying the composite rectangular rule, the interval [a, b] is divided into n subinter-
vals defined by n + 1 points labeled a = x1, x2, …, xn, xn+1 = b. The subintervals can gener-
ally have different widths so that longer intervals may be chosen for regions where the 
integrand exhibits slow variations and shorter intervals where the integrand experiences 
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rapid changes. In most of the results presented here, however, the data are assumed 
equally spaced. Over each subinterval [xi, xi+1], the integral is approximated by the area of 
a rectangle. These rectangles are constructed using the left endpoint, the right endpoint, 
or the midpoint as described earlier (Figure 6.4). Adding the areas of rectangles yields the 
approximate value of the definite integral ∫a

b f x dx( ) .

Composite Rectangular Rule (Using Left Endpoint)

	

f x dx f x x x O h
a

b

i i i

i

n

h b a n
( ) { ( )( )} ( )

( )/∫ ∑= − + =+

=
= −

1

1

 
For equally  spaced data

h f x O hi

i

n

( ) ( )
=

∑ +
1 	

(6.16)

Composite Rectangular Rule (Using Right Endpoint)

	

f x dx f x x x O h
a

b

i i i

i

n

h b a n
( ) { ( )( )} ( )

( )/∫ ∑= − + =−

=

+

= −
1

2

1

 
For equallly spaced data

h f x O hi
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n

( ) ( )
=

+

∑ +
2

1

	
(6.17)

Composite Rectangular Rule (Using Midpoint)

	

f x dx f m x x O h
a

b

i i i

i

n

h b a n
( ) { ( )( )} ( )

( )/∫ ∑= − + =+

=
= −

1

1

2  
For equallyy spaced data

, h f m O h m x xi

i

n

i i i( ) ( ) ( )
=

+∑ + = +
1

2
1

1
2

� (6.18)
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a b
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f

a b

x

f

a b

Rectangle constructed
using the left endpoint Rectangle constructed

using the right endpoint

Rectangle constructed
using the midpoint

( )f a

Area = f(a)(b – a)
Area = f(b)(b – a)

Area = f(m)(b – a)

m =   (a + b)

( )f b

( )f a

( )f b

( )f a

( )f b

1
2

FIGURE 6.3
Rectangular rule.
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6.3.3  Error Estimate for Composite Rectangular Rule

Equations 6.16 through 6.18 included the error estimates associated with the three com-
posite rectangular rule options. We will elaborate on these here. Consider ∫a

b f x dx( ) , where 
the points a = x1, x2, …, xn, xn+1 = b divide [a, b] into n subintervals of equal length h. Assume 
that over each interval [xi, xi+1], the rectangle is constructed using the left endpoint xi so 
that it has an area of hf(xi). The error associated with the integral over each subinterval is

	

E f x dx hf xi

x

x

i

i

i

= −
+

∫ ( ) ( )
1

Actual value

Estimate

	

By Taylor series expansion, we have

	 f x f x f x x x xi i i i i i( ) ( ) ( )( )= + ′ − ≤ ≤ +ξ ξ, 1 	

Then,

	

E f x f x x dx hf xi i i i

x

x

i

i

i

= + ′ − − =
+

∫ [ ( ) ( )( )] ( )ξ
1

 
and simplify

Evaluaate
1
2

2h f i′( )ξ
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f

Rectangles constructed
using the left endpoints
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x2 xi xn

x
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x3
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xnxi xi+1

x2 xi xnxi+1x3

x1 = a

FIGURE 6.4
Composite rectangular rules.
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This indicates that each error Ei can be made very small by choosing a very small spac-
ing size, that is, h ≪ 1. The error associated with the entire interval [a, b] is given by

	
E E h f h fi

i

n

i

i

n

i

i

n

= = ′ = ′
= = =

∑ ∑ ∑
1

1
2

2

1

1
2

2

1

( ) ( )ξ ξ
	

An average value for f ′ over [a, b] may be estimated by

	
′ ≅ ′

=
∑f

n
f i

i

n
1

1

( )ξ
	

Consequently,

	
E h nf

b a
n

hnf b a f h= ′ = −



 ′ = − ′





1
2

1
2

1
2

2 ( )
	

Since 1
2 ( )b a f const− ′ = , the error E is of the order of h, written O(h). In summary,

Composite rectangular rule (left endpoint)

	
E b a f h O h= − ′



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=1
2

( ) ( )
	

(6.19)

Similarly, for the composite rectangular rule (using right endpoint), E = O(h). Finally, we 
present without proof:

Composite rectangular rule (midpoint)

	
E b a f h O h= − ′′





=1
24

2 2( ) ( )
	

(6.20)

where ′′f  is the estimated average value of f″ over [a, b].

EXAMPLE 6.5:  COMPOSITE RECTANGULAR RULE

Evaluate the following definite integral using all three composite rectangular rule strat-
egies with n = 8:

	

1
2

1

1

x
dx

+
−
∫

	

Solution

With the limits of integration at b = 1, a = −1, we find the spacing size as h = 
(b − a)/n = 2/8 = 0.25. The nine nodes are thus defined as x1 = −1, −0.75, −0.5, …, 0.75, 1 = x9. 
Letting f(x) = 1/(x + 2), the three integral estimates are found as follows:
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Using left endpoint,

	

f x dx h f x f f fi
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( ) ( ) . [ ( ) ( . ) ( . )] .
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Using right endpoint,

	

f x dx h f x f f f fi

i
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1
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Using midpoint,

	

f x dx h f m f f fi

i

( ) ( ) . [ ( . ) ( . ) ( .
− =
∫ ∑≅ = − + − + +

1

1

1

8

0 25 0 8750 0 6250 0 87� 550 1 0963)] .=

	

Noting that the actual value of the integral is ln 3 = 1.0986, the above estimates come 
with relative errors of 8%, 7.17%, and 0.21%, respectively. As suggested by Equations 6.19 
and 6.20, the midpoint method yields the best accuracy.

6.3.4  Trapezoidal Rule

The trapezoidal rule is a Newton–Cotes formula, where the integrand is replaced with a 
straight line (a first-degree polynomial) connecting the points (a, f(a)) and (b, f(b)) so that 
the definite integral ∫a

b f x dx( )  is approximated by the area of a trapezoid (Figure 6.5a). The 
equation of this connecting line is

	
p x f a

f b f a
b a

x a1( ) ( )
( ) ( )

( )= + −
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−
	

Therefore,
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1
2Area =   [f(a) + f(b)](b – a)

xi xnxi+1x2x1 = a xn+1 = b

FIGURE 6.5
(a) Trapezoidal rule and (b) composite trapezoidal rule.
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Evaluation of this last expression yields

	

f x dx
f a f b

b a
a

b

( )
( ) ( )

( )∫ ≅ + −
2

	
(6.21)

The right side is indeed the area of the trapezoid as shown in Figure 6.5a. It is also evident 
by Figure 6.5a that the error of approximation can be quite large depending on the nature 
of the integrand. The accuracy of estimation can be improved significantly by using the 
composite trapezoidal rule (Figure 6.5b).

6.3.4.1  Composite Trapezoidal Rule

In the composite rectangular rule, the interval [a, b] is divided into n subintervals defined 
by n + 1 points labeled as a = x1, x2, … , xn, xn+1 = b. As in the case of rectangular rule, the 
subintervals can have different widths so that longer intervals can be used for regions 
where the integrand shows slow variations and shorter intervals where the integrand 
shows rapid changes. In most of the results presented here, however, the data are assumed 
equally spaced. Over each subinterval [xi, xi+1], the integral is approximated by the area of 
a trapezoid. Adding the areas of trapezoids yields the approximate value of the definite 
integral:
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For the case of equally spaced data, xi+1 − xi = h (i = 1, 2, … , n), Equation 6.22 simplifies to
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6.3.4.2  Error Estimate for Composite Trapezoidal Rule

The error for the composite trapezoidal rule can be shown to be
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where ′′f  is the estimated average value of f ″ over [a, b]. Therefore, the error O(h2) is com-
patible with the midpoint method and superior to the rectangular rule using the endpoints 
whose error is O(h).
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The user-defined function TrapComp uses the composite trapezoidal rule to estimate 
the value of a definite integral.

EXAMPLE 6.6:  COMPOSITE TRAPEZOIDAL RULE

	 1.	 Evaluate the definite integral in Example 6.5 using the composite trapezoidal 
rule with n = 8:
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1

x
dx
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	 2.	 Confirm the result by executing the user-defined function TrapComp.

Solution

	 1.	 The spacing size is h = (b − a)/n = 0.25 and the nine nodes are x1 = −1, −0.75, 
−0.5, … , 0.75, 1 = x9. Letting f(x) = 1/(x + 2), the integral estimate is found by 
Equation 6.23 as follows:
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		  Recalling the actual value 1.0986, the relative error is calculated as 0.42%. As 
expected, and stated earlier, the accuracy of composite trapezoidal rule is com-
patible with the midpoint rectangular method and better than the composite 
rectangular rule using either endpoint.

	 2.	

	 >> f = @(x)(1./(x+2));
	 >> I = TrapComp(f,-1,1,8)

	 I =
	     1.1032

function I = TrapComp(f,a,b,n)
%
% TrapComp estimates the value of the integral of f(x) from a to b
% by using the composite trapezoidal rule applied to n equal-length
% subintervals.
%
%   I = TrapComp(f,a,b,n), where
%
%    f is an anonymous function representing the integrand,
%    a and b are the limits of integration,
%    n is the number of equal-length subintervals in [a,b],
%
%    I is the integral estimate.
%
h = (b-a)/n; x = a:h:b;
y = f(x);
I = (y(1) + 2*sum(y(2:end-1)) + y(end))*h/2;
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6.3.5  Simpson’s Rules

The trapezoidal rule estimates the value of a definite integral by approximating the inte-
grand with a first-degree polynomial, the line connecting the points (a, f(a)) and (b, f(b)). 
Any method that uses a higher-degree polynomial to connect these points will provide a 
more accurate estimate. Simpson’s 1/3 and 3/8 rules, respectively, use second and third-
degree polynomials to approximate the integrand.

6.3.5.1  Simpson’s 1/3 Rule

In evaluating ∫a
b f x dx( ) , the Simpson’s 1/3 rule uses a second-degree polynomial to approx-

imate the integrand f(x). The three points that are needed to determine this polynomial are 
picked as x1 = a, x2 = (a + b)/2, and x3 = b as shown in Figure 6.6a. Consequently, the second-
degree Lagrange interpolating polynomial (Section 5.5) is constructed as
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The definite integral will then be evaluated with this polynomial replacing the integrand
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Substituting for p2(x), integrating from a to b, and simplifying, yields
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The method is known as the 1/3 rule because h is multiplied by 1/3. The estimation 
error, which can be large depending on the nature of the integrand, can be improved sig-
nificantly by repeated applications of the Simpson’s 1/3 rule.
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h h
x
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1
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( )f x ( )f x

x1 = a x3 = bx2 =   (a + b) x1 = a x2 x3 xn+1 = bxn–1

xn

(a) (b)

FIGURE 6.6
(a) Simpson’s 1/3 rule and (b) composite Simpson’s 1/3 rule.
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6.3.5.2  Composite Simpson’s 1/3 Rule

In the composite Simpson’s 1/3 rule, the interval [a, b] is divided into n subintervals defined 
by n + 1 points labeled a = x1, x2, … , xn, xn+1 = b. Although the subintervals can have differ-
ent widths, the results that follow are based on the assumption that the points are equally 
spaced with spacing size h = (b − a)/n. Since three points are needed to construct a second-
degree interpolating polynomial, the Simpson’s 1/3 rule must be applied to two adjacent 
subintervals at a time. For example, the first application will be to the first two subintervals 
[x1, x2] and [x2, x3] so that the three points at x1, x2, and x3 are used for polynomial construc-
tion. The next application will be to [x3, x4] and [x4, x5] so that x3, x4, and x5 are used for 
construction. Continuing this pattern, the very last interval is comprised of [xn−1, xn] and 
[xn, xn+1]; see Figure 6.6b. Therefore, [a, b] must be divided into an even number of subintervals 
for the composite 1/3 rule to be implemented. As a result,
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The even-indexed points (x2, x4, … , xn) are the middle terms in each application of 
1/3 rule, and therefore by Equation 6.25 have a coefficient of 4. The odd-indexed terms 
(x3, x5, … , xn−1) are the common points to adjacent intervals and thus count twice and have 
a coefficient of 2. The two terms f(x1) and f(xn+1) on the far left and far right each has a coef-
ficient of 1. In summary,
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(6.26)

6.3.5.3  Error Estimate for Composite Simpson’s 1/3 Rule

The error for the composite Simpson’s 1/3 rule can be shown to be
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where f ( )4  is the estimated average value of f (4) over [a, b]. Therefore, the error O(h4) is supe-
rior to the composite trapezoidal rule which has an error of O(h2).

The user-defined function Simpson uses the composite Simpson’s 1/3 rule to estimate 
the value of a definite integral.

function I = Simpson(f,a,b,n)
%
% Simpson estimates the value of the integral of f(x) from a to b
% by using the composite Simpson’s 1/3 rule applied to n equal-length
% subintervals.
%
%   I = Simpson(f,a,b,n), where
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EXAMPLE 6.7:  COMPOSITE SIMPSON’S 1/3 RULE

	 1.	 Evaluate the definite integral in Examples 6.5 and 6.6 using the composite 
Simpson’s 1/3 rule with n = 8:
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	 2.	 Confirm the result by executing the user-defined function Simpson.

Solution

	 1.	 The spacing size is h = (b − a)/n = 0.25 and the nine nodes are defined as x1 = −1, 
−0.75, −0.5, … , 0.75, 1 = x9. Letting f(x) = 1/(x + 2), the integral estimate is found 
by Equation 6.26 as follows:
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		    Knowing the actual value is 1.0986, the relative error is calculated as 0.01%. 
As expected, the accuracy of the composite Simpson’s 1/3 rule is superior to 
the composite trapezoidal rule. Recall that the relative error associated with 
the composite trapezoidal rule was calculated in Example 6.6 as 0.42%.

	 2.	

	 >> f = @(x)(1/(x+2));
	 >> I = Simpson(f,-1,1,8)

	 I =
	     1.0987

6.3.5.4  Simpson’s 3/8 Rule

The Simpson’s 3/8 rule uses a third-degree polynomial to approximate the integrand f(x). 
The four points that are needed to form this polynomial are picked as the four equally 
spaced points x1 = a, x2 = (2a + b)/3, x3 = (a + 2b)/3, and x4 = b with spacing size h = (b − a)/3 

%
%    f is an anonymous function representing the integrand,
%    a, b are the limits of integration,
%    n is the (even) number of subintervals,
%
%    I is the integral estimate.
%
h = (b-a)/n; x = a:h:b; I = 0;
for i = 1:2:n,
    I = I + f(x(i)) + 4*f(x(i+1)) + f(x(i+2));
end
I = (h/3)*I;
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as shown in Figure 6.7. The third-degree Lagrange interpolating polynomial (Section 5.5) 
is then constructed as
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The definite integral will be evaluated with this polynomial replacing the integrand
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Substituting for p3(x), integrating from a to b, and simplifying, yields
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The method is known as the 3/8 rule because h is multiplied by 3/8. As before, the estima-
tion error can be improved significantly by repeated applications of the Simpson’s 3/8 rule.

6.3.5.5  Composite Simpson’s 3/8 Rule

In the composite Simpson’s 3/8 rule, the interval [a, b] is divided into n subintervals defined 
by n + 1 points labeled a x x x x bn n= … =+1 2 1, , , , . The subintervals can have different widths, 
but the results presented here are based on the assumption that they are equally spaced 
with spacing size h = (b − a)/n. Since four points are needed to construct a third-degree 
polynomial, the Simpson’s 3/8 rule is applied to three adjacent subintervals at a time. For 
example, the first application will be to the first three subintervals [x1, x2], [x2, x3], and [x3, x4] 
so that the four points at x1, x2, x3, and x4 are used for polynomial construction. The next 
application will be to [x4, x5], [x5, x6], and [x6, x7] so that x4, x5, x6, and x7 are used for construc-
tion. Continuing this pattern, the very last interval comprises of x xn n− −[ ]2 1, , x xn n−[ ]1, , and 
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f

h h h

3 ( )p x
( )f x

x1 = a x4 = bx2 x3

FIGURE 6.7
Simpson’s 3/8 rule.
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x xn n, +[ ]1 . Therefore, [a, b] must be divided into a number of subintervals that is a multiple of 3 for 
the composite 3/8 rule to be implemented. As a result,
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The middle terms in each application of 3/8 rule have a coefficient of 3 by Equation 6.28, 
while the common points to adjacent intervals are counted twice and have a coefficient 
of 2. The two terms f(x1) and f(xn+1) on the far left and far right each has a coefficient of 1. 
In summary,
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We summarize the implementation of the composite Simpson rules as follows: if the num-
ber of subintervals is even, then Simpson’s 1/3 rule is applied. If the number of subinter-
vals is odd, then Simpson’s 3/8 rule is applied to the last three subintervals and the 1/3 rule 
is applied to all previous ones; see Problem Set 6.3.

6.3.5.6  Error Estimate for Composite Simpson’s 3/8 Rule

The error for the composite Simpson’s 3/8 rule can be shown to be
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where f ( )4  is the estimated average value of f (4) over the interval [a, b]. Therefore, the error 
O(h4) is compatible with that of the composite 1/3 rule.

The rectangular rule, trapezoidal rule, and the Simpsons’ 1/3 and 3/8 rules all belong to 
a class of integration techniques known as Newton–Cotes formulas. Although there are 
higher-order formulas, which need more than four points to form the interpolating poly-
nomial and naturally offer better accuracy, Simpson’s rules are adequate for most applica-
tions in engineering. To improve estimation accuracy, the composite Simpson’s rules are 
preferred to higher-order formulas. In the event that the integrand is given analytically, 
other methods such as Romberg integration and Gaussian quadrature (Section 6.4) are 
practical alternatives.

6.3.6  MATLAB Built-In Functions quad and trapz

MATLAB has two built-in functions to compute definite integrals: quad and trapz. The 
quad function handles cases where the integrand is given analytically, while trapz is 
used when the integrand is given as a discrete set of data.
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QUAD   Numerically evaluate integral, adaptive Simpson quadrature.

    Q = quad(FUN,A,B) tries to approximate the integral of scalar-valued
    function FUN from A to B to within an error of 1.e-6 using recursive
    adaptive Simpson quadrature. FUN is a function handle. The function
    Y = FUN(X) should accept a vector argument X and return a vector result
    Y, the integrand evaluated at each element of X.

Note that quad uses adaptive Simpson quadrature. Adaptive integration methods 
adjust the number of subintervals needed to meet a desired accuracy by using more func-
tion evaluations in regions where the integrand shows rapid changes and less in areas 
where the integrand is well approximated by a quadratic function. In particular, adaptive 
Simpson quadrature uses an error estimate associated with the Simpson’s rule, and if the 
error exceeds the desired tolerance, it divides the interval in two and applies Simpson’s 
rule to each subinterval recursively.

The integral ∫ +−1
1 1 2[ ( )]/ x dx, considered throughout this section, can be evaluated as 

follows:

function y = integrand(x)
y = 1./(x +2);
end

>> Q = quad(@integrand,-1,1)

Q =

    1.0986

For situations where the integrand is defined as a set of discrete data, the built-in func-
tion trapz is used.

TRAPZ Trapezoidal numerical integration.

    Z = trapz(X,Y) computes the integral of Y with respect to X using
    the trapezoidal method. X and Y must be vectors of the same
    length, or X must be a column vector and Y an array whose first
    non-singleton dimension is length(X). trapz operates along this
    dimension.

In Example 6.6, we used the composite trapezoidal rule with n = 8 to evaluate 
∫ +−1

1 1 2[ ( )]/ x dx. To confirm the result of that example using trapz, we must first generate 
a discrete set of data (x, y) equally spaced on [−1, 1] with spacing size of h = 0.25.

>> f = @(x)(1./(x+2));
>> x = -1:0.25:1;
>> y = f(x);     %  Generate 9 discrete values for integrand
>> I = trapz(x,y)

I =

    1.1032         %  Result agrees with that in Example 6.6
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6.4 � Numerical Integration of Analytical Functions: 
Romberg Integration, Gaussian Quadrature

Throughout Section 6.3 we presented numerical methods to evaluate integrals of analyti-
cal functions, as well as tabulated data. When the function is given analytically, it can 
be discretized at as many points as desired and these points are subsequently used to 
estimate the value of the integral. When the integrand is in tabulated form, only the given 
points in the data can be used for integral estimation and the number of points cannot be 
increased.

In this section, we introduce two methods that are exclusively developed to estimate 
the value of ∫a

b f x dx( ) , where f(x) is an analytical function. The first method is based on 
Richardson’s extrapolation, which combines two numerical estimates of an integral to 
find a third, more accurate estimate. Richardson’s extrapolation can be efficiently imple-
mented using Romberg integration. The second method is the Gaussian quadrature, 
which approximates the value of the integral by using a weighted sum of values of f(x) at 
several nodes in [a, b]. These nodes and the weights are determined such that the error is 
minimized.

6.4.1  Romberg Integration

The errors associated with the composite trapezoidal and Simpson’s rules were shown in 
Equations 6.24 and 6.27 to be
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This means in both cases, the error is reduced as n increases. Therefore, to achieve high 
levels of precision, a large number n of subintervals of [a, b] are needed, requiring greater 
computational effort as n gets larger. Consequently, as an alternative to composite trap-
ezoidal and Simpson’s rules with large n, Romberg integration can be used to attain more 
accurate estimates more efficiently.

6.4.1.1  Richardson’s Extrapolation

Richardson’s extrapolation combines two numerical estimates of an integral to find a third, 
more accurate estimate. For example, two estimates each with error O(h2) can be combined 
to obtain an estimate with error O(h4). Similarly, two estimates each with error O(h4) can 
be combined to obtain an estimate with error O(h6). In general, Richardson’s extrapolation 
combines two integral estimates each with order O(heven) to obtain a third, more accurate 
estimate with error O(heven+2).
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As an estimate with error O(h2), consider the composite trapezoidal rule applied to n 
subintervals with spacing h = (b − a)/n, and let the corresponding integral estimate be Ih. 
Noting the error as given in Equation 6.24, the true value of the integral is expressed as
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But since ′′f  is the estimated average value of f ″ over [a, b], it is independent of h and we 
can rewrite the above as
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Suppose the composite trapezoidal rule is used with two different spacing sizes h1 and 
h2 to find two estimates Ih1  and Ih2  of the same integral. Then,
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Eliminating C between the two equations, we find
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It can be shown* that this new estimate has an error of O(h4). In particular, two estimates 
given by the composite trapezoidal rule applied with h1 = h and h h2

1
2=  can be combined 

to obtain
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(6.31)

Simplifying the above, and realizing the error of the estimate is O(h4), we have
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3
1
32

4
/ ( )

	
(6.32)

Note that Equation 6.32 can be used in connection with any integration formula that has 
an error of O(h2). Also note that the coefficients in Equation 6.32 add up to 1, hence act as 
weights attached to each estimate. With increasing accuracy, they place greater weight on 
the better estimate. For instance, using spacing size 1

2 h generates a better estimate than the 
one using h, and consequently Ih/2 has a larger weight attached to it than Ih does.

*	 Refer to Ralston, A. and P. Rabinowitz, A First Course in Numerical Analysis, 2nd ed., McGraw-Hill, New York, 
1978.
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Similarly, it can readily be shown that two integral estimates with spacing sizes h1 and 
h2, each with error O(h4), can be combined to obtain a more accurate estimate
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with an error of O(h6). In particular, two estimates corresponding to h1 = h and h h2
1
2=  can 

be combined to obtain
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Simplifying, and realizing the error of the estimate is O(h6), we find
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Continuing in this fashion, two integral estimates corresponding to h1 = h and h h2
1
2= , 

each with error O(h6), can be combined to obtain
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so that
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EXAMPLE 6.8:  RICHARDSON’S EXTRAPOLATION

Consider

	

x x dxln
1

3

∫
	

Application of the trapezoidal rule with n = 2, n = 4, and n = 8 yields three estimates 
with error O(h2), as listed in the column labeled “Level 1” in Table 6.5, together with 
their respective percentage relative errors. Combining the first two estimates in Level 1 
via Equation 6.32, we find a new estimate with error O(h4):

	
I ≅ − =4

3
2 966568642984845

1
3

3 034212794122055 2 9440205926( . ) ( . ) . 005774
	

Combining the second and third estimates in Level 1 also yields a new estimate with 
O(h4):

	
I ≅ − =4

3
2 949472461900501

1
3

2 966568642984845 2 9437737348( . ) ( . ) . 772386
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These two better estimates are listed in Level 2 of Table 6.5. Combining these two via 
Equation 6.34 gives a new estimate with error O(h6), in Level 3:

	
I ≅ − =16

15
2 943773734872386

1
15

2 944020592605774 2 9437572( . ) ( . ) . 777690160
	

Noting the exact value of the integral is 9
2 3 2 2 943755299006494ln .− ≅ , the last esti-

mate shows a five decimal accuracy.

6.4.1.2  Romberg Integration

In the foregoing analysis, Richardson’s extrapolation was employed to combine two esti-
mates corresponding to spacing sizes h and 1

2 h, each with error O(heven), to obtain a third, 
more accurate estimate with error O(heven+2). The first three such results were shown in 
Equations 6.31, 6.33, and 6.35. In all three, the coefficients add up to 1, hence act as weights 
attached to each estimate, and with increasing accuracy, they place greater emphasis on 
the better estimate. These equations also follow a definite pattern that allows us to create 
a general formula, as

	
I

I I
i j

j
i j i j

j,
, ,=

−
−

−
+ − −

−
4

4 1

1
1 1 1

1
	

(6.37)

The entries I I Im1 1 2 1 1, , ,, , ,…  are placed in the first column and represent the estimates by the 
composite trapezoidal rule with the number of subintervals n n nm, , ,2 2 1… − . For example, 
I4,1 is the trapezoidal estimate applied to 24−1n = 8n subintervals. The second column has 
one element fewer than the first column, with entries I I Im1 2 2 2 1 2, , ,, , ,… − , which are obtained 
by combining every two successive entries of the first column and represent more accurate 
estimates. This continues until the very last column, whose only entry is I1,m. This scheme 
is depicted in Figure 6.8.

The user-defined function Romberg uses the scheme described in Figure 6.8 to find 
integral estimates at various levels of accuracy.

function I = Romberg(f,a,b,n,n_levels)
%
% Romberg uses the Romberg integration scheme to find integral estimates
% at different levels of accuracy.
%
%   I = Romberg(f,a,b,n,n_levels), where

TABLE 6.5

Integral Estimates at Three Levels of Accuracy; Example 6.8

n Estimate O(h2) Level 1 Estimate O(h4) Level 2 Estimate O(h6) Level 3

2 3.034212794122055 (3.0729%)
2.944020592605774 (0.0090%)

4 2.966568642984845 (0.7750%) 2.943757277690160 (0.000067%)
2.943773734872386 (0.0006%)

8 2.949472461900501 (0.1942%)
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%
%    f is an anonymous function representing the integrand,
%    a and b are the limits of integration,
%    n is the initial number of equal-length subintervals in [a,b],
%    n_levels is the number of accuracy levels,
%
%    I is the matrix of integral estimates.
%
I = zeros(n_levels,n_levels);  % Pre-allocate

% Calculate the first-column entries by using the composite
% trapezoidal rule, where the number of subintervals is doubled
% going from one element to the next.

for i = 1:n_levels,
    n_intervals = 2^(i-1)*n;
    I(i,1) = TrapComp(f,a,b,n_intervals);
end

% Starting with the second level, use Romberg scheme to generate
% the remaining entries of the table.

for j = 2:n_levels,
    for i = 1:n_levels-j+1,
        I(i,j) = (4^(j-1)*I(i+1,j-1)-I(i,j-1))/(4^(j-1)-1);
    end
end

n

2n

4n

Number of
subintervals

Level 1 ( 1)
Composite
trapezoidal rule
estimates

j =

Error

Level 2
( 2)j =

Level 3
( 3)j =

Level m–1
( j = m–1)

Level
( )

m
j = m

1,1I

2,1I

3,1I

I

1,2I

2,2I
1,3I

2m–3
m–2,1

Im–1,1

Im–2,2

Im–2,3

Im–1,2

Im,1

n

2m–2n

2m–1n

O(h2) O(h4) O(h6) O(h2m–2) O(h2m)

1,m–1I

2,m–1I
1,mI

FIGURE 6.8
Romberg integration scheme.
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The results of Example 6.8 can be verified by executing Romberg. Note that the initial 
number of subintervals for the application of composite trapezoidal rule was n = 2 and 
three levels of accuracy are desired.

>> format long
>> f = @(x)(x*log(x));
>> I = Romberg(f,1,3,2,3)

I =

   3.034212794122055   2.944020592605774   2.943757277690160
   2.966568642984845   2.943773734872386                   0
   2.949472461900501                   0                   0

As mentioned earlier, the Romberg integration scheme is more efficient than the trap-
ezoidal and Simpson rules. Referring to the above example, if only Simpson’s 1/3 rule were 
to be used, it would have to be applied with 14 subintervals to achieve 5-decimal accuracy.

6.4.2  Gaussian Quadrature

In estimating the value of ∫a
b f x dx( )  all the numerical integration methods presented up 

to now have been based on approximating f(x) with a polynomial, followed by function 
evaluations at fixed, equally spaced points. But if these points were not fixed, we could 
pick them in such a way that the estimation error is minimized. Consider, for instance, the 
trapezoidal rule, Figure 6.9a, where the (fixed) points on the curve must correspond to a 
and b. Without this limitation, we could select two points on the curve so that the area of 
the resulting trapezoid is a much better estimate of the area under the curve (Figure 6.9b).

The Gaussian quadrature is based on this general idea, and estimates the integral 
value by using a weighted sum of values of f(x) at several points in [a, b] that are not fixed, 
nor equally spaced. These points and the weights are determined such that the error is 
minimized.

The Gaussian quadrature is presented as applied to an integral in the explicit form

	

f x dx( )
−
∫

1

1

	

x

f

a b
x

f

a b

Points selected so that
the area of the trapezoid
more closely estimates the
area under the curve

Points are fixed and the
area of the trapezoid is a
poor estimate of the area
under the curve

(a) (b)

FIGURE 6.9
(a) Integral estimate by trapezoidal rule and (b) improved integral estimate.
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Note that any integral in the general form ∫a
b f d( )σ σ can be converted to ∫−1

1 f x dx( )  via a 
linear transformation (see Figure 6.10)

	
σ σ= − + + = −b a

x a d
b a

dx
2

1
2

( ) so that
	

and the new limits of integration are −1 and 1. Upon substitution, the original integral is 
transformed into

	

f
b a

x a
b a

dx
− + +





−

−
∫ 2

1
2

1

1

( )

	
(6.38)

Gaussian quadrature estimates the integral as

	

f x dx c f xi i

i

n

( ) ( )
− =
∫ ∑≅

1

1

1 	
(6.39)

where the weights ci and the Gauss nodes xi ( , , , )i n= …1 2  are determined by assuming 
that Equation 6.39 fits exactly the above integral for functions f x x x( ) , , ,= …1 2 . How many 
of these functions need to be used depends on the value of n. For the simple case of n = 2, 
for example, we have

	

f x dx c f x c f x( ) ( ) ( )
−
∫ ≅ +

1

1

1 1 2 2

	
(6.40)

so that there are four unknowns: weights c1 and c2, and nodes x1 and x1. The required four 
equations will be provided by fitting the integral for functions f x x x x( ) , , ,= 1 2 3:

	

f x dx c c c c( ) = ⇒ ⋅ = + ⇒ = +
−
∫1 1 2

1

1

1 2 1 2            

	

0
x

1

a

=

b

–1

σ

σ b – a (x + 1) + a
2

FIGURE 6.10
Linear transformation of data.
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f x x x dx c x c x c x c x( ) = ⇒ ⋅ = + ⇒ = +
−
∫            

1

1

1 1 2 2 1 1 2 20

	

	

f x x x dx c x c x c x c x( ) = ⇒ ⋅ = + ⇒ = +
−
∫2 2

1

1

1 1
2

2 2
2

1 1
2

2 2
22

3
            

	

	

f x x x dx c x c x c x c x( ) = ⇒ ⋅ = + ⇒ = +
−
∫3 3

1

1

1 1
3

2 2
3

1 1
3

2 2
30            

	

Solving this system of four equations in four unknowns yields

	 c c1 21= = 	

	
x x1 2

1
3

0
1
3

0 5773502692= − = − = =.5773502692, .
	

As a result, by Equation 6.40,

	

f x dx f f( )
−
∫ ≅ −



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+ 





1

1
1
3

1
3

	
(6.41)

This provides the exact value of the integral as long as the integrand is any of the func-
tions f x x x x( ) , , ,= 1 2 3 or their linear combination. Otherwise, it yields an approximate 
value of the integral.

The accuracy of approximation can be improved by increasing the value of n. For exam-
ple, for the case of n = 3,

	

f x dx c f x c f x c f x( ) ( ) ( ) ( )
−
∫ ≅ + +

1

1

1 1 2 2 3 3

	

and there are now six unknowns: three weights c1, c2, c3, and three nodes x1, x2, x3. The six 
equations needed to solve for the unknowns are generated by fitting the integral for func-
tions f x x x x x x( ) , , , , ,= 1 2 3 4 5. Proceeding as before, and solving the system of six equations, 
we arrive at

	 c c c1 3 20 5555555556 0 8888888889= = =. ., 	

	 x x x1 2 30 0 0 7745966692= − = =.7745966692, , . 	

In general,

	

f x dx c f x c f x c f x c f xi i

i

n

n n( ) ( ) ( ) ( ) ( )
− =
∫ ∑≅ = + + +

1

1

1

1 1 2 2 �

	



283Numerical Differentiation and Integration

which contains 2n unknowns: n weights and n nodes. The needed equations are generated 
by fitting the integral for functions f x x x x n( ) , , , ,= … −1 2 2 1. The resulting values of ci and 
xi are tabulated in Table 6.6 for n = 2, … , 6. It turns out that the weights c c cn1 2, , ,…  can be 
calculated via

	

c
x x
x x

dxi
j

i jj

j i

n

=
−
−=

≠
−
∏∫

11

1

	

(6.42)

and the Gauss nodes x x xn1 2, , ,…  are the zeros of the nth-degree Legendre polynomial*. 
For example, for n = 3, the nodes are the zeros of P x x x3

1
2

35 3( ) ( )= − , that is, 0 3
5, ± , which 

agree with the values obtained earlier. The weights are computed via Equation 6.42 and 
will agree with those given above, as well as in Table 6.6.

EXAMPLE 6.9:  GAUSSIAN QUADRATURE

Consider

	

e dxx−∫ 3

0 1

0 5

.

.

	

*	 The first five Legendre polynomials are ​
P x P x x P x x P x x x P x0 1 2

1
2

2
3

1
2

3
4

1
81 3 1 5 3( ) , ( ) , ( ) ( ), ( ) ( ), ( ) (= = = − = − = 335 30 34 2x x− + )

TABLE 6.6

Weights and Nodes Used in the Gaussian Quadrature

n Weights ci Gauss Nodes xi

2 c

c
1

2

1 000000000
1 000000000

=
=

.

.
x

x
1

2

0 577350269
0 577350269

= −
=

.
.

3 c

c

c

1

2

3

0 555555556
0 888888889
0 555555556

=
=
=

.

.

.

x

x

x

1

2

3

0 774596669

774596669

= −
=
=

.

.
 0
 0

4 c

c

c

c

1

2

3

4

0 347854845
0 652145155
0 652145155
0 347854845

=
=
=
=

.

.

.

.

x

x

x

x

1

2

3

4

0 861136312
0 339981044
339981044
8611363

= −
= −
=
=

.

.
.
.

 0
 0 112

5 c

c

c

c

c

1

2

3

4

5

0 236926885
0 478628670
0 568888889
0 478628670

=
=
=
=

.

.

.

.
== 0 236926885.

x

x

x

x

x

1

2

3

4

5

0 906179846
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90
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=
=
=

.

.

.
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 0
 0
 0 66179846

6 c

c

c

c

c

1

2

3

4

5

0 171324492
0 360761573
0 467913935
0 467913935

=
=
=
=

.

.

.

.
==
=

0 360761573
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.

.c

x

x

x

x

1

2

3

4

0 932469514
0 661209386
0
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= −
= −
= −
=

.

.

.
.238619186 

 0 1186
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5

6

x

x

=
=

 0
 0

.

.
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	 1.	 Find an approximate value for the integral using the Gaussian quadrature 
with n = 3, n = 4, and n = 5.

	 2.	 How many subintervals must Simpson’s 1/3 rule be applied to so that the 
accuracy is at the same level as that offered by the quadrature with n = 5? Use 
the user-defined function Simpson (Section 6.3) for this purpose. Use the int 
command (Chapter 2) to compute the actual value of the integral.

Solution

	 1.	 First rewrite the integral as ∫ −
0 1

0 5 3

.

.
e dσ σ  and then convert it into the standard form 

using the linear transformation

	
σ σ= − + + = + + = + =b a

x a x x d dx
2

1
0 4
2

1 0 1 0 2 0 3 0 2( )
.

( ) . . . .so that
	

		  Consequently, the integral in the desired form is

	

0 2 0 20 2 0 3

1

1

0 2 0 33 3
. ( ) .( . . ) ( . . )e dx f x ex x− +

−

− +∫ =so that

	

		  For the case of n = 3,

	

0 2

0 555555556

0 2 0 3

1

1

1 1 2 2 3 3
3

. ( ) ( ) ( )

.

( . . )e dx c f x c f x c f xx− +

−
∫ ≅ + +

= ⋅⋅ − + ⋅
+ ⋅

f f

f

( . ) . ( )
. ( .

0 774596669 0 888888889 0
0 555555556 0 7745966669

0 384942060052956
)

.= 	

		  For the case of n = 4,

	

0 2

0 3

0 2 0 3

1

1

1 1 2 2 3 3 4 4
3

. ( ) ( ) ( ) ( )

.

( . . )e dx c f x c f x c f x c f xx− +

−
∫ ≅ + + +

= 447854845 0 861136312 0 652145155 0 339981044
0 65

⋅ − + ⋅ −
+

f f( . ) . ( . )
. 22145155 0 339981044 0 347854845 0 861136312

0 38494
⋅ + ⋅

=
f f( . ) . ( . )

. 22137622670 	

		  Similarly, for n = 5,

	

0 2 0 2 0 3

1

1

1 1 2 2 3 3 4 4 5
3

. ( ) ( ) ( ) ( )( . . )e dx c f x c f x c f x c f x c fx− +

−
∫ ≅ + + + + (( )

.

x5

0 384942135961292= 	

	 2.	
	 >> format long
	 >> syms x
	 >> f = @(x)(exp(-x.^3));
	 >> I_exact = double(int(f,x,0.1,0.5))

	 I_exact =
	    0.384942135972449
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		  The percentage relative error for the estimate corresponding to n = 5 is

	 >> abs((0.384942135961292-I_exact)/I_exact*100)

	 ans =

	      2.898333979996639e-09

		  To achieve similar accuracy, Simpson’s 1/3 rule must be applied to roughly 96 
subintervals:

	 >> I = Simpson(f,0.1,0.5,96);
	 >> (I-I_exact)/I_exact*100

	 ans =

	      2.709827266627403e-09

6.5  Improper Integrals

All numerical integration techniques introduced in Sections 6.3 and 6.4 were designed to 
estimate integrals in the form ∫a

b f x dx( )  where the limits a and b are finite. While it is quite 
common to see these types of integrals in engineering applications, there are situations 
where improper integrals are encountered and must be approximated numerically. Some 
of these integrals appear in the following forms:

	

f x dx a f x dx b f x dx
a

b

( ) ( ), ( ) ( ), ( )
∞

−∞

−

−∞

∞

∫ ∫ ∫> >0 0

	
(6.43)

Consider ∫ >∞
a f x dx a( ) , 0. If the integrand f(x) reduces to zero at least as fast as x−2 does as 

x → ∞, then the integral is handled by a simple change of variable

	
x dx d= = −1 1

2σ σ
σso that 

	

Then,

	

f x dx f d f d
a a
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/∞
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σ σ
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σ σ
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(6.44)

The only concern is that the integrand is singular at the lower limit. Because of this, an 
open Newton–Cotes formula such as the composite midpoint rule (Section 6.3) can be uti-
lized so that the integral is estimated without using the data at the endpoint(s).

The integral ∫ >−∞
−b f x dx b( ) , 0, can be dealt with in a similar manner, including the condi-

tion on the rate of reduction of f(x) to zero. The last form ∫−∞
∞ f x dx( )  is treated as follows: we 

first decompose the integral as

	

f x dx f x dx f x dx f x dx
b

b

a

a

( ) ( ) ( ) ( )
−∞

∞

−∞

−

−

∞

∫ ∫ ∫ ∫= + +
	

(6.45)
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In the first integral, we choose −b so that f(x) has started to asymptotically converge to 
zero at least as fast as x−2. In the last integral, a is chosen such that the condition on the rate 
of reduction of f(x) to zero is met as well. The integral in the middle can be approximated 
using a closed Newton–Cotes formula such as Simpson’s 1/3 rule.

EXAMPLE 6.10:  IMPROPER INTEGRAL

Consider

	

sin x
x

dx2

2

∞

∫
	

This is in the form of the first integral in Equation 6.43 hence we use the change of 
variable x = 1/σ leading to Equation 6.44:

	

sin sin( )
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/ /
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dx d d2

2

2 2

0

1 2
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1 2
1 1

1
1

∞
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σ

σ
σ
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σ
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Noting that the integrand is singular at the lower limit, we will use the composite 
midpoint method with h = 0.0125 to estimate this last integral.

% Use s to represent sigma
f = @(s)(sin(1/s)); h = 0.0125; s = 0:h:0.5;
n = length(s)-1; m = zeros(n,1); I = 0;

for i = 1:n,
m(i) = (s(i+1)+s(i))/2;
I = I + f(m(i));
end

I = I*h;

I =

    0.0277

Accuracy can be improved by reducing the spacing size h.

PROBLEM SET (CHAPTER 6)

Finite-Difference Formulas for Numerical Differentiation (Section 6.2)

	 1.	  Consider f t e tt( ) sin/= − 3 , t = 1.3, 1.6, 1.9, 2.2. Approximate �f ( . )1 9  using
•	 Two-point backward difference formula.
•	 Two-point forward difference formula.
•	 Two-point central difference formula.
•	 Three-point backward difference formula.

		  Find the percentage relative error in each case.
	 2.	  Consider g t t e t( ) /= −2 2 , t = 0, 0.4, 0.8, 1.2. Approximate �g( . )0 4  using

•	 Two-point backward difference formula.
•	 Two-point forward difference formula.



287Numerical Differentiation and Integration

•	 Two-point central difference formula.
•	 Three-point forward difference formula.

		  Find the percentage relative error in each case.
	 3.	  Consider f x x x( ) = −2 2 , x = 1.7, 2.0, 2.3, 2.6, 2.9. Approximate f ′(2.3) using

•	 Three-point backward difference formula.
•	 Three-point forward difference formula.
•	 Four-point central difference formula.

		  Find the percentage relative error in each case.
	 4.	  Consider f x xx( ) log= 3 , x = 2.0, 2.4, 2.8, 3.2, 3.6. Find an estimate for f′(2.8) 

using
•	 Three-point backward difference formula.
•	 Three-point forward difference formula.
•	 Four-point central difference formula.

		  Find the percentage relative error in each case.
	 5.	  The position of a moving object has been recorded as shown in Table P5.
	 a.	 Find the velocity of the object at t = 3 s. using the three-point backward differ-

ence formula.
	 b.	 Using the result of (a), and applying the two-point central difference formula, 

predict the position at t = 3.5 s.

	 6.	  The data in Table P6 show the population of Canada recorded every 10 years 
between 1960 and 2010.

	 a.	 Find the rate of population growth in 2010 using the three-point backward dif-
ference formula.

TABLE P5 

Time, t (seconds) Position, x (meters)

1 0.75
1.5 1.35
2 2.50
2.5 3.25
3 4.55

TABLE P6

Year, t Population, p (millions)

1960 17.9
1970 21.3
1980 24.6
1990 27.8
2000 30.8
2010 34.1
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	 b.	 Using the result of (a), and applying the two-point central difference formula, 
predict the population in 2020.

	 7.	 Consider g x x e x( ) ( ) /= + −2 1 3 4, x = 1, 1.5, 2, 2.5, 3. Approximate g″(2) using
•	 Three-point central difference formula.
•	 Five-point central difference formula.

		  Find the percentage relative error in each case.
	 8.	  The position of a moving object has been recorded as shown in Table P8.
	 a.	 Find the acceleration of the object at t = 1.9 s. using the four-point backward 

difference formula.
	 b.	 Using the result of (a), and the three-point central difference formula, predict 

the position at t = 2.2 s.

	 9.	  The deflection u of a beam along its longitudinal (x) axis has been recorded as 
shown in Table P9. The bending moment at any point along this beam is modeled 
as M(x) = 1.05u″(x). All parameters are in consistent physical units. Find an esti-
mate for the bending moment at x = 0.6 using

	 a.	 The three-point central difference formula.
	 b.	 The three-point backward difference formula.

	 10.	  Let f x x( ) /= −3 22 .
	 a.	 Approximate f ′(2.4) using the two-point central difference formula with h = 0.2.
	 b.	 Approximate f ′(2.4) using the two-point central difference formula with h = 0.1.
	 c.	 Apply an appropriate form of Richardson’s extrapolation to the results of (a) 

and (b) to obtain a superior estimate.
	 d.	 Calculate the percentage relative errors in (a) through (c), compare, and discuss.
	 11.	  Repeat Problem 10 for g x xx( ) ln/= −2 3 .

TABLE P9

Position x Deflection u

0.2 −0.13
0.4 −0.21
0.6 −0.22
0.8 −0.14

TABLE P8

Time, t (seconds) Position, x (meters)

0.7 0.62
1 0.76
1.3 1.02
1.6 1.18
1.9 1.49
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	 12.	  Let f x x x( ) sin/= 1 2 .
	 a.	 Approximate f ′(3.4) using the four-point central difference formula with h = 0.2.
	 b.	 Approximate f ′(3.4) using the four-point central difference formula with h = 0.1.
	 c.	 Apply an appropriate form of Richardson’s extrapolation to the results of (a) 

and (b) to obtain a superior estimate.
	 d.	 Calculate the percentage relative errors in (a) through (c), compare, and discuss.
	 13.	  Let g x e x x( ) = +− 2 .
	 a.	 Approximate g″(1.5) using the three-point central difference formula with 

h = 0.3.
	 b.	 Approximate g″(1.5) using the three-point central difference formula with 

h = 0.15.
	 c.	 Apply an appropriate form of Richardson’s extrapolation to the results of (a) 

and (b) to obtain a superior estimate.
	 d.	 Calculate the percentage relative errors in (a) through (c), compare, and discuss.
	 14.	  For the unevenly spaced data in Table P14 estimate the first derivative at 

x = 1.75 by
	 a.	 Fitting a second-degree Lagrange interpolating polynomial to the set of the 

first three data points.
	 b.	 Fitting a third-degree Lagrange interpolating polynomial to the entire set.

	 15.	  Given the unequally spaced data in Table P15 estimate the first derivative at 
x = 2.5 by

	 a.	 Fitting a second-degree Lagrange interpolating polynomial to the set of the 
first three data points.

	 b.	 Fitting a third-degree Lagrange interpolating polynomial to the entire set.

	 16.	Given the unequally spaced data in Table P16 estimate the first derivative 
at x = 2.3 by

	 a.	  Fitting a second-degree Lagrange interpolating polynomial to the set of 
the last three data points.

TABLE P14

x y

1.3 1.27
1.5 1.37
2 1.72
2.4 2.12

TABLE P15

x y

2 5.8432
2.4 7.5668
2.6 8.5643
3 10.8731
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	 b.	  Applying the MATLAB built-in function diff to the entire set.

	 17.	Given the equally spaced data in Table P17 estimate the second derivative 
at x = 3.6 by

	 a.	  Fitting a second-degree Lagrange interpolating polynomial to the set of 
the last three data points.

	 b.	  Applying the MATLAB built-in function diff to the entire set. Compare 
with (a) and discuss.

	 18.	  Consider the equally spaced data in Table P18. Using polyfit (Chapter 5), 
find the interpolating polynomial for the entire set. Differentiate this polynomial 
using polyder. Use this result to find the estimate of the first derivative at x = 1.75.

