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Preface

It has been nearly 4 years since the first edition of Numerical Methods for Engineers and
Scientists Using MATLAB® was published. During this time, most of the material in the
first edition has been rigorously class tested, resulting in many enhancements and modifi-
cations to make the new edition even more effective and user-friendly.

As in the first edition, the primary objective of this book is to provide the reader
with a broad knowledge of the fundamentals of numerical methods utilized in various
disciplines in engineering and science. The powerful software MATLAB is introduced
at the outset and is assimilated throughout the book to perform symbolic, graphical, and
numerical tasks. The textbook, written at the junior/senior level, methodically covers a
wide array of techniques ranging from curve fitting a set of data to numerically solving
initial- and boundary-value problems. Each method is accompanied by at least one fully
worked-out example, followed by either a user-defined function or a MATLAB script file.
MATLAB built-in functions are also presented for each main topic covered.

This book consists of 10 chapters. Chapter 1 presents the necessary background material
and is divided into two parts: (1) differential equations, matrix analysis, and the matrix
eigenvalue problem, and (2) computational errors, approximations, iterative methods, and
rates of convergence.

Chapter 2 gives an in-depth introduction to the essentials of MATLAB as related
to numerical methods. The chapter addresses fundamental features such as built-in
functions and commands, formatting options, vector and matrix operations, program flow
control, symbolic operations, and plotting capabilities. The reader also learns how to write
a user-defined function or a MATLAB script file to perform specific tasks.

Chapters 3 and 4 introduce numerical methods for solving equations. Chapter 3 focuses
on finding roots of equations of a single variable, while Chapter 4 covers methods for
solving linear and nonlinear systems of equations.

Chapter 5 is completely devoted to curve fitting and interpolation techniques, includ-
ing the fast Fourier transform (FFT). Chapter 6 covers numerical differentiation and
integration methods. Chapters 7 and 8 present numerical methods for solving initial-value
problems and boundary-value problems, respectively.

Chapter 9 covers the numerical solution of the matrix eigenvalue problem, which entails
techniques to approximate a few or all eigenvalues of a matrix.

Chapter 10 presents numerical methods for solving elliptic, parabolic, and hyperbolic
partial differential equations, specifically those that frequently arise in engineering and
science.

Pedagogy of the Book

The book is written in a user-friendly fashion that intends to make the material easy to
follow and understand by the reader. The topics are presented systematically using the
following format:



e Each newly introduced method is accompanied by at least one fully worked-out
example showing all details.

e Thisis followed by a user-defined function, or a script file, that utilizes the method
to perform a desired task.

® The hand-calculated results are then confirmed through the execution of the user-
defined function or the script file.

e When available, built-in functions are executed for reconfirmation.

¢ Plots are regularly generated to shed light on the accuracy and implication of the
numerical results.

Exercises

A large set of exercises, of various levels of difficulty, appears at the end of each chapter
and can be worked out either using a

45 Hand calculator, or
4\ MATLAB.
In many instances, the reader is asked to prepare a user-defined function, or a script

file, that implements a specific technique. In many cases, these require simple revisions to
those already presented in the chapter.

Ancillary Material
The following will be provided to the instructors adopting the book:

® An instructor’s solutions manual (in PDF format), featuring complete solution
details of all exercises, prepared by the author.

* A web download containing all user-defined functions used throughout
the book, available at https://www.crcpress.com/Numerical-Methods-for-
Engineers-and-Scientists-Using-MATLAB-Second-Edition/Esfandiari/p/
book/9781498777421.

New to This Edition

e Chapter 2 (Introduction to MATLAB) has been extensively reinforced so that it
now covers virtually all features of MATLAB that are consistently used through-
out the book.


https://www.crcpress.com/Numerical-Methods-for-Engineers-and-Scientists-Using-MATLAB-Second-Edition/Esfandiari/p/book/9781498777421
https://www.crcpress.com/Numerical-Methods-for-Engineers-and-Scientists-Using-MATLAB-Second-Edition/Esfandiari/p/book/9781498777421
https://www.crcpress.com/Numerical-Methods-for-Engineers-and-Scientists-Using-MATLAB-Second-Edition/Esfandiari/p/book/9781498777421

® Many of the user-defined functions have been revised to become more robust and
versatile.

e Several worked-out examples have been either entirely changed or modified to
illustrate the important details of the methods under consideration.

¢ A large proportion of the end-of-chapter exercises have been carefully revamped
so that not only their objectives are clear to the reader, but also they better repre-
sent a wide spectrum of the ideas presented in each chapter.

Ramin S. Esfandiari, PhD
June 2016



1

Background and Introduction

This chapter is divided into two parts. In Part 1, a review of some essential mathematical
concepts as related to differential equations and matrix analysis is presented. In Part 2,
fundamentals of numerical methods, such as sources of computational errors, as well as
iterations and rates of convergence are introduced. The materials presented here will be
fully integrated throughout the book.

Part 1: Background

1.1 Differential Equations

Differential equations are divided into two main groups: ordinary differential equations
(ODEs) and partial differential equations (PDEs). An equation involving an unknown
function and one or more of its derivatives is called a differential equation. When there is
only one independent variable, the equation is called an ODE. If the unknown function is
a function of several independent variables, the equation is a PDE. For example, 2x +x =¢™*
is an ODE involving the unknown function x(f), its first derivative with respect to f, as well
as a given function e”. Similarly, #¥ — x’x = sint is an ODE relating x(f) and its first and sec-
ond derivatives with respect to t, as well as the function sin ¢. The derivative of the highest
order of the unknown function with respect to the independent variable is the order of
the ODE. For instance, 2%+ x = ¢™" is of order 1, while ¥ — x*x = sint is of order 2. PDEs are
discussed in Chapter 10.
Consider an nth-order ODE in the form

2, + a3, x4 X+ agx = F(t) (L1)

where x = x(f) and x® = d"x/dt". If all coefficients a,, a,, ..., a, are either constants or func-
tions of the independent variable f, then the ODE is linear. Otherwise, it is nonlinear. If
F(H) = 0, the ODE is homogeneous. Otherwise, it is nonhomogeneous. Therefore 2x +x =¢™'
is linear, t¥ — x*x = sint is nonlinear, and both are nonhomogeneous.

1.1.1 Linear, First-Order ODEs

A linear, first-order ODE can be expressed as

Divide by m

mx+apx=F(t) =  x+g(t)x=f(t) (1.2)



A general solution for Equation 1.2 is obtained as
xB)=e" Ueh Flet+ c], h(t) = J' o(t)t, = const (1.3)

A particular solution is obtained when an initial condition is prescribed. Assuming ¢, is
the initial value of ¢, a first-order initial-value problem (IVP) is described as

x+g(t)x=f(t), x(to)=xo

EXAMPLE 1.1: LINEAR, FIRST-ORDER IVP

Find the particular solution of the following IVP:
3x+2x=e¢"?, x(0)=1

Solution

We first rewrite the ODE is the standard form of Equation 1.2, as x +2x=1e™"/? so that
g(t) =32, f(t)=1e™"/>. By Equation 1.3, a general solution is obtained as

h= J%dt =2t, x(t)=e" er Le ' dt+ c} =2¢""? 4 ce?

Applying the initial condition, we find

x0)=2+c=1 = c=-

Wl

Therefore,

o~ /2 2t/3
x(t)=2¢"""-3e

1.1.2 Second-Order ODEs with Constant Coefficients

A second-order ODE in the standard form, with constant coefficients, is expressed as
X¥+mx+apx = f(t), @m,ay=const (1.4)

The corresponding second-order IVP consists of Equation 1.4 accompanied by two ini-
tial conditions. A general solution of Equation 1.4 is a superposition of the homogeneous
solution x,(t) and the particular solution x,,(f).

1.1.2.1 Homogeneous Solution

The homogeneous solution is the solution of the homogeneous equation

X+mx+apx=0 (1.5)



Assuming a solution in the form x(t) = e, with A to be determined, substituting into
Equation 1.5, and using the fact that e #0, we find

7\42+[l17\«+ﬂ0:0

This is known as the characteristic equation. The solution of Equation 1.5 is determined
according to the nature of the two roots of the characteristic equation of the ODE. These
roots, labeled A, and A,, are called the characteristic values.

1. When A, #4, (real), the homogeneous solution is

xi(t) = ™ + cpe™

2. When A, = A,, we have

xu(t) = cie™ +cote™

3. When A, = A, (complex conjugates), and A, = ¢ + io, we find

x,(t) = e (c; cos ot + ¢, sin mt)

EXAMPLE 1.2: HOMOGENEOUS, SECOND-ORDER
ODE WITH CONSTANT COEFFICIENTS

Find a general solution of

X+5x+4x=0

Solution

The characteristic equation is formed as A? + 5A + 4 = 0 so that the characteristic values
are A, = -1, A, = -4, and

x(H)=cie™ + e

1.1.2.2 Particular Solution

The particular solution of Equation 1.4 is determined by the function f(f) and how it is
related to the independent functions that constitute the homogeneous solution. The par-
ticular solution is obtained by the method of undetermined coefficients. This method is
limited in its applications only to cases where f{t) is a polynomial, an exponential function,
a sinusoidal function, or any of their combinations.

1.1.3 Method of Undetermined Coefficients

Table 1.1 lists different scenarios and the corresponding recommended x,(f). These recom-
mended forms are subject to modification in some special cases as follows. If x,(f) contains
a term that coincides with a solution of the homogeneous equation, and that the solution



TABLE 1.1
Method of Undetermined Coefficients

Term in f(f) Recommended x,,(t)
A+ A+ A+ Ay K"+ K, "1+ - + Kt + K
Aet Ker

A cos ot or A sin ot K; cos at + K, sin ot

Ae™ cos ot or Ae sin ot e"(K; cos at + K, sin o)

corresponds to a non-repeated characteristic value, then the recommended x,(f) must be
multiplied by . If the said characteristic value is repeated, then x,(f) is multiplied by ¢.

EXAMPLE 1.3: SECOND-ORDERIVP
Solve the following second-order IVP:

¥+5x+4x=1e”, x(0)=0, x(0)=-1

Solution

The homogeneous solution was previously found in Example 1.2, as x,,(f) = cje™ + c,e™*.
Since f(f)= %e_t, Table 1.1 recommends xp(t) = Ke™'. However, e~ is one of the indepen-
dent functions in the homogeneous solution, thus x,(f) must be modified. Since e™* is
associated with a non-repeated characteristic value (A = -1), we multiply the recom-
mended x,(f) by t to obtain x,(f) = Kte™'. Substitution into the ODE, and collecting like
terms, yields

3Ke'=te"' = K=4 = x,t)=te”

Therefore, a general solution is formed as x(t)=cie™ + c,e™ + L te™'. Applying the ini-
tial conditions,

C+cy= O Solve = —]]—2
=

- -30+5=-

o=
o
IN)
I
-
]

Therefore, x(t)= (™ —e™ +te™).

1.2 Matrix Analysis

An n-dimensional vector v is an ordered set of n scalars, written as

(%1

U2



where each v; (i=1, 2, ..., n) is a component of vector v. A matrix is a collection of numbers
(real or complex) or possibly functions, arranged in a rectangular array and enclosed by
square brackets. Each of the elements in a matrix is called an entry of the matrix. The
horizontal and vertical levels are the rows and columns of the matrix, respectively. The
number of rows and columns of a matrix determine its size. If a matrix A has m rows and
n columns, then its size is m x n. A matrix is called square if the number of its rows and
columns are the same. Otherwise, it is rectangular. Matrices are denoted by bold-faced
capital letters, such as A. The abbreviated form of an m x n matrix is

A= [aij]mxn

where a;; is known as the (i, j) entry of A, located at the intersection of the ith row and the
jth column of A. For instance, a5, is the entry at the intersection of the third row and the
second column of A. In a square matrix A,,,,, the elements a;,, a,, ..., a,, are the diagonal
entries.

Two matrices A = [a;] and B = [b;] are equal if they have the same size and the same
respective entries. A submatrix of A is generated by deleting some rows and/or columns
of A.

nxn/

1.2.1 Matrix Operations
The sum of A = [4,],,., and B = [b,],,,, is
C= [Cij ]m><n = [aij + bij]mxn
The product of a scalar k and matrix A = [4;],., is

kA = [kaij]mxn

Consider A = [4,],,., and B = [b;],,,, so that the number of columns of A is equal to the
number of rows of B. Then, their product C = AB is m x p whose entries are obtained as

n

Cij =Zﬂikbk/, i=1,2,...,m, j=1,2,...,p

k=1

1.2.2 Matrix Transpose

Given A,,,,, its transpose, denoted by AT, is an n x m matrix such that its first row is the
first column of A, its second row is the second column of A, and so on. Provided all matrix
operations are valid,

(A+B) =AT +B”
(kA)" =kA", k=scalar

(AB)" =B"AT



1.2.3 Special Matrices

A square matrix A = [a;],,, is symmetric if AT = A, and skew-symmetric if AT=-A. It is
upper triangular if a; = 0 for all i > j, that is, all entries below the main diagonal are zeros.
It is lower triangular if a; = 0 for all i <, that is, all elements above the main diagonal are
zeros. It is diagonal if 4; =0 for all i # . In the upper and lower triangular matrices, the
diagonal elements may be all zeros. However, in a diagonal matrix, at least one diagonal
entry must be nonzero. The n x n identity matrix, denoted by I, is a diagonal matrix whose

every diagonal entry is equal to 1.

1.2.4 Determinant of a Matrix

The determinant of a square matrix A = [4,],., is a real scalar denoted by |A| or det(A). For
n 2 2, the determinant may be calculated using any row or column—with preference given
to the row or column with the most zeros. Using the ith row, the determinant is found as

n

A=Y 0 M, i=1,2,m (16)

k=1

In Equation 1.6, M; is the minor of the entry a;, defined as the determinant of the
(n-1) x (n-1) submatrix of A obtained by deleting the ith row and the kth column of A.
The quantity (-1)** M, is the cofactor of a; and is denoted by C;. Also note that (-1)"* is
responsible for whether a term is multiplied by +1 or —1. A square matrix is non-singular
if its determinant is nonzero. Otherwise, it is called singular.

EXAMPLE 1.4: DETERMINANT

Calculate the determinant of

-1 2 1 3
2 0 1 4
A=
-1 1 5 2
3 4 2 3

Solution

We will use the second row since it contains a zero entry.

2 1 -3 |11 =2 -3 11 =2 1
Al==2[1 5 2|--1 1 2|+4-1 1 5=-2(-99)—(-32)+4(-55)=10
4 2 3| |3 -4 3/ |3 4 2

Note that each of the individual 3 x 3 determinants is calculated via Equation 1.6.

1.2.5 Properties of Determinant

® The determinant of a matrix product is the product of individual determinants:
|AB| = |A[[B].



e The determinant of a matrix and its transpose are the same: |AT| = |A]|.

¢ The determinant of a lower triangular, upper triangular, or diagonal matrix is the
product of the diagonal entries.

e If any rows or columns of A are linearly dependent, then |A| =0.

1.2.5.1 Cramer’s Rule

Consider a linear system of n algebraic equations in # unknowns x,, x,, ..., X, in the form
ap X1+ apXy + -+ ay, X, = bl
Ay1X1 + AnpXy + -+ ar, X, = bz

1.7)

A1 Xy + AppXy + -+ Ay, X, = by,

where a; (G,j=1,2,...,n) and b,(i=1,2, ..., n) are known constants, and a;’s are the coef-
ficients. Equation 1.7 can be expressed in matrix form, as

Ax=Db
with
M1 2 cee iy X1 by
A= an (759} e Ay,  x= X2 , b= bz
R O Xn ), a ) s

Assuming A is non-singular, each unknown x, (k =1, 2, ..., n) is uniquely determined via

_ A

X
A

where determinants A and A, are described as

kth column of A

a b e @
ag ayn cee Ay, 1 1 1n

a b .oa
7551 (7553 e Ay 21 2 21

A= , Ak =

A1 An2 cee Ay o

anm bn Apn

EXAMPLE 1.5: CRAMER’S RULE

Solve the following system using Cramer’s rule:

2 3 -1fix -3
-1 2 1 |§x,p=1-6
1 -3 -2||x 9



Solution

The determinants are calculated as

2 3 -1 -3 3 -1 2
A=-1 2 1|=-6, Ay=-6 2 1|=-6, A,=-1
1 3 2 9 3 =2 1
2 3 3
Ay=-1 2 —6/=6
1 -3 9

A 3 Solution vector
x=lol, xp="2=22, x="2o1 0 S
A A A

1.2.6 Inverse of a Matrix

The inverse of a square matrix A

nxn

1|=12,
-2,

is denoted by A with the property AA™ = A7A =1

where I is the 1 x n identity matrix. The inverse of A exists only if A is non-singular,
|A| #0, and is obtained by using the adjoint matrix of A, denoted by adj(A).

1.2.6.1 Adjoint Matrix
If A = [a;],,, then the adjoint of A is defined as

D""M; D*'My ... DM, | [Ca Cy
-1 1+2M -1 2+2 -1 n+2 . C C
adj(A)=( ) 12 (1) Mp (=1)"" M, _|Cr 2
(—1)“” My, (—1)2+" M,, ... (1)""M,, Cin G

where M;is the minor of a;and C; = —(1)'"¥ M;;is the cofactor of a;. Note that each minor M

Y Y

(or cofactor C;) occupies the (j, 7) position in the adjoint matrix. Then,

R
Al= wad](A)

EXAMPLE 1.6: INVERSE

Find the inverse of

Cnl

Cn2
(1.8)

C?l?’l
ij

(1.9)



Solution

We first calculate |A| = —8. Following the strategy outlined in Equation 1.8, the adjoint
matrix of A is obtained as

3 -1 2
adiA)=|1 3 -6
2 2 4

Finally, by Equation 1.9, we have

1 -3 -1 2 0.3750 0.1250  -0.2500

A’lz—8 1 3 —6(=|-01250 -0.3750  0.7500
2 2 -4 -0.2500  0.2500 0.5000

1.2.7 Properties of Inverse

(A=A

(AB)'=B'A™!

(A =(A”)", p=integer >0
A7 =1/|A]

(A—l)T — (AT )—1

Inverse of a symmetric matrix is symmetric.

¢ Inverse of a diagonal matrix is diagonal whose entries are the reciprocals of the
entries of the original matrix.

1.2.8 Solving a Linear System of Equations

A linear system of equations Ax = b, where A is non-singular, can be solved as

Pre-multiply
Ax=b = x=A"b

both sides by Al

1.3 Matrix Eigenvalue Problem

Consider an n x n matrix A, a scalar A (generally complex), and a nonzero n x 1 vector v.
The eigenvalue problem associated with matrix A is defined as

Av=»Av, v#0 (1.10)

where A is an eigenvalue of A, and v is the eigenvector of A corresponding to A. Note that
an eigenvector cannot be a zero vector.



1.3.1 Solving the Eigenvalue Problem

Rewriting Equation 1.10, we have

Factor v
Av-Av=0 = [A-AIlv=0 (1.11)

from the right side

where the identity matrix I has been inserted to make the two terms in brackets size com-
patible. Equation 1.11 has a non-trivial (nonzero vector) solution if and only if the coeffi-
cient matrix is singular, that is,

A-AL=0 (112)

This gives the characteristic equation of matrix A. Since A is n x n, Equation 1.12 has n
roots, which are the eigenvalues of A. The corresponding eigenvector for each A is obtained
by solving Equation 1.11. Since A-Al is singular, it has at least one row dependent on other
rows. Therefore, for each A, Equation 1.11 has infinitely many solutions. A basis of solu-
tions will then represent all eigenvectors associated with A.

EXAMPLE 1.7: EIGENVALUE PROBLEM

Find the eigenvalues and eigenvectors of

1 0 1
A=0 1 0
1 0 1

Solution
The characteristic equation yields the eigenvalues:

1-A 0 1

A-M|=| 0 1-2 0 |=MA-D(A-2)=0 = A=0,1,2
1 0 1-A

Solving Equation 1.11 with A, = 0, we have

1 0 1 0
[A-AI]vi=0 = |0 1 O0fv;=10
1 0 1 0

Let the three components of v, be 4, b, c. Then, the above system yields b = 0 and
a + ¢ = 0. This implies there is a free variable, which can be either a or c. Lettinga =1
leads to ¢ = -1, and consequently the eigenvector associated with A, =0 is deter-
mined as



Similarly, the eigenvectors associated with the other two eigenvalues (A, =1, A; =2)
will be obtained as

<

N

1]
o - O

<

w

1]
[ e RS

1.3.2 Similarity Transformation

Consider a matrix A, and a non-singular matrix S,,, and suppose
S'AS=B (1.13)

We say B has been obtained through a similarity transformation of A, and that matrices
A and B are similar. Similar matrices have the same set of eigenvalues. That is, eigenvalues
are preserved under a similarity transformation.

1.3.3 Matrix Diagonalization

Suppose matrix A, has eigenvalues A, A,, ..., A, and linearly independent eigenvectors v,
V,, ..., V,. Then, the modal matrix P=[v; v, ... V,]x, diagonalizes A by means of a
similarity transformation:

M

1 7\'2
P'AP=D= (1.14)

EXAMPLE 1.8: MATRIX DIAGONALIZATION

Consider the matrix in Example 1.7. The modal matrix is formed as

1 0 1
P= I:Vl Vo V3:| =0 1 0
-1 0

Subsequently,

0
PIAP=| 0
0



1.3.4 Eigenvalue Properties of Matrices

¢ The determinant of a matrix is the product of its eigenvalues.

e Eigenvalues of lower triangular, upper triangular, and diagonal matrices are the
diagonal entries of the matrix.

e Similar matrices have the same set of eigenvalues.
e Eigenvalues of a symmetric matrix are all real.
¢ Every eigenvalue of an orthogonal matrix (A= = AT) has an absolute value of 1.

Part 2: Introduction to Numerical Methods

1.4 Errors and Approximations

Numerical methods are procedures that allow for efficient solution of a mathematically
formulated problem in a finite number of steps to within an arbitrary precision. Although
scientific calculators can handle simple problems, computers are needed in most cases.
Numerical methods commonly consist of a set of guidelines to perform predetermined
mathematical (algebraic and logical) operations leading to an approximate solution of a
specific problem. Such set of guidelines is known as an algorithm.

1.4.1 Sources of Computational Error

While investigating the accuracy of the results of a certain numerical method, two key
questions arise: (1) what are the possible sources of error, and (2) to what degree do these
errors affect the ultimate result? In numerical computations, there exist three possible sources
of error:

1. Error in the initial model
2. Truncation error

3. Round-off error

The first source occurs in the initial model of the problem. These include, for example,
when simplifying assumptions are made in the derivation of a physical system model, or
using approximate values such as 2.7183 and 3.1416 for mathematical numbers such as ¢
and r, respectively, and 9.81 (or 32.2) for g, the gravitational acceleration.

The second source is due to truncation, which occurs whenever an expression is approx-
imated by some type of a mathematical method. As an example, suppose we use the
Maclaurin series representation of the sine function

' (D L G

1
a'=o-—o’+—o’—+———0"+E,

sino =
n! 3! 5! m!

n=odd

where E,, is the tail end of the expansion, neglected in the process, and known as the trun-
cation error.



The third type of computational error is caused by the computer during the process of
translating a decimal number to a binary number. This is because unlike humans who use
the decimal number system (in base 10), computers mostly use the binary number system
(in base 2 or base 16). In doing so, the inputted number is first converted to base 2, arithme-
tic is done in base 2, and the outcome is converted back to base 10.

1.4.2 Binary and Hexadecimal Numbers
For ordinary purposes, base 10 is used to represent numbers. For example, the number 147

is expressed as

147 =[1x 102+ 4x 10" + 7 x 10°];p

where the subscript is usually omitted when the base is 10. This is known as decimal nota-
tion. The so-called normalized decimal form of a number is

+0.4d; ... dyx10°, 1<d,<9, 0<dy,ds,...,dy, <9 (1.15)

The form in Equation 1.15 is also known as the floating-point form, to be explained
shortly. On the other hand, most computers use the binary system (in base 2). For instance,
the number 147 is expressed in base 2 as follows. First, we readily verify that

147 =[1x27 +0x 26 +0x2° +1x2* + 0x 2° + 0 x 22 +1x 2" +1x2°],

Then, in base 2, we have

147 = (10010011),

We refer to a binary digit as a bit. This last expression represents a binary number.
Similarly, the same number can be expressed in base 16, as

In base 16
147 =[9x16'+3x16",, = 147 =(93)y

This last expression represents a hexadecimal number. While the binary system consists
of only two digits, 0 and 1, there are 16 digits in the hexadecimal system; 0, 1,2, ..., 9, A, B, ...,
F, where A-F represent 10-15. We then sense that the hexadecimal system is a natural
extension of the binary system. Since 2 = 16, for every group of four bits, there is one hexa-
decimal digit. Examples include C = (1100),, 3 = (0011),, and so on.

1.4.3 Floating Point and Rounding Errors

Because only a limited number of digits can be stored in computer memory, a number
must be represented in a manner that uses a somewhat fixed number of digits. Digital
computers mostly represent a number in one of two ways: fixed point and floating point.
In a fixed-point setting, a fixed number of decimal places are used for the representation
of numbers. For instance, in a system using 4 decimal places, we encounter numbers like



-2.0000, 131.0174, 0.1234. On the other hand, in a floating-point setting, a fixed number of
significant digits* are used for representation. For instance, if four significant digits are
used, then we will encounter numbers such as*

0.2501x1072, —0.7012x10°

Note that these two numbers fit the general form given by Equation 1.15. In the floating-
point representation of a number, one position is used to identify its sign, a prescribed
number of bits to represent its fractional part, known as the mantissa, and another pre-
scribed number of bits for its exponential part, known as the characteristic. Computers
that use 32 bits for single-precision representation of numbers, use 1 bit for the sign, 24 bits
for the mantissa, and 8 bits for the exponent. Typical computers can handle wide ranges
of exponents. As one example, the IEEE* floating-point standard range is between —38 and
+38. Outside of this range, the result is an underflow if the number is smaller than the
minimum and an overflow if the number is larger than the maximum.

1.4.4 Round-Off: Chopping and Rounding

Consider a positive real number N expressed as

N = O.d]dz dmder]...XlOp

The floating-point form of N, denoted by FL(N), in the form of Equation 1.15, is obtained
by terminating its fractional part at m decimal digits. There are two ways to do this. The
first method is called chopping, and involves chopping off the digits to the right of d,, to

get

FL(N)=0.dd, ... d,, x 107

The second method is known as rounding, and involves adding 5 x 107D to N and
then chopping. In this process, if d,,,; <5, then all that happens is that the first m digits are
retained. This is known as rounding down. If 4,,; > 5, then FL(N) is obtained by adding
one to d,,. This is called rounding up. It is clear that when a number is replaced with its
floating-point form, whether through rounding down or up, an error results. This error is
called round-off error.

EXAMPLE 1.9: CHOPPING AND ROUNDING

Consider e =2.71828182 ... =0.271828182 ... x10. If we use 5-digit chopping (m =5),
the floating-point form is FL(e) = 0.27182 x 10 = 2.7182. We next use rounding. Since the
digit immediately to the right of ds is d, = 8 > 5, we add 1 to d; to obtain

FL(e) =0.27183 x 10" = 2.7183

* Note that significant digits are concerned with the first nonzero digit and the ones to its right. For example,
4.0127 and 0.088659 both have five significant digits.

* Also expressed in scientific notation, as 0.2501E — 2 and —0.7012E + 5.

¥ Institute of Electrical and Electronics Engineers.



so that we have rounded up. The same result is obtained by following the strat-
egy of adding 5 x 107D to e and chopping. Note that p =1 and m =5, so that 5 x
107-(m+D = 5 x 10-° = 0.00005. Adding this to e, we have

e+0.00005 = 2.71828182 ...+ 0.00005=2.71833 ...= 0.271833 ... x 10'

Five-digit chopping yields FL(e) = 0.27183 x 10! = 2.7183, which agrees with the result
of rounding up.

1.4.5 Absolute and Relative Errors

In the beginning of this section, we discussed the three possible sources of error in com-
putations. Regardless of what the source may be, computations generally yield approxi-
mations as their output. This output may be an approximation to a true solution of an
equation, or an approximation of a true value of some quantity. Errors are commonly mea-
sured in one of two ways: absolute error and relative error. If X is an approximation to a
quantity whose true value is x, the absolute error is defined as

Cabs = X — X (1.16)

On the other hand, the true relative error is given by

= Absolute error _Cabs _ X=X %20 (117)
True value X X

Note that if the true value happens to be zero, the relative error is regarded as undefined.
The relative error is generally of more significance than the absolute error, as we will dis-
cuss in Example 1.10. And because of that, whenever possible, we will present bounds for
the relative error in computations.

EXAMPLE 1.10: ABSOLUTE AND RELATIVE ERRORS

Consider two different computations. In the first one, an estimate x; = 0.003 is obtained
for the true value x; = 0.004. In the second one, X, =1238 for x, = 1258. Therefore, the
absolute errors are

(absh = X1 = X1 =0.001, (Eaps)2 = X2 —X, =20

The corresponding relative errors are

(érai)1 = (€ars)y _ 0.001 025, (erel)s = (eas)o _ 20 _ ) 959
x  0.004 x, 1258

We notice that the absolute errors of 0.001 and 20 can be rather misleading, judging by
their magnitudes. In other words, the fact that 0.001 is much smaller than 20 does not
make the first error a smaller error relative to its corresponding computation. In fact,
looking at the relative errors, we see that 0.001 is associated with a 25% error, while 20
corresponds to 1.59% error, much smaller than the first. Because they convey a more
specific type of information, relative errors are considered more significant than abso-
lute errors.



1.4.6 Error Bound

It is customary to use the absolute value of e, so that only the upper bound needs to be
obtained, since the lower bound is clearly zero. We say that o is an upper bound for the
absolute error if

eans| =¥ — X<

Note that o does not provide an estimate for [x — %
say that 3 is an upper bound for the relative error if

, and is simply a bound. Similarly, we

‘erel‘ = x;x <B, x=#0

EXAMPLE 1.11: ERROR BOUND

Find two upper bounds for the relative errors caused by the 5-digit chopping and
rounding of ¢ in Example 1.9.

Solution

Using the results of Example 1.9, we have

-FL . ... x10' .
el = le~FL(e)| _ 0.000008182 x101 _ 08182 <10 <104
Chopping le| 0.271828182 ... x10"  0.271828182 ...

Here, we have used the fact that the numerator is less than 1, while the denominator
is greater than 0.1. It can be shown that in the general case, an m-digit chopping results
in an upper bound relative error of 10", For the 5-digit rounding, we have

_le=FL(e)] _ 0.000001818 ... x10"  0.1818 ...

e = o= x10°<0.5%x10™
Rounding | 0.271828182 ... x10"  0.271828182 ...

‘erel ‘

where we used the fact that the numerator is less than 0.5 and the denominator is greater
than 0.1. In general, an m-digit rounding corresponds to an upper bound relative error
of 0.5 x 10

1.4.7 Transmission of Error from a Source to the Final Result

Now that we have learned about the sources of error, we need to find out about the degree
to which these errors affect the outcome of a computation. Depending on whether addition
(and/or subtraction) or multiplication (and/or division) is considered, definite conclusions
may be drawn.

Theorem 1.1: Transmission of Error

Suppose in a certain computation the approximate values ¥; and ¥, have been generated
for true values x; and x,, respectively, with absolute and relative errors (e,y,); and (e,.);
i=1,2,and



‘(eabs )1‘ < O, ‘(eabs)Z‘ < Oy, ‘(erel)l‘ < Bl/ ‘(erel )2‘ < BZ

1. The upper bound for the absolute error e,,, in addition and subtraction is the sum
of the upper bounds of the absolute errors associated with the quantities involved.
That is,

eans| = (X1 £ 22) — (X1 £ %) S 01 + 01
2. The upper bound for the relative error ¢, in multiplication and division is approx-
imately equal to the sum of the upper bounds of the relative errors associated with

the quantities involved. That is,

X1Xp — X1X»
X1X2

Multiplication |e|= <Bi+B. (1.18)

X1/ %, — X1/ X,

<Bi+B. (1.19)
X1/ %,

Division  |ea|=

Proof

1. We have
‘eabs‘ =‘(X] ixZ)—(.i'l ii’z)‘ = ‘(xl —il)i(xZ —5(.‘2)‘ < ‘xl —£1‘+‘XZ —562‘ < Ol + 0Ly

2. We will prove Equation 1.18. Noting that (eus); =x;—X; for i=1, 2, we have
X; = x; —(€aps); - Insertion into the left side of Equation 1.18 yields

X1X2 — 5615&2 ‘ — X1Xp — [xl (eabs)l [xZ (eabs )2 ‘ (eabs )1 (eabs)Z + (eabs)le + (eabs)l X2 ‘
X1X2 ‘ X1X2 ‘ X1X2

‘erel‘ :‘

But (e.,,):(e.ns)> can be assumed negligible relative to the other two terms in the numera-
tor. As a result,

‘e 1‘ ‘(eabs)le'i'(eabs)lx ‘z‘(eabs)1+(eabs)2‘ ‘(eabs)l‘ ‘(eabs)Z‘
- _‘ X1X2 ‘ ‘ X1 X2 ‘ ‘ ‘ ‘ ‘

as asserted. [ |

1.4.8 Subtraction of Nearly Equal Numbers

There are two particular instances leading to unacceptable inaccuracies: division by a num-
ber that is very small in magnitude, and subtraction of nearly equal numbers. Naturally,
if this type of subtraction takes place in the denominator of a fraction, the latter gives rise



to the former. Consider two numbers N; and N, having the same first k decimal digits in
their floating-point forms, that is,

FL(Nl) = O.dldz e dkak+1 ey X 10”7
FL(Nz) = 0.d1d2 e dkbk+1 e bm x 107

The larger the value of k, the more “nearly equal” the two numbers are considered to be.
Subtraction yields

FL(FL(N;)—-FL(N)) = 0.¢ts1 ... €y X 1077

where ¢y, ..., c,, are constant digits. From this expression we see that there are only m—k
significant digits in the representation of the difference. In comparison with the m signifi-
cant digits available in the original representations of the two numbers, some significant
digits have been lost in the process. This is precisely what contributes to the round-off
error, which will then be propagated throughout the subsequent computations. This can
often be remedied by a simple reformulation of the problem, as illustrated in the following
example.

EXAMPLE 1.12: THE QUADRATIC FORMULA WHEN b?>> 4ac

Consider x2 + 52x + 3 = 0 with approximate roots x; = —0.05775645785, x, = —51.94224354.
Recall that the quadratic formula generally provides the solution of ax? + bx + ¢ =0, as

_ —b++/b* - 4ac = —b—+Jb*—4ac

2a T 2a

X1

But in our example, b2 > 4ac so that \b” —4ac = b . This means that in the calculation
of x; we are subtracting nearly equal numbers in the numerator. Now, let us use a 4-digit
rounding for floating-point representation. Then,

52,00 +,/(52.00)% — 4(1.000)(3.000) _ —52.00+51.88 _

—0.0600
2(1.000) 2.000

FL(x;) =

and

FL(xy) = 200 J(52.00)? — 4(1.000)(3.000) _ 5104
2(1.000)

The corresponding relative errors, in magnitude, are computed as

|1 = FL(x1)|

erall,, = T 0.0388 or 3.88%
1

e, = 2= FLOR) _ 0043 or 0.43%
X2

Thus, the error associated with x, is rather large compared to that for x,. We antici-
pated this because in the calculation of x, nearly equal numbers are added, causing no



concern. As mentioned above, reformulation of the problem often remedies the situa-
tion. Also note that the roots of ax? + bx + c = 0 satisfy x,x, = c/a. We will retain the value
of FL(x,) and calculate FL(x,) via

FL(x)=— = 3000 =-0.05775
aFL(x,) (1.000)(—51.94)
The resulting relative error is
-FL
e, =) 00011 or 0.011%
X1

which shows a dramatic improvement compared to the result of the first trial.

1.5 Iterative Methods

Numerical methods generally consist of a set of directions to perform predetermined alge-
braic and logical mathematical operations leading to an approximate solution of a specific
problem. These sets of directions are known as algorithms. In order to effectively describe
a certain algorithm, we will use a code. Based on the programming language or the soft-
ware package used, a code can easily be modified to accomplish the task at hand. A code
consists of a set of inputs, the required operations, and a list of outputs. It is standard
practice to use two types of punctuation symbols in an algorithm: the period (.) proclaims
that the current step is terminated, and the semicolon (;) indicates that the step is still in
progress. An algorithm is stable if a small change in the initial data will correspond to a
small change in the final result. Otherwise, it is unstable.

An iterative method is a process that starts with an initial guess and computes succes-
sive approximations of the solution of a problem until a reasonably accurate approxima-
tion is obtained. As we will demonstrate throughout the book, iterative methods are used
to find roots of algebraic equations, solutions of systems of algebraic equations, solutions
of differential equations, and much more. An important issue in an iterative scheme is the
manner in which it is terminated. There are two ways to stop a procedure: (1) when a ter-
minating condition is satisfied, or (2) when the maximum number of iterations is exceeded.
In principle, the terminating condition should check to see whether an approximation cal-
culated in a step is within a prescribed tolerance of the true value. In practice, however,
the true value is not available. As a result, one practical form of a terminating condition
is whether the difference between two successively generated quantities by the iterative
method is within a prescribed tolerance. The ideal scenario is when an algorithm meets
the terminating condition, and at a reasonably fast rate. If it does not, then the total number
of iterations performed should not exceed a prescribed maximum number of iterations.

EXAMPLE 1.13: AN ALGORITHM AND ITS CODE

Approximate e~ to seven significant digits with a tolerance of € = 10-.

Solution

Retaining the first n + 1 terms in the Maclaurin series of f(x) = e* yields the nth-degree
Taylor’s polynomial



T,(x) = z%xi (1.20)

We want to evaluate e2 by determining the least value of # in Equation 1.20 such that

2 -T,(-2)|<e (1.21)

Equation 1.21 is the terminating condition. To seven significant digits, the true value is
e =0.1353353. Let us set the maximum number of iterations as N = 20, so that the pro-
gram is likely to fail if the number of iterations exceeds 20 and the terminating condition
is not met. As soon as an approximate value within the given tolerance is reached, the
terminating condition is satisfied and the program is terminated. Then the outputs are
n and the corresponding value for e-2. We write the algorithm listed in Table 1.2. It turns
out that 14 iterations are needed before the terminating condition is satisfied, that is,
n = 13. The approximate value for e is 0.1353351 with an absolute error of 0.2 x 1076 < e.

1.5.1 Fundamental Iterative Method

A fundamental iterative method is the one that uses repeated substitutions. Suppose that
a function g(x) and a starting value x, are known. Let us generate a sequence of values x,,

X,, ... via an iteration defined by

There are a few possible scenarios. The iteration may exhibit convergence, either at a fast
rate or a slow rate. It is also possible that the iteration does not converge at all. Again, its

TABLE

Xpe1 = §(Xn),

1.2

Algorithm in Example 1.13

n=0,1,2,..., Xxgis known

Input

x=2,e=10"% N=20

Output An approximate value of e? accurate to within €, or a message of “failure”

Step 1

Step 2

Step 3
Step 4

Step 5

Step 6

End

Setn=0

Tval=¢~ True value

Term=1

Psum =0 Initiate partial sum
Sgn=1 Initiate alternating signs

While n < N, do Step 3-Step 5

Psum = Psum + Sgn*Term/n!

If |Psum — Tval| < ¢, then Output(n)

Stop

n=n+1 Update n

Sgn=-Sgn  Alternate sign

Term = Term*x  Update Term
Output(failure)
Stop

Terminating condition




divergence may happen at a slow or a fast rate. These all depend on critical factors such as
the nature of the function g(x) and the starting value, x,. We will analyze these in detail in
Chapter 3.

EXAMPLE 1.14: ITERATION BY REPEATED SUBSTITUTIONS

Consider the sequence described by x, = (%)" ,n=0,1,2,....In order to generate the same
sequence of elements using iteration by repeated substitutions, we need to reformulate
it to agree with Equation 1.22. To that end, we propose

X =(3)x, n=0,12, ..., x=1

This way, the sequence starts with x, = 1, which matches the first element of the origi-
nal sequence. Next, we calculate

x0=§, x2=%x1=%, X3=%XZ=£7,...

W=

X1 =

which agree with the respective elements in the original sequence. Therefore,
X1 =8(xy), 1=0,12,..., x=1

where g(x)=4x.

1.5.2 Rate of Convergence of an Iterative Method

Consider a sequence {x,} that converges to x. The error at the nth iteration is then defined as

e,=x—-x,, n=0,12,...
If there exists a number R and a constant K # 0 such that

1im@ =K (1.23)

then we say that R is the rate of convergence of the sequence. There are two types of con-
vergence that we encounter more often than others: linear and quadratic. A convergence
is linear if R = 1, that is,

tim 1~ K 20 (1.24)

e
A convergence is said to be quadratic if R = 2, that is,

1imM =K#0 (1.25)

== e,



Rate of convergence is not always an integer. We will see in Section 3.6, for instance, that
the secant method has a rate of (1+ \/5) =1.618.

EXAMPLE 1.15: RATE OF CONVERGENCE

Determine the rate of convergence for the sequence in Example 1.14.

Solution

Since x,, = (%)” — 0 as n — o, the limit is x = 0. With that, the error at the nth iteration is

n

en=x=x,=0~(3) =-(3)’

We will first examine R = 1, that is, Equation 1.24:

Therefore, R = 1 works and convergence is linear. Once a value of R satisfies the condi-
tion in Equation 1.23, no other values need be inspected.

PROBLEM SET (CHAPTER 1)
Differential Equations (Section 1.1)
45 In Problems 1 through 8, solve each IVP.

. y+iy=t, y0)=-1
cy+ty=t, y(0)=3

2y+y=0, y(1)=1
Syry=e?, y(0)=1
j+2+2y=0, y(0)=0, §(0)=1
6. j+2y+y=e"’, y(0)=1,1(0)=0
7. j+2y=sint, y(0)=0,y0)=1
8. y+2y=t, y0)=1,y0)=1

Ul = W N -

Matrix Analysis (Section 1.2)
45 In Problems 9 through 12, calculate the determinant of the given matrix.

1 5 1
9.9A=[3 0 2
-4 2 6

(8 2 -1
10.A=|1 0 4
-3 4 5



-1 3 1 2
-1 4 3
11. A=
0 1 0
2 3 4 -5
[0 -6 1 0
-1 2 -3
12. A=
2 0 1 1
4 5 3 1

2 1 0 -1] X -3
1 3 -1 3 Xy 13
13. Ax=b, A= . x= , b=
0 1 -3 2 X3 5
2 0 1 4] X4 11
-1 0 4 2] X1 3
5 1 3 -1 X 22
14. Ax=b, A= , x= , b=
1 0 2 2 X3 5
-3 2 0 -2 X4 -7

x1+x2—4x3 =-1
15. —2x1+x2+3x3 =0
xZ+5.7C3 =6

4x1 + X — 3.7('3 =-13
16. —X1+ ZXZ + 6X3 =13
X1 +7.X'3 =4

25 In Problems 17 through 20, find the inverse of each matrix.

4 0 1
17 A=| 0 3 2
-1 2 -1

(0 1 o0
18.A=|0 0 1

1 2 1
(1 0 o
19.A=[0 5 0




o 0 -1
20. A=|0 o+1 2 |, o=parameter
1 0 o+2

Matrix Eigenvalue Problem (Section 1.3)

45 In Problems 21 through 24, find the eigenvalues and the corresponding eigenvectors of
each matrix.

-3 0
21. A=
__2 1}
(2 2 0
2. A=[1 1 0
0 0 1
1 2 1
23.A=[0 2 -3
0 0 -1
(1 0 o0
24.A=|1 2 0
2 3 3

25. 25 Prove that a singular matrix has at least one zero eigenvalue.

45 Tn Problems 26 through 28, diagonalize each matrix by using an appropriate modal
matrix.

2 -1 -
26.A=3 2 1

1 1 0

(3 2 1
27.A=|0 2 0

0 0 2

(1 2 1
28.A=|0 2 -3

0 0 -1

Errors and Approximations (Section 1.4)
45 In Problems 29 through 32, convert each decimal number to a binary number.

29. 67
30. 234
31. 45.25
32. 1127



45 In Problems 33 through 36, convert each decimal number to a hexadecimal number.

33. 596
34. 1327
35. 231875
36. 364.5

45 In Problems 37 through 40, convert each hexadecimal number to a binary number.

37. (2B54),,
38. (143),
39. (3D.2),
40. (12F11),,

45 In Problems 41 through 45, write the floating-point form of each decimal number by
m-digit rounding for the given value of m.

41. —-0.00031676 (m = 4)

42. 11.893 (m = 4)

43. 200.346 (m = 5)

44. —1203.423 (mn = 6)

45. 22318 (m = 4)

46. 25 Suppose m-digit chopping is used to find the floating-point form of

N = 0.d1d2 e dmdm+1 X 10P

show that

N -FL(N) .
‘erel‘chopping = ‘ ‘N‘ ‘ <10'

47. 5 Suppose in Problem 46 we use m-digit rounding. Show that

_|[N-FL(N)|

1-m
Rounding ‘N‘ <0.5x10

‘erel ‘

Iterative Methods (Section 1.5)

48. 25 Consider the sequence described by x, = %, n=0,12,....
n

a. Find a suitable function g(x) so that the sequence can be generated by means of
repeated substitution in the form x,,; = g(x,), n=0,1,2, ....

b. Determine the rate of convergence of the sequence to its limit.



2

Introduction to MATLAB

This chapter presents features and capabilities of MATLAB pertinent to numerical meth-
ods. These range from vector and matrix operations and symbolic calculations to plot-
ting options for functions and sets of data. Several MATLAB built-in functions and their
applications will also be introduced. The chapter concludes with guidelines to prepare
user-defined functions and script files to perform specific tasks.

2.1 MATLAB Built-In Functions

MATLAB has a large number of built-in elementary functions, each accompanied by a
brief but sufficient description through the help command. For example,

>> help sqrt

sqrt  Square root.
sqrt(X) is the square root of the elements of X. Complex
results are produced if X is not positive.

See also sqrtm, realsgrt, hypot.

Reference page in Help browser

doc sgrt
>> (1+sqrt(5))/2 % Calculate the golden ratio
ans =
1.6180

The outcome of a calculation can be stored under a variable name, and suppressed by
using a semicolon at the end of the statement:

>> g_ratio = (1+sqrt(5))/2;

If the variable is denoted by “a”, other elementary functions include abs(a) for |a|,
sin(a) for sin(a), log(a) for In 4, logl0(a) for log,,(a), exp(a) for e’, and many more.
Descriptions of these functions are available through the help command.

2.1.1 Rounding Commands

MATLAB has four built-in functions that round decimal numbers to the nearest integer
via different rounding techniques. These are listed in Table 2.1.



TABLE 2.1
MATLAB Rounding Functions

MATLAB Function Example

round(a) round(1.65) = 2, round(-4.7) = -5
Round to the nearest integer

fix(a) fix(1.65) =1, fix(-4.7) = -4
Round toward zero

ceil(a) ceil(1.65) =2, ceil(-4.7) = -4
Round up toward infinity

floor(a) floor(1.65) =1, floor(-4.7) = -5

Round down toward minus infinity

2.1.2 Relational Operators
Table 2.2 gives a list of the relational and logical operators used in MATLAB.

2.1.3 Format Options

The format built-in function offers several options for displaying output. The pre-
ferred option can be chosen by selecting the following in the pull-down menu:
File — Preferences - Command Window. A few of the format options are listed in
Table 2.3.

TABLE 2.2
MATLAB Relational Operators
Mathematical Symbol MATLAB Symbol
* ~=
< <
>
< <=
2 >=
AND & or &&
OR | or ||
NOT ~
TABLE 2.3
MATLAB Format Options
Format Option Description Example: 73/7
format short (default) Fixed point with 4 decimal digits 10.4286
format long Fixed point with 14 decimal digits 10.428571428571429
format short e Scientific notation with 4 decimal digits 1.0429¢+001
format long e Scientific notation with 14 decimal digits 1.042857142857143e+001

format bank Fixed point with 2 decimal digits 10.43




.|
2.2 Vectors and Matrices

Vectors can be created in several ways in MATLAB. The row vector v=[1 4 6 7 10]
is created as

>>v =1[146 7 10]
VvV =
1 4 6 7 10

Commas may be used instead of spaces between elements. For column vectors, the ele-
ments must be separated by semicolons.

>> v = [1;4;6;7;10]

The length of a vector is determined by using the length command:

>> length(Vv)

ans =
5

The size of a vector is determined by the size command. For the last (column) vector
defined above, we find

>> size(v)

ans =
5 1

Arrays of numbers with equal spacing can be created more effectively. For example, a
row vector whose first element is 2, its last element is 17, with a spacing of 3 is created as

>> v = [2:3:17] or >> v = 2:3:17

Vv =
2 5 8 11 14 17

To create a column vector with the same properties
>> v = [2:3:17]"

VvV =

0 O1N

11

17



Any component of a vector can be easily retrieved. For example, the third component of
the above vector is retrieved by typing

>> v(3)

ans =
8

A group of components may be retrieved as well. For example, the last three components
of the row vector defined earlier are recovered as

>> v = 2:3:17;
>> v(end-2:end)

ans =

11 14 17

2.2.1 Linspace

Another way to create vectors with equally spaced elements is by using the Iinspace
command.

>> x = linspace(l,5,6) % 6 equally-spaced points between 1 and 5

X =
1.0000 1.8000 2.6000 3.4000 4._.2000 5.0000

The default value for the number of points is 100. Therefore, if weuse x = linspace(1,5),
then 100 equally spaced points will be generated between 1 and 5.

2.2.2 Matrices

A matrix can be created by using brackets enclosing all of its elements, rows separated by
a semicolon.

>> A =[1-23;-301;5 1 4]

A =
1 -2 3
-3 0 1
5 1 4

An entry can be accessed by using the row and column number of the location of that
entry.

>> A(3,2) % Entry at the intersection of the 3" row and 2" column
ans =

1

An entire row or column of a matrix is accessed by using a colon.



>> Row_2 = A(2,:) % 2" row of A
Row_2 =

-3 0 1
>> Col_3 = A(:,3) % 3 column of A
Col_3 =

3

1

4

To replace an entire column of matrix A by a given vector v, we proceed as follows:

>> v = [1;0:;1];

>> A new = A; % Pre-allocate the new matrix
>> A new(:,2) = Vv % Replace the 2nd column with v
A _new =

1 1 3

-3 0 1

5 1 4

The m x n zero matrix is created by using zeros(m,n); for instance, the 3 x 2 zero
matrix:

>> A = zeros(3,2)

A =
0 0
0 0
0 0

The m x n zero matrix is commonly used for pre-allocation of matrices to save mem-
ory space. In the matrix A defined above, any entry can be altered while others remain
unchanged.

