
Forum for Interdisciplinary Mathematics

Sujit Kumar Bose

Numerical
Methods of
Mathematics
Implemented in
Fortran

Forum for Interdisciplinary Mathematics

Editor-in-Chief

P. V. Subrahmanyam, Department of Mathematics, Indian Institute of Technology
Madras, Chennai, Tamil Nadu, India

Editorial Board

Yogendra Prasad Chaubey, Department of Mathematics and Statistics, Concordia
University, Montreal, QC, Canada
Jorge Cuellar, Principal Researcher, Siemens AG, München, Bayern, Germany
Janusz Matkowski, Faculty of Mathematics, Computer Science and Econometrics,
University of Zielona Góra, Zielona Góra, Poland
Thiruvenkatachari Parthasarathy, Chennai Mathematical Institute, Kelambakkam,
Tamil Nadu, India
Mathieu Dutour Sikirić, Institute Rudjer Boúsković, Zagreb, Croatia
Bhu Dev Sharma, Forum for Interdisciplinary Mathematics, Meerut, Uttar Pradesh,
India

The Forum for Interdisciplinary Mathematics (FIM) series publishes high-quality
monographs and lecture notes in mathematics and interdisciplinary areas where
mathematics has a fundamental role, such as statistics, operations research,
computer science, financial mathematics, industrial mathematics, and
bio-mathematics. It reflects the increasing demand of researchers working at the
interface between mathematics and other scientific disciplines.

More information about this series at http://www.springer.com/series/13386

http://www.springer.com/series/13386

Sujit Kumar Bose

Numerical Methods
of Mathematics Implemented
in Fortran

123

Sujit Kumar Bose
S. N. Bose National Centre for Basic
Sciences
Kolkata, West Bengal, India

ISSN 2364-6748 ISSN 2364-6756 (electronic)
Forum for Interdisciplinary Mathematics
ISBN 978-981-13-7113-4 ISBN 978-981-13-7114-1 (eBook)
https://doi.org/10.1007/978-981-13-7114-1

Library of Congress Control Number: 2019933853

© Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Additional material to this book can be downloaded from http://extras.springer.com.

https://doi.org/10.1007/978-981-13-7114-1
http://extras.springer.com

|| Mangalācaranam ||

Om sahanāvavatu sahanaubhunaktu
sahavíryyaṁkarvāvahai |
Tejasvināvadhítamastu mā vidvíśāvahai ||

|| Om Śāntiḥ Śāntiḥ Śāntiḥ ||

{O the Universal Consciousness protect and
nourish us (both teacher and student) to work
with great vigour to enlighten our intellect,
without creation of any jealousy or rancour
whatsoever (in that endeavour). Let peace,
peace, peace be everywhere.}

Preface

Numerical computation of mathematically formulated problems is universal in
sciences and engineering. The mathematical models appearing in the two disci-
plines essentially boil down to formalisms of analysis and linear algebra, and for
obtaining useful results from them, numerical methods were devised from time to
time. The numerical methods were laid on a firm mathematical foundation later on,
during the course of development of the subject. The invention of computing
machines, such as the present-day digital computer, has greatly increased the power
of numerically solving difficult scientific problems.

The gamut of scientific computation consists of the development of methods of
treating different mathematical models, their mathematical analysis and writing
computer codes for obtaining desired results. A course on numerical methods of
mathematics is an integral part of the undergraduate science and engineering
studies. This study sometimes forms a part of the postgraduate courses as well. The
emphasis on methods, analysis and coding for computer implementation varies in
different course types. A typical course may consist of the principal methods, and
some programming, with little intricacies of analysis. However, a theoretical course
may emphasise the methods together with their analyses and possibly some algo-
rithms of the methods developed. This book is designed in such a manner that a
course instructor can draw requisite material for any of the courses leaving the
remaining parts for reference purposes. For laying emphasis on the methods that
form the bulk of the courses, simple examples and exercises are given for hand
calculation with the aid of a calculator. For courses emphasising the underlying
mathematical theory, the topics are presented in separate sections. At the other end
where the reader would like to have complete computer codes, concise computer
programs are provided that follow the diverse methods developed in a general
manner. In some cases, programming tricks become necessary for obtaining correct
and accurately computed results from computer programs. Such tricks are rarely
employed in this book. The succinct programs presented as subroutine procedures
in the text are applicable under very general settings, so as to be useful even in
research investigations. Special packages often popular with students sometimes
give disappointingly incorrect results and are hard to debug on account of their

vii

opacity. Open source codes, however, are often long-drawn statements, not clearly
reflecting the corresponding algorithm followed. The subroutines presented in the
book are free from these difficulties on account of their transparency.

For writing the computer codes, I have chosen to use the Fortran programming
language. Fortran is a powerful, easy-to-learn and traditional language for scientific
computation in which there are a number of inbuilt intrinsic functions. The present
version Fortran 2003 is fully backwards-compatible with its earlier popular versions
FORTRAN 77 and Fortran 90/95. The language has been upgraded to Fortran
2010, and a future version Fortran 2018 is proposed to be launched during this year.
The latest versions are the only ones usable in supercomputers and in modern
multiprocessor desktops. There is, therefore, some merit in retaining Fortran for the
purpose of scientific computation, especially because of the fact that a large number
of source codes mentioned in Chap. 1 are written in that language. At present, to my
knowledge, the output in Fortran is alphanumeric in nature. Conversion of output to
desirable graphic displays, however, is easily accomplished by using some graphic
software.

The book is divided into ten chapters. Chapter 1 gives a brief description of
computer software and types of errors encountered in computing due to truncation
of mathematical formulae and digitisation of decimal numbers. Elements of Fortran
statements used in the book are also described in this chapter. Elementary illus-
trative examples are given in the chapter for initiation in Fortran programming to
beginners. Chapters 2 and 3 treat the fundamental problem of solving a single
equation or a system of several equations possessing real and complex roots,
respectively. A major part of Chap. 3 deals with the most important topic of solving
a system of linear equations. Chapter 4 provides the study of the classic problem of
approximation of a function by interpolation over the given data points, deferring
the treatment of the more theoretical topics of approximation to Chap. 8. Chapter 4
provides the methods which lead to the topics of numerical differentiation and
integration and to the solution of ordinary and partial differential equations
numerically. These topics are respectively covered in Chaps. 5–7. Chapters 9 and
10 treat the computationally fascinating, but mathematically difficult subjects of the
matrix—eigenvalues and the fast Fourier transform for computing Fourier integrals.
Short biographical sketches of the principal discoverers of the weighty material
have been given to enliven the reader as one proceeds to uncover the masterly
techniques. Tomes have been written by mathematicians and programmers on
topics of each of the ten chapters. In a moderately sized book like the present one,
the selection of the material arranged in some logical manner, therefore, became a
necessity. I have kept the benchmark of choice to understand the basics, keeping in
view the utility of application of the routines to the extent of research-level prob-
lems. A suite of 38 ready-to-use subroutines is given that directly follow the dif-
ferent methods developed in the book.

The book is an outcome of teaching the subject to undergraduate and post-
graduate students of engineering in which the students provided a huge contribution
as feedback. No less has been the effect on my own travails in computing for my
research problems that have spanned for at least the past five decades. The

viii Preface

compilation of this book is a reflection of these experiences. As writing progressed,
I had to sift through several books including one of my own that strayed away from
the benchmark laid down by myself. The ones that I found useful to varying
degrees are thankfully acknowledged at the end of the book. Thanks are also due to
S. N. Bose National Centre for Basic Sciences, Kolkata, for providing me the
library facility to look at new texts that have appeared in recent years.

Kolkata, India Sujit Kumar Bose

Preface ix

Contents

1 Computation in FORTRAN . 1
1.1 Calculators and Computers . 2

1.1.1 Computer Driver: Software . 3
1.2 Errors in Computing . 4

1.2.1 Truncation Errors . 5
1.2.2 Roundoff Errors . 9

1.3 Complexity of Algorithms . 17
1.4 Elements of FORTRAN . 23

1.4.1 The PROGRAM, END and COMMENT
Statements . 26

1.4.2 FORTRAN Variables and Type Declarations 26
1.4.3 FORTRAN Arrays (Subscripted Variables)

and DIMENSION. 27
1.4.4 Arithmetic Operations and the Assignment

Statement . 28
1.4.5 Relational Operators and Logical Expressions 30
1.4.6 PAUSE and STOP Statements 31
1.4.7 The GOTO Statement . 31
1.4.8 The IF Statement and the IF Construct 31
1.4.9 The DO Statement . 33
1.4.10 Functions in FORTRAN . 33
1.4.11 Input and Output (I/O) Statements 36
1.4.12 Other Statements . 38
1.4.13 Fortran Programming Examples 42

2 Equations . 55
2.1 Real Roots . 56

2.1.1 Isolation of a Real Root . 56
2.1.2 Refinement: Computation of a Real Root 58

xi

2.2 The General Iteration Method . 69
2.3 Rate of Convergence . 74

2.3.1 Acceleration of Convergence of Linearly
Convergent Sequences: Aitken’s D2

–process 77
2.4 Convergence Theorems . 79
2.5 Complex Roots . 85

2.5.1 Müller’s Method . 85
2.6 Algebraic Equations . 90

2.6.1 Root Bounding Theorems . 94
2.6.2 Application of Newton’s Method 96
2.6.3 Bairstow’s Method . 99
2.6.4 Method of Eigenvalues . 104
2.6.5 Ill-Conditioned Equations . 105

2.7 Choice of Methods . 105

3 System of Equations . 107
3.1 Linear System of Equations . 107

3.1.1 Tridiagonal Matrices: Thomas Method 108
3.1.2 Gauss Elimination for General Linear System 112
3.1.3 LU Decomposition Method . 119
3.1.4 Matrix Inversion . 127
3.1.5 Cholesky’s Method for Symmetric Matrices 129

3.2 Error: Matrix Norms and Condition Number 133
3.3 Relaxation Methods . 138

3.3.1 Jacobi’s Method . 139
3.3.2 Seidel’s Method . 140
3.3.3 Young’s Over Relaxation Method 143
3.3.4 Convergence Theorems . 144

3.4 Non-linear System of Equations . 147
3.4.1 Newton’s Method for n Equations 148
3.4.2 Broyden’s Method . 152
3.4.3 General Iteration for n Equations 156
3.4.4 Unconstrained Optimization of a Function 157

4 Interpolation . 163
4.1 Polynomial Interpolation . 164

4.1.1 Lagrange’s Method . 165
4.1.2 Newton’s Method: Divided Differences 168
4.1.3 Neville’s Scheme . 175
4.1.4 Error in Polynomial Interpolation 178

4.2 Equally Spaced Points: Finite Differences 180
4.2.1 Gregory–Newton Forward Difference Formula 183
4.2.2 Gregory–Newton Backward Difference Formula 185
4.2.3 Stirling’s Central Difference Formula 186

xii Contents

4.3 Best Interpolation Nodes: Chebyshev Interpolation 191
4.4 Piecewise–Polynomial Spline Interpolation 197

5 Differentiation and Integration . 203
5.1 Numerical Differentiation . 204

5.1.1 Minimal Step Length h . 210
5.1.2 Richardson Extrapolation . 211

5.2 Numerical Integration . 214
5.2.1 Basic Rules of Numerical Integration 215
5.2.2 Newton–Cotes Formula . 224
5.2.3 Composite Rules . 226
5.2.4 Gaussian Quadrature Formula 235
5.2.5 Romberg Integration . 245
5.2.6 Adaptive Quadrature . 249

5.3 Euler–Maclaurin Summation Formula 252
5.4 Improper Integrals . 256
5.5 Double Integration . 258

6 Ordinary Differential Equations . 261
6.1 Initial Value Problem for First-Order ODE 262

6.1.1 Euler’s Method . 263
6.1.2 Modified Euler’s Method . 264
6.1.3 Runge–Kutta Methods . 264
6.1.4 Convergence of Single-Step Methods 272
6.1.5 Adams–Bashforth–Moulton Predictor–Corrector

Method . 274
6.1.6 Milne’s Predictor–Corrector Method 277
6.1.7 Stability of the Methods . 279

6.2 System of ODEs . 282
6.2.1 Adaptive Step Size Runge–Kutta Methods 288

6.3 Stiff Differential Equations . 292
6.4 Boundary Value Problems . 294

6.4.1 Shooting Methods . 295
6.4.2 Finite Difference Methods . 298
6.4.3 Collocation, Least Squares and Galerkin Methods 302

7 Partial Differential Equations . 309
7.1 First-Order Equation . 310

7.1.1 Lax–Friedrichs Method . 310
7.1.2 Lax–Wendroff Method . 311
7.1.3 von Neumann Stability Analysis 311

7.2 The Diffusion Equation . 315
7.2.1 Schmidt Method . 315

Contents xiii

7.2.2 Laasonen Method . 316
7.2.3 Crank–Nicolson Method . 317

7.3 The Wave Equation . 321
7.4 Poisson Equation . 325
7.5 Diffusion and Wave Equation in Two Dimensions 330
7.6 Convergence: Lax’s Equivalence Theorem 332

8 Approximation . 335
8.1 Uniform Approximation by Polynomials 336
8.2 Best Uniform (Minimax) Approximation 339

8.2.1 Near-Best Uniform Approximation 346
8.2.2 Chebyshev Series and Economisation

of Polynomials . 348
8.3 Least Squares Approximation . 352

8.3.1 Least Squares Polynomial Approximation over
Given Data Set . 357

8.4 Orthogonal Polynomials . 361
8.5 Orthogonal Polynomials over Discrete Set of Points:

Smoothing of Data . 365
8.6 Trigonometric Approximation . 370
8.7 Rational Approximations . 372

8.7.1 Padé Approximations . 373
8.7.2 Rational Function Interpolation 376
8.7.3 Near-Best Uniform Rational Approximation:

Maehly’s Method . 379

9 Matrix Eigenvalues . 385
9.1 General Theorems . 388
9.2 Real Symmetric Matrices . 391

9.2.1 Jacobi’s Method . 391
9.2.2 Givens’ Transformation . 394
9.2.3 Householder Transformation: Hessenberg Matrices 398

9.3 General Matrices . 404
9.3.1 The LR Method . 405
9.3.2 The QR Method . 406

9.4 Maximum Modulus Eigenvalue: The Power Method 428
9.4.1 Any Real Eigenvalue: The Inverse Iteration

Method . 433
9.5 The Characteristic Equation . 435

10 Fast Fourier Transform . 441
10.1 Discrete Fourier Transform . 442
10.2 Fast Fourier Transform . 444

10.2.1 Signal Flow Graph of FFT . 448

xiv Contents

10.2.2 Bit-Reversal . 451
10.2.3 FFT Subroutine . 451
10.2.4 Canonic Forms of FFT . 456

Bibliography . 459

Index . 461

Contents xv

About the Author

Sujit Kumar Bose is a distinguished computer educationist and author of several
useful books on computational and numerical mathematics. He was a Research
Consultant at the Department of Civil Engineering, Indian Institute of Technology
Kharagpur, from 2002 to 2014. He was also member of the Guest Faculty at the
Department of Computer Science, Jadavpur University, Kolkata, from 1998 to
2006; a Senior Professor of Mathematics at the S. N. Bose National Centre for
Basic Sciences, Kolkata, India, from 1993 to 1998; Professor and Head of the
Department of Mathematics at the National Institute of Technology, Durgapur,
India, from 1975 to 1993; an Assistant Professor at the West Bengal Educational
Service, from 1965 to 1975; and a Lecturer at the West Bengal Junior Educational
Service, from 1960 to 1965. In addition, he was a postdoctoral fellow at the
University of California, Los Angeles, from 1972 to 1974.

Professor Bose is associated with several respected research institutes: Fellow
of the Indian Academy of Sciences, India; member of the Indian Society of
Theoretical and Applied Mechanics at the Department of Mathematics, Indian
Institute of Technology Kharagpur; member of the Calcutta Mathematical Society;
and member of the Indian Statistical Institute, Kolkata. He is awarded the Prof.
B. Sen Memorial Gold Medal for the Best Research in Elasticity, in 1978, and the
Sardar Vallabhbhai Patel Award for the Excellence in Researches in Mathematical
Sciences, in 2012. He obtained B.Sc. (Math Hons, 1957) and M.Sc. (Applied
Mathematics, 1959) as well as D.Sc. (Applied Mathematics, 1971), all from the
University of Calcutta, winning several gold medals. He was a Visiting Scholar at
the Computational Mechanics Center, Georgia Institute of Technology, USA, and
the Department of Applied Mathematics at the University of Twente, The
Netherlands in 1989. Professor Bose has research interests in applied mathematics,
solid mechanics, fluid mechanics and sediment transport.

xvii

Chapter 1
Computation in FORTRAN

Mathematically formulated problems pervade all branches of science and engineer-
ing. To an extent, this trend is discernible in social sciences like economics and
business management as well. Lately, medical science is also catching up with this
trend. When a mathematical formulation is simple in form, one can manage the
calculations for the solution of the problem using paper, pencil and a digital calcu-
lator. On the other hand, if calculations for the solution are long and complicated in
nature, one is compelled to consider the general mathematical form of the problem.
Scientific orNumeric Computing is concerned with restructuring the mathematical
formulation into an algorithm or a procedure involving simple arithmetic operations,
+, −, × and /, suitable for machine calculations by a digital computer. Algorithms
offer answers or output for the problem in numeric form that could be presented
in visual form for better display if necessary. Initially, an algorithm requires some
special information or input for producing the output. A digital computerworks on
the concept of stored program, which is an algorithm coded in machine language,
generated by the computer itself, after the algorithm for the solution of the problem in
hand is written in some programming language likeFORTRAN. The techniques of
FORTRAN programming are briefly elaborated in this chapter by considering sim-
ple but useful algorithms. FORTRAN programs for complicated algorithms appear
in subsequent chapters that deal with different kinds of generalised mathematical
formulations. The current versions of Fortran are very convenient for coding math-
ematical expressions and procedures.

The term algorithm is named after Abu Jafár Muhammad ibn Musa Al-Khwarizimi (A.D.
825), Arabic mathematician living in Baghdad, who first wrote a treatise of Arithmetic using Hindu

decimal numbers. This book made its way from Baghdad to Spain and translated into Latin by

English mathematician Robert of Chester and Spanish by John of Saville. In this way, Hindu

decimal numbers were introduced to the west. Al-Khwarizimi also authored a book on algebra and

its applications.

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7114-1_1&domain=pdf
https://doi.org/10.1007/978-981-13-7114-1_1

2 1 Computation in FORTRAN

1.1 Calculators and Computers

Calculators and computers are number-crunching digital electronic machines. Num-
bers or more precisely positive integers and zero are known in this country since
ancient times in the decimal system of representation. The system consists of ten
digits 0, 1, 2, · · · , 9 in which ten represented by 10 forms the base of the system.
One is familiar with the representation of the succeeding numbers using the ten digits
with place value. Let d1, d2, · · · , dn be any of the decimal digits, then in the integer
d1d2 · · · dn (not to be confused with the product of d1, d2, · · · , and dn) , dn is said
to be in unit position, dn−1 in ten’s position, dn−2 in hundred’s position and so on.
Interestingly, the number can be expressed as a polynomial in 10:

d1d2 · · · dn = d1 × 10n−1 + d2 × 10n−2 + · · · + dn−1 × 101 + dn =
n−1∑

i=0

dn−i10
i

(1.1)
For example, one can write

13 = 1 × 10! + 3

544 = 5 × 102 + 4 × 101 + 4

The two 4’s in 544 have different place value although the digits are the same!
Negative integers and fractional (or rational) numbers were, respectively, cre-

ated to meet the necessity of closing the subtraction and division processes for all
numbers. One is familiar with the representation of negative numbers by putting a
− sign in front of the number. Similarly, the decimal representation of fractional
numbers (·/·) is well known. These numbers were known in this country before
Al Khwarizimi’s time by about 800 A.D. Like an integer a terminating fractional
number d1d2 · · · dn.dn+1dn+2 · · · dn+m can also be represented as a polynomial in 10:

d1d2 · · · dn .dn+1dn+2 · · · dn+m = d1 × 10n + d2 × 10n−1 + · · · + dn × 100

+ dn+1 × 10−1 + dn+2 × 10−2 + · · · + dn+m × 10−m

=
n−1∑

i=−m

dn−i10
i (1.2)

Thus, for example, one can write

13.544 = 1 × 101 + 3 × 100 + 5 × 10−1 + 4 × 10−2 + 4 × 10−3

Fractional and irrational numbers together are called real numbers. Because of
physical limitation of a computer, nonterminating reals like the irrational num-
bers

√
2 = 1.41421356 · · · and π = 3.141592653 · · · cannot be handled exactly

in practice. Only sufficiently accurate representation by terminated the two reals

1.1 Calculators and Computers 3

such as 1.414214 and 3.141593 is possible depending on the accuracy required for
computation. In such approximations, the digits that are present in the exact rep-
resentation of the numbers are called significant digits. Thus, in the above two
representations, there are six significant digits, the digits 4 and 3 in the two num-
bers appearing in the last place having no significance because these two digits are
obtained by replacing the succeeding digits present in the two numbers. Following
the same idea, zeros in front of integers and those at the end of decimal fraction have
no significance and therefore not written. For example, 013.5440 is written as 13.544
as the dropped zeros do not contribute to the number and have no significance. The
difficulty of exactly calculating with such transcendental numbers by a computer,
following some algorithm, is self-evident.

Remark The representations (1) and (2) of integers and reals is suggestive that num-
bers can be represented in any base B by replacing 10 by B and the digits by the
admissible ones. For example, if B = 2 with only two digits 0 and 1, a number is
called a binary digit or bit. For B = 8 and B = 16, the numbers are, respectively,
called octal and hexadecimal. Conversion from one system to another is possible
following the polynomial representation.

1.1.1 Computer Driver: Software

A computer needs clear-cut instructions to start up and be ready to process user jobs.
A set of instructions to carry out any such function is called a program and a group
of such programs that are put into a computer to operate and control its activities is
called Software. A program is stored in a file and a software consists of a number of
files. In a computer, there are three essential kinds of software, which are stored in
hard disk. These are: (i) operating system, (i i) language processors or translators
or compilers and (i i i) user application programs.

TheOperating System (or OS)manages the resources of a computer and schedules
its operation. It comes as a number of system files and acts as an interface between
the hardware and other kinds of software. Its functions include: (a) monitoring the
use of the machine’s resources, (b) controlling and coordinating peripheral devices
like the I/O devices, (c) helping user to develop programs, (d) helping user programs
execute its instructions, and (e) dealingwith any faults thatmay occur in the computer
and inform the user. An OS comes with the computer hardware. Popular operating
systems are Windows and Linux.

Application programs following certain algorithms for solving mathematically
formulated problems are written by users in some programming language. Such
user-written programs are called Source Code. FORTRAN (standing for FORmula
TRANslation) was especially designed by IBMCorporation and launched in the year
1957 for writing of programs for the purpose of scientific computing. At present,
vastly improved versions of the language are available both as open source and as
commercial software. In these versions, program writing can be done in modular

4 1 Computation in FORTRAN

structures that follow the steps of the corresponding mathematical formulation
exactly. This speciality makes the task of checking of any Fortran program quite
easily. Other later generation well-known programming languages are C developed
by Bell Laboratories, and JAVA developed by Sun Microsystems. The latter two
languages, however, are of general nature, not necessarily oriented towards scien-
tific computations that have led to rapid growth of Information Technology, making
the computer ubiquitous. MATLAB developed by Math Works Inc., and PYTHON
developed by CentrumWiskunde and Informatica are two other programming tools,
popular with the scientific computing community. These two languageswork slightly
differently, adopting a number of special purpose inbuilt tools leading to directly
obtaining visual outputs, if required. In this book, the FORTRAN programming lan-
guage has been adopted for important reasons. It is best suited for learning higher
level programming, extending from scratch to programs for supercomputers. Being
the first language developed for scientific computing, it has a vast repository of
known source codes for direct use. Diverse codes such as those for numerical weather
prediction, finite element analysis of structures, computational fluid dynamics, com-
putational physics, crystallography and computational chemistry are all available in
Fortran only. To name a few, Fission Reaction Event Yield Algorithm (FREYA) of
Nuclear Physics, Vienna Ab Inition Simulation Package (VASP) and MicrOMEGAs
of Materials Science and Numerical Electromagnetic Code (NEC) of electromag-
netism belong to this category. The Fortran source codes are transparent and can be
modified whenever required. Finally, it is interoperable by binding with programs
written in other languages, such as C, PYTHON and MATLAB. Being a language
oriented towards scientific computations, it handles complex valued functions easily,
a facility not available in JAVA. An assessment states that Fortran source codes can
be faster in execution by as much as 30%, compared to source codes written in other
languages. The saving in execution time is therefore substantial for large programs.

The task of writing Fortran programs following algorithms of mathematical meth-
ods is mostly straightforward, save for the fact that errors in computing inevitably
occur as described in the next section. In some cases, especially when a huge num-
ber of operations are involved during the execution of the programs, spurious output
may be returned as output. Great care is therefore needed in writing Fortran codes,
for bypassing such traps. In pathologically bad cases, the accurate computation may
even not be possible. Such cases are however rare, leaving scope for research in order
to overcome the difficulties present in the mathematical method followed.

1.2 Errors in Computing

We suppose that a scientific problem is mathematically formulated, in its exactitude,
as best as possible. By this, we mean that even though the formulation is obtained
following certain assumptions regarding the actual nature of the problem, the formu-
lation by itself does not violate any mathematical rule. Frequently such formulation,
or mathematical model of the actual problem use tools of analysis and its calculi,

1.2 Errors in Computing 5

and thus invoke infinitesimal and infinity of magnitude. Computation, whether done
by paper and pencil or by machine, is, on the other hand, always finite state. Any
quantity, say x , is thus approximated by another quantity x̃ , as closely as possible,
depending on the capacity of the machine (or hand computation). Thus, an error
creeps into the quantity x , which is precisely defined by the relation

True Value = Approximate Value + Error

or Error = True Value − Approximate value = x − x̃ (1.3a)

This error is sometimes called Absolute Error. In contrast, the Relative Error is
defined as

Relative Error = Error

True Value
= Error

x
(1.3b)

and similarly one can define

Relative Error with respect to x̃ = Error

Approximate Value
= Error

x̃
(1.3c)

For example, let x = 1/3 = 0.3333 · · · (to infinity), and x̃ = 0.333. Then, the error =
1/3 − 0.333 = 1/3 × 10−3; relative error = 1/3 × 10−3/(1/3) = 10−3 and relative
error with respect to x̃ = 1/3 × 10−3/(0.333) = 1.001̇ × 10−3. In the last quantity,
001 recurs infinitely after the decimal.

We are generally interested in the absolute error, but the relative error is a better
index when a quantity is very small or very large. For, consider the case of x = 10−9

and x̃ = 10−6 (both close to 0), then error = − 0.999 × 10−6 is still small but the
relative error = − 999 is large. Similarly one can construct examples for very large
numbers.

When there are several quantities and each one is approximated suitably, then
the errors compound. In computing, the endeavour is to keep the accumulated error
firmly in check, so that one obtains results to some desired accuracy. To achieve
this goal, one has to diagnose the nature of approximations, which come into play
while computing, and trace the nature of the errors. This question is examined in the
following subsections.

1.2.1 Truncation Errors

Most analytical techniques use infinite series, differentiation and integration. The
occurrence of functions like sin(x), cos(x), exp(x), ln(x) is commonplace. These
are transcendental functions having convergent infinite series representation like

sin(x) = x − x3

3! + x5

5! − · · · + (−1)N−1 x2N−1

(2N − 1)! + · · ·∞ (1.4)

6 1 Computation in FORTRAN

For computation, the series must be replaced by computable expression. Since the
series is rapidly convergent, one can truncate the series up to N terms and approx-
imate the function by a polynomial of degree 2N − 1. Calculators and computers
use this technique in a sophisticated manner to ‘evaluate’ the function with very high
accuracy (see Chaps. 4 and 8 for introduction of such techniques). In differentiation,
given a function f (x), its derivative is defined by

f ′(x) = lim
h → 0

f (x + h) − f (x)

h
(fixed x) (1.5)

which again is an infinite processwith decreasing values of h. So one can approximate
it by [f (x + h) − f (x)]/h where h is fixed but small. This procedure can be
extended to higher order derivatives as well as to partial derivatives of a function of
several variables. Definite integrals are commonly defined by Riemann integration.
The integral of a bounded function f (x) on [a, b] is

∫ b

a
f (x) dx = lim

h → 0

[
h

(b−a)/h∑

i=1

f [a + (i − 1 + θ)h]
]

0 ≤ θ ≤ 1 (1.6)

where equal subintervals are chosen for subdivision of the interval [a, b]. So,
an approximation could be the expression within the outer brackets, for a small
value of h.

The truncation in the above mentioned infinite processes leads to truncation
error. It depends on N and h as the case may be. A practical way to estimate the
truncation error is to increase N or decrease h and observe the computed results.
If the computed results ‘settle down’ or ‘converge’, then one might decide that the
truncation error is small enough to produce an acceptable approximate result. Such
a methodology is called convergence test and most programs have one or more
of such convergence tests for obtaining approximate results to the desired degree of
accuracy.This does not, however, mean that convergence occurs in all cases whenever
a test is passed. In fact counter-examples can be constructed to prove that testing
for convergence may be a mathematically unsolvable problem. One such example is
given below. Consider the integral

A =
∫ 2

1

sin x

x
dx

We subdivide [1, 2] into 10 subintervals of length 0.1 each and obtain

A =
[∫ 1.1

1.0
+

∫ 1.2

1.1
+ · · · +

∫ 2.0

1.9

](sin x

x
dx

)

1.2 Errors in Computing 7

Now suppose that an integral in the above expression is approximated by a single
subdivision of h = 0.1 and the function value by the mean of the values of the
integrand at the end points of the subdivision. The approximation of the first integral
in the expression for A is then

∫ 1.1

1.0

sin x

x
dx ≈ 0.1 × 1

2

[sin(1.0)
1.0

+ sin(1.1)

1.1

]

Similarly for the other sub-integrals. Adding them, we get

A ≈ 0.05 ×
[sin(1.0)

1.0
+ 2 ×

{ sin(1.1)
1.1

+ sin(1.2)

1.2
+ · · · + sin(1.9)

1.9

}
+ sin(2.0)

2.0

]

= 0.65921

Thismethod of approximation is called theComposite Trapezoidal Rule (seeChap. 5,
Sect. 2.3). The exact value is however A = 0.65932 · · · obtained by using an accurate
integrator. Evidently, there is agreement up to three decimal places. Now suppose
that the approximation passes a convergence test with some prescribed accuracy. We
show that an arbitrary function g(x) could also yield the same approximation. For
this purpose, define a saw-tooth function s(x) by

s(x) =
{
0 for x = xi = 1 + 0.1 × (i − 1)
10(x − xi) for xi < x ≤ xi+1

where i = 1, 2, 3 · · · , 11. Now define a function g(x) = (sin x)/x + C × s(x). Its
integral is

G =
∫ 2

1

sin x

x
+ C

∫ 2

1
s(x) dx = A + C × 1

2
= A + 0.5 × C

where C is an arbitrary constant. In the above equation, each tooth of s(x) is a
triangle of base 0.1 and height 1; so the integral of s(x) that equals the total area
under s(x) is (12 × 0.1 × 1) × 10 = 1/2. Now if the composite trapezoidal rule is
applied to G, its approximation by the rule equals that of A, because s(x) vanishes at
all the points of subdivision. Thus, the approximations of G and A are the same even
though g(x) and sin x/x differ arbitrarily and so it may be impossible to compute an
integral likeG accurately, by adopting some particular numerical integrationmethod.

In ordinary circumstances, one may assume ‘pathological difficulty’ of the above
nature does not exist, so that simple convergence test suffice. Sometimes more than
one test is employed to guard against difficult cases, yielding accurate results. For
example, in the case of evaluation of A, one may (1) decrease h by increasing the
number of subintervals, and (2) count the subintervals in which the integrand oscil-
lates (non-monotonic). If the computed value settles to the desired number of decimal

8 1 Computation in FORTRAN

places and there are few subintervals of swing in the function, the computed result
may be accepted. In practice, additional tests seldom take up excessive computational
time.

Whenever truncation is resorted to, it is of paramount importance to know, how
fast the error goes to zero as parameters like h and N vary. The answer to such ques-
tion is best represented by using the Landau ‘big O’ symbol. It is defined as follows:

Definition A function f (x) is said to be of the order of the function g(x) if

lim
x → x0

∣∣∣∣
f (x)

g(x)

∣∣∣∣ = C < ∞ (1.7)

for some constant C > 0 and on writes f (x) = O(g(x)) or f (x) is big-oh g(x). In
this case | f (x)| ≤ K |g(x)|, K > 0 for x → x0. If C = 0, then f (x) is said to be of
higher order than g(x) and one writes f (x) = o(g(x)) or f (x) is little-oh of g(x).
From the definition, it is easy to check the following properties:

(i) f (x) = o(g(x)) ⇒ f (x) = O(g(x))

(i i) f (x) = K · O(g(x)) ⇒ f (x) = O(g(x)), where K = constant
(i i i) f (x) = O(g1(x)) and g1(x) = O(g2(x)) ⇒ f (x) = O(g2(x))

(iv) f1(x) = O(g1(x)) and f2(x) = O(g2(x)) ⇒ f1(x) · f2(x) = O(g1(x) · g2(x))

(v) f (x) = O(g1(x) · g2(x)) ⇒ f (x) = g1(x) · O(g2(x))

Analogues of properties (i i) − (v) also hold for the symbol ‘o’.
When the error in a truncation process is like O(h p) or O(1/N k), the convergence

is said to be of the order h p or 1/N k , respectively. The term rate is often used
synonymously to order.We can use the definition to examine the order of convergence
of sin(x) and f ′(x) considered in Eqs. (1.4) and (1.5). Denoting by SN (x) the sum
of the first N terms of Eq.(1.4), which approximates sin(x), we have according to
Eq. (1.3a)

error = sin(x) − SN (x) = (−1)N+1 x2N+1

(2N + 1)! + · · ·

Since the series on the right-hand side of the above equation is uniformly convergent,
we get

lim
N→∞

∣∣∣∣
error

x2N+1/(2N + 1)!
∣∣∣∣ = 1, or, error = O

(
x2N+1

(2N + 1)!
)

, as N → ∞

Theprocess is therefore rapidly convergent, as the sequence x2N+1/(2N + 1)! rapidly
converges to 0 for all x . For the approximation of the derivative f ′(x) considered in
Eq. (1.5), if we use Taylor’s theorem

1.2 Errors in Computing 9

f (x + h) = f (x) + h f ′(x) + h2

2! f ′′(x + θh), 0 < θ < 1

The error (1.3a) is therefore given by

error = f ′(x) − f (x + h) − f (x)

h
= −h

2
f ′′(x + θh)

So, limh→0|error/h| = 1
2 f ′′(x) or error = O(h) as h → 0. Thus, the error is of the

first order. It is a slowly convergent process. The topic of order of convergence of
methods for evaluating definite integrals like Eq. (1.6) will be considered in Chap. 5.
In most of the chapters, truncation of exact expressions will be the key to develop
numerical methods.

1.2.2 Roundoff Errors

Computers have certain limitations. TheCentral ProcessingUnit (CPU) is a two-state
binary machine and can store numbers in bits 0 and 1 only. So a decimal number
entered by a user is first encoded in binary bits. In fact, all other information is also
encoded in binary bits. Processing of numbers is performed by storing a number in
a register of the CPU and the latter has always a given capacity called word length.
This brings in a limitation on the size of numbers and infinitely large numbers cannot
be stored.

The storage in a register is organised in two ways: according to whether a number
is an integer or real. The corresponding arithmetic is also organised accordingly.
These are called fixed-point arithmetic and Floating-point arithmetic.

1o. Fixed-point Arithmetic

Consider a positive or negative integer x represented by n significant digits
± d1d2 · · · dn in base B. For a computer B = 2, in which case di = a bit, either
0 or 1; whereas for the user B = 10. In both the cases, one can write

x = ±(d1Bn−1 + d2Bn−2 + · · · + dn−1B + dn) = σ

n−1∑

i=0

dn−i Bi (1.8)

where σ is positive or negative sign, according to the sign of x . The number of digits
n is called mantissa length of x .

Let N (≥ n) be the word length of the computer, and then σ can be represented by
a bit of the register (+ by 0 and – by 1). The biggest number in magnitude that can
be stored is xm = ±(11 · · · 1), in which all the remaining N − 1 bits are 1. Then,

xm = σ(1 × 2N−2 + 1 × 2N−3 + · · · + 1 × 2 + 1) = ±(2N−1 − 1)

10 1 Computation in FORTRAN

where B = 2. For example, in 32-bit processor, N = 32 and we obtain

xm = ±(231 − 1) = ±2147483647

in decimal digits. The number is ten digits long and bigger numbers cannot be stored.
The arithmetic of integers is carried out in a special way by the processor and is

called fixed-point arithmetic.

2o. Floating-point Arithmetic

Next consider a (nonterminating) real x represented by ±d1d2 · · · dn · dn+1dn+2 · · ·
in baseB (2 or 10). We can write

x = ±(d1Bn−1 + d2Bn−2 + · · · dn−1B + dn + dn+1B−1 + dn+2B−2 + · · ·)

= σ Bn
∞∑

i=1

di B−i (1.9)

where as before σ stands for + or −, n represents the exponent and the digits
d1, d2, · · · make up the mantissa. When x is a rational number in base 10, the
infinite series terminates or else it is a recurring decimal. In the former case the
mantissa length is finite and in the latter case, it is infinite. As examples, we have
the representations

365

2
= 182.5 = 0.1825 × 103

22

7
= 3.142857̇ = 0.3142857̇ × 101

The equivalent right-hand side representations are in normal exponent form. Irra-
tional numbers, on the other hand, are nonrecurring, nonterminating decimals like

√
2 = 0.141421356237309 · · · × 101

e = 0.271828182845904 · · · × 101

π = 0.314159265358979 · · · × 101

1/π = 0.318309886183790 · · · × 10−2

with infinite mantissa length. Trivially, integers can also be expressed in the exponent
form, like

13 = 13.0 = 0.14 × 102, 544 = 544.0 = 0.54 × 103

It is not practical to do arithmetic exactlywith infinite strings of digits representing
floating-point numbers. In a machine, the word length is finite, consisting of N bits
in a number base B = 2. So a word is organised in the following manner. Leaving
one bit for σ , the rest are divided into two groups. One of the two groups is reserved
for the exponent n and the rest of the bits are meant for the mantissa. The size for
each group depends upon themake of the processor. This organisation determines the

1.2 Errors in Computing 11

maximum real number in magnitude that the memory can hold. For example, in a 32-
bit processor, 8 bitsmay be reserved for the exponent. Themaximumbinary exponent
range is then 11111111 = 28 − 1 =255 (decimal). This range can be arranged from
−128 to 127, which means that the exponent could range from 2−128 to 2127 or
10−39 to 1038. Any decimal exponent higher than 38 would not be processed issuing
overflowmessage. On the other hand, the decimal exponents < −39 are considered
negligible and set to 0. Regarding the mantissa, the available number of bits is =
38 − 1 − 8 = 23 and the maximum possible mantissa becomes 223 − 1 = 8388607
with seven decimal digits. In conclusion, numbers between ±0.8388607 × 10−39

and ±0.8388607 × 1038 can be stored for processing in such a computer.
Suppose in general that the exponent lies between n− and n+ and the mantissa

length of a word is m. To accommodate a number x in the memory, ‘rounding’ is
necessary for the last available (mth)digit. One is acquainted with the rounding rule
which states that if the first discarded digit is greater than or equal to B/2 ‘round
up’ by 1 the last retained significant digit, otherwise keep the last retained digit
unchanged. When B = 10 one is familiar with the fact that that the last retained digit
is increased by 1, if the first discarded digit is ≥5, while in the contrary case it is
left unchanged. According to this rule if Rd(x) denotes the rounded value of x , then
from Eq. (1.9)

Rd(x) =
{

σ Bn(
∑m

i=1 di B−i + B−m), dm+1 ≥ B/2

σ Bn
∑m

i=1 di B−i , dm+1 < B/2
(1.10)

where di ∈ {0, 1, · · · , B − 1}, (1 ≤ i ≤ m) and d1 �= 0 if x �= 0. If one attempts to
approximate x by Rd(x), the error occurs. The relationship of Rd(x) to x , through
the relative error is given by the following theorem.

Theorem 1.1 If x is approximated by Rd(x), then

Rd(x) = x(1 + ε) = x

1 + η
(1.11a)

where the relative error −ε and the relative error η with respect to Rd(x) satisfy

|ε|, |η| ≤ 1

2
B−m+1 (1.11b)

Proof By definition −ε = (x − Rd(x))/x and −η = (x − Rd(x))/Rd(x). For
finding the upper bound on |ε| and |η|, consider the expression of Rd(x) − x . For
dm+1 < B/2 ⇒ dm+1 ≤ B/2 − 1, we have from Eqs. (1.9) and (1.10)

−σ [Rd(x) − x] = Bn
∞∑

i=m+1

di B−i ≤ Bndm+1B−m−1 + Bndm+2B−m−2

≤Bn−m−1
(B

2
− 1

)
+ Bn · B · B−m−2 = 1

2
Bn−m

where dm+2 < B has been used. On the other hand, if dm+1 ≥ B/2,

12 1 Computation in FORTRAN

σ [Rd(x) − x] = Bn
(m∑

i=1

di B−i + B−m
)

− Bn
∞∑

i=1

di B−i

= Bn−m − Bndm+1B−m−1 − Bn
∞∑

i=m+2

di B−i

≤ Bn−m − Bn · 1
2

· B−m−1 = 1

2
B−m+1

Hence in both the cases of (1.10), |Rd(x) − x | ≤ 1

2
Bn−m

Now, we have d1 ≥ 1 and so from Eq. (1.9)

σ x = Bn
∞∑

i=1

di B−i ≥ Bnd1B−1 ≥ Bn−1

Using the two inequalities, we obtain

|ε| =
∣∣∣∣

Rd(x) − x

x

∣∣∣∣ ≤ 1

2
Bn−m/Bn−1 = 1

2
B−m+1

Again, the roundoff rule implies

σ Rd(x) ≥ Bnd1B−1 ≥ Bn−1

and we obtain the bound for |η|, as in the case of |ε|. �

Wenow take up the question of arithmetic operation on two rounded floating-point
numbers x and y withm digit mantissa in base B. Denote any of the arithmetic opera-
tions+, −, ×, (·/·) by o and obtain x o y. Evidently, themantissa length of x o y will
be greater thanm. For instance, ifm = 4 and x = 0.1234 × 105, y = 0.5678 × 10−3,
then x + y = 0.123400005678 × 105. Therefore, such longish operation is carried
out by first storing the computed x o y in a longword length register and then roundoff
the number to m digit mantissa. The procedure is called floating-point operation. If
it is denoted by Fl, then Fl(x o y) results in Rd(x o y), i.e. Fl(x o y) = Rd(x o y).

The organisation of arithmetic in a processor is special. We consider here the
principles adopted for addition, viz. Fl(x + y) with mantissa length m. Suppose
x = σ110n1 × . d1d2 · · · and y = σ210n2 × . d ′

1d ′
2 · · · where n1 ≥ n2. Writing the

numbers x and y as 2m-digit floating-point numbers having the same exponent n1 (i.e.
asdouble precision numbers) and normalising the sum tom-digitmantissa by round-
ing, we obtain the requisite floating-point sum Fl(x + y). When n1 − n2 > m, the
method always yields Fl(x + y) = x . For example with m = 4 in the previous
example n1 − n2 = 5 − (−3) = 8 > 4 and Fl(x + y) = 0.1234 × 105 = x . On

1.2 Errors in Computing 13

the other hand when n1 − n2 ≤ m, there are different possibilities, illustrated by the
following examples:

Examples 1. Let B = 10, m = 4

(i) Let x = 0.1234 × 102 and y = 0.5678 × 100; then

. 12340000 × 102

+ .00567800 × 102

.12907800 × 102 ⇒ Fl(x + y) = 0.1291 × 102

(ii) Let x = 0.4321 × 10−2 and y = 0.8764 × 10−2; then

.43210000 × 10−2

+ .87640000 × 10−2

1.30850000 × 10−2 ⇒ Fl(x + y) = 0.1309 × 10−1

(iii) Let x = 0.1000 × 101 and y = −0.9987 × 100; then

.10000000 × 101

− .09987000 × 101

.00013000 × 101 ⇒ Fl(x + y) = 0.1300 × 10−2 �

1.2.2.1 Floating-Point Error Propagation

Once roundoff error is committed, it contaminates subsequent results. We examine
case (iii) of Example1 considered above in more detail regarding error propagation.
The two numbers x and y are nearly equal in magnitude and have opposite sign.
Suppose to exactly five digit mantissa x = 0.99955 × 100 and y = − 0.99873 ×
100. Rounding to four digits Fl(x) = 0.1000 × 100 and Fl(y) = −0.9987 × 100,
we obtain the two summands of case (iii). The relative errors −εx and −εy given
by Fl(x) = x(1 + εx) and Fl(y) = y(1 + εy) yield εx = 0.45020 × 10−3, −εy =
0.30038 × 10−4. From the treatment of case (iii) Rd[Fl(x) + Fl(y)] = 0.1300 ×
10−2 = 0.0013000 × 100(1 + ε) and so ε = 0. But,

Fl[Fl(x) + Fl(y)] = [Fl(x) + Fl(y)](1 + ε)

= x(1 + εx) + y(1 + εy](1 + ε) = (x + y)(1 + ρ)

where

ρ = x[ε + εx (1 + ε)] + y[ε + εy(1 + ε)]
x + y

=0.99955 × 0.45020 × 10−3 − (0.99873) × (−0.30038 × 10−4)

0.99955 − 0.99873
= 0.5854 = 58.54%

14 1 Computation in FORTRAN

Thus, the absolute value of the relative error in the last rounding operation in adding
x and y is 58.54%. This value is manifold larger in magnitude than the values of εx

and εy at− 0.045% and− 0.003%, respectively. Clearly, the reason for amplification
in the error is due to cancellation of digits in the sum x + y, in which x and y are
nearly of the same magnitude but opposite in sign.

The propagation of large errors when two nearly equal numbers are subtracted
is generally true. The propagation of error can be judged qualitatively in a general
manner by considering the condition number of a problem. Let y be a quantity
obtained from n data x1, x2, · · · , xn by arithmetic operations, so that

y = φ(x1, x2, · · · , xn) (1.12)

We study how errors in x1, x2, · · · , xn affect the result y when an error δxi is
committed in xi . Thus, the first order approximation to the relative error becomes

δy

y
=

n∑

i=1

(
xi

φ(x1, x2, · · · , xn)

∂φ

∂xi

)
· δxi

xi
(1.13)

The numbers
xi

φ

∂φ

∂xi
, i = 1, 2, · · · , n are called condition numbers of the prob-

lem (1.12). When the absolute values of the condition numbers are less than or equal
to 1, then the problem is said to be well conditioned; otherwise, it is called poorly
conditioned. When the problem is well conditioned

∣∣∣
δy

y

∣∣∣ ≤
n∑

i=1

∣∣∣
δxi

xi

∣∣∣ = sum of absolute relative errors in x1, x2, · · · , xn

Evidently, in this case, the relative error in y remains reasonably bounded by relative
errors in x1, x2, · · · , xn .

We use the above analysis to investigate the error in the computation of y =
x1 o x2, where as before o stands for+, −, ×, (·/·). The absolute condition numbers
are ∣∣∣∣

xi

x1 ± x2

∣∣∣∣, i = 1, 2

for ± operations. In the cases × and ˙δ− − − , the numbers are always equal to 1.
Hence we have an important conclusion that
(a) × and (·/·) are well-conditioned operations.
(b) + and − are well conditioned as long as the summands have, respectively, the
same or opposite signs. And
(c)+ and − are poorly conditioned whenever the two summands are of approximately
the same absolute value, but have, respectively, opposite or the same signs.

Example1(i i i) illustrates (c) for poor condition of subtracting nearly equal posi-
tive quantities.

1.2 Errors in Computing 15

1.2.2.2 Numerical Stable Evaluation of Formulae

Numerical evaluation of mathematical formulae is central to scientific computing.
We tend to evaluate them in a straightforward manner. A formula evaluation always
reduces to performing a sequence of elementary arithmetic operations. If a formula
contains subtraction of nearly equal positive quantities, then there is a possibility of
growing roundoff errors, rendering the evaluation unstable. To assure the stability
of the overall process, each individual step must be made numerically stable. We
illustrate the stabilisation procedure in the case of two examples.

Suppose it is required to solve the quadratic equation

ax2 + bx + c = 0

The two roots of the equation are given by the Sridhara (about 870–930 A.D.)
solution

x = −b ± √
b2 − 4ac

2a

The two roots can be written as

x1 = 1

2a
[−b − sgn(b)

√
b2 − 4ac], x2 = 1

2a
[−b + sgn(b)

√
b2 − 4ac]

If b2 > 4ac, both the roots are real. Ifmoreover b2 >> 4ac (the symbol>>meaning
that b2 is large compared to 4ac), then

√
b2 − 4ac nearly equals |b|. Hence subtrac-

tion of nearly equal positive quantities is involved in x2, rendering its evaluation
unstable. The difficulty can be circumvented by noting that x1x2 = c/a or,

x2 = c

ax1

The nature of stability of the two formulations can also be examined from the
stand point of condition number. For this purpose, we simplify by setting a = 1, b =
2p and c = q, so that the equation is taken as x2 + 2px + q = 0, without loss of
generality. Assume p > 0 where p2 >> |q|, so that

x2 = −p +
√

p2 − q

The two methods of computation are thus:

Method 1 Compute r = p2, s = r − q, u = √
s,,

x2 := φ1(u) = −p + u

16 1 Computation in FORTRAN

and

Method 2 Compute r, s, u as in Method 1 and x1 = −p − u,

x2 := φ2(u) = q

x1
= − q

p + u

For Method 1, ∂φ1/∂u = 1 and so

Cond. No. of Method 1 = u

φ1(u)

∂φ1

∂u
= u

−p + u
· 1 =

√
p2 − q

−p + √
p2 − q

= − 1

q

√
p2 − q

(
p +

√
p2 − q

)

>

{−2p2/q, if q < 0
2(p2/q − 1), if q > 0

Since p2 >> |q|, the condition number is always greater than 1 and the method is
poorly conditioned.

For Method 2, ∂φ2/∂u = q/(p + u)2 and so

Cond. No. of Method 2 = u

φ2(u)

∂φ2

∂u
= −u(p + u)

q
× q

(p + u)2

= −
√

p2 − q/
(

p +
√

p2 − q
)

Since the absolute value of the right-hand side is always less than 1, the method is
well conditioned.

In the second example, we illustrate how roundoff errors can play havoc with
computation. Consider the problem of solving the difference equation

xn+1 = (p + 1)xn − q, p > 0, q > 0

whose solution is simply xn = q/p (check). Suppose p to be somewhat larger than
q, say p = 3 and q = 1 and we iterate the equation starting with x1 = q/p. Writing
a computer program to perform the iteration (see Example 5, Sect. 1.4.13) and exe-
cuting it, reveals that the results for higher values are grossly absurd. The absurdity
stems from the fact that whatever roundoff error is committed in computing x1 is
multiplied by a factor p + 1 = 4 at each step of iteration, vitiating later stage results.
The remedy lies in performing the recursion in the descending order

xn = (xn+1 + q)/(p + 1)

1.2 Errors in Computing 17

Starting with an arbitrary value of xn for sufficiently large n. Arbitrarily choosing
this value of n to be 30, and x30 = 10, the results of recursion are given in the
following table:

xn+1 = 4xn − 1 xn = 1
4 (xn+1 + q)

n x1 = 1/3 x30 = 10

1 0.33333 0.33333
...

...
...

6 0.33334 0.33333

7 0.33337 0.33333

8 0.33350 0.33333

9 0.33398 0.33333

10 0.33594 0.33333

11 0.34375 0.33333

12 0.37500 0.33333

13 0.50000 0.33333

14 1.00000 0.33333

15 3.00000 0.33333

It is remarkable to note the accuracy of the results of the third column, even though
the starting value is grossly in error. This happens because at every iteration, the
enormous quantity is multiplied by a small factor 1/4.

Recurrence relations are important in the context of solving partial differential
equations, where properly solving them in a stable manner becomes an important
question (see Chap. 7). In general, when a computational problem has a large number
of arithmetic operations, a systematic analysis of error propagation is a difficult task.
One could try to account for error with each arithmetic operation as the computation
proceeds, but such forward error analysis is generally very complicated,whenever the
formulae in question have nonlinear structure. As stated before, close watch on the
acceptability of output generated, during execution of a programbecomes a necessity.

1.3 Complexity of Algorithms

An algorithm is a procedure for implementing the computation of a mathematical
method. Starting from an input it yields the output following some unique instruc-
tions, constituted of mostly arithmetic operations +, −×, (·/·) along with compar-
ison operations <, ≤, >, ≥, =, �= and replacement operation ←. Many a time, to
simplify the description, one uses the operations

√· , | · |, sin, cos exp, and ln, that
are actually subalgorithms. Sometimes, other subalgorithm written elsewhere are
used. An algorithm must have the following properties. (i)Definiteness: Every step
in an algorithm must be unambiguously defined. Every possible situation must be
accounted for. (i i) Finiteness: The process must stop after a finite number of steps.

18 1 Computation in FORTRAN

And (i i i) General Applicability: The algorithm should work on an entire class of
problems, so that the solution of a specific problem in its class is obtained by merely
changing the input. The requirement of definiteness in an algorithm has led to the
development of precise algorithmic language, but in this text, we use an informal
form called pseudocode, sufficient for the development of a computer program. A
program is merely a computer code of an algorithm, written in a programming lan-
guage like FORTRAN. The structure of an algorithm and its corresponding program
are so closely related that except in complicated cases, one may write the program
trivially from its algorithm. In simple cases, therefore, one directly writes a program
based on the method, for execution on a computer.

In general, there may be several alternative algorithms that accomplish the same
task. This raises the important question of complexity of an algorithm and methods
of reducing it for economic computing. There are two types of complexity: static
and dynamic. Static complexity can be in the form of length of algorithm and the
number instructions in it. Dynamic complexity, on the other hand, may be in terms
of run time andmemory size requirement of a computer. These measures depend
on the amount of input and hence are of much more practical significance. Run
time complexity is amenable to mathematical treatment when the input size grows
without bound. Here the complexity depends on the growth of the basic arithmetic
operations with an increase in the number of input data. Thus, complexity is defined
as the function that maps the input data to the number of basic arithmetic operations
carried out in the algorithm. If n be the number of input data, then the complexity
function is a function of n. Since one is interested in the limit n → ∞, the Landau
symbol ‘O’ is sufficient for describing the function.

We now give some examples of algorithms together with their complexity. Such
algorithms find application in programming.

1o. Naive evaluation of a polynomial:

P(x) := a0xn + a1xn−1 + · · · + an−1x + an =
n∑

i=0

an−i x
i

The pseudocode of the algorithm reads:

Input: Integer n, real (a0, a1, · · · , an), real x

Output: Real P

Computational Steps:

(i) P ← an

(i i) For i ← 1, 2, · · · , n;
P ← P + an−i · xi

End

1.3 Complexity of Algorithms 19

Here the first line notes the input: n, a0, a1, · · · , an and x . Their types are also noted,
as the computer stores them differently. The second line notes the output variable
P , which is real. Lastly, the computational steps for obtaining P are written down.
The sum is generated by recursion, taking into account terms containing increasing
powers of x one by one. The recursion is started in step (i) with P set equal to
or assigned the value an . In step (i i), P ← P + an−i x i means that assignment to
P is taking place such that new value of P = old value of P + an−i x i . In this way,
augmentation in P is done for incorporating the different terms of the series. Thus, for
i ← 1, value of P ← an + an−1x ; for i ← 2, value of P ← (an + an−1x) + an−2x2

and so on. Finally for i ← n, we get the value of the polynomial P .
There are only two basic arithmetic operations in the algorithm: addition (+)

and multiplication (·). Noting that xi is i times the product of x involving i − 1
multiplications, the complexity becomes

n∑

i=1

(1 + 1 + i − 1) = n + n(n + 1)

2
= 1

2
n(n + 3) = O(n2) for → ∞

2o. Evaluation of a polynomial by Horner’s scheme.
For this scheme, we rewrite P(x) as

P(x) = an + x(an−1 + x(an−2 + · · · + x(a1 + a0x)))

This is equivalent to the recursion

P1(x) =a1 + a0x

P2(x) =a2 + x P1(x) = a2 + x(a1 + a0x)

· · · · · · · · · · · · · · · · · ·
Pn(x) =an + x Pn−1(x) = P(x)

The pseudocode now becomes
Input: Integer n, real (a0, a1, · · · , an), real x

Output: Real P

Computational steps:

(i) P := a0

(i i) For i = 1, 2, · · · , n;
P = ai + x P

End
Satisfy yourselves that the algorithm generates the said recursion. The complexity
of this algorithm is (since there is one + and one · in step (i i))

20 1 Computation in FORTRAN

n∑

i=1

(1 + 1) = 2n = O(n) for n → ∞

Obviously, compared to the naive algorithm, there is huge economy in computation
for large values of n.

3o. Find the maximum of a set of numbers a1, a2, · · · , an .
Suppose b is the biggest among the given set of numbers. For i = 1, 2, · · · , n

compare b with ai . If b < ai , replace b by ai . This process will yield b. The algorithm
will thus be

Input: Integer n, real (a1, a2 · · · , an)

Output: Real b

Computational steps:

(i) b← − 0.8388607×10−39 (smallest number that can be stored);

(ii) For i ← 1, 2, · · · , n

If b < ai then b ← ai

End

Counting the number of comparison operations, the complexity is
n∑

i=1

(1) = n.

4o. Given a set of numbers a1, a2, · · · , an (n ≥ 2), sort the numbers in ascending
order of magnitude.

Consider two elements ai and a j (i < j). If ai > a j , swap ai and a j . The operation
is accomplished by considering a temporary element t such that ai is moved to t , a j

is moved to ai and finally t is moved to a j . The pseudocode of the algorithm thus
becomes

Input: Integer n, real (a1, a2, · · · , an)

Output: Real (a1, a2, · · · , an)

Computational steps:

For i ← 1, 2, · · · , n; j = i + 1, · · · , n
if (ai > a j) then
t ← ai

ai ← a j

a j ← t

End

Counting the number of comparisons≥, complexity
n∑

i=1

(n − i) = n · n − 1
2n(n + 1)

= 1
2n(n − 1) = O(n2) for n → ∞.

1.3 Complexity of Algorithms 21

In all of the above examples, the complexity is of the form O(n p). The complex-
ity is then simply called NP. For many problems, however, no NP complexity of
algorithm has been discovered, and computing for such problems in reasonable run
time is a challenge.

Exercises

1. Given x = 0.8726 × 102 and y = 0.3142 × 101 in a four-digit mantissa decimal
computer with roundoff, determine the results of operations

x + y, x − y, x × y, and xδ(·/·)y

Also, find the absolute error in each case.
[0.9040 × 102, 0.8412 × 102, 0.2742 × 103 and 0.2777 × 101].

2. In the four-digit computer stated in Ex. 1, given

x = 0.9678 × 104, y = 0.6780 × 103, z = 0.7800 × 102

show that

(i) (x + y) + z �= x + (y + z)
(i i) (x × y) × z = x × (y × z)
(i i i) z × (x + y) �= z × x + z × y

Does the equality in (i i) hold in the case of a five-digit computer? (This example
shows that in general, the associative and distributive properties of floating-point
addition and multiplication do not exactly hold).
[(i) (x + y) + z = 0.1044 × 104, x + (y + z) = 0.1043 × 104 (i i) (x × y) × z =
0.51184 × 109, x × (y × z) = 0.51177 × 109, (i i i) L.H.S=0.8081 × 106, R.H.S=
0.8078 × 106].

3. Let x and y be two real numbers in base B. Show that in an m bit mantissa
computer, the relative error ρ in a floating point operation satisfies

|ρ| ≤
∣∣∣∣

x

x ± y

∣∣∣∣|εx | +
∣∣∣∣

y

x ± y

∣∣∣∣|εy| for addition or subtraction x ± y

and |ρ| ≤ |εx | + |εy|, to first order for multiplication xy or division x/y

where |εx |, |εy| ≤ 1
2 B−m+1.

Hence estimate the relative error in computing (i) (x + y) × z and (i i) x2 + y/z,
for x = 1.2, y = 45.6 and z = 3.4, when B = 10 and m = 4.
[Use Theorem 1.1 for the first part or, alternatively you may use Eq. (1.13) of Sect.
1.2.2.1. (i) 2.2 × 10−3, (i i) 10−3].

22 1 Computation in FORTRAN

4. Find the expression for the relative error estimate in the computation of

(i)
√

x2 + y2 (i i) eax sin by

[(i) ε, (i i) ε[|ax | + |by cot by|], where ε = 1
2 · 10−m].

5. Show that in the computation of:

(i) x2 + 2x is better procedure than x(x + 2)
(i i) (y + z) + x is better procedure than (x + y) + z, when |x | > |y| > |z|.

6. Find the condition number and condition of the following functions:

(i) sin x, (i i)
√

x, (i i i) x3, (iv) 1/(x − 1), (v) ex

[(i) x/tanx < 1, (i i) 1/2, (i i i) 3, (iv) −x/(x − 1), (v) x].

7. Rearrange the following expressions to avoid loss of accuracy due to subtraction
cancellation:

(i) 1 − cos x, near x = 0 (i i)
x − sin x

tan x
, near x = 0

(i i i) (x + a)4 − a4, near x = 0 (iv)
√

x2 + 1 − x, near x = ∞

[(i) sin2 x/(1 + cos x), (i i) (x + sin x)/ tan x − 2 cos x,

(i i i) x4 + 4x3a + 6x2a2 + 4xa3, (iv) 1/(
√

x2 + 1 + x)].

8. Demonstrate dramatic instability in the computation of ex for x = − 12, using the
partial sum of its Taylor series expansion:

sn =
n∑

i=0

xi

i ! , n = 0, 1, 2, 3, · · · · · ·

Use the technique of Example8, Sect. 1.4.12 for writing a FORTRAN program.

9. Show that

(i) n2, 10, 000 + .00001n2, n2 + 2/n − 5n, 10n2 + ln n − sin(n) are O(n2)

as n → ∞.

(i i) 1/n2, 1/(n ln n), 2/n2 + 3/n3 are o(1/n) as n → ∞

(i i i) If sequence {xn} → x as n → ∞ then xn = x + o(1)

(iv) sin h = h + O(h3) = h − h3

6
+ o(h3) as h → 0

1.4 Elements of FORTRAN 23

1.4 Elements of FORTRAN

The name FORTRAN is an acronym for FORmula TRANslation. This high-level
language was devised at IBM Corporation in 1957, that has been updated from
time to time. The currently available versions are Fortran 90/95, and Fortran/2013.
Fortran/2018 is scheduled to be launched in the year 2018. All of the new versions
are backward compatible with FORTRAN77 which was in wide use in the earlier
years. The thrust of FORTRAN from the beginning has been to tacklemathematically
formulated problems, for which the computer was developed.

A FORTRANprogram consists of a sequential arrangement of a set of FORTRAN
statements. A FORTRAN statement is written in a line and a long statement can be
continued in the next line by typing the character and at the end of the line. If two or
more small length statements can be accommodated in a line, they must be separated
by the character ‘;’. A statement can optionally be given a label by writing numerical
digits not starting with 0, before beginning the statement. For convenience, the group
of digits is written so as to look like a number, e.g. 10 or 100. A FORTRAN statement
is written using the following FORTRAN characters:

(i) Alphabets: A, B, C, · · · , X, Y, Z
or/and

a, b, c,· · · · · · , x, y, z
in which ‘or’ applies for Windows operating system, while ‘and’ is for Linux. Win-
dows does not distinguish between capital and lower case letters, whereas they are
distinct in Linux. It may be added that originally FORTRAN admitted only the cap-
ital letters, but this restriction has now been removed.

(i i) Numerals: 0,1,2, · · · , 9 and
(i i i) Special characters: These are

Blank , Comma < Less than
= Equals . Decimal point > Greater than
+ Plus ′ Single quote $ Dollar
− Minus : Colon % Percent
∗ Asterisk ! Exclamation point ” Quote
/ Slash & Ampersand ? Question mark
(Left parethesis) Right parethesis ; Semi colon

The role of the characters is on expected lines with the exception that= has a special
meaning. ∗ and / play multiple roles, depending on the context of use. The second
special character in the second row is the decimal point and not a stop or period sign.
The first special character ‘blank’ is used to give a good textual presentation to a
statement. This fact implies that the absence or presence of some blanks does not
make a statement incorrect.

In a program, constant numbers are written as Fortran constants. They are of
three types: Integer, Real and Complex, depending on how the numbers are stored
in the memory of the computer.

24 1 Computation in FORTRAN

(i) Integer Constants.Using the ten numerals, a constant is written as in elemen-
tary arithmetic, with or without a + or − sign. No decimal point is present in such
constants. The storage is done as in fixed-point arithmetic discussed in Sect. 1.2.2.

Examples 1. 0, 1, +5, –13, –5108.

± 0 is equivalent to 0.

(i i)Real Constants.These are constants with terminating fractional parts and are
stored in the way discussed in Floating-point arithmetic of Sect. 1.2.2. The decimal
point must be present in such constants. Real constants can be written in two forms:

(a) Fractional Form. This form is the same as that in arithmetic, with generic
form m.n with or without + or − sign. m is the integer part and n the fractional part
of the number.

Examples 2. 0.0, 2.5, +31.4798, −378.605.

Fractional numbers are internally converted to the form as under:

(b) Exponent Form. The generic (normal) form of such constants is .mEn, with
or without + or − sign. Here m is the mantissa and n the exponent, E replacing the
base 10 of the number system.

Examples 3. 0.0E0, 0.258E2, −0.15E4, −0.44693E−3

One can also shift the exponent, making appropriate changes in the mantissa part
into a fractional form.

Examples 4. For the numbers of Example2, one can write

0.0E0, 2.58E1, −1500.0E0, −0.044693E−2

Such forms are internally converted into normal form.
(i i i) Complex Constants. Following the algebraic definition of complex num-

bers, complex constants are written as a pair of real constants, within parentheses
(and), separated by a comma.

Examples 5. (0., 0.), (0.,1.), (2.3, −4.691), (−1.234E2, .56978E−3)

Note that (0., 1.) is the purely imaginary number i which is sometimes also writ-
ten as j .

Irrational numbers such as
√
2 and π must be approximated by roundoff (see

floating-point arithmetic, Sect. 1.2.2). In a 32-bit machine, seven significant digits in
the mantissa can be retained. Thus,

√
2 and π could, respectively, be approximated

by 1.414214 and 3.141593. The same procedure should be applied to nonterminating
rational numbers. For higher accuracy in computation, double precision constants
written byD insteadofE in the exponent formare used.About 15 significant digits can
be retained in the mantissa in this way. In this case, two ‘words’ combine to store the

1.4 Elements of FORTRAN 25

number. In double precision,
√
2 and π can thus be written as 1.41421356237310D0

and 3.14159265358979D0. Double precision complex constants can be written as a
pair of double precision real constants. But some of the compilers may restrict the
real and imaginary parts to single precision constants of the first type only, in which
case a constant is stored in 32 bits of memory, or in 4 bytes (1 byte = 8 bits) of a
32-bit machine. In contrast, a double precision real constant occupies 8 bytes, and
consequently, a double precision complex constant occupies 16 bytes.

Certain Fortran constants may appear several times in a Fortran program. Such
constants can be given short symbolic names for convenience and used in the program
instead of their value. Such names are calledNamedConstants andmust be declared
by the PARAMETER statement with the syntax

PARAMETER (named_constant = value list)

where the different named_constants and their respective values must be separated
by commas. Amore elaborate PARAMETER statement, explicitly declaring the type
of constants is a type declaration (see Sect. 1.4.2) of the form

REAL, PARAMETER :: named_constant = value list

where the statement part ‘REAL’ indicates that the corresponding FORTRAN value
is a REAL constant. Similarly, INTEGER and COMPLEX named constants can be
declared by writing INTEGER or COMPLEX instead of REAL. It is obvious that
such declarations should be made in the beginning, before statements of execution
occur in the program.

Examples 1. π = 3.141593, e = 2.718282, and i =
√−1 can be declared as

PARAMETER(pi = 3.141593, e = 2.718282, ci = (0.0, 1.0))

or as,

REAL, PARAMETER :: pi = 3.141593, e = 2.718282

COMPLEX, PARAMETER :: ci = (0.0, 1.0)

The complete Fortran language suit has a long list of admissible statements and
features that help program development [32]. Restricting our objective of generic
numeric program development, we proceed to describe the most useful ones. Capital
alphabets are used for emphasis.

26 1 Computation in FORTRAN

1.4.1 The PROGRAM, END and COMMENT Statements

A program for solving a problem in hand can be given a name. Its syntax is

PROGRAM program name

It should be the first statement of the program. The statement is optional with default
program name MAIN.

The mandatory last statement of a program is

END PROGRAM

or simply END. This statement marks the physical end of the program; any other
statement following it is not considered part of the program.

A long program is usually written with a modular structure, where specialised
jobs are assigned to other function types or subprograms (see function and subroutine
subprograms, Sect. 1.4.10). The statement END is used to end such programs also.
Other structures are also ended with the statement END, followed by name of the
structure.

COMMENT statements are used to append explanations in a program (main or
sub). Its syntax is

! comment (to end of line)

In practice, it (i.e. !) is placed to the right of a Fortran statement, providing an
explanation of the statement. For providing explanation of groups of statements,
comments occupying whole lines may be put preceding the statements.

1.4.2 FORTRAN Variables and Type Declarations

Unlike a single letter symbol in mathematics, a Fortran variable can be a chain of
alphabets and numerals, starting always with an alphabet. One is allowed to join
words by __ to form a variable name.

Examples 1. X, A1, Z1BYZ2, Frequency, square_ root, inverse_ of

Variables are of three types: integer, real and complex depending on the data types
(constants), which they assume for values. The types in single precision are specified
by type declaration statements INTEGER, REAL and COMPLEX with syntaxes:

INTEGER :: integer variable list (separated by commas)

REAL :: real variable list (separated by commas)

COMPLEX :: complex variable list (separated by commas)

In double precision, the syntaxes are one of the following three ways:

1.4 Elements of FORTRAN 27

DOUBLE PRECISION :: real variable list (separated by commas)

DOUBLE COMPLEX :: complex variable list (separated by commas)

or,

REAL*8 :: real variable list (separated by commas)

COMPLEX*16 :: complex variable list (separated by commas)

or,

REAL(KIND=8) :: real variable list (separated by commas)

COMPLEX(KIND=8) :: complex variable list (separated by commas)

The portion KIND= is optional in the last two statements and one can simply write
REAL(8) andCOMPLEX(8). In single precisionKIND=4 and is optional. TheKIND
attribute in fact has a much wider use [32].

Variable lists in single precision can be shortened by the default option that integer
variables starting with the alphabets I, J, K, L, M, N may be omitted from an integer
variables list. Similarly, real variables starting with A–H and O–Z may be omitted
from real variables list. For portability, however, it is a good practice to list all the
variables even if they follow the default option.

For long lists of variables, a useful statement is the IMPLICIT statement, which
imparts declarations in very concise form. Suppose one wants to declare that all
variables starting with alphabets A–H, O–Z are double precision real, and then the
declaration

IMPLICIT DOUBLE PRECISION (A − H,O − Z)

serves the purpose. A complex variable Z whose real and imaginary parts are X and
Y can be paired by the function CMPLX as follows:

Z = CMPLX(X, Y)

1.4.3 FORTRAN Arrays (Subscripted Variables)
and DIMENSION

Arrays such as vectors and matrices are named in Fortran in the manner of variables.
The dimension of an array (such as the number of elements of a vector or number of
rows and columns of a matrix) is specified by the DIMENSION statement. Suppose
there is a vector V with 10 integer components and a matrix A with 12 rows and 15
columns, the array initialisation syntax is

INTEGER DIMENSION(15) :: V
REAL DIMENSION(12, 15) :: A

28 1 Computation in FORTRAN

In short, one can also use type declarations by omitting the keyword DIMENSION.

INTEGER :: V(15)

REAL :: A(12, 15)

Other variables and arrays can be included in the list of such type declarations.
Double precision arrays can be initiated by using sayREAL(8) andCOMPLEX(8)

statements as explained earlier.
The elements of an array, that arewritten as subscripts inmatrix algebra arewritten

as the array name with the subscripts in parentheses. Thus, the I th element of V is
written as V(I), and similarly, the element on the I th row and J th column of matrix
A is written as A(I,J).

1.4.4 Arithmetic Operations and the Assignment Statement

The arithmetic operations of Fortran are

+ for addition
− for subtraction

for multiplication
/ for division
∗ for exponentiation

The notation for exponentiation stands out by the presence of two consecutive char-
acters. The left and right parentheses (and) can be used for grouping of terms as
in arithmetic. Use of brackets [] and braces { } is not permitted. Instead of these,
nesting of parentheses is permitted to form arithmetic expressions. Such expressions
look like algebraic expressions involving constants and variables (with or without
subscripts), but in reality, they are arithmetic in nature. Here, the compiler does not
manipulate algebraic symbols but instead computes the value of an expression for
the current value of the variables.

The operators are given precedence pecking order, so as to reduce excessive use
of (nested) parenthesis. The hierarchy is

() innermost highest, outermost lowest
∗∗
∗ and /

+ and −

For operations with the same hierarchy, execution takes from left to right

Examples 1.

A/B*C is equivalent to (A/B)*C

1.4 Elements of FORTRAN 29

A*B+C/D−E*F is equivalent to ((A*B)+(C/D))−E**F
(A*B+C/(D**E+F)−A)/B+C is equivalent to
((A*B)+(C/((D**E)+F))−A)/B+C

In the operator **, if the exponent is an integer, the expression is computed as
a product. For example, X**3 is computed as X*X*X. On the other hand, if the
exponent is real, the expression is computed by taking log and antilog, that is to say,
X**3. is computed as exp(3 ln X), consuming much more execution time. In other
mixed operations, such as between integer and real, the former is converted to real.
For instance, X+3 and X*3 are converted to X+3.0 and X*3.0, respectively, before
execution.

The above features are for real arithmetic. Complex arithmetic has similar fea-
tures, the result being always complex. Integer arithmetic always yields an integer.
This fact has interesting consequence that division yields the integer part of the quo-
tient. For instance, 1/2, 3/2, 11/3 and 25/5 are, respectively, computed as 0, 1, 3 and 5.

An Assignment Statement in Fortran has the syntax

Variable name=Arithmetic expression

Here, the value of the expression is computed and stored in the location of the variable
inmemory. If the locationdidnot exist before, it is createdwith this statement.Clearly,
in Fortran, = does not stand for equality but means an assignment.

Examples 2. Suppose that the values of A, B, C, D, V(J) and I, MU (integers) are
given, then one can write

X=A/B*C
Y(I)=A*V(J)+ D−MU
X=X+Y(I)

X and Y(I) are computed in the first two statements. In the peculiar looking third
statement, the two values are added and assigned to X.

If the initial values of variables are given as input, they can be generated by using
assignments. For subscripted variables, the subscripts can be generated by using the
special character.

Examples 3. REAL:: A, B(2,3)
A = 5.0
B(1, :) = (/1, 7,−2/)
B(2, :) = (/3, 4, 6/)

means that the value of A is 5 and the elements of the two rows of B are 1, 7, −2 and
3, 4, 6, respectively.

An arithmetic expression may contain mathematical intrinsic functions of Fortran
and also other defined functions. These topics are discussed later in Sect. 1.4.10.

30 1 Computation in FORTRAN

Operators on array names are also possible. Let A and B be two arrays of equal
dimensions and let X be a scalar, then

A+B computes sum of A and B
A−B computes difference of A and B
X+A computes array with X added to elements of A
X*A computes product of X and A
A**X computes array with elements of A raised to power X
MATMUL(A, B) computes product of matrices A and B
DOT_PRODUCT(A, B) computes dot product of vectors A and B

1.4.5 Relational Operators and Logical Expressions

Relational operations like =, <, etc., are important in mathematical formulations. In
Fortran, the relational operators are:

== or .EQ. meaning equal to
/ = or .NE. meaning not equal to
< or .LT. meaning less than
<= or .LE. meaning less than or equal to
> or .GT. meaning greater than
>= or .GE. meaning greater than or equal to

The operators have the same level of hierarchy. In addition to the above, logical NOT,
AND and OR are, respectively, written as .NOT., .AND. and .OR. with decreasing
order of hierarchy.

Logical expressions can be formed by using these operators.

Example 1. A/=B
(A<B).AND.(I==J).OR.(X>=Y)

Logical expressions are either true or false. Such expressions may be assigned a
logical variable that can assume only two logical constants, .TRUE. and .FALSE.
The syntax of type declaration of logical variables is

LOGICAL logical variables list (separated by commas)

Example 2. LOGICAL Z
statements
Z=(A<B).AND.(I==J).OR.(X>=Y)
statements

So far we have only considered sequential execution of statements in a program.
The logic of algorithms often demands to alter such flow. We proceed to describe the
flow control statements, the use of which accomplishes the tasks.

1.4 Elements of FORTRAN 31

1.4.6 PAUSE and STOP Statements

The syntaxes of these one-word statements are

PAUSE
and

STOP

The former suspends execution, which can be resumed by pressing any key. The
latter statement stops execution altogether. It is usually used in conjunction with the
IF statement described in Sect. 1.4.8. It may also be used temporarily for program
debugging. The statement PAUSE is considered obsolete in the latest version of
Fortran.

1.4.7 The GOTO Statement

The syntax of the statement is

GOTO label

where ‘label’ of a statement is usually a natural number followed by the statement.
By the GOTO statement, the execution passes to the statement bearing the label
stated in the GOTO statement. The statement bearing the stated label may precede
or succeed the GOTO statement. It should be sparingly used for clear understanding
of the flow of the program.

1.4.8 The IF Statement and the IF Construct

This statement is frequently indispensable in programming. Its construct comes in a
variety of ways. The simplest is

IF(logical-expression) true statement

Here the true statement is executed if the logical-expression is true; otherwise, it is
skipped. If there are more than one true statements then the construct is

IF(logical-expression) THEN

true group of statements

END IF

Entry into the true group of statements by a GOTO statement elsewhere is not
permitted. Nesting of IF constructs is permissible, such as

32 1 Computation in FORTRAN

IF(logical-expression__ 1) THEN

true group A

IF(logical-expression__ 2) THEN

true group B

END IF

true group C

END IF
If a false group of statements is also to be executed, then one can use the IF-ELSE
construct:

IF(logical-expression THEN)

true group A

ELSE

false group B

END IF

Example 1. Compute

y = |x | = x, x ≥ 0
= −x, x < 0

for given x . Here, we can write

IF(X>=0.0) THEN

Y=X

ELSE

Y=−X

END IF

In case of multiple choices, the ELSE-IF construct

ELSE-IF(logical expression) THEN

can be employed.

Example 2 For given x compute y from the ramp function

y= 0 , x ≤ 0
= x, 0 < x < 1
= 1, x ≥ 1

1.4 Elements of FORTRAN 33

For the above, we can write

IF(X<=0.0)THEN

Y=0.0

ELSE IF(X<1.0) THEN

Y=X

ELSE

Y=1.0

END IF

1.4.9 The DO Statement

This statement is indispensable when repeated execution (looping) of statements is
required. Its construct is

DO loop-control

Statements

END DO

The loop-control may be a logical expression, so that looping is performed as long
as the logical expression is true. The second form of the widely used loop-control is

Index = initial value, limit, increment

where the index is an integer variable name and the initial value, limit and increment
are of similar type. During looping, the index is first set equal to initial value. Next,
the latter is changed to initial value + increment. If the number does not exceed the
limit, the statements are again executed. In the contrary case, the looping terminates.
The default value of increment is 1, that is to say, it need not be written if it is 1. If
the initial value exceeds the limit, the increment must be a negative integer.

Entry into a DO loop is not permitted from outside by a GOTO statement, whereas
exit and termination are permitted by using the statement EXIT. It is possible to skip
a cycle of the loop by using the statement CYCLE. Obviously, EXIT and CYCLE
must be conditioned by IF statements.

Nesting of DO loops is permissible, in which case, execution takes place from
inner most to outer most loop.

1.4.10 Functions in FORTRAN

Functions can be intrinsic to the compiler, or user-defined subprograms separate from
the main program.

34 1 Computation in FORTRAN

(a) Intrinsic Functions. A long list of standard functions is available. A short list is
given below (X, Y are real and Z is complex):

Function FORTRAN name Function FORTRAN name
|X| ABS(X) sin−1X ASIN(X)√
X sqrt(X) cos−1X ACOS(X)

eX EXP(X) tan−1X ATAN(X)
(−π/2 ≤ X ≤ π/2)

lnX ALOG(X) tan−1(X/Y) ATAN(X,Y)
(−π ≤ X/Y ≤ π)

log10X ALOG10(X) sinhX SINH(X)
sinX SIN(X) coshX COSH(X)
cosX COS(X) sinZ CSIN(Z)
tanX TAN(X) cosZ CCOS(Z)
Z∗ CONJG(Z) X mod Y MOD(X,Y)

(Integer X, Y)
Re(Z) REAL(Z) Max(X1,X2, · · ·) MAX(X1,X2, · · ·)
I m(Z) AIMAG(Z) Min(X1,X2, · · ·) MIN(X1,X2, · · ·)
|Z| CABS(Z)

√
Z CSQRT(Z)

eZ CEXP(Z) lnZ CLOG(Z)

If the arguments are double precision, the function name or procedure starts with D,
e.g. DABS(X) stands for |X|, where X is double precision.

(b) Function Subprogram. A subprogram is a separate program from the main and
any other subprogram. Any function of one or more variables can be computed from
a function subprogram. Its structure is

FUNCTION function name(x1, x2, · · · , xn)
type declaration of f
type declaration of x1, x2, · · · , xn

statements
function name=expression
RETURN
END FUNCTION function name

In the above x1, x2, · · · , xn is a dummy argument list. Whenever the value of the
function in themainprogramor anyother subprogram for a prescribed set of argument
list is referenced, execution passes to this subprogram,with x1, x2, · · · , xn acquiring
these prescribed values.Return to invoking function togetherwith the computed value
of function name takes place by the RETURN statement. There is only one output
from the function subprogram, viz. the function name. If the output of the function
subprogram is of integer type, then that can be specified bywriting INTEGER before
FUNCTION followed by the function name. Similarly for COMPLEX type output
of a function.

(c) Subroutine Subprogram. When values of several dependent variables are
required for a given set of independent variables, then the subroutine is a power-
ful tool. Its structure is

1.4 Elements of FORTRAN 35

SUBROUTINE subroutine-name(x1, x2 · · · , xm, y1, y2, · · · , yn)
type declaration of x1, x2, · · · , xm, y1, y2, · · · , yn

statements
RETURN
END SUBROUTINE subroutine-name

The input x1, x2, · · · , xm and the output y1, y2, · · · , yn are dummy variables. Exe-
cution of subroutine takes place when the calling statement

CALL subroutine-name(a1, a2, · · · , am, b1, b2, · · · , bn)

is encountered in a calling program. A calling program may be the main or any other
subprogram. With the CALL statement known values of a1, a2, · · · , am are, respec-
tively, linked to x1, x2, · · · , xm . With execution of the subroutine, the computed
values of y1, y2, · · · , yn are, respectively, linked to b1, b2, · · · , bn as output. In
special cases, values of the output variables can also be returned through the input
variables, once the latter are completely used in the preceding statements of the
subroutine.

Any argument in a list can also be an array name (without subscript). A subroutine
may not call itself. Function names can also be passed to a subroutine, provided that
they are declared EXTERNAL in the calling program. The syntax of the statement is

EXTERNAL function-name list (separated by commas)

Sometimes it is necessary to share certain variable/array names between a calling
program and some of the subroutines. Then such a task is easily accomplished by
the use of the COMMON statement:

COMMON variable/array-name list (separated by commas)

placed before executable statements of the program units. In some cases, parts of the
name list of variables/arrays of a calling programare sharedwith different subroutines
selectively, and then, the COMMON statement of the calling program can be split
into blocks with specified names:

COMMON /block-name-1/ name list of variables/arrays (separated by commas)

COMMON /block-name-2/ name list of variables/arrays (separated by commas)

etc. Then, only the needed COMMON blocks needed for a particular shared subrou-
tine is required to be stated in that subroutine. It may also be noted that the names
in COMMON statement in two program units of a program may be different, as
common data is shared between the two name lists.

In very special cases a call of the subroutine itself can be made by appending
the command RECURSIVE before the SUBROUTINE subroutine-name statement.
Only one recursion is allowed with an output; otherwise, it becomes infinite [32]. A
recursive procedure can always be converted into an iterative procure and is preferable
as recursion consumes more system resources and execution time. However, as some

36 1 Computation in FORTRAN

algorithms are intrinsically recursive, it is sometimes convenient to express such an
algorithm as a recursive procedure.

Example 1Write a subroutine for n!.
Solution. RECURSIVE SUBROUTINE Factorial(n,value)

INTEGER :: n ! (Input)
INTEGER ;; value ! (Output)
IF(n==1) THEN
value=1 ! Exit Point
ELSE
CALL Factorial((n-1),value)
value=n*value
END IF
END SUBROUTINE Factorial

If the above subroutine is called by the main program for a given value of n , say
n = 5, using the statement

CALL Factorial(5,value)
the output returned by the subroutine is value = 120.
Remark. Recursion of function subprograms is also possible [32], but is not used in
the book.

1.4.11 Input and Output (I/O) Statements

Input and output are indispensable parts of algorithms and programs. Input should
be user-friendly and output should be self-explanatory.

(a) Input. In simple cases, assignment statements can be used, as was stated in Sect.
1.4.4. The longer list of variables and arrays can be read by the statement

READ*, variables list (separated by commas)

Example 1Read variablesX,Y, arrayAwith 10 components and complex variable Z.
For this purpose, we write

READ*, X, Y, A, Z

By this statement, execution is halted for data entry from keyboard (represented by
* in the statement). At this stage, data is entered for X and then Y, followed by those
of the ten components of A, and the real and imaginary parts of Z.

(b) Output. The output of variables and arrays on the monitor is obtained by the
statement

PRINT*, variables list (separated by commas)

1.4 Elements of FORTRAN 37

The output is format-free, as stored in the computer. The *, in bothREADandPRINT,
is optional, in latest versions of Fortran.

It is sometimes necessary to incorporate messages. The messages could be
included in the variables list of the output statement, by writing them within quote
marks ’ and ’. Such character strings are called character constants.

The output can be obtained to required number of digits and in tabular form by
writing a statement of the form

PRINT format-label, variables list (separated by commas)

format-label FORMAT (format-specification list)

The format specifications are as follows:

In Integer to n places

Fm.n Real in fractional form, to n decimal places contained in a
total of m places

Em.n Real in exponent form, with n digit mantissa contained in a

total of m places

nX Skip n places

Example 2 Obtain suitable output for integer I, real X, Y and complex Z.
One can write

PRINT 100, I, X, Y, Z
100 FORMAT (5X, I3, 3X, F7.4, E9.5, 5X, 2F10.6)

Since Z is composed of two real constants, the two E formats F10.6 and F10.6
have been clubbed together as 2F10.6. Such clubbing to several number of times is
permitted for I, F and E formats.

Output can also be obtained on other memory devices like the hard disks. For this
purpose, the device must be given a unit number as a label. Then a data file for the
output must be opened by the statement

OPEN(unit number, file=’name of data file’)

output on the device can then be obtained by the statements

WRITE(unit number,*) variable list

or WRITE(unit number, format label) variables list

for format-free or formatted output. When outputting is over the file may be closed
by the statement

CLOSE(unit number)

38 1 Computation in FORTRAN

We conclude this section, by noting that many other features of Fortran have been
left untouched. Even then, it must be clear by now, that the language is like a super
mind for handling complex computational algorithms by means of simple looking
statements. In Sec. 1.4.13 examples are given to illustrate the usage of the statements.
In these examples, mostly lower case alphabets are used for naming variables, as they
are permitted in Fortran.

1.4.12 Other Statements

In this section, a few other statements are given, which Fortran programmers often
use. These statements are however not used in the remaining chapters as the focus
is on the development of special purpose short subroutines, for important different
mathematical tasks.

1.4.12.1 INTENT Statement

The (dummy) arguments of a subroutine subprogram act either as input or output or
sometimes both as input and output of the program unit. The intention with which
they are used can be programmed in a subroutine, by using the INTENT statement
in the type declarations of the subroutine. The syntax of type declarations of such a
subroutine is therefore of the form:

type_declaration, INTENT(IN) :: x1, x2, · · · , xm

type_declaration, INTENT(OUT) :: y1, y2 · · · , yn

type_declaration, INTENT(INOUT) :: z1, z2, · · · , zl

where IN stands for Input, Out for Output and INOUT for Input–Output both. The
INTENT statement is optional, as was done in the description of the subroutine
subprogram in Sect. 1.4.10. The Intent can also be alternatively clarified byComment
statements following the argument lists. In this book, the latter style is adopted for
easy understanding of the subroutines developed in the subsequent chapters.

1.4.12.2 CASE Statement

The CASE statement allows multiway branching. In its general form, the syntax of
the CASE statement is:

SELECT CASE (expression)

CASE (low_1 : high_1)
statements_1

CASE (low_2 : high_2)

1.4 Elements of FORTRAN 39

statements_2
· ·

END SELECT

The low and high in the above construct are the exact lower and upper bounds of
the selected expression. If the evaluated expression lies between the two bounds low
and high (both included), the statement block following it is executed; otherwise,
the execution passes to the next CASE. When all the CASEs are checked and the
statement blocks executed, theENDSELECTstatement is executed and the execution
passes to the next statement following it. Exiting from a group of statements by a
GOTO statement after the END SELECT statement is permitted. The lower bound
can be blank, implying that the evaluated value of the expression must be lesser than
the given higher bound. On the other hand, if the higher bound is left blank, then
the evaluated value of the expression must be greater than the given lower bound.
Thus, CASE (:high) and CASE (low:), respectively, require that the value of the
expression is ≤ the value of high, and in the second case, the value of the expression
is ≥ the value of low.

1.4.12.3 DO WHILE Statement

The syntax of DO WHILE is:

DO WHILE (logical-expression)

statements

END DO

The logical expression is tested; if it is true all the executable statements following
the DOWHILE up to the statement ENDDO are executed. The control is then passed
to the top of the loop and a fresh cycle begins. The condition is tested at the beginning
of each cycle. The execution continues till the condition is false and in that case, the
control is passed to the statement following the END DO.

1.4.12.4 MODULE

Amodule is a sepaprate global programunit that is not executed directly, but contains
data specifications and procedures that may be utilised by other program units via
the USE statement. Hence, it can be written even before the main program, so that
it can be used by the main program as well as by other program units that follow the
main program. A simple module is of the following form:

MODULE module-name

type declarations

parameter lists

CONTAINS

40 1 Computation in FORTRAN

FUNCTION FN1(argument list)

· · · · · · · · · · · · · · · · · ·
FN1=· · · · · ·
END FUNCTION FN1

...

...

SUBROUTINE SUB1((argument list)

· ·
END SUBROUTINE SUB1

...

...

END MODULE module-name

The program unit using a module, generates the input data for the module and the
output generated by the module can be used by that program unit by the statement:

USE module name

at the beginning of the user program unit before the occurrence of executable state-
ments of that unit. The output from a module can also be selectively generated by
the statement:

USE module name, ONLY: a subprogram of the module

A module can use another module name. In this way, a user can make a library
of subprograms, encapsulated in a module. Moreover, a subprogram in a module
may be written in some other programming language like C and Python. The data
interoperability in the module is maintained by the respective statements:

USE iso_c_binding and USE forpy_mod

where the modules iso_c_binding and forpy_mod can be incorporated in Fortran. For
details see [32] and the internet.

Example 1 Construct a module of constants π , e, and the complex constant i and
another module that contains a function subprogram F(x) = x + x2 + π , and a sub-
routine SWAP that swaps two variables a and b. Use the two modules to compute
F(2) and swap two numbers 5 and 13. Also print the constants π , e and i .

Solution. The program reads as follows:

MODULE Myconstants
REAL, PARAMETER :: pi=3.141593, e=2.718282
COMPLEX, PARAMETER :: ci=(0.0,1.0)

1.4 Elements of FORTRAN 41

END MODULE Myconstants
!*************************************

MODULE Mylibrary

USE Myconstants

CONTAINS

FUNCTION F(x)

F=x+x**2+pi

END FUNCTION F

SUBROUTINE SWAP(a,b)

temp=a; a=b; b=temp ! algorithm for swapping

END SUBROUTINE SWAP
!*************************************!*************************************

PROGRAM MAIN

USE Mylibrary

PRINT*, pi, e

PRINT*, ci

x=2.0

phi=F(x)

PRINT*, phi

p=5.0; q=13.0

CALL SWAP(p,q)

PRINT*, p, q

END

On running the program, the output comes out as
3.141593 2.718282

(0.000000E+00, 1.000000)

9.141593

13.000000 5.000000

as can be verified easily. �

42 1 Computation in FORTRAN

1.4.13 Fortran Programming Examples

Example 1. Write a program to compute
the side a = √

b2 + c2 − 2bc cos A
perimeter p = a + b + c
area � = 1

2bc sin A
of a triangle ABC, given b = 3 cm, c = 5 cm and angle A = 50o.

Solution. In Fortran, the argument of trigonometric functions must be in radians.
One can write the program as

PROGRAM TRIANGLE
REAL :: a, b, c, ANGLE_A, p, area
b=3.0; c=5.0
ANGLE_A=50*3.141593/180.0 !(Input)
a=sqrt(b**2+c**2-2*b*c*& !& is for continuation in the next line
cos(ANGLE_A))
p=a+b+c
area=0.5*b*c*sin(ANGLE_A)
PRINT*, a, p, area !(output)
END PROGRAM

Note that the expression for p contains A, so A must be computed before p. The
unit of centimetre has no role in the program, but from dimensional consideration
the computed a and p must have the same unit of centimetres. �

From now on, we shall drop writing the PROGRAM statement—it will automat-
ically be named MAIN.

Example 2. Solve the quadratic equation ax2 + bx + c = 0, for given real a, b, c
as input.
Solution. If b2 ≥ 4ac, the real roots are

x1 = 1

2
[−b − sgn(b)

√
b2 − 4ac], x2 = c/(ax1)

(see Sect. 1.2.2.2) and if b2 < 4ac, the complex roots are

z1 = 1

2
[−b +

√
b2 − 4ac], z2 = c/az1

A Fortran program is

1.4 Elements of FORTRAN 43

REAL :: a, b, c, disc, a2, x1, x2, sign_ b
COMPLEX:: z1, z2
READ*, a, b, c ! (Input)
disc=b**2-4.0*a*c ! Compute the discriminant
a2=2.0*a
if(b>0.0) sign_ b=1.0
if(b==0.0) sign_ b=0.0
if(b<0.0) sign_ b=−1.0
if(disc>=0.0) then

x1= (−b−sign_ b*sqrt(disc))/a2; x2=c/(a*x1)
PRINT*, ’Real Solution ’, x1, x2 ! (Output)

else
z1= (−b+csqrt(cmplx(disc,0.0.)))/a2; z2=c/(a*z1)
PRINT*, ’Complex Solution ’, z1, z2, ! (Alternate Output)

end if
END

�

Example 3. (Computing a table of values of a function). Evaluate

y = 2.35x3 − 3.478x2 + 1.531x − 6 for x = −5(.1)5

Solution. We employ Horner’s scheme

y = −6 + x(1.531 − x(3.478 − 2.35x))

A Fortran program is

real :: x, y, delt_ x
x=−5.0
delta_ x=0.1 ! Increment
DO(x<=5.0001) ! Avoiding skipping of the value 5.0

! that may be affected by roundoff
y = - 6. + x*(1.531 − x*(3.478 − 2.45*x))
PRINT*, x, y
pause
x = x + delta_ x

END DO
END

A PAUSE statement is inserted to view data, which are large in number. �

Example 4. (Summing a power series). Compute sin x from the series

sin x = x − x3

3! + x5

5! − x7

7! + · · · ∞

44 1 Computation in FORTRAN

for x = π , using the termination criterion that a term added to the series is less than
10−10.

Solution. The i th term is ti = (−1)i−1 x2i−1

(2i − 1)! and so ti+1 = (−1)i x2i+1

(2i + 1)!
Hence ti+1/ti = − x2/[2i(2i + 1)]. Since the sine series is an alternating series with
terms monotonically decreasing in modulus, the remainder Rn after n terms satisfies
the condition

|Rn| ≤ modulus of the next (n + 1)th term

This justifies the convergence criterion. A Fortran program for the procedure is

INTEGER :: i
REAL :: x, t, s
x=3.141593 ! (Input)
i=1
t=x ! First term
s=x ! s is sum of the series
1 t=t*x**2/(2*i*(2*i+1)); s=s+t ! Add the term to sum
if(t<1.0E−10) goto 2
i=i+1
goto 1
2 PRINT*, s
END

Observe that looping is achieved by GOTO, so is exiting from the loop. �

Example 5. Generate the sequence x1, x2,· · · by iterating xn+1 = (p + 1)xn − q
for p = 3, q = 1, in (a) ascending order starting with x1 = q/p and (b) descending
order with starting value x30 = 10. Obtain output up to x15.

REA L :: x(35), x_ do(35)
p=3.0; q=1.0
x(1)=q/p
DO n = 1,15

x(n+1)=(p+1)*x(n)−q
END DO
x_do(31)=10.0
DO n=30,1,−1

x_ do=1.0/(p+1)*(x_ do*(n+1)+q)
END DO
DO n=1,15
PRINT*, x(n), x_ do
END DO
END

Upon execution of the program, the output will be obtained as tabulated in Sect.
1.2.2.2. �

1.4 Elements of FORTRAN 45

Example 6 (Computing series and product). Compute

S =
n∑

i=1

ai and P =
n∏

i=1

ai , n ≤ 100 (say)

Solution. We consider the elements ai as components of a vector. Thus, we can write

REAL :: a(100)
READ*, a
s=0.; p=1.
do i=1,n

S=S+a(i); P=P*a(i)
end do
PRINT*, S, P
END

In the above program, we have adopted some abbreviations. The real constants 0.0
and 1.0 have been written simply as 0. and 1. The variables S and P are accepted as
real by default, and similarly, n is accepted as an integer variable. The DO and END
DO have been written in lower case.

The sequence {ai } may be arranged in ascending order of magnitude before sum-
mation to diminish the errors due to roundoff (see Sect. 1.2.2.1). This can be done
by adopting the technique of Example8 given below. �

Example 7. (Finding the largest and the smallest element of a sequence). Given
a1, a2, · · · , an , n ≤ 100 (say), find the largest and the smallest element.

Solution. We think of a1, a2 · · · , an in n storage locations. Create locations named
BIG and SMALL for the largest and the smallest element, respectively. Set BIG =
a1 and compare it with a2. If it is smaller than a2, set BIG = a2. Continuing the
process, BIG will ultimately contain the largest element. For the smallest element,
set SMALL = a1. If it is smaller than a2, set SMALL = a2 and repeat the process, to
finally obtain the smallest number.

real :: a(100)
BIG=a(1); SMALL=a(1)
do i=2,n

if(BIG<a(i)) BIG=a(i)
if(SMALL>a(i)) SMALL=a(i)

end do
PRINT*, BIG, SMALL
end

�

46 1 Computation in FORTRAN

Example 8. (Ascending arrangement of sequence). Sort a1, a2, · · · , an , n ≤ 100
(say) in ascending order.

Solution. Compare two elements ai and a j (i < j). If ai > a j , swap the two ele-
ments:

real :: a(100)
read*, n, a
do i=1,n−1
do j=i+1,n
if(a(i)>a(j)) then

temp = a(j) ! temp is a temporary location used for interchange
a(j) = a(i)
a(i) = temp

end if
end do
end do
print*, a
end

All the statements in the program are written in lower case for convenience of
writing. This is entirely permissible. The complexity of the algorithm is O(n2), as
the swapping operation is done n × n times. �

Example 9. Given matrices A and B, compute the product

C := AB =
n∑

k=1

aikbk j (n ≤ 10)

Solution. The summation generation technique is employed here:

real :: A(100,100), B(100,100), C(100,100)
read*, n, A, B ! Input A and B are to be read columnwise
do i=1,n; do j=1,n
C(i,j)=0.
do k=1,n

C(i,j)=C(i,j)+A(i,k)*B(k,j)
end do; end do; end do
print*, ((C(i,j),j=1,n),i=1,n) ! Output is printed rowwise
end

The print statement is called an IMPLIED DO. It is equivalent to

1.4 Elements of FORTRAN 47

do i=1,n; do j=1,n

print*, C(i,j)

end do; end do

C can of course be obtained from intrinsic function matmul: C=MATMUL(A,B) �

Example 10. Compute the slope of the chord joining the points x = 1/2 and x = 2
of the curve

y = √
x , 0 ≤ x ≤ 1

= e1−x , x > 1

Solution. Here y is separately programmed as a function subprogram.

PROGRAM MAIN
slope=(y(0.5)−y(2.0))/(0.5−2.0)
print*, slope ! (Output)
END PROGRAM
!****************************
FUNCTION y(x)
IF(x>=0..and.x<=1.) THEN

y=sqrt(x)
ELSE-IF(x>1.) THEN

y=exp(1.−x)
ELSE

print*, ’Function not defined’
END IF
RETURN
END FUNCTION y

�

Example 11. Given a set of n experimental data x1, x2, · · · , xn , n = 100 (say),
write a program that calls a subroutine named STAT to compute

mean x̄ = 1

n

n∑

i=1

xiand

standard deviation s =
√∑n

i=1(xi − x̄)2

n − 1

Solution. Using the technique for summation, we obtain

48 1 Computation in FORTRAN

PROGRAM MAIN
REAL:: x(100)
n=100 ! (Input)
READ*, x ! (Input)
CALL STAT(n,x,x_ bar,s_ d)
PRINT*, x_ bar, s_ d ! (Output)
END PROGRAM
!********************************
SUBROUTINE STAT(n,x,x_ bar,s_ d)
REAL:: x(n)
sum=0.
DO i=1,n

sum=sum+x(i)
END DO
x_bar=sum/n
sum=0.
DO i=1,n

sum=sum+(x(i)−x_ bar)**2
END DO
s_ d=sqrt(sum/(n−1))
RETURN
END SUBROUTINE STAT

�

Example 12. (HeapSort Algorithm). Sort a sequence a1, a2, · · · , an, n ≤ 100 (say)
in ascending order by arranging the sequence into a tree graph of the form depicted
below, writing a suitable subroutine for the procedure employed.

1

2 3

4 5 6 7

Solution. The tree graph shown above consists of a sequence of binary trees. A
binary tree in the graph consists of a sequence of a parent element ai , having a pair
of child, if n is odd as is evident in the figure. If, on the other hand, n is even, then
an is a single child of its parent ai (verify). It follows from the figure that (i) the two
children of parent ai are the left child a2i and the right child a2i+1, and (i i) the parent
element of a child a j is a[j], where the symbol [·] represents the integer part of the

1.4 Elements of FORTRAN 49

argument. A tree graph in general is said to form a Heap if, ai ≥ a2i , a2i+1, and all
the elements of the subtrees emanating from the two child nodes.
Thus, the largest element in the heap is stored at the nodal root ai . The heapifying of
the nodes of a binary subtree at indices i, 2i , and 2i + 1 is performed by a swapping
procedure called siftdown, which turns the element at node i dominant with respect
to the other two elements of the subtree. The process is iterated in the reverse order,
beginning the bottom most index n moving up to the index 1. This iteration creates
the heap of the full array of n elements, with the first element at index 1 as the largest
element. In order to create sorting in ascending order, the first element at index 1 is
pulled down to the bottom most position at n, that is to say, the current an is replaced
by the current a1 and the siftdown process applied again from bottom upwards up to
the second element with index 2. The procedure is applied repeatedly to successively
obtain an−1, an−2, · · · , a2 and the residual a1 in the descending order.

PROGRAM MAIN

REAL :: a(100)

READ*, n, a

PRINT*, a

END PROGRAM

SUBROUTINE HEAPSORT(a,n)

REAL :: a(n)

INTEGER :: b

DO i=n/2, 1,-1 ! Builds the Heap of a(n)

CALL SIFTDOWN(a,n,i,n)

END DO

DO b=n,2,-1 ! Builds the decending order a(n), a(n-1),· · · a(2), a(1)
! of the sequence a

temp=a(1); a(1)=a(b); a(b)=temp

CALL SIFTDOWN(a,n,1,b)

END DO

END SUBROUTINE HEAPSORT

SUBROUTINE SIFTDOWN(a,n,i,b)

INTEGER :: b

REAL :: a(n)

k=i ! k is root index of a binary subtree

50 1 Computation in FORTRAN

IF(2*k<b) THEN ! i is a root

lc=2*k ! lc is a left child

IF(lc+1<b) THEN

IF(a(lc)<a(lc+1)) lc=lc+1

END IF

IF(a(k)<a(lc)) THEN

temp=a(lc); a(lc)=a(k); a(k)=temp; k=lc

ELSE

RETURN

END IF

END IF

END SUBROUTINE SIFTDOWN

The complexity of the HeapSort algorithm is n log2 n. For, if m is the number of
binary subtrees in the heap, 2m = n so that m = 2n or, m = log2 n, and the number
of siftdown operations is of the order of n. Compared to the simple algorithm of
Example8 having complexity O(n2), the O(n log2 n) complexity is much smaller
when n is large. The algorithm, for this reason, has important application in the
transmission of huge sized priority queues of data. �

Exercises

1. The current in an AC circuit containing resistance, capacitance and inductance is
given by

I = E√
R2 + [2π/L − 1/(2π f C)]2

where I = current (amps), E = voltage (volts), R = resistance (ohms), L = inductance
(henrys),C = capacitance (farads) and f = frequency (hertz).Write a Fortran program
to compute I for given values of E, R, L , C and f .

2. The earth pressure P on a retaining structure is given by the formula

P = wh2

2

1 − sin φ

1 + sin φ

where w = weight per unit volume of filled up earth = 513 kg/m3

h = height of earth fill = 3 m
φ = angle of repose of filled material = 30o.

Write a Fortran program to compute P .

3. The displacement x and velocity v of the piston of an internal combustion engine
is given by

1.4 Elements of FORTRAN 51

x = r(1 + n − cos θ −
√

n2 − sin2)

v = ωr
(
sin θ + sin 2θ

2
√

n2 − sin2 θ

)

where n = rod length/crank radius = 4, ω = angular velocity = 2000 rpm and θ is the
crank angle. Compute x and v for θ varying from 0o to 360o at 10o interval.
[Use DO statement: DO i=0,360,10; theta=i*3.141593/180].

4. The allowable stress for a column of slenderness ratio R is given by

S = 17000 − 0.485R2 if R ≤ 120

= 18000

1 + R2/18000
if R > 120

Compute S for R increasing from 20 to 200 in increments of 5.
[Use IF-ELSE and GOTO statement for looping].

5.Write a program to obtain the solution of the quadratic equation ax2 + bx + c = 0,
where all the quantities are complex.

6. Write programs to compute

(i) S1 = 1 + 2 + 3 + · · · + n
(i i) S2 = 12 + 22 + 32 + · · · + n2

(i i i) S3 = 13 + 23 + 33 + · · · + n3

(iv) n! = 1 · 2 · 3 · · · n

for n = 100 (say). What happens during execution of (iv) ?
[Use technique of Example6. Overflow].

7. Convert the algorithm for computing a polynomial

P(x) = a0xn + a1xn−1 + · · · + an−1x + an

by Horner’s scheme into a Fortran program.
[See Example3].

8. Compute the following infinite series by writing Fortran program, assuming ter-
mination criterion as in Example3 of Sect. 1.4.12:

(a) cos x = 1 − x2

2! + x4

4! − x6

6! + · · · ∞
for x = π/2.

(b) ex = 1 + x + x2

2! + x3

3! + · · ·∞
restricting to the case 0 ≤ x < 1 select x = 1/2. How will you treat the case x ≥ 1?

(c) Let x = 2m z, ξ = (1 − z)/(1 + z), (−1 ≤ z ≤ 1) then

52 1 Computation in FORTRAN

ln x = m ln 2 − 2
(
ξ + ξ 3

3
+ ξ 5

5
+ · · ·

)

Compute ln x for x = 3, using ln 2 = 0.6931472.

(d) sin−1 x = x + x3

2 · 3 + 1 · 3 · x5

2 · 4 · 5 + 1 · 3 · 5 · x7

2 · 4 · 6 · 7 + · · · ∞

=
∞∑

k=0

(2k)! x2k+1

22k(k!)2(2k + 1)
for x = 1/2 Hence compute the value of π .

[(b) Set x=[x]+y].

9. Write separate programs to compute the vector and matrix norms: (a) ‖x‖2 =√√√√
n∑

i=1

|xi |2 and ‖x‖∞ = max |xi | (1 ≤ i ≤ n), of a vector x = [x1, x2, · · · , xn].