Numerical Integration: Newton–Cotes Formulas (Section 6.3)

Composite Rectangular Rule

 In Problems 19 through 22 evaluate the definite integral using all three composite 
rectangular rule strategies with the indicated number of equally spaced data, calculate the 
percentage relative errors for all cases, and discuss.

	 19.	 e dxx−∫ 3 5

1

3

/ , n = 8

TABLE P16

x y

2 1.0827
2.3 1.2198
2.7 1.3228
3 1.3443

TABLE P17

x y

3 0.4817
3.3 0.9070
3.6 1.4496
3.9 2.1287

TABLE P18

x y

0.5 11.3137
1.0 16.0000
1.5 22.6274
2.0 32.0000
2.5 45.2548
3.0 64.0000
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	 20.	 2
1

5

+∫ xdx , n = 10

	 21.	 x xdxsin
2

3

∫ , n = 10

	 22.	 ( )
.

x e dxx+∫ 1
0 4

1

, n = 8

	 23.	  Write a user-defined function I = Midpoint_Comp​(f,a,b,n) that uses the 
midpoint strategy of the rectangular rule to estimate the value of the integral of f 
from a to b using n subintervals, and f is an anonymous function representing the 
integrand. Then, apply Midpoint_Comp to estimate the value of

	

e xdx nx−∫ =
2

1

3

10sin ,

	

		  Find the actual value of the integral using the int command and calculate the 
percentage relative error for the estimate.

	 24.	  Apply the user-defined function Midpoint_Comp (Problem 23) to estimate 
the value of

	

sin
,

x
x

dx n
1

4

20∫ =
	

		  Find the actual value of the integral using the int command and calculate the 
percentage relative error for the estimate.

 In Problems 25 through 28, find the integral estimate using the left- and right-end com-
posite rectangular rule strategies with the indicated non-equally spaced nodes, and calculate 
the percentage relative errors.

	 25.	 x dx2 3

1

3

/∫ ,  1, 1.2, 1.5, 1.7, 1.8, 2.2, 2.5, 3

	 26.	 x xdx2

0

2 5

sin
.

∫ ,  0, 0.5, 0.8, 1.1, 1.6, 2, 2.3, 2.5

	 27.	 cos ( )
.

.

2

0 3

1 3

1x dx+∫ ,  0.3, 0.4, 0.6, 0.9, 1, 1.1, 1.2, 1.3

	 28.	
5

2 12

0

3
x

x
dx

+∫ ,  0, 0.4, 0.9, 1.2, 1.8, 2.3, 2.6, 3
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Composite Trapezoidal Rule

In Problems 29 through 32,

	  a.	  Evaluate the integral using the composite trapezoidal rule with the given 
number of equally spaced subintervals.

	  b.	  Confirm the results by executing the user-defined function TrapComp.

	 29.	
1

1
1

4

ln( )x
dx

+∫ ,  n = 5

	 30.	 2 2

0

2 1

x xe dx−∫
.

,  n = 7

	 31.	 2 3

0 2

1 4

x dx+∫
.

.

,  n = 6 

	 32.	 1 3

0 3

3

+∫ x dx
.

,  n = 9

	 33.	  For implementation of the composite trapezoidal rule when the nodes are gen-
erally not equally spaced, write a user-defined function with function call I = 
TrapComp_Gen(f,x) to estimate the value of the integral of f from a to b, where 
f is an anonymous function representing the integrand and a and b are the first 
and last entries of the vector x, whose components are not necessarily equally 
spaced. Apply TrapComp_Gen to estimate the value of

	

e xdxx−∫ / cos2 2

1

3

2

	

		  where
	 a.	 x = 1, 1.2, 1.6, 1.8, 1.9, 2, 2.1, 2.3, 2.6, 2.8, 3.
	 b.	 x = 1 : 0.2 : 3 (equally spaced with increments of 0.2).

	 34.	  Find the estimate for

	
e xdxx−

−∫ cos
2

0

	

		  by executing the user-defined function TrapComp_Gen (Problem 33) with x = −2, 
−1.8, −1.3, −0.9, −0.3, 0. Find the actual value using the int command and calculate 
the percentage relative error associated with the integral estimate.

	 35.	  Consider [ /( )]x x dx2

0

2

1+∫ .

	 a.	 Evaluate by executing TrapComp_Gen (Problem 33) with x = 0, 0.2, 0.35, 0.6, 0.7, 
0.9, 1.2, 1.5, 1.7, 1.8, 2.
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	 b.	 Evaluate by executing TrapComp with x = 0 : 0.2 : 2 (equally spaced with incre-
ments of 0.2).

	 c.	 Find the actual integral value using the int command and calculate the per-
centage relative errors associated with the integral estimates in (a) and (b).

	 36.	  Write a user-defined function with function call I = TrapComp_Data(x,y) 
that estimates the value of the integral of a tabular data (x,y), which is not nec-
essarily equally spaced, using the composite trapezoidal rule. Apply TrapComp_
Data to the data in Table P36.

	 37.	  Write a user-defined function with function call I = TrapComp_ESData(x,y) 
that estimates the value of the integral of a tabular, equally spaced data (x,y) 
using the composite trapezoidal rule. Apply TrapComp_ESData to the data in 
Table P37.

	 38.	  A fragile instrument is placed inside a package to be protected during shipping 
and handling. The characteristics of the packing material are available experimen-
tally, as shown in Table P38. Assume that the force F(x) exerted on the instrument 
is not to exceed 14 lbs. In order to determine the maximum safe drop height for the 
package, we first need to compute

	

F x dx( )
0

3

∫
	

	 a.	 Evaluate this integral by executing the user-defined function TrapComp_
ESData (Problem 37).

	 b.	 Determine the sixth-degree interpolating polynomial for the data in Table P38 
using polyfit, and then integrate this polynomial from 0 to 3 to approximate 
the above integral.

Composite Simpson’s 1/3 Rule

In Problems 39 through 43,

	 a.	  Evaluate the integral using composite Simpson’s 1/3 rule with the given num-
ber of equally-spaced subintervals.

TABLE P36

x 0 0.15 0.25 0.40 0.50 0.55 0.65 0.8 0.90 1
y 0 0.29 0.23 0.33 0.38 0.39 0.42 0.38 0.34 0.31

TABLE P37

x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
y 0.41 0.37 0.26 0.19 0.24 0.13 0.11 0.09 0.07 0.05 0.01

TABLE P38

x (inches) 0 0.5 1 1.5 2 2.5 3
F (lbs) 0 0.5 1.1 1.75 3.75 7.25 14
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	 b.	  Confirm the results by executing the user-defined function Simpson.

	 c.	  Find the actual integral value and calculate the percentage relative error for 
the estimate in (b).

	 39.	 43 2

2 05

4 15

−∫ xdx
.

.

,  n = 6

	 40.	 x e dxx3

0 2

1 4

−∫
.

.

,  n = 6

	 41.	
x
x x

dx
+
+∫ 3

2 2

3

7

,  n = 8

	 42.	 21

3 1

4 3

−∫ x xdxsin
.

.

,  n = 8

	 43.	 1
3

2 1
2

2

1

3

x dx+( )
−
∫ ,  n = 10

	 44.	  For implementation of the composite Simpson’s 1/3 rule when the nodes are 
generally not equally spaced, write a user-defined function with function call I = 
Simpson_Gen(f,x) to estimate the value of the integral of f from a to b, where 
f is an anonymous function representing the integrand and a and b are the first 
and last entries of the vector x, whose components are not necessarily equally 
spaced. Apply Simpson_Gen to estimate the value of

	

2 21
3

3

0

1

+( )∫ sin x dx

	

		  where
	 a.	 x = 0, 0.1, 0.25, 0.3, 0.4, 0.55, 0.6, 0.7, 0.85, 0.9, 1.
	 b.	 x = 0 : 0.1 : 1 (equally spaced with increments of 0.1).

	 45.	  Consider ( ) ( )x x dx3 4

1

1

1 1− + 
−∫ / .

	 a.	 Evaluate by executing Simpson_Gen (Problem 44) with x = −1, −0.85, −0.6, 
−0.4, −0.25, −0.1, 0, 0.25, 0.6, 0.8, 1.

	 b.	 Evaluate by executing Simpson with x = −1 : 0.2 : 1 (equally spaced with incre-
ments of 0.2).

	 46.	  Consider x x dx2

1

4

ln∫ .

	 a.	 Evaluate by executing Simpson_Gen (Problem 44) with x = 1, 1.4, 1.7, 1.9, 2.3, 
2.5, 2.6, 2.8, 3.3, 3.8, 4.

	 b.	 Evaluate by executing Simpson with x = 1 : 0.3 : 4 (equally spaced with incre-
ments of 0.3).

	 c.	 Calculate the percentage relative errors associated with the results of (a) and (b).
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	 47.	   Write a user-defined function with function call I = Simpson_Data(x,y) 
that estimates the value of the integral of a tabular data (x,y), not necessarily 
equally spaced, using the composite Simpson’s 1/3 rule. Apply Simpson_Data to 
the data in Table P47.

	 48.	  Write a user-defined function with function call I = Simpson_ESData(x,y) 
that estimates the value of the integral of a tabular, equally spaced data (x,y) 
using the composite Simpson’s 1/3 rule. Apply Simpson_ESData to the data in 
Table P48.

Composite Simpson’s 3/8 Rule

 In Problems 49 through 52, evaluate each integral using the composite Simpson’s 
3/8 rule.

	 49.	 x x dx1 3

1 2

4 8

2 1/

.

.

cos( )+∫ ,  n = 9

	 50.	 x dxx2 5

0

1 8

.

.

∫ ,  n = 9

	 51.	 x e dxx2 2

0 2

2

−∫ /

.

,  n = 6

	 52.	
ln 1

2

2

5

2 1
x

x
dx

( )
+∫ ,  n = 6

	 53.	  Write a user-defined function with function call I = Simpson_38(f,a,b,n) 
that estimates the value of the integral of f from a to b using the composite 
Simpson’s 3/8 rule applied to n subintervals of equal length, where f is an anony-
mous function. Apply Simpson_38 to estimate the value of

	

cos ( ) ,3

1

3

2 1 12x dx n− =∫
	

		  Calculate the percentage relative error of the estimate.

	 54.	  Evaluate e x dxx−

−∫ sin
.

2

1

3 5

 by executing

	 a.	 Simpson_38 (Problem 53) with n = 6.

TABLE P47

x 0 0.20 0.35 0.50 0.60 0.70 0.85 0.90 1
y 0 0.24 0.32 0.38 0.41 0.44 0.35 0.33 0.31

TABLE P48

x 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
y 0.39 0.32 0.27 0.21 0.19 0.13 0.10 0.07 0.04 0.03 0.01
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	 b.	 Simpson with n = 6.
	 c.	 quad.

	 55.	  Evaluate x e dxx−∫ 2 2

0 2

0 65

.

.

 using the two functions listed below, and calculate the 

percentage relative error for each.
	 a.	 Simpson_38 (Problem 53) with n = 9.
	 b.	 quad.

	 56.	  Write a user-defined function with function call I = Simpson_38_ESData​
(x,y) that estimates the integral of a tabular, equally spaced data (x,y) using 
the composite Simpson’s 3/8 rule. Apply Simpson_38_ESData to the set of data 
generated by y = x/(1 + ln x) for x = linspace(1,2,13).

	 57.	  The user-defined function Simpson_38_ESData (Problem 56) is to be applied 
to the set of data generated by y xx= −2 cos  for x = linspace(-2,1,n), where n 
is the number of subintervals. Write a MATLAB script to determine the smallest n 
such that the integral estimate by Simpson_38_ESData has a percentage relative 
error of at most 10−4. Find the actual value of the integral using the int command 
where the integrand is 2−x cos x.

	 58.	  Write a user-defined function with function call I =  Simpson_13_​
38(f,a,b,n) that estimates the integral of f, an anonymous function, from a to 
b as follows: If n=even, it applies composite Simpson’s 1/3 rule throughout, and if 
n=odd, it applies the 3/8 rule to the last three subintervals and the 1/3 rule to all 
the previous ones. Execute this function to evaluate

	

sin2

2

5

2 3
x

x
dx

+∫
	

		  using n = 20 and n = 25.

	 59.	  In estimating f x dx
a

b

( )∫ , Boole’s rule uses five equally spaced points to form a 

fourth-degree polynomial that approximates the integrand f(x). The formula for 
Boole’s rule is derived as

	

f x dx
h

f x f x f x f x f x h
a

b

( ) ( ) ( ) ( ) ( ) ( )∫ ≅ + + + + 
2
45

7 32 12 32 71 2 3 4 5 , == −b a
4

	

		  The composite Boole’s rule applies the above formula to four adjacent intervals 
at a time. Therefore, interval [a, b] must be divided into a number of subintervals 
that is a multiple of 4. Write a user-defined function with function call I = Boole_
Comp(f,a,b,n) that estimates the integral of f from a to b (with n subintervals) 
using the composite Boole’s rule. Execute this function to evaluate

	

x
x

dx n
+

−
=∫ 1

1
20

1

3

cos
,
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		  Also evaluate using the user-defined function Simpson (with the same n) and 
compare percentage relative errors. The actual integral value is computed via the 
int command.

	 60.	  Evaluate ( )x dx2 1

0

1

1+ −∫  with n = 20 (subintervals) using

		  TrapComp
		  Simpson
		  Boole_Comp (Problem 59)
		  Find the actual integral value using the int command. Calculate the percent-

age relative errors corresponding to all three strategies used above. Discuss the 
results.

Numerical Integration of Analytical Expressions: Romberg 
integration, Gaussian quadrature (Section 6.4)

Romberg Integration

In Problems 61 through 64,

	 a.	  Apply the trapezoidal rule with the indicated values of n to yield estimates 
with error O(h2). Then, calculate all subsequent higher-order estimates using 
Richardson’s extrapolation, and tabulate the results as in Table 6.5. Also compute 
the relative error associated with each integral estimate.

	 b.	  Confirm the results by executing Romberg. Use format long.

	 61.	 1 2

1

1

−
−
∫ x dx ,  n = 2, 4, 8

	 62.	 e x dxx−∫ /

/

sin3

0

3

3
π

,  n = 2, 4, 8

	 63.	
cos x
x

dx2

0

4

2+∫ ,  n = 2, 4, 8

	 64.	 e dxx2 1

0

1

+∫ ,  n = 2, 4, 8, 16

Gaussian Quadrature

 In Problems 65 through 70, evaluate each integral using the Gaussian quadrature with 
the indicated number(s) of nodes.

	 65.	
sin x
x

dx
+

−
∫ 1

4

4

,  n = 4

	 66.	 2 3

0

1

x x dx∫ ,  n = 3, n = 4
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	 67.	 sin cos2 1
3

2

0

5

x x dx+( )∫ ,  n = 3

	 68.	 e xdxxcos sin
−
∫

1

3

,  n = 3, n = 5

	 69.	
x

x
dx3

0

4

2+∫ , n = 2,  n = 3, n = 4

	 70.	 1
2

2 2

0

3 2

3x x dx+ +( )∫
/

,  n = 4

	 71.	  Write a user-defined function with syntax I = Gauss_Quad_4(f,a,b) that 
evaluates the integral of f (an anonymous function) from a to b using the Gaussian 
quadrature with n = 4. Use the values for weights and Gauss nodes offered in 
Table 6.6. Execute Gauss_Quad_4 to evaluate

	

2
13

1 5

5
x

x x
dx

+ +∫
. 	

	 72.	  Write a user-defined function with syntax I = Gauss_Quad_5(f,a,b) that 
evaluates the integral of f (an anonymous function) from a to b using the Gaussian 
quadrature with n=5. Use the values for weights and Gauss nodes offered in Table 
6.6. Execute Gauss_Quad_5 to evaluate

	

cos( )x dx2

1

3

2+∫
	

	 73.	  Use format long throughout. Consider

	

x x dx2

2

4

ln∫
	

	 a.	 Evaluate by executing the user-defined function Simpson using n = 4.
	 b.	 Evaluate by executing the user-defined function Gauss_Quad_4 (Problem 71).
	 c.	 Calculate the percentage relative errors in (a) and (b), and discuss. Use the int 

command to find the actual integral value.

	 74.	  Use format long throughout. Consider

	

e x
x

dx
x−

+∫ sin
2

1

2

1
	

	 a.	 Evaluate by executing the user-defined function Gauss_Quad_5 (Problem 72).
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	 b.	 Evaluate by executing the user-defined function Romberg with n = 2 and 
n_levels=3.

	 c.	 Calculate the percentage relative errors in (a) and (b), and discuss. Use the int 
command to find the actual integral value.

	 75.	  Write a user-defined function with syntax I = Gauss_Quad(f,a,b,n) that 
evaluates the integral of f (an anonymous function) from a to b using the Gaussian 
quadrature with n nodes. Use the fact that the Legendre polynomial of degree n is 
generated by (Rodrigues’ formula)

	
P x

n
d

dx
xn n

n

n
n( )

!
[( ) ]= −1

2
12

	

		  Evaluate the following definite integral by using Gauss_Quad:

	

e x dx nx−∫ =1 3

1

6

8/ ,

	

	 76.	  Evaluate the following definite integral by using Gauss_Quad (Problem 75):

	

cos( )ln ,x xdx n+ =∫ 1 10
2

5

	

Improper Integrals (Section 6.5)

	 77.	  Estimate

	

e x dxx−
∞

∫ 1 2

0

/

	

		  as follows: decompose it as � � �
0 0

1

1

∞ ∞

∫ ∫ ∫= + . Evaluate the first integral using 

composite Simpson’s 1/3 rule with n = 6, and evaluate the second integral by first 
changing the variable and subsequently using the composite midpoint method 
with h = 0.05.

	 78.	  Estimate

	

1
2 12x

dx
+

−∞

∞

∫
	

		  as follows: decompose it as � � � �
−∞

∞

−∞

−

−

∞

∫ ∫ ∫ ∫= + +
1

1

1

1
. Evaluate the middle inte-

gral using composite Simpson’s 1/3 rule with n = 6. Evaluate the first and third 
integrals by first changing the variable and subsequently using the composite 
midpoint method with h = 0.05.
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	 79.	  The cumulative distribution function (CDF) for the standard normal variable 
z (zero mean and standard deviation of 1) is defined as

	

Φ( ) /z e dzz

z

= −

−∞
∫1

2
2 2

π
	

		  and gives the probability that an event is less than z. Approximate Φ(0.5).

	 80.	  Evaluate

	

1
2

2 2

π
e dzz−

−∞

∞

∫ /

	



7
Numerical Solution of Initial-Value Problems

7.1  Introduction

An nth-order differential equation is accompanied by n auxiliary conditions, which are 
required in order to determine the n constants of integration that arise in the general 
solution. When these conditions are provided at the same initial value of the indepen-
dent variable, we have an initial-value problem (IVP). In other situations, these auxiliary 
conditions are specified at different values of the independent variable. And since these 
values are usually stated at the extremities of the system, these types of problems are 
referred to as boundary-value problems (BVPs).

In this chapter, we will present various methods to numerically solve initial-value 
problems. Stability and stiffness of differential equations will also be discussed. Treatment 
of BVPs is presented in Chapter 8. Numerical methods for a single, first-order initial-value 
problem will be studied first (Figure 7.1). Some of these methods will be extended and 
used to solve higher-order and systems of differential equations.

A single, first-order initial-value problem is formulated as

	 ′ = = ≤ ≤ =y f x y y a y x a x b xn( , ), ( ) ,0 0 = 	 (7.1)

where y0 is a prescribed initial condition, the independent variable x assumes values in 
[a, b], and it is assumed that a unique solution y(x) exists in the interval [a, b]. The interval 
is divided into n segments of equal length h so that

	 x x h x x h x x nhn1 0 2 0 02= + = + … = +, , , 	

The solution at the point x0 is available by the initial condition. The objective is to find 
estimates of the solution at the subsequent mesh points x1, x2, … , xn.

7.2  One-Step Methods

One-step methods find the solution estimate yi+1 at the location xi+1 by extrapolating from 
the solution estimate yi at the previous location xi. Exactly how this new estimate is extrap-
olated from the old estimate depends on the specific numerical method used. Figure 7.2 
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describes a very simple one-step method, where the slope φ is used to extrapolate from yi 
to the new estimate yi+1,

	 y y h i ni i+ = + = … −1 0 1 2 1ϕ, , , , , 	 (7.2)

Starting with the prescribed initial condition y0, Equation 7.2 is applied in every subin-
terval [xi, xi+1] to find solution estimates at x1, x2, … , xn. The general form in Equation 7.2 
describes all one-step methods, with each method using a particular approach to estimate 
the slope φ. The simplest of all one-step methods is Euler’s method, explained below.

7.3  Euler’s Method

Expansion of y(x1) in a Taylor series about x0 yields

	 y x y x h y x hy x h y x( ) ( ) ( ) ( ) ( )!1 0 0 0
1
2

2
0= + = + ′ + ′′ +� 	

One-step methods

Multistep methods

Higher-order Taylor methods

Runge–Kutta methods

Adams–Bashforth method

Predictor–corrector method

Numerical solution of a single,
first-order initial-value problem
y ′ = f (x, y), y(a) = y0, a ≤ x ≤ b

Adams–Moulton method

Euler’s method

FIGURE 7.1 
Classification of numerical methods to solve an initial-value problem.

x

y

Slope = φ

yi+1 = yi + hφ

yi

h

hφ

True solution
trajectory yi

xi xi+1

FIGURE 7.2
A simple one-step method.
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Retaining the linear terms only, the above is rewritten as

	
y x y x hy x h y( ) ( ) ( )

!
( )1 0 0

2
0

1
2

= + ′ + ′′ ξ
	

for some ξ0 between x0 and x1. In general, expanding y(xi+1) about xi yields

	
y x y x hy x h yi i i i( ) ( ) ( )

!
( )+ = + ′ + ′′1

21
2

ξ
	

for some ξi between xi and xi+1. Note that by Equation 7.1, we have y′(xi) = f(xi, yi). Introducing 
notations yi = y(xi) and yi+1 = y(xi+1), the estimated solution yi+1 can be found via

	 y y hf x y i ni i i i+ = + = … −1 0 1 2 1( , ), , , , , 	 (7.3)

known as Euler’s method. Comparing with the description of the general one-step method, 
Equation 7.2, we see that the slope φ at xi is simply estimated by f(xi, yi), which is the first 
derivative at xi, namely, y′(xi). Equation 7.3 is called the difference equation for Euler’s 
method.

The user-defined function EulerODE uses Euler’s method to estimate the solution of an 
initial-value problem.

EXAMPLE 7.1:  EULER’S METHOD

Consider the initial-value problem

	 2 0 0 11
2′ + = = ≤ ≤−y y e y xx, ( ) , 	

The exact solution is derived as y x e ex x
exact( ) /= −− −3

2
2 . We will solve the IVP numeri-

cally using Euler’s method with step size h = 0.1. Comparing with Equation 7.1, we find 

function y = EulerODE(f,x,y0)
%
% EulerODE uses Euler's method to solve a first-order initial-value
% problem in the form y' = f(x,y), y(x0) = y0.
%
%  y = EulerODE(f,x,y0), where
%
%       f is an anonymous function representing f(x,y),
%       x is a vector representing the mesh points,
%       y0 is a scalar representing the initial value of y,  
%
%       y is the vector of solution estimates at the mesh points.
%
y = 0*x;    % Pre-allocate
y(1) = y0; h = x(2)-x(1); n = length(x);
for i = 1:n−1,
   y(i+1) = y(i)+h*f(x(i),y(i));
end
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f x y e yx( , ) ( )= −−1
2 . Starting with y0

1
2= , we use Equation 7.3 to find the estimate at the 

next mesh point (x = 0.1), as

	 y y hf x y f1 0 0 0
1
2

1
2

1
2

1
40= + = + ( ) = + ( ) =( , ) ,0.1 0.1 0.5250 	

The exact solution at x = 0.1 is calculated as

	 yexact 0.1 0.5220( ) = 	

Therefore, the relative error is 0.57%. Similar computations may be performed at the 
subsequent points 0.2, 0.3, … , 1. The following MATLAB script uses the user-defined 
function EulerODE to find the numerical solution of the IVP and returns the results, 
including the exact values, in tabulated form. Note that the exact solution of the IVP is 
determined via dsolve in MATLAB.

disp('   x         yEuler       yExact')
h = 0.1; x = 0:0.1:1; y0 = 1/2;
f = @(x,y)((exp(-x)-y)/2);
yEuler = EulerODE(f,x,y0);
% Solve the IVP
y_exact = dsolve('2*Dy + y = exp(-x)','y(0)=1/2','x');
% Convert for evaluation purposes
y_exact = matlabFunction(y_exact);

for k = 1:length(x),
    x_coord = x(k);
    yE = yEuler(k);
    yEx = y_exact(x(k));

   fprintf('%6.2f   %11.6f  %11.6f\n',x_coord,yE,yEx)

end

   x         yEuler       yExact
  0.00      0.500000     0.500000
  0.10      0.525000     0.522007    Hand calculations
  0.20      0.543992     0.538525
  0.30      0.557729     0.550244
  0.40      0.566883     0.557776
  0.50      0.572055     0.561671
  0.60      0.573779     0.562416
  0.70      0.572531     0.560447
  0.80      0.568733     0.556151
  0.90      0.562763     0.549873
  1.00      0.554953     0.541917

Figure 7.3 shows that Euler estimates capture the general trend of the actual solution. 
However, the percentage relative error gets larger as x increases, growing to 2.41% at the 
end of the interval at x = 1. Using a smaller step size h will reduce the errors but requires 
more computations. For example, executing the above script with h = 0.05 results in a 
maximum relative error of 1.18% at x = 1.
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7.3.1  Error Analysis for Euler’s Method

Two sources of error are involved in the numerical solution of ordinary differential equa-
tions: round-off and truncation. Round-off errors are caused by the number of significant 
digits retained and used for calculations by the computer. Truncation errors are caused by 
the way a numerical method approximates the solution, and comprise two parts. The first 
part is a local truncation error resulting from the application of the numerical method in 
each step. The second part is a propagated truncation error caused by the approximations 
made in the previous steps. Adding the local and propagated truncation errors yields the 
global truncation error. It can be shown that the local truncation error is O(h2), while the 
global truncation error is O(h).

7.3.2  Calculation of Local and Global Truncation Errors

The global truncation error at the point xi+1 is simply the difference between the actual 
solution yi

a
+1 and the computed solution yi

c
+1 at that point. This contains the local truncation 

error, as well as the effects of all the errors accumulated in the steps prior to the current 
location xi+1:

	

Global truncation error at 
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+

1 1

1
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(7.4)
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FIGURE 7.3
Comparison of Euler’s and exact solutions in Example 7.1.
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The local truncation error at xi+1 is the difference between the actual solution yi
a
+1 at that 

point and the solution that would have been computed had the actual solution been used 
by Euler’s method going from xi to xi+1:

	

Local truncation error at 
Actual
solution
at 

x yi i
a

xi

+ += −

+

1 1

1

yy hf x yi
a

i i
a

xi

+ ( )
+

,
Euler s estimate at 
using actual soluti

’ 1
oon at xi

	

(7.5)

EXAMPLE 7.2:   LOCAL AND GLOBAL TRUNCATION ERRORS

In Example 7.1, calculate the local and global truncation errors at each point and tabu-
late the results.

Solution

Starting with the initial condition y0
1
2= , the Euler’s computed value at x1 = 0.1 is 

yc
1 = 0.5250 while the actual value is ya

1 = 0.522007. At this stage, the global and local 
truncation errors are the same because Euler’s method used the initial condition, 
which is exact, to find the estimate. At x2 = 0.2, the computed value is yc

2 = 0.543992, 
which was calculated by Euler’s method using the estimated value yc

1 = 0.5250 from 
the previous step. If instead of yc

1 we use the actual value ya
1 = 0.522007, the computed 

value at x2 is

	
�y y hf x y fa a

2 1 1 1= + ( ) = + =, ( , )0.522007 0.1 0.1 0.522007 0.541148
	

Therefore, local truncation error at x2 is

	 y ya
2 2− = − = −� 0.538525 0.541148 0.002623 	

The global truncation error at x2 is simply calculated as

	 y ya c
2 2− = − = −0.538525 0.543992 0.005467 	

It is common to express these errors in the form of percent relative errors, hence at 
each point, we evaluate

	
( )local or global  truncation error

actual value
× 100

	

With this, the (local) percentage relative error at x2 is

	

y y
y

a

a
2 2

2
100 100 49

− × = − × ≅ −
� 0.002623

0.538525
0. %
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The (global) percentage relative error at x2 is

	

y y
y

a c

a
2 2

2
100 100 02

− × = − × ≅ −0.005467
0.538525

1. %
	

The following MATLAB script uses this approach to find the percentage relative 
errors at all xi, and completes the table presented earlier in Example 7.1.

disp('   x         yEuler       yExact    e_local   e_global')
h = 0.1; x = 0:h:1; y0 = 1/2;
f = @(x,y)((exp(-x)-y)/2);
yEuler = EulerODE(f,x,y0);
y _ exact = matlabFunction(dsolve('2*Dy + y = exp(-x)','y(0)=1/2','x'));

ytilda = 0*x; ytilda(1) = y0;
for n = 1:length(x)−1,  
   ytilda(n+1) = y_exact(x(n)) + h*f(x(n),y_exact(x(n)));
end 

for k = 1:length(x),
    x_coord = x(k);
    yE = yEuler(k);
    yEx = y_exact(x(k));
    e_local = (yEx-ytilda(k))/yEx*100;
    e_global = (yEx-yE)/yEx*100;

  fprintf('%6.2f  %11.6f  %11.6f  %6.2f  %6.2f\n',x _ coord,yE,yEx,e _ local,e _ global)

end

	 x	 yEuler	 yExact	 e_local	 e_global
	 0.00	 0.500000	 0.500000	  0.00	  0.00
	 0.10	 0.525000	 0.522007	 −0.57	 −0.57
	 0.20	 0.543992	 0.538525	 −0.49	 −1.02	 Hand calculations (see above)
	 0.30	 0.557729	 0.550244	 −0.42	 −1.36
	 0.40	 0.566883	 0.557776	 −0.36	 −1.63
	 0.50	 0.572055	 0.561671	 −0.31	 −1.85
	 0.60	 0.573779	 0.562416	 −0.27	 −2.02
	 0.70	 0.572531	 0.560447	 −0.23	 −2.16
	 0.80	 0.568733	 0.556151	 −0.20	 −2.26
	 0.90	 0.562763	 0.549873	 −0.17	 −2.34
	 1.00	 0.554953	 0.541917	 −0.15	 −2.41	 Max. % rel. err. reported earlier

7.3.3  Higher-Order Taylor Methods

Euler’s method was developed by retaining only the linear terms in a Taylor series. Retaining 
more terms in the series is the premise of higher-order Taylor methods. Expanding y(xi+1) 
in a Taylor series about xi yields

	
y x y x hy x h y x
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where ξi is between xi and xi+1. The kth-order Taylor method is defined as

	 y y hp x y i ni i k i i+ = + = … −1 0 1 2 1( , ), , , , , 	 (7.6)

where

	
p x y f x y hf x y

k
h f x yk i i i i i i

k k
i i( , ) ( , )

!
( , )

!
( , )( )= + ′ + + − −1

2
1 1 1�

	

It is clear that Euler’s method is a first-order Taylor method. Recall that Euler’s method has 
a local truncation error O(h2) and a global truncation error O(h). The kth-order Taylor 
method has a local truncation error O(hk+1) and a global truncation error O(hk). Therefore, 
the higher the order of the Taylor method, the more accurately it estimates the solution of 
the initial-value problem. However, this reduction in error demands the calculation of the 
derivatives of f(x, y), which is an obvious drawback.

EXAMPLE 7.3:   SECOND-ORDER TAYLOR METHOD

Solve the initial-value problem in Examples 7.1 and 7.2 using the second-order Taylor 
method with the same step size h = 0.1 as before, and compare the numerical results 
with those produced by Euler’s method.

Solution

The problem is

	
2 0

1
2

0 1′ + = = ≤ ≤−y y e y xx , ( ) ,
	

so that f x y e yx( , ) = −( )−1
2 . Implicit differentiation with respect to x yields

	
′ = − − ′( ) = − − −( )



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= −−
′=

− −f x y e y e e y ex
y f x y
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2
1
2

1
2

1
4

3 −− +( )x y
	

By Equation 7.6, the second-order Taylor method is defined as

	 y y hp x y i ni i i i+ = + = … −1 2 0 1 2 1( , ), , , , , 	

where

	
p x y f x y hf x yi i i i i i2
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!
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Therefore,
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Starting with y0
1
2= , the solution estimate at the next location x1 = 0.1 is calculated as

	
y y h f x y hf x y1 0 0 0 0 0

1
2

= + + ′





=( , ) ( , ) 0.521875
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Noting the actual value at x1 = 0.1 is 0.522007, this estimate has a (global) % relative 
error of 0.03%, which is a significant improvement over the −0.57% offered by Euler’s 
method at the same location. This upgrading of accuracy was expected because the 
second-order Taylor method has a (global) truncation error O(h2) compared with O(h) 
for Euler’s method. As mentioned before, this came at the expense of the evaluation of 
the first derivative f ′(x,y). The following MATLAB script tabulates the solution estimates 
generated by the second-order Taylor method.

disp('   x         yEuler       yTaylor2     e_Euler   e_Taylor2')
h = 0.1; x = 0:h:1; y0 = 1/2;
f = @(x,y)((exp(-x)-y)/2); fp = @(x,y)((−3*exp(-x)+y)/4);
yEuler = EulerODE(f,x,y0);
y _ exact = matlabFunction(dsolve('2*Dy + y = exp(-x)','y(0)=1/2','x'));

yTaylor2 = 0*x; yTaylor2(1) = y0;
for i = 1:length(x)−1,  
   yTaylor2(i+1) = yTaylor2(i)+h*(f(x(i),yTaylor2(i))+(1/2)*h*fp(x(i),yTaylor2(i)));
end

for k = 1:length(x),
   x _ coord = x(k); yE = yEuler(k); yEx = y _ exact(x(k)); yT = yTaylor2(k);
   e_Euler = (yEx-yE)/yEx*100;
   e_Taylor2 = (yEx-yT)/yEx*100;
  fprintf('%6.2f  %11.6f  %11.6f  %6.2f %6.2f\n',x _ coord,yE,yT,e _ Euler,e _ Taylor2) 

end

	 x	 yEuler	 yTaylor2	 e_Euler	 e_Taylor2
	 0.00	 0.500000	 0.500000	  0.00	 0.00
	 0.10	 0.525000	 0.521875	 −0.57	 0.03	 Hand calculations (see above)
	 0.20	 0.543992	 0.538282	 −1.02	 0.05
	 0.30	 0.557729	 0.549907	 −1.36	 0.06
	 0.40	 0.566883	 0.557362	 −1.63	 0.07
	 0.50	 0.572055	 0.561193	 −1.85	 0.08
	 0.60	 0.573779	 0.561887	 −2.02	 0.09
	 0.70	 0.572531	 0.559878	 −2.16	 0.10
	 0.80	 0.568733	 0.555551	 −2.26	 0.11
	 0.90	 0.562763	 0.549249	 −2.34	 0.11
	 1.00	 0.554953	 0.541277	 −2.41	 0.12	 Max. % rel. err.

7.4  Runge–Kutta Methods

In the last section, we learned that a kth-order Taylor method has a global truncation 
error O(hk) but requires the calculation of derivatives of f(x,y). Runge–Kutta methods gen-
erate solution estimates with the accuracy of Taylor methods without having to calculate these 
derivatives. Recall from Equation 7.2 that all one-step methods to solve the initial-value 
problem

	 ′ = = = ≤ ≤ =y f x y y a y a x x x bn( , ), ( ) ,0 0 	

are expressed as

	 y y h x yi i i i+ = +1 ϕ( , ) 	
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where φ(xi, yi) is an increment function and is essentially a suitable slope over the interval 
[xi, xi+1] that is used for extrapolating yi+1 from yi. The number of points that are used in 
[xi, xi+1] to determine this suitable slope defines the order of the Runge–Kutta method. For 
example, second-order Runge–Kutta methods use two points in each subinterval to find 
the representative slope, and so on.

7.4.1  Second-Order Runge–Kutta (RK2) Methods

For the second-order Runge–Kutta methods, the increment function is expressed as 
φ(xi, yi) = a1k1 + a2k2 so that

	 y y h a k a ki i+ = + +( )1 1 1 2 2 	 (7.7)

with
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where a1, a2, b1, and c11 are constants, each set determined separately for each specific RK2 
method. These constants are evaluated by setting Equation 7.7 equal to the first three terms 
in a Taylor series, neglecting terms with h3 and higher:
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Substituting for ′y
xi

 and ′′y
xi

 in Equation 7.9, we have

	

y y hf x y h
f
x

h
f
y

f x yi i i i
x y x y

i i

i i i i

+ = + + ∂
∂

+ ∂
∂

+1
2 21

2
1
2

( , ) ( , )
( , ) ( , )

OO h( )3

	
(7.10)

Next, we will calculate yi+1 using a different approach as follows. In Equation 7.7, the term 
k2 = f(xi + b1h, yi + c11k1h) is a function of two variables, and can be expanded about (xi, yi) as
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Substituting Equation 7.11 and k1 = f(xi, yi) in Equation 7.7, we find
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(7.12)

The right-hand sides of Equations 7.10 and 7.12 represent the same quantity, yi+1, hence 
must be equal. That yields

	
a a a b a c1 2 2 1 2 111

1
2

1
2

+ = = =, ,
	

(7.13)

Since there are four unknowns and only three equations, a unique set of solutions is not 
available. But if a value is assigned to one of the constants, the other three can be calcu-
lated. This is why there are several versions of RK2 methods, three of which are presented 
below. Second-order Runge–Kutta methods have local truncation error O(h3) and global 
truncation error O(h2), as did the second-order Taylor methods.

7.4.1.1  Improved Euler’s Method

Assuming a2 = 1, the other three constants in Equation 7.13 are determined as a1 = 0, b1
1
2= , 

and c11
1
2= . Inserting into Equations 7.7 and 7.8, improved Euler’s method is described by

	 y y hki i+ = +1 2 	 (7.14)

where
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(7.15)

7.4.1.2  Heun’s Method

Assuming a2
1
2= , the other three constants in Equation 7.13 are determined as a1

1
2= , b1 = 1, 

and c11 = 1. Inserting into Equations 7.7 and 7.8, Heun’s method is described by
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where
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7.4.1.3  Ralston’s Method

Assuming a2
2
3= , the other three constants in Equation 7.13 are determined as a1

1
3= , b1

3
4= , 

and c11
3
4= . Inserting into Equations 7.7 and 7.8, Ralston’s method is described by

	
y y h k ki i+ = + +1 1 2

1
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where
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Note that each of these RK2 methods produces estimates with the accuracy of a 
second-order Taylor method without calculating the derivative of f(x,y). Instead, each 
method requires two function evaluations per step.

7.4.1.4  Graphical Representation of Heun’s Method

Equations 7.16 and 7.17 can be combined as
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Since k1 = f(xi, yi), we have yi + k1h = yi + hf(xi, yi). But this is the estimate yi+1 given by 
Euler’s method at xi+1, which we denote by yi+1

Euler  to avoid confusion with yi+1 in Equation 
7.20. With this, and the fact that xi + h = xi+1, Equation 7.20 is rewritten as

	
y y h

f x y f x y
i i

i i i i
+

+ +
= +

+ ( )
1

1 1

2

( , ) , Euler

	
(7.21)

The fraction multiplying h is the average of two quantities: the first one is the slope at the 
left end xi of the interval and the second one is the estimated slope at the right end xi+1 of 
the interval. This is illustrated in Figure 7.4.

In Figure 7.4a, the slope at the left end of the interval is shown as f(xi, yi). Figure 7.4b 
shows the estimated slope at the right end of the interval to be f x yi i+ +( )1 1, Euler . The line 
whose slope is the average of these two slopes, Figure 7.4c, yields an estimate that is supe-
rior to yi+1

Euler. In Heun’s method, yi+1 is extrapolated from yi using this line.
The user-defined function HeunODE uses Heun’s method to estimate the solution of an 

initial-value problem.

function y = HeunODE(f,x,y0)
%
% HeunODE uses Heun's method to solve a first-order initial-value
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% problem in the form y' = f(x,y), y(x0) = y0.
%
%  y = HeunODE(f,x,y0), where
%
%       f is an anonymous function representing f(x,y),
%       x is a vector representing the mesh points,
%       y0 is a scalar representing the initial value of y,  
%
%       y is the vector of solution estimates at the mesh points.
%
y = 0*x;    % Pre-allocate
y(1) = y0; h = x(2)-x(1); n = length(x);
for i = 1:n−1,
    k1 = f(x(i),y(i));
    k2 = f(x(i)+h,y(i)+h*k1);
    y(i+1) = y(i)+h*(k1+k2)/2;
end

(c)

x

y

h
True solution
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A better estimate than yi+1
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yi+1

Exactyi+1

Slope = f  (xi+1, yi+1     )

xi+1xi

Euler

Euler

y

h
True solution
trajectory

y

h
True solution
trajectory

(a) (b)

 yi

Slope = f  (xi , yi)

Slope = f (xi+1, yi+1     )

yi+1
Euler yi+1
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x x
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FIGURE 7.4
Graphical representation of Heun’s method.
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EXAMPLE 7.4:   RK2 METHODS

Consider the initial-value problem

	 ′ − = = ≤ ≤ =y x y x y x h2 22 0 1 0 1, ( ) , , 0.1 	

Compute the estimated value of y1 = y(0.1) using each of the three RK2 methods dis-
cussed earlier.

Solution

Noting that f(x, y) = x2(2 + y), the value of y1 = y(0.1) estimated by each RK2 method is 
calculated as follows.

Improved Euler’s method

	

k f x y f

k f x h y k h f

1 0 0

2 0
1
2 0

1
2 1

0 1 0

0 1

= = =

= + +( ) = =
⇒

( , ) ( , )

, ( . , )5 0.0075
yy y hk1 0 2 1= + = + =0.1 0.0075 1.0008( )

	

Heun’s method

	

k f x y f

k f x h y k h f
y y1 0 0

2 0 0 1
1

0 1 0
0 1

= = =
= + + =
=

⇒
=

( , ) ( , )
( , ) ( . , )1

0.0300

00
1
2 1 2 1+ + = +

=
h k k( ) ( )0.05 0.0300

1.0015
	

Ralston’s method

	

k f x y f

k f x h y k h

f

1 0 0

2 0
3
4 0

3
4 1

0 1 0

0 1

= ( ) = =

= + +( )
= =

, ( , )

,

( . , )75 0.0169

⇒⇒
= + +( ) = +
=

y y h k k1 0
1
3 1 2

1
32 1 ( )( )0.1 0.0338

1.0011

Continuing this process, the estimates given by the three methods at the remaining 
points will be obtained and tabulated as in Table 7.1. The exact solution is y ex= −3 2

3 3/

. The global % relative errors for all three methods are also listed, where it is readily 
observed that all RK2 methods perform better than Euler.

TABLE 7.1

Summary of Calculations in Example 7.4

x yEuler yHeun yImp_Euler yRalston eEuler eHeun eImp_Euler eRalston

0.0 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00
0.1 1.0000 1.0015 1.0008 1.0011 0.10 −0.05 0.02 −0.01
0.2 1.0030 1.0090 1.0075 1.0083 0.50 −0.10 0.05 −0.02
0.3 1.0150 1.0286 1.0263 1.0275 1.18 −0.15 0.08 −0.03
0.4 1.0421 1.0667 1.0636 1.0651 2.12 −0.19 0.10 −0.04
0.5 1.0908 1.1302 1.1261 1.1281 3.27 −0.23 0.14 −0.04
0.6 1.1681 1.2271 1.2219 1.2245 4.56 −0.25 0.17 −0.04
0.7 1.2821 1.3671 1.3604 1.3637 5.96 −0.27 0.22 −0.03
0.8 1.4430 1.5626 1.5541 1.5583 7.40 −0.28 0.27 −0.00
0.9 1.6633 1.8301 1.8191 1.8246 8.87 −0.27 0.34 0.04
1.0 1.9600 2.1922 2.1777 2.1849 10.37 −0.25 0.42 0.09
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7.4.2  Third-Order Runge–Kutta (RK3) Methods

For the third-order Runge–Kutta methods, the increment function is expressed as 
φ(xi, yi) = a1k1 + a2k2 + a3k3 so that

	 y y h a k a k a ki i+ = + + +1 1 1 2 2 3 3( ) 	 (7.22)

with

	

k f x y

k f x b h y c k h

k f x b h y c k h c

i i

i i

i i

1

2 1 11 1

3 2 21 1 22

=
= + +
= + + +

( , )
( , )
( , kk h2 ) 	

where a1, a2, a3, b1, b2, c11, c21, and c22 are constants, each set determined separately for each 
specific RK3 method. These constants are found by setting Equation 7.22 equal to the first 
four terms in a Taylor series, neglecting terms with h4 and higher. Proceeding as with RK2 
methods, we will end up with six equations and eight unknowns. By assigning values to 
two of the constants, the other six can be determined. Because of this, there are several 
RK3 methods, two of which are presented here. Third-order Runge–Kutta methods have 
local truncation error O(h4) and global truncation error O(h3), as did the third-order Taylor 
methods.

7.4.2.1  The Classical RK3 Method

The classical third-order Runge–Kutta method is described by

	
y y h k k ki i+ = + + +1 1 2 3

1
6

4( )
	

(7.23)

where

	

k f x y

k f x h y k h

k f x h y k h k h

i i

i i

i i

1

2 1

3 1 2

1
2

1
2

2

=

= + +



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= + − +

( , )

,

( , ) 	

7.4.2.2  Heun’s RK3 Method

Heun’s third-order Runge–Kutta method is described by

	
y y h k ki i+ = + +1 1 3

1
4

3( )
	

(7.24)

where
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k f x h y k h

k f x h y k h
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i i

1
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3 2

1
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1
3

2
3

2
3

=

= + +



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

( , )

,

, 
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Each of these RK3 methods produces estimates with the accuracy of a third-order Taylor 
method without calculating the derivatives of f(x, y). Instead, each method requires three 
function evaluations per step.

EXAMPLE 7.5:  RK3 METHODS

Consider the initial-value problem in Example 7.4:

	 ′ − = = ≤ ≤ =y x y x y x h2 22 0 1 0 1, ( ) , , 0.1 	

Compute the estimated value of y1 = y(0.1) using the two RK3 methods presented 
above.

Solution

Noting that f(x, y) = x2(2 + y), the calculations are carried out as follows.

The classical RK3 method

	

k f x y f

k f x h y k h f

1 0 0

2 0 0 1

0 1 0

1
2

1
2

0 1

= = =

= + +





= =

( , ) ( , )

, ( . , )5 0.00075

1 1.0015 0.0300k f x h y k h k h f3 0 0 1 22 0= + − +( ) = =, ( . , ) 	

	
y y h k k k1 0 1 2 3

1
6

4 1
1
6

4= + + + = + × + =( ) ( )( )0.1 0.0075 0.0300 1.0010
	

Heun’s RK3 method

	

k f x y f

k f x h y k h f

1 0 0

2 0 0 1

0 1 0

1
3

1
3

0 1

= = =

= + +





= =

( , ) ( , )

, ( . , )333 0..0033

667 0.01331.0002k f x h y k h f3 0 0 2
2
3

2
3

0 0= + +





= =, ( . , )
	

	
y y h k k1 0 1 3

1
4

3 1= + + = + =( ) ( )0.05 0.0300 1.0010
	

A summary of calculations is given in Table 7.2 where it is readily seen that the global 
% relative errors for the two RK3 methods are considerably lower than those for Euler. 
And, as expected, the errors are also lower than those generated by the three RK2 
methods used previously (see Table 7.1). This, of course, is because the global truncation 
error is O(h2) for RK2 methods and O(h3) for RK3 methods.