>> A(2,1) = -3; AB,2) = -1

A =
0 0
-3 0
0 -1

Size of a matrix is determined by using the Size command:
>> size(A)
ans =

3 2



The n x n identity matrix is created by eye(n):
>> 1 = eye(3)

1 0 0
0 1 0
0 0 1

Matrix operations (Section 1.2) can be easily performed in MATLAB. If the sizes are not
compatible, or the operations are not defined, MATLAB returns an error message to that
effect.

>> A = [1 2;2 -2;4 0]; B =[-1 3;2 1]; % A is 3-by-2, B is 2-by-2
>> C = A*B % Operation is valid
C =

3 5

-6 4

-4 12

2.2.3 Determinant, Transpose, and Inverse

The determinant of an n x n matrix is calculated by the det command.
> A =1[12 -3;02 1;1 2 5]; det(A)
ans =

16

The transpose of a matrix is found as

>> At = A"
At =
1 0 1
2 2 2
-3 1 5

The inverse of a (non-singular) matrix is calculated by the inv command
>> Al = inv(A)
Al =
0.5000 —-1.0000 0.5000

0.0625 0.5000 -0.0625
-0.1250 0 0.1250



2.2.4 Slash Operators
There are two slash operators in MATLAB: backslash (\) and slash (/).

>> help \
\ Backslash or left matrix divide.

A\B is the matrix division of A into B, which is roughly the
same as INV(A)*B , except it is computed in a different way.
IT A is an N-by-N matrix and B is a column vector with N
components, or a matrix with several such columns, then

X = A\B is the solution to the equation A*X = B. A warning
message is printed if A is badly scaled or nearly singular.
A\EYE(SIZE(A)) produces the inverse of A.

The backslash (\) operator is employed for solving a linear system of algebraic equations
Ax =b, whose solution vector is obtained as x = A-'b. However, instead of performing
x=1nv(A)*b, it is most efficient to find it as follows:

> A =1]1-12;203;1-21]; b =1[2:;8;-3]:
>> x = A\b
X =

1

3

2

The description of the slash (/) operator is given below.
>> help /
/ Slash or right matrix divide.
A/B is the matrix division of B into A, which is roughly the

same as A*INV(B) , except it is computed in a different way.
More precisely, A/B = (B"\A")". See MLDIVIDE for details.

2.2.5 Element-by-Element Operations

Element-by-element operations are summarized in Table 2.4. These are used when opera-
tions are performed on each element of a vector or matrix.

TABLE 2.4

Element-by-Element Operations
MATLAB Symbol Description
X Multiplication
./ (right) Division

N Exponentiation




For example, suppose we want to raise each element of a vector to power of 2.

>> x = 0:2:10

X =

0 2 4 6 8 10
>> X N2 % If we use x™2 instead, an error is returned by MATLAB
ans =

0 4 16 36 64 100

Now consider (1 + x)/(2 + x) where vector x is as defined above. This fraction is to be evalu-
ated for each value of x:

>> (1.+x)./(2-+X)
ans =

0.5000 0.7500 0.8333 0.8750 0.9000 0.9167

If two arrays are involved in the element-by-element operation, they must be of the same
size.

>> v = [1;2;3];
> w = [2;3;4];
>> v.o*w
ans =

2

6

12

2.2.6 Diagonal Matrices and Diagonals of a Matrix

If A is an n x n matrix, then diag(A) creates an n x 1 vector whose components are the
(main) diagonal entries of A. To construct a diagonal matrix whose main diagonal matches
that of A, we use diag(diag(A)):

> A=[-1013;121-4;0241;10 -2 5]

A =

R ORPR
oONNO

>> diag(A) % Returns a vector of the diagonal entries of A



ans =

>> D = diag(diag(A)) % Constructs a diagonal matrix with diagonal entries of A

D =
=] 0 0 0
0 2 0 0
0 0 4 0
0 0 0 5

The command diag(A,1) creates a vector consisting of the entries of A that are one
level higher than the main diagonal. Of course, the dimension of this vector is one less
than the dimension of A itself. Then diag(diag(A,1),1) creates a matrix (size of A)
whose entries one level higher than the main diagonal are the components of the vector
diag(A,L).

>> diag(A,1)

ans

=P~ Ooll

>> diag(diag(A,1),1)

ans =

o oNoNe)
oNoNeoNe)
ORr OO

OOkrOo

Similarly, diag(A, —1) creates a vector whose components are the entries of A that are one
level lower than the main diagonal. Subsequently, diag(diag(A,—-1),—1) generates a
matrix (size of A) whose entries one level lower than the main diagonal are the components
of the vector diag(A,-1).

>> diag(A,-1)

ans =
1

2

-2

>> diag(diag(A,-1),-1)

ans =

OOkr O
ON OO
NOOO
[eNeoNeoNe)



Other commands such as diag(A,2), diag(A,-2), and so on can be used for simi-
lar purposes. The command triu(A) returns the upper-triangular version of A, that is,
matrix A with all entries below the main diagonal set to zero.

>> triu(A)

ans =
-1 0 1 3
0 2 1 -4
0 0 4 1
0 0 0 5

Similarly, tril (A) returns the lower-triangular version of A, that is, matrix A with all
entries above the main diagonal set to zero.

>> tril(A)

ans =

RPORPR
ONNO
NDh OO
o oo

2.3 Symbolic Math Toolbox

The Symbolic Math toolbox allows for manipulation of symbols to perform operations
symbolically. Symbolic variables are created by using the syms command. Consider, for
example, the function g = 4.81 sin(a/3) + 3e-%¢ where ¢ = 2.1. This function can be defined
symbolically as follows:

>> syms a b
>> ¢
>> g

2.1
4_81*sin(a/3)+3*exp(-b/c)

g =
3/exp((10*b)/21) + (481*sin(as3))/100 % Value of c has been substituted!

In symbolic expressions, numbers are always converted to the ratio of two integers, as it
is observed here as well. For decimal representation of numbers, we use the vpa (variable
precision arithmetic) command. The syntax is

>> vpa(g,n)

where n is the number of desired digits. For example, if four digits are desired in our cur-
rent example, then



>> g4 = vpa(4.81*sin(a/3)+3*exp(-b/c),4)
g4 =
4.81*sin(0.3333*a) + 3.0/exp(0.4762*b)

To evaluate the symbolic function g for specified values of a and b, we use the subs
command which replaces all variables in the symbolic expression g with values obtained
from the MATLAB workspace. For instance, to evaluate g when a=1 and b=2,

>> a =1; b = 2; subs(g)
ans =
3*exp(-20/21) + (481*sin(1/3))/100
The command double may then be used to convert to double precision
>> double(ans)
ans =
2.7313

The function g = 4.81 sin(a/3) + 3¢ in the current example may also be defined sym-
bolically via

>> g = sym("4.81*sin(a/3)+3*exp(-b/c) ")
g =
4_81*sin(a/3) + 3*exp(-b/c)

Note that &, b, and ¢ do not need to be declared symbols, as this is handled automati-
cally by sym in the definition of g. Also, assignment of a specific value (such as c=2.1) to
a variable will not be taken into account when using sym. Instead, we can use the subs
command at this stage:

>> c = 2.1; g = subs(g)
g =
3*exp(-(10*b)/21) + 4.81*sin(a/3)

This agrees with what we saw at the outset of this discussion. The symbolic function g
can be evaluated for a list of specific parameter values as follows:

>> a = 1; b = 2; double(subs(g))
ans =

2.7313 % Agrees with previous result



2.3.1 Anonymous Functions

An anonymous function offers a way to create a function for simple expressions with-
out creating an M file. Anonymous functions can only contain one expression and can-
not return more than one output variable. They can either be created in the Command
Window or as a script. The generic form is

My_function = @(arguments)(expression)

As an example, let us create an anonymous function (in the Command Window) to eval-

uatesz/l-i—ei_b"/2 whenb=1and x =2.
>> R = @(b,x)(sqrt(l+exp(-b*x/2)));
This creates R(b, x), which is then evaluated for specific values of b and X. For example,
>> R(1,2)
ans =
1.1696

An anonymous function can be used in another anonymous function. For example, to

evaluate L=Iny1+¢ 72,

>> R = @(b,x)(sqrt(1+exp(-b*x/2)));
>> L = @(b,x)(log(R(b,x)));
>> L(1,2)

ans =

0.1566

2.3.2 MATLAB Function

The built-in matlabFunction allows us to generate a MATLAB file or anonymous func-
tion from sym object. The generic form G = matlabFunction(F) converts the symbolic
expression or function F to a MATLAB function with the handle G.

Let us consider the example involving the evaluation of R=+/1+¢™"/* when b =1 and
x=2.

>> syms b X
>> R = matlabFunction(sqrt(l+exp(-b*x/2)))

R =

@(b,x)sgrt(exp(b.*x.*(-1.0./2.0))+1.0) % Inputs are arranged in alphabetical order
>> R(1,2)
ans =

1.1696



As expected, this agrees with the earlier result using the anonymous function. Note that
if the desired order of variables is not specified by the user, MATLAB will list them in
alphabetical order. In the above example, omitting the list of variables would still result in
R(b,x). If, however, R(X, b) is desired, the "vars"” option is utilized as follows:

>> R = matlabFunction(sqrt(1+exp(-b*x/2)), vars®,[x b])
R =
@(x,b)sgrt(exp(b.-*x.*(-1.0./2.0))+1.0)

In the previous example, where the function was defined as R(b,Xx), suppose b is a
scalar and X is a vector. Letb = 1and x = [1 2 3]. Then,

> b =1; x =1 2 3];
>> R(b,x)

ans =

1.2675 1.1696 1.1060

Three outputs are returned, one for each component in the vector X. Note that, since the
second component of X happens to be 2, the second returned output matches what we got
earlier for the case of b =1 and x = 2.

2.3.3 Differentiation

In order to find the derivative of a function with respect to any of its variables, the function
must be defined symbolically. For example, consider f{f) = 3-sin t, a function of a single
variable. To determine df/dt, we proceed as follows:

>> F = sym("t"3-sin(t)");
>> dfdt = diff(f)

dfdt =
3*t"2 - cos(b)
The second derivative d*f/dt? is found as
>> dfdt2 = diff(f,2)
dfdt2 =
6*t + sin(t)

The symbolic derivatives can be converted to MATLAB functions for convenient
evaluation. For example, to evaluate df/dt when t = 1.26,

>> F = sym("t"3-sin(t)"); % Define function symbolically
>> fd = matlabFunction(diff(f)); % Convert the derivative to a MATLAB
function



>> fd(1.26) % Evaluate the derivative
ans =

4.4570

2.3.4 Partial Derivatives

The diff command can also handle partial differentiation. Consider h(x, y) =2x + 12, a
function of two variables. The first partial derivatives of & with respect to its variables x
and y are found as follows:

>> h = sym("2*x+y"2%);
>> hx = diff¢h, "x")

hx =

2

>> hy = diff(h,"y")
hy =

2*y

To find the second partial derivative with respect to y, the diTf command is applied to
the first partial:

>> hy2 = diffchy,"y")
hy2 =

2

2.3.5 Integration

Indefinite and definite integrals are calculated symbolically via the ¥int command.

For example, the indefinite integral | (2t + cos3t)dt is calculated as

>> f = sym("2*t+cos(3*t)");
>> int(f)

ans =

sin(3*t)/3 + t"2
3
The definite integral J.(at —e?)dt, whereais a parameter, is calculated as follows:
1

>> g = sym("a*t-exp(t/2)");
>> syms t
>> 1 = int(g,t,1,3) % t is the integration variable, and 1 and 3 are limits of integration

4*a - 2*exp(1/2)*(exp(l) - 1)



To evaluate the integral when a = 1, we proceed as follows:
>> a = 1; double(subs(l))
ans =

-1.665935599275873

Note that the default integration variable here is t. Thus, in the above example, it could
have been omitted to yield the correct result:

>> int(g,1,3)
ans =

4*a - 2*exp(1/2)*(exp(l) - 1)

2.4 Program Flow Control

Program flow can be controlled with the following three commands: for, if, and
while.

2.4.1 for Loop

A for/end loop repeats a statement, or a group of statements, a specific number of times.
Its generic form is

for 1 = first:increment:last,
statements
end

The loop is executed as follows. The index 1 assumes its first value, all statements in the

subsequent lines are executed with I = TFirst, then the program goes back to the for
command and i assumes the value I = First + increment and the process continues
until the very last run corresponding to I = last.

As an example, suppose we want to generate a 5x 5 matrix A with diagonal
entries all equal to 1, and upper diagonal entries all equal to 2, while all other entries
are zero.

A = zeros(5,5); % Pre-allocate
for i = 1:5,
A(i,1) = 1; % Diagonal entries
end
for i = 1:4,
A(l,i+1l) = 2; % Upper diagonal entries



Execution of this script returns
>> A

A =

el oNoNoN
OO0OOoOrN
O OFrNO
OFrLrNOO
P NOOO

2.4.2 The if Command

The most general form of the i command is

if condition 1

set of expressions 1
else if condition 2

set of expressions 2
else

set of expressions 3
end

The simplest form of a conditional statement is the 1 f/end structure. For example,

syms X
£ = matlabFunction(log(x/3)); x = 1;
if f(x) ~= 0,

error("x is not a root")

end

Execution of this script returns
x is not a root

The 1f/else/end structure allows for choosing one group of expressions from two
groups. The most complete form of the conditional statement is the i1 f/elseif/else/
end structure. Let us create the same 5 x 5 matrix A as above, this time employing the
if/elseif/else/end structure.

A = zeros(5,5);
for i = 1:5,
for j = 1:5,
if j i

Note that each Tor statement is accompanied by an end statement. Execution of this script
returns



>> A

(el eoNoNoN
[elNeNeN i )
O OFrNO
ORrLNOO
P NOOO

2.4.3 while Loop

A while/end loop repeats a statement, or a group of statements, until a specific condition
is met. Its generic form is

while condition
statements
end

We will generate the same 5 x 5 matrix A as before, this time with the aid of the whi le loop.

A=eyeB); 1 =1

while i < 5,
A(i,i+l) = 2
i = i+l;

end

Executing this script returns the same matrix as above.

>> A

A =
1 2 0 0 0
0 1 2 0 0
0 0 1 2 0
0 0 0 1 2
0 0 0 0 1

|

2.5 Displaying Formatted Data

Formatted data can be displayed by using either disp or fprintf. An example of how
the disp command is used is

>> v = [1.2 -9.7 2.8];
>> disp(v)

1.2000 -9.7000 2.8000

Formatted data may be better controlled via fprintf. Let us consider the script below.

A function f(x) = xcos x + 1is defined. For k = 1,2, 3, 4, 5 we want to calculate each ¢ = (%)k as



well as the corresponding function value f(c). The output is to be displayed in tabulated
form containing the values of k, ¢, and f(c) for each k =1, 2, 3, 4, 5.

syms X
T = matlabFunction(x*cos(x)+1);
disp(" k c f(c)")

for k = 1:5
= (1/2)Ak
fc = f(c);
fprintf (" %2i %6 .4F %6.4F\n" ,k,c,fc)
end

Execution of this script returns

c f(c)
0.5000 1.4388
0.2500 1.2422
0.1250 1.1240
0.0625 1.0624
0.0313 1.0312

asrwNPFE X

The disp command simply displays all contents inside the single quotes. The fprintf
command is used inside For loop. For each k in the loop, fprintf writes the value of
K, the calculated value of ¢, as well as £(c). The format %21 means integer of length 2,
which is being used for displaying the value of k. In %6 .4F, the letter f represents the
fixed-point format, 6 is the length, and the number 4 is the number of digits to the right of
the decimal. Finally, \n means new line. A more detailed description is available through
the help command.

2.5.1 Differential Equations

Differential equations and initial-value problems can be solved by the dsolve
function. For example, the solution of the differential equation y’+(x+1)y=0 is
obtained as

>> y = dsolve("Dy+(x+1)*y=0%, "x")

y =

Ca/exp((x + 1)Y"2/2) % C4 is some constant

Note that the default independent variable in dsolve is t. Since in our example the
independent variable is X, we needed to specify that in single quotes. The initial-value
problem ¥ +2x+2x=e¢", x(0)=0, %(0) =1 is solved as

>> x = dsolve("D2x+2*Dx+2*x=exp(-t) ", "x(0)=0, Dx(0)=1%)
X =

1/exp(t) - cos(t)/exp(t) + sin(t)/exp(t)



2.6 Plotting

Plotting a vector of values versus another vector of values is done by using the plot com-
mand. For example to plot the function x(t) = e(cos t + sin f) over the interval [0, 5] using
100 points:

>> t linspace(0,5); % 100 values for 0 < t <5
>> x = exp(-t).*(cos(t)+sin(t)); % Corresponding 100 values for x
>> plot(t,x) % Figure 2.1

The Figure Window can be used to edit the figure. These include adding grid, adjusting
thickness of lines and curves, adding text and legend, axes titles, and much more.

2.6.1 subplot

The built-in function subplot is designed to create multiple figures in tiled positions.
Suppose we want to plot the function z(x, t) = e~sin(t + 2x) versus 0 < x <5 for four values
of t =0, 1, 2, 3. Let us generate the four plots and arrange them in a 2 x 2 formation.

x = linspace(0,5); t = 0:1:3;

for i = 1:4,
for j = 1:100,
z(,1) = exp(-x@))*sin(t(i)+2*x(J)); % Generate 100 values of z for each t
end

end

1.2 T T T T T T T T T

0.8 \
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0.2 \

FIGURE 2.1
Plot of a function versus its variable.
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Subplot in a 2 x 2 formation.

% Initiate Figure 2.2

subplot(2,2,1), plot(x,z(:
subplot(2,2,2), plot(x,z(:
subplot(2,2,3), plot(x,z(:

,1)), title(”
,2)), title(”
,3)), title(”

t
t
t
t

subplot(2,2,4), plot(x,z(:,4)), title(

2.6.2 Plotting Analytical Expressions

An alternative way to plot a function is to use the ezplot command, which plots the
function without requiring data generation. As an example, consider the function
x(f) = e”!(cos t + sin t) that we previously plotted over the interval [0, 5]. The plotin Figure 2.1
can be regenerated using ezplot as follows:

>> x = sym("exp(-t)*(cos(t)+sin(t))");
>> ezplot(x,[0,5]) % Figure 2.1

2.6.3 Multiple Plots

Multiple plots can also be created using ezplot. Suppose the two functions
y; =0.7e*?sin 2t and y, = e™/*sin 3t are to be plotted versus 0 < f < 5 in the same graph.

>>
>>
>>
>>
>>

yl = sym("0.7*exp(-2*t/3)*sin(2*t)");

y2 sym("exp(-t/3)*sin(3*t) ") ;
ezplot(yl,[0,5]) % Initiate Figure 2.3
hold on
ezplot(y2,[0,5])

% Complete Figure 2.3
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FIGURE 2.3
Multiple plots.

Executing the preceding script generates a figure which does not exactly match Figure 2.3.
To enable the interactive plot editing mode in the MATLAB figure window, click the Edit
Plot button (%) or select Tools > Edit Plot from the main menu. If you enable plot editing
mode in the MATLAB figure window, you can perform point-and-click editing of your
graph. In this mode, you can modify the appearance of a graphics object by double-clicking
the object and changing the values of its properties.

2.7 User-Defined Functions and Script Files

User-defined M file functions and scripts may be created, saved, and edited in MATLAB
using the ed 1t command. For example, suppose we want to create a function called Circ
that returns the area of a circle with a given radius. The function can be saved in a folder
on the MATLAB path or in the current directory. The current directory can be viewed
and/or changed using the drop down menu at the top of the MATLAB command window.
Once the current directory has been properly selected, type

>> edit Circ

A new window (Editor Window) will be opened where the function can be created. The
generic structure of a function is

function [output variables] = FunctionName(input variables)
% Comments

Expressions/statements

Calculation of all output variables



Our user-defined function Circ is specifically created as follows.

function A = Circ(r)

%

% Circ calculates the area of a circle of a given radius.
%

% A = Circ(r), where

%

% r is the radius of the circle,
%

% A is the area.

%

A = pi*r"2;

To compute the area of a circle with radius 1.3, we simply execute
>> A = Circ(1.3)
A =

5.3093

Often, functions with multiple outputs are desired. For example, suppose our function
Circ is to return two outputs: area of the circle and the perimeter of the circle. We create
this as follows.

function [A, P] = Circ(r)

%

% Circ calculates the area and the perimeter of a circle of a given radius.
%

% [A, P] = Circ(r), where

%

% r is the radius of the circle,
%

% A is the area,

% P is the perimeter.

%
A = pi*r~"2; P = 2*pi*r;

Executing this function for the case of radius 1.3, we find
>> [A, P] = Circ(1.3)
A =

5.3093 % OFf course, this agrees with last result

8.1681



2.7.1 Setting Default Values for Input Variables

Sometimes, default values are declared for one or more of the input variables of a func-
tion. As an example, consider a function y_ int that returns the y-intercept of a straight
line that passes through a specified point with a given slope. Suppose the slope is 1 unless
specified otherwise; that is, the default value for slope is 1. If the specified point has coordi-
nates (x,, ,) and the slope is m, then the y-intercept is found as y = y, — mx,. Based on this
we write the function as follows.

function y = y_int(x0,y0,m)

%

% y_int finds the y-intercept of a line passing through a point (x0,y0)
% with slope m.

%

% y = y_ int(x0,y0,m), where

%

% X0, yO are the coordinates of the given point,
% m is the slope of the line (default 1),

%

% y is the y-intercept of the line.

%
if nargin < 3 || isempty(m), m = 1; end
y = y0 - m*x0;

The MATLAB command nargin (number of function input arguments) is used for the
purpose of setting default values for one or more of the input variables. The i statement
here ensures that if the number of input arguments is less than 3, or that the third input
argument is empty, then the default value of 1 will be used for m. As an example, to find
the y-intercept of the line going through the point (-1, 2) with slope 1, either one of the fol-
lowing two statements may be executed:

>> y = vy int(-1,2) % Number of input arguments is less than 3

y:
3

OR

>y =y int(-1,2,[D % The third argument is empty

y:
3

In many cases, at least one of the input variables of a user-defined function happens to
be either a MATLAB function or an anonymous function. Consider the following exam-
ple. Suppose we want to create a user-defined function with the function call [r, k]
= My_func(f,x0,tol,kmax) where T is an anonymous function, X0 is a given initial
value, tol is the tolerance (with default value 1e-4), and kmax is the maximum number
of steps (with default value 20) to be performed. The function calculates x1 = ¥(x0),
followed by x2 = f(x1), x3 = T(x2), and so on. Operations stop as soon as the
distance between two successive elements generated in this manner is less than tol. The
outputs of the function are the last element generated when the tolerance condition is met,
as well as the number of steps required to achieve that.



function [r, kK] = My_func(f,x0,tol,kmax)

if nargin < 3 || isempty(tol), tol = le-4; end
if nargin < 4 || isempty(kmax), kmax = 20; end

x = zeros(kmax); % Pre-allocate
x(1) = x0; % Define the first element in the array
for k = 1:kmax,

x(k+1) = F(x(K));

if abs(x(k+1)-x(k)) < tol, % Check tolerance condition

break

end

r = x(k+1); % Set the output as the very last element generated
end

Let us now use My_func for f(x) = 3> with x0=0, tol=1le-3, and kmax=20.

>> F = 00 BN-X));
>> [r, k] = My_func(f,0,1e-3) % kmax uses default value of 20

15

It turns out that the number of steps is 15, which is lower than the maximum of 20. If the
returned value for k happens to be 20, further inspection must be conducted. It is possible
that exactly 20 steps were needed to meet the desired condition. It is also possible that the
maximum number of steps has been exhausted without having the tolerance met. That
is why the function needs to be reexecuted with a larger value of kmax than the default
(in this case, 20) to gather more precise information.

The user-defined function My_func has two outputs: r and k. We may retrieve the
value of r only by executing

>> r = My_func(f,x0,tol,kmax)

This is possible because r is the first output. To have access to the value of k, however,
we must execute

>> [r, k] = My_func(f,x0,tol,kmax)

2.7.2 Creating Script Files

A script file comprises a list of commands as if they were typed at the command line. Script
files can be created in the MATLAB Editor, and saved as an M file. For example, typing

>> edit My_script

opens the Editor Window, where the script can be created and saved under the name
My_script. It is recommended that a script start with the functions clear and clc.
The first one clears all the previously generated variables, and the second one clears the
Command Window. Suppose we type the following lines in the Editor Window:



clear

clc

X = 2; N = 10;
a = cos(X)*N"2;

While in the Editor Window, select “Run My_script.m” under the Debug pull-down
menu. This will execute the lines in the script file and return the Command Prompt.
Simply type a at the prompt to see the result.

>> My_script
>> a

a =
-41.6147

This can also be done by highlighting the contents and selecting “Evaluate Selection.” An
obvious advantage of creating a script file is that it allows us to simply make changes to the
contents without having to retype all the commands.

PROBLEM SET (CHAPTER 2)
All calculations must be performed in MATLAB.

1. Evaluate the function g(x, y)=1e > tan(y +1) for x = 0.3,y = -0.7
a. Using the subs command.
b. By conversion into a MATLAB function.
2. Evaluate the function h(x, y)=cos(:x—1)sin(y+1) for x =2,y =1 using
a. The subs command.
b. An anonymous function.

x-1
3. Evaluate the vector function f(x, y)= {2 N x} for x=2,y =2 using
a. The subs command. Y
b. An anonymous function.

{1—2x x+y

4. Evaluate th trix f ti ,Y)= f =Ly=-1
valuate the matrix function f(x, y) 0 cosy} or x y

a. Using the subs command.
b. By conversion into a MATLAB function.
5. Consider g(t)= tsin(%t) +In(t-1). Evaluate dg/dt at t = 3
a. Using the subs command.
b. By conversion into a MATLAB function.
6. Consider h(x)=3""2sinx+2¢'"*. Evaluate dh/dx at x = —0.3
a. Using the subs command.
b. By conversion into a MATLAB function.
7. Evaluate [xz + e’“(”l)]m when 2 =-1, x=3 using an anonymous function in
another anonymous function.



(a+2)x/3

8. Evaluate \/‘x+1n‘1— e ‘ when a = -3, x = 1 using an anonymous function in
another anonymous function.

In Problems 9 through 12 write a script file that employs any combination of the flow
control commands to generate the given matrix.

(1 0 -1 0 0 0]
0 2 0 -1 0 0
2 0 3 0 -1 0
SAZl0 2 0 4 0 4
0 0 2 0 5 0
0 0 0 2 0 6]
(4 1 2 3 0 O]
0 4 -1 2 3 0
0 0 4 1 -2 3
10. A=
0o 0 0 4 -1 2
0 0 0 0 4 1
0 0 0 0 0 4]
i 1 0 0 0 0]
0 -2 2 0 0 0
B -1 0 3 3 0 0
0 1 0 -4 4 0
0o 0 -1 0 5 5
0 0 0 1 0 -6
0 0 -1 o0 i
0 -1 0 -2 0
12.B=|4 0 2 0 -3
0 5 0 -3 0
0 0 6 0 4

13. Using any combination of commands diag, triu, and tril, construct matrix B
from A.

2 1 -1 2 0 0 0 O

3 0 4 1 3 0 0 O
A: , B:

1 5 -1 3 1 5 0 0

0 2 6 1 0 2 6 O



14.

15.

16.

Using any combination of commands diag, triu, and tril, construct matrix B
from A.
2 1 -1 2 0o 1 -1 2
3 0 4 1 3 0 4 1
A = , B =
1 5 -1 3 0 5 0 3
0 2 6 1 0 0 6 0

t

Plot J.et‘z" sinxdx versus -1 <t <1, add grid and label.

1

t
Plot I(x +1)2e " Vdx versus -2 < t < 1, add grid and label.

0
17. Plot y; = Je™' sin (t\/E ) and y, =e™"/? versus 0 <t <5 in the same graph. Add grid,

18.

19.

20.

21.

22.
23.

24.

25.

26.

and label.

Generate 100 points for each of the two functions in Problem 17 and plot versus
0 <t <5in the same graph. Add grid, and label.
Evaluate dew.
) O
Plot u(x, t) = cos(1.7x) sin(3.2f) versus 0 < x < 5 for four values of t =1, 1.5,2,2.5in a

2 x 2 tile. Add grid and title.

Plot u(x, t) = (1 — sin x)e-*V versus 0 < x <5 for two values of t =1,3 in a 1 x 2 tile.
Add grid and title.

Given that f(x) = e2* + cos(x + 1), plot f’(x) versus 0 <x < 8.

Write a user-defined function with function call val = f_eval (f,a,b) where
fis an anonymous function, and a and b are constants such that a < b. The func-
tion calculates the midpoint m of the interval [a, b] and returns the value of
f(a)+1 f(m)+ f(b)- Execute T_eval for f=e>3,a=-4,b=2.
Write a user-defined function with function callm = mid_seq(a,b, tol) where
a and b are constants such that a < b, and tol is a specified tolerance. The function
first calculates the midpoint m, of the interval [g, b], then the midpoint m, of [a, ],
then the midpoint m; of [, m,], and so on. The process terminates when two suc-
cessive midpoints are within tol of each other. Allow a maximum of 20 iterations.
The output of the function is the sequence m;,, m,, m,, .... Execute the function for
a=-4,b=10, tol = 10-3.

Write a user-defined function with function call C = temp_conv(F) where F
is temperature in Fahrenheit, and C is the corresponding temperature in Celsius.
Execute the function for F = 87.

Write a user-defined function with function callP = partial_eval (f,a) where

f1is a function defined symbolically, and a is a constant. The function returns the
value of f"+ f” at x = a. Execute the function for f = 3x? — ¢*/3, and a = 1.

27. Write a user-defined function with function call P = partial_eval2(f,g,a)

where fand g are functions defined symbolically, and a is a constant. The function



28.

29.
30.

returns the value of f’+ ¢” atx = a. Execute the function for f = x2 + ¢, g = sin(0.3x),
and a2 =0.8.

Write a user-defined function with function call [r, k] = root_finder(f,
x0,kmax,tol) where f is an anonymous function, X0 is a specified value,
kmax is the maximum number of iterations, and tol is a specified tolerance. The
function sets x; = x,, calculates |f(x))|, and if it is less than the tolerance, then x,
approximates the root r. If not, it will increment x; by 0.01 to obtain x,, repeat the
procedure, and so on. The process terminates as soon as |f(x,)|< tol for some k.
The outputs of the function are the approximate root and the number of iterations
it took to find it. Execute the function for f(x) = x2 — 3.3x + 2.1, x, = 0.5, kmax = 50
tol =102

Repeat Problem 28 for f(x) = 3 + In(2x — 1)—e¥, x, = 1, kmax = 25 tol = 102

Write a user-defined function with function call [opt, k] = opt_finder(fp,
x0,kmax,tol) where Tp is the derivative (as a MATLAB function) of a given
function f, X0 is a specified value, kmax is the maximum number of iterations,
and tol is a specified tolerance. The function sets x, = x,, calculates |fp(x,)|, and
if it is less than the tolerance, then x; approximates the critical point opt at which
the derivative is near zero. If not, it will increment x, by 0.1 to obtain x,, repeat the
procedure, and so on. The process terminates as soon as |fp(x,)| < tol for some
k. The outputs are the approximate optimal point and the number of iterations it
took to find it. Execute the function for f{x) = x + (x — 2), x, = 1, kmax = 50 tol = 10-3.



3

Numerical Solution of Equations of a Single Variable

This chapter focuses on numerical solution of equations of a single variable, which appear
in the general form

f(0)=0 G.D)

Graphically, a solution (or root) of f(x) =0 refers to the point of intersection of f(x) and
the x-axis. Therefore, depending on the nature of the graph of f(x) in relation to the x-axis,
Equation 3.1 may have a unique solution, multiple solutions, or no solution. A root of an
equation can sometimes be determined analytically resulting in an exact solution in closed
form. For instance, the equation ¢3* — 2 =0 can be solved analytically to obtain a unique
solution x =4In2. In most situations, however, this is not possible and the root(s) must be
found numerically. As an example, consider the equation 2 — x + cos x = 0. Figure 3.1 shows
that this equation has one solution only, which may be approximated to within a desired
accuracy with the aid of a numerical method.

3.1 Numerical Solution of Equations

As described in Figure 3.2, numerical methods for solving an equation are divided into
three main categories: bracketing methods, open methods, and using the built-in MATLAB
function fzero.

Bracketing methods require that an interval containing the root first be identified.
Referring to Figure 3.3, this means an interval [g, b] with the property that f(a)f(b) < 0 so that
a root lies in [g, b]. The length of the interval is then reduced in succession until a desired
accuracy is satisfied. Exactly how this interval gets narrowed in each step depends on the
specific method used. It is readily seen that bracketing methods always converge to the root.
Open methods require an initial estimate of the solution, somewhat close to the intended
root. Subsequently, more accurate estimates are successively generated by a specific method;
Figure 3.4. Open methods are more efficient than bracketing methods, but do not always
generate a sequence that converges to the root. The built-in function fzero finds the root of
a function f near a specified point, or in a specified interval [4, b] such that f(a)f(b) < 0.

3.2 Bisection Method

The bisection method is the simplest bracketing method to find a root of f(x)=0. It is
assumed that f(x) is continuous on an interval [4, b] and has a root there so that f(a) and f(b)
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FIGURE 3.1
Approximate solution of 2 — x + cos x =0.
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FIGURE 3.2
Classification of methods to solve an equation of one variable.

have opposite signs, hence f(a)f(b) < 0. The procedure goes as follows: Locate the midpoint
of [a, b], that is, ¢; = §(a+Db), Figure 3.5. If f(1) and f(c;) have opposite signs, the interval [g, c]
contains the root and will be retained for further analysis; that is, the left end is retained
while the right end is adjusted. If f(b) and f(c,) have opposite signs, we continue with [c;, b];
that is, the right end is kept while the left end is adjusted. In Figure 3.5 it so happens that
the interval [c,, b] brackets the root and is retained. Since the right endpoint is unchanged,
we update the interval [a, b] by resetting the left endpoint a = c,. The process is repeated
until the length of the most recent interval [g, D] satisfies the desired accuracy.

The initial interval [, b] has length b —a. Beyond that, the first generated interval has
length }(b—a), the next interval }(b—a), and so on. Thus, the n-th interval constructed
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FIGURE 3.3
Philosophy of bracketing methods.

in this manner has length (b —a)/2", and because it brackets the root, the absolute error
associated with the nth iteration satisfies

b

—a
|en|SF (b>ll)

This upper bound is usually larger than the actual error at the nth step. If the bisection
method is used to approximate the root of f(x) = 0 within a prescribed tolerance € > 0, then
it can be shown that the number N of iterations needed to meet the tolerance condition
satisfies

S In(b—a)-Ine
In2

N (32)

The user-defined function Bisection shown below generates a sequence of values
(midpoints) that ultimately converges to the true solution. The iterations terminate when
3(b—a)< e, where € is a prescribed tolerance. The output of the function is the last gener-
ated estimate of the root at the time the tolerance was met. It also returns a table that com-
prises iteration counter, interval endpoints, and interval midpoint per iteration, as well as
the value of 1(b—a) to see when the terminating condition is satisfied.
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Bisection method: three iterations shown.



function c = Bisection(f, a, b, kmax, tol)

%

% Bisection uses the bisection method to find a root of f(x) = 0
% in the interval [a,b]-

%

% ¢ = Bisection(f, a, b, kmax, tol), where

%

% f Is an anonymous function representing f(x),

% a and b are the endpoints of interval [a,b],

% kmax is the maximum number of iterations (default 20),

% tol is the scalar tolerance for convergence (default le-4),
%

% c is the approximate root of f(x) = 0.

%
if nargin < 5 || isempty(tol), tol = le-4; end
if nargin < 4 || isempty(kmax), kmax = 20; end
if f(@)*f(b) > 0
c = "failure”;
return
end
disp(® k a b c (b-a)/2%)
for k = 1:kmax,
c = (ath)/2; % Find the Ffirst midpoint
if f(c) = 0, % Stop if a root has been found
return
end
fprintf (" %31 %11.6F%11.6F%11.6F%11.6F\n" ,k,a,b,c,(b-a)/2)
if (b-a)7/2 < tol, % Stop if tolerance is met

return
end
if f(b)*f(c) > 0 % Check sign changes
b =c; % Adjust the endpoint of interval
else a = c;
end

end

EXAMPLE 3.1: BISECTION METHOD

The equation x cos x + 1 =0 has a root in the interval [-2, 4], as shown in Figure 3.6:

>> F = @) (x*cos(x)+1);
>> ezplot(f,[-2.4])

Define f(x) = x cos x + 1 so that f(-2) > 0 and f(4) < 0. We will perform two steps of the
bisection method as follows. The first midpoint is found as ¢; = 3(—2+4)=1. Since the
function value at this point is f(c;) = f(1) > 0, the root must be in [1, 4]. This means the left
end is adjusted as a = ¢; =1 while b =4 remains unchanged. The next midpoint is then
calculated as ¢, =1 (1+4) =2.5. Since f(c,) =f(2.5) < 0, the root must lie in [1, 2.5]. This
process continues until a desired accuracy is achieved. In particular, if we execute the
user-defined function Bisection with € = 10?2 and maximum 20 iterations, the follow-
ing results are obtained.
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Location

of the root of x cos x +1 -0 in [-2, 4].

>> ¢ = Bisection(f, -2, 4, [1., le-2)

(¢}

k a b C (b-a)7/2
1 -2.000000 4.000000 1.000000 3.000000
2 1.000000 4.000000 2.500000 1.500000
3 1.000000 2.500000 1.750000 0.750000
4 1.750000 2.500000 2.125000 0.375000
5 1.750000 2.125000 1.937500 0.187500
6 1.937500 2.125000 2.031250 0.093750
7 2.031250 2.125000 2.078125 0.046875
8 2.031250 2.078125 2.054688 0.023438
9 2.054688 2.078125 2.066406 0.011719
10 2.066406 2.078125 2.072266 0.005859
2.0723

The data in the first three rows confirm the hand calculations. Iterations stopped

when 3(b—a)=0.005859 < £ =0.01. Note that by Equation 3.2, we have

S In(b—a)—Ine =24 In6-In0.01 _
In2 €=0.01 In2

N 9.23

which means at least 10 iterations are required for convergence. This is in agree-

mu

ent with the findings here, as we saw that tolerance was met after 10 iterations.

The accuracy of the solution estimate will improve if a smaller tolerance is imposed.

3.2.1 MATLAB Built-In Function fzero
The fzero function in MATLAB finds the roots of f(x) = 0 for a real function f(x).

FZERO

X
i

Scalar nonlinear zero finding.

= FZERO(FUN,X0) tries to find a zero of the function FUN near XO,
f X0 is a scalar.



The fzero function uses a combination of the bisection, secant, and inverse quadratic
interpolation methods. If we know two points where the function value differs in sign, we
can specify this starting interval using a two-element vector for x0. This algorithm is guar-
anteed to return a solution. If we specify a scalar starting point X0, then fzero initially
searches for an interval around this point where the function changes sign. If an interval
is found, then fzero returns a value near where the function changes sign. If no interval
is found, fzero returns a NaN value.

The built-in function fzero can be used to confirm the approximate root in Example 3.1.
This can be done in one of two ways. As a first option, we may specify a point near which
the root must be found. For instance, selecting X0 = 1 leads to

>> fzero(f,1)
ans =

2.0739

As a second option, we may identify two points where the function value differs in sign.
For instance, choosing the interval [1, 3] leads to

>> fzero(F,[1,3])

ans =
2.0739

The accuracy of the approximate root (2.0723) returned by the user-defined func-
tion Bisection can be improved by choosing a smaller tolerance. For example, the
reader can verify that executing Bisection with tol = 1e-8 returns a root esti-
mate (2.0739) that agrees with fzero to at least 4 decimal places, but requires 30
iterations.

3.3 Regula Falsi Method (Method of False Position)

The regula falsi method is another bracketing method to find a root of f(x) =0. Once
again, it is assumed that f(x) is continuous on an interval [, b] and has a root there so
that f(a) and f(b) have opposite signs, f(a)f(b) < 0. The technique is geometrical in nature
and described as follows. Let [a;, b,] = [a, b]. Connect points A:(a,, f(a,)) and B:(b,, f(b,)) by a
straight line as in Figure 3.7 and let ¢, be its x-intercept. If f(a;)f(c;) <0, then [a;, ¢,] brackets
the root. Otherwise, the root is in [¢;, b;]. In Figure 3.7 it just so happens that [a,, c;] brack-
ets the root. This means the left end is unchanged, while the right end is adjusted to ¢;.
Therefore, the interval that is used in the next iteration is [a,, b,] where a, =a, and b, = c,.
Continuing this process generates a sequence c,, ¢, ... that eventually converges to the
root. In the case shown in Figure 3.7 the curve of f(x) is concave up and the left end of the
interval remains fixed at least through the first three iterations shown. This issue will be
addressed shortly.
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Method of false position (regula falsi).

Analytically, the procedure is illustrated as follows. The equation of the line connecting
points A and B is

y= ) = LSO

To find the x-intercept, set y = 0 and solve for x = ¢;:

_ Simplify _
¢ =b — by —m f(bl _ alf(bl) blf(ﬂ1)
f(b)— f(a) fbr)— f(ar)

Generalizing this result, the sequence of points that converges to the root is
generated via

Cn _ 5f (5)=buf(@,) b,,f(a,,), n=1,2,3,... 3.3)
f(bn)_f(an)

The user-defined function RegulaFalsi generates a sequence of elements that eventu-
ally converges to the root of f(x) = 0. The iterations stop when two consecutive x-intercepts
are within an acceptable distance from one another. That is, the terminating condition is
|c,q — €| <€ where € is the imposed tolerance. The outputs are the approximate root and
the number of iterations required to meet the tolerance. The function also returns a table
comprised of the intervals containing the root in all iterations performed.

function [r, k] = RegulaFalsi(f, a, b, kmax, tol)

%

% RegulaFalsi uses the regula falsi method to approximate a root of f(x) =
% in the interval [a,b]-



% [r, k] = RegulaFalsi(f, a, b, kmax, tol), where

% T is an anonymous function representing f(x),
% a and b are the limits of interval [a,b],
% kmax is the maximum number of iterations (default 20),
% tol is the scalar tolerance for convergence (default le-4),
%
% r is the approximate root of f(x) = 0,
% k is the number of iterations needed for convergence.
%
if nargin < 5 || isempty(tol), tol = le-4; end
if nargin < 4 || isempty(kmax), kmax = 20; end
c = zeros(l,kmax); % Pre-allocate
if f(a)*f(b) > 0
r = "failure®;
return
end
disp(® k a b*)
for k = 1:kmax,
c(k) = (a*f(b)-b*f(a))/(f(b)-f(a)); % Find the x-intercept
it f(c(k)) = % Stop iIf a root has been found
return
end
Tfprintf("%2i %11.6T%11.6F\n" ,k,a,b)
it f(b)*f(c(k)) > 0 % Check sign changes
b = c(k); % Adjust the endpoint of interval
else a = c(k);
end
c(k+l) = (@*F(b)-b*f(a))/(f(b)-f(a)); % Find the next x-intercept
if abs(c(k+l)-c(k)) < tol, % Stop iIf tolerance is met
r = c(k+l);
return
end
end

EXAMPLE 3.2: REGULA FALSI METHOD
Reconsider the equation x cos x+1=0 and the interval [-2, 4] that contains its root.

Letting f(x) = x cos x + 1, we have f(-2) > 0 and f(4) < 0. We will perform two steps of the
regula falsi method. First, set [a,, ;] = [-2, 4]. Then,

- alf(bl)_blf(al)

=1.189493
f(bl)_f(al)

1

Since f(c,) > 0, the root must lie in [c;, b;] so that the left endpoint is adjusted to a, = c;
and the right end remains unchanged, b,=0,. Therefore, the updated interval is
[a,, b,] = [1.189493, 4]. Next,

o = ﬂzf(bz)—bzf(ﬂz)

2= =2.515720
f(b2) - f(ﬂz)



This process continues until a desired accuracy is achieved. In particular, if we exe-
cute the user-defined function RegulaFalsi with € = 102 and maximum 20 iterations,
the following results are obtained.

>> F = QX)) (X*cos(x)+1);
>> [r, k] = RegulaFalsi(f, -2, 4, [1., le-2)

k a b
1 -2.000000 4.000000
2 1.189493 4.000000
3 1.189493 2.515720
4 1.960504 2.515720
r =
2.0738
k =
4

The boxed entries confirm the hand calculations. We observe that, for the same toler-
ance (1e-2), the root estimate returned by RegulaFalsi is reached faster and is more
accurate than the one returned by Bisection. Also note that the functions Bisection
and RegulaFalsi use different criteria to terminate the respective iterations.

3.3.1 Modified Regula Falsi Method

In many cases, the curve representing f(x) happens to be concave up or concave down.
In these situations, when regula falsi is employed, one of the endpoints of the interval
remains the same through all iterations, while the other endpoint advances in the direction
of the root. For instance, in Figure 3.7, the function is concave up, the left endpoint remains
unchanged, and the right endpoint moves toward the root. The regula falsi method can be
modified such that both ends of the interval move toward the root, thus improving the rate
of convergence. Among many proposed modifications, there is one that is presented here.
Reconsider the scenario portrayed in Figure 3.7 now shown in Figure 3.8. If endpoint a

Sfx)

Point generated by
modified regula falsi

Point generated by
/ regula falsi

—_——_————— s

FIGURE 3.8
Modified regula falsi method.



remains stagnant after, say, three consecutive iterations, the usual straight line is replaced
with one that is less steep, going through the point at 5 f(a) instead of f(a), which causes the
x-intercept to be closer to the actual root. It is possible that this still does not force the end-
point a to move toward the root. In that event, if endpoint a remains the same after three
more iterations, the modified line will be replaced with yet a less steep line going through
+ f(a), and so on; See Problem Set.

3.4 Fixed-Point Method

The fixed-point method is an open method to find a root of f{x) = 0. The idea is to rewrite
f(x) =0 as x = g(x) for a suitable g(x), which is called an iteration function. A point of inter-
section of y = g(x) and y = x is called a fixed point of g(x). A fixed point of g(x) is also a root
of the original equation f(x) = 0. As an example, consider e*/2 — x =0 and its root as shown
in Figure 3.9. The equation is rewritten as x = e™/2 so that g(x) = ¢*/2 is an iteration func-
tion. It is observed that g(x) has only one fixed point, which is the only root of the original
equation. It should be noted that for a given equation f(x) = 0 there usually exist more than
one iteration function. For instance, e*/2 — x = 0 can also be rewritten as x = -2 In x so that
g)==21Inux
A fixed point of g(x) is found numerically via the fixed-point iteration:

Xpn =g(x,), n=1,2,3, ..., x =initial guess (34

The procedure begins with an initial guess x; near the fixed point. The next point x,
is found as x, = g(x;), followed by x; = g(x,), and so on. This continues until convergence

FIGURE 3.9
Root of an equation interpreted as a fixed point of an iteration function.
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Fixed-point iteration: (a) monotone convergence, and (b) oscillatory convergence.

is observed, that is, until two successive points are within a prescribed distance of one
another, or

| Xp1—x, | <€

Two types of convergence can be exhibited by the fixed-point iteration: monotone and
oscillatory, as illustrated in Figure 3.10. In a monotone convergence, the elements of the
generated sequence converge to the fixed point from one side, while in an oscillatory
convergence, the elements bounce from one side of the fixed point to the other as they
approach it.

3.4.1 Selection of a Suitable Iteration Function

As mentioned above, there is usually more than one way to rewrite a given equation
f(x) =0 as x = g(x). An iteration function g(x) must be suitably selected so that when used in
Equation 3.4, the iterations converge to the fixed point. In some cases, more than one of the
possible forms can be successfully used. Sometimes, none of the forms is suitable, which
means that the root cannot be found by the fixed-point method. When there are multiple
roots, one possible form may be used to find one root, while another form leads to another
root. As demonstrated in Theorem 3.1, there is a way to decide whether a fixed-point itera-
tion converges or not for a specific choice of iteration function.

Theorem 3.1: Convergence of Fixed-Point Iteration

Let rel be a fixed point of g(x). Assume that g(x) has a continuous derivative in interval I,
and |¢'(x)] £K <1 for all xel. Then, for any initial point x, €I, the fixed-point iteration in
Equation 3.4 generates a sequence {x,} that converges to r. Furthermore, if e, =x; — 7 and
e, = x, — r denote the initial error and the error at the nth iteration, we have

len |[<K" e | 3.5)



Proof

Suppose x€l. Then, by the mean value theorem (MVT) for derivatives, there exists a point
& e(x, r) such that

g(0)—-g(r) =g’ EC)(x—7)

Next, let us consider the left side of Equation 3.5. Noting that » = g(r) and x, = g(x,), we
have

MVT
|en|=|xn_r|=|g(xn—1)_g(r)| = |gl(§)| |x”_1_r|
SK|x,,,1—r|=K|g(xn72)_8(7’)|

MVT

= KIg'm| [xs2—7]
<K*|xpp—7|<-<K"|xy—7|=K"|es]

Since K < 1 by assumption, |e,| = |x, —r|— 0 as n — . That completes the proof. [

3.4.2 A Note on Convergence

Following Theorem 3.1, if |g(x)| <1 near a fixed point of g(x), convergence is guaranteed.
In other words, if in a neighborhood of a root, the curve representing g(x) is less steep than the line
y = x, then the fixed-point iteration converges to that root. Note that this is a sufficient, and not
necessary, condition for convergence.

The user-defined function FixedPoint uses an initial point x, and generates a sequence
of elements {x,} that eventually converges to the fixed point of g(x). The iterations stop
when two consecutive elements are sufficiently close to one another, thatis, |x,, —x,| <€,
where ¢ is the tolerance. The outputs are the approximate value of the fixed point and the
number of iterations needed to meet the tolerance.

function [r, n] = FixedPoint(g, x1, kmax, tol)

%

% FixedPoint uses the fixed-point method to approximate a fixed point
% of g(x)-

%

% [r, n] = FixedPoint(g, x1, kmax, tol), where

%

% g is an anonymous function representing g(x),

% x1 is the initial point,

% kmax is the maximum number of iterations (default 20),

% tol is the scalar tolerance for convergence (default le-4),
%

% r is the approximate fixed point of g(x),

% n is the number of iterations needed for convergence.

%

if nargin < 4 || isempty(tol), tol = le-4; end
if nargin < 3 || isempty(kmax), kmax = 20; end
X = zeros(1l,kmax);

x(1) = x1;

for n = 1:kmax,



x(n+1) = g(x(n));
if abs(x(n+l) - x(n)) < tol
r = x(n+l);
return
end
end
r = "failure®; % Failure to converge after kmax iterations

EXAMPLE 3.3: FIXED-POINT METHOD

The objective is to find the roots of x — 2-*= 0 using the fixed-point method. Rewrite the
equation as x = 2 so that g(x) = 2*. The (only) fixed point can be roughly located as in
Figure 3.11.