(b) ‖A‖2 =
√√√√

n∑

i=1

n∑

j=1

|ai j |2 and

‖A‖∞ = max
n∑

j=1

|ai j | (1 ≤ i ≤ n),

of a matrix A = [ai j].
10. Given a sequence of integers a1, a2, · · · , an , n ≤ 100 (say). Write a program to
find the elements that are divisible by the integer 3.
[Use integer arithmetic. ai/3 × 3 then equals ai only when ai is divisible by 3].

11. Write a program to sort prime numbers between 1 and 1000.

[Prime numbers are odd integers. An odd integer not divisible by previous prime
numbers is a prime number].

12. A one-dimensional array named y contains n = 50 experimental data. Perform
smoothing of the data by replacing each data, except the first and the nth, by

yi = yi−1 + yi + yi+1

3
, i = 2, 3 · · · , 49

Write a Fortran program to obtain smoothed data.

13. Given two sets of experimental data x1, x2, · · · , xn and y1, y2, · · · , yn of vari-
ates x and y. By writing a Fortran program, compute the correlation coefficient ρ

between the two variates defined by

ρ = n
∑n

i=1 xi yi − ∑n
i=1 xi · ∑n

i=1 yi√
n

∑n
i=1 x2i −

(∑n
i=1 xi

)2
√

n
∑n

i=1 y2i −
(∑n

i=1 yi

)2

1.4 Elements of FORTRAN 53

14. Cardano’s solution of the cubic equation: Let the equation be

x3 + a1x2 + a2x + a3 = 0

with real coefficients a1, a2, a3. Let

Q = 1

9
(a2

1 − 3a2) and R = 1

54
(2a3

1 − 9a1a2 + 27a3)

If Q3 − R2 ≥ 0, then the cubic equation has real roots

xk = −2
√

Q cos

[
θ + 2π(k − 1)

3

]
− a1

3
, k = 1, 2, 3

where θ = cos−1(R/
√

Q3). If, on the other hand, Q3 − R2 < 0, then the equation
has one real root and a pair of complex roots

x1 = s + Q

s
− a1

3
, z2 = ωs + ω2 Q

s
− a1

3
, z3 = ω2s + ω

Q

s
− a1

3

where s = − sgn(R)(|R| + √
R2 − Q3) andω = 1

2 (−1 + √
3i) (cube root of unity).

Write a Fortran program to compute the roots.

15. In a continued fraction

f = b0 + a1

b1 + a2

b2 + a3

b3 + · · ·

= b0 + a1

b1+
a2

b2+
a3

b3+ · · · (say)

the nth convergent fn (:= pn/qn) by stopping at the nth quotient an/bn , satisfy the
Euler–Wallis recurrence relations

p0 = b0, q0 = 1, p1 = b1 p0 + a1, q1 = b1

pn = bn pn−1 + an pn−2

qn = bnqn−1 + anqn−2

}
n ≥ 2

Write a Fortran program to compute 20 convergents. To prevent overflow in com-
puting pn, qn , rescale the present values and the preceding values pn−1, qn−1 by qn

and then iterate.

54 1 Computation in FORTRAN

Apply the program to verify the formula

π = 4

1+
12

3+
22

5+
32

7+ · · ·∞

Verify that the successive convergents always bracket the exact value.

16. Compute tan x (0 ≤ x ≤ π/4), using Lambert’s formula tan x = x/y, where

y = 1 + −x2

3+
−x2

5+
−x2

7+ · · · −x2

2n + 1
· · ·∞

for x = 40o.
[In order to compute y accurate to 10−10 it is sufficient to take n = 7 and terminate
the continued fraction].

17. For the integral

In =
∫ 1

0

xn

x + 5
dx

prove the reduction formula In = 1

n
− 5 In−1 and obtain particular values I0 =

ln(6/5) and I∞ = 0. Write a Fortran program to compute In for ascending val-
ues of n up to 15. Are you satisfied with the computed values? If not try evaluation
in descending order taking I30 ≈ 0.

Chapter 2
Equations

Solving an equation is one of the prime topics of elementary algebra, where it is
a powerful tool for problem solving, whenever algebraic formulation is possible.
Equations appear in advanced sciences as well in a variety of ways, mostly in com-
plicated forms. Developing efficient computational schemes for solution in a general
manner is therefore of paramount importance. It is emphasised that through these
schemes only approximate numerical solutions are sought, that may never be exact.
In a sense it is useless to think of exact solutions, because equations arising in practice
always contain experimentally determined parameters that are always contaminated
by errors of measurement. Even if it is assumed that an equation is exactly given,
machine computation of the solution following any method, invites roundoff errors.

In this opening chapter, we consider a single unknown x to be determined as a
solution from an equation of the general form

f (x) = 0 (2.1)

where x is real or complex defined over some interval or region as the case may be.
The interval or region may be finite or infinite. The function f is supposed to be
continuous over the interval or the region. In certain cases we shall assume that the
derivatives f ′ and f ′′ are also continuous.

Every finite value ξ of x (real or complex) for which f (ξ) = 0 is called a root of
Eq. (2.1), or a zero of the function f (x). A root of an equation may or may not exist
(1/x = 0 and ex = 0 for example, do not possess any root). When a root exists, it
must either be real or complex. When several roots exist, their number may be finite
or infinite. For instance if f (x) is a polynomial of degree n, then the corresponding
algebraic equation has exactly n roots (Fundamental Theorem of Algebra). Thus
algebraic equations are very special. Equations containing other types of functions
are called transcendental equations. Such equations may have finite or infinite
number of roots.

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1_2

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7114-1_2&domain=pdf
https://doi.org/10.1007/978-981-13-7114-1_2

56 2 Equations

In approximate numerical solution of an equation one may be interested to com-
pute all the roots of the equation. A study of this chapter shows that the roots in
practice are mostly obtained one by one. Moreover, the search for real roots and their
computation is easier compared to those for complex roots. Consequently, wemainly
focus on real roots, treating complex roots only by working methods that work.

2.1 Real Roots

For real roots, the obvious procedure is to first isolate the roots in small intervals,
followed by refinement of their values. The first task is relatively simple and is
described below.

2.1.1 Isolation of a Real Root

Isolation of a root means that there is a neighbourhood which does not contain any
other root. A straight forward method is to plot the graph of the function f (x) for
values of x we are interested in. The graphing could be done on a computer. Inspite
of digitisation and small errors, one can read off small intervals containing the points
where the graph of the function cuts, or in some special case, merely touches the
x-axis. Such intervals isolate the roots of the equation.

Isolation by trial is also possible. It is based on the following theorem of Analysis:

Theorem 2.1 If a continuous function f (x) assumes values of opposite sign at the
end points of an interval [a, b], i.e.

f (a) f (b) < 0 (2.2)

then the interval will contain at least one real root ξ of f (x) = 0, i.e. f (ξ) = 0,
ξ ∈ (a, b). Moreover if f (x) is strictly monotonic in [a, b], ξ is unique.

The theorem is illustrated in Fig. 2.1a, b.
In the trial method, one finds the sign of f (x) at a series of intermediate points

x = c1, c2, c3, · · · , taking in to account the peculiarities of f (x). If it turns out that
f (ck) f (ck+1) < 0, then there is a root in (ck, ck+1). Evidently, in this method, there
is a chance of missing a root like ξ2 of Fig. 2.1a. The difficulty can be avoided by
checking monotonicity of f (x) in (ck, ck+1). If f (x) lacks it, the interval [ck, ck+1]
must be broken up in to smaller segments.

A root like ξ2 is a multiple root of even order. For example, if f (x) = (x − 1)2,
then the parabola touches the x-axis at x = 1, yielding a double root x = 1, 1
of the equation (x − 1)2 = 0. In a similar manner (x − 1)3 = 0 has a triple root

2.1 Real Roots 57

Fig. 2.1 a Root isolation. b Unique root

x = 1, 1, 1, but in this case the cubic parabola intersects the x-axis at x = 1 without
being strictly monotonic.

Example 1. Isolate the real roots of the Wallis’s equation

f (x) := x3 − 2x − 5 = 0

(In the history of numerical methods, this particular equation was taken up for bench
marking the efficiency of a newly discovered method of root computation).

Solution. The cubic equation has three roots. Computing f (x) at suitably selected
points in (−∞, ∞), one finds

f (−∞) < 0

...

f (−1) = −4 < 0

f (0) = −5 < 0

f (1) = −6 < 0

f (2) = −1 < 0

f (3) = 16 > 0

...

f (∞) > 0

Thus there must be a real root in [2, 3] since there is a change of sign in f (x). The
remaining two roots appear to be complex as there is no possibility of change of sign
in any other interval. �

John Wallis (1616–1703), Englishmathematician.He introduced the familiar symbol of infinity.

His ingenious works singularly exerted important influence on Newton.

Example 2. Equations of the form

f (x) := eax − ax − b = 0

58 2 Equations

occur in heat conduction problems. Supposing that a = 1/2 and b = 9, isolate its
positive real roots.

Solution. This is an example of transcendental equation. By computation

f (0) = −8 < 0
f (1) = −7.85 < 0
f (2) = −7.28 < 0
f (3) = −6.02 < 0
f (4) = −3.61 < 0
f (5) = 0.68 > 0
f (6) = 8.08 > 0
f (7) = 20.62 > 0

Apparently there is only one real root in [4, 5]. �

2.1.2 Refinement: Computation of a Real Root

We suppose that a real root ξ of Eq. (2.1) has been isolated in a neighbourhood
[a, b]. The approximate computation of ξ can be accomplished in a number of ways
described in the following. It may be noted that all themethods are iterative in nature,
in which ξ is approached by successive approximations.

2.1.2.1 Bolzano Bisection Method

In this method, the interval [a, b] is divided in to two halves by the point of bisection
xm = (a + b)/2. If f (xm) = 0, then ξ = xm is the root. If not so, then choose that
half [a, xm] or [xm, b], at the end points of which f (x) has opposite signs. Denote
the chosen half as [a1, b1] and bisect it again applying the same test to generate a
smaller neighbourhood [a2, b2]. In this way an infinite sequence of nested intervals
[a1, b1], [a2, b2],· · · , [an, bn],· · · is generated such that

f (an) f (bn) < 0 (2.3a)

where

bn − an = 1

2n
(b − a) (2.3b)

The sequence of points a1, a2, a3, · · · is monotonic increasing and bounded above.
So it has a limiting point ξ. Similarly the sequence b1, , b2, b3, · · · is monotonic
decreasing but bounded below, converging to the same limit ξ in view of the fact that
[an − bn] → 0 as n → ∞. Moreover, from Eq. (2.3a) passing to the limit n → ∞,
we must have [f (ξ)]2 ≤ 0 whence f (ξ) = 0. Thus ξ is the required root of the
equation.

2.1 Real Roots 59

The root ξ is always contained in the nested intervals. This aspect is often described
as bracketing of the root.

Following the method, approximate computation of ξ can be performed by iter-
atively generating the intervals till bn − an < ε, where ε is a given tolerance. Then
ξ ≈ an or bn . The algorithm for the method would read like the following:

Algorithm 1. Bolzano Bisection method

Input: Real f (x), a, b, ε
Output: Real a, b
Computation: 1. If f (a) f (b) > 0, Stop. No root.
2. Else set xm ← .5 × (a + b)
3. If f (xm) = 0, Stop. xm is the root.
4. If f (a) f (xm) < 0, set b ← xm

else set a ← xm
5. If |b − a| < ε, Stop. a or b is the root.

else go to step 2

The algorithm usually requires large number of iterations, because no specific
information about the shape of the function f (x) is used. This lacuna is removed in
the remaining methods.

2.1.2.2 Regula Falsi Method

When the end points of the graph of f (x) in the interval [a, b] containing a root ξ
are joined by the chord (or secant), we obtain the latter’s intersection with the x-axis
as an approximation of ξ. This is the idea behind regula falsi or false position.

The equation of the chord joining [a, f (a)], [b, f (b)] is
x − a

b − a
= y − f (a)

f (b) − f (a)

If it cuts the x-axis (y = 0) at x = x ′, we get the first iterate

x ′ = a − (b − a) f (a)

f (b) − f (a)
= a f (b) − b f (a)

f (b) − f (a)

Noting that one of f (a) or f (b) is negative, x ′ is the weighted average of a and b
with weights | f (b)| and | f (a)|. If f (x ′) 	= 0, we obtain a smaller interval [a1, b1]
containing ξ in the following manner. Without loss of generality we assume f (x) to
be concave; otherwise if f (x) is convex, the equation can be written as − f (x) = 0,
in which − f (x) is concave. Since f (a) f (b) < 0, two cases arise; (i) f (a) < 0,
f (b) > 0 and (i i) f (a) > 0, f (b) < 0. These are shown in Fig. 2.2a, b below:
Evidently for case (i) a1 = x ′, b1 = b and for case (i i) a1 = a, b1 = x ′. If the pro-

cess is continued we get a sequence of intervals [a1, b1], [a2, b2], · · · [an, bn], · · · ,

60 2 Equations

Fig. 2.2 Regula falsi iteration

where for case (i) a1 < a2 < a3 < · · · < an < · · · , and b1 = b2 = b3 = · · · = bn =
· · · = b, while for case (i i) a1 = a2 = a3 = · · · = an = · · · = a, and b1 > b2 >

b3 > · · · > bn > · · · . The sequences satisfy

an+1 = an f (b) − b f (an)

f (b) − f (an)
, bn+1 = a f (bn) − bn f (a)

f (bn) − f (a)
(2.4)

The two sequences are monotonic and bounded. Hence if an → ξ as n → ∞, the
first of the above two equations yields

ξ = ξ f (b) − b f (ξ)

f (b) − f (ξ)

Thus f (ξ) = 0 (since ξ < b), so that ξ is the required root. Similar conclusion can
be drawn for the sequence {bn}.

In this method bracketing of ξ is observed, but the length of the nth subinterval
bn − an does not diminish to zero. This lacuna can be removed, and at the same
time convergence accelerated by a computational trick, in which the secants are now
replaced by chords of decreasing slopes, until x ′ falls to the opposite side of the root.
This is achieved by reducing the ordinate at the fixed end of the interval by half of
its value. This is illustrated in Fig. 2.3.

Fig. 2.3 Modified regula
falsi iteration

2.1 Real Roots 61

In the figure, the first secant is drawn as usual to obtain the iterate a1 where
f (a) f (a1) > 0, while b1 = b. So the next chord is drawn through the points
[a1, f (a1)] and [b1, f (b1)/2], to yield the iterate a2 and b2 = b. Repeating the
process, we find in the figure that, a3 = a2 and b3 < b2. Generalising the idea, given
a tolerance ε of the root, we obtain the algorithm

Algorithm 2. Modified Regula Falsi method.

Input: Real f (x), a, b, ε
Output: Real a, b
Computation: 1. If f (a) f (b) > 0, Stop. No root.
2. Else set F ← f (a), G ← f (b), x ′

0 ← a
3. Set x ′ ← (aG − bF)/(G − F)

4. If f (x ′) = 0, Stop. x ′ is the root.
5. If f (a) f (x ′) < 0 set b ← x ′, G ← f (x ′);

if also f (x ′
0) f (x ′) > 0 set F ← F/2

else set a ← x ′, F ← f (x ′);
if also f (x ′

0) f (x ′) > 0 set G ← G/2
6. If |b − a| < ε Stop. a or b is the root.
7. Else set x ′

0 ← x ′ and go to step 3.

2.1.2.3 Secant Method

This method, as the name suggests, is also based on drawing secants, but with a
variation. We write a = x0 and b = x1. If a and b are close to the root ξ, x0 and
x1 become approximations to ξ. The next approximation is obtained by drawing the
secant as

x2 = x0 f (x1) − x1 f (x0)

f (x1) − f (x0)

Using x1 and x2 a third iterate x3 can be constructed in a similar manner. By con-
tinuing the process, we obtain a sequence of points x0, x1, x2, · · · , xn, · · · satisfying

xn+1 = xn−1 f (xn) − xn f (xn−1)

f (xn) − f (xn−1)
= xn − f (xn)

xn − xn−1

f (xn) − f (xn−1)
(2.5)

The root may not be bracketed in general during iteration. So the sequence may
diverge in somecases. If it converges to ξ, then the above equation in the limit becomes
ξ = ξ − f (ξ)/ f ′(ξ). Thus if f ′(ξ) 	= 0, the limit ξ is the root of the equation.

To enforce bracketing and ensure convergence, we combine the method with that
of bisection, adopting the following strategy. Changing notationswhichwill be useful
for programming, suppose that the current pair of iterates is a and b. We store the
value a and f (a), whenever f (a) and f (b) have opposite sign. Say the values are c
and f (c). As iteration proceeds with a and b, if f (a) and f (b) have the same sign
then the point of bisection of c and b is chosen as the next iterate, otherwise it is
obtained by the secant method. The following Fortran subroutine is developed on
this basis.

62 2 Equations

SUBROUTINE SECANT_BISECTION(f,a,b,xtol,root)
! computes a root of f(x)=0 lying in [a,b]
! by combined secant and bisection methods.
! f(x) must be given by a separate function subprogram.
! xtol = tolerance allowed in the computation of root. (Input)
! root = the desired root with tolerance xtol. (Output)
aa=a; bb=b; c=aa; fa=f(aa); fb=f(bb); fab=fa*fb
IF(fab>0.0) then

print*, ’No Root’; RETURN
END IF
10 IF(fab<0) d=(bb−aa)*(fb/(fa−fb)) !Shift from b in secant method
IF(d<a−bb .OR. d>b−bb) d=0.5*(c−bb) !Shift in bisection method
IF(ABS(d)<xtol) THEN

root=bb+d; RETURN
END IF
c=aa; fc=fa; aa=bb; fa=fb; bb=bb+d; fb=f(bb); fab=fa*fb
GOTO 10
END SUBROUTINE SECANT_BISECTION

The question of convergence of pure secant basedmethod is examined in Sect. 2.4.

2.1.2.4 Newton’s Method

We now make the additional assumption that the derivative f ′(x) exists in [a, b]. If
f (x) is considered monotonic in [a, b] f ′(x) 	= 0. Suppose xn is an approximation
of the root ξ represented by point N on the x-axis. Then referring to Fig. 2.4, the
point of intersection T of the tangent at P [xn, f (xn)]may be a closer approximation
xn+1 to ξ. Thus,

xn+1 = xn − TN = xn − PN

tan∠PT N
= xn − f (xn)

f ′(xn)
(2.6)

Fig. 2.4 Newton iteration

2.1 Real Roots 63

Starting from an approximation x0 in [a, b], one can generate the sequence
x1, x2, · · · , xn, · · · by, iteration, provided that f (xn) 	= 0. If the sequence converges
to ξ, then it easily follows that f (ξ) = 0, i.e. ξ is a root of Eq. (2.1).

One can derive formula (2.6) without recourse to geometry. Let ξ=xn + h, then
f (xn + h)=0.Assuming atleast the continuity of f ′′(x), we have byTaylor’s theorem

0 = f (xn + h) = f (xn) + h f ′(xn) + O(h2)

Thus to O(h), h = − f (xn)/ f ′(xn) yielding the formula. The success of the formula
heavily depends on the behaviour of f ′(xn), which in any case should be away from0.

The method can also be viewed as a limiting case of the secant method. For, by
Lagrange’s Mean Value Theorem

f (xn) − f (xn−1) = (xn − xn−1) f
′(η)

where xn−1 < η < xn . If xn−1 is close to xn , f ′(η) ≈ f ′(xn) and so
xn − xn−1

f (xn) − f (xn−1)
≈ 1

f ′(xn)

Plugging the approximation in Eq. (2.5), one obtains Eq. (2.6).
Following Newton’s method, a subroutine can easily be written down. One such

is given below:

SUBROUTINE NEWTON(f,f1,x,maxiter,xtol,root)
! computes a root of f(x)=0 by Newton’s method.
! f and derivative f1 must be declared external in the calling program.
! x = initial approximation of root (Input).
! maxiter = maximum number of iterations allowed (Input).
! xtol = tolerance in the computation of the root (Input).
! root = the desired root with tolerance xtol (Output).
DO i=1,maxiter
xnew=x−f(x)/f1(x)
IF(ABS|xnew−x|<xtol) THEN

root=xnew; EXIT
ELSE
x=xnew; IF(i==maxiter) PRINT*, ’No Solution’
END IF
END DO
RETURN
END SUBROUTINE NEWTON

If for a particular f , a sufficiently large n does not deliver the root, there is conver-
gence problem. Conditions for convergence are discussed in Sect. 2.4.

Historically, Newton (Sir Isaac Newton (1643–1727) foremost English Mathematician and

physicist) developed a method for computing a root of a cubic equation, based on iterative lineari-

sation process. He published his method as a means to solve Kepler’s equation x = 2e sin x + t/T

for planetary motion (x = “eccentric anomaly”, e = eccentricity of orbit, t = time and T= time period

64 2 Equations

of orbit). In about 1690, Joseph Raphson formulated Newton’s ideas for the case of a polynomial

equation in a form closer to Eq. (2.6). Thus the method is often referred to as Newton–Raphson
method. A more accurate version of the Kepler problem is considered in Sect. 2.2, Exercises 2.3.

Remark Modified Newton’s Method. If the derivative f ′(x) varies but slightly in
[a, b], then in Eq. (2.6), one can put f ′(xn) ≈ f ′(x0). This leads to iterations

xn+1 = xn − f (xn)

f ′(x0)
(2.6a)

for the root ξ of Eq. (2.1). The advantage accrued in Eq. (2.6a) is that the derivative of
f (x) need be computed only once in the whole range of iterations. It can be proved
that if f ′(x) and f ′′(x) have constant sign in [a, b], the iterations converge to ξ.

Example 1. The equation f (x) := ex/2 − x/2 − 9 = 0 was considered earlier in
Sect. 2.1.1. It has only one real root in the interval [4, 5]. Writing Fortran programs
using Algorithms 1 and 2, the Secant and NEWTON, compute the root by the four
methods, comparing the number of iterations required in the four methods.

Solution. Writing a program, the table of values given on the next page is obtained
for the root. With xtol = 0.1E − 6, the root is indicated to be 4.873679, but it takes
as many as 22 iterations in the case of bisection method. The modified regula falsi
method takes 10 iterations in an oscillatory fashion and still does not completely settle
to the final value. In comparison, the Secant and the Newton methods converge in
nine and five iterations respectively. The subroutine SECANT_BISECTION yields
the result with xtol = 0.1E − 5 only. �

n Bisection method Modified regula falsi Secant method Newton method
0 4.500000 4.000000 4.000000 4.500000
1 4.750000 4.841038 4.682076 4.915249
2 4.875000 4.893651 4.904085 4.874149
3 4.812500 4.873500 4.935609 4.873680
4 4.843750 4.873678 4.843255 4.873679
5 4.859375 4.873681 4.873688 4.873679
6 4.867188 4.873679 4.873697
7 4.873697 4.873679 4.873670
8 4.873047 4.873680 4.873679
9 4.874023 4.873679 4.873679
10 4.873535 4.873679
11 4.873779
12 4.873657
13 4.873718
.
.
.

.

.

.

21 4.873679
22 4.873679

2.1 Real Roots 65

Example 2. Using the subroutine named secant_ bisection, solve the equation

√
x + √

x − 2 + √
6 − x − 4 = 0

for its real roots.

Solution. Apparently, the function is defined for real x on the interval [2, 6] only,
such that f (2) = √

2 − 2 < 0 and f (6) = √
6 − 2 > 0. Hence one can take a = 2,

b = 6. If one uses the secant method, the iterations soon breakdown because the
iterates lie outside [2, 6]. The subroutine secant_ bisection avoids this difficulty by
using bisectionmethod for such cases. However, for starting values a = 2, b = 6, the
compiler faces difficulty in computing

√
0 = 00.5 = e0.5 ln 0 and execution is aborted.

One can get around this difficulty also by taking slightly different values for a and
b, say a = 2.01, b = 5.99. This procedure yields the root as

ξ = 2.31251 �

Example 3. The critical buckling load of a fixed-pin ended bar is given by the

equation tan x = x , where x = l
√

P
E I , l = length of the bar, P = compressive load, E

= Young’s modulus, and I = moment of inertia of a cross section. Find the smallest
positive root by Newton’s method.

Solution. The real roots of the equation tan x = x are given by the points of intersec-
tion of the graphs of y = tan x and the line y = x . Now the graph of tan x consists of
parallel monotonic curves from−∞ to+∞ having asymptotes x = ±(2n + 1)π/2,
(n = 0, 1, 2, · · ·). Except for x = 0, the line cuts these curves close to the asymp-
totes. Thus we obtain the approximation x0 ≈ 3π/2 = 4.71239 for the smallest non
zero positive root. This fact can be verified by writing the equation in the form

f (x) := sin x − x cos x = 0

yielding f (4) = 1.86 > 0, f (5) = −2.38 < 0.
For using Newton’s method we also calculate

f ′(x) = cos x − cos x + x sin x = x sin x

Using the two functions f (x) and f ′(x) in subroutine NEWTON, one finds that the
root is

ξ = 4.49341 �

66 2 Equations

Exercises

1. By computing the function at unit intervals between −10 and +10, isolate the real
roots of the following equations:

(i) x3 − 3x − 5 = 0 [(2, 3)]

(i i) x3 − 0.39x2 − 10.5x + 11 = 0 [(−4,−3), (1, 2), (2, 3)]

(i i i) x4 − x − 10 = 0 [(−2,−1), (1, 2)]

(iv) 2x − 2x2 − 1 = 0 [(0, 0), (0, 1), (6, 7)]

(v) 2 ln x − x

2
+ 1 = 0 [(0, 1), (11, 12)]

(vi) x − 0.2 sin x − 0.5 = 0 [(0, 1)]

2. Write a Fortran program for the modified regula falsi method for computing the
real roots of the following equations after their isolation as in Exercise 1 above:

(i) x3 − 4x2 + x + 6 = 0 [−1.0]

(i i) x = tan 2(x − 1) [0.21460, requires large number of iterations]

(i i i) x2 + ln x = 2 [1.31410]

3. Using the subroutine secant_ bisection, determine the real roots of the equations
given in Exercise 1.

[(i) 2.27902 (i i) −3.50336, 1.14063, 2.75273 (i i i) −1.69747, 1.85559 (iv) 0,
0.39928, 6.35235 (v) 0.72751, 11.90927 (vi) 0.61547].

4. Find by subroutine named NEWTON, the real roots of:

(i) x3 − 1.5x2 + 5.74x + 7 = 0 [−0.88984]

(i i) cos x = 3x − 1 [0.60710]

(i i i) x2 − 10 ln x = 0 [1.13836, 3.56556]

5. Isolate the positive roots of

tan x + tanh x = 0

in unit intervals. Can you capture the first three roots following Newton’s method by
starting from the middle point of the sub-intervals?

2.1 Real Roots 67

[(1,2), (2,3), (4,5). No. The second root 2.36502 can be captured. The other two roots
by bisection method are 1.57080, 4.71239].

6. (Chebyshev Method). As in the analytical derivation of the Newton iterations, if
the second-order term is also retained in the Taylor expansion of f (x), then show
that the iteration formula becomes

xn+1 = xn − f (xn)

f ′(xn)
− 1

2

[f (xn)]2 f ′′(xn)
[f ′(xn)]3

Apply the formula to compute the roots of

(i) x3 − x − 1 = 0, lying in (1,2). [1.32472]

(i i) x sin x + cos x = 0, lying in (2,3). [2.79839]

7. Using Newton’s method, prove the following iterative schemes:

(i) xn+1 = 1

2

(
xn + a

xn

)
for computing

√
a (Hero’s algorithm)

(i i) xn+1 = 1

3

(
2xn + a

x2n

)
for computing 3

√
a

(i i i) xn+1 = xn(2 − axn) for computing a−1.

Hero (or Heron) of Alexandria (A.D. 62) under which a number of works are known. They

were mostly written in Greek.

8. (Generalised Newton’s Method). If ξ is a root of f (x) = 0 with multiplicity p,
then show that Newton’s method can be generalised to

xn+1 = xn − p
f (xn)

f ′(xn)
(n = 1, 2, 3, · · ·)

with given initial value x0.
[In this case we can write f (x) = (x − ξ)pφ(x), where φ(x) varies slowly with

x in the neighbourhood of ξ, i.e. φ′(x) is small in the said neighbourhood. By log-
arithmic differentiation f ′(xn)/ f (xn) = p/(xn − ξ) + φ′(xn)/φ(xn) ≈ p/(xn − ξ).
If ξ := xn + h, h ≈ −p f (xn)/ f ′(xn)].

9. (Fourier Method) Show that if the Newton iterations are modified as

xn+1 = xn − f (xn)

f ′(xn)
, zn+1 = zn − f (zn)

f ′(xn)

where x0 = a and z0 = b, then xn, zn → ξ the root such that

68 2 Equations

lim
n → ∞

xn+1 − zn+1

(xn − zn)2
= f ′′(η)

2 f ′(η)

implying quadratic convergence.

10. The velocity of propagation c of surface Rayleigh waves along the flat surface
of a semi-infinite isotropic elastic solid is given by c = √

x β, where x is a root of
the cubic equation

x3 − 8x2 − 8
1 + 2ν

1 − 2ν
x + 16

1 − 2ν
= 0

in which ν = Poisson’s ratio and β = velocity of shear wave propagation in the solid.
Solve the equation by Newton’s method for ν = 1/3.
[x = 0.86962].

11. A load RL is supplied from an A.C. source at voltage Vm through a resistor RS

in series with a diode. The capacity is sufficiently large to eliminate any ripple in
the resulting D.C. voltage VL across the load. The following approximation for the
voltage ratio VL/Vm = x can be established

x = 1 −
(π√

2

RS

RL
x
)2/3

Solve the equation for
π√
2

RS

RL
= 1, by Newton’s method.

[x = 0.43019].

12.The voltage drop v across a diode in the so-called biasing problem of an electronic
circuit requires the solution of the equation

50Is
(
evq/kT − 1

)
+ v = 2

where Is = 10−9 amp for Si diode, k = Boltzman constant, T = temp. in ◦K and q =
charge of an electron. Solve the equation for q/kT = 40 by Newton’s method.

[Write the equation as 5
(
e40v − 1

)
/108 + v − 2 = 0. v = 0.43153].

13. The displacement d of a cam follower is given by the equation

d = 1

2
[1 + e−x/2π sin x], 0 ≤ x ≤ 2π

where x is the angle of rotation of the cam. Compute x for a desired displacement
of d = 0.75 cm by the Newton method.
[x = 2.33114].

14. The friction factor c f = x2 for turbulent flow in a smooth pipe is given by the
equation

x[1.74 ln(Rx) − 0.4] = 1

2.1 Real Roots 69

where R is Reynolds’ number of flow. Compute c f for R = 103, using the trial
0.1 < x < 0.2.
[c f = 0.01562].

15. The chemical equation in the production of methanol from CO and H2 is

x(3 − 2x)2

(1 − x)3
= 249.2

where x is the equilibrium extent of the reaction. Find x .
[x = 0.81712].

16. The critical load of buckling of a typical portal frame with columns fixed at the
base is given by

(i) x sin x + (4 + x2) cos x = 4 (for symmetric buckling)

and (i i) tan x = − x

2
(for antisymmetric buckling)

where x = l
√

P
E I , l = length of each side of the frame, P = compressive load, E =

Young’s modulus and I = moment of inertia of a cross-section. Find the smallest
positive x in the two cases.
[(i) x = 5.01819, (i i) x = 1.57079].

17. The frequency of vibration of a free–free bar is given by the equation

cos x cosh x + 1 = 0

where frequency ω =
√

E I

4ρ

x2

l2
, ρ is the density and E , I , l are defined as in

Example3, Sect. 2.1.2.4. Find the smallest positive root by Newton’s method.
[x = 1.87510].

2.2 The General Iteration Method

In the Newton method, the iterative formula (2.6) expresses xn+1 as a function xn .
The function contains f (xn) and f ′(xn). This suggests that if it is possible to rewrite
the original equation f (x) = 0 in such a form that yields xn+1 as a function of xn ,
then the iterates xn may yield the root directly.

Towards this end, suppose it is possible to rewrite the equation in the form

x = φ(x) (2.7)

then a root ξ of Eq. (2.7) would satisfy

ξ = φ(ξ)

70 2 Equations

This means that the function φ maps ξ on to itself, or, in other words, ξ is a fixed
point of φ.

Let x0 be an initial approximation of ξ, then using this value in Eq. (2.7), the next
approximation to ξ could be x1 = φ(x0). Continuing in this manner one can obtain
iterates x0, x1, x2, · · · , xn, · · · where

xn+1 = φ(xn) (2.8)

Evidently, if the sequence of iterates converge to ξ, then following Eq. (2.8) in the
limit, ξ = φ(ξ) and thus ξ is a root of Eq. (2.7). The question of convergence of the
sequence is discussed later on in Sect. 2.4, where it is proved that if |φ′(x)| ≤ K < 1
in an interval [a, b] containing the root ξ, then the iterates do converge to ξ.

The rewriting of a given equation in the form (2.7) is by no means unique. The
appropriate representation would be that one for which convergence takes place.

Example 1. Consider Wallis’ equation

f (x) := x3 − 2x − 5 = 0

Rewrite the equation in various iterative forms and find which ones converge.

Solution. One can rewrite the given equation as

(i) φ1(x) := 1
2 (x

3 − 5)

(i i) φ2(x) := (2x + 5)1/3

(i i i) φ3(x) := (2x + 5)/x2

(iv) φ4(x) := x − λ(x3 − 2x − 5), λ 	= 0

The root of the equation lies in [2, 3], and one can start with the bisection point
x0 = 2.5.

For (i), φ′
1(x) = 3

2 x
2 > 3

2 × 4 = 6 > 1 for x ∈ [2, 3] and so the scheme (i) is
unsuitable for iteration.

For (i i), φ′
2(x) = 2/[3(2x + 5)2/3] < 2/[3(2 × 3 + 5)2/3] < 1 and consequently

the scheme is convergent. Writing a Fortran program allowing a maximum of 20
iterations, it is found that the root is ξ = 2.09455.

For (i i i), |φ′
3(x)| = 2

x2
+ 10

x3
> 1 in [2, 3] and does not converge.

The last scheme (iv) is φ4(x) = x − λ f (x). For the scheme |φ′
4(x)| = |1 − λ

f ′(x)| < 1 if −1 < 1 − λ f ′(x) < 1 or 0 < λ f ′(x) < 2. The condition is satis-
fied by

λ = 2

Max(3x2 − 2)
x ∈ [2, 3]

= 2

25

2.2 The General Iteration Method 71

With this value of λ, φ4(x) = x − 2
25 (x

2 − 2x − 5) is convergent and as before the
fixed point ξ is obtained as 2.09455. �

A general procedure for rewriting Eq. (2.1) in form (2.8) by procedure of the last
type is considered in Exercise 1.

Example 2. The equation ex − 4x2 = 0 has two roots in (0, 1) and (4, 5). Compute
the roots by iteration.

Solution. One way of writing the equation is naturally

x = 1

2
ex/2

For the root in [0, 1], one may start with x0 = 0.5. The iteration quickly yields the
root as ξ = 0.714806. For the other root however, the starting value x0 = 4.5 yields
a divergent sequence. These facts on convergence can be seen from φ(x) = 1

2e
x/2,

with
φ′(x) = 1

4e
x/2 < 1 for x ∈ [0, 1]

> 1 for x ∈ [4, 5]

For the second root, one may try the form

x = 2 ln(2x)

The form converges to ξ = 4.30659. �

Example 3. The iteration method is sometimes a useful tool in the approximate
construction of analytical solution of equations in special cases. The Chebyshev
method of Exercise 6 of the preceding section is an example. As another example, it
is known that the frequencies of lateral vibrations of a free–free or clamped–clamped
bar is given by the equation

cos x cosh x = 1

where frequencyω =
√

E I

ρ

x2

2l2
, l := length, ρ :=mass/length, E :=Young’smodu-

lus and I :=moment of inertia of a cross-section. Construct approximate expression
for its roots.

Solution. If the equation is rewritten as cosh x = sec x , the roots are the points of
intersection of y = cosh x and y = sec x . The former has the form of of a catenary
or the form of a suspended light string and the latter is a series of

⋃
and

⋂
shaped

curves between vertical asymptotes x = (2n + 1)
π

2
, (n = 1, 2, · · ·). Clearly the

two curves intersect near x = π/2, 3π/2, 5π/2, · · · , (2n + 1)π/2, · · · , and the nth
positive root of the equation can be written as

ξn = (2n + 1)
π

2
− (−1)nεn, (n = 1, 2, 3, · · ·)

72 2 Equations

where εn is a small quantity. Inserting the expression in the given equation,

cosh ξn = 1

cos ξn
= 1

(−1)n · (−1)n sin εn
= 1

sin εn

and therefore sinh ξn =
√
cosh2 ξn − 1 = cot εn . These expressions yield

e−ξn = cosh ξn − sinh ξn = 1 − cos εn

sin εn
= tan

εn

2

This means that
tan

εn

2
= e−(2n+1)π/2 · e(−1)nεn =: δne

(−1)nεn

where δn := e−(2n+1)π/2 is small. In fact, the largest delta is δ1 = 0.0089833. Expand-
ing the two sides of the above equation, we get

εn

2
+ 1

3

(εn

2

)3 − · · · = δn

[
1 + (−1)nεn + ε2n

2
+ · · ·

]

or εn = 2δn
[
1 + (−1)nεn + ε2n

2
+ · · ·

]
− ε3n

12
+ · · ·

The approximation of the above iterative equation is εn = 2δn . The second approxi-
mation is

εn = 2δn[1 + (−1)n2δn + 2δ2n + · · ·] − 2

3
δ3n + · · · = 2δn + (−1)n4δ2n + 10

3
δ3n + · · ·

The third approximation is

εn = 2δn[1 + (−1)n{2δn + (−1)n4δ2n + 1

3
δ3n + · · · }

+1

2
{2δn + (−1)n4δ2n + 10

3
δ3n + · · · }2 + · · ·]

− 1

12
{2δn + (−1)n4δ2n + 10

3
δ3n}3 + · · ·

= 2δn + (−1)n4δ2n + (8 + 4 − 2

3
)δ3n + · · ·

≈ 2δn + (−1)n4δ2n + 34

3
δ3n

2.2 The General Iteration Method 73

Thus, to the third order in δn , we get

ξn ≈ (2n + 1)
π

2
− 2(−1)nδn[1 + (−1)n2δn + 17

3
δ2n]

The solution yields ξ1 = 4.73004, ξ2 = 7.85321, ξ3 = 10.99561 etc. �

Exercises

1. An equation f (x) = 0 has a root ξ ∈ [a, b] and f ′(x) retains sign in the interval.
Prove that the equivalent form

x = x − λ f (x)

converges for λ = 1/M , where M = max { f ′(x)}
x ∈ [a, b]

, if f ′(x) > 0.

What should be the choice for f ′(x) < 0?

[φ(x) = x − λ f (x), |φ′(x)| = |1 − λ f ′(x)| < 1, where −1 < 1 − λ f ′(x) < 1 or
0 < λ f ′(x) < 2. For f ′(x) > 0,λ < 2

f ′(x) < 2
M . So selectλ = 1/M .When f ′(x) <

0, select λ = −1/M].

2. Solve by iteration method the following equations:

(i) x3 + x + 1 = 0 [−0.68233]

(i i) 5x3 − 20x + 3 = 0 [0.15136]

(i i i) 3x − cos x − 1 = 0 [0.60710]

(iv)
√
x + 1 = 1

x
[0.75488]

(v) x + ln x = 1
2 [Write as x = e(.5−x), 0.76625]

(vi) x3 + 3x2 − 3 = 0 [Write as x = x − 1
6 (x

3 + 3x2 − 3), −2.53209]

(vi i) e−x = sin x [Write as x = x + e−x − sin x , 0.58853]

3.The angular distance of a planet from the nearer end of themajor axis of the elliptic
orbit is θ. If t is the time of sweeping this angle then it is known to be given by the
equation

θ = nt + 2e sin θ − 3

4
e2 sin 2θ

74 2 Equations

correct to O(e2), where n is themean angular velocity of the planet. Show that correct
to this order in e

θ ≈ nt + 2e sin nt + 5

4
e2 sin 2nt.

2.3 Rate of Convergence

If xn is the nth iterate of a root ξ of an equation, then the (absolute) error en in it is
defined as en := ξ − xn . For convergence en must tend to zero as n → ∞. Assuming
convergence, a convenient measure of the rate of convergence is a number p ≥ 1,
such that for the next iterate

en+1 = O(epn)

where O is the Landau symbol (see Sect. 1.2.1, Chap.1). This means that the suc-
cessive errors must satisfy

∣∣∣en+1

epn

∣∣∣ = C for n → ∞

where C 	= 0 is a constant called the asymptotic error constant. Evidently the higher
the value of p is, the faster the iterates converge to ξ. If p = 1, the convergence is
said to be linear, and if p > 1, it is called superlinear. We proceed to determine the
rates of convergence of the different methods developed so far.

1◦. Bolzano Bisection Method.

If xn−1 and xn are two successive iterates (so that f (xn−1) f (xn) < 0), then the next
iterate is

xn+1 = 1

2
(xn + xn−1)

Therefore,

ξ − en+1 = 1

2
(ξ − en + ξ − en−1)

Hence
2en+1 − en − en−1 = 0

which is a linear difference equation of the second order. To solve it, let en = ρn ,
then inserting this expression of en in the above equation we get

ρn(2ρ − 1 − ρ−1) = 0

or,
2ρ2 − ρ − 1 = 0

2.3 Rate of Convergence 75

whose solution is ρ = [1 ± √
1 + 8]/4 = 1, −1/2. Hence the general solution of

the difference equation must be

en = C1 1
n + C2

(
− 1

2

)n

where C1, C2 are arbitrary constants. As the method is convergent, we must have
C1 = 0 and therefore en = (−1)nC2/2n . Hence

∣∣∣en+1

en

∣∣∣ = 1

2
for all n

So the method is linear.

2◦. General Iteration Method.

In this method the successive iterates satisfy xn+1 = φ(xn) (see Eq. (2.8)) and so

ξ − en+1 = φ(ξ − en) = φ(ξ) − en φ′(ξ − θ en) 0 < θ < 1

by the Mean Value Theorem. Since ξ = φ(ξ) and en → 0 as n → ∞ in case of
convergence, the above reduces to

∣∣∣en+1

en

∣∣∣ = |φ′(ξ − θ en)| = |φ′(ξ)| for n → ∞

assuming continuity of the derivative φ′. Hence if φ′(ξ) 	= 0, this method is also
linear in convergence.

If φ′(ξ) = 0, then proceeding as above by Taylor’s theorem of order two, one gets

∣∣∣en+1

e2n

∣∣∣ = 1

2
|φ′′(ξ)| for n → ∞

and convergence becomes superlinear, which is atleast quadratic.

3◦. Newton’s Method.

This method can be considered as a particular case of general iteration with

φ(x) = x − f (x)

f ′(x)

according to Eq. (2.6). By differentiation, one finds that

φ′(x) = f (x) f ′′(x)
[f ′(x)]2 , φ′′(x) = f ′′(x)

f ′(x)
+ f (x)

d

dx

[
f ′′(x)

{ f ′(x)}2
]

76 2 Equations

Hence φ′(ξ) = 0 (since f (ξ) = 0) and φ′′(ξ) = f ′′(ξ)/ f ′(ξ) 	= 0, in general. Thus,
according to the discussion of general iteration given above, the convergence is
quadratic.

One can arrive at the same conclusion proceeding ab initio by applying second-
order Taylor’s theorem to the error equation for Eq. (2.6). The details are left as an
exercise to the reader.

4◦. Secant Method.

The secant iterations are given by Eq. (2.8). Introducing the error en , it yields

en+1 = en − (en − en−1) f (ξ − en)

f (ξ − en) − f (ξ − en−1)
= en−1 f (ξ − en) − en f (ξ − en−1)

f (ξ − en) − f (ξ − en−1)

By Taylor’s theorem of order two, one can write noting that f (ξ) = 0,

f (ξ − en) = −en f
′(ξ) + e2n

2
f ′′(ξ − θnen), 0 < θn < 1

Thus the above expression becomes

en+1

enen−1
= 1

2

en f ′′(ξ − θnen) − en−1 f ′′(ξ − θn−1en−1)

−(en − en−1) f ′(ξ) + 1
2 [e2n f ′′(ξ − θnen) − e2n−1 f

′′(ξ − θn−1en−1)]
Therefore, letting n → ∞, or taking the limit en−1 → 0 and en → 0 in succession,
one gets

en+1

enen−1
→ −1

2

f ′′(ξ)
f ′(ξ)

as n → ∞

To find the rate of convergence p, let

∣∣∣ en+1

enen−1

∣∣∣ =: cn → c∞ := 1

2

∣∣∣ f
′′(ξ)
f ′(ξ)

∣∣∣ as n → ∞

Therefore, ∣∣∣en+1

epn

∣∣∣ = cn|en|1−p|en−1| = cn
∣∣∣ en
epn−1

∣∣∣
α

provided that 1 − p = α and 1 = −αp. Eliminating α, one obtains the equation
p2 − p − 1 = 0, whose positive root is p = 1

2 (1 + √
5) ≈ 1.618.

With α = −1/p, the above equation looks like a fixed point iteration yn+1 =
cn y

−1/p
n , whose fixed point η satisfies η = c∞ η−1/p or, η(1+1/p) = c∞ or, η p = c∞,

i.e. η = c1/p∞ . Therefore,

∣∣∣en+1

epn

∣∣∣ → c1/p∞ =
[
1

2

∣∣∣∣
f ′′(ξ)
f ′(ξ)

∣∣∣∣
]1/p

as n → ∞

2.3 Rate of Convergence 77

and so the rate of convergence is p ≈ 1.618. This rate is somewhat lower than that
of the Newton method, but is superior to that of the bisection method.

Exercises

1. Show that if the modified Newton iteration xn+1 = xn − f (xn)/ f ′(x0) is conver-
gent, then it is linear.
2. Show that if the generalised Newton’s method for a root of multiplicity p given
by xn+1 = xn − p f (xn)/ f ′(xn) is convergent, then it is quadratic.
3. Show that if the Chebyshev iteration a given in Exercise 6 of Sect. 2.1.2.4 is
convergent, then it is cubic.

2.3.1 Acceleration of Convergence of Linearly Convergent
Sequences: Aitken’s Δ2–process

Suppose we have linearly converging sequence x0, x1, x2, · · · , xn, · · · as in the
iteration method, then en+1 = Ken for n → ∞. This means that for large n

ξ − xn+1 = K (ξ − xn)

replacing n by n − 1, we similarly have

ξ − xn = K (ξ − xn−1)

Eliminating K , we get

(ξ − xn+1)(ξ − xn−1) = (ξ − xn)
2

which simplifies in to

ξ = xn+1xn−1 − x2n
xn+1 − 2xn + xn−1

= xn+1 − (xn+1 − xn)2

xn+1 − 2xn + xn−1

Thus given x0, x1, x2, · · · one can construct a new sequence x̂1, x̂2, x̂3 · · · de-
fined by

x̂n = xn+1 − (xn+1 − xn)2

xn+1 − 2xn + xn−1
(2.9)

The new sequence converges to ξ faster than the original sequence. In fact

x̂n − ξ

xn − ξ
= xn+1(xn−1 − ξ) − (xn − ξ)2 − ξ(xn−1 − ξ)

xn − ξ

= 1

K
(xn+1ξ) − (xn − ξ) → 0 as n → ∞

78 2 Equations

Hence the assertion.
If we define finite differences (see also Chap.4),

�xn := xn+1 − xn, �2xn := �(�xn)

then �2xn−1 = �(xn − xn−1) = �xn − �xn−1 = xn+1 − xn − (xn − xn−1) = xn+1

− 2xn + xn−1 and Eq. (2.10) can be recast as

x̂n = xn+1 − (�xn)2

�2xn−1

which explains the term “�2–process”.

Alexander Craig Aitken (1895–1967), New Zealand mathematician. Professor at University of

Edinburgh. Displayed unusual genius not only in his publishedmathematical works, but by his extra

ordinary skill in mental calculation.

Example 1. Solve x = 1
2 (3 + sin x).

Solution. Byfixed point iterationwe obtain ξ = 1.96219 i 9 iterations, ifwe startwith
x0 = 1.5 in a straight forwardway. For using Eq. (2.10)wewrite the Fortran program

x0=1.5

do n=1,10

x1=.5*(3+sin(x0)); x2=.5*(3+sin(x1))

x_ hat=x2−(x2−x0)**2/(x2−2*x1+x0)

print*, n, x_ hat

x0=x1

end do

end

Execution of the program yields the same result in 8 iterations. �

Exercises

1. Apply Aitken’s �2–process to the iterative equations

(i) x=
√
2 + x [2.00000]

(i i) x=1
2 (3+cos x) [1.52359]

(i i i) x=1
2 (7+ln x) [4.21990]

What is the reduction in the number of iterations in each case?

2.4 Convergence Theorems 79

2.4 Convergence Theorems

During the development ofNewton and secantmethods, itwas noted that convergence
to the root ξ is not always ensured. The same is true of the general iterationmethod. In
this sectionwe give sufficient conditionswhich ensure convergence of thesemethods.

Theorem 2.2 Let f ∈ C2[a, b], such that

(i) f (a) f (b) < 0

(ii) f ′(x) 	= 0, a < x < b

(iii) f ′′(x) is either > 0, or < 0, a < x < b

and (iv)

∣∣∣ f (a)

f ′(a)

∣∣∣ < b − a;
∣∣∣ f (b)

f ′(b)

∣∣∣ < b − a

then the iterations x0, x1, x2, · · · , xn, · · · for
(a) the Newton’s method, Eq. (2.6) converges to root ξ

and (b) the Secant method, Eq. (2.5) converges to root ξ.

Proof Geometrically condition (i) implies existence of ξ in (a, b), while condi-
tion (i i) ensures uniqueness of ξ. Condition (i i i) implies that f is either convex
or concave and condition (iv) implies that the tangents at the end points x = a
and x = b cut the x-axis at points within (a, b). For the sake of definiteness we
assume the configurations of Figs. 2.4 and 2.2a for which (i) f (a) < 0, f (b) > 0
(i i) f ′(x) > 0, a < x < b (i i i) f ′′(x) > 0, a < x < b and (iv) − f (a)/ f ′(a) <

b − a and f (b)/ f ′(b) < b − a.

(a) Newton’s method. Let x0 > ξ as in Fig. 2.4. The next iterate following Eq. (2.6)
is

x1 = x0 − f (x0)

f ′(x0)
< x0, since f (x0) > 0, f ′(x0) > 0

Consider the function

φ(x) = x − f (x)

f ′(x)

then

φ′(x) = f (x) f ′′(x)
[f ′(x)]2 > 0, ξ < x < b

Thus φ(x) is monotonic in ξ < x < b and so φ(ξ) < φ(x0). Therefore,

ξ − f (ξ)

f ′(ξ)
< x0 − f (x0)

f ′(x0)
= x1

80 2 Equations

Fig. 2.5 Convergence pattern in secant method

Since f (ξ) = 0, we get ξ < x1 < x0 < b. By similar argument, ξ < x2 < x1 < x0 <

b and generally
ξ < · · · < xn < · · · < x2 < x1 < x0 < b

Hence the sequence x0, x1, x2, · · · , xn, · · · is monotonic decreasing and bounded
with limiting point ξ.

Next let x0 < ξ. In this case φ′(x) < 0, a < x < ξ. Thus φ(x) is monotonic de-
creasing in a < x < ξ and

φ(a) > φ(x0) > φ(ξ)

or

a − f (a)

f ′(a)
> x0 − f (x0)

f ′(x0)
> ξ − f (ξ)

f ′(ξ)

or

b > a − f (a)

f ′(a)
> x1 > ξ

Thus, ξ < x1 < b. The succeeding iterates x2, x3, · · · will follow the same pattern
as that of the previous case, completing the proof. �

(b) Secant Method.

The convergence pattern can essentially be divided in to two types as shown in
Fig. 2.5

As depicted in Fig. 2.5a, let ξ < x1 < x0 < b. The next iterate is

x2 = x0 f (x1) − x1 f (x0)

f (x1) − f (x0)
= x1 − (x1 − x0) × f (x1)

f (x1) − f (x0)

= x1 − f (x1)

f ′(η)
< x1, x1 < η < x0

since f (x1) > 0 and f ′(η) > 0. We also prove that x2 > ξ or, since f (x1) < f (x0)

2.4 Convergence Theorems 81

x0 f (x1) − x1 f (x0) < ξ[f (x1) − f (x0)]

or
f (x1)

x1 − ξ
<

f (x0)

x0 − ξ

For proving the above inequality consider φ(x) = f (x)/(x − ξ). By differentiation

φ′(x) = (x − ξ) f ′(x) − f (x)

(x − ξ)2
= 1

2
f ′′(ξ) > 0

by Taylor’s theorem of second order. Thus φ(x) is monotonic increasing and for x1 <

x0, φ(x1) < φ(x0). proving the above mentioned inequality. Thus ξ < x2 < x1 <

x0 < b. Proceeding in thismanner the sequence x0, x1, x2, · · · , xn, · · · ismonotonic
decreasing satisfying

ξ < · · · < xn < · · · < x2 < x1 < x0 < b

with limiting point ξ.
In the second case, Fig. 2.5b, let a < x1 < ξ < x0 < b. As before the next iterate

satisfies

x2 = x1 − (x1 − x0) × f (x1)

f (x1) − f (x0)
= x1 − f (x1)

f ′(η)
> x1, x1 < η < x0

since f (x1) < 0 and f ′(η) > 0.We also have x2 < ξ, sincewith f (x1) < 0, f (x0) <

0, (x0 − ξ) f (x1) > (x1 − ξ) f (x0), or since x1 < ξ < x0, f (x1)/(x1 − ξ) < f (x0)/
(x0 − ξ) as proved before. Thus a < x1 < x2 < ξ < x0 < b. In much the same man-
ner one can prove that the next iterate x3 satisfies ξ < x3 < x0. The details are left
as an exercise for the reader. Thus the secant sequence for this case turns out to be

a < x1 < x2 < x4 < · · · < ξ < · · · < x5 < x3 < x0 < b

with limiting point ξ. �

Remark. If [a, b] is small enough condition (iv) will automatically be satisfied. In
other words if x0 (and x1 for the secant method) are sufficiently close to ξ, conditions
(i)–(i i i) withstanding, the Newton and secant methods will always be convergent.

Theorem 2.3 (Fixed-Point Theorem) Let φ be contractive mapping on [a, b], that
is for x, z ∈ [a, b]

|φ(x) − φ(z)| ≤ K |x − z|, K < 1

then the iterates xn+1 = φ(xn), n ≥ 0 (Eq. (2.8)) converge monotonically to a unique
fixed point ξ.

82 2 Equations

Proof From the given condition on φ(x)

|xn+1 − xn| = |φ(xn) − φ(xn−1)| ≤ K |xn − xn−1|

≤ K 2|xn−1 − xn−2| ≤ · · · ≤ Kn|x1 − x0|

this implies that for m > n

|xm − xn| ≤ |xm − xm−1| + |xm−1 − xm−2| + · · · + |xm+1|

≤ (Km−1 + Km−2 + · · · + Kn)|x1 − x0|

= Kn 1 − Km−n

1 − K
|x1 − x0| ≤ Kn

1 − K
|x1 − x0| < ε, n > n0

since for K < 1, Kn → 0 as n → ∞. Thus x0, x1, · · · , xn, · · · is a Cauchy se-
quence with limiting point ξ. This point ξ is a fixed point since

|ξ − φ(ξ)| ≤ |ξ − xn| + |xn − φ(ξ)| = |ξ − xn| + |φ(xn−1) − φ(ξ)|

≤ |ξ − xn| + K |xn−1 − ξ| < ε, for n > n0

since xn → ξ as n → ∞. Hence ξ = φ(ξ). Moreover ξ is unique. For, if there is
another fixed point η, η = φ(η), then

|ξ − η| = |φ(ξ) − φ(η)| ≤ K |ξ − η|

Since K < 1, this means that η = ξ.
The convergence is monotonic since

|ξ − xn| = |φ(ξ) − φ(xn−1)| ≤ K |ξ − xn−1| < |ξ − xn−1|

�

1◦. Error Bounds.

In the development, letting m → ∞, we obtain the bound

|ξ − xn| ≤ Kn

1 − K
|x1 − x0|

This bound after only one iteration indicates the number of iterations n that would
be required for achieving a prescribed accuracy.

2.4 Convergence Theorems 83

Alternatively, one obtains

|ξ − xn| = |φ(ξ) − φ(xn−1)| ≤ K |ξ − xn−1| ≤ K [|ξ − xn| + |xn − xn−1|]

Hence

|ξ − xn| ≤ K

1 − K
|xn − xn−1|

This estimate can be used to carry out the iterations for prescribed accuracy ε. For
|ξ − xn| < ε, one would require

|xn − xn−1| <
1 − K

K
ε

Theorem 2.4 If φ ∈ C1[a, b] such that

|φ′(x)| ≤ max
x ∈ [a, b]

|φ′(x)| ≤ K < 1

then the fixed point theorem holds. Further, if (i) 0 < φ′(x) < 1, x ∈ [a, b] the
sequence x0, x1, x2, · · · is monotonic, and if (i i) −1 < φ′(x) < 0, x ∈ [a, b] the
sequence x0, x1, x2 · · · oscillates about ξ.
Proof By Mean Value Theorem

|φ(x) − φ(z)| = |x − z| · |φ′(ζ)| ≤ K |x − z|, x, z ∈ [a, b]

and so φ is a contractive mapping. This proves the first part of the theorem.
For proving (i) consider two iterates xn and xn+1, then

xn+1 − ξ = φ(xn) − φ(ξ) = (xn − ξ)φ′(ζ)

If xn > ξ, it follows that xn+1 > ξ. Since the convergence is monotonic it follows
that

ξ < · · · < xn+1 < xn < · · · < x1 < x0

Similarly if xn < ξ, then xn+1 < ξ and so

x0 < x1 < · · · < xn < xn+1 < · · · < ξ

For case (i i) sinceφ′(ζ) < 0, if xn > ξ then xn+1 < ξ and if xn < ξ then xn+1 > ξ.
Thus, either

x1 < x3 < · · · < xn+1 < · · · < ξ < · · · < xn < · · · < x2 < x0

84 2 Equations

(a) φ′(x) > (0 b) φ′(x) < 0

Fig. 2.6 Convergence pattern in general iteration

or
x0 < x2 < · · · < xn < · · · < ξ < · · · < xn+1 < · · · < x3 < x1

The two cases of convergence are graphically depicted in Fig. 2.6. �

Theorem 2.5 If φ ∈ C1 [a, b] such that

min
x ∈ [a, b]

|φ′(x)| > 1

then every iteration starting with x0 	= ξ diverges.

Proof Proceeding as in the preceding theorem, by Mean Value Theorem

|φ(x) − φ(z)| = |x − z|φ′(ζ) > |x − z|, x, z ∈ [a, b]

Hence with ξ as a root of the equation x = φ(x),

|xn+1 − ξ| = |φ(xn) − φ(ξ)| > |xn − ξ|
> |xn−1 − ξ| > · · · > |x1 − ξ| > |x0 − ξ| > 0

This means that x0, x1, x2, · · · recede from ξ and the sequence is therefore
divergent. �

2.5 Complex Roots 85

2.5 Complex Roots

A major difficulty in computing complex roots of a general equation of the form
f (x) = 0 lies in the fact that isolation of a root is not possible by algebraic or analytic
means. Even in the face of this difficulty, suppose an approximation x0 (complex) to
a complex root is some how obtained. Since in complex analysis, Taylor’s theorem
is valid, we conclude that Newton’s and Chebyshev’s methods are applicable for
refinement of the complex root. Similarly, if two complex approximations x0 and
x1 are available then the secant method in some way could be used, because the
method depends on linear approximation of f (x) in the neighbourhood of the root
and such linear approximation is a valid process in the complex domain. In these
methods, however, difficulty arises when the approximation to a complex root, viz.
x0 and x1 are real-valued and so is the function f . The Newton, Chebyshev and
secant iterations in such cases will never deliver a complex root.

Müller’s method [D.E. Müller (1956)] described below was devised as an exten-
sion of the secantmethod for faster convergence. In thismethod f (x) is approximated
by a quadratic expression in the neighbourhood of a root, real or complex. In the
process, a quadratic equation is solved, with possibility of real or complex roots.
Thus even if the initial approximations are real there is no inherent difficulty in con-
verging to a complex root. By generality of the method, it is evident that extraction
of real roots is not precluded.

2.5.1 Müller’s Method

Let ξ be a root real or complex and let x−1, x0, x1 be three initial approx-
imation to it. In the iterative steps, we successfully construct approximations
x2, x3, · · · , xn−2, xn−1, xn · · · , to the root ξ. Consider the small circular region in
the Argand diagram enclosing the successive points xn−2, xn−1, xn . Then f (x) can
be approximated by a quadratic passing through the points [xn−2, f (xn−2)], [xn−1,

f (xn−1)], [xn, f (xn)], that is

f (x) ≈ a(x − xn)
2 + b(x − xn) + c

Since the quadratic is assumed to pass through the aforesaid points, one has

c = f (xn)

a(xn−1 − xn)
2 + b(xn−1 − xn) + c = f (xn−1)

a(xn−2 − xn)
2 + b(xn−2 − xn) + c = f (xn−2)

Hence, eliminating c from the second equation

86 2 Equations

b = (xn − xn−1) a + f (xn) − f (xn−1)

xn − xn−1

where by elimination of b and c from the third equation

a = 1

xn − xn−2

[
f (xn) − f (xn−1)

xn − xn−1
− f (xn−1) − f (xn−2)

xn−1) − xn−2

]

The next iterate xn+1 satisfies f (xn+1) ≈ 0 and so solving the approximate quadratic
equation

a (xn+1 − xn)
2 + b (xn+1 − xn) + c ≈ f (xn+1) ≈ 0

one obtains

xn+1 ≈ xn + −b ± √
b2 − 4ac

2a
= xn − 2c

b ± √
b2 − 4ac

(2.10)

Between the two signs in the denominator, the one yielding larger value in mag-
nitude should be selected, in order to minimise roundoff error (see Sect. 1.2.2.2,
Chap. 1). Based on the method, one can tentatively write:

Algorithm 3. Müller’s Method:

Input: Real (or complex) f (x), x−1, x0, x1, ε1, ε2, nmax

Output: Complex xn+1

Computation: 1. Set n ← 1
2. hn−1 ← xn−1 − xn−2; hn ← xn − xn−1;

f [xn−1, xn−2] ← (f (xn−1) − f (xn−2))/hn−1;
f [xn, xn−1] ← (f (xn) − f (xn−1)/hn;
a ← (f [xn, xn−1] − f [xn−1, xn−2])/(hn−1 + hn);
b ← a · hn + f [xn, xn−1]); c ← f (xn)

3. hn+1 ← −2c/(b ± √
b2 − 4ac), selecting sign to give

maximum magnitude to the denominator
4. Set xn+1 ← xn + hn+1

5. If |xn+1 − xn| < ε1|xn| else if | f (xn+1)| < ε2, Stop.
xn+1 is a root

6. If n + 1 < n − nmax set n ← n + 1 and go to step 2.

The algorithm uses two criteria for convergence to a root, with tolerances ε1 and ε2.
It leads to the following subroutines together with the main program.

PROGRAM MAIN
COMPLEX :: roots(3)
EXTERNAL fn
roots(1)=0.; roots(2)=0.; roots(3)=0.
CALL MULLER(fn,roots,3,200,.1e−5,.1e−6)
PRINT*, (roots(i), i=1,3)
END PRORAM MAIN

2.5 Complex Roots 87

!***

SUBROUTINE fn(x,fx)
COMPLEX :: x, fx
fx=x**3−2*x−5 ! Solving Wallis’ equation
RETURN
END SUBROUTINE fn
!***

SUBROUTINE MULLER(fn,roots,n,maxiter,epsilon1,epsilon2)
! fn=subroutine name, of the form fn(x,fx). Returns complex
! fx for complex x. (Input)
! n=number of roots sought. (Input)
! roots(1),· · · ,roots(n)=first guess of the n roots. If you know
! nothing, 0 is as good as any other guess. (Input)
! maxiter=maximum number of function evaluations allowed
! per root. (Input)
! epsilon1=maximum of relative h allowed. (Input)
! epsilon2=maximumof |f(x)| allowed if epsilon1 criterion is not
! met. (Input)
! roots(1),· · · ,roots(n)=computed n roots. (Output)
!**
COMPLEX :: roots(n),x,fx,cprim,cprev,c,a,b,hprev,h,dd,ddp,sqr,den,den1
EXTERNAL fn
DO i=1,n
kount=0; x=roots(i)
CALL DEFLATE(fn,x+0.5,i,kount,fx,cprim,roots)
CALL DEFLATE(fn,x−0.5,i,kount,fx,cprev,roots)
CALL DEFLATE(fn,x,i,kount,fx,c,roots)
hprev=−1.0; h=0.5; ddp=(cprev−cprim)/hprev
10 dd=(c−cprev)/h
a=(dd−ddp)/(hprev+h); b=a*h+dd
sqr=CSQRT(b**2−4.0*a*c); den=b+sqr, den1=b−sqr
IF(CABS(den1)>CABS(den)) den=den1
IF(CABS(den)<=0.) den=1.0
h=−2*c/den; x=x+h; cprev=c; hprev=h
IF(kount>maxiter) THEN

PRINT*, ’maximum iterations reached’

RETURN

END IF
20 CALL DEFLATE(fn,x,i,kount,fx,c,roots)
IF(CABS(h)<epsilon1*CABS(x)) GOTO 30
IF(MAX(CABS(fx),CABS(c))<epsilon2) GOTO 30

88 2 Equations

IF(CABS(c)>10*CABS(cprev)) THEN

h=0.5*h; x=x−h; GOTO 20
ELSE
GOTO 10

END IF
30 roots(i)=x
END DO
RETURN
END SUBROUTINE MULLER
!***

SUBROUTINE DEFLATE(fn,x,i,kount,fx,fxdfl,roots)
COMPLEX :: x,fx,fxdfl,den,roots(i)
EXTERNAL fn
kount=kount+1
CALL fn(x,fx)
fxdfl=fx; IF(i==1) RETURN
DO j=2,i
den=x−roots(j−1)
IF(CABS(den)==0.0) THEN

roots(i)=x*1.001

RETURN

ELSE

fxdfl=fxdfl/den

END IF
END DO
RETURN
END SUBROUTINE DEFLATE

The subroutine MULLER incorporates some computational tricks to avoid diver-
gence or total failure and the roots are sought in increasing order of magnitude to
minimise roundoff error growth, as the roots are computed one by one.

The subroutine uses another subroutine named DEFLATE. Deflation is a proce-
dure to find more than one root. If for example, a root ξ1 has already been computed,
the subroutine computes the deflated value of the function

f1(x) = f (x)

x − ξ1

Proceeding in this manner if roots ξ1, ξ2, · · · , ξr have been computed, it computes

fr (x) = fr−1(x)

x − ξr

2.5 Complex Roots 89

Deflation causes roundoff errors in the deflated equation, and may affect accuracy
of the subsequent roots.

Exercises

Solve the following equations by Müller’s method:

1. x3 − 2x − 5 = 0 (Wallis’ equation)

[(2.09455,−.78044E − 6), (−1.04728 ± 1.13594i)].

2. Equation for Rayleigh wave velocity for Poisson’s ration ν = 1/3 (Exercise 8,
Sect. 2.1.2)

x3 − 8x2 + 20x − 12 = 0

[0.86960, 3.56520 ± 1.04343i]

3. x4 − 7x3 + 19x2 − 13x − 10 = 0.
[−0.43906, 2 + i0.77876E − 12, (2.71953 ± 1.99806i)].

4. x3 − 3x2 + 3x − 1 = 0
[(0.99960−i0.46404E−1), (1.01480 + i0.10261E − 1), (1.00110 + i0.45276E −
2), epsilon1=.1E − 6, epsilon2=.1E − 3, maxiter=800].

5. Three roots of cos x = 2. [±1.31696i , 6.28319 − 1.31696i].

6. Three nonzero roots of cos x cosh x = 1. [4.73004, 7.85321, 10.99561].
We now discuss in brief the rate of convergence of the method. The Müller

iterations are given by Eq. (2.10). Introducing the error en := ξ − xn in the nth
iterate xn of the root ξ, one can prove after some labour that

a = 1

2
f ′′(ξ) − 1

6
(en + en−1 + en−2) f

′′′(ξ) + · · ·

b = f ′(ξ) − en f
′′(ξ) + 1

6
(2e2n + enen−1 + enen−2 − en−1en−2) f

′′′(ξ) + · · ·

c = f (xn) = −en f
′(ξ) + e2n

2
f ′′(ξ) − e3n

6
f ′′′(ξ) + · · ·

These expressions yield

b2 − 4ac = f ′2 − 1

3
(enen−1 + enen−2 + en−1en−2) f

′(ξ) f ′′′(ξ) + · · ·

So Eq. (2.10) ultimately yields

en+1

enen−1en−2
→ −1

6

f ′′′(ξ)
f ′(ξ)

as n → ∞

In order to find the rate of convergence, let |en+1/e
p
n | → C as n → ∞. This means

that |en/epn−1| → C and |en−1/e
p
n−2| → C as n → ∞. Consequently

90 2 Equations

|en+1| → C |en|p, |en−1| →
(|en|

C

)1/p

, |en−2| →
(|en|1/p
C1+1/p

)1/p

and therefore
∣∣∣∣

en+1

enen−1en−2

∣∣∣∣ → C |en|p−1 · C1/p|en|−1/p · C1/p+1/p2 |en|−1/p2

= 1

6

∣∣∣∣
f ′′′(ξ)
f ′(ξ)

∣∣∣∣ as n → ∞

Thus one must have, p − 1 − 1/p − 1/p2 = 0 or,

φ(p) := p3 − p2 − p − 1 = 0

Since φ(1) = −2 < 0 and φ(2) = 1 > 0 the real root of this equation lies in [1, 2].
Its real solution by Müller’s method is p = 1.84. The constant C must satisfy

C1+2/p+1/p2 = 1

6

∣∣∣∣
f ′′′(ξ)
f ′(ξ)

∣∣∣∣

or,

C2.38 = 1

6

∣∣∣∣
f ′′′(ξ)
f ′(ξ)

∣∣∣∣.

To conclude, the rate of convergence of the method is p = 1.84, which is slightly
less than 2, viz. the rate for Newton’s method; but this rate is superior to that of the
secant method.

2.6 Algebraic Equations

A function f is said to be algebraic if in defining the value of f (x) at x , only the
basic arithmetic operations +, −, ×, and rational exponentiation are allowed.

Examples: f1(x) := x3 + 15x2 − 12x + √
7

f2(x) :=
3
√
3

x + 7
+ 4x + 3

3x2 + 5

f3(x) := 3x2 − 4x + 3
√
x − 1

7x − 4

are all algebraic functions.
If an algebraic function f contains only integral powers of x then it is called

rational function. If root extraction of x is also allowed, then it is called an irrational
function. In the above examples, according to these criteria, f1 and f2 are rational,

2.6 Algebraic Equations 91

whereas f3 is irrational. If x does not appear as a divisor as in the case of f1, then
the function is called rational–integral or entire. It is evident that entire functions
are such that f (x) is a polynomial.

Given an algebraic equation f (x) = 0, it can always be converted by algebraic
methods to an equation of the form

P(x) := a0x
n + a1x

n−1 + a2x
n−2 + · · · + an−1x + an = 0 (2.11)

This form is therefore considered as the standard form of algebraic equations. Since
the left hand side of Eq. (2.11) is a polynomial, an algebraic equation is also called
a polynomial equation.

Polynomial equations arise frequently in physical applications. The solution of
such equations can be attempted by any of the foregoingmethods.Müller’s method is
specially suitable as it is capable of delivering complex roots. The general polynomial
Eq. (2.11) fascinated mathematicians for centuries, whose findings constitute the
subject of Theory of Equations. It deals with results on the number of real and
complex roots, domain of their location and questions on exact and approximate
evaluation. We state some of them for our purpose.

(1) Fundamental Theorem of Algebra (Gauss). An algebraic equation of degree
n has exactly n roots, real or complex, provided that each root is counted according
to its multiplicity.

Thus if ξ1, ξ2, · · · , ξn are the n roots, one can write

P(x) = a0(x − ξ1)(x − ξ2) · · · (x − ξn)

The fundamental theorem of algebra was proved by Euler for polynomials with real coefficients.

Gauss in 1799 completed the proof for complex coefficients in his famous doctoral dissertation.

Since then several proofs have been provided by multitude of authors.

Algebraic equations with real coefficients are very important in practice. Such
equations are sometimes called real polynomial equations. The rest of the theorems
of this section deal with such equations.
(2) If an algebraic equation with real coefficients has a complex root ξ = α + iβ of
multiplicity m, then its conjugate ξ∗ = α − iβ is also a root of the same multiplicity
m. As a consequence:
(3) An algebraic equation with real coefficients and odd degree has at least one real
root. In particular a cubic or a quintic equation with real coefficients has at least one
real root.
(4) An even degree algebraic equation with real coefficients such that a0 > 0 and
an < 0 has at least one positive and at least one negative root. For, in this case
f (0) = an < 0 and f (∞), f (−∞) > 0. Thus there are real roots in (−∞, 0) and
(0, ∞).

92 2 Equations

(5) DeCartes’ Rule of Signs (Upper bounds on the number of positive and neg-
ative roots). The number of positive roots of an algebraic equation with real coeffi-
cients (a root of multiplicity m being counted as m roots), is equal to the number of
variations in sign from + to − or − to + in the sequence of coefficients

a0, a1, a2, · · · , an

(where the coefficients equal to 0 are ignored) or less than that number by an even
integer.

Similar information on number of negative roots can be obtained by considering
the equation P(−x) = 0. However, if the equation is complete with none of the
coefficients equal to zero, then the number of negative roots (counting multiplicities)
is equal to the number of continuations of sign in the above sequence of coefficients
or less than that number by an even integer.

Example 1. Consider P(x) := x5 − 18x4 + 13x3 + 6x2 − x + 2 = 0.

This equation has five roots, of which at least one root is real. The equation is
complete and the sequence of signs of the coefficients is

+ − + + −+

The number of change of signs is four. Therefore, the number of positive roots is
four, two or none. The number of continuation of sign is one and so the number of
negative roots is exactly one. �

Example 2. Consider P(x) := x6 − 3x4 + 2x3 + x2 − 1 = 0.
This equation has six roots. Since a0 > 0 and a6 < 0, it has at least one positive

root and at least one negative root. The sequence of signs of the coefficients is

+ − + + −

The number of change of signs is three and consequently there are either three or
one number of positive roots. For finding the maximum number of negative roots
consider the equation

P(−x) = x6 − 3x4 − 2x3 + x2 − 1 = 0

The sequence of signs is
+ − − + −

having three changes of sign. Hence there can be either three or one negative root of
P(x) = 0. �
(6)Sturm’s Theorem.Let P(x), P1(x), P2(x), · · · , Pm(x)be theSturmsequencede-
fined by P1(x) := P ′(x), −P2(x) : = the remainder when P(x) is divided by P1(x),

2.6 Algebraic Equations 93

−P3(x) := the remainder when P1(x) is divided by P2(x) and so on until the last
remainder is −Pm(x) := constant, then if Eq. (2.11) has distinct real roots, their
number in an interval [a, b] is V (a) − V (b), where V (a) and V (b) are the numbers
of variation in sign in the Sturm sequence for x = a and x = b respectively.

Sturm’s sequence can be used for isolation of real roots. The number of positive
roots can be found by selecting a = 0, b = +∞. Similarly the number of negative
roots can be obtained by choosing a = −∞, b = 0. By diminishing the length of
interval [a, b] so as to contain only one real root, isolation of such roots is achieved.
The construction of Sturm sequence is tedious; but some simplification is possible
by multiplying or dividing any of the functions by arbitrary positive numbers.

Example 3. Consider P(x) := 5x3 − 20x + 3, P1(x) = 15x2 − 20. Therefore,

P(x)

P1(x)
= 5x3 − 20x + 3

15x2 − 20
⇒ 15x3 − 60x + 9

15x2 − 20
= x(15x2 − 20) − 40x + 9

15x2 − 9

= x − 40x − 9

15x2 − 9

Therefore, P2(x) = 40x − 9. Next,

P1(x)

P2(x)
= 15x2 − 20

40x − 9
⇒ 120x2 − 160

120x − 27
= x(120x − 27) + 27x − 160

120x − 27

⇒ x + x − 160/27

x − 9/40
= x + 1 + 9/40 − 160/27

x − 9/40

Therefore,

P3(x) = −
(9

40
− 160

27

)
= 6400 − 243

40 × 27
> 0

We now compile the table of the signs of the Sturm functions, noting change of V (x).

x P(x) P1(x) P2(x) P3(x) V (x)
−∞ − + − + 3
−3 − + − + 3
−2 + + − + 2
−1 + − + + 2
0 + − − + 2
1 − − + + 1
2 + + + + 0

We can see from the table that the roots lie in [−3, −2], [0, 1] and [1, 2]. �

94 2 Equations

2.6.1 Root Bounding Theorems

Theorem 2.6 (Annulus Theorem) In Eq. (2.11)with real or complex coefficients, let
A = max{|a1|, |a2|, · · · , |an|}, B = max{|a0|, |a1|, · · · , |an−1|}, then all of the
roots ξk , (k = 1, 2, · · · , n) of the equation lie in the annulus r < |ξk | < R, where

r = 1

1 + B/|an| ; R = 1 + A

|a0|
Proof Setting |x | > 1, we have Eq. (2.11)

|P(x)| ≥ |a0xn| − (|a1xn−1| + |a2xn−2| + · · · + |an|)

≥ |a0||x |n − A(|x |n−1 + |x |n−2 + · · · + 1)

= |a0||x |n − A
|x |n − 1

|x | − 1
>

(
|a0| − A

|x | − 1

)
|x |n

Thus if |a0| ≥ A/[|x | − 1], or if

|x | ≥ 1 + A

|a0| = R

then P(x) > 0. Hence the roots ξk for which P(ξk) = 0, must satisfy the reversed
inequality |ξk | < R.

For finding a lower bound on the modulus, set x = 1/y in Eq. (2.11) to obtain

an y
n + an−1y

n−1 + · · · + a0 = 0

The roots ηk of this equation satisfy

|ηk | = 1

|ξk | < 1 + B

|an| = 1

r

This means that |ξk | > r . �

This theorem can fruitfully be applied to isolate the (real and) complex roots of
Eq. (2.12) by computing P(x) for complex values of x in small incremental steps of
Re(x) and Im(x), such that r < |x | < R.

The next theorem supplies closer bounds for real roots of real polynomials and
can be applied for isolation of real roots.

2.6 Algebraic Equations 95

Theorem 2.7 (Lagrange) Suppose a0 > 0 and ak (k ≥ 1) is the first of the negative
coefficients of the polynomial P(x) and L is the largest absolute value of the negative
coefficients of P(x), then all positive roots ξ+ satisfy 0 < ξ+ < R, where

R = 1 + k

√
L

a0

Proof Set x > 1. If in P(x) each of the nonnegative coefficients a1, a2, · · · , ak−1 is
replaced by zero and each of the remaining coefficients ak, ak+1, · · · , an is replaced
by negative number−L , then the value of P(x)will only diminish.Hence one obtains

P(x) ≥ a0x
n − L(xn−k + xn−k−1 + · · · + 1) = a0x

n − L
xn−k+1 − 1

x − 1

> a0x
n − L

x − 1
xn−k+1 = xn−k+1

x − 1

[
a0x

k−1(x − 1) − L
]

>
xn−k+1

x − 1

[
a0(x − 1)k − L

]

Consequently for x ≥ 1 + k
√
L/a0 = R, P(x) > 0. Thus all the positive roots ξ+

will satisfy ξ+ < R.

Remark If there is no such coefficient as ak , all the coefficients of the equation are
nonnegative. Such equation has no positive roots. �

The lower bound of the positive roots can be obtained by considering the equation
P(1/x) = 0. If r is the upper bound of this equation obtained as above, then 1/r is
the lower bound of P(x) = 0.

The bounds on the negative roots of Eq. (2.11) can also be obtained. If R1 and r1
are the upper bounds of P(−x) = 0 and P(−1/x) = 0 respectively then −R1 and
−1/r1 are the lower and upper bounds of the negative roots of P(x) = 0.

Example 1. Consider P(x) := 8x4 − 8x2 − 32x + 1 = 0.

Solution. Here a0 = 8, a1 = 0, a2 = 8, a3 = −32, a4 = 1. The equation has four
roots.

For the annulus theorem, A = max{0, 8, 32, 1} = 32 and B = max{8, 0,
8, 32} = 32. Hence

R = 1 + 32

8
= 5, r = 1

1 + 32/1
= 1

33
= 0.0303

Thus all the four roots lie in the annulus 0.0303 < |x | < 5. If the equation has real
roots, then they must lie in [0.0303, 5] and [−5, −0.0303].

96 2 Equations

Next we apply Lagrange’s theorem. For this purpose, k = 2 (the number of the
first negative coefficient) and L = 32. Therefore,

R = 1 + √
32/8 = 3

Also, for the polynomial equation

x4P(1/x) = x4 − 32x3 − 8x2 + 8 = 0

k = 1 and L = 32. Thus
r = 1 + 32 = 33

Consequently, the positive roots if anymust lie [1/33, 3] or [−.0303, 3]. For negative
roots, consider

P(−x) = 8x4 − 8x2 + 32x + 1 = 0

so that k = 2, L = 8, a0 = 8 with R = 1 + √
8/8 = 2. Finally we have

x4P(−1/x) = x4 + 32x3 − 8x2 + 8 = 0

for which k = 2, L = 8, a0 = 1. Therefore, r = 1 + √
8/1 = 1 + 2

√
2 = 3.832.

Consequently, the negative roots if anymust lie in [−2, −1/3.832] or [−2, −0.261].
Note that Lagrange’s method yields improved bounds on real roots as compared to
the annulus theorem. �

We conclude that there are several other results on bounds of roots, but these
results are more difficult to apply. Researchers are interested in this topic even to the
present times.

2.6.2 Application of Newton’s Method

We assume that approximation of a desired root of a given algebraic equation is
obtained by methods of the general theory and the preceding subsection. We use the
approximation and refine it by Newton’s iteration, Eq. (2.6) which requires com-
putation P(x) and P

′
(x). Both these quantities can be computed economically by

Horner’s scheme (Exercise 2, Sect. 1.3, Chap. 1) by writing

P(x) = an + x(an−1 + x(an−2 + · · · + x(a1 + a0x)))

which can be iteratively written as

2.6 Algebraic Equations 97

b0 := a0
b1 := b0x + a1
b2 := b1x + a2

· · · · · ·
P(x) = bn := bn−1x + an

Interestingly the quantities b0, b1, b2, · · · , bn are not constants but help in comput-
ing P ′(x). For,

P ′(x) = na0x
n−1 + (n − 1)a1x

n−2 + (n − 2)a2x
n−3 + · · · + an−1

= a0x
n−1 + (a0x + a1)x

n−2 + ((a0x + a1)x + a2)x
n−3 + · · ·

+(((a0x + a1)x + a2)x + · · · + an−2)x + an−1

=: b0xn−1 + b1x
n−2 + b3x

n−3 + · · · + bn−1

whose iterative scheme is as before

c0 := b0
c1 := c0x + b1
c2 := c1x + b2

· · · · · ·
P ′(x) = cn−1 := cn−2x + bn−1

With the above tricks of computing P(x) and P ′(x) and taking a0 = 1 without loss
of generality, subroutine NEWTON following Eq. (2.6) can be modified as:

SUBROUTINE NEWTON_ HORNER(x,n,a,xtol,maxiter,root)

! computes a real or complex root of a polynomial equation of degree n.

! x=initial approximation of root, real or complex. (Input)

! n=degree of polynomial. (Input)

! a(1),a(2),· · · ,a(n)=coefficients of the polynomial. (Input)

! xtol=tolerance in the computation of the root. (Input)

! root=the desired root with tolerance xtol. (Output)

!***

COMPLEX :: a(n),b(n),c(n),x,xnew,root
DO k=1,maxiter

98 2 Equations

b(1)=x+a(1); c(1)=x+b(1)
DO i=2,n−1
b(i)=b(i−1)*x+a(i); c(i)=c(i−1)*x+b(i)
END DO
b(n)=b(n−1)*x+a(n)
xnew=x−b(n)/c(n−1)
IF(CABS(xnew−x)<xtol) THEN
root=xnew; EXIT
END IF
x=xnew
IF(k==maxiter) PRINT*, ’no solution’
END DO
RETURN
END SUBROUTINE NEWTON_ HORNER

The famous Newton method, Eq. (2.6) was in fact discovered for polynomial
equations by Newton and Raphson. The general result (2.6) is due to Lagrange.

Example 1. Wallis’ equation x3 − 2x − 5 = 0.
The equation has a real root in [2, 3] and a pair of complex conjugate roots. Taking

initial approximation as x = 2.5 + i · 0 andmaxiter = 20, the subroutine yields root =
2.09455 + i · 0. For the complex root above the real axis, the initial value x = −1 + i
yields root = −1.04728 + 1.13594i . The third must be −1.04728 − 1.13594i . �

Example 2. The equation

x4 − 7x3 + 19x2 − 13x − 10 = 0

has complex roots (see Example 4, Sect. 2.6). Find all the roots.
The equation has real roots in [−1, 0] and exactly at 2.Using initial approximation

of−0.5 + 0 · i , the subroutine yields the root as−0.43906. Since the sum of the roots
is 7,

−0.43906 + 2 + 2u = 7

where u ± iv, are the complex roots. This yields u = 2.72. With a trial of 2.72 + 2i ,
the complex root in the upper half plane is found to be 2.71953 + 1.99805i . Thus
the roots are

−0.43906, 2, 2.71953 ± 1.99805i

�

2.6 Algebraic Equations 99

Exercises

1. Apply the subroutine NEWTON_HORNER to solve

(i) x3 − 6x2 + 21x − 26 = 0.

(i i) x4 + 4x3 − 3x2 − 11x − 9 = 0.

(i i i) x5 − 3x3 + x2 − 1 = 0.

[(i) 2, 2 ± 3i , (i i) −4.08766, 1.98154, −0.94694 ± 0.46301i , (i i i) −1.83929,
−0.61803, 1.61803, 0.41964 ± 0.60629i].

2.6.3 Bairstow’s Method

In order to extract a real or complex root of Eq. (2.12), Bairstow’smethod given in the
year 1920, attempts to extract a quadratic factor of the form x2 + px + q from the
polynomial P(x). In general if P(x) is divided by x2 + px + q we obtain a quotient
of degree n − 2 of the form

b0x
n−2 + b1x

n−3 + · · · + bn−3x + bn−2

and a linear remainder of the form Rx + S. Our problem then is to find p and q such
that

R(p, q) = 0; S(p, q) = 0

Starting with a guess of p and q we find corrections �p and �q, so that

R(p + �p, q + �q) = 0; S(p + �p, q + �q) = 0

Expanding in Taylor’s series and truncating after the first-order terms, as in Newton’s
method, we get

R(p, q) + ∂R

∂ p
�p + ∂R

∂q
�q = 0, S(p, q) + ∂S

∂ p
�p + ∂S

∂q
�q = 0

The pair of equations yield expressions for �p and �q. Supposing that �p and �q
have been computed, the procedure is repeated for the corrected values p + �p and
q + �q.

In order to compute the coefficients b0, b1, b2, · · · , bn−2, R and S, we use the
identity

a0x
n + a1x

n−1 + · · · + an ≡ (x2 + px + q)(b0x
n−2 + b1x

n−3 + · · · + bn−2) + Rx + S

100 2 Equations

Comparing like powers of x on the two sides, we obtain

a0 = b0
a1 = b1 + pb0
a2 = b2 + pb1 + qb0

· · · · · · · · ·
ak = bk + pbk−1 + qbk−2

· · · · · · · · ·
an−2 = bn−2 + pbn−3 + qbn−4

an−1 = R + pbn−2 + qbn−3

an = S + qbn−2

The quantities b0, b1 · · · , bn, R and S can be obtained recursively from these equa-
tions. Defining

b−2 := b−1 := 0; bn−1 =: R; bn + pbn−1 =: S

the recursive solution is then

bk = ak − pbk−1 − qbk−2, (k = 0, 1, 2, · · · , n) (2.12)

If we insert the newly defined expressions for R and S in the equations for �p and
�q, we obtain

∂bn−1

∂ p
�p + ∂bn−1

∂q
�q + bn−1 = 0

(
∂bn
∂ p

+ p
∂bn−1

∂ p
+ bn−1

)
�p +

(
∂bn
∂q

+ p
∂bn−1

∂q

)
�q + bn + pbn−1 = 0

The second equation reduces owing to the first, leading to the pair

∂bn−1

∂ p
�p + ∂bn−1

∂q
�q + bn−1 = 0

and (
∂bn
∂ p

+ bn−1

)
�p + ∂bn

∂q
�q + bn = 0

The partial derivatives of bk are given by

∂bk
∂ p

= −bk−1 − p
∂bk−1

∂ p
− q

∂bk−2

∂ p
; ∂b0

∂ p
= ∂b−1

∂ p
= ∂b−2

∂ p
= 0

and

2.6 Algebraic Equations 101

∂bk
∂q

= −p
∂bk−1

∂q
− bk−2 − q

∂bk−2

∂q
; ∂b0

∂q
= ∂b−1

∂q
= ∂b−2

∂q
= 0

Eliminating bk−1 from the above two equations

∂bk
∂ p

+ p
∂bk−1

∂ p
+ q

∂bk−2

∂ p
= ∂bk+1

∂q
+ p

∂bk
∂q

+ q
∂bk−1

∂q

This relation holds for arbitrary p and q and so equating the coefficients one must
have

∂bk
∂q

= ∂bk−1

∂ p
=: −ck−2, (k = 0, 1, 2, · · · , n)

With the introduction of quantities ck , the two equations for the partial derivatives of
bk pass in to the forms

ck−1 = bk−1 − pck−2 − qck−3; ck−2 = bk−2 − pck−3 − qck−4

or equivalently

ck = bk − pck−1 − qck−2, (k = 0, 1, 2, · · · , n) (2.12a)

with c−2 = c−1 = 0. Equation (2.12a) has a form similar to Eq. (2.12a) and ck is
computed from bk in exactly the same way as bk from ak . With the partial derivatives
of bk determined in this manner, the pair of equations for �p and �q become

cn−2�p + cn−3�q = bn−1

(cn−1 − bn−1)�p + cn−2�q = bn

Solving the two equations we finally obtain the corrections

�p = bn−1cn−2 − bncn−3

c2n−2 − cn−3(cn−1 − bn−1)
, �q = bncn−2 − bn−1(cn−1 − bn−1)

c2n−2 − cn−3(cn−1 − bn−1)
(2.12b)

It is easy to program the computation of bk and ck following Eqs. (2.12) and
(2.12a). If the starting values of p and q are not too bad the iterations will converge
quadratically as in the Newton’s method. The termination of iterations can be based

on the smallness of |R| and |S|, or that of
√
b2n−1 + b2n . If nothing is known about the

starting values of p and q, a search operation can be performed over range of values

and select the pair that makes
√
b2n−1 + b2n the smallest.

On successfully separating the quadratic factor, the deflated polynomial b0xn−2 +
b1xn−3 + · · · + bn−2 = 0 can similarly be treated for finding all the roots of the
original equation P(x) = 0.

102 2 Equations

Leonard Bairstow (1880–1963), English aeronautical engineer engaged in aeroplane research
held a chair at Imperial College, London. The method appeared in the appendix of his book Applied

Aerodynamics.

The following subroutine implements Bairstow’s method. For convenience it is
assumed that a0 = 1 = b0 in the equation. It is also assumed that n is even for
applicability of themethod; otherwise if n is odd, one canmultiply the given equation
by x and discard the root x = 0 after application of the program.

SUBROUTINE BAIRSTOW(a,b,c,z1,z2,n)
REAL :: a(n),b(n),c(n)
COMPLEX :: z1,z2
M=100 ! Search for p and q begins.
small=0.8388607E38 ! Largest Number that can be stored in the computer.
p=-M ! Search for p=-M-1 (1) M+1.
DO i=1,2*M+1
q=-M ! Search for q=-M-1 (1) M+1.
DO j=1,2*M+1
DO k=1,n
IF(k==1) b(k)=a(k)-p
IF(k==2) b(k)=a(k)-p*b(k-1)-q
IF(k>2) b(k)=a(k)-p*b(k-1)-q*b(k-2)
END DO
sb=sqrt(b(n-1)**2+b(n)**2) ! Serach for the smallest value of sb.
IF(sb<small) THEN
small=sb; ii=i; jj=j
END IF
q=q+1
END DO
p=p+1
END DO
p=-M-1+ii; q=-M-1+jj
DO i=1,20 ! 20 Iteration for p, q.
DO k=1,n
IF(k==1) b(k)= a(k)-p
IF(k==2) b(k)=a(k)-p*b(k-1)-q
IF(k>2) b(k)=a(k)-p*b(k-1)-q*b(k-2)
END DO
DO k=1,n
IF(k==1) c(k)=b(k)-p
IF(k==2) c(k)=b(k)-p*c(k-1)-q
IF(k>2) c(k)=b(k)-p*c(k-1)-q*c(k-2)
END DO
delta=c(n-2)**2-c(n-3)*(c(n-1)-b(n-1))
deltap=(b(n-1)*c(n-2)-b(n)*c(n-3))/delta
deltaq=(b(n)*c(n-2)-b(n-1)*(c(n-1)-b(n-1)))/delta

2.6 Algebraic Equations 103

IF(SQRT(deltap**2+deltaq**2)<0.1E-6) EXIT
p=p+deltap; q=q+deltaq
END DO
disc=p**2-4.0*q
z1=0.5*(-p+CSQRT(CMPLX(disc,0.0)))
z2=0.5*(-p-CSQRT(CMPLX(disc,0.0)))
RETURN
END SUBROUTINE BAIRSTOW

Example 1. Find the quadratic factors of

x4 + 5x3 + 4x2 − 5x − 9 = 0

by Bairstow’s method and find the roots.

Solution. In this equation n = 4 and a1 = 5, a2 = 4, a3 = −5, a4 = −9. The pro-
gram for a pair of roots is thus

PROGRAM MAIN
REAL :: a(1)=5; a(2)=4; a(3)=−5; a(4)=−9
COMPLEX :: z1, z2
n=4
CALL BAIRSTOW(a,b,c,z1,z2,n)
PRINT*, z1, z2, (b(i), i=1,n-2)
END

Appending the subroutine and running the program, the two roots are found to be
z1=1.15353 and z2=−3.74765 (both real). The coefficients of the deflated quadratic
are found to be b(1)=2.40588 and b(2)=2.08188. The remaining two roots are thus
roots of the quadratic x2 + 2.40588x + 2.08188 = 0 whose roots are −1.20294 ±
0.79676 i (complex conjugate). �

Exercises

1. Solve the following equations using Bairstow’s method:
(i) x4 − 3x3 − 4x2 − 2x + 8 = 0.

[b1 = 2, b2 = 2, z1 = 4, z2 = 1, z3, z4 = −1 ± i].

(i i) x4 − 7x3 + 19x2 − 13x − 10 = 0.

[b1 = −5.43906, b2 = 11.38805, z1 = 2, z2 = −0.43906,
z3, z4 = 2.719528 ± 1.99805i].

104 2 Equations

(i i i) x4 − x3 + 6x2 + 5x + 10 = 0.

[b1 = 1.14457, b2 = 1.42193, z1, z2 = 1.07229 ± 2.42547i,
z3, z4 = −0.57229 ± 1.04614i].

(iv) x3 − 2x − 5 = 0.

[Multiply the equation by x and take a4 = 0 in the program and discard the root x =
0. b1 = 2.09455, b2 = 2.38715, z1 = 2.09455, (z2 = 0),
z3, z4 = −1.04728 ± 1.13594i].

2.6.4 Method of Eigenvalues

As in the preceding, we assume a0 = 1 in Eq. (2.11) and consider the n × n Frobe-
nius matrix

A =

⎡
⎢⎢⎢⎢⎣

−a1 −a2 −a3 · · · −an−1 −an
1 0 0 · · · 0 0
0 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎦

The eigenvalues of A are given by det[A − λI] = 0, i.e.
∣∣∣∣∣∣∣∣∣∣

−a1 − λ −a2 −a3 · · · −an−1 −an
1 −λ 0 · · · 0 0
0 1 −λ · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −λ

∣∣∣∣∣∣∣∣∣∣
= 0

Expanding the determinant in terms of the elements of the first row, we have

−(a1 + λ)(−λ)n−1 + a2(−λ)n−2 − a3(−λ)n−3 + · · · + (−1)nan = 0

or, λn + a1λn−1 + a2λn−2 + a3λn−3 + · · · + an = 0
This shows that the eigenvalues λ are the roots of Eq. (2.11), and so the roots of

Eq. (2.11) can be found by finding the eigenvalues of the matrix A! This procedure
may seem strange, but there exists an efficient computing technique, called the QR
method by which the eigenvalues of any given matrix can be efficiently found (see
Chap.9).

2.6 Algebraic Equations 105

2.6.5 Ill-Conditioned Equations

Wenowdiscuss in brief, the problemof sensitivity of rootswith respect to coefficients
a0, a1, · · · , an of a polynomial equation and our focus is on such equations. An
equation is ill-conditioned if small changes in the coefficients result in large changes
in the roots. A celebrated example is the polynomial equation with roots ξi , i =
1, 2, · · · , 20:

(x − 1)(x − 2) · · · (x − 20) = x20 − 210x19 + 20615x18 − · · · + 20! = 0

If the coefficient a1 = −210 is replaced by a1 = −(210 + 2−23) = −210.00000
0119 · · · there is a change in the 10th significant figure caused by converting the
input from decimal to binary system leaving the other coefficients unchanged. The
roots of this slightly altered equation change drastically since they become complex.
For example it has been found that

ξ14, ξ15 = 13.992 ± 2.519i, ξ16, ξ17 = 16.731 ± 2.813i

rounded to three decimal places. The first seven roots ξi (i = 1, 2, · · · , 7) however,
are not affected within 4-significant-figure accuracy.

In regard to polynomials it can be proved that
(i) The existence of several roots having ratio close to unity always implies ill-

conditioning. of those roots, and
(i i) Multiple roots are ill-conditioned.
A suggested remedy of sorts is to always use double or higher precision arithmetic

in computing the roots.

2.7 Choice of Methods

In applications, the function f of an equation f (x) = 0 is often a complicated func-
tion or a polynomial of high degree. The number of real and complex roots of such an
equation may be unspecified. For computing possible real roots, in such a scenario,
isolation of each root can be performed by drawing a graph of f (x). Alternatively,
one may compute f (x) at specified intervals, say of unit length and note changes
in its sign. A change of sign indicates existence of a root in the interval. Accurate
determination of root so detected is not advisable by Bolzano Bisection or Modified
Regula Falsi methods because of slowness of convergence. On the other hand, secant
and Newton’s method possess higher rate of convergence, but they do not always
fulfill the primary requirement of convergence. In this respect, the combined secant–
bisection method can be adopted as it fulfills both the conditions of convergence and
an accelerated rate of the secant method.

106 2 Equations

Newton’s method converges faster than the secant method, but has less computa-
tional efficiency in the sense that computation of f ′(x) is also required. It has also
the disadvantage that the starting approximation x0 must be close to the root for
convergence and may not be readily available. One can, however, estimate x0, using
say, the Bolzano Bisection method with a few iterations and then sharpen the root
by using Newton’s method.

The general fixed-point iteration method converges linearly and stands no real
competition with the secant and the Newton methods. Even Aitken’s �2–process
leads to convergence that is at best quadratic at the cost of increased complexity of
the algorithm. So the method is not regarded better than the secant method.

Polynomial equations belong to a special class and possess several elegant results
on root isolation. These results can be used to confirm the domains of roots computed
by Müller’s method. These approximations can be used in the specialised Newton
routine for polynomials to yield roots with high accuracy.

Bairstow’s method is an elegant alternative that is computationally efficient. It
determines real and complex roots in pairs. By repeated application, it delivers all
the roots simultaneously. It is simple when the roots are real and distinct, but com-
plications can arise in the case of repeated real and complex roots.

In practice it is desirable to compute the roots of an equation by different methods
in order to ensure correctness of the computed roots.

Chapter 3
System of Equations

The problem of computing n unknowns from a system of n equations, where n > 1
is fundamentally important in numerical computations. Often n is large—of the
order of 10, 100 or even 1000. Thus, an algorithm for root finding must be capable of
treating cases of large n andmust possess low complexity, in order to debar excessive
computational time.

When each equation of the system is a linear function of the unknowns, the equa-
tions form a linear system. Such systems occur directly in many applied problems;
as for example, in electrical networks and stresses in structural members of con-
struction. The numerical treatment of problems of analysis also require the solution
of such systems of equations. Approximation of functions, solution of ordinary and
partial differential equations by finite differences or finite elements and solution of
linear integral equations, depend on such systems for numeric computing. The sub-
ject matter of Chaps. 4, 6 and 7 constitute some of these topics. The study of linear
systems of equations is therefore eminently important in numerical computations.
We begin this topic, ending with a treatment of non-linear systems in Sect. 3.4.

3.1 Linear System of Equations

A linear system of equations in n unknowns x1, x2, · · · , xn real or complex, is of
the form

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · · · · · · · · · · ·
an1x1 + an2x2 + · · · + annxn = bn

(3.1)

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1_3

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7114-1_3&domain=pdf
https://doi.org/10.1007/978-981-13-7114-1_3

108 3 System of Equations

In the above set of equations, the coefficients ai j (i, j = 1, 2, · · · , n) and the
right-hand side bi (i = 1, 2, · · · , n) are supposed to be known real or complex
constants. Using matrix notation, Eq. (3.1) can be written compactly as

Ax = b (3.1a)

where

A =

⎡
⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

⎤
⎥⎥⎦

x = [x1, x2, · · · , xn]T , b = [b1, b2, · · · , nn]T

It is known from linear algebra that the solution of Eq. (3.1a) exists if det[A] �= 0.
If the condition is satisfied, the unique solution is given by Cramer’s rule in the form
of ratios of n, n × n determinants divided by det[A]. The complexity of computing
an n × n determinant is O(n!) and is prohibitively large. Hence, the rule cannot be
applied for large n.

Computationally, efficientmethods can be divided into two categories: those based
on direct systematic elimination of the unknowns and those on relaxation. The
latter approach described in Sect. 3.3 is essentially iterative. We first treat the direct
methods.

3.1.1 Tridiagonal Matrices: Thomas Method

Before taking up the solution of Eq. (3.1) by direct elimination, we illustrate the
method for tridiagoanl system of equations. For such system

ai j = 0, for |i − j | > 1

and has the form

d1x1 + a1x2 = b1 (3.2)

c2x1 + d2x2 + a2x3 = b2 (3.3)

c3x2 + d3x3 + a3x4 = b3 (3.4)

· ·

cn−1xn−2 + dn−1xn−1 + an−1xn = bn−1 (3.n − 1)

cnxn−1 + dnxn = bn (3.n)

3.1 Linear System of Equations 109

The elements d1, d2, · · · , dn constitute the diagonal of the matrix A. Similarly,
a1, a2, · · · , an−1 and c2, c3, · · · , cn are respectively called the superdiagonal and
subdiagonal elements of A. In the direct elimination method, the n equations are
linearly combined to reduce the subdiagonal elements to zero, rendering the solution
to a trivial matter. Thus in the first step, we eliminate x1 from Eq. (3.3) by the
operation Eq. (3.3)− c2× Eq. (3.2)/d1. Thus Eq. (3.3) becomes

d ′
2x2 + a2x3 = b′

2 (3.3)′

where

d ′
2 := d2 − c2 × a1

d1
, b′

2 := b2 − c2 × b1
d1

In the second step, we eliminate x2 from Eq. (3.4) by the operation Eq. (3.4) − c3×
Eq. (3.3)′/d ′

2. The equation thus becomes

d ′
3x3 + a3x4 = b′

3 (3.4)′

where

d ′
3 := d3 − c3 × a2

d ′
2

, b′
3 := b3 − c3 × b′

2

d ′
2

Continuing in this way, we get in the kth step, the equation

d ′
k+1xk+1 + ak+1xk+2 = b′

k+1 (3.k + 1)′

where

d ′
k+1 := dk − ck+1 × ak

d ′
k

, b′
k+1 := bk+1 − ck+1 × b′

k

d ′
k

When the final (n − 1)th step is performed, the system reduces to

d ′
1x1 + a1x2 = b′

1
d ′
2x2 + a2x3 = b′

2· ·
d ′
n−1xn−1 + an−1xn = b′

n−1
d ′
nxn = b′

n

where d ′
1 := d1 and b′

1 := b1.We note that in the process, the superdiagonal elements
remain unchanged. The transformed equations can now be solved in the reverse order
xn, xn−1, · · · , x1 by a process called back substitution. Thus we get

110 3 System of Equations

xn = b′
n

d ′
n

xn−1 = b′
n−1 − an−1xn

d ′
n−1

(3.5)

etc. In general we have

xi = b′
i − ai xi+1

d ′
i

, i = n − 1, n − 2, · · · , 1 (3.6)

which solves the problem. The method is called the Thomas method. Based on Eqs.
(3.k + 1)′, (3.6) and (3.5), a Fortran subroutine can be written as in the following:

subroutine THOMAS(n,d,a,c,b)
! n=number of unknowns in a tridiagonal system. (Input)
! d=diagonal vector. (Input)
! a=superdiagonal vector with a(n)=0.0 (Input)
! c=subdiagonal vector with a(1)=0.0 (Input)
! b=right hand side vector. (Input)
! The solution is returned in b. (Output)
REAL :: d(n), a(n), c(n), b(n)
! Elimination begins
DO k=1,n−1
IF(d(k)==0.0) THEN
PRINT*, ’No Solution’; RETURN
END IF
ratio=c(k+1)/d(k)
d(k+1)=d(k+1)−ratio*a(k)
b(k+1)=b(k+1)−ratio*b(k)
END DO
IF(d(n)==0.0) THEN
PRINT*, ’No Solution’; RETURN
END IF
! Back substitution begins
b(n)=b(n)/d(n)
DO i=n−1,1,−1
b(i)=(b(i)−a(i)*b(i+1))/d(i)
END DO
RETURN
END SUBROUTINE THOMAS

From the program, it is clear that the number of arithmetic operations in the
elimination process is 8(n − 1), while in back substitution, it is 1 + 4(n − 1). The
total of the two is 12n − 11 or O(12n). This is far less than O(n!) in Cramer’s rule.

3.1 Linear System of Equations 111

The elimination procedure can be viewed as decomposition of matrix A into
lower and upper triangular matrices. A lower triangular mtrix is one in which all
the superdiagonal elements are zero. Similarly an upper triangular matrix has all
of its subdiagonal elements equal to zero. The matrix of the coefficients of the final
transformed equations of the tridiagonal system is upper triangular. Hence if one
looks for the factorisation

A =

⎡
⎢⎢⎣

d1 a1 0 · · · 0 0
c2 d2 a2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · cn dn

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 · · · 0 0
l2 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · ln 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣
d ′
1 a1 0 · · · 0
0 d ′

2 a2 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · d ′

n

⎤
⎥⎥⎦ := LU

then by equating the elements on the two sides, it follows that

d ′
1 = d1, d ′

k+1 = dk+1 − lk+1ak, lk+1 = ck+1/d
′
k , (k = 1, 2, · · · , n − 1)

(3.7a)
Now the system Ax = b becomes LUx = b, which is equivalent to Ux = b′ with
Lb′ = b. Comparing the elements of the last relation one has

b′
1 = b1, b′

k+1 = bk+1 − lk+1b
′
k, (k = 1, 2, · · · , n − 1) (3.7b)

The systemUx = b′ is identical to the system obtained by the Thomas method, with
expressions for d ′

i and b′
i (i = 1, 2, · · · , n), given as before.

Llewellyn Hileth Thomas (1903–1992), American physicist. At Columbia University, he was

also a staff member of a scientific computing laboratory established by IBM. He is best remembered

for hismodel of the atom, concurrently developed by Enrico Fermi known as Thomas–FermiModel.

Exercises

1. Show that by THOMAS elimination the linear system

x1 +x2 = 3
2 reduces to

−x1 +2x2 +3x3 = 1

4x2 −x3 +2x4 = 1

2x3 −x4 = 1

x1 +x2 = 3
2

3x2 +3x3 = 5
2

−5x3 +2x4 = − 7
3

− 1
5 x4 = 1

15

Hence solve the system.
[x1 = 1, x2 = 1/2, x3 = 1/3, x4 = −1/3].