7.4.3  Fourth-Order Runge–Kutta (RK4) Methods

For the fourth-order Runge–Kutta methods the increment function is expressed as

	 ϕ( , )x y a k a k a k a ki i = + + +1 1 2 2 3 3 4 4 	
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so that

	 y y h a k a k a k a ki i+ = + + + +1 1 1 2 2 3 3 4 4( ) 	 (7.25)

with

	

k f x y

k f x b h y c k h

k f x b h y c k h c k

i i

i i

i i

1

2 1 11 1

3 2 21 1 22

=

= + +( )
= + + +

( , )

,

, 22

4 3 31 1 32 2 33 3

h

k f x b h y c k h c k h c k hi i

( )
= + + + +( ), 	

where aj, bj, and cij are constants, each set determined separately for each specific RK4 
method. These constants are found by setting Equation 7.25 equal to the first five terms 
in a Taylor series, neglecting terms with h5 and higher. Proceeding as before, leads to 10 
equations and 13 unknowns. By assigning values to three of the constants, the other 10 
can be determined. This is why there are many RK4 methods, but only the classical RK4 is 
presented here. Fourth-order Runge–Kutta methods have local truncation error O(h5) and 
global truncation error O(h4).

7.4.3.1  The Classical RK4 Method

The classical fourth-order Runge–Kutta method is described by

	
y y h k k k ki i+ = + + + +1 1 2 3 4

1
6

2 2( )
	

(7.26)

where

	

k f x y

k f x h y k h

k f x h y k h

i i

i i

i i

1

2 1

3 2

1
2

1
2

1
2

1
2

=

= + +





= + +


( , )

,

, 


= + +k f x h y k hi i4 3( , ) 	

(7.27)

TABLE 7.2

Summary of Calculations in Example 7.5

x yEuler yRK3 yHeun_RK3 eEuler eRK3 eHeun_RK3

0.0 1.0000 1.0000 1.0000 0.00 0.0000 0.0000
0.1 1.0000 1.0010 1.0010 0.10 −0.0000 0.0000
0.2 1.0030 1.0080 1.0080 0.50 −0.0001 0.0001
0.3 1.0150 1.0271 1.0271 1.18 −0.0004 0.0003
0.4 1.0421 1.0647 1.0647 2.12 −0.0010 0.0007
0.5 1.0908 1.1277 1.1276 3.27 −0.0018 0.0014
0.6 1.1681 1.2240 1.2239 4.56 −0.0030 0.0024
0.7 1.2821 1.3634 1.3633 5.96 −0.0044 0.0038
0.8 1.4430 1.5584 1.5582 7.40 −0.0059 0.0059
0.9 1.6633 1.8253 1.8250 8.87 −0.0074 0.0086
1.0 1.9600 2.1870 2.1866 10.37 −0.0087 0.0124
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RK4 methods produce estimates with the accuracy of a fourth-order Taylor method with-
out calculating the derivatives of f(x, y). Instead, four function evaluations per step are 
performed. The classical RK4 method is the most commonly used technique for numerical 
solution of first-order initial-value problems, as it offers the most acceptable balance of 
accuracy and computational effort.

The user-defined function RK4 uses the classical fourth-order Runge–Kutta method to 
estimate the solution of an initial-value problem.

EXAMPLE 7.6 :  CLASSICAL RK4 METHOD

Consider the initial-value problem in Examples 7.4 and 7.5:

	 ′ − = = ≤ ≤ =y x y x y x h2 22 0 1 0 1, ( ) , , 0.1 	

	 1.	 Using hand calculations, compute the estimated value of y1 = y(0.1) by the 
classical RK4 method.

	 2.	 Solve the initial-value problem by executing the user-defined function RK4.

Solution

	 1.	 Noting that f(x, y) = x2(2 + y), the calculations are carried out as follows:

	

k f x y f

k f x h y k h f

1 0 0

2 0
1
2 0

1
2 1

0 1 0

0 0 1

= = =

= + +( ) = =

( , ) ( , )

, ( . , )5 0.0075

kk f x h y k h f

k f x h y k
3 0

1
2 0

1
2 2

4 0 0

0 0= + +( ) = =
= + +

, ( . , )

( ,

5 1.0004 0.0075

33 0h f) ( . , )= =1 1.0008 0.0300 	

function y = RK4(f,x,y0)
%
% RK4 uses the classical RK4 method to solve a first-order initial-value
% problem in the form y' = f(x,y), y(x0) = y0.
%
%  y = RK4(f,x,y0), where
%
%       f is an anonymous function representing f(x,y),
%       x is a vector representing the mesh points,
%       y0 is a scalar representing the initial value of y,  
%
%       y is the vector of solution estimates at the mesh points.
%
y = 0*x;    % Pre-allocate
y(1) = y0; h = x(2)-x(1); n = length(x);
for i = 1:n−1,
    k1 = f(x(i),y(i));
    k2 = f(x(i)+h/2,y(i)+h*k1/2);
    k3 = f(x(i)+h/2,y(i)+h*k2/2);
    k4 = f(x(i)+h,y(i)+h*k3);
   y(i+1) = y(i)+h*(k1+2*k2+2*k3+k4)/6;
end
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y y h k k k k1 0 1 2 3 4

1
6

2 2= + + + + =( ) 1.0010
	

	 2.	

>> f = @(x,y)((x^2)*(2+y));
>> x = 0:0.1:1;
>> y0 = 1;
>> y = RK4(f,x,y0); y = y'

y =

    1.0000
    1.0010
    1.0080
    1.0271
    1.0647
    1.1276
    1.2240
    1.3634
    1.5583
    1.8252
    2.1868

A summary of all calculations is provided in Table 7.3 where it is easily seen that the 
global % relative error for the classical RK4 method is significantly lower than all previ-
ous methods used up to this point. As expected, starting with Euler’s method, which is 
indeed a first-order Runge–Kutta method, the accuracy improves with the order of the 
RK method.

7.4.4  Higher-Order Runge–Kutta Methods

The classical RK4 is the most commonly used numerical method for solving first-order 
initial-value problems. If higher levels of accuracy are desired, the recommended tech-
nique is Butcher’s fifth-order Runge–Kutta method (RK5), which is defined as

TABLE 7.3

Summary of Calculations in Example 7.6

RK4 RK3 RK2 RK1
x yRK4 eRK4 eRK3 eHeun eEuler

0.0 1.000000 0.000000 0.0000 0.00 0.00
0.1 1.001000 0.000001 −0.0000 −0.05 0.10
0.2 1.008011 0.000002 −0.0001 −0.10 0.50
0.3 1.027122 0.000003 −0.0004 −0.15 1.18
0.4 1.064688 0.000004 −0.0010 −0.19 2.12
0.5 1.127641 0.000005 −0.0018 −0.23 3.27
0.6 1.223966 0.000006 −0.0030 −0.25 4.56
0.7 1.363377 0.000007 −0.0044 −0.27 5.96
0.8 1.558286 0.000010 −0.0059 −0.28 7.40
0.9 1.825206 0.000016 −0.0074 −0.27 8.87
1.0 2.186837 0.000028 −0.0087 −0.25 10.37
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y y h k k k k ki i+ = + + + + +1 1 3 4 5 6
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(7.28)

where
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Therefore, Butcher’s RK5 method requires six function evaluations per step.

7.4.5  Selection of Optimal Step Size: Runge–Kutta Fehlberg (RKF) Method

Up to this point, we have discussed methods for solving the initial-value problem, Equation 
7.1, that use a constant step size h. And in all those cases, the accuracy of the solution can be 
improved by reducing the step size. But a smaller step size requires a significant amount 
of additional computation. Another way to improve accuracy is to find the largest step 
size so that the global error is within a specified tolerance. The global error, however, is 
not generally available since the exact solution is not known. Therefore, the optimal step 
size must be determined based on the local truncation error which we have some knowl-
edge of. One way to estimate the local truncation error for Runge–Kutta methods is to use 
two RK methods of different order and subtract the results. Naturally, a drawback of this 
approach is the number of function evaluations required per step. For example, we con-
sider a common approach that uses a fourth-order and a fifth-order RK. This requires a 
total of 10 (four for RK4 and six for RK5) function evaluations per step. To get around the 
computational burden, the Runge–Kutta Fehlberg (RKF) method utilizes an RK5 method 
that uses the function evaluations provided by its accompanying RK4 method*. For this 
reason, the method is also commonly known as the RKF45. This will reduce the number 
of function evaluations per step from 10 to six. More specifically, the fourth-order accurate 
solution estimate is given by

	
y y h k k k ki i+ = + + + −



1 1 3 4 5

25
216

1408
2565

2197
4104

1
5 	

(7.29)

*	 Refer to K.E. Atkinson, An Introduction to Numerical Analysis, 2nd ed., John Wiley, New York, 1989.
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while the fifth-order accurate estimate is given by
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(7.30)

where
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Note that the same values of k1, k2, … , k6 are used for both estimates. Subtracting Equation 
7.29 from 7.30 yields the estimate of the local truncation error:

	
Error = − − + +



h k k k k k
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(7.31)

Therefore, in each step, the fourth-order accurate estimate is given by Equation 7.29 with 
the local truncation error provided by Equation 7.31. If the error is within an acceptable 
tolerance, the fourth-order estimate is accepted as a solution in that step and used in the 
next step. Otherwise, the step size gets adjusted until the tolerance condition is met.

7.4.5.1  Adjustment of Step Size

If an RK method of order p + 1 (with solution estimates given by �yn+1) is used to approxi-
mate the error in an RK method of order p (with solution estimates given by yn+1), then in 
the nth step, the step size h is adjusted via
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where α ≤ 1 is a suitable adjustment factor and ε is the tolerance. The value of α (hence q) is 
picked in a rather conservative manner. In particular, the Runge–Kutta Fehlberg method 
(RKF45) mentioned above uses a fifth-order method to estimate the error of a fourth-order 
method so that p = 4. For this case, the recommended value for α, based on extensive 
experimentation by investigators, is α ≅ 0.84 so that
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Note that the quantity �y yn n+ +−1 1 is the local truncation error given by Equation 7.31. In 
order to ensure reasonable computational accuracy without too many evaluations per step, 
a minimum (hmin) and a maximum (hmax) are imposed on the step size. If hmin ≤ hadj ≤ hmax, 
the value of hadj is accepted. If hadj is smaller than hmin, we choose hadj = hmin. If it is greater 
than hmax, we pick hadj = hmax. The procedure is then repeated in the subsequent intervals.

EXAMPLE 7.7:  RKF METHOD

Consider the initial-value problem in Examples 7.4 through 7.6:

	 ′ − = = ≤ ≤y x y x y x2 22 0 1 0 1, ( ) ,

For the upper and lower bounds of step size, we choose hmax = 0.1 and hmin = 0.01. The 
error tolerance is selected as ε = 10−6. To begin the procedure, we set h = hmax = 0.1. In the 
first step of the RKF45 (hand calculations), we find
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Subsequently, the fourth-order accurate estimate is provided by Equation 7.29, as

	
y y h k k k k1 0
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216 1
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2197
4104 4

1
5 5= + + + −( ) = 1.0010001628656655

	

while the local truncation error is estimated by Equation 7.31, as

	
Error 1.343087= − − + +( ) =h k k k k k1

360 1
128
4275 3

2197
75240 4

1
50 5

2
55 6 5565187744 × −10 9

We next examine the step size via

	

h
h

y y
h

n n
adj 0.84 0.84

0.1
1.343087565

=
−













=
+ +

−ε
� 1 1

1 4
610

/
( )
1187744

2.4675
×









 =−10 9

1 4/

	

Since hadj > hmax, we set hadj = hmax = 0.1 and use this in the next step. Note that since 
h = 0.1 was accepted in this step, y1 calculated above represents y(0.1). Recall the exact 
solution given in Example 7.4 was y ex

exact = −3 2
3 3/  so that yexact(0.1) = 1.001000166685187. 

Running the classical RK4 method with a step size of 0.1 reveals that 
yRK4(0.1) = 1.001000156265625. Comparison with y1 shows that the solution estimate by 
RFK45 has a relative error of 0.00000038%, while that by RK4 is 0.000001%.

7.5  Multistep Methods

In single-step methods, the solution estimate yi+1 at xi+1 is obtained by using information at 
a single previous point xi. Multistep methods are based on the idea that a more accurate 
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estimate for yi+1 at xi+1 can be attained by utilizing information on two or more previous 
points rather than one.

Consider y′ = f(x, y) subject to initial condition y(x0) = y0. To use a multistep method to 
find an estimate for y1, information on at least two previous points are needed. However, 
the only available information is y0. This means that such methods cannot self start and 
the estimates at the first few points—depending on the order of the method—must be 
found using either a single-step method such as the classical RK4 or another multistep 
method that uses fewer previous points.

Multistep methods can be explicit or implicit. Explicit methods employ an explicit for-
mula to calculate the estimate. For example, if an explicit method uses two previous points, 
the estimate yi+1 at xi+1 is in the form

	 y F x x y x yi i i i i i+ + − −=1 1 1 1( , , , , ) 	

This way, only known values appear on the right-hand side. In implicit methods, the 
unknown estimate yi+1 is involved on both sides of the equation

	 y F x y x y x yi i i i i i i+ + + − −=1 1 1 1 1
�( , , , , , ) 	

and must be determined iteratively using the methods described in Chapter 3.

7.5.1  Adams–Bashforth Method

Adams–Bashforth method is an explicit multistep method to estimate the solution yi+1 of 
an IVP at xi+1 by using the solution estimates at two or more previous points. Several for-
mulas can be derived depending on the number of previous points used. The order of each 
formula is the number of previous points it uses. For example, a second-order formula 
finds yi+1 by utilizing the estimates yi and yi−1 at the two prior points xi and xi−1.

To derive the Adams–Bashforth formulas, we integrate y′ = f(x, y) over an arbitrary inter-
val [xi, xi+1],

	

′ =
+ +

∫ ∫y dx f x y dx
x

x

x

x

i

i

i

i1 1

( , )

	

Because ′ = −
+

∫ +y dx y x y x
x

x

i i

i

i 1

1( ) ( ), the above can be rewritten as

	

y x y x f x y dxi i

x

x

i

i

( ) ( ) ( , )+ = +
+

∫1

1

	

or

	

y y f x y dxi i

x

x

i

i

+ = +
+

∫1

1

( , )

	

(7.32)
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But since y(x) is unknown, f(x, y) cannot be integrated. To remedy this, f(x, y) is approxi-
mated by a polynomial that interpolates the data at (xi, yi) and a few previous points. The 
number of the previous points that end up being used depends on the order of the formula 
to be derived. For example, for a second-order Adams–Bashforth formula, we use the poly-
nomial that interpolates the data at (xi, yi) and one previous point, (xi−1, yi−1), and so on.

7.5.1.1  Second-Order Adams–Bashforth Formula

The polynomial that interpolates the data at (xi, yi) and (xi−1, yi−1) is linear and in the form

	
p x f x y

f x y f x y
x x

x xi i
i i i i

i i
i1

1 1

1
( ) ( , )

( , ) ( , )
( )= + −

−
−− −

− 	

Letting fi = f(xi, yi) and fi−1 = f(xi−1, yi−1) for brevity, using p1(x) in Equation 7.32,

	

y y p x dxi i

x

x

i

i

+ = +
+

∫1 1

1

( )

	

and assuming equally spaced data with spacing h, we arrive at

	
y y h f fi i i i+ −= + −1 1

1
2

3( )
	

(7.33)

As mentioned earlier, this formula cannot self start because finding y1 requires y0 and 
y−1, the latter not known. First, a single-step method such as RK4 is used to find y1 from 
the initial condition y0. The first application of Equation 7.33 is when i = 1 so that y2 can be 
obtained using the information on y0 and y1.

7.5.1.2  Third-Order Adams–Bashforth Formula

Approximating the integrand f(x, y) in Equation 7.32 by the second-degree polynomial p2(x) 
that interpolates the data at (xi, yi), (xi−1, yi−1), and (xi−2, yi−2), and carrying out the integration, 
yields

	
y y h f f fi i i i i+ − −= + − +1 1 2

1
12

23 16 5( )
	

(7.34)

Since only y0 is known, we first apply a method such as RK4 to find y1 and y2. The first 
application of Equation 7.34 is when i = 2 to obtain y3 by using the information on y0, y1, 
and y2.

7.5.1.3  Fourth-Order Adams–Bashforth Formula

Approximating the integrand f(x, y) in Equation 7.32 by the third-degree polynomial p3(x) 
that interpolates the data at (xi, yi), (xi−1, yi−1), (xi−2, yi−2), and (xi−3, yi−3), and carrying out the 
integration, yields
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y y h f f f fi i i i i i+ − − −= + − + −1 1 2 3

1
24

55 59 37 9( )
	

(7.35)

Since only y0 is known, we first apply a method such as RK4 to find y1, y2, and y3. The 
first application of Equation 7.35 is when i = 3 to obtain y4 by using the information on y0, 
y1, y2, and y3.

Adams–Bashforth formulas are primarily used in conjunction with the Adams–
Moulton formulas, which are also multistep but implicit, to be presented next. A weakness 
of higher-order Adams–Bashforth formulas is that stability requirements place limita-
tions on the step size that is necessary for desired accuracy. The user-defined function 
AdamsBashforth4 uses the fourth-order Adams–Bashforth formula to estimate the solu-
tion of an initial-value problem.

7.5.2  Adams–Moulton Method

Adams–Moulton method is an implicit multistep method to estimate the solution yi+1 of an 
IVP at xi+1 by using the solution estimates at two or more previous points, as well as (xi+1, 
yi+1), where the solution is to be determined. Several formulas can be derived depending on 
the number of points used. The order of each formula is the total number of points it uses. 
For example, a second-order formula finds yi+1 by utilizing the estimates yi and yi+1 at the 
points xi and xi+1. This makes the formula implicit because the unknown yi+1 will appear on 
both sides of the ensuing equation.

Derivation of Adams–Moulton formulas is similar to Adams–Bashforth where the inte-
grand in Equation 7.32 is approximated by a polynomial that interpolates the data at prior 
points, as well as the point where the solution is being determined.

function y = AdamsBashforth4(f,x,y0)
%
% AdamsBashforth4 uses the fourth-order Adams-Bashforth formula to solve
% �a first-order initial-value problem in the form y' = f(x,y), y(x0) = y0.
%
%   y = AdamsBashforth4(f,x,y0), where
%
%     f is an anonymous function representing f(x,y),
%     x is a vector representing the mesh points,
%     y0 is a scalar representing the initial value of y,
%  
%     y is the vector of solution estimates at the mesh points.
%
y(1:4) = RK4(f,x(1:4),y0); n = length(x);
for i = 4:n−1,
    h = x(i+1)-x(i);
    y(i+1) = y(i)+h*(55*f(x(i),y(i))−59*f(x(i−1),y(i−1))+37*f(x(i−2),
y(i−2))−9*f(x(i−3),y(i−3)))/24;
end
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7.5.2.1  Second-Order Adams–Moulton Formula

The polynomial that interpolates the data at (xi, yi) and (xi+1, yi+1) is linear and in the form

	
p x f

f f
x x

x xi
i i

i i
i1

1

1
( ) ( )= + −

−
−+

+ 	

where fi = f(xi, yi) and fi+1 = f(xi+1, yi+1). Replacing f(x, y) in Equation 7.32 with p1(x) and per-
forming the integration, yields

	
y y h f fi i i i+ += + +1 1

1
2

( )
	

(7.36)

This formula is implicit because fi+1 = f(xi+1, yi+1) contains yi+1 which is the solution being 
determined. In this type of a situation, yi+1 must be found iteratively using the techniques 
listed in Chapter 3. This formula has a global truncation error O(h2).

7.5.2.2  Third-Order Adams–Moulton Formula

Approximating the integrand f(x, y) in Equation 7.32 by the second-degree polynomial 
that interpolates the data at (xi+1, yi+1), (xi, yi), and (xi−1, yi−1), and carrying out the integration, 
yields

	
y y h f f fi i i i i+ + −= + + −1 1 1

1
12

5 8( )
	

(7.37)

Since only y0 is initially known, a method such as RK4 is first applied to find y1. The first 
application of Equation 7.37 is when i = 1 to obtain y2 implicitly. This formula has a global 
truncation error O(h3).

7.5.2.3  Fourth-Order Adams–Moulton Formula

Approximating the integrand f(x, y) in Equation 7.32 by the third-degree polynomial that 
interpolates the data at (xi+1, yi+1), (xi, yi), (xi−1, yi−1), and (xi−2, yi−2), and carrying out the inte-
gration, we find

	
y y h f f f fi i i i i i+ + − −= + + − +1 1 1 2

1
24

9 19 5( )
	

(7.38)

Since only y0 is initially known, a method such as RK4 is first applied to find y1 and y2. 
The first application of Equation 7.38 is when i = 2 to obtain y3 implicitly. This formula has 
a global truncation error O(h4).

7.5.3  Predictor–Corrector Methods

Predictor–corrector methods are a class of techniques that employ a combination of an explicit 
formula and an implicit formula to solve an initial-value problem. First, the explicit formula is 
used to predict the value of yi+1. This predicted value is denoted by �yi+1. The predicted �yi+1 
is then used on the right-hand side of an implicit formula to obtain a new, more accurate 
value for yi+1 on the left-hand side.
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The simplest predictor–corrector method is Heun’s method, presented in Section 7.4. 
Heun’s method first uses Euler’s method—an explicit formula—as the predictor to obtain 
yi+1

Euler . This predicted value is then used in Equation 7.21, which is the corrector,

	
y y h

f x y f x y
i i

i i i i
+

+ +
= +

+ ( )
1

1 1

2

( , ) , Euler

	

to find a more accurate value for yi+1. A modified version of this approach is derived next 
so that a desired accuracy may be achieved through repeated applications of the corrector 
formula.

7.5.3.1  Heun’s Predictor–Corrector Method

The objective is to find an estimate for yi+1. The method is implemented as follows:

	 1.	Find a first estimate for yi+1, denoted by yi+1
1( ) , using Euler’s method, which is an 

explicit formula,

	 Predictor y y hf x yi i i i+ = +1
1( ) ( , ) 	 (7.39)

	 2.	 Improve the predicted estimate by solving using Equation 7.21 iteratively,

	
Corrector y y h

f x y f x y
ki

k
i

i i i i
k

+
+ + += +

+ ( )
= …1

1 1 1

2
1 2 3( )

( )( , ) ,
, , , ,

	
(7.40)

		  Therefore, yi+1
1( )  is used in Equation 7.40 to obtain yi+1

2( ) , and so on.

	 3.	The iterations in Step 2 are terminated when the following criterion is satisfied:

	
Tolerance

y y
y

i
k

i
k

i
k

+
+

+

+
+
−1

1
1

1
1

( ) ( )

( )  < ε
	

(7.41)

		  where ε is a prescribed tolerance.

	 4.	 If the tolerance criterion is met, increment i by 1 and set yi equal to this last yi
k
+

+
1

1( ) 
and go to Step 1.

7.5.3.2  Adams–Bashforth–Moulton (ABM) Predictor–Corrector Method

Several predictor–corrector formulas can be created by combining one of the (explicit) 
Adams–Bashforth formulas of a particular order as the predictor with the (implicit) 
Adams–Moulton formula of the same order as the corrector. The fourth-order formulas 
of these two methods, for example, can be combined to create the fourth-order Adams–
Bashforth–Moulton (ABM4) predictor–corrector:

	
Predictor y y h f f f f ii i i i i i+ − − −= + − + − = …1

1
1 2 3

1
24

55 59 37 9 3 4( ) ( ), , , ,, n
	

(7.42)

	
Corrector y y h f f f f ki

k
i i

k
i i i+

+
+ − −= + + − +( ) =1

1
1 1 2

1
24

9 19 5 1 2( ) ( ) , , ,, ,3 …
	

(7.43)
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where f f x yi
k

i i
k

+ + +=1 1 1
( ) ( )( , ). This method cannot self start and is implemented as follows: start-

ing with the initial condition y0, apply a method such as RK4 to find estimates for y1, y2, and 
y3 and calculate their respective f(x, y) values. At this stage, the predictor (Equation 7.42) is 
applied to find y4

1( ), which is then used to calculate f4
1( ). The corrector (Equation 7.43) is next 

applied to obtain y4
2( ). The estimate can be substituted back into Equation 7.43 for iterative 

correction. The process is repeated for the remaining values of the index i.
The user-defined function ABM4PredCorr uses the fourth-order Adams–Bashforth–

Moulton predictor–corrector method to estimate the solution of an initial-value problem. 
Note that this function does not perform the iterative correction mentioned above.

EXAMPLE 7.8:   ABM4 PREDICTOR–CORRECTOR METHOD

Consider the initial-value problem in Examples 7.4 through 7.7

	 ′ − = = ≤ ≤ =y x y x y x h2 22 0 1 0 1, ( ) , , 0.1 	

Compute the estimated value of y4 = y(0.4) using the ABM4 predictor–corrector 
method.

Solution

f(x, y) = x2(2 + y). The first element y0 is given by the initial condition. The next three are 
obtained by RK4 as

function y = ABM4PredCorr(f,x,y0)
%
% ABM4PredCorr uses the fourth-order Adams-Bashforth-Moulton predictor-
% corrector formula to solve a first-order initial-value problem in the 
% form y' = f(x,y), y(x0) = y0.
%
%   y = ABM4PredCorr(f,x,y0), where
%
%       f is an anonymous function representing f(x,y),
%       x is a vector representing the mesh points,
%       y0 is a scalar representing the initial value of y,
%  
%       y is the vector of solution estimates at the mesh points.
%
py = zeros(4,1);   % Pre-allocate
y(1:4) = RK4(f,x(1:4),y0);   % Find the first 4 elements by RK4
h = x(2) - x(1); n = length(x);

% Start ABM4
for i = 4:n−1,
    �py(i+1) = y(i) + (h/24)*(55*f(x(i),y(i))−59*f(x(i−1),y(i−1))+
37*f(x(i−2),y(i−2))−9*f(x(i−3),y(i−3)));
    �y(i+1) = y(i) + (h/24)*(9*f(x(i+1),py(i+1))+19*f(x(i),y(i))−
5*f(x(i−1),y(i−1))+f(x(i−2),y(i−2)));
end
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	 y y y1 2 3= = =1.001000 1.008011 1.027122, , 	

The respective f(x,y) values are calculated next

	

f f x y f f f x y f

f
0 0 0 1 1 10 1 0= = = = = =( , ) ( , ) , ( , ) ( , )0.1 1.001000 0.030010

22 2 2 3 3 3= = = = =f x y f f f x y f( , ) ( , ) , ( , ) ( ,0.2 1.008011 0.120320 0.3 1.0227122 0.272441) = 	

Prediction

Equation 7.42 yields

	
y y h f f f f4

1
3 3 2 1 0

1
24

55 59 37 9( ) ( )= + − + − = 1.064604
	

	
f f x y f4

1
4 4

1( ) ( ), ( , )= ( ) = =0.4 1.064604 0.490337
	

Correction

Equation 7.43 yields

	
y y h f f f f4

2
3

1
24 4

1
3 2 19 19 5 000( ) ( ) .= + + − +( ) = =1.064696, Rel error 0 88%

	

This corrected value may be improved by substituting y4
2( ) and the corresponding 

f f x y4
2

4 4
2( ) ( ),= ( )  into Equation 7.43,

	
y y h f f f f4

3
3

1
24 4

2
3 2 19 19 5( ) ( )= + + − +( ) 	

and inspecting the accuracy. In the present analysis, we perform only one correction 
so that y4

2( ) is regarded as the value that will be used for y4. This estimate is then used 
in Equation 7.42 with the index i incremented from 3 to 4. Continuing this process, we 
generate the numerical results in Table 7.4.

TABLE 7.4

Summary of Calculations in Example 7.8

x yRK4

�yi 
Predicted

yi 
Corrected

0.0 1.000000
0.1 1.001000
0.2 1.008011
0.3 1.027122 Start ABM4
0.4 1.064604 1.064696
0.5 1.127517 1.127662
0.6 1.223795 1.224004
0.7 1.363143 1.363439
0.8 1.557958 1.558381
0.9 1.824733 1.825350
1.0 2.186134 2.187052
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Another well-known predictor–corrector method is the fourth-order Milne’s method:

	
Predictor y y h f f f i ni i i i i+ − − −= + − + = …1

1
3 1 2

4
3

2 2 3 4( ) ( ) , , , ,
	

	
Corrector y y h f f f ki

k
i i

k
i i+

+
− + −= + + +( ) = …1

1
1 1 1

1
3

4 1 2 3( ) ( ) , , , ,
	

where f f x yi
k

i i
k

+ + += ( )1 1 1
( ) ( ), . As with the fourth-order Adams–Bashforth–Moulton, this 

method cannot self start and needs a method such as RK4 for estimating y1, y2, and y3 first.

7.6  Systems of Ordinary Differential Equations

Mathematical models of most systems in various engineering disciplines comprise one 
or more first- or higher-order differential equations subject to an appropriate number of 
initial conditions. In this section, we will achieve two tasks: (1) transform the model into 
a system of first-order differential equations and (2) numerically solve the system of first-
order differential equations thus obtained.

7.6.1  Transformation into a System of First-Order ODEs

The first task is to show how a single higher-order IVP or a system of various-order IVPs 
may be transformed into a system of first-order IVPs. The most important tools that facili-
tate this process are the state variables.

7.6.1.1  State Variables

State variables form the smallest set of linearly independent variables that completely 
describe the state of a system. Given the mathematical model of a system, the state vari-
ables are determined as follows:

•	 How many state variables are there?

		  The number of state variables is the same as the number of initial conditions 
required to completely solve the model.

•	 What are selected as state variables?

		  The state variables are selected to be exactly those variables for which initial con-
ditions are required.

7.6.1.2  Notation

State variables are represented by ui; for example, if there are three state variables, they 
will be denoted u1, u2, and u3.

7.6.1.3  State-Variable Equations

If a system has m state variables u1, u2, … , um, then there are exactly m state-variable equa-
tions. Each of these equations is a first-order differential equation in the form

	 �u f t u u u i mi i m= … = …( , , , , ), , , ,1 2 1 2 	 (7.44)
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Therefore, the left side is the first derivative (with respect to time in most applications) 
of the state variable ui, and the right side is an algebraic function of the state variables, and 
possibly time t explicitly. Note that only state variables and functions of time that are part 
of the system model are allowed to appear on the right side of Equation 7.44. The system of 
first-order differential equations in Equation 7.44 can be conveniently expressed in vector 
form, as
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(7.45)

where u is the state vector.

EXAMPLE 7.9:   A SINGLE HIGHER-ORDER IVP

Consider the third-order IVP described by

	 3 5 3 0 0 0 1 0 12′′′ − ′′ − ′ − = = ′ = − ′′ =−y y y y e y y yx/ , ( ) , ( ) , ( ) 	

Three initial conditions are required, hence there are three state variables: u1, u2, and 
u3. The state variables are those variables for which initial conditions are required. 
Therefore,

	 u y u y u y1 2 3= = ′ = ′′, , 	

There are three state-variable equations, formed as follows:
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In vector form,
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EXAMPLE 7.10:  A SYSTEM OF DIFFERENT-ORDER IVPS

The mathematical model of a dynamic system is described by

	

�� �
�
x x x x e t

x x x

t
1 1 1 2

2 1 2

2 2
2 0

+ + − =
− − =

−( ) sin
( )

subject to initial  conditions x x x1 2 10 0 0 0 0 1( ) , ( ) , ( )= = =�
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Three initial conditions are required, hence there are three state variables: u1, u2, and 
u3. The state variables are those for which initial conditions are required. Therefore,

	 u x u x u x1 1 2 2 3 1= = =, , � 	

This is the natural order for selecting state variables, as the derivatives of variables are 
chosen after all non-derivatives have been assigned. There are three state-variable 
equations

	

� �
� �
u x u u
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7.6.2  Numerical Solution of a System of First-Order ODEs

In Examples 7.9 and 7.10, we learned how to transform a single higher-order IVP or a sys-
tem of different-order IVPs into one system of first-order IVPs in the general form

	 ′ = = = ≤ ≤ =u f u u u( , ), ( ) ,x x a x x x bn0 0 0 	 (7.46)

In many applications, the independent variable x is replaced with time t. Equation 7.46 is 
exactly in the form of Equation 7.1, where except for the independent variable x, all other 
quantities are vectors. And as such, the numerical methods presented so far in this chapter 
for solving Equation 7.1, a single first-order IVP, can be extended and applied to a system 
of first-order IVPs in Equation 7.46. We will present three of these methods here: Euler’s 
method, Heun’s method, and the classical fourth-order Runge–Kutta (RK4) method.

7.6.2.1  Euler’s Method for Systems

As before, the interval [a, b] is divided into subintervals of equal length h such that

	 x x h x x h x x nhn1 0 2 0 02= + = + … = +, , , 	

Euler’s method for a system in the form of Equation 7.46 is described by

	 u u f ui i i ih x i n+ = + = … −1 0 1 2 1( , ), , , , , 	 (7.47)

The user-defined function EulerODESystem uses Euler’s method as outlined in 
Equation 7.47 to estimate the solution vector of a system of initial-value problems in the 
form of Equation 7.46.
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EXAMPLE 7.11:   EULER’S METHOD FOR SYSTEMS

Consider the third-order IVP in Example 7.9:

	 3 5 3 0 0 0 1 0 1 0 12′′′ − ′′ − ′ − = = ′ = − ′′ = ≤ ≤−y y y y e y y y xx/ , ( ) , ( ) , ( ) , 	

Using Euler’s method for systems, with step size h = 0.1, find an estimate for y2 = y(0.2). 
Confirm by executing the user-defined function EulerODESystem.

Solution

In Example 7.9, the IVP was transformed into the standard form of a system of first-
order IVPs as
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To find y(0.2), we need to find the solution vector u2 = u(0.2) and then extract its first 
component, which is y(0.2). By Equation 7.47,

	 u u f u1 0 0 0= + h x( , ) 	

But
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function u = EulerODESystem(f,x,u0)
%
% EulerODESystem uses Euler's method to solve a system of first-order 
% initial-value problems in the form u' = f(x,u), u(x0) = u0.
%
%    u = EulerODESystem(f,x,u0), where
%
%       f is an anonymous m-dim. vector function representing f(x,u),
%       x is an (n+1)-dim. vector representing the mesh points,
%       u0 is an m-dim. vector representing the initial state vector,  
%
%       u is an m-by-(n+1) matrix, each column the vector of solution
%       estimates at a mesh point.
%
u(:,1) = u0;   % The first column is set to be the initial vector u0
h = x(2) - x(1); n = length(x);
for i = 1:n−1,
   u(:,i+1) = u(:,i)+h*f(x(i),u(:,i));
end
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Therefore,
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In the next step, u2 = u1 + hf(x1, u1) where
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Therefore,
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The first component represents y(0.2), thus y(0.2) = −0.19. The results may be confirmed 
in MATLAB as follows:

>> f = @(x,u)([u(2);u(3);(u(3)+5*u(2)+3*u(1)+exp(-x/2))/3]);
>> x = 0:0.1:1;   % 11 mesh points
>> u0 = [0;−1;1];
>> u = EulerODESystem(f,x,u0);     % Returns a 3-by-11 matrix

This is a 3 × 11 matrix because there are three state variables and 11 mesh points cre-
ated. The first row contains the solution estimates for y at the 11 mesh points, the second 
row y′ and the third row y″. Since we are interested in y(0.2), it is the first row of u that 
we must retain. In particular,

>> u(1,:)

ans =

  Columns 1 through 9

   0  −0.1000  −0.1900  −0.2710  −0.3440  −0.4099  −0.4698  −0.5245   −0.5751

  Columns 10 through 11

   −0.6226   −0.6680

The boxed value of y(0.2) agrees with our hand calculations. Knowing the exact value 
is −0.181324 (truncated), the % relative error associated with our estimate is 4.785%. In 
order to verify the hand-calculated vectors u1 and u2, we proceed as follows. Since the 
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first column of u represents the initial state vector, we will extract the second and thirds 
columns to verify the hand calculations:

>> u(:,[2 3])

ans =

   −0.1000   −0.1900
   −0.9000   −0.8100
    0.9000    0.8017

As expected, these exactly match our earlier findings.

7.6.2.2  Heun’s Method for Systems

Heun’s method for a system in the form of Equation 7.46 is defined as

	
u u k ki i h i n+ = + + = … −1 1 2

1
2

0 1 2 1( ), , , , ,
	

(7.48)

where

	

k f u

k f u k
1

2 1
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( , )
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x h h
i i

i i 	

The user-defined function HeunODESystem uses Heun’s method as outlined in Equation 
7.48 to estimate the solution vector of a system of initial-value problems in the form of 
Equation 7.46.

function u = HeunODESystem(f,x,u0)
%
% HeunODESystem uses Heun's method to solve a system of first-order 
% initial-value problems in the form u' = f(x,u), u(x0) = u0.
%
%    u = HeunODESystem(f,x,u0), where
%
%       f is an anonymous m-dim. vector function representing f(x,u),
%       x is an (n+1)-dim. vector representing the mesh points,
%       u0 is an m-dim. vector representing the initial state vector,  
%
%       u is an m-by-(n+1) matrix, each column the vector of solution
%       estimates at a mesh point.
%
u(:,1) = u0;   % The first column is set to be the initial vector u0
h = x(2) - x(1); n = length(x);
for i = 1:n−1,
    k1 = f(x(i),u(:,i));
    k2 = f(x(i)+h,u(:,i)+h*k1);
   u(:,i+1) = u(:,i)+h*(k1+k2)/2;
end
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EXAMPLE 7.12:   HEUN’S METHOD FOR SYSTEMS

In Example 7.11, find an estimate for y(0.2) by executing the user-defined function 
HeunODESystem.

Solution

>> f = @(x,u)([u(2);u(3);(u(3)+5*u(2)+3*u(1)+exp(-x/2))/3]);
>> x = 0:0.1:1;
>> u0 = [0;−1;1];
>> u = HeunODESystem(f,x,u0);
>> u(1,3)    % y(0.2) is the 3rd entry in the first row

ans =

   −0.1810

The boxed value is y(0.2) = −0.1810. Recall from Example 7.11 that the (truncated) exact 
value is −0.181324. Therefore, the % relative error here is 0.18% as opposed to 4.785% for 
Euler. As expected, Heun’s method returns a more accurate approximation than Euler.

7.6.2.3  Classical RK4 Method for Systems

The classical fourth-order Runge–Kutta method for a system in the form of Equation 7.46 
is defined as
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The user-defined function RK4System uses the fourth-order Runge–Kutta method as 
outlined in Equation 7.49 to estimate the solution vector of a system of initial-value prob-
lems in the form of Equation 7.46.

function u = RK4System(f,x,u0)
%
% RK4System uses RK4 method to solve a system of first-order 
% initial-value problems in the form u' = f(x,u), u(x0) = u0.
%
%    u = RK4System(f,x,u0), where
%
%       f is an anonymous m-dim. vector function representing f(x,u),
%       x is an (n+1)-dim. vector representing the mesh points,
%       u0 is an m-dim. vector representing the initial state vector,  
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EXAMPLE 7.13:   RK4 METHOD FOR SYSTEMS

Reconsider Example 7.11. Using RK4 method for systems, with h = 0.1, find an estimate 
for y1 = y(0.1). Confirm by executing the user-defined function RK4System.

Solution

Recall
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We first need to find u u k k k k1 0 1 2 3 4
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To calculate k f u k f u k2 0 0 1 0 1
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Then,
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%
%       u is an m-by-(n+1) matrix, each column the vector of solution
%       estimates at a mesh point.
%
u(:,1) = u0;   % The first column is set to be the initial vector u0
h = x(2) - x(1); n = length(x);
for i = 1:n−1,
    k1 = f(x(i),u(:,i));
    k2 = f(x(i)+h/2,u(:,i)+h*k1/2);
    k3 = f(x(i)+h/2,u(:,i)+h*k2/2);
    k4 = f(x(i)+h,u(:,i)+h*k3);
   u(:,i+1) = u(:,i)+h*(k1+2*k2+2*k3+k4)/6;
end
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To calculate k f u k f u k3 0
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Then,
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To find k f u k f u k4 0 0 3 0 3= + + = +( , ) ( , )x h h h0.1 , we first calculate
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Then,

	

k f u k4 0 3

1
3

5 3

= +( ) =
−

+ − + −

0.1
0.9050

0.9007

0.9007 0.9050 0.095

,

( ) (

h

33

 = 
0.9050

0.9007
0.98630.1/2) + 

























−

−











−e







	

Finally,
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Therefore, our estimate is y(0.1) = −0.0952. The result may be confirmed in MATLAB 
as follows:

>> f = @(x,u)([u(2);u(3);(u(3)+5*u(2)+3*u(1)+exp(-x/2))/3]);
>> x = 0:0.1:1;
>> u0 = [0;−1;1];
>> u = RK4System(f,x,u0);
>> u(1,2)    % y(0.1) is the 2nd entry in the first row

ans =

   −0.0952

The boxed value agrees with the hand calculations.



339Numerical Solution of Initial-Value Problems

EXAMPLE 7.14:   RK4 METHOD FOR SYSTEMS

The pendulum system in Figure 7.5 consists of a uniform thin rod of length l and a 
concentrated mass m at its tip. The friction at the pivot causes the system to be damped. 
When the angular displacement θ is not very small, the system is described by a non-
linear model in the form

	
3
4

1
2

02ml mgl�� �θ θ θ+ + =0.18 sin
	

Assume, in consistent physical units, that ml
g
l

2 7= =1.28 45, . .

	 1.	 Transform the model into a system of first-order initial-value problems.
	 2.	 Write a MATLAB script that utilizes the user-defined function RK4System to 

solve the system in (1). Two sets of initial conditions are to be considered: (1) 
θ(0) = 15°, �θ( )0 0=  and (2) θ(0) = 30°, �θ( )0 0= . The file must return the plots of the 
two angular displacements corresponding to the two sets of initial conditions 
versus 0 ≤ t ≤ 5 in the same graph. Angle measures must be converted to radi-
ans. Use at least 100 points for plotting purposes.

Solution

	 1.	 First note that
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= =2 1 28( . )( )7.45 9.5360
	

		    Therefore, the equation of motion is rewritten as
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0( ) ( )sin s1.28 0.18 9.5360 0.96 0.18 4.7680�� � �� �θ θ θ θ θ+ + = ⇒ + + iinθ = 0
	

		    There are two state variables: u u1 2= =θ θ, � . The state-variable equations are 
formed as
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FIGURE 7.5
Pendulum system.
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		    The two sets of initial conditions are
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		    In vector form,
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	 2.	

	 t = linspace(0,5); u0 = [15*pi/180;0];
	 f = @(t,u)([u(2);−0.1875*u(2)−4.9667*sin(u(1))]);
	 uRK4 = RK4System(f,t,u0);
	 theta1 = uRK4(1,:); plot(t,theta1)
	 hold on
	 u0 = [30*pi/180;0];
	 uRK4 = RK4System(f,t,u0);
	 theta2 = uRK4(1,:); plot(t,theta2)   % Figure 7.6

7.7  Stability

Numerical stability is a desirable property of numerical methods. A numerical method is 
stable if errors incurred in one step do not magnify in later steps. Stability analysis of a 
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Angular displacements of the rod for two sets of initial conditions.
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numerical method often boils down to the error analysis of the method when applied to a 
basic initial-value problem, which serves as a model, in the form

	 ′ = − = =y y y y constλ λ, ( ) ,0 00 > 	 (7.50)

Since the exact solution y x y e x( ) = −
0

λ  exponentially decays toward zero, it is desired that 
the error also approaches zero as x gets sufficiently large. If a method is unstable when 
applied to this model, it is likely to have difficulty when applied to other initial-value 
problems.

7.7.1  Euler’s Method

Suppose Euler’s method with step size h is applied to this model. This means each subin-
terval [xi, xi+1] has length h = xi+1 − xi. Noting that f(x, y) = −λy, the solution estimate yi+1 at xi+1 
provided by Euler’s method is

	 y y hf x y y h y h yi i i i i i i+ = + = − = −1 1( , ) ( )λ λ 	 (7.51)

At xi+1, the exact solution is

	
y y e y e e y ei

x
x x h

x h
i

hi
i i

i
+

−
= +

− − −= =   =+
+

1 0 0
1

1
Exact Exact λ λ λ λ

	
(7.52)

Comparison of Equations 7.51 and 7.52 reveals that 1 − λh in the computed solution is 
an approximation for e−λh in the exact solution*. From Equation 7.51, it is also observed that 
error will not be magnified if |1 − λh| < 1. This implies that the numerical method (in this 
case, Euler’s method) is stable if

	 1 1 1 1 0 2− ⇒ − − ⇒λ λ λh h h< < < < <1 	 (7.53)

which acts as a stability criterion for Euler’s method when applied to the IVP in Equation 
7.50. Equation 7.53 describes a region of absolute stability for Euler’s method. The wider the 
region of stability, the less limitation imposed on the step size h.

7.7.2  Euler’s Implicit Method

Euler’s implicit method is described by

	 y y hf x y i ni i i i+ + += + = … −1 1 1 0 1 2 1( , ), , , , , 	 (7.54)

so that yi+1 appears on both sides of the equation. As with other implicit methods discussed so 
far, yi+1 is normally found numerically via the methods of Chapter 3, and can only be solved 
analytically if the function f(x, y) has a simple structure. This is certainly the case when applied 
to the model in Equation 7.50 where f(x, y) = −λy.

*	 Taylor series of e−λh is e h hh− = − + ( ) −λ λ λ1 1
2

2
! � so that for small λh, we have e−λh ≅ 1 − λh.
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y y hf x y y h y y
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Therefore, Euler’s implicit method is stable if
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which implies it is stable regardless of the step size.

EXAMPLE 7.15:   STABILITY OF EULER’S METHODS

Consider the initial-value problem

	 ′ = − = ≤ ≤y y y x4 0 2 0 5, ( ) , 	

	 1.	 Solve using Euler’s method with step size h = 0.3 and again with h = 0.55, 
plot the estimated solutions together with the exact solution y(x) = 2e−4x, and 
discuss stability.

	 2.	 Repeat using the Euler’s implicit method, Equation 7.54.

Solution

	 1.	 Comparing the IVP at hand with the model in Equation 7.50, we have λ = 4. 
The stability criterion for Euler’s method is

	
4 2

1
2

h h< <⇒
	

		  Therefore, Euler’s method is stable if h < 0.5, and is unstable otherwise. As 
observed from the first plot in Figure 7.7, Euler’s method with h = 0.3 < 0.5 pro-
duces estimates that closely follow the exact solution, while those generated by 
h = 0.55 > 0.5 grow larger in each step, indicating instability of the method.

	 2.	 As mentioned earlier, when applied to a simple IVP such as the one here, 
Euler’s implicit method is stable for all step sizes. The second plot in Figure 
7.7 clearly shows that the errors associated with both step sizes decay to zero 
as x increases, indicating stability. The following MATLAB script completely 
generates the results illustrated in Figure 7.7.

y0 = 2; f = @(x,y)(−4*y);
yExact = matlabFunction(dsolve('Dy+4*y=0','y(0)=2','x'));  % Exact solution
h1 = 0.3; x1 = 0:h1:5; h2 = 0.55; x2 = 0:h2:5;
% Euler's method with h = 0.3 and h = 0.55
y1 = EulerODE(f,x1,y0); y2 = EulerODE(f,x2,y0);  
 
y1I(1) = y0;
for i = 2:length(x1),
    y1I(i) = y1I(i−1)/(1+4*h1);   % Implicit Euler with h = 0.3
end
y2I(1) = y0;
for i = 2:length(x2),
    y2I(i) = y2I(i−1)/(1+4*h2);   % Implicit Euler with h = 0.55
end
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x3 = linspace(0,5);
ye = zeros(100,1);
for i = 1:100,
    ye(i) = yExact(x3(i));      
end
subplot (1,2,1), plot(x1,y1,'o',x2,y2,'+',x3,ye,'-')   % Figure 7.7
title('Euler')
subplot (1,2,2), plot(x1,y1I,'o',x2,y2I,'+',x3,ye,'-')
title('Euler implicit')

7.8  Stiff Differential Equations

In many engineering applications, such as chemical kinetics, mass–spring–damper sys-
tems, and control system analysis, we encounter systems of differential equations whose 
solutions contain terms with magnitudes that vary at considerably different rates. Such 
differential equations are known as stiff differential equations. For example, if a solution 
includes the terms e−at and e−bt, with a, b > 0, where the magnitude of a is much larger than 
b, then e−at decays to zero at a much faster rate than e−bt does. In the presence of a rapidly 
decaying transient solution, some numerical methods become unstable unless the step 
size is unreasonably small. Explicit methods generally are subjected to this stability con-
straint, which requires them to use an extremely small step size for accuracy. But using 
a very small step size not only substantially increases the number of operations to find a 
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solution, but it also causes the round-off error to grow, thus leading to limited accuracy. 
Implicit methods, on the other hand, are free of stability restrictions and are therefore pre-
ferred for solving stiff differential equations.