> g = 00027 (-x));

>> ezplot(g,[0,2])

>> hold on

>> syms X

>> ezplot(x,[0,2]) % Figure 3.11

Before applying the fixed-point iteration, we need to check the condition of conver-
gence, Theorem 3.1, as follows:

|g'(x)|=]27"In2|=2"In2<1 = x>0.5288

FIGURE 3.11
Location of the fixed point of g(x) =2~



This means if the fixed point is in an interval comprised of values of x larger than
0.5288, the fixed-point iteration is guaranteed to converge. Figure 3.11 confirms that this
condition is indeed satisfied.

We will execute the user-defined function FixedPoint with x, = 0 and default values
for kmax and tol.

>> [r, n] = FixedPoint(g, 0)
r =

0.6412

13

Therefore, the fixed point of g(x) = 2%, which is the root of x —2*=0, is found after 13
iterations. The reader may verify that the convergence is oscillatory. In fact, the sequence
of elements generated by the iteration is

0.0000 1.0000 0.5000 0.7071 0.6125 0.6540 0.6355 0.6437

0.6401 0.6417 0.6410 0.6413 0.6411 0.6412

EXAMPLE 3.4: SELECTION OF A SUITABLE ITERATION FUNCTION

Consider the quadratic equation x> — 4x + 1 = 0. As stated earlier, there is more than one
way to construct an iteration function g(x). For instance, two such forms are

1,, B _l
gl(x)—z(x +1), g(x)=4 .

Let us first consider g,(x), Figure 3.12. The portion of the curve of g,(x) below point A is
less steep than y = x. Starting at any arbitrary point in that region, we see that the itera-
tion always converges to the smaller root B. On the other hand, above point A, the curve
is steeper than the line y = x. Starting at any point there, the iteration will diverge. Thus,
only the smaller of the two roots can be approximated if g;(x) is used. Now, referring to
Figure 3.13, the curve of g,(x) is much less steep near A than it is near B. And, it appears
that starting at any point above or below A (also above B), the iteration converges to the
larger root.

Let us inspect the condition of convergence as stated in Theorem 3.1. In relation to
g1(x), we have

|gi()|=x<1 = [x|<2 = -2<x<2

The fixed point B falls inside this interval, and starting at around x, = 2 (Figure 3.12),
the sequence did converge toward B. When we started at around x; =4, however, the
sequence showed divergence. In relation to g,(x),

|g5(0)|=5|<1 = [x*|>1 = x<-lorx>1

1
x2
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Fixed points of g,(x)=4- l
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Figure 3.13 shows that the fixed point A certainly falls in the interval x > 1. However,
we see that our starting choice of around x; = 0.3 led to convergence, even though it was
not inside the required interval. This of course is due to the fact that the condition of
convergence is only sufficient and not necessary.



>> gl = 0 ((X72+1)/74); g2 = @(X)(4-1/X);
>> [rl, n] = FixedPoint(gl, 2)

rl =

0.2680 % First root found by using iteration function gl

8
>> [r2, n] = FixedPoint(g2, 0.3)
r2 =

3.7320 % Second root found by using iteration function g2

7

The original equation is x? — 4x + 1 = 0 so that we are looking for the roots of a polyno-
mial. MATLAB has a built-in function roots, which performs this task:

>> roots([1 -4 1])
ans =

3.7321
0.2679

Of course, the approximate values returned by the FixedPoint function may be
improved, and closer to those returned by roots, if a smaller tolerance than the default
le-4 is employed.

3.4.3 Rate of Convergence of the Fixed-Point Iteration

Suppose 1 is a fixed point of g(x), and that g(x) satisfies the hypotheses of Theorem 3.1 in
some interval I. Also assume the (k + 1)th derivative of g(x) is continuous in I. Expanding
g(x) in a Taylor’s series about x =, and noting that » = g(t), x,.,; = g(x,), and e, =x, — 1, the
error at the (n + 1)th iteration is obtained as

1 = X1 — 1 = g(x,) — g(7)

” (k)
8 (r)eﬁ+ o 48 (r)
2! k!

3.6
6’5 "rEk’,, ( )

=g'(r)e, +

where E, ,, the error due to truncation, is described by

_ g(kﬂ)(én) k+1

=S ! eyt forsome §, e(r,x,)



Assume g(x) # 0 Vxel Then, for k =0, Equation 3.6 yields e,,, = g'(§,)e,. But since x, — r
as 1 — oo (by Theorem 3.1), we have &, — r as well. Consequently,

lim & = lim ¢/(E,,) = ¢/(r) 0

© @, n—o0

Therefore, convergence is linear. The rate of convergence will be improved if g'(r) = 0 and
g"(x) #0 Vxel In that case, it can be shown that

€p41 g”(”)

lim #0

ne @2 2!

so that convergence is quadratic. We will see shortly that Newton’s method falls in this
category. From the foregoing analysis it is evident that the more derivatives of g(x) vanish
at the root, the faster the rate of the fixed-point iteration.

3.5 Newton’s Method (Newton-Raphson Method)

Newton’s method is the most commonly used open method to solve f(x) =0, where f is
continuous. Consider the graph of f(x) in Figure 3.14. Start with an initial point x; and locate
the point (x,, f(x,)) on the curve. Draw the tangent line to the curve at that point, and let its
x-intercept be x,. The equation of this tangent line is

y=fla)= fra)(x-x)
Therefore, its x-intercept is found by setting v = 0 and solving for x:

f(x1)
f,(xl)

Xy =X1—

Once x, is available, locate the point (x,, f(x,)), draw the tangent line to the curve at that
point, and let x; be its x-intercept, which is found as

Continue this process until the sequence {x,} converges to the intended root r. In general,
two consecutive elements x, and x,,,; are related via

]{,((’;”)), n=1,2,3,

Xps1 = Xy — ..., X1 =initial point (3.7)

The user-defined function Newton uses an initial x; and generates a sequence of elements
{x,} via Equation 3.7 that eventually converges to the root of f(x) = 0. The function accepts
f(x) symbolically as an input so that it can calculate f(x) using the diff command; see
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FIGURE 3.14
Geometry of Newton’s method.

Chapter 2. Both f and f” are subsequently converted to MATLAB functions for evaluation
purposes. The iterations stop when two consecutive generated elements are sufficiently
close to one another, thatis, |x,,; — x,| <&, where €is a prescribed tolerance. The outputs are
the approximate value of the root and the number of iterations needed to meet the tolerance.

function [r, n] = Newton(f, x1, tol, N)

%

% Newton uses Newton’s method to approximate a root of f(x) = O.
%

% [r, n] = Newton(f, x1, tol, N), where

%

% T is a symbolic function representing f(x),

% x1 is the initial point,

% tol is the scalar tolerance for convergence (default le-4),
% N is the maximum number of iterations (default 20),

%

% r is the approximate root of f(x) = O,

% n is the number of iterations required for convergence.

%
if nargin < 4 || isempty(N), N = 20; end
if nargin < 3 || isempty(tol), tol = le-4; end
% Find f* and convert to MATLAB function for evaluation
fp = matlabFunction(diff(f));
% Convert f to MATLAB function for evaluation
T = matlabFunction(f);
X = zeros(1l, N+1); % Pre-allocate
x(1) = x1;
for n = 1:N,
if fp(x(n)) = 0,
r ="failure”;
return
end
x(n+1) = x(n) - F(x())/Fp(x(n));
if abs(x(n+l) - x(n)) < tol,
r = x(n+l);
return
end
end



EXAMPLE 3.5: NEWTON’S METHOD
Consider x cos x + 1 =0 of Examples 3.1 and 3.2.

1. Using Newton’s method with x; =1, calculate x, and x; of the sequence that
eventually converges to the root.

2. Find the root by executing the user-defined function Newton with e =10~ and
maximum 20 iterations.

Solution

1. Since f(x) =x cos x + 1, we find f'(x) = cos x — x sin x. To calculate x, we apply
Equation 3.7 with n =1, that is,

fo) SO g1y

fa)

X =X1—

Applying Equation 3.7 with n =2,

o f(xz) _
X3 =Xy f'(xz) =2.6230

2. We will execute Newton with initial point X1=1 while omitting the next two
variables since they assume their default values in this example.

>> F = sym("x*cos(xX)+1");

>> [r, n] = Newton(f, 1) % Default values for tol and N
r =

2.0739
n =

6

The result agrees to at least four decimal places with the highly accurate estimate
returned by fzero earlier. Recall that for a bracketing method such as bisection, a simi-
lar accuracy was achieved by using a tolerance of 10-¥ and performing 30 iterations.

EXAMPLE 3.6: NEWTON’S METHOD

Find the roots of 8x% — 18x2+ x + 6 =0 using Newton’s method with € =10 and maxi-
mum 20 iterations.

Solution

We first plot f(x) = 8x3 — 18x2+ x + 6 using the ezplot function to find approximate loca-
tions of its roots. The default range for ezplot is [-2r, 2x], but by inspection the range
is narrowed down to [-1, 2.5].

>> F = sym("8*x"3-18*X"2+x+6");
>> ezplot(f,[-1,2.5]) % Figure 3.15
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FIGURE 3.15
Location of the three roots of 8x® — 18x2+ x + 6 =0.

Inspired by Figure 3.15, we will execute the user-defined function Newton three sepa-
rate times, once with initial point x; = -1, a second time with x; = 0.5, and a third time with
x, =15

>> [r1l, nl] = Newton(f, -1) % f was defined (symbolically) earlier
rl =

-0.5000 % First root
nl =

5

>> [r2, n2] = Newton(f, 0.5)
r2 =

0.7500 % Second root

3

>> [r3, n3] = Newton(f, 1.5)



2.0000 % Third root

10

Since f(x) is a polynomial here, the built-in MATLAB function roots can be used to find
its roots.

>> roots([8 -18 1 6])
ans =

2.0000
0.7500
-0.5000

3.5.1 Rate of Convergence of Newton’s Method

It turns out that the speed of convergence of Newton’s method depends on the multiplicity
of an intended root of f(x) = 0. We say that a root r of f(x) =0 is of multiplicity (or order) m
if and only if

f(?’) =0 ,f’(?’)= 0 ,f”(?’) =0, ... ’f(mil)(r) =0 /f(m)(r) =0

A root of order 1 is commonly known as a simple root.

Theorem 3.2: Rate of Convergence of Newton’s Method

Let 7 be a root of f(x) =0, and in Newton’s iteration, Equation 3.7, let x, be sufficiently close
tor.

a. If f”(x) is continuous and r is a simple root, then

11 F0)] e | 1170 i
2l = Ty e )

| n+1|

and convergence {x,} —r is quadratic.

b. If {x,} —r, where r is root of order m > 1, then

\em\zm—_l\en\ = lim‘enﬂ‘:m—_l;ﬁO (39)
m e e, m

and convergence is linear. |



EXAMPLE 3.7 QUADRATIC CONVERGENCE; NEWTON’S METHOD

Suppose Newton’s method is employed to find the two roots of x? — 3x — 4 = 0, which are
r=-1,4. Let us focus on the task of finding the larger root, r = 4. Since the root is simple,
by Equation 3.8 we have

imlen+12|51|f/(4)|:1(gj: |
e 2@ 205

This indicates that convergence is quadratic, as stated in Theorem 3.2. While finding
the smaller root r =1, this limit is once again 0.2, thus confirming quadratic conver-
gence again. The reader can readily verify this by tracking the ratio |e,,|/|e,|*> while
running Newton’s method.

3.5.2 A Few Notes on Newton’s Method

e When Newton’s method works, it generates a sequence that converges rapidly to
the intended root.

e Several factors may cause Newton’s method to fail. A usual factor is that the ini-
tial point x, is not sufficiently close to the intended root. Another one is that at
some point in the iterations, f'(x,) may be close to or equal to zero. Other scenarios,
where the iteration simply halts or the sequence diverges, are shown in Figure 3.16
and explained in Example 3.8.

o If f(x), f(x), and f”(x) are continuous, f'(root) # 0, and the initial point x; is close to
the root, then the sequence generated by Newton’s method converges to the root.

e A downside of Newton’s method is that it requires the calculation of f'(x), which
at times may be difficult. In these cases, the secant method (described below in
Section 3.6) can be used instead.

EXAMPLE 3.8: NEWTON’S METHOD

Apply Newton’s method to find the root of 2/(x + 1) = 1. For the initial point use (1) x, =3,
and (2) x, =4.

() S) (b) S

Sequence diverges

[f(x,) is undefined

FIGURE 3.16
Two cases where Newton’s method fails: (a) sequence halts, and (b) sequence diverges.



Solution

2 oy 2
f(x):m—l so that f(x)= 7(x+1)2'

1. Starting with x, = 3, we find

The iterations halt at this point because f(-1) is undefined. This is illustrated in
Figure 3.16a.
2. Starting with x, =4, we find

_3
o= - A8 g TS 55 291250, x, =-502578,
') -5

The sequence clearly diverges. This is illustrated in Figure 3.16b.

3.5.3 Modified Newton’s Method for Roots with Multiplicity 2 or Higher

If 7 is a root of f(x) and r has a multiplicity 2 or higher, then convergence of the sequence
generated by Newton’s method is linear; see Theorem 3.2. In these situations, Newton’s
method may be modified to improve the speed of convergence. The modified Newton's
method designed for roots of multiplicity 2 or higher is described as

S ) f'(xn)
L)l = f () f(x0)”

Xps1 = Xp — n=1,2,3, ..., x =initial point (3.10)

The user-defined function NewtonMod uses an initial x, and generates a sequence of
elements {x,} via Equation 3.10 that eventually converges to the root of f(x) =0, where the
root has multiplicity 2 or higher. The iterations stop when two consecutive elements are
sufficiently close to one another, that is, |x,,; —x,| <&, where € is the prescribed tolerance.
The outputs are the approximate value of the root and the number of iterations needed to
meet the tolerance.

function [r, n] = NewtonMod(f, x1, tol, N)

%

% NewtonMod uses modified Newton’s method to approximate a root (with
% multiplicity 2 or higher) of f(x) = 0.

%

% [r, n] = NewtonMod(f, x1, tol, N), where

%

% f is a symbolic function representing f(x),

% x1 is the initial point,

% tol is the scalar tolerance for convergence (default le-4),
% N is the maximum number of iterations (default 20),

%

% r is the approximate root of f(x) = 0,

% n is the number of iterations required for convergence.
%



if nargin < 4 || isempty(N), N = 20; end

if nargin < 3 || isempty(tol), tol = le-4; end

% Find ", ' and convert to MATLAB functions for evaluation
fp = matlabFunction(diff(f));

2p = matlabFunction(diff(f,2));

% Convert f to MATLAB function for evaluation

f = matlabFunction(f);

X = zeros(1,N+1); % Pre-allocate
x(1) = x1;
for n = 1:N,

x(n+1) = x(n) - (FXM))*Fp(x(N)))/ (Fp(x(n))"2-F(x(N))*F2p(x(n)));
if abs(x(n+1)-x(n)) < tol,
r = x(n+l);
return
end
end

EXAMPLE 3.9: MODIFIED NEWTON’S METHOD

Find the roots of 4x°+ 4x2 — 7x + 2 = 0 using Newton’s method and modified Newton’s
method. Discuss the results.

Solution

Figure 3.17 reveals that f(x) =4x3+4x?—7x+2 has a simple root at -2 and a double
root (multiplicity 2) at 0.5 since it is tangent to the x-axis at that point. We will execute
NewtonMod with default parameter values and x; =0.

30
20+ E
10+ E
0} 1 i
Simple root Root with

multiplicity 2
_10k i
—20} i

=30 1 1 1 1
-3 -2 -1 0 1 2

FIGURE 3.17
A simple and a double root of 4x3 +4x? - 7x + 2 =0.



>> F = sym(T4*X"3+4*X"2-7*x+2") ;
>> ezplot(f,[-3,2]) % Figure 3.17
>> [r, n] = NewtonMod(f, 0)

r =

0.5000

4

Executing Newton with default parameters and x; = 0 yields
>> [r, n] = Newton(f, 0)
r =

0.4999

12

The modified Newton’s method is clearly superior to the standard Newton’s method
when approximating a multiple root. The same, however, is not true for simple roots.
Applying both methods with x; = -3 and default parameters yields
>> [r, n] = NewtonMod(f, -3)

r =

-2.0000

6
>> [r, n] = Newton(f, -3)
r =

-2.0000

5

The standard Newton’s method generally exhibits a faster convergence (quadratic, by
Theorem 3.2) to the simple root. The modified Newton’s method outperforms the standard
one when finding multiple roots.
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FIGURE 3.18
Geometry of secant method.

3.6 Secant Method

The secant method is another open method to solve f(x) = 0. Consider the graph of f(x) in
Figure 3.18. Start with two initial points x; and x,, locate the points (x,, f(x;)) and (x,, f(x,))
on the curve, and draw the secant line connecting them. The x-intercept of this secant line
is x;. Next, use x, and x; to define a secant line and let the x-intercept of this line be x,.
Continue the process until the sequence {x,} converges to the root. In general, two consecu-
tive elements x, and x,,,; generated by secant method are related via

X1 = X L Rt S f(x,), n=2,3,4, ..., x;,x=initial points (3.11)

f(xn)_f(xn—l)

Comparing with Newton’s method, we see that f'(x,) in Equation 3.7 is essentially
approximated by, and replaced with, the difference quotient

fen) = f(xna)

Xn — Xp-1

The user-defined function Secant uses initial points x; and x, and generates a sequence
of elements {x,} that eventually converges to the root of f(x) = 0. The function accepts f(x)
symbolically as an input and converts it to a MATLAB function for evaluation purposes.
The iterations stop when two consecutive elements are sufficiently close to one another,
thatis, |x,,, —x,| <€, where ¢ is the prescribed tolerance. The outputs are the approximate
value of the root and the number of iterations needed to meet the tolerance.

function [r, n] = Secant(f, x1, x2, tol, N)

0

02 Secant uses secant method to approximate roots of f(x) = O.
0

02 [r, n] = Secant(f, x1, x2, tol, N), where

0

02 f is a symbolic function representing f(x),

% x1 and x2 are the initial values of x,



%  tol is the scalar tolerance of convergence (default le-4),
% N is the maximum number of iterations (default 20),
%
% r is the approximate root of f(x) =
% n is the number of iterations required for convergence.
%
if nargin <5 || isempty(N), N = 20; end
if nargin < 4 || isempty(tol), tol = le-4; end
T = matlabFunction(f);
X = zeros(1l, N+1); % Pre-allocate
for n = 2:N,
it x

r="failure®;
return
end
x(1) = x1; x(2) = x2;
x(n+1) = x(n) - ((xX(N)-x(n-1))/(F(x(N))-F(X(n-1))))*F(x(n));
it abs(x(n+1)-x(n)) < tol,
r = x(n+l);
return
end
end

EXAMPLE 3.10: SECANT METHOD

Consider x cos x +1=0.

1. Using secant method with x; =1 and x, = 1.5, calculate x; and x, of the sequence
that eventually converges to the root

2. Find the root by executing the user-defined function Secant with € = 10~ and
maximum 20 iterations

Solution
1. Let f(x) = x cos x + 1. To calculate x; we apply Equation 3.11 with n =2, that is,
X2 1.5-1

L= 2_7 )=15-—2"1  cq5-27737
e sy P EA o A

Applying Equation 3.11 with n =3,

X3

—_— 3)=2.0229
Fs) f /0550 =

Xy = X3 —

>> F = sym("x*cos(x)+1");
>> [r, n] = Secant(f, 1, 1.5)

r =
2.0739



Recall that Newton’s method starting with x; =1 also required six (6) iterations.
Therefore, for this particular problem at least, the secant and Newton’s methods have
similar rates of convergence.

3.6.1 Rate of Convergence of Secant Method
Assuming a simple root 7, the rate of convergence of secant method is %(1+\/§ ) =1.618.

More exactly,

1- | €n+1 |

_Lro
Hsoo |en |14618 ‘zf/(r)

#0 (6.12)

3.6.2 A Few Notes on Secant Method

¢ The sequence generated by the secant method is not guaranteed to converge to the
intended root because the root is not bracketed in each step.

e For the case of a simple root, the rate of convergence for the secant method is
1.618, thus the generated sequence converges faster than the linear but slower than
the quadratic. Therefore, it is slower than Newton’s method—which has quadratic
convergence for simple root—but f’(x) does not need to be calculated.

e If f{x), f(x), and f”(x) are continuous on an interval I, which contains the root,
f(root) #0, and the initial points x; and x, are close to the root, then the secant
method converges to the root.

3.7 Equations with Several Roots

The bracketing and open methods presented in this chapter are capable of finding as many
roots of f(x) = 0 as desired, but they can only achieve this by finding one root at a time. And
because in many applications several roots of an equation are sought, this approach proves
to be quite ineffective. In what follows we will present two practical options to find several
roots of f(x) = 0.

3.7.1 Finding Roots to the Right of a Specified Point

The user-defined function Nzeros finds n roots of function f to the right of the specified
initial point x, by starting at x, and incrementing x by Ax and inspecting the sign of the
corresponding f. A root is identified when |Ax/x| <€, where € is a prescribed tolerance.
The output is the list of the desired number of approximate roots.

function Nroots = Nzeros(f, n, x0, tol, delx)

%

% Nzeros approximates a desired number of roots of f(x) on the right of
% a specified point.

%

% Nroots = Nzeros(f, n, x0, tol, delx), where



%
%
%
%
%
%
%
%
%

T is an anonymous function representing f(x),
n is the number of desired roots,

X0 is the starting value,

tol is the scalar tolerance (default is le-6),
delx is the increment in x (default is 0.1),

Nroots is the list of n roots of f(x) to the right of xO.

if nargin < 5 || isempty(delx), delx = 0.1; end
if nargin < 4 || isempty(tol), tol = le-6; end
X = X0; dx = delx;

Nroots = zeros(n,1); % Pre-allocate

for 1 = 1:n,

%

sgnl = sign((F(x)));
while abs(dx/x) > tol,
if sign((F())) ~= sign((F(x+dx))),
dx = dx/2;
else
X = X + dx;
end
end

Nroots(i) = x; dx = delx;

X

= X + abs(0.05*x);

end

EXAMPLE 3.11: ROOTS TO THE RIGHT OF A POINT
Find the first three positive roots of x cos x + 1 =0.

Solution

We will execute the user-defined function Nzeros with x0 =0 (to find positive roots)
and default values for tol and delx.

>> F = @) (x*cos(x)+1);
>> Nroots = Nzeros(f, 3, 0)

Nroots =
2.0739
4.4877
7.9796

Figure 3.19 clearly confirms the numerical values returned by Nzeros.

3.7.2 Finding Several Roots in an Interval Using fzero

Discretize f over the given interval, identify several subintervals where the function f expe-
riences sign changes, and subsequently apply the built-in MATLAB function fzero to find
a root in each identified interval. The following example will demonstrate the details of
this approach.



x cos(x) + 1

FIGURE 3.19
The first three positive roots of x cos x +1=0.

EXAMPLE 3.12: SEVERAL ROOTS
Find all roots of x sin x =0 in [-10, 10].

Solution

There are several roots in the given range, and each root must be found individually
using an appropriate initial guess. These initial guesses can be generated by evaluating
the function at a few points in the given range, and identifying any sign changes.

>> fun = @) (X.*sin(x));

>> x = linspace(-10,10,20); % Generate 20 points in the given range
> F = fun(X); % Evaluate function at the selected points
>> plot(x,T) % Figure 3.20

The vector T has the following 20 components:
f =
-5.4402 4.1111 7.8882 3.6282 -2.7436 -4.7354 -1.9025 1.2847

1.5789 0.2644 0.2644 1.5789 1.2847 -1.9025 -4.7354 -2.7436
3.6282 7.8882 4.1111 -5.4402



x sin(x)

-10 -8 -6 —4 -2 0 2 4 6 8 10

FIGURE 3.20
Several roots of x sin x =0 in [-10, 10].
Any sign changes in T can be identified by
>> 1 = Find(sign(f(2:end)) ~= sign(f(l:end-1)))
1 =
1 4 7 13 16 19
These values refer to the locations of the elements of T representing sign changes, that
is, the boxed entries shown above. To find the first root, we use fzero with the two-
element initial guess X([1(1) 1(1)+1L]), which in this case translates to
>> x([1 2D
ans =

-10.0000 -8.9474

This means the first root will be located in the interval [-10.0000, -8.9474], and is
found as

>> r(1) = fzero(fun, x([1 21))
r =

-9.4248 % First root



The next root will be found using fzero with the two-element initial guess
X1 1D+, which is

>> x([4 5])
ans =
-6.8421 -5.7895

Therefore, the second root is in the interval [-6.8421, -5.7895], found via
>> r(2) = fzero(fun, x([4 5]))
r =

-6.2832 % Second root
This process continues until all roots have been identified.

>> for n = 1:length(l),

r(n) = fzero(fun, x([1(n) 1(n)+1])); % Approximate roots
>> end
>> disp(r) % Display all roots

r =
-9.4248 -6.2832 -3.1416 3.1416 6.2832 9.4248

These six roots agree with those in Figure 3.20. However, the equation x sin x =0 has
an obvious root at x = 0 which has not been identified here. For a better understanding
of the situation, we plot our function x sin x using 100 points:

>> X = linspace(-10,10); f = fun(x);
>> plot(x, f) % Figure 3.21

It is then clear that x = 0 is a point of tangency, hence no sign changes experienced by
T on its two sides. This explains why this root was missed, as fzero only finds roots
where the function changes sign.

EXAMPLE 3.13: POINTS OF DISCONTINUITY
Find all roots of tan x = tanh x in [-2, 2].

Solution

Following the strategy employed in Example 3.12, we execute the script below to iden-
tify the roots:

>> fun = @(X) (tan(xX)-tanh(x));

>> ezplot(fun,[-2,2]) % Figure 3.22

>> x = linspace(-2,2);

> F = fun(X);

>> 1 find(sign(f(2:end)) ~= sign(f(l:end-1)));



x sin(x)

Root missed
by fzero

-10 -8 -6 —4 -2 0 2 4 6 8 10

FIGURE 3.21
All roots of x sin x =0 in [-10, 10].

>> for n = 1:length(l)
r(n) = fzero(fun, x([1(n) 1(n)+1]));

end

-1.5708 -0.0000 1.5708

Figure 3.22 shows the only legitimate root to be at 0, while the other two are merely
points of discontinuity. Obviously, the two erroneous values are returned by the script
because the function experience sign changes at the points of discontinuity.

PROBLEM SET (CHAPTER 3)
Bisection Method (Section 3.2)
In Problems 1 through 6, the given equation has a root in the indicated interval.

a. &5 Using the bisection method, generate the first three midpoints and intervals
(in addition to the one given).

b. 4 Find the root estimate by executing the user-defined function Bisection
with default values for kmax and tol.

1.x2—-4x+2=0,[3,4]
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Discontinuity points mistaken for roots.

2. cos2x+2sinx =0, [0,2]
3.e3-3x=2,[-2,0]

4.1+ cos x cosh x =0, [-5, —4]
5 fx+Inx=1, [1,2]

6. tan(0.4x) + x =1, [-2, 0]

7. 4 Modify the user-defined function Bisection so that the table is not gener-
ated and the outputs are the approximate root and the number of iterations needed
for the tolerance to be met. All other parameters, including default values, are to
remain as in Bisection. Save this function as Bisection_New. Apply
Bisection_New to the following problem: e* + cos x = 3, [0, 1].

8. 4 Apply the user-defined function Bisection_New (Problem 7) to find the root
in the indicated interval: 3" = 243, [0, 2].

0. 4 The goal is to find all roots of sinxsinhx=3 in [-2, 2] using the bisection

method, as follows: First, locate the roots graphically and identify the intervals
containing the roots. The endpoints of each interval must be chosen as the integers
closest to the root on each side of that root. Then apply the user-defined function
Bisection_New (Problem 7) with default values for tol and kmax to find one
root at a time.

10. 4 Repeat Problem 9 for the roots of ¢*/* sin x =0 in [1, 10].



Regula Falsi Method (Section 3.3)

In Problems 11 through 16, the given equation has a root in the indicated interval.

a.

b.

11.
12.
13.
14.
15.
16.

45 Using the regula falsi method, find the first three elements in the sequence
that eventually converges to the root.

4 Find the root by executing the user-defined function RegulaFalsi with
kmax=20 and tol=1e-3.

e +In(1x)=0,[1,2]
cos x coshx=1, [4, 5]
cos x+cos2x=1,]0, 2]
x¥-5x+3=0,[1,2]
e*=x210,2]
x2+e2=5,][1, 2]

17. 4 The goal is to find all roots of sin(%x) +3Inx =1in [5,20] using the regula falsi

method, as follows: First, locate the roots graphically and identify the intervals
containing the roots. The endpoints of each interval must be chosen as the integers
closest to the root on each side of that root. Then apply the user-defined function
RegulaFalsi (but suppress the table) with default values for tol and kmax to
find one root at a time.

Modified Regula Falsi

18.

4 Modify the user-defined function RegulaFalsi so thatif an endpoint remains
stationary for three consecutive iterations, 1 f(endpoint) is used in the calculation
of the next x-intercept, and if the endpoint still remains stationary for three
consecutive iterations, 1 f(endpoint) is used, and so on. All other parameters,
including the default values, and the terminating condition are to remain the same
as in RegulaFalsi. Save this function as RegulaFalsi_Mod.

Apply RegulaFalsi to find a root of 1(x-2)>-3=0 in [-6, 2]. Next apply
RegulaFalsi_Mod and compare the results.

Fixed-Point Method (Section 3.4)

19. The two roots of x + 3*=4 are to be found by the fixed-point method as follows:

Define two iteration functions g;(x) =4 — 3™ and g,(x) = —log;4 — x).

a. 4 Locate the fixed points of g;(x) and g,(x) graphically.

b. &5 Referring to the figure showing the fixed points of g,, set x; to be the near-
est integer to the left of the smaller fixed point and perform four iterations
using the fixed-point method. Next, set x, to be the nearest integer to the right
of the same fixed point and perform four iterations. If both fixed points were
not found this way, repeat the process applied to g,. Discuss any convergence
issues as related to Theorem 3.1.



20.

21.

22.

23.

4 The two roots of 3x2+ 2.72x — 1.24 = 0 are to be found using the fixed-point
method as follows: Define iteration functions

-3x*+1.24 —2.72x+1.24

si(x)= o7y 8a2(x)= 3x

a. Locate the fixed points of g;(x) and g,(x) graphically.

b. Focus on g first. Execute the user-defined function FixedPoint with initial
point x; chosen as the nearest integer to the left of the smaller fixed point.
Execute a second time with x, an integer between the two fixed points. Finally,
with x; to the right of the larger fixed point. In all cases, use the default toler-
ance, but increase kmax if necessary. Discuss all convergence issues as related
to Theorem 3.1.

c. Repeat Part (b), this time focusing on g,.
Consider the fixed-point iteration described by

X1 =g(xn)=;(xn+;j, n=1,2,3,..., a>0

. &5 Show that the iteration converges to </a for any initial point x, > 0, and that the

convergence is quadratic.

} 4 Apply this iteration function g(x) to approximate /5 . Execute the user-defined

function FixedPoint using default values for kmax and tol, and x, chosen as the
nearest integer on the left of the fixed point.

4 The goal is to find the root of 0.3x2 — x/3= 1.4 using the fixed-point method.

23 +1

a. Asa potential iteration function, select g;(x) = # Graphically locate the
x

fixed point of g;(x). Execute the user-defined function FixedPoint twice, once
with initial point chosen as the integer nearest the fixed point on its left, and a
second time with the nearest integer on its right. Use default values for kmax
and tol, but increase kmax if necessary. Fully discuss convergence issues as
related to Theorem 3.1.

b. Next, as the iteration function select g,(x) = (0.3x2 — 1.4)> and repeat all steps in
Part (a).

4 The two roots of x2 — 3.13x + 2.0332 = 0 are to be found using the fixed-point
method as follows: Define iteration functions

(3120082 205
81 X & 313

a. Locate the fixed points of g,(x) and g,(x) graphically.

b. Focus on g first. Execute the user-defined function FixedPoint with initial
point x; chosen as the nearest integer to the left of the smaller fixed point.
Execute a second time with x; an integer between the two fixed points. Finally,



24.

with x; to the right of the larger fixed point. In all cases, use the default
tolerance, but increase kmax if necessary. Discuss all convergence issues as
related to Theorem 3.1.

c. Repeat Part (b), this time focusing on g,.

The two roots of 2-/3+ ¢¥= 2.2 are to be found by the fixed-point method as follows:
Define two iteration functions g;(x) = -3 10g,(2.2 — ¢*) and g,(x) = In(2.2 — 27/3).

a. 4 Locate the fixed points of g,(x) and g,(x) graphically.

b. &5 Referring to the figure showing the fixed points of g, choose ¥, to be the
nearest integer to the left of the smaller fixed point and perform four iterations
using the fixed-point method. Next, let x; be the nearest integer to the right of
the same fixed point and perform four iterations. If both fixed points were not
found, repeat the process with g,. Discuss any convergence issues as related to
Theorem 3.1.

Newton’s Method (Section 3.5)
In Problems 25 through 30, the given equation has a root in the indicated interval.

a.

25.
26.
27.
28.
29.
30.

31.

32.

33.

45 Using Newton’s method, with the initial point set to be the left end of the
interval, generate the next four elements in the sequence that eventually converges
to the root.

.4 Find the root by executing the user-defined function Newton with kmax=20

and tol=le-6.

B+2x2+x+2=0,[-3,-1]
3x2—x—-4=0,[-2,0]
cosx=2x-1,]0, 2]
In(3x+1)=2x+1, [-1,0]

e D =26+ cos(x+1),[-1, 1]
sinxsinh x+1=0, [3, 4]

4 Determine graphically how many roots the equation 0.4x° — x32= 1.3 has. Then
find each root by executing the user-defined function Newton with default param-
eter values and x; chosen as the closest integer on the left of the root.

4\ The goal is to find two roots of cos x cosh x =-1.3 in [-4, 4].

a. Graphically locate the roots.

b. To approximate each root, execute the user-defined function Newton with
default parameter values and x,; chosen as the closest integer on the left of the
root. If the intended root is not found this way, set x, to be the integer closest to
the root on its right and re-execute Newton. Discuss the results.

4 All three roots of the equation x® — 0.8x2 — 1.12x — 0.2560 = 0 lie inside the inter-
val [-2, 2].

a. Graphically locate the roots, and decide whether each root is simple or of
higher multiplicity.



34.

35.

b. Approximate the root with higher multiplicity by executing the user-defined
function NewtonMod and the simple root by executing Newton. In both cases
use default parameter values, and x, chosen as the closest integer on the left of
the root.

A\ Roots of * — 0.9x2+ 0.27x — 0.027 = 0 lie inside [-1, 1]

a. Graphically locate the roots, and determine if a root is simple or of higher
multiplicity.

b. Estimate the root with higher multiplicity by executing the user-defined
function NewtonMod. Use default parameter values, and let x, be the closest
integer on the left of the root.

4 Locate the root(s) of 0.2[x — 3 sin(x + 1)] = x® graphically, and depending on
multiplicity, use Newton’s method or the modified Newton’s method to find the
root(s). Use default parameter values, and let x; be the closest integer on the left of
the root. Verify the result by using the built-in fzero function.

Secant Method (Section 3.6)
In Problems 36 through 42,

a.

b.

36.
37.
38.
39.
40.
41.

42.
43.

44.

45 Apply the secant method with the given initial points x, and x, to generate the
next four elements in the sequence that eventually converges to the root.

4 Estimate the root by executing the user-defined function Secant with
kmax=20 and tol=1e-6.

X3 —xV4=345x,=4,x,=35
XB+27x+26=0,x,=-2,x,=-18

e 2+In(x+2)=2,x,=0,x,=1
sin(x-1)=3x, x;=5, x, =4

sinh(0.6x — 1) — 1.3x + 3.2 =0, x, = -5, x, = —4
cosh(%x) =x,xy=—4, x,=-2

xvx?+250 =450, x, =10, x, =12

4 Graphically locate the root of 10x3+ 15x2+ 6x + 9 = 0. Find the root numerically
by applying the user-defined function Secant [with x, = 1.5, x, = 1]. Next, apply
the function Newton with x,; =1.5. In both cases, use default parameter values.
Compare the results.

4 Graphically locate the roots of x>+ x + 0.4x7/3=1. Find the roots numerically
by applying the user-defined function Secant and properly selected initial points.
Use default parameter values for tolerance and maximum number of iterations.

Equations with Several Roots (Section 3.7)

45.

4 Find the first five positive roots of sin x + (1/x?cos 2x = 0 and confirm the
numerical results graphically.



46. 4 Using the user-defined function Nzeros find all roots of sin(3 nx) = § in [-4, 4].

7. 4 A very important function in engineering applications is the Bessel function
of the first kind. The Bessel function of the first kind of order 0, denoted by J,(x), is
represented in MATLAB by besselj(0,X). The zeros of Bessel functions arise in
applications such as vibration analysis of circular membranes. Find the first four
positive zeros of J,(x), and verify them graphically.

48. 4 Find the first four positive zeros of the Bessel function of the first kind of order
1, denoted by J,(x), represented in MATLAB by besselj(1,x), and verify them
graphically.

49. 4 The natural frequencies of a beam are directly related to the roots of the fre-
quency equation. For a beam fixed at both of its ends, the frequency equation is
derived as cos x cosh x=1. Find the first five positive roots of this frequency
equation
a. Using the user-defined function Nzeros.

b. By identifying the intervals where sign changes occur, followed by the applica-
tion of fzero with two-element initial guesses.

50. 4 The natural frequencies of a beam are directly related to the roots of the
frequency equation. For a beam fixed at its left end and pinned (hinged) at its right
end, the frequency equation is derived as tan x =tanh x. Find the first three
positive roots of this frequency equation

a. Using the user-defined function Nzeros.

b. By identifying the intervals where sign changes occur, followed by the applica-
tion of fzero with two-element initial guesses.

4 In Problems 51 through 54 find all the roots of the polynomial equation by identifying
the intervals where sign changes occur, followed by the application of fzero with two-
element initial guesses. Verify the findings by using the MATLAB built-in function roots.

51. 0.2x* + 0.58x3 — 12.1040x2 4+ 20.3360x — 6.24 =0
52. x* —39x3 + 1.2625x% + 1.4250x + 0.2125=0

53. 8x5 —44x* 4+ 86x3 - 73x2+28x -4 =0

54. 4x* +15x% + 13.5x2 — 6.75x — 10.125 =0



4

Numerical Solution of Systems of Equations

This chapter covers the numerical solution of linear and nonlinear systems of equations.
Linear systems are discussed first, followed by more specialized methods to efficiently
handle large linear systems. Ill-conditioning symptoms, as well as pertinent remedies are
also introduced. The chapter ends with iterative solution of nonlinear systems of equations.

|
4.1 Linear Systems of Equations
A linear system of 1 algebraic equations in n unknowns x;, x,, ..., x, is in the form

a1 X1+ apXo + -+ ay, X, = bl

A1 X1+ AnpXy + -+ ldry Xy = bz (4 1)

A1 X1+ ApaXo + -+ Xy = bn

where a; (,j=1,2,...,n) and b, (k=1, 2, ..., n) are known constants, and 4,/s are the coef-
ficients. If every b, is zero, the system is homogeneous, otherwise it is nonhomogeneous.
Equation 4.1 can be conveniently expressed in matrix form, as

Ax=b @2)
with
(551 12 cee Mip X1 by
A= ay ay . Aoy x= X2 b= b,
An1 An2 N . X ) by nx1

where A is the coefficient matrix. A set of values for x;, x,, ..., x, satisfying Equation 4.1
forms a solution of the system. The vector x with components x;, x,, ... , x, is the solu-
tion vector for Equation 4.2. If x, =0=x,= --- =x,, the solution x =0, is called the trivial
solution. The augmented matrix for Equation 4.2 is defined as

an a1 e A1y b]
Ay An ... (b

[A|b]= 4.3)
n1 Ay2 cee Ann bn

nx(n+1)



4.2 Numerical Solution of Linear Systems

As described in Figure 4.1, numerical methods for solving linear systems of equations are
divided into two categories: direct methods and indirect methods.

A direct method computes the solution of Equation 4.2 by performing a pre-determined
number of operations. These methods transform the original system into an equivalent
system in which the coefficient matrix is upper-triangular, lower-triangular, or diago-
nal, making the system much easier to solve. Indirect methods use iterations to find the
approximate solution. The iteration process begins with an initial vector and generates
successive approximations that eventually converge to the actual solution. Unlike direct
methods, the number of operations required by iterative methods is not known in advance.

4.3 Gauss Elimination Method

Gauss elimination is a procedure that transforms a linear system of equations into upper-
triangular form, the solution of which is found by back substitution. It is important to
note that the augmented matrix [A|b] completely represents the linear system Ax=b,
therefore all modifications must be applied to the augmented matrix and not matrix A
alone. The transformation into upper-triangular form is achieved by using elementary
row operations (EROs) listed below.

ERO; Multiply a row of the augmented matrix by a nonzero constant,
ERO, Interchange any two rows of the augmented matrix,

ERO; Multiply the ith row of the augmented matrix by a constant o # 0 and add the
result to the kth row, then replace the kth row with the outcome. The ith row
is called the pivot row.

The nature of a linear system is preserved under EROs. If a linear system undergoes a
finite number of EROs, then the new system and the original one are called row-equivalent.

Consider the system in Equation 4.1. The first objective is to eliminate x, in all equations
below the first, thus the first row is the pivot row. The entry that plays the most important

Gauss elimination method
Direct methods < Doolittle’s method
d
Numerical solution

(use pr e-determl'ne LU factorization methods
number of operations)
of linear systems

Ax=b Jacobi method
Indirect methods <
(use iterations, ideal

Gauss—Seidel method
for large systems)

Cholesky’s method

FIGURE 4.1
Classification of methods to solve a linear system of equations.



role here is a;;, known as the pivot, the coefficient of x, in the first row. If a,; = 0, the first
row must be interchanged with another row (ERO,) to ensure that x; has a nonzero coef-
ficient. This is called partial pivoting. Another situation that may lead to partial pivoting
is when a pivot is very small in magnitude, with a potential to cause round-off errors.
Suppose x, has been eliminated via EROs, so that we now have a new system in which the
first equation is as in the original, while the rest are generally changed, and are free of x;.
The next step is to focus on the coefficient of x, in the second row of this new system. If it
is nonzero, and not very small, we use it as the pivot and eliminate x, in all the lower-level
equations. Here, the second row is the pivot row and remains unchanged. This continues
until an upper-triangular system is formed. Finally, back substitution is used to find the
solution.

EXAMPLE 4.1: GAUSS ELIMINATION WITH PARTIAL PIVOTING

Using Gauss elimination, find the solution x,, x,, x;, x, of the system whose augmented

matrix is
-1 2 3 1|3
2 4 1 21-1
-3 8 4 -16
1 4 7 2|4
Solution

Because the (1, 1) entry is nonzero, we use it as the pivot to eliminate the entries directly
below it. For instance, multiply the first row (pivot row) by 2 and add the result to the
second row, then replace the second row by the outcome; ERO;. All details are shown
in Figure 4.2. Next, we focus on the (2, 2) entry in the second row of the new system.
Because it is zero, the second row must be switched with any other row below it, say,
the third row. As a result, the (2, 2) element is now 2, and is used as the pivot to zero out
the entries below it. Since the one directly beneath it is already zero, by design, only one
ERO; is needed. Finally, the (3, 3) entry in the latest system is 7, and applying one last
ERO,; yields an upper-triangular system as shown in Figure 4.3.

1 [ 3] Pivot row -1 2 3 1]3

2 -1 I: 0 0 7 4|5
—_—>

-1] 6 0 2 -5 -4|-3

-2| -4 0 6 10 -1|-1

FIGURE 4.2
First three operations in Example 4.1.

-1 2 3 1]3 -1 2 3 1]3 -1 2 3 1] 3

0 2 -5 -4/ —3|Pivotrow 0 2 -5 34|-3 0 2 -5 -4|-3
— e

10 0 7 45 @% 0 0 7 4[5]|pvotrow |0 0 7 4] 5

0 6 10 -1|-1 o o 25 118 0 0 —2% -

FIGURE 4.3
Transformation into upper-triangular form in Example 4.1.



The solution is then found by back substitution as follows. The last row gives

-y, =-¢ = x=3

Moving up one row at a time, each time using the latest information on the unknowns,
we find

X3 %(5—4354):—1 x1=1
XZZ%(SX3+4X4—3)=2 = X2=2

ZXQ+3X3+X4—3=1 X3=—1

X1

Therefore, the solutionis x; =1, x,=2, x;=-1, x, = 3.

4.3.1 Choosing the Pivot Row: Partial Pivoting with Row Scaling

When using partial pivoting, in the first step of the elimination process, it is common
to choose as the pivot row the row in which x; has the largest (in absolute value) coef-
ficient. The subsequent steps are treated in a similar manner. This is mainly to handle
round-off error while dealing with large matrices. There is also total pivoting where the
idea is to locate the entry of the coefficient matrix A that is the largest in absolute value.
This entry corresponds to one of the unknowns, say, x,,. Then, the first variable to be
eliminated is x,,. A similar logic applies to the new system to decide which variable has
to be eliminated next. However, total pivoting is not very practical because it requires
much more computational effort than partial pivoting. Instead, partial pivoting with
scaling is used where we choose the pivot row to be the row in which x, has the largest
(absolute value) coefficient relative to the other entries in that row. More specifically,
consider the first step, where x; is to be eliminated. We will choose the pivot row as fol-
lows. Assume A is 1 X 1.

1. In each row i of A, find the entry with the largest absolute value, and call it M.

2. In each row i, find the ratio of the absolute value of the coefficient of x; to the
absolute value of M,, that is,

_ Joa]

"My

3. Among r; (i=1, 2, ... , n) pick the largest. Whichever row is responsible for
this maximum value is picked as the pivot row. Eliminate x, to obtain a new
system.

4. In the new system, consider the (1-1) x (n—1) submatrix of the coefficient matrix
occupying the lower right corner. In this matrix use the same logic as above to
choose the pivot row to eliminate x,, and so on.



EXAMPLE 4.2: PARTIAL PIVOTING WITH SCALING

Use partial pivoting with scaling to solve the 3 x 3 system with the augmented matrix

-4 -3 50
[Alb]=| 6 7 -32
2 -1 116
Solution
The three values of 7; are found as
I’1=H=é, TzZﬂ:él 1"3:@:1
5l 5 77 2

Since r; is the largest, it is the third row that produces the maximum value hence it
is chosen as the pivot row. Switch the first and the third row in the original system and
eliminate x, using EROs to obtain Figure 4.4.

To eliminate x,, consider the 2 X 2 submatrix B and compute the corresponding ratios,

o, s s
7

o

so that the first row (in matrix B) is picked as the pivot row. Row operations yield

2 -1 1]6
0 10 -6/-16
0 0 4| 4

and back substitution gives the solution; x; =1, x, = -1, x; = 2.

4.3.2 Permutation Matrices

In the foregoing analysis, a linear n X n system was solved by Gauss elimination via
EROs. In the process, the original system Ax=Db was transformed into Ux=b where U
is an upper-triangular matrix with nonzero diagonal entries. So, there must exist an 7 x n
matrix P so that pre-multiplication of the original system by P yields

P[Ax]=Pb = [PA]x=Pb = Ux=b (4.4)
-1 16 2 -1 116
6 7 -3|2| Eliminatex, 1, M5 61| 16
4 -3 5|0 0l=5_7]]12
“B

FIGURE 4.4
Partial pivoting with scaling.



where U = PA and b =Pb. In order to identify this matrix P, we need permutation matri-
ces. The simplest way to describe these matrices is to go through an example. Let us refer
to the 4 X 4 system in Example 4.1. Because the size is 4, we start with the 4 X 4 identity
matrix,

S O O =
oS O = O
o = O O
- O O O

Consider the three EROs in the first step of Example 4.1; see Figure 4.2. Apply them to I
to get the matrix P, (shown below). Next, focus on the second step, where there was only
one ERO; the second and third rows were switched. Apply that to I to obtain P,. The third
step also involved one ERO only. Apply to I to get P;. Finally, application of the operation
in the last step to I gives P,.

1 000 1 0 00 1 0 00 10 0 O

2 1 00 0 010 0O 1 00 01 0 O
P = , B= , P3= , Py=

-3 010 0100 0 0 10 00 1 0

1 001 0 0 01 0 -3 01 00 -2 1

Each P; is called a permutation matrix, reflecting the operations in each step of
Gauss elimination. Then,

P,A yields the coefficient matrix at the conclusion of the first step in Example 4.1
P,(P,A) gives the coefficient matrix at the end of the second step
P,(P,P,A) produces the coefficient matrix at the end of the third step

P,(P;P,P;A) gives the upper-triangular coefficient matrix U at the end of the fourth
step

Letting P = P,P,P,P,, then

102 3 1 3
pa-| 0 2 d Pb=b=1
“lo o 7 4| ™ b=

0 0 0 _ 23 _ 69

Subsequently, the final triangular system has the augmented matrix [U\B], as suggested
by Equation 4.4.

The user-defined function GaussPivotScale uses Gauss elimination with partial
pivoting and row scaling to transform a linear system Ax=b into an upper-triangular
system, and subsequently finds the solution vector by back substitution. The user-defined
function BackSub performs the back substitution portion and is given below.



function x = GaussPivotScale(A,b)

% GaussPivotScale uses Gauss elimination with partial pivoting and

% row scaling to solve the linear system Ax = b.

% X = GaussPivotScale(A,b), where

%

% A is the n-by-n coefficient matrix,
% b is the n-by-1 result vector,

%

% X Is the n-by-1 solution vector.

n = length(b);
A = [A b]; % Define augmented matrix
for k = 1:n-1,

% Find maximum magnitude in each row

M = max(abs(A(k:end, k:end-1)), [1, 2);
a = abs(A(k:end, k)); % Find maximum in kth column
I = max(a-/M); % Find row with maximum ratio
1 =1+ k - 1; % Adjust relative row to actual row
ifl>Kk
A(Lk 17, )= A K1, :); % Pivot rows

end
m = A(k+1l:n, k)/A(k, K); % Construct multipliers
[Ak, M] = meshgrid(A(k, ), m); % Create mesh
A(k+1:n, ) = A(k+1l:n, ) - AK.*M;

end

Ab = A;

% Find the solution vector using back substitution
X = BackSub(Ab);

function x = BackSub(Ab)

% BackSub returns the solution vector of the upper triangular augmented

% matrix Ab using back substitution.