112 3 System of Equations

2. Solve the system

2x1 −x2 = 1
−xi−1 +2xi −xi+1 = 0 (i = 2, 3, · · · , n − 1)

−xn−1 +2xn = 0

by subroutine THOMAS, when n = 10 and compare the answer with the exact
solution xi = (n + 1 − i)/(n + 1), (i = 1, 2, · · · , n).
[0.90909, 0.81818, 0.72728, 0.63637, 0.54546, 0.45455, 0.36364, 0.27273, 0.18182,
0.09091]
3. A uniform beam rests on n + 1 equidistant supports A0, A1, · · · , An . The bend-
ing moments M1, M2, · · · , Mn−1 at A1, A2, · · · , An−1 by Clapeyron’s equation of
three moments satisfy the equations

4M1 +M2 = −1
Mi−1 +4Mi +Mi+1 = −1 (i = 2, 3, · · · , n − 2)

Mn−2 +4Mn−1 = −1

Solve the system by subroutine THOMAS when n = 8.
[M1 = M7 = 0.21134, M2 = M6 = −0.15464, M3 = M5 = 0.17010, M4 =
−0.16495].

3.1.2 Gauss Elimination for General Linear System

As in the case of the tridiagonal systemEq. (3.1 − n), the unknowns x1, x2, · · · , xn−1

are successively eliminated from the lower triangle of the general system of equa-
tions (1). Designating the n equations of the system as (1.1), (1.2),· · · , (1.n), we
first eliminate x1 from Eqs. (1.2), (1.3),· · · , (1.n) with the help of Eq. (1.1). So, we
perform the operations Eq. (1.2)−a21× Eq. (1.1)/a11, Eq. (1.3)−a31×Eq. (1.1)/a11
etc., Eq. (1.n) − an1×Eq. (1.1)/a11. The divider a11 is called the pivot and Eq. (1.1)
the pivotal equation. The system is thus transformed in to

a(1)
11 x1 +a(1)

12 x2 +a(1)
13 x3 + · · · +a(1)

1n xn = b(1)
1

a(1)
22 x2 +a(1)

23 x3 + · · · a(1)
2n xn = b(1)

2· · · · · · · · · · · · · · ·
a(1)
n2 x1 +a(1)

n3 x3 + · · · +a(1)
nn xn = b(1)

n

where a(1)
i j := ai j , (j = 1, 2, · · · , n), b(1)

1 := b1 and

a(1)
i j = ai j − ai1

a11
× a1 j , b(1)

i := bi − ai1
a11

× b1, (i, j = 2, 3, · · · , n)

In the second step, x2 is similarly eliminated from the last n − 2 equations using
a(1)
22 as the pivot. We thus obtain the system

3.1 Linear System of Equations 113

a(2)
11 x1 +a(2)

12 x2 +a(2)
13 x3 + · · · a(2)

1n xn = b(2)
1

a(2)
22 x2 +a(2)

23 x3 + · · · +a(2)
2n xn = b(2)

2

a(2)
33 x3 + · · · +a(2)

3n xn = b(2)
3· · · · · · · · · · · ·

a(2)
n3 x3 + · · · a(2)

nn xn = b(2)
n

where a(2)
1 j := a(1)

1 j , (j = 1, 2, · · · , n), a(2)
2 j := a(1)

2 j , (j = 2, 3, · · · , n) and

ai j := a(1)
i j − a(1)

i2

a(1)
22

× a(1)
2 j , b(2)

i := b(1)
i − a(1)

i2

a(1)
22

× b(1)
2 , (i, j = 3, 4, · · · , n)

Proceeding in this manner, in the general kth step, xk is eliminated from the last
n − k equations to obtain a reduced system in which the coefficients of the first k
equations remain unchanged, while the remaining coefficients are changed to

aki j := a(k−1)
i j − a(k−1)

ik

a(k−1)
kk

× a(k−1)
k j , b(k)

i := b(k−1)
i − a(k−1)

ik

a(k−1)
kk

× b(k−1)
k (3.8)

where (i, j = k + 1, · · · , n). In the final (n − 1)th step, the system reduces to the
triangular form

a(n−1)
11 x1 +a(n−1)

12 x2 + · · · · · · +a(n−1)
1n xn = b(n−1)

1

a(n−1)
22 x2 + · · · · · · +a(n−1)

2n xn = b(n−1)
2· · · · · · · · · · · ·

a(n−1)
n−1,n−1xn−1 +a(n−1)

n−1,nxn = b(n−1)
n−1

a(n−1)
nn xn = b(n−1)

n

in which the only change in coefficients from the preceding step are

a(n−1)
nn := a(n−2)

nn − a(n−2)
n,n−1

a(n−2)
n−1,n−1

× a(n−2)
n−1,n, b(n−1)

n := b(n−2)
n − a(n−2)

n,n−1

a(n−2)
n−1,n−1

× b(n−2)
n−1

The triangular systemyields the required solutionbyback substitution. Proceeding
from the last equation upwards, one obtains

xn = b(n−1)
n /a(n−1)

nn , xn−1 = (b(n−1)
n−1 − a(n−1)

n−1,n xn)/a
(n−1)
n−1,n−1 (3.9a)

and in general

xi =
(
b(n−1)
i −

n∑
j=i+1

a(n−1)
i j x j

)
/a(n−1)

i i , (i = n − 1, n − 2, · · · , 1) (3.9b)

114 3 System of Equations

Carl Friedrich Gauss (1777–1855), German mathematician. He is famous for both the breadth

and depth of his works in every area of mathematics and is regarded as the most influential math-

ematician of the nineteenth century. He also made important contributions to geodesy, astronomy

and physics.

The procedure would work nicely if none of the pivots a11, a
(1)
22 , a(2)

33 · · · , a(n−1)
nn

is zero. The difficulty can be circumvented in the following way. In the beginning of
the kth step (k = 1, 2, · · · , n − 1), the residual system is

a(k−1)
kk xk +a(k−1)

k,k+1xk+1 + · · · +a(k−1)
kn xn = b(k−1)

k

a(k−1)
k+1,k xk +a(k−1)

k+1,k+1xk+1 + · · · +ak+1,nxn = b(k−1)
k+1

· · · · · · · · · · · · · · ·
a(k−1)
nk xk +a(k−1)

n,k+1 + · · · a(k−1)
nn xn = bk−1)

n

Instead of straight away selecting a(k−1)
kk as the pivot for elimination, one can select the

largest in magnitude among the coefficients of xk , viz. a
(k−1)
kk , a(k−1)

k+1,k, · · · , a(k−1)
nk as

the pivot. In that case the entire pivotal equation has to be moved to the first position
of the residual system, in exchange of the first equation of the system. This procedure
is calledpartial pivoting. Theoretically the procedure appears infallible if the system
has a solution.

Example 1. Solve the system of equations

2x1 −7x2 +4x3 = 9
x1 +9x2 −6x3 = 1

−3x1 +8x2 +5x3 = 6

by Gaussian elimination, using partial pivoting.

Solution. The elimination process can be conveniently carried out by considering
the augmented matrix ⎡

⎣
2 −7 4 9
1 9 −6 1

−3 8 5 6

⎤
⎦

Let R1, R2, R3 denote row 1, row 2 and row 3, respectively. In the first column (the
elements of the coefficient of x1), the maximum element in magnitude is −3. So we
interchange R3 with R1 and obtain

⎡
⎣

−3 8 5 6
1 9 −6 1
2 −7 4 9

⎤
⎦

3.1 Linear System of Equations 115

(Interchange or permutation of rows is permissible in the sense that the position of
the corresponding equations is interchanged). For elimination, normalising the pivot
(which is equivalent to dividing the equation by −3), we obtain

⎡
⎣
1 −8/3 −5/3 −2
1 9 −6 1
2 −7 4 9

⎤
⎦

The row operations R2 − R1 and R2 − 2 × R1, reduce the above to

⎡
⎣
1 −8/3 −5/3 −2
0 35/3 −13/3 3
0 −5/3 22/3 13

⎤
⎦

In the second column leaving out R1, the maximum element in magnitude is 35/3,
which lies on the second row and can be taken as the second pivot. Normalising it
we get ⎡

⎣
1 −8/3 −5/3 −2
0 1 −13/35 9/35
0 −5/3 22/3 13

⎤
⎦

Performing the row operation R3 + 5
3 × R2, we have

⎡
⎣
1 −8/3 −5/3 −2
0 1 −13/35 9/35
0 0 141/21 94/7

⎤
⎦

In the third column, leaving out R1 and R2, the third pivot is automatically 141/21.
Normalising it, the system is equivalent to

x1 −8

3
x2 −5

3
x3 = −2

x2 −13

35
x3 = 9

35
x3 = 2

By back substitution, we obtain

x3 = 2

x2 = 9

35
+ 13

35
× 2 = 1

x3 = −2 + 8

3
× 1 − 5

3
× 2 = 4

Hence the solution is x1 = 4, x2 = 1, x3 = 2. �

116 3 System of Equations

A computational complication can be visualised in which a candidate pivotal
equation is such that the entire equation is multiplied while the pivot is actually
small. A small pivot sneaking in this way may lead to loss of accuracy in elimination
and back substitution. Examples have been constructed in the literature to show that
the resultant solution is totally inaccurate. A remedy is to scale the coefficients of
each equation of the residual system before a comparison is made for selecting the
pivot. The scale of the coefficients of an equation may be defined as

Si := max
1≤ j≤n

|ai j | i = 1, 2, · · · , n

In scaled partial pivoting, the coefficients aik (i = k, k + 1, · · · , n) of xk are mea-
sured relative to the scale Si , i.e. aik is divided by Si . The largest among them, in
magnitude, is now selected as the kth pivot. Evidently, a small element cannot now
sneak in as a pivot. The accuracy gained this way, however, is not known in general
terms.

Adopting the above-mentioned procedure, a subroutine named GAUSS is given
below. We note that in programming the procedure, the superscripts appearing in the
theoretical discussion are superfluous on account of using assignment statements in
succeeding steps.

SUBROUTINE GAUSS(n,a,b)
! n=number of unknowns and equations. (Input)
! a=n×n matrix of the coefficients. (Input)
! b=right hand side vector. (Input)
! The solution is returned in vector b. (Output)
! s(i)=size of the row i of matrix a.
REAL :: a(n,n), b(n), s(n)
INTEGER :: p, q
! Initialise s
DO i=1,n
s(i)=0.0
DO j=1,n
absaij=ABS(a(i,j)); IF(absaij>s(i)) s(i)=absaij
END DO; END DO
! Elimination begins
DO k=1,n−1

! Determine pivot row p
absaks=abs(a(k,k))/s(k); p=k
DO i=k+1,n
absais=ABS(a(i,k))/s(i)
IF(absais<=absaks) EXIT
absaks=absais; p=i
END DO

3.1 Linear System of Equations 117

IF(absaks==0.0) THEN
PRINT*, ’No Solution’; RETURN
END IF
IF(p/=k) THEN ! Interchange row k and row p.
DO q=k,n
temp=a(k,q); a(k,q)=a(p,q); a(p,q)=temp
END DO
temp=b(k); b(k)=b(p); b(p)=temp
END IF
! Eliminate x(k)
DO i=k+1,n
ratio=a(i,k)/a(k,k); b(i)=b(i)−ratio*b(k)
DO j=k+1,n
a(i,j)=a(i,j)−ratio*a(k,j)
END DO; END DO

END DO
IF(a(n,n)==0.0) THEN
PRINT*, ’No Solution’; RETURN
END IF
Back Substitution begins
b(n)=b(n)/a(n,n)
DO i=n−1,1,−1
sum=0.0
DO j=i+1,n
sum=sum+a(i,j)*b(j)
END DO
b(i)=(b(i)−sum)/a(i,i)
END DO
RETURN
END SUBROUTINE GAUSS

The number of floating point operations in the elimination part is

n−1∑
k=1

[
1 +

n∑
i=k+1

(
1 + 3 +

n∑
j=k+1

2
)]

= 1

3
(2n + 3)(n2 − 1)

In back substitution it is

1 +
n−1∑
i=1

(
2 +

n∑
j=i+1

2
)

= n2 + n − 1

Hence in total, the complexity of the Gauss method is O(23n
3) emanating solely from

the elimination process. The order is sharply lower than that of Cramer’s rule.

118 3 System of Equations

Exercises
1. Show by Gauss elimination with partial pivoting that the linear system:
(i) 2x1+ x2+x3 = 10 reduces to

3x1+2x2+3x3 = 18

x1+4x2+9x3 = 16

x1 + 2
3 x2 + x3 = 6

x2 + 12
5 x3 = 2

x3 = 5
(i i) 3x1 +2x2 +4x3 = 7 reduces to

2x1 +x2 +x3 = 4
x1 +3x2 +5x3 = 2

x1 + 2
3 x2 + 4

3 x3 = 7
3

x2 + 11
7 x3 = − 1

7
x3 = 5

8

(i i i)

2x1+2x2+x3+2x4 = 7 reduces to

x1−2x2 − x4 = 2
3x1− x2−2x3− x4 = 3

x1 −2x4 = 0

x1 − 1
3 x2 − 2

3 x3 − 1
3 x4 = 1

x2 + 7
8 x3 + x4 = 15

8
x3 + 8

17 x4 = 33
17

x4 = 40
37

Hence solve the three sets of equations.

[(i) x1 = 7, x2 = −9, x3 = 5 (i i) x1 = 9/4, x2 = −9/8, x3 = 5/8

(i i i) x1 = 80/37, x2 = −17/37, x3 = 53/37, x4 = 40/37].

2. Solve the following linear systems by using subroutine GAUSS:

(i)
x1 + x2 +2x3 = 4
3x1 + x2 −3x3 = −4
2x1 −3x2 −5x3 = −5

[x1 = 1, x2 = −1, x3 = 2].

(i i)
5x1 − x2 +x3 = 10
x1 +2x2 −3x3 = 6
x1 + x2 +5x3 = −1

[x1 = 2.29167, x2 = 0.66667, x3 = −0.79167].

(i i i)
4.11x1 −9.68x2 +2.01x3 = 4.94
1.87x1 −4.62x2 +5.50x3 = 3.10
1.10x1 −0.96x2 +2.71x3 = 4.02

[x1 = 4.19851,
x2 = 1.32383,
x3 = 0.24816].

(iv)

⎡
⎢⎢⎣

1 2 3 4
7 10 5 2
13 6 2 −3
11 14 8 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
10
40
34
64

⎤
⎥⎥⎦ [x1 = 1, x2 = 2, x3 = 3, x4 = −1].

(v)

⎡
⎢⎢⎣
1 2 −12 8
5 4 7 −2

−3 7 9 5
6−12 −8 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
27
4
11
39

⎤
⎥⎥⎦

[x1 = 2.63778, x2 = −1.28527,
x3 = 0.67135, x4 = 4.37362].

3.Anelectrical resistor network leads to the following equations followingKirchoff’s
Laws:

R1 I1 +R2(I1 − I3) +R3(I1 − I2) = 0
R4 I2 +R3(I2 − I1) +R5(I2 − I3) = v1
R6 I3 +R5(I3 − I2) +R2(I3 − I1) = v2

3.1 Linear System of Equations 119

If the resistances R1, · · · , R6 are given by R1 = R2 = R3 = 2, R4 = R5 = R6 = 3
and the voltages by v1 = v2 = 5; find the currents I1, I2, I3.
[I1 = 0.90909, I2 = I3 = 1.36364].
4. The tensions T1, T2, · · · , T5 in a seven member symmetric truss are given by the
equations ⎡

⎢⎢⎢⎢⎣

cos θ 1 0 0 0
0 sin θ 0 0 1
0 0 2 sin θ 0 0
0 − cos θ cos θ 1 0
0 sin θ sin θ 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

T1
T2
T3
T4
T5

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎦

Determine T1, · · · , T5 for θ = 53o.
[T1 = 1.04030, T2 = −0.62607 = −T3, T4 = −0.75355, T5 = 0.50000].
5. Modify subroutine GAUSS for handling complex matrices. Apply it to find the
voltage v at nodes of an electrical Chebyshev filter governed by the equation Av =
ER , where A is 5 × 5 tridiagonal matrix [ai j] with elements

a11 = 1/R1 + 1/(i L1ω), a12 = a21 = −1/(i L1ω), a22 = 1/(i L1ω) + iC1ω,

a23 = a32 = −iC1ω, a33 = 1/(i L2ω) + iω(C1 + C2 + C3), a34 = a43 = −iC3ω,

a44 = 1/(i L3ω) + iC3ω, a45 = a54 = −1/(i L3ω), a55 = 1/(i L3ω) + 1/R5 (the
remaining elements being zero), and

v = [v1, · · · , v5]T , ER = [E/R1, 0, 0, 0, 0]T , ω = 2π f , f = frequency.

Solve the system for f = 500, given

R1 = R5 = 50, L1 = L3 = 0.127 × 10−6, L2 = 0.829 × 10−8,

C1 = 0.22 × 10−11, C2 = 0.349 × 10−10, C3 = 0.228 × 10−11, E = 1

[v1 = 0, v2 = 1 − 7.980 × 10−6i, v3 = −1.800 × 10−3 + 1.436 × 10−18i,
v4 = 7.400 × 10−25 − 9.274 × 10−20i, v5 = −7.400 × 10−25 − 9.274 × 10−20i].
6. (Jordan Elimination). In this method [due to Wilhelm Jordan (1842–1899)],
after the lower triangular elements are annihilated, as in Gauss elimination, the upper
triangular elements are also annihilated, leaving a simple diagonal matrix. The com-
plexity is about 50% higher than in Gauss method. Solve by the method, the system

2x1 +4x2 −6x3 = −8
x1 +3x2 + x3 = 10
2x1 −4x2 −2x3 = −12

[x1 = 1, x2 = 2, x3 = 3].

3.1.3 LU Decomposition Method

In some applications, it is sometimes necessary to solve the linear system (3.1) for the
same matrix A but with different right-hand side vectors. For instance, the compu-
tation of the inverse A−1 requires such a procedure (see Sect. 3.1.4). In the Gaussian
method, the elimination process finally converts A into the upper triangular matrix

120 3 System of Equations

U =:

⎡
⎢⎢⎣
a(n−1)
11 a(n−1)

12 · · · a(n−1)
1n

a(n−1)
22 · · · a(n−1)

2n· · · · · ·
a(n−1)
nn

⎤
⎥⎥⎦ (3.10)

The triangularisation procedure may be viewed as premultiplication of A by a lower
triangular matrix. For the first step of Gaussian elimination, it can be written in
matrix notations as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

−a21
a11

1 0 · · · 0

−a31
a11

0 1 · · · 0

· · · · · · · · · · · · · · ·
−an1
a11

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
· · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1n

0 a(1)
22 a(1)

23 · · · a(1)
2n

0 a(1)
32 a(1)

33 · · · a(1)
3n· · · · · · · · · · · · · · ·

0 a(1)
n2 a(1)

n3 · · · a(1)
nn

⎤
⎥⎥⎥⎥⎥⎦

where a(1)
i j on the right-hand side are identical to those defined in the preceding

Sect. 3.1.2. By inversion, the above equation yields

A =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0
a21/a11 1 · · · 0
a31/a11 0 · · · 0

· · · · · · · · · · · ·
an1/a11 0 · · · 1

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

a(1)
11 a(1)

12 · · · a(1)
1n

0 a(1)
22 · · · a(1)

2n

0 a(1)
32 · · · a(1)

3n· · · · · · · · · · · ·
0 a(1)

n2 · · · a(1)
nn

⎤
⎥⎥⎥⎥⎥⎦

Similarly, itmay be verified that the second step of elimination yields the factorisation

A =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0
a21/a11 1 · · · 0
a31/a11 a(1)

32 /a(1)
22 · · · 0

· · · · · · · · · · · ·
an1/a11 a

(1)
n2 /a(1)

22 · · · 1

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

a(2)
11 a(2)

12 a(2)
13 · · · a(2)

1n

0 a(2)
22 a(2)

23 · · · a(2)
2n

0 0 a(2)
33 · · · a(2)

3n· · · · · · · · · · · · · · ·
0 0 a(2)

n3 · · · a(2)
nn

⎤
⎥⎥⎥⎥⎥⎦

Proceeding in this way, we get in the final (n − 1)th step

A = LU (3.11)

3.1 Linear System of Equations 121

where

L =

⎡
⎢⎢⎢⎢⎣

1
a21/a11 1
a31/a11 a(1)

32 /a(1)
22 1

· · · · · · · · · · · · · · ·
an1/a11 a

(1)
n2 /a(1)

22 · · · a(n−2)
n,n−1/a

(n−2)
n−1,n−1 1

⎤
⎥⎥⎥⎥⎦

(3.12)

whereU is defined as inEq. (3.10).Obviously L is lower triangularwith unit diagonal.
Comparing with Eq. (3.8), it is interesting to note that the elements of L are simply
the multipliers of the pivotal equations in the Gaussian method. The elements of U
are as before, generated by the elimination process.

For solving a linear system like Eq. (3.1) for a given right- hand side vector b, we
have LUx = b which splits into two systems

Ly = b where Ux = y (3.13)

The solution of the first system by forward substitution is

y1 = b1, y2 = b2 − a21
a11

× y1 (3.14a)

and in general

yi = bi −
i−1∑
j=1

a(j−1)
i j

a(j−1)
j j

× y j (3.14b)

Having computed y, x can be computed from the second of the Eq. (3.13) by back
substitution, taking y as the right- hand side vector.

The method is essentially due to T. Banachiewicz.

Tadeusz Banachiewwicz (1882–1994), Polish astronomer and mathematician. He is known for his

modified method of determining parabolic orbits and inventing a theory of ‘Cracovians’ (a special

kind of matrix algebra). After working for several years in Germany and Russia, he became the

director of Cracow Observatory in Poland.

The entire procedure is divided into two subroutines named BANACHIEWICZ
and SOLVE. In the first subroutine, A is decomposed into L and U , in which the
elements ofU are generated byGaussian elimination and the pivotal multipliers form
the elements of L . While programming, the elements of U are stored in the upper
triangle of A and those of L in the lower triangle, with the tacit understanding that
the diagonal of L is unity. This type of allocation is possible because in Gaussian
elimination, the elements of the lower triangle of A (except the diagonal) are vacated.
In the subroutine BANACHIEWICZ, we also introduce scaled partial pivoting. In
general, there may be a permutation (interchange) of the rows of A by the process. A
track of the number of the pivotal row is kept by storing it in a vector named ipivot.

122 3 System of Equations

This vector helps in keeping track of the particular element of b in the forward
substitution, Eq. (3.14a, 3.14b).

The second subroutine named SOLVE follows Eq. (3.14a, 3.14b) and (3.9a, 3.9b)
for forward and back substitutions in order to obtain the solution x. It uses subroutine
BANACHIEWICZ and the vector ipivot.

The subroutine BANACHIEWICZ also computes det (A) as an output.
Here, det (A)=det (LU)=det (L) × det (U)=1 × a(n−1)

11 × a(n−1)
22 × · · · × a(n−1)

nn .
Since partial pivoting permutes the rows, a variable iflag is introduced, whose value
is +1 or −1 according to even or odd permutations undergone. With these observa-
tions the subroutines follow, drawing heavily from the subroutine GAUSS.

SUBROUTINE BANACHIEWICZ(n,a,ipivot,det)
! n=Order of the matrix. (Input)
! a=square matrix of order n, to be decomposed as LU. (Input)
! L and U are returned through matrix a,
! with the unit diagonal suppressed. (Output)
! ipivot(k)= The row number used in the k–th step
! of factorisation. (Output)
! det=determinant of matrix a. (Output)
! **
REAL :: a(n,n), s(n)
INTEGER :: ipivot(n), p, q
! Initialise iflag, ipivot and scale s
DO i=1,n
ipivot(i)=i; s(i)=0.0
DO j=1,n
absaij=ABS(a(i,j))
IF(absaij>s(i)) s(i)=absaij
END DO; END DO
iflag=1
! Factorisation Begins
DO k=1,n−1

! Determine pivot row p
absaks=ABS(a(k,k))/s(k); p=k
DO i=k+1,n
absais=ABS(a(i,k))/s(i)
IF(absais<absaks) EXIT
absaks=absais; p=i
END DO
IF(absaks==0.0) THEN
PRINT*, ’No Solution’; RETURN
END IF
IF(p>k) THEN ! Interchange row k with row p.
DO q=1,n
temp=a(k,q); a(k,q)=a(p,q); a(p,q)=temp

3.1 Linear System of Equations 123

END DO
itemp=ipivot(k); ipivot(k)=ipivot(p); ipivot(p)=itemp
temp=s(k); s(k)=s(p); s(p)=temp; iflag=−iflag
END IF
DO i=k+1,n
a(i,k)=a(i,k)/a(k,k); ratio=a(i,k)
DO j=k+1,n
a(i,j)=a(i,j)−ratio*a(k,j)
END DO; END DO

END DO
IF(a(n,n)==0.0) PRINT*, ’No Solution’
det=iflag
DO i=1,n
det=det*a(i,i)
END DO
RETURN
END SUBROUTINE BANACHIEWICZ

SUBROUTINE SOLVE(n,a,b,x,ipivot)
! Solves the linear system of equations Ax=b.
! a=square matrix of order n, as factored by
! subroutine BANACHIEWICZ. (Input)
! b=right hand side vector. (Input)
! x=solution vector. (Output)
! ipivot(k)=Row number which was used in the kth step of
! decomposition in BANACHIEWICZ. (Input)
! **
REAL :: a(n,n), b(n), x(n), s(n)
INTEGER :: ipivot(n)
! Solution of Ly=b, y overwrites x
ip=ipivot(1); x(1)=b(ip)
DO i=2,n
sum=0.0
DO j=1,i−1
sum=sum+a(i,j)*x(j)
END DO
ip=ipivot(i); x(i)=b(ip)−sum
END DO
! Solution of Ux=y
x(n)=x(n)/a(n,n)
DO i=n−1,1,−1
sum=0.0
DO j=i+1,n
sum=sum+a(i,j)*x(j)
END DO

124 3 System of Equations

x(i)=(x(i)−sum)/a(i,i)
END DO
RETURN
END SUBROUTINE SOLVE

From a general stand point, L and U can be considered as

L =:

⎡
⎢⎢⎣
l11 0 · · · 0
l21 l22 · · · 0
· · · · · · · · · · · ·
ln1 ln2 · · · lnn

⎤
⎥⎥⎦ and U =:

⎡
⎢⎢⎣
u11 u12 · · · u1n
0 u22 · · · u2n
· · · · · · · · · · · ·
0 0 · · · unn

⎤
⎥⎥⎦

so that li j = 0, (i < j) and ui j = 0, (i > j). The number of non-zero elements of L
and U is thus 2 × (1 + 2 + · · · + n) = n(n + 1). They can be determined in terms
of the n2 elements of A if n other conditions are available. There are two simple
choices due to Banachiewicz and Crout.

1o Banaciewicz’s Method. Assume l11 = l22 = · · · = lnn = 1, then

ai j =
n∑

k=1

likuk j =
i∑

k=1

likuk j = ui j +
i−1∑
k=1

likuk j

=
j∑

k=1

likuk j = l1 j u j j +
j−1∑
k=1

likuk j

Thus ui j , li j are given recursively as

u1 j = a1 j , ui j = ai j −
i−1∑
k=1

likuk j , (1 < i ≤ j)

li1 = ai1
u11

, li j = 1

u j j

(
ai j −

j−1∑
k=1

likuk j
)
, (i > j > 1) (3.15a)

The subroutineBANACHIEWICZessentially determines these elements recursively.

2 o Crout’s Method. Assume u11 = u22 = · · · = unn = 1. As in the preceding
method, it can be proved that the elements of L and U are given by

li1 = ai1, li j = ai j −
j−1∑
k=1

likuk j , (i ≥ j > 1)

u1 j = a1 j
l11

, ui j = 1

lii

(
ai j −

i−1∑
k=1

likuk j
)
, (1 < i < j) (3.15b)

3.1 Linear System of Equations 125

The above twomethods are essentially the same. Suppose by Crout’s method A =
LU , then one can write L = L1D, where L1 is lower triangular with unit diagonal
and D is diagonal matrix with elements l11, l22, · · · , lnn (and zero nondiagonal
elements). Thus A = L1DU = L1(DU) and is of Banachiewicz’s form.

Banachiewicz’s method is sometimes known as asymmetric Cholesky’s method.
It is also sometimes called Dolittle method.

Example 1. Decompose the matrix

A :=
⎡
⎣

4 1 2
2 −3 8

−1 11 4

⎤
⎦

in Banachiewicz’s form. Hence solve the system Ax = [4, −12, 17]T .
Solution. In this method we have ab initio

⎡
⎣
1 0 0
l21 1 0
l21 l22 1

⎤
⎦

⎡
⎣
u11 u12 u13
0 u22 u23
0 0 u33

⎤
⎦ =

⎡
⎣

4 1 2
2 −3 8

−1 11 4

⎤
⎦

Equating the elements, for i = 1,

u11 = 4, u12 = 1, u13 = 2

For i = 2, l21u11 = 2, l21u12 + u22 = −3, l21u13 + u23 = 8
Therefore

l21 = 2

4
= 1

2
, u22 = −3 − 1

2
× 1 = −7

2
, u23 = 8 − 1

2
× 2 = 7

For i = 3, l31u11 = −1, l31u12 + l32u22 = 11, l31u13 + l32u23 + u33 = 4
and so

l31 = −1

4
, l32 = 11 − (−1/4) × 1

−7/2
= −45

14
, u33 = 4 −

(
− 1

4

)
× 2 −

(
− 45

14

)
× 7 = 27

Thus

L =
⎡
⎣

1 0 0
1/2 1 0

−1/4 −45/14 1

⎤
⎦ , U =

⎡
⎣
4 1 2
0 −7/2 7
0 0 27

⎤
⎦

Next, in order to solve the given system,we setUx=y, so that Ly=[4, −12, 17]T
or,

y1 = 4
1
2 y1 + y2 = −12

− 1
4 y1 − 45

14 y2 +y3 = 17

126 3 System of Equations

whose solution is y1 = 4, y2 = −12 − 1
2 × 4 = −14, y3 = 17 + 1

4 × 4 + 45
14 ×

(−14) = −27. Therefore x is given by

4x1 + x2 +2x3 = 4
− 7

2 x2 +7x3 = −14
27x3 = −27

Thus x3 = −1, x2 = − 2
7 [−14 − 7 × (−1)] = 2, x1 = 1

4 [4 − 2 − 2 × (−1)] = 1.
�

Exercises

1. Prove that the matrix

[
0 1
1 0

]
cannot be LU decomposed, but decomposition is

possible after a permutation.
2. Prove that the sum and the product of two lower/upper triangular matrices
is lower/upper triangular and the inverse of a lower/upper triangular matrix is
lower/upper triangular.
3. Decompose the following matrices in Banachiewicz’s form:

(i) A1 :=
⎡
⎣
3 2 1
2 3 2
1 2 3

⎤
⎦ (i i) A2 :=

⎡
⎣
8 −3 2
4 11 −1
6 3 12

⎤
⎦

Hence, compute det (A1), det (A2) and solve the linear systems A1x = [8, 10, 8]T
and A2x = [20, 33, 36]T .

[(i) L1 :=
⎡
⎣

1 0 0
2/3 1 0
1/3 4/5 1

⎤
⎦ U1 :=

⎡
⎣
3 2 1
0 5/3 4/3
0 0 8/5

⎤
⎦ det (A1) = 8

(i i) L2 :=
⎡
⎣

1 0 0
1/2 1 0
3/4 21/50 1

⎤
⎦ U2 :=

⎡
⎣
8 −3 2
0 25/2 −2
0 0 567/50

⎤
⎦ det (A2) = 1134

(i) x1 = 1, x2 = 2, x3 = 1 (i i) x1 = 1, x2 = 3, x3 = 5].

4. Decompose the following matrices in Crout’s form:

(i) A1 :=
⎡
⎣
2 −6 8
5 4 −3
3 1 2

⎤
⎦ (i i) A2 :=

⎡
⎣
3 −1 2
1 2 3
2 −2 −1

⎤
⎦

and solve the system A1x = [24, 2, 16]T , A2x = [12, 11, 2]T .

[(i)L1 :=
⎡
⎣
2 0 0
5 19 0
3 10 40/19

⎤
⎦ U1 :=

⎡
⎣
1 −3 4
0 1 −23/19
0 0 1

⎤
⎦

(i i)L2 :=
⎡
⎣
3 0 0
1 7/3 0
2 −4/3 −1

⎤
⎦ U2 :=

⎡
⎣
1 −1/3 2/3
0 1 1
0 0 1

⎤
⎦

(i) x1 = 3, x2 = 2, x3 = 1 (i i) x1 = 3, x2 = 1, x3 = 2].

3.1 Linear System of Equations 127

5. Use subroutines BANACHIEWICZ and SOLVE to compute the roots of the equa-
tions:

(i)

⎡
⎣

5 2 1
−1 4 2
2 −3 10

⎤
⎦

⎡
⎣
x1
x2
x3

⎤
⎦ =

⎡
⎣

−12
20
3

⎤
⎦

(i i)

⎡
⎢⎢⎣

1 2 3 4
13 6 2 −3
7 10 5 2

11 14 8 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
10
34
40
64

⎤
⎥⎥⎦

(i i i)

⎡
⎢⎢⎣
3 −2 −5 1
2 −3 1 5
1 2 0 −4
1 −1 −3 9

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−5
7

−1
−4

⎤
⎥⎥⎦

Also compute the determinants of thematrices on the left- hand side of the equations.

[(i) x1 = −4, x2 = 3, x3 = 2; det = 253
(i i) x1 = 1, x2 = 2, x3 = 3, x4 = −1; det = −896
(i i i) x1 = 1, x2 = −1, x3 = 2, x4 = 0; det = −364].

3.1.4 Matrix Inversion

The inverse of a given n × n square matrix A is defined to be the matrix X of the
same dimension, such that

AX = X A = I (3.16)

where I is the n × n unit matrix consisting of unit diagonal elements and zero off-
diagonal elements. It is known that X exists only when det (A) �= 0. It is customary
to denote X as A−1.

Computation of A−1 is sometimes required in direct physical application. For
instance if A is a resistance or impedance matrix of an electrical network, then
A−1 is the conductance or admittance matrix of the same network. Similarly if A is
the stiffness matrix of a linked structure, then A−1 is the compliance matrix of the
structure.

In principle, one may use A−1 to compute the solution of the linear system (1),
noting that x = A−1b. However, the procedure is advisable only when the solution
is required for several values of the right-hand side vector b.

To compute A−1 from Eq. (3.16), we regard X and I to be partitioned along the
columns, that is to say, we write

AX j = I j , (j = 1, 2, · · · , n) (3.16a)

128 3 System of Equations

For solving the above system, we use LU -decomposition method, factorising A
into LU and the repeatedly solve Eq. (3.16a) for j = 1, 2, · · · , n. In the following
subroutine for A−1, the elements of X j are first stored in a one-dimensional array
named x and later returned in the location for A.

SUBROUTINE MATINV(n,A)
! This subroutine must be accompanied by subroutines
! BANACHIEWICZ and SOLVE.
! n=Order of the matrix to be inverted. (Input)
! A=Square matrix to be inverted. (Input)
! The inverse is returned in A. (Output)
REAL :: A(n,n), b(n), x(n∗n)
INTEGER :: ipivot(n)
CALLl BANACHIEWICZ(n,A,ipivot,det)
DO i=1,n
b(i)=0.0
END DO
jinv=1
DO j=1,n
b(j)=1.0
CALL SOLVE(n,A,b,x(jinv),ipivot)
b(j)=0.0
jinv=jinv+n
END DO
DO i=1,n
DO j=1,n
A(i,j)=x(n*(j−1)+i)
END DO; END DO
RETURN
END SUBROUTINE MATINV

Exercises

1. Invert the following matrices using subroutine MATINV:

(i)

⎡
⎣
1 2 6
2 5 15
6 15 46

⎤
⎦ (i i)

⎡
⎣

8 −1 −3
−5 1 2
10 −1 −4

⎤
⎦

(i i i)

⎡
⎢⎢⎣
3 7 8 15
2 5 6 11
2 6 10 19
4 11 19 38

⎤
⎥⎥⎦ (iv)

⎡
⎢⎢⎣

0.32 0.52 −0.42 0.23
0.44 −0.25 0.36 −0.51

−1.06 0.74 −0.83 0.48
0.96 0.82 0.55 0.38

⎤
⎥⎥⎦

[(i)

⎡
⎣

5 −2 0
−2 10 −3
0 −3 1

⎤
⎦ (i i)

⎡
⎣
2 1 −1
0 2 1
5 2 −3

⎤
⎦

3.1 Linear System of Equations 129

(i i i)

⎡
⎢⎢⎣

25 −41 16 −6
16 27 −11 4
16 −27 13 −5
−6 10 −5 2

⎤
⎥⎥⎦ (iv)

⎡
⎢⎢⎣

1.20 −0.32 −0.82 −0.12
−0.17 1.61 1.25 0.69
−1.75 0.16 0.32 0.87
−0.12 −2.91 −1.09 0.17

⎤
⎥⎥⎦].

3.1.5 Cholesky’s Method for Symmetric Matrices

Suppose we have a linear system Ax = b, in which the matrix A = [ai j] is a sym-
metric matrix; then ai j = a ji , (i, j = 1, 2, · · · , n), AT = [a ji] = A and A can be
decomposed as

A = LLT (3.17)

where L is a lower triangular matrix of the type

L =

⎡
⎢⎢⎣
l11 0 · · · 0
l21 l22 · · · 0
· · · · · · · · · · · ·
ln1 ln2 · · · lnn

⎤
⎥⎥⎦ and LT =

⎡
⎣
l11 l12 · · · l1n
0 l22 · · · l2n
0 0 · · · lnn

⎤
⎦ (3.18)

where li j = l ji and li j = 0 for i < j in L . Proceeding as in Banachiewicz’s method,
we have from Eqs. (3.17), (3.18)

ai j =
n∑

k=1

likl jk =
j∑

k=1

likl jk = li j l j j +
j−1∑
k=1

likl jk

where the property l jk = 0 for k > j is used. In particular for i = j ,

a j j =
j∑

k=1

l2jk = l2j j +
j−1∑
k=1

l2jk

Hence we find in succession

l11 = √
a11, li1 = ai1/ l11, (2 ≤ i ≤ n)

l j j =
√√√√a j j −

j−1∑
k=1

l2jk (2 ≤ i ≤ n)

li j = 1

l j j

[
ai j −

j−1∑
k=1

likl jk
]

(i > j) (3.19)

130 3 System of Equations

It may be noted that some of the elements starting with a diagonal element may turn
out to be complex. Thus in such cases, L and LT become complex matrices.

The system of equations has a unique solution if lii �= 0 (i = 1, 2, · · · , n). This
is so because

det A = det L · det (LT) = (l11l22 · · · lnn)2 �= 0

The condition is always satisfied in the important case of positive definite matrices.
Assume lii �= 0 (1 ≤ i ≤ n), the given linear system is equivalent to

Ly = b where LT x = y

The solution of the two systems by forward and back substitutions yield

y1 = b1
l11

, yi = 1

lii

[
bi −

i−1∑
j=1

li j y j
]

(i = 2, 3, · · · , n) (3.20a)

and

xn = yn
lnn

, xi = 1

lii

[
yi −

n∑
j=i+1

l ji x j

]
(i = n − 1, · · · , 2, 1) (3.20b)

completing the solution of the equations.
The complexity of the algorithm can be shown to be 1

3 (n
3 + 3n2 − n) = O(13n

3)

together with n square root evaluations. This is one-half of that of Gauss elimination.

Example 1. Factorise the symmetric matrix

A :=
⎡
⎣
4 1 1
1 5 2
1 2 3

⎤
⎦

by Cholesky’s method.

Solution. We write
⎡
⎣
l11 0 0
l21 l22 0
l31 l32 l33

⎤
⎦

⎡
⎣
l11 l21 l31
0 l22 l32
0 0 l33

⎤
⎦ =

⎡
⎣
4 1 1
1 5 2
1 2 3

⎤
⎦

Equating elements of each row, we have for i = 1

l211 = 4 or, l11 = 2, l11l21 = 1 or, l21 = 1

2
, l11l31 = 1 or, l31 = 1

2

For i = 2,

3.1 Linear System of Equations 131

l221 + l222 = 5 or, l22 = √
5 − 1/4 =

√
19

2

l21l31 + l22l32 = 2 or, l32 = 2√
19

(
2 − 1

2
× 1

2

)
= 7

2
√
19

For i = 3,

l231 + l232 + l233 = 3 or, l33 =
√
3 − 1

4
− 49

4 × 19
=

√
40

19
= 2

√
10

19

Hence

L =
⎡
⎣

2 0 0
1/2

√
19/2 0

1/2 7/(2
√
19) 2

√
10/19

⎤
⎦

�
André-Louis Cholesky (1875–1918), French army major. He was involved in geodesy and sur-

veying from 1906 to 1909 during the International Occupation of Crete, and later in North Africa.

He developed the method named after him to compute the solutions of least squares data fitting

problems (see the Chap.8 on approximation of functions).

The treatment of symmetric positive definite matrices has important application
in finite element methods. Cholesky’s method is a useful tool in such applications.
The following subroutine implements the algorithm (3.19) and (3.20a, 3.20b):

SUBROUTINE CHOLESKY(n,a,el,b)
! n=Order of matrix. (Input)
! a=symmetric square matrix of order n,
! to be decomposed by Cholesky method. (Input)
! n=Order of matrix to be decomposed. (Input)
! el=Cholesky factored lower triangular matrix. (Output)
! b= Right hand side vector. (input)
! The solution of Ax=b is returned in vector b. (Output)
! **
REAL :: a(n,n), el(n,n), b(n), y(n)
el(1,1)=sqrt(a(1,1))
DO i=2,n
el(i,1)=a(i,1)/el(1,1)
END DO
DO i=1,n
DO j=1,i
sum1=0.0; sum2=0.0
DO k=1,j-1
IF(i==j) THEN
sum1=sum1+el(j,k)**2
el(j,j)=SQRT(a(i,j)-sum1)
ELSE IF(i>j) THEN

132 3 System of Equations

sum2=sum2+el(i,k)*el(j,k)
el(i,j)=(a(i,j)-sum2)/el(j,j)
ELSE
el(i,j)=0.
END IF
END DO
END DO
END DO
! ***
y(1)=b(1)/el(1,1) ! Forward Substitution for solving Ly=b.
DO i=2,n
sum=0.0
DO j=1,i-1
sum=sum+el(i,j)*y(j)
END DO
y(i)=(b(i)-sum)/el(i,i)
END DO
b(n)=y(n)/el(n,n) ! Backward Substitution for solving LT x=y.
DO i=n-1,1,-1
sum=0.0
DO j=i+1,n
sum=sum+el(j,i)*b(j)
END DO
b(i)=(y(i)-sum)/el(i,i)
END DO
RETURN
END SUBROUTINE CHOLESKY

In case the matrix L is complex, the subroutine can be trivially converted for that
case, by using complex arithmetic and square root extraction.

Exercises

1. Factorise by Cholesky’s method

(i)A1 :=
⎡
⎣
1 2 3
2 8 22
322 82

⎤
⎦ (i i)A2 :=

⎡
⎣

4 −6 2
−6 10 −7
2 −7 21

⎤
⎦ (i i i)A3 :=

⎡
⎢⎢⎣
1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

⎤
⎥⎥⎦

Hence solve the equations: (a) A1x = [6, 32, 107]T , (b) A2x = [8, −9, −12]T , (c)
A3x = [5, 1, 1, −5]T .

[(i) L1 =
⎡
⎣
1 0 0
2 2 0
3 8 3

⎤
⎦ (i i) L2 =

⎡
⎣

2 0 0
−3 1 0
1 −4 2

⎤
⎦ (i i i) L3 =

⎡
⎢⎢⎣

1 0 0 0
2

√
3 i 0 0

3 4i/
√
3 i

√
8/3 0

4 5i/
√
3 8i/

√
6 2

⎤
⎥⎥⎦

3.2 Error: Matrix Norms and Condition Number 133

3.2 Error: Matrix Norms and Condition Number

The solution of a linear system by any of the preceding methods must be considered
as approximate solution due to round-off errors. If x̃ is a computed solution of the
system Ax = b, then the absolute error e is defined by

e := x − x̃

This error is unknown, since x is unknown and one may be tempted to compute the
residual

r := A(x − x̃) = b − Ax̃

and judge the accuracy of x̃ on the smallness of r? But this need not always be true
since e = A−1r implies that the smallness of e depends on the matrix A as well. For
further development, we require the definition of norm. The norm of an algebraic
entity x is defined as a number ‖x‖ that satisfies the axioms

(i) ‖x‖ > 0, for x �= 0 and ‖0‖ = 0
(i i) ‖cx‖ = |c| · ‖x‖, where c is an arbitrary number; and
(i i i) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for any two elements x, y (triangle inequality).

This definition is now adopted for vectors and matrices.

1o. Vector Norm: The norm of an n-vector x can be defined in various ways. The
most commonly used norms are:
(a) Euclidean norm (2-norm):

‖x‖2 =
√√√√

n∑
i=1

|xi |2 (3.21a)

(b) Laplace’s norm (1-norm):

‖x‖1 =
n∑

i=1

|xi | (3.21b)

(c) Chebyshev–Laplace norm (maximum norm):

‖x‖∞ = max
1≤i≤n

|xi | (3.21c)

All the three norms can be shown to satisfy axioms (i)–(i i i). We prefer to treat the
maximum norm (c), as it is easiest to handle. Evidently, it satisfies axioms (i) and
(i i). For verifying axiom (i i i) consider two n-vectors x and y. then there is a number
k such that

max
1≤i≤n

|xi + yi | = |xk + yk |

134 3 System of Equations

Consequenly

max
1≤i≤n

|xi + yi | ≤ |xk | + |yk | ≤ max
1≤i≤n

|xi | + max
1≤i≤n

|yi |

This means that ‖x + y‖∞ ≤ ‖x‖∞ + ‖y‖∞.

2o. Matrix Norm. The norm of an n × n matrix A is defined as

‖A‖ := max
x �=0

‖Ax‖
‖x‖

where‖x‖ and‖Ax‖ are vector norms alreadydefined. In particular if A = I ,‖Ax‖ =
‖Ix‖ = ‖x‖ and so ‖I‖ = 1.

Depending on the choice of the vector norm of ‖x‖ and ‖Ax‖. We have definitions
of the norms ‖A‖2, ‖A‖1 and ‖A‖∞. The matrix norms satisfy axioms (i)– (i i i) and
as before, we prefer to give th details of proof regarding ‖A‖∞ only. It is evident that
axioms (i) and (i i) are satisfied, while for (i i i)

‖A + B‖∞ = max
x �=0

‖(A + B)x‖∞
‖x‖∞

≤ max
x �=0

‖Ax‖∞ + ‖Bx‖∞
‖x‖∞

≤ ‖A‖∞ + ‖B‖∞

A matrix norm also satisfies the estimates

(iv) ‖Ax‖ ≤ ‖A‖‖x‖, in which equality holds only for a particular vector x. And
(v) ‖AB‖ ≤ ‖A‖‖B‖, for any two matrices A and B.

The proof of (iv) follows immediately from the definition of ‖A‖. Consequently

‖AB‖ = max
x �=0

‖ABx‖
‖x‖ ≤ max

x �=0

‖A‖‖Bx‖
‖x‖ = ‖A‖ · ‖B‖

An expression for the maximum norm ‖A‖∞ in terms of the elements only is
given by the following theorem:

Theorem 3.1 The maximum norm ‖A‖∞ of an n × n matrix A satisfies

‖A‖∞ = max
1≤i≤n

n∑
j=1

|ai j | (3.22)

Proof The definition of ‖A‖ implies estimate (iv), in which the equality holds for
some particular x0. Now from the definition (c) of vector norm

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑
j=1

ai j x j

∣∣∣∣∣∣
≤ max

1≤i≤n

n∑
j=1

|ai j ||x j |

3.2 Error: Matrix Norms and Condition Number 135

≤ max
1≤i≤n

[
max
1≤ j≤n

|x j |
n∑
j=1

|ai j |
]

= ‖x‖∞ · max
1≤i≤n

n∑
j=1

|ai j | (3.23)

Next, we seek x0. Let k be an integer between 1 and n such that the maximum in
Eq. (3.23) is reached for the value k of i . If we consider

x0j =
{

1 if akj ≥ 0
−1 if akj < 0

then clearly ‖x0‖ = 1 and akj x0j = |akj |, (j = 1, 2, · · · , n). Thus

‖Ax0‖ = max
1≤i≤n

∣∣∣∣
n∑
j=1

ai j x
0
j

∣∣∣∣ ≥
∣∣∣∣

n∑
j=1

akj x
0
j

∣∣∣∣ =
n∑
j=1

|akj |

= ‖x0‖ · max
1≤i≤n

n∑
j=1

|ai j | (3.24)

Eqs. (3.23) and (3.24) establish the vaidity of Eq. (3.22). �
Similarly ‖A‖1 and ‖A‖2 are given by

Theorem 3.2

‖A‖1 = max
1≤ j≤n

n∑
i=1

|ai j |, ‖A‖2 =
√

ρ(AT A) (3.25)

where the spectral radius ρ of a matrix B is defined by

ρ(B) := max
1≤i≤n

|λi |

λ1, λ2, · · · , λn being the eigenvalues of B.

3o. Condition Number of a Matrix. This quantity is a measure that expresses the
relation between the error norm ‖e‖ and the residual norm ‖r‖. Since e = A−1r, we
must have

‖e‖ ≤ ‖A−1‖ · ‖r‖

Thus dividing by ‖x‖, where ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖, the relative error is

‖e‖
‖x‖ ≤ ‖A−1‖ · ‖r‖

‖x‖ ≤ ‖A‖ · ‖A−1‖ ‖r‖
‖b‖ (3.26)

The quantity

cond(A) := ‖A‖ · ‖A−1‖ (3.27)

136 3 System of Equations

is called the condition number of the matrix A. Eqs. (3.26) and (3.27) state that the
relative error can be as large as cond(A) times the relative residual ‖r‖/‖b‖. Thus
if cond(A) is not large, a small relative residual will result in a small relative error
in the solution. However, a large cond(A) may imply large error in solution, inspite
of a small residual. In the former case, the matrix A is called well conditioned and
in the latter case, it is called ill conditioned. More precisely, the two terms must be
used in conjunction with precision of computation.

The number cond(A) depends on the norm selected and can vary considerably
with change of norm. However, whatever be the norm

cond(A) = ‖A‖ · ‖A−1‖ ≥ ‖AA−1‖ = ‖I‖ = 1

Example 1. Find the condition number of the matrix

A :=
⎡
⎣

4 2 1
−1 3 2
2 3 5

⎤
⎦

Solution. The exact inverse of A can be shown to be

A−1 = 1

45

⎡
⎣

9 −7 1
9 18 −9

−9 −8 14

⎤
⎦

The maximum norms of the two matrices are

‖A‖∞ = max{4 + 2 + 1, 1 + 3 + 2, 2 + 3 + 5} = 10

‖A−1‖∞ = max
1

45
{9 + 7 + 1, 9 + 18 + 9, 9 + 8 + 14} = 36

45

Hence

cond(A) = ‖A‖∞ · ‖A−1‖∞ = 10 × 36

45
= 8

which is not a large number and A is well conditioned. �

Example 2. Consider the linear system with b = [−1,−1, · · · ,−1, 1]T and

A =

⎡
⎢⎢⎢⎢⎣

1 −1 −1 · · · −1 −1
0 1 −1 · · · −1 −1

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1
0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎦

So that det (A) = 1 �= 0. Determine the condition of the system.

3.2 Error: Matrix Norms and Condition Number 137

Solution. Written in detail the system of equations is

x1 −x2 −x3 · · · −xn−1 −xn = −1
x2 −x3 · · · −xn−1 −xn = −1

· · · · · · · · · · · · · · ·
xn−1 −xn = −1

xn = 1

The exact solution of the system by back substitution is evidently x = [0, 0, · · · ,

0, 1]T . Suppose that a unique absolute error ε is committed in the computation of
xn from the nth equation, so that residual r = [0, 0, · · · , 0, ε]T . If e is the error in
the computation of x, the computed value is x̃ = x − e, where e satisfies the system
of equations Ae = r, or

e1 −e2 −e3 · · · −en = 0
e2 −e3 · · · −en = 0

en−1 −en = 0
en = ε

Hence we obtain

en = ε

en−1 = en = ε

en−2 = en−1 + en = 2ε
en−3 = en−2 + en−1 + en = 22ε
· ·
e1 = en−(n−1) = 2n−2ε

We have therefore ‖e‖∞ = 2n−2|ε|. Also ‖r‖∞ = |ε|, ‖b‖∞ = 1 and ‖x‖∞ = 1.
Hence from Eq. (3.26)

cond(A) ≥ 2n−2|ε|/1
|ε|/1 = 2n−2

If n is large, say n = 102, cond(A) ≥ 2100 > 1030, which is a huge number. Thus the
relative error in x exceeds 1030 times the relative residual. The system of equations
is therefore ill conditioned.

We conclude with the observation that since ‖A‖∞ = n, ‖A−1‖ ≥ 2n−2/n. �

Exercises

1. Find the condition number and condition of the following matrices:

(i)

[
1.01 0.99
0.99 1.01

]
(i i)

⎡
⎣
1 4 7
2 5 8
3 6 9

⎤
⎦

[(i) Cond. No.=100, Ill conditioned, (i i) Cond. No.=30.23, Well conditioned].

138 3 System of Equations

2. (T.S. Wilson) Show that for the linear system

10x1 +7x2 +8x3 +7x4 = 32
7x1 +5x2 +6x3 +5x4 = 23
8x1 +6x2 +10x3 +9x4 = 33
7x1 +5x2 +9x3 +10x4 = 31

x1 = 6, x2 = −7.2, x3 = 2.9, x4 = −0.1 and x1 = 1.5, x2 = 0.18, x3 = 1.19,
x4 = 0.89 are ‘approximate’ solutions, while the exact solution is x1 = x2 = x3 =
x4 = 1. What is your inference? Computing A−1 by subroutine MATINV, determine
cond(A).
[Ill conditioned. cond(A) = 4488].

3.3 Relaxation Methods

In these methods, the solution of an unknown xi (i = 1, 2, · · · , n) of the linear
system (3.1) is expressed as a function of the remaining unknowns. Thus, if aii �= 0,
one can write

xi = − 1

aii

n∑
j=1

(j �=i)

ai j x j + bi
aii

(i = 1, 2, · · · , n) (3.28)

In matrix notations, Eq. (3.28) can be writen as

x = A′x + b′ (3.28a)

where A′ = [a′
i j], b′ = [b′

i]T such that

a′
i j =

{
0, i = j

−ai j/aii , i �= j
b′
i = bi/aii (i, j = 1, 2, · · · , n)

Such representation for a linear system is evidently not unique. For example, the
equationsmaybe permuted (shifted in position).More generally onemaypremultiply
it by an arbitrary n × n matrix C , to obtain a new system

CAx = Cb

The system can then be rewritten in the form

x = x − C(Ax − b) = (I − CA)x + Cb =: A′x + b′ (3.28b)

where I is the n × n unit matrix. Eq. (3.28a) is a particular case of Eq. (3.28b), if
one takes Cii = 1/aii (aii �= 0), Ci j = 0 (i �= j).

3.3 Relaxation Methods 139

It appears that if the elements |a′
i j | << 1 (i �= j), the x j ’s on the right-hand side

of Eq. (3.28a) may be replaced by some initial approximation in one sweep, without
much error. In other words, the equation is ‘relaxed’ in its exactness. Relaxation
yields a new set of approximation of the unknowns, which may be used for further
cycle of sweeping of the variables. Repeated cycles of sweeps may result in settling
of the values of xi , yielding the solution. The term relaxation is due to Southwell,
but the idea dates back to Gauss. The condition |a′

i j | << 1 or |ai j | << |aii | (i �= j)
is directly satisfied in many applications and thus relaxation methods have proved to
be very useful in practice.

3.3.1 Jacobi’s Method

Weconsider the linear system to bewritten as Eqs. (3.28) or (3.28a), in whichwemay
suppose that |a′

i j | << 1 or, |ai j | << |aii | (i, j = 1, 2, · · · , n). Let x0 be a starting
zeorth approximation of x. Altogether neglecting x on the right-hand side of Eq.
(3.28) one may take x0 = b′. Starting with this value, the succeeding relaxations of
Eq. (3.28a) yield

x(k) = A′x(k−1) + b′ (k = 1, 2, · · ·) (3.29)

or, using Eq. (3.28)

x (k)
i = 1

aii

[
bi −

n∑

j = 1
(j �= i)

ai j x
(k−1)
j

]
(i = 1, 2, · · · , n) (3.29a)

If the sequence {xk} converges to x, then evidently x is the required solution. In this
event, the iterations can be carried out until

max
1≤i≤n

∣∣∣x (k)
i − x (k−1)

i

∣∣∣ < ε

where ε is a prescribed small number.
Equation (3.29) can be viewed as an iteration procedure

x(k) = HJx(k−1) + cJ (3.30)

in which decomposing matrix A into lower and upper triangular matrices (with zero
diagonal) L and U together with diagonal matrix D, i.e. A = L + D +U

HJ := A′ = −D−1(L +U), cJ := b′ = D−1b

140 3 System of Equations

Karl Gustav Jacob Jacobi (1804–51), German mathematician who taught at University of

Königsberg from 1826 until his death. He is famed for his study of the functional determinant

called the Jacobian (which was actually introduced by Cauchy in 1815). He founded the theory of

elliptic functions based on four theta functions. In function theory, he proved that a doubly periodic

single-valued function must have an imaginary ratio of the periods. He also carried out important

research in partial differential equations of the first order and applied them to differential equations

of dynamics.

3.3.2 Seidel’s Method

In this method, for accelerated convergence, Eq. (3.28) is written as

xi = 1

aii

[
bi −

i−1∑
j=1

ai j x j −
n∑

j=1+1

ai j x j

]
(3.31)

The initial approximation by dropping x j ’s may be taken as x (0)
i = bi/aii (i =

1, 2, · · · , n). In the kth approximation (k = 1, 2, 3, · · ·), we note that the val-
ues of x (k)

j (j = 1, 2, · · · , i − 1) are available in the current iteration while only

x (k−1)
j (j = i + 1, i + 2, · · · , n) are currently available. Hence one can consider

relaxation of Eq. (3.31) in the form

x (k)
i = 1

aii

[
bi −

i−1∑
j=1

ai j x
(k)
j −

n∑
j=i+1

x (k−1)
j

]
(3.32)

where k = 1, 2, 3, · · · . If the sequence {x (k)
i } converges to xi (i = 1, 2, · · · , n), then

obviously these values constitute the desired solution. The convergence criterion can
be adopted as in Jacobi’s method.

The process (3.32) can also be viewed as an iteration. For Eq. (3.32) in matrix
notations is

(D + L)x(k) = −Ux(k−1) + b

This equation leads to the form of Eq. (3.30), with

HS := −(D + L)−1U, cS := (D + L)−1b

Philipp Ludwig von Seidel (1821–1896), German mathematician who studied under Dirichlet,

Bessel, Jacobi and Neumann. He wrote on dioptics and mathematical analysis. His work on lenses

identified mathematically five coefficients, describing the aberration of a lens called ‘Seidel Sums’.

He introduced the concept of non-uniform convergence and applied probability to astronomy.

3.3 Relaxation Methods 141

Example 1. Solve by Seidel iteration

10x +2 y + z = 9
2x +20y − 2z = −44

−2x + 3y +10z = 22

correct to 2 decimal places.

Solution. The system is diagonally dominant. Rewriting it for iteration

x = 0.9 − 0.2y − 0.1z
y = −2.2 − 0.1x + 0.1z
z = 2.2 + 0.2x − 0.3y

The zeroth approximation is x (0) = 0.9, y(0) = −2.2, z(0) = 2.2.
First Approx:

x (1) = 0.9 − 0.2 × (−2.2) − 0.1 × 2.2 = 1.12
y(1) = −2.2 − 0.1 × (1.12) + 0.1 × 2.2 =−2.09
z(1) = 2.2 + 0.2 × 1.12 − 0.3 × (2.09) = 3.05

We note that for calculating y(1), the current iterate x (1) is available, while only z(0)

is available. For z(1) however both x (1) and y(1) are available. These values are used
in the current iteration.
Second Approx: In a similar manner

x (2) = 0.9 − 0.2 × (−2.09) − 0.1 × (3.05) = 1.013
y(2) = −2.2 − 0.1 × (1.013) + 0.1 × (3.05) = −1.996
z(2) = 2.2 + 0.2 × (1.013) − 0.3 × (−1.996) = 3.001

Third Approx: In this approximation

x (3) = 0.9 − 0.2 × (1.013) − 0.1 × (3.001) = 0.9991
y(3) = −2.2 − 0.1 × (0.9991) + 0.1 × (3.001) = −1.9998
z(3) = 2.2 + 0.2 × (0.9991) − 0.3 × (−1.9998) = 2.9998

Comparing the last two iterates, correct to 2 decimal places

x = 1.00, y = −2.00, z = 3.00

that are incidentally of exact value. �

142 3 System of Equations

Following themethod, subroutine SEIDEL is given below, which solves the linear
system Ax = b. In the subroutine, apart for A and b, the tolerance epsilon and the
maximum number of cycles must be supplied as inputs in the calling program.

SUBROUTINE SEIDEL(n,a,b,x,epsilon,cycles)
! Solves the system of equations Ax=b.
! n=Number of unknowns and equations. (Input)
! a=Matrix of the n×n coefficients. (Input)
! b=Right hand side vector. (Input)
! x=Solution vector. (Output)
! epsilon=Tolerance in two successive iterates. (Input)
! cycles=Maximum number of iterations allowed (Input)
REAL :: a(n,n), b(n), x(n)
INTEGER :: cycles
DO i=1,n
x(i)=b(i)/a(i,i)
END DO
DO k=1,cycles
error=0.0
DO i=1,n
sum=0.0
DO j=1,n
IF(a(i,j)/=0.0) sum=sum+a(i,j)*x(j) ! Avoids unnecessary multiplication
END DO
temp=(b(i)−sum+a(i,i)*x(i))/a(i,i)
err=ABS(x(i)−temp)
IF(error<err) error=err
x(i)=temp
END DO
IF(error<epsilon) RETURN
IF(k==cycles) PRINT*, ’Maximum No. of cycles reached’
END DO
RETURN
END SUBROUTINE SEIDEL

In many applications the matrix A is sparse, that is to say, many off-diagonal ele-
ments are zero. In accumulating the variable named sum, multiplication by such zero
elements is avoided, making convergence faster.

Exercises

1. Solve the following equations by Seidel iteration:
(i)AbeamABC clamped at A and C is simply supported at B. The bendingmoments
M1, M2, M3 at A, B, C satisfy the equations

3.3 Relaxation Methods 143

2M1 + M2 = 1
M1 +6M2 +2M3 = 9

M2 +4M3 = 8

Find M1, M2, M3. [M1 = 0, M2 = 1, M3 = 3/2].

(i i)
−x1 +10x2 −2x3 = 7
5x1 − x2 − x3 = 3
−x1 − x2 +10x3 = 8

[x1 = 1, x2 = 1, x3 = 1].

(i i i)
2x1 −7x2 −10x3 = −17
5x1 + x2 + 3x3 = 14
x1 +10x2 + 9x3 = 7

[x1 = 1, x2 = −3, x3 = 4].

2. Use subroutine SEIDEL to compute the roots of:

(i)
83x1 +11x2 − 4x3 = 95
7x1 +52x2 +13x3 = 104
3x1 + 8x2 +29x3 = 71

⎡
⎣
x1 = 1.05793
x2 = 1.36717
x3 = 1.96169

⎤
⎦.

(i i)
6.1x1 + 0.7x2 −0.05x3 = 6.97

−1.3x1 −2.05x2 + 0.87x3 = 0.10
2.5x1 −3.12x2 −5.03x3 = 2.04

⎡
⎣

x1 = 1.21394
x2 = −0.58157
x3 = 0.55852

⎤
⎦.

(i i i)

8.7x1 −3.1x2 +1.8x3 −2.2x4 = −9.7
2.1x1 +6.7x2 −2.2x3 = 13.1
3.2x1 −1.8x2 −9.5x3 −1.9x4 = 6.9
1.2x1 +2.8x2 −1.4x3 −9.9x4x4 = 25.1

⎡
⎢⎢⎣
x1 = −0.75288
x2 = 1.90591
x3 = −0.86885
x4 = −1.96470

⎤
⎥⎥⎦.

3.3.3 Young’s Over Relaxation Method

This method often abbreviated as SOR (Successive Over Relaxation) method aims
at improving the convergence rate of the Seidel method. For the latter method, Eq.
(3.32) can be rewritten as

x (k)
i = x (k−1)

i −
[(i−1∑

j=1

ai j x
(k)
j +

n∑
j=i

ai j x
(k−1)
j − bi

)
/aii

]

The quantity within the square brackets is responsible for improving the (k − 1)th
approximation to yield the kth approximation. Hence for acceleration in the conver-
gence, one may multiply the quantity by a factor ω > 1 to get

x (k)
i = x (k−1)

i − ω

[(i−1∑
j=1

x (k)
j −

n∑
j=i

ai j x
(k−1)
j − bi

)
/aii

]
(3.33)

A theory of the optimal choice ofω does exist, but is difficult to implement in practice.
Experience shows that it should lie between 1.2 and 1.6. A theorem due to Kahan

144 3 System of Equations

(William Mortan Kahan (1933–)) states that a necessary condition for convergence
is 0 < ω < 2.

As in the case of Jacobi and Seidel methods, Eq.(3.33) is equivalent to iteration
of the form (3.30) where

HY := (D + ωL)−1[(1 − ω)D − ωU], cY := ω(D + ωL)−1b

The convergence of the three methods is discussed in Sect. 3.3.4.

David M. Young (1923–2008) was a professor of computer sciences at the University of Texas

at Austin, U.S.A. His Ph.D thesis in 1950 led to the development of the SOR method in the year

(1954).

Exercise

1. Write a subroutine for Young’s over relaxation method. Test it for the problems
of Exercise 2 of Sect. 3.3.2.

3.3.4 Convergence Theorems

Theorem 3.3 If for any matrix norm ‖H‖ < 1, in the case of Jacobi, Seidel and
Young’s SOR methods, then the respective methods converge to the solution x, for
any initial vector x0.

Proof Let the absolute error vector in the kth cycle be εk = x − x(k), then since x
satisfies the equation x = Hx + c and x(k) = Hx(k−1) + c, ε(k) = Hε(k−1). Hence

‖ε(k)‖ ≤ ‖H‖‖ε(k−1)‖ ≤ ‖H‖2‖ε(k−2)‖ ≤ · · · ≤ ‖H‖k‖ε(0)‖

where ε(0) is the initial absolute error vector. Since ‖H‖ < 1, ‖H‖k → 0 as k → ∞
and ‖ε(k)‖ → 0, proving convergence. �

Example 1. For the iterative system x = Hx + c, if ‖H‖ < 1, then prove that the
condition number of the system is ≤ (1 + ‖H‖)/(1 − ‖H‖).

Solution. Here A = I − H . Hence ‖H‖ = ‖I − H‖ ≤ ‖I‖ + ‖H‖ = 1 + ‖H‖.
Since the system is Ax = c, x = A−1c and so ‖x‖ ≤ ‖A−1‖‖c‖, where there exists
a c for which equality holds. Now

‖x‖ = ‖Hx + c‖ ≤ ‖H‖‖x‖ + ‖c‖

or, ‖x‖ ≤ ‖c‖/(1 − ‖H‖). If c is selected such that ‖x‖ = ‖A−1‖‖c‖, then it follows
that ‖A−1‖ ≤ 1/(1 − ‖H‖). Hence

3.3 Relaxation Methods 145

cond(A) = ‖A‖ · ‖A−1‖ ≤ 1 + ‖H‖
1 − ‖H‖ <

2

1 − ‖H‖
�

This example shows that if ‖H‖ is not very close to unity, matrix A for the iterative
system is well conditioned.

Theorem 3.4 If the matrix A is non-singular and strictly diagonally dominant sat-
isfying the strong row-sum criterion

n∑
j=1
j �=i

∣∣∣∣
ai j
aii

∣∣∣∣ < 1

then the Jacobi and the Seidel iterations converge for any starting vector, to the
solution.

Proof We apply the preceding theorem. For the Jacobi method, we have HJ =
−D−1(L +U). Hence (or otherwise from Eq. (3.29a))

‖HJ‖∞ = max
1≤ j≤n

n∑
j=1
j �=i

|ai j |
|aii | < 1

proving the convergence of the Jacobi method, by application of Theorem 3.3.
For the Seidel method, consider an arbitrary vector y and let z := HSy, HS =

−(D + L)−1U . We prove that the components zi of the vector z satisfy

|zi | ≤
n∑

i=1
j �=i

∣∣∣∣
ai j
aii

∣∣∣∣‖y‖∞

First, we have using Eq. (3.32),

|z1| ≤
n∑
j=2

∣∣∣∣
a1 j
a11

∣∣∣∣|y j | ≤
∞∑
j=2

∣∣∣∣
a1 j
a11

∣∣∣∣‖y‖∞ ≤ ‖y‖∞

Next, by complete induction, using the same equation

|zi | ≤ 1

|aii |
[i−1∑

j=1

|ai j ||z j | +
n∑

j=i+1

|ai j ||y j |
]

≤ 1

|aii |
[i−1∑

j=1

|ai j | +
n∑

j=i+1

|ai j |
]
‖y‖∞ ≤

n∑
j=1

∣∣∣∣
ai j
aii

∣∣∣∣‖y‖∞

146 3 System of Equations

This completes the assertion. This means that ‖z‖∞ ≤ ‖HJ‖‖y‖∞, or

‖HS‖∞ = max
y �=0

‖HSy‖∞
‖y‖∞

= max
y �=0

‖z‖∞
‖y‖∞

≤ ‖HJ‖ < 1

proving convergence of the Seidel method, by application of Theorem 3.3. �

Remark If the strictly diagonally dominant matrix A satisfies the column-sum cri-
terion

n∑
i=1
i �= j

∣∣∣∣
ai j
a j j

∣∣∣∣ < 1

then also the Jacobi and Seidel methods can be proved to converge. For this case one
has to use the 1-norm.

We state some other theorems omitting proofs because of technical details.

Theorem 3.5 If the matrix A is symmetric and positive definite, then Seidel relax-
ations converge for every initial value.

Theorem 3.6 (Young) For strictly diagonally dominant matrices, the SOR method
converges for all 0 < ω < 2 and the Seidel method converges twice as fast as the
Jacobi method.

Exercises

1. Show by appropriate examples that the strong row-sum criterion and the strong
column-sum criterion are not equivalent.

[A =
⎡
⎣

1 0.7 0.2
0.7 2 0.5
0.5 0.5 2

⎤
⎦ satisfies strong row-sum criterion but not the other. AT exem-

plifies the reverse case].
2. Show using the subroutine SEIDEL that the system

2x1 − x2 = 1
−x1 +2x2 − x3 = 0

− x2 +2x3 −x4 = 0
· · · · · · · · · · · ·

−xn−1 +2xn = 1

converges for n = 2, 3, · · · , N to the solution [1, 1, · · · , 1] although it is not diag-
onally dominant.

3.4 Non-linear System of Equations 147

3.4 Non-linear System of Equations

A non-linear system of equations in n unknowns x1, x2, · · · , xn , real or complex, is
of the form

f1(x1, x2, · · · , xn) = 0
f2(x1, x2, · · · , xn) = 0
· · · · · · · · · · · · · · · · · ·

fn(x1, x2, · · · , xn) = 0

(3.34)

where f1, f2, · · · , fn are functions of n arguments. In vector notations, the system
can be compactly written as

f(x) = 0 (3.34a)

where f = [f1(x), f2(x), · · · , fn(x)]T with x = [x1, x2, · · · , xn]T .
In the general form, direct sequential elimination is not possible to obtain a sin-

gle non-linear equation in one unknown. In this context, the extension of iterative
methods of Chap.2, have proved useful. In Sects. 3.4.1 and 3.4.2, we develop such
extensions forNewton’smethod andgeneral iteration.Of the twomethods, the former
is important for practical purpose, while the latter is of greater theoretical interest.
At practical level, the development is restricted to the computation of real roots only.

The iterative methods require initial approximation of the roots. If n = 2 and one
is seeking only real roots of f1(x1, x2) = 0, f2(x1, x2) = 0, then a simple procedure
could be to draw the graphs of the two equations in the x1, x2 plane and note their
points of intersection. The x1, x2 values of such points approximate the real roots of
the equations. A more general method is to consider the function

F(x1, x2, · · · , xn) := f 21 + f 22 + · · · + f 2n ≥ 0

The minimum value of F is obviously 0, corresponding to the solution of the system
(3.34). Starting from some initial point (x01 , x

0
2 , · · · , x0N), we compute F varying

only the first variable x1 at suitable intervals and locate a minimum x1 = x11 (atleast
oneminimumexists as F is bounded below). Repeating thewhole procedure, varying
x2, x3, · · · , xn singly in succession, we obtain a definite number of minima. The
minimum of the minima yields approximation to a real root. Alternatively, one may
consider F defined by

F(x1, x2, · · · , xn) := | f1| + | f2| + · · · + | fn|

and proceed as before adopting simple search without any use of derivatives. After
a root has been isolated and approximated, we next treat methods of refinement of a
root.

148 3 System of Equations

3.4.1 Newton’s Method for n Equations

Suppose x(0) is an initial approximation to a root ξ of Eq. (3.34a). To find the succes-
sive iterates x(1), x(2), · · · , we first note that Taylor’s theorem for n variables applied
to component fi can be written as

fi (x + h) = fi (x) + [∇ fi (x)]T · h + O(‖h‖2)

where fi is assumed to be continuous with continuous partial derivatives up to the
second order. Compiling such equations for i = 1, 2, · · · , n, we obtain in vector
form

f(x + h) = f(x) + f ′(x) h + O(‖h‖2)

where f ′ is the Jacobian matrix of f at x, given by

f ′(x) :=
[

∂ fi
∂x j

]
, (i, j = 1, 2, · · · , n)

Thus, for an iterate x(k), if ξ = x(k) + h, we obtain by ignoring O(‖h‖2) terms

f ′(x(k)) h = −f(x(k)) (3.35)

Hence

x(k+1) = x(k) − [f ′(x(k))]−1f(x(k)) (3.36)

Computationally, however, it is more convenient to solve the linear system for h
given by Eq. (3.35), by a direct method like Gauss elimination, rather than invert the
Jacobian matrix.

If the initial approximation, x(0) is close enough to ξ , the method converges
quadratically. However, two types of difficulty may crop up in practical implemen-
tation of the method. First, if the components of f have complicated form, the calcu-
lation of the Jacobian f ′(x) may prove to be tedious. In such cases, numerical differ-
entiation using finite differencing can be used with equal effect. Although the topic
of numerical differentiation is treated in Chap. 5, the partial derivatives appearing in
the Jacobian matrix for the present purpose can be written by Taylor expansion as

∂ fi
∂x j

= fi (x1, · · · , x j + h j , · · · , xn) − fi (x1, · · · , x j − h j , · · · , xn)

2 h j
+ O(h4j), as h j → 0

More importantly from practical point of view, convergence may fail because of
poor initial guess of x(0). To address this point, we note that the Newton direction
h = −[f ′(x)]−1f(x) is a direction of descent for the function

F(x) := f 21 (x) + f 22 (x) + · · · + f 2n (x) =: ‖f(x)‖22

3.4 Non-linear System of Equations 149

and therefore points towards the solution of the problem. By differentiation one can
write

∇F(x) = 2f ′(x)T f(x)

Hence
(
∇F(x)

)T
h =

[
2fT (x)f ′(x)

][
− {f ′(x)}−1f(x)

]
= −2‖f(x)‖22 < 0 which

means that h is obtuse to the increasing direction of F(x). In other words, h is a
direction of descent. Thus if lack of monotone convergence is indicated by increase
in the residual of f during iterations, viz. ‖f(x(k+1))‖2 > ‖f(x(k))‖2, then convergence
can be forced by reducing the step size by considering x(k) + h/2m, m = 1, 2, · · ·
and take x(k+1) to be the first such vector for which the residue is less than ‖f(x(k)‖2.
The procedure is calledDampedNewton’sMethod. The following subroutine accom-
plishes this procedure:

SUBROUTINE DAMPED_NEWTON(x,n,xtol,maxiter)
! Computes a root of f(1)(x(1), x(2),....., x(n))=0
! f(2)(x(1), x(2),, x(n))=0, etc.
! f(n)(x(1), x(2),, x(n))=0
! given by a subroutine fn(x,f,n).
! n = number of unknowns and equations. (Input)
! x(1), x(2),, x(n) (Initial approximation of a root). (Input)
! The root is returned in x(1), x(2), .̇..., x(n). (Output)
! maxiter = maximum number of iterations allowed. (Input)
!**
REAL :: x(n), f(n), h(n), yacobian(n,n), xnew(n)
DO k=1,maxiter
CALL fn(x,f,n)
sn=0.0
DO i=1,n
sn=sn+f(i)**2
END DO
CALL JACOBIAN(x,yacobian,n)
CALL GAUSS(n,yacobian,f)
DO i=1,n
h(i)=-f(i)
END DO
DO m=0,maxiter
DOi=1,n
xnew=x(i)+h(i)/2**m
END DO
amax=0.0
DO i=1,n
absdiff=ABS(xnew(i)-x(i))
IF(amax<absdiff) amax=absdiff
END DO

150 3 System of Equations

IF(amax<xtol .AND. sn<0.1E-10) RETURN
CALL fn(xnew,f,n)
snu=0.0
DO i=1,n
snu=snu+f(i)**2
END DO
IF(snu<sn) EXIT
END DO
DO i=1,n
x(i)=xnew(i)
END DO
END DO
END SUBROUTINE DAMPED_NEWTON

As illustration of the procedure consider the following example:

Example 1. The equations

f1(x, y) := x + 3 ln |x | − y2 = 0

f2(x, y) := 2x2 − xy − 5x + 1 = 0

has several solutions as revealed by computing f 21 + f 22 for a range of values of x and
y. Solve the system for initial approximations (i) x = 5, y = 1, (i i) x = 5, y = 0
and (i i i) x = 2, y = −2.

Solution. The Jacobian of f1, f2 is

[
1 + 3/x −2y

4x − y − 5 −x

]

A Fortran program implementing the damped Newton method for the problem is:

PROGRAM MAIN
REAL :: x(2)
x(1)=5; x(2)=1 !First initial value.
! x(1)=5; x(2)=0 !Second initial value.
! x(1)=2; x(2)=-2 !Third initial value.
n=2; xtol=0.1E-6; maxiter=20
CALL DAMPED_NEWTON(x,n,xtol,maxiter)
PRINT*, (x(i), i=1,2)
END
!**

SUBROUTINE fn(x,f,n)
REAL :: x(n), f(n)

3.4 Non-linear System of Equations 151

f(1)=x(1)+3*ALOG(ABS(x(1)))−x(2)**2
f(2)=2*x(1)**2−x(1)*x(2)−5*x(1)+1
RETURN
END SUBROUTINE fn
!***************************************

SUBROUTINE JACOBIAN(x,yacobian,n)
REAL :: x(n), yacobian(n,n), fplus(n), fminus(n)
! yacobian(1,1)=1+3/x(1); yacobian(1,2)=−2*x(2)
! yacobian(2,1)=4*x(1)−x(2)−5; yacobian(2,2)=−x(1)
hj=0.0001
DO i=1,n
DO j=1,n
xj=x(j); x(j)=xj+hj; CALL fn(x,fplus,n)
x(j)=xj-hj; CALL fn(x,fminus,n); x(j)=xj
yacobian(i,j)=(fplus(i)-fminus(i))/(2*hj)
END DO
END DO
END SUBROUTINE JACOBIAN
!***************************************

! Append SUBROUTINE DAMPED_NEWTON
! Append SUBROUTINE GAUSS

In the last segment, subroutine GAUSS from Sect. 3.1.2 must be appended as stated
at the end of the program. For the initial approximation (i) x = 5, y = 1 the output
of the program gives

x = 3.75683, y = 2.77985

without going through the damping procedure (that is to say with m = 0). For the
case (i i) x = 5, y = 0 however, another solution

x = 1.37348, y = −1.52497

is obtained after damping is resorted to in the iterations (m ≥ 1). The smallness of
sn2 confirms the accuracy of the roots. The third case (i i i) yields the same root as
in case (i i). �

Exercises

Solve the following equations:
1.

4x2 + y2 + 2xy − y − 2 = 0
2x2 + 3xy + y2 − 3 = 0

Assume x (0) = 0.1, y(0) = 0.1. [x = 0.5, y = 1.0]

152 3 System of Equations

2.
x6 − 5x2y2 + 136 = 0
y4 − 3x4y + 80 = 0

Assume x (0) = 1, y(0) = 2. [x = 2.08838, y = 3.16875]
3.

y cos(xy) + 1 = 0
sin(xy) + x − y = 0

Assume (i) x (0) = y(0) = 0, (i i) x (0) = y(0) = 1, (i i i) x (0) = 1, y(0) = 2.
[(i) x = −3.20904, y = −2.30780 (i i) x = −4.22486, y = −3.27269
(i i i) x = 1/08619, y = 1.94369]

3.4.2 Broyden’s Method

This method is an extension of the Secant Method for numerically solving a single
non-linear equation to the case of a system of n non-linear equations. The objective of
the method is to avoid repeated evaluation of the Jacobian matrix f ′(x) in the Newton
method, that may be of very complicated form. In the secant iterations (Sect. 2.1.2.3,
Chap. 2), if x0, x1, x2 are three iterates of a real zero ξ of the equation f (x) = 0,
then writing f0 = f (x0), f1 = f (x1) for convenience, the next iterate is given by
the relation

x2 = x1 − f (x1)
(x1 − x2
f (x1) − f (x0)

)
= x1 − (f ′

1)
−1 f1

where f ′
1 = (f1 − f0)/(x1 − x0) is the secant approximation of the derivative

f ′(x1) ≈ f ′
1. The expression for f ′

1 can be put in the iterative form

f ′
1 = f ′

0 + [f1 − f0 − f ′
0(x1 − x0)] (x1 − x0)

(x1 − x0)2
(3.37)

in terms of the approximate derivative at the preceding point f ′
0, and the function

values f0, f1 at the points x0 and x1.
In multidimension n, the secant approximation of Eq. (3.36) for k = 1 becomes

x(2) = x(1) − [f ′(1)]−1 f (1) (3.38)

with

f ′(1) (x(1) − x(0)) = f (1) − f (0) (3.39)

Equation (3.39) means that the Jacobian matrix f ′(1) maps the vector x(1) − x(0)

on to f (1) − f (0). Now, any vector such as f (1) − f (0) can be represented as a linear

3.4 Non-linear System of Equations 153

combination of x(1) − x(0) and a vector v orthogonal to it, which in matrix notations,
satisfies the orthogonality condition

[x(1) − x(0)]T v = 0

Suppose that the vector v is such that

f ′(1) v = f ′(0) v

then it is implied that v remains unaffected by updation of the Jacobian from f ′(0) to
f ′(1). By direct substitution it can be verified that the above two conditions and Eq.
(3.39) are uniquely satisfied if

f ′(1) = f ′(0) + [f (1) − f (0) − f ′(0) (x(1) − x(0))] [x(1) − x(0)]T
||x(1) − x(0)||22

(3.40)

Evidently, Eq. (3.40) reduces to Eq. (3.37) in the case of one dimension n = 1. In
general, the iteration (3.38) is

f ′(k) (x(k+1) − x(k)) = −f (k) (3.41)

while (3.40) generalises to

f ′(k) = f ′(k−1) + [f (k) − f (k−1) − f ′(k−1) (x(k) − x(k−1))] [xk − x(k−1)]T
||x(k) − x(k−1)||22

(3.42)

The scheme (3.41), (3.42) is implemented below in which the initial approxima-
tion of the root x(o) is assumed to be given. The next approximation x(1) is obtained
by Newton’s method using the Jacobian value by finite differencing. Starting with
these two approximations, x(2) is obtained from the formulae (3.41) and (3.42), and
the iterations are carried on until convergence is indicated. As in Damped New-
ton method, the step size is reduced by powers of 2 in the step length, if lack of
convergence is indicated from the condition ||f (k+1)||2 > ||f (k)||2.
Remark 3.1 In the implementation of theBroydenMethod, a procedure for obtaining
the inverse [f ′(k)]−1 using a matrix inversion formula due to Sherman - Morrison is
often suggested to obtain x(k+1) from x(k) in formula (3.41). This however makes the
subroutine much longer.

Charles George Broyden (1933–2011), British mathematician, who specialised in optimisation

problems and numerical linear algebra. While working on a problem of physics in the English

Electric Company, he developed the method in 1965 that bears his name. Later on, he joined

Aberystwyth University, Wales moving to Essex University, and subsequently to University of

Bologna, Italy.

154 3 System of Equations

SUBROUTINE BROYDEN(x,n,xtol,maxiter,mmax)
! Computes a root of f(1)(x(1), x(2),....., x(n))=0
! f(2)(x(1), x(2),, x(n))=0, etc.
! f(n)(x(1), x(2),, x(n))=0
! given by a subroutine fn(x,f,n).
! n = number of unknowns and equations. (Input)
! x(1), x(2),, x(n) (Initial approximation of a root). (Input)
! The root is returned in x(1), x(2), .̇..., x(n). (Output)
! maxiter = maximum number of iterations allowed. (Input)
! mmax = maximum number of step length halving employed. (Input)
!***
REAL :: x(n), x1(n), f(n), f1(n), x2(n), f2(n), yacobian(n), fp(n), fm(n)
hj=0.0001
DO i=1,n; DO j=1,n
xj=x(j); x(j)=xj+hj; CALL fn(x,fp,n)
x(j)=xj-hj; CALL fn(x,fm,n); x(j)=xj
yacobian(i,j)=(fp(i)-fm(i))/(2*hj)
END DO; END DO
DO k=1,maxiter
CALL fn(x,f,n)

IF(k==1) THEN
CALL GAUSS(n,yacobian,f)
DO i=1,n
x1(i)=x(i)-f(i)
END DO
CALL fn(x1,f1,n)
END IF

DO i=1,n
fp(i)=x1(i)-x(i)
END DO
sn=0.0; fpn=0.0
DO i=1,n
sn=sn+f1(i)**2
fpn=fpn+fp(i)**2
END DO
DO i=1,n
fm(i)=0.0
DO j=1,n
fm(i)=fm(i)+yacobian(i,j)*fp(j)
END DO; END DO
DO i=1,n; DO j=1,n
yacobian(i,j)=yacobian(i,j)+(f1(i)-f(i)-fm(i))*fp(j)/fpn
END DO; END DO
CALL GAUSS(n,yacobian,f1)
DO i=1,n

3.4 Non-linear System of Equations 155

fp(i)=-f1(i)
END DO
DO m=0,mmax
DO i=1,n
x2(i)=x1(i)+fp(i)/2**m
END DO
amax=0.0
DO i=1,n
absdiff=ABS(x2(i)-x1(i))
IF(amax<absdiff) amax=absdiff
END DO
IF(amax<0.1E-6 .OR. sn<0.1E-10) RETURN
CALL fn(x2,f2,n)
snu=0.0
DO i=1,n
snu=snu+(f2(i))**2
END DO
IF(snu<sn) EXIT
END DO
DO i=1,n
x(i)=x1(i); x1(i)=x2(i); f(i)=f1(i); f1(i)=f2(i)
END DO
END DO
END SUBROUTINE BROYDEN

Example 1. Solve the equations of Example 1 of the preceding section employing
subroutine BROYDEN.

Solution. A Fortran program is written as follows:

PROGRAM MAIN
REAL :: x(2)
x(1)=5; x(2)=1 !First initial value.
! x(1)=5; x(2)=0 !Second initial value.
! x(1)=2; x(2)=-2 !Third initial value.
n=2; xtol=0.1E-6; maxiter=20; mmax=20
CALL DAMPED_NEWTON(x,n,xtol,maxiter)
PRINT*, (x(i), i=1,2)
END
!**

SUBROUTINE fn(x,f,n)
REAL :: x(n), f(n)
f(1)=x(1)+3*ALOG(ABS(x(1)))−x(2)**2
f(2)=2*x(1)**2−x(1)*x(2)−5*x(1)+1
RETURN

156 3 System of Equations

END SUBROUTINE fn
!***************************************

! Append SUBROUTINE BROYDEN
! Append SUBROUTINE GAUSS

Running the program, the answers are obtained exactly as from the application of
the Damped Newton’s Method. However, it is to be noted that for the first case x(1)
= 5, x(2) = 1, as no subdivision of the step length is required, the maximum value of
mmax should not be set greater than 16.

3.4.3 General Iteration for n Equations

Here the ideas of Sect. 2.2, Chap.2 for a single equation are extended to the case of
n equations. We suppose that it is possible to rewrite Eq. (3.34a) in the form

x = φ(x) (3.43)

A root ξ (real or complex), therefore satisfies ξ = φ(ξ) and so is a fixed point of φ.
Let x(0) be an initial approximation of ξ . starting with this value, one can construct
the iterates x(1), x(2), · · · satisfying

x(k+1) = φ(x(k)) (3.44)

Sufficient conditions for convergence of the iterates to ξ is given by

Theorem 3.7 (Banach Fixed-Point Theorem) Suppose φ maps a closed set X into
itself and is contractive, that is to say, for x, z ∈ X

‖φ(x) − φ(z)‖ ≤ K‖x − z‖, K < 1

then the iterates (3.44) converge to ξ , i.e. limk→∞ ‖x(k) − ξ‖ = 0 with error bounds

(i) ‖ξ − x(k)‖ ≤ Kn

1 − K
‖x(1) − x(0)‖

(i i) ‖ξ − x(k)‖ ≤ K

1 − K
‖x(k) − x(k−1)‖.

The proof is an extension of the proof of theorem 3 of Chap.2, with the replacement
of absolute values by vector norms.
Stefan Banach (1892–1945), Polish mathematician. He is the founder of the subject of functional

analysis. The concept of normed linear spaces is due to Banach.

When φ is a linear function, the iteration (3.38), becomes identical to Jacobi
relaxations. To accelerate convergence of iterations of (3.37), one may employ the
procedure of Seidel relaxation, using currently available variables for updation.

3.4 Non-linear System of Equations 157

Example 1. Solve the system of non-linear equations

x − 0.1y2 + 0.05z2 = 0.7
y + 0.3x2 − 0.1xz = 0.5
z + 0.4y2 + 0.1xy = 1.2

Solution. We write the equations in iterative form

x = 0.7 + 0.1y2 − 0.05z2

y = 0.5 − 0.3x + 0.1xz
z = 1.2 − 0.4y2 − 0.1xy

starting with x (0) = 0.7, y(0) = 0.5, z(0) = 1.2, we obtain the Seidel iterations

x (1) = 0.65300 y(1) = 0.45044 z(1) = 1.08943
x (2) = 0.66095 y(2) = 0.44095 z(2) = 1.09308
x (3) = 0.65970 y(3) = 0.44155 z(3) = 1.09289
x (4) = 0.65978 y(4) = 0.44151 z(4) = 1.09290
x (5) = 0.65977 y(5) = 0.44152 z(5) = 1.09290
x (6) = 0.65977 y(6) = 0.44152 z(6) = 1.09290

The last two iterates coincide, supplying the answer. �

3.4.4 Unconstrained Optimization of a Function

Optimization of a function of several variables of the form

z = F(x1, x2, · · · , xn) (3.45)

where x1, x2, · · · , xn are the independent variables, appear in some types of appli-
cation in different sciences. When the points (x1, x2, · · · , xn) are bounded by cer-
tain domain, the problem is called Constrained Optimization; otherwise it is called
Unconstrained Optimization. The subject of Operations Research exclusively deals
with the first type of optimization and does not belong to scope of this book. The
latter type of optimization is generaliztion of the topic of Maxima and Minima of
a function of one variable y = f (x), albeit with associated difficulties of higher
dimensions.

It is known from the calculus of functions of several variables that the points of
maxima and minima of z defined by Eq. (3.45) are given by the system of equations

∂F

∂x1
= 0,

∂F

∂x2
= 0, · · · ,

∂F

∂xn
= 0 (3.46)

158 3 System of Equations

When the analytical form of the derivatives appearing in the left- hand side of these
equations are known, the solution of the system (3.46) may be sought by the methods
of Sects. 3.4.1–3.4.4. It is known from the theory of maxima and minima that the
extremal points determined by Eq. (3.46) may also contain ‘Saddle Points” that are
maximum along certain sections and minimum along other sections, depending on
the nature of the Hessian matrix formed by the second-order partial derivatives.
The characterization of extremal points is not attempted because of computational
difficulty entailed in that method.

In this section, an extremal point on the other hand, is directly searched. To
focus attention, a local minimum of z is searched starting from a given starting
point (x (0)

1 , x (0)
2 , · · · , x (0)

n), ‘descending’ along a slope. If a local maximum of z
is required, the minimum of −z is similarly searched. Now, in vector calculus it is
known that the increase in the function F(x), wherex = [x1, x2, · · · , xn]T is greatest
in the direction of the gradient of F , or∇F , and so the best choice of descent is along
the direction of steepest descent −∇F . Hence from a starting point x(0), if a small
step s > 0 close to 0 is taken to reach the point

x(1) = x(0) − s ∇F(x(0) (3.47)

then the problem is to find s so that F(x(1)) is significantly less than F(x(0)). A long
step in general, can obviously spoil the search. The selection of s is therefore carried
out by finding the minimum of the function

h(s) := F(x(0) − s ∇(x(0)) (3.48)

The seach process can then be carried out step by step to approach the minimum,
tracing the line of steepest decent on the surface z = F(x). However, as no analytical
criterion for the minimum of z is introduced, strict check on the iterations should be
kept before accepting the end results.

Theminimumof h(s) for small values of s is searched by approximation of h(s) by
a parabola passing through three nearby points [s1, h(s1)], [s2, h(s2] and [s3, h(s3)]
as was adopted in Muller’s method (Sect. 2.5.1, Chap. 2), such that the parabola is
concave upwards, possessing a minimum. Thus, for 0 = s1 ≤ s2 < s3, let

h(s) ≈ a (s − s2)
2 + b (s − s2) + c (3.49)

Since the parabola passes through the aforesaid points

c = h(s2) (3.50)

a(s1 − s2)
2 + b(s1 − s2) + c = h(s1)

a(s3 − s2)
2 + b(s3 − s2) + c = h(s3)

3.4 Non-linear System of Equations 159

where, since h(s) is supposed to be a dcreasing function h(s1) ≥ h(s2) > h(s3).
Eliminating c and b in succession from the above set of equations, we obtain

b = (s2 − s1) a + h(s2) − h(s1)

s2 − s1

a = 1

s3 − s1

[h(s3) − h(s2)

s3 − s2
− h(s2) − h(s1)

s2 − s1

]

In particular, if s2 → s1 = 0, then using Eq. (3.48)

b → h′(0) = −(∇F(x(0)) · ∇F(x(0))) = −‖∇F(x(0))‖22 (3.51)

and

a → 1

s3 − s1

[h(s3) − h(s2)

s3 − s2
− b

]
(3.52)

The function h(s) approximated by Eq. (3.49) is then minimum for

s = s2 − b

2a
= − b

2a
(3.53)

provided that 0 < s < s3; otherwise it is minimum at s = s3.
The above procedure is implemented in the subroutine named STEEPEST_

DESCENT to follow. The step length s in the procedure is first scaled with respect
to ‖∇F(x(0))‖2 in Eq. (3.48), or in other words ∇F(x(0)) is first normalised by
its norm. Next, at each step, it is assumed that s1 = s2 = 0 for which Eqs. (3.50),
(3.51) and (3.52) hold, while s3 is taken as 1. If h(s3) > h(s2), then s3 is reduced
by half till h(s3) < h(s2). Following Eq. (3.53), the minimum of h(s) is attained at
s = min{−b/2a, s3}. The output is taken from the subroutine itself in order to track
the progress of the iterations. It should be noted that failure at any step is possible
because of the absence of a minimum in the neighbourhood of the starting point.
Second, as the method is solely dependent on the gradient of the function F , possible
rapid changes in the quantity may mar the nature of the iterations. The subroutine
includes a high degree approximation for the computation of the gradient from func-
tion values, in case exact analytical formulae are not available for the components
of the gradient. In the contrary case, the exact expressions for the components must
be used for preserving greater accuracy in the iterations. The approximation of the
gradient is based on the following finite difference formula that can be proved by
Taylor series expansions:

∂F

∂xi
= 1

2h
[−F(xi + 2h) + 8 F(xi + h) − 8 F(xi − h) + F(xi − 2h)] + O(h6)

160 3 System of Equations

where the arguments other than xi have been suppressed for brevity in writing.
In the subroutine, the function values of F are obtained from a separate function
subprogram named F(x,n).

SUBROUTINE STEEPEST_DESCENT(x,n,z,maxiter)
! Searches for a local minmum of the function z=F(x(1), x(2),, x(n)).
! x(1), x(2),, x(n) (Initial approximation of a point of local

minimum). (Input)
! n = number of independent variables. (Input)
! The point of minimum F is returned in x(1), x(2),,x(n). (Output)
! The minimum value of F is retuned in z. (Output)
! maxiter = maximum number of iterations allowed. (Input)
!**
REAL :: x(n), gradf(n)
z = F(x,n)
h=0.0001
DO k=1,maxiter
DO i=1,n
! Approximation for ∂F/∂xi follows. Use exact expression if available.
xi=x(i); x(i)=xi+h; fplus1=F(x,n); x(i)=xi+2*h; fplus2=F(x,n)
x(i)=xi-h; fminus1=F(x,n); x(i)=xi-2*h; fminus2=F(x,n); x(i)=xi;
gradf(i)=(-fplus2+8*fplus1-8*fminus1+fminus2)/(12*h)
END DO
anorm=0.0
DO i=1,n
anorm=anorm+gradf(i)**2
END DO
anorm=SQRT(anorm)
DO i=1,n
gradf(i)=gradf(i)/anorm
END DO
IF(anorm==0.0) RETURN
s1=0; s2=0; s3=1

h1=F(x-s1*gradf,n)
h2=h1

10 h3=F(x-s3*grdaf,n)
IF(h3>h2) THEN
s3=s3/2; GOTO 10
END IF
b=-anorm**2; a=((h3-h2)/(s3-s2)-b)/(s3-s1)
s=-0.5*b/a
s=MIN(s,s3)
h=a*(s-s2)**2+b*(s-s2)+h2
DO i=1,n
x(i)=x(i)-s*gradf(i)

3.4 Non-linear System of Equations 161

END DO
znew=F(x,n); hmin=MIN(h1,h2,h3)
amin=MIN(ABS(znew-z),ABS(znew-h),ABS(hmin-znew))
IF(amin<0.1E-10) EXIT
z=znew
PRINT*, k, x, z
END DO
RETURN
END SUBROUTINE STEEPEST_DESCENT
!**
! Append FUNCTION F(x,n)

It is again emphasised that in any particular application, tracking of the iterations
is essential for arriving at a minimum with reasonable accuracy, as can be seen in the
following examples and exercises. The accurate point of minimum can be searched
by separately computing the values of the function F in an element whose centre is
the approximate value.

Example 1. Find the root of the following pair of equations by steepest descent
search:

f1(x, y) = x + 3 ln |x | − y2 = 0

f2(x, y) = 2x2 − xy − 5x + 1 = 0

considered earlier in Sect. 3.4.1; taking the starting point as x = 4, y = 3.

Solution. Writing a simple main program callings the subroutine STEEPEST_
DESCENT, taking z = [f1(x, y)2 + f2(x, y)2] in the function subprogram F(x,n),
and the finite difference approximation for the components of gradient of F in the
subroutine, the minimum of z is found to be at x = 3.75746, y = 2.78203, with
zmin = 0.00014 which is small. Hence the approximation of the root. �

Example 2. Find the point where the function

F(x1, x2) = x31 + x32 − 2x21 + 3 x22 − 5

is minimum, starting the search from the point (3, −1)

Solution. Writing a simple main program calling the subroutine STEEPEST_
DESCENT the minimum is found at x1 = 1.32807, x2 = −0.01463 using the exact
expression for the components of the gradient of F, and x1 = 1.15553, x2 = 0.00012
from the finite difference approximation of the gradient of F. The exact point is
(x1 = 4/3, x2 = 0). Notice the error in the approximate method. �

162 3 System of Equations

Exercises

Find the points of minimum value of the following functions, using both the exact
and the approximate expressions for the gradient of the functions:
1. z = x2 − xy + y2 − 2x + y, starting at (1.5, −0.5).
[At (0.99722, 0.00278) (for exact expression of gradient), and at (1.00239,
−0.00241) (for approximate expression of gradient). Exact point (1, 0)].
2. z = 5x2 + y2 + 4xy − 14x − 6y + 20, starting at (0.5, 0.5).
[At (1.06325, 0.71524) (for exact expression of gradient), and at (1.06304, 0.71569)
(for approximate expression of gradient). Exact point (1, 1)].
3. z = 2x2 − 2xy + y2, starting at the point (2, 3).
[At (0.87864, 0.22395) (for exact expression of gradient, and at (0.12083, 0.25480)
(for approximate expression of gradient). Notice that the minimum of z is reached
before the iterations end. Exact point (0, 0)].
4. z = x3y3 − 3x − 3y, starting at (2, 2).
[At (0.99382, 0.99382) (for exact expressionof gradient), and at (0.99394, 0.99394)
(for approximate expression of gradient). Exact point (1, 1). The point is actually a
saddle point and not a minimum point in the strict sense].
5. u = x3 − 2x2 + y2 + z2 − 2xy + xz − yz + 3z, starting at (2, 1, 0).
[At (2.01496, 1.11808, −1.96995) (for exact expression of gradient), and at
(2.05479, 1.13437, −1.88389) (for approximate expression for gradient in 14 iter-
ations. Exact point (2, 1, 0)].

Chapter 4
Interpolation

Approximation of a function by a simpler function is a fundamental topic in numerical
computing. Looking back, the solution of an equation f (x) = 0 by the regula falsi,
secant and Newton methods depended on local approximation of f (x) by linear
function (Chap. 2). The powerful Müller’s method utilises approximation of f (x)
by a local quadratic function. The same approach is adopted for solving a system
of nonlinear equations by the general Newton and the Broyden methods. Function
minimization by the steepest-decent method is also based on the same technique.
In the next chapter, the problems of numerical differentiation and integration are
systematically developed by this very approach.

Given a continuous function f of a real variable x ∈ [a, b], one can construct
a table of distinct discrete values (xi , yi), where yi = f (xi), xi ∈ [a, b] and (i =
0, 1, 2, · · · , n). The interpolation points or nodes xi may be arranged in a net:
a = x0 < x1,< · · · < xn inorder to focus on their distribution.Mathematical Tables
of transcendental functions like sin(x), cos(x), ex , ln(x), present the functions in
such tabular form.Results of laboratory experimentsmaybe similarly presented,with
the difference that the analytical expression for f may not be known. The functional
relation between two variables x and y is thus represented in a discrete form. The
concept can easily be generalised to functions ofmore than one independent variable.

Let a (known or unknown) function f ∈ C[a, b] be approximated by a simpler
function φ ∈ C[a, b]. If the function φ also passes through the given data points
(xi , yi = f (xi)) (i = 0, 1, · · · , n), i.e. φ(xi) = yi then the approximation is called
interpolation. Evidently, for x ∈ [a, b], f (x) ≈ φ(x) in some sense, where φ(x) is
easily computable. If φ is a simple polynomial of some degree, the interpolation is
calledpolynomial interpolation. Similarly, ifφ is of trigonometric nature containing
sine and cosine functions, we have trigonometric interpolation.

In general, the theory of construction of function φ requires use of Haar spaces
(Alfred Haar (1885–1933)). Suppose that φ0, φ1, · · · ,φn ∈ C[a, b] are
linearly independent functions such that every nonzero element φ spanned by
(φ0, φ1, · · · , φn) has atmost n distinct zeros in [a, b], then the function space

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1_4

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7114-1_4&domain=pdf
https://doi.org/10.1007/978-981-13-7114-1_4

164 4 Interpolation

U := span(φ0,φ1, · · · , φn) is called aHaar space. Given a set of data points (xi , yi)
(i = 0, 1, · · · , n) at the nodes xi we can select an element φ ∈ U such that

φ = a0φ0 + a1φ1 + · · · + anφn

where a0, a1, · · · , an are some constants. φ is an interpolating function if it passes
through the distinct data points (xi , yi) satisfying the linear system of equations

a0φ0(xi) + a1φi (xi) + · · · + anφn(xi) = yi

for i = 0, 1, · · · , n. The system possesses a unique solution for a0, a1, · · · , an ,
since φ0, φ1, · · · , φn are linearly independent. Using this method, we proceed to
discuss polynomial interpolation.

4.1 Polynomial Interpolation

This type of interpolation is most important in numerical analysis. In this case, φ is
a polynomial, which in this chapter is taken in the notationally convenient form

φ(x) = a0 + a1x + a2x
2 + · · · + anx

n (4.1)

(like a truncated power series). The following theorem proves the existence of
such φ:

Theorem 4.1 Given a set of distinct nodes xi ∈ [a, b] with associated values yi =
f (xi) (i = 0, 1, · · · , n), there exists a unique polynomialφ of degree at most n ∈ U,
which takes on these values.

Proof A polynomial of degree at most n is of the type (4.1). Since it must pass
through the data points (xi , yi) (i = 0, 1, · · · , n),

a0 + a1xi + · · · + anx
n
i = yi

for i = 0, 1, · · · , n. The determinant of this linear system for a0, a1, · · · , an is the
Vandermonde determinant(Alexandre Theóphile Vandermonde (1735–1796))

V :=

∣
∣
∣
∣
∣
∣
∣
∣

1 x0 · · · xn0
1 x1 · · · xn1· · · · · · · · · · · ·
1 xn · · · xnn

∣
∣
∣
∣
∣
∣
∣
∣

=
∏

0≤ j≤<i≤n

(xi − x j)

Thus, V �= 0, yielding a unique solution for a0, a1, · · · , an . φ is therefore uniquely
determined. Evidently, φ ∈ U . ��

4.1 Polynomial Interpolation 165

Remark If an = 0 the degree of φ(x) is less than n, otherwise it is exactly n.

Example 1. Let f (x) = sin x, −π/2 ≤ x ≤ +π/2. Find φ(x) for three data points
(−π/2, −1), (0, 0) and (π/2, 1).

Solution. For three data points the degree of φ(x) must be 2, that is φ(x) = a0 +
a1x + a2x2. Since it must through the three given points,

a0 − a1
π

2
+ a2

π2

4
= −1, a0 = 0, a0 + a1

π

2
+ a2

π2

4
= +1

Hence a0 = a2 = 0, a1 = 2/π.Thus φ(x) = 2
π
x , which is linear in x . ��

Although the method of proof of Theorem 1 is constructive, practical implemen-
tation is done by simpler alternative ways.

4.1.1 Lagrange’s Method

As before, let a function f ∈ C[a, b] be given as a set of (n + 1) distinct data
points (xi , yi = f (xi)) (i = 0, 1, · · · , n). In Lagrange’smethod, the approximating
interpolation polynomial φ of degree n is written as

φ(x) = A0(x − x1)(x − x2) · · · (x − xn)
+ A1(x − x0)(x − x2) · · · (x − xn)
+ ·
+ An(x − x0)(x − x1) · · · (x − xn−1)

The right-hand side of the above expression contains unknown coefficients
A0, A1 · · · , An instead of a0, a1, · · · , an of Eq. (4.1). Since it must pass through
the given data points, setting x = x0 φ(x0) = y0, we get y0 = A0(x0 − x1)(x0 −
x2) · · · (x0 − xn), directly yielding the coefficient A0 as

A0 = y0
(x0 − x1)(x0 − x2) · · · (x0 − xn)

Similarly setting x = x1, φ(x1) = y1; · · · ; x = xn, φ(xn) = yn , we get

A1 = y1
(x1 − x0)(x1 − x2) · · · (x1 − xn)· ·

An = yn
(xn − x0)(xn − x1) · · · (xn − xn−1)

Thus we obtain

φ(x) = (x − x1)(x − x2) · · · (x − xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
y0

166 4 Interpolation

+ (x − x0)(x − x2) · · · (x − xn)

(x1 − x0)(x1 − x2) · · · (x1 − xn)
y1

+ ·
+ (x − x0)(x − x1) · · · (x − xn−1)

(xn − x0)(xn − x1) · · · (xn − xn−1)
yn (4.2)

Compactly, Eq. (4.2) can be written as

φ(x) =
n

∑

i=0

li (x) yi (4.2a)

where

li (x) =
n

∏

j = 0
j �= i

x − x j

xi − x j

Joseph Louis Lagrange (1736–1813), Italy born Frenchmathematicianwhomade fundamental

contribution to all fields of analysis, number theory, analytical and celestial mechanics. Regarded

as the greatest mathematician of the eighteenth century. He was invited to the court of the king of

Germany, and later to the court of the French emperor, and appointed a Senator after the French

Revolution. His theorems in Calculus are too well known and his development of Calculus of

Variations led to the creation ofAnalyticalMechanics, that reducedmechanics to a study of analysis.

He also laid the foundations of Group Theory, and proved a number of theorems in Number Theory.

In celestial mechanics, he studied the three-body problem and found special case solutions that are

known as Lagrangian Points. A lunar crater is named after Lagrange.

Apparently formula (4.2) is easily applicable, except for two disadvantages. First,
it contains several subtractions in both the numerator and the denominator, which
may cause loss of significant figures due to roundoff errors. Second, if the number
of data points is increased to assess the accuracy of the result, then there is no way to
make use of the existing polynomial, which has already been computed. The method
to follow in the next subsection is better in this latter respect.