EXAMPLE 7.16:   STIFF SYSTEM OF ODEs

Consider
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The exact solution of this system can be found in closed form, as
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Exact solution at t = 0.1:

	

v v e e

w

1
3 800

1

3180
797

2383
797

= = − =− −( ) ( ) ( )0.1  2.9558368150.1 0.1

== = − =− −w e e( ) ( ) ( )0.1 1.4742003740.1 0.11586
797

2383
797

3 800

	

Euler’s method with h = 0.1: We first express the system in vector form
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Then, by Euler’s method
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which are totally incorrect. Euler’s method is an explicit method, and as such, it is 
unstable unless a very small step size is selected. The main contribution to numerical 
instability is by the rapidly decaying e−800t. Reduction of the step size can dramatically 
improve accuracy.

Euler’s method with h = 0.001 results in
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which are much more accurate than before. Further reduction to h = 0.0001 allows 
round-off error to grow, causing the estimates to be much less accurate.
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Euler’s implicit method with h = 0.1: Using the vector form of Equation 7.54,
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== 1.493827160 	

These are closer to the exact values than those generated by Euler’s method with a 
much smaller h.

7.9  MATLAB Built-In Functions for Solving Initial-Value Problems

There are several MATLAB built-in functions designed for solving a single first-order 
initial-value problem, as well as a system of first-order initial-value problems. These are 
known as ODE solvers and include ode23, ode45, and ode113 for non-stiff equations, 
and ode15s for stiff equations. Most of these built-in functions use highly developed 
techniques that allow for the use of an optimal step size, or in some cases, adjusted step 
size for error minimization in each step.

7.9.1  Non-Stiff Equations

We will first show how the built-in functions can be used to solve a single first-order IVP, 
then extend their applications to systems of first-order IVPs.

7.9.2  A Single First-Order IVP

The initial-value problem is

	 �y f t y y t y= =( , ), ( )0 0 	 (7.55)

Note that, as mentioned before, we are using t in place of x since in most applied prob-
lems time is the independent variable. For non-stiff equations, MATLAB built-in ODE 
solvers are ode23, ode45, and ode113.
ode23 is a single-step method based on second- and third-order Runge–Kutta methods. 

As always, MATLAB help file should be regularly consulted for detailed information.

ode23  Solve non-stiff differential equations, low order method.

    �[TOUT,YOUT] = ode23(ODEFUN,TSPAN,Y0) with TSPAN = [T0 TFINAL] integrates 
    �the system of differential equations y' = f(t,y) from time T0 to TFINAL 
    with initial conditions Y0. ODEFUN is a function handle. For a scalar T
    and a vector Y, ODEFUN(T,Y) must return a column vector corresponding 
    to f(t,y). Each row in the solution array YOUT corresponds to a time 
    returned in the column vector TOUT.  To obtain solutions at specific 
    times T0,T1,…,TFINAL (all increasing or all decreasing), use TSPAN = 
    [T0 T1 … TFINAL].

Note that if TSPAN has only two elements (the left and right endpoints for t), then vector 
YOUT will contain solutions calculated by ode23 at all steps.
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ode45 is a single-step method based on fourth- and fifth-order Runge–Kutta methods. 
Refer to MATLAB help file for more detailed information.

ode45  Solve non-stiff differential equations, medium order method.

The function call is

[TOUT,YOUT] = ode45(ODEFUN,TSPAN,Y0)

with all input and output argument descriptions as in ode23 above. ode45 can handle 
most initial-value problems and should be the first solver attempted for a given problem.
ode113 is a multistep method based on Adams–Bashforth–Moulton (ABM) methods. 

Refer to MATLAB help file for more detailed information.

ode113 Solve non-stiff differential equations, variable order method.

The function call is

[TOUT,YOUT] = ode113(ODEFUN,TSPAN,Y0)

with all input and output argument descriptions as in ode23 and ode45 above.

EXAMPLE 7.17:   ODE23, ODE45

Write a MATLAB script that solves the following initial-value problem using ode23 and 
ode45 solvers and returns a table that includes the solution estimates at t=1:0.2:3, as 
well as the exact solution and the % relative error for both methods at each point.

	 ty y e y tt� + = = ≤ ≤− , ( ) ,1 1 1 3 	

Solution

disp('   t       yode23     yode45      yExact      e_23      e_45')

t = 1:0.2:3; y0 = 1;
f = @(t,y)((exp(-t)-y)/t);
[t,y23] = ode23(f,t,y0);        
[t,y45] = ode45(f,t,y0);

yExact = matlabFunction(dsolve('t*Dy+y=exp(-t)','y(1)=1')); 

for k=1:length(t),
    t_coord = t(k);
    yode23 = y23(k);
    yode45 = y45(k);
    yEx = yExact(t(k));
    e_23 = (yEx - yode23)/yEx*100;
    e_45 = (yEx - yode45)/yEx*100;

   fprintf('%6.2f %11.6f%11.6f %11.6f %11.6f  %11.8f\n',t _ coord,yode23,
   yode45,yEx,e_23,e_45) 

end
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   t       yode23     yode45      yExact       e_23       e_45
  1.00    1.000000   1.000000    1.000000    0.000000   0.00000000
  1.20    0.888872   0.888904    0.888904    0.003589  −0.00000000
  1.40    0.800866   0.800916    0.800916    0.006202  −0.00000001
  1.60    0.728684   0.728739    0.728739    0.007554  −0.00000001
  1.80    0.668045   0.668100    0.668100    0.008314  −0.00000001
  2.00    0.616218   0.616272    0.616272    0.008770  −0.00000001
  2.20    0.571347   0.571398    0.571398    0.009058  −0.00000001
  2.40    0.532101   0.532151    0.532151    0.009250  −0.00000001
  2.60    0.497494   0.497541    0.497541    0.009383  −0.00000001
  2.80    0.466766   0.466810    0.466810    0.009479  −0.00000001
  3.00    0.439323   0.439364    0.439364    0.009470  −0.00000001

As expected, ode45 produces much more accurate estimates but is often slower than 
ode23.

7.9.3  Setting ODE Solver Options

The ode23, ode45, and ode113 functions accept an optional input argument called 
an “options structure” that allows many properties of the solution method to be specified. 
Two examples of such properties are the relative tolerance and the minimum step size. The 
odeset function creates these options structures.

odeset Create/alter ODE OPTIONS structure.

  OPTIONS = odeset('NAME1',VALUE1,'NAME2',VALUE2,…) creates an integrator
  options structure OPTIONS in which the named properties have the
  specified values. Any unspecified properties have default values. It is
  sufficient to type only the leading characters that uniquely identify the
  property. Case is ignored for property names.

A complete list of the various properties and their descriptions are available in the help 
function. A default options structure is created using

>> options = odeset;

The default relative tolerance RelTol is 10−3. RelTol can either be specified upon creation 
of the options structure

>> options = odeset('RelTol', 1e−7);

or can be changed by including the current options as the first input argument.

>> options = odeset(options, 'RelTol', 1e−6);

The option structure is then specified as the fourth input argument to the ODE solvers.

>> [t,y] = ode45(@myfunc,t,y0,options);
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Therefore, we can trade speed for accuracy by specifying the relative tolerance. Other 
parameters may also be specified.

7.9.4  A System of First-Order IVPs

The ODE solvers discussed here can also handle systems of first-order initial-value 
problems.

EXAMPLE 7.18:  ode45 FOR A SYSTEM

Using ode45 (with step size of 0.1), solve the following system:
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We first express the system in vector form
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u0 = [1;−1]; t = 0:0.1:1;
f = @(t,u)([u(2);2*(−2*u(2)-t*u(1)+cos(t))/3]);
[t,u45] = ode45(f,t,u0)

t =
         0
    0.1000
    0.2000
    0.3000
    0.4000
    0.5000
    0.6000
    0.7000
    0.8000
    0.9000
    1.0000

% u45 has two columns: First column is u1, second column is u2

u45 =

    1.0000   −1.0000
    0.9095   −0.8159
    0.8359   −0.6605
    0.7765   −0.5302
    0.7291   −0.4219
    0.6915   −0.3330
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    0.6619   −0.2615
    0.6387   −0.2056
    0.6203   −0.1639
    0.6055   −0.1348
    0.5930   −0.1173

7.9.5  Stiff Equations

The ODE solver ode15s can be used to solve stiff equations. ode15s is a multistep, vari-
able-order method. Refer to MATLAB help file for more detailed information.

ode15s Solve stiff differential equations and DAEs, variable order 
method.

The function call is

[TOUT,YOUT] = ode15s(ODEFUN,TSPAN,Y0)

with all input and output argument descriptions as in ode23 and others.

EXAMPLE 7.19:   ode15s

Consider the stiff system in Example 7.16:
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Write a MATLAB script that solves the system using ode15s and ode45 and returns 
a table that includes the solution estimates for v(t) at t=0:0.1:1, as well as the exact 
solution and the % relative error for both methods at each point. The exact solution was 
provided in Example 7.16.

Solution

disp('   t      v15s       v45      vExact      e_15s      e_45') 

t = 0:0.1:1; u0 = [1;−1];
f = @(t,u)([790*u(1)−1590*u(2);793*u(1)−1593*u(2)]);

[t,u15s] = ode15s(f,t,u0);    
% Values of v are in the first column of u15s 

[t,u45] = ode45(f,t,u0);      
% Values of v are in the first column of u45 

uExact = @(t)([3180/797*exp(−3*t)−2383/797*exp(−800*t);1586/797*exp
(−3*t)−2383/797*exp(−800*t)]);
for i = 1:length(t),
   uex(:,i) = uExact(t(i));   % Evaluate exact solution vector at each t
end 
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for k=1:length(t),
    t_coord = t(k);
    v15s = u15s(k,1);  % Retain the first column of u15s: values of v
    v45 = u45(k,1);    % Retain the first column of u45: values of v
    vExact = uex(1,k); % Retain the exact values of v

    e_15s = (vExact - v15s)/vExact*100;
    e_45 = (vExact - v45)/vExact*100;

   fprintf('%6.2f %11.6f%11.6f %11.6f %11.6f  %11.8f\n',t_coord,v15s,
v45,vExact,e_15s,e_45)

end

	 t	 v15s	 v45	 vExact	 e_15s	 e_45
	 0.00	 1.000000	 1.000000	 1.000000	 0.000000	 0.00000000
	 0.10	 2.955055	 2.955511	 2.955837	 0.026464	 0.01102274
	 0.20	 2.187674	 2.188567	 2.189738	 0.094262	 0.05345813
	 0.30	 1.620781	 1.622657	 1.622198	 0.087342	 −0.02830662
	 0.40	 1.201627	 1.201785	 1.201754	 0.010535	 −0.00261497
	 0.50	 0.890826	 0.890278	 0.890281	 −0.061233	 0.00033632
	 0.60	 0.660191	 0.659508	 0.659536	 −0.099254	 0.00427387
	 0.70	 0.489188	 0.488525	 0.488597	 −0.121031	 0.01461519
	 0.80	 0.362521	 0.361836	 0.361961	 −0.154754	 0.03468108
	 0.90	 0.268708	 0.268171	 0.268147	 −0.209208	 −0.00866986
	 1.00	 0.199060	 0.198645	 0.198649	 −0.207140	 0.00178337

It is easy to see that even for this stiff system of ODEs, the solver ode45 still 
outperforms ode15s, which is specially designed to handle such systems.

PROBLEM SET (CHAPTER 7)

Euler’s Method (Section 7.3)

In Problems 1 through 6, given each initial-value problem,

	 a.	  Using Euler’s method with the indicated step size h, calculate the solution 
estimates at the first two mesh points (beyond the initial point), as well as the 
local and global truncation errors at those locations.

	 b.	  Write a MATLAB script file that uses EulerODE to find the approximate values 
produced by Euler’s method and returns a table that includes these values, as well as 
the exact values and the global % relative errors, at all mesh points in the given 
interval.

	 1.	 ′ + + = = ≤ ≤ =y x y y x h2 1 0 0 1 0 1( ) , ( ) , , 0.1
		  Exact solution is y = e−x(x+2).
	 2.	 xy y x y x h′ + = = ≤ ≤ =, ( ) , ,1 0 21 0.1
		  Exact solution is y = x/2 − 1/(2x).

	 3.	 ′ = = ≤ ≤ =y y x y x h2 1
30 1cos , ( ) , ,0 0.1

		  Exact solution is y = 1/(3 − sinx).

	 4.	 e y y y x hx ′ = = ≤ ≤ =2 0 1, ( ) , ,0 0.5 0.05
		  Exact solution is y = ex.



351Numerical Solution of Initial-Value Problems

	 5.	 e y x y y x hx ′ = = ≤ ≤ =2 2 1
30 1, ( ) , ,0 0.2

		  Exact solution is y e x xx= + + + 
− −

( )2 1
2 2 1 .

	 6.	 xy y y y x h′ − = = ≤ ≤ =2 2 1 3, ( ) , ,2 0.1
		  Exact solution is y = x/(4 − x).

	 7.	  Write a MATLAB script to solve the following IVP using EulerODE with 
h = 0.4, and again with h = 0.2. The file must return a table showing the estimated 
solutions at 0, 0.4, 0.8, 1.2, 1.6, 2 produced by both scenarios, as well as the exact 
values at these points.

	 3 8 2 0 1 22 3′ + = = ≤ ≤−y y e y xx/ , ( ) , 0 	

	 8.	  Write a MATLAB script to solve the following IVP using EulerODE with 
h = 0.2, and again with h = 0.1. The file must return a table showing the estimated 
solutions at 0, 0.2, 0.4, 0.6, 0.8, 1 produced by both scenarios, as well as the exact 
values at these points.

	 ′ − = = ≤ ≤y xy x x y x2 0 1 1sin , ( ) , 0 	

	 9.	  The free fall of a light particle of mass m released from rest and moving with 
a velocity v is governed by

	 mv mg bv v� = − =, ( )0 0 	

		  where g = 9.81 m/s2 is the gravitational acceleration and b/m = 0.2 is the coefficient 
of viscous damping. Write a MATLAB script that solves the IVP using EulerODE 
with h = 0.05 and returns a table of the estimated solutions at 0, 0.2, 0.4, 0.6, 0.8, 1, 
as well as the exact values at these points.

	 10.	  The free fall of a heavy particle of mass m released from rest and moving with 
a velocity v is governed by

	 mv mg bv v� = − =2 0 0, ( ) 	

		  where g = 9.81 m/s2 is the gravitational acceleration and b/m = 0.2 is the coefficient 
of viscous damping. Write a MATLAB script that solves the IVP using EulerODE 
with h = 0.05 and h = 0.1, and returns a table of estimated solutions at 0, 0.2, 0.4, 0.6, 
0.8, 1 for both step sizes, as well as the exact values at these points.

Higher-Order Taylor Methods

 In Problems 11 through 15, for each initial-value problem, use the second-order Taylor 
method with the indicated step size to calculate the solution estimates at the first two mesh 
points (beyond the initial point).

	 11.	 ′ + = = ≤ ≤ =y y x y y x h2 0 13 , ( ) , 0 2.4, 0.3
	 12.	 xy x y y x h′ = + = ≤ ≤ =, ( ) , ,      1    0.11 0 2
	 13.	 ′ = + = ≤ ≤ =y x y y x h2 1

20, ( ) , ,0 0.5 0.05
	 14.	 yy xy x y x h′ + = = ≤ ≤ =2 1 2, ( ) , ,1 2 0.2
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	 15.	 ty y y y t h� = + = ≤ ≤ =2 1 13 , ( ) , ,1 1.2 0.05

	 16.	 Write a user-defined function with function call y = Taylor2_ODE(f,fp,x,y0) 
that solves a first-order initial-value problem y′ = f(x, y), y(x0) = y0 using the second-
order Taylor method. The input argument fp (anonymous function) is the result of 
implicit differentiation of f (anonymous function) with respect to x. All other 
inputs are as in EulerODE. Execute the function to solve

	 ( ) , ( ) , ,x y y x y x h+ ′ = + = ≤ ≤ =1 0 1 10 0.1 	

 In Problems 17 through 19 , for each initial-value problem, write a MATLAB script that 
uses EulerODE and Taylor2_ODE (Problem 16) to find the approximate values produced 
by Euler and second-order Taylor methods and returns a table that includes these values, 
as well as the exact values and the global % relative errors for both methods, at all mesh 
points in the given interval.

	 17.	 xy x y y x h′ = − = ≤ ≤ =, ( ) , ,1 0 21 0.1

	 18.	 2 2 0 1 22′ + = = ≤ ≤ =−y y e y x hx/ , ( ) , ,0 0.2
	 19.	 �y t t y t h= − − = ≤ ≤ =10 2 1 0 0 1( )( ), ( ) , ,0 0.1

	 20.	 Write a MATLAB script that solves the IVP below using EulerODE with 
h = 0.04 and Taylor2_ODE (Problem 16) with h = 0.08. The file must return a table 
that includes the estimated solutions at x = 0:0.08:0.8, as well as the exact values 
and the global % relative errors for both methods, at all mesh points in the given 
interval. Discuss the results.

	 ( ) ( ), ( ) ,x y x y y x− ′ = − = ≤ ≤1 2 0 1 0 0.8 	

	 21.	  Write a MATLAB script file that solves the IVP below using EulerODE with 
h = 0.05 and Taylor2_ODE (Problem 16) with h = 0.1. The file must return a table 
that includes the estimated solutions at x = 1:0.1:2, as well as the exact values and 
the global % relative errors for both methods, at all mesh points in the given inter-
val. Discuss the results.

	
xy y x x y x′ + = = ≤ ≤ln , ( ) ,1

3
4

21
	

Runge–Kutta Methods (Section 7.4)

RK2 Methods

In Problems 22 through 25, for each initial-value problem and the indicated step size h, 
use the following methods to compute the solution estimates at the first two mesh points 
(beyond the initial point):

	 a.	 Improved Euler
	 b.	Heun
	 c.	Ralston

	 22.	 3 2 1 0 0 0 1′ + + = = ≤ ≤ =y x y y x h( ) , ( ) , ,0.4 0.1

	 23.	 e y y y x hx2 2 1
20′ = = ≤ ≤ =, ( ) , ,0 0.5 0.05

	 24.	 xy y x y x h′ = − = ≤ ≤ =3 1 1 3, ( ) , ,1 0.1
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	 25.	 ′ = = ≤ ≤ =y y x y x h2 2 0 1 4sin( ), ( ) , ,/ 0 0.2

	 26.	  Write a user-defined function with function call y = Imp_EulerODE(f,x,y0) 
that solves a first-order initial-value problem in the form y′ = f(x, y), y(x0) = y0 
using the improved Euler’s method. The input arguments are as in HeunODE. 
Execute the function to solve

	 xy y xe y x hx′ = + = ≤ ≤ =, ( ) . , ,0.5 6 0.5 1.5 0.051 	

	 27.	  Write a user-defined function with function call y = Ralston_ODE(f,x,y0) 
that solves a first-order initial-value problem y′ = f(x, y), y(x0) = y0 using Ralston’s 
method. The input arguments are as in HeunODE. Execute the function to solve

	 e y y y x hx ′ = = ≤ ≤ =sin , ( ) , ,0 1 40 0.4 	

	 28.	  Write a MATLAB script that uses EulerODE, Taylor2_ODE (Problem 16) and 
HeunODE to find the approximate values produced by Euler, second-order Taylor, 
and Heun’s methods and returns a table that includes these values, as well as the 
exact values and the global relative errors for all three methods, at all mesh points 
in the given interval. Discuss the results.

	 xy y xe y x hx′ + = = ≤ ≤ =− / , ( ) , ,2 1 0 1 3 0.2 	

	 29.	  Write a MATLAB script to generate Table 7.1 of Example 7.4. The file must call 
user-defined functions HeunODE, Imp_EulerODE (Problem 26) and Ralston_
ODE (Problem 27).

RK3 Methods

 In Problems 30 and 31, for each initial-value problem and the indicated step size h, use 
the following methods to compute the solution estimates at the first two mesh points 
(beyond the initial point).

	 a.	Classical RK3
	 b.	Heun’s RK3

	 30.	 ′ = = ≤ ≤ =y y x y x hsin , ( ) , ,2 0 1 10 0.1
	 31.	 ′ = + = ≤ ≤ =y x y y x h2 0 1 1, ( ) , ,0 0.1

	 32.	  Write a user-defined function with function call y = Classical_RK3(f,x,y0) 
that solves a first-order initial-value problem in the form y′ = f(x, y), y(x0) = y0 using 
the classical RK3 method. The input arguments are as in HeunODE.

	 33.	  Write a user-defined function with function call y = Heun_RK3(f,x,y0) that 
solves a first-order initial-value problem y′ = f(x, y), y(x0) = y0 using Heun’s RK3 
method. The input arguments are as in HeunODE.

	 34.	  Write a MATLAB script to generate Table 7.2 of Example 7.5. The file must call 
user-defined functions EulerODE, Classical_RK3 (Problem 32), and Heun_
RK3 (Problem 33).
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RK4 Methods

 In Problems 35 through 40, for each initial-value problem and the indicated step size h, 
use the classical RK4 method to compute the solution estimates at the first two mesh points 
(beyond the initial point).

	 35.	 xy x y x y x h′ + + = = ≤ ≤ =( ) , ( ) , ,2 1 1 21
2 1 0.1

	 36.	 xy y e y x hy x′ − = = ≤ ≤ =/ , ( ) , . ,1 1 10 5 0.2
	 37.	 ′ = − − = ≤ ≤ =y x x y x h( )( ), ( ) , ,1 3 0 1 0 1.6 0.08

	 38.	 xy y x x y x h′ + = = ≤ ≤ =2 1 0 2ln , ( ) , ,1 0.1

	 39.	 ′ + = = ≤ ≤ =y y y x h3 2
30 0 2, ( ) , ,0 0.2

	 40.	( ) , ( ) , ,x y y y x y x h+ ′ + = = ≤ ≤ =0 32
3 0 0.15

	 41.	  Write a MATLAB script to generate Table 7.3 of Example 7.6. The file must call user-
defined functions EulerODE, Classical_RK3 (Problem 32), HeunODE, and RK4.

	 42.	  Write a MATLAB script that calls user-defined functions EulerODE, HeunODE, 
and RK4 to find the solution estimates produced by Euler’s method, Heun’s 
method, and the classical RK4 method and returns a table that includes these 
values at all mesh points in the given interval.

	 ′ = + = ≤ ≤ =y y e y x hx2 0 0 1, ( ) . , ,0 0.5 0.04 	

	 43.	  Write a MATLAB script that uses EulerODE, HeunODE, and RK4 to solve the 
IVP by Euler’s method, Heun’s method, and the classical RK4 method and returns 
a table that includes the estimated solutions, as well as the global % relative errors 
for all three methods at all mesh points in the given interval. Discuss the results.

	 xy y e y x hy x′ = + = ≤ ≤ =2 1 0/ , ( ) , ,1 1.5 0.05 	

	 44.	  Write a MATLAB script that solves the initial-value problem in Problem 43 
using EulerODE with h = 0.025, HeunODE with h = 0.05, and RK4 with h = 0.1. The 
file must return a table that includes the estimated solutions, as well as the global 
% relative errors, at x = 1, 1.1, 1.2, 1.3, 1.4, 1.5 for all three methods. Discuss the 
results.

	 xy y e y xy x′ = + = ≤ ≤2 1 0/ , ( ) , 1 1.5 	

	 45.	  Write a MATLAB script that solves the following initial-value problem using 
EulerODE with h = 0.0125, HeunODE with h = 0.025, and RK4 with h = 0.1. The file 
must return a table that includes the estimated solutions, as well as the global % 
relative errors, at x = 1:0.1:2 for all three methods. Discuss the results.

	
( ) ln , ( ) ,x y y x x y x+ ′ + = = ≤ ≤1 1

1
4

21
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	 46.	  For the following initial-value problem, use the Butcher’s RK5 method with 
the indicated step size h to compute the solution estimate at the first mesh point 
(beyond the initial point).

	
xy x y x y x h′ + +



 = = ≤ ≤ =1

2
2

3
4

, ( ) , ,0.5 0.5 1.5 0.1
	

	 47.	  Write a user-defined function with function call y = Butcher_RK5(f,x,y0) 
that solves the initial-value problem y′ = f(x, y), y(x0) = y0 using the Butcher’s RK5 
method. All input and output variable descriptions are similar to those in the 
user-defined function RK4. Apply Butcher_RK5 to solve the IVP in Problem 46.

	 48.	  Write a MATLAB script that uses RK4 and Butcher_RK5 (Problem 47) to 
solve the following IVP by RK4 and RK5 methods and returns a table that includes 
the estimated solutions, as well as the global % relative errors for both methods at 
all mesh points in the given interval. The estimated solutions and the errors must 
be displayed using six decimals. Discuss the results.

	 ( ) ( ), ( ) ,x y x y y x h+ ′ = − = ≤ ≤ =1 2 0 1 0 0.5, 0.05 	

Multistep Methods (Section 7.5)

Adams–Bashforth Method

	 49.	  Consider the initial-value problem

	 x y y y x h2 1 1 2′ = = ≤ ≤ =, ( ) , ,1 0.1 	

	 a.	 Using RK4, find an estimate for y1.
	 b.	 Using y0 (initial condition) and y1 from (a), apply the second-order Adams–

Bashforth formula to find y2.
	 c.	 Apply the third-order Adams–Bashforth formula to find an estimate for y3.
	 d.	 Apply the fourth-order Adams–Bashforth formula to find an estimate for y4.
	 50.	  Repeat Problem 49 for the initial-value problem

	 ′ + = = ≤ ≤ =y y y x h2 0 0 1 1, ( ) , ,0 0.1 	

	 51.	  Consider the initial-value problem

	 yy x xy y x h′ = − = ≤ ≤ =2 0 2 12 , ( ) , ,0 0.1 	

	 a.	 Using RK4, find an estimate for y1 and y2.
	 b.	 Using y0 (initial condition) and y1 from (a), apply the second-order Adams–

Bashforth formula to find y2.

	 c.	 Knowing the exact solution is y e x= +( )





−2 1
2

1 2/

, compare the % relative errors 

associated with the y2 estimates found in (a) and (b), and comment.
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	 52.	  Consider the initial-value problem

	 ′ = = ≤ ≤ =y y x y x hsin , ( ) , ,1 1 21 0.1 	

	 a.	 Using RK4, find an estimate for y1, y2, and y3.
	 b.	 Using y0 (initial condition), and y1 and y2 from (a), apply the third-order Adams–

Bashforth formula to find y3.
	 c.	 Knowing the exact solution is y = ecos1−cosx, compare the % relative errors associ-

ated with the y3 estimates found in (a) and (b), and comment.
	 53.	  Consider the initial-value problem

	 ′ + = = ≤ ≤ =y y x y x hcos , ( ) , ,0 1 10 0.1 	

	 a.	 Using RK4, find an estimate for y1, y2, and y3.
	 b.	 Apply the fourth-order Adams–Bashforth formula to find y4.

	 54.	  Write a user-defined function y = AB_3(f,x,y0) that solves an initial-value 
problem y′ = f(x, y), y(x0) = y0 using the third-order Adams–Bashforth method. 
Solve the IVP in Problem 52 by executing AB_3.

	 55.	  Write a user-defined function with function call y = ABM_3(f,x,y0) that 
solves an initial-value problem y′ = f(x, y), y(x0) = y0 using the third-order Adams–
Bashforth–Moulton predictor–corrector method. Solve the following IVP by 
executing ABM_3:

	
′ = = ≤ ≤ =y y x y x h2 0

1
2

sin , ( ) , ,0 0.5 0.05
	

	 56.	  Write a MATLAB script that calls the user-defined function ABM4PredCorr 
and generates Table 7.4 in Example 7.8.

Systems of Ordinary Differential Equations (Section 7.6)

 In Problems 57 through 60, given each second-order initial-value problem,

	 a.	Transform into a system of first-order IVPs using state variables.
	 b.	Apply Euler, Heun, and classical RK4 methods for systems, with the indicated step 

size h, to compute the solution estimate y1, and calculate the % relative error for 
each estimate.

	 57.	 ′′ = + = ′ = ≤ ≤ =y y x y y x h2 0 0 0 1 0 1, ( ) , ( ) , , 0.1  
		  Exact solution is y(x) = 3sinh x − 2x.
	 58.	 ′′ + ′ + = + = ′ = ≤ ≤ =y y y x y y x h3 2 1 0 0 0 0 0 1, ( ) , ( ) , , 0.1  
		  Exact solution is y x x e x( ) ( )= + −−1

2
1
4

2 1 .
	 59.	 ′′ + = = ′ = − ≤ ≤ =y y y y x h4 0 0 1 0 1 0 1, ( ) , ( ) , , 0.1  
		  Exact solution is y x x x( ) cos sin= −2 21

2 .
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	 60.	 ′′ + ′ + = = ′ = ≤ ≤ =y y y y y x h2 2 0 0 1 0 0 0 1, ( ) , ( ) , , 0.1

		   Exact solution is y(x) = e−x(cosx + sinx).
	 61.	Consider the nonlinear, second-order initial-value problem

	 ′′ + ′ = = ′ =y yy y y2 0 0 0 0 1, ( ) , ( ) 	

	 a.	  Using Heun’s method for systems, with step size h = 0.1, find the estimated 
values of y(0.1) and y(0.2).

	 b.	  Confirm the results in (a) by executing the user-defined function 
HeunODESystem.

	 62.	Consider the nonlinear, second-order initial-value problem

	 yy y y y′′ + ′( ) = = ′ = −
2

0 0 1 0 1, ( ) , ( ) 	

	 a.	  Using RK4 method for systems, with step size h = 0.1, find the estimated 
value of y(0.1).

	 b.	  Confirm the results in (a) by executing the user-defined function 
RK4System.

	 63.	Consider the linear, second-order IVP

	
x y y y y x h2 2

3
1 1 1

1
2

2′′ = = ′ = − ≤ ≤ =, ( ) , ( ) , ,1 0.1
	

	 a.	  Transform into a system of first-order IVPs.

	 b.	  Write a MATLAB script that employs the user-defined functions 
EulerODESystem, HeunODESystem, and RK4System to solve the system in 
(a). The file must return a table of values for y generated by the three methods, 
as well as the exact values, at all the mesh points x=1:0.1:2. Use six decimal 
places to display all solution estimates.

	 64.	Consider the linear, second-order IVP

	 x y xy y x y y x h2 35 3 1 0 1 0 1 5′′ + ′ + = = ′ = ≤ ≤ =, ( ) , ( ) , . ,1 0.05 	

	 a.	  Transform into a system of first-order IVPs.

	 b.	  Write a MATLAB script that employs the user-defined functions 
EulerODESystem, HeunODESystem, and RK4System to solve the system in 
(a). The file must return a table of values for y generated by the three methods, 
as well as the exact values, at the mesh points x=1:0.05:1.5. Use six decimal 
places to display all solution estimates.

	 65.	Consider the mechanical system in translational motion shown in Figure 7.8, where 
m is mass, k1 and k2 are stiffness coefficients, c1 and c2 are the coefficients of viscous 
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damping, x1 and x2 are displacements, and F(t) is the applied force. Assume, in 
consistent physical units, the following parameter values:

	
m c c k k F t e tt= = = = = = −2 1 1 2

2
3

41 2 1 2
2, , , , , ( ) sin/

	

		  The system’s equations of motion are then expressed as

2 2 4
2
3

2 0

1 1 1 2
2

2 2 1 2

�� �

�

x x x x e t

x x x x

t+ + − =

+ − − =

−( ) sin

( )

/

subject to  initial conditions x x x1 2 10 0 0 1 0 1( ) , ( ) , ( )= = = −�

	 a.	  Transform into a system of first-order IVPs.

	 b.	  Write a MATLAB script that employs the user-defined function 
RK4System to solve the system in (a). The file must return the plot of x1 and x2 
versus 0 ≤ t ≤ 8 in the same graph. It is recommended to use at least 100 points 
for smoothness of curves.

	 66.	 In the mechanical system shown in Figure 7.9, m is mass, c is the coefficient of 
viscous damping, fs = x3 is the nonlinear spring force, x is the block displacement, 
and F(t) is the applied force. Assume, in consistent physical units, the following 
parameter values:

	
m c F t= = =1

2
100, , ( )0.75

	

k2

c2 c1

k1

x2 x1

m

F(t)

FIGURE 7.8
Problem 65.

F(t)

fs = x3

x

mc

FIGURE 7.9
Problem 66.
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		  The system’s equation of motion is expressed as

	

1
2

100 0 03�� � �x x x x x+ + = =0.75 subject to initial conditions ( ) , (00 1) =
	

	 a.	  Transform into a system of first-order IVPs.

	 b.	  Write a MATLAB script that employs the user-defined function RK4System 
to solve the system in (a). The file must return the plot of x versus 0 ≤ t ≤ 5. At 
least 100 points are recommended for smoothness of curves.

	 67.	Consider the mechanical system shown in Figure 7.10, where m1 and m2 represent 
mass, k1 and k2 are stiffness coefficients, c is the coefficient of viscous damping, x1 
and x2 are block displacements, and F1(t) and F2(t) are the applied forces. Assume, 
in consistent physical units, the following parameter values:

	 m m c k k F t e F tt
1 2 1 2 1 21 2 2 1 1 1= = = = = = =−, , , , , ( ) , ( ) 	

		  The system’s equations of motion are then expressed as

	

�� �
��

x x x x e

x x x

t
1 1 1 2

2 1 2

2 2
2 1

+ + − =
− + =

−

subject to initial conditiions x x x x1 2 1 20 0 0 0 0
1
2

0 1( ) , ( ) , ( ) , ( )= = = =� �
	

	 a.	  Transform into a system of first-order IVPs.

	 b.	  Write a MATLAB script that employs the user-defined function RK4System 
to solve the system in (a). The file must return the plot of x1 and x2 versus 
0 ≤ t ≤ 30 in the same graph. It is recommended to use at least 100 points for 
smoothness of curves.

	 68.	  The governing equations for an armature-controlled DC motor with a rigid 
shaft are derived as

	

J
d
dt

B K i T

L
di
dt

Ri K v i

t L

e

ω ω ω

ω

+ − = =

+ + = =

,

,

( )

( )

0 0

0 0
	

F2(t)F1(t)

x2x1

m1 m2

k1
k2

c

FIGURE 7.10
Problem 67.
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		  where
		  ω = angular velocity of the rotor
		  i = armature current
		  TL = torque load
		  v = armature voltage

	 and J, B, L, R, Kt, and Ke represent constant parameters. Suppose, in consistent 
physical units,

	 J L B K K R T e v tt e L
t= = = = = = = =−0.8 , 0.45, 0.25, , 1.25, ,1 sin 	

		  Write a MATLAB script that employs the user-defined function RK4System to 
solve the system of governing equations. The file must return two separate plots 
(use subplot): angular velocity ω versus 0 ≤ t ≤ 10, and the current i versus 
0 ≤ t ≤ 10.

	 69.	  The governing equations for a field-controlled DC motor are derived as

	

J
d
dt

B K i

L
di
dt

Ri v i

t
ω ω ω+ − = =

+ = =

0 0 0

0 0

,

,

( )

( )
	

		  where
		  ω = angular velocity of the rotor
		  i = armature current
		  v = armature voltage

		  and J, B, L, R, and Kt represent constant parameters. Suppose, in consistent physi-
cal units,

	
J L B K R v tt= = = = = =1

1
2

, sin0.5, 0.75, 0.8, 0.45,
	

		  Write a MATLAB script that employs the user-defined function RK4System to 
solve the system of governing equations. The file must return two separate plots 
(use subplot): angular velocity ω versus 0 ≤ t ≤ 10, and the current i versus 
0 ≤ t ≤ 10.

	 70.	  Write a MATLAB script that solves the following second-order initial-value 
problem using EulerODESystem with h = 0.025, HeunODESystem with h = 0.05, 
and RK4System with h = 0.1. The file must return a table that includes the 
estimated solutions, as well as the global % relative errors, at x = 1:0.1:2 for all three 
methods. Discuss the results.

	 3 2 0 1 0 1 22x y xy y y y x′′ + ′ − = = ′ = ≤ ≤, ( ) , ( ) ,1.5 1 	
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	 71.	  Write a MATLAB script that employs the user-defined function RK4System 
with h = 0.1 to solve the following system of first-order IVPs. The file must return 
the plots of x1 and x3 versus 0 ≤ t ≤ 20 in the same graph.
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	 72.	The two-loop electrical network shown in Figure 7.11 is governed by
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		  where q1 and q2 are electric charges, L is inductance, R1 and R2 are resistances, C 
is capacitance, and v1(t) and v2(t) are the applied voltages. The electric charge and 
current are related through i = dq/dt. Assume, in consistent physical units, that the 
physical parameter values are

	 L R R C v t t v t t= = = = = =0.1 0.4, , , , ( ) sin , ( ) sin1 2 1 1 21 1 2 	

	 a.	  Transform into a system of first-order IVPs.

	 b.	  Write a MATLAB script that utilizes the user-defined function RK4System 
to solve the system in (a). The file must return the plot of q1 and q2 versus 
0 ≤ t ≤ 5 in the same graph. At least 100 points are recommended for plotting.

	 73.	An inverted pendulum of length L and mass m, mounted on a motor-driven cart 
of mass M is shown in Figure 7.12, where x is the linear displacement of the cart, φ 
is the angular displacement of the pendulum from the vertical, and μ is the force 
applied to the cart by the motor. The equations of motion are derived as
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	 where J is the moment of inertia of the rod.
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FIGURE 7.11
Problem 72.
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	 a.	  By choosing state variables u1 = x, u x2 = � , u x L3 = + ϕ, u x L4 = +� �ϕ obtain the 
state-variable equations. Then insert the following into the state-variable 
equations:

	 µ = − − + +90 10 120 301 2 3 4u u u u 	

	 b.	  Write a MATLAB script that utilizes the user-defined function RK4System 
to solve the system in (a). Three sets of initial conditions are to be considered: 
φ(0) = 10°, 20°, 30°, while x x( ) ( ) ( )0 0 0 0= = =� �ϕ  in all three cases. The file must 
return the plots of the three angular displacements corresponding to the three 
sets of initial conditions versus 0 ≤ t ≤ 1.5 in the same graph. Angle measures 
must be converted to radians. Use at least 100 points for plotting purposes.

	 74.	  Write a user-defined function with function call u = ABM_3System(f,x,u0) 
that solves a system of first-order initial-value problems

	 ′ = = = ≤ ≤ =u f u u u( , ), ( ) ,x a a x x x bn0 0 	

		  using the third-order Adams–Bashforth–Moulton predictor–corrector method.

	 75.	  Write a MATLAB script that employs the user-defined function ABM_3System 
(Problem 74) to solve the following IVP. The file must return a table of values for y 
generated by the method, as well as the exact values at all the mesh points 
x=1:0.05:1.5. Use six decimal places to display all solution estimates and exact 
values.

	 x y xy y x y y x h2 45 3 1 1 1 0 2′′ + ′ + = = ′ = ≤ ≤ =, ( ) , ( ) , ,1 0.1 	

Stability (Section 7.7)

	 76.	  The second-order Adams–Bashforth (AB2) method can be shown to have a 
stability region described by 0 < λh < 1 when applied to y′ = −λy (λ = const > 0) 
subject to an initial condition.

mg
φ

μ

L

M

x

FIGURE 7.12
Problem 73.
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		  Write a user-defined function with the function call y = AB_2(f,x,y0) that uses 
AB2 to solve an initial-value problem y′ = f(x, y), y(a) = y0, where the input and out-
put variables are described as usual. Solve the following IVP using AB_2 with step 
size h = 0.2 and again with h = 0.55, plot the estimated solutions together with the 
exact solution y(x) = e−2x, and discuss stability:

	 ′ + = = ≤ ≤y y y x2 0 0 1 5, ( ) , 0 	

	 77.	  Consider the non-self starting method

	 y y hf x y i ni i i i+ −= + = … −1 1 2 1 2 1( , ) , , , , 	

		  to solve an initial-value problem y′ = f(x, y), y(a) = y0. A method such as RK4 can 
be used to start the iterations. Investigate the stability of this method as follows. 
Apply the method to y′ = −3y, y(0) = 1 with h = 0.1 and plot (100 points) the esti-
mated solution over the range 0 ≤ x ≤ 2. Repeat with a substantially reduced step 
size h = 0.02 and plot over the range 0 ≤ x ≤ 4. Fully discuss the findings.

Stiff Differential Equations (Section 7.8)

	 78.	  Consider the IVP

	 �y y t e yt+ = + =−100 99 1 0 1( ) , ( ) 	

		  The exact solution is y = e−100t + te−t so that the first term quickly becomes negli-
gible relative to the second term, but continues to govern stability. Apply Euler’s 
method with h = 0.1 and plot (100 points) the solution estimates versus 0 ≤ t ≤ 1. 
Repeat with h = 0.01 and plot versus 0 ≤ t ≤ 5. Fully discuss the results as related to 
the stiffness of the differential equation.

	 79.	  Consider the IVP

	 �y y t t y+ = + =250 250 0 1sin cos , ( ) 	

		  The exact solution is y = e−250t + sint so that the first term quickly becomes neg-
ligible relative to the second term, but will continue to govern stability. Apply 
Euler’s method with h = 0.1 and plot (100 points) the solution estimates versus 
0 ≤ t ≤ 1. Repeat with h = 0.01 and again with h = 0.001 and plot these two sets 
versus 0 ≤ t ≤ 5. Fully discuss the results as related to the stiffness of the differen-
tial equation.

MATLAB Built-In Functions for Initial-Value Problems (Section 7.9)

	 80.	  Write a MATLAB script that solves the following initial-value problem using 
ode45 and returns a table that includes the solution estimates at x=0:0.1:1:

	 ( ) , ( ) , ( )1 4 0 0 1 0 12− ′′ − ′ + = = ′ =x y xy y y y 	
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	 81.	  A device that plays an important role in the study of nonlinear vibrations is a 
van der Pol oscillator*, a system with a damping mechanism. When the amplitude 
of the motion is small, it acts to increase the energy. And, for large motion ampli-
tude, it decreases the energy. The governing equation for the oscillator is the van 
der Pol equation

	 �� �y y y y const− − + = =µ µ( ) ,1 0 02 > 	

		  Write a MATLAB script that solves the van der Pol equation with μ = 0.5 and initial 
conditions y(0) = 0.1 and �y( )0 0=  using ode23 and ode45 and returns a table that 
includes the solution estimates at t=0:0.1:1.

	 82.	  The motion of an object is described by

	

�� �
�� �
x vx

y vy

x

y

= −
= − −

=
=

0.006
0.006 9.81

subject to

initi

( )
( )
0 0
0 0

aal positions initial velocities

�
�
x

y

( )
( )
0 30
0 25

=
=

	

		  where 9.81 represents the gravitational acceleration, and v x y= +� �2 2  is the speed 
of the object. Initial positions of zero indicate that the object is placed at the origin 
of the xy−plane at the initial time. Determine the positions x and y at t=0:0.1:1 
using ode45.

	 83.	  Consider
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		  Solve the system using any MATLAB solver and plot (100 points) each dependent 
variable versus 0 ≤ t ≤ 10. What are the steady-state values of the three dependent 
variables?

	 84.	  Consider the double pendulum system shown in Figure 7.13 consisting of 
two  identical rods and bobs attached to them, coupled with a linear spring. 
The system’s free motion is described by
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*	 A van der Pol oscillator is an electrical circuit, which consists of two DC power sources, a capacitor, resistors, 
inductors, and a triode composed of a cathode, an anode, and a grid controlling the electron flow.
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		  Solve using ode45, and plot the angular displacements θ1 and θ2 versus 0 ≤ t ≤ 2, 
and angular velocities �θ1 and �θ2 versus 0 ≤ t ≤ 2, each pair in one figure.

	 85.	  The mechanical system in Figure 7.14 undergoes translational and rotational 
motions, described by

	

mL mLx mgL

mL m M x cx kx F t

2 0 0�� ��
�� �� �

θ θ

θ

θ+ + =

+ + + + =( ) ( )

(
subject to

))
( )

( )
( )

=
=

=
= −

0
0 0

0 0
0 1x x

initial positions initial velociti

�

�
θ

ees 	

		  where the applied force is F(t) = e−t/2. Assume, in consistent physical units, the 
following parameter values:

	 m M L g k c= = = = = =0.4 0.5 9.81, , , , ,1 1 1 	

		  Solve using ode45, and plot the angular displacement θ and linear displacement 
x versus 0 ≤ t ≤ 10, in two separate figures. Determine the steady-state values of θ 
and x.
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FIGURE 7.13
Problem 84.
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FIGURE 7.14
Problem 85.



8
Numerical Solution of Boundary-Value Problems

In Chapter 7, we learned that an initial-value problem refers to the situation when an nth-
order differential equation is accompanied by n initial conditions, specified at the same 
value of the independent variable. It was also mentioned that in other applications, these 
auxiliary conditions may be specified at different values of the independent variable, 
usually at the extremities of the system, and the problem is known as a boundary-value 
problem (BVP).

Boundary-value problems can be solved numerically by using either the shooting 
method or the finite-difference method. To apply the shooting method, the boundary-
value problem is first made into an initial-value problem (IVP) by guessing at the initial 
condition(s) that are obviously absent in the description of a BVP. The IVP is then solved 
numerically and the solution is tested to see if the original boundary conditions are satisfied. 
Therefore, the shooting method relies on techniques such the fourth-order Runge–Kutta 
method (RK4, Chapter 7) for solving IVPs. The finite-difference method is based on 
dividing the system interval into several subintervals and replacing the derivatives by 
the finite-difference approximations (Chapter 6). This will generate a system of algebraic 
equations which is then solved using the techniques of Chapter 4.

8.1  Second-Order BVP

Consider a second-order differential equation in its most general form

	 ′′ = ′( ) ≤ ≤y f x y y a x b, , , 	

subject to two boundary conditions, normally specified at the endpoints a and b. Because a 
boundary condition can be a given value of y or a value of y′, different forms of boundary 
conditions may be encountered.

8.2  Boundary Conditions

The most common boundary conditions are as follows:

Dirichlet boundary conditions (values of y at the endpoints are given):

	 y a y y b ya b( ) , ( )= = 	
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Neumann boundary conditions (values of y′ at the endpoints are given):

	 ′ = ′ ′ = ′y a y y b ya b( ) , ( ) 	

Mixed boundary conditions:

	 c y a c y a B c y b c y b Ba b1 2 3 4′ + = ′ + =( ) ( ) , ( ) ( ) 	

8.3  Higher-Order BVP

Boundary-value problems can be based on differential equations with orders higher than 
two, which require additional boundary conditions. As an example, in the analysis of free 
transverse vibrations of a uniform beam of length L, simply supported (pinned) at both 
ends, we encounter a fourth-order ODE
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8.4  Shooting Method

A BVP involving an nth-order ODE comes with n boundary conditions. Using state 
variables, the nth-order ODE is readily transformed into a system of first-order ODEs. 
Solving this new system requires exactly n initial conditions. The boundary condition(s) 
given at the left end of the interval also serve as initial conditions at that point, while the 
rest of the initial conditions must be guessed. In particular, for a second-order BVP, the 
boundary condition at the left end serves as the initial condition there, while the other 
initial condition must be guessed. The system is then solved numerically via RK4 and 
the value of the resulting solution at the other endpoint is compared with the boundary 
condition there. If the accuracy is not acceptable, the initial value is guessed again and the 
ensuing system is solved one more time. The procedure is repeated until the solution at 
that end agrees with the prescribed boundary condition there.

EXAMPLE 8.1:  LINEAR BVP

Solve the following BVP using the shooting method.

	
�� ��u u u u u

d u
dt

= + = = =0.02 , ,1 0 10 10 100
2

2( ) ( ) ,
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Solution

Since the ODE is second order, there are two state variables: x1 = u, x u2 = � . The state-
variable equations are then formed as
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x x x
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= =
= + =
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( )
( ) ?0.02
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(8.1)

This system could be solved numerically via RK4 but that would require initial 
conditions x1(0) and x2(0). Of these two, however, only x1(0) = 10 is available. Note that 
there is a unique value of x2(0) for which the above system yields the solution of the 
original BVP.

Strategy to Find x2(0)
We first guess a value for x2(0) and solve the system in Equation 8.1 using RK4. From the 
solution, we extract the first state variable x1 which happens to be u. The value of this 
variable at the right end (namely, u(10)) is then compared with the boundary condition 
at that end, that is, u(10) = 100, which will serve as the target here. Next, we guess another 
value for x2(0) and go through the process a second time. This way, for each guess of 
x2(0), we find a value for u(10). Because the original ODE is linear, these values are lin-
early related as well. As a result, a linear interpolation of  this data will provide the 
unique value for x2(0) that will result in the correct solution.