% x = BackSub(Ab), where

% Ab is the n-by-(n+l1) augmented matrix,
% X is the n-by-1 solution vector.

n = size(Ab, 1);
for k = n:-1:1,
Ab(k, ) = Ab(k, :).-/Ab(k, k); % Construct multipliers
Ab(l:k-1, n+l) = Ab(l:k-1, n+1)-Ab(1l:k-1, k)*Ab(k, n+l); % Adjust
end
X = Ab(:, end);

rows



EXAMPLE 4.3: PARTIAL PIVOTING WITH SCALING

The linear system in Example 4.2 can be solved by executing the under-defined function

GaussPivotScale:
> A =[-4 -3 5;67 -3;2 -11]; b= [0;2;6];
>> X = GaussPivotScale(A,b)
X =
2
-1
1

4.3.3 Counting the Number of Operations

The objective is to determine approximately the total number of operations required by
Gauss elimination for solving an n X n system. We note that the entire process consists of
two parts: (1) elimination, and (2) back substitution.

4.3.3.1 Elimination

Suppose the first k-1 steps of elimination have been performed, and we are in the kth step.
This means that the coefficients of x, must be made into zeros in the remaining n—k rows
of the augmented matrix. There,

n—k divisions are needed to figure out the multipliers
(n—k)(n—k + 1) multiplications
(n—k)(n—k + 1) additions

Noting that the elimination process consists of n—1 steps, the total number of operations
N, is

n-1

Ng=i(”—k)+z(”‘k)(”_k+1)+n2_,(n_k)(n_k+1) 4.5)
k=1

k=1
Divisions Multiplications Additions

Equation 4.5 may be rewritten as (verify)
n—1 n-1 n-1 n—1
Ne=Y p+2) pp+1)=3) p+2) p’ (4.6)
p=1 p=1 p=1 p=1

Using the well-known identities

Z” M(M+1) g ZPZZM(M+16)(2M+1)
p=1

pr=1
in Equation 4.6, the total number of operations in the elimination process is given by

— _ _ For large n
(n 1)n+2(n Dn(2n—1) Forar gng,

N,=3 = 47
‘ 3 @47)




where we have neglected lower powers of n. The approximation is particularly useful for a
large system. With the above information, we can show, for example, that the total number
of multiplications is roughly %ng’.

4.3.3.2 Back Substitution

When back substitution is used to determine x,;, one performs

n—k multiplications

n—k subtractions

1 division
In Example 4.1, for instance, n =4, and solving for x, (so that k = 2) requires two multi-

plications (n—k = 2), two subtractions, and 1 division. So, the total number of operations N;
for the back substitution process is

n

Ne= Y 1+ Y -0+ Y -b = n+”(”2‘1)+”(”‘1) T ws)
k=1

2
k=1 k=1
Divisions  Multiplications Subtractions

If n is large, N, dominates N,, and the total number of operations in Gauss elimination
(for a large system) is

4.3.4 Tridiagonal Systems

Tridiagonal systems arise often in engineering applications and appear in the special form

d1 u 0 0 s 0 X1 bl
lz dz Uy 0 . 0 X bz
0 I d . 0 b
3 3 Us X3 _] 9 @9)
e . 0 ln—l dn—l Upq || Xn—1 bn—l
0 0 .. 0 L d|lx] |b

where d; (i=1, 2, ... ,n) are the diagonal entries, I; (i =2, ... ,n) the lower diagonal entries,
and u; (i=1,2, ... ,n-1) the upper diagonal entries of the coefficient matrix. Gauss elimina-
tion can be used for solving such systems, but is not recommended. This is because Gauss
elimination does not take into account the very special structure of a tridiagonal coefficient
matrix, and as a result will perform unnecessary operations to find the solution. Instead,
we use an efficient technique known as the Thomas method, which takes advantage of the
fact that the coefficient matrix has several zero entries. The Thomas method uses Gauss
elimination with the diagonal entry scaled to 1 in each step.



4.3.4.1 Thomas Method
Writing out the equations in Equation 4.9, we have
d1X1 +UixX, = b1

lle + dez + UyX3 = bz

ln—lxn—Z + dn—lxn—l + Uy Xy = bn—l
lnxn—l + dnxn = bn

In the first equation the diagonal entry is scaled to 1, that is, multiply the equation by
1/a;,. Therefore, in the first equation the modified elements are

_
d’

_h

b =
1 4,

U

All remaining equations, except the very last one, involve three terms. In these equations
the modified elements are

U; _ bi —b;l;

My, , i=2,3,..,n-1
d,‘ —u,‘_lli di - ui—lli

u;, =

Note that in every stage, the (latest) modified values for all elements must be used.
In the last equation,

— bn - bﬂ—lln
dn - un—lln

n

Finally, use back substitution to solve the system:

X, =b,
x,—=bi—uix,-+1, i=n—1,n—2, ,2,].

EXAMPLE 4.4: THOMAS METHOD

Solve the following tridiagonal system using the Thomas method:

Solution
We first identify all elements:

d1:3,d2:2, d3:—3, 12:1, l3:—1, Mlz—]., M2:1,b1:6, b2:—4, b3:O.



In the first equation, the modified elements are

U -1 b] 6
=—=—, b = ==
MTa T " Ta s
In the second equation,
123 1 3 by-bl, -4-(2)1) _ 18

Pl 2-(-0M) 7 P dmuh 2-(-3)@) 7

In the last equation,

by = = 7 =1
’ d3 - uzl3 -3- (%) (—1)
Back substitution yields
X3 = b3 =1 X1 1
Solution vector
Xy =by —tpx; =—2 - (7)(1)=—3 = Xy p=4-3
X1 = bl —U1Xy = —( %) 3) =1 X3 1

The user-defined function ThomasMethod uses the Thomas method to solve an n x n
tridiagonal system Ax=b. The inputs are matrix A and vector b. From A, three n x1
vectors will be constructed:

d= [ﬂu n 433 cee A ]T
T
1= |:O A azp e un,n_l]
T
u= |:6112 a3 ces Ap-1,n O:I

These are subsequently used in the procedure outlined above to determine the solution
vector x.

function x = ThomasMethod(A,b)

% ThomasMethod uses Thomas method to find the solution vector x of a
% tridiagonal system Ax = b.

% X = ThomasMethod(A,b), where

%

% A is a tridiagonal n-by-n coefficient matrix,
% b is the n-by-1 vector of the right-hand sides,



% X is the n-by-1 solution vector.

n = size(A,1);
d = diag(A); % Vector of diagonal entries of A
I = [0;diag(A,-1)]; % Vector of lower diagonal elements
u = [diag(A,1);0]; % Vector of upper diagonal elements
u(l) = u(@)/d(); b(1) = b(1)/d(1); % First equation
for i=2:n-1, % The next n-2 equations
den = d(i) - u(i-1)*I1(i);
if den = O,
x = "failure, division by zero";
return
end
u(i) = u(i)/den; b(i) = (b(i)-b(i-1)*1(i))/den;
end

b(n)=(b(n)-b(n-1)*1(n))/d(n)-u(n-1*1(n)); % Last equation
x(n) = b(n)
for i=n-1:-1:1,

i

x(i) = b(i) - u(i)*x(i+1);

The result obtained in Example 4.4 can be verified by executing this function, as

> A =[3-10;121;0 -1 -3]; b=1[6;-4;0];

>> X = ThomasMethod(A,b)
X =

1.0000

-3.0000

1.0000

4.3.4.2 MATLAB Built-In Function '"\""

The built-in function in MATLAB for solving a linear system Ax=b is the backslash (\),
and the solution vector is obtained via x = A\b. It is important to note that x = A\b computes
the solution vector by Gauss elimination and not by x = A-b.

For the linear system in Example 4.4, this yields

>> X = A\b

ans =
1.0000
-3.0000

1.0000



4.4 LU Factorization Methods

In the last section, we learned that solving a large n X n system Ax = b using Gauss elimina-
tion requires approximately 2n° operations. There are other direct methods that require
fewer operations than Gauss elimination. These methods make use of the LU factorization
of the coefficient matrix A.

LU factorization (or decomposition) of a matrix A,,, means expressing the matrix as
A =LU, whereL,,, is a lower triangular matrix and U,,, is upper triangular. Subsequently,
the original system Ax =b is rewritten as

[LU]x=b = L[Ux]=b = L[Ux|=b
y

Letting Ux =y,,,, the above can be solved in two steps:

Forward substitution

Ly=b = y
Ux=y = X

Back substitution

Note that each of the two systems is triangular, hence easy to solve. Because Ly =b is a
lower triangular system, it can be solved using forward substitution. The system Ux =y is
upper triangular and is solved via back substitution.

There are different ways to accomplish the factorization of matrix A, depending on the
specific restrictions imposed on L or U. For example, Crout factorization (see Problem Set)
requires the diagonal entries of U be 1's, while L is a general lower triangular matrix.
Another technique, known as Doolittle factorization, uses the results from different steps
of Gauss elimination. These two approaches have similar performances, but we will
present Doolittle factorization here.

4.4.1 Doolittle Factorization

Doolittle factorization of A is A = LU, where L is lower triangular consisting of 1’s along
the diagonal, and U is upper triangular. That the diagonal elements of L are chosen as 1's
can be explained using a generic 3 x 3 matrix

If L and U are selected in their most general forms, then

a1 12 a3 L 0 0 || un Ui Uiz
A=1LU = |ay A ax |=|In L 0 0 U U3

asz; a3 as3 I3 L3 I3]0 0 Usz



This implies that there are nine known quantities (entries of A), but 12 unknown
quantities: six in matrix L and six in matrix U. By selecting the diagonal entries I;;,
l,,, and I;; to be 1's, the number of unknown quantities is reduced to the number of
known quantities. The same strategy remains valid for any 7 x n matrix A.

4.4.2 Finding L and U Using Steps of Gauss Elimination

The lower triangular matrix L comprises 1’s along the main diagonal and negatives of
the multipliers (from Gauss elimination) below the main diagonal. The upper triangular
matrix U is the upper triangular form of A in the final step of Gauss elimination.

EXAMPLE 4.5: DOOLITTLE FACTORIZATION USING STEPS
OF GAUSS ELIMINATION

Find the Doolittle factorization of

Solution

Imagine A as the coefficient matrix in a linear system, which is being solved by Gauss
elimination. Figure 4.5 shows a sequence of EROs that transform A into an upper
triangular matrix.

The final upper triangular form is U. Three multipliers, -2, -4, and —2, have been used
to create zeros in the (2,1), (3,1), and (3,2) positions, respectively. Therefore, 2, 4, and 2 will
occupy the respective slots in matrix L. As a result,

1 0 0 1 3 6
L= 1 0|, u=lo -7 -11
1 0 O 1

4.4.3 Finding L and U Directly

A more efficient way to find L and U is a direct approach, as demonstrated in the following
example.

EXAMPLE 4.6: DIRECT CALCULATION OF L AND U IN DOOLITTLE
FACTORIZATION

Consider the matrix in Example 4.5,



FIGURE 4.5
Reduction to an upper triangular matrix.

Setting A = LU, we find

an i a3 Un Ui Uiz
ay  ap  axp |=|Iaun Lynp + U Itz + i3
a3 dx Az I Ding + oty Dyyiiys + Lptins + i35

Each entry on the left must be equal to the corresponding entry on the right. This
generates nine equations in nine unknowns. The entries in the first row of U are found
immediately, as

U =ay, Uip=0ap, Uiz=0d3
The elements in the first column of L are found as

531 a3
by=—, Iy=—"
Un U

The entries in the second row of U are calculated via
Uy =0 —boilly, Usz = Az — nthas
The element in the second column of L is found as

Iy = az — i,
="
U

Finally, the entry in the third row of U is given by
Uss = 33 — Iyl — Lo

Using the entries of matrix A and solving the nine equations just listed, we find

1 0 1 3 6
L=[2 1 0| U=[0 -7 -1
4 1 0o 0 1

This clearly agrees with the outcome of Example 4.5.

The direct calculation of the entries of L and U in Doolittle factorization can
be performed systematically for an n xn matrix A using the steps outlined in
Example 4.6. The user-defined function DoolittleFactor performs all the



operations in the order suggested in Example 4.6 and returns the appropriate L and U
matrices.

function [L, U] = DoolittleFactor(A)
% DoolittleFactor returns the Doolittle factorization of matrix A.

% [L, U] = DoolittleFactor(A), where

% A is an n-by-n matrix,

%

% L is the lower triangular matrix with 1°s along the diagonal,
% U is an upper triangular matrix.

%

n = size(A,1);

L = eye(n); U = zeros(n,n); % Initialize

for 1 = 1:n,
udi,i) = AG,i)-L@,1:i-1)*u@:i-1,i);
for j = i+l:n,
U@,J3) = AL §)-L@,1i-1)*U(l:i-1,5);
LJ,1) (AQ,1)-LGg,1:i-1)*u(@:i1-1,i))/U(i,i);

end

end

The findings of the last example can readily be confirmed by executing this function.

> A=[136;2-11;4 -2 3];
>> [L, U] = DoolittleFactor(A)

L =
1 0 0
2 1 0
4 2 1
U =
1 3 6
0 -7 -11
0 0 1

4.4.3.1 Doolittle’s Method to Solve a Linear System

Doolittle’s method uses Doolittle factorization of A to solve Ax =b:
[LU]x=b = L[Ux|=b

This will be solved in two steps: Solving a lower-triangular system by forward substitu-
tion, followed by solving an upper-triangular system by back substitution.

Ly=b =
{ ¥ ¥ @.10)
Ux=y = x
The user-defined function Dooll i ttleMethod uses Doolittle factorization of the coef-
ficient matrix, and subsequently solves the two triangular systems in Equation 4.10 using
forward and back substitution, respectively, to find the solution vector x.



function x = DoolittleMethod(A,b)

%

% DoolittleMethod uses the Doolittle factorization of matrix A and

% solves the ensuing triangular systems to find the solution vector Xx.
%

% x = DoolittleMethod(A,b), where

%

% A is the n-by-n coefficient matrix,

% b is the n-by-1 vector of the right-hand sides,

%

% X is the n-by-1 solution vector.

%

[L, U] = DoolittleFactor(A); % Find Doolittle factorization of A

n = size(A,1);

% Solve the lower triangular system Ly = b (forward substitution)
y = zeros(n,1);
y(1) = b(1);
for i = 2:n,
y(i) = b(i)-L@,1:i-D)*y(1:i-1);
end

% Solve the upper triangular system Ux = y (back substitution)
X = zeros(n,1l);
x(n) = y(n)/u(n,n);
for 1 = n-1:-1:1,
x(1) = (y()-U(i,i+1:n)*x(i+1:n))/U(i,i);
end
end

EXAMPLE 4.7: DOOLITTLE’S METHOD TO SOLVE A LINEAR SYSTEM
Using Doolittle’s method, solve Ax =b where

1 3 6 3 X1
A=(2 -1 1|, b=19;, x=9x,
4 -2 3 19 X3

Solution

Doolittle factorization of A was done in Examples 4.5 and 4.6. Using L and U in
Equation 4.10,

0 0|y o ¥1=3 3
Forward substitution
Ly=b: 2 1 0 Yoo = 9 = 2y1+y2=9 = y= 3
_4 2 1 Ys 19 4y1 + zyz + Ys= 19 1
1 3 6 [x] (3 X, +3x,+6x3=3 3
Back substitution
Ux=y:|0 -7 —11|yx;7=43 = —7x,—11x3=3 = x=9-2
_0 0 1 X3 1 X3 = 1 1




The result can be verified by executing the user-defined function Dool i ttleMethod.

> A =[136;2-11;4 -2 3]; b =1[3;9;19];
>> x = DoolittleMethod(A,b)
X =

3

-2

1

4.4.3.2 Operations Count

Doolittle’s method comprises two phases: LU factorization of the coefficient matrix and
forward/back substitution to solve the two subsequent triangular systems. For a large
system Ax = b, the Doolittle factorization of A requires roughly 1n’ operations. The ensu-
ing triangular systems are simply solved by forward and back substitutions, each of which
requires n? operations; Section 4.3. Therefore, the total number of operations is 1n* +n?,
which is approximately 117’ since 7 is large. This implies that Doolittle’s method requires
half as many operations as the Gauss elimination method.

4.4.4 Cholesky Factorization

A very special class of matrices encountered in many engineering applications is symmet-
ric, positive definite matrices. A matrix A = [a,],., is positive definite if all of the following
determinants are positive:

an a2 a3
a1 a2

D1=ﬂ11>0, D2= >O, D3=021 [25%) a3 >0,..., Dn=‘A‘>O

ax [Z55)
a3y az as3

Of course, A is symmetric if A = AT. For a symmetric, positive definite matrix there is a
very special form of LU factorization, where the lower triangular matrix L is in the general
form (with no restrictions on the diagonal entries) and the upper triangular matrix U is the
transpose of L. This is known as Cholesky factorization,

A=LL"

For instance, in the case of a 3 X 3 matrix,

a1 dip g3 Ly 0 0|l ln In 1121 Laly Lals
G Gn ap |=|lbi Ly 0|0 ln Iyn|=|lil l%l + l%z Inlay + Dol @.11)
M3 3 Q33 I I Ip)||0 0 Iy Lalby  Inlyg+loln B+ 15+,

Owing to symmetry, only six equations—as opposed to nine for Doolittle—need to be
solved. The user-defined function CholeskyFactor performs all the operations and
returns the appropriate L and U = LT matrices.



function [L, U] = CholeskyFactor(A)

%

4 CholeskyFactor returns the Cholesky factorization of matrix A.
%

=SS

% [L, U] = CholeskyFactor(A), where

%

% A is a symmetric, positive definite n-by-n matrix,
%

% L is a lower triangular matrix,

% U =L" Is an upper triangular matrix.

%

n = size(A,1);

L = zeros(n,n); % Initialize

for i = 1:n,
L(i,i) = sqrt(ACi,i)-L(i,1:i-2)*L(i,1:i-1)");
for j = i+1:n,
LGg,i1) = (AQ.D-LQ,1:i-D)*L(i,1:i-1)")/L(i,i);
end
end
us=1~,L";

4.4.4.1 Cholesky’s Method to Solve a Linear System

Cholesky’s method uses Cholesky factorization of A to solve Ax = b. Substitution of A = LLT
into the system yields

[LL]x=b = L[L'x]=b
which will be solved in two steps:

{Lf b=y @12)
L'x=y = x

Both systems are triangular, for which the solutions are found by forward and back
substitutions. The user-defined function CholeskyMethod uses Cholesky factorization of
the coefficient matrix, and subsequently solves the two triangular systems in Equation 4.12
to find the solution vector x.

function x = CholeskyMethod(A,b)

%

% CholeskyMethod uses the Cholesky factorization of matrix A and

4 solves the ensuing triangular systems to find the solution vector x.
%

% x = CholeskyMethod(A,b), where

%

% A

% b
%

% X is the n-by-1 solution vector.
%

XX

a symmetric, positive definite n-by-n coefficient matrix,

is
is the n-by-1 vector of the right-hand sides,



[L, U] = CholeskyFactor(A); % Find Cholesky factorization of A
n = size(A,1);

% Solve the lower triangular system Ly = b (forward substitution)
y = zeros(n,1);
y(@) = b(1)/L(1,1);
for i = 2:n,
y(i) = (b()-LG,1:i-1)*y(Q:1-1))/L(i,i);
end

% Solve the upper triangular system L*x =y (back substitution)
X = zeros(n,1);
x(n) = y(n)/u(n,n);
for 1 = n-1:-1:1,
x(1) = (y(D)-U(i,i+1l:n)*x(i+1l:n))/U(i,i);
end
end

EXAMPLE 4.8: CHOLESKY’S METHOD TO SOLVE A LINEAR SYSTEM
Using Cholesky’s method solve Ax =b where

9 6 -3 -18 X1
A=|6 13 -5|, b=7-45;, x=4x;
-3 -5 18 97 X3

Solution

The matrix A is clearly symmetric since A = AT, and it is positive definite because

9 6
Di=9>0, D;=| =81>0, D;=|A|=1296>0

13

The elements listed in Equation 4.11 can be directly used to determine the six entries
of L. For instance,

1121=1111 = 1121=9 = l1=3

_ai_é = 121:2

hilbi=ap, = In= =
11421 12 21 lll 3

and so on. Continuing this process, we find



Using L and LT in Equation 4.12, yields

30 0w (8] o 3y, =18 -6
Ly=b:| 2 3 O0|qy2;=1-45 = 21 +3y,=—45 = y=3-11
-1 -1 4 Y3 97 “Y1—Y2 + 4y3 =97 20
3 2 -1 X1 -6 3x1 +2.X'2 —X3 =—6 1
Back substitution
L'x=y:{0 3 -1|{x;p=1-11 = 36-x3=-11 = x={-2
0 0 4||x; 20 4x5 =20 5

The result can be verified by executing the user-defined function CholeskyMethod.

> A =1[9 6 -3;6 13 -5;-3 -5 18]; b = [-18;-45;97];
>> X = CholeskyMethod(A,b)
X =

1

-2

5

4.4.4.2 Operations Count

Cholesky’s method comprises two parts: LU factorization of the coefficient matrix and
forward/back substitutions to solve the two triangular systems. For a large system Ax =b,
the Cholesky factorization of A requires roughly 1n® operations. The ensuing triangu-
lar systems are solved by forward and back substitutions, each requiring n? operations.
Therefore, the total number of operations is roughly 1 7° +n°, which is approximately 1 n°
since 7 is large. This implies that Cholesky’s method requires half as many operations as
Gauss elimination method.

4.4.4.3 MATLAB Built-In Functions 1u and chol

MATLAB has built-in functions to perform LU factorization of a square matrix: lu for
general square matrices, and chol for symmetric, positive definite matrices. There are
different ways of calling the function lu. For example, the outputs in [L,U]=01u(A) are
U, which is upper triangular and L, which is the product of a lower triangular matrix and
permutation matrices such that LU = A. On the other hand, [L,U,P]=01u(A) returns a
lower triangular L, an upper triangular U, and permutation matrices P such that LU = PA.
Other options in lu allow for the control of pivoting when working with sparse matrices
(large matrices with a large number of zero entries).

For a symmetric, positive definite matrix A, the function call U=chol (A) returns an
upper triangular matrix U such that UTU = A. If the matrix is not positive definite, chol
returns an error message.

EXAMPLE 4.9: BUILT-IN FUNCTION "LU"

Consider



> A =1[4 -1 0;-1 3 -5;25 6];
>> [L,U,P] = 1u(Ah)

L =
1.0000 0 0
0.5000 1.0000 0
-0.2500 0.5000 1.0000
U=
4.0000 -1.0000 0
0 5.5000 6.0000
0 0 -8.0000
P =
1 0 0
0 0 1
0 1 0

It is readily seen that LU = PA,

>> L*U, P*A

ans =
4 -1 0
2 5 6
-1 3 -5

ans =
4 -1 0
2 5 6
-1 3 -5

Note that the permutation matrix P is the 3 x 3 identity matrix with its second and third
rowsinterchanged. Thisindicates that the second and third rows of matrix A were firstinter-
changed to obtain PA = A, followed by the Doolittle factorization of A, thatis, A =LU.

4.5 Iterative Solution of Linear Systems

In Sections 4.3 and 4.4, we introduced direct methods for solving Ax = b, which included
the Gauss elimination and methods based on LU factorization of the coefficient matrix
A. We now turn our attention to indirect, or iterative, methods. In principle, a successful
iteration process starts with an initial vector and generates a sequence of successive vectors
that eventually converges to the solution vector x.

Unlike direct methods, where the total number of operations is known in advance, the
number of operations required by an iterative method depends on how many iteration
steps must be performed for satisfactory convergence, as well as the nature of the system
at hand. What is meant by convergence is that the iteration must be terminated as soon as
two successive vectors are close to one another. A measure of the proximity of two vectors
is provided by a vector norm.

4.5.1 Vector Norms

Norm of a vector v,,,;, denoted by |v], provides a measure of how small or large v is, and has
the following properties:

e |v| 20 forallv,and |v| =0 if and only if v=0,.



¢ |lowv| = |of|v]|, oo = scalar
¢ |v +w| < |v|Hwl] for all vectors v and w

There are three commonly used vector norms, listed below. In all cases, vector v is
assumed in the form

I,-norm, denoted by [v],, is the sum of the absolute values of all components of v:
vl =[or]+[va]+ -+ o] (413)
I_-norm, denoted by |lv|., is the largest (in absolute value) of all components of v:

vl =max{foi] os], ... [ou]} (4.14)

I,norm, denoted by |v|,, is the square root of the sum of the squares of all
components of v:

1/2
Ivl, = [vlz +03 4+ vﬁ:l 4.15)
EXAMPLE 4.10: VECTOR NORMS
Find the three norms of

8.3

1. Using Equations 4.13 through 4.15.
2. Using the MATLAB built-in function norm.

Solution
1. By Equations 4.13 through 4.15,

[v], =83+ |-2.9/+|-12+]6.7| = 29.9
|v]. = max{8.3],-2.9],]-12],6.7]} = 12

7

[v[, = (83)° + (-2.9 + (-12" + 6.7 =16.3153

Note that all three norms return values that are of the same order of magnitude,
as is always the case. If a certain norm of a vector happens to be small, the
other norms will also be somewhat small, and so on.



2. MATLAB built-in function norm calculates vector and matrix norms.

>> v = [8.3;-2.9;-12;6.7];
>> [norm(v,1), norm(v,inf), norm(v,2)]

ans =

29.9000 12.0000 16.3153

4.5.2 Matrix Norms

Norm of a matrix A,,,, denoted by ||A, is a nonnegative real number that provides a mea-
sure of how small or large A is, and has the following properties:

[|A] =0 for all A, and ||A] =0 if and only if A=0,,, A=0,,,
oAl = |o|[|A]l, o= scalar

A + B| <||A]| + |B|| for all 7 x n matrices A and B

|AB| <||Al |[B]| for all 7 x n matrices A and B

There are three commonly used matrix norms, listed below. In all cases, matrix A is in
the form A = [a;],,,-
1-norm (column-sum norm), denoted by ||Al}, is defined as

xqgﬁﬁ} 0

i=1

The sum of the absolute values of entries in each column of A is calculated, and the
largest is selected.
Infinite-norm (row-sum norm), denoted by ||A|l, is defined as

n

AL =max{y’
1<i<n

=

The sum of the absolute values of entries in each row of A is calculated, and the largest
is selected.
Euclidean norm (2-norm, Frobenius norm), denoted by [|A|,, is defined as

1/2

Y @19

=1 j=1

EXAMPLE 4.11: MATRIX NORMS
Find the three norms of

-1 0 54 438
093 4 1 3.6
-2 45 6 10



1. Using Equations 4.16 through 4.18.
2. Using the MATLAB built-in function norm.

Solution
1. By Equations 4.16 through 4.18,

4
HAH = r&eg{zl a; } =max{6.93,9.76,14.4,23.4} = 23.4

4

|A|_ =max z
1<i<4

j=1

a; = max{11.26,11.2,9.53,22.5} = 22.5

1/2

ML= S arl t6sim

=1 j=1

As it was the case with vector norms, the values returned by all three matrix
norms are of the same order of magnitude.
2.

> A =[31.26 -2 5;-1 05.4 4.8;0.93 -4 1 3.6;-2 -4.5 6 10];
>> [norm(A,1), norm(A,inf), norm(A,*fro")]

ans =

23.4000 22.5000 16.8482

4.5.2.1 Compatibility of Vector and Matrix Norms

The three matrix norms above are compatible with the three vector norms introduced
earlier, in the exact order they were presented. More specifically, the compatibility
relations are

Av], <[], v,
Av|_ < /Al v, (419
|Av], <A v,

EXAMPLE 4.12: COMPATIBILITY RELATIONS

The relations in Equation 4.19 can be verified for the vector and the matrix used in
Examples 4.10 and 4.11 as follows:

78.7460
—40.9400 Calculate vector norms
Av= = |Av|, =159.6750, |Av|_ =78.7460, |Av|,=94.5438
31.4390 ' - ?

—-8.5500



Then, the compatibility relations in Equation 4.19 are readily verified as follows.

159.6750 < (23.4)(29.9), 78.7460<(22.5)(12), 94.5438 <(16.8482)(16.3153)

4.5.3 General Iterative Method

The general idea behind iterative methods to solve Ax =b is outlined as follows: Split the
coefficient matrix as A = Q — P, with the provision that Q is non-singular so that Q! exists,
and substitute into Ax = b to obtain

[Q-P]x=b = Ox=Px+b

Of course, this system cannot be solved in its present form, as the solution vector x
appears on both sides. Instead, it will be solved by iterations. Choose an initial vector x©
and solve the following system for the new vector x:

oxV=rPx”+b
Next, use x® to find the new vector x@:
ox? =PxV +b
and so on. In general, a sequence of vectors is generated via
ox ¥V =Px® +b, k=0,1,2,... 4.20)

Since Q is assumed non-singular, Equation 4.20 is easily solved at each step for the
updated vector x*, as

xEV =Q7'PxP +Q b, k=0,1,2,... 4.21)

In the general procedure, splitting of A is arbitrary, except that Q must be non-singular.
This arbitrary nature of the split causes the procedure to be generally ineffective. In specific
iterative methods presented shortly, matrices P and Q obey very specific formats for
successful implementation.

4.5.3.1 Convergence of the General Iterative Method

The sequence of vectors obtained through Equation 4.21 converges if the sequence of
error vectors associated the iteration steps approaches the zero vector. The error vector at
iteration k is defined as

e® =x®_x,, x,=Actual solution vector

Note that the actual solution x, is unknown, and the notation is being used in the analy-
sis merely for the development of the important theoretical results. That said, since x, is the
actual solution of Ax = b, then



Ax,=b = [Q-Plx,=b
Inserting this into Equation 4.20, yields
Ox*V =PxP +[Q-Plx, = Q [x(k”) - xa] =P [x(k) - xg}

Noting that the bracketed quantities are simply the error vectors at iteration k and k + 1,
the above is written as

Qe = pe®
Pre-multiplication of this equation by Q7, and letting M = Q~'P, results in
e“V=QPe =Me", k=0,1,2,...
so that

e =Me”, e®=Me" =M?%?,..., e® =Me®

Taking the infinite-norm of both sides of the last equation and k applications of the
second compatibility relation in Equation 4.19, we find

e <Ml [

Thus, a sufficient condition for He(k)Hw — 0 as k - « is that HMH’; — 0 as k — o, which
is satisfied if [M|_<1. The matrix M = Q"'P plays a key role in the convergence of

iterative schemes. The above analysis suggests that in splitting matrix A, matrices
Q and P must be selected so that the infinite norm of M = QP is less than one. We
note that |[M]. < 1 is only a sufficient condition and not necessary. This means that if it
holds, the iteration converges, but if it does not hold, convergence is not automatically
ruled out.

4.5.4 Jacobi Iteration Method

Let D, L, and U be the diagonal, lower, and upper triangular portions of matrix A = [a;],,,,
respectively, that is,

an 0 0 e 0 0 750 e a1y

Ao arn 0 0 0 0 Ay

Ay an  4p ... 0 0 0 0



In the Jacobi method, A is split as

A=Q-P o Q=D
=D+[L+U] % P=—[L+U]

Subsequently, Equation 4.20 takes the specific form

Dx* =-[L+U]x* +b, k=0,1,2,... 4.22)

For D to exist, the diagonal entries of D, and hence of A, must all be nonzero. If a
zero entry appears in a diagonal slot, the responsible equation in the original system
must be switched with another equation so that no zero entry appears along the diago-
nal in the resulting coefficient matrix. Then, pre-multiplication of Equation 4.22 by D,
yields

X Z -t {_[L +Ux® + b}, k=0,1,2,... 4.23)

known as the Jacobi method. Note that L + U is exactly matrix A but with zero diago-
nal entries, and that the diagonal entries of D! are 1/11,-]- fori=12, ..., n. Denoting the
vector generated at the kth iteration by X0 =[x, 2P, Equation 4.23 can be expressed
component-wise, as

n

1 .
= 22N gax® b b, i=1,2,..,n 4.24
1 ] ]
i =
j#l

The important matrix M = Q-'P takes the special form

M, =-D'[L+U]

and is called the Jacobi iteration matrix. A sufficient condition for Jacobi iteration to con-
verge is that [M[., < 1.

4.5.4.1 Convergence of the Jacobi Iteration Method

Convergence of the Jacobi method relies on a special class of matrices known as diagonally
dominant. An n X n matrix A is diagonally dominant if in each row, the absolute value of
the diagonal entry is greater than the sum of the absolute values of all the off-diagonal
entries, that is,

n

‘aii‘ > Z

j=1
j#i

, 1=1,2,...,n

i 4.25)



or equivalently,

4.26)

Theorem 4.1: Convergence of Jacobi Iteration

Let A be diagonally dominant. Then, the linear system Ax=Db has a unique solution x,,
and the sequence of vectors generated by Jacobi iteration, Equation 4.23, converges to x,
regardless of the choice of the initial vector x©.

Proof
The Jacobi iteration matrix is formed as
0 A1p/011 A1 /11
ax /Ay 0 /02

M, =-D'[L+U]=
an—l,n/an—l,n—l
_anl/ann an2/ann 0

Since A is diagonally dominant, Equation 4.26 holds. In each row of M, the sum of the
magnitudes of all entries is less than 1 by Equation 4.26. This means the row-sum norm
of M; is less than 1, that is, M}, < 1. Since this is a sufficient condition for convergence of
Jacobi method, the proof is complete. [

The user-defined function Jacobi uses the Jacobi iteration method to solve the linear
system Ax=Db, and returns the approximate solution vector, the number of iterations
needed for convergence, and |[Mj... The terminating condition is [[x**) — x¥|| < & for a pre-
scribed tolerance «.

function [x, k, MInorm] = Jacobi(A, b, x0, tol, kmax)

% Jacobi uses the Jacobi iteration method to approximate the solution
% of Ax = b.

% [x, k, MInorm] = Jacobi(A, b, x0, tol, kmax), where

% A is the n-by-n coefficient matrix,

% b is the n-by-1 right-hand side vector,

% X0 is the n-by-1 initial vector (default zeros),

% tol is the scalar tolerance for convergence (default le-4),
% kmax is the maximum number of iterations (default 100),

%

% X is the n-by-1 solution vector,

% k Is the number of iterations required for convergence,



% MJInorm is the infinite norm of the Jacobi iteration matrix.
%
if nargin < 3 || isempty(x0), x0 = zeros(size(b)); end
if nargin < 4 || isempty(tol), tol = le-4; end
if nargin < 5 Il isempty(kmax), kmax = 100; end
X(-, 1) =
= dlag(dlag(A)) At = A - D;

L = tril(At); U = triu(At);
% Norm of Jacobi iteration matrix
M = -D\(L + U); MInorm = norm(M, inf); B = D\b;
% Perform iterations up to kmax
for k = 1:kmax,

x(:, k+l)= M*x(:, k) + B; % Compute next approximation

if norm(x(:, k+1) - x(:, k)) < tol, break; end % Check convergence
end
x = x(:, end);

EXAMPLE 4.13: JACOBI ITERATION
Consider the linear system

4 1 - 1 X 0

Ax=b, A=|-2 5 0| b=1-7{ x={x, I_t_xfm =41
nitial vector

2 1 6 13 X3 1

1. Find x® using both forms of the Jacobi method in Equations 4.23 and 4.24, and
confirm the results by executing the user-defined function Jacobi.

2. Solve the system by executing the user-defined function Jacobi with default
values for tol and kmax.

Solution

1. Itis readily verified that the coefficient matrix A is diagonally dominant since

6>2+1

This implies Theorem 4.1 guarantees convergence of the sequence of vec-
tors generated by Jacobi iteration method to the actual solution. We will find
the components of the next vector x® generated by Jacobi iteration using
Equations 4.23 and 4.24. Before using Equation 4.23, we first form

4 0 O 0o 1 -1
D=0 5 0 L+U=|-2 0 O
0 0 6 2 1 0

Then, Equation 4.23 with k =0 yields

10 off[o 1 -1]fo] (1 0.25
xU =DM -[L+Ux"+b}=|0 1 Of-|-2 0 0[1f+{-7(r=1-14
0 0 Lfl |2 1 o]l [13 2



The vector x can also be found by using Equation 4.24 with k=0,
x,(l) = i —Za;jxj-o) + bi , i= 1,2,3

Specifically,

2 = L{_[ ar? + a® + bl} =H- [0+ D)) +1} =025

an
2= ai{—[aﬂx?’) 02 [+ by | = H-[20)+ O]+ (-7)} =14
22
1) =Ll + a4 bs = {20 + D] +13) =2
33
Therefore,
0.25
x=1-14
2

The vector x can be verified by executing the user-defined function Jacobi
with kmax = 1 to allow one iteration only.

> A=[41-1;-250;216]; b=1[1;-7;13]; x0 = [0;1;1];
>> x = Jacobi(A, b, x0, [1, 1)
X =
0.2500
-1.4000
2.0000 % Agrees with hand calculations
2

>> [x, k, MInorm] = Jacobi(A, b, x0) % Default values for tol and kmax

X =
1.0000
-1.0000
2.0000
k =
13
MJnorm =
0.5000

Note that the condition ||M]||m < 11is satisfied because the coefficient matrix A is
diagonally dominant.

4.5.5 Gauss-—Seidel Iteration Method

Based on Equations 4.23 and 4.24, every component of x* is calculated entirely from x® of
the previous iteration. In other words, to access x*?, the kth iteration has to be completed



so that x® is entirely available. Performance of Jacobi iteration can be improved if the most
updated components of a vector are utilized, as soon as they are available, to compute the
subsequent components of the same vector. Consider two successive vectors, as well as the
actual solution,

xgk) x;k-ﬁ—l) xl
*) (k+1)
) _ ) %p k+1) _ JXp X
XSV (00X T T ke [r Xe S
xp+l xp+1 Xp+1
) D) X,

Generally, x™" is expected to be a better estimate of x, than x{” is. And as such, using

xi instead of x should lead to a better approximation of the next component, x;",
in the current vector. This is the reasoning behind Gauss—Seidel iteration method, which
is considered a refinement of Jacobi method. To fulfill this logic, the coefficient matrix A is

split as

A=Q-P e QDAL
=[p+L]+U T p=—u

As a result, Equation 4.20 takes the specific form

[D+L]x*" =-Ux®+b, k=0,1,2,... @.27)

But, D+ L is a lower-triangular matrix whose diagonal entries are those of A. Thus,
[D + L] exists if A has nonzero diagonal entries. If a diagonal entry is zero, the respon-
sible equation in the original system must be switched with another equation so that no
zero entry appears along the diagonal in the resulting coefficient matrix. Subsequently,
pre-multiplication of Equation 4.27 by [D + L] yields

x*D =[D+L] " {-Ux® +b}, k=0,12,... (4.28)

known as the Gauss—Seidel iteration method. Denoting the vector at the kth iteration by
x® =[x ... xP]", Equation 4.28 can be expressed component wise, as

i-1 n

1 .
x ) = — —z a,-jx}k“) - Z uijxj-k) +b v, i=12,...,n 4.29)
@i | 43 joidl

where the first sum on the right side is considered zero when i = 1. The important matrix
M = Q'P now takes the special form

Mg =—-[D+L]'U



known as the Gauss—Seidel iteration matrix. A sufficient condition for the Gauss—Seidel
iteration to converge is [Mggll., < 1.

4.5.5.1 Convergence of the Gauss-Seidel Iteration Method

Since the Gauss-Seidel method is a refinement of the Jacobi method, it converges
whenever the Jacobi method does, and usually faster. Recall that if A is diagonally
dominant, the Jacobi iteration is guaranteed to converge to the solution vector. This implies
that if A is diagonally dominant, the Gauss—Seidel iteration is also guaranteed to converge,
and faster than the Jacobi.

If A is not diagonally dominant, the convergence of the Gauss—-Seidel method relies on
another special class of matrices known as symmetric, positive definite (Section 4.4).

Theorem 4.2: Convergence of Gauss—Seidel Iteration

Let A be symmetric, positive definite. Then, the linear system Ax=b has a unique solu-
tion x,, and the sequence of vectors generated by the Gauss—Seidel iteration, Equation 4.28,
converges to x, regardless of the choice of the initial vector x©. [

The user-defined function GaussSeidel uses the Gauss—Seidel iteration method to solve
the linear system Ax=b, and returns the approximate solution vector, the number of
iterations needed for convergence, and |[Mg|... The terminating condition is [x* — x®| < &
for a prescribed tolerance .

function [x, k, MGSnorm] = GaussSeidel(A, b, x0, tol, kmax)

% GaussSeidel uses the Gauss-Seidel iteration method to approximate the
% solution of Ax = b.

% [x, k, MGSnorm] = GaussSeidel(A, b, x0, tol, kmax), where

% A is the n-by-n coefficient matrix,

% b is the n-by-1 right-hand side vector,

% X0 is the n-by-1 initial vector (default zeros),

% tol is the scalar tolerance for convergence (default le-4),

% kmax is the maximum number of iterations (default 100),

%

% X is the n-by-1 solution vector,

% k is the number of iterations required for convergence,

% MGSnorm is the infinite norm of the Gauss-Seidel iteration matrix.

if nargin < 3 || isempty(x0), x0 = zeros(size(b)); end
if nargin < 4 || isempty(tol), tol = le-4; end
if nargin < 5 |l isempty(kmax), kmax = 100; end
X(-, 1) =
= dlag(dlag(A)) At = A - D;
L = tril(At); U = At - L;
% Norm of Gauss-Seidel iteration matrix
M = -(D + L)\U; MGSnorm = norm(M, inf); B = (D + L)\b;
% Perform iterations up to kmax



for k = 1:kmax,
x(:, k+1) = M*x(:, k) + B;
if norm(x(:,k+1)-x(:, k)) < tol,
break
end
end
X = x(z, end);

EXAMPLE 4.14: GAUSS-SEIDEL ITERATION: DIAGONALLY
DOMINANT COEFFICIENT MATRIX

Consider the linear system of Example 4.13,

4 1 1 x 0
Ax=b, A=[2 5 0|, b={-7{, x={xy, l_t_x1<°>t =11
2 1 6 13 X3 1

1. Find x® using both forms of the Gauss-Seidel method in Equations 4.28
and 4.29, and confirm the results by executing the user-defined function
GaussSeidel

2. Solve the system by executing the user-defined function GaussSeidel
with default values for tol and kmax.

Solution

1. We will find the components of the next vector x® generated by the Gauss—
Seidel iteration using Equations 4.28 and 4.29. Before using Equation 4.28,
we first form

4 0 0 0 1 -1
D+L=-2 5 0 U=|0 0
2 1 6 0 0 0
Equation 4.28 with k = 0 yields
30 0 offfo 1 -1]fo] (1 0.25
x<1>=[D+L]’1{—Ux<°)+b}=% 12 24 0[-[0 0 0 [{1f+i-7¢t=1-13
-12 -4 20| [0 0 O]l |13 23

The vector x» may also be found by using Equation 4.29 with k=0,

i—

1
2 Zaq V4bit, i=1,2,3
1

a” = j=i+l

J

As previously mentioned, the first sum on the right side is considered
zero when i = 1. For the problem at hand,



) = i[—auxgm —ax +by | = L-ow-cna+1]=025

an 4
1 1
x(zl) = 7[—a21x£1) — ﬂ23xg0) + b2:| = g[-(-2)(025) — (0)(1) — 7] =-1.3
22
P = ai[—umxg“ —apx) +b; ] = %[—(2)(0.25) ~(1)(-1.3)+13]=2.3
33
Therefore,
0.25
xP={-13
2.3

This vector can be verified by executing GaussSeidel with kmax=1 so that
one iteration only is performed.

> A=[41-1;-250;216]; b=1_[1;-7;13]; x0 = [0;1;1];
>> x = GaussSeidel(A, b, x0, [], 1)
X =

0.2500

-1.3000

2.3000 % Agrees with hand calculations

2. Since A is diagonally dominant, the Gauss—Seidel iteration is guaranteed to
converge because the Jacobi method is guaranteed to converge.

>> [x, k, MGSnorm] = GaussSeidel(A, b, x0)

X =
1.0000
-1.0000
2.0000

8
MGSnorm =

0.5000

As expected, Gauss—Seidel exhibits a faster convergence (eight iterations) than
Jacobi (13 iterations).

EXAMPLE 4.15: GAUSS-SEIDEL ITERATION: SYMMETRIC,
POSITIVE-DEFINITE COEFFICIENT MATRIX

Consider
1 1 -2 5.5 X1 0
Ax=b, A=|1 10 4|, b=4175;, x=4x, ’1--x1(0) =J0
-2 4 24 -19 X5 nitial vector 0

The coefficient matrix is symmetric since A = A”. It is also positive definite because

1 1 1 -2
=9>0, |1 10 4|=144>0

1
1>0,
110 -2 4 24




Thus, the Gauss-Seidel iteration will converge to the solution vector for any initial
vector. Executing the user-defined function GaussSeidel with default values for tol
and kmax, we find

> A =1[11-2;110 4;-2 4 24]; b = [5.5;17.5;-19];
>> [x, k, MGSnorm] = GaussSeidel (A, b)

X =
1.5000
2.0000

-1.0000

k =
15

MGSnorm =

3

The input argument X0 was left out because the initial vector happens to be the zero
vector, which agrees with the default. Also note that |[M¢g|=3>1 even though itera-
tions did converge. This is because the condition |[Mgg|.. < 1 is only sufficient and not
necessary for convergence of the Gauss—Seidel iteration. Also note that unlike the fact
that a diagonally dominant coefficient matrix guarantees ||M]| | <1, a symmetric, posi-
tive definite coefficient matrix does not guarantee |[Mggl.. < 1, but does guarantee con-
vergence for the Gauss—-Seidel method.

4.5.6 Indirect Methods versus Direct Methods for Large Systems

Indirect methods such as Gauss—Seidel are commonly used for large linear systems Ax = b.
Suppose a large system is being solved by the general iterative method, Equation 4.21,

x k1) Q—lpx(k) +Q7%, k=0,1,2,...

and that convergence is observed after m iterations. Because each iteration requires roughly
n? multiplications, a total of n*m multiplications are performed by the time convergence
is achieved. On the other hand, a direct method such as Gauss elimination requires 17’
multiplications to find the solution. Therefore, an indirect method is superior to a direct
method as long as

wm<in® = m<in

For example, for a 100 x 100 system, this yields m < 1(100) so that an iterative method is
preferred as long as it converges within 33 iterations. In many physical applications, not
only the coefficient matrix A is large, it is also sparse, that is, it contains a large number of
zero entries. As one example, consider the numerical solution of partial differential equa-
tions using the finite-differences method (Chapter 10). In these cases, we encounter a large,
sparse system where the coefficient matrix has at most five nonzero entries in each row.
Therefore, based on Equations 4.24 and/or 4.29, six multiplications must be performed to
find each component x* of the generated vector. But each vector has n components, thus
a total of 6n multiplications per iteration are performed. If it takes m iterations for conver-
gence, then a total of 6nm multiplications are required for the indirect method. Therefore,
the indirect method is computationally more efficient than a direct method as long as

bnm<in’® = m<in’



For a 1000 x 1000 system with a sparse coefficient matrix, this translates to m < %(1000)2
so that an iterative method such as Gauss—Seidel is superior to Gauss elimination if it
converges within 55,556 iterations, which is quite likely.

4.6 Ill1-Conditioning and Error Analysis

So far this chapter has focused on methods to find the solution vector for linear systems
in the form Ax =b. In this section we study the conditioning of a linear system and how
it may impact the error associated with a computed solution.

4.6.1 Condition Number

The condition number of a non-singular matrix A,,, is defined as

K(A) = Al A7 (4.30)

where the same matrix norm is used for both A and A= It can be shown that for any A,

k(A)>1

It turns out that the smaller the condition number of a matrix, the better the condition
of the matrix. A useful measure of the condition of a matrix is provided by the ratio of the
largest (magnitude) to the smallest (magnitude) eigenvalue of the matrix.

EXAMPLE 4.16: CONDITION NUMBER

Calculate the condition number of the following matrix using all three norms, and
verify the results using the MATLAB built-in command cond.

6 4 3
A=4 3 2
3 4 2
Solution
The inverse is found as
-2 4 -1
Al=|2 3 0
7 =12 2

Then,
|l =13, |A7] =19 = x(Aa)=247
|al =13, |7 =21 = x(A)=273

|A|, =10.9087,

\A*HE =15.1987 = K(A)=165.7981



In MATLAB, cond(A, P) returns the condition number of matrix A in P-norm.

> A =[6 4 3;4 3 2;3 4 2];
>> [cond(A,1), cond(A,inf), cond(A,’fro”)] % Using three different matrix norms

ans =
247.0000 273.0000 165.7981

Note that all three returned values are of the same order of magnitude, regardless of
the choice of norm used.

4.6.2 lll-Conditioning

The system Ax=Db is said to be well-conditioned if small errors generated during the
solution process, or small changes in the coefficients, have small effects on the solu-
tion. For instance, if the diagonal entries of A are much larger in magnitude than the
off-diagonal ones, the system is well-conditioned. If small errors and changes during
the solution process have large impacts on the solution, the system is ill-conditioned. I11-
conditioned systems often arise in areas such as statistical analysis and least-squares fits
(Chapter 5).

EXAMPLE 4.17: ILL-CONDITIONING
Investigate the ill-conditioning of

Ax=b, A=| . 2 p=l?
X=P A= 0001 -1.9998| U7 )2

Solution

The actual solution of this system can be easily verified to be

= o]

Suppose the first component of vector b is slightly perturbed by a very small € >0 so
that the new vector is
b 2+¢
| 2

The ensuing system Ax = b is then solved via Gauss elimination, as

2 + ¢ | -1.0001(row1)+row> | 1 -2 2+¢ 1 -2
2 - 0 0.0004-0.0002-1.0001e | |0 1

1 -2 2+¢
1.0001 -1.9998 —0.5-2500.25¢

so that

_ [ 1-499950e | [ 1 49995) 49995
X=1205-2500.25¢ [~ |-0.5( 250025~ ** " 12500.25(°



Therefore, even though one of the components of b was subjected to a very small
change of ¢, the resulting solution vector shows very large relative changes in its
components. This indicates that the system is ill-conditioned.

4.6.2.1 Indicators of Ill-Conditioning

There are essentially three indicators of ill-conditioning for a linear system Ax =b:

1. det(A) is very small in absolute value relative to the largest entries of A and b in
absolute value.

2. The entries of A™ are large in absolute value relative to the components of the
solution vector.

3. k(A) is very large.

EXAMPLE 4.18: INDICATORS OF ILL-CONDITIONING
Consider the system in Example 4.17:

Ax=b, A=| | 2 p=l?
X=P A= 0001 -19998| U7 )2

We will see that this system is ill-conditioned by verifying all three indicators listed
above.