Example 1. The function y = f (x) is tabulated as follows:

x 1 2 4 7
y 1 1.26 1.59 1.91

Find its value at x = 5 by Lagrange interpolation.

4.1 Polynomial Interpolation 167

Solution. Applying Eq. (4.2)

f (5) ≈ φ(5) = (5 − 2)(5 − 4)(5 − 7)

(1 − 2)(1 − 4)(1 − 7)
× 1 + (5 − 1)(5 − 4)(5 − 7)

(2 − 1)(2 − 4)(2 − 7)
× 1.26

+ (5 − 1)(5 − 2)(5 − 7)

(4 − 1)(4 − 2)(4 − 7)
× 1.59 + (5 − 1)(5 − 2)(5 − 4)

(7 − 1)(7 − 2)(7 − 4)
× 1.91

=1.70 �

Exercises

1. Find the interpolating polynomial for the function y = sin πx , choosing the points
x0 = 0, x1 = 1/6, and x = 1/2.

[φ(x) = x

2
(7 − 6x)].

2. Find the Lagrange interpolating polynomial passing through the data points
(−1, −6), (1, 1), (2, 3/2) and (3, 2).

[φ(x) = 1

4
(x3 − 6x2 + 13x − 4)].

3. Obtain approximate value of y by interpolation when x = 1.6, from the following
table:

x 1.2 2.0 2.5 3.0
y 1.36 0.58 0.34 0.20

[0.89].

4. Determine by Lagrange’s interpolation, the percentage number of patients of over
40 years age, using the following data:

Age over (x) years 30 35 45 55
%number (y) of patients 148 96 68 34

[74.7].

5. The following table gives the form factor Y and the number of teeth Z for the
design of a gear:

Z 20 22 24 30 40 50
Y 0.320 0.330 0.335 0.358 0.390 0.408

Calculate the value of Y when Z = 35.

[0.386].

6 (Hermite Interpolation). Let f and its derivative f ′ be given as data points
(xi , yi , y′

i), (i = 0, 1, · · · , n). Prove that the polynomial of degree 2n + 1, satisfy-
ing the data is

168 4 Interpolation

φ(x) =
n

∑

i=0

[

{1 − 2l ′i (xi)(x − xi)}l2i (x) yi + (x − xi) l
2
i (x)y

′
i

]

[As in Lagrange interpolation, let

φ(x) =
n

∑

i=0

[ui (x) yi + vi (x) y
′
i]

For it to pass through the given data points, one gets the nodal conditions

ui (x j) =
{

1 for i = j
0 for i �= j

, u′
i (x j) = 0

vi (x j) = 0, v′
i (x j) =

{

1 for i = j
0 for i �= j

ui (x), vi (x) must be of degree 2n + 1 to pass through the given 2n + 2 data. Hence
put

ui (x) = ai (x) l
2
i (x), vi (x) = bi (x) l

2
i (x)

where ai (x), bi (x) are linear in x . The nodal conditions give

ai (xi) = 1, a′
i (xi) = −2l ′i (xi)

bi (xi) = 0, b′
i (xi) = 1

Hence ai (x) = 1 − 2l ′i (xi) (x − xi), bi (x) = x − xi].

Charles Hermite (1822–1901). French mathematician and scholar of Sanskrit and Persian.

In 1873, he proved for the first time that e is a transcendental number. Using similar methods

Lindemann in the year 1882 proved that π was also a transcendental number. He applied elliptic

functions to solve the general quintic equation. Hermite is regarded as successor of Gauss and

Cauchy in higher arithmetic and analysis.

4.1.2 Newton’s Method: Divided Differences

Given a function f ∈ C[a, b] at a set of data points (xi , f (xi), (i = 0, 1, · · · , n),
Newton (Sir Isaac Newton (1642–1727)), represented the interpolating polynomial
φ of degree at most n, in terms of increasing number of the given nodal points in the
form

φ(x) = B0 + B1(x − x0) + B2(x − x0)(x − x1) + · · · + Bn(x − x0)(x − x1) · · · (x − xn−1)

(4.3)

4.1 Polynomial Interpolation 169

Sinceφ(x)passes through thedata points (x0, f (x0)), (x1, f (x1)), · · · , (xn, f (xn)),
we must have

f (x0) = B0

f (x1) = B0 + B1(x1 − x0)

f (x2) = B0 + B1(x2 − x0) + B2(x2 − x0)(x2 − x1)

· ·
f (xn) = B0 + B1(xn − x0) + B2(xn − x0)(xn − x1) + · · ·

+ Bn(xn − x0) · · · (xn − xn−1)

The step by step solution of the system can be written as

B0 = f (x0) =: f [x0]
B1 = f (x1) − f (x0)

x1 − x0
=: f [x0, x1]

B2 = f [x1, x2] − f [x0, x1]
x2 − x0

=: f [x0, x1, x2] etc.

where the defined quantities on the right hand sides are respectively called divided
differences of order 0, 1, 2, etc. With a little more effort, we can determine B3 and
guess that

Bk = f [x0, x1, · · · , xk] := f [x1, x2, · · · , xk] − f [x0, x1, · · · , xk−1]
xk − x0

(4.4)

for k = 1, 2, · · · , n. To establish Eq. (4.4), let φk(x) denote the polynomial of at
most degree k up to the coefficient Bk . Then one can write

φk(x) = xk − x

xk − x0
φk−1(x) + x − x0

xk − x0
ψk−1(x)

where ψk−1(x) is a polynomial of degree at most k − 1. Since φk(x) and (xk −
x)φk−1(x) pass through the points (x1, f (x1)), · · · , (xk, f (xk)), ψk−1(x)must also
pass through these points. By uniqueness of polynomials, equating the coefficients
of xk on the two sides of the equation, we obtain Eq. (4.4).

In Newton’s formula, the order of the nodes x0, x1, · · · , xn is immaterial and
the polynomial is unique. A divided difference f [x0, x1, · · · , xk], (k ≤ n) is the
coefficient of xk in the polynomial and solely depends on the numbers x0, · · · , xk .
Hence the nodal points in any divided difference can be permuted without change
of value. In other words, the divided differences are symmetric functions of their
arguments.

For calculating the divided differences by hand, it is convenient to arrange them
in a table of the following form:

170 4 Interpolation

k = 0 1 2 3
x0 f [x0]

f [x0, x1]
x1 f [x1] f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f [x2] f [x1, x2, x3]

...
. . .

f [x2, x3]
...

x3 f [x3]
...

...
...

The entries in the table can be made columnwise (in the order k = 0, 1, 2, · · ·) by
inspection; for instance f [x0] = f (x0), f [x1, x2] = (f [x2] − f [x1])/(x2 − x1),
f [x1, x2, x3] = (f [x2, x3] − f [x1, x2])/(x3 − x1). The divided differences
required in the interpolation formula (4.3) together with the coefficients Bk given
by Eq. (4.4), occur along the forward slope of the table.

Example 1. Solve Example 1, Sect. 4.1.1 by Newton’s divided difference method.

Solution. As above we first form the divided difference table

0 1 2 3
1 1

1.26 − 1

2 − 1
= 0.26

2 1.26
0.165 − 0.26

4 − 1= −0.03167
1.59 − 1.26

4 − 2
= 0.165

−0.01167 + 0.03167

7 − 1= 0.00333

4 1.59
0.10667 − 0.165

7 − 2= −0.01167
1.91 − 1.59

7 − 4
= 0.10667

7 1.91

Thus, formula (4.3) with x = 5 yields the interpolated value

φ(5) =1 + 0.26(5 − 1) − 0.03167(5 − 1)(5 − 2) + 0.00353(5 − 1)(5 − 2)(5 − 4)

= 1.69992 = 1.70 (to two decimal places)

as obtained by Lagrange’s method. ��

4.1 Polynomial Interpolation 171

Example 2. Show that f [x0, x1, · · · , xk] =
k

∑

i=0

f (xi)

ω′
k(xi)

, where ωk(x) =
(x − x0) · · · (x − xk).

Solution. Note that ω′
k(xi) = (xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xk) =

k
∏

j = 0
j �= i

(xi − x j).

For k = 1, f [x0, x1] = f (x0)

x0 − x1
+ f (x1)

x1 − x0
.

We continue the proof by induction, assuming the formula to be true for 1 ≤ r < k.
Then

f [x0, · · · , xr+1] = f [x1, · · · , xr+1] − f [x0, · · · , xr]
xr+1 − x0

= 1

xr+1 − x0

[r+1
∑

i=1

f (xi)
r+1
∏

j = 1
j �= i

(xi − x j)

−
r

∑

i=0

f (xi)
r

∏

j = 0
j �= i

(xi − x j)

]

= f (x0)
r+1
∏

j=1

(x0 − x j)

+
r

∑

i=1

f (xi)
r+1
∏

j = 0
j �= i

(xi − x j)

+ f (xr+1)
r

∏

j=0

(xr+1 − x j)

=
r+1
∑

i=0

f (xi)
r+1
∏

j = 0
j �= i

(xi − x j)

��

Example 3. Show that f [x0, x1, · · · , xk] = f (k)(ξ)

k! .

Solution. Letφk(x) be the interpolating polynomial of f (x) through x0, x1, · · · , xk .
Consider the error R(x) = f (x) − φk(x), then R(x) vanishes at k + 1 distinct points
(x0, x1, · · · , xk) in [a, b]. By Rolle’s theorem R′(x) must vanish at least at k points
in [a, b], R′′(x) must similarly vanish at least at k − 1 points in [a, b] and so on.
Finally, Rk(x) must vanish at least at one point ξ in [a, b], i.e.

172 4 Interpolation

f (k(ξ) = φ(k)(ξ) = f [x0, x1, · · · , xk] k!

since f [x0, · · · , xk] is the coefficient of xk in φk(x). ��

Example 4. Show that

f (x) = f [x0] + (x − x0) f [x0, x1] + (x − x0)(x − x1) f [x0, x1, x2] + · · ·
+ (x − x0) · · · (x − xn−1) f [x0, x1, · · · , xn−1] + (x − x0) · · · (x − xn) f [x, x0, x1, · · · , xn]

Solution. From the definition and Eq. (4.4)

f (x) = f [x0] + (x − x0) f [x, x0]
f [x, x0] = f [x0, x1] + (x − x1] f [x, x0, x1]
f [x, x0, x1] = f [x0, , x1, x2] + (x − x2) f [x, x0, x1, x2]
· ·
f [x, x0, · · · , xn−1] = f [x0, x1, · · · , xn] + (x − xn) f [x, x0, x1, · · · , xn]

Multiplying these equations by 1, (x − x0), (x − x0)(x − x1), · · · , (x − x0)(x −
x1) · · · (x − xn−1) and adding, we obtain the required identity. ��
Remark So far we have defined divided differences at distinct nodes only. The defi-
nition can be extended to coincident nodes in the following way.We regard f [x0, x0]
as the limit of f [x0, x1] when x1 tends to x0. Thus

f [x0, x0] := lim
x1 → x0

f (x1) − f (x0)

x1 − x0
= f ′(x0)

by Lagrange’s Mean Value theorem or by Example 3. This example also shows that

f [x0, x0, x0] := f ′′(x0)
2! etc.

f [x0, · · · , x0] (k arguments each equal to x0) := f (k)(x0)

k! .

The divided difference table is helpful inwriting a simple subroutine. First we note
that only the first element of each column of the table is required for interpolation.
Thus if we suppose that the points are (x1, f [x1]), · · · , (xn, f [xn]) and the divided
differences are computed in the reverse bottom-up order, then a one dimensional
array suffices for the purpose. For instance, if there are only three points, then f (3) ←
(f (3) − f (2))/(x(3) − x(2)), f (2) ← (f (2) − f (1))/(x(2) − x(1)) leaves f (1)
unaltered, yielding the first-order divided difference in f (2) and f (3). Similar is the
feature of computation of higher order divided differences. Second, the computation
of the polynomial (4.3) should be performed by Horner’s scheme:

4.1 Polynomial Interpolation 173

φ(x) = f [x1] + (x − x1)(f [x1, x2] + (x − x2)(f [x1, x2, x3] + · · ·
+ (x − xn−1)(f [x1, x2, · · · , xn])))

Following these observations one can write the following subroutine:

SUBROUTINE DIVDIFF(n,x,f,xbar,phi)
! n=number of nodal points. (Input)
! x(1),· · · ,x(n)=abscissa of nodal points. (Input)
! f(1),· · · ,f(n)=function value at the nodal points. (Input)
! Divided differences are returned in these elements. (Output)
! xbar=abscissa of the given point for interpolation. (Input)
! phi=interpolated value of the function. (Output)
!**
REAL :: x(n), f(n)
DO k=2,n
DO i=n,k,−1
f(i)=(f(i)−f(i−1))/(x(i)−x(i−k+1))
END DO; END DO
phi=f(n)
DO k=n−1,1,−1
phi=f(k)+(xbar−x(k))*phi
END DO
RETURN
END SUBROUTINE DIVDIFF

Exercises

1. Using the following data find f (x) as divided difference polynomial in x and
hence find f (3):

x 0 1 2 5
y 2 3 12 147

[f (x) = x3 + x2 − x + 2, f (3) ≈ 35].

2. Solve Exercise 1, Sect. 4.1.1 by Newton’s divided difference method.

3. Compile a table of divided differences for the function given as a table

x −3 0 1 2 3
y −15 −7 5 25 47

Calculate y for x = −1.
[−10.33].

174 4 Interpolation

4. For the function y = f (x) given as a table

x 1.08 1.16 1.23 1.26 1.33 1.39
y 2.945 3.190 3.421 3.525 3.781 4.015

Calculate the value of y at x = 1.30 by divided difference method. Verify the result
by using subroutine DIVDIFF.
[3.669].

5. For the function f (x) = 1/x , prove that

f [x0, x1, · · · , xn] = (−1)n/(x0x1 · · · xn)

[Use induction].

6. Prove that a polynomial Pn(x) of degree n satisfies the relation

Pn[x, x0, · · · , xn] = 0

[Use definition to show that Pn[x, x0], Pn[x, x0, x1], · · · , Pn[x, x0, · · · , xn−1] are
polynomials of degree n − 1, n − 2, · · · , 0 respectively. Now use Eq. (4.4)].

7. Modify subroutine DIVDIFF to compute f (x) at m points xbar(1), xbar(2),· · · ,
xbar(m).

8. In the cold rolling of an aluminium strip the dimensionless reduction R in thickness
at a point and the resistance to plane homogeneous deformation S in tons/sq. in. are
given in the following table:

R 0 8.0 15.5 22.0 32.0
S 3.00 7.60 8.84 9.50 10.32

Calculate S for R = 10.0, by divided difference method.
[8.08].

9. For a soil test a plate load test was conducted on a 30 cm square plate which gave
the following result:

Load (ton) 0.5 1.0 2.0 3.0 4.0 5.0
Settlement (mm) 1.5 3.0 6.0 12.0 18.0 24.0

Calculate the settlement for a load between 2.5 ton and 4.5 ton. You may use sub-
routine DIVDIFF.
[8.7, 20.6].

4.1 Polynomial Interpolation 175

4.1.3 Neville’s Scheme

In certain applications of interpolation, one is interested in interpolating a function
f at a fixed point x̄ , and at no others. Neville’s scheme aims at approximating f (x̄)
by a sequence of polynomials of increasing degree, without actually computing
the coefficients of the polynomial as in Newton’s method. This allows one to add
interpolation points until f (x̄) is approximated to some desired accuracy.

Let the interpolation points be (xi , f (xi) = yi), (i = 0, 1, · · · , n). Let φi j (x)
denote the polynomial of degree j − i , which interpolates f (x) at the points
xi , xi+1, · · · , x j , (i ≤ j). Then evidently φi i (x) = f (xi) and

φi j (x) = 1

x j − xi

∣
∣
∣
∣

φi, j−1(x) xi − x
φi+1, j (x) x j − x

∣
∣
∣
∣

for i < j (4.5)

To verify the relation (4.5), we first note that the degree of the right-hand side is (j −
i − 1) + 1 = j − i . Moreover by definition, φi, j−1(xk) = φi+1, j (xk) = yk for k =
i + 1, · · · , j − 1 and soφi j (xk) = yk by calculation of (4.5).At x = xi ,φi, j−1(xi) =
yi and at x = x j , φi+1, j (x j) = y j and so φi j (xi) = yi and φi j (x j) = y j from Eq.
(4.5). Thus the right-hand side of (4.5) has all the characteristics of φi j (x) and so the
identity holds because of uniqueness of polynomials.

Given x̄ , a triangular table can be formed whose entries are generated columnwise
following Eq. (4.5) for increasing degree k of the interpolating polynomial

k = 0 1 2 · · · n
x0 φ00(x̄) = f (x0)
x1 φ11(x̄) = f (x1) φ01(x̄)
x2 φ22(x̄) = f (x2) φ12(x̄) φ02(x̄)
...

...
...

...
. . .

...
...

...
...

xn φnn(x̄) = f (xn) φn−1, n(x̄) φn−2, n(x̄) · · · φ0,n(x̄)

In the above table, by Eq. (4.5), the entries are generated thus

φ01(x̄) = 1

x1 − x0

∣
∣
∣
∣

φ00(x̄)x0 − x̄
φ11(x̄)x1 − x̄

∣
∣
∣
∣
, φ12(x̄) = 1

x2 − x1

∣
∣
∣
∣

φ11(x̄)x1 − x̄
φ22(x̄)x2 − x̄

∣
∣
∣
∣

etc.

φ02(x̄) = 1

x2 − x0

∣
∣
∣
∣

φ01(x̄)x0 − x̄
φ12(x̄)x2 − x̄

∣
∣
∣
∣
, φ13(x̄) = 1

x3 − x1

∣
∣
∣
∣

φ12(x̄)x1 − x̄
φ23(x̄)x3 − x̄

∣
∣
∣
∣

The computation is continued till desired accuracy is reached in a column of inter-
polated values, or until the data points are exhausted.

176 4 Interpolation

Eric Harold Neville (1889–1961) was a professor of mathematics at the University of Reeding,

U.K.

An earlier scheme due to Aitken proceeds in a slightly different manner. In this
scheme first a similar linear interpolation is carried through points (x0, x1), (x0, x2),
· · · , (x0, xn). Then seconddegree interpolation is carried throughpoints (x0, x1, x2),
(x0, x1, x3), · · · , (x0, x1, xn). Similarly higher degree interpolants are constructed
until stability of calculated values is reached in the same degree interpolants or until
all the data points are exhausted. The scheme is now considered obsolete.

Example 1. Solve Example 1, Sect. 4.1.1 by Neville s scheme.

Solution. Here x̄ = 5. The table obtained by the scheme is

0 1 2 3
1 1

2.04
2 1.26 1.66

1.755 1.70
4 1.59 1.72

1.69666
7 1.91

The entries in the table are made as follows. The entries of column 0 are the y values.
The entries of column 1 are:

φ01(5) = 1

2 − 1

∣
∣
∣
∣

1 1 − 5
1.26 2 − 5

∣
∣
∣
∣
= 2.04

φ12(5) = 1

4 − 2

∣
∣
∣
∣

1.26 2 − 5
1.59 4 − 5

∣
∣
∣
∣
= 1.755

φ23(5) = 1

7 − 4

∣
∣
∣
∣

1.59 4 − 5
1.91 7 − 5

∣
∣
∣
∣
= 1.69666

The entries of column 2 are

φ02(5) = 1

4 − 1

∣
∣
∣
∣

2.04 1 − 5
1.755 4 − 5

∣
∣
∣
∣
= 1.66

φ13(5) = 1

7 − 2

∣
∣
∣
∣

1.755 2 − 5
1.69666 7 − 5

∣
∣
∣
∣
= 1.72

The entry of column 3 is obtained as

φ03(5) = 1

7 − 1

∣
∣
∣
∣

1.66 1 − 5
1.72 7 − 5

∣
∣
∣
∣
= 1.70

4.1 Polynomial Interpolation 177

Hence the interpolated value of y for x = 5 is 1.70, in agreement with the value
obtained by Lagrange interpolation as well as by divided differences (Example 1,
Sect. 4.1.2). ��

Neville’s scheme is implemented in the following subroutine, especially noting
that the indices of the nodal point vary from 0 to n, as in the theory:

SUBROUTINE NEVILLE(n,x,f,xbar,fphi)
! n+1 = number of nodal points.
! x(0), x(1), · · · , x(n) = abscissa of the nodal points. (Input)
! f(0), f(1), · · · ,f(n) = function value at the nodal points. (Input)
! xbar = abscissa of the given point of interpolation. (Input)
! fphi = interpolated value of the function at xbar. (Output)
! phi(n+1, n+1) = interpolated values according to Neville’s scheme.

(Output from the subroutine, if desired)
!**
REAL :: x(n+1), f(n+1), phi(n+1,n+1)
DO k=0,n
DO j=0,n
phi(j,k)=0.0
IF(j==k) phi(j,k)=f(j)
END DO
END DO
DO k=1,n
DO j=k,n
IF(j>=k) phi(j-k,j)=(phi(j-k,j-1)*(x(j)-xbar)-phi(j-k+1,j)*(x(j-k)-xbar))/&

&(x(j)-x(j-k))
END DO; END DO
fphi=phi(0,n) ! Output interpolated value of the function using the full

! Neville’s Table
!**
DO k=0,n
DO j=k,n
PRINT*, ’k=’, k, phi(j-k,j) ! Output Neville’s Table if desired;

! otherwise to be blocked
END DO
END DO
!***
DO k=1,n-1
DO j=k,n
IF(ABS(phi(j-k,j)-phi(j-k-1,j-1))<0.00001) fphi=phi(j-k,j)
END DO
END DO

178 4 Interpolation

RETURN
END SUBROUTINE NEVILLE

Exercises

1. Show that
(i) φ01(x) = x − x1

x0 − x1
y0 + x − x0

x1 − x0
y1

(i i) φ02(x) = (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
y0 + (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
y1 + (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
y2

and verify that
(i) φ01(x) = f [x0] + (x − x0) f [x0, x1]
(i i) φ02(x) = f [x0] + (x − x0) f [x0, x1] + (x − x0)(x − x1) f [x0, x1, x2]
2. Interpolate by Neville’s scheme the value of y when x = 2, given the data

x 1 3 4 6
y −3 9 30 132

[0].

3. Interpolate y = log10x for x = 305 given that

x 300 302 304 307 310
y 2.4771 2.4800 2.4829 2.4871 2.4914

[2.4843].

4. Work out Exercise 8, Sect. 4.1.2 by Neville’s scheme.

5. Work out Exercise 5, Sect. 4.1.1 by Neville’s scheme.

4.1.4 Error in Polynomial Interpolation

When a function f ∈ C[a, b] is approximated by a polynomial φ of degree at most
n, the remainder R at any point x ∈ [a, b] is defined by the relation

f (x) = φ(x) + R(x)

The remainder R(x) represents the error in approximating f (x) by φ(x). It depends
onmany factors such as the properties of the function f , and the position of the nodal
points x0, x1, · · · , xn . It also depends on the position of the point x . If a given point
x̄ is under consideration, then an estimate of the absolute error |R(x̄)| is possible,
based on the following theorem.

Theorem 4.2 Let (i) the interpolation points x0, x1, · · · , xn ∈ [a, b] be distinct
and (i i) f ∈ C (n+1)[a, b]; then for a given point x̄ ∈ [a, b] there exists a point
ξ ∈ (a, b) such that

4.1 Polynomial Interpolation 179

R(x̄) = f (n+1)(ξ)

(n + 1)! ωn(x̄) (4.6)

where ωn(x̄) = (x̄ − x0)(x̄ − x1) · · · (x̄ − xn).

Proof If x̄ coincides with any one of the nodal points then, ωn(x̄) = 0 ⇒ R(x̄) = 0,
which is true. If x̄ �= xi , (i = 0, 1, · · · , n), then consider the auxiliary function

ψ(x) := f (x) − φ(x) − k ωn(x) (4.7)

where k is a constant, so chosen that ψ(x̄) = 0, that is

k = f (x̄) − φ(x̄)

ωn(x̄)
= R(x̄)

ωn(x̄)

By this choice of k, ψ vanishes in [a, b] at the (n + 2) points x0, x1, · · · , xn and x̄ .
Hence by Rolle’s theorem of differential calculus, ψ′ vanishes at least (n + 1) times
in [a, b], consequently ψ′′ vanishes at least n times in [a, b], and so on, up to the
derivative ψ(n+1) vanishing at least at one point ξ ∈ [a, b]. Thus by differentiation
of ψ defined by Eq. (4.7), (n + 1) times, one obtains by using φ(n+1)(x) ≡ 0

0 = ψ(n+1)(ξ) = f (n+1)(ξ) − 0 − k(n + 1)!

Thus, k = f (n+1)(ξ)

(n + 1)! = R(x̄)

ωn(x̄)
which proves the theorem. ��

The remainder formula (4.6) is of limited practical utility, since f (n+1)(x) is
seldom known and the point ξ is never known. However if a bound on | f (n+1)(x)| is
known, say | f (n+1)(x)| < Mn+1, then one has the estimate

|R(x̄)| ≤ Mn+1

(n + 1)! |ωn(x̄)|

of the error at x̄ . Also whatever be x ∈ [a, b], a uniform estimate over the entire
interval [a, b] is

max
x ∈ [a, b] |R(x)| ≤ Mn+1

(n + 1)! max
x ∈ [a, b]

|ωn(x)| (4.8)

Let h be themaximal distance betweenneighbouring data points and let xi < x j be
two neighbouring data points containing x , i.e. xi < x < x j . Then |(x − xi)(x − x j)|
is maximum at x = (xi + x j)/2 with a value of (xi − x j)

2/4 ≤ h2/4. Hence by
straight forward estimation of the other factor yields

max
x ∈ [a, b]

|ωn(x)| ≤ h2

4
· nh · (n − 1)h · · · · h = n!

4
hn+1

180 4 Interpolation

Thus one obtains the estimate

max
x ∈ [a, b]

|R(x)| ≤ Mn+1

4(n + 1)
hn+1

Such estimates are generally crude in the sense that the actual error is much smaller
than the estimate. This happens because of estimating f (n+1)(ξ) by Mn+1.

4.2 Equally Spaced Points: Finite Differences

In the preceding sections, we considered interpolation on an arbitrary set of interpo-
lation points. In many cases, the information about the function is given on equally
spaced points. Before the advent of computers, such mathematical tables of func-
tions (and of physical quantities) were in widespread use. The topic therefore gained
much importance in the early development of numerical methods and several inter-
esting formulae were discovered. Here we shall consider the principal ones, derived
from Newton’s difference formula. In this special case, not only the forms of the
interpolation polynomial becomes simpler, but the required computations diminish,
requiring simple computations.

Let the equally spaced points be denoted by xi = x0 + i h, (i = 0, ±1, ±2, · · ·)
where h is the step size. Three types of notations�, ∇ and δ are introduced regarding
the finite differences of the function values f (xi) = yi . Thus, the first-order finite
differences are defined by

y1 − y0 =: �y0 =: ∇ y1 =: δy1/2
y2 − y1 =: �y1 =: ∇ y2 =: δy3/2

· ·
yi+1 − yi =: �yi =: ∇ yi+1 =: δyi+1/2

· ·

or alternately

�yi := yi+1 − yi , ∇ yi := yi − yi−1, δyi+1/2 := yi+1 − yi (4.9)

In a similar manner, the second-order finite differences are defined by

�2yi := �yi+1 − �yi , ∇2yi := ∇ yi − ∇ yi−1, δ2yi := δyi+1/2 − δyi−1/2

(4.10)
Finite differences of order k are similarly defined as

�k yi := �k−1yi+1 − �k−1yi , ∇k yi := ∇k−1yi − ∇k−1yi−1

δk yi+1/2 := δk−1yi+1 − δk−1yi for k ≥ 1 and odd (4.11)

δk yi := δk−1yi+1/2 − δk−1yi−1/2 for k ≥ 2 and even

4.2 Equally Spaced Points: Finite Differences 181

The differences �, ∇ and δ are respectively called forward, backward and central
differences. They can be arranged in suitable tabular forms, such as

Forward Difference Table

x y � �2 �3 �4 · · · �n

x0 y0
�y0

x1 y1 �2y0
�y1 �3y0

x2 y2 �2y1 �4y0

�y2 �3y1
...

. . . �n y0

x3 y3 �2y2
... �4yn−4

�y3
... �3yn−3

x4 y4
... �2yn−2

...
... �yn−1

xn yn

Backward Difference Table

x y ∇ ∇2 ∇3 ∇4 · · · ∇n

x0 y0
...

... ∇ y1

xn−4 yn−4
... ∇2y2

∇ yn−3
... ∇3y3

xn−3 yn−3 ∇2yn−2
... ∇4y4

∇ yn−2 ∇3yn−1
...

. . . ∇n yn
xn−2 yn−2 ∇2yn−1 ∇4yn

∇ yn−1 ∇3yn
xn−1 yn−1 ∇2yn

∇ yn
xn yn

182 4 Interpolation

Central Difference Table

x y δ δ2 δ3 δ4 · · · δn

...
...

x−2 y−2
...

δy−3/2
...

x−1 y−1 δ2y−1
...

δy−1/2 δ3y−1/2
...

. . .

x0 y0 δ2y0 δ4y0 ·
δy1/2 δ3y1/2

...

x1 y1 δ2y1
...

δy3/2
...

x2 y2
...

· ·

In a mathematical table, the data points are usually closely spaced roundedoff
numbers.When differencing is performed, subtraction of nearly equal numbers exac-
erbates error, as was seen in Chap. 1. If there is (roundoff) error ε in only one data
viz. yi , then the growth of error takes place as shown below:

x y � �2 �3 · · · ·
· · · · · · ·

xi−3 yi−3 · · · · ·
�yi−3 · · · ·

xi−2 yi−2 �2yi−3 · · ·
�yi−2 �3yi−3 + · ·

xi−1 yi−1 �2yi−2 + · ·
�yi−1 + �3yi−2 − 3 · ·

xi yi + ε �2yi−1 − 2 · ·
�yi − �3yi−1 + 3 · ·

xi+1 yi+1 �2yi + · ·
�yi+1 �3yi − · ·

xi+2 yi+2 �2yi+1 · · ·
�yi+2 · · · ·

xi+3 yi+3 · · · · ·
· · · · · · ·

In theworst possible case, if there is error of+ε and−ε alternately in the data, thendif-
ferencing causes doubling of error for every new difference introduced (check this).
Hence, as a practical rule as soon as a single nonzero digit appears in a difference

4.2 Equally Spaced Points: Finite Differences 183

column, higher order differences are ignored as they consist of accumulated errors.
The ignored differences are essentially incorrect.

Example 1. The value of the elliptic integral

K (m) =
∫ π/2

0

dθ
√

1 − m sin2 θ

is tabulated below in the solution. Calculate the differences that are correct.

Solution. Set m = x and y = K (m). The difference table is

x y � �2 �3 �4 �5

0.20 1.65462
0.00508

0.21 1.66470 0.00007
0.00515 0

0.22 1.66985 0.00007 0.00001
0.00522 0.00001 −0.00002

0.23 1.67507 0.00008 −0.00001
0.00530 0

0.24 1.68037 0.00008
0.00538

0.25 1.68575

In the above table, single nonzero digit appears in the second-order differences.
Hence, only the first- and second-order differences� and�2 are considered correct.
The higher order differences are also calculated, but they are incorrect. ��

With the above brief description of finite differences, we are now in a position to
derive some of the important interpolation formulae. At the outset, we remark that
all such formulae are actually identical, except for the form of writing them.

4.2.1 Gregory–Newton Forward Difference Formula

Let, the interpolation data be (xi , yi = f (xi)), (i = 0, 1, 2, · · · , n), such that
xi+1 − xi = h, (i = 0, 1, · · · , n − 1), where h is constant. As in the case of New-
ton’s divided difference formula, the interpolating polynomial through these points
can be written as

φ(x) = B0 + B1(x − x0) + B2(x − x0)(x − x1) + · · · + Bn(x − x0)(x − x1) · · · (x − xn−1)

Since φ(xi) = f (xi) = yi , (i = 0, 1, · · · , n), we must have

184 4 Interpolation

y0 = B0 or, B0 = y0

y1 = B0 + B1(x1 − x0) = y0 + B1h or, B1 = y1 − y0
h

= �y0
h

y2 = B0 + B1(x2 − x0) + B2(x2 − x0)(x2 − x1)

= y0 + y1 − y0
h

· 2h + B2 · 2h · h

or, B2 = y2 − 2y1 + y0
2h2

= y2 − y1 − (y1 − y0)

2h2
= �y1 − �y0

2h2
= �2y0

2! h2
etc. Thus, one would expect

Bk = �k y0
k! hk (k = 1, 2, · · · , n) (4.12)

To fully justify the above form, we note that as in the divided difference formula
Bk = f [x0, x1, · · · , xk] and so by Eq. (4.4)

Bk+1 = f [x0, x1, · · · , xk+1] = f [x1, x2, · · · , xk+1] − f [x0, x1, · · · , xk]
xk+1 − x0

=
�k y1
k! hk − �k y0

k! hk
(k + 1)h

= �k+1y0
(k + 1)! hk+1

Thus, by induction Eq. (4.12) must hold for the expression of Bk .

Setting t := (x − x0)/h, the expression of φ(x) thus becomes

φ(x) = y0 + �y0
h

th + �2y0
2! h2 th (th − h) + · · ·

+ �n y0
n! hn th (th − h)(th − 2h) · · · [th − (n − 1)h]

= y0 + t �y0 + t (t − 1)

2! �2y0 + · · · + t (t − 1) · · · [t − (n − 1)]
n! �n y0 (4.13)

The formula exclusively uses the descending forward differences �y0, �2y0, · · · ,

�n y0 (see the table for forward differences �). Thus it is useful for interpolation of
function f at a point x̄ near the beginning of the table of values of the function. The
remainder (error) of the formula from Eq. (4.6) is

R(x̄) = f (n+1)(ξ)

(n + 1)! hn+1 t̄(t̄ − 1) · · · (t̄ − n)

where t̄ := (x̄ − x0)/h and x0 < ξ < xn .

4.2 Equally Spaced Points: Finite Differences 185

4.2.2 Gregory–Newton Backward Difference Formula

Let the interpolating polynomial φ(x) be written in the bottom-up manner of the
abscissa, then

φ(x) = B0 + B1(x − xn) + B2(x − xn)(x − xn−1) + · · · + Bn(x − xn)(x − xn−1) · · · (x − x1)

Since it passes through the data points (xi , yi = f (xi)), (i = n, n − 1, · · · , 0),

yn = B0 or, B0 = yn

yn−1 = B0 + B1(xn−1 − xn) = yn + B1(−h), or, B1 = yn − yn−1

h
= ∇ yn

h
yn−2 = B0 + B1(xn−2 − xn) + B2(xn−2 − xn)(xn−2 − xn−1)

= yn + yn − yn−1

h
· (−2h) + B2 · (−2h)(−h)

or B2 = yn − 2yn−1 + yn−2

2 h2
= ∇2yn

2! h2 .

Proceeding in this manner, one has

Bk = ∇k yn
k! hk (k = 1, 2, · · · , n)

Full justification of the above can be given by induction as in the case of the forward
difference formula. Setting t := (x − xn)/h (< 0), the formula becomes

φ(x) = yn + ∇ yn
h

th + ∇2yn
2! h2 th(th + h) + · · ·

+ ∇n yn
n! hn th(th + h)(th + 2h) · · · [th + (n − 1)h]

= yn + t ∇ yn + t (t + 1)

2! ∇2yn + · · · + t (t + 1) · · · [t + (n − 1)]
n! ∇n yn

(4.14)

The formula now uses the ascending backward differences ∇ yn, ∇2yn, · · · ,∇n yn
(see table of backward differences ∇). It is useful for interpolation at a point x̄ near
the end xn of the table. The remainder (error) of the formula is

R(x̄) = f (n+1)(ξ)

(n + 1)! hn+1 t̄(t̄ + 1) · · · (t̄ + n)

where t̄ := (x̄ − xn)/h and x0 < ξ < xn .

186 4 Interpolation

James Gregory (1638–1675), Scottish mathematician. In 1675, he became the first professor

of mathematics at the University of Edinburgh. He is best remembered for his series expansion

of tan−1x , tanx , sin−1x , sec−1x , etc., although the well-known series expansion of tan−1x was

discovered much earlier by Indian mathematician Madhav (1350–1425).

4.2.3 Stirling’s Central Difference Formula

If the point x̄ at which interpolation is sought, is near the middle of a table, then it
is natural to consider interpolation points lying on both sides of the point. This
is justified because the error, Eq. (4.6) becomes least because of low value of
(x̄ − x0) · · · (x̄ − xn). Suppose we designate the node closest to x̄ by x0 (x̄ > x0)
and consider the interpolation points x−k < · · · < x−1 < x0 < x1 < · · · < xk . The
interpolating polynomial is then of degree at most 2k. Setting t := (x − x0)/h it can
be written in the form

φ(t) = B0 + B1

1! t + B2

2! t2 + B3

3! t (t2 − 12) + B4

4! t2(t2 − 12) + · · ·

+ B2k−1

(2k − 1)! t (t
2 − 12) · · · (t2 − (k − 1)2) + B2k

(2k)! t
2(t2 − 12) · · · (t2 − (k − 1)2)

The function must pass through the points (x0, y0), (x±1, y±1), · · · , (x±k, y±k).
Hence looking at the table of central differences

y0 = B0 or, B0 = y0

y1 = B0 + B1 + B2

2
, y−1 = B0 − B1 + B2

2

or, B1 = y1 − y−1

2
= (y1 − y0) + (y0 − y−1)

2
= 1

2
(δy1/2 + δy−1/2) =: δ̄y0

B2 = y1 − 2y0 + y−1 = δ2y0

Moreover,

y2 = B0 + 2B1 + 2B2 + B3 + B4

2

y−2 = B0 − 2B1 + 2B2 − B3 + B4

2
that yield

4.2 Equally Spaced Points: Finite Differences 187

B3 = 1

2
(y2 − 2y1 + 2y−1 − y−2)

= 1

2
[(y2 − 3y1 + 3y0 − y−1) + (y1 − 3y0 + 3y−1 − y−2)]

= 1

2
(δ3y1/2 + δ3y−1/2) =: δ̄3y0

B4 = y2 − 4y1 + 6y0 − 4y−1 + y−2 = δ4y0, etc.

Hence proceeding in this manner we obtain

φ(t) = y0 + t δ̄y0 + t2

2! δ2y0 + t (t2 − 12)

2! δ̄3y0 + t2(t2 − 12)

4! δ4y0 + · · ·

+ t (t2 − 12) · · · (t2 − (k − 1)2)

(2k − 1)! δ̄2k−1y0 + t2(t2 − 12) · · · (t2 − (k − 1)2)

(2k)! δ2k y0

(4.15)

In the above expression, themean differences are defined as δ̄m := 1
2 (δ

m
1/2 + δm y−1/2)

for m ≥ 1 and odd. The central differences occurring in Eq. (4.15) are seen to lie
along the horizontal line through the data (x0, y0) in the central difference table. The
remainder in the formula is given by

R(x̄) = f (2k+1)(ξ)

(2k + 1)! h2k+1(t2 − 12) · · · (t2 − k2), x−k < ξ < xk

James Stirling (1692–1770), Scottish mathematician educated at Oxford. The Stirling numbers

are named after him.

Remark If one wishes to use a computer for interpolation of equally spaced data,
then subroutine DIVDIFF can be used for the purpose. But it is a good idea to form
a finite difference table also, as a table in which elements of a column do not have
fluctuation of sign, is indicative of accuracy of the data. Also, decreasing magnitude
of the differences with increasing order, is indicative of accuracy of interpolation.

Example 2. In Example 1, calculate K (0.215), K (0.225) and K (0.243).

Solution. For x = 0.215, we apply the forward difference formula. If we use x0 =
0.20, t = (0.215 − 0.200)/0.01 = 1.5. Using the table of finite differences (up to
�2) given in Example 1, formula (4.13) yields

K (0.215) ≈ 1.65962 + 1.5 × 0.00508 + 1.5 × (1.5 − 1)

2! × 0.00007

= 1.66727

188 4 Interpolation

For x = 0.225we apply Stirling’s formula since the data occurs in themiddle portion
of the table. Taking x0 = 0.22, t = (0.225 − 0.22)/0.01 = 0.5, formula (4.15) gives

K (0.225)7 ≈ 1.66985 + 0.5 × 1

2
(0.00515 + 0.00522) + 0.52

2! × 0.00007

= 1.67245

For x = 0.243, we apply the backward difference formula (4.14), since the point
is near the end of the table. Taking xn = 0.25, t = (0.243 − 0.25)/0.01 = −0.7.
Hence applying Eq. (4.14)

K (0.243) ≈ 1.68575 + (−0.7) × 0.00538 + (−0.7)(−0.7 + 1)

2! × 0.00008

= 1.68198

In the case of x = 0.215, one may alternatively select x0 = 0.21, t = (0.215 −
0.21)/0.01 = 0.5, Eq. (4.13) then yields

K (0.215) ≈ 1.66470 + 0.5 × 0.00515 + 0.5 × (0.5 − 1)

2! × 0.00007 = 1.66727

as before. ��

Example 3. Experiment has yielded contraction of a spring x as a function of the
load P carried by the spring as under:

x(mm) 5 10 15 20 25 30
P(kg) 49 105 172 253 352 474

Find the load that yields a contraction of the spring by 17 mm.

Solution. The finite difference table for the problem is

x y � �2 �3 �4 �5

5 49
56

10 105 11
67 3

15 172 14 1
81 4 0

20 253 18 1
99 5

25 352 23
122

30 474

4.2 Equally Spaced Points: Finite Differences 189

We wish to employ the full difference table for highest accuracy; hence we can
adopt any interpolation formula. Adopting the forward difference formula with x0 =
5, t = (17 − 5)/5 = 2.4, we have

P(x = 17) ≈ 49 + 2.4 × 56 + 2.4 × (2.4 − 1)

2! × 11 + 2.4 × (2.4 − 1) × (2.4 − 2)

3! × 3

+ 2.4 × (2.4 − 1) × (2.4 − 2) × (2.4 − 3)

4! × 1 + 0

= 202.5kg. ��

Exercises

1. The following table contains one error in the value of y:

x 2.5 3.0 3.5 4.0 4.5 5.0 5.5
y 4.32 4.83 5.27 5.47 6.26 6.79 7.23

Detect the erroneous data by forming the finite difference table.

[Error in 5.47]

2. Given the table of Bessel function J0(x):

x2 0 1/3 2/3 1
J0(x) 1.0000 0.9184 0.8402 0.7652

Show that in [−1, 1], J0(x) can be approximated by 1 − 0.397x2 + 0.0153x4.

[Use forward difference formula with t = (x2 − 0)/(1/3) = 3x2, dropping the inac-
curate �3 term].

3. The population of a town in the census is as given in the data. Estimate the popu-
lation in the year 1965 and 1998.

Year 1961 1971 1981 1991 2002
Population (in 1000’s) 46 66 81 93 101

[54.853, 99.200].

4. The following table gives the amount of chemical dissolved in water:

Temp.◦C 10 15 20 25 30 35
Solubility 19.97 21.51 22.47 23.52 24.52 25.39

190 4 Interpolation

What is the solubility at 22 ◦C?

[22.88].

5. Given an abridged table of common logarithms

x 300 310 320 330 340 350
log x 2.47712 2.49136 2.50515 2.51851 2.53148 2.54407

Calculate log(315) and log(336).

[2.49831, 2.52634].

6. The probability integral or the error function erf(x)= 2√
π

∫ x

0
e−t2dt is given as a

table
x 1.0 1.2 1.4 1.6 1.8 2.0

erf(x) 0.84270 0.91031 0.95229 0.97635 0.98909 0.99532

Find the value of erf(1.433). Can you apply Stirling’s formula. Give reason.

[0.95730, by Gregory–Newton forward difference formula. Yes, to use all finite dif-
ferences].

7. The following table of tan x near 90◦ is given:

x 89o21′ 89o23′ 89o25′ 89o27′ 89o29′
tan x 88.14 92.91 98.22 104.17 110.90

Calculate 89o26′.

[101.11, by Stirling’s formula].

8. The function f is displayed in the following table. It is known that f (x) behaves
as 1/x as x → 0. We want to calculate f (0.15). If direct interpolation is used, what
value is obtained? Alternately if the data is retabulated for g(x) = x f (x), what is the
interpolated value of f (0.15)? Which answer would you consider more accurate?
Give reason.

x 0.1 0.2 0.3 0.4 0.5
f (x) 20.02502 10.05013 6.74211 5.10105 4.12706

4.2 Equally Spaced Points: Finite Differences 191

[f (0.15) = 13.73547and13.37089 respectively by the twomethods. Secondanswer,
since the finite differences diminish by an order of magnitude with increasing order
of the finite differences].

9. (Bessel’s Interpolation Formula). Given a net of 2k + 1 nodes x−k < · · · <

x−1 < x0 < x1 < · · · < xk+1 , prove Bessel’s interpolation formula

φ(t) = ȳ1/2 + δy1/2
1! (t − 1

2
) + δ̄2y1/2

2! t (t − 1) + δ3y1/2
3! t (t − 1)(t − 1

2
) + · · ·

+ δ̄2k y1/2
(2k!) t (t2 − 12) · · · (t2 − (k − 1)2)(t − k)

+ δ2k+1y1/2
(2k + 1)! t (t

2 − 12) · · · (t2 − (k − 1)2)(t − k)
(

t − 1

2

)

where t := (x − x0)/h, ȳ1/2 := 1
2 (y0 + y1) and δ̄m y1/2 := 1

2 (δ
m y0 + δm y1) form ≥

2 and even. Show that the remainder relative to t is

R(x̄) = f (2k+2)(ξ)

(2k + 2)! h2k+2
k+1
∏

i=−k

(t − i), x−k < ξ < xk+1

[Proceed as in the derivation of Stirling’s formula assuming a form of φ(t) suggested
by the result].

Friedrich Wilhelm Bessel (1784–1846), German astronomer, mathematician and geodesist. He

was the first astronomer to determine the distance of a fixed star. He is best known for the function

known after him, which he systematically investigated in the year 1824. He came across the function

in the treatment of perturbation of a planetary orbit by another planet. The function was however

encountered earlier in 1732 by Jakob Bernoulli, in the study of oscillations of a heavy chain and by

Euler in 1744, in the study of a circular membrane.

4.3 Best Interpolation Nodes: Chebyshev Interpolation

Let there be given a function f ∈ C (n+1)[a, b]. The function can be approximated
by different interpolating polynomials φ, that depend on the interpolation nodes
a ≤ x0, x1, · · · , xn ≤ b. There arises then a question as to how to choose these
nodes so that the maximum interpolation error for f is minimal on the given inter-
val. This problem is complicated due to lack of knowledge regarding the behaviour
of f , except for its continuity. Noting that the estimate of the error |R(x)| given in Eq.
(4.8) also depends on ωn(x) = (x − x0) · · · (x − xn), one seeks the arrangement

192 4 Interpolation

of x0, x1, · · · , xn so that max
x ∈ [a, b]

|ωn(x)| is minimal. The answer to this restricted

problem is offered by Chebyshev polynomials on the standard interval [−1, 1].

Chebyshev Polynomials. These polynomials of degree n(≥ 0) are denoted by Tn(x),
−1 ≤ x ≤ 1 as defined by the formula

Tn(x) = cos(n cos−1 x) (4.16)

In particular, for n = 0 and 1 one has T0(x) = cos(0) = 1, T1(x) = cos(cos−1 x) =
x . Further, from the identity

cos(n + 1)θ = 2 cos θ cos nθ − cos(n − 1)θ

setting θ = cos−1 x , one obtains the recursive relations

Tn+1(x) = 2x Tn(x) − Tn−1(x) (4.17)

for n = 1, 2, · · · . Tn(x) is actually a polynomial of degree n. Using the expression
for T0(x) and T1(x), one has

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x, etc.

(4.18)

The letter T for denoting the Chebyshev polynomials is in recognition of the Russian spelling

TCHEBYCHEFF of the mathematician’s name. Pafnutii Lvovitsch Chebyshev (1821–1894)
worked in St. Petersberg. His contribution tomathematics is universal. These include number theory,

probability theory, the theory of orthogonal functions and theoretical mechanics. He is considered

a pathbreaker in constructive function theory, which includes the theory of uniform approximation

(see Chap. 8).

Properties of Chebyshev polynomials

1. Tn(x) is an even or odd function of x , according as n is even or odd.
2. The leading coefficient of the polynomial Tn(x) for n ≥ 1 is equal to 2n−1.

The validity of the two properties is evident from the preceding discussion.
3. The polynomial Tn(x) has n real zeros given by

xi = cos
[(2i + 1)π

2n

]

, (i = 0, 1, · · · , n − 1)

Indeed Tn(xi) = cos(n cos−1 xi) = cos
(2i + 1)π

2
= 0 for i = 0, 1, · · · , n − 1.

4.3 Best Interpolation Nodes: Chebyshev Interpolation 193

4. |Tn(x)| ≤ 1 and Tn(xm) = (−1)m where xm = cos(mπ/n) for m = 0, 1, · · · , n.

The property follows from the definition (4.16).

Remark When it is imperative to indicate the order of a polynomial, we use the
suffixed notation, e.g. Tn , Pn etc.

Theorem 4.3 (Chebyshev). Let P̄n(x) be any polynomial of degree n, with the lead-
ing coefficient equal to 1, and let T̄n(x) = 21−nTn(x). Then

max
x ∈ [−1, 1]

|P̄n(x)| ≥ max
x ∈ [−1, 1]

|T̄n(x)| = 21−n (4.19)

i.e. T̄n(x) has the least maximum modulus value among all polynomials of degree n
with leading coefficient equal to unity.

Proof Assume that P̄n(x) = xn + a2xn−1 + · · · + an does not satisfy (4.19), i.e.

max
x ∈ [−1, 1]

|P̄n(x)| < max
x ∈ [−1, 1]

|T̄n(x)| = 21−n (4.20)

Now by Property 2, T̄n(x) is also a polynomial of degree n with leading coefficient
equal to 1.Hence the difference Qn−1(x) := T̄n(x) − P̄n(x) is a polynomial of degree
not higher than n − 1, and by assumption (4.20) it does not vanish identically. At the
n + 1 points xm = cos(mπ/n), m = 0, 1, · · · , n on the basis of Property 4 and Eq.
(4.20), this difference attains nonzero values with alternating signs. This means that
Qn−1(x) vanishes at n points, which is impossible. ��
Remark It is possible to prove that if P̄n(x) = xn + a1xn−1 + · · · + an , (n ≥ 1) is

such that max
x ∈ [−1, 1]

|P̄n(x)| = 21−n , then P̄n(x) = T̄n(x) = 21−nTn(x).

Theorem 4.3 enables us to select the nodal points xi , (i = 0, 1, · · · , n) in the
best possible way. If we choose them as the zeros of Tn+1(x), then by Property 3,

xi = cos
(2i + 1)π

2n + 2
(i = 0, 1, · · · , n) (4.21)

on the interval [−1, 1]. With this choice

ωn(x) = 2−nTn+1(x)

194 4 Interpolation

as the sides have identical zeros and both are polynomials with leading coefficient
equal to 1. The error estimate (4.8) of Sect. 4.1.4, thus becomes

max
x ∈ [−1, 1]|R(x)| ≤ Mn+1

(n + 1)!2n max
x ∈ [−1, 1]

|Tn(x)| = Mn+1

(n + 1)!2n (4.22)

where Property 4 is used.

By virtue of Theorem 4.3, it is impossible to improve the error estimate (4.22)
on [−1, 1] by other choice of interpolation nodes. By such alternative choice, the
maximum of the error estimate will be worse, that is, the interpolation nodes (4.21)
are optimal for the maximum error estimate (4.8) on the interval [−1, 1].

Reverting to the nodes of interpolation on an arbitrary interval [a, b], one can
transform it in to the interval [−1, 1] by the linear transformation

x = b + a

2
+ b − a

2
t, or, t = 2x − b − a

b − a

The zeros of the Chebyshev polynomial Tn+1(t), thus yield the points

xi = b + a

2
+ b − a

2
cos

(2i + 1)π

2n + 2
, (i = 0, 1, · · · , n) (4.23)

which are the optimal interpolation nodes in [a, b]. For these points

ωn(x) = (x − x0)(x − x1) · · · (x − xn)

= (b − a)n+1

2n+1

(

t − cos
π

2n + 2

)(

t − cos
3π

2n + 2

)

· · ·
(

t − cos
(2n + 1)π

2n + 2

)

= (b − a)n+1

2n+1
T̄n+1(t) = (b − a)n+1

22n+1
Tn+1(t)

Hence for the interval [a, b], the maximum error estimate (4.8) becomes

max
x ∈ [a, b]|R(x)| ≤ Mn+1

(n + 1)!
(b − a)n+1

22n+1
max

t ∈ [−1, 1]
Tn+1(t)

= Mn+1

(n + 1)!
(b − a)n+1

22n+1
(4.24)

4.3 Best Interpolation Nodes: Chebyshev Interpolation 195

Example 1. (Runge’s Example) Let

f (x) = 1

1 + 25x2
, −1 ≤ x ≤ 1

Let the interpolation points xi , (i = 0, 1, · · · , n), where n = 4, 5, · · · , 20 be
selected as either (a) Chebyshev points, Eq. (4.21) or (b) equally spaced points
xi = −1 + 2i/n. Write a Fortran program to compute the interpolated value φ(x̄ j)

at points x̄ j = −1 + j/10, where j = 0, 1, · · · , 20 to compute the maximum error
max0≤ j≤20| f (x̄ j) − φ(x̄ j)| in the two cases using the subroutine DIVDIFF given in
Sect. 4.1.2.

Solution. The Fortran program for solving the problem is as follows:

PROGRAM RUNGE
REAL :: x(21), f(21)
DO n=4,20
errmax=0.
DO j=1,21
DO i=1,n+1
x(i)=cos(((2*(i−1)+1)*3.141593)/(2*n+2)) ! (a) Chebyshev Points
! x(i)=−1+2.*(i−1)/n ! (b) Equally Spaced Points
f(i)=1/(1+25*x(i)**2)
END DO
xbar=−1+(j−1)/10
fxbar=1./(1+25*xbar**2)
CALL DIVDIFF(n+1,x,f,xbar,phi)
! PRINT*, fxbar, phi
error=ABS(fxbar−phi)
errmax=MAX(error,errmax)
END DO
PRINT*, n, errmax
END DO
END PROGRAM RUNGE

The subroutine DIVDIFF given in Sect. 4.1.2 must be appended to this program. The
statement for equally spaced x(i) must be activated for the case (b). The output of
the program in the two cases is

196 4 Interpolation

n errmax (a) errmax (b)
4 3.956862E − 01 4.381339E − 01
5 5.559114E − 01 4.326923E − 01
6 2.618566E − 01 6.075863E − 01
7 3.917403E − 01 2.473586E − 01
8 1.670828E − 01 1.007122
9 2.691785E − 01 2.770456E − 01
10 9.103656E − 02 1.531661
11 1.827583E − 02 4.053842E − 01
12 5.860662E − 02 2.130535
13 1.233977E − 01 5.374568E − 01
14 4.651782E − 02 2.665879
15 8.310699E − 02 6.290064E − 01
16 2.815479E − 02 2.859874
17 5.590761E − 02 5.967625E − 01
18 1.834667E − 02 2.224079
19 3.759038E − 02 3.059536E − 01
20 1.364753E − 02 2.601263E − 02

It is clear from the table that in case (a) (Chebyshev points), the maximum error
more or less decreases with increasing n, while in the case of (b) (equally spaced
points) this is not the case.

The above example illustrates that interpolation with equally spaced points does
not necessarily improve accuracy with increasing order of the polynomial.

Exercises

1. Draw the graphs of T2(x), T3(x), T4(x), T5(x) in [−1, 1].

2. Prove the following elementary identities:

(a) Tm[Tn(x)] = Tmn(x)

(b) 2Tm(x) Tn(x) = Tm+n(x) + T|m−n|(x)

(c) T2n(x) = Tn(2x2 − 1)

3. Prove that Tn(x) satisfies the second order differential equation

(1 − x2)T ′′
n (x) − x T ′

n(x) + n2 Tn(x) = 0

4. Prove that
∫ 1
−1 Tn(x)dx = −1 + (−1)n

n2 − 1
.

[Use definition of Tn(x) and put x = cos θ].

4.4 Piecewise–Polynomial Spline Interpolation 197

4.4 Piecewise–Polynomial Spline Interpolation

Suppose a sufficiently smooth function f is defined on an interval [a, b] and the
interval is subdivided by points a ≤ x0 < x1 < · · · < xn−1 < xn ≤ b. In spline the-
ory the points x0, x1, · · · , xn are especially called knots. A spline is a function
which, together with its several derivatives, is continuous on [x0, xn] and is such
that on each separate subinterval [xi , xi+1] it is some algebraic polynomial. The
terminology was introduced by I. J. Schoenberg in 1946, although the idea was
used earlier informally by several authors. Technically a ‘spline’ is a draughtsman’s
flexible implement which is used to draw ‘smooth’ curves through a series of points.

A simple example of spline approximation of f is piecewise linear interpolation
over the data points (xi , f (xi)), (i = 0, 1, · · · , n). This technique is of frequent
use in reading from tables of values. In this case the approximating curve to f is
however not smooth at the knots.

The most commonly used smooth splines are of third degree or cubic splines. If
S is the spline on [x0, xn] in which Si is cubic on [xi , xi+1], then S = ∪n−1

i=0 Si . Now,
a cubic can be determined by interpolating over four points. Considering these four
points as xi , xi , xi+1, xi+1, one has by the divided difference formula

Si = f (xi) + (x − xi) f [xi , xi] + (x − xi)
2 f [xi , xi , xi+1]

+(x − xi)
2(x − xi+1) f [xi , xi , xi+1, xi+1]

Now,
f [xi , xi] = f ′(xi)

f [xi , xi , xi+1] = f [xi , xi+1] − f [xi , xi]
�xi

= f [xi , xi+1] − f ′(xi)
�xi

f [xi , xi , xi+1, xi+1] = f [xi , xi+1, xi+1] − f [xi , xi , xi+1]
�xi

= f ′(xi+1) − 2 f [xi , xi+1] + f ′(xi)
(�xi)2

where �xi := xi+1 − xi . Hence writing x − xi+1 = (x − xi) − �xi , one obtains

Si = ai + bi (x − xi) + ci (x − xi)
2 + di (x − xi)

3 (4.25)

where
ai = f (xi) = yi

bi = f ′(xi) (slope at xi)

ci = f [xi , xi+1] − bi
�xi

− di �xi

di = bi+1 − 2 f [xi , xi+1] + bi
(�xi)2

(4.26)

198 4 Interpolation

Thus to define Si , one requires the data (xi , f (xi) = yi) as well as the slopes bi
at the knots. The spline is evidently continuous on [x0, xn]. The derivative is also
continuous, since

S ′
i (xi+1) = bi + 2 ci�xi + 3 di�x2i

= bi + 2 (f [xi , xi+1] − bi) + (bi+1 − 2 f [xi , xi+1] + bi)
= bi+1 = f ′(xi+1) = S ′

i+1(xi+1)

To determine the slope bi we now assume that S is continuous up to the second
derivatives. This means that S′′

i (xi) = S′′
i−1(xi) for i = 1, 2, · · · , n − 1. Now from

Eqs. (4.25), (4.26)

S ′′
i (xi) = 2 ci = − 4 bi

�xi
− 2 bi+1

�xi
+ 6 f [xi , xi+1]

�xi

Similarly from the expression for Si−1(x), one obtains

S ′′
i−1(xi) = 2 ci−1 + 6 di−1�xi−1 = 2 bi−1

�xi−1
+ 4 bi

�xi−1
− 6 f [xi−1, xi]

�xi−1

Equating the above two expressions, one obtains the system of equations

(�xi) bi−1 + 2 (�xi−1 + �xi) bi + (�xi−1) bi+1

= 3 (�xi−1 f [xi , xi+1] + �xi f [xi−1, xi]) (4.27)

for i = 1, 2, · · · , n − 1. Since there are (n + 1) unknowns b0, b1, · · · , bn , it is
necessary to specify twomore conditions at the boundary points x0 and xn (i = 0, n).
One simple way to introduce boundary conditions is to take

b0 = f ′(x0), bn = f ′(xn)

provided f ′(x0) and f ′(xn) are given. Alternatively, one may assume “natural”
boundary conditions

S ′′
0 (x0) = 0, S ′′

n−1(xn) = 0

which means that the curvature at the boundary points is zero.. These conditions
yield

2 b0 + b1 = 3 f [x0, x1], bn−1 + 2 bn = 3 f [xn−1, xn] (4.28)

Equations (4.27) and (4.28) form a row diagonally dominant tridiagonal system of
equations, possessing unique solution. The system of equations can be solved by the
Thomas method of Sect. 3.1.1, Chap. 3.

4.4 Piecewise–Polynomial Spline Interpolation 199

Subroutine SPLINE given below solves the system (4.27) and (4.28) by the above
mentioned technique and computes S at m points x̄1, x̄2, · · · , x̄m .

SUBROUTINE SPLINE(x,y,n,xbar,s,m)
!n=number of sub–intervals. (Input)
! x(1),· · · ,x(n+1)=abscissa of knots. (Input)
! y(1),· · · ,y(n+1)=ordinate of knots. (Input)
! xbar(1),· · · ,xbar(m)=abscissa of points for interpolation. (Input)
! s(1),· · · ,s(m)=spline computed function. (Output)
!***
REAL :: x(n+1), y(n+1), xbar(m), s(m), dx(n+2),&
&f(n+2), diag(n+2), b(n+2), c(n+2), d(n+2)
dx(1)=1.0; dx(n+2)=1.0
DO i=2,n+1
dx(i)=x(i)−x(i−1); f(i)=(y(i)−y(i−1))/dx(i)
END DO
diag(1)=2.0; diag(n+1)=2.0
DO i=2,n
diag(i)=2.*(dx(i)+dx(i+1))
END DO
b(1)=3.0*f(2); b(n+1)=3.0*f(n+1)
DO i=2,n
b(i)=3.0*(dx(i)*f(i+1)+dx(i+1)*f(i))
END DO
! Solution of tridiagonal system begins
DO k=1,n
ratio=dx(k+2)/diag(k)
diag(k+1)=diag(k+1)−ratio*dx(k)
b(k+1)=b(k+1)−ratio*b(k)
END DO
b(n+1)=b(n+1)/diag(n+1)
do i=n,1,−1
b(i)=(b(i)−dx(i)*b(i+1))/diag(i)
END DO
! Computation of coefficients begins
DO i=1,n
d(i)=(b(i)+b(i+1)−2.0*f(i+1))/dx(i+1)**2
c(i)=(f(i+1)−b(i))/dx(i+1)−d(i)*dx(i+1)
END DO
! Interpolation begins
DO k=1,m
DO i=1,n
xbarx=xbar(k)−x(i)
IF(xbar(k)>=x(i).AND.xbar(k)<x(i+1)&
&s(k)=y(i)+xbarx*(b(i)+xbarx*(c(i)+xbarx*d(i)))

200 4 Interpolation

END DO; END DO
RETURN
END SUBROUTINE SPLINE

Example 1. Obtain the cubic spline fit for the data

x −1 0 1 2
y 1 −2 −1 3

with the conditions f ′(−1) = −1, f ′(2) = 5.

Solution. For equally spaced data Eq. (4.27) becomes

bi−1 + 4bi + bi+1 = 3

h
(yi+1 − yi−1)

where h := �xi , (i = 1, 2, · · · , n − 1). Here n = 2, h = 1, b0 = f ′(−1) = −1,
b3 = f ′(2) = 5 and so we have the equations

4b1 + b2 = 3(y2 − y0) − b0 = −5

b1 + 4b2 = 3(y3 − y1) − b3 = 10

The solution of these equations is b1 = −2, b2 = 3.

For − 1 ≤ x ≤ 0, in Eqs. (4.25), (4.26) a0 = f (−1) = 1, b0 = −1,

d0 = b0 + b1 − 2(y1 − y0) = 3, c0 = (y1 − y0) − b0 − d0 = −5

Hence, S0(x) = 1 − 1 · (x + 1) − 5 · (x + 1)2 + 3 · (x + 1)3 = −2 − 2x+
4x2 + 3x3.

For 0 ≤ x ≤ 1, a1 = f (0) = −2, b1 = −2,

d1 = b1 + b2 − 2(y2 − y1) = −1, c1 = (y2 − y1) − b1 − d1 = 4

Hence, S1(x) = −2 − 2(x − 0) + 4(x − 0)2 − 1 · (x − 0)3 = −2 − 2x + 4x2 − x3.

For 1 ≤ x ≤ 2, a2 = −1, b2 = 3

d2 = b2 + b3 − 2(y3 − y2 = 0, c2 = (y3 − y2) − b2 − d2 = 1

Hence, S2(x) = −1 + 3(x − 1) + 1 · (x − 1)2 + 0 · (x − 1)3 = −3 + x + x2.

4.4 Piecewise–Polynomial Spline Interpolation 201

It may be verified that S0(0) = S1(0), S ′
0(0) = S ′

1(0), S ′′
0 (0) = S ′′

1 (0) and S1(1)
= S2(1), S ′

1(1) = S ′
2(1), S ′′

1 (1) = S ′′
2 (1). ��

Example 2. Using subroutine SPLINE, compare the computed and exact value of
y = sin x in [0, π] at x = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, taking five data points at
x = 0, π/4, π/2, 3π/4 and π.

Solution. Writing the main program as

REAL :: x(5), y(5), xbar(6), s(6)
pi=3.141593
x(1)=0.; x(2)=pi/4; x(3)=pi/2; x(4)=3*pi/4; x(5)=pi
y(1)=0.; y(2)=sin(x(2)); y(3)=1.; y(4)=sin(x(4)); y(5)=0.
xbar(1)=.5; xbar(2)=1.; xbar(3)=1.5; xbar(4)=2.; xbar(5)=2.5; xbar(6)=3.
CALL SPLINE(x,y,4,xbar,s,6)
DO i=1,6
PRINT*, xbar(i), s(i), sin(xbar(i))
END DO
END

The output is tabulated below:

x Computed value Exact value
0.5 0.47912 0.47943
1.0 0.84073 0.84147
1.5 0.99739 0.99750
2.0 0.90824 0.90930
2.5 0.59843 0.59847
3.0 0.14082 0.14112

The answers are essentially in agreement . ��

Exercises

1. Modify subroutine SPLINE that uses boundary conditions b0 = f ′(x0), bn =
f ′(xn).

2. Obtain the cubic spline approximation for the data

x 0 1 2 3
y 1 4 10 8

given that f ′(0) = 5, f ′(3) = −1.

[S0(x) = 1 + 5x − 6x2 + 4x3, 0 ≤ x ≤ 1; S1(x) = 10 − 22x + 21x2 − 5x3,
1 ≤ x ≤ 2; S2(x) = −70 + 98x − 39x2 + 5x3, 2 ≤ x ≤ 3].

202 4 Interpolation

3. Obtain cubic spline approximation of Ex. 2, for the natural boundary conditions
f ′′(0) = f ′′(3) = 0.

[S0(x) = 1 + 5

3
x + 4

3
x3; S1(x) = 6 − 40

3
x + 15x2 − 11

3
x3; S2(x) = −42 +

176

3
x − 21x2 + 7

3
x3].

4. Obtain the cubic spline approximation for the data

x −1 0 1 2
y −1 1 3 35

given that f ′′(0) = f ′′(3) = 0.

[S0(x) = 1 − 2x − 6x2; S1(x) = 1 − 2x − 6x2 + 10x3;S2(x) = 19 − 56x + 48x2

− 8x3].

Chapter 5
Differentiation and Integration

In the solution of practical problems, one often encounters derivatives and integral
of a function f defined in a certain interval. In many cases, the function f is so
complicated that even the powerful tools of calculus are either difficult to apply or
become totally infructuous. In other cases, f may be defined in a tabular form, to
which the results of calculus do not apply. In such difficulties, numerical answers
may be sought by approximating the function f by an interpolating polynomial
φ obtained from a table of values of f (x), which if not given, may be constructed
from the analytical definition of f . If L denotes the operation of differentiation or
integration, then since f (x) ≈ φ(x), we surmise that

L(f (x)) ≈ L((φ(x))

The right-hand side of the above relation is generally called a rule of differen-
tiation or integration, as the case may be. Such rules as we shall see, are linear
expressions in ordinate values at the points of discritisation.

The accuracy of a rule may be judged by using the property that L is a linear
operator. This means that for two functions f, g and a constant c, L satisfies

L(f (x) + g(x)) = L(f (x)) + L(g(x))

L(c f (x)) = c L(f (x))

Thus, if R(x) is the error in approximating f (x) by φ(x), i.e. f (x) = φ(x) + R(x),
then

L(f (x)) = L(φ(x)) + L(R(x))

L(R(x)) is, therefore, the error committed in using the rule as an approximation. Its
smallness will ensure accuracy.

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1_5

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7114-1_5&domain=pdf
https://doi.org/10.1007/978-981-13-7114-1_5

204 5 Differentiation and Integration

We first consider Numerical Differentiation in Sect. 5.1, followed by Numerical
Integration in Sect. 5.2.

5.1 Numerical Differentiation

At the outset, a few words of caution are necessary regarding numerical differen-
tiation. First of all, even if the interpolating polynomial φ(x) is close to f (x), it
does not mean that the slope φ ′(x) is necessarily close to f ′(x) or, the curvature
proportional to φ′′(x) is close to f ′′(x). For accuracy, the interpolating points must
be very close to each other, but then differencing of nearly equal function values is
encountered. This fact endangers roundoff errors on the one hand, while in the case
of experimental ‘noisy’ data for f , the result may be totally erroneous. A compara-
tively safe application is in the topic of numerical solution of differential equations,
where the function values are noise free.

In developing the rules of numerical differentiation, we restrict to equally spaced
points (nodes) xi , (i = 0, 1, · · · , n) of an interval [a, b], so that xi − xi−1 = h.
Given the data (xi , yi = f (xi)), we base our discussion on Gregory–Newton for-
ward difference formula for the interpolation function φ(x) (Chap. 4, Eq. (4.13),
Sect. 4.2.1):

φ(x) = y0 + t �y0 + t (t − 1)

2! �2y0 + t (t − 1)(t − 2)

3! �3y0

+ t (t − 1)(t − 2)(t − 3)

4! �4y0 + · · · to n + 1 terms

where t = (x − x0)/h. Since dφ/dx = 1
h dφ/dt , it follows that

f ′(x) ≈ φ′(x) = 1

h

[
�y0 + 2t − 1

2
�2y0 + 3t2 − 6t + 2

6
�3y0

+ 2t3 − 9t2 + 11t − 3

12
�4y0 + · · · to n + 1 terms

]
(5.1)

The error in formula (5.1) is R′(x) = f ′(x) − φ′(x) where (see Chap.4,
Sect. 4.2.1),

R(x) = hn+1 t (t − 1) · · · (t − n)

(n + 1)! f (n+1)(ξ), x0 < ξ < xn

Assuming f ∈ C (n+2), the above equation yields

R′(x) = d R

dx

dt

dx
= hn

(n + 1)!
[d

dt
{t (t − 1) · · · (t − n)} f (n+1)(ξ)

5.1 Numerical Differentiation 205

+ t (t − 1) · · · (t − n)
d

dt
{ f (n+1)(ξ)}

]

Often one is interested in evaluating the derivative at a nodal point xk or t = k. In
such a case, the above expression simplifies in to

R′(xk) = (−1)n−k k!(n − k)!
(n + 1)! hn f (n+1)(ξ) (5.2)

The error R′(x) or R′(xk) is called discritisation error due to discritisation of con-
tinuous f .

Based on formulas (5.1) and (5.2), several widespread formulas can be derived.
They are listed below:

1o. n = 1 (two points):

f ′
0 = f ′

1 = 1

h
(y1 − y0) − h

2
f ′′(ξ)

2o. n = 2 (three points):

f ′
0 = 1

2h
(−3y0 + 4y1 − y2) + h2

3
f ′′′(ξ)

f ′
1 = 1

2h
(y2 − y0) − h2

6
f ′′′(ξ)

f ′
2 = 1

2h
(y0 − 4y1 + 3y2) + h2

3
f ′′′(ξ)

3o. n = 3 (four points):

f ′
0 = 1

6h
(−11y0 + 18y1 − 9y2 + 2y3) − h3

4
f iv(ξ)

f ′
1 = 1

6h
(−2y0 − 3y1 + 6y2 − y3) + h3

12
f iv(ξ)

f ′
2 = 1

6h
(y0 − 6y1 + 3y2 + 2y3) − h3

12
f iv(ξ)

f ′
3 = 1

6h
(−2y0 + 9y1 − 18y2 + 11y3) + h3

4
f iv(ξ)

etc. For any n, we have

f ′
0 = 1

h

[
�y0 − 1

2
�2y0 + 1

3
�3y0 − · · · n terms

]
+ (−1)n hn

n + 1
f (n+1)(ξ)

Formulas for the second derivative f ′′(x) can be obtained by differentiating Eq.

(5.1). Since φ′′(x) = 1

h2

d2φ

dt2
, it follows that

206 5 Differentiation and Integration

f ′′(x) ≈ φ′′(x) = 1

h2

[
�2y0 + (t − 1)�3y0 + 6t2 − 18t + 11

12
�4y0 + · · ·

+ (n − 1) terms
]

(5.3)

with an error term R′′(x). At the nodal points, the following formulas hold:

1o. n = 2 (three points):

f ′′
0 = 1

h2
(y0 − 2y1 + y2) − h f ′′′(ξ)

f ′′
1 = 1

h2
(y0 − 2y1 + y2) − h2

12
f (iv)(ξ)

f ′′
2 = 1

h2
(y0 − 2y1 + y2) + h f ′′′(ξ)

2o. n = 3 (four points):

f ′′
0 = 1

h2
(2y0 − 5y1 + 4y2 − y3) + 11

12
h2 f (iv)(ξ)

f ′′
1 = 1

h2
(y0 − 2y1 + y2) − h2

12
f (iv)(ξ)

f ′′
2 = 1

h2
(y1 − 2y2 + y3) − h2

12
f (iv)(ξ)

f ′′
3 = 1

h2
(−y0 + 4y1 − 5y2 + 2y3) + 11

12
h2 f (iv)(ξ)

etc. More formulas of the above type may be added for increasing n and the order of
the derivative. It is then revealed that the order of accuracy increases with n, while it
decreases with respect to h for increasing order of the derivative. For an even n and
even derivative, the formula at themiddle point is a unity higher than at the remaining
points. Therefore, as far as possible, one should perform numerical differentiation
with points arranged symmetrically about the point and use central difference quo-
tient formula. The remainders in these formulas are obtained by adopting the Taylor’s
expansion method, with the remainder in suitable from (as illustrated in Example 1).
In treating the remainder term, one often requires the following property of contin-
uous function:

Lemma 5.1 (Weighted Average of a Function). Let f ∈ C[a, b] and ξi ∈ [a, b] be
arbitrary points, i = 1, 2, · · · , n. Then for constants λi > 0, there exists a point
ξ ∈ [a, b] such that

λ1 f (ξ1) + · · · + λn f (ξn)

λ1 + · · · + λn
= f (ξ)

Proof min
x ∈ [a, b]

f (x) ≤ f (ξi) ≤ max
x ∈ [a, b]

f (x)

5.1 Numerical Differentiation 207

Hence, the weighted average lies between the maximum and minimum of f (x). The
lemma follows from the intermediate value of a continuous function. �

Example 1. Prove the central difference quotient formula for the second derivative

f ′′
1 = 1

h2
(y0 − 2y1 + y2) − h2

12
f (iv)(ξ)

using Taylor’s expansion theorem.

Solution. Shifting the origin to the point x1, the formula to be proved is

f ′′(0) = 1

h2
[f (−h) − 2 f (0) + f (h)] − h2

12
f (iv)(η)

Let F(h) = f (h) − 2 f (0) + f (−h) − h2 f ′′(0). Then F(0) = 0

F ′(h) = f ′(h) − f ′(−h) − 2h f ′′(0), F ′(0) = 0

F ′′(h) = f ′′(h) + f ′′(−h) − 2 f ′′(0), F ′′(0) = 0

F ′′′(h) = f ′′′(h) − f ′′′(−h), F ′′′(0) = 0

F (iv)(h) = f (iv)(h) + f (iv)(−h), F (iv)(0) �= 0

Hence,

F(h) = h4

24
F (iv)(ξ) = h2

12

f (iv)(ξ) + f (iv)(−ξ)

2
= h2

12
f (iv)(η)

by the lemma on weighted average. Here we assume that f ∈ C4[a, b]. Thus

f (h) − 2 f (0) + f (−h) − h2 f ′′(0) = h2

12
f (iv)(η)

which yields the formula �

Example 2. The table below gives the value of distance travelled by a projectile at
various time intervals:

Time T(s) 5 6 7 8 9
Distance Travelled s (km) 10.0 14.5 19.5 25.5 33.0

Estimate the velocity and acceleration at times T = 5, T = 7 and T = 9s.

Solution. The data are equally spaced and so we form the finite difference table

208 5 Differentiation and Integration

T y � �2 �3 �4

5 10.0
4.5

6 14.5 0.5
5.0 0.5

7 19.5 1.0 0
6.0 0.5

8 25.5 1.5
7.5

9 33.0

Here x0 = 5 and h = 1, with x2 = 7 and x4 = 9. For these abscissas, the value of
the parameter t are, respectively, t = 0, t = 2 and t = 4.

Velocity. It is given by the first derivative. For t = 0, 2, 4, formula (5.1) yields the
approximation

f ′(x0) ≈ 1

h

[
�y0 − 1

2
�2y0 + 1

3
�3y0 − 1

4
�4y0

]

f ′(x2) ≈ 1

h

[
�y0 + 3

2
�2y0 + 1

3
�3y0 − 1

12
�4y0

]

f ′(x4) ≈ 1

h

[
�y0 + 7

2
�2y0 + 13

3
�3y0 + 25

12
�4y0

]

Thus, from the difference table, the velocities at T = 5, 7 and 9s are

f ′(5) ≈ 1

1

[
4.5 − 1

2
× 0.5 + 1

3
× 0.5 − 1

4
× 0

]
= 4.4167 km/s

f ′(7) ≈ 1

1

[
4.5 + 3

2
× 0.5 + 1

3
× 0.5 − 1

12
× 0

]
= 5.4167 km/s

f ′(9) ≈ 1

1

[
4.5 + 7

2
× 0.5 + 13

3
× 0.5 + 25

12
× 0

]
= 8.4167 km.s

Acceleration. It is given by the second derivative. For t = 0, 2 and 4, formula (5.3)
similarly yields

f ′′(x0) ≈ 1

h2

[
�2y0 − �3y0 + 11

12
�4y0

]

f ′′(x2) ≈ 1

h2

[
�2y0 + �3y0 − 1

12
�4y0

]

f ′′(x4) ≈ 1

h2

[
�2y0 + 3�3y0 + 35

12
�4y0

]

5.1 Numerical Differentiation 209

Hence, from the difference table, the accelerations at T = 5, 7 and 9s are

f ′′(5) ≈ 1

12

[
0.5 − 0.5 + 11

12
× 0

]
= 0 km/s2

f ′′(7) ≈ 1

12

[
0.5 + 0.5 − 1

12
× 0

]
= 1 km/s2

f ′′(9) ≈ 1

12

[
0.5 + 3 × 0.5 + 35

12
× 0

]
= 2 km/s2 �

Exercises

1. The distance travelled by a car in kilometres, at intervals of 2min. are given as
follows:

Time (m) 2 4 6 8 10
Distance (km) 0.75 2.00 3.50 5.35 8.00

Evaluate the velocity and acceleration at T = 2 and 7min.

[Vel.: v(2) = 32.12km/h, v(7) = 54.84km/h. Accl.: a(2) = 0.1177km/min2, a(7) =
0.1255km/min2].

2. A table of complete elliptic integral K (m) is given below:

m 0.1 0.2 0.3 0.4 0.5
K (m) 1.61244 1.65962 1.71389 1.77752 1.85407

Calculate K ′(m) for m = 0.1 and 0.3. Also calculate K ′′(0.5).

[K ′(0.1) = 0.4407, K ′(0.3) = 0.5847, K ′′(0.5) = 1.766].

3. Given the table of Bessel function of order 1, denoted by J1(x):

x 0 0.1 0.2 0.3 0.4 0.5
J1(x) 0.0 0.04994 0.09950 0.14832 0.19603 0.24227

Calculate J ′
1(x) at x = 0, 0.3 and 0.5.

[0.5001, 0.4833, 0.4541].

210 5 Differentiation and Integration

4. Using the backward difference interpolation formula, prove that

(i) y′
n ≈ 1

h

[
∇ + 1

2
∇2 + 1

3
∇3 + 1

4
∇4 + · · ·

]
yn

(i i) y′′
n ≈ 1

h2

[
∇2 + ∇3 + 11

12
∇4 + · · ·

]
yn

Obtain the expression for the error in the case (i).

5.UsingLagrange’s interpolation formula for three arbitrarily spaced points (x0, y0),
(x1, y1) and (x3, y3), prove the differentiation formulas:

(i) f ′(x0) ≈ 2x0 − x1 − x2
(x0 − x1)(x0 − x2)

y0 + x0 − x2
(x1 − x0)(x1 − x2)

y1 + x0 − x1
(x2 − x0)(x2 − x1)

y2

(i i) f ′′(x0) ≈ 2
[y0
(x0 − x1)(x0 − x2)

+ y1
(x1 − x0)(x1 − x2)

+ y2
(x2 − x0)(x2 − x1)

]

Prove that the remainder in case(i) is R′(x0) = 1

6
(x0 − x1)(x0 − x2) f ′′(ξ).

5.1.1 Minimal Step Length h

In the formulas of numerical differentiationwith constant h, the values of the function
f are divided by hm , where m is the order of the computed derivative. The values of
f are subject to roundoff in a computer and if h is taken very small, the nearly equal
values of f in a formula lead to loss of significance. To theoretically examine how
small h can be taken, consider the central difference differentiation formulas

f ′
1 = 1

2h
(y2 − y0) − h2

6
f ′′′(ξ)

and

f ′′
1 = 1

h2
(y0 − 2y1 + y2) − h2

12
f (iv)(ξ)

Let ε be themaximumroundoff error in y0, y1, y2 and let | f ′′′(ξ)| ≤ M3, | f (iv)(ξ)| ≤
M4, then the maximum computed error in f ′

1 and f ′′
1 are

ε1 = 1

2h
(ε + ε) + h2

6
M3 = ε

h
+ h2

6
M3

and

ε2 = 1

h2
(ε + 2ε + ε) + h2

12
M4 = 4ε

h2
+ h2

12
M4

5.1 Numerical Differentiation 211

These quantities are minimumwhen dε1/dh = 0 and dε2/dh = 0. These conditions
yield

h = h1 =
(3ε

M3

)1/3

for minimum ε1 and

h = h2 = 2
(3ε

M4

)1/4

for minimum ε2. These expressions prove the need for lower limits h1 and h2 on h
for the respective cases.

5.1.2 Richardson Extrapolation

The exact numerical differentiation formulas contain a discritised version of the
derivative known as the difference quotient together with a discritisation error con-
taining the information of its rate of decay as h → 0. The general form of this error
can be used to estimate its major contribution to the differentiation formulas. Con-
sider, for example, the central difference formula for f ′

1 considered in the preceding
section. Here, R′(x1) = − h2

6 f ′′′(ξ), where ξ → x1 and f ′′′(ξ) → f ′′′(x1) as h → 0.

Hence, h2

6 [f ′′′(ξ) − f ′′′(x1)] → 0 faster than h2. Using the order notation, we then
have

f ′
1 = 1

2h
(y2 − y0) − h2

6
f ′′′(x1) + o(h2)

In general, therefore a pth-order differentiation formula can be written as

D(f) = Dh(f) + C h p + o(h p)

where D is a differentiation operator of some order and Dh is its discritised counter-
part, and C is an unknown constant independent of h. D and Dh are linear operators.

The principal contribution of the error Ch p can be estimated by choosing another
step length αh, where 0 < α < 1. In particular, α can be chosen as 1/2. If Dαh(f)

denotes the computed discrete derivative for the step length αh, then as before

D(f) = Dαh(f) + C (αh)p + o(h p)

Eliminating C from the two equations, we obtain

D(f) = Dαh(f) − α p Dh(f)

1 − α p
+ o(h p) (5.4)

= Dh(f) + Dαh(f) − Dh(f)

1 − α p
+ o(h p)

212 5 Differentiation and Integration

For computing the derivative from the first two terms of the right-hand side of (5.4),
h is required to be sufficiently ‘small’. To test the smallness of h suppose, we also
compute Lh/α for the step length h/α. Then

Dαh(f) − Dh(f)

1 − α p
≈ C h p ≈ Dh/α(f) − Dh(f)

1 − 1/α p

or,

R(h) := Dαh(f) − Dh(f)

Dh(f) − Dh/α(f)
≈ α p (5.5)

Thus, if the expression in Eq. (5.4) approximately equals α p, h is sufficiently small
and can be accepted. In the contrary case, h is indicated to be not small enough and
(5.4) may not be accurate.

The formula (5.4) is an extrapolation process, because let

D1
h(f) := Dh(f) + Dαh(f) − Dh(f)

1 − α p
= Dαh(f) + α p[Dαh(f) − Dh(f)]

1 − α p

Hence, if Dh(f) < Dαh(f), then D1
h(f) < Dh(f) < Dαh(f) and if Dh(f) > Dαh

(f) then D1
h(f) < Dαh(f) < Dh(f). This means that D1

h(f) always falls outside
the interval (Dh(f), Dαh(f)) or (Dαh(f), Dh(f)).

The extrapolation process can be repeated a number of times if the discritisation
error can be expressed as a series of powers of h. In this way, highly accurate value
can be obtained by computing a relatively small number of ordinates. (see Exercise
4 below).

This process is due to Richardson and is also known as deferred approach to
the limit.

Lewis Fry Richardson (1881–1953), English scientist. He was the first to apply finite differ-

ences to numerical weather prediction (1922). He also made contributions to the theory of eddy

diffusion in the atmosphere, where Richardson Number is a fundamental quantity involving gra-

dients of temperature and wind velocity. Beginning World War II in 1939, he made mathematical

studies of causes of wars.

Example 1. Let f (x) = sin x . Calculate f ′(x) for x = π/3, using central difference
quotient formula with Richardson extrapolation. Try with h = 1.6, 0.8, 0.4 and 0.2
for calculation.

Solution. Let x1 = π/3 = 1.047197551 ≈ 1.0472. The central difference quotient
formula

f ′(x1) = y2 − y0
2h

− h2

6
f ′′(ξ)

leads to the form

D(f) = Dh(f) + C h2 + o(h2) = D1
h(f) + o(h2)

5.1 Numerical Differentiation 213

where according to formula (5.3) with α = 1/2

Dh(f) = sin(1.0472 + h) − sin(1.0472 − h)

2h

D1
h(f) = Dh(f) + Dh/2(f) − Dh(f)

1 − 1/4
= 4 Dh/2(f) − Dh(f)

3

The accuracy testing function R(h) given by Eq. (5.5) must satisfy

R(h) := Dh/2(f) − Dh(f)

Dh(f) − D2h(f)
≈

(1
2

)2 = 0.25

Calculating these functions for h = 1.6, 0.8, 0.4, 0.2, we obtain the table

h Dh(f) D1
h(f) R(h)

1.6 0.3123654 0.4936725
0.8 0.4483457 0.4995793 0.2826
0.4 0.4867709 0.4999713 0.2577
0.2 0.4966712 0.4999963 0.2519
0.1 0.4991650

Since R(0.2) = 0.2519 ≈ 0.25, f ′(π/3) is best given by D1
h(f) = 0.4999963 for

h = 0.2. Of course, we know that the exact value is f ′(π/3) = cos(π/3) = 0.5. �

Exercises

1. Calculate the value of f ′(0), using central difference quotient and Richardson
extrapolation for the function tabulated below:

x −4 −2 −1 0 1 2 4
f (x) −8.46 −3.39 −2.03 0 1.98 4.64 7.65

Calculate R(h) and draw conclusion about accuracy.

[f ′(0) = 2.00, R(h) = 0.38. Not indicated to be accurate if the function values are
accurate up to two decimal places].

214 5 Differentiation and Integration

2. A partial table of the error function er f (x) is given below:

x 0.80 0.90 0.95 1.00 1.05 1.10 1.20
er f (x) 0.74210 0.79691 0.82089 0.84270 0.86244 0.88021 0.91031

Calculate er f ′(1) and er f ′′(1) using central difference quotient and Richardson
extrapolation. Comment on the accuracy of the two results.

[er f ′(1) = 0.41517, er f ′′(1) = −0.828. R(h) = 0.2484 and 0, respectively, for the
two answers. The first result is accurate but the second result may not be accurate].

3. By Taylor’s expansion prove that

(i) f ′(x1) = f (x1 + h) − f (x1 − h)

2h
− h2

6
f ′′′(x1) − h4

120
f (v)(x1) + o(h4)

(i i) f ′′(x1) = f (x1 − h) − 2 f (x1) + f (x1 + h)

h2 − h2

12
f (iv)(x1) − h4

360
f (vi)(x1) + o(h4)

4. By Exercise 3 above, a central difference derivative formula can be written as

D(f) = Dh(f) + C1 h2 + C2 h4 + o(h4)

Prove that
D(f) = D1

h(f) + o(h2) = D2
h(f) + o(h4)

where

D1
h(f) = 1

3

[
4Dh/2(f) − Dh(f)

]
, D2

h(f) = 1

15

[
16D1

h/2(f) − D1
h(f)

]

provided that
Dh/2(f) − Dh(f)

Dh(f) − D2h(f)
≈ 1

4
,

D1
h/2(f) − D1

h(f)

D1
h(f) − D1

2h(f)
≈ 1

16

5.2 Numerical Integration

In practice, many a time, even simple looking (definite) integrals defy analytical
evaluation. For instance, the elliptic integral K (m) (Exercise1, Sect. 4.1.5, Chap.4)
and the error function er f (x), are of this category. These two integrals, respectively,
appear somehow in the study of large amplitude oscillations of a simple pendulum
and in the probabilistic theory of errors. The difficulty of calculating an integral ana-
lytically is evident in another case, that of an integrand given as a table of numerical

5.2 Numerical Integration 215

values. Thus, we consider the numerical version of the problem, viz. given numbers
a, b and the function f (x) (either in analytical or in tabular form), then estimate the
number

I (f) =
∫ b

a
f (x) dx (5.6)

Such a problem is called numerical integration on numerical quadrature.
The definite integral (5.6), possesses a number of simple properties. One of them is

that I is a linear operator, in the sense explained at the beginningof this chapter. These
properties fortunately enable, accurate numerical integration of a definite integral (in
contrast to numerical differentiation). The basic procedure is to approximate f (x) by
a suitable interpolating φ(x) and take I (f) ≈ ∫ b

a φ(x) dx . We begin by developing
some basic rules of numerical integration based on equally spaced subdivision or
panels of the interval [a, b].

5.2.1 Basic Rules of Numerical Integration

Suppose [a, b] is divided in to n panels each of length h = (b − a)/n, by the nodal
points xi , (i = 0, 1, · · · , n) where x0 := a and xn := b, so that xi − xi−1 = h. On
[a, b] suppose f (x) is approximated by the Gregory–Newton forward difference
formula for the interpolation function φ(x) (Chap. 4, Eq. (4.13), Sect. 4.2.1). If R(x)

is the error, then

f (x) = φ(x) + R(x)

= y0 + t �y0 + t (t − 1)

2! �2y0 + · · · n + 1 terms

+ hn+1

(n + 1)! f (n+1)(ξ) t (t − 1) · · · (t − n), x0 < ξ < xn (5.7)

where t = (x − x0)/h. Integrating the above expression from a to b, we get an
expression for I (f). Giving n some low values, we obtain a set of formulas. The
number of terms and complexity of the formulas increase with n.

The treatment of remainder term R(x) requires the use of

(Generalised Mean Value Theorem). Let f, g ∈ C[a, b] and g(x) ≥ 0 on [a, b],
then ∫ b

a
f (x) g(x) dx = f (η)

∫ b

a
g(x) dx, a < η < b

The proof of the theorem can be found in a textbook of Integral Calculus.

216 5 Differentiation and Integration

We now develop the basic rules of numerical integration from Eq. (5.7).

1o. Rectangle Rule (n = 0). In this very simple case, h = b − a and f (x) ≈ φ

(x) = y0. Thus

IR(f) ≈
∫ b

a
φ(x) dx = h y0

=Area of the rectangle with base h = b − a,

and height y0 = f (x0) = f (a) (5.8)

The error of interpolation is R(x) = h f ′(ξ) t , where t = (x − x0)/h according to
Eq. (5.7). Hence, the error of this quadrature formula is

E(h) =
∫ b

a
h f ′(ξ) t dx = h2

∫ 1

0
f ′(ξ) t dt = h2 f ′(η)

∫ 1

0
t dt = h2

2
f ′(η) (5.9)

in which the generalised mean value theorem is applied.

2o. Midpoint Rule (n = 1). With a change, take x0 = (a + b)/2, the midpoint of
[a, b]. Then as in 1o

f (x) ≈ φ(x) = y0 + t �y0

where t = (x − x0)/h. Hence

IM(f) ≈
∫ x0+h/2

x0−h/2
[y0 + t �y0] dx =

∫ 1/2

−1/2
[y0 + t �y0] h dt = h y0

=Area of the rectangle with base h = b − a,

and midpoint height y0 = f (x0) = f
(a + b

2

)
(5.10)

For this case, the error R(x) = h2

2
f ′′(ξ) t (t − 1) and the error of the quadrature

formula (5.10) is

E(h) =
∫ b

a
R(x) dx = h3

2

∫ 1/2

−1/2
f ′′(ξ) t (t − 1) dt

We note that t (t − 1) changes sign in [−1/2, 1/2] and so the Generalised Mean
Value Theorem cannot be applied to this case. Nevertheless, we have

E(h) =
∫ x0+h/2

x0−h/2
f (x) dx − h y0, E(0) = 0 − 0 = 0

5.2 Numerical Integration 217

Differentiating with respect to h,

E ′(h) = 1

2
f
(

x0 + h

2

)
−

(
− 1

2

)
f
(

x0 − h

2

)
− y0, E ′(0) = 1

2
y0 + 1

2
y0 − y0 = 0

Similarly

E ′′(h) = 1

4
f ′(x0 + h

2

)
− 1

4
f ′(x0 − h

2

)
, E ′′(0) = 1

4
f ′′(0) − 1

4
f ′′(0) = 0

= 1

4

[h

2
−

(
− h

2

)]
f ′′(ξ) = 1

4
h f ′′(ξ)

Now integrating with respect to h, we obtain

E ′(h) − E ′(0) = E ′(h) = 1

4

∫ h

0
h f ′′(ξ) dh = h2

8
f ′′(ζ)

by applying the Generalised Mean Value Theorem. Again integrating with respect
to h, we get

E(h) − E(0) = 1

8

∫ h

0
h2 f ′′(ζ) dh = 1

24
h3 f ′′(η)

Thus,

E(h) = h3

24
f ′′(η) (5.11)

Equations (5.10) and (5.11) show that for ‘small’ h(< 1) and comparable values of
f ′(η) and f ′′(η), the midpoint rule (5.10) is more accurate than the rule (5.8) even
though both represent area of rectangles.

3o. Trapezoidal Rule (n = 1). Here x0 = a, x1 = b and f (x) ≈ φ(x) = y0 +
t �y0 where t = (x − x0)/h. Hence

IT (f) ≈
∫ b

a
[y0 + t �y0] dx =

∫ 1

0
[y0 + t (y − y0)] h dt

= h y0 + h (y1 − y0) · 1
2

= h
(y0 + y1

2

)

= Area of the trapezium with base h = b − a

bounded by ordinates y0 and y1 (5.12)

The error of the formula is

218 5 Differentiation and Integration

E(h) =
∫ b

a
R(x) dx =

∫ 1

0

h2

2
f ′′(ξ) t (t − 1) h dt

= −h3

2
f ′′(η)

∫ 1

0
t (1 − t) dt = − h3

12
f ′′(η) (5.13)

by the Generalised Mean Value Theorem. The expression for the error shows that
the rule integrates a linear function exactly, because f ′′(η) = 0 for such a function.

40. Simpson’s Rule (n = 2). Here x0 = a, x1 = a + b

2
and x2 = b. Then

IS(f) ≈
∫ b

a

[
y0 + t �y0 + t (t − 1)

2
�2y0

]
dx

=
∫ 2

0

[
y0 + t (y1 − y0) + t2 − t

2
(y0 − 2 y1 + y2)

]
h dt

= h
[
2 y0 + (y1 − y0) · 2 + 1

2
(y0 − 2 y1 + y2) ·

(8
3

− 2
)]

= h

3
(y0 + 4 y1 + y2)

= Area under the parabola through (x0, y0), (x1, y1)

and (x2, y2) between the abscissas x0 and x2 (5.14)

The geometrical interpretation of the right-hand side follows from the fact that the
formula is derived by integrating a second-degree (interpolation) polynomial, which
is a parabola.

To obtain a suitable expression for the error E(h) committed in (5.14), we have
effectively

E(h) =
∫ x0+2h

x0

f (x) dx − h

3
[f (x0 + 4 f (x0 + h) + f (x0 + 2h)]

=
∫ h

−h
f (x1 + u) du − h

3
[f (x1 − h) + 4 f (x1) + f (x1 + h)]

by putting x = x1 + u. Differentiating the two sides with respect to h, we have

E ′(h) = f (x1 + h) + f (x1 − h) − 1

3
[f (x1 − h) + 4 f (x1) + f (x1 + h)]

−h

3
[− f ′(x1 − h) + f ′(x1 + h)]

5.2 Numerical Integration 219

= 2

3
[f (x1 + h) + f (x1 − h)] − 4

3
f (x1) − h

3
[f ′(x1 + h) − f ′(x1 − h)]

Thus E ′(0) = 0. Again differentiating with respect to h, we obtain

E ′′(h) = 2

3
[f ′(x1 + h) − f ′(x1 − h)] − 1

3
[f ′(x1 + h) − f ′(x1 − h)]

− h

3
[f ′′(x1 + h) + f ′′(x1 − h)]

= 1

3
[f ′(x1 + h) − f ′(x1 + h)] − h

3
[f ′′(x1 + h) + f ′′(x1 − h)]

Consequently E ′′(0) = 0. A third differentiation simplifies in to

E ′′′(h) = −h

3
[f ′′′(x1 + h) − f ′′′(x1 − h)] = −2h2

3
f (iv)(ξ)

Integrating the above equation three times repeatedly and applying the Generalised
Mean Value Theorem we get

E ′′(h) − E ′′(0) = E ′′(h) = −2

3
f (iv)(ξ1)

∫ h

0
h2 dh = −2

9
f (iv)(ξ1) h3

E ′(h) − E ′(0) = E ′(h) = −2

9
f (iv)(ξ2)

∫ h

0
h3 dh = − 1

18
f (iv)(ξ2) h4

E(h) − E(0) = E(h) = − 1

18
f (iv)(η)

∫ h

0
h4 dh = − h5

90
f (iv)(η)

Thus, finally we obtain

E(h) = − h5

90
f (iv)(η) (5.15)

The above expression shows that Simpson’s rule not only integrates a second-degree
polynomial exactly, but it does so a third-degree cubic polynomial as well. This is
true because f (iv)(η) vanishes for both the types of curve.

Thomas Simpson (1710–1761), English mathematician who lectured in coffee houses and

reportedly kept low company, becoming editor of Ladies Diary in 1754. But earlier he published

The Nature and Laws of Chance in 1740 and The Doctrine and Application of Fluxions in 1750.

The latter book contained his work on interpolation and numerical integration together with the

work of Cotes. His contributions to geometry, trigonometry and astronomy are equally important.

The names of the trigonometric functions sine, cosine, tangent and cotangent are due to Simpson.

220 5 Differentiation and Integration

Example 1. Evaluate
∫ 1
0 e−x2

dx by the basic rules, estimating the error in each case.

Solution. Here f (x) = e−x2
, a = 0 and b = 1. Therefore,

f (0) = 1, f (1) = e−1 = 0.36788, f (1/2) = e1/4 = 0.77880

Formulas (5.8), (5.10), (5.12) and (5.14), respectively, give

IR = 1 · f (0) = 1
IM = 1 · f (1/2) = 0.77880
IT = 1

2 [f (0) + f (1)] = 1
2 (1 + 0.36788) = 0.68394

IS = 1/2
3 [f (0) + 4 f (1/2) + f (1)] = 1

6 [1 + 4 × 0.77880 + 0.36788] = 0.74718

The exact value correct to five decimal places is I = 0.74682.

The errors are, respectively, given by formulas (5.9), (5.11), (5.13) and (5.15). To
estimate the errors, we calculate the derivatives

f ′(x) = e−x2
(−2x), f ′′(x) = e−x2

(4x2 − 2), f ′′′(x) = e−x2
(12x − 8x3)

f (iv)(x) = e−x2
(12 − 48x2 + 16x4), f (v)(x) = e−x2

(−120x + 160x3 − 32x5)

Therefore, from Eq. (5.9)

ER = 1

2
| f ′(η)| ≤ 1

2
max

0 ≤ x ≤ 1
2|x e−x2 | = 1√

2
e−1/2 = 0.42888

since | f ′(x)| is maximum when f ′′(x) = 0 or, x = 1/
√
2. Similarly from Eq. (5.11)

|EM | = 1

24
| f ′′(η)| ≤ 1

24
max

0 ≤ x ≤ 1
2|e−x2

(2x2 − 1)| = 1

12
max{1, e−1} = 1

12

= 0.08333

where | f ′′(x)| is maximum when f ′′′(x) = 0 i.e. x = 0 or x = √
3/2 > 1. So the

maximummust occur at x = 0 or x = 1. Similarly, for the trapezoidal rule using Eq.
(5.13)

ET = 1

12
| f ′′(η)| ≤ 1

6
max{1, e−1} = 1

6
= 0.16667

5.2 Numerical Integration 221

Finally, for the Simpson’s rule in Eq. (5.15), h = 1/2 and

ES = 1

90 · 3 | f (iv)(η)| ≤ 1

2880
max

0 ≤ x ≤ 1
|e−x2

(12 − 48x2 + 16x4)|

= 1

2880
max{12, 20e−1} = 12

2880
= 0.00417

In the above, | f (iv)(x)| is maximum when f (v)(x) = 0, i.e. x = 0 or 4x4 − 20x2 +
15 = 0. The admissible root of the second equation is x2 = 15/2 > 1. Hence, the
maximum is at either x = 0 or x = 1. �

Example 2 (End-Corrected Trapezoidal Rule). Prove that

∫ b

a
f (x) dx ≈ h

2
(y0 + y1) + h2

12
(y′

0 − y′
1), h = b − a

with error h5

720 f (iv)(η). Apply the rule to the problem of Example 1.

Solution. Let

∫ b

a
f (x) dx ≈ h

2
(y0 + y1) + h2

12
(Ay′

0 + By′
1), h = b − a

We determine A and B so that the formula is exact for degree as high as possible.
For this purpose, it is sufficient to test functions 1, x, x2, etc. For f (x) = 1, the
formula is obviously exact. If it is exact for f (x) = x , then

1

2
(b2 − a2) = b − a

2
(a + b) + A + B ⇒ B = −A

Similarly, if it is exact for f (x) = x2, then

1

3
(b3 − a3) = b − a

2
(a2 + b2) + 2A(a − b) ⇒ A = 1

12
(b − a)2

Hence the formula. It also integrates f (x) = x3 exactly.
Analternative proofwhich also yields the expression for the error, is to consider the

four-point Newton’s divided difference formula for x0 = x1 = a and x2 = x3 = b.
The exact formula including the error term is

f (x) = f (a) + f [a, a](x − a) + f [a, a, b](x − a)2 + f [a, a, b, b](x − a)2(x − b) + R(x)

222 5 Differentiation and Integration

where

R(x) = f (iv)(ξ)

4! (x − a)2(x − b)2

Integrating from a to b

∫ b

a
f (x) dx ≈ f (a)(b − a) + f [a, a] (b − a)2

2
+ f [a, a, b] (b − a)3

3
+ f [a, a, b, b]

[(b − a)4

4
− (b − a)4

3

]

Here from Eq. (4.4) of Chap.4, Sect. 4.1.2

f [a, a] = f ′(a)

f [a, a, b] = { f [a, b] − f ′(a)}/(b − a), f [a, b] = { f (b) − f (a)}/(b − a)

f [a, a, b, b] = { f ′(b) − 2 f [a, b] + f ′(a)}/(b − a)2

Substituting in the integrated approximation and simplifying, we again obtain the
required expression for the end-corrected trapezoidal rule. Moreover, the error of the
approximation is

E =
∫ b

a

f (iv)(ξ)

24
(x − a)2(x − b)2 dx = f (iv)(η)

24

∫ b

a
(x − a)2(x − b)2 dx

by application of generalised mean value theorem. Substituting x = a + z and inte-
grating, we obtain E = h5

720 f (iv)(η).

In particular, if f (x) = e−x2
, with a = 0, b = 1 then f ′(x) = −2x e−x2

and

∫ 1

0
e−x2

dx ≈ 1

2
(e0 + e1) + 1

12
· (−2) · (0 − e−1) = 0.74525 �

Exercises

1. Calculate the following integrals by the four basic rules, estimating the error
in each case:

(i)
∫ 1

0

dx

1 + x

(i i)
∫ 1

0
sin x2 dx

[(i) IR = 1, IM = 0.66667, IT = 0.75, IS = 0.69444. Exact value = 0.69315.

5.2 Numerical Integration 223

|ER| ≤ 0.5, |EM | ≤ 0.08333, |ET | ≤ 0.16667, |ES| ≤ 0.00833.

(i i) IR = 0, IM = 0.24740, IT = 0.42074, IS = 0.30518,

|ER| ≤ 1, |EM | ≤ 0.25, |ET | ≤ 0.5, |ES| ≤ 0.02639].

2. Calculate
∫ 1
0 f (x) dx for the test function

f (x) = x, 0 ≤ x ≤ 1
= 2 − x, 1 ≤ x ≤ 2

by the trapezoidal and Simpson’s rule. What is the exact value? Why cannot you
estimate the errors in this case?

[IT = 0, IS = 1.33333, Exact Value = 1. The successive derivatives do not exist at
x = 1].

3. Apply Simpson’s rule to estimate the value of the integrals

(i)
∫ 1

0

x dx

x3 + 10
(i i)

∫ 1/2

0

sin x

x
dx

[(i) 0.04807, (i i) 0.47307].

4.Calculate the integral of Example 1 by the end-corrected trapezoidal rule. Estimate
the error in the result.

[IECT = 0.74525. |EECT | ≤ 0.016666].

5. Prove the error formula Eq. (5.13) for the trapezoidal rule by the method employed
in the case of Simpson’s rule.

[Here E(h) =
∫ x0+h

x0

f (x) dx − h

2
[f (x0 + f (x0 + h)]. Now show that E ′′(h) =

− h
2 f ′′(x0 + h) with E(0) = E ′(0) = 0. Integrate twice using generalised mean

value theorem, to obtain the form for E(h)].

6. End-Corected Simpson’s Rule. Prove that

∫ b

a
f (x) dx ≈ h

15
(7y0 + 16y1 + 7y2) + h2

15
(y′

0 − y′
2), h = b − a

2

224 5 Differentiation and Integration

[With respect to the midpoint x1 assume

∫ h

−h
f (x) dx = h[A f (−h) + B f (0) + A f (h)] + C[f ′(−h) − f ′(h)]

For highest degree accuracy, determine A, B, C by applying the formula to f (x) =
1, x2 and x4. It can be proved that the error in the formula is h7

4725 f (vi)(η)].

5.2.2 Newton–Cotes Formula

This formula is a generalisation of the formulas of the preceding subsection. Here,
as before, the interval [a, b] is divided in to n equal panels of length h = (b − a)/n
by the nodal points xi (i = 0, 1, · · · , n), with x0 = a and xn = b. Since we want
to derive a formula directly in terms of the ordinates yi (= f (xi)), we approximate
f (x) by the Lagrange interpolation polynomial φ(x) (Sect. 4.1.1, Chap. 4) on [a, b],
for the net of nodes . Setting x = x0 + ht, xi = x0 + ih.

f (x)≈φ(x)=
n∑

i=0

(x − x0)(x − x1) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi −x0)(xi −x1) · · · (xi −xi−1)(xi −xi+1) · · · (xi −xn)
yi

=
n∑

i=0

hnt (t − 1) · · · (t − i + 1)(t − i − 1) · · · (t − n)

hni(i − 1) · · · 1 · (−1) · · · [−(n − 1)] yi

=
n∑

i=0

t (t − 1) · · · (t − n)

i !(−1)n−i (n − i)! (t − i)
yi

Hence

IC(f) ≈
∫ x0+nh

x0

φ(x) dx =
n∑

i=0

(−1)n−i yi

i ! (n − i)!
∫ n

0

t (t − 1) · · · (t − n)

t − i
· (b − a)

n
dt

=: (b − a)

n∑
i=0

Hi yi (5.16)

where the Cotes’ coefficients Hi are given by

Hi = 1

n

(−1)n−i

i ! (n − i)!
∫ n

0

t (t − 1) · · · (t − n)

t − i
dt (5.17)

Formulas (5.16) and (5.17) comprise Newton–Cotes’ formula.