As a first guess, we arbitrarily choose x2(0) = 10 so that Equation 8.1 becomes
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>> f = @(t,x)([x(2);0.02*x(1)+1]);
>> x0_first = [10;10];
>> t = linspace(0,10,20);
>> x_first = RK4System(f,t,x0_first);
>> u_10_first = x_first(1,end)

u_10_first =

 	 217.5208

The result overshoots the target u(10) = 100. As a second guess, we pick x2(0) = 0 so that 
Equation 8.1 becomes
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Note that f and t in our MATLAB code remain unchanged; only the initial state vec-
tor is modified.

>> x0_second = [10;0];
>> x_second = RK4System(f,t,x0_second);
>> u_10_second = x_second(1,end)

u_10_second =

	 80.6910
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This time the result is below the target. In summary,

	

x u

x u
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= =
= =

 217.5208
  80.6910 	

(8.2)

Linear interpolation of this data will lead to the correct value for x2(0); see Figure 8.1.
We will handle this by using linear Lagrange interpolation (Chapter 5), more 

specifically, the user-defined function LagrangeInterp:

>> yi = LagrangeInterp([u_10_first, u_10_second],[10, 0],100)

yi =

	 1.4112

Therefore, x2(0) = 1.4112. Using this information in Equation 8.1, we have
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>> x0_final = [10;yi];
>> x_final = RK4System(f,t,x0_final);
>> x_final(1,end)

ans =

	 100.0000
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FIGURE 8.1
Linear interpolation of the data in Equation 8.2.
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The numerical solution u to the original BVP is obtained by extracting the first row of 
x_final, which contains 20 values of the first state variable x1 = u. In order to generate a 
smooth solution trajectory, however, we should use at least 100 points, as opposed to the 
current 20 points. Similarly, the first row of x_first gives the solution corresponding 
to the first guess of x2(0), and the first row of x_second gives the solution correspond-
ing to the second guess of x2(0).

This is summarized in the script below.

>> t = linspace(0,10);	 % 100 points
>> x_first = RK4System(f,t,x0_first);
>> u_first = x_first(1,:);	 % Solution based on the first guess
>> x_second = RK4System(f,t,x0_second);
>> u_second = x_second(1,:);	 % Solution based on the second guess
>> x_final = RK4System(f,t,x0_final);
>> u_final = x_final(1,:);	 % True solution
>> plot(t,u_first,t,u_second,t,u_final)	% Figure 8.2

A linear BVP such as in Example 8.1 is relatively easy to solve using the shooting 
method because the data generated by two initial-value estimates can be interpolated 
linearly leading to the correct estimate. This, however, will not be enough in the case 
of a nonlinear BVP. One remedy would be to apply the shooting method three times 
and then use a quadratic interpolating polynomial to estimate the initial value. But it 
is not very likely that this approach would generate the correct solution, and further 
iterations would probably be required.

A more viable option is the following: guess a value for the missing initial condi-
tion, solve the ensuing system, and find the value of the solution at the right end. 
This is either above the unused boundary condition (target) or below it. If it is above 
the target, we must pick a second guess that leads to a value below the target. If it is 
below the target, we must pick a second guess that leads to a value above the target. 
Subsequently, the bisection method (Chapter 3) is employed to find the unique value of 
the missing initial condition that will result in the true solution. Of course, the bisection 
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FIGURE 8.2
Solution of the boundary-value problem in Example 8.1.
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method uses iterations that terminate when a tolerance is met. Therefore, the precision 
of the final outcome is directly dependent on the magnitude of the selected tolerance. 
The example that follows demonstrates the details of this approach.

EXAMPLE 8.2:  NONLINEAR BVP

The temperature distribution along a fin can be modeled as a BVP

	
T T T T T T

d T
dx

xx xx− − + = = = =β α γ4
2

20 0 500 350, , 0.2( ) ( ) ,
	

where α = 20, β = 10−8, and γ = 5 × 103 with all parameters in consistent physical units. 
Solve the nonlinear BVP using the shooting method.

Solution

There are two state variables selected η1 = T, η2 = Tx, and the state-variable equations are 
formed as
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(8.3)

Of the two required initial conditions, only η1(0) = 500 is available. As a first guess, 
we arbitrarily choose η2(0) = 100 so that Equation 8.3 becomes
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We will solve this system via RK4 using 100 points.

>> f = @(x,eta)([eta(2);20*eta(1)+1e-8*eta(1)^4-5e3]);
>> x = linspace(0,0.2);
>> eta0_first = [500;100];
>> eta_first = RK4System(f,x,eta0_first);
>> T_end_first = eta_first(1,end)

T_end_first =

	 646.2081

The result overshoots the target of 350. Therefore, we must pick a second guess for 
η2(0) that leads to a value below the target. This will require at least one trial. It turns 
out that a second guess of η2(0) = −2000 will work here. Then, Equation 8.3 reduces to
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Note that f  and x in our MATLAB code remain unchanged; only the initial state 
vector is modified.

>> eta0_second = [500;-2000];
>> eta_second = RK4System(f,x,eta0_second);
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>> T_end_second = eta_second(1,end)

T_end_second =

	 157.0736

The result is below the target of 350. In summary,
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Therefore, the unique value of η2(0) that leads to the true solution lies in the 
interval [−2000, 100]. We will find this value using the bisection method. The 
iterations  (maximum  30) terminate when the computed T(0.2) is within 10−4 of 
the target.

eta20L = -2000; eta20R = 100;	 % Left and right end of the interval
kmax = 30;	 % Maximum number of iterations
tol = 1e-4;	 % Tolerance
T_end = 350;	 % Boundary condition (target)

for k = 1:kmax,
eta20 = (eta20L + eta20R)/2;	 % Bisection
eta0 = [500;eta20];	 % Set initial state vector
eta = RK4System(f,x,eta0);	 % Solve the system
T(k) = eta(1,end);	 % Extract T(0.2)
err = T(k) - T_end;	 % Compare with target

% Adjust the left or right value of initial condition based on whether
% error is positive or negative

if abs(err) < tol,
break
end
if err > 0,
eta20R = eta20;
else
eta20L = eta20;
end
end

>> k

k =

	 21	 % Number of iterations needed to meet tolerance

>> T(21)

ans =

	 350.0000	 % Agrees with target T(0.2)=350

>> eta20

eta20 =

	 -1.1643e+03	 % Actual value for the missing initial condition
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With this information, Equation 8.3 becomes
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This system is then solved via RK4. The numerical solution T of the original BVP 
is obtained by extracting the first row of the output, which represents the first state 
variable η1 = T. Similarly, the first row of eta_first gives the solution corresponding 
to  the first guess of η2(0), and the first row of eta_second gives the solution 
corresponding to the second guess of η2(0). This is summarized in the script below.

>> T_first = eta_first(1,:);
>> T_second = eta_second(1,:);
>> eta0 = [500;eta20];
>> eta_final = RK4System(f,x,eta0);
>> T_final = eta_final(1,:);
>> plot(x,T_first,x,T_second,x,T_final)	% Figure 8.3

The shooting method loses its efficiency when applied to higher-order boundary-
value problems, which will require more than one guess for the initial values. For those 
cases, other techniques, such as the finite-difference method, need to be employed.

8.5  Finite-Difference Method

The finite-difference method is the most commonly used alternative to the shoot-
ing method. The interval [a, b] over which the BVP is to be solved is first divided into 
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FIGURE 8.3
The temperature distribution in Example 8.2.
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N subintervals of length h = (b − a)/N. As a result, a total of N + 1 grid points are generated, 
including x1 = a and xN+1 = b, which are the left and right endpoints. The other N − 1 points 
x2, … , xN are the interior grid points. At each interior grid point, the derivatives involved 
in the differential equation are replaced with finite divided differences. This way, the 
differential equation  is  transformed into a system of N − 1 algebraic equations that can 
then be solved using the methods previously discussed in Chapter 4.

Because of their accuracy, central-difference formulas are often used in finite-difference 
methods. Specifically, for the first and second derivatives of y with respect to x,
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Several difference formulas are listed in Table 6.3, Section 6.2.

EXAMPLE 8.3:  FINITE-DIFFERENCE METHOD, LINEAR BVP

Consider the BVP in Example 8.1:

	 ��u u u u= + = =0.02 , ,1 0 10 10 100( ) ( ) 	

Solve by the finite-difference method using central-difference formulas and h = Δt = 2.

Solution

At each interior grid point, the second derivative is replaced with a central-difference 
formula to obtain

	

u u u
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Since the length of the interval is 10 and Δt = 2, we have N = 10/2 = 5, so that there are 
N − 1 = 4 interior points. Simplifying the above equation, we find

	 u t u u t ii i i− +− + + = =1
2

1
22 2 3 4 5( ) , , ,0.02 ,∆ ∆ 	 (8.4)

Note that u1 = 10 and u6 = 100 are available from the boundary conditions. Applying 
Equation 8.4 yields
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As projected by the structure of Equation 8.4, the resulting coefficient matrix is tridiago-
nal, and thus will be solved using the Thomas method (Section 4.3). That yields

	 u u u u2 3 4 5= = = =15.0489 , 25.3018 , 41.5788 , 65.1821 	
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Comparison with the Shooting Method

In Example 8.1, we learned that the true solution (using the shooting method) of the 
current BVP is obtained by solving the following system via RK4:
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In order to compare the numerical results generated by the shooting method with those 
given above by the finite-difference method, the step size in shooting method (RK4) 
must be adjusted to 2:

>> t = 0:2:10;
>> f = @(t,x)([x(2);0.02*x(1)+1]);
>> x0 = [10;yi];
% Solutions by the shooting method at interior grid points
>> u = RK4System(f,t,x0);  u(1,[2:end-1])

ans =

	 15.2760	25.8084	42.4455	66.5269

The exact values at the interior grid points are readily found as follows:

>> ue = matlabFunction(dsolve('D2u = 0.02*u+1','u(0)=10, u(10)=100'));
% Exact solutions at interior grid points
>> ue(t(2:end-1))

ans =

	 15.2762	25.8093	42.4478	66.5315

A summary of the preceding calculations is presented in Table 8.1, where it is immedi-
ately observed that the shooting method produces much more accurate estimates than 
the finite-difference method. The main reason for this is that the shooting method relies 
on the RK4 method, which enjoys a very high level of accuracy. The accuracy of both 
techniques can be improved by reducing the step size Δt.

EXAMPLE 8.4:  FINITE-DIFFERENCE METHOD, NONLINEAR BVP

Consider the BVP in Example 8.2:

	 T T T T Txx − − + = = =β α γ4 0 0 500 350, , 0.2( ) ( ) 	

TABLE 8.1

Comparison of Results: Shooting Method, 
Finite Difference, Actual (Example 8.3)

t Finite Difference Shooting Method Actual

0 10 10 10
2 15.0489 15.2760 15.2762
4 25.3018 25.8084 25.8093
6 41.5788 42.4455 42.4478
8 65.1821 66.5269 66.5315
10 100 100 100
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where α = 20, β = 10−8, and γ = 5 × 103 with all parameters in consistent physical 
units. Solve by the finite-difference method using central-difference formulas and 
h = Δx = 0.04.

Solution

The interval is 0.2 in length and Δx = 0.04, hence N = 0.2/0.04 = 5, and there are N − 1 = 4 
interior grid points. At each interior grid point, the second derivative is replaced with a 
central-difference formula to obtain
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Simplifying the above, we have

	 T x T T x T x ii i i i− +− + + − + = =1
2

1
2 4 22 0 2 3 4 5( ) , , ,α β γ∆ ∆ ∆ ,  	 (8.5)

Applying Equation 8.5, keeping in mind that T1 = 500 and T6 = 350, we find
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We will solve this system of nonlinear equations using Newton’s method 
for systems; see Chapter 4. To that end, we first conveniently express the above sys-
tem as
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Newton’s method requires that in each step we solve a linear system in the form
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(8.6)

It is readily observed that the coefficient matrix in Equation 8.6 is tridiagonal, thus the 
system in Equation 8.6 is most efficiently solved using the Thomas method.

Proceeding as in Example 4.20, the following script implements Newton’s method to 
find the solution estimates at the four interior grid points. The initial values are arbi-
trarily selected as 400. The maximum of number of iterations, as well as the tolerance 
are chosen as in Example 4.20.
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syms T2 T3 T4 T5
f1 = 508-2.0320*T2-1.6e-11*T2^4+T3; f2 = T2-2.0320*T3-1.6e-11*T3^4+T4+8;
f3 = T3-2.0320*T4-1.6e-11*T4^4+T5+8; f4 = 358+T4-2.0320*T5-1.6e-11*T5^4;
f = [f1;f2;f3;f4];
J = matlabFunction(jacobian(f,[T2,T3,T4,T5]));
F = matlabFunction(f);

tol = 1e-4; kmax = 20; T(1,:) = 400*ones(1,4);

for k = 1:kmax,
    A = J(T(k,1),T(k,2),T(k,3),T(k,4));
    b = -F(T(k,1),T(k,2),T(k,3),T(k,4));

  if abs(b(1)) < tol && abs(b(2)) < tol && abs(b(3)) < tol && abs(b(4)) 
< tol,
        root = T(k,:);
    return
  end

   if det(A) = = 0,
       break
   end

    delT = ThomasMethod(A,b); delT = delT';
    T(k+1,:) = T(k,:) + delT;
    if norm(delT) < tol,
      root = T(k+1,:);
        break
    end
end

Execution of this script shows that convergence is achieved after two iterations:

>> T

T =

  400.0000	 400.0000	 400.0000	 400.0000
  457.7283	 422.7499	 393.8024	 369.8407
  457.6786	 422.7049	 393.7686	 369.8176

Comparison with the Shooting Method

In order to compare these solution estimates with those obtained by the shooting 
method (Example 8.2), we adjust the step size used in RK4 to 0.04. A summary of the 
results is shown in Table 8.2, where it is observed that the estimates provided by the two 
techniques closely follow one another.

TABLE 8.2

Comparison of Results: Shooting Method, 
Finite Difference (Example 8.4)

x Finite Difference Shooting Method

0 500 500
0.04 457.6786 457.6375
0.08 422.7049 422.6493
0.12 393.7686 393.7178
0.16 369.8176 369.7862
0.2 350 350
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8.5.1  Boundary-Value Problems with Mixed Boundary Conditions

In the case of mixed boundary conditions, information involving the derivative of the 
dependent variable is prescribed at one or both of the endpoints of the domain of solu-
tion. In these situations, the finite-difference method can be used as before, but the 
resulting system of equations cannot be solved because the values of the dependent 
variable at both endpoints are not available. This means there are more unknowns than 
there are equations. The additional equations are derived by using finite differences 
to discretize the one or two boundary conditions that involve the derivative. The com-
bination of the  equations already obtained at the interior grid points and those just 
generated at the endpoint(s) form a system of algebraic equations that can be solved 
as usual.

EXAMPLE 8.5:  FINITE-DIFFERENCE METHOD, LINEAR 
BVP WITH MIXED BOUNDARY CONDITIONS

Consider the BVP

	 tw w t w w�� � �+ + = = = −2 0 1 1 1, , 2.5( ) ( ) 	

Solve by the finite-difference method and Δt = 0.25. Use central-difference approxima-
tions for all derivatives. Compare the results with the exact solution values at the grid 
points. Also confirm that the boundary condition at the right end is satisfied by the 
computed solution.

Solution

The interval is 1.5 in length and Δt = 0.25, hence N = 1.5/0.25 = 6, and there are five 
interior grid points. Replacing the first and second derivatives with central-difference 
formulas yields
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Simplify the above and apply at interior grid points so that
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(8.7)

w1 = w(1) = 1 is provided by the boundary condition at the left endpoint. At the right 
endpoint, however, w7 = w(2.5) is not directly available, but �w( )2.5  is. To approximate 
�w at the right end, we will use a one-sided, three-point backward difference formula 

so that the values at the previous points are utilized. Note that this has second-order 
accuracy (see Table 6.3, Section 6.2), which is in line with the central-difference formulas 
used in the earlier stages.
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Applying Equation 8.8 at the right end (i = 7),

	

w w w
t

w t w w
w

5 6 7
7

1
3 6 5

4 3
2

1 2 4
7− + = − ⇒ = − + −

∆
∆  

Solve for 
( )

	
(8.9)

Substitution into Equation 8.7 for w7, and expressing the system in matrix form, yields
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� (8.10)

The coefficient matrix is once again tridiagonal. This system is solved for the solution 
vector to obtain the approximate values at the interior grid points. The process is com-
pleted by attaching w1, which is available, and w7, which is found by Equation 8.9, to the 
vector of the interior grid values. The following MATLAB script performs these tasks:

a = 1; b = 2.5; dt = 0.25;
N = (b-a)/dt; t = a:dt:b;
w1 = 1;	 % BC at the left end

A = zeros(N-1,N-1); b = zeros(N-1,1);	 % Pre-allocate
b(1) = -4*t(2)*dt^2-(2*t(2)-dt)*w1;
b(N-1) = -4*t(N)*dt^2+(2/3)*(2*t(N)+dt)*dt;

for i = 1:N-2,
	 A(i,i+1) = 2*t(i+1)+dt;
end
for i = 1:N-3,
	 A(i+1,i) = 2*t(i+2)-dt;
	 b(i+1) = -4*t(i+2)*dt^2;
end
A(N-1,N-2) = (4/3)*(t(N)-dt);
for i = 1:N-2,
	 A(i,i) = -4*t(i+1);
end
A(N-1,N-1) = -(4/3)*(t(N)-dt);

w_interior = ThomasMethod(A,b);
w = [w1 w_interior'];
w(N+1) = (1/3)*(-2*dt+4*w(N)-w(N-1));

>> w

w =

	 1.0000	 1.5599	 1.9044	 2.0804	 2.1164	 2.0304	 1.8351
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% Exact solution
>> w_ex = matlabFunction(dsolve('t*D2w+Dw+2*t=0','w(1)=1','Dw(2.5)=-1'));
>> w_e = w_ex(t)

w_e =

	 1.0000	 1.5555	 1.8955	 2.0673	 2.0993	 2.0097	 1.8111

Table 8.3 summarizes the computed and exact values at the grid points.
In order to confirm that the solution obtained here satisfies the boundary condition at 

the right end, we run the same code with t = 0.0125 to generate a smooth solution curve. 
The result is shown in Figure 8.4.

8.6 � MATLAB Built-In Function bvp4c for Boundary-Value Problems

MATLAB has a built-in function, bvp4c, which can numerically solve two-point BVPs. 
We will present the simplest form of this function here. The more intricate form includes 

TABLE 8.3

Comparison of Exact and Computed Values at Grid Points (Example 8.5)

Solution t = 1 t = 1.25 t = 1.5 t = 1.75 t = 2 t = 2.25 t = 2.5

Computed 1.0000 1.5599 1.9044 2.0804 2.1164 2.0304 1.8351
Exact 1.0000 1.5555 1.8955 2.0673 2.0993 2.0097 1.8111

1 1.25 1.5 1.75 2 2.25 2.5
1

1.2

1.4

1.6

1.8

2
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t

w

Slope = –1

FIGURE 8.4
Approximate solution in Example 8.5.



382 Numerical Methods for Engineers and Scientists Using MATLAB®, Second Edition

“options,” and solves the same problem with default parameters replaced by user-speci-
fied values, a structure created with the bvpset function; similar to the odeset function 
that we used in connection with the ode solvers in Section 7.9.

In order to use bvp4c, we need to have the BVP in the proper form. This process is best 
illustrated when applied to a basic, second-order problem.

8.6.1  Second-Order BVP

Consider, once again, a second-order differential equation in its most general form

	 ′′ = ′( ) ≤ ≤y f x y y a x b, , , 	

subject to two boundary conditions, specified at the endpoints a and b. Using state 
variables y1 = y and y2 = y′, we find the state-variable equations in vector form, as
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(8.11)

Once the system of first-order ODEs is formed, as it is here, the function bvp4c may be 
applied.

bvp4c Solve boundary value problems for ODEs by collocation.

	 SOL = bvp4c(ODEFUN,BCFUN,SOLINIT) integrates a system of ordinary
	 differential equations of the form y' = f(x,y) on the interval [a,b],
	 subject to general two-point boundary conditions of the form
	� bc(y(a),y(b)) = 0. ODEFUN and BCFUN are function handles. For a 

scalar X
	� and a column vector Y, ODEFUN(X,Y) must return a column vector 

representing
	� f(x,y). For column vectors YA and YB, BCFUN(YA,YB) must return a 

column
	� vector representing bc(y(a),y(b)).  SOLINIT is a structure with fields

        x -- ordered nodes of the initial mesh with
             SOLINIT.x(1) = a, SOLINIT.x(end) = b
        y -- initial guess for the solution with SOLINIT.y(:,i)
             a guess for y(x(i)), the solution at the node SOLINIT.x(i)

odefun This is a user-defined function with function call dydx = odefun(x,y) 
where x is a scalar and y is the column vector comprised of the state variables; 
vector y in Equation 8.11. The function returns dydx, which is the column vector 
f in Equation 8.11.

bcfun This is a user-defined function with function call res = bcfun(ya,yb), 
where ya and yb are the column vectors of numerical solution estimates at y(a) 
and y(b). Note that
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		  Therefore, ya(1) and yb(1) represent the values of solution y at x = a and x = b, 
while ya(2) and yb(2) represent the values of y′ at x = a and x = b. The function 
returns the so-called residual vector res, which is comprised of the residuals, that 
is, the differences between the numerical solution estimates and the prescribed 
boundary conditions. The function bcfun can be used in connection with any of 
the boundary conditions listed at the outset of this section:

Dirichlet boundary conditions: y(a) = ya , y(b) = yb

In this case, the res vector is in the form
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Neumann boundary conditions: ′ = ′ ′ = ′y a y y b ya b( ) , ( )  
In this case, the res vector is in the form
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Mixed boundary conditions: c y a c y a B c y b c y b Ba b1 2 3 4′ + = ′ + =( ) ( ) , ( ) ( )  

In this case, the res vector is in the form
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












c
c

B
c

c
c

B
c

a

b

2

1 1

4

3 3

,, ,c c1 3 0≠

	

For more simple mixed boundary conditions, such as y a y y b ya b( ) , ( )= ′ = ′ , we have

	
res =

−
− ′









ya
yb

( )
( )
1
2

y

y
a

b 	

Solinit This contains the initial guess of the solution vector and is created by the 
MATLAB built-in function bvpinit with the syntax solinit = bvpinit(x,yinit). 
The first input x is the vector of the initial points in the interval [a,b]. Normally, 
10 points will suffice, hence x = linspace(a,b,10). The second input yinit is the 
vector of assigned initial guesses for the variables. In the case of the two-dimen-
sional system in Equation 8.11, for example, yinit has two components: the first 
component is the initial guess for y, the second for y′. The initial guesses can also 
be assigned using a user-defined function. In that case, the function call modifies 
to solinit = bvpinit(x,@yinit), and as before, x = linspace(a,b,10).

Sol This is the output of sol = bvp4c(@odefun,@bcfun,solinit) and consists 
of two fields:
sol.x is the vector of the x coordinates of the interior points used for calculations 

by MATLAB, generally different from the user-specified values in bvpinit.
Sol.y is the matrix whose columns are the variables we are solving for. For exam-

ple, in the case of the 2D system in Equation 8.11, there are two variables to 
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solve: y and y′. Then, the first column in sol.y represents the values for y at 
the interior points, and the second column consists of the values of y′ at those 
points. The number of rows in sol.y is the same as the number of components 
in sol.x, namely, the points at which bvp4c solved the BVP.

EXAMPLE 8.6:  bvp4c WITH DIRICHLET BOUNDARY CONDITIONS

Consider the BVP (with Dirichlet boundary conditions) in Examples 8.1 and 8.3:

	 ��u u u u= + = =0.02 , ,1 0 10 10 100( ) ( ) 	

Replacing t by x, the ODE is written as ′′ = +u u0.02 1. Selecting state variables y1 = u and 
y2 = u′, we have

	
′ = =









=
+









≤ ≤y f y y f( , ), , ,x
y

y

y

y
x

1

2

2

1 1
0 10

0.02 	

The residual vector in this problem is

	
res

ya(1)

yb(1)
=

−
−









10
100 	

We now write a script that solves the BVP using bvp4c and follows the instructions 
given above.

x = linspace(0,10,10);
solinit = bvpinit(x,[0, 0.1]); % Assign initial values to y1 and y2
sol = bvp4c(@odefun8_6,@bcfun8_6,solinit); % Solve using bvp4c
t = sol.x;   % Change the name of sol.x to t
y = sol.y;   % Change the name of sol.y to y. Note that y is a 2-by-10 vector
u = y(1,:);   % First row of y contains the values of y1, which is u
udot = y(2,:);  % �Second row of y gives the values of y2, which is udot
plot(t,u,'o')  % Figure 8.5

function dydx = odefun8_6(x,y)
dydx = [y(2);0.02*y(1)+1];

function res = bcfun8_6(ya,yb)
res = [ya(1)-10;yb(1)-100];

Executing the script file generates the plot of the solution u(t) in Figure 8.5, which 
clearly agrees with what we obtained in Figure 8.2, Example 8.1. It is also worth 
mentioning that the first element of the vector udot is

>> udot(1)

ans =

	 1.4108

This is almost exactly what we obtained in Example 8.1 while using the shooting 
method; the value for the missing initial condition �u( )0  needed to construct an IVP 
whose solution agrees with the original BVP. The reported value of 1.4112 in Example 
8.1 is more accurate because it was obtained using 20 equally-spaced points for the 
independent variable as opposed to 10 in the current example.
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EXAMPLE 8.7:  bvp4c WITH MIXED BOUNDARY CONDITIONS

Consider the BVP (with mixed boundary conditions) in Example 8.5:

	 tw w t w w�� � �+ + = = = −2 0 1 1 1, , 2.5( ) ( ) 	

Replacing t by x, the ODE is written as xw w x′′ + ′ + =2 0. Selecting state variables y1 = w 
and y2 = w′, we have

	
′ = =









=
− −









≤ ≤y f y y f( , ), ,
( )
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y
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2

2

2 2 /
1 2.5

	

The residual vector in this problem is

	
res

ya(1)

yb(2)
=

−
+









1
1 	

We now write a script file that solves the BVP using bvp4c and follows the instructions 
given above.

x = linspace(1,2.5,10);
solinit = bvpinit(x,[0.1, 0]);  % Assign initial values to y1 and y2
sol = bvp4c(@odefun8_7,@bcfun8_7,solinit);  % Solve using bvp4c
t = sol.x;   % Change the name of sol.x to t
y = sol.y;   % Change the name of sol.y to y. Note that y is a 2-by-10 vector
w = y(1,:);  % First row of y contains the values of y1, which is w
wdot = y(2,:);  % Second row of y gives the values of y2, which is wdot
plot(t,w,'o')  % Figure 8.5
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FIGURE 8.5
Solution u(t) of the BVP in Example 8.6 using bvp4c.
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function dydx = odefun8_7(x,y)
dydx = [y(2);-y(2)/x-2];

function res = bcfun8_7(ya,yb)
res = [ya(1)-1;yb(2)+1];

It is readily seen that the results are in agreement with those obtained in Example 8.5 
using the finite-difference method.

PROBLEM SET (CHAPTER 8)

Shooting Method (Section 8.4)

 In Problems 1 through 4, solve the linear BVP using the shooting method.

	 1.	 �� �u u t u u+ = = =3 0 1 5, , 2.4( ) ( )

	 2.	2 3 2 0 0 1 12
3�� �u u u t u u+ + = = =sin( ) ( ) ( )/ , ,

	 3.	 3 0 1 2 3 1xw w w w′′ + ′ = = =, ,( ) ( )
	 4.	( ) ( ) ( )t w tw w w w− − + = = − =2 2 4 0 0 1 1 2�� � , ,

 In Problems 5 through 10, solve the nonlinear BVP using the shooting method com-
bined with bisection method. Use the specified tolerance and maximum of 30 iterations. 
Plot the solution trajectory.

	 5.	 1
3

2 1 0 2 2 5uu u u u�� �+ = = =, , ( ) ( )
		  tolerance: ε = 10−6

	 6.	 �� �u u u t u u+ = = =1
2

2 0 1 2 3, , ( ) ( )
		  tolerance: ε = 10−6
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FIGURE 8.6
Solution w(t) of the BVP in Example 8.7 using bvp4c.
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	 7.	 ��w e w ww− = = =−2 0 0 2 3 1, , ( ) ( )
		  tolerance: ε = 10−4

	 8.	 �� �y y y y y+ − = = =2 0 0 1 22 3
2, , ( ) ( )

		  tolerance: ε = 10−4

	 9.	 tx x t x x x�� �+ + = = − =2 23 0 1 1 4 1, , ( ) ( )
		  tolerance: ε = 10−6

	 10.	 ��x x x x= = =3 1
3

5
31 3, , ( ) ( )

		  tolerance: ε = 10−4

Finite-Difference Method (Section 8.5)

Linear Boundary-Value Problems

	 11.	  Consider the linear BVP in Problem 1:

	 �� �u u t u u+ = = =3 0 1 5, , 2.4( ) ( ) 	

	 a.	 Solve using the finite-difference method (central difference) with Δt = 1.
	 b.	 Solve using the shooting method. In so doing, apply RK4System with step size 

of 0.25.
	 c.	 Solve using the finite-difference method with Δt = 0.5. Tabulate and compare 

all solution estimates, including those from (a) and (b), at t = 1, 2, 3, and 4. Also 
include the exact solution values at those points.

	 12.	  Consider the linear BVP in Problem 2:

	
2 3

2
3

2 0 0 1 1�� �u u u t u u+ + = = =sin( ) ( ) ( )/ , ,
	

	 a.	 Solve using the finite-difference (central difference) method with Δt = 0.25.
	 b.	 Solve using the shooting method. In so doing, apply RK4System with step size 

of 0.05.
	 c.	 Solve using the finite-difference method with Δt = 0.125. Tabulate and compare 

all solution estimates, including those from (a) and (b), at t = 0.25, 0.5, and 0.75. 
Also include the exact solution values at those points.

	 13.	  Consider the linear BVP

	 2 0 1 3 3 1xw w w w′′ + ′ = = =, ,( ) ( ) 	

	 a.	 Solve using the finite-difference (central difference) method with Δx = 0.5.
	 b.	 Solve using the finite-difference method with Δx = 0.25. Tabulate and compare 

all calculated solution values at x = 1.5, 2.0, and 2.5. Also include the exact solu-
tion values at those points.

	 14.	  Consider the linear BVP

	 ( ) ( ) ( )2 1 4 4 0 1 1 2 1t w tw w w w− − + = = − =�� � , , 	
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	 a.	 Solve using the finite-difference (central difference) method with Δt = 0.25.
	 b.	 Solve using the finite-difference method with Δt = 0.125. Tabulate and compare 

all calculated solution values at t = 1.25, 1.5, and 1.75. Also include the exact 
solution values at those points.

Nonlinear Boundary-Value Problems; Use Central-Difference Formulas

	 15.	  Consider the nonlinear BVP

	 uu u u u�� �+ = = =2 0 0 2 2 3, ,( ) ( ) 	

	 Solve using the finite-difference (central difference) method with Δt = 0.5. 
When applying Newton’s method, set the initial values of the unknown quantities 
to 2, and use kmax = 20, tol = 10−4.

	 16.	  Consider the nonlinear BVP

	 2 0 0 1 2 0��w e w ww− = = =, ,( ) ( ) 	

	 Solve using the finite-difference (central difference) method with Δt = 0.5. 
When using Newton’s method, set the initial values of the unknown quantities to 
1, and let kmax = 20, tol = 10−4.

	 17.	  Consider the nonlinear BVP

	 �� �u u u t u u+ = = =2 0 1 3 2, ,( ) ( ) 	

	 Solve using the finite-difference (central difference) method with Δt = 0.5. 
When using Newton’s method, set the initial values of the unknown quantities to 
1, and let kmax = 20, tol = 10−4.

	 18.	  Consider the nonlinear BVP

	 �� �y y y y y+ − = = =2 0 0 1 3 22 , ,( ) ( ) 	

	 Solve using the finite-difference (central difference) method with Δt = 0.5. 
When applying Newton’s method, set the initial values of the unknown quantities 
to 1, and use kmax = 10, and tol = 10−4.

	 19.	  Consider the nonlinear BVP

	 �� �x tx t x x x+ + = = − =2 23 0 0 1 1 1, ,( ) ( ) 	

	 Solve using the finite-difference (central difference) method with Δt = 0.25. 
When using Newton’s method, set the initial values of the unknown quantities to 
0.2, and let kmax = 10, and tol = 10−4.
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	 20.	  Consider the nonlinear BVP

	
��w w w w− = = =3 0 1

1
2

3
5
2

, ,( ) ( )
	

	 a.	 Solve using the finite-difference (central difference) method with Δt = 0.5. 
When using Newton’s method, set the initial values of the unknown quantities 
to 2, and let kmax = 10, tol = 10−4.

	 b.	 Repeat (a) for Δt = 0.25. Tabulate the results of the two parts comparing solu-
tion estimates at t = 1.5, 2, 2.5.

Mixed Boundary Conditions

	 21.	  Consider

	
�� �u u e u ut− = = − =−1

3
0 1 12 3/ ( ) ( ), , 0.5

	

	 Solve by the finite-difference method and Δt = 0.1. Use central-difference formula 
for the second-order derivative, and a three-point backward-difference formula 
for the first-order derivative in the right boundary condition, which also has sec-
ond-order accuracy. Compare the computed results with the exact solution values 
at the grid points.

	 22.	  Consider

	 ty y te y yt�� � �+ = = − =−2 2 42 , 0.8, 1.3( ) ( ) 	

	 a.	 Solve by the finite-difference method with Δt = 0.5. Use central-difference 
formula for the second-order derivative, and approximate the first-order 
derivative in the right boundary condition by a three-point backward-
difference formula, which also has second-order accuracy. Compare the 
computed results with the exact solution values at the grid points.

	 b.	 Repeat (a) for Δt = 0.25. Tabulate the values obtained in (a) and (b), as well as 
the exact values, at the interior grid points t = 2.5, 3, 3.5.

	 23.	  Consider

	 tw w t w w w�� �+ + = = =2 0 0 0 1 1, ,( ) ( ) ( ) 	

	 a.	 Solve by finite-difference method with Δt = 0.25. Use central-difference for-
mula for the second-order derivative, and approximate the first-order deriv-
ative in the right boundary condition by a three-point backward-difference 
formula. Compare the results with the exact solution values at the grid points.

	 b.	 Repeat (a) for Δt = 0.125. Tabulate the values obtained in (a) and (b), as well as 
the exact values, at the interior grid points t = 0.25, 0.5, 0.75.
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	 24.	  Consider

	 �� �y y y y+ = = =2 0 0 0 1, , 1( ) ( ) 	

	 a.	 Solve by the finite-difference method with Δt = 0.125. Use central-difference 
formula for the second-order derivative, and approximate the first-order 
derivative in the left boundary condition by a three-point forward-difference 
formula, which also has second-order accuracy. Compare the results with the 
exact solution values at the grid points.

	 b.	 Repeat (a) for Δt = 0.0625. Tabulate the values obtained in (a) and (b), as well as 
the exact values, at the interior grid points t = 0.25, 0.5, 0.75.

	 25.	  Consider the nonlinear BVP with mixed boundary conditions

	 2 0 0 1 2 2 0�� � �w e w w ww− = = + =, ,( ) ( ) ( ) 	

	 Solve by finite-difference method with Δt = 0.5. Use central-difference formula 
for the second-order derivative, and approximate the first-order derivatives in the 
left and right boundary conditions by a three-point forward and a three-point 
backward-difference formula, respectively. Solve the ensuing nonlinear system of 
equations via Newton’s method with all initial values set to 1, and kmax = 10, and 
tol = 10−4.

	 26.	  Consider the nonlinear BVP with mixed boundary conditions

	 �� �w w w w w− = = + =3 0 1 0 2 2 1, ,( ) ( ) ( ) 	

	 a.	 Solve by finite-difference method with Δt = 0.25. Use central-difference formula 
for the second-order derivative, and approximate the first-order derivative in 
the right boundary condition by a three-point backward-difference formula. 
Solve the ensuing nonlinear system of equations via Newton’s method with all 
initial values set to 1, and kmax = 10, and tol = 10−4.

	 b.	 Repeat (a) for Δt = 0.125. Tabulate the values obtained in (a) and (b) at grid 
points t = 1.25, 1.5, 1.75.

�MATLAB Built-In Function bvp4c for Boundary-Value Problems (Section 8.6)

 In Problems 27 through 30, solve the BVP using bvp4c, and plot the dependent 
variable versus the independent variable.

	 27.	The BVP in Example 8.2:

	 T T T T T T d T dxxx xx− − + = = = =β α γ4 2 20 0 500 350 , , 0.2 /( ) ( ) , 	

	 where α = 20, β = 10−8, and γ = 5 × 103 with all parameters in consistent physical 
units.

	 28.	 ′′′ + ′ = = ′ = =y y y y y y4 0 0 0 1 14, , 0.7,( ) ( ) ( )
	 29.	 ′′ + = + ′ = ′ =y y y y y0.8 , ,0 0 2 0 1 1 1( ) ( ) ( )



391Numerical Solution of Boundary-Value Problems

	 30.	x y xy y y y e2 1
2

20 1 1′′ + ′ − = = − ′ =, ,( ) ( )

	 31.	  The deflection y and rotation ψ of a uniform beam of length L = 8, pinned at 
both ends, are governed by

	

′ =

′ = −
=
=

y

x x
EI

y

y

ψ

ψ

 
subject to5

0 0
8 0

2
( )
( )

	

	 where EI is the flexural rigidity and is assumed to be EI = 4000. All parameter 
values are in consistent physical units. Using bvp4c find y and ψ, and plot them 
versus 0 ≤ x ≤ 8 in two separate figures.

	 32.	  In the analysis of free transverse vibrations of a uniform beam of length L = 10, 
simply supported (pinned) at both ends, we encounter a fourth-order ODE

	

d X
dx

X
4

4 16 0− =
	

	 subject to

	

X X L

X X L

( ) , ( )
( ) , ( )
0 0 0
0 0 0

= =
′′ = ′′ = 	

	 Using bvp4c, find and plot X(x).
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Matrix Eigenvalue Problem

The matrix eigenvalue problem plays an important role in engineering applications. In 
vibration analysis, for example, eigenvalues are directly related to the system’s natu-
ral frequencies, while the eigenvectors represent the mode shapes. Eigenvalues play an 
equally significant role in numerical methods. For example, in the iterative solution of 
linear systems via Jacobi and Gauss–Seidel methods (Chapter 4), the eigenvalues of the 
Jacobi iteration matrix, or the Gauss–Seidel iteration matrix, not only determine whether 
or not the respective iteration will converge to a solution, but they also establish the rate 
of convergence of the method. In this chapter, we will present numerical methods to 
approximate the eigenvalues and eigenvectors of a matrix.

9.1  Matrix Eigenvalue Problem

The eigenvalue problem (Chapter 1) associated with a square matrix An×n is described by

	 Av v v 0= ≠ ×λ , n 1 	 (9.1)

A number λ for which Equation 9.1 has a nontrivial solution (v ≠ 0n×1) is an eigenvalue 
or characteristic value of matrix A. The corresponding solution v ≠ 0 of Equation 9.1 is the 
eigenvector or characteristic vector of A corresponding to λ. The set of all eigenvalues of 
A, denoted by λ(A), is called the spectrum of A.

9.2  Power Method: Estimation of the Dominant Eigenvalue

The eigenvalue of matrix A with the largest magnitude is called the dominant eigenvalue 
of A. The power method is an iterative method that estimates the dominant eigenvalue of 
a matrix A and its corresponding eigenvector. The basic assumptions are:

•	 An×n is a real matrix.
•	 A has n eigenvalues λ1, λ2, … , λn, where λ1 is the dominant eigenvalue,

	 | | | | | | | |λ λ λ λ1 2 3> ≥ ≥ ≥� n 	

	 and the corresponding eigenvectors v1, v2, … , vn are linearly independent.
•	 The dominant eigenvalue is real.
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We present the power method as follows. Since v1, v2, … , vn is assumed to be a linearly 
independent set, there exist constants c1, c2, … , cn such that an arbitrary n × 1 vector x0 can 
be uniquely expressed as

	 x v v v0 1 1 2 2= + + +c c cn n� 	 (9.2)

The eigenvalue problem is

	 Av v A Av A v A v
A

i i i i i i ii n= = … ⇒ = ⇒ =λ λ λ( , , , ) ( ) ( )1 2 2
Pre-multiply by 

ii i
2v 	

In general, we have

	 A v vk
i i

k
i= λ 	 (9.3)

Define the sequence of vectors

	

x Ax

x Ax A x

x Ax A x

1 0

2 1
2

0

1 0

=
= =

…
= =−k k

k
	

Therefore, by Equations 9.2 and 9.3,

	

x A x A v v v v v vk
k k

n n
k k

n n
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c c c c c c= = + + + = + + +

=
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(9.4)

Since λ1 is the dominant eigenvalue, the ratios λ2/λ1, λ3/λ1, … , λn/λ1 are less than 1 in 
magnitude, hence for a sufficiently large k, we have x vk

kc≅ 1 1 1λ . Equation 9.4 can also be 
used to obtain x vk

kc+
+≅1 1 1

1
1λ . Thus,

	 x xk k+ ≅1 1λ 	 (9.5)

Estimation of λ1 will be based on Equation 9.5. Pre-multiply Equation 9.5 by xk
T  to create 

scalars on both sides, and

	
λ1

1≅ +x x
x x
k
T

k

k
T

k 	
(9.6)

The power method states that the sequence of scalars

	
αk

k
T

k

k
T

k
k k+

+
+= =1

1
1

x x
x x

x Ax,
	

(9.7)
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converges to the dominant eigenvalue λ1 for sufficiently large k. In fact, it can be shown 
that the sequence {αk} converges to λ1 at roughly the same rate as ( )λ λ2 1 0/ k → . Therefore, 
the larger the magnitude of λ1 is compared to the next largest eigenvalue λ2, the faster the 
convergence. Also, because the components of vector xk grow rapidly, it is common prac-
tice to normalize xk, that is, divide each vector xk by its two-norm, ||xk||2. Consequently, 
the denominator in Equation 9.7 simply becomes x xk

T
k = 1 in each step.

9.2.1  Different Cases of Dominant Eigenvalue

There are three possible scenarios involving the dominant eigenvalue(s) of a matrix:

•	 It may be unique; for instance, λ( ) , ,A = −3 2 1

•	 It may be repeated; for example, λ( ) , ,A = − −3 3 1
•	 There may be two distinct dominant eigenvalues with opposite signs; for instance, 

λ( ) , ,A = −3 3 1

The power method handles the first case because one of its basic premises was that the 
dominant eigenvalue be unique. The power method can also find the dominant eigenvalue 
in the second case, but will not be able to determine that it is repeated; that will be han-
dled by the deflation methods discussed later. In the third case, application of the power 
method normally results in a sequence of scalars that exhibit oscillatory behavior and do 
not converge to a single value. To remedy this, a combination of the inverse power and 
shifted power methods will be used to find the dominant eigenvalues. These techniques 
will be presented shortly.

9.2.2  Algorithm for the Power Method

Starting with a matrix An×n, an initial n × 1 vector x1, and an initial α1 = 0,

	 1.	Normalize x1 to build a unit vector  ⇒ x
x
x

1
1

1 2

= .

		  For k = 1 to kmax (maximum number of iterations),
	 2.	Find xk + 1 = Axk.
	 3.	Calculate αk k

T
k+ +=1 1x x .

	 4.	Normalize xk+1 ⇒ x
x
x

k
k

k
+

+

+
=1

1

1 2

.

	 5.	Terminating condition: if | |α α εk k+ − <1  (prescribed tolerance), STOP. Otherwise, 
increment k to k + 1 and go to step 2.

When the iterations stop, αk+1 is the approximate dominant eigenvalue, and the unit 
vector xk+1 is the corresponding eigenvector. Note that other terminating conditions may 
also be used in step 5. For example, the iterations can be forced to stop if two consecutive 
vectors satisfy x xk k+ ∞− <1 ε .

The user-defined function PowerMethod uses the power method to estimate the 
dominant eigenvalue and the associated eigenvector of a square matrix.
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If output k (number of iterations) is not needed in an application, the function can be 
executed as

	 [e_val,e_vec] = PowerMethod(A,x1,tol,kmax)

Also, if e_vec (eigenvector) is not needed, we can still execute

	 e_val = PowerMethod(A,x1,tol,kmax)

No other combination of outputs is possible. For instance, [e_val,k] still returns e_val 
and e_vec because when there are two outputs, the second output is automatically 
regarded as e_vec.

EXAMPLE 9.1:  POWER METHOD

Consider

	

A =
− −

−
− −

















3 4 2
1 4 1

2 6 1
	

function [e_val, e_vec, k] = PowerMethod(A, x1, tol, kmax)
%
% PowerMethod approximates the dominant eigenvalue and the corresponding
% eigenvector of a square matrix.
%
%  [e_val, e_vec, k] = PowerMethod(A, x1, tol, kmax), where
%
%   A is an n-by-n matrix,
%   x1 is the n-by-1 initial vector (default ones),
%   tol is the tolerance (default 1e-4),
%   kmax is the maximum number of iterations (default 50),
%
%   e_val is the approximated dominant eigenvalue,
%   e_vec is the corresponding eigenvector,
%   k is the number of iterations required for convergence.
%
n = size(A,1);
if nargin < 2 || isempty(x1), x1 = ones(n,1); end
if nargin < 3 || isempty(tol), tol = 1e-4; end
if nargin < 4 || isempty(kmax), kmax = 50; end
x(:,1) = x1./norm(x1, 2);
x(:,2) = A*x(:,1); alpha(2) = x(:,1).’*x(:,2);
x(:,2) = x(:,2)./norm(x(:,2),2);

for k = 2:kmax,
    x(:,k+1) = A*x(:,k); % Generate next vector
    alpha(k+1) = x(:,k).’*x(:,k+1);
    x(:,k+1) = x(:,k+1)./norm(x(:,k+1),2);
    if abs(alpha(k+1)-alpha(k)) < tol, % Terminating condition
       break
    end
end
e_val = alpha(end); e_vec = x(:,end);
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Starting with α1 = 0, x1 1 1 1=  
T
, and tolerance ε = 10−4, we follow the algorithm 

outlined above:
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Since |α2 − α1| = 1.3333, convergence is not observed yet and the iterations must 
continue.
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	 α3 2 3 4= =x xT .5200 	

Since |α3 − α2| = 5.8533, convergence is not observed yet and the iterations must con-
tinue. Normalize
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and repeat the steps until the terminating condition | |α αk k+
−− <1

410  is satisfied. 
The next few generated scalars are α4 = 3.4742, α5 = 3.2083, α6 = 3.1097, …, and so on. 
Execution of the user-defined function PowerMethod yields

>> A = [3 −4 −2;−1 4 1;2 −6 −1];
>> [e_val, e_vec, k] = PowerMethod(A)  % Default x1 and tol

e_val =

     3.0002

e_vec =

    −0.4083
     0.4082
    −0.8165

k =
     20

It takes 20 steps for the power method to find an estimate for the dominant eigen-
value λ1 = 3 and its eigenvector. Note that the returned (unit vector) eigenvector esti-
mate is equivalent to [−1  1  −2]T. Direct solution of the eigenvalue problem reveals that 
λ(A) = 3, 2, 1 and the eigenvector associated with λ = 3 agrees with that obtained here.
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9.3  Inverse Power Method: Estimation of the Smallest Eigenvalue

The smallest (in magnitude) eigenvalue of An×n can be estimated by applying the power 
method to A−1, explained as follows. If the eigenvalues of A are λ1, λ2, … , λn, then the 
eigenvalues of A−1 are 1/λ1, 1/λ2, … , 1/λn:

	
Av v A A v A v

A

i i i i i ii n= = … ⇒ = ⇒
−

− −λ λ( , , , ) ( )1 2
1

1 1
Pre-multiply by 

Divvide by λ λi
i

i
i

A A I
A v v

− =
− =

1
1 1

	

The last equation describes the eigenvalue problem associated with A−1 so that its eigen-
values are indeed 1/λi and the eigenvectors are vi, the same as those of A corresponding 
to λi. Applying the power method to A−1 yields the dominant 1/λi so that this particular λi 
has the smallest magnitude among all eigenvalues of A.