1. det(A) =0.0004, which is considerably smaller than the absolute values of
entries of A and b.
2. The inverse of A is found as

o | —4999.50 5000
-2500.25 2500

The entries are very large in magnitude relative to the components of the solu-

tion vector
1
X, = .
-0.5

3. Using the 1-norm, we find the condition number of A as
|A], =3.9998, |A7 =7500 = «K(A)=29,9985
which is quite large.
4.6.3 Computational Error

Suppose x, is the computed solution of a linear system Ax = b, while x, represents the actual
solution. Note that in practice the actual solution x, is not available and that the notation



is merely used to establish an important result concerning possible error bounds on the
computed solution. The residual vector is defined as

r=Ax.—-b
The norm of the residual vector [|t]| gives a measure of the accuracy of the computed solu-
tion, so does the absolute error defined by |[x. — x,|. The most commonly used measure is

the relative error

e =]

i

Theorem 4.3: Relative Error Bounds

Let x, and x, be the actual and computed solutions of Ax =b, respectively. If r = Ax,— b is
the residual vector and k(A) is the condition number of A, then

< K(A)ll; 4.31)

1l _ e
<)o ]

A selected matrix norm and its compatible vector norm must be used throughout.

Proof
We first write

r=Ax.-b=Ax.—Ax, =A(x.—x,) = X —-x,=A7r

so that
Hx . H _ HA—er < HA—lHHrH Divide both sides ch — qu < HA_IHM (4 32)
S ) bkl Pal - Ve '
But by Equation 4.30,
A=A
A
and
1 _|A
boax o [<lalx] = hs
Inserting these into Equation 4.32, yields
e =xal ol
<k(A)—
[ [b|



which establishes the upper bound for relative error. To derive the lower bound, we
first note that

Divide by|A| HrH
reAx-A = Akl 2 e el 2y
Also,
1 1
x,=A"b = |x[<]|A|[p] = >
a H HH H HH H quH HA—lHHbH
Multiplication of the last two inequalities results in
o, 1 e
[xa| - x(a) bl
This completes the proof. u

4.6.3.1 Consequences of Ill-Conditioning

Ill-conditioning has an immediate impact on the accuracy of the computed solution.
Consider the relative error bounds given in Equation 4.31. For a computed solution, it is
safe to assume that the norm of the residual vector ||| is relatively small compared to [[b].
A small value for k(A) raises the lower bound while lowering the upper bound, thus nar-
rowing the interval for relative error. A large value for k(A), on the other hand, lowers the
lower bound and raises the upper bound, thus widening the interval and allowing for a
large relative error associated with the computed solution.

Another consequence of ill-conditioning is less conspicuous in the sense that a poor
approximation of the actual solution vector may come with a very small residual vector
norm. Once again, refer to the system in Examples 4.17 and 4.18, and consider

. [ 2
X=10.0002

which is clearly a poor approximation of the actual solution

s

The corresponding residual vector is

VI 2 2 2] [-0.0004
T=AXTD= 0001 —1.9998 |10.0002( )2~ 1-0.0002



Any one of the three vector norms returns a very small value for ||, incorrectly
suggesting x may be a valid solution.

4.6.4 Effects of Parameter Changes on the Solution

The following theorem illustrates how changes in the entries of A or components of b may
affect the resulting solution vector x, as well as the role of condition number of A.

Theorem 4.4: Percent Change

Consider the linear system Ax =b. Let AA, Ab, and Ax reflect the changes in the entries or
components of A, b, and x, respectively. Then

|ax] _ |AA]
< E—K(A) (4.33)
x|~ |Al

and
| ws
Ix| = b

A selected matrix norm and its compatible vector norm must be used throughout.

Proof

Suppose entries of A have been changed and these changes are recorded in matrix AA.
As a result, the solution x will also change, say, by Ax. In Ax=b, insert A + AA for A and
x + Ax for x to obtain

Expand
(A+AA)(x+Ax)=Db ; Ax+A(Ax)+[AA]x+[AA](Ax)=Db
Cancel Ax=b

- A(AX)+[AAIx +[AA](AX) = 0

from both sides

Solving for Ax, we have
A(Ax)=-[AA](x+Ax) = Ax=-A"'[AA](x+Ax)

Taking the (vector) norm of both sides, and applying compatibility relations, Equation
4.19, twice, we have

x| =|-A7 [AA](x+ Ax)] < A7 [|aA fx + Ax]

Inserting ||A-| = x(A)/||A]| in this last equation, and dividing both sides by |x + Ax]|,
yields



1AL
e ax] = [l

Since Ax represents small changes in x, then

lax|_ |ax|
|x+ Ax|

X

eaxlzhd =

Using thisinthe previous equation establishes Equation 4.33. In order to verify Equation 4.34,
insert b + Ab for b, and x + Ax for x in Ax=b and proceed as before. This completes the
proof. [

Equations 4.33 and 4.34 assert that if k(A) is small, then small percent changes in A or
b will result in small percent changes in x. This, of course, is in line with the previous
findings in this section. Furthermore, Equations 4.33 and 4.34 only provide upper bounds
and not estimates of the percent change in solution.

EXAMPLE 4.19: PERCENT CHANGE

Consider the linear system

1 2 -1 3
Ax=b , A= , b= = X =
2 4.0001 —2.0002 solution | —2

Suppose the (1,2) entry of A is reduced by 0.01 while its (2,1) entry is increased by 0.01
so that

0 -0.01 New coefficient matrix ~ _ 1 1.99
AA = = A=A+AA=
0.01 0 2.01 4.0001

Solving the new system yields

Ax—b __|-9851 that  Ax = x— X = 101.51
x=b = x= 19 so tha X=X—X= 51

From this point forward, the 1-norm will be used for all vectors and matrices.
The condition number of A is calculated as k(A) = 3.6001 x 10° indicating ill-conditioning.
The upper bound for the percent change in solution can be found as

A, _ Jaal, K(A)= 20 (3.6001x 10°) = 600.0100
xl, ~ Al 6.0001




The upper bound is rather large as a consequence of ill-conditioning. The actual
percent change is calculated as

A
|Ax), 15251 _ 0 20

which is much smaller than the upper bound offered by Equation 4.33, thus asserting
that the upper bound is in no way an estimate of the actual percent change.

4.7 Systems of Nonlinear Equations

Systems of nonlinear equations can be solved numerically by either using Newton’s
method (for small systems) or the fixed-point iteration method" (for large systems).

4.7.1 Newton’s Method for a System of Nonlinear Equations

Newton’s method for solving a single nonlinear equation was discussed in Chapter 3.
An extension of that technique can be used for solving a system of nonlinear equations.
We will first present the idea and the details as pertained to a system of two nonlinear
equations, followed by a general system of n nonlinear equations.

4.7.1.1 Newton’s Method for Solving a System of Two Nonlinear Equations

A system of two (nonlinear) equations in two unknowns can generally be expressed as

fl(x/y)= 0

F(6,y)=0 4.35)

We begin by selecting (x;, 1;) as an initial estimate of the solution. For the current
two-dimensional case, for instance, (x;, ;) may be selected by first plotting f; and f,, then
picking a point near their point of intersection (the solution of the system). Suppose
(x5, y,) denotes the actual solution so that f,(x,, ¥,) = 0 and f,(x,, y,) = 0. If x, is sufficiently
close to x,, and y, to y,, then x, — x; and y, — v, are small and by Taylor series expansion
we have

J 0
ﬁ(xz,yz)Zfl(xu%)‘Faffl (xz—x1)+£ (V2—y)+--
X
(x1.1) (x1,31)
0 5}
fz(x2,y2)=f2(x1,y1)+% (x2_x1)+% (Y2 —y1)+-
* (xllyl) Y (xl,yl)

" Refer to Newton’s method and fixed-point iteration method for a single nonlinear equation, Chapter 3.



where the terms involving higher powers of small quantities x, — x; and v, — 1, have been
neglected. Let Ax =x, —x; and Ay =y, —1; and recall that f,(x,, ¥,) =0 and f,(x,, 1,) =0 to
rewrite the above equations as

% AX+% Ay+---=—f1(x1,y1)
ax (Xl /]/1) (x1 ,]/1)
% Ax+% Ay+m:—f2(x1,y1)
x (x1.1) (x1,y1)
which can be expressed as
S A
ox  dy {Ax} {— fl}
= 4.36
9 o Ayl =f) ) 50
ox ay (1)

This is a linear system and can be solved for Ax and Ay as long as the coefficient matrix
is non-singular. The matrix

G A

) 9
](f1,f2)= a}z a;z

o dy

is called the Jacobian matrix of f; and f,. Therefore, for Equation 4.36 to have a non-trivial
solution, we must have

det {D(ﬁ'ﬁ)](n,yl)} 0

Once Equation 4.36 is solved, the values of x, = x; + Ax and y, = i, + Ay become available.
And they clearly do not describe the actual solution because higher-order terms in Taylor
series expansions were neglected earlier. Since (x,, 1/,) is closer to the actual solution than
(xx;, y1) was, we use (x,, 1,) as the new estimate to the solution and solve Equation 4.36,
with (x,, y,) replacing (x;, 11,), and continue the process until values generated at successive
iterations meet a prescribed tolerance condition. A reasonable terminating condition is

s

where € is a specified tolerance. Keep in mind that in each iteration step, the Jacobian
matrix must be non-singular.

<e 4.37)

2



EXAMPLE 4.20: NEWTON’S METHOD

Solve the nonlinear system below using Newton’s method, terminating condition as in
Equation 4.37 with tolerance € = 10~ and maximum number of iterations set to 20:

3.2x° +1.8y* +24.43=0
—2x%+ 3y’ =5.92

Solution

The original system is written in the form of Equation 4.35 as

filx, y)=32x+1.8y*+24.43=0
falx, y)=-2x"+3y>-5.92=0

First we need to find approximate locations of the roots graphically.

>> syms X y

>> F1 = 3.2*x73+1.8*y"2+24.43; 2 = -2*x"2+3*y"3-5.92;
>> ezplot(fl1,[-4,0,-4,6]1)

>> hold on

>> ezplot(f2,[-4,0,-4,6]) % Figure 4.6

Based on Figure 4.6, there is only one solution, and an appropriate initial estimate is
(-2, 2). Performing partial differentiations in Equation 4.36, we find

{9.63(2 3.6]/} {Ax}_{—fl} So=1\;e {Ax}
A T U B Gl £ P Ay

i N\

\ Initial
point
2 §

C
Roo)t'
0
1 /

—4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

FIGURE 4.6
Graph of the nonlinear system in Example 4.20.



The next solution estimate is then found as

X2
Ya

{0+l

Hand calculation of the first iteration can be performed as follows:

R e
bl

Then

—6.03 Solve
=
-10.08

to generate the coefficient matrix in Equation 4.36.

f =
J = matlabFunction(Jacobian(f,[x,y])):
F = matlabFunction(f);

tol = le-4; kmax = 20; v(:,1) =

for 1:kmax,

J(v(1,K),v(2,K));
-Fv(@,K),v(2,K));

o r>rx
[l

[-2;2];

% The components of vector b are -fl1l and -f2.

it norm(b,inf) < tol,
root = v(:,k);
return
end

if det(A) == 0,
break
end

delv = A\b;
v(:,k+1) = v(:,k) + delv;
if norm(delv) < tol,
root = v(:,k+l);
break
end
end

Execution of this code results in

-2.0000 -2.1091 -2.1001
2.0000 1.7442 1.7012

After three iterations, the solution is computed as (-2.0999, 1.7000). The shaded values

-2.0999
1.7000

agree with the hand calculations presented earlier.

Ax
Ay

n

-0.1091 —-2.1091
+ =
—0.2558 1.7442
To solve the problem entirely, the following MATLAB script will be used. In addition
to the terminating condition in Equation 4.37, the script includes a segment that checks
to see if |fi(x, y)| <€ and |f,(x, y)| <€ after each iteration. This is because sometimes
an acceptable estimate of a root may have been found, but because of the nature of f;

and/or f,, the current vector and the subsequent vector do not yet meet the terminating
condition in Equation 4.37. The MATLAB built-in function jacobian is effectively used

-0.1091
—0.2558

}

[f1;f2]; % Note that fl and f2 were already defined symbolically above



4.7.1.2 Newton’s Method for Solving a System of n Nonlinear Equations

A system of n (nonlinear) equations in 7 unknowns can in general be expressed as

fl(x1/x2/~--rxn): 0

7 X200 X =0
fZ(xl X2 Xy) 4.38)

fn(x1/x2/--~/xn)= 0

Choose (x4, X1, ... , X,,1) as the initial estimate and follow the steps that led to Equation
4.36 to arrive at

[ofi Ofi O |

ox;  ox; ox, Axy “h

[ [

o 9%, = 4.39)
% % % A f" (¥1,1,%2,1,-%n1)

L axl axz cee axn _(xl,llxz,l/»--,xu/l)

Solve this system to obtain the vector comprised of increments Ax;, ... , Ax,. Then update
the solution estimate

X1,2 X1,1 Ax,
X2,2 X2 Ax,
= +
Xn,2 Xna A-xn

If a specified terminating condition is not met, solve Equation 4.39 with (x,,, x,,, ...,
x,,) replacing (x,,, x4, ..., X,,;) and continue the process until the terminating condition is
satisfied.

4.7.1.3 Convergence of Newton’s Method

Convergence of Newton’s method is not guaranteed, but it is expected if these conditions
hold:

® fi,fo ....f, and their partial derivatives are continuous and bounded near the actual
solution.

e The Jacobian matrix J(fi, f,, ..., f,) is non-singular near the solution.

¢ The initial solution estimate is sufficiently close to the actual solution.

As it was the case with a single nonlinear equation, if Newton’s method does not exhibit
convergence, it is usually because the initial solution estimate is not sufficiently close to
the actual solution.



4.7.2 Fixed-Point Iteration Method for a System of Nonlinear Equations

The fixed-point iteration to solve a single nonlinear equation (Chapter 3) can be
extended to handle systems of nonlinear equations in the form of Equation 4.38. The
idea is to find suitable iteration functions g,(x;, x,, ..., x,), i=1, 2, ..., n and rewrite
Equation 4.38 as

X1 :gl(xlrxzrmfxn)
X2 =8o(X1,%X0,...,Xy)

(4.40)
Xp = gu(X1,X2,...,Xy)
or in vector form,
X 81(x)
x=g(x), x= 2 , 8= g:(x) (4.41)
X &n(X)

Choose (x4, X5, ..., X,1) as the initial estimate and substitute into the right sides of the
equations in Equation 4.40. The updated estimates are calculated as

X12 = gl(xl,l/xz,lr- e Xn1)

Xop = gZ(x1,1/x2,1/---/xn,1)

Xuo2 = gn(x1,1/x2,1,~ . ~/xn,1)

These new values are then inserted in the right sides of Equation 4.40 to generate the
new updates, and so on. The process continues until convergence is observed.

4.7.2.1 Convergence of the Fixed-Point Iteration Method

The conditions for convergence of the fixed-point iteration
x* = g(xP), k=0,1,2,... (4.42)

are similar to those for the case of a function of one variable. Let R be an n-dimensional
rectangular region comprised of points x;, x,, ..., x, such thata;<x;<b; (=1, 2, ..., n) for
constants a, a,, ..., 4, and b, b,, ..., b,. Suppose g(x) is defined on R. Then the sufficient
conditions for convergence of the fixed-point iteration method, Equation 4.42, are™:

e [teration functions g, g, ..., §, and their partial derivatives with respect to x;, x,,
..., X, are continuous near the actual solution.

* Refer to Atkinson, K.E., An Introduction to Numerical Analysis, 2nd ed., John Wiley, NY, 1989



e There exists a constant K < 1 such that for each x e R,

<K i n i=12,.n

n

axi

which may also be interpreted as

agl 8g1 agl <
981 <1
ox; * 0x, L ox,
agz agz agz <
<1
0x; - 0x, L ox,,
09.| |0 09 <
. <1
ox; " ox, o ox,

¢ The initial estimate (x,,, x,,, ..., x,,;) is sufficiently close to the actual solution.

EXAMPLE 4.21: FIXED-POINT ITERATION
Using the fixed-point iteration method, solve the nonlinear system in Example 4.20:

3.2x° +1.8y*> +24.43=0
—2x% +3y* =5.92

Use the same initial estimate and terminating condition as before.

Solution

We first need to rewire the given equations in the form of Equation 4.40 by select-
ing suitable iteration functions. Recall that these iteration functions are not unique.
One way to rewrite the original system is

(x| L8 2443 a
R 32

22 +592)"
y=g0y=| =

Based on Figure 4.6, a reasonable rectangular region R is chosen as -4 <x<-2,
0<y<2. We next examine the conditions listed in Equation 4.43 in relation to our
choices of g; and g,. Noting 1 = 2 in this example, the four conditions to be met are

v

2

PEC <1
27 |dy| 2

agl

ox

98
ox

119
2° |y

4.43)

(4.44)
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Graphical inspection of upper bounds for |dg,/dy| and <ft|dg,/ox\right|.

Of course, |dg1/0x ‘ =0<+ and ‘agz/ay ‘ =0<4 satisfy two of the above. The other
two may be inspected with the aid of MATLAB as follows:

>> syms X y
>> gl = sym("-((1.8*y"2+24.43)/3.2)"(1/3)");

>> g2 = sym("((2*x72+5.92)/3)"(1/3)");

>> subplot(2,1,1), ezplot(abs(diff(gl,"y")),[0 2]) % First plot in Figure 4.7
>> subplot(2,1,2), ezplot(abs(diff(g2,"x")),[-4 -2]) % Complete Figure 4.7

The two plots in Figure 4.7 clearly indicate that the two remaining partial derivatives
satisfy their respective conditions as well. This means that the vector function

g=13
&
has a fixed point in region R, and the fixed-point iteration in Equation 4.42 is guaranteed
to converge to this fixed point.
The following code will use the fixed-point iteration to generate a sequence of values

for x and y and terminates the iterations as soon as the tolerance is met. For simplicity,
we define a vector

x

Yy

and subsequently define g, and g, as functions of the components of vector v.

% Define the iteration functions gl and g2
gl = @(v) (-((24.43+1.8*v(2,1)72)/3.2)"(1/3));
92 = 0(v) (((5-92+2*v(1,1)72)/3)"(1/3));



tol = le-4; kmax = 20;
v(:,1) = [-1;-2]; % Initial estimate
for k = 1l:kmax,
v(:,k+1) = [g1(v(:,k));92(v(:,k))]; % Fixed-point iteration
if norm(v(:,k+1)-v(:,k)) < tol,
break
end
end

Execution of this code results in

-1.0000 -2.1461 -2.0574 -2.1021 -2.0980 -2.1000 -2.0998 -2.0999 -2.0999
-2.0000 1.3821 1.7150 1.6863 1.7007 1.6994 1.7000 1.7000 1.7000

Convergence to the true solution is observed after eight (8) iterations. The estimated
solution agrees with that in Example 4.20.

PROBLEM SET (CHAPTER 4)
Gauss Elimination Method (Section 4.3)

45 In Problems 1 through 12 solve the linear system using basic Gauss elimination with
partial pivoting, if necessary.

1 3x1+2x2=0
' —X1+23C2=8

0.6x1 + 1.3XZ =02
" 2.1%-3.2x,=3.8

le +6X2 =5
' 3x1—4x2 =1

ZX] - BXZ + ZX3 =1
4. 9x, +3x3=-11
—6x1 + 9x2 - 7X3 =1

3x;+5x;3=-1
5. —X1 +5XZ —23(3 =12
le - 7x2 + 4.X3 = —18

X1 +3XZ—2.X3 =-7
6. —23(1 + X5 +2.X3 =8
3x1 +8.7C2+X3 =0




10. | 1 0 6 [{x2p=

11.| 3 2 —62{x =

12. =

Small Pivot

13. Consider the linear 2 x 2 system

e 1 2 X1
AX:b, A= , b= , X=
MRS RSN

where € > 0 is a very small constant.
a. Solve by Gauss elimination without partial pivoting.

b. Solve by Gauss elimination with partial pivoting. Compare the results and
discuss their validity.

In Problems 14 through 18, a linear system is given.
a. 5 Solve using Gauss elimination with partial pivoting and row scaling.

b. 4 Solve by executing the user-defined function GaussPivotScale.

14.1-3 5 8lixr=411

8
1513 2 2 [{xyp=41
1



16.|3 2 2|3xr=9 3
9 10 -1||xs 5

3x1+2x, =7

17. §-3x1+5x,—x3 =9
6x1+5x, +12x3 =47
2x1—x,+3x3 =17
18. {5x;+6x, +4x3 =3
X1+x3=5

Tridiagonal Systems
In Problems 19 through 24, a tridiagonal system is given.

a. 45 Solve using the Thomas method.

b. 4 Solve by executing the user-defined function ThomasMethod.

(2 1 0][x 3

913 2 1l{xt={1
10 -1 3](x) |5
2 1 0l(x -1
20.{1 2 1[{x+=15
0 1 2||x 5
1 =2 0 0][x) (-4
7nl2 3 1 0|jx| |5
0 1 -2 1|]x 7
0 0 -1 4]lx (13
01 009 0 0 1(x;] (-0.01
» (012 12 08 0 ||x| ]028
0 1.1 09 06])x 1.4
| 0 0 -13 09]|x 3.1
-1 1 0 0 0](x 2
1 2 0 0 O0|lw 7
200 2 3 1 0l|lxt={-8
0 0 1 -4 0l|x 8
0 0 0 3 1flx) (-7
-1 1 0 0 O0](x) [-1
1 =3 -1 0 0llx 1
2410 0 1 2 0lxsl={-4
0 0 -2 3 4l|x 9
10 0 0 0 2| 4




25. Finite difference methods are used to numerically solve boundary-value problems;
Chapter 8. These methods are designed so that tridiagonal systems are generated
in their solution process. In one such application, the following tridiagonal system
has been created:

%6 35 0 0 0]fw) [—4
35 -8 45 0 0 ||w| |-2
0 45 -10 55 0 [{wsr=1-25
0 0 55 -12 65||w| |-3
0 0 0 4 4w (-1

a. £S5 Solve using the Thomas method. Use 4-digit rounding up.

b. 4 Solve by executing the user-defined function ThomasMethod. Compare
with the results in (a).

26. Alternating direct implicit (ADI) methods are used to numerically solve a certain
type of partial differential equation in a rectangular region; Chapter 10. These
methods are specifically designed to generate tridiagonal systems in their solution
process. In one such application, the following tridiagonal system has been created:

4 1 0 0 0 07(x) [-0.6056
1 =4 1 0 0 0]/x| |-10321
0 1 -4 0 0 0||x| [-11389
0 0 0 -4 1 0|lx| ]-02563
0 0 0 1 -4 1]||x| |-04195

0 0 0 0 1 —4|lx] [-0.389%

a. £ Solve using the Thomas method. Use 4-digit rounding up.
b. Solve by executing the user-defined function ThomasMethod. Compare with
the results in (a).
LU Factorization Methods (Section 4.4)
Doolittle Factorization

45 In Problems 27 through 30 find the Doolittle factorization of each matrix using the
steps of Gauss elimination method.

-1 2 2
27.A=|3 -4 -5
-2 6 3
-1 3 -5
28.A=|4 -1 0
|2 5 6
2 4 -2 6
29. A= s o209
4 7 =3 10
3 5 1 11




3 6 3 9
1 5 4 7
A=\, 1 2 3
3 0 1 7

In Problems 31 through 38,

a. 45 Using Doolittle’s method solve each linear system Ax = b.
b. 4 Confirm the results by executing Dool i ttleMethod.

3 1 1 2
3. A=|-3 -3 1|, b=1-4
13 -3 6 0
[ 2 2 1 6
32.A=1 -1 2| b={-15
2 -2 6 —24
1 3 =3 -9
33. A=|1 -5 2|, b=4{0
2 14 -3 3
4 2 8 -8
3. A=|-4 5 -13|, b={19
1 -2 19 -37
-1 3 -5 -14
35.A=|4 -1 01|, b={5
2 5 6 9

-1 2 2 -8
36.A=| 3 -4 5|, b={21

-2 6 3 -13
3 0o -1 2 4
_— -3 2 2 1 b -1
o =2 -5 2" 7 ]e6
6 6 -7 20 40
(-2 3 -1 0
28 A 4 5 6 0 b 7
le 20 a1 A1 T -1

-2 13 -12 18 65



Cholesky Factorization Method
In Problems 39 through 44,

a. /25 Using Cholesky’s method solve each linear system Ax = b.
b. 4 Confirm the results by executing CholeskyMethod.

1 1 =2 -3
39.A=[1 10 4| b=1{33

2 4 24 78

(9 -6 3 -30
40. A=|-6 13 1|, b=153

13 1 6 9

(4 2 6] -14
41.A=|2 17 5|, b={17

-6 5 17| 45

(1 2 3] -6
2. A=[-2 5 71 b={13

-3 7 26| 83

(4 2 6 -4 -16

2 2 2 -6 -26
BA= 5 3 P

4 6 -3 25 114

9 6 3 6 3

6 5 6 7 1
MA=S o 9 18) P

6 7 18 18 1

Crout Factorization

45. 4 Crout LU factorization requires the diagonal entries of U be 1’s, while L is a
general lower triangular matrix. Perform direct calculation of the entries of L and
U for the case of a 3 x 3 matrix, similar to that in Example 4.6. Based on the find-
ings, write a user-defined function with functioncall [L, U] = Crout_Factor(A)
that returns the desired lower and upper triangular matrices for any n x n matrix.
Apply Crout_Factor to

4 1 7
A=|2 3 -6
-5 -1 -5

Crout’s Method

46. i\ Crout’s method uses Crout factorization (Problem 45) of the coefficient
matrix A of the linear system Ax = b and generates two triangular systems, which



can be solved by back and forward substitution. Write a user-defined function
with function call X = Crout_Method(A,b). Apply Crout_Method to

4 1 7 1
2 3 —6|x={-11
5 -1 -5 -6

Iterative Solution of Linear Systems (Section 4.5)
Vector/Matrix Norms
In Problems 47 through 54,

a. 25 Calculate the three norms of each vector or matrix.

b. 4 Verify the results by using the MATLAB built-in function norm.

—

2
48. v=+/3{-3
1
1
3
49. v=13%
1
4
-1
0
50. v=
3
—4
L 1 0
5. A=[-1 & 1
0o 2 X

10 03 07
52. A=|02 7 1.2

09 -11 5
AR
R
5. A= 7, .
3 5 3
0 i



54.

55.

56.

N

N

A=

o

W=

N|—

1
1
5

1
3

[G1E

W W

[e=]

W=

~

W

4\ Write a user-defined function with function call [x,k,Mnorm]=
Genlter_1(A,b,x0,tol,kmax) to solve Ax=b using the general iterative
method as follows: The coefficient matrix is split as A =Q — P where Q has the
same diagonal and upper diagonal (one level higher than the diagonal) entries as
A with all other entries zero. The input/output arguments, as well as the terminat-
ing condition are as in functions Jacobi and GaussSeidel with the same
default values. The output Mnorm is the infinite norm of the corresponding itera-
tion matrix. Apply Genlter_1 to the linear system

6 2 0 1 -1] 16 0
1 7 =2 1 1 1 1
2 0 9 -3 3|[x=:8¢ x9=J0}, e=10"°
0 2 -3 8 2 2 1
2 4 1 -5 14] -9 0

) Write a user-defined function with function call [X,k,Mnorm]=
Genlter_2(A,b,x0,tol ,kmax) to solve Ax=b using the general iterative
method as follows: The coefficient matrix must be split as A = Q — P where Q has
the same diagonal, upper diagonal (one level higher than the diagonal), and lower
diagonal (one level lower than the diagonal) entries as A with all other entries
zero. The input/output arguments, as well as the terminating condition are as in
functions Jacobi and GaussSeidel with the same default values. The output
Mnormis theinfinite norm of the corresponding iteration matrix. Apply Genlter_2
to the linear system

(8 0 -1 4] -11 0
0 6 0 1 4 16 1
2 -1 5 0 -1l|x=9-9}, xO={1}, e=10"°
3 2 1 -7 0 -10 0
-1 3 4 -1 11 1 1

Jacobi Iteration Method
In Problems 57 through 60,

a. 45 For each linear system find the components of the first vector generated by

the Jacobi method.

b. 4 Find the solution vector by executing the user-defined function Jacobi with

default values for tol and kmax.



19  —07 09 1.5 1
57106 23 12[x=307;, x9=20
-08 13 32 9.1 1
-4 1 0 -6
58. | 1 3 -1|x={-6¢, xV=0;,
0 -1 5 7
(3 0 1 -1] 5 0
59 0 -4 2 1 . -3 L0 1
1 -2 5 0 -4’ 1
-1 3 2 6 16 0
(6 2 1 2] 5 0
" 2 5 -1 0 . 7 L0 0
-1 3 7 1 28’ 1
-2 1 4 -8 6 1

45 In Problems 61 and 62, calculate the first two vectors generated by the Jacobi method.

3 1 2 24 1
6. |2 4 -1|x={-5;, x9=<0
1 2 4 12 1
5 4 0
62.12 6 -3|x=<11}, x9={1
-1 2 3 0

Gauss-Seidel Iteration Method
In Problems 63 through 66,

a. 45 For each linear system find the components of the first vector generated by
the Gauss—Seidel method.

b. 4 Solve the system by executing the user-defined function GaussSeidel with
default values for tol and kmax.

4 2 -6 2 0
63.12 12 5 |x=415}, x©={1
-6 5 17 5 0

1 =2 -6 1

6411 10 4 |x={15}, x9={1
-2 4 18 46 0




65.

66.
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3 3 2 10 12.5

45 In Problems 67 and 68, calculate the first two vectors generated by the Gauss—Seidel
method.

1 2 -3 1 1
67.12 10 4 |x=430}, x©=<0
3 4 30 48 0
6 2 6 -28 1

(o))
o
N
9 %
—_
o U1
»®
Il
|
= N
G1
®
c
Il
O =

‘\In Problems 69 and 70 solve the linear system by executing user-defined functions
y y g

Jacobi and GaussSeidel with the initial vector and tolerance as indicated, and default

kmax. Compare the results and discuss convergence.

9 2 -1 0 3 21 1
0 7 3 -1 0 0 1
911 2 8 2 -1|x={17}, x©=J0}, e=10"
1 -3 1 9 -1 -3 1
4 -1 2 2 10 25 1
65 1 0 1 3 235 0
1 -1 1 ~14 0
000 -1 10 -1 2|x=439 !\, xO=I1! ¢=10"
1 0 -1 9 1 7 0
3 1 2 1 10 6 0

I1l-Conditioning and Error Analysis (Section 4.6)
Condition Number
In Problems 71 through 76,

a. 45 Calculate the condition number using all three matrix norms.

b. 4 Verify the results using the MATLAB built-in function cond.

1 04
71. A:|: }

3 11



3 1 1
72.A=[1 -1 1
0o 2 1
(4 2 o0
73.A=|2 5 0
0 0 3
(2 7 4
74.A=(2 1 2
5 -1 2
1 -1 1 2
-2 1 -3 -4
75. A=
1 1 4 2
|13 -6 4 5
A
SRR
A
3 4 5 6
1 1 1 1
4 5 6 7 1 4x4 Hilbert matrix

I1l-Conditioning

In Problems 77 through 80, a linear system Ax=Db, its actual solution x,, and a poor
approximation X of the solution are given. Perform all of the following to inspect the ill-
conditioning or well-conditioning of the system.

a. 45 Perturb the second component of b by a small & >0 and find the solution of

the ensuing system.

b. 4 Find the condition number of A using the 1-norm.

c. £S5 Calculate the 1-norm of the residual vector corresponding to the poor
approximation X.

1 2 -1 3 [
77. X= , X, = , X=
2 4.0001 -2.0002 -2 0
2 2 4 4 o2
78. X= , X, = , X=
1.0002  0.9998 2.0012 -2 0

5 9 -1 -2 7.2
79 X = , X” = , 5\( =
6 11} {—1} { 1 } {—4.1

(13 14 14 55 1 -0.51
80. |11 12 13 |x={48}, x,={2}, %=
12 13 14 52 1




Percent Change

81. &5 Consider the system in Example 4.19 and suppose the second component of
vector b is increased by 0.0001, while the coefficient matrix is unchanged from its
original form. Find the upper bound for, and the actual value of, the percent
change in solution. Use the vector and matrix 1-norm.

82. &5 Consider
5 9 -1
AX = b, A = , b =
6 11 -1

a. Increase each of the second-column entries of A by 0.01, solve the ensuing
system, and calculate the actual percent change in solution. Also find an upper
bound for the percent change. Use matrix and vector 1-norm.

b. Inthe original system, increase each of the components of b by 0.01, and repeat
Part (a).
Systems of Nonlinear Equations (Section 4.7)

83. &5 Consider

x>+ (y-1y7=2
xy+(x-17=0

Starting with the initial estimate (x;, y;) = (14, 1), use Newton’s method to find
(2, ¥o)-
84. 25 Consider

y-_=1

x
Ix¥+i(y-17=2

Starting with the initial estimate (x,, y;) = (2, 0), use Newton’s method to find (x,, v,)
and (x3, ¥3).

85. 4\ Consider

{(x_w =-1

xy® =sinx

First locate the roots graphically. Then find an approximate value for one of the
roots using Newton’s method with initial estimate (2, —2), a terminating condition
with € =10, and allow a maximum of 20 iterations.

1 Problems 86 through 91, solve the nonlinear system as follows: Locate the roots
graphically. Then find the approximate values for all the roots using Newton’s method



with suitable initial estimates. In all cases, use a terminating condition with € =10~ and
allow a maximum of 20 iterations.

-x*+4=0
s6. 1Y T
x*+y =10

88.

fxy+3y =9

sin(o.+p)—cosf=0.17
cos(o.—PB)+sina=1.8

\O

0.

91.

g
v
. {quzfx},w -
{
o

2y +3xy—2x> =0

92. 4 A two-link robot arm in plane motion is shown in Figure 4.8. The coordinate
system xy is the tool frame and is attached to the end-effector. The coordinates of
the end-effector relative to the base frame are expressed as

x=L;cos8; +L,cos(6; +6,)
y= L] Sin91 +L2 Sitl(@l +62)

Suppose the lengths, in consistent physical units, of the two links are L, =1 and
L,=2, and that x=2.5, y=14. Find the joint angles 6, and 6, (in radians) using
Newton’s method with an initial estimate of (0.8, 0.9), tolerance €=10"* and
maximum number of iterations set to 10.

x
y (\f Tool frame

Base frame

FIGURE 4.8
A two-link arm in plane motion.



93. 4 Solve the following system of three nonlinear equations in three unknowns

X +yt=2z
x*+z7=1

X +yt+zi=1
using Newton’s method with initial estimate (1, 1, 0.1), tolerance €=10"* and
a maximum of 10 iterations.

94. 4 Solve the following nonlinear system using Newton’s method, with initial
estimate (0, 1, 1), tolerance € = 103, and kmax = 10.

xy—cosx+z>=3.6
x*=2y*+z=28
3x+ysinz=2.8

95. 4 Consider the nonlinear system

xy? —sinx =0
(x-1°y+1=0
With iteration functions

sinx -1
gi(x, y)= . gz(x,y)=m

use the fixed-point iteration method with initial estimate (2, —2), tolerance € = 1073,
and maximum 20 iterations to estimate one solution of the system.

96. 4 Consider the system
y=x"—-4
X +y*=10

a. Locate the roots graphically.

b. Find the root in the first quadrant by using the fixed-point iteration with
iteration functions

(v, y)=Jy+4, g(x,y)=+10-x>

with (2, 0) as initial estimate, € =103, and maximum number of iterations
set to 20.

c. There are three other roots, one in each quadrant. Find these roots by using
combinations of the same g, and g, with positive and negative square roots.



97. 4 Consider the nonlinear system

2" +y=0
3x*+4y° =8

a. Locate the roots graphically.

b. Based on the location of the roots, select suitable iteration functions g, and g,
and apply the fixed-point iteration method with (-1, -2) as the initial estimate,
€ =10"* and number of iterations not to exceed 20, to find one of the two roots.

c. To find the other root, write the original equations in reverse order, suitably
select g, and g,, and apply fixed-point iteration with all information as in (b).

98. 4 Consider the nonlinear system

x*+y* =12
2x*+3y*=3

a. Locate the roots using a graphical approach.

b. Select iteration functions

3_012
Sy =\12-y*, &a(x,y)=, 3x

and apply the fixed-point iteration method with initial estimate (0.25, 1) and
tolerance € = 10~ to find a root. Decide the maximum number of iterations to
be performed.

c. There are three other roots, one in each of the remaining quadrants. Find these
roots by using combinations of the same g; and g, with positive and negative
square roots.



5

Curve Fitting and Interpolation

A set of data may emanate from various sources. In many engineering and scientific
applications, the data originates from conducting experiments that involve measure-
ment of physical quantities; for instance, measuring the displacement of a coiled spring
when subjected to tensile or compressive force. In other cases, the data may be generated
as a result of using numerical methods; for instance, numerical solution of differential
equations (Chapters 7, 8, and 10).

An available set of data can be used for different purposes. In some cases, the data is
represented by a function, which in turn can be used for numerical differentiation or
integration (Chapter 6). Such function may be obtained through curve fitting, or approxi-
mation, of the data. Curve fitting is a procedure where a function is used to fit a given
set of data in the “best” possible manner without having to match the data exactly. As a
result, while the function does not necessarily yield the exact value at the data points,
overall it fits the set of data well. Several types of functions and polynomials of different
degrees can be used for curve fitting purposes. Curve fitting is normally used when the
data has substantial inherent error, such as data gathered from experimental measure-
ments. The aforementioned function or polynomial can then be used for interpolation
purposes; that is, to find estimates of values at intermediate points (points between the
given data points) where the data is not directly available.

In other situations, a single interpolating polynomial is sought that agrees exactly with
the data points, and used to find estimates of values at intermediate points. For a small set
of data, a single interpolating polynomial may be adequate. For large sets of data, however,
different polynomials are used in different intervals of the whole data. This is referred to
as spline interpolation.

5.1 Least-Squares Regression

As mentioned above, a single polynomial may be sufficient for interpolation of a small set
of data. However, when the data has substantial error, even if the size of data is small, this
may no longer be appropriate. Consider Figure 5.1, which shows a set of seven data points
collected from an experiment. The nature of the data suggests that, for the most part, the
y values increase with the x values. A single interpolating polynomial goes through all of
the data points, but displays large oscillations in some regions. As a result, the interpo-
lated values near x = 1.2 and x = 2.85, for instance, will be well outside of the range of the
original data.

In these types of situations, it makes more sense to find a function that does not
necessarily go through all of the data points, but fits the data well overall. One option,
for example, is to fit the “best” straight line into the data. This line is not random and
can be generated systematically via least-squares regression.



2.2

1.8 +

Single interpolating polynomial
1.6

;. .
Linear regression fit

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

FIGURE 5.1
Interpolation by a single polynomial, and linear regression fit of a set of data.

5.2 Linear Regression

The simplest case of a least-squares regression involves finding a straight line (linear func-
tion) in the form

Y =mx+ag G0

that best fits a set of n data points (x,, 1), ..., (x,, v,). Of course, the data first needs to be
plotted to see whether the independent and dependent variables exhibit a somewhat lin-
ear relationship. If this is the case, then the coefficients 4, and 4, are determined such that
the error associated with the line is minimized. As shown in Figure 5.2, at each data point

y

y=ax+ag

€n

(1 1) (5 7) A

a)x; +dg,

FIGURE 5.2
A linear fit of data, and individual errors.



(x;, y;) the error ¢, is defined as the difference between the true value y; and the approximate
value a,x; + a,,

e; =y —(ax; +ap) (5.2)

These individual errors will be used to calculate a total error associated with the line
Y =X + ay.

5.2.1 Deciding a “Best” Fit Criterion

Different strategies can be considered for determining the best linear fit of a set of n data
points (x;, 1), ..., (x,, ¥,). One strategy is to minimize the sum of all the individual errors,

E= iei = i[yf —(mx; +ao)] (56.3)

This criterion, however, does not offer a good measure of how well the line fits the data
because, as shown in Figure 5.3, it allows for positive and negative individual errors—even
very large errors—to cancel out and yield a zero sum.

Another strategy is to minimize the sum of the absolute values of the individual errors,

E=Z|ei|=2|yi—(u1xi+ao)| (54)

As a result, the individual errors can no longer cancel out and the total error is always
positive. This criterion, however, is not able to uniquely determine the coefficients that
describe the best line fit because for a given set of data, several lines can have the same
total error. Figure 5.4 shows a set of four data points with two line fits that have the
same total error.

The third strategy is to minimize the sum of the squares of the individual errors,

E= 2 ef = Z [y — (arx; + )1 (5.5)

FIGURE 5.3
Zero total error based on the criterion defined by Equation 5.3.



A A

FIGURE 5.4
Two linear fits with the same total error calculated by Equation 5.4.

This criterion uniquely determines the coefficients that describe the best line fit for a
given set of data. As in the second strategy, individual errors cannot cancel each other
out and the total error is always positive. Also note that small errors get smaller and large
errors get larger. This means that larger individual errors have larger contributions to
the total error being minimized so that this strategy essentially minimizes the maximum
distance that an individual data point is located relative to the line.

5.2.2 Linear Least-Squares Regression

As decided above, the criterion to find the line y = a,x + g, that best fits the data (x, 1), ..,
(x,, y,) is to determine the coefficients 4, and a, that minimize

E= ) lyi—(@xi+ao)P (5.6)

Noting that E is a (nonlinear) function of 4, and a,, it attains its minimum where dE/da,
and JE/0da, vanish, that is,

oE

aao=—2;[yi—<alxi+ao)1=o = ;[yi—mlxﬁao)ho

aE n n
8711 = —2; xilyi —(mxi+a9)]=0 = Z {xily; —(mxi +a0)]} =0

Expanding and rearranging the above equations, yield a system of two linear equations
to be solved for a, and a;:

nag + [ixi]m:iyi
1 i=1

i=

[ixi]w[iﬁ]al By

i=1 i=1 i=1



By Cramer’s rule, the solutions are found as

L HEAN )| () HE L B
(2 HE (2 HE
(5.7)

The user-defined function LinearRegression uses the linear least-squares regression
approach to find the straight line that best fits a set of data. The function plots this line,
as well as the original data.

7

function [al, a0] = LinearRegression(Xx,y)

% LinearRegression uses linear least-squares approximation to fit a data
% by a line in the form y = al*x + a0. It also returns the plot of the

% original data together with the best line fit.

% [al, a0] = LinearRegression(x,y), where

% X, y are n-dimensional row or column vectors of data,

%

% al and a0 are the coefficients that describe the linear fit.
%

n = length(x);

Sumx = sum(x); Sumy = sum(y); Sumxx = sum(X.*x); Sumxy = sum(X.*y);
den = n*Sumxx - Sumx”2;
al = (n*Sumxy - Sumx*Sumy)/den; a0 = (Sumxx*Sumy - Sumxy*Sumx)/den;
% Plot the data and the line fit
I = zeros(n,1); % Pre-allocate
for i = 1:n,
1(i) = al*x(i) + a0; % Calculate n points on the line
end
plot(x,y,"0")
hold on
plot(x, 1)
end

EXAMPLE 5.1: LINEAR LEAST-SQUARES REGRESSION
Consider the data in Table 5.1.

TABLE 5.1

Data in Example 5.1
X; Yi
0.2 8.2
0.4 8.4
0.6 8.5
0.8 8.6
1.0 8.8

1.2 8.7




1. Using least-squares regression, find a straight line that best fits the data.
2. Confirm the results by executing the wuser-defined function
LinearRegression.

Solution

1. Noting n = 6, we first calculate all the essential sums involved in Equation 5.7:
6 6
) x=02+04+ - +12=42, D y;=80+84+ = +87 =512
i=1 i=1

6

Zx?:(0.2)2+(0-4)2+ e +(1.2) =3.64
6
Xy =(0.2)(8.0)+(0.4)(8.4) + --- +(1.2)(8.7) = 36.22

i

Then, following Equation 5.7, the coefficients are found as

_(6)(36.22) — (4.2)(51.2)
T (6)(3.64)—(4.2)

_ (3.64)(51.2)— (4.2)(36.22)

=0.5429, a, .
(6)(3.64)— (4.2)

=8.1533

1
Therefore, the line that best fits the data is described by
y =0.5429x + 8.1533

2. Execution of LinearRegression yields the coefficients a; and a, which
describe the best line fit, as well as the plot of the line and the original set of
data; Figure 5.5.

8.9 T T T T T T T T T

8.8}

8.7 Data >©
8.6

85}

Linear regression
y =0.5429x + 8.1533

8.4 4
8.3 i
Data
8~2°/ 1 1 1 1 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

FIGURE 5.5
Data and the best line fit in Example 5.1.



>> X = 0.2:0.2:1.2; y = [8.2 8.4 8.5 8.6 8.8 8.7];
>> [al, aO0] = LinearRegression(x,y)

al =
0.5429

a0 =
8.1533

5.3 Linearization of Nonlinear Data

If the relationship between the independent and dependent variables is not linear, curve-
fitting techniques other than linear regression must be used. One such method is polyno-
mial regression, to be discussed in Section 5.4. Others involve conversion of the data into
a form that could be handled by linear regression. Three examples of nonlinear functions
that are used for curve fitting are as follows.

5.3.1 Exponential Function
The exponential function is in the form
y=ae™ (a, b= const) (5.8
Because differentiation of the exponential function returns a constant multiple of the
exponential function, this technique applies to situations where the rate of change of a
quantity is directly proportional to the quantity itself; for instance, radioactive decay.

Conversion into linear form is made by taking the natural logarithm of Equation 5.8 to
obtain

Iny =bx+Ina (5.9

Therefore, the plot of Iny versus x is a straight line with slope b and intercept Ing;
see Figure 5.6a and d.

5.3.2 Power Function

Another example of a nonlinear function is the power function

y= ax® (a, b = const) (5.10)

Linearization is achieved by taking the standard (base 10) logarithm of Equation 5.10,

logy =blogx+loga (611)

so that the plot of log y versus log x is a straight line with slope b and intercept log 4; see
Figure 5.6b and e.
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Ina loga

x _ logx
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1/x

FIGURE 5.6
Linearization of three nonlinear functions for curve fitting. (a,d) Exponential function, (b,e) Power function,
(c,f) Saturation function.

5.3.3 Saturation Function

The saturation function is in the form

X
= b= t 512
V= (a, b =const) (5.12)
Inverting Equation 5.12 yields
1 1
—= b() +a (5.13)
y x

so that the plot of 1/y versus 1/x is a straight line with slope b and intercept a; see
Figure 5.6c and f.

EXAMPLE 5.2: LINEARIZATION OF NONLINEAR DATA

Consider the data in Table 5.2.

The data must first be plotted before any specific approach is selected. Plot of the data
(Figure 5.7 [left]) reveals that the saturation function may be suitable for a curve fit. To
confirm that the saturation function is indeed the right choice, we need to determine
whether the plot of 1/y versus 1/x is somewhat linear.

>> x = 10:10:100; y = [1.9 3.0 3.2 3.9 3.7 4.2 4.1 4.4 4.5 4.4];
>> XX = 1./x; yy = 1./y; % Element-by-element reciprocals

>> subplot(1,2,1), plot(x,y,"0") % Figure 5.7

>> subplot(1,2,2), plot(xx,yy,"0o")

The plot of 1/y versus 1/x (Figure 5.7 [right]) in fact shows that the converted data
behaves in a somewhat linear manner. Therefore, we will proceed with the saturation
function fit. We will apply linear regression to this converted data to find the slope and



TABLE 5.2

Data in Example 5.2
x y
10 1.9
20 3.0
30 3.2
40 3.9
50 3.7
60 4.2
70 4.1
80 44
90 45
100 44
4.5 . . . . 0.55 . . . .
o ¢ b
° o
4l | 0.5 g
o
° 0.45} ]
3.5¢ g
o 0.4} i
=~ 3t o\ J S\
Original data 0.35} J
o
2;5 I 1 °
0.3} N _
Converted data
) o
r 1 o
o 025} q :
®
1.5 1 1 1 1 0.2 1 1 1 1
0 20 40 60 80 100 0 0.02 0.04 0.06 0.08 0.1
x 1/x
FIGURE 5.7

Plot of the data in Table 5.2 (left) and converted data (right).

the intercept of the line fit. Execution of LinearRegression provides this information
and also plots the result; Figure 5.8.
>> [al, a0] = LinearRegression(xx,yy)

al =
3.3052

a0 =
0.1890 % Figure 5.8 is returned by the function

Based on the form in Equation 5.13, we have b = 3.3052 (slope) and a = 0.1890 (intercept).
Consequently, the saturation function of interest is formed as

_ox x
ax+b 0.1890x + 3.3052

y
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FIGURE 5.8
Linear fit of the converted data in Example 5.2.

The plot of this function together with the original data (Figure 5.9) clearly shows that
the saturation function provides a reasonable fit of the given data.

x_Fit = linspace(10,100);

for 1 = 1:100,

y_Ffit(i) = x_Fit(i)/(0.1890*x_TFit(i)+3.3052);
end

plot(x,y,"0")

hold on

plot(x_fit,y fit) % Figure 5.9

4.5}

= o Saturation function
3 y =x/(0.1890x + 3.3052) i
2.5 -
2 i
1‘5 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
x
FIGURE 5.9

Curve fit using the saturation function; Example 5.2.



EXAMPLE 5.3: LINEARIZATION OF NONLINEAR DATA

Consider the data in Table 5.3.

The data is first plotted before any specific approach is selected. Plot of the data
(Figure 5.10 [left]) suggests that the power function may be suitable for a curve fit. To confirm
this, we need to determine whether the plot of log y versus log x is somewhat linear.

>> X = 0.1:0.1:1; y = [0.02 0.1 0.2 0.35 0.56 0.75 1.04 1.3 1.7 2.09];
>> xx = 1oglo(x); yy = loglOo(y);

>> subplot(1,2,1), plot(x,y,"0") % Figure 5.10

>> subplot(1,2,2), plot(xx,yy,"0")

Since the plot of log y versus log x (Figure 5.10 [right]) confirms a somewhat linear
relationship, we proceed with the power function fit. We will apply linear regression

TABLE 5.3
Data in Example 5.3
x y
0.1 0.02
0.2 0.10
0.3 0.20
0.4 0.35
0.5 0.56
0.6 0.75
0.7 1.04
0.8 1.30
0.9 1.70
1.0 2.09
2.5 - r r T 0.5
o
o o
2 1 of o E
o
o o
15} {1 -os} ° 1
= o § o
1k o | 1t J
Original data ! o\
\ Converted data
o
0.5} ° g -1.5¢ R
° [
o
0 o) L s s s _2 s s s s
0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0
x log(x)

FIGURE 5.10
Plot of the data in Table 5.3 (left) and converted data (right).