5.2 Numerical Integration 225

The Cotes’ coefficients possess the following useful properties:

1o. The sum of all the coefficients is equal to unity:

n∑
i=0

Hi = 1

Proof Let f (x) = 1, a polynomial of zero degree. Then φ(x) = 1 by uniqueness of
polynomials and formula (5.16) yields

∫ b

a
1 · dx = (b − a)

n∑
i=0

Hi · 1

Hence the property. �

2o. The symmetrical coefficients (the first and the nth, the second and the (n −
1)th, · · ·) are equal to one another:

Hi = Hn−i

Proof Setting t ′ = n − t , we get from (5.17)

Hn−i = 1

n

(−1)i

(n − i)! i !
∫ n

0

t (t − 1) · · · (t − n)

t − n + i
dt

= 1

n

(−1)i

i ! (n − i)!
∫ 0

n

(n − t ′)(n − t ′ − 1) · · · (−t ′)
−t ′ + 1

(−dt ′)

= 1

n

(−1)i

i ! (n − i)!
∫ n

0

(−1)n(t ′ − n)(t ′ − n + 1) · · · t ′

t ′ − i
dt ′ = Hi

The Cotes’ coefficients Hi are compiled below for n = 1 − 6.

i 0 1 2 3 4 5 6
n
1 1/2 1/2
2 1/6 4/6 1/6
3 1/8 3/8 3/8 1/8
4 7/90 32/90 12/90 32/90 7/90
5 19/288 75/288 50/288 50/288 75/288 19/288
6 41/840 216/840 27/840 272/840 27/840 216/814 41/840

226 5 Differentiation and Integration

For n = 7 and n ≥ 10, the coefficients are of mixed sign. For n = 1 and 2, the
trapezoidal and the Simpson’s rule are retrieved.

The analysis of the error in approximating IC(f) by the right-hand side of Eq.
(5.16) is somewhat complicated. It was given by Steffensen in 1927, who proved that
the error E(x) is of the order of

O
(

h2[n/2]+3
)

where [·] denotes the integer part of the argument . From this, we see that quadrature
rules for even n employing odd number of ordinates are more advantageous as to the
degree of accuracy. This was the case with Simpson’s rule.

Roger Cotes (1682–1716), English mathematician who edited the second edition
of Newton’s Principia. He made advances in the theory of logarithms, the integral
calculus and numerical methods. He is also known for the study of spirals.

Johan Fredrik Steffensen (1873–1961), a Danishmathematicianwhomade con-
tributions in interpolation and concomitant errors.

5.2.3 Composite Rules

The expressions for the error of all the rules obtained in the previous two sections
show that they are accurate only when h is ‘small’. This is possible only when the
length of the interval b − a is ‘small’. In the contrary case , which is more important
in practice, one can divide the interval [a, b] in to N panels of sufficiently small
length, by the points

a = x0 < x1 < · · · < xN = b

and use a property of the definite integral to write

I (f) =
∫ xN

x0

f (x) dx =
∫ x1

x0

f (x) dx +
∫ x2

x1

f (x) dx + · · · +
∫ xN

X N−1

f (x) dx

If f (x) is now approximated by a certain interpolation polynomial φ(x), the above
equation yields

I (f) ≈
N∑

i=1

∫ xi

xi−1

φ(x) dx (5.18)

with an error in the calculated value equaling the difference of he two sides. We
apply this technique to the basic rules of Sect. 5.2.1.

5.2 Numerical Integration 227

1o. Composite Rectangle Rule

Applying the rule (5.8) to Eq. (5.18) we obtain

IC R(f) ≈
N∑

i=1

h yi−1 = h(y0 + y1 + · · · + yN−1)

with an error

E(h) =
N∑

i=1

[xi∑
xi−1

f (x) dx − h yi−1

]
= h2

2

N∑
i=1

f ′(ηi)

= (b − a)h

2

1

N

N∑
i=1

f ′(ηi) = (b − a)h

2
f ′(η)

by the weighted average lemma (see Sect. 5.1).

2o. Composite Midpoint Rule

In this case, as before

IC M(f) =
N∑

i=1

h f
(xi−1 + xi

2

)
=: h (y1/2 + y3/2 + · · · + yN−1/2)

with an error

E(h) =
N∑

i=1

[∫ xi

zi−1

f (x) dx − h yi−1/2

]
= h3

24

N∑
i=1

f ′′(ηi) = (b − a)h2

24
f ′′(η)

where the weighted average lemma is applied.

3o. Composite Trapezoidal Rule

Using Eqs. (5.12), (5.18) yields

228 5 Differentiation and Integration

ICT (f) ≈
N∑

i=1

h

2
(yi−1 + yi) = h

2

[
(y0 + y1) + (y1 + y2) + · · · + (yN−1 + yN)

]

= h
[y0 + yN

2
+ y1 + · · · + yN−1

]
(5.19)

The error committed in this approximation, using Eq. (5.13) is

E(h) =
N∑

i=1

[xi∑
xi−1

f (x) dx − h

2
(yi−1 + yi)

]
= − h3

12

N∑
i=1

f ′′(ηi)

= − (b − a)h2

12
f ′′(η) (5.20)

using the lemma on weighted average.

4o. Composite Simpson’s Rule

The basic Simpson’s rule requires two equally spaced sum intervals each of length
h. Hence we divide [a, b] in ot an even number of N = 2M panels. Following Eqs.
(5.14) and (5.18), we get

IC S(f) ≈ h

3
(y0 + 4y1 + y2) + h

3
(y2 + 4y3 + y4) + · · · + h

3
(y2M−2 + 4y2M−1 + y2M)

= h

3

[
y0 + y2M + 4 (y1 + y3 + · · · + y2M−1) + 2 (y2 + y4 + · · · + y2M−2)

]

(5.21)

The inherent error of this composite rule following Eq. (5.15) is

E(h) = − h5

90

M∑
i=1

f (iv)(ηi) = − (b − a)h4

180
f (iv)(η) (5.22)

where b − a = 2M h and the lemma on weighted average is used.
The composite trapezoidal and Simpson’s rule are useful in practice and for that

purpose we give below subroutines of the same names:

SUBROUTINE TRAPEZOIDAL(f,a,b,n,result)
! f=integrand. Must be declared external in the calling program. (Input)
! a=lower limit of integration. (Input)
! b=upper limit of integration. (Input)

5.2 Numerical Integration 229

! n=number of panels of [a,b]. (Input)
! result=value of the integral. (Output)
!***************************************
h=(b−a)/n
x=a; result=0.0
DO i=1,n
result=result+h/2.0*(f(x)+f(x+h))
x=x+h
END DO
RETURN
END SUBROUTINE TRAPEZOIDAL

SUBROUTINE SIMPSON(f,a,b,n,result)
! f=integrand. Must be declared external in the calling program. (Input)
! a=lower limit of integration. (Input)
! b=upper limit of integration. (Input)
! n=number of panels of [a,b], must be an even number. (Input)
! result=value of the integral. (Output)
!**************************************
h=(b−a)/n
x=a; result=0.0
DO i=1,n,2
result=result+h/3.0*(f(x)+4*f(x+h)+f(x+2*h))
x=x+2*h
END DO
RETURN
END SUBROUTINE SIMPSON

The use of the subroutines is presented below.

Example 1. Calculate the value of the elliptic integral of the first kind

K (0.25) =
∫ π/2

0

dx√
1 − 0.25 sin2 x

by dividing the interval [0, π/2] in to six equal parts and using the composite trape-
zoidal and the Simpson’s rules.

Solution. We first tabulate the function f (x) = 1/
√
1 − 0.25 sin2 x as

x 0 0.261799 0.523599 0.785398 1.047198 1.308997 1.570796
f (x) 1 1.008480 1.032796 1.069045 1.109400 1.142021 1.154701

230 5 Differentiation and Integration

By the composite trapezoidal rule (h = 0.261799)

K (0.5) ≈ 0.261799 ×
[1 + 1.154701

2
+ 1.008480 + 1.032796 + 1.06904 + 1.109400

+1.142021
]

= 1.68575 (to five decimal places)

Again, by the composite Simpson’s rule

K (0.5) ≈ 0.261799

3

[
1 + 1.154701 + 4 × (1.008480 + 1.069045 + 1.142021)

+2 × (1.032796 + 1.109400)
]

= 1.68575 (to five decimal places)

Incidentally, the actual value agrees with the value. �

Example 2. A rocket is launched from ground. Its acceleration is registered during
the first 80 s and is given in the table below:

t 0 10 20 30 40 50 60 70 80
a (m/s2) 30.00 31.63 33.44 35.47 37.75 40.33 43.29 46.69 50.67

Find the velocity and the height of the rocket at t = 80 s. Use Simpson’s rule when-
ever you can otherwise use trapezoidal rule.

Solution. Here, the integrand is given as a table of values. If v is the velocity at time
t , a = dv/dt . Hence by Simpson’s rule

v80 =
∫ 80

0
a dt = 1

3
[30.00 + 50.67 + 4 × (31.63 + 35.47 + 40.33 + 46.69)

+ 2 × (33..44 + 37.75 + 43.29)] = 3420.36 m/s

Again if h is the height at time t , dh/dt = v. Hence

h80 =
∫ 80

0
v dt

To evaluate the integral we need a table of values of v. For this purpose we have

v10 = 10

2
× (30.00 + 50.67) = 308.15

5.2 Numerical Integration 231

v20 = 10

3
× (30.00 + 4 × 31.63 + 33.44) = 633.20

v30 = 633.20 + 10

2
× (33.44 + +35.47) = 977.75

v40 = 10

3
× [30.00 + 37.75 + 4 × (31.63 + 35.47) + 2 × 33.44] = 1343.43

v50 = 1343.43 + 10

2
× (37.75 + 40.33) = 1733.83

v60 = 1343.43 + 10

3
× (37.75 + 4 × 40.33 + 43.29) = 2151.30

v70 = 2151.30 + 10

2
× (43.29 + 46.69) = 2601.20

v80 = 3420.36

Thus, h80 = 10

3
[0 + 3420.36 + 4 × (308.15 + 977.75 + 1733.83 + 2601.20)

+ 2 × (633.20 + 1343.43 + 2151.30)] = 113.87 km

�

Example 3. Compute
∫ 1

0
e−x2

dx by subroutines TRAPEZOIDAL and SIMPSON

correct to five decimal places.

Solution. We write the main program as

EXTERNAL f
a =0.; b=1.
READ*, n
CALL TRAPEZOIDAL(f,a,b,n,result)
PRINT*, ’n=’, n, ’ result=’, result
END

and append the subroutine TRAPEZOIDAL. The output for various values of n are
obtained as

n = 10, result = 0.74621

232 5 Differentiation and Integration

n = 50, result = 0.74680

n = 100, result = 0.74682

n = 120, result = 0.74682

n = 130, result = 0.74682

Since stability is reached it is not expedient to further increase n, as roundoff errors
will creep in.

In a similar manner calling subroutine SIMPSON, the following results are
obtained:

n = 6, result = 0.74683

n = 10, result = 0.74683

n = 12, result = 0.74682

n = 14, result = 0.74682

n = 16, result = 0.74682

Reaching stabilitywe conclude that the result is 0.74682. Evidently subroutineSIMP-
SON works much faster.

Exercises

1. Compute the value of π from the formulae

(i)
π

4
=

∫ 1

0

dx

1 + x2
(i i)

π

2
√
2

=
∫ 1

0

1 + x2

1 + x4
dx

using 10 panel trapezoidal rule.

[(i) π ≈ 3.13993, (i i) π ≈ 3.13923].

2. The prime number theorem state that the number of primes in the interval
a < x < b is approximately

∫ b
a dx/ ln x . Use this for a = 10, b = 100 and com-

pare with the exact value. Noting that the integrand varies slowly use trapezoidal
rule with only 8 panels.

5.2 Numerical Integration 233

[24. Exact value = 26].

3. Calculate the Incomplete Gamma Function

∫ 1

0
e−x√x dx

to two decimal places by Simpson’s rule with four panels.

[1.25]

4. The arc length L of an ellipse of semi-axes a and b is given by the formula
L = 4a E(m) where m = 1 − b2/a2 and

E(m) =
∫ π/2

0

√
1 − m sin2 θ dθ

is the elliptic integral of the second kind. Calculate L for a = 2, b = 1 by six panel
Simpson’s rule.

[9.68862].

5. Calculate the value of the Fresnel integral

C(x) =
∫ x

0
cos

(π

2
t2

)
dt

for x = 1 by 8 panel Simpson’s rule.

[0.77933].

6. Revisit Exercises 1 and 3 to compute the quantities correctly to five decimal places
by using subroutine TRAPEZOIDAL, stating the number of panels used.

[(1) 3.14159 ((i) n =200 (i i) n =190), (3) 1.25559 (n = 300)].

7. Revisit Exercises 4 and 5 to compute the quantities to five decimal places by using
subroutine SIMPSON, stating the number of panels used.

[(4) 9.68845 (n = 10) (5) 0.77989 (n = 20)].

234 5 Differentiation and Integration

8.Compute the following integrals by subroutine SIMPSON, correct to five decimals:

(i)
∫ 1

0
ex

√
x dx (i i)

∫ 1

0

√
1 − e−x

x
dx (i i i)

∫ π/2

0

cos x

1 + x
dx

(iv)

∫ 2

0

sin x

x
dx (v)

∫ 1

0

dx√
ex + x + 1

[(i) 1.56240, (i i) 0.89057, (i i i) 1.60541, (iv) 0.89057, (v) 0.57011].

9. A reservoir discharging through sluices at a depth h below the water surface has
a surface area A for various values of h as given below:

h (ft) 10 1 12 13 14
A (sq. ft.) 950 1070 1200 1350 1530

If t denotes time in minutes, the rate of fall of the surface is given by dh/dt =
−48

√
h/A. Estimate the time taken for the water level to fall from 14 to 10 ft. above

the sluices.

[Required time = 1

48

∫ 14

10

A√
h

dh; now tabulate A/
√

h. 29.10min].

10. The velocity v of a particle at a distance s from a point on its path is given in the
following data:

s (m) 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
v (m/s) 16 19 21 22 20 17 13 11 9

Estimate the time taken to traverse the distance of 20m.

[Require time =
∫ 20

0

ds

v
= 1.26s].

11. The temperature θ at radius r in a finned radiator tube is given in the following
table:

5.2 Numerical Integration 235

r (cm) 0.50 0.75 1.0 1.25 1.50 1.75 2.00
θ (oC) 100 77.3 63.8 55.9 51.7 48.5 45.6

Calculate (i) average temperature =
1

1.5

∫ 2.00

0.50
θ dr and (i i) the heat flux Q =

−2πrkt
dθ

dt
at inner radius r = 0.50cm, given conductivity k = 0.26 c.g.s. units

and thickness of a fin t = 0.36cm.
[(i) 61.3oC (i i) At r = 0.5, dθ/dr = −115.6, Q = 300.6].

12. Prove the n-panel end-corrected trapezoidal and Simpson’s rules:

(i)
∫ b

a
f (x) dx = h

(y0 + yn

2
+ y1 + · · · + yn−1

)
+ h2

12
(y′

0 − y′
n) + O(h4)

(i i)
∫ b

a
f (x) dx = h

15
(7y0 + 16y1 + 14y2 + 16y3 + · · · + 7y2n) + h2

15
(y′

0 − y′
2n) + O(h6)

5.2.4 Gaussian Quadrature Formula

For developing this formula, we first consider a function y = f (t) specified on the
standard interval [−1, 1]. The general case of an integral with respect to x ∈ [a, b]
can be reduced to this standard interval by the linear transformation

x = b + a

2
+ b − a

2
t (5.23)

If t1, t2, · · · , tn are points in [−1, 1], a quadrature formula is of the form

I1(f) :=
∫ 1

−1
f (t) dt ≈

n∑
i=1

Ai f (ti) (5.24)

where A1, A2, · · · , An are certain coefficients called weights of the formula. Gauss
posed the problem of determining the abscissas t1, t2, · · · , tn and the coefficients
A1, A2, · · · , An so that the quadrature formula (5.24) is exact for all polynomials
f (t) of degree N , as high as possible. Since we have at our disposal 2n constants ti
and Ai (i = 1, 2, · · · , n) and a polynomial of degree 2n − 1 is determined by 2n
coefficients, this highest possible degree N in the general case should equal 2n − 1.

236 5 Differentiation and Integration

To ensure exact validity of (5.24) for a polynomial of degree 2n − 1, it is necessary
and sufficient that it be valid for

f (t) = 1, t, t2, · · · , t2n−1 = t k (k = 0, 1, · · · , 2n − 1) (5.25)

Indeed, let ∫ 1

−1
t kdt =

n∑
i=1

Ai tk
i , (k = 0, 1, · · · , 2n − 1)

Then if f (t) =
2n−1∑
k=0

Ck tk

we obtain
∫ 1

−1
f (t) dt =

2n−1∑
k=0

Ck

∫ 1

−1
t kdt =

2n−1∑
k=0

Ck

n∑
i=1

Ai t
k
i

=
n∑

i=1

Ai

2n−1∑
k=0

Cktk
i =

n∑
i=1

Ai f (ti)

This proves the assertion.
The exact quadrature of t k , (k = 0, 1, 2, · · · , 2n − 1) in (5.25) yields

n∑
i=1

Ai tk
i =

∫ 1

−1
t kdt = 1 − (−1)k+1

k + 1
=

{ 2
k+1 for k even
0 for k odd

We thus conclude that it is sufficient to determine ti and Ai from the system of 2n
equations

n∑
i=1

Ai = 2

n∑
i=1

Ai ti = 0

· · · · · · · · · · · · · · ·
n∑

i=1

Ai t2n−2
i = 2

2n − 1
n∑

i=1

Ai t2n−1
i = 0

(5.26)

The system (5.26) is nonlinear and its solution in ordinary manner involves mathe-
matical difficulties. However, the following device may be employed.

5.2 Numerical Integration 237

Instead of considering the power functions (5.25), consider the polynomial

f (t) = t k Pn(t), (k = 0, 1, · · · , n − 1) (5.27)

where Pn(t) is the well-known Legendre polynomial of degree n. It satisfies the
Rodrigue’s formula

Pn(t) = 1

n! 2n

dn

dtn
[(t2 − 1)n]

and the orthogonality property

∫ 1

−1
Pm(t)Pn(t) dt = 0, if m �= n

(see Chap.8, Sect. 8.4). The degree of f (t) do not exceed 2n − 1 and exact validity
of (5.24) yields

∫ 1

−1
t k Pn(t) dt =

n∑
i=1

Ai tk
i Pn(ti), (k = 0, 1, · · · , n − 1)

Now t k can be expressed as a series of Legendre polynomials of various degrees, not
exceeding k. The left-hand side of the above equation vanishes since by virtue of the
orthogonality property,

∫ 1

−1
t k Pn(t) dt = 0 for k < n

Hence we obtain
n∑

i=1

Ai tk
i Pn(ti) = 0, (k = 0, 1, · · · , n − 1) (5.28)

Equation (5.28) are definitely satisfied for any value of Ai , if

Pn(ti) = 0, (i = 1, 2, · · · , n) (5.29)

Thus, to achieve the maximum accuracy of the quadrature formula (5.24), it is suffi-
cient to take ti as the zeros of the Legendre polynomial of degree n. As is known (see
Chap.8, Sect. 8.4, Theorem 9, Remark), these zeros are real and distinct and lie in the
interval (−1, 1). Knowing the values of ti , the coefficients Ai (i = 1, 2, · · · , n) can
be found from the linear system of the first n equations of (5.26). The determinant
of this subsystem is the Vandermonde determinant equal to

∏
i> j

(ti − t j) �= 0

238 5 Differentiation and Integration

since ti are distinct. Hence Ai are determined uniquely.

Formula (5.24), where the ti are zeros of the Legendre polynomial Pn(t), Eq.
(5.29), and the Ai (i = 1, 2, · · · , n) determined from n equations of the system
(5.26), are called Gaussian Quadrature Formula.

Example 1. Derive the Gaussian quadrature formula for the case of three ordinates.

Solution. Here n = 3. The Legendre polynomial of degree 3 is

P3(t) = 1

48

d3

dt3
[(t2 − 1)3] = 1

2
(5t3 − 3t)

whose zeros are

t1 = −
√
3

5
= −0.7745967, t2 = 0, t3 =

√
3

5
= 0.7745967

To determine the coefficients A1, A2, A3, we have from Eq. (5.26)

A1 + A2 + A3 = 2

−
√

3
5 A1 +

√
3
5 A3 = 0

3
5 A1 + 3

5 A3 = 2
3

The solution of these equations is A1 = A3 = 5/9, A2 = 8/9. Therefore

∫ 1

−1
f (t) dt ≈ 1

9

[
5 f

(
−

√
3

5

)
+ 8 f (0) + 5 f

(√
3

5

)]
�

The abscissas ti and the weights Ai (i = 1, 2, · · · , n), calculated in this manner
for n = 1, 2, · · · , 6 are tabulated next page. For comprehensive tables, see the book
by Stroud and Secrest listed in the bibliography at the end of this book.

To determine an expression for the error, let f (x) be approximated by the
Lagrange interpolation function φ(x) of degree 2n − 1, that passes through the 2n
nodes t1, t2, · · · , t2n where t1, t2, · · · , tn is the node set of the Gaussian formula
(5.24). Thus φ(ti) = f (ti), i = 1, 2, · · · , 2n. Taking in to account the error we
have the exact relation

I 1G(f) :=
∫ 1

−1
f (t) dt =

∫ 1

−1
φ(t) dt + 1

(2n + 1)!
∫ 1

−1
f (2n)(ξ) (t − t1) · · · (t − t2n) dt

5.2 Numerical Integration 239

Table of Gaussian Elements
n i ti Ai

1 1 0 2
2 1, 2 ∓0.5773503 1
3 1, 3 ∓0.7745967 0.5555556

2 0 0.8888889
4 1, 4 ∓0.8611363 0.3478548
2, 3 ∓0.3399810 0.6521452

5 1, 5 ∓0.9061799 0.2369269
2, 4 ∓0.5384693 0.4786287
3 0 0.5688889

6 1, 6 ∓0.9324695 0.1713245
2, 5 ∓0.6612094 0.3607616
3, 4 ∓0.2386192 0.4679139

Since φ(t) is of degree 2n − 1, the Gaussian formula (5.24) holds exactly and

∫ 1

−1
φ(t) dt =

n∑
i=1

Ai φ(ti) =
n∑

i=1

Ai f (ti)

Substituting this value in the preceding equation,

I 1G(f) =
n∑

i=1

Ai f (ti) + E1
G

where E1
G is the error in Gaussian quadrature. Now letting tn+1, · · · , t2n tend to

t1, · · · , tn , respectively, the expression for E1
G becomes

E1
G = 1

(2n)!
∫ 1

−1
f (2n)(ξ)[(t − t1)(t − t2) · · · (t − tn)]2 dt

= f (2n)(η)

(2n)!
∫ 1

−1
[(t − t1)(t − t2) · · · (t − tn)]2 dt

by using the generalised mean value theorem. Now, ti (i = 1, 2, · · · , n) are the
zeros of Pn(t); hence Pn(t) = K (t − t1) · · · (t − tn), where K is a constant. Using
Rodrigue’s formula

K = coefficient of tn in
1

2nn!
dn

dtn
(t2 − 1)n

= coefficient of tn in
1

2nn!
dn

dtn
(t2n) = 1

2nn!
(2n)!

n! = (2n)!
2n(n!)2

240 5 Differentiation and Integration

Thus, E1
G = f (2n)(η)

(2n)!
1

K 2

∫ 1

−1
[Pn(t)]2 dt

= f (2n)(η)

(2n)! · 2
2n(n!)4

[(2n)!]2 · 2

2n + 1
= 22n+1(n!)4

[(2n)!]3(2n + 1)
f (2n)(η) (5.30)

where the result ∫ 1

−1
[Pn(t)]2 dt = 2

2n + 1

noted in Chap.8, Sect. 8.4, is used. Equation (5.30) is the sought expression for the
error.

Let us now return to the question of calculating

IG(f) :=
∫ b

a
f (x) dx (5.31)

Making the change of variable (5.23), we obtain by Eq. (5.24)

IG(f) = b − a

2

∫ 1

−1
f
(b + a

2
+ b − a

2
t
)

dt ≈ b − a

2

n∑
i=1

Ai f (xi); (5.32)

xi = b + a

2
+ b − a

2
ti

Equation (5.32) is the required Gaussian formula. The error for this rule is

EG = (b − a)2n+1(n!)4
[(2n)!]3(2n + 1)

f (2n)(η) (5.33)

Remark TheGaussian quadrature theory has also been treated in a generalmanner by
integrating Lagarnge interpolation formula. The general approach has led to formulas
that are particularly useful in computing improper integrals over an interval [a, b].
The technique uses the orthogonal polynomial over the given interval. Let

I (f) :=
∫ b

a
f (x) w(x) dx (5.34)

wherew(x) is a certain weight function ≥ 0. If f (x) is approximated by its Lagrange
interpolation φ(x) over the points a < x1 < x2 < · · · < xn < b, that is

5.2 Numerical Integration 241

f (x) ≈ φ(x) =
n∑

i=1

li (x) f (xi)

with li (x) = ωn(x)

(x − xi) ω′(xi)
, ωn(x) = (x − x1) · · · (x − xn)

then

I (f) ≈
n∑

i=1

Ai f (xi) (5.35)

where

Ai =
∫ b

a
li (x) w(x) dx = 1

ω′(xi)

∫ b

a

ωn(x) w(x)

(x − xi)
dx (5.36)

Selecting ω(x) as the orthogonal polynomial over [a, b] with weight function w(x),
we obtain the corresponding Gauss quadrature formula (5.35) for the integral (5.34).
However, evaluation of Ai from (5.36) requires advanced techniques (see the text
of Stroud and Secrest). If a = −1, b = 1, w(x) = 1 and ωn(x) = Pn(x) (Legendre
polynomial) we obtain the formula (5.24).

If a = −1, b = 1, w(x) = (1 − x2)−1/2 and ωn(x) = Tn(x) where Tn(x) is the
Chebyshev polynomial (Chap. 4, Sect. 4.3), then

xi = cos
[(2i − 1)π

2n

]
, (i = 1, 2, · · · , n)

and it can be proved that Ai are all equal to π/n (see Exercise 2, below for the case
n = 3). Hence, we have the Gauss–Chebyshev formula

∫ 1

−1
f (x)

dx√
1 − x2

≈ π

n
[f (x1) + f (x2) + · · · + f (xn)] (5.37)

If a = 0, b = ∞, w(x) = e−x andωn(x) = Ln(x)where Ln(x) is theLaguerre
polynomial (see Chap.8, Sect. 8.4, Exercise 2), then

∫ ∞

0
f (x) e−x dx

can be successfully integrated by the Gauss–Laguerre formula. Similar formula
exists for a = −∞, b = ∞, w(x) = e−x2

and ωn(x) = Hn(x), where Hn(x) is the
Hermite polynomial (see Chap. 8, Sect. 8.4, Exercise 3), to evaluate

242 5 Differentiation and Integration

∫ ∞

−∞
f (x) e−x2

dx

The points xi and the coefficients Ai , for the two cases are given in Stroud and Secrest
(see Bibligraphy). This authoritative text also gives the error in such quadrature
formulas.

Example 1. Find a quadrature formula

∫ 1

0

f (x) dx√
x(1 − x)

≈ A1 f (0) + A2 f
(1
2

)
+ A3 f (1)

which is exact for all polynomials of degree ≤ 2. Then use the formula to compute∫ 1

0

dx√
x − x3

.

Solution. Since the formula is to be exact for all polynomials of degree≤ 2,we obtain

for f (x) = 1, I1 =
∫ 1

0

dx√
x(1 − x)

= A1 + A2 + A3

for f (x) = x , I2 =
∫ 1

0

x dx√
x(1 − x)

= 1

2
A2 + A3

for f (x) = x2, I3 =
∫ 1

0

x2dx√
x(1 − x)

= 1

4
A2 + A3

Now, I1 =
∫ 1

0

dx√
x(1 − x)

= 2
∫ 1

0

dx√
1 − (2x − 1)2

= π

I2 =
∫ 1

0

x dx√
x(1 − x)

= 2
∫ 1

0

x dx√
1 − (2x − 1)2

= π

2

I3 =
∫ 1

0

x2dx√
x(1 − x)

= 2
∫

0

x2dx√
1 − (2x − 1)2

= 3π

8

Hence we have the equations

A1 + A2 + A3 = π,
1

2
A2 + A3 = π

2
,

1

4
A2 + A3 = 3π

8

5.2 Numerical Integration 243

whose solution is A1 = A3 = π/4, A2 = π/2. Hence

∫ 1

0

f (x) dx√
x(1 − x)

≈ π

4

[
f (0) + 2 f

(1
2

)
+ f (1)

]

For the second part

I =
∫ 1

0

dx√
x − x3

=
∫ 1

0

1√
1 + x

dx√
x(1 − x)

≈ π

4

[
1 + 2

√
2

3
+ 1√

3

]
= 2.62331 �

Exercises

1. Construct a rule of the form

∫ 1

−1
f (x) dx ≈ A1 f

(
− 1

2

)
+ A2 f (0) + A3 f

(1
2

)

which is exact for all polynomials of degree ≤ 2.

[A1 = A3 = 4
3 , A2 = − 2

3].

2. Prove the Gauss–Chebyshev formula for three points

∫ 1

−1
f (x)

dx√
1 − x2

= π

3

[
f
(
cos

5π

6

)
+ f

(
cos

3π

6

)
+ f

(
cos

π

6

)]

that is exact for all polynomials of degree ≤ 2.

3. Prove that Gaussian quadrature Eq. (5.35) is exact for polynomial of degree atmost
2n − 1.

[f (x) − φ(x) has zeros at x1, x2, · · · , xn . If f (x) is a polynomial of degree atmost
2n − 1, f (x) − φ(x) = ωn(x) · pn−1(x) where pn−1(x) is a polynomial of degree
atmost n − 1. Hence

∫ b

a
f (x)w(x) dx −

∫ b

a
φ(x)w(x) dx =

∫ b

a
pn−1(x) ωn(x) dx = 0

if ωn(x) is an orthogonal polynomial].

244 5 Differentiation and Integration

4. Prove that in Eq. (5.36) Ai =
∫ b

a
[li (x)]2w(x) dx > 0.

[Let f (x) = [l j (x)]2 (polynomial of degree 2n − 2) in Exercise 2 above. Then since

l j (xi) = δ j i ,
∫ b

a
[l j (x)]2w(x) dx =

n∑
i=1

Ai [l j (xi)]2 = A j].

5. Compute the value of the integral

∫ 3

2

cos 2x

1 + sin x
dx

by three point Gauss quadrature formula of Example 1.

[Set x = (t + 5)/2, then I = 1

2

∫ 1

−1

cos(t + 5)

1 + sin((t + 5)/2)
dt ≈ 0.20271].

6. Integrate by four-point Gauss quadrature formula:
∫ 2

1

dx

1 + x3
.

[Set x = (t + 3)/2, then I = 1

2

∫ 1

−1

dt

1 + [(t + 3)/2]3 ≈ 0.25435].

7. Integrate by four-point Gauss–Chebyshev quadrature formula:

(i)
∫ 1

0
cos 2x

dx√
1 − x2

(i i)
∫ 1

0

ln(x + 1)√
x(1 − x)

dx

[(i) Set I = 1

2

∫ 1

−1
cos 2x

dx√
1 − x2

. xi = cos
[(2i − 1)π

8

]
, i = 1, 2, 3, 4, Ai =

π

4
. Hence I ≈ 0.35162.

(i i) Set x = (t + 1)/2, then I =
∫ 1

−1
ln[(t + 3)/2] dt√

1 − t2
. hence I ≈ 1.18266].

8. (Lobatto’s Rule). In the Gaussian quadrature for
∫ b

a
f (x) dx , if the points ±1

are kept as fixed abscissas, then results the formula

∫ 1

−1
f (x) dx ≈ A1 f (−1) + A2 f (x2) + · · · + An−1 f (xn−1) + An f (1)

5.2 Numerical Integration 245

The rule is known after Lobatto. Show that for the case n = 3 that is exact for all
polynomials of degree ≤ 3, the formula leads to Simpson’s rule.

5.2.5 Romberg Integration

The method of Richardson extrapolation applied to the composite trapezoidal rule
leads to a useful method known after W. Romberg.

Werner Romberg (1909–2003) is a German mathematician who gave this method in the year

1955.

The N -panel composite trapezoidal rule is of the form

I (f) =
∫ b

a
f (x) dx = Th(f) + E(h) (5.38)

where

Th(f) = h

2
[f (a) + f (b)] + h (y1 + y2 + · · · + yN−1) (5.39)

and E(h) = −[(b − a)h2/12] f ′′(η). In these expressions h = (b − a)/N . The error
E(h) is certainly of the type C1h2 + o(h2), but more than that, the Euler–Maclaurin
sum formula (see Sect. 5.3 to follow) shows that it can be expressed as a power
series in h2, viz. E(h) = C1h2 + C2h4 + · · · + Ckh2k + O(h2k+2), provided that
f ∈ C (2k+2)[a, b]. This means that Eq. (5.38), is actually of the type (suppressing
the f in Th(f))

I (f) = Th + C1h2 + O(h4)

For applying Richardson extrapolation to this equation, we consider 2N panels of
[a, b], each of length h/2 = (b − a)/(2N). Then

I (f) = Th/2 + C1

(h

2

)2 + O(h4)

Eliminating C1 from the above two equations (see in this connection Eq. (5.4)), we
obtain

I (f) = T 1
h + O(h4)

where

T 1
h = Th + Th/2 − Th

1 − 1/4
= Th/2 + 1

4 − 1
(Th/2 − Th) (5.40)

246 5 Differentiation and Integration

In the computation of Th/2, it is advantageous to choose even N . For,

Th/2 = h

4
[f (a) + f (b)] + h

2
(y′

1 + y1 + y′
2 + y2 + · · · + yN−1 + y′

N)

= 1

2
Th + h

2
(5.41)

where y′
1, y′

2, · · · , y′
N are midpoints of the N panels (x0, x1), (x1, x2), · · · ,

(xN−1, xN) respectively, i.e. y′
i = f

(
a + kh

2

)
, k = 1, 3, · · · , 2N − 1.

Continuing the extrapolation process, C2 can similarly be eliminated to yield

I (f) = T 2
h + O(h6)

where

T 2
h = T 1

h/2 + T 1
h/2 − T 1

h

1 − 1/16
= T 1

h/2 + 1

42 − 1
(T 1

h/2 − T 1
h) (5.42)

Note that in the computation of T 1
h/2, the value of Th/4 is required in virtue of Eq.

(5.40). Similarly in general, if Ci is eliminated, then

I (f) = T i
h + O

(
h2i+2

)

where T i
h is given recursively by

T i
h = T i−1

h/2 + 1

4i − 1

(
T i−1

h/2 − T i−1
h

)
(5.43)

The computed estimates T i
h of I (f) can be conveniently arranged in tabular form

like

i j = 1 1 2
1 Th = T11

2 Th/2 = T21 T 1
h = T22

3 Th/4 = T31 T 1
h/2 = T32 T 2

h = T33

· · · · · · · · · ·

5.2 Numerical Integration 247

The acceptance criterion of an estimate Tj j can be based on stability and the following
criteria. If T22 is assumed accurate enough, then

Th/2 − Th

3/4
≈ C h2 = 4C

(h

2

)2 ≈ 4
Th/4 − Th/2

3/4

This means that the difference ratios must satisfy

Th/2 − Th

Th/4 − Th
= T21 − T11

T31 − T21
≈ 4

Similarly replacing h by h/2, h/4, · · · , the other difference ratios of this column,
(T31 − T21)/(T41 − T31), (T41 − T31)/(T51 − T41), · · · must approximate 4, in case
T33 or T44, · · · is accurate. The difference ratios of the second column, by similar
arguments, is easily seen to approximate 42 = 16, that of the third column to approx-
imate 43 = 64 and so on. Thus the diagonal element Tj j for which the ratios in the
j th row are nearly 4, 16, 64,· · · respectively, is accepted as the estimate of I (f).

There is, however, a computational difficulty in the above criterion, and the test
may fail on occasions. As i and j increase, the differences in the ratios diminish and
roundoff errors become prominent. A difference may also become zero, disabling
the calculation of the ratio. Under such situation, one needs to consider values of the
difference ratios only for early coarse division of [a, b], that is , for low values of i
and j .

It can be shown in general that T22 = T 1
h is equivalent to Simpson’s rule and sim-

ilarly T33 = T 2
h is of Newton–Cote type; but the rest like T44, T55 etc. are not of this

type.

SUBROUTINE ROMBERG(f,a,b,n,T,nrow)
! f=function to be integrated from a to b. Must be
! declared external in the calling program. (Input)
! a=lower limit of integration. (Input)
! b=upper limit of integration. (Input)
! n=initial number of panels, must be even. (Input)
! T=T–matrix of Romberg method. (Output)
! nrow=number of rows of T–matrix to be computed,
! not less than 3. (Input)
! ratio=difference ratios overwritten on the T– matrix (Output)
!***
REAL :: T(nrow,nrow)
h=(b−a)/n
! Compute Romberg T– matrix
sum=0.5*(f(a)+f(b))
DO i=1,n−1
sum=sum+f(a+i*h)

248 5 Differentiation and Integration

END DO
T(1,1)=h*sum
PRINT 10, T(1,1)

DO i=2,nrow

h=0.5*h; n=2*n
sum=0.0
do k=1,n−1,2
sum=sum+f(a+k*h)
END DO
T(i,1)=0.5*T(i−1,1)+h*sum
DO j=1,i−1
T(i−1,j)=T(i,j)−T(i−1,j)
T(i,j+1)=T(i,j)+T(i−1,j)/(4.0**j−1.)
END DO
PRINT 10, (T(i,j),j=1,i)
10 FORMAT(7E15.7)

END DO
! Compute table of ratios
DO i=1, nrow−2
DO j=1,i
if(T(i+1,j)==0.0) THEN
ratio=0.0
ELSE
ratio=T(i,j)/T(i+1,j)
END IF
T(i,j)=ratio
END DO
PRINT 20, (T(i,j),j=1,i)
20 FORMAT(7F10.2)
END DO
RETURN
END SUBROUTINE ROMBERG

Example 1. compute I =
∫ 1

0
e−x2

dx

by using subroutine ROMBERG.

Solution. Writing a suitable main program with n=2, nrow=6 and appending sub-
routine ROMBERG the following T table is obtained:

5.2 Numerical Integration 249

.7313702

.7429841 .7468553

.7458656 .7468261 .7468241

.7465845 .7468242 .7468241 .7468241

.7467642 .7468241 .7468241 .7468241 .7468241

.7468091 .7468241 .7468241 .7468241 .7468241 .7468241

The table of ratios is obtained as

4.03
4.01 15.31
4.00 16.00 .00
4.00 .00 .00 .00

The ratios converge nicely to 4 and 16 for i = 3. Hence, we conclude that I =
0.7468241. �

Exercises

1. Compute the following integrals by subroutine ROMBERG:

(i)
∫ 1

0

dx

1 + x
(i i)

∫ 2

0

sin x

x
dx (i i i)

∫ 1.25

0
cos x2 dx

(iv)

∫ 2

0
(1 + 3e−x sin x2)−1dx (v)

∫ 2

0
x10e4x2−3x4

dx

[(i) 0.6931472, (i i) 1.605413, (i i i) 0.9774377, (iv) 1.498042 (ratio test fails),
(v) 1.556354 (ratio test fails)]

5.2.6 Adaptive Quadrature

The composite rules and theRomberg integration are all based on panels of equal size.
Such a choice of panels is a necessity, if the integrand is known only at a sequence
of equally spaced points, e.g. when f (x) is given as a table of function values. If
on the other hand, f (x) can be computed with equal ease for every point in the
interval of integration, then it is usually economical to use panels determined by the
local behaviour of the function. The integral I (f) in this approach, can possibly be

250 5 Differentiation and Integration

computed within prescribed accuracy, with fewer function evaluations. Integration
schemes based on this principle are called adaptive.

In an adaptive quadrature scheme, the user specifies a finite interval [a, b], pro-
vides a function subprogram which computes f (x) for any x in the interval and
an error tolerance ε. The routine attempts to compute an approximation Q, so that
|I − Q| < ε. The routine may decide that the prescribed accuracy is not attainable,
do the best it can, and return an estimate of the accuracy actually achieved.

Routines of varying degree of complexities are reported in the literature. We
explain the basic approach by adopting Simpson’s rule. Suppose the interval [a, b]
is bisected to yield the two-panel nodes a, a + h, b where h = (b − a)/2. then
Simpson’s rule gives the approximation

I (f) ≈ P1 = h

3
[f (a) + 4 f (a + h) + f (b)]

If the twopanels are again bisected to yield a four panel, then the composite Simpson’s
rule yields another estimate

I (f) ≈ Q1 = h

6
[f (a) + 4 f

(
a + h

2

)
+ 2 f (a + h) + 4 f

(
a + 3h

4

)
+ f (b)]

If both P1 and Q1 pass the accuracy test |P1 − Q1| < ε, where the absolute error
ε is sufficiently small, then either P1 or Q1 can be accepted as the computed value
of I (f). Further refinement is possible by the Richardson extrapolation method.
Considering the error term, we have as in Romberg integration

I (f) = P1 + C h5 + O(h7)

as also I (f) = Q1 + C
(h

2

)5 + O(h7)

where C is a constant. Eliminating C , we obtain

I (f) = 32 Q1 − P1

31
+ O(h7)

and thus the result Q = (32 Q1 − P1)/31 is a better approximation of I(f).
If the accuracy test |P1 − Q1| < ε is not satisfied then for refinement, the interval

[a, b] is broken down in to two subintervals [a, c] and [c, b] where c = (a + b)/2.
The P,Q – method is first applied to the interval [a, c] and then to the interval [c, b].
The procedure is continued till the length of the last nested interval becomes zero.
The ‘result’ of integration can be stored in a single location, initially its value being
zero. On successful integration over any sub-interval, the value of ‘result’ is aug-
mented by Q. Finally the accumulated value of the ‘result’ gives the estimate of the
integral I (f), to required tolerance of error. The following subroutine implements

5.2 Numerical Integration 251

the above scheme:

SUBROUTINE ADAPTIVE_ SIMPSON(f,a,b,result,abserr)
! f=function name to be integrated from a to b, given as a function
! subprogram. Must be declared external in the calling program. (Input)
! a=lower limit of integration. (Input)
! b=upper limit of integration. (Input)
! result=computed value of the integral of f. (Output)
! abserr=absolute error tolerance. (Input)
!***
result=0.0; xa=a; xb=b; kount=0
10 h=(xb−xa)/2; kount=kount+1; PRINT*, kount
f0=f(xa); f1=f(xa+h/2); f2=f(xa+h); f3=f(xa+3*h/2); f4=f(xb)
P1=h/3*(f0+4*f2+f4); Q1=h/6*(f0+f4+4*(f1+f3)+2*f2)
IF(ABS(P1−Q1)<h/(b−a)*abserr) THEN
result=result+(32.0*Q1−P1)/31.0
xa=xb; xb=b; if(xa>=xb) RETURN
GOTO 10
END IF
xb=xa+h
GOTO 10
END SUBROUTINE ADAPTIVE_ SIMPSON

The subroutine does not economise on computation of function value for keeping
simplicity of the routine. The values of f 0, f 2, and f 4 are potential candidates
for use in later iterations, but all the five function values f 0, · · · , f 4 are computed
afresh in each iteration.

In routines of this type, multiplying abserr by h/(b − a) ensures that the total
accumulated error, in all the iterations, does not exceed abserr (see, for example, the
text of Forsythe and Moler referred in the bibliography).

One of the advanced level adaptive schemes is QUANC8 given by Forsythe and
Moler (see Bibliography). It is based on an 8-panel Newton–Cotes rule

∫ b

a
f (x) dx ≈

8∑
k=0

Ak f (a + kh), h = (b − a)/8

where A0 =3956/14175, A1 = 23552/14175, A2 = −3712/14175, A3 = 41984/
14175, A4 = −18160/14175, A5 = A3, A6 = A2, A7 = A1, A8 = A1.

252 5 Differentiation and Integration

Exercise

1. Apply subroutine ADAPTIVE_SIMPSON to compute the integrals (i) − (v) of
Exercise 1, Sect. 2.5.

5.3 Euler–Maclaurin Summation Formula

Integration, we know is the inverse operation of differentiation.Operationally, there-
fore, if D denotes differentiation, then 1

D would denote integration. To be precise
if

D f (x) = d f (x)

dx
, then

1

D
f (x) =

∫ x

x0

f (x) dx

where f is a function defined for x ≥ x0. Now, the discrete version of the differential
d f (x) is the finite difference

� f (x) := f (x + h) − f (x) (5.44)

where� is the finite difference operator. The inverse of this operationmay be defined
as that operator, which yields f (x) when operating on a certain function F(x):

1

�
f (x) =: F(x), if �F(x) = f (x) (5.45)

The continuous and discrete versions of the integral viz. 1
D f (x) and 1

�
f (x) must

be connected in some way. This connection is provided by the Euler–Maclaurin
summation formula. To derive it, we require some facts about Bernoulli Numbers,
known after J. Bernoulli.

Jakob Bernoulli (1655–1705), eldest of the famous Swiss family ofmathematicians. At his time

he greatly advanced algebra, differential and integral calculus, calculus of variations, mechanics,

theory of series and theory of probability. He discovered Bernoullian numbers for giving a rigid

derivation of the exponential series through complete induction. He is also famous for proving

Bernoulli’s inequality (1 + x)n > 1 + nx for x > 0. In mechanics he investigated nonuniform and

elastic catenaries. He also treated the problem of elastica or a bent elastic beam. The term integral

was first used by him in its present mathematical sense. In probability theory he gave philosophical

thought on all the basic concepts, including the law of large numbers.

5.3 Euler–Maclaurin Summation Formula 253

Lemma 5.2 (Bernoulli Numbers). Let

f (x) := x

ex − 1
=:

∞∑
n=0

Bn

n! xn

then the coefficients Bn are the Bernoulli numbers satisfying the recurrence relations

B0 = 1,
Bn

n! + Bn−1

(n − 1)!
1

2! + · · · + B0

0!
1

(n + 1)! = 0

i.e. B0 = 1, B1 = − 1
2 , B2 = 6, B4 = − 1

30 , B6 = 1
42 , B8 = − 1

30 , B10 = 5
66 , · · · ,

B3 = B5 = B7 = · · · = 0.

Proof f (x) = 1

1 + x

2! + x2

3! + · · ·
=

∞∑
n=0

Bn

n! xn

Hence
∞∑

n=0

Bn

n! xn
(
1 + x

2! + x2

3! + · · ·
)

= 1

equating the coefficient of x0, we have B0 = 1. The coefficient of xn similarly yields
the desired recurrence relation. Successively setting n = 1, 2, 3, 4, · · · in the recur-
rence relation, we get the set of equations

B1 + 1

2
= 0 or 2B1 + 1 = 0

B2

2
+ B1

2! + B0

3! = 0 or 3B2 + 2B1 + 1 = 0

B3

3! + B2

2! 2! + B1

1! 3! + B0

4! = 0 or 4B3 + 6B2 + 4B1 + 1 = 0

B4

4! + B3

3! 2! + B2

2! 3! + B1

1! 4! + B0

5! = 0 or 5B4 + 10B3 + 10B2 + 5B1 + 1 = 0, etc.

These relations yield the required coefficients.
It is noteworthy that except for B1, the other odd-ordered numbers are equal to

zero. This fact can be independently demonstrated as follows:

f (x) + x

2
= x

ex − 1
+ x

2
= x

2

ex + 1

ex − 1
= x/2

tanh x/2
= 1 +

∞∑
n=2

Bn

n! xn

254 5 Differentiation and Integration

Now, (x/2)/ tanh(x/2) is an even function, and so the odd powers in the series on
the right-hand side must vanish. This means that B3 = B5 = B7 = · · · = 0.

Applying Taylor’s series expansion to Eq. (5.40), we have operationally

� f (x) = f (x + h) − f (x) =
∞∑

k=1

hk

k! Dk f (x) =
(

eh D − 1
)

f (x)

This means that � ≡ eh D − 1 and so

h D
1

�
= h D

eh D − 1
=

∞∑
k=0

Bk

k! hk Dk

by the lemma. Hence

d

dx

[1

�
f (x)

]
=

∞∑
k=0

Bk

k! hk−1Dk f (x)

In the above relation, it is tacitly assumed that the nodes xi (i = 0, 1, 2, · · ·) of
discritisation for the operator � are equally spaced with equal length h. Integrating
the above relation from x0 to xn , we obtain

1

�
f (xn) − 1

�
f (x0) = 1

h

∫ xn

x0

f (x) dx − 1

2
[f (xn) − f (x0)]

+
∞∑

k=2

Bk

k! hk−1
[

f (k−1)(xn) − f (k−1)(x0)
]

(5.46)

where the fact that B1 = −1/2 has been used.
In the relation (5.46), the left hand side can be expressed as a summation over

nodal function values. For this purpose, define the summation

S(xi) =
i−1∑
j=0

f (x j), (i = 1, 2, · · ·) with S(x0) = 0

It follows that
�S(xi) = S(xi+1) − S(xi) = f (xi) = �F(xi)

according to Eq. (5.45). Hence �[S(xi) − F(xi)] = 0. This means that S(xi) −
F(xi) is the same for all i = 0, 1, 2, · · · , i.e. S(xi) − F(xi) = S(x0) − F(x0) =
− F(x0). Thus

5.3 Euler–Maclaurin Summation Formula 255

F(xi) = 1

�
f (xi) = F(x0) + S(x0) (5.47)

Using the expression (5.47) in Eq. (5.46), we obtain

F(x0) + S(xn) − F(x0) = S(xn) =
n−1∑
j=0

f (x j)

= 1

h

∫ xn

x0

f (x) dx − 1

2
[f (xn − f (x0)] +

∞∑
k=2

Bk

k! hk−1
[

f (k−1)(xn) − f (k−1)(x0)
]

In the infinite series, on the right-hand side, the odd order terms k = 3, 5, · · · vanish
in virtue of vanishing of odd order Bernoulli numbers. Moreover, the series may
diverge. If the series is terminated at k = 2m, we finally get the form

∫ xn

x0

f (x) dx = h
[1
2

f (x0) + f (x1) + · · · + f (xn−1) + 1

2
f (xn)

]

−
m∑

k=1

B2k

(2k)! h2k
[

f (2k−1)(xn) − f (2k−1)(x0)
]

+ R2m (5.48)

Equation (5.48) is the celebratedEuler–Maclaurin summation formulawith a remain-
der that can be proved to be given by

R2m = −n h2m+2 B2m+2

(2m + 2)! f (2m+2)(ξ) (5.49)

The first summation on the right-hand side is the composite trapezoidal rule. Its utility
has been noticed in Romberg integration. It can be used for numerical integration,
if the function f and its successive derivatives can be calculated at the nodal points.
Conversely, if the integral of f can be analytically calculated, then it can be used
for summation of series of f -values. However, it is hardly used for such purpose,
because of better available methods.

Leonhard Euler (1707–1783), was the leading mathematician of the eighteenth century. Like

Gauss, he contributed very significantly to the entire spectrumofmathematics aswell as to numerous

application areas such as mechanics, hydrodynamics, optics and astronomy. Concerning the depth

and importance of his work, it was Gauss’ opinion that ‘studying Euler’s papers remains the best

way to learn about the various areas of mathematics and it can not be replaced by anything else’.

He was born in Switzerland but in later life worked in St. Petersberg, Russia.

Colin Maclaurin (1698–1746), English mathematician, published the expansion formula in

about 1737 independent from Euler, who had presented it in 1730.

256 5 Differentiation and Integration

5.4 Improper Integrals

Improper integrals are of two types: (i) when the integrand is singular (unbounded)
in the interval of integration, and (i i) when the range of integration is infinite. Of
course, there can be a case which is a combination of the two. This later case can be
treated by separating the singular part and the infinite interval parts.

The integrable singularity of the integrand can be of two types: algebraic and
logarithmic. In the former case, let the integral be

I (f) =
∫ b

0

f (x)

xα
dx, f (0) �= 0, 0 < α < 1 (5.50)

We can write

I (f) =
∫ b

0

f (x) − f (0)

xα
dx + f (0)

∫ b

0

dx

xα

=
∫ b

0

f (x) − f (0)

xα
dx + b1−α f (0)

1 − α
(5.51)

The integral on the right-hand side is regular and can be integrated by methods of
the preceding sections solving the problem. If 0 < α ≤ 1/2, the simple substitution
x = t1/α reduces the integral to

I (f) = 1

α

∫ bα

0
f
(

t1/α
)

t1/α−2 dt (5.52)

which is a regular integral. Thus, Eqs. (5.51) or (5.52) solve the problem of Eq.
(5.50).

An integral containing logarithmic singularity is

I (f) =
∫ b

0
g(x) ln f (x) dx, f (0) = 0 (5.53)

Suppose that f (x)/xα → C as x → 0 (α > 0). Then

I (f) =
∫ b

0
g(x) ln

[
f (x)

xα

]
dx + α

∫ b

0
g(x) ln x dx

=
∫ b

0
g(x) ln

[
f (x)

xα

]
dx + αg(b) b (ln b − 1) − α

∫ b

0
g′(x) x (ln x − 1) dx

(5.54)

The two integrals in (5.54) are regular integrals that can be computed in the usual
way.

A cauchy Principal Value singular integral can be written as

5.4 Improper Integrals 257

P
∫ b

a

f (x)

x − c
dx =

∫ b

a

f (x) − f (c)

x − c
dx + f (c) P

∫ b

a

dx

x − c
, a < c < b

=
∫ b

a

f (x) − f (c)

x − c
dx + f (c) ln

b − c

c − a
(5.55)

Equation (5.55) solves the problem of evaluation.
If the interval of integration is infinite as in

I =
∫ ∞

1

f (x)

x p
dx, p > 1 (5.56)

with limx→∞ f (x) nonzero and finite, then we may substitute x = 1/uα, α > 0.
This yields

I = α

∫ 1

0
u pα f

(
1

uα

)
du

uα+1
= α

∫ 1

0
u(p−1)α−1 f

(
1

uα

)
du

Maximising the smoothness of the integrand at u = 0, we pickα to yield a large value
of the exponent (p − 1)α − 1. If we suppose that exponent value of 1 is sufficient,
we take α = 2/(p − 1) obtaining

I = 2

p − 1

∫ 1

0
u f

(
u−2/(p−1)

)
du (5.57)

and the integral in (5.57) can be treated by usual methods.
A brute force method of computing an infinite integral is to replace the upper limit

of integration ∞ by a very large number, say 1000 or 10000, so that the integrand
becomes sufficiently small and apply subroutine QUANC8. It usually delivers the
result without consuming too much time.

Gauss-type quadrature formulas are also applicable for evaluating improper inte-
grals of the type

∫ 1

−1
f (x)

dx√
1 − x2

,

∫ ∞

0
ex f (x) dx,

∫ ∞

−∞
e−x2

f (x) dx

Evidently Gauss–Chebyshev, Gauss–Laguerre and Gauss–Hermite quadrature for-
mulas are applicable in the respective cases.

Exercises

1. Compute the following improper integrals using ADAPTIVE_ SIMPSON or
QUANC8:

(i)
∫ 1

0

ex

√
x

dx (i i)
∫ 1

0

sin x

x3/2
dx (i i i)

∫ 1

0
cos x ln x dx (iv)

∫ π/2

0
ln sin x dx

258 5 Differentiation and Integration

(v)

∫ 1

0

ln x

1 − x
dx (vi)

∫ ∞

0
e−x√x dx (vi i)

∫ ∞

1

sin x

x2
dx (vi i i)

∫ 1

−1

√
1 − x2

x − 1/2
dx

[(i) 2.92530, (i i) 1.93526, (i i i) −0.94606, (iv) −1.08879, (v)Divide the interval
in to [0, 1/2] and [1/2, 1];−1.644934 (exact value is −π2/6), (vi) 0.88623, (vi i)
0.50404, (vi i i) −1.57078 (exact value is −π/2)].

5.5 Double Integration

If the limits of integration are constants, a double integral is of the form

I (f) =
∫ d

c

∫ b

a
f (x, y) dx dy

The trapezoidal and the Simpson’s rules can be generalised by successive integra-
tions in x and y in the following manner.

1o. Trapezoidal Rule. Integrating the inner integral by the trapezoidal rule

IT (f) = b − a

2

∫ d

c
[f (a, y) + f (b, y)] dy

= (b − a)(d − c)

4
[f (a, c) + f (a, d) + f (b, c) + f (b, d)] (5.58)

by repeating the rule over the variable y.

2o. Simpson’s Rule. By application of Simpson’s rule over x and then y, we obtain

IS(f) = h

3

∫ d

c
[f (a, y) + 4 f (a + h, y) + f (b, y)] dy

= hk

9
[f (a, c) + 4 f (a, c + k) + f (a, d)

+ 4 { f (a + h, c) + 4 f (a + h, c + k) + f (a + h, d)}
+ f (b, c) + 4 f (b, c + k) + f (b, d)]

= hk

9
[f (a, c) + f (a, d) + f (b, c) + f (b, d)

4 { f (a + h, c) + f (a + h, d) + f (a, c + k) + f (b, c + k)} + 16 f (a + h, c + k)]
(5.59)

Equations (5.58) and (5.59) give the required basic rules.

5.5 Double Integration 259

If the limits of the inner integral are functions of y then rules (5.58) and (5.59)
can be modified suitably.

A practical way of computing a double integral is to successively apply Simpson’s
rule recursively. A recursive subroutine is given below:

RECURSIVE SUBROUTINE SIMPSON2D(f,a,b,result)

! Evaluates
∫ b

a
dx

∫ d

c
f n(x, y)dy.

! f=Integrand function.
! a=Lower limit of integration.
! b=Upper limilt of integration
! result=Value of the Integral.
!***
h=0.1 ! h is step length
n=(b-a)/h; IF(n/2*2 /= n) n=n+1 ! n = Number of panels of [a, b].

! Must be an even number
IF(n /= 0) h=(b - a)/n; IF(n==0) h=0.0
x=a; result=0.0
DO i=1,n,2
result=result+h/3*(f(x)+4*f(x+h)+f(x+2*h))
x=x+2*h
END DO
RETURN
END SUBROUTINE SIMPSON2D
!*******************************

FUNCTION f(x)
COMMON /fxy/ x1
EXTERNAL g
c= · · · · · · ! Lower limit of y - integral, can be function of x
d= · · · · · · ! Upper limit of y - integral, can be function of x
x1=x
CALL SIMPSON2D(g,c,d,f1)
f=f1
RETURN
END FUNCTION f
!**************************

FUNCTION g(y)
COMMON /fxy/ x
g=fn(x,y) ! fn(x,y) is the given integrand of the double integral
RETURN
END FUNCTION g
!*********************

260 5 Differentiation and Integration

FUNCTION fn(x,y)
fn= Given function of x,y
RETURN
END FUNCTION fn

Example 1. Evaluate
∫ 1
0 dx

∫ x
0 f n(x, y) dy for

f n(x, y) = x + y2, and f n(x, y) = x + y2/x

Solution. Select a = 0, b = 1 and c = 0, d = x for the recursive subroutine SIMP-
SON2D, writing the program as

PROGRAM MAIN
EXTERNAL f
a=0.0; b=1.0
CALL SIMPSON2D(f,a,b,result)
PRINT*, result
END
!**

! Append function subprograms F(x) with c=0, d=x, and g(y). In the function
subprogram for fn(x,y) write fn(x,y)=x+y**2 for the first case of the problem
and two statements: IF(x==0.0) x=x+0.00000001 followed by fn=x+y**2/x for
the second case.

Onexecuting theprogram, the ‘result’ in the twocases are, respectively: 0.4444445
and 0.4166667. �

One may adopt routines like ADAPTIVE_ SIMPSON or QUANC8 recursively
in a similar manner.

Chapter 6
Ordinary Differential Equations

Ordinary differential equations (or ODE in short) occur naturally in science and
engineering whenever two quantities x and y are connected by some differential law.
Historically, the motivation for building the early computers came from the need
to compute ballistic trajectories accurately and quickly that required solution of
certain ordinary differential equations. Today computers have become indispensable
in similar situations in other subjects as well, and indeed go beyond the preliminary
requirement.

An nth–order differential equation when resolved in terms of the highest order
derivative can be written as

y(n) = f (x, y, y′, y′′, · · · , y(n−1)) (6.1)

If at a given point x = x0, it is also given that

y = y0, y′ = y′
0, y′′ = y′′

0 , · · · , y(n−1) = y(n−1)
0 (6.2)

where y0, y′
0, y′′

0 , · · · , y(n−1)
0 are given numerical values, then Eqs. (6.1) and (6.2)

constitute the Initial Value Problem (IVP) or the Cauchy Problem. In the particular
case n = 1, the first-order problem becomes

y′ = f (x, y), y(x0) = y0 (6.3)

In the theory of differential equations, it is proved that the IVP (6.3) has always a
unique solution according to the following theorem.

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1_6

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7114-1_6&domain=pdf
https://doi.org/10.1007/978-981-13-7114-1_6

262 6 Ordinary Differential Equations

Theorem 6.1 If f ∈ C(R), R = {(x, y)
∣
∣
∣ |x − x0| < 0, |y − y0| < b} and satis-

fies in the region R the Lipschitz condition

| f (x, ȳ) − f (x, y)| ≤ K |ȳ − y| (K = Lipschit z constant)

then problem (6.3) has a unique solution.

The Lipschitz condition is satisfied by f if ∂ f/∂y is bounded on R. For by the
mean value theorem

| f (x, ȳ) − f (x, y)| =
∣
∣
∣
∣
(ȳ − y)

∂ f

∂y
(x, ξ)

∣
∣
∣
∣
≤ K |ȳ − y|

where

K = max
(x, y) ∈ R

∣
∣
∣
∣

∂ f ((x, y)

∂y

∣
∣
∣
∣

The existence theorem can be generalised for the nth-order equation.
When the order n is greater than or equal to 2, the initial conditions may be

replaced by boundary conditions at the end points of the interval [a, b] in which the
solution is sought. The boundary conditions constitute functional relation between y
and some of its successive derivatives at x = a and b. Problems posed in this manner
are called Boundary Value Problems (BVP).

The numerical solution of an initial or boundary value problem is sought in a
discretisedmanner, that is to say, at discrete grid points a = x0, x1, x2, · · · , xn = b.
The points will be assumed to be equally spaced, but in general this may not be the
case. We will find that while it is possible to design numerical methods for Initial
Value Problems (IVPs) of great generality, Boundary Value Problems (BVPs) can
be treated in a restricted manner.

We begin by considering the initial value problem for the first-order equation in
Sect. 6.1, followed by the nth-order equation in Sect. 6.2. Boundary value problems
are discussed in Sect. 6.4. In Sect. 6.3, ‘stiff differential equations’ are treated, when
some IVPs become hard to treat.

6.1 Initial Value Problem for First-Order ODE

The differential equation and the initial condition are defined in Eq. (6.3). If the
function f is differentiable sufficient number of times, the exact solution y(x) can
be expanded in a Taylor series about the point x = x0:

y(x) = y0 + (x − x0) y
′(x0) + (x − x0)2

2! y′′(x0) + · · · (6.4)

6.1 Initial Value Problem for First-Order ODE 263

The successive derivatives occurring in the series can be calculated by noting that

y′ = f (x, y)

y′′ = ∂

∂x
{ f (x, y)} = fx + fy y

′ = fx + fy f

y′′′ = ∂

∂x
{ fx + fy f } = fxx + fxy f + fy(fx + fy f) + f (fyx + fyy f)

= fxx + 2 fxy f + fx fy + f 2y f + fyy f 2

· ·

It is clear that in general the difficulty of calculating the derivatives at x0 becomes
increasingly difficult with increasing order of the derivative and the series will have
to be terminated at some stage. This is only possible when x − x0 is suitably small.

For computation of the solution at grid points x0, x1, x2, · · · , the above consid-
eration means that the grid size must be suitably small. If h := x1 − x0, we can
calculate y1 := f (x1) from Eq. (6.4) in the form

y1 = y0 + h �(x0, y0; h)

where �(x0, y0; h) := f (x0, y0) + h

2! f ′(x0, y0) + · · · + hk−1

k! f (k−1)(x0, y0)

(6.5)
by retaining k + 1 terms in Eq. (6.4). It is clear that the process can be continued in
single steps to compute y2 := y(x2), y3 := y(x3), · · · , the recursive relation being

yn+1 = yn + h �(xn, yn; h), n = 0, 1, 2, · · · (6.6)

where � is defined by Eq. (6.5).
By tackling Eq. (6.5) in suitable ways, we obtain different methods of solving the

first-order initial value problem. All these methods are single-step methods.

6.1.1 Euler’s Method

Confining the expansion (6.5) only to the first term, that is taking k = 1, we obtain
�(xn, yn; h) = f (xn, yn). Hence, from Eq. (6.6), we obtain the iteration

yn+1 = yn + h f (xn, yn), n = 0, 1, 2, · · · (6.7)

Euler’s formula (6.7) can also be viewed as application of the rectangle rule of
numerical integration. For integrating the ODE of Eq. (6.3) and applying the rule,

264 6 Ordinary Differential Equations

yn+1 − yn = h
∫ xn+1

xn

f (x, y) dx ≈ h f [xn, y(xn)] = h f (xn, yn)

This equation evidently is of the form (6.7).
For accuracy, the step size h must be very small, because of the crude nature of

approximation used. For increasing number of grid points n, the truncation error may
also grow, that is to say, the methodmay become unstable. This is a potential hazard.
As a result, the method is not a practical one for an arbitrarily defined function f .

It is customary in numerical solution of differential equations to call a method of
order p if the error is O(h p+1). The error in recangle rule is O(h2) and so Euler’s
method is a first-order method.

6.1.2 Modified Euler’s Method

The numerical integration procedure for Eq. (6.7) is suggestive of employing the
trapezoidal rule for greater accuracy. Thus, applying the rule to Eq. (6.3)

yn+1 − yn = h
∫ xn+1

xn

f (x, y) dx ≈ h

2
[f (xn, yn) + f (xn+1, yn+1)] (6.8)

for n = 0, 1, 2, · · · . Equation (6.8) however is an implicit equation in yn+1, because
the quantity also occurs in the right-hand side of the equation. Noting that as h is
small, solving the equation by iteration using Eq. (6.7), one obtains the scheme

y(0)
n+1 = yn + h f (xn, yn)

y(k+1)
n+1 = yn + h

2
[f (xn, yn) + f (xn, y(k)

n+1], k = 0, 1, 2, · · · (6.9)

This yields yn+1 at the point xn . Equation (6.9) constitutes the Modified Euler’s
Method, also known as Heun’s Method. The method is of the second order since the
error in the trapezoidal rule is O(h3).

6.1.3 Runge–Kutta Methods

Here the objective is to increase the order of the general method (6.6) by some-
how obviating the difficulty of computing the higher order derivatives y′′, y′′′, · · ·
expressed in terms of the partial derivatives of f . The idea is to replace the derivatives
by requisite number of functional values of f at intermediate points. We illustrate
the procedure below:

6.1 Initial Value Problem for First-Order ODE 265

1o. Second-Order Runge–Kutta Method

Let x be any grid point. If in the Taylor series (6.4) or (6.6), terms up to y′′(x) are
retained then it will read

y(x + h) = y(x) + h y′(x) + h2

2
y′′(x)

= y(x) + h f + h2

2
(fx + f fy) (6.10)

We can also write by the Mean Value Theorem

y(x + h) = y(x) + h f (ξ, y(ξ))

= y(x) + A k1 + B k2, (say)

where

k1 = h f (x, y)

k2 = h f (x + αh, y + βk1)

This means that f (ξ, y(ξ)) is replaced by the weighted average of f (x, y) and
f (x + αh, y + βk1). Hence,

y(x + h) = y(x) + h[A f + B { f + αh fx + βk1 fy + O(h2)}]
= y(x) + h(A + B) f + h2 B (α fx + β f fy) + O(h3) (6.11)

by an application of Taylor’s theorem for two variables. Comparing Eqs. (6.10) and
(6.11), we find that

A + B = 1, α B = 1

2
, β B = 1

2

Since there are four unknowns, the above set of three equations do not determine
A, B, α, β uniquely. An elegant particular solution is evidently

A = B = 1

2
, α = β = 1

yielding the solution

y(x + h) = y(x) + 1

2
(k1 + k2)

k1 = h f (x, y)

k2 = h f (x + h, y + k1)

266 6 Ordinary Differential Equations

For a grid point xn+1, (n = 0, 1, 2, · · ·), we therefore compute

k1 = h f (xn, yn) (6.12a)

k2 = h f (xn + h, yn + k1) (6.12b)

to yield

yn+1 = yn + 1

2
(k1 + k2) (6.12c)

Equation (6.12) constitutes the Second-OrderRunge–Kutta. Themethod is of second
order since the discretisation error is O(h3).

For higher ordermethods, a similar procedure is adopted by expanding�(x, y; h)

in a Taylor series (like Eq. (6.10)) with higher degree terms in h and corresponding
increase in the number of function values for weighted average of h f (ξ, y(ξ)). By
equating the coefficients of various powers of h in the two equivalent quantities, a
system of equations is obtained which is less than the number of unknowns. Suitable
particular solution of the equations deliver the required formulae.

2o. Third-Order Runge–Kutta Method

By the procedure outlined above, it can be proved that with

k1 = h f (xn, yn)

k2 = h f
(

xn + h

2
, yn + k1

2

)

(6.13a)

k3 = h f (xn + h, yn − k1 + 2k2)

the value of yn+1 is given by

yn+1 = yn + 1

6
(k1 + 4k2 + k3) (6.13b)

Stepping up to another order, we have the famous:

3o. Fourth-Order Runge–Kutta Method

For the grid point xn+1, compute

k1 = h f (xn, yn)

k2 = h f
(

xn + h

2
, yn + k1

2

)

k3 = h f
(

xn + h

2
, yn + k2

2

)

(6.14a)

k4 = h f (xn + h, yn + k3)

6.1 Initial Value Problem for First-Order ODE 267

then the value of yn+1 is given by

yn+1 = yn + 1

6
(k1 + 2k2 + 2k3 + k4) (6.14b)

The formula after laborious calculations (see, for instance, Scheid’s text noted in the
bibliography) is remarkably simple in structure and is of fourth order with discreti-
sation error O(h5).

If f is independent of y, we can demonstrate that the method is equivalent to
Simpson’s rule. In this case, the ODE is y′ = f (x), yielding

yn+1 = yn +
∫ xn+1

xn

f (x) dx

= yn + h

6

[

f (xn) + 2 f
(

xn + h

2

)

+ 2 f
(

xn + h

2

)

+ f (xn + h)
]

which means that
∫ xn+1

xn

f (x) dx = h

6

[

f (xn) + 4 f
(

xn + h

2

)

+ f (xn + h)
]

�
AFortran subroutine for the method can easily be coded. Those who want to use a

ready-made one,may read Sect. 6.2, on system ofODEs. Experiencewith themethod
shows that it is stable, that is to say, the discretisation error does not grow with the
number of grid points. The method has the main disadvantage that it requires four
function evaluation per grid, which may be time-consuming for unwieldy functions.
Nevertheless, the method is very popular with practitioners.

Carl David Tolme Runge (1856–1927), German mathematician and scientist. Initially, he studied

literature but after attending Weierstrass’s lectures turned to pure mathematics and in 1880 wrote a

doctoral dissertation on differential geometry. In 1886, he obtained a chair at Hanover and within

a year he moved away from pure mathematics to study the wavelengths of the spectral lines of

elements other than hydrogen. He moved to a chair in applied mathematics at Götingen in 1904.

Martin Wilhelm Kutta (1867–1944), Polishmathematician. He is best known for the Runge–Kutta

method (1901) and for the Kutta–Zhukovski aerofoil in hydro- and aerodynamics (1910). Runge

presented Kutta’s methods. He became a professor at Stuttgart, Germany in 1911.

Karl Heun (1859–1929), German mathematician, best known for the Heun differential equation

which generalises the hypergeometric differential equation. His equation has four singularities

compared to the latter equation which has three singularities. He became a professor at Karlsruhe,

Germany in 1902, holding the chair of theoretical mechanics.

268 6 Ordinary Differential Equations

Example 1. Solve the ODE

dy

dx
= 2y

x
+ x3, y(1) = 1

2

by Euler’s method and Euler’ modified method, at the two points x = 1.1 and 1.2,
and compare the solutions with the exact solution.

Solution. Here x0 = 1, y0 = 1/2, h = 0.1

Euler’s Method. At x = 1.1, y1 = y0 + h f (x0, y0) = 0.5 + 0.1 ×
(
2 × 0.5

1
+ 13

)

= 0.7

At x = 1.2, y2 = y1 + h f (x1, y1)= 0.7 + 0.1 ×
(
2 × 0.7

1.1
+ 1.13

)

= 0.96037

Modified Euler’s Method. At x = x1 = 1.1, y01 = 0.7

yk+1
1 = y0 + h

2
[f (x0, y0) + f (x0, y(k)

1)], k = 0, 1, 2, · · ·

The iterations yield

y(1)
1 = 0.5 × 0.1

2

[
2 × 0.5

1
+ 13 + 2 × 0.7

1
+ 13

]

= 0.72200

y(2)
1 = 0.5 + 0.1

2

[
2 × 0.5

1
+ 13 + 2 × 0.722

1
+ 13

]

= 0.72220

y(3)
1 = 0.5 + 0.1

2

[
2 × 0.5

1
+ 13 + 2 × 0.7222

1
+ 13

]

= 0.72222

y(4)
1 = 0.5 + 0.1

2

[
2 × 0.5

1
+ 13 + 2 × 0.72222

1
+ 13

]

= 0.72222

Hence, y1 = 0.72222.

At x = x2 = 1.2, y(0)
2 = 0.96037

y(k+1)
2 = y1 + h

2
[f (x1, y1) + f (x1, y(k)

2)], k = 0, 1, 2, · · ·

The iterations give

y(1)
2 = 0.7 + 0.1

2

[
2 × 0.7

1.1
+ 1.13 + 2 × 0.96037

1.1
+ 1.13

]

= 0.98404

6.1 Initial Value Problem for First-Order ODE 269

y(2)
2 = 0.7 + 0.1

2

[
2 × 0.7

1.1
+ 1.13 + 2 × 0.98404

1.1
+ 1.13

]

= 0.98619

y(3)
2 = 0.7 + 0.1

2

[
2 × 0.7

1.1
+ 1.13 + 2 × 0.98619

1.1
+ 1.13

]

= 0.98639

y(4)
2 = 0.7 + 0.1

2

[
2 × 0.7

1.1
+ 1.13 + 2 × 0.98639

1.1
+ 1.13

]

= 0.98640

y(5)
2 = 0.7 + 0.1

2

[
2 × 0.7

1.1
+ 1.13 + 2 × 0.98640

1.1
+ 1.13

]

= 0.98641

The subsequent iterations remain at the same value. Hence, y2 = 0.98641.
The given ODE is a first-order linear equation. When integrated by standard

method, its solution is

y = 1

2
x4

For x = 1.1, y1(exact) = 0.73205 and at x = 1.2, y2(exact) = 1.03680. This shows
discrepancy at the second decimal place itself. �

Example 2. Solve Example 1 by the second- and fourth-order Runge–Kuttamethods.

Solution. As before x0 = 1, y0 = 1/2 and h = 0.1

Second-Order Runge–Kutta. At x = x1 = 1.1

k1 = h f (x0, y0) = 0.1 ×
[
2 × 0.5

1
+ 13

]

= 0.2

k2 = h f (x0 + h, y0 + k1) = 0.1 ×
[
2 × (0.5 + 0.2)

1.1
+ 1.13

]

= 0.26037

So y1 = y0 + 1

2
(k1 + k2) = 0.5 + 1

2
× (0.2 + 0.26037) = 0.73019.

At x = x2 = 1.2

k1 = h f (x1, y1) = 0.1 ×
[
2 × 0.73019

1.1
+ 1.13

]

= 0.26586

k2 = h f (x1 + h, y1 + k1) = 0.1 ×
[
2 × (0.73019 + 0.26586)

1.1
+ 1.13

]

= 0.33881

Hence, y2 = y1 + 1

2
(k1 + k2) = 0.73019 + 1

2
(0.26586 + 0.33881) = 1.03252.

Fourth-Order Runge–Kutta. At x = x1 = 1.1

270 6 Ordinary Differential Equations

k1 = h f (x0, y0) = 0.1 ×
[
2 × 0.5

1
+ 13

]

= 0.2

k2 = h f
(

x0 + h

2
, y0 + k1

2

)

= 0.1 ×
[
2 × (0.5 + 0.2/2)

1 + 0.5
+ (1 + 0.05)3

]

= 0.23005

k3 = h f
(

x0 + h

2
, y0 + k2

2

)

= 0.1 ×
[
2 × (0.5 + 0.23005/2)

1 + 0.05
+ (1 + 0.05)3

]

= 0.23291

k4 = h f (x0 + h, y0 + k3) = 0.1 ×
[
2 × (0.5 + 0.23291)

1 + 0.1
+ (1 + 0.1)3

]

= 0.26636

Hence, y1 = y0 + 1

6
(k1 + 2k2 + 2k3 + k4) = 0.73205

At x = x2 = 1.2

k1 = h f (x1, y1) = 0.1 ×
[
2 × 0.73205

1.1
+ 1.13

]

= 0.26620

k2 = h f
(

x1 + h

2
, y1 + k1

2

)

= 0.1 ×
[
2 × (0.732205 + 0.26620/2)

1.15
+ 1.153

]

= 0.30255

k3 = h f
(

x1 + h

2
, y1 + k2

2

)

= 0.1 ×
[
2 × (0.73205 + 0.30255/2)

1.15
+ 1.153

]

= 0.30571

k4 = h f (x1 + h, y1 + k3) = 0.1 ×
[
2 × (0.73205 + 0.30571)

1.2
+ 1.23

]

= 0.34576

so that y2 = y1 + 1

6
(k1 + 2k2 + 2k3 + k4) = 1.03679.

The accuracy of these results, particularly that of the fourth-order formula is
noteworthy. In the exercises, we consider only these two methods. �

Exercises

1. Apply second-order Runge–Kutta method to solve:

(i)
dy

dx
= x + y, y(0) = 1, for x = 0.1 and 0.2

(i i)
dy

dx
= xy, y(0) = 1, for x = 0.1 and 0.2

(i i i)
dy

dx
= 3x2 + y, y(0) = 4, for x = 0.2 and 0.3

taking steps of length h = 0.1. Compare the results with the exact solution of the
problems.
[(i) 1.11000, 1.24205 (1.11034, 1.24281; y = 2ex − x − 1) (i i) 1.0050, 1.02018
(1.00513, 1.02020; y = ex

2/2). (i i i) 4.89200, 5.42576 (4.89404, 5.42862; y =
10ex − 3x2 − 6x − 6)].

6.1 Initial Value Problem for First-Order ODE 271

2. Apply fourth-order Runge–Kutta method to solve the ODEs:

(i)
dy

dx
= x2 + y2, y(0) = 1 for x = 0.1 and 0.2

(i i)
dy

dx
= − x2y2, y(0) = 2 for x = 0.1 and 0.3

(i i i)
dy

dx
= y(x2 − 1), y(1) = 1 for x = 1.25 and 1.5

(iv)
dy

dx
= 1 + √

xy, y(0) = 2 for x = 0.1, 0.2 and 0.3

(v)
dy

dx
= − y2

1 + x
, y(0) = 1 for x = 0.5 taking h = 0.1

[(i) 1.22175, 1,49477 (i i) 1.99867, 1.96464 (i i i) 1.07005, 1.33863
(iv) 2.12908, 2.28638, 2.46333 (v) 0.71151].

3. Write a Fortran program for the fourth-order Runge–Kutta method.

4. The temperature θ of a well-stirred liquid by an isothermal heating coil is given
by the equation

dθ

dt
= K (100 − θ)

where K is a constant for the system. Solve the equation byRunge–Kutta fourth-order
method to find θ at t = 0.5 and 1.0 s for K = 2.5 and initial condition θ = 25 ◦C at
t = 0 s.

[76.94 ◦C, 92.91 ◦C].

5. The magnetic flux φ in the iron core of a current containing a resistance is given
by the differential equation

dφ

dt
+ 1.8φ + 0.01φ3 = 20, φ(0) = 0

Compute φ at t = 1 s in steps of h = 0.2 sec.

[3.33856, 5.51598, 6.79012, 7.46951, 7.81093].

6. The current in an L–R circuit with variable resistance is given by the differential
equation

di

dt
+ (1 + 3 i2)i = e(t)

272 6 Ordinary Differential Equations

where
e(t) = 5t, 0 ≤ t ≤ 0.2

= 1, t > 0.2

Given initial condition i(0) = 0, find i at time 0.5 s in steps of 0.1 sec.

[0.02419, 0.09358, 0.17902, 0.31820].

6.1.4 Convergence of Single-Step Methods

A single-step method is defined by an equation of the form (6.6) which means that

yn+1 − yn
h

− �(xn, yn; h) = 0 (6.15)

Replacing y′(xn) by [y(xn + h) − y(xn)]/h and f (xn, y(xn)) by �(xn, y(xn); h)

in the ODE (6.3), the local truncation error at xn is

t (xn, h) := y(xn + h) − y(xn)

h
− �(xn, y(xn); h) (6.16)

The discretisation error en at xn in replacing y(xn) by yn is en = y(xn) − yn .

Theorem 6.2 In the single-step method (6.6) or (6.15), if
(i) the method is consistent of order p, i.e. |t (xn, h)| ≤ N hp and
(i i) � satisfies Lipschitz condition

|�(xn, yn; h) − �(xn, y(xn); h)| ≤ Kφ|yn − y(xn)|

for all xn ∈ [x0, b], Kφ > 0, then

|en| ≤
[
e(xn−x0) − 1

Kφ

]

N hp

Proof Equations (6.15) and (6.16) give

yn+1 − yn = h �(xn, yn; h)

y(xn+1) − y(xn) = h �(xn, y(xn); h) + h t (xn, h)

On subtraction, we obtain

en+1 = en + h [�(xn, y(xn); h) − �(xn, yn; h)] + h t (xn, h)

6.1 Initial Value Problem for First-Order ODE 273

and hence taking modulus and using conditions (i) and (i i)

|en+1| ≤ |en| + h Kφ|y(xn) − yn| + N hp+1

= (1 + h Kφ)|en| + N hp+1

in which h, Kφ ≥ 0. The above is a difference inequality. Now consider the corre-
sponding difference equation

ξn+1 = (1 + h Kφ) ξn + N hp+1, ξn = e0 (6.17)

We prove that |en| is majored by ξn , i.e. |en| ≤ ξn . This is evidently true for n = 0 by
definition. The proof is completed by induction, i.e. if it is assumed that |en| ≤ ξn ,
then

|en+1| ≤ (1 + h Kφ) ξn + N hp+1 = ξn+1

The solution of (6.17) consists of a complementary part which is a solution of
ξn+1 = (1 + h Kφ) ξn . The solution ξn ∝ ρn gives rise to the characteristic equation
ρ = 1 + h Kφ and the complementary solution is

ξCn = C (1 + h Kφ)
n

The inhomogeneous term in (6.17) is a constant and if the particular solution is k,
then k = (1 + h Kφ) k + N hp+1, yielding

ξP
n = k = −Nhp

Kφ

Hence, the complete solution of (6.17) using the initial condition ξ0 = e0 = y(x0) −
y0 = 0 is

ξn = ξCn + ξP
n = N hp

Kφ

[

(1 + h Kφ)
n − 1

]

Now, for any x ≥ 0, 1 + x ≤ ex and so

|en| ≤ ξn ≤ N hp

Kφ

(

enhKφ − 1
)

= N hp

Kφ

[

e(xn−x0)Kφ − 1
]

�
The theorem means that |en| = O(h p) if xn is fixed and h → 0. The single-step

method is thus convergent if p > 0, with conditions (i) and (i i) of the theorem
holding true.

Remark The above analysis may suggest that consistency and convergence are syn-
onymous, and by reducing h, an arbitrarily small error can be achieved. But one
must bear in mind that round-off errors will inevitably creep—in the iteration of

274 6 Ordinary Differential Equations

yn+1 = yn + h �(xn, yn; h). If a round-off error εn occurs in this iteration, then it
can be shown that the result of Theorem 2 will be

|en| ≤ e(xn−x0)Kφ − 1

Kφ

(

N hp + ε

h

)

where |εn| ≤ ε. The contribution of ε is enormous when h → 0, although N hp → 0.
Thus, as in Sect. 1.1 of Chap.5 on numerical differentiation, there will be an optimum
value of h, say hopt > 0 below which round-off errors will dominate. Hence, in the
computation of yn+1, h should be chosen small but greater than hopt .

6.1.5 Adams–Bashforth–Moulton Predictor–Corrector
Method

In contrast to a single-step method, a predictor–corrector method uses the previously
determined function values of f at the equally spaced grid points xn, xn−1, xn−2, · · ·
for computation of the solution yn+1 at the point xn+1. A predictor formula is used
to predict this value and then a corrector formula is used to improve the predicted
value. Such methods are therefore multistep.

To develop such formulas, consider the Newton’s backward difference formula
applied to the function f (x, y(x)):

f (x, y(x)) = fn + t ∇ fn + t (t + 1)

2
∇2 fn + t (t + 1)(t + 2)

6
∇3 fn + · · ·

where t = (x − xn)/h and fn = f (xn, yn). If the formula is substituted in

yn+1 = yn +
∫ xn+1

xn

f (x, y) dx

we get

y p
n+1 = yn +

∫ xn+1

xn

[fn + t ∇ fn + t (t + 1)

2
∇2 fn + t (t + 1)(t + 2)

6
∇3 fn + · · ·] dx

= yn + h
∫ 1

0
[fn + t ∇ fn + t (t + 1)

2
∇2 fn + t (t + 1)(t + 2)

6
∇3 fn + · · ·] dt

= yn + h
[

fn + 1

2
∇ fn + 5

12
∇2 fn + 3

8
∇3 fn + · · ·

]

(6.18)

where the superscript p indicates that it is a predicted value. Formula (6.18) is called
Adams- Bashforth formula.

6.1 Initial Value Problem for First-Order ODE 275

A corrector formula is similarly obtained by using Newton’s backward difference
formula at fn+1:

ycn+1 = yn +
∫ xn+1

xn

[fn+1 + t ∇ fn+1 + t (t + 1)

2
∇2 fn+1

+ t (t + 1)(t + 2)

6
∇3 fn+1 + · · ·] dx

= yn + h
∫ 0

−1
[fn+1 + t ∇ fn+1 + t (t + 1)

2
∇2 fn+1

+ t (t + 1)(t + 2)

6
∇3 fn+1 + · · ·] dt

= yn + h
[

f p
n+1 − 1

2
∇ f p

n+1 − 1

12
∇2 f p

n+1 − 1

24
∇3 f p

n+1 − · · ·
]

(6.19)

The right-hand side of Eq. (6.19) contains yn+1 that can be replaced by the predicted
value y p

n+1 given by Eq. (6.18). It supplies the corrector formula which is indicated by
the superscript c. If wanted the formula can also be iterated by using the previously
obtained corrected value in the right-hand side of Eq. (6.19). Formula (6.19) is known
as Adams–Moulton formula.

In practice, it is convenient to use these formulas by ignoring the dotted terms and
expressing the backward differences in terms of function values. For this purpose,
we have

∇ fn = fn − fn−1, ∇2 fn = fn − 2 fn−1 + fn−2

∇3 fn = fn − 3 fn−1 + 3 fn−2 − fn−3

and similarly for those of ∇ fn+1, ∇2 fn+1 and ∇3 fn+2. Inserting these expressions
in Eqs. (6.18) and (6.19), the formulas become

y p
n+1 = yn + h

24
[55 fn − 59 fn−1 + 37 fn−2 − 9 fn−3] (6.20)

and

ycn+1 = yn + h

24
[9 f p

n+1 + 19 fn − 5 fn−1 + fn−2] (6.21)

By iteration, the pair (6.20) and (6.21) yields yn+1 at the grid point xn+1 next to
xn provided three starting values y1, y2, y3 are known at x1, x2, x3; x0, y0 being
already given by the initial condition. For this purpose, Runge–Kutta method may
be employed to start the solution, replaced by the predictor–corrector iteration at
subsequent grid points. The latter iteration is advantageous from the point of view
of just two function evaluations of f , viz. fn and f p

n+1, since the rest are computed
in the preceding stages of iteration.

276 6 Ordinary Differential Equations

The discretisation error of formulas (6.20) and (6.21) are, respectively,

251

720
h5 f (iv)

n and − 19

720
h5 f (iv)

n

These errors are of the same order as that in the fourth-order Runge–Kutta method.

The following subroutine implements the scheme:

SUBROUTINE ABM(deriv,x0,y0,xlast,nsteps)
! Implements the Adams–Bashforth–Moulton method,
! started by Runge–Kutta Fourth Order Method.
! deriv=function f of Eq. (3); must be declared external
! in the calling program. (Input)
! x0, y0=initial point of Eq. (3). (Input)
! xlast=abscissa of the last point of the entire grid. (Input)
! nsteps=number of steps in the grid. (Input)
! The output is generated by the routine as printed value of xn and yn.
!**
REAL :: f(4), k1, k2, k3, k4
f(1)=deriv(x0,y0); xn=x0; yn=y0; h=(xlast−x0)/nsteps
DO n=1,3
k1=h*f(n); k2=h*deriv(xn+h/2,yn+k1/2)
k3=h*deriv(xn+h/2,yn+k2/2); k4=h*deriv(xn+h,yn+k3)
f(n+1)=yn+1.0/6.0*(k1+2*(k2+k3)+k4)
xn=xn+h; yn=f(n+1); PRINT*, n, xn, yn
END DO
DO n=4,nsteps
ynp=yn+h/24*(55*f(4)−59*f(3)+37*f(2)−9*f(1))
xn=x0+n*h; fnp=deriv(xn,ynp)
yn=yn+h/24*(9*fnp+19*f(4)−5*f(3)+f(2))
f(1)=f(2); f(2)=f(3); f(3)=f(4); f(4)=deriv(xn,yn)
PRINT*, n, xn, yn
END DO
END SUBROUTINE ABM

John Couch Adams (1819–1892), Britishmathematician and astronomer. His famous achievement

was predicting the existence and position of the planet Neptune using only mathematics. The

calculations were made to explain discrepancies in Uranus’s orbit. During the same period, but

independently, Leverrier made the same discovery. The planet was actually observed in 1846 to

within 10o from Adams’ prediction and within 1o from Leverrier’s prediction. He was a Professor

at the University of Cambridge from 1859 till his death.

Francis Bashforth (1819–1912), British mathematician. His interest in ballistics led him to make a

series of experiments uponwhich our present knowledge of air–resistance is founded. TheBashforth

chronograph for recording the velocity of shot was invented by him. He was a Fellow of St. John’s

6.1 Initial Value Problem for First-Order ODE 277

College, Cambridge and for some time hewas appointed Professor of appliedmathematics to British

army officers.

Forest Ray Moulton (1872–1952), U.S. astronomer. He proposed the hypothesis of planetismals

in the formation of the solar system—that has now fallen out of favour. He discovered additional

small satellites around Jupiter. The Moulton plane in geometry is named after him.

Exercises

[Use subroutine ABM to solve the problems given below:]
1. Given the ODE’s, tabulate y in the indicated range:

(i)
dy

dx
= xy, y(1) = 1 in the range 1(0.1)2

(i i)
dy

dx
= xy + y2, y(0) = 1 in the range 0(0.1)0.8

(i i i)
dy

dx
= (x + y)e−x , y(−1) = 1 in the range − 1(0.2) + 1

(iv)
dy

dx
= cos x

1 + y2
, y(0) = 0 in the range 0(0.5)5

Take nsteps =100 per unit.
[(i) (1, 1), (1.1, 1.11048), (1.2, 1.24582), (1.3, 1.41170), (1.4,
1.61574), (1.5, 1.86786), (1.6, 2.18102), (1.7, 2.57228), (1.8, 3.06422), (1.9,
3.68692), (2, 4.48076);
(i i) (0, 1), (0.1, 1.11638), (0.2, 1.27673), (0.3, 1.50324), (0.4, 1.83769), (0.5,
2.36677), (0.6, 3.30375), (0.7, 5.35050), (0.8, 12.96553);
(i i i) (−1,1), (−0.8, 1.06825), (−0.6, 1.24626), (−0.4, 1.53489), (−0.2, 1.91591),
(0, 2.36420), (0.2, 2.85267), (0.4, 3.35614), (0.6, 3.85365), (0.8, 4.32944), (1,
4.77280);
(iv) (0, 0), (0.5, 0.44242), (1, 0.71267), (1.5, 0.81433), (2, 0.75672), (2.5, 0.53833),
(3, 0.13221), (3.5, −0.34521), (4, −0.66633), (4.5, −0.80911), (5, −0.79780)].

6.1.6 Milne’s Predictor–Corrector Method

In this method, Newton’s forward difference formula is applied to the function
f (x, y(x)) in the form

f (x, y(x)) = fn + t � fn + t (t − 1)

2
�2 fn + t (t − 1)(t − 2)

6
�3 fn + · · ·

278 6 Ordinary Differential Equations

where t = (x − xn)/h and fn = f (xn, yn). Substituting the expression with n
replaced by n − 3 in the relation

yn+1 = yn−3 +
∫ xn+1

xn−3

f (x, y) dx

we obtain

y p
n+1 = yn−3 +

∫ xn+1

xn−3

[fn−3 + t � fn−3 + t (t − 1)

2
�2 fn−3

+ t (t − 1)(t − 2)

6
�3 fn−3 + · · ·] dx

= yn−3 + h
∫ 4

0
[fn−3 + t � fn−3 + t (t − 1)

2
�2 fn−3

+ t (t − 1)(t − 2)

6
�3 fn−3 + · · ·] dt

= yn−3 + h
[

4 fn−3 + 8� fn−3 + 20

3
�2 fn−3 + 8

3
�3 fn−3 + · · ·

]

≈ yn−3 + 4h

3
[2 fn − fn−1 + 2 fn−2] (6.22)

after neglecting the remainder in the forward difference formula. Formula (6.22) can
be used to predict the value of yn+1 when yn−3, yn−2, yn−1 and yn are known. This
is indicated by superscript p in the left-hand side of (6.22). To obtain a corrector
formula, we replace n by n − 1 in the forward difference formula and obtain

ycn+1 = yn−1 +
∫ xn+1

xn−1

f (x, y) dx

= yn−1 +
∫ xn+1

xn−1

[fn−1 + t � fn−1 + t (t − 1)

2
�2 fn−1 + · · ·] dx

= yn−1 + h
∫ 2

0
[fn−1 + t � fn−1 + t (t − 1)

2
�2 fn−1 + · · ·] dt

= yn−1 + h
[

2 fn−1 + 2� fn−1 + 1

3
�2 fn−1 + · · ·

]

≈ yn−1 + h

3
[f p

n+1 + 4 fn + fn−1] (6.23)

where fn+1 is replaced by f p
n+1 obtained from Eq. (6.22). Formula (6.23) can be used

as a corrector for yn+1, indicated by superscript c. It can be even iterated by replacing
f p
n+1 on the right-hand side by f cn+1 obtained from a previous iteration. The corrector

formula (6.23), it may be noted, is simply the Simpson’s rule.

6.1 Initial Value Problem for First-Order ODE 279

The discretisation error committed in (6.22) and (6.23) can be shown to be

28

90
h5 f (iv)

n−3 and − 1

90
h5 f (iv)

n−1

respectively.
The formulas of this method, viz. (6.22) and (6.23) are somewhat simpler than

those in Adams–Bashforth–Moulton method. However, the method has the serious
drawback that it can be unstable in some cases (see Sect. 6.1.7).

Edward Arthur Milne (1896–1950), British astrophysicist and applied mathematician. He is well

known for his work on radiative equilibrium and mathematical theory of stellar structures. He held

a Chair at Oxford University.

Exercises

1. Apply Milne’s predictor–corrector method to the following problems:

(i)
dy

dx
= 1

x + y
, y(0) = 2, y(0.2) = 2.0933, y(0.4) = 2.1755,

y(0.6) = 2.2493

Calculate y(0.8) and y(1.0).

(i i)
dy

dx
= 1

2
xy, y(0) = 1, y(0.1) = 1.0025, y(0.2) = 1.0101,

y(0.3) = 1.0228

Calculate y(0.4) and y(0.5).

(i i i)
dy

dx
= 1 − xy

x2
, y(1) = 1, y(1.1) = 0.996, y(1.2) = 0.986,

y(1.3) = 0.972

Calculate y(1.4) and y(1.5).

[(i) 2.3164, 2.4219 (i i) 1.0408, 1.0645 (i i i) 0.955, 0.938].

6.1.7 Stability of the Methods

In the convergence of a method, we are concerned with the relationship between
y(xn) and yn as the grid size h tends to zero. A method however delivers a difference
equation in yn and the question arises as to whether yn tends to y(xn) when n
tends to ∞ as well. Historically, it was discovered that application of a formula like
Milne’s, sometimes led to errors unacceptably increasing (instead of decreasing)
with increasing values of n. This led to the analysis of the difference equation of the

280 6 Ordinary Differential Equations

method. If it can be proved that y(xn) → yn as n → ∞, then we say that the method
is asymptotically stable (A–stable).

Let us examine Milne’s corrector formula

yn+1 = yn−1 + h

3
(fn+1 + 4 fn + fn−1) (6.24)

The solution of this difference equation very much depends on f and for further
progress, it is necessary to assume some form of f which will throw light on stability
of the method. The original ODE is y′ = f (x, y) with initial condition y = y0 at
x = x0. Intuitively, if we confine our attention to a neighbourhood of (x0, y0), we
can expand f (x, y) and write

y′ ≈ f (x0, y0) + (x − x0) fx (x0, y0) + (y − y0) fy(x0, y0)

=: λ(y − y0) + g(x)

where λ := fy(x0, y0) and g(x) := f (x0, y0) + fx (x0, y0)(x − x0). Introducing
v := (y − y0), we get the simplified ODE

v′ = λv + g(x)

The inhomogeneous term will not contribute anything to the stability analysis as we
are concerned with differences of solutions. Hence, for testing for stability of an
equation like (6.24), we consider f (x, y) = λy or the ODE as

y′ = λy with y = y0 at x = x0 (6.25)

The solution of this equation is evidently y = y0 eλ(x−x0).
Thus, for Eq. (6.24), we take f (x, y) = λy and obtain

yn+1 − yn−1 − λh

3
(yn+1 + 4yn + yn−1) = 0

or (

1 − λh

3

)

yn+1 − 4

3
λh yn −

(

1 + λh

3

)

yn−1 = 0 (6.26)

which is a second-order liner difference equation. Assuming yn ∝ ρn , we obtain the
characteristic equation

(

1 − λh

3

)

ρ2 − 4

3
λh ρ −

(

1 + λh

3

)

= 0

whose roots are

ρ =
4
3λh ±

√

16
9 λ2h2 + 4(1 + λh

3)

2(1 − λh
3)

6.1 Initial Value Problem for First-Order ODE 281

that is

ρ1 = 1 + λh + O(h2), ρ2 = −1 + 1

3
λh

Thus, the solution of Eq. (6.26) is approximately

y1 = C1(1 + λh)n + C2

(

− 1 + 1

3
λh

)n

Taking x0 = 0, h = xn/n, we then obtain

y1 = C1

(

1 + λxn
n

)n

+ (−1)nCn

(

1 − 1

3

λxn
n

)n

→ C1 e
λxn + (−1)nC2 e

−λxn/3 (6.27)

In the solution (6.27), the first term is consistent with the solution of (6.25). This
shows that increase in the order of the difference equation has led to the induction of
a spurious term represented by C2. If λ > 0 this term will be exponentially decreas-
ing, implying stability. But if λ < 0 the term will increase exponentially indicating
instability.Methods of this type are conditionally stable and are calledweakly stable.

Let us now similarly examine the Adams–Moulton corrector formula for stability.
The formula (6.21) is

yn+1 = yn + h

24
[9 fn+1 + 19 fn − 5 fn−1 + fn−2]

Setting f (x, y) = λy, we obtain the difference equation

yn+1 − yn − λh

24
[9yn+1 + 19yn − 5yn−1 + yn−2] = 0

The characteristic equation setting yn ∝ ρn is

ρ2(ρ − 1) − λh

24
(9ρ3 + 19ρ2 − 5ρ + 1) = 0

which is a cubic equationwith three rootsρ1 = 1, ρ2 = ρ3 = 0whenh → 0. Solving
the equation by iteration for small h,

ρ1 ≈ 1 + λh

24 · 12 · (9 + 19 − 5 + 1) = 1 + λh

ρ2, ρ3 ≈ ±
√

λh

24 · (−1)
· (9 · 0 + 19 · 0 − 5 · 0 + 1) = ±i

√

λh

24

282 6 Ordinary Differential Equations

Thus,

yn = C1(1 + λh)n + C2

(

i

√

λh

24

)n

+ C3

(

− i

√

λh

24

)n

= C1

(

1 + λxn
n

)n

+ C2

(

i

√

λxn
24n

)n

+ C3

(

− i

√

λxn
24n

)n

→ C1e
λxn + C2 · 0 + C3 · 0 = C1e

λxn as n → ∞

In the above relation x0 is taken zero so that h = xn/n. Thus, yn tends to the cor-
rect solution y0eλxn as n → ∞ and the method is unconditionally strongly sta-
ble. In general, if ρ1 = 1, |ρ2|, |ρ3|, · · · , |ρk | < 1 as h → 0, then the solution
yn = C1ρ

n
1 + C2ρ

n
2 + · · · + Ckρ

k is said to be strongly stable. The solution for the
Adams–Moulton method has this very property.

An analysis of the Adams–Bashforth predictor formula (6.20) shows that this
counterpart is also strongly stable, but the Milne predictor formula (6.22) is weakly
stable. What about the stability of the single-step Euler and Runge–Kutta methods?
In the first place, the difference equation for these methods are of first order and
no extraneous solutions creep in. As regards stability, these methods can be easily
proved to be strongly stable.

In the above conclusions, it should be noted that h must tend to zero. If this
condition is violated and h becomes larger, then all the methods may turn out to be
unstable in the end.

6.2 System of ODEs

If a differential equation of order N > 1, e.g. Eq. (6.1) is to be solved, then it can be
converted into a system of N first-order equations by the substitution

y1 = y, y2 = y′, y3 = y′′, · · · , yN = y(N−1)

so that Eq. (6.1) becomes

y(N) = f (x, y1, y2, · · · , yN)

this means that we have a system of N differential equations of the first order in
terms of variables y1, y2, · · · , yN that satisfy

y′
1 = y2
y′
2 = y3

· · · ·· · · ·
y′
N−1 = yN
y′
N = f (x, y1, y2, · · · , yN)

6.2 System of ODEs 283

subject to initial conditions (6.2) at x = x0, that reads

y1 = y0, y2 = y′
0, y3 = y′′

0 , · · · , yN = y(N−1)
0

We are thus led to the consideration of a system of general form

y′
1 = f1(x, y1, y2, · · · , yN)

y′
2 = f2(x, y1, y2, · · · , yN)

· · · · · · · · · · · · · · · · · · (6.28)

y′
N = fN (x, y1, y2, · · · , yN)

subject to initial conditions

y1 = y10, y2 = y20, · · · , yN = yN0 at x = x0 (6.29)

The form of Eq. (6.28) at once leads to generalisation of single- and multistep
methods developed for first-order equations. To be precise, consider the case N = 2.
Let the equations be

y′ = f (x, y, z)

z′ = g(x, y, z) (6.30)

with y = y0, z = z0 at x = x0, then it can be proved that for the system (6.30):

1o. Fourth-Order Runge–Kutta.

Let at the discretised point (xn, yn, zn)

k1 = h f (xn, yn, zn), l1 = h g(xn, yn, zn)

k2 = h f
(

xn+ h

2
, yn+ k1

2
, zn+ l1

2

)

, l2 = h g
(

xn+ h
2 , yn+ k1

2 , zn+ l1
2

)

k3 = h f
(

xn+ h

2
, yn+ k2

2
, zn+ l2

2

)

, l3 = h g
(

xn+ h

2
, yn+ k2

2
, zn+ l2

2

)

k4 = h f (xn + h, yn + k3, zn + l3), l4 = h g(xn + h, yn + k3, zn + l3)

then

yn+1 = yn + 1

6
(k1 + 2k2 + 2k3 + k4)

zn+1 = zn + 1

6
(l1 + 2l2 + 2l3 + l4), n = 0, 1, 2, · · · (6.31)

284 6 Ordinary Differential Equations

2o. Adams–Bashforth–Moulton Predictor–Corrector. For the system (6.30), the
formulas (6.20) and (6.21) generalise into

y p
n+1 = yn + h

24
[55 fn − 59 fn−1 + 37 fn−2 − 9 fn−3]

z pn+1 = zn + h

24
[55gn − 59gn−1 + 37gn−2 − 9gn−3]

ycn+1 = yn + h

24
[9 f p

n+1 + 19 fn − 5 fn−1 + fn−2]

zcn+1 = zn + h

24
[9g p

n+1 + 19gn − 5gn−1 + gn−2], n = 0, 1, 2, · · · (6.32)

where fn and gn stand for f (xn, yn, zn) and g(xn, yn, zn), respectively. Similarly,
f p
n+1, g

p
n+1, respectively, stand for f (xn+1, y p

n+1, z
p
n+1) and g(xn+1, y p

n+1, z
p
n+1).

With some effort, schemes such as (6.31) and (6.32) can be coded for general-
purpose computation of a system of N ODEs. The subroutine RK4 listed below
implements 1o in the general case. It uses another subroutine named ‘derivatives’
which computes the components of f .

SUBROUTINE derivatives(n,x,y,f)
! n=number of equations. (Input)
! x= value of independent variable. (Input)
! y=value of n–vector dependent variable. (Input)
! f=right hand side n–vector function. (Output)
!**
REAL :: y(n), f(n)
f(1)=· · · · · · · · · · · · ! First function on the R.H.S.
f(2)=· · · · · · · · · · · · ! Second function on the R.H.S.
· ·
f(n)=· · · · · · · · · · · · ! nth function on the R.H.S.
RETURN
END SUBROUTINE derivatives
!***
SUBROUTINE RK4(n,x,h,y)
! n=Number of equations. (Input)
! x=Value of independent variable. (Input)
! It returns the value at the next grid point. (Output)
! h=Step length. (Input)
! y=Computed value of n–vector dependent variable
! at the next grid point. (Output)
!***
real :: y(n), f(n), k1(n), k2(n), k3(n), k4(n), yt(n)
CALL derivatives(n,x,y,f)

6.2 System of ODEs 285

DO i=1,n
k1(i)=h*f(i); yt(i)=y(i)+0.5*k1(i)
END DO
xh=x+0.5*h
CALL derivatives(n,xh,yt,f)
DO i=1,n
k2(i)=h*f(i); yt(i)=y(i)+0.5*k2(i)
END DO
CALL derivatives(n,xh,yt,f)
DO i=1,n
k3(i)=h*f(i); yt(i)=y(i)+k3(i)
END DO
x=x+h
CALL derivatives(n,x,yt,f)
DO i=1,n
k4(i)=h*f(i)
END DO
DO i=1,n
y(i)=y(i)+(k1(i)+2*k2(i)+2*k3(i)+k4(i))/6.0
END DO
RETURN
END SUBROUTINE RK4

Writing a subroutine for 2o is left to the reader.

Example 1. Solve Bessel’s equation of order zero:

xy′′ + y′ + xy = 0

for initial conditions y(0) = 1, y′(0) = 0, by Runge–Kutta fourth-order method and
calculate y(0.1) and y(0.2). Assume that y′(x)/x → −1/2 as x → 0.