EXAMPLE 9.2:  INVERSE POWER METHOD

Consider the matrix in Example 9.1 so that

	

A− = −
−

















1 1
6

2 8 4
1 1 1
2 10 8

	

Applying the power method to A−1 with α1 = 0 and x1 1 1 1=  
T
, we find
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Executing PowerMethod as applied to A−1, we find

>> A = [3 −4 −2;−1 4 1;2 −6 −1]; Ai = inv(A);
>> [e_val, e_vec, k] = PowerMethod(Ai)

e_val =

     0.9999    % Dominant eigenvalue of A−1

e_vec =

      0.7070
     −0.0001
      0.7072

k =
     12
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After 12 iterations, the sequence of scalars αk converges to the dominant eigenvalue of 
A−1, which is 1. Therefore, the reciprocal of this value, which also happens to be 1, is the 
smallest magnitude eigenvalue of A. In addition, the sequence of unit vectors xk converges 
to a vector equivalent to [1  0  1]T. Further inspection reveals that this is indeed the eigen-
vector of A corresponding to λ = 1. In summary, the dominant eigenvalue of A is λ = 3, by 
Example 9.1, and the smallest is λ = 1, as reported here.

9.4 � Shifted Inverse Power Method: Estimation of the 
Eigenvalue Nearest a Specified Value

Once the largest or smallest eigenvalue of a matrix is known, the remaining eigenvalues 
can be approximated using the shifted inverse power method. In order to establish this 
method, we first recognize the fact that if the eigenvalues of A are λ1, λ2, … , λn, then the 
eigenvalues of the matrix A − αI are λ α λ α λ α1 2− − … −, , , n :

	 Av v Av v v v A I v
v

i i i i i i i i ii n
i

= = … ⇒ − = − ⇒ − =λ α λ α α
α

( , , , ) (1 2
Subtract 

) (( )λ αi i− v 	

This last equation is the eigenvalue problem associated with the matrix A − αI; therefore, 
its eigenvalues are λi − α and the eigenvectors are vi, the same as those of A correspond-
ing to λi. Combining this with the fact that the eigenvalues of A−1 are 1 1 11 2/ , / , , /λ λ λ… n, 
we conclude that the eigenvalues of (A − αI)−1 are

	
µ

λ α
µ

λ α
µ

λ α1
1

2
2

1 1 1=
−

=
−

… =
−

, , , n
n 	

(9.8)

while the eigenvectors v1, v2, … , vn are the same as those for A corresponding to λ1, λ2, … , 
λn. If the power method is applied to (A − αI)−1, its dominant eigenvalue (say, μm) is esti-
mated. Since |μm| is largest among all those listed in Equation 9.8, then |λm − α| must be 
the smallest among its counterparts, that is,

	 | | | | , , ,λ α λ αm i i n− ≤ − , = …1 2 	

This implies that the distance between λm and α is smaller than—or equal to—the dis-
tance between any λi and α. In conclusion, application of the power method to (A − αI)−1 
gives an estimate of λm which is closest to α than all the other eigenvalues of A.

Inspired by this, we present the shifted inverse power method as follows. Let α be an 
arbitrary scalar, and x1 any initial vector. Generate the sequence of vectors

	 x A I xk k+
−= −1

1( )α 	 (9.9)

and scalars

	
βk

k
T

k

k
T

k
= +x x

x x
1

	
(9.10)

Then, β µ λ αk m m→ = −1/( ) so that λ µ αm m= +( )1/  is the eigenvalue of A that is closest 
to α. Also, the sequence of vectors xk converges to the eigenvector corresponding to λm.
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9.4.1  Notes on the Shifted Inverse Power Method

•	 The initial vector x1 and the subsequent vectors xk will be normalized to have a 
length of 1.

•	 Equation 9.9 is solved as ( )A I x x− =+α k k1  using Doolittle’s method (Section 4.4), 
which employs LU factorization of the coefficient matrix A − αI. This proves use-
ful, especially if α happens to be very close to an eigenvalue of A, causing A − αI 
to be near singular.

•	 Setting α = 0 leads to the estimation of the smallest magnitude eigenvalue of A.

The user-defined function ShiftInvPower uses the shifted inverse power method to 
estimate the eigenvalue of a square matrix closest to a specified value. It also returns the 
eigenvector associated with the desired eigenvalue.

function [e_val, e_vec, k] = ShiftInvPower(A, alpha, x1, tol, kmax)
%
%  ShiftInvPower uses the shifted inverse power method to find the
%  eigenvalue of a matrix closest to a specified value. It also returns
%  the eigenvector associated with this eigenvalue.
%
%   [e_val, e_vec, k] = ShiftInvPower(A, alpha, x1, tol, kmax), where
%
%    A is an n-by-n matrix,
%    alpha is a specied value,
%    x1 is the n-by-1 initial vector (default ones),
%    tol is the tolerance (default 1e-4),
%    kmax is the maximum number of iterations (default 50),
%
%    e_val is the estimated eigenvalue,
%    e_vec is the corresponding eigenvector,
%    k is the number of iterations required for convergence.
%
n = size(A,1);
if nargin < 3 || isempty(x1), x1 = ones(n,1); end
if nargin < 4 || isempty(tol), tol = 1e-4; end
if nargin < 5 || isempty(kmax), kmax = 50; end
x(:,1) = x1./norm(x1,2);
betas(1) = 0;
for k = 1:kmax, 
   x(:,k+1) = DoolittleMethod(A-alpha*eye(n,n),x(:,k)); 
   betas(k+1) = x(:,k).’*x(:,k+1);
   x(:,k+1) = x(:,k+1)./norm(x(:,k+1),2);
   if abs(betas(k+1)-betas(k)) < tol,   % Check for convergence
      break
   end
end
betas = betas(end);
e_val = 1/betas+alpha;
e_vec = x(:, end);



401Matrix Eigenvalue Problem

9.5  Shifted Power Method

The shifted power method is based on the fact that if the eigenvalues of A are λ1, λ2, … , 
λn, then the eigenvalues of the matrix A − αI are λ α λ α λ α1 2− − … −, , , n . In particular, the 
eigenvalues of A − λ1I are 0 2 1 1, , ,λ λ λ λ− … −n . If the power method is applied to A − λ1I, 
the dominant eigenvalue of this matrix (say, μ2) is found. But μ2 is a member of the list 
0 2 1 1, , ,λ λ λ λ− … −n . Without loss of generality, suppose µ λ λ2 2 1= −  so that λ λ µ2 1 2= + . 
This way, another eigenvalue of A is estimated.

9.5.1  Strategy to Estimate All Eigenvalues of a Matrix

•	 Apply the power method to A to find the dominant λd.
•	 Apply the shifted inverse power method with α = 0 to A to find the smallest λs.
•	 Apply the shifted power method to A − λdI or A − λsI to find at least one more 

eigenvalue.
•	 Apply the shifted inverse power method as many times as necessary with α 

adjusted so that an λ between any two available λ’s may be found.

EXAMPLE 9.3:  POWER METHODS

Find all eigenvalues and eigenvectors of the following matrix using the power, shifted 
inverse power, and shifted power methods:
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Solution

Apply the user-defined function PowerMethod to find the dominant eigenvalue of A:

>> A = [4 −3 3 −9;−3 6 −3 11;0 8 −5 8;3 −3 3 −8];
>> x1 = [0;1;0;1]; % Initial vector
>> [e_val, e_vec] = PowerMethod(A, x1) % Default values for tol and kmax

e_val =

     −5.0000   % Dominant eigenvalue

e_vec =

      0.5000
     −0.5000
     −0.5000
      0.5000

The smallest magnitude eigenvalue of A can be estimated by either applying the power 
method to A−1 (see Example 9.2) or by applying the shifted inverse power method to A 
with α = 0.
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>> [e_val, e_vec] = ShiftInvPower(A, 0, x1)

e_val =

     1.0001   % Smallest magnitude eigenvalue

e_vec =

    −0.8165
     0.4084
     0.0001
    −0.4082

The largest and smallest eigenvalues of A are therefore −5 and 1, respectively. To see if 
the remaining two eigenvalues are between these two values, we set α to be the aver-
age, α = (−5 + 1)/2 = −2, and apply the shifted inverse power method. However, α = −2 
causes A − αI to be singular, meaning α is an eigenvalue of A. Since we also need the 
eigenvector associated with this eigenvalue, we set α to a value close to −2 and apply the 
shifted inverse power:

>> [e_val, e_vec] = ShiftInvPower(A, −1.5, x1)   % alpha=−1.5

eigenval =

     −2.0000   % Third eigenvalue

eigenvec =

      0.5774
     −0.5774
      0.0000
      0.5774

We find the fourth eigenvalue using the shifted power method. Knowing λ = −2 is an 
eigenvalue of A, we apply the power method to A + 2I:

>> A1 = A + 2*eye(4,4);
>> [e_val, e_vec] = PowerMethod(A1, x1)

e_val =
     5.0000   % Fourth eigenvalue = 5+(−2)=3

e_vec =

     −0.0000
      0.7071
      0.7071
      0.0000

By the reasoning behind the shifted power method, the fourth eigenvalue is λ = −2 + 5 = 3. 
In summary, all four eigenvalues and their eigenvectors are
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9.6  MATLAB Built-In Function eig

The built-in function eig in MATLAB finds the eigenvalues and eigenvectors of a matrix. 
The function eig can be used in two different forms.

eig   Eigenvalues and eigenvectors.
    E = eig(X) is a vector containing the eigenvalues of a square
    matrix X.

    [V,D] = eig(X) produces a diagonal matrix D of eigenvalues and a
    full matrix V whose columns are the corresponding eigenvectors so
    that X*V = V*D.

The first form E = eig(A) is used when only the eigenvalues of a matrix A are needed. 
If the eigenvalues, as well as the eigenvectors of A are desired, [V,D] = eig(A) is used. 
This returns a matrix V whose columns are the eigenvectors of A, each a unit vector, and a 
diagonal matrix D whose entries are the eigenvalues of A and whose order agrees with the 
columns of V. Applying the latter to the matrix in Example 9.3 yields

>> A = [4 −3 3 −9;−3 6 −3 11;0 8 −5 8;3 −3 3 −8];
>> [V,D] = eig(A)

V =
   −0.8165	 −0.5774	 0.0000	 −0.5000
    0.4082	 0.5774	 0.7071	 0.5000
   −0.0000	 −0.0000	 0.7071	 0.5000
   −0.4082	 −0.5774	 0.0000	 −0.5000

D =
    1.0000	 0	 0	 0
         0	 −2.0000	 0	 0
         0	 0	 3.0000	 0
         0	 0	 0	 −5.0000

The results clearly agree with those obtained earlier in Example 9.3.

9.7  Deflation Methods

In the last section, we learned how to estimate eigenvalues of a matrix by using different 
variations of the power method. Another tactic to find the eigenvalues of a matrix involves 
the idea of deflation. Suppose An×n has eigenvalues λ1, λ2, … , λn, and one of them is avail-
able; for example, the dominant λ1 obtained by the power method. The basic idea behind 
deflation is to generate an (n − 1) × (n − 1) matrix B, one size smaller than A, whose eigen-
values are λ2, … , λn, meaning all the eigenvalues of A excluding the dominant λ1. We next 
focus on B and suppose its dominant eigenvalue is λ2, which is available through the use 
of the power method. With that, B is deflated to a yet smaller matrix, and so on. Although 
there are many proposed deflation methods, we will introduce the most commonly used 
one, known as Wielandt’s deflation method.
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9.7.1  Wielandt’s Deflation Method

In order to deflate an n × n matrix A to an (n − 1) × (n − 1) matrix B, we must first construct 
an n × n matrix A1 whose eigenvalues are 0, λ2, … , λn. This is explained in the following 
theorem.

Theorem 9.1: Wielandt’s Deflation Method

Suppose An×n has eigenvalues λ1, λ2, … , λn and eigenvectors v1, v2, … , vn. Assume that λ1 
and v1 are known and that the first component of v1 is nonzero,* which can be made into 1. 
If a1 is the first row of A, then

	 A A v a1 1 1= − 	 (9.11)

has eigenvalues 0, λ2, … , λn.

Proof

Since the first entry of v1 is nonzero, by assumption, we will normalize v1 by dividing it by 
its first component. This causes the first entry of v1 to be 1. As a result, the first row of the 
matrix v1a1 is simply the first row of A, and A1 has the form in Figure 9.1.

Because the entire first row of A1 is zero, A1 is singular and thus has at least one eigen-
value of 0. We next show that the remaining eigenvalues of A1 are λ2, … , λn, the remaining 
eigenvalues of the original matrix A. To do this, we realize that the eigenvectors of A are 
either in the form
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*	 The case when the first entry of is zero can be treated similarly, as in Example 9.5.
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A1= B

FIGURE 9.1
Matrix generated by Wielandt’s deflation method.



405Matrix Eigenvalue Problem

Case (1)  Consider

	

A v v A v a v v

A v v v a v v
1 1 1 1 1

1 1 1 1

( ) ( )( )
( ) ( )

− = − −
= − − −

i i

i i 	 (9.12)

In the second term on the right side of Equation 9.12, note that a1vk simply gives the first 
component of Avk. Noting Avk = λkvk and the nature of the eigenvectors in Case (1), we have 
a1v1 = λ1 and a1vi = λi. Using these in Equation 9.12,

	 A v v v v v v v1 1 1 1 1 1 1( ) ( ) ( )− = − − − = −i i i i i iλ λ λ λ λ 	

Letting ui = v1 − vi, the above equation reads A1ui = λiui. Since this is the eigenvalue 
problem associated with A1, the proof of Case (1) is complete. And, the eigenvectors of A1 
corresponding to λ2, … , λn are in the form ui = v1 − vi. Therefore, all of these eigenvectors 
have a first component of zero.

Case (2)  Consider

	

A v A v a v

v v a v
1 1 1

1 1

i i

i i i

= −
= −

( )
λ 	 (9.13)

Following an earlier reasoning, the term a1vi is the first component of Avi. Noting 
Avi = λivi and the nature of the eigenvectors in Case (2), we conclude that a1vi = 0. Then, 
Equation 9.13 becomes A1vi = λivi, indicating λ2, … , λn are eigenvalues of A1 with corre-
sponding eigenvectors v2, … , vn. With that, the proof is complete. Once again, note that the 
eigenvectors all have a first component of zero.

9.7.2  Deflation Process

While proving Theorem 9.1, we learned that in both cases the eigenvectors of A1 corre-
sponding to λ2, … , λn all have zeros in their first components. Thus, the first column of 
A1 can be dropped all together. As a result, the (n − 1) × (n − 1) block of A1, called B in 
Figure 9.1, must have eigenvalues λ2, … , λn. Therefore, the problem reduces to finding the 
eigenvalues of B, a matrix one size smaller than the original A. The power method can 
be applied to estimate the dominant eigenvalue and the corresponding eigenvector of B, 
which in turn may be deflated further, and so on.

EXAMPLE 9.4:  WIELANDT’S DEFLATION METHOD

Consider the 4 × 4 matrix in Example 9.3:
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Using the power method, the dominant eigenvalue of A and its eigenvector are 
obtained as

	

λ1 15

1
1
1

1

= − =
−
−





















, v

	

The first component of v1 is 1, hence v1 is already normalized. Proceeding with 
Wielandt’s deflation method,

	

A A v a1 1 1

4 3 3 9
3 6 3 11

0 8 5 8
3 3 3 8

1
1
1

1

= − =

− −
− −

−
− −





















−
−
−





















− − 

=

− −
− −

−
− −


















4 3 3 9

4 3 3 9
3 6 3 11

0 8 5 8
3 3 3 8





−

− −
− −
− −

− −





















=
− −

4 3 3 9
4 3 3 9
4 3 3 9

4 3 3 9

0 0 0 0
1 3 0 2
4 5 2 1
−−



















1 0 0 1

	

Eliminating the first column and the first row of A1 yields the new, smaller matrix

	

B = − −
















3 0 2
5 2 1
0 0 1

	

Application of the power method to B produces the dominant eigenvalue λ = 3 and its 
eigenvector v =  1 1 0

T
. Note that this is not an eigenvector of A corresponding to 

λ = 3, which would have been a 4 × 1 vector. Repeating the deflation process, this time 
applied to B, we find

B B vb1 1

3 0 2
5 2 1
0 0 1

1
1
0

3 0 2
0 0 0
2 2= − = − −

















−
















  = − −−
















⇒ =
− −

3
0 0 1

2 3
0 1first row, first column

Eliminate
C









	

Since C is upper triangular, its eigenvalues are the diagonal entries −2 and 1. In sum-
mary, the four eigenvalues of the original matrix A are −5, 3, −2, 1, as asserted.

EXAMPLE 9.5:  THE FIRST COMPONENT OF V1 IS ZERO

Consider

	

A =
−

−

















2 1 1
1 3 2
1 2 3
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The power method gives the dominant eigenvalue λ1 = 5 and eigenvector

	

v1

0
1
1

=
















	

The first component is zero, and the second component is made into 1. The matrix A1 
is now formed differently than Equation 9.11, as follows. Because the second component 
of v1 is 1, we consider a2, the second row of A, and perform

	

A A v a1 1 2

2 1 1
1 3 2
1 2 3

0
1
1

1 3 2
2 1 1
0 0 0= − =

−

−

















−
















=
−

[ ]
−− −















2 1 1

	

Eliminating the second row and the second column of A1 yields

	
B =

−
−











2 1
2 1

	

The two eigenvalues of B are subsequently found to be 0, 3. In conclusion, the three 
eigenvalues of the original matrix A are 5, 3, 0, which may be directly verified.

9.8  Householder Tridiagonalization and QR Factorization Methods

The methods presented so far to estimate eigenvalues and eigenvectors of a matrix can be 
tedious and are also prone to round-off errors, the latter particularly evident in the case of 
repeated application of power and deflation methods. The deflation process relies greatly 
on the available eigenvalue and its corresponding eigenvector, which are often provided 
by the power method. But because these are only estimates, the entries of the ensuing 
deflated matrix are also not exact. This approximated matrix is then subjected to the power 
method, which approximates its dominant eigenvalue, causing an accumulated round-off 
error. Therefore, repeated application of this process can pose serious round-off problems.

Other, more common, techniques to estimate the eigenvalues of a matrix are mostly 
two-step methods. In the first step, the original matrix is transformed into a simpler form, 
such as tridiagonal, which has the same eigenvalues as the original matrix. In the second 
step, the eigenvalues of this simpler matrix are found iteratively. A majority of these meth-
ods are designed to specifically handle symmetric matrices. Jacobi’s method, for example, 
transforms a symmetric matrix into a diagonal one. This method, however, is not very effi-
cient because as it zeros out an off-diagonal entry, it often creates a new, nonzero entry at 
the location where a zero was previously generated. A more polished technique is Given’s 
method, which transforms a symmetric matrix into a tridiagonal matrix. It should be men-
tioned that Given’s method can also be applied to a general, nonsymmetric matrix, but in 
this case, the original matrix is transformed into a special matrix that is no longer tridiago-
nal but one known as the Hessenberg matrix, discussed later in this section.
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The most efficient and commonly used method, however, is Householder’s method, 
which also transforms a symmetric matrix into a tridiagonal matrix. Like Given’s method, 
Householder’s method also applies to nonsymmetric matrices, transforming them into the 
Hessenberg form. The outcome of Householder’s method is then subjected to repeated appli-
cations of QR factorization—covered later in this section—to reduce it to a matrix whose 
off-diagonal elements are considerably smaller than its diagonal entries. Ultimately, these 
diagonal entries serve as estimates of the eigenvalues of the original matrix. Householder’s 
method is a so-called similarity transformation method. Recall from Chapter 1 that matri-
ces An×n and Bn×n are similar if there exists a non-singular matrix Sn × n such that

	 B S AS= −1
	

We say B is obtained through a similarity transformation of A. Similarity transforma-
tions preserve eigenvalues, that is, A and B have exactly the same characteristic polyno-
mial, and hence the same eigenvalues.

9.8.1  Householder’s Tridiagonalization Method (Symmetric Matrices)

Let A = [aij]n×n be a real, symmetric matrix whose eigenvalues are λ1, λ2, … , λn. Householder’s 
method uses n − 2 successive similarity transformations to reduce A into a tridiagonal 
matrix T. Let P1, P2, … , Pn−2 denote the matrices used in this process where each Pk is 
symmetric and orthogonal, that is,

	 P P Pk k
T

k k n= = = … −−1 1 2 2( , , , ) 	

Generate a sequence of matrices Ak (k = 1, 2, …, n − 2), as

	

A A

A P A P P A P

A P A P

A P A P

A P

0

1 1
1

0 1 1 0 1

2 2 1 2

3 3 4 3

2 2

=
= =
=
…

=
=

−

− − − −

− −

n n n n

n n AA Pn n− −3 2 	

(9.14)

In the first iteration, we create zeros in the appropriate slots in the first row and the first 
column of A to obtain a new matrix A1

1= [ ]( )aij , as shown below. Then, in the second itera-
tion, zeros are generated in the appropriate locations in the second row and the second 
column of A1 to obtain A2

2= [ ]( )aij , shown below.

	

A1

11
1

12
1

21
1

22
1

2
1

32
1

3
1

0 0

0=

…
… …
… …

… … … … …

a a

a a a

a a
n

n

( ) ( )

( ) ( ) ( )

( ) ( )
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0 0

2
1 1

2

11
2

12
2

21
2

a a

a a
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n nn
( ) ( )

( ) ( )

( )

,

… …























=

…

A
222
2

23
2

32
2

3
2

3
2 2

0
0

0 0

( ) ( )

( ) ( )

( ) ( )

a

a a

a a

n

n nn

…
… …

… … … … …
…






















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Performing this process n − 2 times, yields a tridiagonal matrix An ij
na−

−=  2
2( ) , where

	

T A= =

…
…

−

− −

− − −

n

n n

n n n

n

a a

a a a

a2

11
2

12
2

21
2

22
2

23
2

32

0 0
0

0

( ) ( )

( ) ( ) ( )

( −−

−
−

−
− −

… …
… … … …





















2

1
2

1
2 2

0

0 0 0

)

,
( )

,
( ) ( )

a

a a
n n
n

n n
n

nn
n




	

(9.15)

9.8.2  Determination of Symmetric Orthogonal Pk (k = 1,2, … , n − 2)

Each matrix Pk is defined by

	 P I v vk k k
T k n= − = … −2 1 2 2, , , , 	 (9.16)

where vk is a unit vector v vk
T

k =( )1 , the first k components of which are zero. Moreover, 
it  can be verified that each Pk is symmetric and orthogonal. To further understand the 
structure of the unit vectors vk, let us consider v1 first:

	

v1
21

1

21
21

1
10

1
2

1

=
…



















= +





v

v

v
a

n

where
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| |

Σ
Σ == + + +

=
≥

− <

a a a

v

a
v

a

a
v

a

n

i

i

i

21
2

31
2

1
2

1

1

21 1
21

1

21 1
21

2
0

2
0

�

Σ

Σ

if

if
 , ii n= …










3 4, , ,

	

(9.17)

Note that since v1 is used to form P1, which in turn is involved in the first iteration of 
Equation 9.14, the entries of A = A0 are used in Equation 9.17 in the construction of v1. 
Similarly, we construct the unit vector v2 this time using the entries of A1

1=  aij
( )  from the 

second iteration of Equation 9.14,

v2 32

2

32
32
1

2

0
0

1
2

1

=
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

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

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n
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Σ 
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








	

(9.18)

Continuing this way vn−2 is constructed, and subsequently, the tridiagonal matrix 
T = An−2 is obtained. Now, there are two possible scenarios: If the entries of T along the 
lower- and upper-diagonals are considerably smaller in magnitude than those along the 
main diagonal, then T is regarded as almost diagonal, and the diagonal entries roughly 
approximate its eigenvalues, hence those of the original matrix A. If not, we proceed to 
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further transform T into a tridiagonal matrix whose diagonal elements dominate all other 
entries. This will be accomplished using the QR factorization.

The user-defined function Householder uses Householder’s method to transform a 
real, symmetric matrix into a tridiagonal matrix.

EXAMPLE 9.6:  HOUSEHOLDER’S METHOD

Consider

	

A =



















4 4 1 1
4 4 1 1
1 1 3 2
1 1 2 3

	

Since n = 4, matrices A1 and A2 are generated by Equation 9.14 using P1 and P2, as 
follows. Form the unit vectors v1 and v2 by Equations 9.17 and 9.18, respectively. First,

	

v1
21

31

41

1
21

31

0

18=














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
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

=
=
= =

v

v

v

v

v
 , 

0.9856 
0.1196

Σ ,
vv41

1⇒ =





















v

0
0.9856
0.1196
0.1196

	

By Equation 9.16, we find P I v v1 1 12= − T, and subsequently,

	

A P AP1 1 1

4 0 0
5 1 1

0 1
0 1

= =

−
− − −

−
−















4.2426

4.2426
2.5 1.5
1.5 2.5





= −
= −






so that

a
a

32
1

42
1

1
1

( )

( )

	

function T = Householder(A)
%
%  Householder uses Householder's method to transform a symmetric matrix
%  into a tridiagonal matrix.
%
%   T = Householder(A), where
% 
%      A is an n-by-n real, symmetric matrix,
%
%      T is an n-by-n tridiagonal matrix.
% 
N = size(A,1);
for n = 1:N-2,
    S = sqrt(A(n+1:end,n)'*A(n+1:end,n)); % Compute sigma
    v(1:N,1) = 0; % Set initial set of entries to 0
    v(n+1) = sqrt((1+abs(A(n+1,n))/S)/2); % First non-zero entry 
    sn = sign(A(n+1,n)); % Determine sign of relevant entry
    v(n+2:N) = sn*A(n+2:end,n)/2/v(n+1)/S; % Compute remaining entries 
    P = eye(N)-2*(v*v'); % Compute the symmetric, orthogonal matrices
    A = P\A*P; % Compute sequence of matrices
end
T = A;
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Using this in Equation 9.18,

	

v v2
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

	

Form P I v v2 2 22= − T, and

	

A P A P2 2 1 2

4 0 0
5 0

0
0 0

= =

−
−
















4.2426

4.2426 1.4142
1.4142 4 0

0 1




 	

which is symmetric and tridiagonal, as projected. Executing the user-defined function 
Householder will confirm this.

>> A = [4 4 1 1;4 4 1 1;1 1 3 2;1 1 2 3];
>> T = Householder(A)

T =

     4.0000	 −4.2426	 0.0000	 0.0000
    −4.2426	 5.0000	 1.4142	 0
    −0.0000	 1.4142	 4.0000	 0.0000
     0.0000	 0.0000	 0.0000	 1.0000

9.8.3  QR Factorization Method

Once a special matrix such as tridiagonal matrix T is obtained via Householder’s method, 
the goal is to transform it into a new tridiagonal matrix whose off-diagonal entries are 
considerably smaller (in magnitude) than the diagonal ones. For this purpose, we employ 
the QR factorization (or decomposition) method. This is based on the fact that any matrix 
M can be decomposed into a product, M = QR where Q is orthogonal and R is upper 
triangular.

Start the process by setting T0 = T, and factorize it as T0 = Q0R0. Since Q0 and R0 are now 
available, we multiply them in reverse order to form a new matrix R0Q0 = T1. Then, apply 
the QR factorization to T1 to achieve T1 = Q1R1, multiply Q1 and R1 in reverse order to create 
T2 = R1Q1, and so on. In this manner, a sequence Tk of tridiagonal matrices is generated, as

	

T T Q R

T Q R

T Q R

T R Q

T R Q

T R Q

0 0 0

1 1 1

1 0 0

2 1 1

1

= =
=
…
=

=
=
…
=+k k k k k k 	

(9.19)

Using the last relation in Equation 9.19, we find

	 R Q T T Q T Qk k k k k k k= ⇒ =−
+

−1
1

1
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so that Tk+1 and Tk are similar matrices, and thus have the same eigenvalues. In fact, it is 
easy to see that Tk+1 is similar to the original tridiagonal matrix T. If the eigenvalues of T 
have the property that |λ1|>|λ2| > ⋯ > |λn|, it can then be shown that

	

Tk

n

k→ =
…



















→ ∞Λ

λ
λ

λ

1

2
 as 

	

Therefore, theoretically speaking, the sequence generated by Equation 9.19 converges 
to a diagonal matrix consisting of the eigenvalues of T. The primary challenge is the con-
struction of matrices Qk and Rk in each iteration step of Equation 9.19.

9.8.4  Determination of Qk and Rk Matrices

We begin with the first relation in Equation 9.19, and determine Q0 and R0 for T0 = [tij]. 
Pre-multiply T0 by an n × n matrix L2, the result denoted by L T2 0

2= [ ]( )tij , such that t21
2 0( ) = . 

Then, pre-multiply this matrix by L3, denoting the product by L L T3 2 0
3( ) [ ]( )= tij , so that t32

3 0( ) = . 
Performing n − 1 of these operations yields an upper-triangular matrix R0, that is,

	 L L L L T Rn n− … =1 3 2 0 0 	 (9.20)

We will see later that Lk (k = 2, 3, …, n) are orthogonal. Manipulation of Equation 9.20 
results in QR factorization of T0,

	 T L L L L R T Q R0 1 3 2
1

0 0 0 0= …( ) ⇒ =−
−

n n 	
(9.21)

where

	 Q L L L L L L L L L L0 1 3 2
1

2
1

3
1 1

2 3= …( ) = … = …−
− − − −

n n n
T T

n
T

	

Note that the orthogonality of Lk has been utilized, that is, L Lk k
T− =1 .

9.8.5  Structure of Lk (k = 2,3,…, n)

The Lk matrices are generally simple in nature in the sense that each Lk consists of a 2 × 2 
submatrix that occupies rows k and k−1, and columns k and k−1, and ones along the remain-
ing portion of the main diagonal, and zeros everywhere else. The 2 × 2 submatrix has the 
form of a clockwise rotation matrix

	

cos sin
sin cos

θ θ
θ θ
k k

k k

k k

k k

kc s

s c

c

−



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


 −











=
or simply where

ccos
sin

θ
θ

k

k ks = 	

and θk is to be chosen appropriately. For instance, if the size of the matrices involved is 
n = 5, then
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We now address the selection of ck and sk. Recall that we must have L T2 0
2=  tij

( )  such 
that t21

2 0( ) = , hence in this new matrix the only element that needs to be analyzed is the (2,1) 
entry. But we determine the (2,1) entry by using the second row of L2 and first column of T0. 
Regardless of the size n, the second row of matrix L2 is always as shown above. Therefore, 
the (2,1) entry of L2T0 is given by

	 t s t c t21
2

2 11 2 21
( ) = − + 	

Forcing it to be zero, we find

	
− + = ⇒ = =s t c t

s
c

t
t

2 11 2 21
2

2
2

21

11
0 tanθ

	
(9.22)

Application of trigonometric identities cos
tan

α
α

=
+

1

1 2
 and sin

tan

tan
α α

α
=

+1 2
 to 

Equation 9.22 yields
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t t
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t t
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21 11
2 2 2

21 11

21 11
2

1

1 1
= =

+
= =

+
cos

( / )
sin

/
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θ θ,

	
(9.23)

With this, matrix L2 is completely defined. Next, consider the matrix L L T3 2 0
3( ) =  tij

( ) , of 
which the (3,2) entry must be made into zero. Proceeding as above, we can obtain c3 and 
s3, and so on. This continues until Ln is determined, and ultimately, LnLn − 1 … L3L2T0 = R0. 
Once all Lk matrices have been found, we form Q L L L0 2 3= …T T

n
T , by Equation 9.21, and the first 

QR factorization is complete. Next, form the new symmetric tridiagonal matrix T1 = R0Q0. 
If the off-diagonal elements are much smaller than the diagonal ones, the process is termi-
nated and the diagonal entries of T1 approximate the eigenvalues of A. Otherwise, the QR 
factorization is repeated for T1 via the steps listed above until a desired tridiagonal matrix 
is achieved.

9.9  MATLAB Built-In Function qr

MATLAB has a built-in function that performs the QR factorization of a matrix:

qr    Orthogonal-triangular decomposition.
    [Q,R] = qr(A), where A is m-by-n, produces an m-by-n upper triangular
    matrix R and an m-by-m unitary matrix Q so that A = Q*R.
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The user-defined function HouseholderQR uses Householder’s method to transform a 
real, symmetric matrix into a tridiagonal matrix, to which the QR factorization is repeat-
edly applied in order to obtain a tridiagonal matrix whose diagonal entries are much 
larger in magnitude than those along the upper- and lower-diagonals.

9.10  A Note on the Terminating Condition Used in HouseholderQR

The terminating condition employed here is based on the norm of the difference between 
two vectors whose components are the diagonal entries of two successive T matrices gen-
erated in the QR process. Although this works in most cases, there could be situations 
where the two aforementioned vectors have elements that are close to one another, hence 
meeting the tolerance condition, but the off-diagonal entries are not sufficiently small. One 
way to remedy this is to use a more firm terminating condition that inspects the ratio of 
the largest magnitude lower-diagonal entry to the smallest diagonal element. If this ratio 
is within the tolerance, the process is terminated; see Problem Set. This will ensure that the 

function [T, Tfinal, e_vals, m] = HouseholderQR(A, tol, kmax)
%
%  HouseholderQR uses Householder's method and repeated applications of
%  QR factorization to estimate the eigenvalues of a real, symmetric matrix.
%
%   [T, Tfinal, e_vals, m] = HouseholderQR(A, tol, kmax), where
%
%     A is an n-by-n real, symmetric matrix,
%     tol is the tolerance used in the QR process (default 1e-4),
%     kmax is the maximum number of QR iterations (default 50),
%
%     T is the tridiagonal matrix created by Householder's method,
%     Tfinal is the final tridiagonal matrix,
%     e_vals is a list of estimated eigenvalues of matrix A,
%     m is the number of iterations needed for convergence.
%
%  Note that this function calls the user-defined function Householder!
%
if nargin < 2 || isempty(tol), tol = 1e-4; end
if nargin < 3 || isempty(kmax), kmax = 50; end
T = Householder(A); % Call Householder
T(:,:,1) = T;
% QR factorization to reduce the off-diagonal entries of T
for m = 1:kmax,
    [Q,R] = qr(T(:,:,m));
    T(:,:,m+1) = R*Q;
    % Compare diagonals of two successive T matrices
    if norm(diag(T(:,:,m+1))-diag(T(:,:,m))) < tol,
       break;
    end
end
Tfinal = T(:,:,end); T = T(:,:,1); e_vals = diag(Tfinal);
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lower-diagonal elements have considerably smaller magnitudes than the diagonal ones. 
Note that since symmetric matrices are involved, inspection of the lower-diagonal entries 
will suffice.

EXAMPLE 9.7:  HOUSEHOLDER’S METHOD + QR FACTORIZATION

Consider Example 9.6 where a symmetric matrix was transformed into tridiagonal 
using Householder’s method:

	

A T=





















→ =

−
−

4 4 1 1
4 4 1 1
1 1 3 2
1 1 2 3

4 0 0
5

4.2426
4.2426 1.41422

1.4142 4 0
0 1

0
0
0 0



















 	

Interestingly, T is in the block diagonal form (Chapter 1). Therefore, eigenvalues of T 
consist of the eigenvalues of the upper-left 3 × 3 block matrix, and a 1 × 1 block of 1. So, 
one eigenvalue (λ1 = 1) is automatically decided. As a result, we now focus on the upper-
left 3 × 3 block and find its eigenvalues. Note that this phenomenon does not generally 
occur and should be investigated on a case-by-case basis.

Therefore, we will proceed with the aforementioned 3 × 3 block matrix and repeat-
edly apply the QR factorization to this matrix. The process is initiated by setting

	

T0

4 0
5

0 4
=

−
−

















4.2426
4.2426 1.4142

1.4142
	

The QR factorizations listed in Equation 9.19 are performed as follows. First, by 
Equation 9.23,

	 c s2 2= = −0.6860 0.7276, 	

so that

	

L L T2

2 2

2 2 2 0

0
0

0 0 1
0= −

















=
− −c s

s c and
5.8310 6.5485 1.0290

0.33430 0.9701
1.41420 4

















	

Next, the (3,2) entry of L3L2T0 is forced to be zero, and yields

	
− + = ⇒

=
=

0.3430 1.4142
0.2357
0.9718

s c
c

s3 3
3

3
0

	

so that

	

L R L L T3 3 3

3 3

0 3 2 0

1 0 0
0
0

=
−

















=
− −

c s

s c

and  = 
5.8310 6.5485 1.00290

1.4552 4.11600
0 0 0
















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Finally, letting Q L L0 2 3= T T , we obtain

	

T R Q1 0 0

0
0

0 0 0
= =

−
−

















8.7647 1.0588
1.0588 4.2353

	

This tridiagonal matrix is also in a block diagonal form, including an upper-left 2 × 2 
block and a 1 × 1 block of 0. This implies one of its eigenvalues must be zero, hence 
λ2 = 0. The remaining two eigenvalues of A are the eigenvalues of the upper-left 2 × 2 
block matrix. We will proceed with the second iteration in Equation 9.19 using this 2 × 2 
block matrix. So, we let

	
T1 =

−
−











8.7647 1.0588
1.0588 4.2353

	

Since the off-diagonal entries are still relatively large, matrix T2 must be formed, 
that is,

	
L2

1 2
1

2
1

2
1

2
1

2
1

2
1

( )
( ) ( )

( ) ( )

( )

( )=
−











=
= −

c s

s c

c

s
with

0.9928 
0..1199

so that  = 
8.8284 1.5591

4.0777
R L T1 2

1
1 0

( ) =
−









	

Noting that Q L1 2
1=  

( ) T
, we have

	
T R Q2 1 1 1

= =
−

−










8.9517 0.4891
0.489 4.0483

	

Finally, because the off-diagonal entries are considerably smaller in magnitude than 
the diagonal ones, the eigenvalues are approximately 9 and 4. Therefore, λ(A) = 0,1,4,9. 
Executing the user-defined function HouseholderQR will confirm these results.

>> A = [4 4 1 1;4 4 1 1;1 1 3 2;1 1 2 3];
>> [T, Tfinal, e_vals, m] = HouseholderQR(A)

T =        % Tridiagonal matrix generated by Householder (see Example 9.6)

     4.0000	 −4.2426	 0.0000	 0.0000
    −4.2426	 5.0000	 1.4142	 0
    −0.0000	 1.4142	 4.0000	 0.0000
     0.0000	 0.0000	 0.0000	 1.0000

Tfinal =      % Tridiagonal matrix at the conclusion of QR process

     9.0000	 −0.0086	 −0.0000	 −0.0000
    −0.0086	 4.0000	 −0.0000	 0.0000
    −0.0000	 0.0000	 1.0000	 −0.0000
    −0.0000	 −0.0000	 0.0000	 0.0000

e_vals =      % List of (estimated) eigenvalues of A

     9.0000
     4.0000
     1.0000
     0.0000
m =
      7
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9.11  Transformation to Hessenberg Form (Nonsymmetric Matrices)

As mentioned at the outset of this section, Householder’s method can also be applied to 
nonsymmetric matrices. Instead of a tridiagonal matrix, however, the outcome will be 
another special matrix known as the upper Hessenberg form

	

H =

…
…
…

… … …










 −

h h h h

h h h h

h h h

h h

n

n

n

n n nn

11 12 13 1

21 22 23 2

32 33 3

1,












	

which is an upper triangular plus the lower-diagonal. In the second step of the process, 
repeated QR factorizations will be applied to H in order to obtain an upper triangular 
matrix. Since the eigenvalues of an upper triangular matrix are its diagonal entries, the 
eigenvalues of this final matrix, and hence of the original matrix, are along its diagonal.

The user-defined function HouseholderQR can be applied to any nonsymmetric matrix 
to accomplish this task.

EXAMPLE 9.8:  NONSYMMETRIC MATRIX, HESSENBERG FORM

Consider the (nonsymmetric) matrix studied in Examples 9.3 and 9.4 of the last section:

	

A =

− −
− −

−
− −





















4 3 3 9
3 6 3 11

0 8 5 8
3 3 3 8

	

>> A = [4 −3 3 −9;−3 6 −3 11;0 8 −5 8;3 −3 3 −8];
>> [H, Hfinal, e_vals, m] = HouseholderQR(A);

This returns m=50, which means the (default) maximum number of iterations has 
been exhausted. Therefore, we will increase kmax to 60 and reexecute the function.

>> [H, Hfinal, e_vals, m] = HouseholderQR(A, [], 60)

H =            % Hessenberg form generated by Householder

     4.0000	 −4.2426	 3.8787	 −8.1213
     4.2426	 −5.0000	 6.8995	 −12.8995
     0.0000	 −0.0000	 4.6569	 −9.6569
    −0.0000	 −0.0000	 1.6569	 −6.6569

Hfinal =       % Upper triangular matrix at the conclusion of QR process

    −5.0000	 5.1961	 13.4722	 16.2634
    −0.0000	 −2.0000	 −3.5355	 2.8578
    −0.0000	 0.0000	 3.0000	 1.1547
    −0.0000	 0.0000	 −0.0000	 1.0000
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e_vals =         % List of (estimated) eigenvalues of A

    −5.0000
    −2.0000
     3.0000
     1.0000

m =
     53

It took 53 iterations for convergence to be observed.

PROBLEM SET (CHAPTER 9)

Power Methods (Sections 9.2 through 9.5)

In Problems 1 through 7,

a.	  Starting with α1 = 0 and an n × 1 initial vector x1 comprised of all ones, apply 
the power method to generate the scalars α2 and α3, and the normalized vectors 
x2 and x3.

b.	  Find the dominant eigenvalue and the corresponding eigenvector of A by 
executing the user-defined function PowerMethod with default input arguments.

	 1.	 A =
− −

−
















4 1 5
2 5 10

4 2 1

	 2.	 A =
















1 0 1
0 1 0
1 0 1

	 3.	 A =
− −
− −
− −

















3 6 9
4 9 14
4 6 8

	 4.	 A =
−

− −
− −

















3 1 2
6 2 4
3 1 2

	 5.	 A =
− −

−
−

















0 1 5
2 1 10

4 2 3

	 6.	 A =

−
− − −

− −
−



















3 2 2 0
1 2 2 2

0 3 3 3
1 2 2 2
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	 7.	 A =



















2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

 In Problems 8 through 11 find all eigenvalues and eigenvectors of the matrix by apply-
ing the user-defined functions PowerMethod and/or ShiftInvPower. Use the given 
initial vector x1 in each application of these two functions, and default values for the 
remaining input arguments.

	 8.	 A x=
− −

−
− −
















, =

















18 23 11
14 7 7

64 60 36

1
0
1

1

	 9.	 A x=
− − −
− − −

















=
















10 6 2
8 2 3

84 42 21

0
1
1

1,

	 10.	 A x= − − −
















=
















15 12 4
48 33 10

24 12 1

1
0
1

1,

	 11.	 A x=

− −
− − −

−
− −



















=














6 8 0 8
2 8 2 2

2 2 8 2
14 10 2 16

1
0
0
0

1,






	 12.  Using any combination of the power methods find all eigenvalues and eigen-
vectors of

	

A =
− −















2 3 0
0 1 0
4 3 2 	

Deflation Methods (Section 9.7)

 In Problems 13 through 18, for each matrix A, find the dominant eigenvalue and corre-
sponding eigenvector by executing the user-defined function PowerMethod with default 
input arguments. Then, using Wielandt’s deflation method, generate a matrix B, one size 
smaller than A, whose eigenvalues are the remaining eigenvalues of A. Finally, apply the 
eig function to find the eigenvalues of B. List all eigenvalues of A.

	 13.	 A =
−

− −
−

















2 1 1
1 1 2

1 2 1
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	 14.	 A =
−
−

− −

















16 31 19
22 31 22
8 2 5

	 15.	 A =
−

− −
−

















6 1 0
1 5 1

0 1 6

	 16.	 A =
−

− − −
− − −

















0 1 2
6 1 4
3 1 1

	 17.	 A = −
−

















9 0 0
5 7 5
5 2 4

	 18.	 A =
− −















3 6 7
0 4 1
0 6 9

	 19.	  Write a user-defined function with function call

	 e_vals = Wielandt_Deflation(A, x1, tol, kmax)

		  that uses Wielandt’s deflation method to find all the eigenvalues of a matrix A. 
It must call the user-defined function PowerMethod to estimate the dominant 
eigenvalue and corresponding eigenvector of A, deflate to a smaller size matrix, 
and repeat the process until it reaches a 2 × 2 matrix. At that point, the MATLAB 
function eig must be used to find the eigenvalues of the 2 × 2 matrix. The func-
tion must return a list of all eigenvalues of matrix A. The input arguments have the 
same default values as in PowerMethod. Apply Wielandt_Deflation (with 
default inputs) to the matrix A in Example 9.4.

		  Note: A key part of the process is determining the first nonzero component of the 
eigenvector v1 in each step. But since PowerMethod generates this vector, it is only 
an approximation and as such, a component whose true value is zero will appear 
to have a very small value, but not exactly zero. Thus, your function must view any 
component with magnitude less than 10−4 as zero.

	 20.	Find all eigenvalues of the matrix A by executing the user-defined function 
Wielandt_Deflation (Problem 19).

	

A =

−
− −

− −
− −



















5 3 0 3
3 7 8 3

3 3 4 3
9 11 8 7 	
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	 21.	Find all eigenvalues of the matrix A by executing the user-defined function 
Wielandt_Deflation (Problem 19).

	

A =

− −
− −
− −

− −



















1 3 3 5
1 1 3 3
0 2 4 2
1 3 3 5 	

Householder Tridiagonalization and QR Factorization Methods (Section 9.8)

In Problems 22 through 24,

a.	  Use Householder’s method to transform the given matrix into tridiagonal or 
Hessenberg form.

b.	  Confirm the findings in (a) by executing the user-defined function 
Householder.

	 22.	 A =



















7 4 1 3
4 7 3 1
1 3 7 4
3 1 4 7

	 23.	 A =

−
− −

−
−



















5 1 0 1
1 8 2 3

0 2 1 1
1 3 1 6

	 24.	 A =

−

− − −



















1 1 0 2
4 4 0 3
5 5 0 2

0 0 0 2

 In Problems 25 through 29, find all eigenvalues of the matrix by executing the user-
defined function HouseholderQR, and verify the results using MATLAB function eig.

	 25.	 A =



















5 4 1 3
4 5 3 1
1 3 5 4
3 1 4 5

	 26.	 A =

−
− −

−
−

−























2 1 2 0 5
1 4 0 0 3

2 0 5 1 0
0 0 1 1 2
5 3 0 2 2
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	 27.	 A =

−

− − − −



















0 1 0 2
4 3 0 3
5 5 1 2

0 0 0 1

	 28.	 A =

−
− −

−
−



















0 1 0 1
1 3 2 3

0 2 6 1
1 3 1 1

	 29.	 A =
−

− −
− −

−























1 2 0 3 1
2 4 2 0 4
0 2 5 1 1
3 0 1 8 3
1 4 1 3 2

	 30.	  Write a user-defined function with function call

	 [T, Tfinal, e_vals, m] = HouseholderQR_New(A, tol, kmax)

		  that uses Householder’s method and the successive QR factorization process to 
find all eigenvalues of a matrix, as follows. Modify HouseholderQR by altering 
the terminating condition: the iterations must stop when the ratio of the largest 
magnitude lower-diagonal entry to the smallest magnitude diagonal element is 
less than the prescribed tolerance. All input parameters have the same default as 
before. Apply this function to the matrix in Problem 29.



10
Numerical Solution of Partial Differential Equations

Partial differential equations play an important role in several areas of engineering 
ranging from fluid mechanics, heat transfer, and applied mechanics to electromagnetic 
theory. Since it is generally much more difficult to find a closed-form solution for par-
tial differential equations than it is for ordinary differential equations, they are usually 
solved numerically. In this chapter, we present numerical methods for solution of partial 
differential equations, in particular, those that describe some fundamental problems in 
engineering applications, including Laplace’s equation, the heat equation, and the wave 
equation.

10.1  Introduction

A partial differential equation (PDE) is an equation involving a function (dependent 
variable) of at least two independent variables, and its partial derivatives. A PDE is of 
order n if the highest derivative is of order n. If a PDE is of the first degree in the dependent 
variable and its partial derivatives, it is called linear. Otherwise, it is nonlinear. If each 
term in a PDE involves either the dependent variable or its partial derivatives, the PDE is 
called homogeneous. Otherwise, it is nonhomogeneous.