0.5 T T T T

ol
-0.5¢+
=
° Converted data
N
-1 h log(y) = 1.9769 log(x) + 0.3252 b
-1.5 i
(]
_2 1 1 1 1 1 1 1 1 1
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
log(x)
FIGURE 5.11

Linear fit of the converted data in Example 5.3.

to this converted data to find the slope and the intercept of the line fit. Execution of
LinearRegression returns this information and also plots the result; Figure 5.11.
>> [al, a0] = LinearRegression(xx,yy)

al =
1.9769

a0 =
0.3252

Based on the form in Equation 5.11, we have b=19769 (slope) and log a=0.3252
(intercept) so that a = 2.1145. The corresponding power function is

y=ax" =2.1145x""%

The plot of this function together with the original data (Figure 5.12) clearly shows
that the power function provides a reasonable fit of the given data.

x_Fit = linspace(0.1,1);

for 1 = 1:100,

y_Fit(i) = 2.1145*x_Fit(i)"1.9769;
end

plot(x,y,"0")

hold on

plot(x_fit,y fit) % Figure 5.12

5.4 Polynomial Regression

In the previous section we learned that a curve can fit into nonlinear data by transform-
ing the data into a form that can be handled by linear regression. Another method is to fit
polynomials of different orders to the data by means of polynomial regression.
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Curve fit using the power function; Example 5.3.

The linear least-squares regression of Section 5.2 can be extended to fit a set of n data
points (x;, 1), ..., (x,, y,) with an mth-degree polynomial in the form

Y=a,X" +a, X"+ o +ax’ +ax+a,

with a total error
2
E= z[ amx, e mXE A+ ao)] (5.14)

The coefficients a,,, ..., a,, a;, a, are determined such that E is minimized. A necessary
condition for E to attain a minimum is that its partial derivative with respect to each of
these coefficients vanishes, that is,

3710=_22[ Ap X"+ o +ﬂ2xi2+a1xi+a0)J=0

i=1

T
aaz _2;{ [ amX1 + e +a2x,-2+a1xi+a0):|}=0

(5.15)

aiE:_zZ{xim[yi_(amxzm"' +a2xi2+a1xi+a0):|}:0



Manipulation of these equations yields a system of m + 1 linear equations to be solved
fora,, ..., a, a,, ay

na0+[ xz]a1+[2x,-2]a2+ +[2x{”}am=2yi
i=1 i i=1 i=1
xl]ao+[ X ]a1+[ x?]a2+ +[Zx,’””]am:zxiyi
11 =1 i i
n n (5.16)
x,]a0+[ x; ]ap{ xf]a2+ +[2x{”+2ja,,,=2xi2yi
11 i=1 i i
le’”]ao+[
i=1

IN
i

M:

i=1

n

n n n
xf””]aﬁ(z‘x{"*z]aﬁ +[ x?’"]am=2xl”yi

i=1

—_

1

5.4.1 Quadratic Least-Squares Regression

The objective is to fit a set of n data points (x, 1), ..., (x,, ¥,) with a second-degree polynomial
Y = ax* +ax +4ag

such that the total error

n

E= [yi —(azx,-2 +a1xi+a0)}2

i=1

is minimized. Following the procedure outlined above, which ultimately led to Equation
5.16, the coefficients a,, a,, 4, are determined by solving a system of three linear equations:

nag +[zn/ xi]ul +[ixi2]a2 = iyi
. N lj " (5.17)

(ixi}“[ix;}aﬁ(ix; =Yy,

i=1 i=1 i=1 i=1

[ix?}zo +[zn:x,-3ja1 +[ﬁx§}h _ ixgyi

i=1 i=1 i=1 i=1

The user-defined function QuadraticRegression uses the quadratic least-squares
regression approach to find the second-degree polynomial that best fits a set of data. The
coefficients a,, a,, a, are found by writing Equation 5.17 in matrix form and applying the
built-in backslash “\” operator in MATLAB. The function also returns the plot of the data
and the best quadratic polynomial fit.



function [a2, al, a0] = QuadraticRegression(X,y)

%

% QuadraticRegression uses quadratic least-squares approximation to fit a
% data by a 2nd-degree polynomial in the form y = a2*x"2 + al*x + a0.

% [a2, al, a0] = QuadraticRegression(x,y), where
% X, y are n-dimensional row or column vectors of data,
% a2, al and a0 are the coefficients that describe the quadratic fit.

n = length(x);

Sumx = sum(x); Sumy = sum(y);

Sumx2 = sum(x-"2); Sumx3 = sum(x-"3); Sumx4 = sum(x-"4);
Sumxy = sum(x-*y); Sumx2y = sum(X-*X.*y);

% Form the coefficient matrix and the vector of right-hand sides
A = [n Sumx Sumx2;Sumx Sumx2 Sumx3;Sumx2 Sumx3 Sumx4];
b = [Sumy;Sumxy;Sumx2y];
w = A\b; % Solve fTor the coefficients
a2 = w(3); al = w(2); a0 = w(l);
% Plot the data and the quadratic fit
xx = linspace(x(1),x(end)); % Generate 100 points for plotting purposes
p = zeros(100,1); % Pre-allocate
for 1 = 1:100,
p(i) = a2*xx(i)"2 +al*xx(i) +a0; % Calculate 100 points
end
plot(x,y,"0")
hold on

plot(xx,p)
end

EXAMPLE 5.4: QUADRATIC REGRESSION

Using quadratic least-squares regression find the second-degree polynomial that best
fits the data in Table 5.4.

Solution

>> X = 0:0.4:1.6; y = [2.90 3.10 3.56 4.60 6.70];
>> [a2, al, aO0] = QuadraticRegression(x,y)

a2 =
1.9554

al =
-0.8536

a0 =
2.9777

The plot returned by the user-defined function is shown in Figure 5.13.



TABLE 5.4

Data in Example 5.4

x Y
0 2.90
0.4 3.10
0.8 3.56
1.2 4.60
1.6 6.70

6.5

551

4.5}
Quadratic polynomial fit
4 1.9554x% — 0.8536x + 2.9777

i \

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

FIGURE 5.13
Quadratic polynomial fit in Example 5.4.

5.4.2 Cubic Least-Squares Regression

The objective is to fit a set of nn data points (x;, 1), ..., (x,, ¥,) with a third-degree polynomial
Y= a3 +apx’ + ax +ag

such that the total error

n

2

E= [y,»—(ohxf’ +a,x7 +ayx; +a0)J
i=1

is minimized. Proceeding as always, a,, a,, a,, a, are determined by solving a system of four
linear equations generated by Equation 5.16.

A user-defined function (see Problem Set) with function call [a;, a,, a,, a,] = Cubic
Regression (X, Yy) can then be written that uses the cubic least-squares regression
approach to find the third-degree polynomial that best fits a set of data. The coefficients a;, a,,
a,, a4, are found by expressing the appropriate 4 X 4 system of equations in matrix form and
solving by “\"” in MATLAB. The function should also return the plot of the original data and
the best cubic polynomial fit.



EXAMPLE 5.5: CUBIC REGRESSION

Find the cubic polynomial that best fits the data in Example 5.4. Plot the quadratic and
cubic polynomial fits in one graph and compare.

Solution

>> X = 0:0.4:1.6; vy
>> [a3, a2, al, aO]

[2.90 3.10 3.56 4.60 6.70];
CubicRegression(x,y) % See Problem Set

a3 =
1.0417

a2 =
-0.5446

al =
0.5798

a0 =
2.8977

>> hold on
> [a2, al, a0] = QuadraticRegression(x,y) % Previously done in Example 5.4

a2 =
1.9554

al =
-0.8536

a0 =
2.9777

Figure 5.14 clearly shows that the cubic polynomial fit is superior to the quadratic
one. The cubic polynomial fit almost goes through all five data points, but not exactly.

6.5+

= Quaderatic regression

4.5
4 Cubic regression

3.5 i
3 i

2.5 I 1

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6
x
FIGURE 5.14

Quadratic and cubic polynomial fits; Example 5.5.



This is because a third-degree polynomial has four coefficients but the data contains
five points. A fourth-degree polynomial, which has five coefficients, would exactly
agree with the data in this example. In general, if a set of n data points is given, then
the (n — 1)th-degree polynomial that best fits the data will agree exactly with the data
points. This is the main idea behind interpolation, and such polynomial is called an
interpolating polynomial. We will discuss this topic in Section 5.5.

5.4.3 MATLAB Built-In Functions Polyfit and Polyval
A brief description of the MATLAB built-in function polyfit is given as:

POLYFIT Fit polynomial to data.

P = POLYFIT(X,Y,N) Ffinds the coefficients of a polynomial P(X) of
degree N that fits the data Y best in a least-squares sense. P is a
row vector of length N+1 containing the polynomial coefficients in
descending powers, P(L)*X"N+P(2)*XA(N-1) + - +P(N)*X+P(N+1).

This polynomial is then evaluated at any x using the built-in function polyval.
Specifically, yi = polyval (P, X1) returns the value of polynomial P evaluated at x1.

EXAMPLE 5.6: CURVE FIT—POLYFIT FUNCTION

Using the polyfit and polyval functions find and plot the second-degree
polynomial that best fits the data in Table 5.5. Apply the user-defined function
QuadraticRegression and compare the results.

Solution

>> x = 0:0.3:1.2; y = [3.6 4.8 5.9 7.6 10.9];
>> P = polyfit(x,y,2)

P =

3.8095 1.2286 3.7657 % Coefficients of the second-deg polynomial fit

>> X1 linspace(0,1.2); % Generate 100 points for plotting purposes
>> yi polyval (P,xi); % Evaluate the polynomial at these points
>> plot(xi,yi,X,y,"0%) % Figure 5.15

Execution of QuadraticRegression yields:

>> [a2, al, aO0] = QuadraticRegression(x,y)

a2 =
3.8095

al =
1.2286

a0 =
3.7657

The coefficients of the second-degree polynomial are precisely those returned by polyfit.



TABLE 5.5

Data in Example 5.6

x Yy
0 3.6
0.3 4.8
0.6 5.9
0.9 7.6
1.2 10.9
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FIGURE 5.15
Cubic polynomial fit using polyfit.

5.5 Polynomial Interpolation

Given a set of n + 1 data points (xy, i5), ..., (X,41, Y1), there is only one polynomial of degree
at most 7 in the form

P(X) = A1 X" +a, X"+ e+ asx +ax +a

that goes through all the points. Although this polynomial is unique, it can be expressed
in different forms. The two most commonly used forms are provided by Lagrange inter-
polating polynomials and Newton interpolating polynomials, which are presented in this
section.



5.5.1 Lagrange Interpolating Polynomials

The first-degree Lagrange interpolating polynomial that goes through the two points
(xy, yp) and (x,, y,) is in the form

pi(x) = Li(x)y1 + La(x)y2
where L,(x) and L,(x) are the Lagrange coefficient functions described by

Lix) =2 Lyx)=

1~ X2 X2 — X1

X—X1

Then L,(x;) =1 and L,(x,) =0, while L,(x;) =0 and L,(x,) = 1. Consequently, p,(x,) =1, and
p(x,) =y, which means the polynomial, in this case a straight line, passes through the two
points; see Figure 5.16a.

The second-degree Lagrange interpolating polynomial that goes through the three
points (xy, 1), (x5, 1), and (x5, y5) is in the form

p2(x) = Li(x)y1 + Ly(x)y2 + L (x)y3

where

L= EoX)@=x) oy Gen)-xs) oy (en)E-x)
(21— x2)(x1 —x3) (22 = x1)(x2 — x3) (x3 — 1) (X3 — X2)

Therefore, L;(x;) =1=Ly(x,)) =Ls(x;), while all other L(x)=0 for i#. This yields
Pa(x1) =11, pa(xy) =y, and p,(x;) = y; so that the polynomial goes through the three points;
see Figure 5.16b.

In general, the nth-degree Lagrange interpolating polynomial that goes through n + 1
points (xy, 1), ..., (X1, Y,ay) is formed as

n+1

Pu() = La(®ys+ - +Lya(@)a = Y L)y, (5.18)
i=1
J b J
(@) (b) (5 32)
(9, 95)
pz(x)
pl(x)
(%9 99)
(1, 1) (o1 1)
X X

FIGURE 5.16
(a) First-degree and (b) second-degree Lagrange interpolating polynomials.



where each L(x) is defined as
n+1
L,-(x) =

j=1
j#i

X—X;
Xi — X (519)

and “I1” denotes the product of terms.

The user-defined function Lagrangelnterp finds the Lagrange interpolating polyno-
mial that fits a set of data (x, y) and uses this polynomial to calculate the interpolated value

y1 at a specified point Xi.

function yi = Lagrangelnterp(Xx,y,xi)

% Lagrangelnterp finds the Lagrange interpolating polynomial that goes
% through the data (X,y) and uses it to find the interpolated value
% at XIi.

% yi = Lagrangelnterp(x,y,Xi), where

% X, y are n-dimensional row or column vectors of data,
% xi Is a specified point,

%

% yi is the interpolated value at Xxi.

n = length(x);

L = zeros(1,n); % Pre-allocate
for i = 1:n,
L(i) = 1;

for j = 1:

ifj ~

L(

) = LA)*(xi - x@)/ () - xG)):

I =

end
end
end

yi = sum(y.*L);

EXAMPLE 5.72 LAGRANGE INTERPOLATION
Consider the data in Table 5.6 generated by the function y =1 +e™.

1. Find the first-degree Lagrange interpolating polynomial that goes through
the first two data points, and use it to find the interpolated value at x =0.35.
Confirm the result by executing Lagrangelnterp.

TABLE 5.6

Data in Example 5.7

x y=1l+e™*
0.1 1.9048
0.5 1.6065

0.8 1.4493




2. Find the second-degree Lagrange interpolating polynomial that goes through
all three data points, and use it to find the interpolated value at x =0.35.
Confirm the result by executing Lagrangelnterp.

3. Calculate the % relative errors associated with the two estimates in (1) and (2),
and comment.

4. Using Lagrangelnterp, plot the first-degree Lagrange interpolating polyno-
mial generated in (1), the second-degree polynomial generated in (2), and the
original data in the same graph.

Solution

1. The two Lagrange coefficient functions are

x-x _ x-05 x-x _ x-01

L(x) = =  Lx)= -
1(x) X —x, 0.1-05 2(%) x,—x 05-0.1

The first-degree polynomial is then formed as

p1(x) = Li(xX)y1 + Lo(x)y2

_ x-0.5 (1.9048) + x—0.1
0.1-0.5 0.5-0.1

simplify
(1.6065) = —0.7458x +1.9794

Using this polynomial, we can interpolate at x = 0.35 to find

p1(0.35)=1.7184

The result can be readily verified in MATLAB as follows.
% Input the first two data points only

>> x = [0.1 0.5]; y = [1.9048 1.6065];

>> yi = Lagrangelnterp(x,y,0.35)

yi =
1.7184

2. The three Lagrange coefficient functions are

Li(x) = (r-1)(x-x) _ (x=0.5)(x-0.8)
N (- x) (4 —x3)  (0.1-0.5)(0.1-0.8)

Lo(x) = (x-—x)(x-x;) _ (x-0.I)(x-08)
2 3t —x3)  (0.5-0.1)(05—0.8)

Ls(x) = (x—x)(x-x) _ (x=0.1)(x-05)
(3 —x1)(xs —x,)  (0.8—0.1)(0.8-0.5)

The second-degree polynomial is then formed as

p2(x) = Ly(x)y1 + Lo(x)y2 + Ls(x)y3

_ (x—0.5)(x—0.8) (1.9048) + (x—=0.1)(x—-0.8) (1.6065) + (x—=0.1)(x-0.5) (1.4493)
(0.1-0.5)(0.1-0.8) (0.5-0.1)(0.5-0.8) (0.8—-0.1)(0.8-0.5)

simplify

= 0.3168x —0.9358x +1.9952




Using this polynomial, we can interpolate at x = 0.35 to find

p2(0.35) =1.7065

The result is confirmed in MATLAB as

>> x = [0.1 0.5 0.8]; y = [1.9048 1.6065 1.4493];
>> yi = Lagrangelnterp(x,y,0.35)

yi =
1.7065

3. In calculating the errors we will use the entire values as stored in a calculator,
as opposed to the values displayed showing only four decimal places. Noting
Yesaet = 1 + €79, the % relative errors are found as

P1(O0-35) = Yewet | 10 _ [0:8026%

Yexact

P200.35) = Yewt . 100 _[07050%

Yexact

The estimate provided by p,(x) is clearly superior because the data was more
effectively utilized for interpolation.

x = [0.1 0.5 0.8]; y = [1.9048 1.6065 1.4493];

% Specific data to build the first-degree polynomial
x1 = [0.1 0.5]; y1 = [1.9048 1.6065];

% 100 points for plotting over the entire (original) data
xi = linspace(0.1,0.8);

% Use the first-degree polynomial [based on (x1,yl)] to evaluate at
% the 100 points

for 1 = 1:100,

yi(i) = Lagrangelnterp(x1,yl,xi(i));

end

% Plot
plot(xi,yi,x,y,"0") % Figure 5.17
hold on

% Use the second-degree polynomial [based on (X,y)] to evaluate at
% the 100 points

for 1 = 1:100,

yi(i) = Lagrangelnterp(x,y,xi(i));

end
% Complete the figure
plot(xi,yi)

5.5.2 Drawbacks of Lagrange Interpolation

As observed in Example 5.7, none of the information gathered in the construction of p;(x)
was saved and used in the construction of p,(x). This is always true when working with
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First-degree and second-degree Lagrange interpolating polynomials in Example 5.7.

Lagrange interpolating polynomials; that the quantities calculated while constructing a
Lagrange polynomial cannot be stored and used in the construction of a higher-degree
polynomial. This is particularly inconvenient in two situations: (1) when the exact degree
of the interpolating polynomial is not known in advance; for instance, it might be better to
use a portion of the set of data, or (2) when additional points are added to the data. In these
cases, a more suitable form is provided by the Newton interpolating polynomials.

5.5.3 Newton Divided-Difference Interpolating Polynomials

Recall the notations we used in relation to Figure 5.16, that is, p,(x) is the first-degree
polynomial that goes through (x;, y;) and (x,, y,), while p,(x) is the second-degree polyno-
mial that goes through (x;, 1), (x5, 1,), and (x3, y3), etc. The Newton interpolating polynomi-
als are recursively constructed as

pi(x) = a1 + ax(x — x7)
p2(x) = pr(x) + az(x —x1)(x — x2)
P3(x) = pa(x) + ay(x — x1)(x — x5 )(x — x3) (5.20)

Pn(x) = Pn—l(x)+ Aps1 (X = x1)(X = x2) ... (X = x;,)

where the coefficients a,, a,, ..., a,,; are determined inductively as follows: Since p,(x) must
agree with the data at (x;, 1;) and (x,, ,), we have

pl(xl) =Y, Pl(xz) =Y



so that

M+ a (X —x1) = Y Vo=V
= M =Y, ="
a+ (X —X1) =Y X2 — X1

Similarly, p,(x) must agree with the data at (x;, i), (x,, ¥,), and (x5, v5), hence
p2(x1) =11, pax2)=Yy2, pa(x3)=y3
But the added term in p,(x) is a5(x — x;)(x — x,), which vanishes when x = x; or x = x,. Thus,
pa(x1) = pi(x1),  pa(x2) = pa(x2)

As aresult, the two conditions p,(x,) = v, and p,(x,) = v, are simply p,(x;) = y; and p,(x,) =y,
which already led to 4, and a, in constructing p,(x). The third condition p,(x;) = y; yields

+a3(x—x1) (X3 —x2)=Ys; = + a3(x3 = x1)(X3 = X2) = Y3

Using the values of 4, and 4, obtained earlier, this equation then gives

_ (Y3 —y2)/ (3 = X2) = (Y2 = 11)/(x2 = x1)

X3 — X1

as

Continuing this process yields all remaining coefficients. In the meantime, we observe
that these coefficients follow a systematic pattern. First off, 4, is simply the first data y,.
Then, a, is the difference quotient involving the first two data points, a; is the differ-
ence quotient of difference quotients involving the first three data points, and so on.
Even though these coefficients can be readily formed using the cited pattern, they do
tend to get very complicated beyond the first few. To remedy this, we introduce Newton’s
divided differences for easier handling of the coefficients.

The first divided difference at x; is denoted by f[x;,,, x;] and defined as the slope of the line
connecting (x;, y;) and (x;, ¥;,), that is,

Flxi, xi] = L= Y0
Xiv1 — Xi

The second divided difference at x; is denoted by f[x,,,, x;1, x;] and defined as

f[xi+2rxi+1]_f[xi+1/xi]
Xiy2 — Xi
_ (yi+2 - ]/i+1)/(xi+2 —Xiy1)— (]/i+1 - ]/i)/(xi+1 - xi)

Xiy2 — X

f[xi+2,xi+1,xi] =




Note that the first divided differences are directly involved in the construction of the
second divided difference. If instead of x; we focus on x,, it is then clear that the first
divided difference at x; is

As shown earlier
flx2,x1]= 270 = )

X — X1

The second divided difference at x; is

Ys—Y2 Ya2—W1
[.X'3 x2]_ [xz xl] X2 —X X0 — X As shown earlier
flxs, x2,x1] = S, ST, =2 — = as
X3 — X1 X3 — X1

In general, the kth divided difference at x, is described by

f[xk+1/xk1 /xSIxZ]_f[xk/xk—ll /xZlel
Xee1 =X

flxe, X, oo, x2,x1]= = a1 (5.21)

Ultimately, the nth-degree Newton divided-difference interpolating polynomial for the
data (x;, 1)), ..., (X,41, Yyuia) 1s formed as

pa(x) = ﬂ+ [@](—2) + o] -x)@—x)+ ot [a] ma)(x-x2) ()

flx2,x1] flxz,x2,x1] flxns,...x]

(5.22)

where the coefficients 4, ..., a,,; are best calculated with the aid of a divided-differences
table. A typical such table is presented in Table 5.7 corresponding to a set of five data
points.

TABLE 5.7
Divided Differences Table
First Second Divided Third Divided
X; y; Divided Diff Diff Diff Fourth Divided Diff

X ]/1:
flxz, x11=[a2]
X2 ¥ f[x3,x2,x1]=

f[x3,x2] f[x4rx3/x27xl]:

X5 Ys fxy, x5, 2] f[xs,x4,x3,x2,x1]=
flxy, x5 flxs, x4, X3, %]

Xy Yy flxs, x4, %3]
fxs, x4]

X5 Ys




The user-defined function Newtonlnterp finds the Newton divided-difference
interpolating polynomial that fits a set of data and uses this polynomial to calculate the
interpolated value at a specific point.

function yi = Newtonlnterp(x,y,Xi)

% Newtonlnterp finds the Newton divided-difference interpolating
% polynomial that agrees with the data (X,y) and uses it to find the
% interpolated value at Xxi.

% yi = NewtonInterp(X,y,xi), where

% X, y are n-dimensional row or column vectors of data,
% xi is a specified point,

%

% yi is the interpolated value at Xxi.

n = length(x);

a = zeros(1,n); % Pre-allocate
a(l) = y(1):
DivDiff = zeros(1,n-1); % Pre-allocate

for i = 1:n-1,
DiIVDIff(i,1) = (y(i+l) - y(D))/(x(i+l) - x(i));

end
for j = 2:n-1,
for i=1:n-j,
DivDiFF(i,j) = (DivDiFF(i+l,j-1) - DivDiFF(i,j-1))/(x(+i) - x(i));
end
end
for k = 2:n,
a(k) = DivDiff(1,k-1);
end
yi = a(l);
xprod = 1;
for m = 2:n,
xprod = xprod*(xi - x(m-1));
yi = yi + a(m)*xprod;
end

EXAMPLE 5.8: NEWTON INTERPOLATION, DIVIDED DIFFERENCES
Consider the data in Table 5.8.

1. Use the second-degree Newton interpolating polynomial that goes through the
second, third, and fourth data points to find the interpolated value at x = 0.35.
Confirm the result by executing the user-defined function NewtonlInterp.

2. Use the fourth-degree Newton interpolating polynomial that goes through all
five data points to find the interpolated value at x = 0.35. Confirm the result
by executing NewtonlInterp.



TABLE 5.8

Data in Example 5.8

x Yy

0 0

0.1 0.1210
0.2 0.2258
0.5 0.4650
0.8 0.6249

Solution

1. If a second-degree polynomial is to be used for interpolation at x = 0.35, then
the one going through the second, third, and fourth data points is the most
suitable due to the location of x = 0.35 relative to the data. The corresponding
divided differences are calculated according to Equation 5.21 and recorded
in Table 5.9. The second-degree interpolating polynomial is then formed via
Equation 5.22, as

p2(x) = ay + ax(x — x7) + az(x — x1)(x — x2)
=0.1210 + 1.0480(x — 0.1) — 0.6268(x — 0.1)(x — 0.2)

Substitution of x=0.35 yields p,(0.35) =0.3595. The result is confirmed in
MATLAB as follows.

>> x = [0.1 0.2 0.5]; y = [0.1210 0.2258 0.4650];
>> yi = Newtonlnterp(x,y,0.35)

yi =
0.3595

TABLE 5.9
Divided Differences Table for Example 5.8, Part (1)
x; Y; 1st Divided Diff 2nd Divided Diff

a1
01 [01210]

0.2258 -0.1210

0.2-0.1
-
0.7973 -1.0480
0.2 0.2258 T 05-01
-

0.4650—0.2258
0.5-0.2

=0.7973

0.5 0.4650




TABLE 5.10
Divided Differences Table for Example 5.8, Part (2)

X; v; 1st Divided Diff 2nd Divided Diff 3rd Divided Diff 4th Divided Diff
a
0 o]
0.1210-0
0.1-0
a
= [1.2100
01 0.1210 1.0480 —1.2100
02-0
= [-0.8100
0.2258-0.1210 _, 41 —0.6268 — (—0.8100)
0.2-0.1 0.5-0
ay
= |0.3664
0.2 0.2258 0.7973-1.0480 _ o 0.2661-0.3664
05-0.1 0.8-0
as
= [-0.1254
0.4650-0.2258 _ o —0.4405-(-0.6268) _ 1,
05-0.2 0.8-0.1
0.5 0.4650 0.5330=07973 _ ) 4405
0.8-0.2
0.6249-0.4650 _ ) o1
0.8-05
0.8 0.6249

2. The divided differences are calculated according to Equation 5.21 and recorded
in Table 5.10. The fourth-degree interpolating polynomial is then formed via

Equation 5.22, as

Pa(x) = ay + ax(x — x7) + a3 (x — x)(x — x2) + a4 (x — x7)(x — x2)(x — x3)
+ as(x —x1)(x — x2)(x — x3)(x — x4) =0+ 1.2100(x — 0) — 0.8100(x — 0)(x — 0.1)
+0.3664(x — 0)(x — 0.1)(x — 0.2) — 0.1254(x — 0)(x — 0.1)(x — 0.2)(x — 0.5)

Substitution of x=0.35 yields p,(0.35)=0.3577. The result is confirmed in

MATLAB as follows.

>> X =
>> yi = Newtonlnterp(x,y,0.35)

yi =
0.3577

[0 0.1 0.2 0.5 0.8]; y = [0 0.1210 0.2258 0.4650 0.6249];

This interpolated value is considered a better estimate at x =0.35 than that
obtained in (1) because the data was utilized more effectively.



5.5.4 Special Case: Equally-Spaced Data

In the derivation of Newton divided difference interpolating polynomial, Equation 5.22,
no restriction was placed on how the data was spaced. In the event that the data is equally
spaced, as it is often the case in practice, the divided differences reduce to simpler forms.
Let every two successive x values in the data (x, 1), ..., (X,.1, ¥,..1) be separated by distance
h so that

Xi—Xxi=h, i=1,2, ...,n
Consequently,
Xo=x1+th, x3=x1+2h, ..., Xpa=x1+nh
The first forward difference at x; is denoted by Ay, and defined as
Ayi=Yin—Yyi, i=12, ...,n
The second forward difference at x; is denoted by A%, and defined as
AYi=Ayin—Ay;, i=1,2, ...,n

Note that the first forward differences are directly involved in the construction of the
second forward difference. In general, the kth forward difference at x; is described as

Ay = Ay - Ay, (5.23)
If instead of x; we focus on x;, then the first forward difference at x, is
Ay =Y =11
The second forward difference at x; is
A’y = Ay, — Ay,

and so on. We next find out how the divided differences and forward differences are
related. The first divided difference at x, can be written as

_Yamn _ Ay
f[xzle] -1 h

The second divided difference at x; is

Ys—Y2 Y2—VY1  Ay,—Ayy )
_X3—Xp Xo—Xp _ h _Ay Ay _ ATy
flxs,x2,] ¥s— %1 2h o 2




In general, the kth divided difference at x; can be expressed as

_ Ay,

f[xk+1/xk/ /x2/x1]_ k'hk

5.5.5 Newton Forward-Difference Interpolating Polynomials

Any arbitrary x between x; and x,, can be expressed as x =x; +mh for a suitable real
value m. Then

X—x; =(xy+mh)—x, =mh—(x,—x;)=mh—h=(m-1)h
x—x3=(m-2)h
x—=x,=(m—-(m-1)h

Substitution of these, together with the relations between divided differences and
forward differences established above, into Equation 5.22, yields the Newton forward-
difference interpolating polynomial as

- Ay, _ v A _ (-

pa(X)=y1 + p (mh)+ Y (mh)(m—-1h)+ + T (mh)(m=Dh) ... (mn—(n-1)h
_ m(m-1) , mm-1) ... m—(n-1)) ., _X-x
=1 + mAy, +72! Ay + + i A"y, m p

(5.24)

This polynomial is best formed with the aid of a forward-differences table, as in
Table 5.11.

A user-defined function with function call yi = Newton_FD(X,y,X1) can be written
(see Problem Set) that finds the Newton forward-difference interpolating polynomial for
the equally spaced data (X,y) and uses this polynomial to interpolate at Xi and returns
the interpolated value in yi. Of course, NewtonInterp works for the equally spaced data
as well, but is not recommended as it will perform unnecessary calculations.

TABLE 5.11

Forward Differences Table

First Forward Second Forward Third Forward
x; v; Diff Diff Diff

a [yl

A]/l
X Y Ay,
Ay, Ay
X3 Ys A%y,
Ay,

Xy Vs




EXAMPLE 5.9: NEWTON INTERPOLATION, FORWARD DIFFERENCES

For the data in Table 5.12, interpolate at x =0.64 using the fourth-degree Newton
forward-difference interpolating polynomial. Confirm the result by executing the user-
defined function Newtonlnterp.

Solution

The forward differences are calculated according to Equation 5.23 and recorded in
Table 5.13. Since we are interpolating at x = 0.64, we have

x-x _064-04
h 0.1

2.4

m=

The fourth-degree Newton forward-difference interpolating polynomial is given by
Equation 5.24, as

-1 . ~N)(m-2) .5 —1)(m-2)(m=3) .,
M=) g M=) o, == 2m=3) s,

pa(x) = y1 + mAy; + | 1 30 4l

TABLE 5.12

Data in Example 5.9

x y=cosx
0.4 0.921061
0.5 0.877583
0.6 0.825336
0.7 0.764842
0.8 0.696707

TABLE 5.13
Forward Differences Table for Example 5.9

1st Forward 2nd Forward 3rd Forward 4th Forward
v; Diff Diff Diff Diff

0.4 0.921061

—0.043478
Ay
0.5 0.877583 —0.098769
A1
—0.052247 0.0030522
Ay
0.6  0.825336 —0.008247 0.000084
Aty
—0.060494 0.000606
0.7 0.764842 —0.007641
—-0.068135

0.8  0.696707




Inserting m = 2.4 and the proper (boxed) entries of Table 5.13 into this equation, the
interpolated value is found as

p4(0.64) = 0.921061 + 2.4( — 0.043478) + %(—0008769)

+Q@Q41PQ4‘”wmmmm+(ZQQA_Dgf_DQA_wwmm%@
= 0.8020959856

Noting the actual value is cos(0.64) = 0.8020957579, the above interpolation yielded a
6-decimal place accuracy. The result can be verified in MATLAB using the user-defined
function NewtonlInterp.

>> format long

>> X = [0.4 0.5 0.6 0.7 0.8];

>> y = [0.921061 0.877583 0.825336 0.764842 0.696707];
>> yi = NewtonlInterp(X,y,0.64)

yi =
0.802095985600000

5.6 Spline Interpolation

In Section 5.5, we used nth-degree polynomials to interpolate 1 + 1 data points. For exam-
ple, we learned that a set of 11 data points can be interpolated by a single polynomial of
at most degree 10. When there are a small number of points in the data, the degree of
the interpolating polynomial will also be small, and the interpolated values are generally
accurate. However, when a high-degree polynomial is used to interpolate a large number
of points, large errors in interpolation are possible, as shown in Figure 5.18. The main

14

13

12 Large possible errors in

10th-degree interpolating interpolated values
polynomial

10 i

11

Cubic spline

FIGURE 5.18
A 10th-degree interpolating polynomial and cubic splines for a set of 11 data points.



contributing factor is the large number of peaks and valleys that accompany a high-degree
polynomial. These situations may be avoided by using several low-degree polynomials,
each of which is valid in one interval between one or more data points. The low degree of
each polynomial in turn limits the number of peaks and valleys to a low number, hence
reducing the possibility of large deviations from the main theme of the data. These low-
degree polynomials are known as splines. The term “spline” originated from a thin, flex-
ible strip, known as a spline, used by draftsmen to draw smooth curves over a set of points
marked by pegs or nails. The data points at which two splines meet are called knots.

The most commonly used splines are cubic splines, which produce very smooth connections
over adjacent intervals. Figure 5.18 shows the clear advantage of using several cubic splines as
opposed to one single high-degree polynomial for interpolation of a large set of data.

5.6.1 Linear Splines

With linear splines, straight lines (linear functions) are used for interpolation between the
data points. Figure 5.19 shows the linear splines used for a set of four data points, as well
as the corresponding third-degree interpolating polynomial. If the data points are labeled
(1, 111), (X0, 1), (x5, 13), and (xy, v,), then, using the Lagrange form, the linear splines are sim-
ply three linear functions described by

X=Xy X—X1

Si(x)= i+ Yo, X1Sx<x,
X1— X2 X2 — X1
X—X3 X=Xy
Sy(x)= Yot Y3, X Sx< X3
Xy — X3 X3 — X2
X — X4 X—X3
S3(x) = Y3+ Ya, X3<x<x4
X3 —Xg X4 — X3
6
5| \ i
Data
4 .
/ <
31 5,0 529 \ 1

3rd-degree \
2 interpolating polynomial \ I

X1 Xy X3 Xy
¥
00 \J‘ \f 3
3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

FIGURE 5.19
Linear splines.



This is clearly the same as linear interpolation as discussed in Section 5.5. The obvi-
ous drawback of linear splines is that they are not smooth so that the slope experiences
sudden changes at the knots. This is because the first derivatives of neighboring linear
functions do not agree. To circumvent this problem, higher-degree polynomial splines
are used such that the derivatives of every two successive splines agree at the point (knot)
they meet. Quadratic splines ensure continuous first derivatives at the knots, but not the
second derivatives. Cubic splines ensure continuity of both first and second derivatives at
the knots, and are most commonly used in practice.

5.6.2 Quadratic Splines

With quadratic splines, a second-degree polynomial is employed to interpolate over each
interval between data points. Suppose there are n + 1 data points (x;, 1)), ... , (X,.1, Yu1) SO
that there are n intervals and thus n quadratic polynomials; see Figure 5.20. Each quadratic
polynomial is in the form

Si(x)=ax*+bx+c;, i=12, ...,n (5.25)

where a, b, c; (i=1, 2, ..., n) are unknown constants to be determined. Since there are n
such polynomials, and each has three unknown constants, there are a total of 3n unknown
constants. Therefore, exactly 3n equations are needed to determine all the unknowns.
These equations are generated as follows:

5.6.2.1 Function Values at the Endpoints (2 Equations)
The first polynomial S,(x) must go through (x,, ;) and the last polynomial S, (x) must go
through (xn+ll yn+l):

Si(x1)= N
S, (xn+1) =Ynn

More specifically,

2
a1 X1 +b1x1+cl=y1 506
i ) (5.26)
ApXn+1 + bnxn+l + Cp = yn+1

Si(x) = ax® + byx + ¢; (X 7,)

N

(xp 1)

Sy(%) = apx® + byx + ¢, 1 Vi)

(xg’ 3’3)

v

T T T
X Xo X3 X X

FIGURE 5.20
Quadratic splines.



5.6.2.2 Function Values at the Interior Knots (2n — 2 Equations)

At the interior knots, two conditions must hold: (1) polynomials must go through the data
points, and (2) adjacent polynomials must agree at the data points:

Si(x2) = Yo, Sy(x3) = Y3, ooy Sua(x,) = Yn
S2(x2) = Y2, S3(x3) = Y3, +..) Su(X0) = Y

More specifically,

Si(Xi1) =y, =12, ... ,n-1
Sixi)=y;, i=2,3, ...,n

so that

2 .
aiXin +bixpa+ci =y, i=12,...,n-1 (5.27)
ax; +bxite =y, i=2,3, ...,n

Note that each of the above contains 1 — 1 equations so that 2n — 2 equtions are generated
in this stage.

5.6.2.3 First Derivatives at the Interior Knots (n — 1 Equations)

At the interior knots, the first derivatives of adjacent quadratic polynomials must agree:
Si(x2) = 53(x2), S3(x3) = 53(x3), .., Sia (%) = 55 ()
More specifically,
S/(xi41) =Sia(xiv1), 1=1,2, ... ,n-1
Noting that S/(x) = 2a;x + b;, the above yields

20X +b; = 20;1%i + b, =12, ... ,n-1 (5.28)

This contains n — 1 equations. So far, we have managed to generate 2|+ + =
3n — 1 equations. One more equation is needed to complete the task. Among several avail-
able choices, we select the following:

5.6.2.4 Second Derivative at the Left Endpoint is Zero (1 Equation)
51(x1)=0

Noting that 5{(x;) = 24, this yields

4 =0 (5.29)



TABLE 5.14

Data in Example 5.10
x Yy
2 5

3 2.3
5 5.1
7.5 15

A total of 31 equations have therefore been generated.
In summary, one equation simply gives 4, =0 and the remaining 3n — 1 unknowns are
found by solving the 3n — 1 equations provided by Equations 5.26 through 5.28.

EXAMPLE 5.10: QUADRATIC SPLINES
Construct the quadratic splines for the data in Table 5.14.

Solution

Since there are four data points, we have n =3 so that there are three quadratic splines

with a total of nine unknown constants. Of these, one is given by a4, = 0. The remaining

eight equations to solve are provided by Equations 5.26 through 5.28 as follows.
Equation 5.26 yields

a1(2)2 + bl(Z) +C = 5
as (7.5)2 + b3 (7.5) +C3 = 1.5

Equation 5.27 yields

a3 + b (3)+¢; =23
a,(5)* +b,(5)+ ¢, =5.1
1,(3 +b,(8)+ ¢, =2.3
a3(5)* +b3(5) +¢3 =5.1

Finally, Equation 5.28 gives

2111 (3) + bl = 2ﬂ2(3) + bz
2ﬂ2(5) + b2 = 2613(5) + b3

Substituting 4, = 0 and writing the above equations in matrix form, we arrive at

2 1 0 0 O 0 0 0]k 5
0 0 O 0 0 5625 75 1||la 1.5
3 1 0 0 0 0 0 O0fla 2.3
0 0 25 5 1 0 0 Ofb|_J51
0o 0 9 3 1 0 0 0llea |23
0 0 O 0 O 25 5 1fl|as 51
1 0 -6 1 0 0 0 0]|bs 0
0 0 10 1 0 -10 -1 O0]lc 0




Data

Quaderatic spline

Sl(x)

FIGURE 5.21
Quadratic splines in Example 5.10.

This system is subsequently solved to obtain

1,=205 a;=-2776
bi=-27 b=-15  by=33.26
=104 ¢, =2885 c3=-918

Therefore, the quadratic splines are completely defined by the following three
second-degree polynomials:

Si(x)=-27x+104, 2<x<3
S»(x)=2.05x*—15x+28.85, 3<x<5
Sy(x)=—2.776x* +33.26x—-91.8, 5<x<75

Results are shown graphically in Figure 5.21. Note that the first spline, S,(x), describes
a straight line since a, = 0.

5.6.3 Cubic Splines

In cubic splines, third-degree polynomials are used to interpolate over each interval
between data points. Suppose there are n + 1 data points (x, 1), ..., (X1, ¥,.a) SO that there
are n intervals and thus n cubic polynomials. Each cubic polynomial is conveniently
expressed in the form

Si(x)=a;(x—x;)* +bi(x —x;)* +ci(x—x))+d;, i=12, ...,n (5.30)
wherea, b, ¢, d; (i=1,2, ..., n) are unknown constants to be determined. Since there are n

such polynomials, and each has four unknown constants, there are a total of 4n unknown
constants. Therefore, 4n equations are needed to determine all the unknowns. These



equations are derived based on the same logic as quadratic splines, except that second
derivatives of adjacent splines also agree at the interior knots and two boundary condi-
tions are required.

Splines go through the endpoints and interior knots, and adjacent splines agree at the interior
knots (2n equations)

Si(x1)= Y, Su(xpn) = Ynu
Si+1(xi+1):Si(xi+l)r i:1,2, /n_1 (531)
Si(x,-)zy,-, i=2,3, e n

First derivatives of adjacent splines agree at the common interior knots (n — 1 equations)

Si,(xiJrl) = Si’+1(xi+l)r i= 1/ 2/ . 1 (532)

Second derivatives of adjacent splines agree at the common interior knots (n — 1 equations)

SU(xin) = Sla(xi1), i=1,2, ... ,n—1 (5.33)

A total of |2n|+ + = 4n—2 equations have been generated up to this point. The
other two are provided by the boundary conditions. Boundary conditions indicate the manner

in which the first spline departs from the first data point and the last spline arrives at the last data
point. There are two sets of boundary conditions that are generally used for this purpose.
5.6.3.1 Clamped Boundary Conditions

The slopes with which S, departs from (x;, ;) and S, arrives at (x,.,, J,.,) are specified:

Si(x1)=p, Sn(xum1)=4q (5.34)

5.6.3.2 Free Boundary Conditions

S(x1)=0, S§/(x441)=0 (5.35)

The clamped boundary conditions generally yield more accurate approximations because
they contain more specific information about the splines; see Example 5.12.

5.6.4 Construction of Cubic Splines: Clamped Boundary Conditions
The coefficients a;, b;, ¢;, d; (i=1, 2, ..., n) will be determined by Equations 5.31 through 5.33,

together with clamped boundary conditions given by Equation 5.34.
By Equation 5.30 Si(x;) =d; (i=1, 2, ..., n). The first and last equations in Equation 5.31

yield Si(x;))=y; (=1, 2, ..., n). Therefore,
dizyi, i=1,2, o, n (536)

Leth;=x;; —x;(i=1,2, ..., n) define the spacing between the data points. Using this in the
second equation in Equation 5.31, while noting S,,,(x;,) = d,,;,, we have

di+1=ﬂih?+bihi2+cihi+d,‘, i=1,2, ... ,n—-1



If we define d,,,; = y,.,,, then the above equation will be valid for the rangei=1,2, ..., n
since S,(X,,1) = Y,a- Thus,

di+1 = [lih? + bll’l,z +Cil’l,' + d,‘, i= 1, 2, e n (537)

Taking the first derivative of 5,(x) and applying Equation 5.32, we find

C,‘+1=3ﬂil’l,'2+2b,'hi+ci, i=1,2, . ,n=1

If we define c,,1 = 5;(x,11), then the above equation will be valid for therangei=1,2, ..., n.
Therefore,

Ciy1 = 3aih,-2 + Zb,'hi +c;, i= 1,2, e, n (538)

Taking the second derivative of S,(x) and applying Equation 5.33, yields

2bi+1:6a,’h,‘+2bi, i:1,2, ,7’1—1

If we define b,41 =1 5;(x,.1), then the above equation will be valid for the range i =1,
2, ..., n. Therefore,

bi+1 = 3aih,- + b,‘, i= 1,2, ..., (539)

The goal is to derive a system of equations for b; (i=1, 2, ..., n + 1) only. Solve Equation
5.39 for a; = (b,; — b;)/3h; and substitute into Equations 5.37 and 5.38 to obtain

dl‘+1 = %(Zbl + bl‘+1)hi2 +Cil’li +di, i=1,2, ...,n (540)
and
Ciy1 = (b, +bi+1)hi +c;, i= 1,2, .o n (541)
Solve Equation 5.40 for c;:
diga—d; 1
== —(2b; + b))l .
c I 3( 1) (5.42)

Change i to i — 1 and rewrite the above as

di—-d, 1
i =L~ Qb +b)hiy (5.43)
I’li_l 3

Also change i to i — 1 and rewrite Equation 5.41 as

¢ = (bioi +b)hia +cia (544)



Finally, insert Equations 5.42 and 5.43 into Equation 5.44 to derive

3(din—d) _ 3(di—di)

bi_ hi_ +2bl‘ hl‘ + hi_ + bH ]’li =
1 1 ( 1) 1 hz- I’li71

i=2,3, ...,n (5.45)

This describes a system whose only unknowns are b; (i=1, 2, ..., n + 1) because d; (i=1,
2, ...,n+ 1) are simply the values at the data points and #; (i = 1, 2, ..., n) define the spacing of
the data. Equation 5.45, however, generates a system of n — 1 equations in n + 1 unknowns,
which means two more equations are still needed. These come from the clamped boundary
conditions, Equation 5.34. First, Equation 5.42 with i =1 gives

dy—d; 1
——(2b, +by)h
I 3( 1+ b))y

1=

But ¢; = S{(x;) = p. Then, the above equation can be rewritten as

3(dy —dh)

2b, + b))y =
(2by + by)Iy I

~3p (5.46)

By Equation 5.41,

Cur1 = Oy + by )l +cy
Knowing that ¢,.1 = 5;(x,.1) = g, we have
Cn =g —(by +byi1)hy (5.47)
Equation 5.42 with i = n gives

dn+1 - dn 1
n=" 5 5 an bn+ hn
¢ I 3 (20, + by11)

Substituting Equation 5.47 into the above, we have

_ 3(d11+1 - dn) + 3

(anﬂ + bn )hn = hn

q (5.48)

Combining Equations 545, 546, and 5.48 yields a system of n + 1 equations in n+1
unknowns b; (i=1,2, ..., n+1).
In summary, the coefficients in Equation 5.30 are determined as follows: First,

d,‘zyi, i=1,2, o, n



Next, b;’s are obtained by solving the system

(2by+ by )y = @ _3p
1
biyhi_y +2b;(h; + hi_y) + by by = 3(‘1"; —di) _ 3(d"h_ LEY , i=2,3,...,n (5.49)
i i-1
(2bys1 + b))y, = —w +3g

This system contains a total of n + 1 equations: the first and last are two single equations,
while the one in the middle generates 1 — 1 equations. Recall that i; (i=1, 2, ..., n) defines
the spacing of the data. The system is tridiagonal (see Section 4.3) with a unique solution.
Once b/s are known, Equation 5.42 is used to find ¢;’s:

i:%—%(zbﬁbm)hh i=1,2, ...,n (5.50)

Finally, Equation 5.39 is used to determine a;’s:

a,:b”slih‘ibf, i=1,2, . n (5.51)

EXAMPLE 5.11: CUBIC SPLINES, CLAMPED BOUNDARY CONDITIONS

For the data in Table 5.14 of Example 5.10 construct the cubic splines with clamped
boundary conditions

p=-1, g=1

Solution

Since there are four data points, we have n = 3 so that there are three cubic polynomials
Si(x)=a;(x—x;)’ +bj(x—x;) +ci(x—x;)+d;, i=1,2,3

Following the summarized procedure outlined above, we first find b;s by solving the
system in Equation 5.49:

3(d, —dh)
n
3(ds —dy) 3(dy—dh)
h, In
_3(ds—ds) 3(ds —d>)
hs hy
3(ds — d5)
B +3q

(2b1 + bz )h1 = - 3p

b]h] + sz(hz + h]) + b3h2 =

bohy + 2b3(hs + hy) + byl

(2by + b3)hs =



Note that d;’s are simply the values at data points, hence
dl =5, dz = 23, d3 = 51, d4 = 15

Also h; =1, h, =2, and h; =2.5. Substituting these, together with p=-1 and g =1, the
system reduces to

2 1 0 0]k [-51
1 6 2 0||b| |123
0 2 9 25(b[ |-852
0 0 25 5 ||l |732

which is tridiagonal, as asserted, and its solution is
b, =-4.3551, b, =3.6103, b; =-2.5033, by =2.7157

Next, ¢;s are found by solving Equation 5.50:

d—dy 1
= zhl 1 —§(2b1+b2)h1=_1
0= ds—dy l(zbz +b3)h, =—1.7449
hy 3
o= =% _Lop b =0.4691
h, 3

Finally, a;'s come from Equation 5.51:

b, — by
a = =2.6551
T3
a = bs —b, =-1.0189
3h,
by —bs
a5 = =0.6959
T 3k

Therefore, the three cubic splines are determined as

Si(x) =2.6551(x — 2)° —4.3551(x —2)* = (x —2)+5, 2<x<3
Sy(x)=-1.0189(x — 3)* + 3.6103(x — 3)* —1.7449(x - 3)+2.3, 3<x<5
S5(x) = 0.6959(x — 5)° — 2.5033(x — 5)* + 0.4691(x = 5)+ 5.1, 5<x<7.5

The results are illustrated in Figure 5.22, where it is clearly seen that cubic
splines are much more desirable than the quadratic splines obtained for the same
set of data.



Quadratic spline

Cubic spline

FIGURE 5.22
Cubic and quadratic splines for the same set of data.

5.6.5 Construction of Cubic Splines: Free Boundary Conditions

Recall that free boundary conditions are S7{x;)=0, 5;(x,,1) =0 so that the first and
last data points act as inflection points for the first and last cubic spline, respectively.
Knowing S7(x) = 6a;(x —x;)+2by, the first condition yields b, =0. From previous work,
[/ =%S;’(xn+1) so that the second condition implies b,,, =0. Combining these with
Equation 545 forms a system of n + 1 equations in # + 1 unknowns that can be solved
for b/'s:

b] = 0
biihiy +2bi(hi + hiy) + biahy = 3(di+;l_ &) _ 3(dih_ 4i1) , 1=2,3,...n (5.52)
i i1
bn+1 =0

Once b/s are available, all other unknown constants are determined as in the case of
clamped boundary conditions. In summary, d; (i =1, 2, ..., n + 1) are the values at the data
points, i1; (i =1, 2, ..., n) define the spacing of the data, b;'s come from Equation 5.52, ¢;’s from
Equation 5.50, and 4,’s from Equation 5.51.

EXAMPLE 5.12: CUBIC SPLINES, FREE BOUNDARY CONDITIONS

For the data in Table 5.14 of Examples 5.10 and 5.11 construct the cubic splines with free
boundary conditions.