Solution. The ODE is of second order. Inorder to convert it to a pair of first-order
ODEs, set z = y′. Thus, we have the differential equations

y′ = z =: f (x, y, z)

z′ = −y − z

x
=: g(x, y, z)

with initial conditions at x = 0, y = 1, z = 0.
For the point x = 0.1, by the formulas of subsection 1o, with x0 = 0,

y0 = 1, z0 = 0 (in the limit z0/x0 = −1/2),

286 6 Ordinary Differential Equations

k1 = h f (x0, y0, z0) = 0.1 × f (0, 1, 0) = 0

l1 = h g(x0, y0, z0) = 0.1 × g(0, 1, 0) = 0.1 × (−1 − 0.5) = −0.15

k2 = h f (x0 + h

2
, y0 + k1

2
, z0 + l1

2
) = 0.1 ×

(

− 0.15

2

)

= −7.5 × 10−3

l2 = h g(x0 + h

2
, y0 + k1

2
, z0 + l1

2
) = 0.1 ×

(

− 1 − −0.15/2

0.1/2

)

= 0.05

k3 = h f (x0 + h

2
, y0 + k2

2
, z0 + l2

2
) = 0.1 × 0.05

2
= 2.5 × 10−3

l3 = h g(x0 + h

2
, y0 + k2

2
, z0 + l2

2
) = 0.1 ×

[

−
(

1 + −7.5 × 10−3

2

)

− 0.05/2

0.1/2

]

= −0.149625

k4 = h f (x0 + h, y0 + k3, z0 + l3) = 0.1 × (−0.149625) = −1.49625 × 10−2

l4 = h g(x0 + h, y0 + k3, z0 + l3) = 0.1 ×
[

− (1 + 2.5 × 10−3) − −0.149625

0.1

]

= 4.93750 × 10−2

Hence,

y(0.1) = y0 + 1

6
(k1 + 2k2 + 2k3 + k)

= 1 + 1

6
(0 − 2 × 7.5 × 10−3 + 2 × 2.5 × 10−5 − 1.49625 × 10−2)

= 0.99584

and

y′(0.1) = z(0.1) = z0 + 1

6
(l1 + 2l2 + 2l3 + l4)

= 0 + 1

6
(−0.15 + 2 × 0.05 − 2 × 0.149625 + 4.93750 × 10−3)

= − 0.04998

For the next point x = 0.2, we have x1 = 0.1, y1 = 0.99584, z1 = −0.04995. As
before, we obtain

k1 = −4.99792 × 10−3, l1 = −4.96048 × 10−2

k2 = −7.47816 × 10−3, l2 = −4.94797 × 10−2

k3 = −7.47190 × 10−3, l3 = −4.93974 × 10−2

k4 = −9.93765 × 10−3, l4 = −4.91485 × 10−2

6.2 System of ODEs 287

and therefore

y(0.2) = 0.98837, y′(0.2) = z(0.2) = − 0.09940 �

Exercises

1. Solve the following systems of ODE by the fourth-order Runge–Kutta method:

(i)
dy

dx
= x − z,

dz

dx
= x + y, y(0) = 1, z(0) = 0

(i i)
dy

dx
= x − z,

dz

dx
= xy

z
, y(1) = 1

2
, z(1) = 1

(i i i)
dy

dx
= x + y + z,

dz

dx
= x2 + z2, y(0) = 1, z(0) = −1

to calculate y(0.1), z(0.1) and y(0.2), z(0.2).

[(i) y(0.1) = 0.99983, z(0.1) = 0.10500; y(0.2) = 0.99867, z(0.2) = 0.21993
(i i) y(1.1) = 0.37093, z(1.1) = 1.03628; y(1.2) = 0.41890, z(1.2) = 1.07914
(i i i) y(0.1) = 1.01003, z(0.1) = −0.90877; y(0.2) = 1.04049,
z(0.2) = −0.83088].
2. Calculate y(0.1), z(0.1), y(0.2), z(0.2) and y(0.3), z(0.3) for the ODE system
(you may use subroutine RK4)

dy

dx
= sin x − z + 1,

dz

dx
= cos x − y, y(0) = 1, z(0) = 2

[y(0.1) = 0.90483, z(0.1) = 2.04670; y(0.2) = 0.81873, z(0.2) = 2.01740;
y(0.3) = 0.74082, z(0.3) = 2.03634].
3. Use subroutine RK4 to compute y(x) for x ∈ [0, 0.5] in steps of 0.1:

(i) y′′ + xy′ + y = 0,

(i i) y′′ − xy′2 + y2 = 0,

for initial conditions y(0) = 1, y′ = 0.

[(i) y(0.1) = 0.99501, y(0.2) = 0.98020, y(0.3) = 0.95600, y(0.4) = 0.92312,
y(0.5) = 0.88250
(i i) y(0.1) = 0.99501, y(0.2) = 0.98015, y(0.3) = 0.95578, y(0.4) = 0.92256,
y(0.5) = 0.88140].
4. Consider a simple ecosystem consisting of deer and tigers. The deer have infinite
food supply, while tigers prey upon them. The mathematical model due to V. Volterra
is the classical predator–prey equation of the form

dr

dt
= 2r − α r f,

d f

dt
= − f + α r f

288 6 Ordinary Differential Equations

where r denotes deer and f the tigers. Initially, r(0) = r0, f (0) = f0. Investigate
the system for α = 0.01, r0 = 300 and f0 = 150 using subroutine RK4 and prove
that the system is periodic with time period that is approximately five units of time.

5. An inverted pendulum consists of a stiff bar of length l, which is supported at one
end by a frictionless pin. The support pin is given a rapid up-and-down motion by
an electric motor. A simple application of Newton’s second law of motion yields the
differential equation

d2θ

dt2
= 3

2l
(g − aω2 sinωt) sin θ

where θ is the deflection from the upward vertical and a, ω are, respectively, the
amplitude and circular frequency imparted to the pin. The interesting aspect of the
problem is that it is stable for certain values of a and ω corresponding to an inverted
configuration. Examine the equation for l = 10 in., a = 2 in., ω = 10 rad/s and

g = 386.09 in/s2, for initial conditions θ = 0.1,
dθ

dt
= 0 at t = 0. Use subroutine

RK4, 500 times with step length h = 0.1 for integration of the equation, and show
that the system is stable for these set of parameters.

6.2.1 Adaptive Step Size Runge–Kutta Methods

Because of stability of the single-step Runge–Kutta methods, one is inclined to apply
straight away the fourth-order method with a fixed small step size. In a multiple order
problem with complicated functions on the right-hand side, such a procedure may
prove unacceptably slow. This raises the question of using proper step size in order
to economise repeated function evaluation. There is no reason to keep it fixed and it
is more appropriate to vary it according to the nature of the solution function. In this
subsection, we consider the methodology of adaptive step size control, concluding
with an adaptive RK4 that uses the technique developed.

Consider the case of a single ODE in y, e.g. Eq. (6.3). If yn is the computed
solution of y(xn) at the point xn , a Runge–Kutta method of order p supplies the
solution yn+1 at a distance of step length h (at the point xn+1 = xn + h), and

yn+1 = yn + Cnh
p + O(h p+1)

whereCn is independent of h, but in general depends on the point xn and the function
f (x, y). Now, suppose the integration is carried out in two steps each of length h/2,
then we obtain another estimate of the solution y∗

n+1, and as before

y∗
n+1 = yn + Cn

(h

2

)p + O(h p+1)

6.2 System of ODEs 289

Subtracting the second solution from the first, we obtain

Cn

(h

2

)p ≈ yn+1 − y∗
n+1

2p − 1
=: δn (6.33)

The quantity |δn| provides us a computable error estimate in the second value y∗
n+1,

and it provides us a means of deciding on the next step length h̄.
Let ε be the absolute local error tolerance, then for step size h, the error is

δ1n := δnh = h Cn

(h

2

)p

For the next step of size h̄, we require that δ̄nh̄ complies with the tolerance ε h̄, i.e.
δ̄nh̄ ≤ εh̄, or

Cn

(
h̄

2

)p

≤ ε

or

δ1n

(
h̄

2

)p

≤ εh
(h

2

)p

or

h̄ ≤ h

(
εh

δ1n

)1/p

= h

(
ε

δn

)1/p

(6.34)

Thus, if the preceding step h is successfully computed, complying the error test, the
next step should preferably be slightly smaller than h (ε/δn)

1/p, say, φ h (ε/δn)
1/p,

where φ is a ‘safety factor’ usually taken as 0.9 or, in some case, 0.8. This of course is
true if the preceeding step is covered by bisection into two substeps. Thus, every step
of whatever appropriate size must be covered by two substeps. In the general case
of a system of first-order ODEs, δn is chosen from among the maximum difference
in the components y(i).

The major disadvantage of the above methodology of applying say the fourth-
order Runge–Kutta is eight function evaluation of f in covering the two halves of
h. This was considered to be too much of an effort on the part of the CPU in large
problems. Improvement in this direction was provided by E. Fehlberg in 1970 that
resulted in the development of subroutine called RKF45. The method requires six
function evaluations per step which provides an automatic error estimate and at the
same time produces better accuracy than standard fourth-order method. The price
paid is the complications of the formulas. In the following, we give a simple adaptive
RK4 subroutine for a system of N first-order equations, based on the technique pre-
sented in this subsection using Eqs. (6.33) and (6.34). p = 4 for RK4. The subroutine
is for single precision arithmetic.

290 6 Ordinary Differential Equations

SUBROUTINE ADAPTIVE_RK4(n,x,xlast,y)
! n = Number of equations. (Input)
! x = Value of independent variable. (Input)
! xlast = Last value of x up to which the solution is required. (Input)
! y = Computed value of n-vector dependent variable at adaptively
! determined grid points. (Output)
!**
REAL :: y(n), ystar(n)
IF(x>xlast) THEN ! Initial x must be less than xlast
PRINT*, ’Initial x must be less than xlast’; RETURN
END IF
PRINT*, x, y(1), y(2) ! , y(3), y(4),· · · · · · y(n) and unlock the comment

! if n > 2
h=0.1 ! Take small first step
10 DO i=1,n
ystar(i)=y(i)
END DO
CALL RK4(n,x,h,y)
PRINT*, x, y(1), y(2) ! , y(3), y(4),· · · · · · , y(n) and unlock the comment

! if n > 2
CALL RK4(n,x,0.5*h,ystar)
CALL RK4(n,x+0.5*h,0.5*h,ystar)
x=x-0.5*h
deltan=0.0
deltan=MAX(deltan, ABS(y(i)-ystar(i)))
END DO
deltan=deltan/15.0; epsilon=0.000001 ! p = 4 for RK4
phi=0.9 ! phi is a “Safety Factor”
h=phi*h*(epsilon/delta)**0.25
! h=0.1 Unlocking this statement will yield RK4 solution with h=0.1
IF(x>xlast) RETURN
GOTO 10
END SUBROUTINE ADAPTIVE_RK4
!**
! Append SUBROUTINE RK4
! Append SUBROUTINE derivatives

In applying such subroutine, it must be kept in view that although effort is made
to reduce the truncation error, it does not automatically guaranty greater accuracy in
all cases.

Example 1. Solve Tchebyschev differential equation of order 2:

(1 − x2) y′ − x y′ + 4 y = 0

6.2 System of ODEs 291

with initial conditions y(0) = −1, y′(0) = 0 in the approximate range 0 (0.1) 0.9 by
using ADAPTIVE_RK4. Compare with the exact solution y = 2 x2 − 1.

Solution. Setting y1 := y, the second-order equation is equivalent to the pair

y′
1 = y2
y′
2 = (x y2 − 4 y1)/(1 − x2)

subject to initial conditions y1(0) = −1, y2(0) = 0.

x y (computed) y (exact)
0 −1.0 −1.0
0.1 −0.98000 −0.98000

0.20085 −0.91935 −0.91931
0.30018 −0.81979 −0.91978
0.40039 −0.67937 −0.67937
0.50066 −0.49869 −0.49869
0.60005 −0.27990 −0.27989
0.70064 −0.01820 −0.01820
0.80031 0.28097 0.28098
0.90018 0.62063 0.62064

The two solutions clearly agree to four decimal places. �

Exercises

Apply subroutine ADAPTIVE_RK4 to solve the following IVP’s:

1. y′′ + y = 0; y(0) = 0, y′(0) = 1 in the range [0, 2π].
Compare with the exact solution y = sin x .

2. Solve Bessel’s equation of order 0:

x y′′ + y′ + x y = 0; y(0) = 1, y′(0) = 0

in the range [0, 1.5] assuming that y′(x)/x → −1/2 as x → 0. What is the value of
y near x = 1?
[y(1.00235) = 0.76416].

3. The non-dimensional hodograph equation of a projectile in a resisting medium is

du

dx
= −u − sinψ/u,

dψ

dx
= − cosψ/u2

where u = velocity, ψ = inclination of the path to the horizon, and x = arc length
traversed. Initially, u = 1, ψ = π/4 at x = 0. Compute u and ψ when x = 10. At
what value of x , the projectile reaches the highest point?
[u = 0.1, ψ = −1.57077. Highest point at x = 0.371].

292 6 Ordinary Differential Equations

4. The function y = sin2 x satisfies two forms of ODE’s:

(a) y′′ + 4y − 2 = 0 and (b) 2yy′′ − y′2 + 4y2 = 0

Given y(0) = 0, y′(0) = 0, solve (a) and (b) in [0, 2π], taking y′2/y → 4 as x → 0.
Which of the two forms (a) or (b) would you choose for applying the subroutine
ADAPTIVE_RK4?

[(a) For greater accuracy, Form (b) leads to a singular right-hand side for the pair of
first-order ODE’s, leading to loss of accuracy].

6.3 Stiff Differential Equations

As soon as one deals with more than one first-order differential equation, the possi-
bility of a stiff set of equations arises. Stiffness occurs in a problem whenever there
are two or more widely differing scales of the independent variable on which the
dependent variable changes.

For understanding the phenomenon first consider the example

y′′ − 9y′ − 10y = 0, y(0) = 1, y′(0) = −1 (6.35)

The general solution of the ODE is

y = C1 e
−x + C2 e

10x (6.36)

and the exact solution satisfying the initial conditions is y = e−x . Now the numerical
solution of (6.35) by any of the methods described so far would start off decaying as
e−x , but would ‘explode’ like e10x as x becomes large. The reason is that truncation
and round-off errors of the method used would cause, no matter how small the step
length h is, the computation to follow the general solution (6.36) viz.

y comp ≈ e−x + ε e10x

so that as x increases the second term explodes.
A slightly better situation is exemplified by the equation

y′′ + 1001 y′ + 1000 y = 0, y(0) = 1, y′(0) = −1 (6.37)

whose general solution is

y = C1 e
−x + C2 e

−1000x (6.38)

6.3 Stiff Differential Equations 293

whereas the exact solution is y = e−x . Due to the presence of the component e−1000x

in (6.38), one would naturally take h << 1/1000 in a numerical method. Stability
requirement of the RK4 method is that 1000h < 2.8 (see the text by Gear). Hence,
RK4would be successful only if h < 0.0028, otherwise the numerical solutionwould
explode. Such small step lengths are unreasonable for computing a function like e−x

! This is the generic disease of stiff equations: we are required to follow the variation
in the solution on the shortest length scale to maintain stability of integration, even
though requirement of the computed function allows a much larger step size h.

As a sort of remedy, suppose we have a general linear N–equation system

y′ = −C y (6.39)

where C is a constant positive definite matrix. Here, f(x, y) = −C y and Euler’s
method for the equation yields

yn+1 = yn − h C yn = (I − h C) yn (6.40)

Iteration of the explicit scheme (6.40) will converge if the largest eigenvalue of the
matrix I − h C is less than 1 or, h < 2/λ max, λ max being the largest eigenvalue , which
is a large number for stiff equations.

Let the Euler method be modified to the form

yn+1 = yn + h f(xn+1, yn+1) (6.41)

This process is called implicit differencing against explicit differencing in Euler’s
method. Setting f(x, yn+1) = −C yn+1 and transposing, we get

yn+1 = (I + h C)−1yn

If the eigenvalues of the matrix C are λ ≥ 0, then the eigenvalues of (I + h C)−1 are
(1 + hλ)−1, that are ≤ 1 for all h > 0. Thus, the method is stable for all step size h.
The penalty we pay is the numerical inversion of I + h C at each step.

The above trick can be generalised for a general non-linear N–system

y′ = f(x, y) (6.42)

Its implicit differencing of Euler type is given inEq. (6.41). The equation is non-linear
but it can be approximately linearised by Taylor’s theorem in the form

yn+1 = yn + h

[

f(xn+1, yn) + ∂f
∂y

∣
∣
∣
∣
yn

(yn+1 − yn)
]

(6.42a)

where ∂f/∂y is the matrix of the partial derivatives of f . Equation (6.42a) leads to
the iteration

294 6 Ordinary Differential Equations

yn+1 =
(

I − h
∂f
∂y

∣
∣
∣
∣
yn

)−1[(

I − h
∂f
∂y

∣
∣
∣
∣
yn

)

yn + h f(xn+1, yn)
]

(6.43)

The method (6.43) is not guaranteed to be stable, and is called semi-implicit. It
however often stabilises as in the case of Eq. (6.39), because of similar nature.

Euler’s method, we know is a slow method. An improved method is the implicit
trapezoidal, viz.

yn+1 = yn + h

2
[f(xn, yn) + f(xn+1, yn+1)]

≈ yn + h

2

[

f(xn, yn) + f(xn+1, yn) + ∂f
∂y

∣
∣
∣
∣
yn

(yn+1 − yn)
]

or,

yn+1 =
(

I − h

2

∂f
∂y

∣
∣
∣
∣
yn

)−1[(

I − h

2

∂f
∂y

∣
∣
∣
∣
yn

)

yn + h

2

{

f(xn yn) + f(xn+1, yn)
}]

(6.44)
It is quite complicated to design higher order implicit methods,especially with a

good scheme for automatic step size adjustment. Higher order methods analogous to
Runge–Kutta and predictor–corrector methods have been developed andGear’s book
gives well-tested routine. For more details see also the text of Stoer and Bulirsch.

6.4 Boundary Value Problems

In the preceding section, we studied the initial value problem of solving ODEs, in
which all the initial conditions are prescribed at a single point x0. In the present
section, we consider cases when some of the conditions are prescribed at a second
point x1. For instance, in the case of a second-order ODE in y, or a pair of first-order
ODEs in y1, y2, the initial conditions y1(x0) = y10, y2(x0) = y20 be replaced by
y1(x0) = y10, y2(x1) = y21. Supposing x1 > x0, we seek the solution in the interval
[x0, x1] and the problem thus becomes a Boundary Value Problem (BVP) as the
conditions are prescribed at the boundary points x0 and x1.

The solution of BVPs in general is a more difficult problem as it requires some
guesswork and improving the guess in order to obtain reasonably accurate result.
In the case of highly non-linear equations, there may even be difficulty in obtaining
necessary convergence.

There are essentially three different kinds of method for solving the boundary
value problems. These are variously described as shooting methods, finite differ-
ence methods and collocation methods. We proceed to treat these methods in the
following subsections. For fuller treatment of the methods, see the texts of Conte and
de Boor, Press et al., and Kantorovich and Krylov mentioned in the Bibliography.

6.4 Boundary Value Problems 295

6.4.1 Shooting Methods

Let the boundary value problem over the interval [x0, x1], be such that only one
condition is prescribed at x1, the rest being given at the initial point x0. To understand
the procedure, let there be a a second-order ODE, or a pair of first-order ODEs

dy1
dx

= f1(x, y1, y2),
dy2
dx

= f2(x, y1, y2), x ∈ [x0, x1] (6.45)

with boundary conditions

y1(x0) = y10, y2(x1) = y21

Here, y2(x0) is unknown. If y2(x0) were known, we would have numerically
solved the initial value problem as in Sect. 6.2. Suppose we can guess y2(x0) on any
consideration such as a physical reason. Let two guesses α0, α1 be made about the
value of y2(x0), then a third guess by linear interpolation is

α2 := α0 + (α1 − α0)
y21 − y2(x1;α0)

y2(x1,α1) − y2(x1,α0)
(6.46)

where y2(x1;α0) and y2(x1;α1), respectively, stand for the soution of (6.45) with
initial conditions y1(x0) = y10, y2(x0) = α0 or y2(x0) = α1. The procedure can be
repeated withα1, α2 to generateα3 as in the case of (6.46) and so on till convergence
is attained, i.e. y2(x1;αn) → y21. We thus obtain the following algorithm:

1. Guess two approximations α0 and α1 of y′
1(x0).

2. Solve the IVP y′
1 = f1(x, y1, y2), y′

2 = f2(x, y1, y2) with y1(x0) = y10,
y2(x0) = α0 from x0 to x1 using a suitable method. Call the solution y2(x1;α0).
3. Solve the IVP for initial conditions y1(x0) = y10, y2(x0) = α1 from x0 to x1 and
call the solution y2(x1;α1).

4. Compute: α2 ← α0 + (α1 − α0)
y21 − y2(x1;α0)

y2(x1;α1) − y2(x1;α0)
.

5. If |α2 − α0| < ε, Stop (The value of y2(x0) is α0).
6. Set α0 ← α1, α1 ← α2, Go to step 2.

The algorithmyields the initial value y2(x0) and the initial value problemofEq. (6.45)
can now be solved for initial conditions y1(x0) = y10, y2(x0) = y20 (the computed
value of αk).

It should be borne in mind that convergence is not guaranteed in the method and
necessary precaution must be taken in the use of the above algorithm.

Clearly, the method can be generalised to a system of N first-order ODEs when
N − 1 initial conditions are prescribed at x0 and one condition at x1.

The generalisation of the method to the case of two or more conditions given at
the end point x1 is complicated and convergence even more difficult to attain. Press
et al. (see Bibliography) have given some subroutines for the general case.

296 6 Ordinary Differential Equations

The next example illustrates the simpler case of a pair of first-order ODEs only.

Example 1. Let the ODE be

y′′ + y = 0, y(0) = 0, y(1) = 1

Compute y′(0) by the shooting method.

Solution. The given ODE is equivalent to the pair

y′ = z, z′ = −y, y(0) = 0, y(1) = 1

To reduce the problem to an IVP, we require the value of y′(0) = z(0) = α (say).
Adopting the algorithmgiven in the foregoing, let two initial guesses ofα beα0 = 0.5
andα1 = 1. The algorithm leads to the following Fortran program, taking step length
h = 0.1 for the subroutine RK4.

REAL :: y(2)
! Append subroutines RK4 and DERIVATIVES to this program
h=.1; x=0.; y(1)=0.; a0=.5; y(2)=a0
DO i=1,10
CALL RK4(2,x,h,y)
END DO
PRINT*, x, a0, y(1)
y1a0=y(1)
x=0.; y(1)=0.; a1=1.; y(2)=a1
DO i=1,10
CALL l RK4(2,x,h,y)
END DO
PRINT*, x, a1, y(1)
y1a1=y(1)
DO k=1,10
a2=a0+(a1−a0)*(1.−y1a0)/(y1a1−y1a0)
IF(ABS(a2−a0)<1.e−6) STOP
x=0.; y(1)=0.; y(2)=a2
DO i=1,10
CALL RK4(2,x,h,y)
END DO
PRINT*, x, a2, y(1)
a0=a1; a1=a2; y1a0=y1a1; y1a1=y(1)
END DO
END

Appending subroutines RK4 and DERIVATIVES to the above program, the exe-
cuted result is

6.4 Boundary Value Problems 297

k αk y(1;αk)

0 0.5 0.4207352
1 1.0 0.8414705
2 1.188396 1.0
3 1.188396 1.0

The algorithm quickly converges to the value y′(0) = z(0) = α3 = 1.188396. With
this value of z(0), RK4 can be used to compute y(x) and z(x) for 0 ≤ x ≤ 1 as a
usual IVP. �

Exercises

1. Given the BVP

y′′ + 0.1 y′ + y = 0, y(0) = 0, y(1) = 1

Compute y′(0) by the shooting method.

[1.24877].

2. Solve the equation

x2y′′ − 2y + x = 0, with y(2) = y(3) = 0

to compute y′(2).

[0.21053. Exact solution y(x) = (19x2 − 5x3 − 36)/38x].

3. For the BVP

2yy′′ − y′2 + 4y2 = 0, y(0) = 0, y
(π

2

)

= 1

Compute y′(0).

[0. Exact solution y = sin2 x].

4. The equation for the common catenary is governed by the BVP

yy′′ + 1 + y′2 = 0, y(0) = 1, y(1) = 2

Compute y′(0), taking h = 0.1. Is the result accurate enough? If not obtain it more
accurately.

[2.00033. No. 2.0]

298 6 Ordinary Differential Equations

6.4.2 Finite Difference Methods

In a boundary value problemoneormoreODEs are required to be solved in an interval
[a, b], with conditions specified at the boundary points a and b. We exclusively
treat the case of one equation, but the methods can be generalised to the case of
two or more equations. In finite difference methods, [a, b] is divided into a grid or
mesh by equally spaced points a = x0 < x1 < · · · < xN = b where xn = x0 + nh,
(n = 1, 2, · · · , N − 1) are the interior mesh points. The mesh is usually fine, i.e.
h is small or N is large. The derivatives occurring in the ODE are next replaced by
some finite difference formula, as described in Chap. 5, Sect. 5.1. Central difference
quotient formulas are usually preferred on account of their greater accuracy. If y(xn)
is simply denoted by yn , the central difference quotient formulas for the first, second
and the fourth derivatives are, respectively,

y′(xn) ≈ yn+1 − yn−1

2h
y′′(xn) ≈ yn+1 − 2yn + yn−1

h2

y(iv)(xn) ≈ yn+2 − 4yn+1 + 6yn − 4yn−1 + yn−2

h2

the error in each case being O(h2). Plugging the finite difference expansions for the
derivatives in the ODE, one obtains a finite difference equation of certain order. It
remains to solve the difference equation satisfying the boundary conditions in an
appropriate manner. If the ODE is linear, the difference equation will also be linear
and comparatively easier to treat. We illustrate the further procedure by treating a
second-order linear ODE

y′′(x) + f (x) y′(x) + g(x) y(x) = r(x) (6.47)

in [a, b], subject to boundary conditions y(a) = α, y(b) = β. Substituting the finite
difference quotients of the derivatives in (6.47), we obtain the equation

yn−1 − 2yn + yn+1

h2
+ f (xn)

yn+1 − yn−1

2h
+ g(xn) yn = r(xn)

Setting fn = f (xn), gn := (xn), rn := r(xn), the above equation reduces to the dif-
ference equation

(

1 − h

2
fn

)

yn−1 + (−2 + h2gn) yn +
(

1 + h

2
fn

)

yn+1 = h2rn, n = 1, 2, · · · , N − 1

(6.48)

Equation (6.48) is evidently a tridiagonal system. In fact, setting n = 1, 2, · · · ,

N − 1 and noting that y0 = α and yN = β, we have the equations

6.4 Boundary Value Problems 299

(−2 + h2g1) y1 +
(

1 + h

2
f1

)

y2 = h2r1 −
(

1 − h

2
f1

)

α

(

1 − h

2
f2

)

y1 + (−2 + h2g2) y2 +
(

1 + h

2
f2

)

y3 = h2r2

· (6.49)
(

1 − h

2
fN−2

)

yN−3 + (−2 + h2gN−2) yN−2 +
(

1 + h

2
fN−2

)

yN−1 = h2rN−2

(

1 − h

2
fN−1

)

yN−2 + (−2 + h2gN−1) yN−1 = h2rN−1 −
(

1 + h

2
fN−1

)

β

Evidently, Eq. (6.49) is tridiagonal in N − 1 unknowns y1, y2, · · · , yN−1 and can
be solved numerically by the methods of Sect. 1.1, Chap.3. If the mesh is fine, we
obtain discrete values of the solution y(x) at sufficiently nearby points.

Boundary conditions can sometimes be more complicated then we have assumed
in the foregoing. Let the condition at x = a = x0 be

y′(x0) + γ y(x0) = α (6.50)

If y′(x0) is replaced by the finite difference quotient (y1 − y0)/h. Equation (6.50)
reduces to

y1 + (−1 + γh) y0 = αh

This equation yields y0 = (y1 − αh)/(1 − γh). The first equation of the set (6.49)
for n = 1 thus becomes

(

− 2 + h2g1 + 1 − h
2 f1

1 − γh

)

y1 +
(

1 + h

2
f1

)

y2 = h2r1 + αh(1 − h
2 f1)

1 − γh
(6.51)

The first equation of the tridiagonal system (6.49) must now be replaced by Eq.
(6.51), the other equations of the set remaining unchanged.

The accuracy in the above differencing of (6.50) is however O(h). We can make
it O(h2) by considering the central difference quotient of y′(x0) viz. [y(x0 + h) −
y(x0 − h)]/(2h) or (y1 − y−1)/(2h) where y−1 := y(x0 − h). Equation (6.50) then
yields

y1 − y−1 + 2hγ y0 = 2hα

or
y−1 = y1 + 2hγ y0 − 2hα (6.52)

There is now an extra unknown y0. To take it in to account the system (6.48) is
extended to n = 0, i.e.

(

1 − h

2
f0

)

y−1 + (−2 + h2g0) y0 +
(

1 + h

2
f0

)

y1 = h2r0

300 6 Ordinary Differential Equations

Now, replacing y−1 by using Eq. (6.52), we get

[

2hγ

(

1 − h

2
f0

)

+ (−2 + h2g0)

]

y0 + 2y1 = h2r0 + 2hα

(

1 − h

2
f0

)

, n = 0

Moreover, in this process for n = 1, we obtain in (6.48)

(

1 − h

2
f1

)

y0 + (−2 + h2g1) y1 +
(

1 + h

2
f1

)

y2 = hr1, n = 1

The remaining equations for completion of the system will be the same as the last
N − 2 equations of (6.49).

The accuracy of finite differencemethods depends on the order of finite difference
approximation of the derivatives and the fineness of themesh.Higher order difference
schemes are preferable unless the system becomes cumbersome to handle. On the
other hand, computation with grid sizes h and h/2 is preferable for comparison of
computed value of y(xn) at the grid points. Moreover, Richardson extrapolation can
be resorted to for better approximation. Let yh(xn) denote the computed value at the
mesh point xn , where h = (b − a)/N , n = 1, 2, · · · , N − 1. Let yh/2(xn) denote
the computed value at the same point xn , with h/2 mesh size, then

y(xn) ≈ 4yh/2(xn) − yh(xn)

3

will usually yield significant improvement in the approximation.
Experience with finite difference methods is that they provide satisfactory numer-

ical results. This is so because of convergence and stability of the methods (see
Volkov’s text cited in the Bibliography).

Example 1. Solve the BVP

y′′ − xy = 0, y(0) + y′(0) = 1, y(1) = 1

dividing the interval [0, 1] into a mesh of three subdivisions by the points 0, 1/3,
2/3, 1.

Solution. The finite difference equivalent of the given ODE is

yn−1 − 2yn + yn+1

h2
− xn yn = 0

Since h = 1/3, we get

yn−1 −
(

2 + xn
9

)

yn + yn+1 = 0

6.4 Boundary Value Problems 301

Setting n = 0, 1, 2, we obtain the system (x0 = 0, x1 = 1
3 , x2 = 2

3)

y−1 − 2y0 + y1 = 0

y0 − 55

27
y1 + y2 = 0

y1 − 56

27
y2 + y3 = 0

From the first boundary condition, we obtain

y0 + y1 − y−1

2h
= 1

With h = 1/3, the above equation yields

y−1 = 1

3
(2y0 + 3y1 − 2)

The second boundary condition evidently yields y3 = 1. Hence, the system of equa-
tions reduces to

−2y0 + 3y1 = 1

y0 − 55

27
y1 + y2 = 0

y1 − 56

27
y2 = −1

Solving the equations, we get

y0 = y(0) = −82

83
= −0.9880

y1 = y
(
1
3

)

= −27

83
= −0.3253

y2 = y
(
2
3

)

= 27

83
= 0.3253 �

Exercises

1. Solve the BVP
y′′ + y = 0, y(0) = 0, y(1) = 1

taking h = 1/4.

302 6 Ordinary Differential Equations

[y1 = 0.2943, y2 = 0.5702, y3 = 0.8104].

2. Solve the ODE

(1 + x2) y′′ − y = 1, with y′(0) = 0, y(1) = 0

taking h = 1/3.

[y0 = −0.3204, y1 = −0.2826, y2 = −0.1731].

3. Solve the ODE

y′′ = xy + 1, subject to y(0) + y′(0) = 1, y(1) = 1

taking h = 1/4.

[y0 = −19.8523, y1 = −14.6080, y2 = −9.5294, y3 = −4.6861].

6.4.3 Collocation, Least Squares and Galerkin Methods

Long before the appearance of computers, approximatemethods of solving boundary
value problems of ODEs (and PDEs) were developed for problems arising in engi-
neering. Beginning with simple ideas, the methods have been turned into powerful
computational tools called finite element methods that have become fundamental to
engineering analysis and design. In this subsection, we describe the basic ideas by
considering a second-order linear ODE in [a, b] viz.

L y = y′′ + f (x) y′ + g(x) y = r(x) (6.53)

with boundary conditions
a0 y(a) + a1 y′(a) = α
b0 y(b) + b1 y′(b) = β

(6.54)

where f, g, r ∈ C[a, b], a0, · · · , b1, α, β are constants such that a20 + b20 > 0. In
general, the system may or may not have a unique solution, unlike the Cauchy prob-
lem. But it can be proved that a necessary and sufficient condition for the existence of
a unique solution is that the corresponding homogeneous equation (with r(x) ≡ 0)
has only the trivial solution y(x) ≡ 0. Such a test is hard to apply and we assume
that Eqs. (6.53) and (6.54) do have a unique solution, which is to be approximated.

6.4 Boundary Value Problems 303

Let φ0, φ1, φ2, · · · , φN be a set of linearly independent basis functions ∈
C2[a, b], where only φ0 satisfies the inhomogeneous boundary conditions (6.54)
(i.e.α, β �= 0)whileφ1, φ2, · · · , φN satisfy corresponding homogeneous boundary
conditions (withα, β set equal to zero). These functions are usually selected as poly-
nomials of low degree or some simple trigonometric polynomials. An approximate
solution of (6.53) is then sought as the linear combination

yN (x) = φ0(x) + c1 φ1(x) + · · · + cN φN (x) (6.55)

yN (x) exactly satisfies the boundary conditions (6.54), but not (6.53). So, we con-
struct the discrepancy or the residual defined by

ψ(x; c1, · · · , cN) = L yN (x) − r(x) = L φ0(x) − r(x) +
N

∑

k=1

ck L φk(x) (6.56)

The residualψ equals the difference between the left-hand and the right-hand sides of
(6.53)when in the left-hand side y is replaced by the approximation yN (x). Evidently,
ψ depends linearly on the parameters c1, c2, · · · , cN .

For accuracy of the approximation, c1, c2, · · · , cN must be so determined that ψ
is minimum over the interval [a, b] in some sense. This approach gives rise to the
methods of collocation, least squares and the method of weighted residuals due to
B. G. Galerkin.

Boris Grigerievich Galerkin (1871–1945) was born in Belarus but was a Professor at St.

Petersberg State Polytechnical University, Russia, in the structural mechanics and theory of elas-

ticity department. After graduating from the same institute, he became a member of the Social–

democratic party in 1905. He was jailed for more than a year in 1907, but prison conditions gave

him an opportunity of studying science and engineering and lost interest in revolutionary activity.

After release from jail in 1908, he became a teacher in the same institute and worked on structural

mechanics and elasticity. He gave the method which bears his name in the year 1915 and later

applied the method to a large number of problems. He became a Professor in the university in the

year 1919.

1o. Collocation Method. Let x1, x2, · · · , xN be chosen at will in [a, b] and let the
residual be set equal to zero at these points. Then, we obtain the system of equations

ψ(xi ; c1, c2, · · · , cN) ≡
N

∑

k=1

ck Lφk(xi) + Lφ0(xi) − r(xi) = 0, (i = 1, 2, · · · , N)

(6.57)
The system of equations (6.57) is linear in c1, c2, · · · , cN and can easily be solved.
This yields the approximation yN by collocation; the points x1, x2, · · · , xN being
called the collocation points.

The method is illustrated in the following example.

304 6 Ordinary Differential Equations

Example 1. Solve by collocation method the BVP

y′′ + y = 0, 0 ≤ x ≤ 1
y(0) = 0, y(1) = 1

using three functions.

Solution. Theboundary conditions are inhomogeneous and sowe takeφ0(x) = x that
satisfies the boundary conditions and φ1(x) = x(1 − x), φ2(x) = x2(1 − x). The
latter two functions satisfy homogeneous boundary conditions. Hence, we consider
the approximation

y2(x) = x + c1 x(1 − x) + c2 x
2(1 − x)

Therefore,

y′′
2 (x) + y2(x) = −2c1 + c2(2 − 6x) + x + c1x(1 − x) + c2x2(1 − x)

= x + c1[−2 + x(1 − x)] + c2[2 − 6x + x2(1 − x)]

For hopefully good approximation, we choose equally spaced points x1 = 1/3, x2 =
2/3. For these points, the above expression should vanish in the collocation method.
This consideration leads to the equations

48 c1 − 2 c2 = 9 and 24 c1 + 25 c2 = 9

the solution of which is c1 = 81/416, c2 = 9/52. Thus, we obtain

y2(x) = 1.19471 x − 0.02163 x2 − 0.17308 x3

The exact solution of the problem is y(x) = sin x/ sin 1. The comparative values of
y(x) and y2(x) are tabulated below:

x y y2
0.1 0.1186 0.1156
0.25 0.2940 0.2946
0.50 0.5698 0.5703
0.75 0.8101 0.8766
1 1 1

The values of y(x) and y2(x) are remarkably matched. For greater accuracy, more
collocation basis functions like φi (x) = xi (1 − x) should be included. �

6.4 Boundary Value Problems 305

2o. Least Squares Method. In this method, the overall residual over the whole
interval [a, b] is minimised in the sense of least square. This means that

I =
∫ b

a
ψ2(x; c1, c2, · · · , cN) dx

is sought to be minimum for certain values of ci (i = 1, 2, · · · , N), so that from
Eq. (6.56)

∂ I

∂ci
= 2

∫ b

a
[Lφ0(x) − r(x) +

N
∑

k=1

ck Lφk(x)] Lφi (x) dx = 0, i = 1, 2, · · · , N

yielding the normal equations for the determination of ci as

N
∑

k=1

ck

∫ b

a
Lφk(x) Lφi (x) dx =

∫ b

a
[r(x) − Lφ0(x)] Lφi (x) dx, i = 1, 2, · · · , N

If the set of functions Lφ1, · · · , LφN are linearly independent on the interval, the
normal equations have a unique solution.

Example 2. Solve the problem of Example 1 by the least squares method.

Solution. Here, we have to minimise the integral

I =
∫ 1

0
[x + c1 (−2 + x(1 − x)) + c2 (2 − 6x + x2(1 − x))]2 dx

Therefore,

∂ I

∂c1
= 2

∫ 1

0
[x + c1(−2 + x(1 − x)) + c2(2 − 6x + x2(1 − x))] × (−2 + x(1 − x)) dx = 0

∂ I

∂c2
= 2

∫ 1

0
[x + c1(−2 + x(1 − x)) + c2(2 − 6x + x2(1 − x))] × (2 − 6x + x2(1 − x)) dx = 0

Evaluating the integrals, we obtain the normal equations as

2c1 + c2 = 55

101
,

101

12
c1 + 131

7
c2 = 19

4

whose solution is c1 = 0.18754 and c2 = 0.16947. So, the approximation of y(x) is

y2(x) = 1.18754 x − 0.01807 x2 − 0.16947 x3

306 6 Ordinary Differential Equations

The following table gives a comparison of the computed values of y(x) =
sin x/ sin 1 and y2(x):

x y y2
0.1 0.1186 0.1184
0.25 0.2940 0.2931
0.50 0.5698 0.5683
0.75 0.8101 0.8090
1 1 1

The two solutions clearly agree to two decimal places. �
The popular Raylrigh–Ritz finite element method for elliptic partial differential

equations closely follows this method.

3o. Galerkin Method. This method is based on the requirement that the basis func-
tions φ1, φ2, · · · , φN be orthogonal to (6.56), that is,

∫ b

a
φi (x)ψ(x; c1, c2, · · · , cN) dx = 0, i = 1, 2, · · · , N

This requirement leads to the following system of linear algebraic equations for the
coefficients c1, c2, · · · , cN :

N
∑

k=1

ck

∫ b

a
φi (x) Lφk(x) dx =

∫ b

a
φi (x) [r(x) − Lφ0(x)] dx (6.58)

Solving the linear system (6.58), we obtain the approximate solution in the form
(6.55).

The method is also called theMethod of Weighted Residuals.

Example 3. Solve the boundary value problem

y′′ + y = −x, 0 ≤ x ≤ 1, y(0) = 0, y(1) = 0

by the Galerkin method.

Solution. Since the boundary conditions are homogeneous we choose

φ0(x) = 0, φi (x) = xi (1 − x), i = 1, 2, · · ·

Let N = 1. Then, the approximation is y1(x) = c1 φ1(x) = c1 x(1 − x) and

y′′
1 (x) + y1(x) + x = c1 (−2 + x(1 − x)) + x

6.4 Boundary Value Problems 307

By Galerkin method, the above expression is orthogonal with respect to φ1(x) or

∫ 1

0
x(1 − x) [c1 (−2 + x(1 − x)) + x] dx = 0

or

c1

∫ 1

0
x(1 − x)(−2 + x(1 − x)) dx = −

∫ 1

0
x2(1 − x) dx

Evaluating the integrals, we obtain c1 = 5/18 so that

y1(x) = 5

18
x(1 − x)

Let N = 2. Then, the approximation is y2(x) = c1 φ1(x) + c2 φ2(x) = c1 x(1 −
x) + c2 x2(1 − x). This yields

y′′
2 (x) + y2(x) + x = c1 (−2 + x(1 − x)) + c2 (2 − 6x + x2(1 − x)) + x

The orthogonality relations by Galerkin method yield

c1

∫ 1

0
x(1 − x)(−2 + x(1 − x)) dx + c2

∫ 1

0
x(1 − x)(2 − 6x + x2(1 − x)) dx = −

∫ 1

0
x2(1 − x) dx

c1

∫ 1

0
x2(1 − x)(−2 + x(1 − x)) dx + c2

∫ 1

0
x2(1 − x)(2 − 6x + x2(1 − x)) dx = −

∫ 1

0
x3(1 − x) dx

Evaluating the integrals, the equations become

3

10
c1 + 3

20
c2 = 1

12
,

3

20
c1 + 13

105
c2 = 1

20

whose solution is c1 = 71/369 and c2 = 7/41. Thus, the sought approximation is

y2(x) = x(1 − x)

(
71

369
+ 7

41
x

)

The exact solution is y(x) = sin x/ sin 1 − x . Comparison data for the solutions is
given below:

x y y1 y2
0.25 0.0440 0.0521 0.0441
0.50 0.0697 0.0694 0.0694
0.75 0.0601 0.0521 0.0601

The accuracy of y2(x) is noteworthy.

308 6 Ordinary Differential Equations

Exercises

1. Solve by collocation method the BVP

y′′ − y = x, y(0) = 0, y(1) = 1

using three functions. Compare with the exact solution y(x) = sinh x

sinh 1
− x

[y2(x) = x + c1 x(1 − x) + c2 x2(1 − x). Collocating at x = 1/3 and 2/3, c1 =
−279/840, c2 = 27/28].

2. Solve by collocation

y′′ + (1 + x2) y = −1, y(−1) = 0 = y(1)

using approximation of the form y2(x) = c1 (1 − x2) + c2 x2(1 − x2).

[Collocating at x = 0, ±1/2, y2(x) = 0.957(1 − x2) − 0.022 x2(1 − x2)].

3. Solve Exercise 2 by least square method.

[y2(x) = 0.985 (1 − x2) − 0.078 x2(1 − x2)].

4. Solve Exercise 1 by Galerkin’s method of weighted residuals.

[c1 = −1062/473, c2 = 18634/5203].

5. Integrate Bessel’s equation of order 1

x2y′′ + xy′ + (x2 − 1) y = 0, y(1) = 1, y(2) = 2

using approximation y1(x) = x + c1(x − 1)(2 − x). Estimate c1 using the least
square and Galerkin methods.

[c1 = 0.28 by least square and c1 = 1.49 by Galerkin method].

Chapter 7
Partial Differential Equations

Partial Differential Equations or PDEs are often encountered in science and engi-
neering. Such equations arise when a quantity of interest say u, is governed by a
continuous differential law in more than one independent variable. Generally speak-
ing a PDE is accompanied by additional equations that hold on the boundary of
the region defined by the independent variables. PDE solution in practice therefore
becomes a boundary value problem (BVP), in which time t may also be present when
the problem is time dependent.

PDEs may be linear or non-linear. When they are linear, several analytical tech-
niques have been developed in the literature for their solution. Even then, if the
boundary of the region is not regular, it may become impossible to construct an ana-
lytical solution of a linear PDE. In such cases, numerical solution methods remain
the only available tool for obtaining a numerical solution. In the case of non-linear
PDEs, the scenario is quite different and requires special numerical tools for each
generic case. Due to variety of applications, a vast literature exists on the subject
of PDEs. The present chapter being an expository one, the focus is on some simple
linear equations of mathematical physics in just two independent variables.

Just as the finite difference methods are very successful in the numerical solution
of ODEs, these methods are equally prominent for PDEs. However, constructing
a good stable and convergent scheme for a PDE is a nontrivial task and often the
physical process being described by the differential equation has to be borne in mind.
Finite differencing of linear PDEs leads to linear difference equations, and it will be
seen in this chapter that such equations can quite easily be handled for computation.
As alternative to differencing, finite volume, finite element, spectral, variational, and
Monte Carlo methods are also very popular. These latter methods are however not
considered here.

We begin with a linear first-order PDE, which has the look of a conservation
equation for a continuum.

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1_7

309

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7114-1_7&domain=pdf
https://doi.org/10.1007/978-981-13-7114-1_7

310 7 Partial Differential Equations

7.1 First-Order Equation

Consider the linear first-order PDE for a function u(x, t), viz.

∂u

∂t
+ ∂u

∂x
= 0 (7.1)

subject to initial condition u(x, 0) = f (x). Here, we envisage t to represent time
and x a one- dimensional space variable. The obvious solution of the problem
is u = f (x − t), but we seek the solution by finite differencing choosing equally
spaced points along x- and t- axes xm = x0 + mh, tn = 0 + nk, denoting u(xm, tn)
by unm . As in Euler method for ODE, suppose we represent the time derivative by the
difference quotient

∂u

∂t

∣
∣
∣
∣
m,n

= un+1
m − unm

k
+ O(k)

and the space derivative by the central difference quotient

∂u

∂x

∣
∣
∣
∣
m,n

= unm+1 − unm−1

2h
+ O(h2)

then we obtain the difference equation

un+1
m = unm − r

2
(unm+1 − unm−1) (7.2)

where r = k/h. The finite difference scheme (7.2) is explicit. This means that know-
ing the unknown u at a given time step n (at space steps m − 1 and m + 1), the
unknown can be computed at the next time step n + 1 (for different space steps
m). Evidently, the process can be started at time step n = 0, since u0m = f (xm),
u0m+1 = f (xm+1) and u0m−1 = f (xm−1) are known. The formula (7.2) is O(k + h2)
and is easy to apply, but it has serious drawback that it is unstable for increasing n!.
This fact will be proved in Sect. 7.1.1 to follow. The scheme is therefore of little use.

We now derive some stable schemes.

7.1.1 Lax–Friedrichs Method

Let unm be replaced by the average of unm+1 and u
n
m−1, then one obtains Lax’s scheme

un+1
m = 1

2
(unm+1 + unm−1) − r

2
(unm+1 − unm−1) (7.3)

which again is an explicit formula for increasing time steps. The scheme isO(h2 + k).

7.1 First-Order Equation 311

7.1.2 Lax–Wendroff Method

Consider the Taylor expansion

un+1
m = unm + k

∂u

∂t

∣
∣
∣
∣
m,n

+ k2

2

∂2u

∂t2

∣
∣
∣
∣
m,n

+ O(k3)

= unm − k
∂u

∂x

∣
∣
∣
∣
m,n

+ k2

2

∂2u

∂x2

∣
∣
∣
∣
m,n

+ O(k3)

or

un+1
m = unm − r

2
(unm+1 − unm−1) + r2

2
(unm+1 − 2unm + unm−1) (7.4)

which too is an explicit formula, but fully of second order, i.e. O(h2 + k2).

Remark 7.1 A major disadvantage of the Lax–Wendroff scheme (7.4), though of
second order in both space x and time t , is that it is prone to produce oscillatory
solution if the gradient of u has a sharp change at a given time t . Alternative schemes
have also been considered without much success. Two such schemes are given as
Exercises 2 and 3 of this section. A large body of study exists on the nature of finite
difference schemes, an account of which is given in the text of Morton and Mayers
[26] cited in the Bibliography.

Peter David Lax (1926-). Hungarian-born U.S. mathematician is famous for his contributions in

partial differential equations, in particular, the methods that bear his name in Numerical Analysis.

He proved the equivalence theorem (see Sect. 7.6) in a seminar presentation given in the year 1953.

He is a Professor at the Courant Institute of Mathematical Sciences at New York University, U.S.A.

Burton Wendroff (1930-). U.S. mathematician. He is an Associate of the Los Alamos National

Laboratory, and Adjunct Professor at University of New Mexico, U.S.A.

We now take up the question of stability of the three schemes (7.2), (7.3) and (7.4).

7.1.3 von Neumann Stability Analysis

If we are given a linear difference equation with variable coefficients, then the von
Neumann stability analysis is of local nature. This means that we assume that the
coefficients of the difference equation are so slowly varying as to be considered
constant in space and time. In that case, the independent solutions or eigenmodes of
the equation are of the form

unm = AξneiKmh (7.5)

312 7 Partial Differential Equations

where ξ(K) the amplification factor is a complex number and K is a real spatial
wave number having any value. In this representation, the key fact is that the time
dependence of a single eigenmode is nothing more than integer powers of ξ. There-
fore, a difference equation is unstable if |ξ(K)| > 1 for some K , so that unm grows
with exponent n.

Let us check ξ for Eq. (7.2). Inserting (7.5) in (7.2), we get

ξ = 1 − r

2
(eiKh − e−i Kh) = 1 − ir sin Kh

Hence, |ξ|2 = 1 + r2 sin2 Kh > 1. Thus, the scheme is unstable as was asserted in
the case of (7.2).

For the case of Lax–Friesrichs scheme (7.3), we obtain

ξ = 1

2
(eiKh − e−i Kh) − r

2
(eiKh − e−i Kh)

= cos Kh − ir sin Kh

Therefore, |ξ|2 = cos2 Kh + r2 sin2 Kh = 1 − (1 − r2) sin2 Kh ≤ 1 if

r = k

h
≤ 1 (7.6)

Condition (7.6) is the famousCourant–Friedrichs–Lewy (C–F–L) criterion, often
called theCourant condition in brief. Subject to (7.6) being satisfied, Lax’s scheme
is stable.

For the Lax–Wendroff scheme (7.4), we have

ξ = 1 − r2 − r

2
(eiKh − e−i Kh) + r2

2
(eiKh + e−i Kh)

= 1 − r2 − ir sin Kh + r2 cos Kh

Hence,

|ξ|2 =
(

1 − 2r2 sin2
Kh

2

)2 + r2 sin2 Kh

= 1 − 4r2(1 − r2) sin4
Kh

2
≤ 1

if r ≤ 1. Thus, the Courant condition is satisfied and the method is stable.

JohnvonNeumann (1903–1957) is regarded as one of the foremostmathematicians of the twentieth

century. He contributed to many areas, including quantum mechanics, operator theory, ergodic

theory, game theory, computation theory, numerical analysis and meteorology.

7.1 First-Order Equation 313

Richard Courant (1888–1972), German–American mathematician. He was David Hilbert’s assis-

tant in Göttingen, Germany. He had to fight in 1915 during World War I, but was wounded and

dismissed frommilitary service. He returned to be associated with Göttingen, but later left Germany

in 1933 and became a Professor at the New York University. The C–F–L criterion was given in

1927, during his tenure in Germany. In 1943, he discovered the finite element method, which was

later reinvented by engineers. He is famous for his work in analysis.

KurtOtto Friedrichs (1901–1982), German–Americanmathematician. He escaped fromGermany

in 1937 and joined the New York University. A prolific researcher, his main work is on PDEs that

represent laws of physics and engineering sciences. In particular, he vastly contributed to compress-

ible fluid flows and non-linear buckling of plates.

Hans Lewy (1904–1988), German/Polish-born American mathematician. He began researches at

Göttingen but fled to U.S.A. in 1933. He is known for his extremely original and inventive work on

PDEs. He was a Professor at University of California, Berkeley, U.S.A.

Example 1. Solve the first-order PDE
∂u

∂t
+ ∂u

∂x
= 0, subject to the initial condition

u(x, 0) = x, 0 ≤ x ≤ 1
= 2 − x, 1 ≤ x ≤ 2
= 0, elsewhere

by the Lax–Wendroff formula. Compare up to two time steps using h = 1/2 and
r = 1/2.

Solution. For the given data, the Lax–Wendroff formula becomes

un+1
m = unm − 1

4
(unm+1 − unm−1) + 1

8
(unm+1 − 2unm + unm−1)

= 3

4
unm − 1

8
unm+1 + 3

8
unm−1

For the first time step (n = 0)

u1m = 3

4
u0m − 1

8
u0m+1 + 3

8
u0m−1

The grid points along the x-axis in [0, 2] are xm = mh = m/2, m = 0, 1, · · · , 4.

At m = 0, xm = 0 : u1m = 3

4
· 0 − 1

8
· 1
2

+ 3

8
· 0 = − 1

16

At m = 1, xm = 1

2
: u1m = 3

4
· 1
2

− 1

8
· 1 + 3

8
· 0 = 1

4

314 7 Partial Differential Equations

At m = 2, xm = 1 : u1m = 3

4
· 1 − 1

8
· 1
2

+ 3

8
· 1
2

= 7

8

At m = 3, xm = 3

2
: u1m = 3

4
· 1
2

− 1

8
· 0 + 3

8
· 1 = 3

4

At m = 4, xm = 2 : u1m = 3

4
· 0 − 1

8
· 0 + 3

8
· 1
2

= 3

16

For the second time step (n = 1), we need the values of u1m at grid points xm = −1/2
and 5/2.

These are both calculated as 0. For this step

u2m = 3

4
u1m − 1

8
u1m+1 + 3

8
u1m−1

Proceeding as in the first step, we obtain

xm : 0
1

2
1

3

2
2

u2m : − 5

64

7

128

21

32

111

128

27

64 �
Exercises

1. Solve the problem of Example 1 for the initial conditions:

(i)
u(x, 0) = x, 0 ≤ x ≤ 2

= 0, elsewhere

(i i)
u(x, 0) = 2x − x2, 0 ≤ x ≤ 2

= 0, elsewhere

the other data remaining the same.

[(i)
− 1

16
1
4

3
4

1
2

15
8

− 5
64

9
18

19
32

27
64

51
32

(i i)
− 3

32
7
16

15
16

15
16

9
32

− 1
8

45
256

3
4

261
256

117
25

].

2. Derive theUpwind Scheme

un+1
m = unm − r (unm − unm−1) + O(h + k)

for Eq. (7.1) by taking the first-order backward finite difference formula for the space
derivative ∂u/∂x , and prove that the magnitude of the amplification factor for the
scheme is given by

|ξ|2 = 1 − 2r (1 − r)(1 − cos Kh)

so that the scheme is stable if the C–F–L condition r ≤ 1 is satisfied.

7.1 First-Order Equation 315

3. Derive the Leapfrog Scheme

un+1
m = un−1

m − r (unm+1 − unm−1) + O(h2 + k2)

by taking the second-order finite difference formula for the time derivative ∂u/∂t in
Eq. (7.1). Prove that the amplification factor ξ for the scheme is given by

ξ = ir sin kH ±
√

1 − r2 sin2 kH

so that |ξ|2 = 1 for r ≤ 1 having locally oscillatory solution.

7.2 The Diffusion Equation

The equation is a second-order equation of the form

∂u

∂t
= ∂2u

∂x2
(7.7)

where t usually refers to time and x a space variable in an interval [a, b]. We assume
that Eq. (7.7) is subject to initial condition u(x, 0) = f (x) and boundary conditions
u(a, t) = φ(t), u(b, t) = ψ(t).

For finite differencing Eq. (7.7), we discretise the x, t-space by equally spaced
points xm = a + mh, tn = nk, m, n = 0, 1, 2, · · · and denote unm := u(xm, tn).

7.2.1 Schmidt Method

Selecting the finite difference quotients for (7.7) as

∂u

∂t
= un+1

m − unm
k

+ O(k),
∂2u

∂x2
= unm−1 − 2unm + unm+1

h2
+ O(k2)

we obtain the scheme

un+1
m = unm + r (unm−1 − 2unm + unm+1)= (1 − 2r) unm + r (unm−1 + unm+1)

(7.8)

where r = k/h2. Equation (7.8) is an explicit scheme, since it determines the
unknown u at time step n + 1 from previously determined values at time step n
at three grid points m − 1, m and m + 1 along the x-axis. The order of the scheme
is O(k + h2).

316 7 Partial Differential Equations

Let us examine the stability of the scheme (7.8). Substituting the form (7.5) in it,
we get for the amplification factor

ξ = 1 − 2r + r (e−i Kh + eiKh)

= 1 − 2r + 2r cos Kh = 1 − 4r sin2
Kh

2

For stability of the method, we require that |ξ| ≤ 1, or

−1 ≤ 1 − 4r sin2
Kh

2
≤ 1

or

r ≤ 1

2 sin2
Kh

2

which is always satisfied if 0 < r ≤ 1/2. The scheme (7.8) is therefore stable if the
condition 0 < k/h2 < 1/2 is ensured. In this case, the round-off errors will not get
out of bounds for increasing number of time steps.

We now consider two modifications of the Schmidt method that ensure uncondi-
tional stability for all values of r !

7.2.2 Laasonen Method

Here, we take the backward difference quotient for the time derivative

∂u

∂t
= unm − un−1

m

k
+ O(k)

and obtain as before

unm = un−1
m + r (unm−1 − 2unm + unm+1)

Replacing n by n + 1, we obtain

un+1
m = unm + r (un+1

m−1 − 2un+1
m + un+1

m+1) (7.9)

or
−r un+1

m−1 + (1 + 2r) un+1
m − r un+1

m+1 = unm

7.2 The Diffusion Equation 317

which forms a tridiagonal system of equations for the determination of the unknown
at time step n + 1 in terms of that at time step n. The scheme is thus an implicit
scheme, for it involves the solution of the tridiagonal system.

To investigate the amplification factor of the scheme, we substitute Eq. (7.5) in
(7.9) obtaining

[−r e−i Kh + (1 + 2r) − r eiKh] ξ = 1

or
[1 + 2r − 2r cos Kh] ξ = 1

i.e.

ξ = 1

1 + 4r sin2
Kh

2

for which |ξ| ≤ 1, and so the scheme is unconditionally stable.
The scheme like that of Schmidt is however of the first order in time step k. The

next scheme improves upon this aspect.

7.2.3 Crank–Nicolson Method

Here, we take the average of Eqs. (7.8) and (7.9), i.e.

un+1
m = unm + r

2

[

(un+1
m−1 − 2un+1

m + un+1
m+1) + (unm−1 − 2unm + unm)

]

or

− r un+1
m−1 + (2 + 2r) un+1

m − r un+1
m+1 = r unm−1 + (2 − 2r) unm + r unm+1 (7.10)

which also implicitly forms a tridiagonal system for the determination of u at time
step n + 1 in terms of those at step n. The solution to the problem is obtained by
solving such a system of linear equations.

The advantage of taking the average of (7.8) and (7.9) is that both sides of the
equation are centred at time step n + 1/2 and thus is of order k2. It is evidently of
order h2 in space step m. These facts ensure faster convergence of the method.

Regarding stability of the method, the amplification factor ξ is given by

[−r e−i Kh + (2 + 2r) − r eiKh] ξ = r e−i Kh + (2 − 2r) + r eiKh

or
(1 + r − r cos Kh) ξ = 1 − r + r cos Kh

318 7 Partial Differential Equations

or

ξ = 1 − 2r sin2 Kh/2

1 + 2r sin2 Kh/2

Hence, |ξ| ≤ 1 and the method is unconditionally stable.

ErhardSchmidt (1876–1959), Estonia-bornGermanmathematician.He is better known for orthog-

onalisation of polynomials (see Chap. 8) and as one of the founders of functional analysis. The

method for parabolic equations was given in a festschrift article in (1924).

Pentti Laasonen (1928–2016), Finn mathematician, Professor at technical university of Helsinki.

The method was presented in a paper in the year 1949.

John Crank (1916–2006), British mathematical Physicist. Head of Department of mathematics

and later Vice-Principal of Brunel University. He is best known for his work on numerical solution

of PDEs.

PhyllisNicolson (1917–1968), Britishmathematician.DuringWorldWar II, sheworked onwartime

problems at Manchester University, one being magnetron theory and practice. She is best known

for her joint work with John Crank in 1947. Later she became a lecturer at Leeds University.

Example 1. Solve the diffusion equation
∂u

∂t
= ∂2u

∂x2
subject to the initial and bound-

ary conditions

u(x, 0) = sin πx, 0 ≤ x ≤ 1
u(0, t) = u(1, t) = 0

using (i) the Schmidt method, and (i i) the Crank–Nicolson method, for h = 1/3 and
k = 1/36. Calculate up to two time steps.

Solution. For the given values of h and k, the grid points are xm = mh, m =
0, 1, 2, 3 and tn = nk, n = 0, 1, 2. The boundary conditions give un0 = un3 =
0, n = 0, 1, 2. Also, r = k/h2 = 1/4 and the Schmidt method is stable.
(i) Schmidt Method. By Eq. (7.8) with r = 1/4, the explicit scheme becomes

un+1
m = 1

4
(unm−1 + 2unm + unm+1)

For the first time step (n = 0)

At m = 1, xm = 1

3
, u11 = 1

4
(u00 + 2u01 + u02) = 1

4

(

0 + 2 sin
π

3
+ sin

2π

3

)

=
0.6495

7.2 The Diffusion Equation 319

At m = 2, x2 = 2

3
, u12 = 1

4
(u01 + 2u02 + u03) = 1

4

(

sin
π

3
+ 2 sin

2π

3
+ 0

)

=
0.6495
For the second time step (n = 1)

At m = 1, xm = 1

3
, u21 = 1

4
(u10 + 2u11 + u12) = 1

4
(0 + 2 × 0.6495 + 0.6495) =

0.4871

At m = 2, xm = 2

3
, u22 = 1

4
(u11 + 2u12 + u13) = 1

4
(0.6495 + 2 × 0.6495 + 0) =

0.4871

(i i) Crank–Nicolson Method. By Eq. (7.10) with r = 1/4, the scheme becomes

−1

4
un+1
m−1 + 5

2
un+1
m − 1

4
un+1
m+1 = 1

4
unm−1 + 3

2
unm + 1

4
unm+1

or
−un+1

m−1 + 10 un+1
m − un+1

m+1 = unm−1 + 6 unm + unm+1

For the first time step (n = 0)

At m = 1, xm = 1

3
, 0 + 10 u11 − u12 = 0 + 6 u01 + u02 = 6 sin

π

3
+ sin

2π

3
=

6.0622

At m = 2, xm = 2

3
, −u11 + 10 u12 − 0 = u01 + 6 u02 + 0 = sin

π

3
+ 6 sin

2π

3
=

6.0622
The solution of the two equations yields u11 = u12 = 0.6736

For the second time step (n = 1)

At m = 1, xm = 1

3
, 0 + 10 u21 − u22 = 0 + 6 u11 + u12 = 0.5894

At m = 2, xm = 2

3
, −u21 + 10, u22 − 0 = u11 + 6 u12 + 0 = 0.5894

whose solution is u21 = u22 = 0.5239

The exact solution of the problem is u(x, t) = eπ2t sin πx , which at the second
time level yields u(13 ,

1
18) = u(23 ,

1
18) = 0.5005. �

Exercises

1.Solve the equation
∂u

∂t
= ∂2u

∂t2
, 0 < x < 1, t > 0with the conditions u(0, t) =

0, u(1, t) = 1 and u(x, 0) = x(2 − x) by the Schmidt method, taking h = 1/4 and
k = 1/32. Calculate up to two time steps.

320 7 Partial Differential Equations

[x 1/4 1/2 3/4
t

1/32 3/8 11/16 7/8
1/16 11/32 5/8 27/32].

2. Solve by Crank–Nicolson method, the equation
∂u

∂t
= ∂2u

∂x2
, 0 < x < 1, t >

0, satisfying the conditions u(0, t) = 0, u(1, t) = 0 and u(x, 0) = 100x(1 − x).
Compute u for two time steps with h = 1/4 and k = 1/4.
[x 1/4 1/2 3/4

t
1/4 14.2857 17.1429 14.2857
1/2 6.9388 10.6122 6.9388].

3. Solve the equation
∂u

∂t
= ∂2u

∂x2
, 0 < x < 1, t > 0 by Crank–Nicolson method,

given that u(0, t) = 0, u(1, t) = 200t and u(x, 0) = 0. Calculate u for two time
steps with h = 1/4 and k = 1/8.

[x 1/4 1/2 3/4
t

1/8 1.1905 3.5714 9.5238
1/4 5.2154 13.2653 27.4376].

4. Show that the solution of the Schrödinger equation

i
∂ψ

∂t
= − ∂2ψ

∂x2
+ V (x)ψ

where ψ is complex valued and unitary, i.e.
∫ ∞

−∞
|ψ|2dx = 1 can be symbolically

written as ψ(x, t) = e−i Ht ψ(x, 0), H := − ∂2

∂x2
+ V (x). Prove by using the Cay-

ley approximation e−i H�t ≈ (1 − 1
2 i H�t)/(1 + 1

2 i H�t) that the equation can be
solved by the Crank–Nicolson scheme

(

1 + 1

2
i H�t

)

ψn+1
j =

(

1 − 1

2
i H�t

)

ψn
j

which is unconditionally stable and unitary.

7.3 The Wave Equation 321

7.3 The Wave Equation

The wave equation in one space dimension x is of the form

∂2u

∂t2
= ∂2u

∂x2
(7.11)

It may be subject to initial conditions at time t = 0 of the form

u(x, 0) = f (x),
∂u

∂t
(x, 0) = g(x)

and boundary conditions at x = a and x = b of the form

u(a, t) = φ(t), u(b, t) = ψ(t)

where f, g, φ and ψ are continuous functions. In the theory of wave equations, it is
proved that the exact solution of the IVP due to D’Alembert is

u(x, t) = 1

2
[f (x − t) + f (x + t)] + 1

2

∫ x+t

x−t
g(τ) dτ

But that is not our point of view in finite difference solution.
Let the x, t space be discretised by equally spaced points xm = a + mh, tn =

nk, m, n = 0, 1, 2, · · · and let u(xm, tn) be denoted by unm as usual. The central
difference quotients of the two partial derivatives in (7.11) are

∂2u

∂t2
= un−1

m − 2unm + un+1
m

k2
+ O(k2)

∂2u

∂x2
= unm−1 − 2unm + unm+1

h2
+ O(h2)

Substituting in Eq. (7.11) and neglecting the small quantities, we obtain the scheme

un+1
m = 2(1 − r2) unm + r2(unm−1 + unm+1) − un−1

m (7.12)

where r = k/h. The scheme is explicit, determining un+1
m at level n + 1 in terms of

the previously determined values at the preceding two levels n and n − 1. But, when
the calculation is started at the level n = 0, the values of u0m and u−1

m are required
in Eq. (7.12). The former is given by f (xm) according to the first of the boundary
conditions, while the latter has to be computed from the second boundary condition.
Using central difference quotient for ∂u/∂t , we have

322 7 Partial Differential Equations

∂u

∂t

∣
∣
∣
∣
t=0

= u1m − u−1
m

2k
= g(xm)

This equation yields
u−1
m = u1m − 2k g(xm) (7.13)

Equation (7.13) helps in eliminating u−1
m from the first equation of (7.12) for n = 0

and yields u1m explicitly. The computation of unm at the succeeding levels n ≥ 2 is
completed from (7.12). The method is evidently of second order throughout.

In order to examine the stability of the method, we substitute Eq. (7.5) in (7.12),
giving

ξ = 2(1 − r2) + r2(e−i Kh + eiKh) − ξ−1

This yields the quadratic equation for the amplification factor ξ as

ξ2 −
(

2 − 4r2 sin2
Kh

2

)

ξ + 1 = 0

which has the form ξ2 − 2Bξ + 1 = 0 with roots ξ = B ± √
B2 − 1. For stability,

we require that |ξ| ≤ 1 or −1 ≤ B ± √
B2 − 1 ≤ 1 which means that we require

|B| ≤ 1. Thus, for stability

−1 ≤ 1 − 2r2 sin2
Kh

2
≤ 1

or

r2 ≤ 1

sin2
Kh

2

This condition is always satisfied if r2 ≤ 1 or r ≤ 1, which again is the Courant
Condition. Thus, for stability, we require that k ≤ h.

Example 1. Solve the initial boundary value problem

∂2u

∂t2
= ∂2u

∂x2
, 0 < x < 1

subject to the initial conditions

u(x, 0) = sin πx,
∂u

∂t
(x, 0) = 0, 0 ≤ x ≤ 1

7.3 The Wave Equation 323

and the boundary conditions

u(0, t) = 0, u(1, t) = 0, t > 0

Assume h = 1/4 and k = 3/16 and compute up to three time steps. Compare with
the exact solution u(x, t) = sin πx cosπt .

Solution. For the given values of h and k, r = 3/4 and the computations are stable.
The grid points are

xm = mh, m = 0, 1, 2, 3, 4 and tn = nk, k = 0, 1, 2

The initial conditions, using Eq. (7.13), give

u0m = sin
(mπ

4

)

and u−1
m = u1m, m = 0, 1, 2, 3, 4

while the boundary conditions give unm = 0, m = 0, 4.
The explicit finite difference solution (7.12) becomes in this case

un+1
m = 7

8
unm + 9

16
(unm−1 + unm+1) − un−1

m , m = 1, 2, 3

For n = 0, we obtain

u1m = 7

8
u0m + 9

16
(u0m−1 + u0m+1) − u−1

m

or since u−1
m = u1m , u1m = 7

16
u0m + 9

32
(u0m−1 + u0m+1)

At m = 1, u11 = 7

16
u01 + 9

32
(u00 + u02) = 0.59061

At m = 2, u12 = 7

16
u02 + 9

32
(u01 + u03) = 0.83525

At m = 3, u13 = 7

16
u03 + 9

32
(u02 + u04) = 0.59061

From these solutions, we have for n = 1,

u21 = 0.27951, u22 = 0.39528, u23 = 0.27951

and for n = 2, u31 = −0.12369, u32 = −0.17493, u33 = −0.12369

324 7 Partial Differential Equations

The exact solution is

u31 = u
(1

4
,

9

16

)

= sin
π

4
cos

9π

16
= −0.13795 = u33

u32 = u
(1

2
,

9

16

)

= sin
π

2
cos

9π

16
= −0.19509 �

When the space and time steps are equal h = k and r = 1. In this case, Eq. (7.12)
simplifies into

un+1
m = unm−1 + unm+1 − un−1

m (7.14)

and the method remains stable. The following exercises assume this simplified pro-
cedure.

Exercises

1. Solve the equation
∂2u

∂t2
= ∂2u

∂x2
, 0 < x < 1, t > 0 satisfying the initial con-

ditions u(x, 0) = 0 = ∂u

∂t
(x, 0) and boundary conditions u(0, t) = 0, u(1, t) =

1
2 sin πt . Assume h = k = 1/4 and compute up to four time steps.

[x 1/4 1/2 3/4 1
t

1/4 0 0 0 0.3536
1/2 0 0 0.3536 0.5
3/4 0 0.3536 0.5 0.3536
1 0.3536 0.5 0.3536 0].

2. Solve the equation
∂2u

∂t2
= ∂2u

∂x2
, 0 < x < 1, t > 0 up to t = 1, satisfying the

conditions u(0, t) = u(1, t) = 0, u(x, 0) = 0,
∂u

∂t
(x, 0) = sin πx . Assume h =

k = 0.2.

[x 1/5 2/5 3/5 4/5
t

1/5 0.1176 0.1902 0.1902 0.1176
2/5 0.1902 0.3078 0.3078 0.1902
3/5 0.1902 0.3078 0.3078 0.1902
4/5 0.1176 0.1902 0.1902 0.1176
1 0 0 0 0].

7.3 The Wave Equation 325

3. Solve the equation
∂2u

∂t2
= ∂2u

∂x2
for x = 0(0.2)1 and t = 0(0.2)1, given that

u(0, t) = u(1, t), u(x, 0) = x(1 − x),
∂u

∂t
(x, 0) = x(1 − x).

[x 0.2 0.4 0.6 0.8
t
0.2 0.32 0.40 0.40 0.32
0.4 0.24 0.48 0.48 0.24
0.6 0.16 0.32 0.32 0.16
0.8 0.08 0 0 0.80
1.0 −0.16 −0.24 −0.24 −0.16].

7.4 Poisson Equation

The Poisson equation is a prominent equation in mathematical physics. Its form is

∂2u

∂x2
+ ∂2u

∂y2
= ρ(x, y) (7.15)

where ρ(x, y) is a given function of x and y in a region R. When ρ(x, y) = 0 the
equation is called Laplace’s equation. On the boundary ∂R, we assume that u is
given, say u = f (x, y).

For finite differencing, let the (x, y) plane be divided into a network of squares of
side h by the mesh or grid points x = x0 + mh, y = y0 + nh, m, n = 0, 1, 2, · · · .
Writing um.n = u(xm, yn), the central difference quotient for the second-order
derivatives are

∂2u

∂x2
= um−1,n − 2 um,n + um+1,n

h2
+ O(h2)

∂2u

∂y2
= um,n−1 − 2 um,n + um,n+1

h2
+ O(h2)

Substituting these expressions in (7.8), we obtain the finite difference scheme

um−1,n + um+1,n + um,n−1 + um,n+1 − 4 um,n = h2ρm,n (7.16)

where ρm,n = ρ(xm, yn). The grid points in (7.16) are schematically shown in
Fig. 7.1.

326 7 Partial Differential Equations

Fig. 7.1 Schematic of nodes
in Eq. (7.16)

Fig. 7.2 Nodes of a
rectangular R

The difference scheme (7.16) leads to a systemof linear equations for the unknown
u at the interior grid points of R. In order to understand this, suppose that R is a
rectangle as shown in Fig. 7.2.

Let the unknown at the interior points be denoted by a vector having components
u1, u2, · · · , u12 running along horizontals as shown. At the boundary grid points,
the quantity is however known from the boundary condition. Considering the nodes
1, 2, 3, · · · in succession and applying Eq. (7.16), we obtain the equations

7.4 Poisson Equation 327

−4u1 +u2 +u4 = h2ρ1 − f10 − f01
u1 −4u2 +u3 +u5 = h2ρ2 − f20

u2 −4u3 +u6 = h2ρ3 − f30 − f41
u1 −4u4 +u5 +u7 = h2ρ4 − f02

u2 +u4 −4u5 +u6 +u8 = h2ρ5
u3 +u5 −4u6 +u9 = h2ρ6 − f42

· · · · · · · · · · · · · · · · · · = · · · · · ·
u9 + u11 − 4u12 = h2ρ12 − f35 − f44

The above system is diagonally dominant and therefore has a unique solution.
Because of sparsity of the matrix of the coefficients on the left-hand side, relax-
ation method such as the Seidel method is well suited for computer solution.

In the case of a boundary ∂R of arbitrary shape, there is no difficulty in writing
down an equation for a grid point well inside ∂R, but there is some difficulty at points
close to the boundary. This is illustrated in Fig. 7.3.

These latter nodes are indicated by small triangles. For these nodes, instead of
(7.16), we linearly interpolate the value at the grid point. For instance, consider the
grid point n which lies between grid points n + 1 and n′ (outside R). The boundary
crosses the abscissa at the point n′. Let the distance of this point from n be ρ, then
linear interpolation means

un = 1

h + ρ
(h fn′ + ρ un+1)

This relation introduces a linear equation for the grid point n. Similar other grid
points contribute similar equations to the system. Taking into account all the nodes,

Fig. 7.3 Grid for a curved
boundary

328 7 Partial Differential Equations

the full system for the solution of the problem is obtained.

Siméon Denis Poisson (1781–1840), French mathematician and physicist. He held a number of

important positions since he was in his 20s. He made remarkable application of mathematics to

physical subjects with his memoirs on theory of electricity and magnetism. In celestial mechanics,

he made advances in planetary theory over those of Lagrange.

Pierre–Simon Laplace (1749–1827), French mathematician and astronomer. He made deep inves-

tigations in celestial mechanics, proving that the solar system was stable. In these investigations,

he introduced spherical harmonics and the well-known equation that bears his name. He founded

the probability theory and discovered the famous Laplace transform in his researches in differential

equations.

Remark 7.2 The Laplace’s equation and the wave equation differ in sign in one of
the two second derivatives, yet the finite difference schemes in the two cases are
somewhat different. The schemes adhere in some sense to the nature of these two
equations. In the theory of linear partial differential equations of second order of the
form

A
∂2u

∂x2
+ B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ D

∂u

∂x
+ E

∂u

∂y
+ Fu = G

where A, B, · · · , G are functions of x and y, the equation is classified depending on
the sign of the discriminant B2 − 4AC . If B2 − 4AC < 0, the equation is called ellip-
tic and if B2 − 4AC > 0, it is called hyperbolic. If B2 = 4AC it is called parabolic.
The theory of each of these equations has a special feature and the numerical schemes
are in tune with such features. Evidently, the Laplace’s equation is elliptic while the
wave equation is hyperbolic. The diffusion equation on the other hand is parabolic.

Remark 7.3 The theory of PDE of second order is concomitant with the type of
boundary conditions that must be prescribed with it. If u is prescribed as a function
of x, y on the boundary ∂R of the region R in which the PDE holds, then it is
called Dirichlet type condition. In this chapter, we have exclusively assumed such
boundary condition. Sometimes the normal derivative ∂u/∂ν is prescribed on the
boundary ∂R. In such cases, the boundary condition is said to be of Neumann type.
Such conditions are dealt by finite differencing the first-order partial derivatives with
respect to x, y in

∂u

∂ν
= l

∂u

∂x
+ m

∂u

∂y

where (l, m) are direction cosines of the normal.

We now consider some simple applications of the finite difference scheme (7.16).

7.4 Poisson Equation 329

Fig. 7.4 Solution grid

Example 1. Find the solution of the Laplace’s equation
∂2u

∂x2
+ ∂2u

∂y2
= 0 subject to

Dirichlet condition u(x, y) = x − y on ∂R, where R is the right-angled triangle
with vertices (0, 0), (4, 0) and (0, 4).

Solution. The region is shown in Fig. 7.4, together with the grid in which the solution
is sought. The value of u at the boundary nodes is shown within parentheses. There
are only three nodes at which the values u1, u2, u3 are to be determined. Following
Eq. (7.16), we have for the three nodes

−4u1 + u2 + u3 − 1 + 1 = 0
u1 − 4u2 + 2 + 0 = 0
u1 − 4u3 − 2 + 0 − 2 = 0

The solution of the equations is easily found to be u1 = 2
7 , u2 = 15

14 , u3 = 1
14 . �	

Exercises

1. Solve Laplace’s equation
∂2u

∂x2
+ ∂2u

∂y2
= 0 over the square mesh bounded by the

sides x = 0, y = 0, x = 3 and y = 3, satisfying the boundary conditions u = 2 at
the mesh points (2, 0), (3, 1), (1, 3), (0, 2) and u = 3 at (1, 0), (3, 2), (2, 3),
(0, 1), respectively.
[From symmetry about the centre u1 = u4 and u2 = u3. u1 = u4 = 8/3 and u2 =
u3 = 7/3].
2. Solve the Poisson’s equation

∂2u

∂x2
+ ∂2u

∂y2
= −4(x2 + y2) over the square mesh

bounded but the sides x = 0, y = 0, x = 3 and y = 3, subject toDirichlet condition
u = 0 on the boundary of the region.

330 7 Partial Differential Equations

[The problem is symmetric with respect to the line x = 0, and hence u2 = u3. u1 =
37/6, u2 = u3 = 25/3, u4 = 73/6].

3. Solve the Poisson’s equation
∂2u

∂x2
+ ∂2u

∂y2
= xy, −2 ≤ x ≤ 2, −2 ≤ y ≤ 2 sub-

ject to boundary condition u = 0 on x = ±2, y = ±2.
[Detect symmetry of the solution. u1 = u9 = −1/4, u3 = u7 = 1/4, u2 = u4 =
u6 = u8 = 0, u5 = 0].
4. Solve Laplace’s equation over the rectangle 0 ≤ x ≤ 4, 0 ≤ y ≤ 5, subject to
Dirichlet condition u = 0 on x = 0, 4 and u = 1 on y = 0, 5.
[Symmetries of the solution:u1 = u3 = u10 = u12, u4 = u6 = u7 = u9, u2 = u11,
u5 = u8. u1 = 33/71, u2 = 41/71, u4 = 20/71, u5 = 27/71].

7.5 Diffusion and Wave Equation in Two Dimensions

The diffusion equation in two dimensions is extension of Eq. (7.7) in the form

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
(7.17)

Let the equation be subject to initial condition u(x, y, 0) = f (x, y) and boundary
conditions u(a, y, t) = φ1(y, t), u(b, y, t) = ψ1(y, t), u(x, c, t) = φ2(x, t),
u(x, d, t) = ψ2(x, t). Thus, the solution is sought over a domain R = [a ≤ x ≤
b] × [c ≤ y ≤ d] × [0, T].

An explicit method such as the Schmidt method, Eq. (7.8), can be generalised in
the obvious way. However, the Crank–Nicolson scheme (7.10) is the best way to treat
the problem in one dimension. Its extension in two dimensions in central difference
notation is evidently

un+1
l,m = unl,m + r

2

(

δ2xu
n+1
l,m + δ2xu

n
l,m + δ2yu

n+1
l,m + δ2yu

n
l,m

)

(7.18)

where
δ2xu

n
l,m := unl−1,m − 2unl,m + unl+1,m

and similarly for δ2y u
n
l,m . Here, it is assumed that discretisations in the x- and y-

directions are of equal length h by the points xl = a + lh and ym = b + mh. The
discretisation in t is by the points tn = nk. The scheme (7.18) is certainly viable, but
it no longer leads to a tridiagonal system of equations, though it is still sparse.

Another possibility, which we prefer, is a slightly different way of generalising
the Crank–Nicolson method. It is called Peaceman–Rachford Alternate Direction
Implicit (ADI)method.Thismethod consists of two steps: in thefirst step,we advance
from tn to tn+1/2 and use implicit differences for ∂2u/∂x2 and explicit differences for

7.5 Diffusion and Wave Equation in Two Dimensions 331

∂2u/∂y2. In the second step, we advance from tn+1/2 to tn+1 using explicit differences
for ∂2u/∂x2 and implicit differences for ∂2u/∂y2. Thus, the ADI method is

un+1/2
l,m = unl,m + r

2

(

δ2xu
n+1/2
l,m + δ2yu

n
l,m

)

un+1
l,m = un+1/2

l,m + r

2

(

δ2xu
n+1/2
l,m + δ2yu

n+1
l,m

) (7.19)

The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system. The method is second-order accurate in time and space
and unconditionally stable.

We now turn to the wave equation in two dimensions, which is

∂2u

∂t2
= ∂2u

∂x2
+ ∂2u

∂y2
(7.20)

subject to the initial conditions

u(x, y, 0) = f (x, y), a ≤ x ≤ b, c ≤ y ≤ d
∂u

∂t
(x, y, 0) = g(x, y), a ≤ x ≤ b, c ≤ y ≤ d

and boundary conditions as in the case of Eq. (7.17).
The central difference scheme that can be written for Eq. (7.20) is

δ2t u
n
l,m = r2(δ2x + δ2y) u

n
l,m

where r2 = k2/h2 and it is assumed that the grid lengths in the x- and y-directions
are both equal to h. The above equation leads to the three-level explicit scheme

un+1
l,m = 2(1 − 2r2) unl,m + r2

(

unl−1,m + unl,m−1 + unl+1,m + unl,m+1

)

− un−1
l,m (7.21)

and can be tackled as in the case of one dimension (see Eq. 7.12). The method is
obviously of second order in both space and time.

We now study the stability of the scheme. Substituting

unl,m = AξneiK1lheiK2mh

in Eq. (7.21), we obtain

ξ2 = 2(1 − 2r2) ξ + r2(e−i K1H + e−i K2h + eiK1h + eiK2h) ξ − 1

or
ξ2 − 2[1 − 2r2(sin2 θ1 + sin2 θ2)] ξ + 1 = 0

332 7 Partial Differential Equations

where θ1 := K1h/2, θ2 := K2h/2. The equation is of the form ξ2 − 2Bξ + 1 = 0
and |ξ| ≤ 1 if |B| < 1 (see Sect. 7.3) or

−1 ≤ 1 − 2r2(sin2 θ1 + sin2 θ2) ≤ 1

or

r2 ≤ 1

sin2 θ1 + sin2 θ2

which is always satisfied if r2 ≤ 2 or r ≤ 1/
√
2 = 0.707. Thus, for stability, we

require that k ≤ 0.707 h.

7.6 Convergence: Lax’s Equivalence Theorem

In the preceding sections, we have developed finite difference approximations of
some linear PDEs with constant coefficients, laying emphasis on the stability of the
corresponding linear difference equations. The finite difference approximations bore
to the respective PDEs consistency in the sense that the local truncation error of the
approximation was of the order of some positive power of h or k. For instance, we
came across first-order approximation, second- order approximation, etc.

The question of convergence of these methods was settled by P.D. Lax (1953) in
a very general manner. The gist of the result is that consistency and stability together
imply convergence of the method. This means that all the derived methods that were
stable are in fact also convergent.

Lax in fact treated the problem abstractly using Banach space terminology, con-
sidering a one-parameter family of vectors u(t) of elements of B with real parameter
t , such that

du(t)

dt
= L u(t), 0 ≤ t ≤ T (7.22)

and u(0) = u0. Here, L is a linear operator that may contain inhomgeneous term, and
u0 is a given element of B. In our application, L is a differential operator for which
boundary conditions are assumed to be linear and are taken care of by assuming that
the domain of L is restricted to those functions satisfying the boundary conditions.
Equation (7.22) is thus a system of linear PDEs of evolution.

Extending the notion of consistency, stability and convergence for the discretisa-
tion of the above-stated problem, it was proved that

Lax’s Equivalence Theorem. Given a properly posed initial value problem and a
finite difference approximation to it that satisfies the consistency condition, stability
is the necessary and sufficient condition for convergence.

7.6 Convergence: Lax’s Equivalence Theorem 333

Proof The proof will be restricted to proving the sufficiency of the conditions that
stability and consistency imply convergence. This part is significant for our purpose
because adopting a stable schemewhich is consistent aswellwill ensure convergence.
The proof of the necessity of the conditions requires use of deeper concepts of
Functional Analysis in Banach spaces.

Discretisation of Eq. (7.22) with respect to t leads to a linear difference equation
of the form

ũn+1 = ũn + k L ũn (7.23)

where ũ is an approximation of the exact u, distinction that was ignored in the devel-
opment of the difference scheme, tacitly assuming convergence.

The stability of the system is theoretically studied in a different manner, where a
varied general linear form

A1 ũn+1 = A0 ũn + Fn (7.24)

is considered where Fn consists of not only the data arising from the inhomogeneous
term of L u, but also from the contribution of inhomogeneous boundary conditions,
if present. The matrix A1 (as also A0) must be such that ||A1|| = O(1/k) for (7.24)
to be compatible with (7.23), where || · || is any norm. Hence, if A−1

1 exists

||A−1
1 || ≤ K1 k (7.25)

where K1 is a constant. The finite difference system (7.24) is defined as stable when
given two initial data u0 and v0, then

||ũn − ṽn|| ≤ K ||u0 − v0|| (7.26)

Hence,

||ũn − ṽn || = ||A−1
1 A0 (ũn−1 − ṽn−1)|| = · · · = ||(A−1

1 A0)
n (u0 − v0)|| ≤ K ||u0 − v0||

or
||(A−1

1 A0)
n)|| ≤ K (7.27)

Hence, for stable solution, we must have

||(A−1
1 A0)

n A−1
1 || ≤ (KK1) k (7.28)

If a finite difference relation like (7.24) for the exact values un and un+1 is con-
sidered, then

Tn := A1 un+1 − (A0 un + Fn) (7.29)

334 7 Partial Differential Equations

is the truncation error occurring in the exact system defined by (7.24). If T n
m repre-

sents the truncation error for the element (m − 1) h ≤ x ≤ mh, then the varied linear
system is said to be consistent if T n

m → 0 as h2 + k2 → 0 (compare with Sect. 6.14,
Chap. 6).

From Eqs. (7.24) and (7.29), we have by subtraction

A1 (ũn+1 − un+1) = A0 (ũn − un) − T n

or
(ũn+1 − un+1) = (A−1

1 A0) (ũn − un) − A−1
1 T n

Replacing n + 1 by n, n − 1, n − 2, · · · , 2, 1, we obtain the recurring system of
equations

ũn − un = (A−1
1 A0) (ũn−1 − un−1) − A−1

1 T n−1

ũn−1 − un−1 = (A−1
1 A0) (ũn−2 − un−2) − A−1

1 T n−2

· ·
ũ2 − u2 = (A−1

1 A0) (ũ1 − u1) − A−1
1 T 1

ũ1 − u1 = (A−1
1 A0) (ũ0 − u0) − A−1

1 T 0

Hence, using inequality (7.28), and the consistency conditions

||ũn − un|| ≤ (KK1) k
n−1
∑

l=0

||T l || → 0, as k → 0

Thus, ũn → un as k → 0, proving convergence of the solution in the limit. �	
Remark 7.4 For a discussion on the relation of the definition of stability adopted
here to von Neumann stability, see the text of Morton and Mayers [26].

Remark 7.5 Conceptually, a properly posed IVP like (7.22) means that the solution
u depends continuously on the initial data u0 as t increases during the evolution
process. Mathematically, it means that if un and vn are two solutions at the same time
step t = nk, subject to initial conditions u0 and v0, respectively, then ||un − vn|| ≤
||u0 − v0||.

Chapter 8
Approximation

In this chapter, we study approximation of a function f ∈ C[a, b] by another sim-
pler function φ ∈ C[a, b] in a general manner. The function φ is mostly considered
a polynomial of certain degree n. In some cases, φ as a rational function is also con-
sidered. Interestingly, this deeply theoretical development originated in Chebyshev’s
work onmechanisms of machines (see the text of Steffens cited in the Bibliography);
but we confine to a few significant results. These theoretical results have contem-
porarily been put to good use in computer software for efficiently computing tran-
scendental mathematical functions, and obtaining easy to evaluate functional forms
that approximate complicated expressions appearing in theoretical and empirical
experimental studies.

We begin with the definition of norm of f , denoted by ‖ f ‖. As in the case of
(finite dimensional) vectors (Chap. 3, Sect. 3.2), the norm can be defined in one of
several ways. The useful ones are

(a) The 2–norm: ‖ f ‖2 =
(∫ b

a
f 2(x) dx

)1/2
.

(b) Laplace’s 1–norm: ‖ f ‖1 =
∫ b

a
| f (x)| dx .

(c) Chebyshev’s maximum norm: ‖ f ‖∞ = max
x ∈ [a, b]

| f (x)|.

That the three quantities on the right-hand side of (a), (b) and (c) indeed define norm
is a matter of detail, and is left to the reader as an exercise in analysis. The Chebyshev
norm (c) appeared informally in Sects. 4.1.4 and 4.3 of Chap. 4. It forms the basis of
the theory of uniform approximation, an outline of which is given in the ensuing
subsection. The 2–norm (a) forms the basis of least squares approximation and
is easiest to develop. It is discussed in Sect. 2.2. The Laplace norm has also been
explored in theory but its practical utility is very limited (see the text of J. R. Rice,
cited in the Bibliography).

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1_8

335

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7114-1_8&domain=pdf
https://doi.org/10.1007/978-981-13-7114-1_8

336 8 Approximation

8.1 Uniform Approximation by Polynomials

The earliest result concerning the degree to which a polynomial can approximate a
function is Weierstrass’s Theorem:

Let f ∈ [a, b], then for every ε > 0 there exists a polynomial φ of degree n, such
that ‖ f − φ‖∞ < ε.

Karl Weierstrass (1815–1897), Germanmathematician. He is famous for his fundamental con-

tributions in analysis. He is considered to be one of the founders of function theory; the starting point

of his work being power series. He fully understood the importance of applications of mathematics

for studying problems of physics and astronomy. He gave a nonconstructive proof of the above

theorem in 1885.

Sergei Natanovich Bernstein (1880–1968), Ukrainian mathematician. He solved Hilbert’s

nineteenth problem in his doctoral dissertation of 1904, submitted at Sorbonne, France. But on

his return to Kharkov, he had to again work for a doctoral dissertation as foreign qualification for

university posts were not recognised. In the second dissertation, he solved Hilbert’s twentieth prob-

lem. He reproved Weierstrass’s theorem in 1912 by a constructive method. Probability theory and

application to genetics were his other areas of research.

We shall give here Bernstein’s proof in a form that explicitly expresses the order
of dependence of ε on n. For this purpose, we require the following.

Definition 8.1 The modulus of continuity of f ∈ C[a, b] is the function

ω(δ) := max
x, y ∈ [a, b]

| f (x) − f (y)| (8.1)

where |x − y| ≤ δ.
Evidently, since f is continuous,ω(δ) → 0 as δ → 0. Further, if f has continuous

first derivative f ′ on [a, b], then

ω(δ) ≤ max
x ∈ [a, b]

| f ′(x)| · δ

Definition 8.2 The Bernstein polynomial Bn(x) is the polynomial

Bn(x) :=
n∑

k=0

(
n
k

)
f

(
k

n

)
xk(1 − x)n−k (8.2)

where

(
n
k

)
= n!

k!(n − k)! .
Clearly, Bn(x) is a polynomial of degree n. However, it is not an interpolating

polynomial because it does not equal f (x) if f (x) is a polynomial of degree n.

8.1 Uniform Approximation by Polynomials 337

The proof of Weierstrass’s theorem requires two simple lemmas.

Lemma 8.1
n∑

k=0

(
n
k

)
xk(1 − x)n−k = 1

n∑
k=0

(
k

n
− x

)2(
n
k

)
xk(1 − x)n−k = x(1 − x)

n

Proof By binomial theorem

n∑
k=0

(
n
k

)
pkqn−k = (p + q)n

Setting p = x, q = 1 − x we obtain the first identity. Next, if we differentiate the
binomial identity twice in succession with respect to p, we have

n∑
k=0

(
n
k

)
kpk−1qn−k = n(p + q)n−1

n∑
k=0

(
n
k

)
k(k − 1)pk−2qn−k = n(n − 1)(p + q)n−2

Thus, setting p = x, q = 1 − x ,

n∑
k=0

(
n
k

)
k

n
xk(1 − x)n−k = x,

n∑
k=0

(
n
k

)
k2

n2
xk(1 − x)n−k =

(
1 − 1

n

)
x2 + 1

n
x

Hence

n∑
k=0

(
k

n
− x

)2(
n
k

)
xk(1 − x)n−k=

(
1 − 1

n

)
x2 + x

n
− 2x · x + x2 · 1 = x − x2

n

�

Lemma 8.2 Let x, y ∈ [0, 1] and let δ > 0. Let ν be the integral part of |x − y|/δ,
then

f (x) − f (y) ≤ (ν + 1)ω(δ)

Proof Without loss of generality assume that x < y, then

ν ≤ y − x

δ
≤ ν + 1

338 8 Approximation

Let h = (y − x)/(ν + 1), i.e., divide [x, y] in to ν + 1 equal parts each of length h
by points x0 = x, x1 = x0 + h, · · · , xν+1 = xν + h, then

| f (x) − f (y)| =
∣∣∣

ν∑
i=0

[f (xi+1) − f (xi)]
∣∣∣ ≤

ν∑
i=0

| f (xi+1) − f (xi)|

≤ (ν + 1) max
i = 0, · · · , ν

| f (xi+1 − f (xi)| ≤ (ν + 1)ω(h) ≤ (ν + 1)ω(δ)

since h ≤ δ. �

Theorem 8.1 If f ∈ C[a, b] with modulus of continuity ω(δ) then

‖ f − Bn‖ ≤ 5

4
ω(n−1/2)

Proof There is no loss of generality in assuming an interval [0, 1], because if a ≤
x ≤ b, then the transformation z = (x − a)/(b − a) lies in [0, 1]. Now by Lemma 1

f (x) − Bn(x) =
n∑

k=0

[
f (x) − f

(k

n

)] (n
k

)
xk(1 − x)n−k

Hence, | f (x) − Bn(x)| ≤
n∑

k=0

∣∣∣ f (x) − f
(k

n

)∣∣∣ φk(x)

where φk(x) =
(

n
k

)
xk(1 − x)n−k . Using Lemma 8.2, the above inequality yields

| f (x) − Bn(x)| ≤ ω(δ)

n∑
k=0

(1 + ν(k))φk(x) = ω(δ)
[
1 +

n∑
k=0

ν(k)φk(x)
]

by the first result of Lemma 8.1. For ν(k) �= 0, i.e., ν(k) ≥ 1,

ν(k) ≤ |x − (k/n)|
δ

≤ (x − k/n)2

δ2

Evidently, the inequality between the right-hand and left-handmembers remain valid
even for ν(k) = 0. Hence, we can write

| f (x) − Bn(x)| ≤ ω(δ)

[
1 + 1

δ2

n∑
k=0

(
x − k

n

)2
φk(x)

]

= ω(δ)

[
1 + 1

δ2
x(1 − x)

n

]
≤ ω(δ)

(
1 + 1

4δ2n

)

8.1 Uniform Approximation by Polynomials 339

since x(1 − x) is maximum at x = 1/2. Setting δ2 = 1/n and taking the maximum
over x ∈ [0, 1], we obtain the theorem. �

The Bernstein polynomials approximate f (x) for increasing n for all x ∈ [0, 1].
In other words, the approximation is uniform on [0, 1].

The smoothness of a function f ∈ [0, 1] is expressed by the Hölder condition
| f (x) − f (y)| ≤ K |x − y|α, where constant K > 0 and exponent α is also greater
than 0. In this case, ω(δ) ≤ K δα and

| f (x) − Bn(x)| ≤ 5

4
K n−α/2

Thus if α ≤ 1 (for α = 1, f is said to be Lipschitz bounded), the convergence of
the Bernstein polynomials for increasing n is extremely slow. In general, therefore,
Bernstein polynomials are of limitedpractical use even though they are easy tohandle.
For smoother functions, possessing successive derivatives, the rate of convergence
for increasing n becomes much faster according Jackson’s theorem. The theorem is
of the nature of existence theorem:

Theorem 8.2 Let f ∈ C p[0, 1] and let ωp(δ) be the modulus of continuity of f (p);
then for every n ≥ p, there exists a polynomial Jan(x) of degree n, such that

‖ f − Jan‖∞ ≤ Ap n−p ωp(n
−1)

where Ap is a constant (independent of f).
The proof of this theorem is omitted here.

Dunham Jackson (1888–1946), U.S. mathematician, worked in approximation theory, and

trigonometrical and orthogonal polynomials

8.2 Best Uniform (Minimax) Approximation

Consider the set � of all polynomials of degree at most n and let Qn be an arbitrary
member of the set.

Definition 8.3 Let f ∈ C[a, b]. If there exists a polynomial φ∗
n of degree at most

n, such that
‖ f − φ∗

n‖∞ ≤ ‖ f − Qn‖∞

then φ∗
n is said to be the best uniform approximation of f on [a, b].

In respect of the above definition, it can be proved that the best uniform approxi-
mation φ∗

n certainly exists and is unique. This means that the unique φ∗
n satisfies the

relation

340 8 Approximation

‖ f − φ∗
n‖∞ = min

Qn ∈ �

‖ f − Qn‖∞

For proof, the interested reader may consult Wendroff’s book cited in the Bibliog-
raphy. Best uniform approximation is thus also called Minimax approximation. For
different values of n, the function f possesses different minimax approximations
φ∗
1, φ∗

2, · · · . In general, the task of constructing these approximations is not simple,
and moreover the errors need not be arbitrarily small for all n.

Theorem 8.3 If x0, x1, · · · , xn+1 are arbitrary n + 2 points ∈ [a, b], then for a
function f approximated by a polynomial Qn at most of degree n,

‖ f − Qn‖∞ ≥ | f [x0, x1, · · · , xn+1]|/W (x0, x1, · · · , xn+1) (8.3)

where

W (x0, x1, · · · , xn+1) =
n+1∑
i=0

1/|(xi − x0) · ·(xi − xi−1)(xi − xi+1) · ·(xi − xn+1)|

in the notation of Newton’s divided differences defined in Chap. 4, Sect. 4.1.2.

Proof From Example 2 of Sect. 4.1.2, Chap. 4, for any function g

g[x0, x1, · · · , xn+1] =
n+1∑
i=0

g(xi)/ω
′
n+1(xi)

where ω′
n+1(xi) = (xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn+1). Setting g =

f − Qn,where Qn is at most of degree n, Qn[x0, x1, · · · , xn+1] = 0 and therefore

f [x0, x1, · · · , xn+1] =
n+1∑
i=0

[f (xi) − Qn(xi)]/ω′
n+1(xi)

Hence,

| f [x0, x1, · · · , xn+1]| ≤
n+1∑
i=0

| f (xi) − Qn(xi)|/|ω′
n+1(xi)|

≤ ‖ f − Qn‖∞ ·
n+1∑
i=0

1/|ω′
n+1(xi)|

= ‖ f − Qn‖∞ · W (x0, x1, · · · , xn+1)

which proves the theorem. �

8.2 Best Uniform (Minimax) Approximation 341

Example 1. Find lower bound (8.3) for Q1(x) and Q2(x) as approximations of ex

on [−1, 1], for x0 = −1, x1 = 0, x2 = +1 and x3 = 0.

Solution. f (x) = ex , x ∈ [−1, 1]. For Q1(x),

f [x0, x1, x2] = f (x0)

(x0 − x1)(x0 − x2)
+ f (x1)

(x1 − x0)(x1 − x2)
+ f (x2)

(x2 − x0)(x2 − x1)

= e−1

2
+ e0

−1
+ e1

2
= 0.54308

and W (x0, x1, x2) = 1/2 + 1/1 + 1/2 = 2. Hence ‖ f − Q1‖∞ ≥ 0.54308/2 =
0.27154.

For Q2(x), similarly let x3 = ε, ε → 0, then

f [x0, x1, x2, x3] = e−1

(−1)(−2)(−1)
+ e0

(1)(−1)(−ε)
+ e1

(2)(1)(1 − ε)
+ eε

(ε + 1)ε(ε − 1)

= e−1

−2
+ e0

ε
+ e1

2
− e0

ε
= 1.17520

Hence W (x0, x1, x2, x3) = 1/2 + 1/2 = 1 and ‖ f − Q2‖∞ ≥ 1.17520/1 =
1.17520. �

Example 2. Let f (x) = xn+1. Find the nth degree polynomial of best uniform
approximation for f in [−1, 1].

Solution. Consider the polynomial T̄n+1(x) = 2−nTn+1(x), where Tn+1(x) is the
Chebyshev polynomial of degree n + 1. According to properties 1 and 2 of Cheby-
shev polynomials (see Sect. 4.3, Chap. 4), one can write

T̄n+1(x) = xn+1 − αxn−1 − βxn−3 − · · ·

where α, β, · · · are definite constants. From Theorem 4.3 of Chap. 4 (Sect. 4.3)

‖T̄n+1‖∞ ≤ ‖P̄n+1‖∞

where P̄n+1 is a polynomial of degree n + 1, with leading coefficient 1. Thus if
φ∗(x) = αxn−1 + βxn−3 + · · · , then the above estimate yields

‖xn+1 − φ∗‖∞ ≤ ‖xn+1 − P̄n(x)‖∞

where P̄n(x) is an arbitrary polynomial of degree ≤ n. Thus φ∗(x) is the best uni-
form estimate of xn+1. Moreover,

‖xn+1 − φ∗‖∞ = ‖T̄n+1‖∞ = 2−n‖Tn+1‖∞ = 2−n

342 8 Approximation

Hence, φ∗ approximates f rapidly with increasing n. �
In the above example, we note that f (x) − φ∗(x) = T̄n+1(x) attains extreme val-

ues at xm = cos(mπ/(n + 1)), m = 0, 1, · · · , n + 1 in the interval [−1, 1]. Thus
the difference f (x) − φ∗(x) attains maximum modulus value at n + 2 points with
alternate sign. This is true in general; but toward preparation we have the result due
to C. J. de la Vallée–Poussin.

Theorem 8.4 Let there be a polynomial Pn ∈ � of at most degree n such that f (x) −
Pn(x) alternates in sign at the n + 2 points a ≤ x0 < x1 < · · · < xn+1 ≤ b, that is

f (xi) − Pn(xi) = σ(−1)iλi , (i = 0, 1, · · · , n + 1) (8.4)

where σ is +1 or −1 and λi > 0 (i = 0, 1, · · · , n + 1), then the best polynomial
approximation φ∗

n of degree at most n satisfies

min{λ0, λ1, · · · , λn+1} ≤ ‖ f − φ∗
n‖∞ ≤ ‖ f − Pn‖∞ (8.5)

Proof The right-hand inequality is obvious. Toprove the left-hand inequality suppose
it is hypothesised that

‖ f − φ∗
n‖∞ < min{λ0, λ1, · · · , λn+1} =: μ (say)

thenwe show that there is contradiction. By definition ofφ∗
n , there exists a polynomial

Qn ∈ � of degree ≤ n, such that

|| f − φ∗
n||∞ ≤ || f − Qn||∞ < μ

in which μ < λi (i = 0, 1, · · · , n + 1) or,

| f (xi) − Qn(xi) < μ i.e., − μ < f (xi) − Qn(xi) < μ

Now consider the difference of the polynomials Pn and Qn , viz., �(x) = Pn(x) −
Qn(x). Evaluating �(x) at the points x0, x1, · · · , xn+1, we have assuming σ = +1
(an analogous argument would work for σ = −1):

�(x0) = Pn(x0) − Qn(x0) = [f (x0) − Qn(x0)] + [Pn(x0) − f (x0)] < μ − λ0 < 0

�(x1) = Pn(x1) − Qn(x1) = [f (x1) − Qn(x1)] + [Pn(x1) − f (x1)] > −μ + λ1 > 0

etc. In general,�(xi) = (−1)i+1. Therefore,�(xi) changes sign (n + 2) − 1 = n +
1 times. This means that Pn(x) − Qn(x) is a polynomial of degree n vanishing
n + 1 times. By the fundamental theorem of algebra, this cannot happen unless
Qn ≡ Pn and the starting hypothesis | f (x) − φ∗

n(x)| < μ, x ∈ [a, b] yields for the
n + 2 points xi , λi < μ, which is impossible. �

8.2 Best Uniform (Minimax) Approximation 343

Charles Joseph de la Vallée Poussin (1866–1962), Belgian mathematician, is best known for

the proof of the prime number theorem in 1896. He obtained the above theorem in 1908. His other

area of interest was analysis.

For the polynomial Pn satisfying (8.4), Eq. (8.5) gives an estimate of the error
from the minimax approximation φ∗

n .
Another conclusion that canbedrawn is that ifλi = ‖ f − Pn‖∞ for i = 0, 1, · · · ,

n + 1, then

‖ f − Pn‖∞ ≥ ‖ f − φ∗
n‖∞ ≥ min

i
{λi } = ‖ f − Pn‖∞

which implies that

|| f − φ∗
n||∞ = || f − Pn||∞ = | f (xi) − Pn(xi)| (i = 0, 1, · · · , n + 1)

This suggests the following theorem of far-reaching importance originating from the
works of Chebyshev (1859), A. A. Markov and V. A. Markov (1892).

Theorem 8.5 For a polynomial φ∗
n of degree at most n to be a polynomial of best

uniform approximation to a function f ∈ C[a, b], it is necessary and sufficient that
there exists at least n + 2 points a ≤ x0 < x1 < · · · < xn+1 ≤ b, such that

f (xi) − φ∗(xi) = σ(−1)i‖ f − φ∗
n‖∞ (8.6)

where i = 0, 1, · · · , n + 1 and σ = 1 or −1 simultaneously for all i .
The sufficiency part of the theorem for exactly n + 2 points of sign alterations is

easily proved. For, if the condition (8.6) is satisfied

|| f − φ∗
n||∞ = | f (xi) − φ∗(xi)| ≥ min

i
| f (xi) − φ∗(xi)|

which is true according to (8.5). It is more difficult to prove the necessary part of the
theorem, as it is based on several constructs and contradiction. The interested reader
may consult the texts of Wendroff or Hammerlein (see Bibliography).

The points x0, x1, · · · , xn+1 which satisfy the conditions (8.6) of the theorem
are called Chebyshev alternants. At such points f (x) − φ∗

n(x) attains extremum
values and hence f ′(x) − φ∗

n(x) = 0 at these points. The extremum values are of
equal magnitude, alternately changing in sign. The theorem is therefore also called
equioscillation theorem.

From the definition and the above theorem, E. Y. Remez (1934) developed the
Exchange Algorithm for constructing best uniform polynomial approximation of a

344 8 Approximation

given function f ∈ C[a, b]. But near-best uniform approximation can be obtained
in much simpler ways.

Remez Exchange Algorithm. Let φ∗
n(x) = a∗

0 + a∗
1 x + · · · + a∗

n xn and let μ =
−σ‖ f − φ∗

n‖∞, then according to Eq. (8.6)

a∗
0 + a∗

1 xi + · · · + a∗
n xn

i − (−1)iμ = f (xi), i = 0, 1, · · · , n + 1

Had the Chebyshev alternants xi been known, the above set of n + 2 linear equa-
tions could have been solved for the n + 2 unknowns a0, a1, · · · , an and μ. So
Remez’s method proceeds iteratively, starting with points motivated by Chebyshev
interpolation nodes (see Eq. (4.23), Chap. 4):

Step 1. Set xi = b + a

2
+ b − a

2
cos

(n − i + 1)π

n + 1
, i = 0, 1, · · · , n + 1

(Evidently x0 = a, xn+1 = b).