Suppose u = u(x, y). Then, the following brief notations for partial derivatives are used:

	
u

u
x

u
u

x
u

u
y x

x xx xy= ∂
∂

= ∂
∂

= ∂
∂ ∂

, ,
2

2

2

	

The dimension of a PDE is determined by the number of spatial coordinates, not time t. 
For example, a PDE with u = u(x, y, z) as its dependent variable is three-dimensional, 
while a PDE with dependent variable u = u(x, t) is one-dimensional.

Consider a class of linear, second-order PDEs that appear in the form

	 au bu cu f x y u u uxx xy yy x y+ + =2 ( , , , , ) 	 (10.1)

A PDE in the form of Equation 10.1 is

•	 Elliptic if b2 − ac < 0
•	 Parabolic if b2 − ac = 0
•	 Hyperbolic if b2 − ac > 0
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The two-dimensional Poisson’s equation uxx + uyy = f(x, y) and the two-dimensional 
Laplace’s equation uxx + uyy = 0 are elliptic PDEs; the one-dimensional heat equation 
ut = α2uxx (α = const > 0) is parabolic; and the one-dimensional wave equation utt = α2uxx 
(α = const > 0) is hyperbolic. In our examples for parabolic and hyperbolic PDEs, the vari-
able t has replaced y. In applications, when an elliptic PDE is involved, a boundary-value 
problem needs to be solved. Those involving parabolic and hyperbolic types require the 
solution of a boundary-initial-value problem. We will present the numerical solution of 
elliptic PDEs first.

10.2  Elliptic Partial Differential Equations

A Dirichlet problem refers to a problem that involves solving an elliptic equation in a 
specific region in the xy-plane, where the unknown function is prescribed along the 
boundary of the region. On the other hand, a Neumann problem refers to a boundary-
value problem where the normal derivative of u, that is, un = ∂u/∂n, is given on the bound-
ary of the region. Note that along a vertical edge of a region, un is simply ux = ∂u/∂x, and 
along a horizontal edge it is uy = ∂u/∂y. The mixed problem refers to the situation where u 
is specified on certain parts of the boundary, and un on the others.

10.2.1  Dirichlet Problem

As a fundamental Dirichlet problem, we consider the solution of the 2D Poisson’s equation

	 u u f x yxx yy+ = ( , ) 	

in the rectangular region shown in Figure 10.1, where u(x, y) is prescribed along the 
boundary. The idea is to define a mesh size h and construct a grid by drawing equidistant 
vertical and horizontal lines of distance h. These lines are called grid lines, and the points 
at which they intersect are known as mesh points. Those mesh points that are located 
on the boundary are called boundary points. Mesh points that lie inside the region are 
called interior mesh points. The goal is to approximate the solution u at the interior mesh 
points.

Let us denote the typical mesh point (x, y) by (ih, jh), simply labeled as (i, j) in Figure 10.1. 
The value of u at that point is then denoted by uij. Similarly, the value of f at that point is 
represented by fij. Approximating the second-order partial derivatives in Poisson’s equa-
tion with three-point central difference formulas (Chapter 6), we find

	

u u u
h

u u u
h

fi j ij i j i j ij i j
ij

− + − +− +
+

− +
=1 1

2
1 1

2

2 2, , , ,

	

which simplifies to

	 u u u u u h fi j i j i j i j ij ij− + − ++ + + − =1 1 1 1
24, , , , 	 (10.2)
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This is called the difference equation for Poisson’s equation, which provides a relation 
between the solution u at (i, j) and four adjacent points. Likewise, for Laplace’s equation, 
uxx + uyy = 0, we have

	 u u u u ui j i j i j i j ij− + − ++ + + − =1 1 1 1 4 0, , , , 	 (10.3)

which is known as the difference equation for Laplace’s equation.
The Dirichlet problem is then solved as follows. The difference equation—Equation 10.2 

for Poisson’s equation, Equation 10.3 for Laplace’s equation—is applied at every interior 
mesh point. This will result in a linear system of equations whose size is the same as the 
total number of interior mesh points. Assuming there are n interior mesh points in the 
region, this linear system is in the form Au = b, where An × n is the coefficient matrix, un × 1 
is the vector of the unknowns, and bn × 1 is comprised of known quantities. Note that, due 
to the nature of the difference equation, matrix A has at most five nonzero entries in each 
row. When at least one of the adjacent points in the five-point molecule (Figure 10.1) is a 
boundary point, the value of u is available by the boundary condition and is ultimately 
moved to the right side of the equation, hence becoming part of vector b. In addition to the 
boundary points, in the case of Poisson’s equation, the terms h2fij will also be included in 
b. In practice, a large number of mesh points are needed for better accuracy, causing the 
coefficient matrix A to be large and sparse. A linear system Au = b with a large, sparse 
coefficient matrix is normally solved numerically via an iterative method such as the 
Gauss–Seidel method (Chapter 4).

The user-defined function DirichletPDE uses the difference-equation approach 
outlined above to numerically solve Poisson’s equation—or Laplace’s equation—in a 
rectangular region with the values of the unknown solution available on the boundary. 
The function returns the approximate solution at the interior mesh points, as well as the 
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FIGURE 10.1
A grid for a rectangular region, and a five-point molecule.
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values at the boundary points in a pattern that resembles the gridded region. It also returns 
the three-dimensional plot of the results.

function U = DirichletPDE(x,y,f,uleft,uright,ubottom,utop)
%
%  DirichletPDE numerically solves an elliptic PDE with Dirichlet boundary
%  conditions over a rectangular region.
%
%    U = DirichletPDE(x,y,f,uleft,uright,ubottom,utop), where
%
%      x is the 1-by-m vector of mesh points in the x direction,
%      y is the 1-by-n vector of mesh points in the y direction,
%      f is an anonymous function representing f(x,y),
%      ubottom(x),utop(x),uright(y),uleft(y) are anonymous functions
%      describing the boundary conditions,
%
%      U is the solution at the interior mesh points.
%
y = y'; m = size(x,2);n = size(y,1); N = (m-2)*(n-2);
A = diag(-4*ones(N,1));
A = A + diag(diag(A,n-2)+1,n-2);
A = A + diag(diag(A,2-n)+1,2-n);
v = ones(N-1,1);         % Create vector of ones
v(n-2:n-2:end) = 0;    % Insert zeros
A = A + diag(v,1);      % Add upper diagonal
A = A + diag(v,-1);    % Add lower diagonal
[X,Y] = meshgrid(x(2:end-1),y(end-1:-1:2));      % Create mesh
h = x(2)-x(1);
% Define boundary conditions
for i = 2:m-1,
    utop_bound(i-1) = utop(x(i));
    ubottom_bound(i-1) = ubottom(x(i));
end
for i = 1:n,
    uleft_bound(i) = uleft(y(n+1-i));
    uright_bound(i) = uright(y(n+1-i));
end
b = 0;    % Initialize vector b
for i = 1:N,
    b(i) = h^2*f(X(i),Y(i));
end
b(1:n-2:N) = b(1:n-2:N)-utop_bound;
b(n-2:n-2:N) = b(n-2:n-2:N)-ubottom_bound;
b(1:n-2) = b(1:n-2)-uleft_bound(2:n-1);
b(N-(n-3):N) = b(N-n+3:N)-uright_bound(2:n-1);
u = A\b';    % Solve the system
U = reshape(u,n-2,m-2);
U = [utop_bound;U;ubottom_bound];
U = [uleft_bound' U uright_bound'];
[X,Y] = meshgrid(x,y(end:-1:1));
surf(X,Y,U);    % 3D plot of the numerical results
xlabel('x');ylabel('y');
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EXAMPLE 10.1:  DIRICHLET PROBLEM

The Dirichlet problem in Figure 10.2 describes the steady-state temperature distribution 
inside a rectangular plate of length 2 and width 1. Three of the sides are kept at zero 
temperature, while the lower edge has a temperature profile of sin(πx/2). Using a mesh 
size of h = 0.5 construct a grid and find the approximate values of u at the interior mesh 
points, and calculate the relative errors associated with these approximate values. 
The exact solution in closed form is given by

	
u x y

x y
( )

sinh( )
sin sinh

( )
, 

/
= −1

2 2
1
2π

π π

	

Solution

There are three interior mesh points and eight boundary points on the grid. Therefore, 
the difference equation, Equation 10.3, must be applied three times, once at each interior 
mesh point. As a result, we have
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Included in these equations are the values at the boundary points,

	 u u u u u u u u12 22 32 01 41 10 30 200 0 7071 1= = = = = = = =, . , 	

Inserting these into the system of equations, we find
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Solution of this system yields u11 = 0.2735 = u31 and u21 = 0.3867. The exact values at these 
points are calculated as u11 = 0.2669 = u31 and u21 = 0.3775, recording relative errors of 
2.47% and 2.44%, respectively. The estimates turned out reasonably accurate consider-
ing the large mesh size that was used. Switching to a smaller mesh size of h = 0.25, for 
example, generates a grid that includes 21 interior mesh points and 20 boundary points. 
The ensuing linear system then comprises 21 equations and 21 unknowns, whose 
solutions are more accurate than those obtained here.
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yy
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u41

u12 u22 u32

h

uxx + uyy = 0

FIGURE 10.2
The Dirichlet problem in Example 10.1.
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To confirm the numerical results in MATLAB, we execute the user-defined function 
DirichletPDE.

>> x = 0:0.5:2; y = 0:0.5:1;
>> f = @(x,y)(0); ubottom = @(x)(sin(pi*x/2)); utop = @(x)(0);
>> uleft = @(y)(0); uright = @(y)(0);
>> U = DirichletPDE(x,y,f,uleft,uright,ubottom,utop)    % �3D plot suppressed
U =
	 0	 0	 0	 0	 0
	 0	 0.2735	 0.3867	 0.2735	 0
	 0	 0.7071	 1.0000	 0.7071	 0

The three values in the box are the solution estimates at the three interior mesh points, 
and agree with those obtained earlier. All other values correspond to the boundary 
points in the grid used. In order to generate a smooth plot, we reduce the mesh size to 
h = 0.1 and reexecute the function. The result is shown in Figure 10.3.

>> x = 0:0.1:2; y = 0:0.1:1;
>> U = DirichletPDE(x,y,f,uleft,uright,ubottom,utop)  % Numerical results suppressed

10.2.2  Alternating Direction Implicit (ADI) Methods

In the foregoing analysis, we learned that the application of the difference equation 
for either Poisson’s equation or Laplace’s equation at the interior mesh points leads to 
a linear system of equations whose coefficient matrix has at most five nonzero entries 
in each row. Although this type of a matrix is clearly preferred to a general one, the 
numerical computations would be performed much more efficiently if the coefficient 
matrix were tridiagonal (Chapter 4), that is, if it has at most three nonzero entries in 
each row.
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xy

u = sin(πx/2)

FIGURE 10.3
Steady-state temperature distribution in Example 10.1, using h = 0.1.
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The goal is therefore to develop a scheme that leads to a system of equations with a 
tridiagonal coefficient matrix. We will present the idea while focusing on Laplace’s equa-
tion in a rectangular region. Suppose a mesh size h generates N internal mesh points per 
row and M internal mesh points per column. Recall that Equation 10.3 takes into account 
the five elements of the five-point molecule (Figure 10.1) all at once. That is, the elements 
ui−1,j, uij, ui+1,j along the jth row and ui,j−1, uij, ui,j+1 along the ith column, with uij being the 
common element. Since we are aiming for a tridiagonal matrix, we write Equation 10.3 as

	 u u u u ui j ij i j i j i j− + − +− + = − −1 1 1 14, , , , 	 (10.4)

so that the members on the left side belong to the jth row and those on the right to the ith 
column. Equation 10.3 may also be rewritten as

	 u u u u ui j ij i j i j i j, , , ,− + − +− + = − −1 1 1 14 	 (10.5)

with the left side terms belonging to the ith column and the right side terms to the jth row. 
Alternating direction implicit (ADI) methods use this basic idea to solve the Dirichlet prob-
lem iteratively. A complete iteration step consists of two halves. In the first half, Equation 
10.4 is applied in every row in the grid. In the second half, Equation 10.5 is applied in 
every column of the grid. The most commonly used ADI method is the one proposed by 
Peaceman and Rachford, sometimes referred to as PRADI.

10.2.2.1  Peaceman–Rachford Alternating Direction Implicit (PRADI) Method

Choose arbitrary starting value uij
( )0  at each interior mesh point (i, j). The first iteration 

consists of two halves. In the first half, update the values of uij row by row, in a manner 
suggested by Equation 10.4,

	 j j M u u u ui j ij i j i jth row ( , , , ) ,
( / ) ( / )

,
( / )

,= … − + = −− + −1 2 41
1 2 1 2

1
1 2

11
0

1
0 1 2( )
,

( ) , , , ,− = …+u i Ni j 	 (10.6)

Note that some of the u values are the known boundary values, which are not affected 
by the starting values and remain unchanged throughout the process. For each fixed j, 
Equation 10.6 is applied to all interior mesh points along row j and produces N equa-
tions. Since there are M rows, a total of MN equations will be generated. This system has 
a tridiagonal coefficient matrix, by design, which can then be solved efficiently using the 
Thomas method (Chapter 4). The solution at this stage represents the half-updated values 
with superscript of (1/2).

In the second half, the values of uij
( / )1 2  will be updated column by column, as suggested 

by Equation 10.5,

	 i i N u u u ui j ij i j i jth column ( , , , ) ,
( ) ( )

,
( )

,
(= … − + = −− + −1 2 41

1 1
1

1
1

1// )
,

( / ) , , , ,2
1

1 2 1 2− = …+u j Mi j 	 (10.7)

For each fixed i, Equation 10.7 is applied to all interior mesh points along column i and 
produces M equations. Once again, the values at the boundary points are not affected and 
remain unchanged. Since there are N columns, a total of MN equations will be generated. 
This system also has a tridiagonal coefficient matrix, which can be solved efficiently using the 
Thomas method. The solution at this stage represents the updated values with superscript 
of (1). This completes the first iteration. The second iteration has two halves. In the first half,

	 j j M u u u ui j ij i j i jth row ( , , , ) ,
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,
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generates a system of MN equations with a tridiagonal coefficient matrix. In the 
second half,

	 i i N u u u ui j ij i j i jth column ( , , , ) ,
( ) ( )

,
( )

,
(= … − + = −− + −1 2 41

2 2
1

2
1

3// )
,

( / ) , , , ,2
1

3 2 1 2− = …+u j Mi j 	

which also generates a system of MN equations with a tridiagonal coefficient matrix. The 
solution gives the updated values with superscript of (2). The procedure is repeated until 
some type of convergence is observed. This, of course, requires a terminating condition. 
One reasonable terminating condition is as follows. Assemble the values at the interior 
mesh points into a matrix, with the same configuration as the grid. If the norm of the dif-
ference between two successive such matrices is less than a prescribed tolerance, terminate 
the iterations.

The user-defined function PRADI uses the Peaceman–Rachford ADI method to numeri-
cally solve Poisson’s equation—or Laplace’s equation—in a rectangular region with the 
values of the unknown solution available on the boundary. The function returns the 
approximate solution at the interior mesh points, as well as the values at the boundary 
points in a pattern that resembles the gridded region. In addition, it returns the 3D plot of 
the results.

function [U, k] = PRADI(x,y,f,uleft,uright,ubottom,utop,tol,kmax)
%
%  PRADI numerically solves an elliptic PDE with Dirichlet boundary
%  conditions over a rectangular region using the Peaceman-Rachford
%  alternating direction implicit method.
%
%    [U, k] = PRADI(x,y,f,uleft,uright,ubottom,utop,tol,kmax), where
%
%    x is the 1-by-m vector of mesh points in the x direction,
%    y is the 1-by-n vector of mesh points in the y direction,
%    f is an anonymous function representing f(x,y),
%    ubottom,uleft,utop,uright are anonymous functions describing the
%    boundary conditions,
%    tol is the tolerance (default 1e-4),
%    kmax is the maximum number of iterations (default 50),
%
%    U is the solution at the mesh points,
%    k is the number of (full) iterations needed to meet the tolerance.
% 
%    Note: The default starting value at all mesh points is 0.5.
%
if nargin < 9 || isempty(kmax), kmax = 50; end
if nargin < 8 || isempty(tol), tol = 1e-4; end
y = y';
[X,Y] = meshgrid(x(2:end-1),y(2:end-1));      % Create mesh grid
m = size(X,2); n = size(X,1); N = m*n;
u = 0.5*ones(n,m);      % Starting values
h = x(2)-x(1);
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% Define boundary conditions
for i = 2:m+1, 
    utop_bound(i-1) = utop(x(i));
    ubottom_bound(i-1) = ubottom(x(i));
end
 for i = 1:n+2,
    uleft_bound(i)=uleft(y(i));
    uright_bound(i)=uright(y(i));
 end
U = [ubottom_bound;u;utop_bound]; U = [uleft_bound' U uright_bound'];
% Generate matrix A1 (first half) and A2 (second half).
A = diag(-4*ones(N,1));
v1 = diag(A,1)+1; v1(m:m:N-1) = 0;
v2 = diag(A,-1)+1; v2(n:n:N-1) = 0;
A2 = diag(v2,1)+diag(v2,-1)+A;
A1 = diag(v1,1)+diag(v1,-1)+A;
U1 = U;
for i = 1:N,    % Initialize vector b
    b0(i) = h^2*f(X(i),Y(i));
end
b0 = reshape(b0,n,m);
for k = 1:kmax,
 % First half
 b = b0-U1(1:end-2,2:end-1)-U1(3:end,2:end-1);
 b(:,1) = b(:,1)-U(2:end-1,1);
 b(:,end) = b(:,end)-U(2:end-1,end);
 b = reshape(b',N,1);
 u = ThomasMethod(A1,b);    % Solve tridiagonal system
 u = reshape(u,m,n);
 U1 = [U(1,2:end-1);u';U(end,2:end-1)];
 U1 = [U(:,1) U1 U(:,end)];
 % Second half
 b = b0-U1(2:end-1,1:end-2)-U1(2:end-1,3:end);
 b(1,:) = b(1,:)-U(1,2:end-1);
 b(end,:) = b(end,:)-U(end,2:end-1);
 b = reshape(b,N,1);
 u = ThomasMethod(A2,b);    % Solve tridiagonal system
 u = reshape(u,n,m);
 U2 = [U(1,2:end-1);u;U(end,2:end-1)];
 U2 = [U(:,1) U2 U(:,end)];
 if norm(U2-U1,inf)<=tol, break, end;
 U1 = U2;
end
 [X,Y] = meshgrid(x,y);
 U = U1;
for i = 1:n+2,
    W(i,:) = U(n-i+3,:);
    YY(i) = Y(n-i+3);
end
 U = W; Y = YY;
 surf(X,Y,U);
xlabel('x');ylabel('y');
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EXAMPLE 10.2:  PRADI METHOD

For the Dirichlet problem described in Figure 10.4,

	 1.	 Perform one complete step of the PRADI method with h = 1 and starting values 
of 0.5 for all interior mesh points.

	 2.	 Solve the Dirichlet problem using the user-defined function PRADI with 
default parameter values.

Solution

	 1.	 First half. There are two rows and two columns in the grid, and a total of four 
interior mesh points. Equation 10.6 is first applied in the first row (j = 1). Since 
there are two mesh points in this row, Equation 10.6 is applied twice:
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	 Note that we have omitted superscripts for boundary values because they 
remain unchanged. We next apply Equation 10.6 at the two mesh points along 
the second row (j = 2):
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	 Combining Equations 10.8 and 10.9, and using the available boundary values 
as well as the starting values, we arrive at
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FIGURE 10.4
The Dirichlet problem in Example 10.2.
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	 Second half. Equation 10.7 is applied in the first column (i = 1). Since there are 
two mesh points in this column, it is applied twice:
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	 We next apply Equation 10.7 at the two mesh points along the second 
column (i = 2):
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	 Combining Equations 10.10 and 10.11, and using the available boundary 
values  as well as the updated values from the previous half iteration, 
we arrive at
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	 2.	 Executing the user-defined function PRADI (with default parameters) yields 
the solution estimates at the interior mesh points. Note that the plot has been 
suppressed.

	 >> x = 0:1:3; y = 0:1:3; f = @(x,y)(0);
	� >> ubottom = @(x)(sin(pi*x/3)); utop = @(x)(0); uleft = @(y)(0); 

uright = @(y)(0);
	 >> [U, k] = PRADI(x,y,f,uleft,uright,ubottom,utop)
	
	 U =
	     0          0          0    0
	     0    0.1083    0.1083    0
	     0    0.3248    0.3248    0
	     0    0.8660    0.8660    0

	 k =
	     5

Therefore, convergence occurs after five iterations. The numerical results obtained 
in (1)  can  be verified by letting the function PRADI perform one iteration only. 
Setting kmax=1 and executing the function results in

	 >> [U] = PRADI(x,y,f,uleft,uright,ubottom,utop,[],1)
	 U =
	     0          0          0    0
	     0    0.1325    0.1325    0
	     0    0.3635    0.3635    0
	     0    0.8660    0.8660    0

The numerical values for u u u u11
1

21
1

12
1

22
1( ) ( ) ( ) ( ), , ,  agree with those in (1).

10.2.3  Neumann Problem

In the formulation of the Neumann problem, the values of the normal derivatives of u 
are prescribed along the boundary (Figure 10.5). As before, we are focusing on Laplace’s 
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equation in a rectangular region. In solving the Dirichlet problem, the objective was to 
find the solution estimates at all of the interior mesh points by taking advantage of the 
known values of u along the boundary. In solving the Neumann problem, u is no longer 
available on the boundary, hence the boundary points become part of the unknown vector.

Suppose the difference equation for Laplace’s equation, Equation 10.3, is applied at the 
(3, 3) mesh point:

	
u u u u u23 32 33 43 344 0+ − + + =
Interior mesh points Boundary points 	

(10.12)

The three interior mesh points are part of the unknown vector. Since boundary val-
ues u43 and u34 are not available, they must also be included in the unknown vector. 
Similar situations arise when we apply Equation 10.3 at near-boundary points. However, 
inclusion of all boundary points that lie on the grid in the unknown vector substan-
tially increases the size of the unknown vector. For example, in Figure 10.5, there are 
25 unknowns: nine in the interior and 16 on the boundary. But since Equation 10.3 is 
applied at the interior mesh points, there are as many equations as there are interior 
mesh points. In Figure 10.5, for example, there will only be nine equations, while there 
are 25 unknowns. Therefore, several more equations are needed to completely solve the 
ensuing system of equations.

In order to generate these additional (auxiliary) equations, we apply Equation 10.3 at 
each of the marked boundary points. Since we are currently concentrating on u43 and u34, 
we apply Equation 10.3 at these two points

	

u u u u u

u u u u u
24 44 35 33 34

42 44 53 33 43

4 0
4 0

+ + + − =
+ + + − = 	

(10.13)

In Equation 10.13, there are two quantities that are not part of the grid and need to be 
eliminated: u53 and u35. We will do this by extending the grid beyond the boundary of the 
region, and using the information on the vertical and horizontal boundary segments they 
are located on. At the (3, 4) boundary point, we have access to ∂u/∂y = g(x). Let us call it g34. 
Applying the two-point central difference formula (Chapter 6) at (3, 4), we find
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∂u/∂y = g(x)

∂u/∂y = f(x)
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u13 u23 u33 u43

u34
u44

h
u53

u24

u42uxx + uyy = 0

FIGURE 10.5
The Neumann problem.
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Similarly, at (4, 3),
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( , )4 3
43

53 33
53 33 432
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53Solve for 

	

Substitution of these two relations into Equation 10.13 creates two new equations that 
involve only the interior mesh points and the boundary points. In order to proceed with 
this approach, we need to assume that Laplace’s equation is valid beyond the rectangular region, 
at least in the exterior area that contains the newly produced points such as u53 and u35. If we 
continue with this strategy, we will end up with a system containing as many equa-
tions as the total number of interior mesh points and the boundary points. In Figure 10.5, 
for instance, the system will consist of 25 equations and 25 unknowns.

10.2.3.1  Existence of a Solution for the Neumann Problem

The existence of a solution for the Neumann problem entirely depends on the nature of 
the  normal derivatives un = ∂u/∂n prescribed along different portions of the boundary. 
In fact, no solution is possible unless the line integral of the normal derivative taken over 
the boundary is zero

	

∂
∂

=∫ u
n

ds
C

0

	
(10.14)

EXAMPLE 10.3:  NEUMANN PROBLEM

Consider the Neumann problem described in Figure 10.6 where the grid is constructed 
with h = 1. Using the approach outlined above, 12 unknowns are generated: two interior 
mesh points and 10 boundary points.
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∂u/∂x = y–1 ∂u/∂x = y

∂u/∂y = x+1
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u13 u23 u33
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u40u30u20u10u00
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u03

u0,–1 u1,–1 u2,–1 u3,–1

u–1,0

u–1,1

u–1,2

uxx + uyy = 0

FIGURE 10.6
The Neumann problem in Example 10.3.
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First, the condition for the existence of the solution, Equation 10.14, must be examined. 
Let the bottom edge of the region be denoted by C1, and continuing counterclockwise, 
the rest of the edges C2, C3, and C4. Then, it can be shown that (verify)
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Therefore, the problem described in Figure 10.6 does not have a solution. In fact, if we 
had proceeded with the strategy introduced earlier, we would have obtained a 12 × 12 
system of equations with a singular coefficient matrix.

10.2.4  Mixed Problem

In a mixed problem, the dependent function u is prescribed along some portions of the 
boundary, while un = ∂u/∂n is known along other portions. The numerical solution of these 
types of problems involves the same idea as in the case of the Neumann problem, with a 
lower degree of complexity. This is because un is only dealt with on certain segments of the 
boundary; hence the region does not need to be entirely extended and the ensuing linear 
system to be solved is not as large either.

EXAMPLE 10.4:  MIXED PROBLEM

Solve the mixed problem described in Figure 10.7 using the grid with h = 1.

Solution

Because the Dirichlet boundary conditions are prescribed along the left, lower, and 
upper edges, no extension of region is needed there. The only extension pertains to 
the (3, 1) mesh point, where u is unknown, resulting in the creation of u41. Application of 
Equation 10.3 at the two interior mesh points, as well as at (3, 1), yields
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( ,

1 1 4 0
2 1 4 0
3 1

01 10 21 12 11

11 20 31 22 21

u u u u u

u u u u u

+ + + − =
+ + + − =

)) u u u u u21 30 41 32 314 0+ + + − = 	

(10.15)
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FIGURE 10.7
The mixed problem in Example 10.4.
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To eliminate u41, we use the two-point central difference formula at (3, 1):
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Substitution of u41 = u21 + 4, as well as the boundary values provided by boundary 
conditions, into Equation 10.15 yields
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10.2.5  More Complex Regions

So far, we have studied boundary-value problems for elliptic PDEs in regions with rela-
tively simple shapes, specifically, rectangular regions. As a result, it was possible to suitably 
adjust the grid so that some of the mesh points are located on the boundary of the region. 
But in many applications, the geometry of the problem is not as simple as a rectangle. And, 
as a result, the boundary of the region crosses the grid at points that are not mesh points.

As an example, consider the problem of solving the 2D Laplace’s equation (uxx + uyy = 0) 
in the region shown in Figure 10.8a. The region has an irregular boundary in that the 
curved portion intersects the grid at points A and B, neither of which is a mesh point. The 
points M and Q are treated as before because each has four adjacent mesh points that are 
located on the grid. But a point such as P must be treated differently since two of its adja-
cent points (A and B) are not on the grid. The objective therefore is to derive expressions for 
uxx(P) and uyy(P), at mesh point P, to form a new difference equation for Laplace’s equation. 
Assume that A is located a distance of αh to the right of P, and B is a distance of βh above P. 
Write the Taylor’s series expansion for u at the four points A, B, M, and N about the point P. 
For example, u(M) and u(A) are expressed as

	
u M u P h

u P
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h
u P
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(10.16)
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FIGURE 10.8
A region with irregular boundary.
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(10.17)

Multiply Equation 10.16 by α and add the result to Equation 10.17, while neglecting the 
terms involving h2 and higher:
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Solving for ∂2u(P)/∂x2, we find

	

∂
∂

=
+

+
+

−










2

2 2

2 1
1

1
1

1u P
x h

u A u M u P
( )

( )
( ) ( ) ( )

α α α α 	
(10.18)

Similarly, expanding u(N) and u(B) about P, and proceeding as above, yields
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Addition of Equations 10.18 and 10.19 gives
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If Laplace’s equation is solved, then the left side of Equation 10.20 is set to zero, and 
we have
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(10.21)

With the usual notations involved in Figure 10.8b, the difference equation is obtained by 
rewriting Equation 10.21, as
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(10.22)

The case of Poisson’s equation can be handled in a similar manner. Equation 10.22 is 
applied at any mesh point that has at least one adjacent point not located on the grid. 
In Figure 10.8, for example, that would be points P and N. For the points M and Q, we sim-
ply apply Equation 10.3, as before, or equivalently Equation 10.22 with α = 1 = β.

EXAMPLE 10.5:  IRREGULAR BOUNDARY

Solve uxx + uyy = 0 in the region shown in Figure 10.9 subject to the given boundary 
conditions. The slanting segment of the boundary obeys y x= − +2

3 2 .
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Solution

Based on the grid shown in Figure 10.9, Equation 10.3 can be applied at mesh points 
(1, 1), (2, 1), and (1, 2) because all four neighboring points at those mesh points are 
on the  grid. Using the boundary conditions provided, the resulting difference 
equations are

	

1 4 4 0
7 4 0

1 4 0

12 21 11

11 22 21

11
1
3 22 12

+ + + − =
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+ + + − =

u u u

u u u

u u u

9.5

	

(10.23)

However, at (2, 2), we need to use Equation 10.22. Using the equation of the slanting 
segment, we find that the point at the (2, 3) location is a vertical distance of 1

3
 from 

the (2, 2) mesh point. But since h = 1
2 , we have β = 2

3 . On the other hand, α = 1 since the 
neighboring point to the right of (2, 2) is itself a mesh point. With these, and knowing 
u32 = 9 by the given boundary condition, Equation 10.22 yields
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Combining this with Equation 10.23, and simplifying, we find
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FIGURE 10.9
Example 10.5.
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10.3  Parabolic Partial Differential Equations

In this section, we will present two techniques for the numerical solution of parabolic 
PDEs: the finite-difference method and Crank–Nicolson method. In both cases, the 
objective remains the same as before, namely, derive a suitable difference equation that can 
be used to generate solution estimates at mesh points. Contrary to the numerical solution 
of elliptic PDEs, there is no guarantee that the difference equations for parabolic equations 
converge, regardless of the grid size. In these situations, it turns out that convergence can 
be assured as long as some additional conditions are imposed.

10.3.1  Finite-Difference Method

The 1D heat equation, ut = α2uxx (α = const > 0), is the simplest model of a physical system 
involving a parabolic PDE. Specifically, consider a laterally insulated wire of length L 
with its ends kept at zero temperature, and subjected to the initial temperature along the 
wire prescribed by f(x). The boundary-initial-value problem at hand is

	 u u x L tt xx= = > ≤ ≤ ≥α α2 0 0 0( ), ,const 	 (10.24)

	 u t u L t( , ) ( , )0 0= = 	 (10.25)

	 u x f x( , ) ( )0 = 	 (10.26)

Figure 10.10 shows a grid constructed by using a mesh size of h in the x-direction and a 
mesh size of k in the t-direction. As usual, the partial derivatives in Equation 10.24 must 
be replaced by their finite-difference approximations. The term uxx is approximated by the 
three-point central-difference formula. For the term ut, however, we must use the two-point 
forward-difference formula, as opposed to the more accurate central-difference formula. 
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u = f (x)Column 1

FIGURE 10.10
Region and grid used for solving the 1D heat equation.
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This is because starting at t = 0 (the x-axis), we can only progress in the positive direction 
of the t-axis and have no knowledge of u(t) when t < 0. Consequently, Equation 10.24 yields

	

1
21

2

2 1 1
k

u u
h
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(10.27)

Referring to the four-point molecule in Figure 10.10, knowing ui−1,j, ui,j, and ui+1,j, we can 
find ui,j+1 at the higher level on the t-axis, via
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which simplifies to
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(10.28)

and is known as the difference equation for the 1D heat equation using the finite-difference 
method.

10.3.1.1  Stability and Convergence of the Finite-Difference Method

A numerical method is said to be stable if any small changes in the initial data result in 
small changes in the subsequent data, or errors such as round-off introduced at any time 
remain bounded throughout. What is meant by convergence is that the approximate solu-
tion tends to the actual solution as the computational grid gets very fine, that is, as h,k → 0. 
It can then be shown that the finite-difference method outlined in Equation 10.28 is both 
stable and convergent if *

	
r

k
h

= ≤α2

2

1
2 	

(10.29)

and unstable and divergent when r > 1
2 .

The user-defined function Heat1DFD uses the finite-difference approach to solve the 
1D heat equation subject to zero boundary conditions and a prescribed initial condition. 
The function returns the approximate solution at the interior mesh points, as well as the 
values at the boundary points in a pattern that resembles the gridded region. A warning 
message is returned if r > 1

2.

*	 For details, refer to R.L. Burden and J.D. Faires, Numerical Analysis, Third edition, Prindle, Weber & Schmidt, 
1985.

function u = Heat1DFD(t,x,u0,alpha)
%
%  Heat1DFD numerically solves the one-dimensional heat equation, with zero
%  boundary conditions, using the finite-difference method.
% 
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EXAMPLE 10.6:  FINITE-DIFFERENCE METHOD; 1D HEAT EQUATION

Consider a laterally insulated wire of length L = 1 and α = 0.5, whose ends are kept at 
zero temperature, subjected to initial temperature f(x) = 10 sin πx. Compute the approxi-
mate values of temperature u(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.5, at mesh points generated by 
h = 0.25 and k = 0.1. All parameter values are in consistent physical units. The exact solu-
tion is given as

	 u x t x e t( , ) ( sin )= −10
2

π π0.25
	

Solution

We first calculate
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which signifies stability and convergence for the finite-difference method described by 
Equation 10.28. With r = 0.4, Equation 10.28 reduces to

	
u u u ui j ij i j i j, , ,+ − += + +( )1 1 10.2 0.4

	
(10.30)

This will generate approximate solutions at the mesh points marked in Figure 10.11. 
The first application of Equation 10.30 is at the (1, 0) position so that

	

u u u u11 10 00 20= + +( ) = +0.2 0.4  0.2 7.0711 0.
boundary

values

Using

( ) 44 5.4142( )0 10+ =

	

It is next applied at (2, 0) to find u21, and at (3, 0) to find u31. This way, the values 
at the three mesh points along the time row j = 1 become available. Subsequently, 

%    u = Heat1DFD(t,x,u0,alpha), where
%
%      t is the row vector of times,
%      x is the row vector of x positions,
%      u0 is the row vector of initial temperatures at the x positions,
%      alpha is a given parameter of the heat equation,
%
%      u is the approximate solution at the mesh points.
%
u = u0(:);    % u must be a column vector
k = t(2)-t(1); h = x(2)-x(1); r = (alpha/h)^2*k;
if r > 0.5,
  warning('Method is unstable and divergent. Results will be inaccurate.')
end 
i = 2:length(x)-1;
for j = 1:length(t)-1,
    u(i,j+1) = (1-2*r)*u(i,j) + r*(u(i-1,j)+u(i+1,j));
end
u = flipud(u');
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Equation 10.30 is applied at the three mesh points on the current row (j = 1) to find the 
values at the next time level, j = 2, and so on. Continuing with this strategy, we will 
generate the approximate values shown in Figure 10.11. It is interesting to note that at 
the first time row, we are experiencing relative errors of around 2%, but this grows to 
about 9.63% by the time we arrive at the fifth time level.

The numerical results obtained in this manner can be readily verified by executing 
the user-defined function Heat1DFD:

>> t = 0:0.1:0.5; x = 0:0.25:1;
>> u0 = 10.*sin(pi*x);
>> u = Heat1DFD(t,x,u0,0.5)

u =
    0    1.8610     2.6318    1.8610    0
    0    2.4304     3.4372    2.4304    0
    0    3.1742     4.4890    3.1742    0
    0    4.1456     5.8627    4.1456    0
    0    5.4142     7.6569    5.4142    0
    0    7.0711    10.0000    7.0711    0

As stated earlier, the output resembles the gridded region.

10.3.2  Crank–Nicolson Method

The condition r k h= ≤α2 2 1
2/ , required by the finite-difference method for stability and 

convergence, could lead to serious computational problems. For example, suppose α = 1 
and h = 0.2. Then, r ≤ 1

2  imposes k ≤ 0.02, requiring too many time steps. Moreover, reduc-
ing the mesh size h by half to h = 0.1 increases the number of time steps by a factor of 4. 
Generally, in order to decrease r, we must either decrease k or increase h. Decreasing k 
forces additional time levels to be generated which increases the amount of computations. 
Increasing h causes a reduction of accuracy.

The Crank–Nicolson method offers a technique for solving the 1D heat equation with 
no restriction on the ratio r = kα2/h2. The idea behind the Crank–Nicolson method is to 
employ a six-point molecule (Figure 10.12) as opposed to the four-point molecule (Figure 
10.10) used with the finite-difference method.

To derive the difference equation associated with this method we consider Equation 
10.27. On the right-hand side, we write two expressions similar to that inside parentheses: 

x

t
h = 0.25

k = 0.1

0

0.1

0.2

0.3

0.4

0.5

0.5 0.75 1
u = 10 sin πx 

u = 0u = 0

u11 u21 u31

u12 u22 u32

u13 u23 u33

u14 u24 u34

u15 u25 u35

x

t

0 7.0711 10.0000 0

5.4142

(5.5249)

Relative
errors

5.4142

(5.5249)

7.6569

(7.8134)

4.1456 5.8628 4.1456

3.1742 4.4890

2.4305

3.1742

Exact

2.43053.4372

1.8610 1.86102.6318

2%

9.63%
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7.0711

...

...
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FIGURE 10.11
The grid and numerical results in Example 10.6.
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one for the jth time row, one for the (j + 1)st time row. Multiply each by α2/2h2, and 
add them to obtain

	

1
2

2
2

21

2

2 1 1

2

2 1 1
k

u u
h

u u u
h

u ui j ij i j i j i j i j, , , , ,+ − + − +−( ) = − +( ) + −α α
ii j i ju, ,+ + ++( )1 1 1

	
(10.31)

Multiply Equation 10.31 by 2k and let r = kα2/h2 as before, and rearrange the outcome so 
that the three terms associated with the higher time row [(j + 1)st row] appear on the left 
side of the equation. The result is

	
2 1 2 11 1 1 1 1 1 1( ) ( ), , , , ,+ − +( ) = − + ++ − + + + − +r u r u u r u r u ui j i j i j ij i j i j(( ) =, r

k
h
α2

2
	

(10.32)

This is called the difference equation for the 1D heat equation using the Crank–Nicolson 
method. Starting with the 0th time level (j = 0), each time Equation 10.32 is applied, the 
three values on the right side, ui−1,j, uij, ui+1,j, are available from the initial temperature f(x), 
while the values at the higher time level (j = 1) are unknown. If there are n non-boundary 
mesh points in each row, the ensuing system of equations to be solved is n × n with a 
tridiagonal coefficient matrix. Solving the system yields the values of u at the mesh points 
along the j = 1 row. Repeating the procedure leads to the approximate values of u at all 
desired mesh points.

The user-defined function Heat1DCN uses the Crank–Nicolson method to solve the 
1D heat equation subject to zero boundary conditions and a prescribed initial condition. 
The function returns the approximate solution at the interior mesh points, as well as the 
values at the boundary points in a pattern that resembles the gridded region.

function u = Heat1DCN(t,x,u0,alpha)
%
%  Heat1DCN numerically solves the one-dimensional heat equation, with zero
%  boundary conditions, using the Crank-Nicolson method.
% 
%    u = Heat1DCN(t,x,u0,alpha), where
%
%      t is the row vector of times,
%      x is the row vector of x positions,
%      u0 is the row vector of initial temperatures at the x positions,
%      alpha is a given parameter of the heat equation,
%

ui, jui–1, j ui+1, j

ui, j+1ui–1, j+1 ui+1, j+1

h

k

FIGURE 10.12
Six-point molecule used in Crank–Nicolson method.
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EXAMPLE 10.7:  CRANK–NICOLSON METHOD; 1D HEAT EQUATION

Consider the temperature distribution problem outlined in Example 10.6. Find the 
approximate values of u(x, t) at the mesh points, and compare with the actual values as 
well as those obtained using the finite-difference method.

Solution

With r = 0.4, Equation 10.32 is written as

	
2.8 0.4 1.2 0.4u u u u u ui j i j i j ij i j i j, , , , ,+ − + + + − +− +( ) = + +( )1 1 1 1 1 1 1 	

(10.33)

Applying Equation 10.33 at the j = 0 level, we find

	

2.8 0.4 1.2 0.4
2.8 0.4

u u u u u u

u u u
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− + = + +
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− + = + +
1.2 0.4

2.8 0.4 1.2 0.4
u u u

u u u u u u
20 10 30

31 21 41 30 20 4

( )
( ) ( 00 ) 	

Substituting the values from boundary and initial conditions, yields
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Next, Equation 10.33 is applied at the j = 1 level:
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%      u is the approximate solution at the mesh points.
%
u = u0(:);    % u must be a column vector
k = t(2)-t(1); h = x(2)-x(1); r = (alpha/h)^2*k;

% Compute A
n = length(x);
A = diag(2*(1+r)*ones(n-2,1));
A = A + diag(diag(A,-1)-r,-1);
A = A + diag(diag(A,1)-r, 1);

% Compute B
B = diag(2*(1-r)*ones(n-2,1));
B = B + diag(diag(B,-1)+r,-1);
B = B + diag(diag(B,1)+r, 1);
C = A\B; 

i = 2:length(x)-1;
for j = 1:length(t)-1,
    u(i,j+1) = C*u(i,j);
end
u = flipud(u');
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This procedure is repeated until the approximate values of u at the mesh points along 
the j = 5 row are calculated. Execution of the user-defined function Heat1DCN yields

>> t = 0:0.1:0.5;
>> x = 0:0.25:1;
>> u0 = 10.*sin(pi*x);
>> u = Heat1DCN(t,x,u0,0.5)
u =
    0    2.1794    3.0821    2.1794    0
    0    2.7578    3.9001    2.7578    0
    0    3.4897    4.9352    3.4897    0
    0    4.4159    6.2451    4.4159    0
    0    5.5880    7.9026    5.5880    0
    0    7.0711   10.0000    7.0711    0

These numerical results, together with the associated relative errors, are shown in 
Figure 10.13. Comparing the relative errors with those in Example 10.6, it is evident 
that the Crank–Nicolson method produces more accurate estimates. Note that the 
values returned by the Crank–Nicolson method overshoot the actual values, while 
those generated by the finite-difference method (Figure 10.11) undershoot the exact 
values.

10.3.2.1 � Crank–Nicolson (CN) Method versus Finite-Difference (FD) Method

In Examples 10.6 and 10.7, the value of r satisfied the condition r ≤ 1
2  so that both FD and 

CN were successfully applied, with CN yielding more accurate estimates. There are other 
situations where r does not satisfy r ≤ 1

2 , hence the FD method cannot be implemented. 
To implement FD, we must reduce the value of r, which is possible by either increasing h 
or decreasing k, causing reduction in accuracy and an increase in computations. The fol-
lowing example demonstrates that even with a substantial increase in the number of time 
steps—to assure stability and convergence of FD—the values provided by FD are not any 
more accurate than those provided by CN.
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FIGURE 10.13
The grid and numerical results in Example 10.7.
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EXAMPLE 10.8:  CRANK–NICOLSON VERSUS FINITE-DIFFERENCE

Consider the temperature distribution problem studied in Examples 10.6 and 10.7. 
Assume h = 0.25.

	 1.	 Use the CN method with r = 1 to find the temperature at the mesh points u11, 
u21, and u31 in the first time row.

	 2.	 Since r = 1 does not satisfy the condition of r ≤ 1
2 , pick r = 0.25, for example, and 

h = 0.25 as before, and apply the FD method to find the values at the points u11, 
u21, and u31 in (1). Considering the number of time steps has quadrupled, decide 
whether FD generates more accurate results than CN.

Solution

	 1.	 We first note that
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	 With r = 1, Equation 10.32 becomes

	 4 1 1 1 1 1 1 1u u u u ui j i j i j i j i j, , , , ,+ − + + + − +− − = + 	

	 Applying this equation with j = 0, we find
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	 2.	 We note that

	
r

k
h

k r
h

h
= = ⇒ = 


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=
=

=α
α
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	 Therefore, the step size along the t-axis has been reduced from k = 0.25 to 
k = 0.0625, implying that four time-step calculations are required to find the 
values of u11, u21, and u31 in (1). With r = 0.25, Equation 10.28 reduces to

	
u u u ui j ij i j i j, , ,+ − += + +( )1 1 10.5 0.25

	

	 Proceeding as always, the solution estimates at the desired mesh points 
will be calculated. It should be mentioned that with the new, smaller step 
size, k = 0.0625, the old u11, u21, and u31 in (1) are now labeled u14, u24, and u34. 
The computed values are

	

u u

u
14 34

24

3 7533
5 3079

= =
=

.
. 	

	 The numerical results obtained in (1) and (2) are summarized in Figure 10.14 
where it is readily observed that although FD used four times as many time 
levels as CN, the accuracy of the results by CN is still superior.
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10.4  Hyperbolic Partial Differential Equations

The 1D wave equation, utt = α2uxx (α = const > 0), is the simplest model of a physical sys-
tem involving a hyperbolic PDE. Specifically, consider an elastic string of length L and 
fixed at both ends. Assuming the string is driven by initial displacement f(x) and initial 
velocity g(x) only, the free vibration of the string is governed by the boundary-initial-
value problem

	 u u x L ttt xx= = > ≤ ≤ ≥α α2 0 0 0( ), ,const 	 (10.34)

	 u t u L t( , ) ( , )0 0= = 	 (10.35)

	 u x f x u x g xt( , ) ( ), ( , ) ( )0 0= = 	 (10.36)

Figure 10.15 shows that a grid is constructed using a mesh size of h in the x-direction 
and a mesh size of k in the t-direction. The terms uxx and utt in Equation 10.34 will be 
replaced by three-point central-difference approximations. Consequently, Equation 10.34 
yields

	

1
2 22 1 1

2

2 1 1
k

u u u
h

u u ui j ij i j i j i j i j, , , , ,− + − +− +( ) = − +( )α
	

(10.37)

Multiplying by k2, letting, �r k h= ( )α/ 2 and solving for ui,j+1, we find

	
u u r u r u u r

k
h

i j i j ij i j i j, , , , ,+ − − += − + −( ) + +( ) = 



1 1 1 1

2
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(10.38)

x

t

0 0.25 0.50 1

3.8673

(3.8158)

Relative
errors

5.4692

(5.3964) Exact

0.75

0.25
3.8673

3.7533 3.75335.3079

(3.8158)

FD (with k = 0.0625)

CN (with k = 0.25) 1.35%

1.64%

0.0625

0.1250

0.1875

FIGURE 10.14
Accuracy and efficiency of Crank–Nicolson versus finite-difference.
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which is known as the difference equation for the 1D wave equation using the finite-
difference method. It can be shown that the numerical method described by Equation 
10.38 is stable and convergent if �r ≤ 1.

10.4.1  Starting the Procedure

Applying Equation 10.38 along the j = 0 level, we have

	 u u r u r u ui i i i i, , , , ,1 1 0 1 0 1 02 1= − + −( ) + +( )− − +� �
	 (10.39)

The quantities ui0, ui−1,0, and ui+1,0 are available from the initial displacement, but ui,−1 is 
not yet known. To find ui,−1, we use the information on the initial velocity ut(x, 0) = g(x). 
Let xi = ih and gi = g(xi). Using the central-difference formula for ut(xi, 0),

	

u u
k

g u u kgi i
i

u

i i i

i
, ,

, ,

,
1 1

1 12
2

1− = ⇒ = −−
−

−Solve for 

	

Inserting this into Equation 10.39,

	
u r u r u u kgi i i i i, , , ,1 0 1 0 1 01

1
2

= −( ) + +( ) +− +� �
	

(10.40)

In summary, the finite-difference approximation for the 1D wave equation is imple-
mented as follows. First apply Equation 10.40 using the knowledge of initial displacement 
and velocity. This gives the values of u along the first time step, j = 1. From this point on, 
apply 10.38 to find u at the mesh points on the higher time levels.