Solution

The free boundary conditions imply b, =0, b, = 0. Consequently, the system in Equation
5.52 simplifies to



b1=0

6b2 + 2b3 = 123 bz = 25548
b, +9by =-852  by=-1.5144
b4 =0

Next, ¢;s are found by solving Equation 5.50:

=220 Loy b =-3.5516
o3

=58 Lo b, =-0.9968
h, 3

=B Loy bk =1.0840
hy 3

Finally, a;s come from Equation 5.51:

by—b
=277 _ 08516
TS
by — b,
= =-0.6782
2=,
by —bs
= =0.2019
5=,

Therefore, the three cubic splines are determined as

Si(x) =0.8516(x —2)* —3.5516(x —2)+5, 2<x<3
S,(x) = —0.6782(x — 3) + 2.5548(x — 3)* —0.9968(x —3)+ 2.3, 3<x<5
S3(x)=0.2019(x — 5)° — 1.5144(x — 5)* +1.0840(x —5)+ 5.1, 5<x<75

The graphical results are shown in Figure 5.23, where it is observed that the clamped
boundary conditions lead to more accurate approximations, as stated earlier.

5.6.6 MATLAB Built-In Functions interpl and Spline

Brief descriptions of the MATLAB built-in functions interpl and spline are given as:

YI = INTERP1(X,Y,XI,METHOD) specifies alternate methods.

The default is linear interpolation. Use an empty matrix [] to specify
the default. Available methods are:

"nearest"—nearest neighbor interpolation

"linear"—linear interpolation

"spline"—piecewise cubic spline interpolation (SPLINE)
"pchip®—shape-preserving piecewise cubic Hermite interpolation

Of the four methods, the nearest neighbor interpolation is the fastest, and does not
generate new points. It only returns values that already exist in the Y vector. The lin-
ear method is slightly slower than the nearest neighbor method and returns values that
approximate a continuous function. Each of t+he pchip and spline methods generates
a different cubic polynomial between any two data points, and uses these points as two
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FIGURE 5.23
Cubic splines with clamped and free boundary conditions; Example 5.12.

of the constraints when determining the polynomial. The difference between these two
methods is that pchip seeks to match the first-order derivatives at these points with those
of the intervals before and after, which is a characteristic of Hermite interpolation. The
spline method tries to match the second-order derivatives at these points with those of
the intervals before and after.

The pchip method produces a function whose minimums match the minimums of
the data. Also, the function is monotonic over intervals where the data are monotonic.
The spline method produces a smooth (twice-continuously differentiable) function, but
will overshoot and undershoot the given data.

EXAMPLE 5.13: MATLAB FUNCTION INTERP1

Consider the data for x =-2:0.52 generated by y=-1x*+1x% Interpolate and plot
using the four different methods listed in interpl.

Solution

>> X = -2:0.5:2;

>>y = =1, /4 *X NM+1./2.%X."2;

>> xi = linspace(-2, 2);

>> ynear = interpl(x, y, Xi, "nearest");

>> ylin = interpl(x, y, xi, "linear");

>> ypc = interpl(x, y, xi, "pchip®);

>> yspl = interpl(x, y, xi, "spline®);

% Start Figure 5.24

>> subplot(2,2,1), plot(xi,ynear,x,y,"0"), title("Nearest neighbor
interpolation®)

>> hold on

>> subplot(2,2,2), plot(xi,ylin,x,y,"0"), title("Linear interpolation®)
>> subplot(2,2,3), plot(xi,ypc,x,y,"0"), title("Piecewise cubic Hermite
interpolation®)

>> subplot(2,2,4), plot(xi,yspl,x,y,"0"), title("Cubic spline
interpolation®)
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Interpolation by interpl using four methods—Example 5.13.

5.6.7 Boundary Conditions

Y1 = INTERPL(X,Y,XI, "spline®) uses piecewise cubic splines interpolation.
Note that the option "spline® does not allow for specific boundary
conditions.

PP =SPLINE(X,Y) provides the piecewise polynomial form of the cubic
spline interpolant to the data values Y at the data sites X. Ordinarily,
the not-a-knot end conditions™ are used. However, if Y contains two more
values than X has entries, then the first and last value iIn Y are used as
the end slopes for the cubic spline.

We will apply these two functions to the set of data considered in Examples 5.10 through
5.12.

> x =[2357.5]; y=1[52.35.11.5];

>> xi = linspace(2,7.5);

>> yi = interpl(Xx,y,xi,"spline”); % No control over boundary conditions
>> plot(x,y,"0",xi,yi)

>> cs = spline(x,[-1 y 1]); % Specify end slopes of -1 and 1

>> hold on

>> plot(x,y,"o",xi,ppval(cs,xi), " -"); % Figure 5.25

* Not-a-knot condition requires that the third derivatives of neighboring splines agree at the second and the
one to the last data points. This happens to be the default condition used in MATLAB function interpl. “No
control over theboundary conditions” refers to this situation.



I nt er p1* functio
no control over
Deundary conditions

"Spl i ne" function
with end slopes —1 and 1

FIGURE 5.25
Cubic splines using MATLAB built-in functions.

5.6.8 Interactive Curve Fitting and Interpolation in MATLAB

The basic fitting interface in MATLAB allows for interactive curve fitting of data. First
plot the data. Then, under the “tools” menu choose “basic fitting.” This opens a new win-
dow on the side with a list of fitting methods, including spline interpolation and differ-
ent degree polynomial regression/interpolation. By simply checking the box next to the
desired method, the corresponding curve is generated and plotted. Figure 5.26 shows the
spline interpolation and 7th-degree polynomial regression of a set of 21 data points.

_0‘6 1 1 1 1 1 1 1 1 1

FIGURE 5.26
Basic fitting interface in MATLAB.



5.7 Fourier Approximation and Interpolation

So far in this chapter we have mainly discussed curve fitting and interpolation of data
using polynomials. But in many engineering applications we encounter systems that
oscillate, and consequently, the collected data exhibits oscillatory behavior. These types of
systems are hence modeled via trigonometric functions 1, cos t, cos 2t, ..., sin f, sin 2t, ....
Fourier approximation/interpolation outlines the systematic use of trigonometric series
for this purpose.

5.7.1 Sinusoidal Curve Fitting

To present the idea we first consider a very special set of equally spaced data. Later, we will
use a linear transformation to apply the results to any given equally spaced data.

Consider N data points (0, X,), (G, Xy), ..., (On Xy), Where 6, (k=1, 2, ..., N) are assumed
to be equally spaced along the interval [0, 27), that is,

21 21 21
0,=0,0,=",03=2|—1{, ..., =(N-1)| —
1 2 N 3 (Nj on = ( )(N)

It is desired to interpolate or approximate this set of data by means of a function in the
form

f(o)=3a +Z[aj c0s jo + b; sin jo]

j=1
=1lay+mcosc+ -+ +a,cosmo+bsinc+ -+ +b,sinmo (5.53)

where f(0) is a trigonometric polynomial of degree m if a,, and b,, are not both zero.
Interpolation requires f(c) to go through the data points, while approximation (curve fit)
is in the sense of least squares, Section 5.4. More specifically, the coefficients a,, a,, ..., a,,
b, ... b, are determined so as to minimize

m

N
sz %”°+Z[“/C05j6k+bjsinj6k] — X (5.54)

k=1 j=1

A necessary condition for Q to attain a minimum is that its partial derivatives with
respect to all coefficients vanish, that is,

9Q 2Q . aQ ,
<=0, —==0 (j=12,..,m), —==0 (j=12,..,
o on, (j ) o, (j m)



The ensuing system of 2m + 1 equations can then be solved to yield

N
2 . .
a]:NkEl xycosjox, j=0,1,2,...,m
- (5.55)

N

b; =

i xesinjox, j=1,2,...,m

z[m

k=1

5.7.1.1 Fourier Approximation

If 2m+1< N (there are more data points than unknown coefficients), then the least-
squares approximation of the data is described by Equation 5.53 with coefficients given
by Equation 5.55.

5.7.1.2 Fourier Interpolation

For interpolation, the suitable form of the trigonometric polynomial depends on whether
Nis odd or even.

e Casel:N=odd=2m+1

In this case, the interpolating trigonometric polynomial is exactly in the form of
the approximating polynomial.

e Case 2: N = even =2m
The interpolating polynomial is in the form

f(o)=1ay+acosc+a,c0826 ++ -+ a,, cos(m—1)6 + % a,, cos mo
+bsinc+b,sin26+:--+b,,_; sin(m—1)c (5.56)

where the coefficients are once again given by Equation 5.55.

5.7.2 Linear Transformation of Data

Fourier approximation or interpolation of an equally spaced data (t,, x,), (t,, x5), ..., (tx, Xn)
is handled as follows. First assume the data is (6, x;), (05, X,), ..., (Oy Xy) equally spaced
over [0, 2m) and apply the results presented above. Then transform the data back to its
original form. Such linear transformation is completely described by the connecting line
from (oy, t;) to (Oy, ty) in the 6 —t coordinate system; see Figure 5.27. The equation of this
connecting line is

ON

C= t—t
g 00
. 21 .
Noting oy = (N - D(N)' this reduces to
N-1)2
_(N=IRm (5.57)

 N(ty—t)



=——""(t-t)

FIGURE 5.27
Linear transformation of data.

The user-defined function TrigPoly finds the appropriate Fourier approximation
or interpolation of an equally spaced data by first assuming the data is equally spaced
over [0, 2m) and then transforming the data to agree with the range of the original set.
The function also returns the plot of the interpolating/approximating trigonometric
polynomial and the given set of data.

function [a, b] = TrigPoly(x, m, tl1, tN)

% TrigPoly approximates or interpolates a set of equally spaced
% data (tl1, x1), .., (tN, xN) by a trigonometric polynomial of degree m.

% [a, b] = TrigPoly(x, m, t1, tN), where

%

% X = [x1 x2 .. xN],

% m is the degree of the trigonometric polynomial,

% tl and tN define the interval endpoints (interval open at tN),
%

% a and b are the vectors of coefficients of the polynomial.
%

% Case(l) Approximation if 2*m + 1 < N,

% Case(2) Interpolation if 2*m + 1 = N or 2*m = N.

N = length(x);

% Consider an equally-spaced data from s=0 to s=2*pi
h = 2*pi/N; s = 0:h:2*pi-h; s = s7;

zeros(m,1); % Pre-allocate

Q
Il

x*cos(i*s);

= x*sin(i*s);

end

a = 2*a/N; b = 2*b/N; a0 = sum(x)/N;



if N = 2*m,
a(m) = a(m)/2;
end
ss = linspace(0,2*pi*(N-1)/N,500); % 500 points for plotting
xx = a0 + a(l)*cos(ss) + b(1)*sin(ss);
for i = 2:m,
XX = XX + a(i)*cos(i*ss) + b(i)*sin(i*ss);

end
% Transform from s to t

= N*((EN-t1)/(2*pi*(N-1)))*s + tl1;

= N*((EN-t1)/(2*pi*(N-1)))*ss + ti1;

plot(tt,xx,t,x,"0%)

= [a0;a];

EXAMPLE 5.14: FOURIER APPROXIMATION

Find the first-degree approximating or interpolating trigonometric polynomial for the
data in Table 5.15. Confirm the results by executing the user-defined function TrigPoly.

Solution
First treat the data as (6y, xy), (G2, X,), ..., (G5, Xs5), equally spaced over [0, 2r). That is,

Since m=1 and N =5, we have 2m +1 <N so that the polynomial in Equation 5.53
is the suitable form for approximation; in particular, f(c)=%4ay+acosc +b;sinc.
The coefficients are provided by Equation 5.55 as

5
%zzxk=%%8+32 4.1-3.9+3.3)=2.1200

k=1
5

% Xk c0s Oy = 2[6.8cos(0) + 3.2cos(2n/5) — 4.1cos(4n /5) — 3.9cos(6m/5)
=1

+3.3cos(8m/5)] = 6.1123

5
%Zxk sinoy = £[6.8sin(0) + 3.2sin(21/5) — 4.1sin(4n/5) — 3.9sin(67/5)

k=1

+3.3sin(8n/5)] = —0.0851

TABLE 5.15

Data in Example 5.14

t x
0.5 6.8
0.7 3.2
0.9 —4.1
1.1 -3.9

1.3 3.3
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FIGURE 5.28
Fourier approximation of the data in Example 5.14.

Therefore, the least-squares approximating polynomial is f(c)=1.06+ 6.1123
cos 6 — 0.0851 sin 6. But variables t and ¢ are related via Equation 5.57,

_ (5-12n

°" m(f ~0.5)=6.2832(t - 0.5)

The approximating trigonometric polynomial is then formed as

f(t)=1.06+6.1123 cos (6.2832(t — 0.5)) — 0.0851sin (6.2832(t — 0.5))

Executing the user-defined function TrigPoly yields the coefficients of the trigono-
metric polynomial as well as the plot of this polynomial and the original data. This is
shown in Figure 5.28.

> X = [6.8 3.2 -4.1 -3.9 3.3];
>> [a, b] = TrigPoly(x, 1, 0.5, 1.3)

a =
1.0600
6.1123

b =

-0.0851

EXAMPLE 5.15: FOURIER INTERPOLATION

Find the third-degree approximating or interpolating trigonometric polynomial for
the data in Table 5.16. Confirm the results by executing the user-defined function
TrigPoly. Find the interpolated value at ¢ = 0.66.



TABLE 5.16
Data in Example 5.15

t x

0.10
0.25
0.40
0.55
0.70
0.85

_ == O O O

Solution
First treat the data as (6, x,), (G, X»), ..., (G, X,), equally spaced over [0, 2m). That is,

G—OG—EG—Z—nc—nG—ﬂCG—S—n
1 /23/3 3/4 7 V5 3/6 3

Since m =3 and N = 6, we have 2m = N so that the trigonometric polynomial interpo-
lates the data and is given by Equation 5.56, more specifically

f(0)=+ay +a,cosG + a, cos 26 + +a; cos 36 + by sinc + b, sin 26

The coefficients are provided by Equation 5.55 as

6 6 6
aoz%z‘xk =1, allexkcosck:—O.?:B?)B, aZ:%ZkaOSZGk:O
k=1 k=1 k=1
6 6 6
=%2xkcos36k =-0.3333, =%2xksm6k =-0.5774, b, =%2xk sin20; =
k=1 k=1 k=1

This yields f(c)=4-0.3333cosc —0.1667 cos36 —0.5774sinc. But variables t and ¢
are related via Equation 5.57,

(6-1)21
= 612 610y=6.9813(t-0.1
0= 6(0.85-0.10)" ) (t-0.)

Therefore, the interpolating trigonometric polynomial is formed as

F()=1-0.3333c0s(6.9813(t — 0.10)) — 0.1667 cos(3 x 6.9813(t — 0.10)) — 0.5774in(6.9813(t — 0.10))

The interpolated value at t = 0.66 is

£(0.66) =1.0293

Executing the user-defined function TrigPoly yields the coefficients of the trigono-
metric polynomial as well as the plot of this polynomial and the original data. This is
shown in Figure 5.29.

> x=[000111];
>> [a, b] = TrigPoly(x, 3, 0.10, 0.85)
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FIGURE 5.29
Fourier interpolation of the data in Example 5.15.
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The numerical results agree with those obtained earlier.

5.7.3 Discrete Fourier Transform

Periodic functions can conveniently be represented by Fourier series. But there are many
functions or signals that are not periodic; for example, an impulsive force applied to a
mechanical system will normally have a relatively large magnitude and will be applied
for a very short period of time. Such non-periodic signals are best represented by the
Fourier integral. The Fourier integral of a function can be obtained while taking the
Fourier transform of that function. The Fourier transform pair for a continuous function
x(t) is defined as

(o) = j (B dt
- (5.59)

oo

x(f) = i J ()™ dw

—oo



The first equation gives the Fourier transform x(w) of x(f). The second equation uses
X(w) to represent x(f) as an integral known as the Fourier integral. In applications, the
data is often collected as a discrete set of values and hence x(t) is not available in the
form of a continuous function. To that end, a discretized version of Equation 5.58 must be
formulated.

Divide an interval [0, T] into N equally spaced subintervals, each of width / =T/N.
Consider the set of data chosen as (f,, x;), ..., (fya, Xno) Such that t,=0, t;=t,+h, ...,
tya =ty + (N = 1Dh. Note that the point ty =T is not included.” Equation 5.58 is then dis-
cretized as

N-1

fo= Y ne ™, k=01, N1, 0= (5.59)
n=0
N-1
xn=% &keikmn, n=01 ..., N-1 (5.60)
k=0

where X; is known as the discrete Fourier transform (DFT). Equations 5.59 and 5.60 can
be used to compute the Fourier and inverse Fourier transform for a set of discrete data.
Calculation of the DFT in Equation 5.59 requires N? complex operations. Therefore, even
for data of moderate size, such calculations can be quite time-consuming. To remedy that,
the fast Fourier transform (FFT) is developed for efficient computation of the DFT. What
makes FFT computationally attractive is that it reduces the number of operations by using
the results of previous calculations.

5.7.4 Fast Fourier Transform

The FFT algorithm requires roughly N log, N operations as opposed to N? by the DFT; and
it does so by using the fact that trigonometric functions are periodic and symmetric. For
instance, for N = 100, the FFT is roughly 15 times faster than the DFT. For N = 500, it is about
56 times faster. The first major contribution leading to an algorithm for computing the FFT
was made by J. W. Cooley and ]. W. Tukey in 1965, known as the Cooley-Tukey algorithm.
Since then, a number of other methods have been developed that are essentially conse-
quences of their approach.

The basic idea behind all of these techniques is to decompose, or decimate, a DFT of
length N into successively smaller length DFTs. This can be achieved via decimation-in-
time or decimation-in-frequency techniques. The Cooley-Tukey method, for example, is a
decimation-in-time technique. Here, we will discuss an alternative approach, the Sande-
Tukey algorithm, which is a decimation-in-frequency method. The two decimation tech-
niques differ in how they are organized, but they both require N log, N operations. We will
limit our presentation to the case N = 2 (integer p) for which the techniques work best, but
analogous methods will clearly work for the general case N = NN, ... N,, where each N; is
an integer.

* Refer to RW. Ramirez, The FFT, Fundamentals and Concepts, Prentice-Hall, 1985.



5.7.4.1 Sande-Tukey Algorithm (N = 27, p = integer)

We will present the simplified algorithm for the special case N = 2” where p is some integer.
Recall from Equation 5.59 that the DFT is given by

N-1

R = zxne—ik(Zn/N)nl k=0,1, ... ,N-1 (5.61)

n=0

Define the weighting function W = e-?¥N)i so that Equation 5.61 may also be written as

N-1

;ckzzxnwk", k=0,1, ... , N-1 (5.62)

n=0

We next divide the sample of length N in half, each half containing N/2 points, and write
Equation 5.61 as

(N/2)-1 N-1
3 = Z xne—tk(ZN/N)n " Z xne—zk(Zn/N)n
n=0 n=N/2

Since summations can only be combined if their indices cover the same range, introduce
a change of variables in the second summation and rewrite this last equation as

(N/2)1 N
% = Z x, e k@R /N z Xoiny2 o~ k@U/N)(n+N/2)
n=0 n=0
Combine & —imk —2mkni/N
= [xn te xn+N/2]e (563)
n=0

But

o = coskn—isinkn = (1) =] | F= e
TSR T T ik = odd

Therefore, the expression for X, will depend on whether the index is even or odd.
For even index, Equation 5.63 yields

N/2) . (N/2)-1
Substitute n(2kyni/N Rewrite [@n/N)il2kn
E xn + xn+N/2]e E [xn + xn+N/2]e
2k fork
n=0
For odd index,
. (N/2)-1 . (N/2)-1
Substitute Rewrite
z _ —2n(2k+1)ni/N _ —[(2r/N)iln ,—[(27/ N )i]2ki
Ry = E [ — Xy o Jle 2PN < E [t — Xy Je 1 ER/ Mg R/ N2
or

n=0 n=0



In terms of W = e @N)i defined earlier,

(N/2)-1

Xok = 2 [ + X /2 W (5.64)
n=0
(N/2)-1
Saa= ) (L= X2 W W (5.65)
n=0

Next, define

n=Xn T Xt
Y N2 20,1, .. (N/2)-1 (5.66)
Zy = [xn - xn+N/2]W

Inspired by Equation 5.62, it is easy to see that the summations in Equations 5.64 and 5.65
simply represent the transforms of y, and z,. That is,

Xop =1
T k_01, . (N/2)-1
Xok+1 = Zk

Consequently, the original N-point computation has been replaced by two (N/2)-point
computations, each requiring (N/2)> = N?/4 operations for a total of N?/2. Comparing with
N2 for the original data, the algorithm manages to reduce the number of operations by a
factor of 2. The decomposition continues, with the number of sample points divided by
two in each step, until N/2 two-point DFTs are computed. To better understand how the
scheme works, we present the details involving an 8-point sample.

5.7.4.2 Case Study: N=23=8

An 8-point DFT is to be decomposed successively using Sande-Tukey algorithm (decima-
tion-in-frequency) into smaller DFTs. Figure 5.30 shows the details in the first stage where
two 4-point DFTs are generated. The intersections that are accompanied by “+” and/or “~”
signs act as summing junctions. For example, by Equation 5.66 we have

Yo=Xo+Xy, zp=(xo— x4 )W°

The operation y, = x, + x, is handled by a simple addition of two signals. To obtain z, we
first perform x, — x,, then send the outcome to a block of WP. The same logic applies to the
remainder of the sample.

Next, each of the four-point DFTs will be decomposed into two 2-point DFTs, which will
mark the end of the process for the case of N =§; see Figure 5.31. Also N =27 =8 implies
p =3, and there are exactly three stages involved in the process. Furthermore, since N =8
we have W = ¢ @v/N)i = ¢-@/4i and

WO = 1, W= e /i %(l—i), W2 = ¢~ (®/2i — -, W3 = ¢~ Gn/4)i #(1_’_1-)
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FIGURE 5.30
First stage of decomposition (decimation-in-frequency) of an 8-point DFT into two four-point DFTs.
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FIGURE 5.31
Complete decomposition (decimation-in-frequency) of an 8-point DFT.

The computed Fourier coefficients appear in a mixed order but can be unscrambled using
bit reversal as follows: (1) express the subscripts 0 through 7 in binary form,’ (2) reverse the
bits, (3) express the reversed bits in decimal form. The details are depicted in Table 5.17.

5.7.4.3 Cooley-Tukey Algorithm (N = 2¢, p = integer)

The flow graph for the Cooley-Tukey algorithm is shown in Figure 5.32. The initial sample
is divided into groups of even-indexed and odd-indexed data points, but the final outcome
appears in correct order.

* For example, 5=1x2*+0x2" +1x2° =(101),.



TABLE 5.17
Bit Reversal Applied to the Scenario in Figure 5.31

Mixed Binary Reverse Unscrambled
Order Subscripts Bits Order

Xo 0—000 000—0 Xo

X4 4-100 001-1 X

X2 2010 010-2 X2

Xe 6—110 011-3 X3

X 1-001 1004 X4

Xs 5-101 101-5 Xs

X3 3-011 110—6 X6

Xy 7-111 1117 Xy

FIGURE 5.32
Complete decomposition (decimation-in-time) of an 8-point DFT.

5.7.5 MATLAB Built-In Function fft

The MATLAB built-in function FFt computes the DFT of an N-dimensional vector using
the efficient FFT method. The DFT of the evenly spaced data points x(1), x(2), ..., x(N) is
another N-dimensional vector X(1), X(2), ..., X(\N) where

N
X(k)= Y x(me VDN, =10, N
n=1

5.7.5.1 Interpolation Using fft

A set of equally spaced data (¢, x;), k=1, 2, ..., N is interpolated using FFt as follows. The
data is first treated as

(Glrxl)/(02/x2)/ eee ,(GN,xN)



where 6, (k=1,2, ..., N) are equally spaced along the interval [0, 2r), that is,

2rn 2n 2n
(51=O,(52=W,(53 =2(Nj, ey GN=(N—1)(NJ

The FFT of the vector [xl Xy ... xN] is computed using MATLAB built-in function
Fft. The resulting data is then used in Equation 5.60, with index ranging from 1 to N, to
reconstruct x,. Finally, the data is transformed to its original form and plotted.

EXAMPLE 5.16: INTERPOLATION USING FFT

Table 5.18 contains the equally spaced data for one period of a periodic waveform.
Construct and plot the interpolating function for this data using the MATLAB
function TFt.

Solution

We will accomplish this in two steps: First we compute the FFT of the given data, and
then use the transformed data to find the interpolating function by essentially recon-
structing the original waveform. Note that the reconstruction is done via Equation 5.60,
rewritten as

_ 5 2mi(k=1)(n-1)/16
xn—116§:xke (k=1)(1-1)

where we will use 7 = 1:200 for plotting purposes. The 16 values of X; are obtained as
follows:

>> x = [2.95 2.01 0.33 .71 .11 .92 -.16 .68 -1.57 -1.12 -.58 -.69 -.21
-.54 -.63 -2.09];

>> Capx = FFe(x)*"

Capx =

0.1200
5.1408 + 6.1959i

TABLE 5.18

Data in Example 5.16

t x t x
0.0 2.95 0.8 -1.57
0.1 2.01 0.9 -1.12
0.2 0.33 1.0 -0.58
0.3 0.71 1.1 -0.69
0.4 0.11 12 -0.21
0.5 0.92 13 —-0.54
0.6 -0.16 14 -0.63

0.7 0.68 15 -2.09




0.8295 + 1.9118i
4.4021 + 5.0122i
2.3200 + 2.66001
4.0157 + 3.7006i
2.1305 + 0.8318i1
4.5215 + 3.6043i
0.3600

4.5215 - 3.6043i
2.1305 - 0.8318i
4.0157 - 3.70061
2.3200 - 2.6600i
4.4021 - 5.0122i
0.8295 - 1.9118i
5.1408 - 6.1959i

Let Xx; = o + 1Py so that

16 16
X, =4 Y e D6 o %Z[ak + iBe]lcos(2n(k — 1)(n —1)/16) + isin(2m(k — 1)(1n — 1)/16)]

k=1 k=1

Note that o, = o, ..., 0g =0y and B, =Py, ..., Bs =Py Also o, multiplies cos((n — 1)m)
which alternates between 1 and -1 so that over a range of 200 values for n will cancel
out. Finally, o, multiplies cos 0 = 1. Then, the above can be written as

8
Xy = o+ §z [, cos(2m(k — 1)(1 — 1)/16) — By sin(2n(k — 1)(11 — 1)/16)]

k=2

The following MATLAB code will use this to reconstruct the original waveform.

x = [2.95 2.01 .33 .71 .11 .92 -.16 .68 -1.57 -1.12 -.58 -.69 -.21 -.54 -.63 -2.09];
N = length(x);
tN = 1.5; t1 = 03
Capx = fft(xX); % Compute FFT of data
% Treat data as equally spaced on [0, 2*pi)
h = 2*pi/N; s = 0:h:2*pi-h; s = s7;
ss = linspace(0,2*pi*(N-1)/N,200); % 200 points for plotting purposes
y = zeros(200,1); % Pre-allocate
% Start reconstruction & interpolation
for i = 1:200,
y(i) = Capx(1)/2;

for k = 1:8,
y(i) = y(i) + real(Capx(k+1l))*cos(k*ss(i)) - imag(Capx(k+1l))*sin(k*ss(i));
end

y(@i) = (1/8)*y(i);
end
% Transform data to original form
t = N*((EN-t1)/2*pi*(N-1)))*s + t1;
tt = N*((tN-t1)/(2*pi*(N-1)))*ss + t1;

plot(tt,y,t,x,"0") % Figure 5.33



Interpolating polynomial using FFT
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FIGURE 5.33
Interpolations using FFT in Example 5.16.

PROBLEM SET (CHAPTER 5)
Linear Regression (Section 5.2)
In Problems 1 through 9, for each set of data,

a. 45 Using least-squares regression, find a straight line that best fits the data.

b. 4\ Confirm the results by executing L inearRegression.

1. Table P1
TABLE P1
x Yy
0.5 0.22
0.6 0.41
0.7 0.69
0.8 0.88
0.9 1.14
2. Table P2
TABLE P2
x Yy
0.1 3.4
0.4 3.78
0.7 4.01
1.0 4.35
1.3 457

1.6 4.88



3. Table P3

4. Table P4

5. Table P5

6. Table P6

TABLE P3

D N =~ N O

TABLE P4
x

-12

-0.8

-0.4

0.0
0.4

TABLE P5

=

O 0 N U W N

TABLE P6
x

5

11
14
26
30
41
46

2.2
15
0.8
0.1
-0.8
-1.3

—-0.43
0.02
0.51
1.05
1.60

2.5
3.1
3.4
47
5.1
49
6.1

6.8
19.7
26
46.5
60
80.4
88.1



7. Table P7

8. Table P8

9. Table P9

TABLE P7

x y

1 7.27

2 9.7

3 10.2

4 12.3

5 16.6

6 19

7 214

8 24

9 259

10 29
TABLE P8
x y
-1 23
1 29
2 35
4 47
5 5.0
7 5.9
8 6.7
10 7.4
1 8.1
13 9.3
TABLE P9
x y
-32 5.89
-21 457
-05 2.82
0.8 1.23
1.9 -0.07
32 -1.69
42 —2.92
49 -3.74
55 451
6.8 -591



10. 4 The yield of a chemical reaction (%) at several temperatures (°C) is recorded in
Table P10.

a. Execute the user-defined function LinearRegression to find and plot a
straight line that best fits the data.

b. Using the line fit, find an estimate for the yield at 280°C.

TABLE P10

x (Temperature °C) y (Yield %)
165 794
190 83.5
215 84.7
230 86.2
245 88.1
260 89.4
275 91.9
290 92.9
300 95.1
310 96.3

11. In a linear coiled spring, the relation between spring force (F) and displacement (x)
is described by F = kx, where k is the (constant) coefficient of stiffness of the spring.
Testing on a certain spring has led to the data recorded in Table P11. All parameter
values are in consistent physical units.

a. 4 Execute the user-defined function LinearRegression to find and plot a
straight line that best fits the data.

b. Using (a), find the estimated value for the coefficient of stiffness, and the dis-
placement corresponding to F = 150.

TABLE P11

x (Displacement) F (Force)
0.2 43.5
0.3 65.7
0.5 109.8
0.6 133
0.8 176.2
0.9 198.2
1.1 242.3
1.3 285.8
1.4 307.8

1.6 352.2




12. 4 Students’ scores on the mathematics portion of the SAT exam and their GPA
follow a linear probabilistic model. Data from 10 students have been collected and
recorded in Table P12.

a. Execute the user-defined function LinearRegression to find and plot a
straight line that best fits the data.

b. Using the line fit, find an estimate for the GPA of a student whose test score
was 560.

TABLE P12

x (Test score) y (GPA)
360 1.70
400 1.80
450 1.90
480 1.95
500 2.15
520 2.30
590 2.80
610 3.00
640 3.25
740 3.80

Linearization of Nonlinear Data (Section 5.3)

13. 4 Show that in Example 5.3 an exponential function is not a suitable fit for the
data.

4 In Problems 14 through 18, fit an appropriate function (exponential, power, or satura-
tion) to the given data.

14. Data in Table P14

TABLE P14

x Y
0.5 0.11
1 0.19
15 0.27
2 0.34
2.7 0.40
3.5 0.50
42 0.52
5 0.56
6 0.60

7 0.66



15. Data in Table P15

TABLE P15
X Yy
0 1.3
0.2 2.1
0.4 3.0
0.6 5.2
0.8 8.4
1.0 135
1.2 22
14 33.5
1.6 53
1.8 85.4
16. Data in Table P16
TABLE P16
X Yy
0.2 2.8
0.3 3.6
0.5 5.3
0.6 6.4
0.8 8.5
1.0 124
1.1 153
1.3 22.2
17. Data in Table P17
TABLE P17
x Yy
1 0.27
0.51
3.5 0.60
0.74
0.79
0.82
9.5 0.90

10 0.87



18. Data in Table P18

TABLE P18

X Y
1 3.0
1.6 3.4
2 3.7
2.5 3.8
3 42
34 45
4 4.7
4.6 4.8
5 5.0

5.8 52

19. 4 In many applications involving chemical processes, the experimental data fol-
lows an s-shaped curve as in Figure 5.34, where the data approaches a steady-state
value of 1. For these cases, curve fitting is done by approximating the s-shaped
curve by y =1+ Ae ™ where A <0 since y <1 for all data, and o > 0. Rearrange and
take the natural logarithm to obtain

In|y—1=-at+1n|A]

so that In|y — 1| versus f is linear with a slope of —o. and an intercept of In|A|. The
slope and the intercept can be found by linear regression. Apply this procedure to
the data in Table P19 to determine the parameters A and c. Plot the original data
and the curve fit just obtained.

1fFF=-———————-———=- Steady state

FIGURE 5.34
An s-shaped curve—chemical process.



TABLE P19

t

1
1.5
2.5
3

4
55
7

8

9
10

0.38

0.43
0.68
0.79
0.90
0.94
0.96
0.97
0.98

0.99

20. “#\ Repeat Problem 19 for the data in Table P20.

TABLE P20

Polynomial Regression (Section 5.4)

21. ‘\Writeauser—defined function [a;, a,, &,, a,] =CubicRegression (X, Y)
that uses the cubic least-squares regression approach to find the third-degree
polynomial that best fits a set of data. The coefficients a3, a,, a,, a, are found by
expressing the appropriate 4 x 4 system of equations in matrix form and solving
by “\” in MATLAB. The function also should return the plot of the data and the

22.

best cubic polynomial fit.

‘\Using LinearRegression and CubicRegression (Problem 21) find and
plot (same figure) the first- and third-order polynomials that best fit the data in

Table P22.

0.68

0.79
0.83
0.92
0.95
0.97
0.97
0.98
0.98

0.99



TABLE P22

x y

0.8 49
2.6 5.7
4 6.3
4.8 6.1

6.5 7.2

23. 4 Repeat Problem 22 for the data in Table P23.

TABLE P23

x y
0.0 1.2
0.3 1.8
0.6 2.8
0.9 3.6
1.1 44

1.4 41

2, M\ Using the user-defined functions of Section 5.4 find and plot (same figure) the
straight line and the second-order polynomial that best fit the data in Table P24.
Discuss the results.

TABLE P24

x y
0 2.0
1 42
2 5.7
3 6.7
4 7.9
5 9.1

25. ®\ Repeat Problem 24 for the data in Table P25,

TABLE P25

x 4
0.1 0.8
0.3 1.0
0.5 15
0.7 22

0.9 3.3



26. ‘\Using the polyfit and polyval functions find and plot (same figure) the
third- and fourth-degree polynomials that best fit the data in Table P26.

TABLE P26

=
<

1.2

4.8

7.1

N QU1 = W N
(o)}

27. ‘\Using the polyfit and polyval functions find and plot (same figure) the
third- and fifth-degree polynomials that best fit the data in Table P27. Discuss
the results.

TABLE P27

X Y
0 3.4
1 5.1
2 6.0
3 7.2
4 9.3
5 10.1

28. 4 During the free fall of a heavy object, the relationship between the velocity v of
the object and the force r resisting its motion—both in consistent physical units—
is described by the data in Table P28.

a. Using the polyfit and polyval functions find and plot the second-degree
polynomial that best fits the data.

b. Using the result of (a) find the force of resistance corresponding to a velocity

of 1.75.
TABLE P28
Velocity (v) Resistance (7)
0 0
04 0.11
0.8 0.52
1.2 1.03
1.6 1.78
2.0 2.72
24 4.03
2.8 5.46

32 7.24




29. ‘\Consider the data in Table P29 generated by the function y = 3*-%4. Using the
polyfit and polyval functions find the estimated value at x = 1.3 given by a
third-degree and a fourth-degree polynomial fit, calculate the % relative error for
each estimate, and comment on accuracy.

TABLE P29

x y = 3)(—0.4
0.20 0.8027
0.50 1.1161
0.90 1.7321
1.20 2.4082
1.40 3.0000
1.70 41712

30. ‘\Using the polyfit and polyval functions find and plot the second-degree
polynomial that best fits the data in Table P30. Also find the estimated value at

x=1.85.

TABLE P30

x y
0.53 8.03
0.95 6.69
1.30 5.62
1.72 461
2.01 3.89
234 3.38
2.93 2.61
3.12 2.36
4.08 1.98
4.40 212

Polynomial Interpolation (Section 5.5)
Lagrange Interpolation

31. Given the data in Table P31,

a. &S Interpolate at x=0.75 using the second-degree Lagrange interpolating
polynomial.

b. i\ Confirm the results by executing Lagrangelnterp.

TABLE P31

x Y
0.2 0.43
0.5 0.32

0.9 0.13



32. Given the data in Table P32,

a. &S Interpolate at x=0.85 using the second-degree Lagrange interpolating
polynomial.

b. i\ Confirm the results by executing LagrangelInterp.

TABLE P32

X Y
0.3 -0.25
0.7 -0.41

1.0 -0.16

33. &5 Given the data in Table P33,

a. Interpolate at x = 3 with a first-degree Lagrange polynomial using two most
suitable data points.

b. Interpolate at x =3 with a second-degree Lagrange polynomial using three
most suitable data points.

c. Calculate the % relative errors for the results of (a) and (b), and discuss.

TABLE P33

x y = sin(x/3)
0 0

1 0.3272

2 0.6184

4 0.9719

34. 25 Given the data in Table P34,

a. Interpolate at x =2.5 with a first-degree Lagrange polynomial using two most
suitable data points.

b. Interpolate at x = 2.5 with a second-degree Lagrange polynomial using three
most suitable data points.

c. Calculate the % relative errors for the results of (a) and (b), and discuss.

TABLE P34

X y =log,,(x)

1 0

1.5 0.1761
0.3010

3 04771

5 0.6990




35. i\ Using format long and the user-defined function Lagrangelnterp, given
the data in Table P35, determine the four most suitable data points to interpolate at
x = 0.6 with a third-degree Lagrange polynomial.

TABLE P35

x y=e2B
0.2 0.8752
0.4 0.7659
0.5 0.7165
0.8 0.5866
1.1 0.4803

1.3 0.4204

36. i\ Using Tormat long and the user-defined function Lagrangelnterp, given
the data in Table P36, determine the four most suitable data points to interpolate at
x = 0.5 with a third-degree Lagrange polynomial.

TABLE P36

x y=3>
0.1 0.8960
0.2 0.8027
0.4 0.6444
0.7 0.4635
0.9 0.3720
1.1 0.2987

37. Consider the data in Table P37.

a. &S Interpolate at x = 1.7 via a second-degree Lagrange polynomial by using
two suitable sets of three data points, and calculate the % relative errors for
both cases.

b. i\ Confirm the results of (a) in MATLAB.

TABLE P37

x y=x2
0.2 0.3420
1.2 1.1292
3 2.0801
6 3.3019

38. 4 The measured velocity of a moving object is recorded in Table P38. It is desired
to estimate the velocity at t = 12 seconds, between the last two data points where
there exists a relatively large gap. Plot the entire data. In the same graph, plot the



second-degree Lagrange interpolating polynomial that goes through the last three
data points, and the third-degree Lagrange interpolating polynomial that goes
through the last four data points. Also find the interpolated values at t = 12 given

by the two polynomials.

TABLE P38

Time (8), s

Velocity (v), ft/s

2
4
7
9
15

120
564
873
1012
1670

Newton Interpolation (Divided Differences)

39. Given the data in Table P39,

a. 45 Construct the divided differenes table and use Newton interpolating
polynomials to interpolate at x = 0.25 using the first two points, the first three

points, and the entire data.

b. i\ Confirm the results of (a) by executing NewtonlInterp.

TABLE P39

X Y

0 1

0.5 0.9098
0.9 0.7725
1.2 0.6626

40. Given the data in Table P40,

a. 5 Construct the divided differenes table and use Newton interpolating poly-
nomials to interpolate at x = 0.3 using the first two points, the first three points,

and the entire data.

b. 4 Confirm the results of (a) by executing NewtonlInterp.

TABLE P40

x Y
0 1
0.4 2.68
0.8 5.79

1

8.15



41. £S5 Consider the data in Table P41.

a. Construct a divided differences table and interpolate at x =1.75 using the
third-degree Newton interpolating polynomial p,(x).

b. Suppose one more point (x=3, y=9.11) is added to the data. Update the
divided differences table of (a) and interpolate at x =1.75 using the fourth-
degree Newton interpolating polynomial p,(x).

TABLE P41

X Y
1 1.22
15 2.69
2 448

2.5 6.59

42, 4 Consider the data in Table P42.
a. Construct a divided differences table and interpolate at x = 4 using the third-
degree Newton interpolating polynomial p;(x).
b. Suppose one more point (x=7, y=0.18) is added to the data. Update the
divided-difference table from (a) and interpolate at x =4 using the fourth-
degree Newton interpolating polynomial p,(x).

TABLE P42

X Y
1 1

3 0.45
5 0.26
6 0.21

43. Given the data in Table P43,

a. 45 Construct a divided differences table and interpolate at x = 2.6 and x = 4.4
using the fourth-degree Newton interpolating polynomial p,(x).

b. i Confirm the results by executing the user-defined function NewtonlInterp.

TABLE P43

=
<

0.69
1.10
1.39
1.61
1.95

N =W N

44. Given the data in Table P44,

a. 45 Construct a divided differences table and interpolate at x = 2.7 and x = 5.3
using the fourth-degree Newton interpolating polynomial p,(x).



b. 4 Confirm the results by executing the user-defined function NewtonlInterp.

TABLE P44

=

Y

0.89
1.81
2.94
4.38
8.72

N =W N

45. 4 Consider the data in Table P45. It is desired to find an estimate at x =10,
between the last two data points where there exists a relatively large gap. Plot the
entire data. In the same graph, plot the second-degree Newton interpolating poly-
nomial that goes through the last three data points, and the third-degree Newton
interpolating polynomial that goes through the last four data points. Also find the
interpolated values at x = 10 given by the two polynomials.

TABLE P45

x 4

1 1

2 1.4142
3.5 1.8708
5 2.2361
7 2.6458
12 3.4641

46. 4 Consider the data in Table P46. It is desired to find an estimate at x = 7. Plot the
entire data. In the same graph, plot the first-degree Newton interpolating poly-
nomial that goes through the last two data points, the second-degree polynomial
that goes through the last three data points, and the third-degree polynomial that
goes through the last four data points. Also find the interpolated values at x =7
given by the three polynomials. Comment on the accuracy of each estimate.

TABLE P46

x y= ex/3

1.3956
2.7183
3.7937
5.2945
7.3891
14.3919

@ O Ul = W =

Newton Interpolation (Forward Differences)

47. 5 For the data in Table P47, construct a forward-differences table and interpolate
at x = 2.3 using Newton interpolating polynomial p,(x).



TABLE P47

®
<

1.25
3.25
7.25
13.25
21.25

Ql = W N =

48. 25 Consider the data in Table P48.
a. Construct a forward-differences table and interpolate at x = 1.26 using Newton
interpolating polynomials p5(x), going through the first four data points, and
Pa().
b. Suppose a new point (x =15, y=4.27) is added to the data. Interpolate at
x = 1.26 using Newton interpolating polynomial ps(x).

TABLE P48

X Y
1.0 1.30
1.1 1.75
12 2.27
1.3 2.86

1.4 3.52

49. 25 For the data in Table P49, construct a forward-differences table and interpolate
at x = 2.75 using Newton interpolating polynomial ps(x).

TABLE P49

X 4
1 0.92
1.5 0.80
2 0.64
2.5 0.46
3 0.29

3.5 0.14

50. “®\Write a user-defined function with syntax yi =Newton_FD(x,y,xi) that
finds the Newton forward-difference interpolating polynomial for the equally-
spaced data (X,y) and uses this polynomial to interpolate at Xi and returns the
interpolated value in yi. For the data in Table P50, use the entire data to find the
interpolated values at x =3.7 and x = 7.3 by executing Newton_FD. Confirm both
results by executing NewtonlInterp.



TABLE P50

=

Y

1.0000
0.4414
0.2598
0.1818
0.1381
0.1095
0.0939
0.0753
0.0675
0.0497

O 0 NN U W

[y
o

51. 4@\ The user-defined function Newton_FD (Problem 50) is to be used throughout.
Given the data in Table P51, interpolate at x = 11 by using ps(x), which goes through
the first six data points, and py(x).

TABLE P51

X Y

2 1.6840
4 2.1012
6 2.3465
8 2.6913
10 2.8469
12 3.1246
14 3.4723
16 3.6327
18 3.9543

20 4.2185

52. ‘\The user-defined function Newton_FD (Problem 50) is to be used through-
out. Consider the data in Table P52. Plot the entire data. In the same graph, plot

TABLE P52

=
<

1.4422
1.8171
2.2240
2.6207
3.0000
2.3875
2.0986
1.6749
1.8903
2.3458

O 0 N N Ul W N

—_
o




the third-degree Newton interpolating polynomial that goes through the last four
data points, the fourth-degree polynomial that goes through the last five data
points, and the ninth-degree polynomial that goes through the entire data. Also
find the interpolated values at x = 7.5 given by the three polynomials.

Spline Interpolation (Section 5.6)

45 In Problems 53 through 56, find the quadratic splines for the given data and inter-
polate at the specified point(s). Assume S7(x;) = 0.

4 Plot the resulting splines in MATLAB.

53. Table P53, x=0.8, x =2.6

TABLE P53
x Yy
0 1
1 2
2 5
3 9
54. Table P54, x =3.75
TABLE P54
X Yy
1 1.2
3 23
4 12
6 29
55. Table P55, x=5.5,x =9
TABLE P55
x y
1
4
10 5
13 2
56. Table P56, x =5.2, x =7.8
TABLE P56
x Yy
1 10
4 8
6 12
9 14



57. 25 Consider the data in Table P57.

Find the quadratic splines, assuming 57(x;) = 0.

Find the cubic splines with clamped boundary conditions p =1, 4 =-1.
Plot the splines obtained in (a) and (b).

Find the interpolated value at x = 1.6 using the splines of (a) and (b), compare
with the true value, and discuss.

& n T

TABLE P57

x y=10-¢>?
0.1 9.0488

0.5 9.2212

1 9.3935

2 9.6321

58. 25 Repeat Problem 57 but this time assume the cubic splines satisfy free bound-
ary conditions.

59. &5 For the data in Table P59 construct and plot cubic splines that satisfy
a. Clamped boundary conditions p =-1, g =-0.5.

b. Free boundary conditions.

TABLE P59

X Y
1 5
4

6 2
8 0.5

60. 425 For the data in Table P60 construct and plot cubic splines that satisfy
a. Clamped boundary conditions p =0, 4= 0.3.
b. Free boundary conditions.

TABLE P60

X

@ U1 W =
N Q1N = e

61. 4 The yield of a certain chemical reaction at various temperatures is recorded in
Table Pé61. Find the reaction yield at 270°C by using



a. interpl with the “spline” option.

b. Clamped (p =-1, g = 1) cubic spline interpolation. Plot this spline, the one from
(@), and the original data in a single graph.

c. Clamped (p =-0.5, ¢ = 0.5) cubic spline interpolation. Plot this spline, the one
from (a), and the original data in a single graph. Compare with (b) and discuss
the results.

TABLE Pe61

Temperature Reaction
O x Yield (%) y
160 78.3
180 81.4
195 84.5
225 85.1
250 89.3
280 91.7
300 94.8

62. 4 In an exercise session, maximum heart rates for eight individuals of different
ages have been recorded as shown in Table P62. Find the maximum heart rate of a
43-year-old individual by using
a. interpl.

b. Clamped (p = -1, ¢ = -1) cubic spline interpolation.

TABLE P62
Max. Heart

Agex Ratey
15 202
20 195
25 190
30 184
35 178
40 173
45 169
50 160

63. i\ The data in Table P63 is generated by the function f(x) =1/(1 + 2x2).

a. Construct and plot the cubic splines with clamped boundary conditions
p=0.1, g=-0.1. Also plot the original function and the given data. Interpolate
at x = 1.8 and compare with the true value at that point.

b. Repeat (a) for boundary conditions p = 0.2, g = —0.2. Discuss the results.



TABLE P63

x y
-2 0.1111
-1 0.3333
0 1.0000
0.3333
0.1111

64. 4 For the data in Table P64 construct and plot the cubic splines using interpl
and find the interpolated value at x = 3.5. Repeat for cubic splines with clamped
boundary conditions p =-0.2, g = 0.2, and compare the results.

TABLE P64

X Y
—4 0
-3 0
-2 0
-1 2.3
0 4

1 2.3
2 0

3 0

4 0

65. ‘\The data in Table P65 shows the (experimental) compressibility factor for air
at several pressures when temperature is fixed at 180°K. Construct and plot the
cubic splines using Interpl and find the interpolated value at x = 275. Repeat for
a third-degree polynomial using polyfit and compare the results.

TABLE P65

Pressure (bars) x Comp. Factor y Pressure (bars) x Comp. Factor y

1 0.9967 100 0.7084
0.9832 150 0.7180

10 0.9660 200 0.7986

20 0.9314 250 0.9000

40 0.8625 300 1.0068

60 0.7977 400 1.2232

80 0.7432 500 1.4361

Source:  Perry’s Chemical Engineers” Handbook (6th edition), McGraw-Hill. 1984.

66. 4 Consider the data for x = 0:20 generated by the Bessel function of the first kind
of order one J,(x), which in MATLAB is handled by bessel j(1,x). Construct



and plot the cubic splines using interpl, interpolate at x = 9.5 and compare with

the actual value at that point.

Fourier Approximation and Interpolation (Section 5.7)

In Problems 67 through 74, for each given set of data,

a. 2ZSFind the approximating or interpolating trigonometric polynomial of the

indicated degree.

b. i\ Confirm the results of (a) by executing the user-defined function TrigPoly.

67. Table P67, m =2

68. Table P68, m =2

69. Table P69, m =2

TABLE P67

t X
1 0.9
1.3 1
1.6 -1
1.9 -0.8
2.2 0.9
2.5 1
TABLE P68

t x
0.3 1
0.4 0.9
0.5 0
0.6 0.1
0.7 0.8
0.8 0.9
TABLE P69

t b4
0.6 —0.60
0.8 0.52
1.0 0.98
1.2 0.75

14 1.03



70. Table P70, m =3

71. Table P71, m =3

72. Table P72, m =2

73. Table P73, m =3

TABLE P70
t x
2 1.40
2.3 1.06
2.6 0.77
2.9 0.15
3.2 -0.62
35 0.31
TABLE P71
t x
15 1.05
1.7 1.85
1.9 1.40
2.1 0.35
2.3 1.50
2.5 0.80
TABLE P72
t b4
2.4 4.15
2.6 2.05
2.8 6.20
3.0 4.30
3.2 5.80
TABLE P73
t b4 t x
0.7 -0.20 1.9 1.02
1.0 -0.54 2.2 0.92
1.3 -0.12 2.5 0.56
1.6 0.38 2.8 0.19




74. Table P74, m =4

TABLE P74

t x t x
1.0 1.00 3.0 0.95
1.5 0.82 3.5 1.16
2.0 0.13 4.0 0.85
2.5 0.74 4.5 -0.25

75. i\ Write a user-defined function xi = TrigPoly_mod(x, m, tl, tN, ti) that
approximates or interpolates a set of equally spaced data (t1,x1), .., (EN,xN)
by a trigonometric polynomial of degree m and returns the interpolated value Xi
at a given point ti. Apply TrigPoly_mod to the data in Problem 67 to find the
interpolated value at t = 2 using a trigonometric polynomial of degree 2.