Step 2. Compute (say by Gaussian elimination) a∗
0 , a∗

1 , · · · , a∗
n , μ from the set of

equations

a∗
0 + a∗

1 xi + · · · + a∗
n xn

i − (−1)iμ = f (xi), i = 0, 1, · · · , n + 1

Step 3. Locate the extreme points a ≤ y0 < y1 < · · · < yn+1 ≤ b of the function
f (x) − φ∗

n(x), by computing the zeros of f ′(x) − φ∗′
n (x), by the bisection method.

High accuracy in this computation is not required since the coefficients a∗
0 , · · · , a∗

n
are insensitive to small changes in xi .

Step 4. If |yi − xi | < ε for i = 0, 1, · · · , n + 1, STOP. Else set xi = yi and Go To
Step 2.

It can be proved that the process does converge for every choice of starting val-
ues in Step 1, provided that the computed value of μ does not vanish. With mild
additional assumptions regarding differentiability of f , it can also be proved that the
convergence is quadratic. Hence, in practice, only a small number of iterations suf-
fice.We, however, do not pursue thematter because near-best uniform approximation
is easily constructed.

Evgeny Yacovlevich Remez (1896–1975). Ukrainian mathematician. His main work has been

on constructive theory of functions and approximation theory.

Fike (see Bibliography) quotes some best uniform approximation results that are
essentially based on the above theory:

(1) sin
(π

4
x
)

≈ 0.7853981609 x − 0.0807454325 x3 + 0.0024900010 x5

− 0.0000359505 x7, −1 ≤ x ≤ 1, ε1 = 3.20 × 10−7

(2) cos
(π

4
x
)

≈ 0.9999999724 − 0.3084242536 x2 + 0.0158499153x4

−0.0003188805 x6, −1 ≤ x ≤ 1, ε = 2.76 × 10−6

8.2 Best Uniform (Minimax) Approximation 345

(3) ln(1 + x) ≈ 0.0000607 + 0.9965407 x − 0.4678348x2 + 0.2208915 x3

−0.0565718 x4, 0 ≤ x ≤ 1, ε = 6.07 × 10−5

(4) tan−1 x ≈ 0.99538 x − 0.288690 x3 + 0.079339 x5, −1 ≤ x ≤ 1,
ε = 6.09 × 10−4

where ε, ε1 are, respectively, maximum absolute and relative errors.

In the following, we give some simple exercises.

Example 3. Determine the linear minimax approximation A + Bx of
√

x in[1

16
, 1
]
.

Solution. The number of alternation points is at least 1 + 2 = 3. Let us assume the
points to be 1/16, α, 1. As in Remez’s method, Eq. (8.6) yields the equations

A + B

16
− μ =

√
1

16
= 1

4
, A + Bα + μ = √

α, A + B · 1 − μ = √
1 = 1

The first and the third equations yield B = 4/5. At the interval point α, d(A + Bx −√
x)/dx = 0 yields α = 1/4B2 = 25/64. Hence, the last two equations become

A + μ = √
α − Bα = 5

16
, A − μ = 1 − B = 1

5

Solving these equations we get A = 41/160. Hence, the minimax approximation is

√
x ≈ 41

160
+ 4

5
x

�
Exercises

1. Find a lower bound for the maximum absolute error (following Theorem 3), when√
x is approximated by a quadratic polynomial Q2(x) in the interval [0, 2].

[Choosing x0 = 0, x1 = 1/2, x2 = 1, x3 = 2, f [x0, · · · , x3] = 0.35702,
W (x0, · · · , x3) = 6, max|√x − Q2(x)| ≥ 0.05950].

2. As in Ex. 1 above find a lower bound when ex is approximated by a cubic in
[−1, 1].
[Choosing x0 = −1, x1 = −1/2, x2 = 0, x3 = 1/2, x4 = 1, f [x0, · · · , x4] =
0.04343,
W (x0, · · · , x4) = 32/3. max|ex − Q3(x)| ≥ 0.00408].

3. Determine the best uniform linear approximation A + Bx of ex in [0, 1].

346 8 Approximation

[See Example 3. A = 1
2 [α + (1 − α)e], B = e − 1 where α = ln(e − 1). ex ≈

0.89407 + 1.71828x].

4. Determine the linear approximation A + Bx of
√

x with minimax relative error
in [1/16, 1].
[Apply Theorem 8.4 and Remez’s method to E(x) = (

√
x − A − Bx)/

√
x = 1 −

(A + Bx)/
√

x . As in Example 3, (A + B/16)/(1/4) − μ = 1, (A + Bα)/
√

α +
μ = 1, (A + B) − μ = 1 and E ′(α) = 0. Therefore, B = 4A, α = A/B = 1/2,
A = 2/9, B = 8/9. Hence,

√
x ≈ 2/9 + 8x/9].

5. If f (x) is an even function in [−a, a], then prove that the minimax polynomial
approximation φ∗

n(x) of degree at most n is also an even function.
[Apply Theorem 8.5].

8.2.1 Near-Best Uniform Approximation

Owing to some difficulty in obtaining best uniform approximation by the Remez
exchange algorithm, we now consider procedures that yield near-best uniform
approximations.

8.2.1.1 Polynomial Interpolation with Chebyshev Interpolation Points

If f ∈ C (n+1)[a, b] and f (n+1) varies but little in [a, b], then the remainder in
Lagrange interpolation, denoted by Ln , becomes minimal when the interpolation
points are taken as the Chebyshev points (4.23) of Sect. 4.3, Chap. 4. In this respect
from Eq. (4.24) of that chapter

‖ f − Ln‖∞ ≤ Mn+1

(n + 1)!
(b − a)n+1

22n+1

where | f (n+1)(ξ)| ≤ Mn+1, ξ ∈ (a, b). The maximum norm on the left-hand side
therefore vanishes as n → ∞ if Mn+1 remains bounded. Near-best uniform approxi-
mation can therefore be obtained by employing interpolation polynomial of suitable
degree n over the Chebyshev points.

The above-stated scheme is implemented in the following subroutine named
CHEBYSHEV for the standard interval [−1, 1] obtained by the linear transformation
x ← (2x − b − a)/(b − a), x ∈ [a, b]. Moreover, the interpolation polynomial is
written as a∗

1 + a∗
2 x + · · · + a∗

n+1 xn in keeping with the subscript notation used in
the case of matrices. Accordingly, the Chebyshev and the Remez interpolation points
(Eq. (4.23), Chap. 4 and Step 1 of the Remez algorithm), respectively take the form

xi = cos
(2i − 1)π

2(n + 1)
and xi = cos

(n − i + 2)π

n + 1

8.2 Best Uniform (Minimax) Approximation 347

Hence, these points must satisfy the system of linear equations

a∗
1 + a∗

2 xi + a∗
3 x2

i · · · + a∗
n+1 xn

i = f (xi), i = 1, 2, · · · , n + 1 (8.7)

Since the points xi are distinct, the system of equations has always a solution, which
can be determined by the Gauss elimination method (Chap. 3, Sect. 3.1.2). The
solution yields the coefficients of the interpolation polynomial Ln(x):

f (x) ≈ Ln(x) = a∗
1 + a∗

2 x + a∗
3 x2 + · · · + a∗

n+1 xn (8.8)

SUBROUTINE CHEBYSHEV(n,astar)
! Determines the coefficients of the interpolated polynomial
! on the interval [−1, 1] of a function f(x) choosing either.
! Chebyshev Interpolation Point or Remez Points.
! Uses function subprogram fn.
! n=degree of the interpolation polynomial. (Input)
! astar(1), astar(2),· · · , astar(n+1) = coefficients of the
! nth degree ploynomial (Output)
!**
REAL :: x(n+1), fn(n+1), astar(n+1), A(n+1,n+1)
DO i=1,n+1
x(i)=cos((2*i-1)*1.570796/(n+1)) ! (Chebyshev Points)
! x(i)=cos((n-i+2)*3.141592653/(n+1)) ! (Remez Points)
fn(i)=f(x(i))
END DO
DO i=1,n+1
DO j=1,n+1
A(i,j)=x(i)**(j-1)
END DO
END DO
CALL GAUSS(n+1,A,fn) ! (The solution is returned in fn)
DO i=1,n+1
astar(i)=fn(i)
END DO
RETURN
END SUBROUTINE CHEBYSHEV
!**
FUNCTION f(x)
f=· · · · · · · · · · · ·
RETURN
END FUNCTION f(x)
!**
! Append SUBROUTINE GAUSS

348 8 Approximation

Applying the above subroutine CHEBYSHEV, for the functions sin(π
4 x) and

cos
(

π
4 x
)
, the following interpolated approximations are obtained:

sin

(
π

4
x

)
≈ 0.78540 x − 0.08075 x3 + 0.00249 x5 − 0.00004 x7

cos

(
π

4

)
≈ 1 − 0.30842 x2 + 0.01582 x4 − 0.00004 x6

The right-hand side expressions in both the cases are the same irrespective of the
choice of Chebyshev or Remez interpolation points. The two expressions are remark-
ably accurate to single precision arithmetic, when they are compared to the accurate
expressions obtained by the Exchange Algorithm quoted in the preceding section.

8.2.2 Chebyshev Series and Economisation of Polynomials

The Chebyshev polynomials Tn(x) introduced in Sect. 4.3 of Chap. 4 satisfy the
property that

∫ 1

−1

Ti (x) Tj (x)√
1 − x2

dx =
∫ π

0
cos(iθ) cos(jθ) dθ =

{ π,

π/2,
0,

i = j = 0
i = j �= 0
i �= j

In Sect. 8.4 of this chapter, on orthogonal polynomials, such property will be called
orthogonality. Following this property, one can contemplate expansion of a given
function f ∈ C[−1, 1] in a Fourier type Chebyshev series

f (x) = c0
2

+
∞∑
j=1

c j Tj (x) (8.9)

Naively multiplying the two sides by Ti (x)/
√
1 − x2 and integrating from −1 to 1,

we get from the orthogonality property

ci = 2

π

∫ 1

−1

f (x) Ti (x)√
1 − x2

dx = 2

π

∫ π

0
f (cos θ) cos iθ dθ, i = 0, 1, 2, · · · (8.10)

However importantly, according to a theorem in analysis that when f ∈ C[−1, 1]
the infinite series in Eq. (8.9) indeed converges to f (x). This means that the nth
partial sum

cn(x) = c0
2

+
n∑

j=1

c j Tj (x) (8.11)

8.2 Best Uniform (Minimax) Approximation 349

approximates f (x), which improves with increasing n. In fact it can be proved that
if f ∈ C p[−1, 1], p ≥ 1, then

‖ f − cn‖∞ ≤ Ap ln n

n p
, n ≥ 2

where Ap is dependent on f . For proof, see the texts of Rivlin and Meinardus cited
in the Bibliography.

The exact determination of the coefficients ci is often difficult except in simple
cases. One useful simple case is the following:

xk = γ0

2
+

k∑
j=1

γ j Tj (x), γ j = 2

π

∫ 1

−1

xk Tj (x)√
1 − x2

dx = 2

π

∫ π

0
cosk θ cos jθ dθ

(8.12)
The definite integral for γ j can be evaluated by noting that when k is odd, j takes the
values 1, 3, 5, · · · , k and when k is even, j takes the values 0, 2, 4, · · · , k. Now
the integrand for γ j can be written as

1

2k+1
(eiθ + e−iθ)k(ei jθ + e−i jθ), i = √−1

= 1

2k+1

[
eikθ +

(
k
1

)
ei(k−2)θ +

(
k
2

)
ei(k−4)θ + · · · + e−ikθ

]
(ei jθ + e−i jθ)

The term ei(k−2r)θ · ei jθ becomes 1 if r = (j + k)/2, and analogously, we get 1 also
from the term ei(2r−k)θ · e−i jθ with the same value of r . When we integrate over
[0, π], all other terms vanish and we are left with

γ j = 2

π
· 1

2k+1
·
(

k
(j + k)/2

)
· 2π = 1

2k−1

(
k

(j + k)/2

)
(8.13)

For particular values of k = 0, 1, 2, · · · , 10, the formulae (8.12) and (8.13) yield
the following useful expressions:

1 = T0(x), x = T1(x)

x2 = 1
2 [T0(x) + T2(x)], x3 = 1

4 [3 T1(x) + T3(x)],
x4 = 1

8 [3 T0(x) + 4 T2(x) + T4(x)], x5 = 1
16 [10 T1(x) + 5 T3(x) + T5(x)]

x6 = 1
32 [5 T0 + 15 T2 + 6 T4 + T6]

x7 = 1
64 [35 T1(x) + 21 T3(x) + 7 T5(x) + T7(x)]

x8 = 1
128 [70 T0 + 56 T2 + 28 T4 + 8 T6 + T8]

x9 = 1
256 [126 T1(x) + 84 T3(x) + 36 T5(x) + 9 T7(x) + T9(x)]

x10 = 1
512 [252 T0 + 210 T2 + 40 T4 + 45 T6 + 10 T8 + T10], etc.

(8.14)

350 8 Approximation

The first few in the above set of relations can of course be derived from Eq. (4.18)
of Chap. 4.

The fact that the Chebyshev series expression on the right-hand side of Eq. (8.13)
decreases by a factor 1/2k−1 as k increases, and that |Tn(x)| ≤ 1, one can economise a

certain polynomial Qn(x) =
n∑

k=0

αk xk to the same order of accuracy by a polynomial

of degree less than n. The procedure is examplified below.

Example 1. Let the slowly converging Madhav–Gregory infinite series

tan−1 x = x − x3

3
+ x5

5
− x7

7
+ x9

9
− · · · , −1 ≤ x ≤ 1

be truncated to the 9-th power of x for approximation of tan−1 x , in the range [−α, α],
where α = tan π

8 . Economise the polynomial to the same order of accuracy.

Solution. α = tan(π/8) = 0.4142136. Hence if

f (x) := tan−1 x, Q9(x) = x − x3

3
+ x5

5
− x7

7
+ x9

9

then f (α) = π/8 = 0.3926991 and Q9(α) = 0.3927040. Since the function is
monotonic increasing

‖ f − Q9‖∞ = | f (α) − Q9(α)| = 0.49 × 10−5

Via the substitution x = αt we pass to the interval [−1, 1] so that

S9(t) := Q9(αt) = 0.4142136 t − 0.0236893 t3 − 0.0024387 t5

− 0.0002989 t7 + 0.0000399 t9

Expressing t, t3, t5, t7, t9 in terms of T1(t), T3(t), T5(t), T7(t), T9(t) from Eq.
(8.14), we obtain

S9(t) = 0.3978269 T1(t) − 0.0053112 T3(t) + 0.0001253 T5(t)

−0.0000033 T7(t) + 0.0000002 T9(t)

The error due to the last two terms is less than 0.49 × 10−5. Hence, to the same
accuracy

Q9(t) = 0.4143870 t − 0.0237508 t3 + 0.0020048 t5

= 1.0004186 x − 0.3341992 x3 + 0.1644182 x5

Thus tan−1 x can be approximated by the above quintic in x to the same order of
accuracy in the interval [−α, α]. �

8.2 Best Uniform (Minimax) Approximation 351

Exercises

1. Prove that the Chebyshev series expansion of an even (odd) function is a series of
even (odd) order Chebyshev polynomials.
2. Applying the Trapezoidal Rule, prove that the Chebyshev coefficients can be
approximately computed from the expression

ci ≈ 1

n

[
f (0) + (−1)i f (−1) + 2

n−1∑
k=1

f
(
cos

πk

n

)
cos

πki

n

]

3. Prove that the Chebyshev series expansion of sin−1 x, x ∈ [−1, 1] is

sin−1 x = 4

π

[
T1(x) + 1

9
T3(x) + 1

25
T5(x) + · · ·

]

Hence, show that
π2

8
= 1 + 1

9
+ 1

25
+ · · ·

[Since this is a case of odd function, c2i = 0. The odd coefficients are

c2i+1 = 2

π

∫ 1

−1
sin−1 x · cos((2i + 1) cos−1 x)

dx√
1 − x2

, i = 0, 1, 2, · · ·

or, setting x = cos θ, c2i+1 = 2

π

∫ π

0

(π

2
− θ
)
cos(2i + 1)θ dθ = 4

π

1

(2i + 1)2
.

Finally, set x = 1, and T1(1) = 1].
4. Prove the Chebyshev series expansion

ln
1 + x

1 − x
= 4

[
T1(x) + 1

3
T3(x) + 1

5
T5(x) + · · ·

]

[From Eq. (8.10), ci = 2

π

∫ 1

−1
ln

1 + x

1 − x

Ti (x)√
1 − x2

dx = 4

π

∫ π

0
ln
(
cot

θ

2

)
cos iθ dθ.

Hence, c0 = 0 and ci = 2

π

∫ π

0

sin iθ

sin θ
dθ =: 2

πi
· Ii . Now prove that

Ii = 1
2 Ii + 1

2 Ii−2 or, Ii = Ii−2].
5. The polynomial P3(x) := 5 − 20 x − 9 x2 + x3 is given in [0, 4]. Find the

second-degreepolynomial P2(x) such that δ = max
x ∈ [0, 4]

|P3(x) − P2(x)| becomes

the least possible. What is the value of δ?
[Set x = 2(t + 1), −1 ≤ t ≤ 1. Then P3(t) = −16 T0 − 82 T1 − 6 T2 + 2 T3. For
P2 truncate at T2. Hence, |P3(t) − P2(t)| = 2|T3| ≤ 2. Thus δ = 2 and P2(t) =
−16 − 82 t − 6 (2t2 − 1). Therefore P2(x) = 7 − 29 x − 3 x2].

352 8 Approximation

6. Find a polynomial P(x) of degree as low as possible such that

max
|x | ≤ 1

|ex − P(x)| ≤ 0.05

[ex = 1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120
+ · · · · · · . For |error| ≤ 0.05 truncate at

x4. Hence, ex ≈ 1.5156 T0 + 1.1250 T1 + 0.5208 T2 + 0.0417 T3 + 0.0052 T4. For
|error| ≤ 0.05, neglect T3, T4. Hence, P(x) = 0.995 + 1.125 x + 1.042 x2].

7. Taking the Chebyshev approximation of cos
(π

4
x
)
, x ∈ [−1, 1] as

P(x) := 1.00000 − 0.30842 x2 + 0.01585 x4 − 0.00032 x6

Economise the polynomial for |error| < 10−5.
[P(x) = 0.85163 T0 − 0.14644 T2 + 0.00192 T4 − 0.00001 T6. Neglect T6 to obtain
P(x) = 0.99615 − 0.30824 x2 + 0.10536 x4].
8. The error function is defined by

erf(x) = 2√
π

∫ x

0
e−t2/2 dt

Determine a low-degree polynomial P(x) in [−1, 1] for which | f (x) − P(x)| ≤
10−4.
[Integrating the series expansion of e−t2/2

√
π

2
erf(x) = x − x3

6
+ x5

40
− x7

336
+ x9

3456
− x11

42240
+ · · ·

For |error| ≤ 10−4 truncate at x9. Hence,
√

π
2 erf(x) ≈ 0.889116 T1 − 0.034736 T3 +

0.001278 T5 − 0.000036 T7 + 0.000000 T9. For |error| ≤ 10−4 neglect T7 and T9.
Hence, P(x) = 1.1280 x − 0.1856 x3 + 0.0230 x5].

8.3 Least Squares Approximation

We now consider the approximation of f ∈ C[a, b] by a function φ ∈ C[a, b] based
on the ‖ · ‖2–norm. The 2–norm is taken here in a slightly more general form accord-
ing to

‖ f ‖2 =
(∫ b

a
[f (x)]2w(x) dx

)1/2

(8.15a)

8.3 Least Squares Approximation 353

or, alternatively in a discrete version

‖ f ‖2 =
(N∑

ν=0

[f (xν)]2w(xν)

)1/2

(8.15b)

Here theweight function w(x) > 0, x ∈ (a, b) and in Eq. (8.15b) x0, x1, · · · , xN

are certain fixed points in (a, b). In the space of continuous functions, the norms are
induced by the scalar (or inner) product 〈·〉 of two elements f, g defined by

〈 f, g〉 =
∫ b

a
f (x) g(x) w(x) dx (8.16a)

or

〈 f, g〉 =
N∑

ν=0

f (xν) g(xν) w(xν) (8.16b)

in the discrete version w(x) is usually taken as unity, if nothing is stated specially to
the contrary.

Let the approximating function φ be a generalised polynomial of the form

φ = a0 φ0 + a1 φ1 + · · · + an φn (8.17)

where φ0, φ1, · · · , φn are linearly independent functions continuous on [a, b] and
a0, a1, · · · , an are constants. When φi (x) = xi , φ is a polynomial of degree n.

Definition 8.4 The best generalised polynomial approximation φ of f on [a, b] is
that polynomial which makes ‖ f − φ‖2 the least. For this reason, the best approxi-
mation is called least squares approximation.

The original idea is due to Gauss, who considered smoothing of experimental data containing

errors. He proposed that the sum of the squares of the errors be minimised, in contrast to Laplace’s

proposal of minimising the sum of the absolute values of the errors which tantamount to minimising

the 1-norm. It is easy to see that if there are N measurements y1, y2, · · · , yN of a quantity y, then

the least squares method produces the average value ȳ of these measurements as the approximation

to y. Indeed, the sum of squares of the errors is (y − y1)2 + · · · + (y − yN)2, which is minimum

for (y − y1) + · · · + (y − yN) = 0, yielding the solution ȳ = (y1 + · · · + yN)/N .

To obtain the least squares approximation, we have

‖ f − φ‖22 =
〈

f −
n∑

i=0

ai φi , f −
n∑

j=0

a j φ j

〉

= 〈 f, f 〉 +
n∑

i=0

n∑
j=0

ai a j
〈
φi , φ j

〉− 2
n∑

i=0

ai 〈 f, φi 〉

354 8 Approximation

The right-hand side is a quadratic expression in a0, · · · , an . It is known from the
theory of such expressions that it possesses a unique minimum or least value. For the
least value, differentiating the above expression with respect to ai (i = 0, 1, · · · , n)

and equating to zero, one obtains the so-called normal equations

n∑
j=0

a j
〈
φi , φ j

〉 = 〈 f, φi 〉 (i = 0, 1, · · · , n) (8.18)

for the best values of a0, a1, · · · , an . The matrix
〈
φi , φ j

〉
(i, j = 0, 1, · · · , n) is

called the Gram matrix.

For the scalar product (8.13a), the Gram matrix

〈
φi , φ j

〉 =
∫ b

a
φi (x)φ j (x) w(x) dx (8.19)

is invertible since φ0, · · · , φn are assumed to be linearly independent. This conclu-
sion follows from the contrary result as follows.

Theorem 8.6 The system of functions φ0, φ1, · · · , φn is linearly dependent if and
only if the Gram determinant vanishes.

Proof If φ0, · · · , φn are linearly dependent, constants c0, c1, · · · , cn , not all zero,
can be found such that

n∑
j=0

c j φ j (x) = 0

Multiplying the equality byφi (x) w(x), i = 0, 1, · · · , n and integrating, oneobtains
the relationships

n∑
j=0

c j
〈
φi , φ j

〉 = 0, i = 0, 1, · · · , n (8.20)

which may be treated as a homogeneous system of linear equations having nonzero
solution c0, c1, · · · , cn . Eliminating c0, · · · , cn we obtain det[〈φi , φ j

〉] = 0.
Conversely, suppose that the Gram determinant is equal to zero. This means that

the system of of equations (8.20) has a nonzero solution c j , (j = 0, c1, · · · , cn).
This means that

〈
φi ,

n∑
j=0

c j φ j

〉
=

n∑
j=0

c j
〈
φi , φ j

〉 = 0, i = 0, 1, · · · , n

Now multiplying by ci and summing over i , one has

8.3 Least Squares Approximation 355

〈
n∑

i=0

ciφi ,

n∑
j=0

c jφ j

〉
=
∥∥∥

n∑
j=0

c j φ j

∥∥∥
2

2
= 0

Consequently, c0φ0 + · · · + cnφn = 0, i.e. φ0, φ1, · · · , φn are linearly
dependent. �

Thus for the scalar product (8.19), the normal Eq. (8.18) possess a unique solution,
if φ0, φ1, · · · , φn are linearly independent.

Jørgen Pedersen Gram (1850–1960), Danish mathematician. His main area of work was num-

ber theory, viz., investigation of number of primes less than a given number. He was an amateur

mathematician as he worked in an insurance company in more and more senior roles.

Next consider the scalar product (8.16b). In this discrete case setting x = xν, (ν =
0, 1, 2, · · · , N) in Eq. (8.18), one can construct an N–vector φ̄ =

n∑
j=0

a j φ̄ j where

φ̄ = [φ(x0), · · ·,φ(xN)]T , φ̄ j = [φ j (x0), · · · , φ j (xN)]T , (j = 0, 1, · · · , n). Ifn >

N , then in the vector space of N dimensions, the vectors φ̄0, φ̄1, · · · , φ̄n are always
linearly dependent. Hence, it is assumed that n ≤ N . Moreover, it is assumed that
x0, x1, · · · , xN are distinct data points. The normal equations now become

n∑
j=0

a j
〈
φ̄i , φ̄ j

〉 = 〈 f̄ , φ̄i
〉
, (i = 0, 1, · · · , n) (8.21)

where f̄ = [f (x0), · · · , f (xN)]T . The Gram matrix becomes

〈
φ̄i , φ̄ j

〉 =
N∑

ν=0

φi (xν)φ j (xν) w(xν), (i, j = 0, 1, · · · , n)

and the normal equations (8.21) have a unique solution if and only if the vectors
φ̄0, φ̄1, · · · , φ̄n are linearly independent as in the preceding case. This requires more
than linear independence of the functions φ0, φ1, · · · , φn .

Theorem 8.7 The vectors φ̄0, φ̄1, · · · , φ̄n are linearly independent if and only if
functions φ0, φ1, · · · , φn ∈ Haar space U on [a, b].
Proof The Haar space is defined in Chap. 4. Let φ0, φ1, · · · , φn ∈ U , then φ0,

φ1, · · · , φn are linearly independent on [a, b], each function possessing at most n
zeros in the interval. If possible let φ̄0, φ̄1, · · · , φ̄n be linearly dependent. Then
constants c0, c1, · · · , cn , not all zero, can be found such that

n∑
j=0

c j φ̄ j = 0, or
n∑

j=0

c j φ j (xν) = 0, (ν = 0, 1, · · · , n) (8.22)

356 8 Approximation

This must hold for all choice of distinct xν . Hence, x0, · · · , xN form zeros of φ j (x).
Since their number is N + 1 > n, φ j /∈ U , which is a contradiction.

Conversely, let φ̄0, φ̄1, · · · , φ̄n be linearly independent, then constants c0, c1, · · ·,
cn �= 0 can not be found such that (8.22) holds. This means that the functions φ j are
linearly independent and cannot have N + 1 > n zeros. This means that φ j ∈ Haar
space U . �

Example 1. Construct the unit weight least squares approximation of f (x) = √
x

on the interval [0, 1] by a linear function. Calculate the root-mean-square deviation
of the approximation required.

Solution. The required approximating function isφ(x) := a0 + a1 x .Hence,φ0(x) =
1, φ1(x) = x . With w(x) = 1 (unit weight),

〈φ0, φ0〉 =
∫ 1

0
12 dx = 1, 〈φ0, φ1〉 =

∫ 1

0
1 · x dx = 1

2
, 〈φ1, φ1〉 =

∫ 1

0
x2 dx = 1

3

〈 f, φ0〉 =
∫ 1

0

√
x · 1 dx = 2

3
, 〈 f, φ1〉 =

∫ 1

0

√
x · x dx = 2

5

Hence, the normal equations are

1 · a0 + 1

2
a1 = 2

3
,

1

2
a0 + 1

3
a1 = 2

5

Solving the two equations, a0 = 4/15, a1 = 4/5. Hence, φ(x) = 4/15 + (4/5) x .
The root-mean-square error of the approximation is

√∫ 1

0

(√
x − 4

15
− 4

5
x
)2

dx =
√
2

30

�
Exercises

1. Prove that the linear least squares approximation of x1/3 in [0, 1] is 3

7
+ 9

14
x ,

with root-mean-square error

√
561

980
.

2. Prove that the second-degree least squares approximation of
√

x in [0, 1] is
1

35
(6 + 48 x − 20 x2). What is the root-mean-square error?

3. Prove that the least squares approximation of degree 2 of the function 1/(1 + x2)

in [−1, 1] is 1

4
[3(2π − 5) + 15(3 − π) x2].

8.3 Least Squares Approximation 357

8.3.1 Least Squares Polynomial Approximation over Given
Data Set

Suppose a set of data (x0, y0), (x1, y1), · · · , (xn, yn) is given for a function f
and we want to obtain the least squares fit by a polynomial φ(x) := a0 + a1x +
· · · + an xn, (n ≤ N). We note that the polynomial is constituted of the monomi-
als 1, x, x2, · · · , xn that belong to Haar space U . Hence, f can be least squares
approximated by φ by minimising

S := ‖ f − φ‖22 =
N∑

j=0

(y j − a0 − a1x j − · · · − an xn
j)

2

Hence,
∂S

∂ai
= −2

N∑
j=0

(y j − a0 − a1x j − · · · − an xn
j) · xi

j = 0

for the minimum, or

a0

N∑
j=0

xi
j + a1

N∑
j=0

xi+1
j + · · · + an

N∑
j=0

xi+n
j =

N∑
j=0

xi
j y j (8.22a)

for i = 0, 1, · · · , n. These are the normal equations for the problem.

Setting si =
∑

j

x j , vi =
∑

j

x i
j y j , the equations take the form

s0 a0 + s1 a1 + · · · + sn an = v0

s1 a0 + s2 a1 + · · · + sn+1 an = v1
· ·
sn a0 + sn+1 a1 + · · · + s2n an = vn

(8.22b)

where, evidently s0 = N + 1.
In the case of a linear fit (or regression) n = 1, the normal equations become

(N + 1) a0 + s1 a1 = v0, s1 a0 + s2 a1 = v1

whose solution is

a1 = (N + 1) v1 − s1 v0

(N + 1) s2 − s21
, a0 = v0

N + 1
− a1

s1
N + 1

The degree n of the polynomial in any practical application of the above procedure
should be selected on the basis of the trend shown by the data points. If the trend is
linear, a linear fit should be used; if it is parabolic a second-degree fit is appropriate.

358 8 Approximation

High degree fits are seldom attempted and in fact it has been noticed that the normal
equations become ill-conditioned for degree exceeding 5.A good statistical rule is to
begin with the first degree and continue fitting higher degree polynomials of degree
≤ n(< 5), until

Sk

n − k − 1
>

Sk−1

n − k

where Sk is the sum of squares of errors of polynomial of degree k.
The difficulty of ill-condition can be gauged from the fact that the matrix of the

coefficients of the normal equations is

σi j :=
N∑

k=0

xi+ j
k , (i, j = 0, 1, · · · , n)

If the points xk are uniformly distributed (in the probabilistic sense) over [0, 1] and
N is large

σi j = N
∫ 1

0
xi+ j dx

= N

i + j + 1

Thus the matrix of the coefficients is the Hilbert matrix
⎡
⎢⎢⎣

1/1 1/2 1/3 · · · 1/n + 1
1/2 1/3 1/4 · · · 1/n + 2
· · · · · · · · · · · · · · ·

1/(n + 1) 1/(n + 2) 1/(n + 3) · · · 1/(2n)

⎤
⎥⎥⎦

whose determinant tends to 0 as n increases, making it ill-conditioned.
The problem of ill-condition and solution in general can be altogether avoided if

we choose the functions φ0, φ1, · · · , φn to be orthogonal, that is if they satisfy the
condition 〈

φi , φ j
〉 = 0 for i �= j

In this case the solution of the normal equations (8.18) becomes

ai = 〈 f, φi 〉
〈φi , φi 〉 (8.23)

This prospect is explored in the next section.

8.3 Least Squares Approximation 359

Exercises

1. The following table shows height (h) and weight (w) of eight persons:

h (cm) 150 155 160 165 170 175 180 185
w (kg) 51 53 59 58 62 68 71 68

Assuming a linear relationship between the height and weight, find the regression
line and estimate the weight of two persons with height 140 and 172 cm.
[w = −34.4644 + 0.5714 h. 45.536 and 63.821kg].
2. Experimental data on constant filtration of a CaCO3 slurry through a canvas
medium is given in the following table:

x 5 10 15 20 25 30 35 40
y 0.530 0.716 0.806 0.869 0.943 1.013 1.096 1.160

x in this case is the total volume (ml) of filtrate collected till time t (s) and y is t/x . A
chemical engineer knows that this process is described by the equation y = a0 + a1 x .
Obtain least squares estimate of a0 and a1.
[a0 = 0.57614, a1 = 0.01469].
3. Experiments with a periodic process gave the following data:

to 0 50 100 150 200 250 300 350
y 0.754 1.762 2.041 1.412 0.303 −0.484 −0.380 0.520

If the process ismodelled as y = a0 + a1 sin t , estimate a0 and a1 by the least squares
method.
[Let x = sin t and form the data for x . a0 = 0.75258, a1 = 1.31281].
4. Show that the following regression models are linearisable:

(i) y = a + b

xn
(i i) y = xm

a + bxn
(i i i) y = axb (iv) y = exp[−(ax)b].

Obtain the linearised forms.
[(i) y = a + b(x−n) (i i) xm/y = a + bxn (i i i) ln y = ln a + b (ln x)

(iv) ln ln(1/y) = b ln a + b (ln x)].
5. Fit the saturation growth rate model y = ax/(b + x) to the data given below:

x 2 4 6 8 10
y 1.4 2.0 2.4 2.6 2.7

[1/y = 1/a + (b/a)/x; a = 2.80948, b = 1.49190].
6. In an experiment to determine the specific heat γ for a certain gas from the ideal gas
law pV γ = C , the following values of pressure p were obtained for predetermined
values of volume V :

360 8 Approximation

V (in3) 50 30 20 15 10
p (lb/in2) 16.6 39.7 78.5 115.5 195.3

Estimate γ by the least squares method.
[γ = 1.54].
7. The dynamic viscosity μ (poise) as a function of the temperature T (oC) for water
is well modelled by the Walther formula μ = μ0 exp(T0/T)n . Assuming n = 1,
estimate the unknown parameters by least squares, given the data:

T 10 20 30 40 50 60 70 80 90 100
μ 1.310 1.011 0.803 0.659 0.555 0.478 0.416 0.367 0.328 0.296

[ln μ = (ln μ0) + T0 (1/T); μ0 = 0.350, T0 = 15.72].
8. A quadratic function y = a0 + a1 x + a2 x2 should be fitted with the following
data:

x 8 10 12 16 20 30
y 4.41 8.12 12.40 23.60 37.92 88.31

Determine least squares estimate of a0, a1, a2.
[a0 = −1.56277, a1 = −0.05820, a2 = 0.1018].
9. The variation of refractive index μ (unitless) of a polished plane metal surface can
be modelled by the Cauchy equation μ = a + b/λ2 + c/λ4, where λ (10−9m) is the
wavelength of light. Calculate a, b, and c for gold given the data:

λ 400 450 500 550 600 650 700
μ 0.360 0.385 0.415 0.740 0.845 0.890 0.925

[Put x = 1/λ2. a = 2.137, b = −6.633 × 10−3, c = 6.151 × 10−6].
10. A bivariate function z depends linearly on independent variables as z = a0 +
a1 x + a2 y. Show that the normal equations for estimating a0, a1, a2 from n + 1
given data are ⎡

⎢⎣
n + 1

∑
xi

∑
yi∑

xi
∑

x2
i

∑
xi yi∑

yi
∑

xi yi
∑

y2i

⎤
⎥⎦

⎡
⎢⎣

a0

a1

a2

⎤
⎥⎦ =

⎡
⎢⎣

∑
zi∑

xi zi∑
yi zi

⎤
⎥⎦

11. The density of population of fish in a river depends on the rise/width x and the
amount of calcium in water y. If the square root of the number of fish per hectare is
z = a0 + a1 x + a2 y, estimate a0, a1, a2 by least squares, given the data

x 25 30 45 60 75 90 100 110
y 3 4 5 8 5 8 4 5
z 5 6 6 6 5 5 2 2

[Use Ex. 10. a0 = 5.204, a1 = −0.051, a2 = 0.541].

8.4 Orthogonal Polynomials 361

8.4 Orthogonal Polynomials

In the preceding section, it was shown that an arbitrary function f ∈ C[a, b] could
be compactly approximated by a generalised polynomial consisting of orthogonal
functions (Eqs. (8.17), (8.23)). Pursuing this idea, we consider the latter functions to
be polynomials of certain degree.We have already come across two special functions
of this type, viz., the Legendre and the Chebyshev polynomials in Chaps. 5 and 4,
respectively. These functions figure prominently in Function Theory also, but in the
following we give a straightforward development.

Let the orthogonal polynomials be denoted as p0(x), p1(x), · · · , pn(x), · · ·
where it is assumed that (1) the exact degree of pn is n, and (2)

〈
pi , p j

〉 = 0 for
i �= j (orthogonality condition). Further if 〈pi , pi 〉 = 1, the orthogonal polynomi-
als are called orthonormal. We first show the following.

Theorem 8.8 (Gram–Schmidt Orthogonalisation). Let p0(x) = 1, then given
a scalar product 〈· , ·〉, the set of orthogonal polynomials p1(x), p2(x), · · · ,

pn(x), · · · is recursively given by the equation

pn(x) = xn −
n−1∑
i=0

〈xn, pi 〉
〈pi , pi 〉 pi (x), n = 1, 2, · · · (8.24)

Proof Suppose that p0, p1, · · · , pn−1 have been constructed such that
〈
pi , p j

〉 = 0
for i �= j , (j = 0, 1, · · · , n − 1). We can then set

pn(x) = xn − α0 p0(x) − · · · − αn−1 pn−1(x)

and determine αi by putting 〈pn, pi 〉 = 0. for i = 0, 1, · · · , n − 1. Thus

0 = 〈pn, pi 〉 = 〈xn, pi
〉−

n−1∑
j=0

α j
〈
p j , pi

〉 = 〈xn, pi
〉− αi 〈pi , pi 〉

or, αi = 〈xn, pi 〉
〈pi , pi 〉 , i = 0, 1, · · · , n − 1

Hence, we obtain Eq. (8.24), satisfyng the orthogonality condition. �

In practice, one could use the Gram–Schmidt orthogonalisation procedure to actu-
ally construct the orthogonal polynomials for given interval and weight function, but
there is a better way to do this in view of the following.

Theorem 8.9 Let p0, p1, · · · , pn, · · · be orthogonal polynomials. Then there exist
constants An �= 0, Bn, Cn �= 0 such that

pn(x) = (An x + Bn) pn−1(x) − Cn pn−2(x), for n = 1, 2, · · · (8.25)

where p−1(x) ≡ 0.

362 8 Approximation

Proof Let the leading coefficient of pn be αn , i.e. pn(x) = αn xn + · · · for n =
0, 1, 2, · · · , then by definition αn �= 0. Let

An = αn

αn−1
�= 0

Then pn(x) − An x pn−1(x) is a polynomial of degree n − 1. Hence, we can write

pn(x) − An x pn−1(x) = b0 p0(x) + · · · + bn−1 pn−1(x)

Taking scalar product with p j (x), j ≤ n − 1 we get by orthogonality

b j
〈
p j , p j

〉 = 〈pn, p j
〉− An

〈
x pn−1, p j

〉

= −An
〈
pn−1, x p j

〉

since by definition of scalar product 〈xp, q〉 = 〈p, xq〉. Now x p j (x) is a polyno-
mial of degree j + 1. Hence, if j + 1 < n − 1 or j < n − 2,

〈
pn−1, x p j

〉 = 0 and
therefore b j = 0 for j < n − 2. Setting Bn := bn−1 and Cn := −bn−2, we obtain the
recurrence relation (8.25).

If we take scalar product of Eq. (8.25) with pn−1, we easily obtain

Bn = −An
〈x pn−1, pn−1〉
〈pn−1, pn−1〉

Similarly if we take scalar product with pn−2, we obtain

Cn = An
〈x pn−1, pn−2〉
〈pn−2, pn−2〉

But following Eq. (8.25)

pn−1(x) = (An−1x + Bn−1) pn−2(x) − Cn−1 pn−3(x)

Taking scalar product with pn−1,

〈pn−1, pn−1〉 = An−1 〈x pn−2, pn−1〉 = An−1 〈x pn−1, pn−2〉

by orthogonality and definition. Hence

Cn = An

An−1

〈pn−1, pn−1〉
〈pn−2, pn−2〉 �= 0

�

For the purpose of constructing orthogonal polynomials by the application of the
above theorem, one usually selects the leading coefficientαn or equivalently the ratio
An , so that the resulting sequence is simple enough in some sense.

8.4 Orthogonal Polynomials 363

Remark. The orthogonal polynomial pn(x) possesses the remarkable property that
it has exactly n simple real zeros in [a, b]. For, let pn(x) change sign at the
distinct points ξ1, ξ2, · · · , ξm ∈ [a, b], then m ≤ n. Suppose m < n, then with
x̄ ∈ (max{ξ1, · · · , ξm}, b), the polynomial

q(x) := pn(x̄) (x − ξ1) · · · (x − ξm)

has a degree m < n. Hence

〈pn, q〉 =
∫ b

a
pn(x) q(x) w(x) dx = 0

But for any x ∈ [a, b], q(x) has the same sign as pn(x) except at the m zeros (pn(x̄)

in the definition of q(x) captures the sign of the non-fluctuating part of pn(x)). This
means that p(x) · q(x) > 0, x �= ξi (i = 1, 2, · · · , m) and the above integral must
be positive and cannot vanish, which is a contradiction. Hence m = n.

We now treat some important special cases.

1o.Legendre Polynomials. Let the interval be [−1, 1]with weight functionw(x) =
1 for orthogonal polynomials denoted by Pn(x). Let the polynomial be normalised
by the condition Pn(1) = 1 and so

A1 + B1 = 1, An + Bn − Cn = 1 (n ≥ 2)

For n = 0, P0(x) = constant = P0(1) = 1. For n = 1

B1 = −A1

∫ 1
−1 x · 1 · 1 dx
∫ 1
−1 1 · dx

= 0, A1 = 1

Hence P1(x) = x . For n = 2,

B2 = −A2

∫ 1
−1 x · x · x dx
∫ 1
−1 x · x dx

= 0, C2 = A2

A1

∫ 1
−1 x · x dx
∫ 1
−1 1 · 1 dx

= A2

3

and therefore, A2 = 3/2, C2 = 1/2.

Hence P2(x) = 1

2
(3x2 − 1). For n = 3,

B3= −A3

∫ 1
−1 x · 1

4 (3x2 − 1)2 dx
∫ 1
−1

1
4 (3x2 − 1)2 dx

= 0, C3= A3

A2

∫ 1
−1

1
4 (3x2 − 1)2 dx
∫ 1
−1 x2 dx

= 2

5
A3

364 8 Approximation

and so, A3 = 5/3, C3 = 2/3.

Hence P3(x) = 1

2
(5x3 − 3x), etc. In general, one identifies that

Bn = 0, Cn = n − 1

n
, An = 1 − Bn + Cn = 2n − 1

n

and so the Legendre polynomials satisfy the recurrence relations

n Pn(x) = (2n − 1) x Pn−1(x) − (n − 1) Pn−2(x)

In the theory of differential equations, it is shown that

Pn(x) = 1

n! 2n

dn

dxn
[(x2 − 1)n]

known as Rodrigue’s Formula that satisfies the second-order differential equation

(1 − x2) P ′′
n (x) − 2x P ′

n (x) + n(n + 1) Pn(x) = 0

satisfying the orthogonality relations

∫ 1

−1
Pi (x) Pj (x) dx =

{ 2

2i + 1
, i = j

0, i �= j

These polynomials appeared in the derivation of the Gauss quadrature formula
(Chap. 5, Sect. 5.2.4).

2o.Chebyshev Polynomials. In Sect. 4.3 ofChap. 4, it was shown that theChebyshev
Polynomials Tn(x) = cos(n cos−1 x) satisfy the recurrence relation

Tn(x) = 2x Tn−1(x) − Tn−2(x)

which is of the form (8.25) with An = 2, Bn = 0, Cn = −1. The orthogonality
relations are

∫ 1

−1

Ti (x) Tj (x)√
1 − x2

dx =
∫ π

0
cos(iθ) cos(jθ) dθ =

{ π, i = j = 0
π/2, i = j �= 0
0, i �= 0

Thus Chebyshev Polynomials are orthogonal on [−1, 1] with weight function
w(x) = (1 − x2)−1/2. Also Tn(1) = 1.

8.4 Orthogonal Polynomials 365

Exercises

1. Calculate the Legendre Polynomials of order 0–4 using the recurrence relation:

[P0(x) = 1, P3(x) = 1

2
(5x3 − 3x)

P1(x) = x, P4(x) = 1

8
(35x4 − 30x2 + 3)

P2(x) = 1

2
(3x2 − 1)].

2. (Laguerre Polynomials). The Laguerre Polynomials Ln(x) are orthogonal in
[0, ∞] with weight function w(x) = e−x and satisfy the recurrence relations

n Ln(x) = (2n − 1 − x) Ln−1(x) − (n − 1) Ln−2(x), (n = 1, 2, · · ·)

Calculate Ln(x) for n = 0, 1, 2, 3, 4.
[L0(x) = 1, L1(x) = −x + 1, L2(x) = 1

2 (x2 − 4x + 2),
L3(x) = 1

6 (−x3 + 9x2 − 18x + 6), L4(x) = 1
24 (x4 − 16x3 + 72x2 − 96x + 24)].

3. (Hermite Polynomials). The Hermite Polynomials Hn(x) are orthogonal in
(−∞, ∞) with weight function w(x) = e−x2

. They satisfy the recurrence relations

Hn(x) = 2x Hn−1(x) − 2(n − 1) Hn−2(x), (n = 1, 2, · · ·)

Calculate Hn(x) for n = 0, 1, 2, 3, 4.
[H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x, H4(x) = 16x4 −
48x2 + 12].

8.5 Orthogonal Polynomials over Discrete Set of Points:
Smoothing of Data

We now touch upon the topic of least squares approximation by polynomials when
the scalar product is defined over a discrete set of N + 1 points as in Eq. (8.16b). For
simplicity, we assume that the weight function is unity and the set of points is equally
spaced. Using the common equal space as a unit of scale, the points can be taken as
0, 1, 2, · · · , N . A polynomial of degree n ≤ N (n ≥ 1) which passes through the
first n + 1 of these points is

pnN (x) := 1 +
n∑

j=1

(−1) j

(
m
j

)(
n + j

j

)
x(x − 1) · · · (x − j + 1)

N (N − 1) · · · (N − j + 1)
(8.26)

366 8 Approximation

For n = 0, we define p0N := 1. pnN (x) so defined is known as Gram Polynomial or
sometimes as Chebyshev Polynomial. In particular, for n = 1, 2, 3, the summation
in (8.26) reduces to

p1N (x) = 1 − 2
x

N

p2N (x) = 1 − 6
x

N
+ 6

x(x − 1)

N (N − 1)

p3N (x) = 1 − 12
x

N
+ 30

x(x − 1)

N (N − 1)
− 20

x(x − 1)(x − 2)

N (N − 1)(N − 2)

(8.27)

The polynomials pnN (x) are orthogonal with respect to the discrete scalar product
(8.16b). In fact, it can be proved that

〈pm N , pnN 〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, m �= n

N + 1, m = n = 0

(n + N + 1)(n + N) · · · (N + 1)

N (N − 1) · · · (N − n + 1) · (2n + 1)
, m = n ≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.28)

Thus ab initio, for example,

〈p0N , p0N 〉 =
N∑

ν=0

1 · 1 = N + 1

〈p0N , p1N 〉 =
N∑

ν=0

1 ·
(
1 − 2ν

N

)
= N + 1 − 2

N
· N (N + 1)

2
= 0

〈p1N , p1N 〉 =
N∑

ν=0

(
1 − 2ν

N

)2 = N + 1 − 4

N
· N (N + 1)

2

+ 4

N 2
· N (N + 1)(2N + 1)

6
= (N + 2)(N + 1)

3N

which agree with the values obtained from Eq. (8.28).
Consider now the least squares approximation of a function f by Gram polyno-

mials defined on the set of points {0, 1, · · · , N }. If the approximating polynomial
φ is of degree n ≤ N , then by the method of least squares, Eqs. (8.17) and (8.23)
become

φ(x) =
n∑

j=0

a j p j N (x), a j =
〈
f, p j N

〉
〈
p j N , p j N

〉 (8.29)

The formulae (8.29) have a useful application in smoothing of a table of values
of f (xi) for equally spaced xi . The values f (xi) often contain error, specially when
they are results of experimental observations. Joining such data by lines results in a

8.5 Orthogonal Polynomials over Discrete … 367

crude zig-zag curve. In order to recover the trend of the function by a smooth curve,
one can replace f (xi) by φ(xi)—the least squares polynomial approximation over
some neighbouring data points.

To illustrate, consider three points say i − 1, i, i + 1, so that N = 2, and n = 1
(linear polynomial). Using Eqs. (8.29), (8.27) and (8.28),

φ(x) = a0 p02(x) + a1 p12(x) = a0 + a1

(
1 − 2 · x

2

)

where

a0 = 〈 f, p02〉
〈p02, p02〉 = 1

3
〈 f, 1〉 = 1

3
(fi−1 + fi + fi+1)

a1 = 〈 f, p12〉
〈p12, p12〉 = 1

2
[fi−1 p12(0) + fi p12(1) + fi+1 p12(2)]

= 1

2
[fi−1 · (1 − 0) + fi · (1 − 1) + fi+1 · (1 − 2)] = 1

2
[fi−1 − fi+1]

Thus for the three points i − 1, i, i + 1, i.e., x = 0, 1, 2, we obtain

f̄i = φ(1) = a0 + a1 · 0 = 1

3
(fi−1 + fi + fi+1) (8.30)

f̄i−1 = φ(0) = a0 + a1 · (1 − 0) = 1

6
(5 fi−1 + 2 fi − fi+1) (8.30a)

f̄i+1 = φ(2) = a0 + a1 · (1 − 2) = 1

6
(− fi−1 + 2 fi + 5 fi+1) (8.30b)

In the middle portion of the table fi may be modified by f̄i (Eq. (8.30)), while at the
beginning and end of the table, formulae (8.30a) and (8.30b) may, respectively, be
used for smoothing.

Other formulae such as five point third-degree least squares smoothing can be
similarly found. Here N = 4 with designated points i − 2, i − 1, i, i + 1, i + 2
and n = 3. From Eqs. (8.29), (8.27) and (8.28), we obtain

φ(x) = a0 p04(x) + a1 p14(x) + a2 p24(x) + a3 p34(x)

= a0 + a1

(
1 − x

2

)
+ a2

(
1 − 3

2
x + 1

2
x (x − 1)

)

+a3

(
1 − 3 x + 5

2
x(x − 1) − 5

6
x(x − 1)(x − 2)

)

368 8 Approximation

where

a0 = 〈 f, p04〉
〈p04, p04〉 = 1

5
(fi−2 + fi−1 + fi + fi+1 + fi+2)

a1 = 〈 f, p14〉
〈p14, p14〉 = 2

5
(fi−2 + 1

2
fi−1 − 1

2
fi+1 − fi+2)

a2 = 〈 f, p24〉
〈p24, p24〉 = 2

7
(fi−2 − 1

2
fi−1 − fi − 1

2
fi+1 + fi+2)

a3 = 〈 f, p34〉
〈p34, p34〉 = 1

10
(fi−2 − 2 fi−1 + 2 fi+1 − fi+2)

Hence, the smoothing values (for x = 0, 1, 2, 3, 4) are obtained as

f̄i−2 = φ(0) = 1

70
(69 fi−2 + 4 fi−1 − 6 fi + 4 fi+1 − fi+2)

f̄i−1 = φ(1) = 1

35
(2 fi−2 + 27 fi−1 + 12 fi − 8 fi+1 + 2 fi+2)

f̄i = φ(2) = 1

35
(−3 fi−2 + 12 fi−1 + 17 fi + 12 fi+1 − 3 fi+2)

f̄i+1 = φ(3) = 1

35
(2 fi−2 − 8 fi−1 + 12 fi + 27 fi+1 + 2 fi+2)

f̄i+2 = φ(4) = 1

70
(− fi−2 + 4 fi−1 − 6 fi + 4 fi+1 + 69 fi+2)

(8.31)

For other (higher order) formulae, see Hildebrand cited in the Bibliography. A guide-
line for selecting a particular formula is based on the observation that the amount of
smoothing increases with N and decreases with increasing values of n. In practice,
however, it is convenient to employ a smoothing formula involving a small number of
points together with a low-degree polynomial, e.g., Eqs. (8.30) and (8.31), and repeat
the smoothing process a few number of times. Repeated smoothing is, however, not
recommended.

The smoothing process by least squares polynomial approximation can also be
substantiated from the point of probability theory. If f (xi) is an observed value, the
actual value is of the form

f ∗
i (xi) = f (xi) + ηi

where ηi is the error with zero mean value and variance σ2 independent of i . If the
errors in the sequence of observations are assumed independent, then

E[ηi] = 0, E[ηiη j] =
{
0, i �= j
σ2, i = j

8.5 Orthogonal Polynomials over Discrete … 369

where E[·] denotes expectation value. Hence, the coefficient a∗
j in the polynomial

approximation (8.29) is of the form

a∗
j =

〈
f ∗, p jn

〉
〈
p j N , p j N

〉 =
〈
f + η, p j N

〉
〈
p j N , p j N

〉 =
〈
f, p j N

〉
〈
p j N , p j N

〉 +
〈
η, p j N

〉
〈
p j N , p j N

〉 =: a j + γ j

Now,

E[γ j] = 1〈
p j N , p j N

〉 E[〈η, p j N
〉] = 1〈

p j N , p j N
〉 E
[∞∑

i=0

ηi p j N (xi)
]

= 1〈
p j N , p j N

〉
N∑

i=0

p j N (xi) E[ηi] = 0

Thus E[a∗
j] = a j , i.e., the expected value of a∗

j equals a j . Moreover, it can similarly
be proved that

E[γ j γk] =

⎧⎪⎨
⎪⎩

0, j �= k

σ2

〈
p j N , p j N

〉 , j = k

Now in the smoothing formulas we find that
〈
p j N , p j N

〉
> 1. For instance, in the

formulas (30) and (31), the variance of the error in the smoothed values of f̄i = a∗
0

and f̄i = a∗
0 − a∗

2 are, respectively,

σ2

3
and

σ2

5
+ σ2

7/2
= 17

35
σ2

Thus, the variance of the error in the smoothed values decreases, justifying the
terminology smoothing of data.

Example 1. The time-averaged velocity of flow ū in an open channel with sandy
bed, as measured by Acoustic Doppler Velocitimeter is tabulated below:

y (cm) 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0
ū (cm/s) 12.96 22.79 24.17 25.59 28.70 32.63 35.03 33.95

3.5 4.0 4.5 5.0 6.0 7.0 8.0 9.0
36.03 36.43 36.19 36.44 38.17 38.80 38.47 39.32

where y is the height above the bed level. Smooth the data using three-point linear
formulae (30, a, b).

Solution. We can apply Eqs. (8.30), (8.30a) and (8.30b) to three equally spaced
ranges (0.5, 1.5), (2, 5) and (6, 9). We thus obtain the smoothed data

370 8 Approximation

y 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0
ū 14.37 19.97 24.18 26.15 28.42 32.12 33.87 35.00

3.5 4.0 4.5 5.0 6.0 7.0 8.0 9.0
35.47 36.22 36.35 36.36 37.80 38.48 38.86 39.12

Note that the variation of ū with y is now more gradual. �

8.6 Trigonometric Approximation

Many natural phenomena, such as light and sound, have periodic character. If such
a phenomenon is described by a periodic function f , then f (x + τ) = f (x) for
all real x , where τ—a fixed number is called the period of the function. Now, the
trigonometric functions sine and cosine are known to be periodic with period 2π
as well as bounded. Hence, if τ = 2π, we may consider approximation of f by a
trigonometric polynomial φ, where

φ(x) = a0

2
+

n∑
j=1

(a j cos j x + b j sin j x) (8.32)

in which a j , b j are constants and x ∈ [0, 2π]. If τ �= 2π, we can consider the func-
tion g(x) = f (τ x/(2π)), where

g(x) = f
(τ x

2π

)
= f

(τ x

2π
+ τ
)

= f
[τ

2π
(x + 2π)

]
= g(x + 2π)

The function g is therefore periodic with period 2π. Thus without loss of generality
we can take τ = 2π.

On the interval [0, 2π], the functions cos j x and sin j x are orthogonal for j =
0, 1, 2, · · · , , n since

∫ 2π

0
cos j x sin kx dx = 1

2

∫ 2π

0
[sin(j + k)x − sin(j − k)x] dx = 0

∫ 2π

0
cos j x cos kx dx = 1

2

∫ 2π

0
[cos(j + k)x + cos(j − k)x] dx =

{
0 for j �= k
π for j = k

and likewise for
∫ 2π

0
sin j x sin kx dx . Thus as the solution of normal equation (8.18)

we obtain the Fourier Coefficients

8.6 Trigonometric Approximation 371

a j = 1

π

∫ 2π

0
f (x) cos j x dx, b j = 1

π

∫ 2π

0
f (x) sin j x dx (8.33)

for j = 0, 1, 2, · · · , n.
If the function f is given, the Fourier coefficients can be calculated in many

cases, but that is not our point of view. We rather assume that f (x) is given at a
discrete set of data points. Dividing the interval [0, 2π] into N equal parts by division
points xν = 2νπ/N (ν = 0, 1, 2, · · · , N), the corresponding values of f (x) can
be designated as yν (ν = 0, 1, 2, · · · , N) where yN = y0 due to periodicity of
f (x). If the integrals appearing in the Fourier coefficients (8.33) are numerically
evaluated by the Rectangle Rule, we get

a j ≈ 2

N

N−1∑
ν=0

yν cos
(

j
2νπ

N

)
, b j ≈ 2

N

N−1∑
ν=0

yν sin
(

j
2νπ

N

)
(8.34)

for j = 0, 1, 2, · · · , n. The least squares approximation is then given by Eqs. (8.32)
and (8.34).

We can show that formulas (8.32) and (8.34) are least squares approximation
under the discrete inner product (8.16b), when the discrete points of division are
xν = 2νπ/N (ν = 0, 1, · · · , N − 1) where N > 2n. To show this, we note that

N−1∑
ν=0

[cos(j xν) + i sin(j xν)] =
N−1∑
ν=0

ei j xν =
N−1∑
ν=0

e2πiν j/N

=
1 −

(
e2πi j/N

)N

1 − e2πi j/N
= 0

where i = √−1 and j = 0, 1, 2, · · · , n. If the order of the polynomial n < N/2,
it follows that the Gram matrix

〈cos j x, sin kx〉 =
N−1∑
ν=0

cos j xν sin kxν = 1

2

N−1∑
ν=0

[sin(j + k) xν − sin (j − k) xν]= 0

〈cos j x, cos kx〉 =
N−1∑
ν=0

cos j xν cos kxν = 1

2

N−1∑
ν=0

[cos(j + k) xν + cos(j − k) xν]

=
{
0 for j �= k
N/2 for j = k

and similarly for 〈sin j x, sin kx〉. Due to orthogonality of cosine and sine functions
on the discrete set of points xν , the solution of the normal equations (8.18) is

372 8 Approximation

a j = 〈 f, cos j x〉
〈cos j x, cos j x〉 , b j = 〈 f, sin j x〉

〈sin j x, sin j x〉
that are nothing but Eq. (8.34).

Exercises

1. Set up a trigonometric interpolating polynomial of order 4 for y = f (x) in [0, π]
given by the table

x 0 π/4 π/2 3π/4 π

y 1 2 2.4 2.6 1

[Make a data set for y − 1 by extending the table to 2π symmetrically for negative
values of y − 1, and use Eq. (8.34), N = 8, n = 4.φ(x) = 1 + cos x − 0.9 cos 2x +
0.1 cos 3x − 0.1 cos 4x + 1.3 sin x − 0.2 sin 2x + 0.2 sin 4x].

2. Set up a trigonometric polynomial of order 3 for y = f (x) in [0, 2π] given the
data

x 0 π/6 π/3 π/2 2π/3 5π/6 π
y 1.21 1.32 1.46 1.40 1.34 1.18 1.07

7π/6 4π/3 3π/2 5π/3 11π/6 2π
1.01 1.05 1.10 1.14 1.17 1.21

[Use Eq. (8.34), N = 12, n = 3, a0 = 2.408, a1 = 0.237, a2 = 0.172, a3 = 0,
b1 = 1.440, b2 = 0.158, b3 = 0.561].

8.7 Rational Approximations

As before suppose that we have a function f ∈ C[a, b]. Instead of a polynomial, we
now contemplate approximating it by a rational integral function Rm,n , that is to say
by the quotient of two polynomials Pm and Qn . Let

Rm,n(x) := Pm(x)

Qn(x)
:= a0 + a1x + · · · + am xm

b0 + b1x + · · · + an xn
(8.35)

where it is assumed that the two polynomials Pm(x) and Qn(x) possess no common
factors. Rm,n(x) is then said to be irreducible.

Rational approximations are superior to polynomial approximations in the sense
that they account for possible poles of the function f not lying in [a, b]. Such poles
are represented approximately by the zeros of the denominator of Eq. (8.35). In this
respect, polynomials fail completely.

A complete theory of best uniform (minimax) rational approximation exists in the
literature (see Achieser cited in the bibliography) where existence of such approx-
imation is proved. Remez exchange algorithm has been extended to this case also,

8.7 Rational Approximations 373

but it suffers from the difficulty of solving nonlinear equations. Following the devel-
opment, near-best uniform approximations have been developed for many transcen-
dental functions in computer function libraries.

Fröberg (see Bibliography) quotes highly accurate rational approximations for
the functions sin x, cos x, e−x , and ln((1 + x)/2), in which m = n = 4 for the first
two functions and m = n = 3 for the other two functions.

Apparently, it is tedious work to obtain such highly accurate approximations.
So we proceed to describe some other rational approximation methods that do not
produce minimax approximations, but are easier to apply. In these methods, it is
difficult to estimate the error in as much as accurate evaluation of function by some
other method is required.

8.7.1 Padé Approximations

This method due to H. E. Padé (1892) is a classical method for deriving a rational
approximation from a power series expansion. Let f (x) possess the Taylor series

expansion f (x) =
∞∑
j=0

c j x j valid within the ‘circle of convergence’ |x | < r , where

x = r is the nearest singularity of f (x) defined by the limiting ratio r = lim
n → ∞

=
cn−1

cn
. If f (x) is approximated by the Padé approximation of order (m, n) viz. Rm,n =

Pm(x)/Qn(x) defined in Eq. (8.35), then

Pm(x) − Qn(x) f (x) = (a0 + a1x + · · · + am xm)

−[c0b0 + (c1b0 + c0b1) x + · · ·
+ (cmb0 + cm−1b1 + · · · + cm−nbn) xm + · · ·]

where for convenience, we let c j = 0 for j < 0. This expression must equal zero for
holding exactly. Thus, as approximation, equating the coefficients of all the powers
upto xm+n to zero, we obtain the m + n + 1 linear homogeneous equations

a0 = c0b0

a1 = c1b0 + c0b1
· ·
am = cmb0 + cm−1b1 + · · · + cm−nbn

(8.36a)

374 8 Approximation

cm+1b0 + cmb1 + · · · + cm−n+1bn = 0

cm+2 b0 + cm+1 b1 + · · · + cm−n+2 bn = 0
· ·
cm+nb0 + cm+n−1b1 + · · · + cmbn = 0

(8.36b)

Setting b0 = 1 without loss of generality, we can proceed to solve these equations
for b1, b2, · · · , bn from Eq. (8.36b) and then a0, a1, · · · , am from Eq. (8.36a).

A Padé approximation to f (x) is not an approximation designed for a specific
interval like [−1, 1]; it is merely an approximation near x = 0. In general, the nearer
x is to the origin, the more accurate the approximation. One may estimate the error
with the aid of the first nonzero term in the Taylor series expansion for Pm(x) −
Qn(x) f (x).

The two-dimensional array of the approximations

R0,0(x) R0,1(x) R0,2(x) · · ·
R1,0(x) R1,1(x) R1,2(x) · · ·
R2,0(x) R2,1(x) R2,2(x) · · ·

· · · · · · · · · · · ·

is called a Padé table for f (x). A practical observation based on experience is that
for constant value of m + n, the most accurate approximation to f (x) in the Padé
table for f (x) lies on or next to the diagonal of the table. The approximation is often
found to be remarkably good, extending beyond the circle of convergence of the
original Taylor series of f (x).

Henri Eugène Padé (1863–1953), French mathematician who is remembered for his develop-

ment of the above-described method in a systematic manner. The Padé approximations were part

of his doctoral dissertation.

Example 1. Obtain Padé approximation of

sin−1 x

x
= 1 + x2

2 · 3 + 1 · 3 x4

2 · 4 · 5 + 1 · 3 · 5 x6

2 · 4 · 6 · 7 + 1 · 3 · 5 · 7 x8

2 · 4 · 6 · 8 · 9 + · · ·

in the form
a0 + a1x2 + a2x4

b0 + b1x2 + b2x4

Solution. Here c0 = 1, c1 = 1/6, c2 = 3/40, c3 = 5/112 and c4 = 35/1152. The
coefficients a0, a1, a2, b0, b1, b2 are given by the system of Eq. (8.36b), which in
this case is

a0 = c0b0, a1 = c1b0 + c0b1, a2 = c2b0 + c1b1 + c0b2

c3b0 + c2b1 + c1b2 = 0, c4b0 + c3b1 + c2b2 = 0

8.7 Rational Approximations 375

Hence, with b0 = 1, a0 = 1, a1 = 1

6
+ b1, a2 = 3

40
+ 1

6
b1 + b2 where

3

40
b1 + 1

6
b2 = − 5

112
,

5

112
b1 + 3

40
b2 = − 35

1152
The solution of these equations is

b1 = −0.94490, b2 = 0.15735, a1 = −0.77824, a2 = 0.07487

Hence
sin−1 x

x
≈ 1 − 0.77824 x2 + 0.07487 x4

1 − 0.94490 x2 + 0.15735 x4
�

Based on Eqs. (8.36a, b), a subroutine named PADE is presented below, assuming
without loss of generality that c0 = 1, so that a0 = 1 with b0 = 1:

SUBROUTINE PADE(m,n,c,a,b)
! Determines the coefficients of polynomials
! of PADE approximations of a function expressed
! as a truncated power series.
! m=degree of the polynomial in the numerator. (Input)
! n=degree of the polynomial in the denominatot. (Input)
! c(1), c(2), · · · , c(m+n)=coeffs. of the truncated power series. (Output)
! a(1), a(2), · · · , a(m)=coeffis. of the polyl. in the numerator. (Output)
! b(1), b(2), · · · , b(n)=coeffis. of the polyl. in the denominator. (Output)
! It is assumed that c(0)=b(0)=a(0)=1.
REAL :: a(m), b(n), c(m+n), PA(n,n)
DO i=1,n
b(i)=−c(m+i)
DO j=1,n
PA(i,j)=c(m+i-j)
IF(m+i-j==0) PA(i,j)=1.0
END DO
END DO
CALL GAUSS(n,PA,b)
a(1)=b(1)+c(1)
DO i=2,m
a(i)=c(i)+b(i)
DO k=1,i-1
a(i)=a(i)+c(i-k)*b(k)
END DO
END DO
RETURN
END SUBROUTINE PADE
!***************************************
! Append SUBROUTINE GAUSS

376 8 Approximation

Exercises

Prove the following Padé approximations:

1.
√
1 − x ≈ 4 − 3x

4 − x

2. ex ≈ 2 + x

2 − x
, ex ≈ 6 + 2x

6 − 4x + x2

3. ln(1 + x) ≈ 6x + 3x2

6 + 6x + x2
, ln(1 + x) ≈ 30x + 21x2 + x3

30 + 36x + 9x2
. [May use subrou-

tine PADE].

4. cos(x) ≈ 1 − 0.45635 x2 + 0.02070 x4

1 + 0.04365 x2 + 0.00086 x4
[Use subroutine PADE].

8.7.2 Rational Function Interpolation

Suppose a table of data (xi , yi = f (xi)), (i = 0, 1, 2, · · ·) of a function f (x) is
given, and a rational interpolation f (x) ≈ Rm,n(x) is attempted, where Rm,n(x) is
given by Eq. (8.35); then

f (xi) = Rm,n(xi) = Pm(xi)

Qn(xi)
i = 0, 1, 2, · · · · · ·

or, taking b0 = 1,

a0 + a1 xi + a2 x2
i + · · · + am xm

i − f (xi) [b1 xi + b2 x2
i + · · · + bn xn

i]
= f (xi), i = 0, 1, 2, · · · , m + n (8.37)

Equation (8.37) forms a system of linear equations in m + n + 1 unknowns a0, a1,

a2 · · · , am; b1, b2, · · · , bn . Hence, it is required that i = 0, 1, 2, · · · , m + n. The
linear system of equations posses a solution, since Qn(xi) = 0, n ≥ 1 implies that
a0 + a1 x + a2 x2 + · · · + am xm has m + n > m zeros, which is not true. A rational
interpolation may, however, fail for some some specific values of m and n. For
example, consider the following small set of data:

x 0 1 2
y 1 2 2

Since the number of data points is 3, we take m = n = 1, that is, P1(x) = a0 +
a1 x, and Q1(x) = 1 + b1 x . The determinant of the matrix of the coefficients of the
left-hand side of Eq. (8.37) for this example is

∣∣∣∣∣∣
1 0 0
1 1 −2
1 2 −4

∣∣∣∣∣∣
= 0

8.7 Rational Approximations 377

Thus rational approximation of the form P1(x)/Q1(x) does not exist for this example.
However, if we take m = 2, n = 0, the approximation P2(x)/Q1(x) = P2(x)/1 =
P2(x) does exist, since it is a case of polynomial approximation. In fact P2(x) =
1 + 3

2
x − 1

2
x2.

A useful alternative to rational function interpolation is to employ Chebyshev
polynomials Tj (x) instead of integral powers x j , to represent f (x) ≈ Rm,n(x) as

Rm,n(x) = a′
0 T0(x) + a′

1 T1(x) + a′
2 T2(x) + · · · + a′

m Tm(x)

b′
0 T0(x) + b′

1 T1(x) + b′
2 T2(x) + · · · + b′

n Tn(x)
(8.38)

with b′
0 = 1 as before. Assuming without loss of generality that x ∈ [−1, 1], the

Chebyshev nodes are (see Chap. 4, Sect. 4.3):

xi = cos
(2i − 1)π

2 (n + 1)
, i = 1, 2, 3, · · · , (m + n + 1) (8.39)

for determining them + n + 1unknowncoefficientsa′
0, a′

1, a′
2, · · · , a′

m, b′
1, b′

2, · · · ,

b′
n , provided that f (xi) are also known. The condition for interpolation Rm,n(xi) =

f (xi) now yield the system of linear equations

a′
0 + a′

1 T1(xi) + a′
2 T2(xi) + · · · + a′

m Tm (xi) − f (xi) [b′
1 T1(xi) + b′

2 T ′
2(xi) + · · · + b′

n Tn(xi)]
= f (xi), i = 0, 1, 2, · · · , m + n

(8.40)

The Chebyshev interpolation points (8.39) can also be employed for rational inter-
polation (8.37). The following subroutine RATIONAL_APPROX determines the
coefficients of the interpolation formulae for the two cases, using the subroutine
GAUSS. The subroutine uses an integer parameter named select for solving either
of the two systems of Eq. (8.37) or (8.40). The step select ← 1 solves the rational
function approximation (8.37), while select ← 2 does the same for the Chebyshev
polynomial formulation (8.40):

SUBROUTINE RATIONAL_APPROX(m,n,x,f,select)
! Determines the coefficients of the polynomials appearing
! in rational approximations of the forms (35) and (38).
! select=1 for form (8.35), or 2 for form (8.38). (Input)
! m = degree of the polynomial in the numerator. (Input)
! n = degree of the plynomial in the denominator. (Input)
! x(1),x(2),· · · ,x(m+n+1)=abscissa of nodal points. (Input)
! f(1),f(2),· · · ,f(m+n+1)=function values at the nodal points. (Input)
! The solution is returned in the vector f. (Output)
! a0=f(1), a1=f(2),· · · , am=f(m+1); b0=1, b1=f(m+2),· · · , bn=f(m+n+1), OR
! a’0=f(1), a’1=f(2),· · · , a’m=f(m+1); b’0=1, b’1=f(m+2),· · · , b’n=f(m+n+1)
!**
INTEGER :: select

378 8 Approximation

REAL :: x(m+n+1), f(m+n+1), A(m+n+1,m+n+1)
DO i=1,m+n+1
A(i,1)=1.0
DO j=2,m+n+1
IF(select==1) THEN
IF(j<=m+1) A(i,j)=x(i)**(j-1)
IF(j>=m+2) A(i,j)=− x(i)**(j-m-1)*f(i)
ELSE IF(select==2) THEN
IF(j<=m+1) A(i,j)=cos((j-1)*acos(x(i)))
IF(j>=m+2) A(i,j)=− cos((j-m-1)*acos(x(i)))*f(i)
END IF
END DO
END DO
CALL GAUSS(m+n+1,A,f)
RETURN
END SUBROUTINE RATIONAL_APPROX
!***************************************
! Append subroutine GAUSS

Remark. In case the data are drawn from experimental observations, then the least
squares fit of the data by a rational polynomial expression can be obtained by appli-
cation of the method of least squares to Eq. (8.37). The estimate of the coefficients
a0, a1, a2, · · · , am and b1, b2, · · · , bn determined by themethod yields the rational
approximation fit.

Exercises

[Use subroutine RATIONAL_APPROX].
1. Show that for the data

x 1 2 3 4
y 1 2 3 3

R2,1(x) fails, but R1,2(x) = (0.42857 + 0.21429 x)/(1 − 0.42857 x + 0.07142 x2).

2. For the data
x 0 1 2 3
y 1 0 1/3 1

show that R2,1(x) = (1 − 2 x + x2)/(1 + x) and R1,2(x) = (1 − x)/(1 − 4 x + x2).
3. For the data

(a)
x 0 1 2 3 4
y 2 0 0 2/13 2/7

and (b)
x 0 1 2 3 4
y 2 1 1 0 −4/5

show that (a) R2,2(x) = (2 − 3 x + x2)/(1 + x + x2) and (b) R2,2 = (12 − 13 x
+ 3 x2)/(6 − 4 x).

8.7 Rational Approximations 379

4. Find R2,2(x) for (sin−1 x)/x , using Chebyshev interpolation points adopting the
procedures given by Eqs. (8.39) and (8.40).
[R2,2(x) = (1 − 1.08239 x2 + 0.19026 x4)/(1 − 1.24889 x2 + 0.32146 x4), and
R2,2(x) = (1 − 1.08244 x2 + 0.19030 x4)/(1 − 1.24895 x2 + 0.32151 x4) (Cheby-
shev)].

8.7.3 Near-Best Uniform Rational Approximation: Maehly’s
Method

The theorem on best uniform rational approximation is an extension of that for
polynomials (Theorem 8.5)—a result originally due to Chebyshev. In this extension
φ∗

n is simply replaced by the best uniform rational R∗
m,n . The REMEZ Exchange

Algorithm also finds extension for finding R∗
m,n , but that algorithm becomes far more

elaborate [see Ralston and Wilf (1967)] for presentation here. In that development,
it is kept in view that the maximum error of the approximation is less than a desired
value for which purpose a starting solution is required. A good starting solution is
provided by the rational Chebyshev interpolation Eqs. (8.38)–(8.40) of the preceding
section.

As a useful alternative, Padé’s method of rational approximation was generalised
by Hans J. Maehly (1960), (1963). Expanding f (x) in Chebyshev series, let f (x) =
∞∑
0

ci Ti (x), x ∈ [−1, 1] be approximated by Pm(x)/Qn(x) where

ci = 2

π

∫ 1

−1

f (x) Ti (x)√
1 − x2

dx = 2

π

∫ π

0
f (cos θ) cos iθ dθ, i = 0, 1, 2, · · · · · ·

and Pm(x) = a0T0(x) + a1T1(x) + · · · + am Tm(x); Qn(x) = b0T0(x) + b1T1(x) +
· · · + bnTn(x). Suppressing the argument x in Ti (x), we have

Pm(x) − Qn(x) f (x) =
m∑

i=0

ai Ti −
n∑

j=0

b j

(∞∑
i=0

ci Ti Tj

)

Now it is elementary to prove that Ti Tj = 1

2
(Ti+ j + T|i− j |) (see Ex. 2b, Sect. 4.3,

Chap. 4). Hence,

2
∞∑

i=0

ci Ti Tj =
∞∑

i=0

ci (Ti+ j + T|i− j |)

=
∞∑

i=0

ci Ti+ j +
j−1∑
i=1

ci Tj−i +
∞∑

i= j+1

ci Ti− j + c0Tj + c j T0

380 8 Approximation

=
∞∑

i= j

ci− j Ti +
j−1∑
i=1

c j−i Ti +
∞∑

i=1

ci+ j Ti + c0Tj + c j T0

=
∞∑

i=1

(ci+ j + c|i− j |) Ti + c0Tj + c j T0

Substituting the above expression and setting for notational convenience ai = 0 for
i > m and bi = 0 for i > n, we obtain on simplification

Pm(x) − Qn(x) f (x) =
∞∑

i=0

ai Ti −
(

b0c0 + 1

2

n∑
j=1

b j c j

)
T0

−
∞∑

i=1

[
b0ci + 1

2
bi c0 + 1

2

n∑
j=1

b j (ci+ j + c|i− j |)
]

Ti

Equating to zero the first m + n + 1 coefficients of the above Chebyshev series yield
the homogeneous system of equations

a0 = b0c0 + 1

2

n∑
j=1

b j c j

ai = b0ci + 1

2
bi c0 + 1

2

n∑
j=1

b j (ci+ j + c|i− j |), i = 1, 2, · · · , m + n

(8.41)

Setting b0 = 1, Eq. (8.41) yields the coefficients a0, · · · , am, b1, · · · , bn .
In practice, Maehly’s method yields a near-minimax rational approximation. It is

particularly suitable for slowly converging Taylor series for f (x), when its Cheby-
shev series converges rapidly.

Hans Jakob Maehly (1920–1961) was a Swiss physicist, who contributed to numerical com-

puting.

The following subroutine implements the method:

SUBROUTINE MAEHLY(m,n,c0,c,a,b)
! Computes the coefficients of the Rational Chebyshev Approximation
! by Maehly’s Method.
! m=degree of the Chebyshev polynomial in the numerator. (Input)
! n=degree of the Chebyshev polynomial in the denominator. (Input)
! c0, c(1), c(2), · · · , c(m+n) are the coefficints of the Chebyshev
! polynomial approximation of the given function. (Input)
! a(1), a(2), · · · , a(m+1) are the coefficients of the Chebyshev polynomials
! appearing in the numerator of the rational approximation. (Output)
! b(1), b(2), · · · , b(n) are the coefficients of the Chebyshev polynomial
! appearing in the denominator. (Output)
!***

8.7 Rational Approximations 381

REAL :: c(m+n), a(m+1), b(n), MA(n,n)
DO i=1,n
b(i)=−2*c(i+m)
DO j=1,n
delta=0.0
IF(i+m==j) delta=1.0
MA(i,j)=delta*c0+c(i+j+m)+c(ABS(i-j+m))
END DO; END DO
CALL GAUSS(n,MA,b)
a0=c0
DO i=1,n
a0=a0+0.5*b(i)*c(i)
END DO
DO i=1,m
a(i)=c(i)+b(i)*c0
DO j=1,n
a(i)=a(i)+0.5*b(j)*(c(i+j)+c(ABS(i−j)))
END DO; END DO
DO i=m+1,2,−1
a(i)=a(i−1)
END DO
a(1)=a0
RETURN
END SUBROUTINE MAEHLY
!******************************
! Append SUBROUTINE GAUSS

Example 1. Obtain Maehly approximation from Fraser (1965) series

1

2
tan−1 x =

∞∑
k=0

(−1)k(
√
2 − 1)2k+1

2k + 1
T2k+1(x)

in the form
a0T0(x) + a1T1(x) + · · · + a5T5(x)

b0T0(x) + b1T1(x) + · · · + b4T4(x)
Hence, obtain a rational approximation of tan−1 x , and calculate π from the approx-
imation.

Solution. Here c0 = c2 = c4 = c6 = c8 = 0 and c1 = 0.414214, c3 = − 0.023689,
c5 = 0.002439, c7 = − 0.000299 and c9 = 0.000040. The higher order coefficients
are approximately taken as zero.. Consistent with the vanishing even coefficients c2k ,
wemust have fromEq. (8.41), a0 = a2 = a4 = b1 = b3 = 0. The remaining required
coefficients given by Eq. (8.41) yield

382 8 Approximation

a1 = b0c1 + 1

2
b2(c3 + c1) + 1

2
b4(c5 + c3)

a3 = b0c3 + 1

2
b2(c5 + c1) + 1

2
b4(c7 + c1)

a5 = b0c5 + 1

2
b2(c7 + c3) + 1

2
b4(c9 + c1)

0 = a7 = b0c7 + 1

2
b2(c9 + c5) + 1

2
b4c3

0 = a9 = b0c9 + 1

2
b2c7 + 1

2
b4c5

Taking b0 = 1 as usual, the last two equations can be solved for b2 and b4. The
solution is b2 = 0.369573, b4 = 0.013432. With these values of b2, b4 the first three
equations yield a1 = 0.486234, a3 = 0.056082 and a5 = 0.000788. Hence

1

2
tan−1 x ≈ 0.486234 T1(x) + 0.056082 T3(x) + 0.000788 T5(x)

T0(x) + 0.369573 T2(x) + 0.013432 T4(x)

Now, T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 −
8x2 + 1 and T5(x) = 16x5 − 20x3 + 5x . Inserting these expressions in the approx-
imation of tan−1 x , we finally obtain

tan−1 x ≈ x + 0.64787 x3 + 0.03916 x5

1 + 0.98110 x2 + 0.16689 x4

The approximation yields π ≈ 3.14160 �

Exercises

[Use subroutine MAEHLY].
1. It is known that tan−1 x can be represented as a continued fraction:

tan−1 x = x

1+
x2

3+
4x2

5+
9x2

7+
16x2

9+ · · · · · · ∞

Show that taking terms upto the fifth convergent as written above

tan−1 x ≈ x + 0.52063 x3 + 0.06772 x5

1 + 0.85397 x2 + 0.15238 x4

Show from the approximation that π ≈ 3.15696.
2. It is known that for |x | ≤ 1

sin
(π

2
x
)

= x [1.276279 − 0.285262 T ∗
1 (x2) + 0.009118 T ∗

2 (x2) − 0.000137T ∗
3 (x2) + 0.000001 T ∗

4 (x2)

where T ∗
n (x) is the shifted Chebyshev polynomial T ∗

n (x) := Tn(2x − 1). Show that

8.7 Rational Approximations 383

sin
(π

2
x
)

≈ 1.57209 − 0.54606 x2 + 0.03163 x4

1 + 0.08286 x2 + 0.00321 x4
, |x | ≤ 1

Verify that sin(π/2) ≈ 0.97384.
3. As in Exercise 2 above, it is known that

cos
(π

2
x
)

= 0.472001 − 0.499403 T ∗
1 (x2) + 0.027992 T ∗

2 (x2) − 0.000597 T ∗
3 (x2) + 0.000007 T ∗

4 (x2)

Show that

cos
(π

2
x
)

≈ 1.00149 − 1.07597 x2 + 0.13828 x4

1 + 0.10488 x2 + 0.00508 x4
, |x | ≤ 1

Hence, verify that cos
π

4
= 0.72198, whose exact value is 1/

√
2 = 0.70711.

4. Assuming that

1

�(x + 1)
= 0.731219 T0(x) + 0.523174 T1(x) − 0.249637 T2(x) − 0.021396 T3(x) + 0.018788 T4(x)

− 0.001881 T5(x)

Show that

�(x + 1) ≈ 0.96082 + 0.03361 x + 0.20898 x2 + 0.08711 x3

1 + 0.57403 x − 0.49549x3
, |x | ≤ 1

Hence, calculate �(1), �(1/2)and �(−1/2).
[0.96082, 1.69561, −3.39122. (Exact values: 1, 1.77245, −3.54490 respectively)].

Chapter 9
Matrix Eigenvalues

Given an n × n (real or complex) matrix A and an n-vector x, suppose we construct
the n-vector Ax =: y, then A can be interpreted as a linear transformation which
carries x to y in an n-dimensional space. In particular, if a non-zero vector x can be
found such that A carries x to a collinear vector λx, i.e.

Ax = λx

then x is called an eigenvector of A and λ its corresponding eigenvalue. From the
above definition, it follows that x satisfies the system of n linear equations

(A − λI) x = 0 (9.1)

where I is the unit diagonal matrix. Since x is non-null

det (A − λI) = 0

or
∣
∣
∣
∣
∣
∣
∣
∣

a11 − λ a12 a13 · · · a1n
a21 a22 − λ a23 · · · a2n
· · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann − λ

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (9.2)

The determinant is called the characteristic or secular determinant of A. When
expanded, it yields the characteristic polynomial equation of degree n that has
exactly n roots real or complex. The matrix A has then n eigenvalues all of which
need not be distinct.

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1_9

385

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7114-1_9&domain=pdf
https://doi.org/10.1007/978-981-13-7114-1_9

386 9 Matrix Eigenvalues

Corresponding to an eigenvalue λ, there exists at least one eigenvector obtained
by solving Eq. (9.1). Such an eigenvector is obtained only up to a certain scalar
multiple. For, if x is an eigenvector, αx (α a scalar) is also evidently a solution of
Eq. (9.1). One may normalise the eigenvectors by dividing them by the magnitude
of the largest eigenvector of the system. If λ is distinct, then in view of Eq. (9.2), we
ignore one equation, say the nth one, and solve the remaining n − 1 equations for
say, x1, x2, · · · , xn−1 in terms of xn . Distinct eigenvalues yield linearly independent
eigenvectors according to Theorem9.1 of the following section. If λ is repeated r
times, we ignore r linearly dependent equations from (1), and treating the remaining
n − r equations we may be able to construct r linearly independent eigenvectors.
Thus, the matrix A may not always have n linearly independent eigenvectors.

Example 1. Let

A =
⎡

⎣

2 1 1
1 2 1
1 1 2

⎤

⎦

Find the eigenvalues and eigenvectors of A.

Solution. The characteristic equation is

∣
∣
∣
∣
∣
∣

2 − λ 1 1
1 2 − λ 1
1 1 2 − λ

∣
∣
∣
∣
∣
∣

= 0

or 4 − 9λ + 6λ2 − λ3 = (λ − 1)2(λ − 4) = 0. Hence, λ1 = 4, λ2 = λ3 = 1,
adopting the convention of writing the eigenvalues in descending order ofmagnitude.

The eigenvectors are given by

(2 − λ) x1 + x2 + x3 = 0
x1 + (2 − λ) x2 + x3 = 0
x1 + x2 + (2 − λ) x3 = 0

For λ1 = 4, deleting the third equation and solving the first two, we obtain

x1
∣
∣
∣
∣

1 1
−2 1

∣
∣
∣
∣

= −x2
∣
∣
∣
∣

−2 1
1 1

∣
∣
∣
∣

= x3
∣
∣
∣
∣

−2 1
1 −2

∣
∣
∣
∣

or x1/3 = x2/3 = x3/3, that is, x1 = x2 = x3 = α (say). Selecting α = 1, the
eigenvector corresponding to λ1 is [1, 1, 1]T .
For λ2 = λ3 = 1, deleting the last two dependent equations, we obtain

x1 = − (x2 + x3)

9 Matrix Eigenvalues 387

Selecting x2 = 1, x3 = 0 and x2 = 0, x3 = 1, we get two linearly independent
eigenvectors [−1, 1, 0]T and [−1, 0, 1]T . Other vectors constructed from the equa-
tion x1 = − (x2 + x3) will be linearly dependent on these two vectors. �

Example 2. Find the eigenvalues and eigenvectors of the matrix

⎡

⎣

2 1 1
0 2 1
0 0 2

⎤

⎦

Solution. The characteristic equation of the matrix reduces to the equation (2 −
λ)3 = 0. Hence, λ1 = λ2 = λ3 = 2. The eigenvectors are given by

(2 − λ) x1 + x2 + x3 = 0
(2 − λ) x2 + x3 = 0

(2 − λ) x3 = 0

which yields x2 = x3 = 0. Thus, the matrix has only one linearly independent eigen-
vector [1, 0, 0]T .

Matrix eigenvalues enter the study of small oscillations of a mechanical system about position
of stable equilibrium in a straight forward way. Let q1, q2, · · · , qn be the generalised coordinates
of the system, then the dynamical equations of motion reduce to the form

q̈ + K q = 0 (9.3)

where q =:= [q1, q2, · · · , qn]T and K is a symmetric stiffness matrix. The nomenclature is derived
from the vibration of a mass m suspended by a spring of ‘stiffness’ k, so that K = k/m in a single
differential equation. The proof of Eq. (9.3) follows from Lagrange’s equations of motion

d

dt

(
∂T

∂qi

)

+ ∂V

∂qi
= 0 (9.4)

for the motion of the system, where T and V are, respectively, the kinetic and potential energies of
the system given by the expressions

T = 1

2

n
∑

i=1

n
∑

j=1

ai j q̇i q̇ j , V = 1

2

n
∑

i=1

n
∑

j=1

bi j qi q j (9.5)

388 9 Matrix Eigenvalues

where ai j = a ji and bi j = b ji . The above expressions are a consequence of the fact that qi is small
during the oscillations. Inserting the expressions (9.5) in Eq. (9.4), yield Eq. (9.3) with K = A−1B,
where A := [ai j], and B := [bi j]. For oscillations of period 2π/ω, we can consider the solution as
q = q0 eiωt and Eq. (9.3) yields

(K − ω2 I) q0 = 0

so that the angular frequencies ω are given by the secular equation

det (K − ω2 I) = 0

Since K is real symmetricmatrix, the rootsω2, andhence,ω are always real according toTheorem9.3

of the next section.

There are several other applications of eigenvalues. Thus, computation of eigen-
values is an important problem which by no means is easy. The computation of
eigenvectors is of somewhat less importance and degree of difficulty. Hence, we
shall pay attention mostly to the former.

9.1 General Theorems

In the following we prove some basic theorems regarding eigenvalues and eigenvec-
tors of matrices.

Theorem 9.1 If the eigenvaluesλ1, λ2, · · · , λm (m ≤ n) are distinct, then the cor-
responding eigenvectors x1, x2, · · · , xm are linearly independent.

Proof The proof is by contradiction. If possible let the eigenvectors x1, x2 be linearly
dependent, that is, constants c1, c2 both not zero can be found such that

c1 x1 + c2 x2 = 0

Hence, A (c1 x1 + c2 x2) = c1 λ1x1 + c2 λ2x2 = 0
Multiplying the first equation by λ1 and subtracting from the second equation we get
c2 (λ1 − λ2) x2 = 0. Since λ1 �= λ2, c2 = 0 and hence from the first equation above
c1 = 0, which is contradiction The general case follows from induction. �

Theorem 9.2 If A is real with complex eigenvalueλ and complex eigenvector x, then
the complex conjugate λ∗ is also a complex eigenvalue with complex eigenvector x∗.
If λ is repeated r times so is λ∗.

Proof Since Ax = λx, (Ax)∗ = (λx)∗ or A∗x∗ = λ∗x∗. But A is real, so A∗ = A.
Hence, Ax∗ = λ∗x∗. �

9.1 General Theorems 389

Theorem 9.3 If A is real and symmetric, then all the eigenvalues are real.

Proof Let λ be an eigenvalue of A with eigenvector x; then Ax = λx. Forming the
scalar product of the vector Ax with x

(Ax, x) = (λx, x) = λ (x, x) = λ ‖x‖2

Similarly (x, Ax) = (x, λx) = λ∗(x, x) = λ∗‖x‖2
Now

Ax =
n

∑

j=1

ai j x j , (Ax, x) =
n

∑

i=1

n
∑

j=1

ai j x j x
∗
i , (x, Ax) =

n
∑

i=1

n
∑

j=1

xi a
∗
i j x

∗
j

Since A is real symmetric a∗
i j = ai j = a ji and therefore (Ax, x) = (x, Ax). Hence,

λ‖x‖2 = λ∗‖x‖2. Since ‖x‖ �= 0, λ = λ∗. �

Theorem 9.4 If A is complex Hermitian, then all eigenvalues are real.

Proof Recall that for a Hermitian A, a ji = a∗
i j and the proof is as in Theorem9.3. �

Theorem 9.5 If λ1, λ2, · · · , λn are eigenvalues of A; Ak (k = positive integer) has
eigenvalues λ1k, λk

2, · · · , λk
n.

Proof If λ is an eigenvalue of A with eigenvector x, Ax = λx. Hence, A(Ax) =
λ Ax = λ2x or A2x = λ2x. Similarly, A3x = λ3x etc. and Akx = λkx, i.e. λk is an
eigenvalue of Ak . �

Theorem 9.6 If λ1, λ2, · · · , λn are eigenvalues of A, then A−1 has eigenvalues
λ−1
1 , λ−1

2 , · · · , λ−1
n .

Proof As in Theorem9.5, A−1(Ax) = λ A−1x or A−1x = λ−1x. �

The next theorem requires the extremely useful notion of similar matrices, which
is required for the computation of eigenvalues. Let the matrix A represent a linear
transformation Ax = y, where x and y are expressed with respect to some basis
vector e by the transformation e′ = ST e, where S is the change of basis matrix such
that det(S) �= 0; then in the new basis, x, y become x′, y′ where

x =
n

∑

i=1

xi ei =
n

∑

j=1

x ′
j e

′
j =

n
∑

j=1

x ′
j

n
∑

i=1

si j ei =
n

∑

i=1

(n
∑

j=1

si j x
′
j

)

ei

Since ei are linearly independent, we obtain

xi =
n

∑

j=1

si j x
′
j

390 9 Matrix Eigenvalues

or x = S x′. Similarly y = S y′. Therefore Sy′ = y = Ax = ASx′, that is, y′ =
(S−1AS) x′. Hence in the changed basis y′ = A′x′ where A′ = S−1AS is called
matrix similar to A.

Theorem 9.7 Similar matrices have the same characteristic polynomial and have
the same eigenvalues.

Proof Let B be similar to A: B = S−1AS, det(S) �= 0. Then

det(B − λI) = det (S−1AS − λI) = det {S−1(A − λI)S}
= det(S−1) × det(A − λI) × det(S) = det(A − λI)

as det(S−1) = 1/det(S). �

Theorem 9.8 If the matrix A has n linearly independent eigenvectors then taking
them as basis vectors, a diagonal matrix � similar to A is obtained whose diagonal
entries are the eigenvalues of A.

Proof Denote the eigenvectors by e1, e2, · · · , en , then Aei = λiei , i = 1, 2, · · · ,

n. Let A represent the linear transformation Ax = y in some basis. In the eigenvector
basis, x = x1e1 + · · · + xnen and the transformation becomes

y =
n

∑

i=1

xi Aei =
n

∑

i=1

λi xiei =

⎡

⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λn

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1
x2
··
xn

⎤

⎥
⎥
⎦

= �x

where � is the diagonal matrix stated in the theorem. �

In the above theorem,� is arrived by some change of basismatrix S:� = S−1AS.
This process is called matrix diagonalisation. It obviously delivers the eigenvalues
but much is less attempted in actual computational methods.

In the theorem, the stipulation of n linearly independent eigenvectors is met when
λ1, λ2, · · · , λn are distinct, but it can be proved that this is not a necessary require-
ment for the validity of the theorem.

Theorem 9.9 (Gershgorin Inequalities) If λ is any eigenvalue of a matrix A, then
the largest eigenvalue in modulus cannot exceed the largest sum of the moduli of the
elements along any row or column, i.e.

|λ| ≤ max
1 ≤ i ≤ n

n
∑

j=1

|ai j | and |λ| ≤ max
1 ≤ j ≤ n

n
∑

i=1

|ai j |

9.1 General Theorems 391

Proof Let the eigenvector corresponding to λ be x = [x1, x2, · · · , xn]T . Choose M

in such a way that |xM | = max
1 ≤ j ≤ n

|x j |. Then according to Eq. (9.1), λ xM =
n

∑

j=1

aMj x j . Hence,

|λ| =
∣
∣
∣
∣
∣
∣

n
∑

j=1

aMj
x j

xM

∣
∣
∣
∣
∣
∣

≤
n

∑

j=1

|aMj | · |x j |
|xM | ≤

n
∑

j=1

|aMj | ≤ max
1 ≤ i ≤ n

n
∑

j=1

|ai j |

Since the transposed matrix has the same set of eigenvalues, one also has

|λ| ≤ max
1 ≤ j ≤ n

n
∑

i=1

|ai j | �

9.2 Real Symmetric Matrices

Suchmatrices have real eigenvalues (Theorem9.3) and are amenable to special treat-
ment. All the methods of computing eigenvalues use similarity transformation to
reduce a given n × n matrix A to some special form, from which the eigenvalues are
extracted with some ease.

9.2.1 Jacobi’s Method

This classical method is important for its conceptual simplicity and is a forerunner
of more intricate methods for the general eigenvalue problem that have proved to be
highly efficient.

Here, the similarity transformations are based on two-dimensional rotation matri-
ces. In a two-dimensional plane, if the axes are rotated through an angle θ, the change
in coordinates of a point is governed by the matrix

J =
[

cos θ sin θ
− sin θ cos θ

]

In n-dimensional space, if we similarly think of rotation in a (p, q)-plane (1 ≤
p, q ≤ n), the transformation of coordinates will take place according to the matrix

392 9 Matrix Eigenvalues

Jpq =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

. . .

cos θ · · · sin θ
. . .

− sin θ · · · cos θ
. . .

1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

← row p

← row q
(9.6)

Evidently, J−1
pq = J T

pq and the matrix Jpq is orthogonal. Also n(n − 1)/2 such matri-
ces can be introduced in the n-dimensional space.

If Jpq is used as a similarity transformation of A then we get the similar matrix
A1 := J T

pq A Jpq . To find the structure of A1, let A′ = AJpq . It is now easy to verify
that a′

i j = ai j except when j = p or q, which are given by

a′
i p = aip cos θ + aiq sin θ, a′

iq = −aip sin θ + aiq cos θ (9.7)

for i = 1, 2, · · · , n. If the elements of A1 are denoted by a
(1)
i j , then it is next easy to

verify that a(1)
i j = a′

i j except when i = p or q, which are given by

a(1)
pj = a′

pj cos θ + a′
q j sin θ, a(1)

q j = −a′
pj sin θ + a′

q j cos θ (9.8)

for j = 1, 2, · · · , n. Thus, the rows and columns of A1 and A are identical except
those for i = p, q and j = p, q. The off-diagonal elements at the intersection of
these two rows and columns are from Eqs. (9.7) and (9.8)

a(1)
pq = (aqq − app) sin θ cos θ + apq cos2 θ − aqp sin2 θ

a(1)
qp = (aqq − app) sin θ cos θ − apq sin2 θ + aqp cos2 θ

(9.9)

Both of these elements can be annihilated by invoking the symmetry of A for θ
satisfying

(app − aqq) sin 2θ = 2 apq cos 2θ

or

θ = 1

2
tan−1 2 apq

app − aqq
(9.10)

where the principal part of the inverse part tangent is taken, that is,−π/4 ≤ θ ≤ π/4.

9.2 Real Symmetric Matrices 393

Suppose that similarity transformations of the type (9.6) through angles of the
type (9.1) are repeatedly applied by rotation in the planes (1, 2), (1, 3), · · · , (1, n);
(2, 3), (2, 4), · · · , (2, n); etc. Though the annihilated off-diagonal elements may
get filled up in succeeding rotations and the iterations may be infinite, it can be
shown that the similar matrices converge to a diagonal matrix to yield all the n real
eigenvalues. For, from Eqs. (9.7) and (9.8) we note that

a′
i p
2 + a′

iq
2 = a2i p + a2iq , a(1)

pj

2 + a(1)
q j

2 = a′
pj
2 + a′

q j
2

so that the sum of squares of the elements of the matrices A, A′, A1 remain
unchanged during the transformations. Now, reverting to Eqs. (9.7) and (9.8), the
diagonal elements on the intersection of the rows i = p, q and columns j = p, q
are

a(1)
pp = app cos2 θ + 2 apq sin θ cos θ + aqq sin2 θ

a(1)
qq = app sin2 θ − 2 apq sin θ cos θ + aqq cos2 θ

(9.11)

where symmetry of the elements aqp = apq is assumed. The sum of their squares is

[a(1)
pp]2 + [a(1)

qq]2 = (a2pp + a2qq)(1 − 1
2 sin2 2θ) + 2 a2pq sin2 2θ

+ app aqq sin2 2θ + 2 (app − aqq) apq sin 2θ cos 2θ

= a2pp +2
qq +2 a2pq

where the equation for θ preceding Eq. (9.10) is used in the reduction of the expres-
sion. From the above analysis, we see that annihilation of off-diagonal elements a(1)

pq

leads to augmentation in the sum of squares of the diagonal elements by 2 a2pq . Hence
during repeated transformations, with sum of squares of all elements remaining con-
stant, there will be continued augmentation in the diagonal with depletion in the
off-diagonal elements. Hence, the assertion on convergence.

For rapid convergence a slightly more elaborate sequence may be adopted,
instead of the cyclic order described above, we may scan the off-diagonal elements
ai j (i �= j) and select p, q such that |apq | is the largest and repeat the procedure till
diagonalisation occurs to desired accuracy.

In the sequence of similar matrices say

(Jm · · · J2 J1)T A J1 J2 · · · Jm
where the successive rotationmatrices are J1, J2, · · · , Jm , which tends to a diagonal
matrixwhenm → ∞, the eigenvectors of A are the columns of J1, J2, · · · , Jm when
m → ∞ (see Wilkinson’s text for proof).

Remark It can be seen that the matrix A and the sequence of matrices derived from
it are symmetric since A is symmetric.

394 9 Matrix Eigenvalues

9.2.2 Givens’ Transformation

In this more recent method dating 1952, similar matrices based on finite number of
rotation matrices are obtained. The objective of an ultimate diagonal matrix is aban-
doned in favour of a symmetric tridiagonal matrix, which is treated for eigenvalues.

Consider the rotation matrix Jpq given by Eq. (9.6) of the preceding section. The
elements of A1 = J T

pq A Jpq are given by Eqs. (9.7) and (9.8), viz. a
(1)
i j = ai j except

for the rows i = p, q and columns j = p, q. The elements at the four intersections
(p, p), (p, q), (q, p) and (q, q) are given by Eqs. (9.9) and (9.11), and the rest
are given by

a(1)
pj = apj cos θ + aq j sin θ

a(1)
q j = − apj cos θ + aq j cos θ

}

j �= p, q

a(1)
i p = aip cos θ + aiq sin θ

a(1)
iq = − aip sin θ + aiq cos θ

}

i �= p, q

(9.12)

Equations (9.9) and (9.12) show that if A is symmetric, so is A1.With this observation,
we proceed to annihilate one by one the elements below the subdiagonal, so that due
to symmetry the ultimate matrix is tridiagonal and symmetric.

To annihilate the first element (3, 1), J23 is employed . This element of A1 from
Eq. (9.12) is

a(1)
31 = − a21 sin θ + a31 cos θ

which vanishes for tan θ = a31/a21 or,

sin θ

a31
= cos θ

a21
= 1

√

a221 + a231

(9.13)

In a similar manner, the elements (4, 1), (5, 1), · · · , (n, 1) of the first column can
be annihilated by employing rotations J24, J25, · · · , J2n and the previously anni-
hilated elements remain so during the succeeding rotations. The procedure can be
repeated again for elements below the subdiagonal of the second column, leaving out
the elements of the first column (and row), where rotations J34, J35, · · · , J3n are to
be used. Proceeding in this manner the last element (n, n − 2) can be annihilated.

The symmetric tridiagonalmatrix can be generated by subroutine namedGIVENS
given later, which helps isolation and eventual determination of the eigenvalues.

In order to investigate isolation of the eigenvalues, let the tridiagonal matrix
obtained by Given’s transformation be represented as

9.2 Real Symmetric Matrices 395

B :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1 a1
a1 d2 a2

a2 d3 a3
· · · · · · · · ·

an−2 dn−1 an−1

an−1 dn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Its characteristic polynomial is det (B − λI) := Pn(λ). Expansion of the determinant
by row or column easily leads to the following recurrence relations for Pn(λ):

P0(λ) := 1, P1(λ) = d1 − λ

Pi (λ) = (di − λ) Pi−1(λ) − a2i−1 Pi−2(λ), i = 2, 3, · · · , n
(9.14)

For any given λ, Pn(λ) can be computed from Eqs. (9.14) in about 3n operations.
Hence, the determination of the zeros of Pn(λ) can suitably be based on the methods
of Chap. 2.

If ai = 0 for some i , then it follows from the characteristic determinant that
Pi (λ) is a factor of Pn(λ). The eigenvalues of B are then the zeros of Pi (λ) and
Pn(λ)/Pi (λ). On the other hand, if ai �= 0 for all i , then the eigenvalues of B are
distinct. The localisation of the eigenvalues is helped by the fact that the polyno-
mials P0(λ), P1(λ), · · · , Pn(λ) form a Sturm Sequence. This allows construction
of intervals containing just one eigenvalue. The refinement of an eigenvalue can be
accomplished by simple bisection, which may be combined with the secant method
or the modified regula falsi method (see Chap. 2).

The subroutine GIVENS incorporating Givens’ transformation to tridiagonal
matrix and isolation of the eigenvalues follows:

SUBROUTINE GIVENS(A,n)
! A=Given n×n symmetric matrix. (Input)
! The tridiagonal symmetric matrix is returned in A. (Output)
!**
REAL :: A(n,n), lambda, P(n)
DO i=2,n−1; DO j=i+1,n
IF(A(j,i−1)/=0.0) THEN
asqrt=SQRT(A(i,i−1)**2+A(j,i−1)**2)
asin=A(j,i−1)/asqrt
acos=A(i,i−1)/asqrt
! Change the (i−1)th row
A(i−1,i)=A(i−1,i)*acos+A(i−1,j)*asin
A(i−1,j)=0.0
! Change the ith row
Aii=A(i,i)
DO k=1,n
A(i,k)=A(i,k)*acos+A(j,k)*asin
END DO
A(i,i)=A(i,i)*acos+A(i,j)*asin

396 9 Matrix Eigenvalues

A(i,j)=A(i,j)*acos−(Aii*acos+A(j,i)*asin)*asin
! Change the jth column
DO k=i+1,j
A(k,j)=−A(k,i)*asin+A(k,j)*acos
END DO
A(j,j)=A(j,j)*acos+(Aii*asin−A(j,i)*acos)*asin
! Change the jth row
IF(j/=n) THEN
DO k=j+1,n
A(j,k)=−A(k,i)*asin+A(j,k)*acos
END DO
END IF
! Symmetrise the matrix
DO L=i−1,n; DO K=L,n
A(K,L)=A(L,K)
END DO; END DO
END IF
END DO; END DO
PRINT*, ((A(i,j),j=1,n),i=1,n)
!***
! Determine the number of variations in sign in the Sturm
! Sequence
! iv=number of variations in sign in Sturm Sequence
! P(n)=value of characteristic polynomial for given lambda
! by Gershgorin inequality
u=MAX(ABS(A(1,1)+ABS(A(1,2)),ABS(A(n,n−1))+ABS(A(n,n)))
DO j=2,n−1
sumrow=ABS(A(j,j−1))+ABS(A(j,j))+ABS(A(j,j+1))
u=MAX(u,sumrow)
END DO
lambda=−u
10 P(1)=A(1,1)−lambda
P(2)=(A(2,2)−lambda)*P(1)−A(1,2)**2
DO i=3,n
P(i)=(A(i,i)−lambda)*P(i−1)−A(i−1,i)**2*P(i−2)
END DO
iv=0; IF(P(1)<0.0) iv=iv+1
DO i=1,n−1
IF(P(i)*P(i+1)<0.0) iv=iv+1
END DO
PRINT*, lambda, ’ variations of sign=’, iv, P(n)
IF(lambda>=u) RETURN
lambda=lambda+1 ! If necessary reduce the increment step of 1
GOTO 10
END SUBROUTINE GIVENS

9.2 Real Symmetric Matrices 397

James Wallace Givens (1910–1993), U.S. mathematician and computer scientist, well known for

the Givens rotations. He worked on early generation computers, serving at several laboratories and

universities, retiring as professor emeritus at Northwestern University, U.S.A. in 1979.