The user-defined function Wave1DFD uses the finite-difference approach to solve the 1D 
wave equation subject to zero boundary conditions and prescribed initial displacement 
and velocity. The function returns a failure message if r = (kα/h)2 > 1. The function returns 

0
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FIGURE 10.15
Region and grid used for solving the 1D wave equation.
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the approximate solution at the interior mesh points, as well as the values at the boundary 
points in a pattern that resembles the gridded region.

EXAMPLE 10.9:  FREE VIBRATION OF AN ELASTIC STRING

Consider an elastic string of length L = 2 with α = 1, fixed at both ends. Suppose the 
string is subject to an initial displacement f(x) = 5 sin(πx/2) and zero initial velocity, 
g(x) = 0. Using h = 0.4 = k, find the displacement u(x, t) of the string for 0 ≤ x ≤ L and 
0 ≤ t ≤ 2. All parameters are in consistent physical units. The exact solution is given by

	
u x t

x t
( , ) sin cos= 5

2 2
π π

	

Solution

We first calculate �r k h= =( )α/ 2 1. To find the values of u at the j = 1 level (t = 0.4), we 
apply Equation 10.40. But since gi = 0 and �r = 1, Equation 10.40 simplifies to

	
u u u ii i i, , , , , , ,1

1
2 1 0 1 0 1 2 3 4= +( ) =− + 	

so that

	
u u u u u u u u u u u11

1
2 00 20 21

1
2 10 30 31

1
2 20 40 41

1
2 30= +( ) = +( ) = +( ) = +, , , uu50( ) 	

function u = Wave1DFD(t,x,u0,ut0,alpha)
%
%  Wave1DFD numerically solves the one-dimensional wave equation, with zero
%  boundary conditions, using the finite-difference method.
% 
%    u = Wave1DFD(t,x,u0,ut0,alpha), where
%
%      t is the row vector of times,
%      x is the row vector of x positions,
%      u0 is the row vector of initial displacements for x positions,
%      ut0 is the row vector of initial velocities for x positions,
%      alpha is a given parameter of the wave equation,
%
%      u is the approximate solution at the mesh points.
%
u = u0(:); ut = ut0(:);    % u and ut must be column vectors
k = t(2)-t(1); h = x(2)-x(1); r = (k*alpha/h)^2;
if r > 1,
    warning('Method is unstable and divergent. Results will be inaccurate.')
end 
i = 2:length(x)-1;
u(i,2) = (1-r)*u(i,1) + r/2*(u(i-1,1) + u(i+1,1)) + k*ut(i);
for j = 2:length(t)-1,
    u(i,j+1) = -u(i,j-1) + 2*(1-r)*u(i,j) + r*(u(i-1,j) + u(i+1,j));
end
u = flipud(u');
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This way, the estimates at all four interior mesh points along j = 1 are determined. 
For higher time level, we use 10.38 which simplifies to

	 u u u u i ji j i j i j i j, , , , , , , , ,+ − − += − + + =1 1 1 1 1 2 3 4 	 (10.41)

To find the four estimates on the j = 2 level, for example, we fix j = 1 in Equation 10.41, 
vary i = 1,2,3,4, and use the boundary values, as well as those obtained previously 
on the j = 1 level. As a result, we find u12, u22, u32, and u42. Continuing in this manner, 
estimates at all desired mesh points will be calculated; see Figure 10.16. These results 
can be readily verified by executing the user-defined function Wave1DFD.

>> t = 0:0.4:2; x = 0:0.4:2;
>> u0 = 5.*sin(pi*x/2); ut0 = zeros(length(x),1);
>> u = Wave1DFD(t,x,u0,ut0,1)

u =
	 0	 −2.9389	 −4.7553	 −4.7553	 −2.9389	 0
	 0	 −2.3776	 −3.8471	 −3.8471	 −2.3776	 0
	 0	 −0.9082	 −1.4695	 −1.4695	 −0.9082	 0
	 0	 0.9082	 1.4695	 1.4695	 0.9082	 0
	 0	 2.3776	 3.8471	 3.8471	 2.3776	 0
	 0	 2.9389	 4.7553	 4.7553	 2.9389	 0

We can also use Wave1DFD to plot the variations of u versus x for fixed values of time. 
For plotting purposes, we will use a smaller increment of 0.1 for x, and only plot the 
displacement curves for t = 0,0.3,0.6,0.9. Note that the increments h and k are constrained 
by the condition (kα/h)2 ≤ 1.

>> t = 0:0.3:0.9; x = 0:0.1:2;
>> u0 = 5.*sin(pi*x/2); ut0 = zeros(length(x),1);
>> u = Wave1DFD(t,x,u0,ut0,1); plot(x,u)    % Figure 10.17
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Exact

FIGURE 10.16
The grid and numerical results in Example 10.9.
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PROBLEM SET (CHAPTER 10)

Elliptic Partial Differential Equations (Section 10.2)

Dirichlet Problem (Laplace’s Equation)

In Problems 1 through 4,

	 a.	  Solve the Dirichlet problem described in Figure 10.18 with the specified bound-
ary conditions.

	 b.	  Confirm the results of (a) by executing DirichletPDE. Suppress the plot.

	 c.	  Reduce the mesh size by half, resolve the problem using DirichletPDE, and 
find the approximate solutions at the original three interior mesh points.
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FIGURE 10.17
Displacement of the elastic string for various fixed values of time.

h = 0.5

x

yy

x
0 2

1

u = h(y)

u = g(x)

u = k(y)

u = q(x) 0

h

uxx + uyy = 0

u10 u20 u30

u01 u11 u21 u31 u41

u12 u22 u32

FIGURE 10.18
The Dirichlet problem in Problems 1 through 4.
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	 1.	q x x x g x h y k y( ) ( ), ( ) , ( ) , ( )= − = = =120 2 0 0 0
	 2.	q x x g x x x h y k y( ) . sin( ), ( ) . ( ), ( ) , ( )= = − = =4 7 2 3 8 2 0 0π /
	 3.	q x x x g x h y k y y( ) ( ), ( ) , ( ) , ( ) ( )= + = = = −3 2 0 0 24 1
	 4.	q x g x h y y y k y y y( ) , ( ) , ( ) , ( )= = = − + = + +9 12 5 2 9 2 92 2

In Problems 5 through 8,

	 a.	  Solve the Dirichlet problem described in Figure 10.19 with the specified 
boundary conditions.

	 b.	  Confirm the results of (a) by executing DirichletPDE. Suppress the plot.

	 c.	  Reduce the mesh size by half, resolve the problem using DirichletPDE, and 
find the approximate solutions at the original four interior mesh points.

	 5.	 a h q x x g x h y y k y= = = = = =3 1 3 3, , ( ) , ( ) , ( ) , ( )
	 6.	 a h q x x g x x x h y k y y y= = = = + = = +9 3 50 9 0 12 2, , ( ) sin ( ), ( ) , ( ) , ( ) ( )π /
	 7.	 a h q x g x x x h y y y k y= = = = − − = − + =3 1 80 158 17 3 80 803 3, , ( ) , ( ) , ( ) , ( )

	 8.	 a h q x g x x h y y k y y= = = = − = =9 3 0 18 2 18 18 20, , ( ) , ( ) , ( ) sin( ), ( ) [sin(π π/ //
/

9
3 3

)
sin( )]+ πy

Dirichlet Problem (Poisson’s Equation)

In Problems 9 through 14,

	 a.	  Solve Poisson’s equation u u f x yxx yy+ = ( , ) in the specified region subject to the 
given boundary conditions.

	 b.	  Confirm the results of (a) by executing DirichletPDE. Suppress the plot.

	 c.	  Reduce the mesh size by half, resolve the problem using DirichletPDE, and 
find the approximate solutions at the original four interior mesh points.

	 9.	 f x y x y( , ) ( )( )= − −3 2 1 2, same region, grid, and boundary conditions as in 
Problem 5.

h

x

yy

x
0 a

a

u = h(y)

u = g(x)

u = k(y)

u = q(x) 0
u10 u20

u23

u01 u11 u21 u31

u13

u12 u22 u32

h

u02

uxx + uyy = 0

FIGURE 10.19
Region and grid used in Problems 5 through 8.
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	 10.	 f x y x y( , ) = −10 252 3 , same region, grid, and boundary conditions as in Problem 7.
	 11.	 f x y y x( , ) sin( )= 0.1 /π 9  same region, grid, and boundary conditions as in Problem 6.
	 12.	 f x y x y( , ) = + , same region, grid, and boundary conditions as in Problem 8.
	 13.	 f x y y x( , ) = − + 1, same region and grid as in Figure 10.19 with a = 1.2 and 

boundary conditions described by

	 q x x g x x h y y k y y( ) , ( ) , ( ) , ( )= = + = = +2 21.2 1.4 1.44 	

	 14.	 f x y x( , ) sin= π , same region and grid as in Figure 10.19 with a = 1.8 and boundary 
conditions described by

	 q x x g x h y y k y( ) , ( ) , ( ) , ( )= = = =1.8 1.8 	

PRADI Method

	 15.	Referring to Example 10.2,
	 a.	  Perform the second iteration to calculate the estimates u u u u11

2
21
2

12
2

22
2( ) ( ) ( ) ( ), , , . 

Compare the corresponding relative errors with those at the completion of one 
iteration step.

	 b.	  Verify the results of (a) by executing the user-defined function PRADI.

	 c.	  Solve the Dirichlet problem by executing PRADI with default values for 
tol and kmax.

	 16.	Consider the Dirichlet problem described in Figure 10.20.
	 a.	  Perform one full iteration step of the PRADI method using starting values 

of 0.4 for the interior mesh points. How would varying the starting values 
impact the estimates at the interior grid points?

	 b.	  Verify the numerical results of (a) by executing PRADI.

 In Problems 17 through 22, perform one complete iteration step of the PRADI method 
using the given starting values for the interior mesh points in the specified region and 
subject to the given boundary conditions.

	 17.	uxx + uyy = 0 in the region, and with the boundary conditions, described in 
Problem 5; starting values of 5.

h = 0.5

x

yy

x
0 2

1

u = 0

u = 0

u = 0

u = sin(πx/2)

0

h

uxx + uyy = 0

u10 u20 u30

u01 u11 u21 u31

u41

u12 u22 u32

FIGURE 10.20
Region and grid in Problem 16.
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	 18.	uxx + uyy = 0 in the region, and with the boundary conditions, described in 
Problem 7; starting values of 80.

	 19.	uxx + uyy = 0 in the region, and with the boundary conditions, described in 
Problem 6; starting values of 10.

	 20.	u u x yxx yy+ = +  in the region, and with the boundary conditions, described in 
Problem 8; starting values of 0.

	 21.	Problem 13; starting values of 2.8.
	 22.	Problem 14; starting values of 4.

Mixed Problem

 In Problems 23 through 28, solve the mixed problem in the region shown in Figure 
10.21 subject to the boundary conditions provided. In all cases, use a mesh size of h = 1.

	 23.	 a b u y x u u y= = ∂ ∂ = + = =3 2 2 1 0 2, , : , : , : , Top BC /  Bottom BC  Left BC Rigght BC :

u y= +2 1

	 24.	 a b u x u x u x= = = − = ∂ ∂ =3 2 1 0, , : , : , : , Top BC  Bottom BC  Left BC / Rightt BC
/

:
∂ ∂ =u x 2

	 25.	 a b u y x u u= = ∂ ∂ = = =3 2 0 0, , : , : , : , Top BC /  Bottom BC  Left BC Right BBC 1.5:u y= 2

	 26.	 a b u y x u u= = ∂ ∂ = = =3 2 0 02, , : , : , : , Top BC /  Bottom BC  Left BC Right  BC : u y= 3

	

27.

	

a b u x u x u= = = − + = − =3 3 2 1 5 52, , : ( ) , : , : , Top BC  Bottom BC  Left BC Riight BC
/

:
∂ ∂ =u x 1

	 28.	 a b u y x u x u= = ∂ ∂ = = − =3 3 3 3 3, , : , : , : , Top BC /  Bottom BC  Left BC Righht BC :

u y= 2 2

y

x
0 a

b

Le
ft 

BC
Right BC

Bottom BC

Top BC

uxx + uyy = 0

FIGURE 10.21
The region in Problems 23 through 28.
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 In Problems 29 and 30, solve the mixed problem in the region shown in Figure 10.22 
subject to the boundary conditions provided. In both cases, use a mesh size of h = 1.

	 29.	 a b u x u x u y= = = + = =2 3 9 32 2, , : , : , : , Top BC  Bottom BC  Left BC  Rightt BC

/ 0.1

:

( )∂ ∂ = −u x y4 3

	 f x y x y( , ) = +1
3

2 1
2

2

	

	 30.	 a b u y x u u= = ∂ ∂ = − = =3 2 2 1 1 1, , : , : , : , Top BC /  Bottom BC  Left BC  Rigght BC
/

:
∂ ∂ =u x y2

	 f x y xy( , ) = 0.2 	

More Complex Regions

	 31.	  Solve uxx + uyy = 0 in the region shown in Figure 10.23 subject to the indicated 
boundary conditions. The curved portion of boundary obeys x y2 2 41+ = .

	 32.	  Solve uxx + uyy = 0 in the region shown in Figure 10.24 subject to the indicated 
boundary conditions. The slanted portion of boundary obeys y x+ = 8.

	 33.	  Solve u u x yxx yy+ = 0.5 2  in the region shown in Figure 10.24 subject to the 
indicated boundary conditions. The slanted portion of boundary obeys y x+ = 8.

	 34.	  Solve uxx + uyy = 0 in the region shown in Figure 10.25 subject to the indicated 
boundary conditions. The curved portion of boundary obeys ( ) ( )x y− + − =7 9 162 2 .

Parabolic Partial Differential Equations (Section 10.3)

Finite-Difference Method

	 35.	Consider a laterally insulated wire of length L = 2 and α = 1, whose ends are kept 
at zero temperature, subjected to initial temperature f x x( ) sin( )= 10 2π / .

	 a.	  Using the finite-difference method, find the estimated values of tem-
perature, u x t( , ), 0 2≤ ≤x , 0 ≤ ≤t 0.16, at the mesh points generated by h = 0.4 

y

x
0 a

b

Le
ft 

BC
Right BC

Bottom BC

Top BC

uxx + uyy = f (x, y)

FIGURE 10.22
The region in Problems 29 and 30.
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and k = 0.04 . Also calculate the maximum % relative error at each time level. 
The exact solution is given by u x t x e t

Exact /( , ) sin( ) /= −10 2
2 4π π .

	 b.	  Confirm the temperature estimates at the mesh points reported in (a) 
by executing Heat1DFD.

	 36.	Consider a laterally insulated wire of length L = 2 and α = 1, whose ends are kept 
at zero temperature, subjected to initial temperature

	
f x

x x

x x
( ) =

≤ ≤
− ≤ ≤





if
if 1

0 1
2 2 	

	 a.	  Using the finite-difference method, compute the estimated values of tem-
perature, u x t( , ), 0 2≤ ≤x , 0 ≤ ≤t 0.5, at the mesh points generated by h = 0.50, 

y

x
0 2 4 5

2

4

6

5 (x3 – 3x)u =

u = 2x2

1
2 yu = 3y2 + y

u = 0

u = 0

FIGURE 10.23
The region in Problem 31.

y

0 42 6

4

2

5
u = x2 + 5
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u = 0

x

1
2 yu = 8y3 + y

FIGURE 10.24
The region in Problem 32.
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k = 0.125. Also calculate the maximum % relative error at each time level. 
The exact solution is given by u x t x e t

Exact / /( , ) ( )sin( ) /≅ −8 22 42
π π π .

	 b.	  Confirm the temperature estimates at the mesh points reported in 
(a) by executing Heat1DFD.

	 37.	  Reconsider the wire in Problem 36. Assuming all information is unchanged 
except for k = 0.0625, calculate the temperature estimate u( , )0.5 0.125 , and compare 
the corresponding relative error with that obtained in Problem 36.

	 38.	  Reconsider the wire in Problem 35. Assuming all information is unchanged 
except for k = 0.02, calculate the temperature estimate u( , )0.4 0.04 , and compare 
the corresponding relative error with that obtained in Problem 35.

	 39.	Consider a laterally insulated wire of length L = 1 and α = 1, whose ends are kept 
at zero temperature, subjected to initial temperature f x x x( ) ( )= −1 .

	 a.	  Using the finite-difference method, find the estimated values of tempera-
ture, u x t( , ), 0 1≤ ≤x , 0 ≤ ≤t 0.04, at the mesh points generated by h = 0.2 and 
k = 0.01.

	 b.	  Confirm the numerical results of (a) using Heat1DFD.

	 40.	  Write a user-defined function with function call u = Heat1DFD_gen(t,x,​
u0,alpha,q,g) that uses the finite-difference method to solve the 1D heat equation 
subject to general boundary conditions. All arguments are as in Heat1DFD, while 
the two new parameters q and g are anonymous functions respectively represent-
ing u t( , )0  and u L t( , ). Using Heat1DFD_gen find the temperature estimates for a 
laterally insulated wire of length L = 1 and α = 1, subjected to initial temperature 
f x x x( ) ( )= −1  and boundary conditions u t( , )0 0= , u t t( , )1 = , 0 0 05< <t . . Construct 
a grid using h = 0.2, k = 0.01.

	 41.	  Using the user-defined function Heat1DFD_gen (see Problem 40) find the 
temperature estimates for a laterally insulated wire of length L = 3 and α = 0.8, 

y

7630

3

6

9
u = 0

u = x2 – x

B
A

u = 42

u = 0

u = 6x

x

FIGURE 10.25
The region in Problem 34.
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subjected to initial temperature f x x( ) sin= π  and boundary conditions u t( , )0 1= , 
u t( , )3 1= , 0 0 3< <t . . Construct a grid using h = 0.3, k = 0.05.

	 42.	  Write a user-defined function with function call u = Heat1DFD_insul_
ends(t,x,u0,alpha) that uses the finite-difference method to solve the 1D heat 
equation subject to insulated ends, that is, u tx( , )0 0=  and u L tx( , ) = 0. Note that 
the difference equation must be applied at the boundary mesh points as well since 
the estimates at these points are now part of the unknown vector. Use central-
difference formuls to approximate the first partial derivative at these points. 
All  arguments are as in Heat1DFD. Using Heat1DFD_insul_ends find the 
temperature estimates for a laterally insulated wire of length L = 1 and , α = 1 sub-
jected to initial temperature f x x x( ) ( )= −1  and insulated ends. Construct a grid 
using h = 0.2, k = 0.01, and assume 0 0 05< <t . .

Crank–Nicolson Method

	 43.	Consider a laterally insulated wire of length L = 1 and α = 0 5. , whose ends are kept 
at zero temperature, subjected to initial temperature f x x x( ) sin sin= +π π2 .

	 a.	  Using the Crank–Nicolson method, compute the estimated values of 
temperature, u x t( , ), 0 1≤ ≤x , 0 ≤ ≤t 0.25, at the mesh points generated by 
h = 0.25 and k = 0.125.

	 b.	  Confirm the numerical results of (a) using Heat1DCN.
	 44.	Consider a laterally insulated wire of length L = 2 and α = 1, whose ends are kept 

at zero temperature, subjected to initial temperature

	
f x

x x

x x
( ) =

≤ ≤
− ≤ ≤





if
if 1

0 1
2 2 	

	 a.	  Using the Crank–Nicolson method, compute the estimated values of tem-
perature, u x t( , ), 0 2≤ ≤x , 0 ≤ ≤t 0.25, at the mesh points generated by h = 0.50 
and k = 0.125. Calculate the maximum % relative error at each time level, and 
compare with those corresponding to the finite-difference method (Problem 36). 
The exact solution is given in closed form as u x t x e t

Exact / /( , ) ( )sin( ) /≅ −8 22 42
π π π .

	 b.	  Confirm the temperature estimates at the mesh points reported in (a) by 
executing Heat1DCN.

	 45.	Consider a laterally insulated wire of length L = 3 and α = 1 5. , whose ends are kept 
at zero temperature, subjected to initial temperature f x x x( ) sin( ) sin= +π π/3 2 .

	 a.	  Using the Crank–Nicolson method, compute the estimated values of tem-
perature, u x t( , ), 0 3≤ ≤x , 0 ≤ ≤t 0.25, at the mesh points generated by h = 0.75 
and k = 0.125.

	 b.	  Confirm the numerical results of (a) using Heat1DCN.
	 46.	Repeat Problem 45 for an initial temperature of f x x x( ) . ( )= −0 5 3 .

	 47.	  Consider a laterally insulated wire of length L = 1 and α = 0 7071. , with ends 
kept at zero temperature, subjected to initial temperature f x x( ) cos= −1 2π . 
Let h = 0 25. .
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	 a.	 Find the temperature estimates, u x t( , ), 0 1≤ ≤x , 0 ≤ ≤t 0.5, using Heat1DCN 
with r = 1.

	 b.	 Adjust the time step size so that r = 0 5. , and apply Heat1DFD to find the esti-
mates at the mesh points. Compare the numerical results by the two methods 
at the time level t = 0 125. .

	 48.	  Consider a laterally insulated wire of length L = 0 5.  and α = 1, with ends kept 
at zero temperature, subjected to initial temperature f x x x( ) ( )= −1 2 . Let h = 0 1. .

	 a.	 Find the temperature estimates, u x t( , ), 0 0 5≤ ≤x . , 0 ≤ ≤t 0.04, using the 
Heat1DCN with k = 0 01. .

	 b.	 Reduce the time step size by half and apply Heat1DFD to find the estimates 
at the mesh points. Compare the numerical results by the two methods at the 
time level t = 0 01. .

	 49.	  Consider a laterally insulated wire of length L = 2 and α = 1, subjected to ini-
tial temperature f x x x( ) ( )= −3 2  and boundary conditions u t( , )0 1= , u t t( , ) ,2 =  
0 0 25< <t . . Construct a grid using h = 0.5, k = 0.125. Find the temperature esti-
mates at the mesh points using the Crank–Nicolson method.

	 50.	  Write a user-defined function with function call u = Heat1DCN_gen(t,x,u0,​
alpha,q,g) that uses the Crank–Nicolson method to solve the 1D heat equation 
subject to general boundary conditions. All arguments are as in Heat1DCN, while 
the two new parameters q and g are anonymous functions respectively represent-
ing u t( , )0  and u L t( , ). Using Heat1DCN_gen find the temperature estimates at the 
mesh points for the problem formulated in Problem 49.

Hyperbolic Partial Differential Equations (Section 10.4)

In Problems 51 through 56, an elastic string of length L with constant α, fixed at both ends, 
is considered. The string is subject to initial displacement f x( ) and initial velocity g x( ).

	 a.	  Using the finite-difference method with the indicated mesh sizes h and k, find 
the estimates for displacement u x t( , ) for 0 ≤ ≤x L and the given time interval.

	 b.	  Confirm the numerical results of (a) using Wave1DFD.

	 51.	 L f x x x g x h k t= = = − = = = ≤ ≤0.5 0.1 0.3, , ( ) ( ), ( ) , ,α 1 10 1 2 0 0
	 52.	 L f x x g x h k t= = = = = = ≤ ≤1 1 6 2 0 0, , ( ) sin , ( ) , ,α π 0.2 0.4
	 53.	 L f x g x x h k t= = = = = = ≤ ≤1 4 0 90 02, , ( ) , ( ) , , ,α 0.2 0.05 0.15
	 54.	 L f x g x x h k t= = = = − = = ≤ ≤0.5 0.1 0.2, , ( ) , ( ) sin( ), ,α π1 0 2 0
	 55.	L = 1, α = 2, f(x) = x(1 − x), g(x) = 10x, h = 0.2, k = 0.1, 0 ≤ t ≤ 0.3
	 56.	L = 1, α = 2, f(x) = x(1 − x), g(x) = sin πx, h = 0.2, k = 0.1, 0 ≤ t ≤ 0.3
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1/3 rule, 269, 270
3/8 rule, 272–273

Computational error, 133
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example, 202–204, 204–205
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Dominant eigenvalue, 395
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399
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complex regions, 437–439
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Error estimate
for composite Simpson’s 1/3 rule, 270
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absolute and relative errors, 15
algorithm, 12
binary and hexadecimal numbers, 13
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error bound, 16
example, 14–15, 15, 16, 18–19
floating point and rounding errors, 13–14
problem set, 24–25
round-off, 14–15
sources of computational error, 12–13
subtraction of nearly equal numbers, 17–19
transmission of error from source to final 

result, 16–17
truncation error, 12

EulerODESystem function, 333
Euler’s implicit method, 341–342
Euler’s method, 302, 341; see also Numerical 

solution of initial-value problems
calculation of local and global truncation 

errors, 305–307
error analysis for, 305
EulerODE function, 303
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higher-order Taylor methods, 307–309, 

351–352
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second-order Taylor method, 308–309
for systems, 332–335

Explicit method, 323
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F

Fast Fourier transform (FFT), 216
FD method, see Finite-difference method
FFT, see Fast Fourier transform
Fifth-order accurate estimate, 321
Fifth-order Runge–Kutta method (RK5 

method), 319–320; see also Runge–Kutta 
methods

Finite-difference formulas, 249; see also 
Numerical differentiation

example, 253–254, 255
for first derivative, 250
for first, second, third, and fourth 

derivatives, 257–258
for first to fourth derivatives, 256
problem set, 286–290
second derivative, 254
three-point backward difference formula, 

252–253, 254
three-point central difference 

formula, 255
three-point forward difference formula, 253, 

254–255
two-point backward difference formula, 

250–251

two-point central difference formula, 
251–252

two-point finite differences to approximate 
first derivative, 252

two-point forward difference formula, 251
Finite-difference method (FD method), 

374–378, 387–388, 440; see also 
Parabolic partial differential 
equations

boundary-initial-value problem, 440
vs. Crank–Nicolson method, 446–448
difference equation for 1D heat 

equation, 441
example, 442–443
Heat1DFD function, 441–442
problem set, 456–459
region and grid used for solving 1D heat 

equation, 440
stability and convergence of, 441

First-order initial-value problem, 301
Fitting interface in MATLAB, 208
FixedPoint fuctions, 67–68
Fixed-point iteration convergence, 66–67
Fixed-point iteration method; see also Numerical 

solution of systems of equations
convergence of, 143
example, 144–146
problem set, 157–160
for system of nonlinear equations, 143

Fixed-point method, 65; see also Numerical 
solution of equations of single variable

convergence of fixed-point iteration, 66–67
example, 68–71
FixedPoint function, 67–68
fixed point of iteration function, 65
monotone convergence, 66
note on convergence, 67
oscillatory convergence, 66
problem set, 90–92
rate of convergence of fixed-point iteration, 

71–72
suitable iteration function selection, 

66–67
Floating point and rounding errors, 13–14
Fourier approximation/interpolation, 209; 

see also Interpolation
case study, 218–219
Cooley–Tukey algorithm, 216, 219–220
discrete Fourier transform, 215–216
example, 212–215, 221–223
fast Fourier transform, 216
fft function, 220–223
linear transformation of data, 210
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Fourier approximation/interpolation 
(Continued)

problem set, 245–248
Sande–Tukey algorithm, 216, 217–218
sinusoidal curve fitting, 209–210
TrigPoly function, 211–212

Fourth-order Runge–Kutta methods (RK4 
methods), 316; see also Runge–Kutta 
methods

classical, 317
example, 318–319
increment function, 316
RK4 function, 318

Function values
at endpoints, 195
at interior knots, 196

fzero function, 60–61, 84

G

Gauss elimination method, 96; see also 
Numerical solution of systems of 
equations

BackSub function, 100, 101
back substitution, 103
counting number of operations, 102
elimination, 102–103
example, 97–98, 99, 102, 104
GaussPivotScale function, 100, 101
MATLAB built-in function “\”, 106
partial pivoting with row scaling, 98–99
permutation matrices, 99
problem set, 146–149
Thomas method, 104–106
ThomasMethod function, 105–106
tridiagonal systems, 103

Gaussian quadrature, 280; see also Numerical 
integration

example, 283–285
improved integral estimate, 280
integral estimate by trapezoidal rule, 280
linear transformation of data, 281
problem set, 297–299
weights and nodes used in, 283

GaussPivotScale function, 100, 101
GaussSeidel function, 127–128
Gauss–Seidel iteration method, 125–127

convergence, 127–130
General iterative method, 120

convergence, 120–121
Given’s method, 407
Grid lines, 424

H

Heat1DCN function, 444–445
Heat1DFD function, 441–442
Hessenberg matrix, 407
HeunODE function, 312–313
HeunODESystem function, 335
Heun’s method, 311; see also Second-order 

Runge–Kutta methods
graphical representation of, 312–313
HeunODE function, 312–313
Heun’s predictor–corrector method, 327
Heun’s RK3 method, 315
predictor–corrector method, 327
for systems, 335–336

Higher-order Runge–Kutta methods, 319–320
Higher-order Taylor methods, 307–309, 351–352
Householder function, 410
HouseholderQR function, 414
Householder’s tridiagonalization method, 407, 

408; see also Matrix eigenvalue problem
determination of symmetric orthogonal Pk, 

409
example, 410–411
Householder function, 410
problem set, 421–422
symmetric matrices, 408–409

Hyperbolic partial differential equations, 448; 
see also Partial differential equation

example, 450–452
1D wave equation, 448
problem set, 460
procedure, 449
region and grid used to solve 1D wave 

equation, 449
Wave1DFD function, 449, 450

I

if Command, 42–43
Ill-conditioning and error analysis, 131; see also 

Numerical solution of systems of 
equations

computational error, 133
condition number, 131
consequences of ill-conditioning, 135
effects of parameter change on solution, 

136–138
example, 131–132, 137–138
ill-conditioning, 132
indicators of ill-conditioning, 133
problem set, 155

Implicit methods, 323
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Improper integrals, 285–286
problem set, 299–300

Improved Euler’s method, 311
Improved integral estimate, 280
Increment function, 315, 316
Indirect methods vs. direct methods for large 

systems, 130–131
Initial-value problem (IVP), 2, 301; see also 

Numerical solution of initial-value 
problems

example, 346–347, 348–349, 349–350
MATLAB built-in functions, 345
non-stiff equations, 345
ODE solvers, 345, 347–348
problem set, 363–365
single first-order IVP, 345
stiff equations, 349–350
system of first-order, 348–349

Integral estimate by trapezoidal rule, 280
Integrand, 262
Interactive curve fitting and interpolation in 

MATLAB, 208
Interpolation, 161; see also Fourier 

approximation/interpolation; Linear 
regression; Polynomial interpolation; 
Polynomial regression; Spline 
interpolation

least-squares regression, 161
problem set, 223
using fft, 220–223

Inverse, 398–399
of matrix, 8–9

Iteration function selection, 66–67
Iterative methods, 19; see also Differential 

equations; Errors and approximations; 
Matrix analysis; Matrix eigenvalue 
problem

algorithms, 19
example, 19–20, 21, 22
fundamental, 20–21
problem set, 25
rate of convergence of, 21–22

Iterative solution of linear systems, 116; see also 
Numerical solution of systems of 
equations

convergence of Jacobi iteration method, 
122–125

example, 117–118, 118–119, 124–125, 128–130
GaussSeidel function, 127–128
Gauss–Seidel iteration method, 125–127
Gauss–Seidel iteration method convergence, 

127–130
general iterative method, 120

general iterative method convergence, 120–121
indirect methods vs. direct methods for 

large systems, 130–131
Jacobi function, 123–124
Jacobi iteration method, 121–122
matrix norms, 118–119
problem set, 152–155
vector and matrix norms compatibility, 

119–120
vector norms, 116

IVP, see Initial-value problem

J

Jacobi, 123–124
Jacobian matrix, 139
Jacobi iteration method, 121–122

convergence, 122–125
Jacobi’s method, 407

K

Knots, 194

L

Lagrange coefficient functions, 180
LagrangeInterp, 181
Lagrange interpolating polynomials, 180–183
Lagrange interpolation drawbacks, 

183–184
Laplace’s equation, difference equation 

for, 425
Least-squares regression, 161
Linear fits with same error, 164
Linearization of nonlinear data, 167; see also 

Interpolation
for curve fitting, 168
example, 168–172
exponential function, 167
power function, 167
problem set, 227–230
saturation function, 168

Linear regression, 162; see also Interpolation
best fit criterion, 163–164
example, 165–167
linear fit of data and individual errors, 162
linear function, 162
linear least-squares regression, 164
LinearRegression function, 165
problem set, 223–227
two linear fits with same total error, 164
zero total error based on criterion, 163
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Linear; see also Spline interpolation
damping force, 249
first-order ODEs, 1
fit of data, 162
function, 162
second-order PDEs, 423
splines, 194–195
systems of equations, 95
transformation of data, 210, 281

Linspace, 30
LU factorization methods, 107; see also Cholesky 

factorization; Doolittle factorization; 
Numerical solution of systems of 
equations

finding L and U, 108
problem set, 149–150

M

MATLAB®, 27; see also MATLAB vectors and 
matrices; Plotting; Program flow 
control; Symbolic Math Toolbox

built-in functions, 27
differential equations, 44
format options, 28
formatted data, 43–44
problem set, 51–54
relational operators, 28
rounding commands, 27, 28

MATLAB built-in functions, 27, 345
“\”, 106
bvp4c for, 381, 390–391
bvpinit, 383
cond, 155
cubic splines using, 208
diff, 260–261, 290
eig, 403
fft, 220
fzero, 60–61
interp, 1 and spline, 205–207
jacobian, 141
lu and chol, 115–116
norm, 117, 118, 119, 152
Polyfit and Polyval, 178–179
qr, 413
quad and trapz, 273
roots, 94
to solve initial-value problems, 

345, 360
MATLAB function, 38–39
MATLAB vectors and matrices, 29; see also 

MATLAB®

determinant, transpose, and inverse, 32

diagonal matrices and diagonals of matrix, 
34–36

element-by-element operations, 
33–34

linspace function, 30
matrices, 30–32
slash operators, 33

Matrix
determinant of, 6
determination, 412
diagonalization, 11
diagonals of, 34–36
generation, 404
Hessenberg, 407
inverse of, 8–9
Jacobian, 139
norms, 118–119
special, 6
symmetric, 408–409

Matrix analysis, 4; see also Differential 
equations; Errors and approximations; 
Iterative methods; Matrix eigenvalue 
problem

Cramer’s rule, 7–8
determinant of matrix, 6
example, 6, 7–8, 8–9
inverse of matrix, 8–9
matrix operations, 5
matrix transpose, 5
problem set, 22–24
properties of determinant, 6–7
properties of inverse, 9
solving linear system of equations, 9
special matrices, 6

Matrix eigenvalue problem, 393; see also 
Deflation methods; Householder’s 
tridiagonalization method; Power 
method; QR factorization method; 
Shifted inverse power method

eig function, 403
example, 415–416
Given’s method, 407
Hessenberg matrix, 407
HouseholderQR function, 414
Jacobi’s method, 407
problem set, 418–422
qr function, 413
terminating condition used in 

HouseholderQR function, 
414–416

transformation to Hessenberg form, 
417–418
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Matrix eigenvalue problem, 9; see also 
Differential equations; Errors and 
approximations; Iterative methods; 
Matrix analysis

eigenvalue properties of matrices, 12
example, 10–11
matrix diagonalization, 11
problem set, 24
similarity transformation, 11
solving, 10–11

Mesh points, 424
Method of false position, see Regula falsi method
Method of undetermined coefficients, 3
M file functions and scripts, 47; see also 

MATLAB®

CircFUNCTION, 48
Editor Window, 47
nargin command, 49
script file creation, 50–51
setting default values for input variables, 

49–50
Mixed problem, 436–437; see also Elliptic partial 

differential equations
problem set, 455–456

Monotone convergence, 66
Multiple plots, 46–47
Multistep methods, 322; see also Numerical 

solution of initial-value problems; 
Predictor–corrector methods

AdamsBashforth4 function, 325
Adams–Bashforth method, 323–325
Adams–Moulton method, 325–326
advantages, 322
explicit method, 323
implicit methods, 323
problem set, 355–356

N

nargin command, 49
Neumann problem, 433; see also Elliptic partial 

differential equations
example, 435–436
existence of solution for, 435

Newton–Cotes formulas, 262; see also Numerical 
integration

Newton divided-difference interpolating 
polynomials, 184–190

Newton forward-difference interpolating 
polynomials, 191–193

NewtonInterp, 187
Newton interpolation; see also Interpolation

problem set, 236–241

NewtonMod, 78–79
Newton–Raphson method, see Newton’s 

method
Newton’s method, 72; see also Numerical 

solution of equations of single variable
convergence of, 142
example, 74–76, 77–78, 79–80, 140–141
geometry of, 73
Jacobian matrix, 139
modified, 78–80
NewtonMod, 78–79
notes on, 77
problem set, 92–93, 157–160
rate of convergence of, 76
solving system of n nonlinear 

equations, 142
for system of nonlinear equations, 

138–142
Non-stiff equations, 345
Not-a-knot condition, 207
Notation, 330

for partial derivatives, 423
Numerical differentiation, 249; see also Finite-

difference formulas; Numerical 
integration; Richardson’s extrapolation

derivative estimates for non-evenly spaced 
data, 259

finite-difference formulas for, 249
MATLAB built-in functions diff and 

polyder, 260–261
problem set, 286–290

Numerical integration, 261; see also 
Gaussian quadrature; Numerical 
differentiation; Rectangular rule; 
Romberg integration; Simpson’s rules; 
Trapezoidal rule

of analytical functions, 275
improper integrals, 285–286
integrand, 262
Newton–Cotes formulas, 262
problem set, 290
quad, 273–274
trapz, 273–274

Numerical methods, 12; see also Errors 
and approximations; Iterative 
methods

Numerical solution of equations of single 
variable, 55; see also Equations with 
several roots; Fixed-point method; 
Newton’s method; Regula falsi 
method; Secant method

bisection method, 55–60
bracketing methods, 55, 57
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Numerical solution of equations of single 
variable (Continued)

classification of methods, 56
example, 59–60
fzero function, 60–61
numerical solution of equations, 55
open methods, 58
problem set, 88–94

Numerical solution of initial-value problems, 
301; see also Euler’s method; Initial-
value problem; Multistep methods; 
Numerical stability; Runge–Kutta 
methods; Systems of ordinary 
differential equations

classification of, 302
example, 344–345
first-order initial-value problem, 301
one-step methods, 301–302
problem set, 350
stiff differential equations, 343–345

Numerical solution of linear 
systems, 96

Numerical solution of system of first-order 
ODEs, 332

Numerical solution of systems of equations, 
95; see also Fixed-point iteration 
method; Gauss elimination method; 
Ill-conditioning and error analysis; 
Iterative solution of linear systems; 
LU factorization methods; Newton’s 
method

classification of methods to solve linear 
system of equations, 96

linear systems of equations, 95
numerical solution of linear systems, 96
problem set, 146
systems of nonlinear equations, 138

Numerical stability, 340; see also Numerical 
solution of initial-value problems

Euler’s implicit method, 341–342
Euler’s method, 341
example, 342–343
problem set, 362–363

Nzeros, 83–84

O

ODE, see Ordinary differential 
equations

1D heat equation
difference equation for, 441, 444
solving, 440

One-dimensional heat equation, 424; see also 
Partial differential equation

One-dimensional wave equation, 424; see also 
Partial differential equation

1D wave equation, 448
solving, 449

One-step methods, 301–302
Open methods, 58; see also Numerical solution 

of equations of single variable
Operations count, 112, 115
Ordinary differential equations (ODE), 1, 345; 

see also Differential equations; Partial 
differential equation

with constant coefficients, 3
fourth-order, 368, 391
to handle systems of first-order initial-value, 

348
linear first-order, 1
nth-order, 1, 368
solvers, 345, 347
as standard form of Equation, 2

Oscillatory convergence, 66

P

Parabolic partial differential equations, 440; 
see also Crank–Nicolson method; 
Finite-difference method; Partial 
differential equation

Partial differential equation (PDE), 1, 423; 
see also Differential equations; 
Elliptic partial differential equations; 
Hyperbolic partial differential 
equations; Ordinary differential 
equations; Parabolic partial 
differential equations

linear, second-order, 423
notations for partial derivatives, 423
numerical solution of, 423
one-dimensional wave equation, 424
problem set, 452–460
two-dimensional Laplace’s equation, 424
two-dimensional Poisson’s equation, 424

Partial pivoting with row scaling, 98–99
Particular solution, 3
PDE, see Partial differential equation
Peaceman–Rachford alternating direction 

implicit method (PRADI method), 
429; see also Elliptic partial differential 
equations

example, 432–433
PRADI function, 430–431
problem set, 454–455
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Permutation matrices, 99
Pk determination, symmetric orthogonal, 409
Plotting, 45; see also MATLAB®

analytical expressions, 46
function vs. variable, 45
multiple plots, 46–47
subplot, 45–46

Polynomial interpolation, 179; see also 
Interpolation

divided differences table, 186
drawbacks of Lagrange interpolation, 

183–184
equally-spaced data, 190–191
example, 187–190, 192–193
Lagrange coefficient functions, 180
LagrangeInterp function, 181
Lagrange interpolating polynomials, 

180–183
Newton divided-difference interpolating 

polynomials, 184–190
Newton forward-difference interpolating 

polynomials, 191–193
NewtonInterp function, 187
problem set, 233–236

Polynomial regression, 172; see also 
Interpolation

cubic least-squares regression, 176–178
example, 175–176, 177–178, 178–179
Polyfit and Polyval function, 178–179
problem set, 230–233
quadratic least-squares regression, 174–176
QuadraticRegression function, 174–175
total error, 173, 174

Power function, 167
Power method, 393; see also Matrix eigenvalue 

problem
algorithm for, 395–396
different cases of dominant eigenvalue, 395
estimation of dominant eigenvalue, 393
example, 396–397, 398–399, 401–402
inverse, 398–399
PowerMethod function, 396
problem set, 418–419
sequence of scalars, 394
shifted, 401
shifted inverse, 399–400

PRADI method, 429–433, see Peaceman–
Rachford alternating direction implicit 
method

Predictor–corrector methods, 326; see also 
Multistep methods

ABM4PredCorr function, 328
Adams–Bashforth–Moulton, 327

example, 328–330
Heun’s predictor–corrector method, 327

Program flow control, 41; see also MATLAB®

if Command, 42–43
for Loop, 41–42
while Loop, 43

Q

Qk and Rk matrix determination, 412
QR factorization method, 411; see also Matrix 

eigenvalue problem
determination of Qk and Rk matrices, 412
problem set, 421–422
structure of Lk, 412–413

Quad, 273–274
Quadratic least-squares regression, 174–176
Quadratic splines, 195; see also Spline 

interpolation
example, 197–198
first derivatives at interior knots, 196
function values at endpoints, 195
function values at interior knots, 196
second derivative at left endpoint is 

zero, 196

R

Ralston’s method, 312; see also Second-order 
Runge–Kutta methods

Rectangular rule, 262; see also Numerical 
integration

composite, 262–264
error estimate for composite, 264
example, 265–266
problem set, 290–291

RegulaFalsi function, 62–63
Regula falsi method, 61; see also Numerical 

solution of equations of single variable
example, 63–64
modified, 64–65
problem set, 90
procedure, 62
user-defined RegulaFalsi function, 62–63

Relative errors, 15
Richardson’s extrapolation, 256, 275–278; see also 

Numerical differentiation; Romberg 
integration

for discrete sets of data, 259
example, 258

RK2 methods, see Second-order Runge–Kutta 
methods

RK3 methods, 315–316
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RK4 method for systems, 318, 336–337, see 
Fourth-order Runge–Kutta methods

RK5 method, see Fifth-order Runge–Kutta 
method

RKF method, see Runge–Kutta Fehlberg 
method

Romberg, 278–279
Romberg integration, 275, 279; see also 

Numerical integration; Richardson’s 
extrapolation

errors associated with composite trapezoidal 
and Simpson’s rules, 275

example, 277–278
general formula, 278
problem set, 297
Richardson’s extrapolation, 275–278
Romberg funtion, 278–279
scheme, 279

Root of equation interpreted as fixed point of 
iteration function, 65

Rounding commands, 27, 28
Round-off, 14–15
Runge–Kutta Fehlberg method (RKF method), 

320
adjustment of step size, 321–322
example, 322
fifth-order accurate estimate, 321

Runge–Kutta methods, 309; see also Fourth-
order Runge–Kutta methods; 
Numerical solution of initial-value 
problems; Runge–Kutta Fehlberg 
method; Second-order Runge–Kutta 
methods

higher-order Runge–Kutta methods, 319–320
increment function, 315
problem set, 352–355
RK3 methods, 315–316

S

Sande–Tukey algorithm, 216, 217–218; see also 
Fourier approximation/interpolation

Saturation function, 168
Script file creation, 50–51
Secant method, 81; see also Numerical solution 

of equations of single variable
consecutive elements, 81
example, 82–83
geometry of, 81
notes on, 83
problem set, 93
rate of convergence of, 83
Secant function, 81–82

Second-order ODEs with constant 
coefficients, 2

Second-order Runge–Kutta methods (RK2 
methods), 310; see also Runge–Kutta 
methods

example, 314
graphical representation of Heun’s method, 

312–313
Heun’s method, 311
improved Euler’s method, 311
Ralston’s method, 312

Second-order Taylor method, 308–309
Sequence of scalars, 394
Shifted inverse power method, 399–400; see also 

Matrix eigenvalue problem
estimation of eigenvalue nearest specified 

value, 399
notes on, 400
ShiftInvPower function, 400

Shooting method, 368–374, 386–387
Similarity transformation, 11
Simpson’s rules, 269; see also Numerical 

integration
error estimate for, 270, 273
example, 271
1/3 rule, 269
problem set, 293–297
3/8 rule, 271–272

Single first-order IVP, 345
Sinusoidal curve fitting, 209–210
Six-point molecule, 444
Slash operators, 33
Spline, 194
Spline interpolation, 161, 193; see also Cubic 

splines; Interpolation; Quadratic splines
basic fitting interface in MATLAB, 208
boundary conditions, 207
example, 206
interactive curve fitting and interpolation in 

MATLAB, 208
knots, 194
linear splines, 194–195
MATLAB built-in functions interp, 1 and 

spline, 205–207
no control over boundary conditions, 207
not-a-knot condition, 207
problem set, 241–245

State variables, 330
Step size adjustment, 321–322
Stiff differential equations, 343–345; see also 

Numerical solution of initial-value 
problems

problem set, 363
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Subtraction of nearly equal numbers, 17–19
Symbolic Math Toolbox, 36; see also MATLAB®

anonymous functions, 38
differentiation, 39–40
integration, 40–41
MATLAB function, 38–39
partial derivatives, 40
vpa command, 36

Symmetric matrices, 408–409
Symmetric orthogonal Pk determination, 409
Systems of nonlinear equations, 138
Systems of ordinary differential equations, 330; 

see also Numerical solution of initial-
value problems

classical RK4 method for systems, 336
EulerODESystem function, 333
Euler’s method for systems, 332–335
example, 331–332, 333–335, 337–340
HeunODESystem function, 335
Heun’s method for systems, 335–336
notation, 330
numerical solution of system of first-order 

ODEs, 332
problem set, 356–362
RK4System function, 336–337
state variables, 330
transformation into system of first-order 

ODEs, 330

T

10th-degree interpolating polynomial and, 193
Terminating condition used in HouseholderQR, 

414–416
Thomas method, 104–106
ThomasMethod function, 105–106
Three-point

backward difference formula, 252–253, 254
central difference formula, 255
forward difference formula, 253, 254–255

Total error, 173, 174
Transformation into system of first-order ODEs, 

330
Transformation to Hessenberg form, 417–418
Transmission of error from source to final 

result, 16–17

TrapComp, 268
Trapezoidal rule, 266; see also Numerical 

integration
composite, 267
equation of connecting line, 266
error estimate for composite, 267
example, 268
problem set, 292–293
TrapComp function, 268

Trapz, 273–274
Tridiagonal systems, 103
TrigPoly, 211–212
Truncation error, 12, 305–307; see also Errors and 

approximations
Two-dimensional Laplace’s equation, 424; 

see also Partial differential equation
Two-dimensional Poisson’s equation, 424; 

see also Partial differential equation
Two-point

backward difference formula, 250–251
central difference formula, 251–252
finite differences to approximate first 

derivative, 252
forward difference formula, 251

V

Vector and matrix norms, 119–120
Vector norms, 116
vpa command (variable precision arithmetic 

command), 36; see also Symbolic Math 
Toolbox

W

Wave1DFD, 449, 450
While Loop, 43
Wielandt’s deflation method, 403; see also 

Deflation methods
example, 405–406
matrix generated by, 404

Y

Zero total error based on criterion, 163
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