76. ‘\Apply the user-defined function TrigPoly_mod (Problem 75) to the data in
Problem 74 to find the interpolated value at t = 3.25 using a trigonometric poly-
nomial of degree 4.

‘\In Problems 77 through 80, for each given set of data, find the interpolating function
using the MATLAB function FFt.

77. Table P77

TABLE P77

t x t x

1 1 3 0

15 1 35 0

2 0 4 1

2.5 0 4.5 1

78. Table P78

TABLE P78
t x t x
0.4 0 1.6 0
0.7 1 19 -1
1.0 2 2.2 -2
1.3 1 2.5 -1




79. Table P79

80. Table P80

TABLE P79

t x t x
1.0 5.024 1.8 0.543
1.1 5.536 19 0.510
1.2 3.023 1.0 0.702
1.3 1.505 2.1 0.189
14 1.559 2.2 0.176
1.5 1.021 2.3 —-0.096
1.6 0.965 24 -1.112
1.7 0.998 2.5 0.465
TABLE P80

t x t x
0.0 4.001 0.8 0.102
0.1 3.902 0.9 0.251
0.2 1.163 1.0 0.229
0.3 0.997 1.1 0.143
0.4 0.654 1.2 0.054
0.5 0.803 1.3 0.001
0.6 0.407 14 —0.583
0.7 0.706 1.5 -0.817




6

Numerical Differentiation and Integration

Numerical methods to find estimates for derivatives and definite integrals are presented
and discussed in this chapter. Many engineering applications involve rates of change of
quantities with respect to variables such as time. For example, linear damping force is
directly proportional to velocity, which is the rate of change of displacement with respect
to time. Other applications may involve definite integrals. For example, the voltage across
a capacitor at any specified time is proportional to the integral of the current taken from
an initial time to that specified time.

6.1 Numerical Differentiation

Numerical differentiation is desirable in various situations. Sometimes the analytical
expression of the function to be differentiated is known but analytical differentiation
proves to be either very difficult or even impossible. In that case, the function is dis-
cretized to generate several points (values), which are subsequently used by a numeri-
cal method to approximate the derivative of the function at any of the generated points.
Often, however, data are available only in the form of a discrete set of points. These points
may be recorded data from experimental measurements or generated as a result of some
type of numerical computation. In these situations, the derivative can be numerically
approximated in one of two ways. One way is to use finite differences, which utilize the
data in the neighborhood of the point of interest. In Figure 6.1a, for instance, the deriva-
tive at the point x; is approximated by the slope of the line connecting x;; and x,,;. The
other approach is to fit a suitable, easy to differentiate function into the data (Chapter 5)
and then differentiate the analytical expression of the function and evaluate at the point
of interest; see Figure 6.1b.

6.2 Finite-Difference Formulas for Numerical Differentiation

Finite-difference formulas are used to approximate the derivative at a point by using the
values at the neighboring points. These formulas can be derived to approximate deriva-
tives of different orders at a specified point by using the Taylor series expansion. In this
section, we present the derivation for finite-difference formulas to approximate first and
second derivatives at a point, but those for the third and fourth derivatives will be pro-
vided without derivation.
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FIGURE 6.1

Approximating f'(x,) using (a) finite difference and (b) the curve fit.

6.2.1 Finite-Difference Formulas for the First Derivative

There are several methods to approximate the first derivative at a point using the values at
two or more of its neighboring points. These points can be chosen to the left, to the right,
or on both sides of the point at which the first derivative is to be approximated.

6.2.1.1 Two-Point Backward Difference Formula

The value of f(x, ;) can be approximated by a Taylor series expansion at x;. Letting h = x; — x,
we have

feia) = fQa)=hf () + 302 () = 3 1° (i) +-

Retaining the linear terms only, yields

fxic) = f(xi)=hf"(xi)+

2 f7()

Remainder

where x;; <& < x;. Solving for f/(x,), we find

f’(xi) — f(xi)_hf(xi—l) + %hf”(é) 6.1

Truncation error

Approximating the first derivative can be done by neglecting the second term on the
right side, which produces a truncation error. Since this is proportional to i, we say the
truncation error is of the order of & and express it as O(h),

Fr) = L) o 62

Note that in many applications, we only have access to a set of data (x;, y;) and no func-
tion f(x) is available. In those cases, Equation 6.2 is simply replaced with

w=ﬂgﬁuow



A similar tactic is employed for all formulas derived in the remainder of this section.
The actual value of the truncation error is not available because the value of £ in Equation
6.1 is not exactly known. However, O(h) signifies that the error gets smaller as h gets
smaller.

6.2.1.2 Two-Point Forward Difference Formula

The value of f(x,,;) can be approximated by a Taylor series expansion at x;. Letting & = x,,; — x;,
flin) = fO)+hf () + 3 h2 f7 () + 3 10 f 7 () +

Retaining the linear terms only,

fin)= fQ)+hf"(xi) +| 3 £ (6)
where x; <& < x;,;. Solving for f(x;), we find
froy= =T oy 63

The first term on the right side of Equation 6.3 provides an approximation for the first
derivative, while the neglected second term is of the order of / so that

Frn) = L8021 o, 64

6.2.1.3 Two-Point Central Difference Formula

To derive the central difference formula, we retain up to the quadratic term in the Taylor
series. Therefore,

fli)= foa)=hf'(x) + 312 f () = J 1 f7 ), xia<ELx;
and
F(xin)= fx)+hf () + LR 7 (x)+ 5B F7(n) , xi<m<xn
Subtracting the first equation from the second, we find
fCeun) = f(xia) =21 "(xi)+ [ f7 () + f(€)]

Solving for f'(x;) and proceeding as before,

f’(xi) _ f(xi+1)2_hf(xi—l) +O(h2) 6.5)
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Two-point finite differences to approximate the first derivative.

Equation 6.5 reveals that the central difference formula provides a better accuracy than
the backward and forward difference formulas. Figure 6.2 supports this observation.

Consider a set of data with x;, x,, ..., x,,. Since the two-point backward difference formula
uses x; and the point to its left, x; ;, it cannot be applied at the first data point x,. But it can
be used to approximate the first derivative at all interior points, as well as the last point
x,, with a truncation error of O(h). The two-point forward difference formula cannot be
applied at the last point x,, but it can be used to approximate the first derivative at the first
point x; and all the interior points with a truncation error of O(h). The central difference
formula approximates the first derivative at the interior points with a truncation error
of O(h?) but cannot be applied at the first and last points. The central difference formula
is therefore the preferred choice since it gives better accuracy, but cannot be used at the
endpoints. This means the approximation of the first derivative at the interior points has
an error of O(h?), while those at the endpoints come with O(h). In order to have compatible
accuracy, it is desired that the approximations at the endpoints also come with O(h?). These
are provided by three-point difference formulas.

6.2.1.4 Three-Point Backward Difference Formula

We first approximate the value of f(x, ;) by a Taylor series expansion at x;,

[l = foa)=hf'(x) + 312 f" () = H 1 f7(E) , xia<E<x;



We also approximate the value of f(x; ,) by a Taylor series expansion at x;,
f(xi2)= f(xi) = 2R) f(xi)+ 1 (2R) f7(x:) = 320 f"(M) , xip <M<

Multiplying the first equation by 4 and subtracting the result from the second equation,
yields

flxia)=4f (xim) = =3 f(xi) + 2hf () + 5 1 f (€)= S 1 ()
Solving for f'(x;), we arrive at

)= f(xia)—4f(xi)+3f(x;)
2h

S LIS ©)+ 31 ()

Then, f'(x;) can be approximated by neglecting the last two terms, which introduces a
truncation error of the order of /2, that is,

f,(xi) — f(xi—Z)_4f§-;;i—l)+3f(xi) +O(h2) (66)

Therefore, the three-point backward difference formula approximates the first deriva-
tive at x; by using the values at the points x;, x,;, and x,_,.

6.2.1.5 Three-Point Forward Difference Formula

The three-point forward difference formula approximates the first derivative at x; by using
the values at the points x;, x;,;, and x;,,. The derivation is similar to that presented for the
backward difference, except that the values of f(x;,;) and f(x,,,) are now considered as Taylor
series expanded at x;. This ultimately leads to

=3f(x;))+4f(xin)— f(Xis2) +O(h2

frlxi)= o

) 6.7)

EXAMPLE 6.1: FINITE-DIFFERENCE FORMULAS FOR THE FIRST DERIVATIVE

Consider the data generated by the function f(x) =e™ sin(x/2) at x=1.2, 14, 1.6, 1.8.
Approximate f'(1.4) using

Two-point backward difference formula
Two-point forward difference formula
Two-point central difference formula
Three-point forward difference formula

Find the percentage relative error in each case.

Solution

Since f'(x)=e™* [% cos(x/2)— sin(x/2)], the actual value is f'(1.4) = —0.0646. The approxi-
mate first derivative is calculated via the four difference formulas listed above and are
summarized in Table 6.1. As expected, the two-point central difference and three-point
forward difference formulas provide better accuracy than the other two techniques.



TABLE 6.1

Summary of Calculations in Example 6.1

Difference Formula Approximate f'(1.4) % Relative Error

Two-point backward w =-0.0560 13.22

Two-point forward % =-0.0702 8.66

Two-point central fa6-fd-2) =-0.0631 2.28
2(0.2)

Three-point forward /a4 +;(£ (21)'6)_f (18) _ -0.0669 3.56

6.2.2 Finite-Difference Formulas for the Second Derivative

The second derivative at x; can also be approximated by finite difference formulas. These
formulas are derived in a similar manner as those for the first derivative. Below, we pres-
ent three-point backward and forward difference, as well as three-point central difference
formulas for approximating the second derivative.

6.2.2.1 Three-Point Backward Difference Formula

The values of f(x;,;) and f(x,,,) are first approximated by Taylor series expansions about x;
flxia) = ) =hf'(x)+ J 12 f7(x) =31 f 7€), xia <ELx,
f(xia) = f(x)) = (2h) f/(xi)+ 5 (2) f7(x)) = 4:(2h)’ f"(M) , x2S
Multiplying the first equation by 2 and subtracting from the second equation results in
fxi2)=2f(xia) == f(xi) + B f7(xi) = 3 1 f" () + S 1 £ (§)

Proceeding as before, we find

f”(xi) — f(xi—Z)_z_};l(zxi—l)—'—f(xi) +O(h) (68)

6.2.2.2 Three-Point Forward Difference Formula

The values of f(x,,;) and f(x,,,) are first approximated by Taylor series expansions about x;
fin) = fO)+hf () + B2 )+ 5178, xi SES i
f(xia) = fO)+ @0 f/(x)+ 3 (2h)° f7(x)+ 3R f7() , % <M< Xipo

Multiplying the first equation by 2 and subtracting from the second equation results in

fi2) = 2f (xia) = = f(x) + B2 f7(x) + $1° f () = 3 1° f(E)



Therefore,

f”(xi) — f(xi+2)_2fl:l(;ci+l)+f(xi) +O(h) (69)

6.2.2.3 Three-Point Central Difference Formula

Expanding f(x; ;) and f(x;,;) in Taylor series about x; and retaining up to the third derivative
terms, we find

f@i)= foa)=hf (i) + 3027 () = 310 f () + 4 1 fOE) , xia <8<
F@ia) = fO)+ )+ LR F7 () + Z 2 F7 () + LRFOM) xS < xi

Adding the two equations and proceeding as always, we have

f”(xi) — f(xi—l)_zf;fi)+f(xi+l) +O(h2) (610)

Therefore, in approximating the second derivative, the three-point central difference for-
mula has a truncation error of O(h?) compared to O(h) for the three-point backward and
forward difference formulas.

EXAMPLE 6.2: FINITE-DIFFERENCE FORMULAS FOR THE
SECOND DERIVATIVE

Consider the data in Example 6.1. Approximate f"(1.4) using

¢ Three-point backward difference formula (/1 =0.2)
e Three-point forward difference formula (h = 0.2)

* Three-point central difference formula (= 0.2)

¢ Three-point central difference formula (i = 0.1)

Find the percentage relative error in each case.

Solution
Since f”(x)=¢" [%Sin(x/Z)— COS(X/Z):I, the actual value is f”(1.4) =-0.0695. The
numerical results are summarized in Table 6.2, where it is readily seen that the three-

point central difference formula produces the most accurate estimate. It is also observed
that reducing the spacing size significantly improves the accuracy.

TABLE 6.2

Summary of Calculations in Example 6.2

Difference Formula Approximate f”(1.4) % Relative Error
Three-point backward /1 = 0.2 f- 2{ (()12? A -0.1225 76.4
Three-point forward 1 = 0.2 fa4)- Z(J; (;f) +108) _ 50330 526
Three-point central /1 = 0.2 fa-2- Z(J; (;;21) S8 _ -0.0706 1.69
Three-point central /1 =0.1 fA3)-2f10 D+ fA5) -0.0698 0.42

(0.2




6.2.2.4 Summary of Finite-Difference Formulas for First to Fourth Derivatives

Table 6.3 lists the difference formulas presented earlier, as well as additional formulas for
the first and second derivatives. It also includes formulas that can similarly be derived for
the third and fourth derivatives at a point x;.

6.2.3 Estimate Improvement: Richardson’s Extrapolation

Derivative estimates using finite differences can clearly be improved by either reducing
the spacing size or using a higher-order difference formula which involves more points. A
third method is to use Richardson’s extrapolation, which combines two derivative approx-
imations to obtain a more accurate estimate. The idea is best understood through a specific
example.

Consider the approximation of the first derivative using the two-point central difference
formula. We will repeat some of the analysis done earlier, but show more terms in Taylor
series expansions for our purpose.

fxic) = f(xi) = hf"(xi) + %hzf”(xi) —%h3f”'(xi) + %h4f(4)(xi)— %th@(i) , X SE<x
and
Fxin) = fO)+ B () + LR /() + LR 7 () + L h f )+ 5 FO() , v <m<xn

Subtracting the first equation from the second, and solving for f'(x;), yields

Fr) = L) 2 ey oty 611

We next repeat this process with step size 1. In the meantime, we introduce the nota-
tions f(x;i-1/2) = f(x,- —%h) and f(xi112)= f(xi + %h) Then, it can be shown that

Fil) = fiay2) = f(xiay2) 1(1h

2(17) mz)fmmam 612)

Multiply Equation 6.12 by 4 and subtract Equation 6.11 from the result to obtain

Flxn) = % f(Xis1/2) ; f(xicy2) | % f (i )Z—hf(xH) L o(n) (6.13)
2-pt central diff. formula 2-pt central diff. formula
with /1/2 and error O(hz) with /i and error O(hz)

Therefore, two approximations provided by the two-point central difference formula,
one with spacing i and the other &, each with error O(h?), are combined to obtain a more
accurate estimate of the first derivative with error O(/*).

Equation 6.13 can be expressed in a general form as

D = %Dh/Z - %Dh + O(h4) (614)



TABLE 6.3

Summary of Finite Difference Formulas for First, Second, Third, and Fourth Derivatives

Difference Truncation
Formula First Derivative error
Two-point , fxi)— f(xi)

backward frlx)= h o)
Two-point , f(xia) = f(x:)

forward frlxi)= nh o)
Two-point ’ fxia)— f(xia) 2

central frlxi)= on o)
Three-point , f(xin)—4f(xi)+3f(x;) 2

backward frlxn)= 2h Ol
Three-point , “Bf(x)+4f(xi)— f(xi2) 2

forward frlxn)= 2h o)
Four-point Pl = f(xi2)— 8 (xi1) + 8 f(Xi1) — f(Xin2) o)

central 12h
Difference Truncation
Formula Second Derivative Error
Three-point ” f(xia) = 2f(xia) + f(x:)

backward fr)= 2 Ol
Three-point oy f ) =2 () + f(x)

forward fr()= 2 o)
Three-point ., fxi) =21 () + f(xi0) 2

central fr(x)= 2 : o)
Four-point ., —f(xig)+4f(xi2) =5 f (xi) + 2 £ (x;) 2

backward fre)= 1w O
Four-point " 2f(x;) =5 f(xi1) +4f (Xi2) — f(Xix3) 2

forward fre)= 2 o)
Five-point £ = —f(xi2)+16 f(x:21) = 30 £ (2;) + 16 f (xis1) — f(%is2) o)

central 1212
Difference Truncation
Formula Third Derivative Error
Four-point ” —f(xi3)+3f (i) =3 f(xi0) + f(x;)

backward [ = B o)
Fourpoint (1) + 35 (xua) ~3f (xux) £ (12)

forward f (xf ) = P Oh)
Four-point ) —f(xi) +2f (xia) = 2f (xisa) + f(Xi2) 2

central fr(x)= e o)
Five-point oo 3f(xia) =14 f(xis)+24f(xi2) - 18 f(x;1) +5f(x;) >

backward fr(xi) = 218 Ol
Five—point - —5f(x,-) + 18f(xi+1 ) - 24f(xi+2) + 14f(x,'+3 ) - 3f(x,-+4) 2

forward [ = e O(h?)
Six-point " flxia) =8 f(xia) + 13 f(xi1) = 13 f(xis1) + 8 f (xia2) — f(Xis3) 4

central frxi)= 8n’ o

(Continued)



TABLE 6.3 (Continued)

Summary of Finite Difference Formulas for First, Second, Third, and Fourth Derivatives

Difference Truncation
Formula Fourth Derivative error
Five-point (xia) =4 f(xi5)+6f(xia) =4 f(xia)+ f(xi)

OO s A L e LA o)
Five-point 4 i)” 4 i+ 6 i+2) 4 i+ i+

ive-poin 9y = L)+ 6700) =4 ) i) o)
Five-point " (xi0)—4f(xi)+6f(x;))—4f(xi1)+ f(xi2)

central fOxn)= ! f J;14 ! ! o)
S. = i t 4 —2 ! 11 i —24 i 2 i2)— 14 i i 2

E;S:)Vl\/r;rd f( >(xi)= f(x 5)+ f(x 4) f(x 3h)4+ 6f(x 2) f(x 1)+3f(x) o)
Six-point 4 3f(x;)—14f(x;, 2 i2) = 24 f (xis 11f (xi04) = 2f (xis 2

;)(;rlz\?;?d f( (x,) = f(xi) f(xi1) +26 f (xi12) . f(xies) + 11 f(Xina) = 2f (Xis5) o)
Seven-point ) S (i) +12f(xi2) =39 f (xi1) + 56 f(x;) + 39 f (xisa) + 12 f (x1s2) — f (Xis3) o)

central [P )= 6h*

where
D = Value of the derivative
D, = A function that approximates the derivative using / and has an error of O(h?)
D), = A function that approximates the derivative using 1/ and has an error of O(h?)

Note that Equation 6.14 can be used in connection with any difference formula that has
an error of O(h?). Also note that the coefficients in Equation 6.14 add up to 1, hence act as
weights attached to each estimate. With increasing accuracy, they place greater weight on
the better estimate. For instance, using spacing size 1 h generates a better estimate than the
one using h, and consequently D, , has a larger weight attached to it than D, does.

EXAMPLE 6.3: RICHARDSON’S EXTRAPOLATION

Consider the data in Example 6.2. We approximated f”(1.4) using the three-point
central difference formula, which has an error of O(h?). Using h =0.2, we found the
estimate to be —0.0706. Using h = 0.1, the estimate was —0.0698. Therefore, D, = -0.0706
and D, ,, = —0.0698. By Equation 6.14,

D = 4(-0.0698) — 1(~0.0706) = —0.0695

which agrees with the actual value to four decimal places and is a superior estimate to
the first two.

Richardson’s extrapolation can also be used in connection with estimates that have
higher-order errors. In particular, it can combine two estimates, each with error O(h%), to
compute a new, more accurate estimate with error O(h°)

16 1
D=Dia=1Di+ O(h®) (6.15)

where
D = Value of the derivative
D, = A function that approximates the derivative using h and has an error of O(h*)
D, , = A function that approximates the derivative using 1/ and has an error of O(?).



Once again, as mentioned before, the coefficients add up to 1 and act as weights attached
to the two estimates, with greater weight placed on the better estimate.

6.2.4 Richardson’s Extrapolation for Discrete Sets of Data

Applications of extrapolation formulas given in Equations 6.14 and 6.15 are rather straight-
forward when a function f(x) generates the data, as observed in Example 6.3. However, in
the absence of f(x), we can no longer change the value of the step size from k to 1h and
analyze the generated data. For discrete data, D, is calculated using a set comprised of
every other data in the original set, while D, , is calculated using the entire original set.

6.2.5 Derivative Estimates for Non-Evenly Spaced Data

The finite-difference formulas to approximate derivatives of various orders require that
the data be equally spaced. Also, Richardson’s extrapolation is applicable only to evenly
spaced data and it computes better estimates by sequentially reducing the spacing by half.
These techniques are appropriate if the data are equally spaced or if the data are generated
by uniform discretization of a known function, such as that in Examples 6.1 and 6.2.

Empirical data—such as data resulting from experimental measurements—on the
other hand, are sometimes not evenly spaced. For these situations, one possible way to
approximate the derivative is as follows: (1) consider a set of three consecutive data points
that contains the point at which the derivative is to be estimated, (2) fit a second-degree
Lagrange or Newton interpolating polynomial (Chapter 5) to the set, and (3) differentiate
the polynomial and evaluate at the point of interest. The derivative estimate obtained in
this manner has the same accuracy as that offered by the central difference formula, and
exactly matches it for the case of equally spaced data.

EXAMPLE 6.4: NON-EVENLY SPACED DATA

For the data in Table 6.4, approximate the first derivative at x = 0.7 using the data at 0.3,
0.8, and 1.1.

Solution

The data are not evenly spaced. We will consider the set of three consecutive points 0.3,
0.8, and 1.1, which includes the point of interest x = 0.7, and fit a second-degree Lagrange
interpolating polynomial to the set. Letting x, = 0.3, x, = 0.8, and x; = 1.1, we find

_ (x—x)(x—x3) (x—x1)(x —x3) (x—x1)(x = x2)
o) = (%1 = x2)(2x1 — x3) (08228 + (22 = x1)(x2 = x3) (4670 + (23 = x1)(x3 — x2) (0:2617)

=0.0341x> - 0.7491x +1.0445
Differentiation yields p3(x) = 0.0682x —0.7491 so that p;(0.7) = -0.7014.

TABLE 6.4

Data in Example 6.4

X Yy

0 1

0.3 0.8228
0.8 0.4670
1.1 0.2617

1.3 0.1396




6.2.6 MATLAB Built-In Functions di ff and polyder

The MATLAB built-in function di fFf can be used to estimate derivatives for both cases of
equally spaced and not equally spaced data. A brief description of difF is given as

diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element shorter than
X, of differences between adjacent elements

[X(2)-X(1) X(B)-X(2) .. X(n)-X(n-1)]

diff(X,n) applies diff recursively n times, resulting in the nth
difference. Thus, diff(X,2) is the same as diff(diff(X)).

Equally spaced data. Consider a set of equally spaced data (x,, 1), ..., (x,, ¥,), where
Xig—X;=h (=1, .., n—1). Then, by the description of di ff, the command diff(y)./h
returns the (n — 1)-dimensional vector

Yoo Yn=Yna
. P

The first component is the first-derivative estimate at x; using the forward-difference
formula; see Equation 6.4. Similarly, the second component is the derivative estimate at x,.
The last entry is the derivative estimate at x,_;. As an example consider f(x) = ™ sin(x/2),
x=12,14, 16,18, of Example 6.1. We find an estimate for f’(1.4) as follows:

>> h = 0. 2, =1.2:h:1.8;

>y = [ 1 0.1589 0.1448 0.1295]; % Values of T at the discrete x values
>> y prime = diff(y)./h
y_prime =

-0.0560 -0.0702 -0.0767

Since 1.4 is the second point in the data, itis labeled x,. Which means an estimate for f'(1.4)
is provided by the second component of the outputy_prime. Thatis, f(1.4) = —0.0702. This
agrees with the earlier numerical results in Table 6.1.

Non-equally spaced data. Consider a set of non-evenly spaced data (x;, y,), ..., (x,, ¥,)-
Then, by the description of di ff, the command diff(y) ./difF(X) returns the (n - 1)-
dimensional vector

[yz—yl yn—ynl}

X2 — X1 Xn — Xn-1

The first component is the first-derivative estimate at x; using the forward-difference
formula, the second one is the derivative estimate at x,, while the last entry is the deriva-
tive estimate at x,,,



As mentioned in the description of diff above, diff(y,2) is the same as
diff(diff(y)).So,ify=[y1 ... y,], thendifF(y) returns

|:yz —Yi Ys—Ya2 ... Yu _y”_l](ml)—dim
and diff(y,2) returns

[(Va=y2)=(2=v1)  Wa=y)=Ws=12) oo Vo= Yu) =Wt = Vu2) | i
which simplifies to

[y3—2y2+y1 Ya—2Ys+y> ... yn—Zyn_1+yn_2:|

The first component is the numerator in the three-point forward difference formula for
estimating the second derivative at x;; see Equation 6.9. Similarly, the remaining compo-
nents agree with the numerator of Equation 69 at x,, ..., x,,. Therefore, for an equally
spaced data (x;, 1), ..., (x,, ¥,), an estimate of the second derivative at x;, x,, ..., x,,_, is pro-
vided by

diff(y,2)./h"2
The MATLAB built-in function polyder finds the derivative of a polynomial:
polyder Differentiate polynomial.

polyder(P) returns the derivative of the polynomial whose
coefficients are the elements of vector P.

polyder(A,B) returns the derivative of polynomial A*B.

[Q,D] = polyder(B,A) returns the derivative of the
polynomial ratio B/A, represented as Q/D.

For example, the derivative of a polynomial such as 2x® — x + 3 is calculated as follows:

> P =1[20 -1 3];
>> polyder(P)

ans =
6 0 -1

The output corresponds to 6x2 — 1.

6.3 Numerical Integration: Newton—Cotes Formulas

We encounter definite integrals in a wide range of applications, generally in the form

j‘f(x) dx



where f(x) is the integrand and a and b are the limits of integration. The value of this definite
integral is the area of the region between the graph of f(x) and the x-axis, bounded by the
lines x =a and x = b. As an example of a definite integral, consider the relation between the
bending moment M and shear force V along the longitudinal axis x of a beam, defined by

Mz —Ml = IV(X) dx

X1

where M, is the bending moment at position x, and M, is the bending moment at x,. In this
case, the integrand is shear force V(x) and the limits of integration are x; and x,.

The integrand may be given analytically or as a set of discrete points. Numerical integra-
tion is used when the integrand is given as a set of data or, the integrand is an analytical
function, but the antiderivative is not easily found. In order to carry out numerical integra-
tion, discrete values of the integrand are needed. This means that even if the integrand is
an analytical function, it must be discretized and the discrete values will be used in the
calculations.

6.3.1 Newton-Cotes Formulas

Newton—Cotes formulas provide the most commonly used integration techniques and
are divided into two categories: closed form and open form. In closed-form schemes, the
data points at the endpoints of the interval are used in calculations; the trapezoidal and
Simpson’s rules are closed Newton—Cotes formulas. In open-form methods, limits of inte-
gration extend beyond the range of the discrete data; the rectangular rule and the Gaussian
quadrature (Section 6.4) are open Newton—Cotes formulas.

The main idea behind Newton—Cotes formulas is to replace the complicated integrand
or data with an easy-to-integrate function, usually a polynomial. If the integrand is an
analytical function, it is first discretized, and then the polynomial that interpolates the
discretized set is found and integrated. If the integrand is a set of data, the interpolating
polynomial is found and integrated.

6.3.2 Rectangular Rule

In the rectangular rule, the definite integral Jf f(x)dx is approximated by the area of a
rectangle. This rectangle may be built using the left endpoint, the right endpoint, or the
midpoint of the interval [a, b] (Figure 6.3). The one that uses the midpoint is sometimes called the
midpoint method and is only applicable when the integrand is an analytical expression. All three
cases are Newton—Cotes formulas, where the integrand is replaced with a horizontal line
(constant), that is, a zero-degree polynomial. But it is evident by Figure 6.3 that the error of
approximation can be quite large depending on the nature of the integrand. The accuracy
can be improved considerably by using the composite rectangular rule.

6.3.2.1 Composite Rectangular Rule

In applying the composite rectangular rule, the interval [g, b] is divided into n subinter-
vals defined by #n + 1 points labeled a =x,, x,, ..., x,, x,,; =b. The subintervals can gener-
ally have different widths so that longer intervals may be chosen for regions where the
integrand exhibits slow variations and shorter intervals where the integrand experiences
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using the left endpoint

Rectangle constructed
using the right endpoint

f®)
f (“)c/ Area = f(b)(b — a)
Area = f(a)(b — a) N
> x
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2/

Rectangle constructed
using the midpoint

FIGURE 6.3
Rectangular rule.

rapid changes. In most of the results presented here, however, the data are assumed
equally spaced. Over each subinterval [x;, x,,,], the integral is approximated by the area of
a rectangle. These rectangles are constructed using the left endpoint, the right endpoint,
or the midpoint as described earlier (Figure 6.4). Adding the areas of rectangles yields the
approximate value of the definite integral f: f(x)dx.

Composite Rectangular Rule (Using Left Endpoint)

b n n
For equally spaced data

o=t -mrrom S TR fwrom 616
Composite Rectangular Rule (Using Right Endpoint)

b 1 For equally spaced data it

jf(x) dx = ZZ‘ {f(xi)(xi —xi21)} + O(h) o hz; f(x;:)+O(h) 6.17)
Composite Rectangular Rule (Using Midpoint)
b n n

For equally spaced data 1

- . . — . 2 = . 2 L= . .

Jf (x) dx = Z {f(m)(xi = x;)} + O(H?) o hz; f(m;)+O(h?), m; 5 (i + )

6.18)
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FIGURE 6.4
Composite rectangular rules.

6.3.3 Error Estimate for Composite Rectangular Rule

Equations 6.16 through 6.18 included the error estimates associated with the three com-
posite rectangular rule options. We will elaborate on these here. Consider ¥ f(x)dx, where
the points a = x, x,, ..., x,, x,,; = b divide [g, b] into n subintervals of equal length /. Assume
that over each interval [x;, x,,], the rectangle is constructed using the left endpoint x; so
that it has an area of iif(x;). The error associated with the integral over each subinterval is

Xitl

E = J F(x) dx—hf (x;)

Estimate

xi
Actual value

By Taylor series expansion, we have

fx)=fa)+ fE)x—x), x<E<xin
Then,

Xi+1

E= [ U+ Feaw=xlde=hfe) = 1)

Xi



This indicates that each error E; can be made very small by choosing a very small spac-
ing size, that is, i < 1. The error associated with the entire interval [, ] is given by

E=YE=Y ) =Y FE)

i=1

An average value for f* over [, b] may be estimated by

1O,
n;f@

J?/

n

Consequently,

2, 7 b- 2|1 *,
E=%h nf =;(na)hnf =L(b—a)f }h

Since 1 (b— a)j" = const, the error E is of the order of /i, written O(h). In summary,

Composite rectangular rule (left endpoint)
1 £
E= [2(b —a)f }h =0(h) (6.19)

Similarly, for the composite rectangular rule (using right endpoint), E = O(h). Finally, we
present without proof:

Composite rectangular rule (midpoint)
1 —
E= [24(17 - a)f”} h* = O(h?) (6.20)

where f” is the estimated average value of f” over [a, b].

EXAMPLE 6.5: COMPOSITE RECTANGULAR RULE

Evaluate the following definite integral using all three composite rectangular rule strat-
egies withn=8:

01
J dx
_1x+2

Solution

With the limits of integration at b=1, a=-1, we find the spacing size as h=
(b —a)/n=2/8=0.25. The nine nodes are thus defined as x, =-1, -0.75,-0.5, ..., 0.75, 1 = x,.
Letting f(x) = 1/(x + 2), the three integral estimates are found as follows:



Using left endpoint,
1 8
If(x) dx= hz f(x;)=025[f(-1)+ f(-0.75) +---+ £(0.75)] = 1.1865
-1 i=1
Using right endpoint,
1 9
.[f(x) dx = hZf(xi)z 0.25[f(-0.75) + f(=0.5) +---+ f(0.75) + f(1)]=1.0199
1 i=2
Using midpoint,
1 8
If(x) dx = hz f(m;)=0.25[ f(-0.8750) + f(—0.6250) +---+ f(0.8750)] = 1.0963
-1 i=1
Noting that the actual value of the integral is In 3 = 1.0986, the above estimates come

with relative errors of 8%, 7.17%, and 0.21%, respectively. As suggested by Equations 6.19
and 6.20, the midpoint method yields the best accuracy.

6.3.4 Trapezoidal Rule

The trapezoidal rule is a Newton—Cotes formula, where the integrand is replaced with a
straight line (a first- degree polynomial) connecting the points (g, f(7)) and (b, f(b)) so that
the definite integral e f(x) dx is approximated by the area of a trapezoid (Figure 6.5a). The
equation of this connecting line is

p=fa)+ 1O 0 g

Therefore,

b b b Hl
Jf(x) dx = jPl(x) dx = J{f(ﬂ) + %(x - a)} e {f(a)x i f(b; - Z(a) . _2”) :|xa

a

(@4 f ) af

LI 4

> R

FIGURE 6.5
(a) Trapezoidal rule and (b) composite trapezoidal rule.



Evaluation of this last expression yields
b b
+
J F(x) dx = M(b —a) 6.21)

The right side is indeed the area of the trapezoid as shown in Figure 6.5a. It is also evident
by Figure 6.5a that the error of approximation can be quite large depending on the nature
of the integrand. The accuracy of estimation can be improved significantly by using the
composite trapezoidal rule (Figure 6.5b).

6.3.4.1 Composite Trapezoidal Rule

In the composite rectangular rule, the interval [g, b] is divided into n subintervals defined
by n + 1 points labeled as a =x,, x,, ..., x,, X,.; =b. As in the case of rectangular rule, the
subintervals can have different widths so that longer intervals can be used for regions
where the integrand shows slow variations and shorter intervals where the integrand
shows rapid changes. In most of the results presented here, however, the data are assumed
equally spaced. Over each subinterval [x;, x,,,], the integral is approximated by the area of
a trapezoid. Adding the areas of trapezoids yields the approximate value of the definite
integral:

b
[ ey s FOOEIOD oy SOOI (o Sy
_ i { f(x:) +2f(xi+l) (i1 — xi)}+ O(h?) 6.22)

i=1

For the case of equally spaced data, x;,; —x;=h (i=1, 2, ..., n), Equation 6.22 simplifies to

n

h

b
[re =23 17w+ fi+ oo

i=1

= g[f(ﬂ)+2f(xz)+2f(x3)+"'+2f(xn)+f(b)]+O(h2) (6.23)

6.3.4.2 Error Estimate for Composite Trapezoidal Rule

The error for the composite trapezoidal rule can be shown to be
1 £ 1,2 2
E:[—lz(b—a)f }h =0(h") (6.24)

where f” is the estimated average value of f” over [4, b]. Therefore, the error O(1?) is com-
patible with the midpoint method and superior to the rectangular rule using the endpoints
whose error is O(h).



The user-defined function TrapComp uses the composite trapezoidal rule to estimate
the value of a definite integral.

function 1 = TrapComp(f,a,b,n)

%

TrapComp estimates the value of the integral of f(x) from a to b
by using the composite trapezoidal rule applied to n equal-length
subintervals.

I = TrapComp(f,a,b,n), where

f is an anonymous function representing the integrand,
a and b are the limits of integration,
n is the number of equal-length subintervals in [a,b],

I is the integral estimate.

= (b-a)/n; x = a:h:b;
= T);
= (y(1) +2*sum(y(2:end-1)) + y(end))*h/2;

EXAMPLE 6.6: COMPOSITE TRAPEZOIDAL RULE

1. Evaluate the definite integral in Example 6.5 using the composite trapezoidal
rule withn =8:

01
J. dx
x+2

-1
2. Confirm the result by executing the user-defined function TrapComp.

Solution

1. The spacing size is h = (b —a)/n=0.25 and the nine nodes are x; =-1, —0.75,
—0.5, ..., 0.75, 1 = x,. Letting f(x) = 1/(x + 2), the integral estimate is found by
Equation 6.23 as follows:

1 dx = 0.25

5 LD+ 2f(-075)+2f(-0.5)+ - +2f(0.75) + f(1)] =1.1032

Recalling the actual value 1.0986, the relative error is calculated as 0.42%. As
expected, and stated earlier, the accuracy of composite trapezoidal rule is com-
patible with the midpoint rectangular method and better than the composite
rectangular rule using either endpoint.

>> F
>> 1

@) (L.7(x+2));
TrapComp(f,-1,1,8)

1 =
1.1032



6.3.5 Simpson’s Rules

The trapezoidal rule estimates the value of a definite integral by approximating the inte-
grand with a first-degree polynomial, the line connecting the points (a4, f(a)) and (b, f(b)).
Any method that uses a higher-degree polynomial to connect these points will provide a
more accurate estimate. Simpson’s 1/3 and 3/8 rules, respectively, use second and third-
degree polynomials to approximate the integrand.

6.3.5.1 Simpson’s 1/3 Rule

In evaluating | . f(x) dx, the Simpson’s 1/3 rule uses a second-degree polynomial to approx-
imate the integrand f(x). The three points that are needed to determine this polynomial are
picked as x; =4, x, = (a + b)/2, and x; = b as shown in Figure 6.6a. Consequently, the second-
degree Lagrange interpolating polynomial (Section 5.5) is constructed as

(x—x2)(x — x3) Flx)+ (x —x1)(x —x3) Fl)+ (x x1)(x — x2) Fxa)

(21 = 2x2)(x1 — x3) —x1)(X2 — x3) —x1)(x3 — X2)

pa(x) =
The definite integral will then be evaluated with this polynomial replacing the integrand

jf(x) dx = jpz(x) dx

Substituting for p,(x), integrating from a to b, and simplifying, yields

b
[f@dr= 17w+ af@+ e, =20 629

The method is known as the 1/3 rule because & is multiplied by 1/3. The estimation
error, which can be large depending on the nature of the integrand, can be improved sig-
nificantly by repeated applications of the Simpson’s 1/3 rule.

@) 'y f f(x) / (b) 4

FIGURE 6.6
(a) Simpson’s 1/3 rule and (b) composite Simpson’s 1/3 rule.



6.3.5.2 Composite Simpson’s 1/3 Rule

In the composite Simpson’s 1/3 rule, the interval [, b] is divided into 1 subintervals defined
by n + 1 points labeled a = x,, x,, ... , x,, x,., = b. Although the subintervals can have differ-
ent widths, the results that follow are based on the assumption that the points are equally
spaced with spacing size h = (b — a)/n. Since three points are needed to construct a second-
degree interpolating polynomial, the Simpson’s 1/3 rule must be applied to two adjacent
subintervals at a time. For example, the first application will be to the first two subintervals
[x,, x,] and [x,, x5] so that the three points at x;, x,, and x; are used for polynomial construc-
tion. The next application will be to [x;, x,] and [x,, x;5] so that x;, x,, and x; are used for
construction. Continuing this pattern, the very last interval is comprised of [x,_;, x,] and
[x,, x,.4]; see Figure 6.6b. Therefore, [a, b] must be divided into an even number of subintervals
for the composite 1/3 rule to be implemented. As a result,

b
If(x) dx = g[f(x1)+4f(x2)+f(x3)]+§[f(x3)+4f(x4)+f(x5)]

+...+g[f(xn71)+ 4f(x,,)+ f(xn+1)]

The even-indexed points (x,, x, ..., x,) are the middle terms in each application of
1/3 rule, and therefore by Equation 6.25 have a coefficient of 4. The odd-indexed terms
(x3 Xs, ..., x,4) are the common points to adjacent intervals and thus count twice and have
a coefficient of 2. The two terms f(x,) and f(x,.;) on the far left and far right each has a coef-
ficient of 1. In summary,

b n n-1
J.f(x) dng{f(x1)+4 Z flx)+2 f(x,~)+f(x,,+1)}+0(h4) (6.26)
. i=2,4,6,... =3,5,7,...

6.3.5.3 Error Estimate for Composite Simpson’s 1/3 Rule

The error for the composite Simpson’s 1/3 rule can be shown to be

o @ | oot
E—[ 180(b a)f }h =0(h*) 6.27)

where f® is the estimated average value of f® over [a, b]. Therefore, the error O(1?) is supe-
rior to the composite trapezoidal rule which has an error of O(h?).

The user-defined function Simpson uses the composite Simpson’s 1/3 rule to estimate
the value of a definite integral.

function I = Simpson(f,a,b,n)

%

% Simpson estimates the value of the integral of f(x) from a to b

% by using the composite Simpson’s 1/3 rule applied to n equal-length
% subintervals.

% I = Simpson(f,a,b,n), where



s an anonymous function representing the integrand,
b are the limits of integration,
s

f
% a,
n the (even) number of subintervals,

% I is the integral estimate.

X
Il
o))
5
:C}
Il

h = (b-a)/n; 0;
for i = 1:2:n,

=1 + f(x(@)) + 4*Fx(i+1)) + F(x(i+2));

=

end
1 = (h/3)*1;

EXAMPLE 6.7 COMPOSITE SIMPSON'S 1/3 RULE

1. Evaluate the definite integral in Examples 6.5 and 6.6 using the composite
Simpson’s 1/3 rule with n = 8:
[ 1
J dx
x+2

-1

2. Confirm the result by executing the user-defined function Simpson.

Solution

1. The spacing size is h = (b — a)/n = 0.25 and the nine nodes are defined as x; = -1,
—0.75,-0.5, ..., 0.75, 1 = x,. Letting f(x) = 1/(x + 2), the integral estimate is found
by Equation 6.26 as follows:

1, 025[ f(-1)+4f(-0.75)+2f(-0.5)+4f(-0.25)+2f(0) +4£(0.25)
J x+2 3 | +2f(0.5)+4f(0.75)+ f(1)
=1.0987

Knowing the actual value is 1.0986, the relative error is calculated as 0.01%.
As expected, the accuracy of the composite Simpson’s 1/3 rule is superior to
the composite trapezoidal rule. Recall that the relative error associated with
the composite trapezoidal rule was calculated in Example 6.6 as 0.42%.

2.
> F = 0(x)(1/(x+2));
>> 1 = Simpson(f,-1,1,8)
1 =
1.0987

6.3.5.4 Simpson’s 3/8 Rule

The Simpson’s 3/8 rule uses a third-degree polynomial to approximate the integrand f(x).
The four points that are needed to form this polynomial are picked as the four equally
spaced points x; =a, x, = (2a + b)/3, x; = (a + 2b)/3, and x, = b with spacing size h = (b —a)/3



FIGURE 6.7
Simpson’s 3/8 rule.

as shown in Figure 6.7. The third-degree Lagrange interpolating polynomial (Section 5.5)
is then constructed as

(x = x2)(x — x3)(x — x4) (x=x1)(x=x3)(x —x4)
(=)~ 1) =207 0 ) — )~y
+ (x = x1)(x —x2) (X — x4) Fxs)+ ( (x = x1)(x —x2)(x — x3) F(xs)

(33 = x1)(x3 — x2)(x3 — X4) Xy — X1)(Xg — X2)(X4 — X3)

pa(x)=

The definite integral will be evaluated with this polynomial replacing the integrand
b b
J' F(x) dx = Jp3(x) dx
Substituting for p,(x), integrating from a to b, and simplifying, yields
b
3h b-a
[ e dx= St 3G+ 370+ fxl, h="2" (629

The method is known as the 3/8 rule because / is multiplied by 3/8. As before, the estima-
tion error can be improved significantly by repeated applications of the Simpson’s 3/8 rule.

6.3.5.5 Composite Simpson’s 3/8 Rule

In the composite Simpson’s 3/8 rule, the interval [, b] is divided into 1 subintervals defined
by n + 1 pointslabeled a = x4, x»,..., x,, X,+1 = b. The subintervals can have different widths,
but the results presented here are based on the assumption that they are equally spaced
with spacing size h = (b —a)/n. Since four points are needed to construct a third-degree
polynomial, the Simpson’s 3/8 rule is applied to three adjacent subintervals at a time. For
example, the first application will be to the first three subintervals [x;, x,], [x,, x5], and [x5, x,]
so that the four points at x;, x,, x5, and x, are used for polynomial construction. The next
application will be to [x,, x5], [xs, x4, and [x,, x;] so that x,, x5, x;, and x; are used for construc-
tion. Continuing this pattern, the very last interval comprises of [x,-2, X,-1], [¥s-1,%,], and



[xn,xm]. Therefore, [a, b] must be divided into a number of subintervals that is a multiple of 3 for
the composite 3/8 rule to be implemented. As a result,

b
[ rear= 25+ 3 r0a) 376+ el S0+ 3 () + 3 () + fxr)]

bt S 0, )43 () +3f )+ f)], =

The middle terms in each application of 3/8 rule have a coefficient of 3 by Equation 6.28,
while the common points to adjacent intervals are counted twice and have a coefficient
of 2. The two terms f(x;) and f(x,,;) on the far left and far right each has a coefficient of 1.
In summary,

L

n—

b
Jf(x)dx=3gl{f(x1)+3 [fG)+ flsale2 S )+ flzn)+OW) 629

i=2,5, j=4,7,10,..

00

We summarize the implementation of the composite Simpson rules as follows: if the num-
ber of subintervals is even, then Simpson’s 1/3 rule is applied. If the number of subinter-
vals is odd, then Simpson’s 3/8 rule is applied to the last three subintervals and the 1/3 rule
is applied to all previous ones; see Problem Set 6.3.

6.3.5.6 Error Estimate for Composite Simpson’s 3/8 Rule

The error for the composite Simpson’s 3/8 rule can be shown to be
E= [_slo(b - a)f“”}h“ =0(h*) (6.30)

where f* is the estimated average value of f® over the interval [a, b]. Therefore, the error
O(h*) is compatible with that of the composite 1/3 rule.

The rectangular rule, trapezoidal rule, and the Simpsons’ 1/3 and 3/8 rules all belong to
a class of integration techniques known as Newton-Cotes formulas. Although there are
higher-order formulas, which need more than four points to form the interpolating poly-
nomial and naturally offer better accuracy, Simpson’s rules are adequate for most applica-
tions in engineering. To improve estimation accuracy, the composite Simpson’s rules are
preferred to higher-order formulas. In the event that the integrand is given analytically,
other methods such as Romberg integration and Gaussian quadrature (Section 6.4) are
practical alternatives.

6.3.6 MATLAB Built-In Functions quad and trapz

MATLAB has two built-in functions to compute definite integrals: quad and trapz. The
quad function handles cases where the integrand is given analytically, while trapz is
used when the integrand is given as a discrete set of data.



QUAD Numerically evaluate integral, adaptive Simpson quadrature.

Q = quad(FUN,A,B) tries to approximate the integral of scalar-valued
function FUN from A to B to within an error of 1.e-6 using recursive
adaptive Simpson quadrature. FUN is a function handle. The function

Y = FUN(X) should accept a vector argument X and return a vector result
Y, the integrand evaluated at each element of X.

Note that quad uses adaptive Simpson quadrature. Adaptive integration methods
adjust the number of subintervals needed to meet a desired accuracy by using more func-
tion evaluations in regions where the integrand shows rapid changes and less in areas
where the integrand is well approximated by a quadratic function. In particular, adaptive
Simpson quadrature uses an error estimate associated with the Simpson’s rule, and if the
error exceeds the desired tolerance, it divides the interval in two and applies Simpson’s
rule to each subinterval recursively.

The integral f_ll [1/(x+2)]dx, considered throughout this section, can be evaluated as
follows:

function y = integrand(x)
y =1./(x +2);
end

>> Q = quad(@integrand,-1,1)
Q =

1.0986

For situations where the integrand is defined as a set of discrete data, the built-in func-
tion trapz is used.

TRAPZ Trapezoidal numerical integration.

Z = trapz(X,Y) computes the integral of Y with respect to X using
the trapezoidal method. X and Y must be vectors of the same
length, or X must be a column vector and Y an array whose first
non-singleton dimension is length(X). trapz operates along this
dimension.

In Example 6.6, we used the composite trapezoidal rule with n=8 to evaluate
ﬂl [1/(x+2)]dx. To confirm the result of that example using trapz, we must first generate
a discrete set of data (x, y) equally spaced on [-1, 1] with spacing size of h = 0.25.

> F = 0(x)(A-7/(x+2));

> X = -1:0.25:1;

>y = T(X); % Generate 9 discrete values for integrand
>> 1 = trapz(x,y)

1.1032 % Result agrees with that in Example 6.6



6.4 Numerical Integration of Analytical Functions:
Romberg Integration, Gaussian Quadrature

Throughout Section 6.3 we presented numerical methods to evaluate integrals of analyti-
cal functions, as well as tabulated data. When the function is given analytically, it can
be discretized at as many points as desired and these points are subsequently used to
estimate the value of the integral. When the integrand is in tabulated form, only the given
points in the data can be used for integral estimation and the number of points cannot be
increased.

In this section, we introduce two methods that are exclusively developed to estimate
the value of [} f(x)dx, where f(x) is an analytical function. The first method is based on
Richardson’s extrapolation, which combines two numerical estimates of an integral to
find a third, more accurate estimate. Richardson’s extrapolation can be efficiently imple-
mented using Romberg integration. The second method is the Gaussian quadrature,
which approximates the value of the integral by using a weighted sum of values of f(x) at
several nodes in [a, b]. These nodes and the weights are determined such that the error is
minimized.

6.4.1 Romberg Integration

The errors associated with the composite trapezoidal and Simpson’s rules were shown in
Equations 6.24 and 6.27 to be

h=(b-a)/n (b_a)S
S 12

1 _ _
Etrapezoid = |:_ E (b - a)f”j' h2 f”

and

h=(b- u)/n (b a

(4)
180n* of

ESimpson =|: 180 (b ﬂ)f(4):|

This means in both cases, the error is reduced as n increases. Therefore, to achieve high
levels of precision, a large number n of subintervals of [4, b] are needed, requiring greater
computational effort as n gets larger. Consequently, as an alternative to composite trap-
ezoidal and Simpson’s rules with large 1, Romberg integration can be used to attain more
accurate estimates more efficiently.

6.4.1.1 Richardson’s Extrapolation

Richardson’s extrapolation combines two numerical estimates of an integral to find a third,
more accurate estimate. For example, two estimat