Example 1. Use subroutine GIVENS to reduce the symmetric matrix

A =
⎡

⎣

1 2 −1
2 1 2

−1 2 1

⎤

⎦

to a tridiagonal form. Isolate the eigenvalues of the matrix.

Solution. Writing the main program, which is a simple task, the subroutine gives the
output

Tridiagonal matrix =
⎡

⎣

1 2.236068 0
2.236068 −0.6 1.2

0 1.2 2.6

⎤

⎦

and for the isolation of the eigenvalues the following table is obtained:

−4.036068 variations of sign = 0 74.400050
−3.036068 variations of sign = 0 21.422310
−2.036068 variations of sign = 1 −7.339021
−1.036068 variations of sign = 1 −17.883940
−0.036068 variations of sign = 1 −16.212460
−0.963932 variations of sign = 1 −8.324564
1.963932 variations of sign = 1 −0.220264
2.963932 variations of sign = 2 2.100445
3.963932 variations of sign = 3 −7.362439
4.963932 variations of sign = 3 −34.608910

Thus, there are three real roots in (−3.036, −2.036), (1.964, 2.964) and (2.964,
3.964). �

Exercises

Isolate the eigenvalues of the following symmetric matrices by using subroutine
GIVENS:

1. A =
⎡

⎣

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

⎤

⎦ [two roots in (−0.6, +0.4) and one root in (1.4, 2.4)].

2. A =
⎡

⎣

1 2 −1
2 1 2

−1 2 1

⎤

⎦ [(−3.04, −2.04), (1.96, 2.96), (2.96, 3.96)].

398 9 Matrix Eigenvalues

3. A =

⎡

⎢
⎢
⎣

4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

⎤

⎥
⎥
⎦

[(0.27, 1.27), three roots in (4.27, 5.27);

exact roots 1, 5, 5, 5].

4. A =

⎡

⎢
⎢
⎣

1
√
2

√
2 2√

2 −√
2 −1

√
2√

2 −1
√
2

√
2

2
√
2

√
2 −3

⎤

⎥
⎥
⎦

[(−5, −4), (−3, −2), (1, 2), (3, 4)].

5. A =

⎡

⎢
⎢
⎣

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

⎤

⎥
⎥
⎦

[Two roots in (−0.04, 0.96),

(2.96, 3.96), (29.96, 30.96)].

9.2.3 Householder Transformation: Hessenberg Matrices

A more effective transformation then Given’s is the Householder Transformation.
It is more intricate than the Givens’ method that transforms an arbitrary matrix to
Hessenberg form. These latter matrices have zero elements below the subdiagonal
of the form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × · · · × ×
× × × · · · × ×

× × · · · × ×
× · · · × ×

· · · × ×
× ×

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the crosses denote non-zero elements in general. In particular it will be proved
that if the original matrix A is symmetric, its transformed Hessenberg form is also
symmetric, or the elements above the superdiagonal are also zero. This means that
the Hessenberg form is tridiagonal for symmetric matrices.

A Householder transformation of an arbitrary n × n matrix A is defined as
S−1 A S, where S is the n × n matrix

S(v) = I − α v vT , α = 2/vT v (9.15)

9.2 Real Symmetric Matrices 399

or

S(v) =

⎡

⎢
⎢
⎣

1 − α v2
1 −α v1v2 · · · −α v1v2

−α v2v1 1 − α v2
2 · · · −α v2vn

· · · · · · · · · · · ·
−α vnv1 −α vnv2 · · · 1 − α v2

n

⎤

⎥
⎥
⎦

where v = [v1, v2, · · · , vn]T is an arbitrary vector. We note that (i) S is symmetric,
and (i i) the inverse of S, viz. S−1 = S; for

SS = (I − α vvT) (I − α vvT)

= I − 2α vvT + α2v (vT v) vT = I
(9.16)

by Eq. (9.15). The similarity transformation of A is thus SAS. Also, (i i i) when
applied over any vector x, the norm of x does not change, i.e.

‖Sx‖2 = ‖x‖2 (9.17)

For, Sx = (I − α vvT) x = x − α v (vT x)

Hence,

‖Sx‖2 = (Sx)T (Sx)

= [xT − α (vT x) vT] [x − α (vT x) v]
= xT x − α (vT x) (xT v + vT x) + α2 (vT x)2 (vT v)

= xT x − 2α (vT x)2 + α (vT x)2 2 = ‖x‖2
Because of property (i i i), the transformation is called a reflection, just as reflection
in a plane (mirror) leaves linear distances unaltered (see 1o).

Of particular interest are the transformations Sk with

v1 = v2 = · · · = vk = 0 (9.18)

so that v = [0, 0, · · · , 0, vk+1, · · · , vn]T . In fact, it can be shown that the similar
matrices Ak+1 = Sk Ak Sk, k = 1, 2, · · · , n − 2, where A1 := A can be constructed
such that An−1 is of Hessenberg form. In each of the k iterations, the requisite number
n − k − 1of zeros are produced in the kth column.Tounderstand the process consider
a simple 4 × 4 matrix

A1 := A =

⎡

⎢
⎢
⎣

a11 × × ×
a21 × × ×
a31 × × ×
a41 × × ×

⎤

⎥
⎥
⎦

(9.19)

400 9 Matrix Eigenvalues

with particular attention on the first column in the first iteration k = 1. For this step,
S1 is given by Eq. (9.15), with v1 = 0 (Eq. (9.18)) and n = 4. It is easy to verify that
A1S1 has the first column as that of A1, and

A2 := B1 = S1 (A1S1) (9.20)

has the form (9.19) with a new first column b1 = [b11, b21, b31, b41]T but an
unchanged first row. It follows that b11 = a11. Because of Eq. (9.20)

b1 = S1 a1 (9.21)

where a1 = [a11, a21, a31, a41]T . For getting Hessenberg form, we require that

b31 = b41 = 0 (9.22)

To find b21, Eqs. (9.17) and (9.21) yield ‖b1‖2 = ‖a1‖2, that is

a211 + b221 = a211 + a221 + a231 + a241

or

b21 = ±
√

a221 + a231 + a241 =: β (say) (9.23)

This determines the first column of A2, except for an ambiguous sign in Eq. (9.23).
For the remaining elements, choose

v = λ (a1 − b1) (9.24)

(the choice of v/‖v‖2 is unique except for a sign, see 2o), (below) for which cor-
rectly, v1 = λ (a11 − b11) = 0. Eq. (9.21), with (9.15) yields (as in the calculation
for proving Eq. (9.17))

b1 = [1 − αλ2 (aT
1 a1 − bT

1 a1)] a1 + αλ2 (aT
1 a1 − bT

1 a1) b1

which is satisfied for a1 and b1 when (using Eq. (9.22))

αλ2 (‖a1‖2 − a211 − b21a21) = 1

that is, using Eq. (9.23)

αλ2 = 1/[b21 (b21 − a21)] (9.25)

Interestingly, by definition of α in Eq. (9.15), viz. αλ2/‖a1 − b1‖22 also reduces to
Eq. (9.25). The components of v, from Eq. (9.24) are given by

v1 = 0, v2 = λ (a21 − b21), v3 = λ a31, v4 = λ a41 (9.26)

9.2 Real Symmetric Matrices 401

The selection of sign in Eq. (9.23) can now be done so as to minimise the possible
loss of significant digits in subtraction in the computation of v2 in Eq. (9.26). Thus
we choose

b21 = −sgn(a21)β =: −γ (say), v2 = λ (a21 + γ) (9.27)

(In the above sgn(0) may be taken as 1). In the computation of v2, scaling may be
affected by choosing λ = 1/(a21 + γ) to yield

v1 = 0, v2 = 1, v3 = a31
a21 + γ

, v4 = a41
a21 + γ

(9.28)

Finally, by Eq. (9.25) α is given by

α = 1 + a21
γ

(9.29)

This completely determines S1. The computation of

A1S1 = A1 − α (A1v) vT

can be carried out in a simple fashion by considering each row of the matrices,
because a row of A1 multiplied by v is simply a scalar. The next product in S1A1S1
can be written as

S1(A1S1) = A1S1 − αv (vT (A1S1))

and each column can be similarly computed, since vT multiplied by a column of
A1S1 is again a scalar. This completes the generation of A2.

The succeeding iterations A3, · · · , An−1 are based on similar procedure with
k = 2, · · · , n − 2. It is easy to verify that in the kth iteration the previous k − 1
rows and columns remain unchanged so that An−1 is finally of Hessenberg form.

In particular, if A is symmetric, each of the matrices A2, · · · , An−1 is symmetric
since each of the reflections S1, · · · , Sn−2 is symmetric. Hence, the final matrix is
tridiagonal as asserted earlier.

The following subroutine determines a Hessenberg matrix by Householder sim-
ilarity transformations of any n × n matrix A. Notations are k for iteration number,
i and i i for row number and j , j j for column number:

SUBROUTINE HOUSEHOLDRER(A,n)
! A=Given n×n matrix. (Input)
! Transformed Hessenberg matrix of A, returned in A. (Output)
!**
REAL :: A(n,n), v(n)
DO k=1, n−2
gamma=0.0
DO i=k+1,n

402 9 Matrix Eigenvalues

gamma=gamma+A(i,k)**2
END DO
gamma=SQRT(gamma)
IF(A(k+1,k)<0.0) gamma=−gamma
IF(ABS(gamma)>1.E−10) THEN
scalef=A(k+1,k)+gamma !scalef is the scaling factor
DO i=1,n
v(i)=0.0
IF(i>k+1) v(i)=A(i,k)/scalef
END DO
v(k+1)=1.; alfa=scalef/gamma
DO i=k,n
scalar=0.0
DO jj=k+1,n
scalar=scalar+A(i,jj)*v(jj)
END DO
DO j=k+1,n
A(i,j)=A(i,j)−alfa*scalar*v(j)
END DO; END DO
DO j=k+1,n
scalar=0.0
DO ii=k+1,n
scalar=scalar+v(ii)*A(ii,j)
END DO
DO i=k+1,n
A(i,j)=A(i,j)−alfa*scalar*v(i)
END DO; END DO
A(k+1,k)=−gamma
DO i=k+2,n
A(i,k)=0.
END DO; END IF; END DO
RETURN
END SUBROUTINE HOUSEHOLDER

We now expand on two properties of the Householder transformation in some
detail.
1o. The Householder transformation is a reflection in the hyperplane orthogonal
to v.

Proof In three dimensions. let v be parallel to the z-axis, with v = k, then

S =
⎡

⎣

1 0 0
0 1 0
0 0 −1

⎤

⎦

9.2 Real Symmetric Matrices 403

and therefore for any vector u = [u1, u2, u3]T , Su = [u1, u2, −u3]T , which is
the reflection of u in the (x, y)-plane. The generalisation to n-dimensions is imme-
diate. �

2o. If a Householder transformation is written as

S(v) = I − 2
v

‖v‖2 · vT

‖v‖2 ;

then
v

‖v‖2 determined by Eq. (9.24) and satisfying Eq. (9.21) is unique except for a

sign.

Proof Let there be another v′ satisfying Eq. (9.21), then

b1 = (I − α vvT) a1 = (I − α′ v′v′T) a1

Thus αv (vT a1) = α′v′ (v′T a1). Now v′T a1 �= 0, otherwise b1 is equal to a1 and no
transformation is necessary. Hence, v′ = α′′v, where α′′ = α (vT a1)/[α′ (v′T a1)].
The norms satisfy ‖v′‖2 = |α′′| ‖v‖2, yielding v′/‖v′‖2 = ± v/‖v‖2.
Karl Hessenberg (1904–1959), German engineerwhose dissertation in the year 1942 (duringWorld

War II), investigated the computation of eigenvalues. He was a modest man and not much is known

about his life.

Alston Scott Householder (1904–1993), U.S. mathematician. His doctoral dissertation in 1937

was on calculus of variations, but turned to mathematical biology. After the World War in 1946,

he shifted to numerical analysis, which retained his interest till retirement in 1974 as Chairman of

Mathematics Department at the University of Tennessee, U.S.A.

Example 1. Reduce the matrix

A =

⎡

⎢
⎢
⎣

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

⎤

⎥
⎥
⎦

to Hessenberg form. Hence, determine the eigenvalues.

Solution. Using subroutine HOUSEHOLDER we obtain the Hessenberg matrix B
similar to A given by

B =

⎡

⎢
⎢
⎣

1.00000 −1.67126 −0.08512 −0.44682
−5.38510 9.00000 2.36001 0.65601
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000

⎤

⎥
⎥
⎦

404 9 Matrix Eigenvalues

Hence, the eigenvalues are given by the characteristic polynomial

λ2[(1 − λ) (9 − λ) − 1.67126 × 5.38516] = 0

or λ2[9 − 10λ + λ2 − 9] = 0

which yields the eigenvalues as λ = 0, 0, 0, 10. �

Exercises

Reduce the following matrices to Hessenberg form by using the subroutine HOUSE-
HOLDER:

1.

⎡

⎣

2 −1 2
5 −3 3

−1 0 −2

⎤

⎦ [
⎡

⎣

2.00000 1.37281 1.76505
−5.09902 −3.53846 −2.69231

0.30769 −1.46154

⎤

⎦].

2.

⎡

⎣

5 6 −3
−1 0 1
1 2 −1

⎤

⎦ [
⎡

⎣

5.00000 −6.36396 2.12132
1.41421 −2.00000 0

−1.00000 1.00000

⎤

⎦].

3.

⎡

⎢
⎢
⎣

1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

⎤

⎥
⎥
⎦

[

⎡

⎢
⎢
⎣

1.00000 −5.38517
−5.38517 5.13793 −1.99524

−1.99524 −1.37449 0.28953
0.28953 −0.76344

⎤

⎥
⎥
⎦

].

4.

⎡

⎢
⎢
⎣

2 −1 3 −4
3 −2 4 −3
5 −3 −2 1
3 −3 −1 2

⎤

⎥
⎥
⎦

[

⎡

⎢
⎢
⎣

2.00000 0 3.52315 −3.68611
−6.55744 −2.06977 4.01933 −0.77945

−1.93373 −1.56518 −5.10952
−0.99206 1.63494

⎤

⎥
⎥
⎦

].

9.3 General Matrices

In this section, we consider the problem of numerical computation of the eigenvalues
of any n × n matrix, real or complex. This general computational problem received
focal attention in the sixth to the eighth decades of the last century, culminating in
routines that delivered the eigenvalues in highly efficient manner, even though the
methods are somewhat intricate as we shall see. The beginning could be said to be
with H. Rutishauser’s (1958) development of the LR Method.

9.3 General Matrices 405

9.3.1 The LR Method

The reader is well aware of the success of the LU decomposition method for solving
a system of linear algebraic equations (Sect. 3.1.3, Chap. 3). Rutishauser employed
this technique for the evaluation of the eigenvalues of a matrix A, factored as LU .
But instead of calling L andU as lower and upper triangular matrices, he called them
left and right triangular matrices, hence the name LR method.

Let the n × n matrix A be nonsingular, so that employing Gaussian elimination
we have

A = LU

where L is n × n unit lower triangular (i.e. lower triangular with unit diagonal)
matrix, and U is n × n upper triangular matrix. For this original decomposition,
attaching a subscript ‘1’ to the above, we have

A1 = L1U1, A1 := A, L1 := L , U1 := U

On the matrix A1, we perform the similarity transformation L−1
1 A1L1 and obtain

A2 := L−1
1 A1L1 = L−1

1 (L1U1) L1 = U1L1

Both U1 and L1 are nonsingular since A1 is so (det[A1] �= 0). Hence, A2 is nonsin-
gular. Moreover since L1 = A1U

−1
1 , we have

A2 = L−1
1 A1L1 = U1A1U

−1
1

Since A2 is obtained by a similarity transformation of A1, it has the same eigenvalues
as A1. Continuing the iteration we can write

A2 = U1L1 =: L2U2

A3 = U2L2 = L−1
2 A2L2 = U2A2U

−1
2 =: L3U3 etc.

Ak+1 = UkLk = L−1
k Ak Lk = Uk AkU

−1
k =: Lk+1Uk+1 (k = 1, 2, · · ·)

All the iterates have the same eigenvalues as A1. If A1 is real, so are the iterates.
The matrices Lk and Uk are, respectively, unit lower triangular and upper triangular
matrices of dimension n × n.

The most important property of sequence {Ak} is that under some general restric-
tion, it converges to a matrix of upper triangular form, so that the elements of the
principal diagonal of this upper triangular matrix become the eigenvalues of A1 or
A. We leave the topic here as the method suffers from some inherent difficulties of
practical implementation. The interested reader may see for details in the texts of
Wilkinson 1965 and Ralston and Wilf 1967.

406 9 Matrix Eigenvalues

Heinz Rutishauser (1918–1970), Swiss numerical analyst and computer scientist at the Federal

Institute of Technology (ETH), Zurich. In spite of heart disease beginning 1955, he made impor-

tant contributions in numerical analysis and was a team member that developed ALGOL 60—a

programming language more advanced than the FORTRAN II language developed a few years

earlier. Apart from the LR method, he was the codiscoverer of the so-called QD method for solv-

ing polynomial equations and computation of eigenvalues. He passed away prematurely at the age

of 52.

9.3.2 The QR Method

This practical method due to J.G.F. Francis (1961–1962) is a powerful alternative
to the LR method, covering even singular matrices. Vera N. Kublanovskya (1961)
discovered the basics of the method independently during the same period. In this
method, according to a theorem of Schur, the matrix A can in general, be factorised
into a Unitary matrix Q and a right triangular matrix R. A unitary matrix Q is
defined to be that matrix for which Q−1 equals the Hermitian matrix QH of Q.
When A is nonsingular, A = QR, in which Q as well as R with non-negative real
diagonal elements, are unique. Adopting the iterative procedure of LR,with subscript
notations, we get

A1 := A = Q1R1, Q1 := Q, R1 := R
A2 = QH

1 A1Q1 = R1A1R
−1
1 = R1Q1 =: Q2R2

· ·
Ak+1 = QH

k AkQk = Rk Ak R
−1
k = RkQk =: Qk+1Rk+1

Since the transformations are similar, all the iterates have the same eigenvalues as
A1. If A is real so are Ak .

When A is singular, the decomposition is no longer unique. However, if the rank
of A is r with the first r columns linearly independent, then the last n − r of A2 will
be null and the leading r × r submatrix will be uniquely defined. Thus isolating the
zero eigenvalue, the procedure may be continued on the submatrix.

Therefore reverting back to the case of nonsingular A, the main convergence
theorem is that under some general conditions, the sequence {Ak} tends to a right
triangular matrix, so that the eigenvalues are delivered by the diagonal elements.

John G. F. Francis (1934 -) is a British computer scientist. He worked at the National Research

Development Corporation and later at Ferranti Corporation Limited, London. Subsequently, he

moved to Sussex University and various industrial organisations. He never returned to numerical

computation, moving over to artificial intelligence, computer languages and systems. His singular

work on the QRmethod led to explosive growth in researches in numerical matrix algebra by others,

which continues to this day.

9.3 General Matrices 407

Vera Nikolaevna Kublanovskya (1920–2012)was aRussianmathematician, noted for herwork

on computational methods for solving spectral problems of algebra. Sheworked her entire academic

life at the Steklov Institute ofMathematics of Russian Academy of Sciences, St. Petersburg, Russia.

Issai Schur (1875–1941) was a Russian mathematician who worked in Germany. He is famous

for many contributions in mathematics, including those in Group Representations, Combinatorics

and Number Theory. In late life, during the beginning of World War II, he was forced to leave

Germany to die in Tel Aviv, Israel.

9.3.2.1 Convergence of QR Method

The convergence theorem is due to J. H. Wilkinson. It is based on the following two
results:
1o. If Q̂k = Q1Q2 · · · Qk , so that Q̂k is n × n unitary, then

Ak+1 = QH
k Ak Qk = QH

k (QH
k−1 Ak−1 Qk−1) Qk = · · · · · ·

= QH
k QH

k−1 · · · QH
1 A1 Q1Q2 · · · Qk

= Q̂H
k A1 Qk

(9.30)

2o. If R̂k = Rk Rk−1 · · · R1, so that R̂k is right triangular with non-negative real diag-
onal elements, then

Q̂k R̂k = Q1Q2 · · · (Qk Rk) Rk−1 · · · R1 = Q̂k−1 Ak R̂k−1

= A1 Q̂k−1 R̂k−1 = · · ·
= Ak−1

1 Q̂1 R̂1 = Ak
1

(9.31)

Theorem 9.10 (Convergence of QRMethod) Let A1 be diagonalised by a similarity
transformation: A1 = X�X−1, where � = diag{λ1,λ2, · · · , λn} is real. If

(i) |λ1| > |λ2| > · · · > λn > 0

(ii) X−! =: Y has LU factorisation L yUy

then Ak ∼ Dk RD−k (asymptotic convergence), where R is right triangular and D
is diagonal unitary.

Proof Since A1 = X�X−1, it follows by multiplication that

Ak
1 = X�k X−1 = X�kY = X�k L yUy

= X (�k L y�
−k)�kUy

(9.32)

408 9 Matrix Eigenvalues

Now focusing on a 3 × 3 matrix

Ly =
⎡

⎣

1 0 0
l21 1 0
l31 l32 1

⎤

⎦

we get

�k L y�
−k =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0

l21

(
λ2

λ1

)k

1 0

l31

(
λ3

λ1

)k

l32

(
λ3

λ2

)k

1

⎤

⎥
⎥
⎥
⎥
⎦

=: I + Bk

where the element (i, j) of Bk is zero for i ≤ j and li j (λi/λ j)
k for i > j . This form

is true for any order n of the matrix. Hence from the given conditions, Bk → 0 as
k → ∞. Now, one can always write X = Qx Rx , then Eq. (9.32) yields

Ak
1 = Qx Rx (I + Bk)�kUy = Qx (I + Rx Bk R

−1
x) (Rx�

kUy)

In the above equation, I + Rx Bk R−1
x → I as k → ∞. Hence for k > K0, it becomes

nonsingular and we can write it as Q̃k R̃k , where Q̃k → I , R̃k → I . Hence, the above
equation becomes

Ak
1 = (Qx Q̃k) (R̃k Rx�

kUy)

Thefirst factor is unitary and the second, right triangularwith orwithout non-negative
diagonal elements because of�k andUy . As a remedy let diagonal unitarymatrices D
and D1 be introduced such that D� and D1Uy have non-negative diagonal elements.
We can then write

Ak
1 = (Qx Q̃k D

−1
1 D−k) (DkD1 R̃x Rx�

kUy)

The second factor in the above equation is right triangular with non-negative diagonal
elements (verify). Hence using conditions (i i) and (i), Q̂k = Qx Q̃k D

−1
1 D−k and so

by Eq. (9.30)

Ak+1 = DkD1 Q̃H
k QH

x A1Qx Q̃k D
−1
1 D−k

→ Dk (D1QH
x Qx Rx�R−1

x QH
x Qx D

−1
1) D−k as k → ∞

→ Dk (D1Rx�R−1
x D−1

1) D−k

(9.33)

The middle factor is right triangular R and the theorem follows. �

9.3 General Matrices 409

The form of D is D = diag [eiθ1 , · · · , eiθn]. Hence unless λ1, λ2, · · · , λn are all
non-negative, Dk and D−k will not tend to definite limits as k tends to∞. Similarly for
D1. Nevertheless in Eq. (9.33) D and D1 have no effect on the diagonal elements of
Rx�R−1

x , while the off-diagonal elements remain unchanged inmodulus only. Hence
even though there is no complete convergence of Ak+1, the diagonal elements do
converge to the eigenvalues. This kind of convergence is called essential convergence.

We now state without proof of additional convergence results:

1. If λ1, λ2, · · · , λn are real, condition (i) is not required. Thus some of the eigen-
values may be equal or differ by a sign.
2. For a real matrix A, with a pair of complex conjugate eigenvalues, the iterates
tend to a right triangular matrix with a 2 × 2 submatrix along the diagonal. The real
diagonal elements yield the n − 2 real eigenvalues and the submatrix the complex
conjugate pair, though the submatrix itself does not converge to a limiting submatrix.
3. When A is real with multiple complex eigenvalues, the latter are delivered by a
string of 2 × 2 submatrices of the type mentioned in result 2 above, along the diag-
onal.

James Hardy Wilkinson (1919–1986), British numerical analyst and computer scientist. He

began working on ballistics at the beginning of World War II but at the end of it, he turned to a

British computer project. Subsequently, he turned to numerical analysis and discovered many sig-

nificant algorithms. In 1963 he discovered the polynomial (x − 1)(x − 2) · · · (x − 20) to illustrate

the difficulty of finding zeros of a polynomial. He introduced ‘backward error analysis’ in compu-

tational linear algebra and laid theoretical basis for the matrix eigenvalue problem. He led the team

to develop NAG (Numerical Algorithms Group) library containing FORTRAN source codes for

numerical computation.

9.3.2.2 Preliminary Reduction to Hessenberg Form

The convergence theorem shows that in the limit, the iterations Ak in general tend
to an upper Hessenberg matrix. This fact is suggestive that the given matrix be first
reduced to Hessenberg form by applying Householder reflections (Sect. 9.2.3) and
then the QR method be applied. Several advantages accrue there from. First, if A is
in Hessenberg form, so is Q. For instance, if A is a 5 × 5 matrix:

A = [ai j] =

⎡

⎢
⎢
⎢
⎢
⎣

× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

⎤

⎥
⎥
⎥
⎥
⎦

410 9 Matrix Eigenvalues

and Q = [qi j], R = [ri j], ri j = 0 for i > j (right triangular), then

0 = ai1 = qi1r11 ⇒ qi1 = 0 for i = 3, 4, 5
0 = ai2 = qi1r12 + qi2r22 ⇒ qi2 = 0 for i = 4, 5
0 = a53 = q51r13 + q52r23 + q53r33 ⇒ q53 = 0

Hence the assertion. Secondly, if the product RQ is formed, then it is easily seen that
it remains in Hessenberg form. Therefore all the iterations in QR method remain in
Hessenberg form. Finally, accounting has shown that the number of additions and
multiplications in an iteration of QR drop from an order of n3 to n2.

In the sequel, we shall assume that the given matrix is always reduced to this form
and such a form will be our A or A1. In such Hessenberg form, we can assume that
all subdiagonal elements are non-zero. For if one such element vanishes, A can be
partitioned into the form

⎡

⎣

B | D
−− −− −−
O | C

⎤

⎦

so that the eigenvalues of B and C yield those of A.

9.3.2.3 Shifts of Origin

From the proof of themain theorem, it is obvious that the rate of convergence depends
on that of Bk , that is (λi/λ j)

k , tending to zero (i > j). Thus for convergence to the
smallest eigenvalue λn (assumed real), a(k)

n,n−1 of Hessenberg form of Ak tends to zero
as (λn/λn−1)

k and aknn toλn . For accelerating convergence, wemay consider A1 − s I
whose eigenvalues are λi − s, i = 1, 2, · · · , n. The first of the foregoing elements
will now tend to zero as {(λn − s)/(λn−1 − s)}k . If s is a close approximation to λn ,
the element will quickly tend to zero yielding the eigenvalue λn − s in the (n, n)

position.

We therefore consider the following modification of the basic QR method:

Ak − sk I = Qk Rk,

k = 1, 2, · · ·
Ak+1 = QH

k AkQk = RkQk + sk I,

Evidently, A2, A3, · · · have the same eigenvalues as A1. The basic result 1o still
holds:

Ak+1 = Q̂H
k A1 Q̂k, Q̂ = Q1Q2 · · · Qk (9.34)

9.3 General Matrices 411

and with R̂k = Rk Rk−1 · · · R1, result 2o becomes

Q̂k R̂k = Q1Q2 · · · (Qk Rk) Rk−1 · · · R1

= Q̂k−1(Ak − sk I)R̂k−1 = (A1 − sk I)Q̂k−1 R̂k−1

· ·
= (A1 − sk I)(A1 − sk−1 I) · · · (A1 − s1 I) =: φk(A1) (9.35)

In view of these two results, the basic convergence theorem will hold, subject to
modifications of condition (i) to

|φk(λ1)| > |φk(λ2)| > · · · > |φk(λn)| > 0

For a practical procedure, we consider the general case of a complex matrix A,
focusing attention on the eigenvalue of the smallest modulus λn delivered by the last
element. The choice of shifts may be made in various ways. Initially, in the absence
of any knowledge, we assume s1 = 0. In the succeeding iterations, motivated by the
particular

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × | ×
× × × × | ×

× × × | ×
× × | ×

− − − − − −
× | ×

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

↓ ↓
ε λn

case of real matrices with complex conjugate eigenvalues, we determine the complex
eigenvalues of the last 2 × 2 submatrix, αk and βk and choose sk+1 to be αk or βk

according as |αk − a(k)
nn | is less than or greater than |βk − a(k)

nn |. The iterations are
continued till a(k)

n,n−1 becomes sufficiently small, say less than ε. Then a(k)
nn yields λn .

The next eigenvalue λn−1 is attacked by deflation, which merely consists of deleting
the nth row and column. The procedure is continued till the last deflation yields a
2 × 2 matrix yielding λ1 and λ2.

For factorisation of Ak − sk I into Qk Rk , we recall that the procedure is to choose
QH

k such that

QH
k (Ak − sk I) = Rk

QH
k may be a series of Householder reflections to triangularise Ak − sk I into Rk

(Sect. 9.2.3).

412 9 Matrix Eigenvalues

For real matrices whichmay have complex conjugate eigenvalues, Francis discov-
ered deeper theory to eliminate complex arithmetic, even though the shifts may be
complex and has propounded a highly efficient method called the double QRmethod.

9.3.2.4 The Double QR Method for Real Matrices

In this method two steps of QR are considered together. In the first two

A1 − s1 I = Q1R1, A2 = R1Q1 + s1 I
A2 − s2 I = Q2R2, A3 = R2Q2 + s2 I

Hence by Eq. (9.35)

A3 = QH
2 A1 Q̂2, Q̂2 R̂2 = φ2(A1) (9.36)

where

φ2(A1) = (A1 − s2 I) (A1 − s1 I)

= A2
1 − (s1 + s2) A1 + s1s2

(9.37)

If s1 is complex, we choose s2 = s∗
1 , making φ2(A1) real in all cases. Hence its

Q, R factors Q̂2 and R̂2 also become real and hence A3 becomes real. In double
QR, the real sequence A1, A3, · · · is considered, even though sk may be complex.
According to Francis, the iterations are most effectively determined indirectly, based
on the following lemma.

Lemma 9.1 If H = QH AQ where A is a given matrix, Q is unitary and H is
Hessenberg with positive subdiagonal elements, then H is unique, provided the first
column of Q is prescribed.

Proof We can write QH = AQ, that is

j+1
∑

k=1

qik hk j = AQ

or
j+1
∑

k=1

hkj qk = Aq j

where Q = [q1, q2, · · · , qn]. Hence

h j+1, j q j+1 = Aq j −
j

∑

k=1

hkjqk

9.3 General Matrices 413

which yields the subdiagonal elements (since q j are orthonormal). Thus

h j+1, j = ‖Aq j −
j

∑

k=1

hkj qk‖2

and q j+1 =
(

Aq j −
j

∑

k=1

hkj qk

)

/h j+1, j

The above equation yields q j recursively, provided the elements hkj of the upper
triangle are known, for which H = QH AQ yields

hi j = qH
i Aq j , i ≤ j

which recursively supply the required elements, provided q1is prescribed. �

Now from Eqs. (9.36) and (9.37) since R̂2 is right triangular, the first column of Q̂2

is
Q̂2e1 = k−1φ2(A1) e1 = k−1 (A2 − σA + ρI) e1

= k−1 [x1, y1, z1, 0, · · · , 0]T
(9.38)

where k is thefirst diagonal element (i = 1, j = 1)of R̂2 andσ = s1 + s2, ρ = s1s2.
Also, easily

x1 = a211 + a12 a21 − σ a11 + ρ = a21 [{a11 (a11 − σ) + ρ}/a21 + a12]
y1 = a21 (a11 + a22 − σ)

z1 = a32 a21

(9.39)

The unitarity of Q̂2, viz. Q̂T
2 Q̂2 = I requires

k2 = x21 + y21 + z21 (9.40)

Now let P1 be a unitary matrix with the same first column as Eq. (9.38) and of the
form

P1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1/k × × |
y1/k × × | O
z1/k × × |
− − − − − − −

|
O | I

|

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.41)

414 9 Matrix Eigenvalues

On post and premultiplication of A1 by P1 we get the form for n = 6:

P1A1P1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
0 0 0 × × ×
0 0 0 0 × ×

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.42)

which is not in Hessenberg form. It can however be converted to such a form by
n − 2 successive Householder transformations P2, P3, · · · , Pn−1 to yield

A′ = Pn−1 · · · P2P1 A1 P1P2 · · · Pn−1 (9.43)

In this process, the first column of P1P2 · · · Pn−1 is that of P1, that is, of Q̂2. Hence
by the uniqueness lemma A3 ≡ A′.

It is natural to select P1 on the basis of Householder transformation:

P1 = I − α1 vvT , α1 vT v = 2
v = [u1, v1, w1, 0, · · · , 0]T (9.44)

without loss of generality, we may introduce scaling by taking u1 = 1. Hence

(P1 e1)T = [1 − α1, −α1 v2, −α1 v3, 0, · · · , 0]T
=

[x1
k

,
y1
k

,
z1
k

, 0, · · · , 0
]T

by Eq. (9.41), i.e.

−α1 = x1
k

− 1, −α1 v1 = y1
k

, −α1 w1 = z1
k

Satisfaction of Eq. (9.43) again yields Eq. (9.40). From the above relations, we get

v1 = y1
x1 − k

, w1 = z1
x1 − k

Writing γ1 for −k, we get

u1 = 1, v1 = y1
x1 + γ1

, w1 = z1
x1 + γ1

, α1 = 1 + x1
γ1

(9.45)

9.3 General Matrices 415

where, from Eq. (9.40), we select the sign of the radical so as to minimise possible
loss of significant digits in x1 + γ1 by taking

γ1 = sgn(x1)
√

x21 + y21 + z21 (9.46)

The transformation P1 (Eqs. (9.44)–(9.46)) is remarkably similar to that of P2
(and likewise for P3, · · · , Pn−1) (see Sect. 9.2.3) except that it precedes the latter by
one stage. The computation of P1AP1 may therefore be carried out as described in
that section.

Equations (9.28) and (9.29) of Sect. 9.2.3 also show that for Hessenberg reduction
of Eq. (9.42), which contains four consecutive non-zero elements in the first column,
P2 requires v with only three non-zero components starting with the second u2 = 1,
v2 and w2. Comparison with Eqs. (9.45) and (9.46) shows that for P2, we can use
the procedure for P1 with a shift, in which x1, y1, z1 are replaced by x2, y2, z2
representing the last three non-zero elements of the first column of Eq. (9.42) for
the computation of u2, w2, γ2 and α2. Significantly, which considerably eases pro-
gramming, for the computation of P3, we again require three non-zero components
starting with the third, u3 = 1, v3 andw3, whichmay be computed from a P1 with an
additional shift, in the manner just described for P2 (verify). This kind of procedure
holds true for P4, P5, · · · , Pn−2. At the last stage of reduction Pn−1, there is no z
term and we require only two non-zero components un−1 = 1 and vn−1.

9.3.2.5 Computing the Product for A′

In view of the fact that each Pi is composed of a vector v with only three non-zero
components, the product (9.43) for A′ should be computed directly rather than as in
Sect. 9.2.3 on Householder transformation. The product with B1 = A1 can be written
as

Bk+1 = Pk Bk Pk, k = 1, 2, · · · , n − 1 (9.47)

Pk = I − αk vk vT
k , where

vT
k = [0, 0, · · · , uk, vk, wk, 0, · · · , 0]T

↑
k

uk = 1, vk = yk
xk + γk

, wk = zk
xk + γk

αk uk = xk + γk

γk
, αk vk = yk

γk
, αk wk = zk

γk

416 9 Matrix Eigenvalues

and for k = n − 1 there is no vk+2. The vector can be written as vk = uk ek +
vk ek+1 + wk ek+2. The premultiplication in Eq. (9.47) is

B ′
k = Pk Bk = Bk − (αk vk) ξTk

ξTk = vT
k Bk = (uk eTk + vT

k eTk+1 + wk eTk+2) Bk

= uk bk j + vk bk+1, j + wk, bk+2, j , j = 1, 2, · · · , n

=: ξk j

In any column j , several elements below the subdiagonal are zero, so elements of
ξTk for j < k vanish in effect (verify), (also see subroutine HOUSEHOLDER). Also

(αk vk) ξTk = matrix of j th column = ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

αk uk ξk j
αk vk ξk+1, j

αk wk ξk+2, j
...

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

in which columns j < k are null. The computational algorithm for the above is
simple:

For j = k, · · · , n

ξ (= ξk j) ←
{

uk bk j + vk bk+1, j + wk bk+2, j , k < n − 1
uk bk j + vk bk+1, j , k = n − 1

bkj ← bkj − αk uk ξ

bk+1, j ← bk+1, j − αk vk ξ

bk+2, j ← bk+2, j − αk wk ξ

(9.48)

column number j remaining fixed at a time; these are obviously row transformations.
The post multiplication in Eq. (9.47) is similarly carried out:

Bk+1 = B ′
k Pk = B ′

k − ηk vT
k

ηk = B ′
k αk vk = B ′

k αk (uk ek + vk ek+1 + wk ek+2)

= αk (uk b′
ik + vk b′

i,k+1 + wk b′
i,k+2), i = 1, 2, · · · , n

=: ηik

In the above, forwhich rows ηk vanishes?Thefirst term contributes null for i > k + 1
(verify), so the second and the third terms contribute null for i > k + 2 and i > k + 3,
respectively. The remaining product yields

9.3 General Matrices 417

ηk vT
k = matrix of the i th row [0, 0, · · · , ηik uk, ηik vk, ηik wk, 0, · · · , 0]

in which rows i > k + 3 are null. The algorithm is now:

For i = 1, · · · , min (k + 3, n)

η (= ηik) ←
{

αk uk bik + αk vk bi,k+1 + αk wk bi,k+2, k < n − 1
αk uk bik + αk vk bi,k+1, k = n − 1

bik ← bik − uk η
bi,k+1 ← bi,k+1 − vk η
bi,k+2 ← bi,k+2 − wk η

(9.49)

Evidently, these are column transformations. To top it, a single cell is needed for the
elements of ξ and η!

9.3.2.6 Vanishingly Small Subdiagonal Elements

The theory of the double QR transformation is based on the hypothesis that the
subdiagonal elements are not zero. However, during iteration, several of them may
tend to zero as convergence to eigenvalues approaches. Suppose that subdiagonal
element in row l tends to zero (machine zero by underflow), viz. al,l−1 = ε, say, for
example, l = 3 in the sth (s odd) iteration of 6 × 6 matrix:

As =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × | × × × ×
× × | × × × ×
− − − − − − −

ε | × × × ×
| × × × ×
| × × ×
| × ×

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.50)

Then the matrix is effectively delinked into two submatrices; one (l − 1) × (l − 1)
at the upper left-hand corner and another (n − l + 1) × (n − l + 1) at the lower right
hand corner. The second submatrix with the first element at (l, l) is picked up for
double QR transformation.

If, however, l = n i.e. an,n−1 = ε → (machine 0), the smallest eigenvalue λn

is delivered by ann . And if l = n − 1 i.e. an−1,n−2 = ε (machine 0), two smaller
eigenvalues, real or complex are delivered by the submatrix

[

an−1,n−1 an−1,n

an,n−1 ann

]

These cases are very desirable.

418 9 Matrix Eigenvalues

Francis has considered another important possibility, that of consecutive small
subdiagonal elements am,m−1 = ε1 and am+1,m = ε2, such that ε1, ε2 → 0
(machine 0). For example, let m = 3 in a 6 × 6 matrix:

As =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × × × × ×
× × × × × ×

ε1 × × × ×
ε2 × × ×

× × ×
× ×

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

then, we hope to start the product with Pm rather then P1 (as if we are treating
the lower submatrix). In the premultiplication Pm As , the first m − 1 rows remain
unaffected (verify) and we obtain the form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× × | × × × ×
× × | × × × ×
− − − − − − −

δ1 | × × × ×
δ2 | × × × ×
δ3 | × × × ×

| × ×

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(verify), where by Eq. (9.48) for j = m − 1

ξ = um am,m−1 = ε1

δ1 = am,m−1 = ε1 − αm ξ = ε1 − 2ε1/(1 + v2
m + w2

m)

δ2 = am+1,m−1 = −αm vm ξ = −2ε1 vm/(1 + v2
m + w2

m)

δ3 = am+2,m−1 = −αm wm ξ = −2ε1 wm/(1 + v2
m + w2

m)

Now vm and wm containing ym and zm have a factor am+1,m = ε2 and xm is not
small (in general). Hence when ε1, ε2 → 0, δ1, δ2 → 0 and δ1 = −ε1. With these
stipulations, the row transformations (9.48) can be carried out for k ≥ m only. No
economy of computation in column transformations (9.49) is possible for this case.

9.3.2.7 Implementation

The successive double QR iterations are overwritten on A = A1 in Hessenberg form.
The convergence theorem implies that the eigenvalues are delivered in increasing

9.3 General Matrices 419

order of magnitude from the bottom upwards. Hence, we consider the bottom-most
submatrix

[

an−1,n−1 an−1,n

an,n−1 ann

]

whose eigenvalues s1, s2 satisfy

σ = s1 + s2 = an−1,n−1 + ann
ρ = s1s2 = an−1,n−1 × ann − an−1,n × an,n−1

and use them as shifts in Eq. (9.39). Also, since xk, yk, zk are scaled, we first drop
a21 in x1, y1, z1 and scale them with respect to s = |xk | + |yk | + |zk | to prevent
underflow or overflow in γ. With these choice of σ and ρ, convergence is usually
very fast.

Since some of the subdiagonal elements tend to zero, those from bottom upwards,
these are tested for underflowing to zero. If al,l−1 = ε → (machine 0) as in Eq. (9.50),
the lower (n − l + 1) × (n − l + 1) submatrix is considered. If l = n,λn is delivered
by ann and if l = n − 1 two eigenvalues, real or complex, λn−1 and λn are delivered.
In either case, the matrix is deflated by deleting the last row and column or last two
rows and columns from A.

For taking advantage of two consecutive subdiagonal elements am,m−1 = ε1 and
am+1,m = ε2, such that ε1, ε2 → 0 (machine 0), the criterion

|am,m−1| (|ym | + |zm |)
|xm | << |am−1,m−1| + |amm | + |am+1,m+1|

is found satisfactory in experience (theoretically one could have ‖A‖ on the right-
hand side).

The above works in most cases for less than 10 iterations per eigenvalue. In such
cases, any shift of the order of ‖A‖ may be successful. One such is

σ = 1.5 × (|an,n−1| + |an−1,n−2|)
ρ = (|an,n−1| + |an−1,n−2|)2

With someotherminor details, the above scheme is implemented in subroutine named
FRANCIS. Though the program is long, execution is usually very fast.

It is important to note the complexity of the algorithm. For reduction toHessenberg
form by Householder transformations, the complexity is 4

3 n
3, while for each QR

transformation it is only 5 n2. The total complexity for computing n eigenvalues is
found to be approximately 8 n3.

420 9 Matrix Eigenvalues

SUBROUTINE FRANCIS(A,n)
! Computes eigenvalues of a real matrix A in Hessenberg form.
! A= The given n× n real matrix in Hessenberg form. (Input)
! n= Dimension of the matrix. (Input)
! eigval= n-vector containing the n eigenvalues delivered by the subroutine;
! however the eigenvalues are obtained sequentially backwards from
! eigval(n) to eigval(1). (Output)
!***
REAL :: A(n,n)
COMPLEX :: eigval(n)
! Compute a norm of matrix A for determining L
anorm=ABS(A(1,1))
DO i=2,n; DO j=i−1,n
anorm=anorm+ABS(A(i,j))
END DO; END DO
nn=n; eshift=0.0 ! eshift is for exceptional shift
101 IF(nn==0) RETURN
iter=0
! Compute L for which lowest subdiagonal element A(L,L−1)=0,
! delinking the bottom right hand submatrix of order n−L+1
102 DO LL=nn,2,−1
L=LL; s=ABS(A(L−1,L−1))+ABS(A(L,L))
IF(s==0.0) s=anorm
IF(ABS(A(L,L−1))+s==s) GOTO 103
END DO
L=1
103 A(nn,nn)=A(nn,nn)+eshift
sigma=A(nn−1,nn−1)+A(nn,nn)
rho=A(nn−1,nn−1)*A(nn,nn)−A(nn−1,nn)*A(nn,nn−1)

IF(L==nn) THEN
eigval(nn)=CMPLX(A(nn,nn),0.0) ! One eigenvalue obtained.

PRINT*, ’real eigenvalue=’, eigval(nn), ’ no. of iterations=’, iter
PAUSE
nn=nn−1; GOTO 101

ELSE IF(L=nn−1) THEN ! Pair of eigenvalues obtained:

9.3 General Matrices 421

d=0.25*sigma**2−rho; rtd=SQRT(ABS(d)); hafsig=0.5*sigma

IF(d>=0.0) THEN

IF(sigma>=0.0) eigval(nn)=CMPLX(hafsig+rtd,0.0)

IF(sigma<0.0) eigval(nn)=CMPLX(hafsig−rtd,0.0)

eigval(nn−1)=rho/eigval(nn)

ELSE

eigval(nn)=CMPLX(hafsig,rtd); eigval(nn−1)=CMPLX(hafsig,−rtd)

END IF

PRINT*, ’pair of eigenvalues=’, eigval(nn), eigval(nn−1)

PRINT*, ’no. of iterations=’, iter

nn=nn−2

GOTO 101

ELSE

IF(L/=1) PRINT*, ’Warning ! Delink at L=’, L

IF(iter==30) THEN

PRINT*, ’Too many iterations’; RETURN

END IF

IF(iter==10 .OR. iter==20) THEN ! Use exceptional shift
eshift=eshift+A(nn,nn)

DO i=1,nn

A(i,i)=A(i,i)−A(nn,nn)

END DO

s=ABS(A(nn,nn−1))+ABS(A(nn−1,nn−2))

sigma=1.5*s; rho=s**2

END IF

iter=iter+1

! Search for two small consecutive subdiagonal elements A(m−1,m),
A(m,m+1):

422 9 Matrix Eigenvalues

DO mm=nn−2,1,−1

m=mm

x=(A(m,m)*(A(m,m)−sigma)+rho)/A(m+1,m)+A(m,m+1)

y=A(m,m)+A(m+1,m+1)−sigma

z=A(m+2,m+1)

s=ABS(x)+ABS(y)+ABS(z); x=x/s; y=y/s; z=z/s

IF(m==1) GOTO 104

p=ABS(A(m,m−1))*(ABS(y)+ABS(z))

q=ABS(x)*(ABS(A(m−1,m−1))+ABS(A(m,m))+ABS(A(m+1,m+1)))

IF(p+q==q) GOTO 104

END DO

104 DO i=m+2,nn

A(i,i−2)=0.0; IF(i/=m+2) A(i,i−3)=0.0

END DO
! Double QR transformation begins:

DO k=m,nn−1

IF(k/=m) THEN

x=A(k,k−1); y=A(k+1,k−1); z=0.0

IF(k<nn−1) z=A(k+2,k−1)

s=ABS(x)+ABS(y)+ABS(z)

IF(s==0.0) GOTO 105

x=x/s; y=y/s; z=z/s

END IF

gama=SQRT(x**2+y**2+z**2); IF(x<0.0) gama=−gama

xgama=x+gama; yy=y/xgama; zz=z/xgama

x=xgama/gama; y=y/gama; z=z/gama

IF(L/=m) A(m,m−1)=−A(m,m−1)
DO j=k,nn

v=A(k,j)+yy*A(k+1,j)

IF(k<nn−1) THEN

v=v+zz*A(k+2,j); A(k+2,j)=A(k+2,j)−z*v

END IF

A(k+1,j)=A(k+1,j)−y*v; A(k,j)=A(k,j)−x*v

END DO

9.3 General Matrices 423

DO i=1,min(nn,k+3)

v=x*A(i,k)+y*A(i,k+1)

IF(k<nn−1) THEN

v=v+z*A(i,k+2); A(i,k+2)=A(i,k+2)−zz*v

END IF

A(i,k+1)=A(i,k+1)−yy*v; A(i,k)=A(i,k)−v

END DO

IF(k>m) A(k,k−1)=−gama*s

105 END DO

! End of double QR transformation.

GOTO 102

END IF

END SUBROUTINE FRANCIS

Remark.Weendby stating that theremay still be sensitive caseswhere the above fails.
For treatment of such cases see the text of Press et. al. (1996) cited in theBibliography,
who state that the phenomenon is present only in unsymmetricmatrices and caremust
be taken in all such cases, before reduction to Hessenberg form is undertaken.

Example 1. Compute the eigenvalues of the Hessenberg matrix

A =

⎡

⎢
⎢
⎣

5 −2 −5 −1
1 0 −3 2

2 2 −3
1 2

⎤

⎥
⎥
⎦

using subroutine FRANCIS.

Solution. The main program calling subroutine FRANCIS can be easily written
down. On executing the program the output is

λ4 ≈ −9.999999E − 01
λ2, λ3 ≈ 1.000001 ± 2.000000 i
λ1 ≈ 3.999999

The digits obtained depend on the particular platformused, but the results suggest that
the exact values may be λ4 = −1, λ2, λ3 = 1 ± 2 i, λ1 = 4. This fact is confirmed
in Example 1 of the next subsection. �

424 9 Matrix Eigenvalues

Exercises

Find the eigenvalues of the following matrices using subroutines HOUSEHOLDER
and
FRANCIS:

1.
⎡

⎣

3 1 0
−4 −1 0
4 −8 −2

⎤

⎦ [−2, 9.999998E − 01 ± 8.457279E − 04 i].

2.
⎡

⎣

4 2 2
2 5 1
2 1 6

⎤

⎦ [4.486456, 8.387617, 2.125925].

3.
⎡

⎣

8 −1 −5
−4 4 −2
18 −5 −7

⎤

⎦ [9.999978E − 01, 2.000002 ± 4.000001 i].

4.
⎡

⎢
⎢
⎣

−2 2 2 2
−3 3 2 2
−2 0 4 2
−1 0 0 5

⎤

⎥
⎥
⎦

[4, 3, 2, 1].

5.
⎡

⎢
⎢
⎣

1 2 −2 4
2 12 3 5
3 13 0 7
2 11 2 2

⎤

⎥
⎥
⎦

[−2.798580 ± 5.106368E − 01 i,
18.951210, 1.645953].

6. ⎡

⎢
⎢
⎣

25 −41 10 −6
−41 68 −17 10
10 −17 5 −3
−6 10 −3 2

⎤

⎥
⎥
⎦

[Delink at l = 2, 2.591981E − 01,
3.301656E − 02, 1.186089,
98.52168 (spurious)].

9.3.2.8 Check: Characteristic Polynomial by Hyman Algorithm

After λi are computed, the best check is to compute det[A − λi I]. Since we are
assumingmatrix A to be inHessenberg form, the determinant can be easily computed
by an algorithm due to J.M. Hyman (1957). Consider A in Hessenberg form

9.3 General Matrices 425

det[A] =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13 · · · · · · · · · a1n
a21 a22 a23 · · · · · · · · · a2n

a32 a33 · · · · · · · · · a3n
· · · · · · · · · · · · · · ·

an−1,n−2 an−1,n−1 an−1,n

an,n−1 ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

With arbitrary k1, k2, · · · , kn−1 and kn = 1 and column operation (k1 C1 + k2 C2 +
· · · + kn−1 Cn−1) + k Cn (C1, C2, · · · , Cn standing for columns) yields

det[A] =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13 · · ·
n

∑

j=1

k j a1 j

a21 a22 a23 · · ·
n

∑

j=1

k j a2 j

a32 a33 · · ·
n

∑

j=2

k j a3 j

· · · · · · · · · · · · · · ·
n

∑

j=n−2

k j an−1, j

n
∑

j=n−1

k j anj

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Now set the last n − 1 elements of the nth column to zero, to determine

kn = 1

ki − 1

ai+1,i

n
∑

j=i+1

k j ai+1, j , i = n − 1, n − 2, · · · , 1 (9.51)

Expanding the determinant by the elements of the nth column,

det[A] = (−1)n
n

∑

j=1

k j a1 j × (a21 a32 · · · an,n−1) (9.52)

Evidently, the algorithm (51)–(52) also holds for complex A. The following sub-
routine named HYMAN computes det[A] for complex A and in general λi are com-
plex.

426 9 Matrix Eigenvalues

SUBROUTINE HYMAN(A,n,det)
! Computes determinant of a complex matrix A of order n
! in Hessenberg form. If A is real, modification is trivial.
! A= given matrix. (Input)
! n= order of matrix A. (Input)
! det= determinant of matrix A. (Output)
!***
COMPLEX :: A(n,n), det, k(n), sum, prod
k(n)=(1.0,0.0)
DO i=n−1,1,−1
k(i)=(0.0,0.0)
DO j=i+1,n
k(i)=k(i)+k(j)*A(i+1,j)
ENd DO
k(i)=−k(i)/A(i+1,i)
END DO
sum=(0.0,0.0)
DO j=1,n
sum=sum+k(j)*A(1,j)
END DO
prod=(1.0,0.0)
DO j=1,n−1
prod=prod*A(j+1,j)
END DO
det=(−1)**(n−1)*sum*prod
RETURN
END SUBROUTINE HYMAN

Example 1. Check the estimates of the computed eigenvalues of Example 1,
Sect. 9.3.2.8 by subroutine HYMAN.

Solution. The computed eigenvalues are (i) λ4 = −9.999999E − 01, (i i) λ2,λ3 =
1.000001 ± 2 i and (i i i) λ1 = 3.999999. We write a main program as follows:

REAL :: A(4,4)
COMPLEX :: AA(4,4), det
A(1,1)=5; A(1,2)=−2; A(1,3)=−5; A(1,4)=−1
A(2,1)=1; A(2,2)=0; A(2,3)=−3; A(2,4)=2
A(3,1)=0; A(3,2)=2; A(3,3)=2; A(3,4)=−3
A(4,1)=0; A(4,2)=0; A(4,3)=1; A(4,4);=−2
DO i=1,4; DO j=1,4
AA(i,j)=CMPLX(A(i,j),0.)

9.3 General Matrices 427

END DO; END DO
x=−9.999999E−01; y=0. ! real and imaginary part of a computed eigen

! value
DO i=1,4
AA(i,i)=AA(i,i)−cmplx(x,y)
END DO
CALL l HYMAN(AA,4,det)
PRINT*, det
END

To this program, we have of course to attach subroutine HYMAN. In the above
program, the first root λ4 is tested and the result of execution is

det = −8.583069E − 06

In a similar manner writing x=1.000001; y=±2, and x=3.999999; y=0, we get for
the cases (i i) and (i i i)

det = 9.536743E − 06 ∓ 3.814697E − 05

and det= −5.340576E − 05
The digits obtained above depend on the particular platform used. If the eigenval-

ues are rounded to −1, 1±2 i and 4, the value of det is obtained as 0 in all the four
cases. �

Exercises

Use subroutine HYMAN to compute det for the eigenvalues of the Exercises
1–6 of Sect. 9.3.2.7.

[1. −9.440894E−06, ±2.304906E−09 i

2. −4.964799E−06, 5.678034E−05, −7.957226E−06

3. 0, 7.033955E−05 ± 3.516977E−05 i

4. 2.199042E−06, 1.272295E−06, 2.289446E−06, 3.434170E−07

5. −5.303153E−05 ± 2.305719E−06 i , 1.341006E−02, 9.222874E−05

6. 5.088465E−05, −3.215952E−05, −2.372593E−05, −7.77321].

428 9 Matrix Eigenvalues

9.4 Maximum Modulus Eigenvalue: The Power Method

Let λ1, λ2, · · · , λn be the eigenvalues of an n × n matrix A such that they can be
arranged in a descending order of magnitude say

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|

so that λ1 is the largest eigenvalue in modulus. We assume in this section that λ1 is
real. If the eigenvectors x1, x2, · · · , xn corresponding toλ1, λ2, · · · , λn are linearly
independent, any vector v can be written as

v = c1 x1 + c2 x2 + · · · + cn xn

or, absorbing the multiplying scalars c1, c2, · · · , cn into the vectors,

v = x1 + x2 + · · · + xn

Hence applying Theorem 5 of Sect. 9.1,

Akv = λk
1x1 + λk

2x2 + · · · + λk
nxn

= λk
1

[

x1 +
(

λ2

λ1

)k

x2 + · · · +
(

λ n

λ1

)k

xn

]
(9.53)

Case (i). Let λ1 be nonrepeated, i.e. |λ1| > |λ2| ≥ · · · ≥ |λn|. Then

Akv → λk
1v as k → ∞ (9.54)

Since a scalar multiplier is inconsequential for an eigenvector, we conclude that Akv
tends to the eigenvector corresponding to λ1.

To determine λ1, we obtain a scalar relation by premultiplying Eq. (9.53) by any
row vector uT , obtaining

uT Akv = λk
1

[

uT x1 +
(

λ2

λ1

)k

uT x2 + · · · +
(

λn

λ1

)k

uT xn

]

Hence, it follows that the quotient

uT Ak+1v
uT Akv

= λ1 + O

[(
λ2

λ1

)k]

as k → ∞
→ λ1 as k → ∞

if uT x1 �= 0. In particular, one can choose u = Akv (which tends to the eigenvector
corresponding to λ1 by Eq. (9.54)) and obtain

9.4 Maximum Modulus Eigenvalue: The Power Method 429

λ1 → uT Au
uT u

=
(

uT

‖uT ‖2
)

A

(
u

‖u‖2
)

(9.55)

where uT u = ‖u‖22. The scalar on the right-hand side of Eq. (9.55) is called the
Rayleigh Quotient of A and u. With this choice of u if A is symmetric uT = vT Ak ,
and the Rayleigh quotient becomes

uT Au
uT u

= vT Ak A Akv
vT Ak Akv

= vT A2k+1v
vT A2kv

= λ1 + O

[(
λ2

λ1

)2k]

as k → ∞

This means that the convergence is twice as fast as in the general case.

Case (i i). Let λ1 be repeated m times, λ1 = λ2 = · · · = λm and |λm | > |λm+1| ≥
|λm+2| ≥ · · · ≥ |λn|, then

u = Akv = λk
1

[

x1 + x2 + · · · + xm +
(λm+1

λ1

)k
xm+1 + · · · +

(λn

λ1

)k
xn

]

→ λk
1 (x1 + · · · + xm) as k → ∞

Since x1 + · · · + xm is also an eigenvector of A corresponding to λ1, we obtain
one eigenvector corresponding to λ1 as the limiting value of u; the other m − 1
eigenvectors remain undetermined. However,

uT Akv = λk
1

[

uT (x1 + · · · + xm) +
(

λm+1

λ1

)k

uT xm+1 + · · · +
(

λn

λ1

)k

uT xn
]

Hence
uT Ak+1v
uT Akv

→ λ1

if uT (x1 + · · · + xm) �= 0. In particular, the Rayleigh quotient also tends to the
eigenvalue λ1.

The method described above for obtaining the maximummodulus real eigenvalue
as the limit of the Rayleigh quotient is called the Power Method. The subroutine
named POWER that follows, starts with a value of u as [1, 1, · · · , 1]T in the absence
of any information regarding λ1. It is hoped that uT x1 or uT (x1 + · · · + xm) do not
equal zero. In case of failure due to this assumption, the initial value of u must be
changed. However, lack of convergence may be due to the closeness of the next
eigenvalue or due to the maximum modulus eigenvalue being complex instead of
being real (Exercise 3). Convergence may be poor for case (i i) problems as roundoff
errors slightly displace equal eigenvalues (Exercise 5). For this reason although
theoretically maximum modulus complex eigenvalues should be delivered by using
complex arithmetic, practical difficulties appear (see Exercise 6 in this connection).
These difficulties have been overcome in the literature and special tricks have been
devised to sneak up on a pair of complex conjugate eigenvalues of a real matrix A
in real arithmetic. In conclusion, the power method is not universally applicable.

430 9 Matrix Eigenvalues

SUBROUTINE POWER(A,n,eigenval,u)
! A=Given real matrix. (Input)
! n= Order of the matrix. (Input)
! eigenval= maximum modulus eigenvalue, assumed real. (Output)
! u= Corresponding normalised eigenvector. (Output)
!**
REAL :: A(n,n), u(n), unew(n)
maxiter=20 ! Maximum number of iteratiions, may be changed if necessary
DO i=1,n ! Initialise the vector u
u(i)=1.
END DO
eigenval=0.0
DO k=1,maxiter
! Normalise the vector u
vecmag=0.0
DO i=1,n
vecmag=vecmag+u(i)**2
END DO
vecmag=SQRT(vecmag)
DO i=1,n
u(i)=u(i)/vecmag
END DO
! Compute A*u, the new approximation to u
DO i=1,n
unew(i)=0.0
DO j=1,n
unew(i)=unew(i)+A(i,j)*u(j)
END DO; END DO
! Compute the Rayleigh Quotient
valnew=0.0
DO i=1,n
valnew=valnew+u(i)*unew(i)
END DO
IF(ABS(valnew−eigenval)<1.e−6*ABS(valnew)) RETURN
eigenval=valnew
DO i=1,n
u(i)=unew(i)
END DO
IF(k==maxiter) PRINT*, ’iteration incomplete’
END
RETURN
END SUBROUTINE POWER

9.4 Maximum Modulus Eigenvalue: The Power Method 431

Example 1. Using subroutine POWER to compute the maximum modulus eigen-
value of the matrix

A =
⎡

⎣

3 1 0
1 2 2
0 1 1

⎤

⎦

Solution. We write the main program as

REAL :: A(3,3); eigenvec(3)
A(1,1)=3.; A(1,2)=1.; A(1,3)=0.
A(2,1)=3.; A(2,2)=2.; A(2,3)=2.
A(3,1)=0.; A(3,2)=1.; A(3,3)=1.
call POWER(A,3,eigenval,eigenvec)
PRINT*, eigenval
PRINT*, eigenvec
end

Appending subroutine POWER to this program, one obtains

λ1 = maximum modulus eigenvalue = 3.86082

with eigenvector = [0.73889, 0.63608, 0.22235]T . �

Remark (Minimum Modulus Eigenvalue). By a slight modification of the power
method the minimummodulus eigenvalue λn and the corresponding eigenvector can
be computed. For consider the relation

A−kv = λ−k
1 x1 + · · · + λ−k

n xn

Then with u = A−kv = (A−1)kv, the Rayleigh quotient

uT A−1u
uT u

→ λn as k → ∞

if uT xn or uT (xn + xn−1 + · · · + xn−m+1) �= 0. Thus we have to first compute A−1

by subroutine MATINV (Chap.3, Sect. 3.1.4) and then use the subroutine POWER.
The idea is further developed in the next subsection to sneak up at any real eigen-

value and the corresponding eigenvector.

432 9 Matrix Eigenvalues

Exercises
Compute the maximum eigenvalue and the corresponding eigenvector by using the
subroutine POWER.

1.

⎡

⎣

1 −3 2
4 4 −1
6 3 5

⎤

⎦

[7.0; [0.28676, 0.06373, 0.95588]T . The other two eigenvalues are complex].

2.

⎡

⎣

−15 4 3
10 −12 6
20 −4 2

⎤

⎦

[−20.0; [−0.66667, 0.33333, 0.66667]T].

3.

⎡

⎣

8 −1 −5
−4 4 −2
18 −5 −7

⎤

⎦

[Iteration incomplete even formaxitr=100 and relative error 1.E−4. The actual eigen-
values are λ1, λ2 = 2 ± 4i and λ3 = 1. So the maximum modulus eigenvalues are
complex and the routine fails].

4.

⎡

⎢
⎢
⎣

2 1 1 0
1 1 0 1
1 0 1 1
0 1 1 2

⎤

⎥
⎥
⎦

[3.56155; [0.55731, 0.43520, 0.43520, 0.55731]T].

5.

⎡

⎢
⎢
⎣

6 −3 4 1
4 2 4 0
4 −2 3 1
4 2 3 1

⎤

⎥
⎥
⎦

[5.2888 with maxitr = 100, relative error 1.E−4 (The actual eigenvalues are λ1 =
λ2 = 3 + √

5 = 5.236 and λ3 = λ4 = 0.764). Eigenvector = [0.2677, 0.6148,
0.2377, 0.7027]T].

6. Modify subroutine POWER using complex arithmetic for obtaining maximum
modulus complex pair of eigenvalues. Show that for Exercise 3 above, there is no
convergence.

9.4 Maximum Modulus Eigenvalue: The Power Method 433

9.4.1 Any Real Eigenvalue: The Inverse Iteration Method

By a clever manipulation any real eigenvalue and the corresponding eigenvector of a
real matrix A can be computed, provided an approximation to the former is known.
Let p be an approximation to a real eigenvalue λ j (1 ≤ j ≤ n). If as before xi is an
eigenvector corresponding to eigenvalue λi , then

(A − pI) xi = λi xi − p xi = (λi − p) xi

or, (A − pI)−1xi = (λi − p)−1xi

Hence, the matrix Â := (A − pI)−1 has eigenvalues (λi − p)−1 and eigenvectors
xi (i = 1, · · · , n). Of these eigenvalues (λ j − p)−1 is the largest in magnitude since
λ j ≈ p. Hence applying the power method, the Rayleigh quotient

uT Âu
uT u

→ (λ j − p)−1 as k → ∞

where u = Âkv. Thus if the limit of the Rayleigh quotient is obtained as l j then

λ j = p + 1

l j
(9.56)

The eigenvector obtained by the method is x j .
In a Fortran implementation of the program, the matrix Â can be computed

by using the subroutine MATINV (Chap. 3, Sect. 3.1.4). This subroutine of course
calls subroutines BANACHIEWICZ and SOLVE (chapter, Sect. 3.1.3) and must be
appended to the program. The limit l j in Eq. (9.56) is delivered by the subroutine
POWER.

Example 1. Compute the smallest eigenvalue (in magnitude) of the matrix

A =
⎡

⎣

1 2 0
2 1 0
0 0 −1

⎤

⎦

using inverse iteration.

Solution. To capture the smallest eigenvalue we set p = 0 and write the following
program:

REAL :: A(,3), eigenvec(3)
A(1,1)=1; A(1,2)=2; A(1,3)=0
A(2,1)=2; A(2,2)=1; A(2,3)=0

434 9 Matrix Eigenvalues

A(3,1)=0; A(3,2)=0; A(3,3)=−1
p=0.
DO i=1,3
A(i,i)=A(i,i)−p
END DO
CALL MATINV(3,A)
CALL POWER(A,3,eigenval,eigenvec)
eigenval=p+1./eigenval
PRINT*, eigenval
PRINT*, eigenvec
END

Appending subroutines MATINV, BANACHIEWICZ, SOLVE and POWER, the
eigenvalue and the eigenvector are obtained as−1.0 and [1.524100E−04, 1.524217E
−04, 1.0]T . �

Exercises

Find the eigenvalues and the eigenvectors near the stated approximation of p to an
eigenvalue:
1.

A =
⎡

⎣

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

⎤

⎦ for p = 0.5 and 1

[p = 0.5: λ = 0.12233, eigenvector = [−0.54719, 0.52687, 0.65038]T ;

p = 1: λ = 1.40832, eigenvector = [0.82726, 0.45967, 0.32303]T].

2.
A =

⎡

⎣

1 2 −4
3 −1 2
1 0 −1

⎤

⎦ for p = 0, 2 and 4

[p = 0: no result. p = 2 and 4: λ = 2.07395, eigenvector = [0.63041, 0.74868,
0.20508]T].

3.

A =

⎡

⎢
⎢
⎣

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

⎤

⎥
⎥
⎦

for p = 0, 1, 5, 20

[p = 0: λ = 0.01015, [0.83044, −0.50156, −0.20855, 0.12370]T

p = 1: λ = 0.84311, [0.09327, −0.30163, 0.76033, −0.56765]T

9.4 Maximum Modulus Eigenvalue: The Power Method 435

p = 5: λ = 3.85806, [−0.39836, −0.61483, 0.27163, 0.62538]T

p = 20: λ = 30.28870, [0.38065, 0.52888, 0.55174, 0.52055]T].

9.5 The Characteristic Equation

If one is interested in only the eigenvalues of a real matrix A, then the expanded form
of Eq. (9.2) may be considered for solution by methods of Chap.2. Let the equation
be of the form

f (λ) := λn + p1λ
n−1 + · · · + pn−1λ + pn = 0 (9.57)

In this equation, the direct determination of the coefficients p1, p2, · · · , pn by
expansion of the determinant is extremely laborious for n > 3. A systematic method
that can be coded in Fortran was given by U.J.J. Leverrier, which was converted into
a recursive scheme by Faddeev.

Urbain Jean Joseph Leverrier (1811–1877), was a French astronomer andmathematician who

analysed the orbit of Uranus and accurately predicted the existence of another planet nearby. His

prediction led directly to the discovery of Neptune in the year 1846.

Leverrier’s Method. The coefficients p1, p2, · · · , pn satisfy

pk = −1

k
tr Bk (k = 1, 2, · · · , n) (9.58)

where the matrices Bk are given by

B1 = A
Bk = A (Bk−1 + pk−1 I), k = 2, 3, · · · , n

(9.59)

Proof The proof is based on Newton’s formulas for the sum of the powers of the
roots of a polynomial equation.

Lemma (Newton). If λ1, λ2, · · · , λn are the roots of Eq. (9.57) where each root is
repeated as many times as its multiplicity, such that

sk := λk
1 + λk

2 + · · · + λk
n, (k = 1, 2, · · · , n)

then sk are given by

sk + p1sk−1 + · · · + pk−1s1 = −k pk (9.60)

436 9 Matrix Eigenvalues

To prove the formulas, we have identically

f (λ) = (λ − λ1) (λ − λ2) · · · (λ − λn)

By logarithmic differentiation

f ′(λ) = f (λ)

λ − λ1
+ f (λ)

λ − λ2
+ · · · + f (λ)

λ − λn= n λn−1 + (n − 1) p1λn−2 + · · · + pn−1

(9.61)

Now, by synthetic division scheme for f (λ)/(λ − λ1)

λ1 p1 p2 · · · pn
λ1 q1λ1 · · · qn−1λ1

p1 + λ1 p2 + q1λ1 · · · pn + qn−1λ1

= q1 = q2 = qn

Hence,
f (λ)

λ − λ1
= λn−1 + q1λ

n−2 + · · · + qn−1

In the scheme, we note that qn = pn + qn−1λ1 = pn + (pn−1 + qn−2λ1) = · · · =
pn + pn−1λ1 + pn−2λ

2
1 + · · · + λn

1 = 0. This relation is confirmed by the fact that
f (λ) is exactly divisible by λ1, so that the remainder qn = 0.
We similarly obtain expressions for f (λ)/(λ − λ2), · · · , f (λ)/(λ − λn). Hence

inserting these expressions in Eq. (9.61), we obtain

f ′(λ) = n λn−1 + Q1λ
n−2 + · · · + Qn−1

= n λn−1 + (n − 1) p1λn−2 + · · · + pn−1

where

Q1 = n p1 + ∑
λ1

Q2 = n p2 + ∑
q1λ1

· · · · · · · · · · · ·
Qk = n pk + ∑

qk−1λ1

· · · · · · · · · · · ·
Qn−1 = n pn−1 + ∑

qn−2λ1

where the summations are taken over all the roots. Comparing the coefficients of
λn−(k+1), (k = 1, 2, · · · , n − 1) we obtain

Qk = n pk +
∑

qk−1λ1 = (n − k) pk

9.5 The Characteristic Equation 437

or
∑

qk−1λ1 = −k pk (9.62)

where q0 = 1. Using the definition of q1, q2, · · · , qn−1, we obtain the Eq. (9.60).
The result is true for k = n. For, λ1 satisfies Eq. (9.57) and we have

λn
1 + p1λ

n−1
1 + · · · + pn−1λ1 + pn = 0

Similarly for λ2, λ3, · · · , λn . Adding these equations, we have

sn + p1sn−1 + · · · + pn−1s1 = −n pn

�
Returning to the proof of Eqs. (9.58) and (9.59), Eq. (9.62) can be written as

pk = −1

k

∑

qk−1λ1, (k = 1, 2, · · · , n) (9.63)

Hence in Eq. (9.63), for k = 1

p1 = −
∑

λ1 = −tr B1 (9.64)

Again since λk
1, λk

2, · · · , λk
n are eigenvalues of the matrix Ak (Theorem 5, Sect. 9.1),

we have as before ∑

λk
1 = tr Ak

Hence for k = 2 in Eq. (9.63)

p2 = −1

2

∑

(λ2
1 + p1λ1) = −1

2
tr (A2 + p1A)

= −1

2
tr [A(A + p1 I)] = −1

2
tr [A(B1 + p1 I)]

= −1

2
tr B2

Results for k = 3, 4, · · · , n similarly follow.
Leverrier’s method is coded in Fortran in the following subroutine. The naming

of variables and arrays is obvious.

SUBROUTINE LEVERRIER(A,n,p)
! A= Given matrix. (Input)
! n= Order of the matrix A. (Input)

438 9 Matrix Eigenvalues

! p= n–vector yielding the coefficients p(1), p(2), · · · , p(n)
! of the characteristic equation. (Output)
! The subroutine uses the FORTRAN FUNCTION MATMUL,
! which multiplies two given matrices.
!***
REAL :: A(n,n), p(n), B(n,n)
B=A
p(1)=0.0
DO i=1,n
p(1)=p(1)+B(i,i)
END DO
p(1)=−p(1)

DO k=2,n

DO i=1,n
B(i,i)=B(i,i)+p(k−1)
END DO
B=MATMUL(A,B)
p(k)=0.0
DO i=1,n
p(k)=p(k)+B(i,i)
END DO
p(k)=−p(k)/k

END DO
RETURN
END SUBROUTINE LEVERRIER

The complexity of the algorithm is O(n5) as there are O(n3) multiplications and
additions involved in the matrix multiplication of A and B. Hence, the method is not
efficient for large values of n.

Exercises
Find the characteristic equation for the following matrices using subroutine LEV-
ERRIER:

1.
A =

⎡

⎣

1 2 3
4 5 6
7 8 9

⎤

⎦ [λ3 − 15λ2 − 18λ = 0].

2.
A =

⎡

⎣

1 2 −4
3 −1 2
1 0 −1

⎤

⎦ [λ3 + λ2 − 3λ − 7 = 0].

9.5 The Characteristic Equation 439

3.

A =

⎡

⎢
⎢
⎣

−4 −3 1 1
2 0 4 −1
1 1 2 −2
1 1 −1 −1

⎤

⎥
⎥
⎦

[λ4 + 3λ − 7λ2 − 24λ − 15 = 0].

4.

A =

⎡

⎢
⎢
⎣

2 −4 3 −2
1 1 −5 −3
1 1 −2 −2
0 1 −1 −1

⎤

⎥
⎥
⎦

[λ4 + 2λ2 − 23λ − 13 = 0].

Chapter 10
Fast Fourier Transform

If f is an integrable function of a variable t ∈ (−∞, ∞), then its Fourier integral
or Fourier transform may be defined as the complex function F of a variable
ω ∈ (−∞, ∞) where

F(ω) :=
∫ ∞

−∞
f (t) e−iωt dt, i = √−1 (10.1)

The most important fact about definition (10.1) is that if it is viewed as an integral
equation, its solution under very general conditions is

f (t) = 1

2π

∫ ∞

−∞
F(ω) eiωt dω (10.2)

Equation (10.2) is called the inverse transform of thedirect transform of (10.1),
and the two constitute the Fourier transform pair.

In practice, one often interprets t as time and ω as angular frequency equal to
2π f where f is the frequency. The pair of Eqs. (10.1) and (10.2) assert that one
may investigate a function in the frequency domain ω instead of real time t , without
any ambiguity. Because of this fact, the Fourier transform finds applications in many
diverse subjects such as Antennas, Optics, Acoustics, Geophysics, Linear Systems
governed by ODEs, Boundary Value Problems of linear PDEs and Quantum Physics.
It is easily recognised that the characteristic function of a random variable in Proba-
bility Theory is in fact the Fourier transform of the probability density function. The
Fourier transform is therefore ubiquitous like the computer, present everywhere at
the same time.

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1_10

441

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7114-1_10&domain=pdf
https://doi.org/10.1007/978-981-13-7114-1_10

442 10 Fast Fourier Transform

If the expression for F(ω) given by Eq. (10.1) is substituted in Eq. (10.2), one
has the Fourier’s Integral Theorem:

1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
f (t ′) e−iω(t ′−t)dt = f (t) (10.3)

The proof of this fundamentally important theorem has been much discussed in
the theory of Fourier integrals, where a variety of sufficient conditions on f have
been proposed for the validity of the theorem. For us, it is sufficient to state that the
Fourier’s integral theorem (10.3) holds if f is continuous in (−∞, ∞) such that the
interval can be broken up into a finite number of partial intervals in each of which f is
monotonic and that

∫ ∞
−∞ | f (t)| dt exists finitely. More generally, discontinuities in f

may be allowed provided f is a function of bounded variation. A function of bounded
variation is a continuous function except for a finite number of jump discontinuities
or even infinite discontinuities that can be excluded by arbitrarily small intervals.
In such a case theorem (10.3) also holds at points of continuity if f is piecewise

monotonic in a finite number of partial intervals such that
∫ ∞

−∞
| f (t)| dt < ∞.

Assuming the above facts we are interested in this chapter to compute the integrals
appearing in Eqs. (10.1) and (10.2). For this purpose, we have to resort to discreti-
sation. The advanced methods of numerical quadrature are inapplicable in view of
rapid oscillation of the exponentials for large values of the integrands.

10.1 Discrete Fourier Transform

Let the infinite range of the integral (10.1) be replaced by a sufficiently large inter-
val beyond which | f (t)| is negligibly small. Let this finite interval be divided into
a very large number of small subintervals by a set of N equally spaced points
t0, t1, · · · , tN−1. By the composite rectangle rule (Sect. 5.2.3, Chap. 5), we can
write

F(ω) = �t
N−1∑
k=0

f (tk) e−iωtk

where �t is the length of a subinterval. If we are interested in computing F(ω) at N
equidistant points ω0, ω1, · · · , ωN−1, then the above equation takes the discretised
form

F(ωn) = �t
N−1∑
k=0

f (tk) e−iωn tk , n = 0, 1, · · · , N − 1 (10.4)

Equation (10.4) is an approximate discretised version of Eq. (10.1).
An exact inversion of Eq. (10.4) is possible. We have, summing Eq. (10.4),

10.1 Discrete Fourier Transform 443

N−1∑
n=0

F(ωn) eiωn tl = �t
N−1∑
k=0

f (tk)
N−1∑
n=0

eiωn(tl−tk)

If l = k,
N−1∑
n=0

eiωn(tl−tk) =
N−1∑
n=0

1 = N .

If l �= k, the G.P. series yields

N−1∑
n=0

eiωn(tl−tk) = eiω0(tl−tk)
ei�ω(tl−tk)N − 1

ei�ω(tl−tk) − 1

Now the exponent
�ω(tl − tk) N = �ω(l − k)�t N

= 2π(l − k)

if �ω = 2π

N�t
. The G.P. series then vanishes for l �= k as e2πi(l−k) = 1 and

N−1∑
n=0

F(ωn) eiωn tl = N �t f (tl)

or

f (tk) = �ω

2π

N−1∑
n=0

F(ωn) eiωn tk , k = 0, 1, · · · , N − 1 (10.5)

Equation (10.5) is apparently the discretised version of Eq. (10.2) by the composite
rectangle rule.

In the formulas (10.4) and (10.5) ωn = n �ω and tk = k �t . Hence

ωntk = nk �ω �t = 2πnk

N

Writing f (k) for f (tk) and F(n) for F(ωn), we obtain the pair

F(n) = �t
N−1∑
k=0

f (k) e−i 2πnk/N , n = 0, 1, · · · , N − 1 (10.6)

f (k) = �ω

2π

N−1∑
n=0

F(n) ei 2πnk/N , k = 0, 1, · · · , N − 1 (10.7)

444 10 Fast Fourier Transform

Equations (10.6) and (10.7) are called Discrete Fourier Transform or simply
DFT pair, where �ω = 2π/(N�t).

Equations (10.6) and (10.7) are of the same generic form as far as computation
of the two series is concerned. For taking the complex conjugate of Eq. (10.7), we
obtain

[f (k)]∗ = �ω

2π

N−1∑
n=0

[F(n)]∗ e−i2πnk/N

Hence suppressing constant factors �t or �ω/2π, we consider the computation of
a series of the form

X (n) =
N−1∑
k=0

x0(k) e−i2πnk/N , n = 0, 1, · · · , N − 1 (10.8)

where the sequence {x0(k)} and {X (n)} are in general complex.

10.2 Fast Fourier Transform

We write the discrete Fourier transform, Eq. (10.8) in the form

Xn =
N−1∑
k=0

x0(k) W nk, n = 0, 1, · · · , N − 1 (10.9)

where
W = e−i2π/N (10.10)

Here we note that in the powers of W

W nk = e−i2πnk/N = W [nk mod N] (10.11)

where nk mod N is the remainder in dividing nk by N . The right-hand side relation
in Eq. (10.10) holds because the complex exponential becomes unity for the integer
part of nk/N . The system of Eq. (10.9) is of the form

⎡
⎢⎢⎢⎣

X (0)
X (1)

...

X (N − 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

W 0 W 0 · · · W 0

W 0 W 1 · · · W N−1

· · · · · · · · · · · ·
W 0 W N−1 · · · W 2(N−1)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

x0(0)
x0(1)

...

x0(N − 1)

⎤
⎥⎥⎥⎦ (10.12)

where the high powers of W can be reduced to less than N by using property (10.11).
It is observed that to compute an element X (n) we need N complex multiplications

10.2 Fast Fourier Transform 445

and N − 1 complex additions. Hence in total, we need N × N complex multiplica-
tions and N × (N − 1) complex additions. The number of operations is thus seen
to be prohibitively large as N is essentially taken very large because of the oscil-
latory nature of the exponentials. Fast Fourier Transform or FFT, in short, are
computational techniques to reduce this computational load. These techniques came
to prominence by the work of J.W. Cooley and J.W. Tukey in 1965, which is rated
amongst the top ten algorithms discovered in the twentieth century. Since then sev-
eral alternative FFT’s have been proposed in the literature. A survey of the history of
the subject reveals that in fact simplifying techniques were known even earlier (see
the texts of Brigham (1974), Press et al. (1996) and Conte and de Boor (1984) cited
in the Bibliography). We, however, restrict in this section to the original method of
Cooley and Tukey, because of its relative simplicity.

James W. Cooley (1926–2016), worked at the IBM Corporation U.S.A. Upon retirement from

IBM in 1991, he served on the faculty of the computer engineering program at University of Rhode

Island, Kingston, U.S.A.

John Wilder Tukey (1915–2000), initially worked in Topology for his Ph.D. degree in 1939.

DuringWorldWar II years he worked with statisticians in the Fire Control Research Office and later

when the war ended, he was offered a position in statistics within the mathematics department at

Princeton University, U.S.A. He published many papers in statistics. The Cooley–Tukey algorithm

was discovered while working as a member of U.S. President’s Science Advisory Committee. He

coined the term ‘software’.

In the Cooley–Tukey framework, N is taken as some integral power of 2 say
N = 2ν . For this choice of N , the N × N square matrix formed by the powers of
W in Eq. (10.11) can be factorised into ν sparse matrices, with a permutation of the
rows that can be deciphered provided the indices k and n are represented by binary
numbers 0 and 1! Operations with sparse matrices dramatically reduce the number
of arithmetic operations in Eq. (10.12).

In order to unveil the above-stated features consider the simple case N = 22 = 4.
The indices k and n in binary digits 0 and 1 are then

k, n = 0, 1, 2, 3 = 00, 01, 10, 11 (binary)

The first two representations are obvious. The binary representation of 2 and 3 follow
from their polynomial representation as in the case of decimals:

2 = 1 × 21 + 0 × 20 = 10 (binary)

3 = 1 × 21 + 1 × 20 = 11 (binary)

In general, therefore, we can write

k = 2k1 + k0 = (k1, k0) binary, n = 2n1 + n0 = (n1, n0) binary

446 10 Fast Fourier Transform

where k0, k1, n0 and n1 can take on values of 0 and 1 only. Thus, Eq. (10.9) becomes

X (n1, n0) =
1∑

k0=0

1∑
k1=0

x0(k1, k0) W (2n1+n0) (2k1+k0) (10.13)

The W p term (p = nk) can be factorised as

W (2n1+n0) (2k1+k0) =
[
W 4n1k1

]
W 2n0k1 W (2n1+n0) k0

= W 2n0k1 W (2n1+n0) k0

since W 4 = 1 from Eq. (10.10) for the case N = 4. Eq. (10.13) therefore becomes

X (n1, n0) =
1∑

k0=0

[1∑
k1=0

x0(k1, k0) W 2n0k1

]
W (2n1+n0) k0

This equation can be put as the two-stage recursion

x1(n0, k0) =
1∑

k1=0

x0(k1, k0) W 2n0k1

x2(n0, n1) =
1∑

k0=0

x1(n0, k0) W (2n1+n0) k0

X (n1, n0) = x2(n0, n1)

(10.14)

In the defining equation for x1(n0, k0), k0 is written as the first bit from the right as
it occupies this position in x0(k1, k0) on the right-hand side. Similarly, n0 retains its
position in the definition of x2(n0, n1). The set of Eq. (10.14) represent the Cooley–
Tukey FFT for N = 4. Written in matrix notation it reads

⎡
⎢⎢⎣

x1(0, 0)
x1(0, 1)
x1(1, 0)
x1(1, 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 W 0 0
0 1 0 W 0

1 0 W 2 0
0 1 0 W 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x0(0, 0)
x0(0, 1)
x0(1, 0)
x0(1, 1)

⎤
⎥⎥⎦ (10.15)

and ⎡
⎢⎢⎣

x2(0, 0)
x2(0, 1)
x2(1, 0)
x2(1, 1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 W 0 0 0
1 W 2 0 0
0 0 1 W 1

0 0 1 W 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1(0, 0)
x1(0, 1)
x1(1, 0)
x1(1, 1)

⎤
⎥⎥⎦ (10.16)

10.2 Fast Fourier Transform 447

Eliminating the array x1 from Eqs. (10.16) and (10.15), the solution for x2 in terms
of the x0 is obtained as a product of the two 4 × 4 sparse matrices occurring in Eqs.
(10.15) and (10.16). The factorisation of the matrix appearing in Eq. (10.12) for the
case N = 4 into these two sparse matrices with permutation of second and third rows
follows from the third equation of (10.14). This fact can be verified independently
by actual multiplication of the two sparse matrices. The reader is urged to verify this
peculiar factorisation.

The expression for the components of x1 and x2 have only two terms, which occur
in pairs due to the fact that W 2 = −W 0 for N = 4. In Eq. (10.15), for instance, we
have

x1(0, 0) = x0(0, 0) + W 0 × x0(1, 0), x1(1, 0) = x0(0, 0) − W 0 × x0(1, 0)

x1(0, 1) = x0(0, 1) + W 0 × x0(1, 1), x1(1, 1) = x0(0, 1) − W 0 × x0(0, 1)

Similarly, in Eq. (10.16), x2(0, 0), x2(0, 1) and x2(1, 0), x2(1, 1) form dual pairs.
Dual pair computation further reduces the computational load.

We next investigate the case N = 23 = 8. The indices k and n now take up the
values

k, n = 0, 1, 2, 3, 4, 5, 6, 7
= 000, 001, 010, 011, 100, 101, 110, 111 (binary)

Thus, one can write the indices as

k = 22k2 + 2k1 + k0, n = 22n2 + 2n1 + n2

where ki , ni are 0 or 1. Thus, Eq. (10.9) becomes

X (n2, n1, n0) =
1∑

k0=0

1∑
k1=0

1∑
k2=0

x0(k2, k1, k0) W (4n2+2n1+n0) (4k2+2k1+k0) (10.17)

The W p, (p = nk) factorises into

[
W 8(2n2+n1)k2

]
W 4n0k2

[
W 8n2k1

]
W (2n1+n0) 2k1 W (4n2+2n1+n0) k0

Since W 8 = 1 for this case, we get for Eq. (10.17)

X (n2, n1, n0) =
1∑

k0=0

1∑
k1=0

1∑
k2=0

x0(k2, k1, k0) W 4n0k2 W (2n1+n0) 2k1 W (4n2+2n1+n0) k0

which reduces to the three-stage recursion

448 10 Fast Fourier Transform

x1(n0, k1, k0) =
1∑

k2=0

x0(k2, k1, k0) W 4n0k2

x2(n0, n1, k0) =
1∑

k1=0

x1(n0, k1, k0) W (2n1+n0) 2k1

x3(n0, n1, n2) =
1∑

k0=0

x2(n0, n1, k0) W (4n2+2n1+n0) k0

X (n2, n1, n0) = x3(n0, n1, n2)

(10.18)

(In the above definitions of arrays x1, x2, x3 the bit positions are identified as in the
case of N = 4.) The set of Eq. (10.18) can be put in the form of matrix factors as in
the case of N = 4, but this aspect is not important from computational point of view.

The results (10.14) and (10.18) can be generalised for the case N = 2ν . In this
case

k = 2ν−1kν−1 + 2ν−2kν−2 + · · · + k0

n = 2ν−1nν−1 + 2ν−2nν−2 + · · · + n0

and Eq. (10.9) can then be put in the recursive form

x1(n0, kν−2, · · · , k0) =
1∑

kν−1=0

x0(kν−1, kν−2, · · · , k0) W 2ν−1n0kν−1

x2(n0, n1, kν−3, · · · , k0) =
1∑

kν−2=0

x1(n0, kν−2, · · · , k0) W (2n1+n0) 2ν−2kν−2

· ·

xν(n0, n1, · · · , nν−1) =
1∑

k0=0

xν−1(n0, n1, · · · , k0) W (2ν−1nν−1+2ν−2nν−2+···+n0) k0

X (nν−1, nν−2, · · · , n0) = xν(n0, n1, · · · , nν−1)

(10.19)
The proof is a simple generalisation of the cases for ν = 2 and 3. It uses the property
that W 2ν = 1.

10.2.1 Signal Flow Graph of FFT

A signal flow graph is a network of connected arrows, each arrow joining two nodes
representing some kind of flow of some amount or weight. For the case N = 22 = 4,
the two-stage iterations (10.14) or Eqs. (10.15) and (10.16) can be represented by

10.2 Fast Fourier Transform 449

Fig. 10.1 FFT signal flow graph for N = 4

the signal flow graph shown in Fig. 10.1. The trivial weight factor 1 of an arrow is
not shown in the figure.

In a similar manner Eq. (10.18) can also be represented by a graph for the case
N = 23 = 8. It is shown in Fig. 10.2.

In these figures, we easily identify that the network consists of dual nodes that
always originate from the same pair of nodes. In Fig. 10.1 for stage l = 1, the pairs
are (0,2) and (1,3) while for stage l = 2 these are (0,1) and (2,3). These pairs are,
respectively, separated by 2 and 1. In Fig. 10.2, on the other hand, these are (0,4),
(1,5), (2,6), (3,7) for l = 1, (0,2), (1,3), (4,6), (5,7) for l = 2 and (0,1), (2,3), (4,5),
(6,7) for l = 3. The separation of the nodes is therefore 4, 2 and 1, respectively. We
therefore conclude that in general the separation of the dual nodes is given by the
formula N/2l .

The weighting factor involved in the dual node computation is equal in magnitude
but opposite in sign. In Fig. 10.1 for N = 4, we have in fact W 2 = −W 0 and W 3 =
−W 1. Similarly, in Fig. 10.2 for N = 8, W 4 = −W 0, W 6 = −W 2, W 5 = −W 1,
and W 7 = −W 3. In general if the weighting factor is W p, that at the dual node is
W p+N/2 = −W p. The computation at a node is therefore given by

xl(k) = xl−1 + W p xl−1(k + N/2l) (10.20)

and that at its dual by

xl(k + N/2l) = xl−1 − W p xl−1(k + N/2L) (10.21)

The last term in Eq. (10.21) having been already computed in Eq. (10.20), only one
operation of addition is required in the dual node computation. In the computation
along an array, the dual nodes that are down by N/2l places can therefore be skipped,

450 10 Fast Fourier Transform

Fig. 10.2 FFT signal flow graph for N = 8

if use is made of Eq. (10.21). Evidently, the skipping of nodes is to be stopped when
a radix index k > N − 1 is reached.

The power p in the weighting factor W p appearing in Eqs. (10.20) and (10.21)
are related to the node k in a peculiar manner. It follows the following rule: (a)

Represent k in binary digits, ν bits long as in Figs. 10.1 and 10.2. (b) Slide or scale
this binary number ν − l bits to the right, filling in the newly opened bit positions
on the left by zeros (keeping the number ν bits long). And (c) Reverse the order
of the bits. This bit-reversed number is the number p. As an illustration, consider
Fig. 10.1 (ν = 2) with k = 2 = 10 (binary). If l = 1, ν − l = 1, so following the
operation (b) we get the number 01 and bit-reversing following (c) we get 10=2
(decimal). Hence p = 2 as in the figure. If l = 2, ν − l = 0, so by (b) we get 10
and by (c) 01=1 (decimal) or p = 1. Similarly, in Fig. 10.2 (ν = 3) consider k =
5 = 101 (binary). For l = 1, ν − l = 2; 101 → 001 [by (b)] → 100 [by (c)] or

10.2 Fast Fourier Transform 451

p = 4. For l = 2, ν − l = 1; 101 → 010 [by(b)] → 010 [by(c)] or p = 2. And
for l = 3, ν − l = 0; 101 → 101 [by (b)] → 101 [by (c)] or p = 5.

Finally, we recall that bit-reversal is also required in identifying the elements of
the array X . This is implied in the last equations of (10.14) and (10.18) as well as of
Eq. (10.19).

10.2.2 Bit-Reversal

For bit-reversal of a binary integer k, we require a method for identifying the bits
of k. If k is a three-bit integer as in the case of ν = 3, k = b3b2b1 (binary) = b3 ×
22 + b2 × 21 + b1 (decimal). Then [k/2] (integer part of k/2) = b3 × 2 + b2, and
therefore k − 2 [k/2] = b1. This identifies the bit b1, whether it is 0 or 1. Similarly,
the difference b3b2 − 2 [b3b2/2] = b2 identifies the bit b2. Finally, we have b3 −
2 [b3/2] = b3 identifying b3. The bit-reversed number is b1b2b3 = b1 × 22 + b2 ×
2 + b3 (decimal). This latter polynomial can be computed as a nested multiplication
b3 + 2 × (b2 + 2 × b1).

10.2.3 FFT Subroutine

With the preparation of Sects. 10.2, 10.2.1 and 10.2.2, we are in a position to write
down the subroutine FFT for the computation of (10.9), which represents the direct
DFT (10.6). The inverse DFT (10.7) can be computed from this very subroutine
by using the trivial procedure of complex conjugation described in the paragraph
following this equation. The input of the program is the complex array x0 and the
output complex array is overwritten on x0. The subroutine uses an integer function
subprogram BITREV which reverses the bits of a given integer k.

SUBROUTINE FFT(X,N,nu)
! X= Complex input array x.0 (Input)
! The output array is returned in X. (Output)
! N= Dimension of array X. (Input)
! nu= Exponent such that N=2 raised to the power nu. (Input)
!**
COMPLEX :: X(N), z
INTEGER :: BITREV
k=0; n2=N/2; nu1=nu−1
DO L=1,nu
10 DO i=1,n2

452 10 Fast Fourier Transform

p=BITREV(k/2**nu1,nu)
k1=k+1; k1n2=k1+n2
z=CEXP(CMPLX(0.0,−6.283185)*p/N)*X(k1n2)
X(k1n2)=X(k1)−z; X(k1)=X(k1)+z
k=k+1
END DO
k=k+n2
IF(k<N) GOTO 10
k=0; nu1=nu1−1; n2=n2/2

END DO
DO k=1,N
i=BITREV(k−1,nu)+1
IF(i>k) THEN
z=X(k); X(k)=X(i); X(i)=z
END IF
END DO
RETURN
END SUBROUTINE FFT
!************************

INTEGER FUNCTION BITREV(k,nu)
k1=k
BITREV=0
DO i=1,nu
k2=k1/2
BITREV=(k1−2*k2)+2*BITREV
k1=k2
END DO
RETURN
END FUNCTION BITREV

One can easily find the complexity of the Cooley–Tukey algorithm from the above
subroutine. If the operations involved in the complex exponential and the indices are
ignored, there is just one complex multiplication involved in the computation of z.
Since it is looped in ν × N/2 times (over L and i), the number of complex multi-
plications is 1

2 N log2N . In the next step of the program, two subtractions/additions
are encountered. In total therefore, there are 2 × ν × N/2 = νN = N log2N addi-
tion/subtraction in the algorithm. Thus, there is a dramatic reduction from N 2 com-
plexmultiplications and N × (N − 1) complex additions involved in straightforward
computation of Eq. (10.12).

10.2 Fast Fourier Transform 453

Example 1. Compute the Fourier cosine transform

∫ ∞

0

cosωt dt

t2 + β2
, (β > 0)

for β = 1 (say), and ω ≈ 0, 0.5, 1.0, · · · , 4.5, 5.0 by using subroutines FFT and

BITREV. Compare with the exact value
π

2β
e−βω .

Solution. The function 1/(t2 + β2) does not decay very fast and so we take the upper
limit of integration up to 100. In order to take the steps sufficiently small we take
ν = 14, and N = 2ν = 16384. The integral is equivalent to

Re
∫ ∞

0

e−iωt

t2 + β2
dt

which can be computed by writing a program as follows:

COMPLEX :: X(16400)
beta=1.; pi=3.141593; nu=14; N=2**nu
upper_ limit=100.; deltat=upper_ limit/N
DO k=1,N
tk=(k−1)*deltat
X(k)=CMPLX(1./(tk**2+beta**2),0.0)
PRINT*, k, X(k)
END DO
CALL FFT(X,N,nu)
DO m=0,10; om=0.5*m
DO nn=1,N
omn=2*pi*(nn−1)/(N*deltat)
fomn=pi/(2*beta)*EXP(−beta*omn) !exact value of the integral
tol=0.03
IF(abs(omn−om)<tol) THEN
PRINT*, omn, REAL(deltat*X(nn)), fomn; EXIT
END IF
END DO; END DO
END

Appending the two subroutines FFT and BITREV, the computed and exact values of
the integral are obtained as

454 10 Fast Fourier Transform

ωn Computed Exact
0 1.56385 1.57080

0.50265 0.95325 0.95021
1.00531 0.57785 0.57480
1.50797 0.35076 0.34771
2.01062 0.21339 0.21034
2.51327 0.13029 0.12724
3.01593 0.08002 0.07697
3.51858 0.04961 0.04656
4.02124 0.03122 0.02817
4.52389 0.02009 0.01704
5.02655 0.01336 0.01031

tol is set 0.03 in order to obtain all of the required values in the table; some are missed
if it is set 0.01 or 0.02.

Note the degree of agreement of the two results. For better agreement the upper
limit of integration needs to be raised and the value of ν increased. In order to avoid
roundoff errors, double precision programming may be adopted.
�

Exercises

1. Compute the following Fourier integrals using subroutines FFT and BITREV:

(i)
∫ ∞

0
e−βt cosωt dt

(
= β

ω2 + β2

)

(i i)
∫ ∞

0

cosωt dt

(t2 + β2)2

(
= π

4β3
(1 + βω) e−βω

)

(i i i)
∫ ∞

0

cosωt dt

t4 + β4

(
= π

2β3
e− βω√

2. sin
(π

4
+ βω√

2.

))

(iv)

∫ ∞

0

sinωt dt

t (t2 + β2)

(
= π

2β2
(1 − e−βω)

)

(v)

∫ ∞

0

sinωt dt

sinh βt

(
= π

2β
tanh

πω

2β

)

10.2 Fast Fourier Transform 455

for β = 1 (say) and ω ≈ 0, 1, 2, 3, 4, 5. Satisfy yourselves by also computing
the exact values given in parentheses. Take ν = 14 and unless otherwise stated,
upper_limit=10, and tol=0.03.

[The computed values are:
(i) (0, 1.00026), (1.25664, 0.38801), (1.88496, 0.21993), (3.14159, 0.92301),
(3.76991, 0.06604), (5.02655, 0.03838);

(i i) (0, 0.78537), (1.25664, 0.50471), (1.88496, 0.34433), (3.14159, 0.14087),
(3.76991, 0.08667), (5.02655, 0.03136);

(i i i) (0, 1.11069), (1.25664, 0.64282), (1.88496, 0.35400), (3.14159, 0.02319),
(3.76991, −0.03298), (5.02655, −0.04154);

(iv) (upper_limit = 50, tol=0.1, write tk= (k−1)*deltat+1.e−10),
(0, 0), (1.00531, 0.99445), (2.01062, 1.35739), (3.01593, 1.48922),
(4.02124, 1.53649), (4.90089), 1.55163);

(v) (0, 0), (1.25664, 1.51090), (1.88496, 1.56179), (3.14159, 1.56965),
(3.76991, 1.56960), (5.02655, 1.56925)].

2. (Fourier Coefficients). If as in Chap. 8, Sect. 8.6, a periodic function in [0, 2π],
is approximated by a trigonometric polynomial written in complex form

f (t) ≈
N∑

n=−N

cn eint

then as in the case of Eq. (10.2), prove that

cn = 1

2π

∫ ∞

0
f (t) e−int dt ≈ 1

N

N−1∑
k=0

f (tk) e−intk , c−n = c∗
n

where star denotes complex conjugate. Modify the program of Example 1, for com-
puting the Fourier coefficients cn for n ≥ 0 in the case of:

(i) f (t) = t, (i i) f (t) =
{

t, 0 ≤ t ≤ π
2π − t, π ≤ t ≤ 2π

, (i i i) f (t) = et

Satisfy yourselves by also computing the exact values of:

(i) cn = i/n, (n �= 0), c0 = π, (i i) cn = [(−1)n − 1]/(πn2), (n �= 0), c0 = π/2,
and (i i i) cn = [eπ sinh π (1 + in)]/[π(1 + n2)].

456 10 Fast Fourier Transform

[In the program write upper_limit = 2*pi, declare fomn as complex, set tol=0.1 and
take the output as print*, omn, X(nn)/N, fomn.

(i) 3.14140, −1.92E−04 + i , −1.92E−04 + 0.5i , −1.92E−04 + 0.33333i ,
−1.92E−04 + 0.25i , −1.92E−04 + 0.2i (the real parts −1.92E−04 are due
to accumulated errors),

(i i) 1.57080, −0.63662, 0, −0.70736, 0, −0.02546 (complete agreement with
exact values),

(i i i) 85.05073, 42.51721+42.53352i , 16.99710+34.02682i , 8.49039+25.52011i ,
4.98763+20.01577i , 3.25549+16.35905i].

10.2.4 Canonic Forms of FFT

The Cooley–Tukey algorithm described in the preceding subsections can be arranged
in other ways in order to perform the computation of Eq. (10.9). Such variants of
the algorithm are, in a sense, canonic. One canonic variation is bit-reversal of the
index k in the input data x0(k). It then transpires that in the corresponding signal
flow graph, the output X (k) is in the natural order. The powers p of W also turn out
to be in natural order.

A distinct form of FFT is known as the Sande–Tukey algorithm developed in
1969. Here in contrast to the Cooley–Tukey approach, the components of n are
separated instead of the components of k. For the case ν = 2, for example, we have
in Eq. (10.9)

W (2n1+n0) (2k1+k0) =
[
W 4n1k1

]
W 2n1k0 W n0(2k1+k0)

= W 2n1k0 W n0(2k1+k0)

since W 4 = 1. Thus, Eq. (10.9) can be written as

X (n1, n0) =
1∑

k0=0

[1∑
k1=0

x0(k1, k0)W 2n0k1 W n0k0

]
W 2n1k0

If we introduce intermediate computational steps, then the above equation can be
written as

10.2 Fast Fourier Transform 457

Fig. 10.3 Sande–Tukey
signal flow graph for N = 22

x1(n0, k0) =
1∑

k1=0

x0(k1, k0) W 2n0k1 W n0k0

x2(n0, n1) =
1∑

k0=0

x1(n0, k0) W 2n1k0

X (n1, n0) = x2(n0, n1)

(10.22)

The signal flow graph describing Eq. (10.22) is shown in Fig. 10.3.
We note that in this figure, the input data is in natural order, but the output data is

in bit-reversed order. The powers of W however occur in natural order. The Sande–
Tukey algorithm can evidently be extended to the case of N = 23 and in general to
the case N = 2ν .

A canonic variant of the above algorithm can be obtained by bit-reversing k in
the input data. The output in this case is obtained in natural order. The powers of W
however appear in bit-reversed order.

All the above variants have been converted into computer codes in the literature.
For references see Brigham (1974).

To conclude, the assumption of N = 2ν was generalised later by other authors to
the case N = r1r2 · · · rm where r1, r2, · · · , rm are certain integers, not necessarily
prime numbers. Corresponding computer codes have also been written that are far
more complicated without being significantly more efficient than the original one of
Cooley and Tukey.

Bibliography

1. N.I. Achieser, Theory of Approximation (Ungar, New York, 1956)
2. E. Akin, Object-Oriented Programming via FORTRAN 90/95 (Cambridge University Press,

Cambridge, 2003)
3. K.E. Atkinson, An Introduction to Numerical Analysis (Wiley, New York, 1989)
4. C. de Boor, An algorithm for numerical quadrature, in Mathematical Software (Academic

Press, New York, 1971), pp. 201–209
5. W.S. Brainerd, C.H. Goldberg, J.C. Adams, Programmer’s Guide to Fortran 90 (McGraw-Hill,

New York, 1990)
6. E.O. Brigham, The Fast Fourier Transform (Prentice-Hall, New Jersey, 1974)
7. S.J. Chapman, Fortran 95/2003 for Scientists and Engineers (McGraw-Hill, New York, 2008)
8. E.W. Cheney, Introduction to Approximation Theory (McGraw-Hill, New York, 1966)
9. L. Collatz, The Numerical Treatment of Differential Equations (Springer, Berlin, 1960)
10. S.D. Conte, C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach (McGraw-

Hill, New Delhi, 1980)
11. N.I. Danilina, N.S. Dubrovskaya, O.P. Kvasha, G.L. Smirnov, Computational Mathematics

(Mir Publishers, Moscow, 1988)
12. B.P. Demidovich, I.A. Maron, Computational Mathematics (Mir Publishers, Moscow, 1973)
13. C.T. Fike, Computer Evaluation of Mathematical Functions (Prentice-Hall, New Jersey, 1968)
14. G.E. Forsythe,M.A.Malcolm,C.B.Moler,Computer Methods for Mathematical Computations

(Prentice-Hall, New Jersey, 1977)
15. C.E. Fröberg, Introduction to Numerical Analysis (Addison–Wesley, Reading, Massachusetts,

1965)
16. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-

Hall, New Jersey, 1973)
17. S.K. Gupta, Numerical Methods for Engineers (New Age International, New Delhi, 1995)
18. E.Hairer, S.P.Nørsett,G.Wanner,Solving Ordinary Differential Equations I: Nonstiff Problems

(Springer, 2008)
19. G. Hämmerlein, K.H. Hoffmann, Numerical Mathematics (Springer, New York, 1991)
20. F.B. Hildebrand, Introduction to Numerical Analysis (Dover, New York, 1987)
21. M.K. Jain, S.R.K. Iyengar, R.K. Jain, Numerical Methods for Scientific and Engineering Com-

putation (New Age International, New Delhi, 2007)
22. M.K. Jain, Numerical Solution of Differential Equations (Wiley Eastern, New Delhi, 1984)

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1

459

https://doi.org/10.1007/978-981-13-7114-1

460 Bibliography

23. L.V. Kantorovich, V.I. Krylov, Approximate Methods of Higher Analysis (Interscience, New
York, 1958)

24. D. Kincaid, W. Cheney, Numerical Analysis: Mathematics of Scientific Computing (American
Mathematical Society, 2010)

25. G. Meinardus, Approximation of Functions: Theory and Numerical Methods (Springer, New
York, 1967)

26. K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations (Cambridge
University Press, Cambridge U.K., 2005)

27. J. Muller, Elementary Functions, Algorithms and Implementation (Birkhäuser, 2003)
28. R. Piessens, E. de Doncker-Kaperga, C. Überhuber, D. Kachner, QUADPACK: A Subroutine

Package for Automatic Integration (Springer, New York, 1983)
29. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, The Art of

Scientific Computing (Cambridge University Press, Cambridge, 1986)
30. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 90

(Cambridge University Press, Cambridge, 1996)
31. A. Ralston, H.S. Wilf, Mathematical Methods for Digital Computers, vols (I and II) (Wiley,

New York, 1967)
32. S. Ray, A Textbook of Fortran/2003 (Narosa, New Delhi, 2009)
33. J.R. Rice, Approximation Theory (Addison-Wesley, London, 1964)
34. T.J. Rivlin, Introduction to the Approximation of Functions (Blaisdell, Walthem (Mas-

sachusetts, 1969)
35. T.J. Rivlin, The Chebyshev Polynomials (Wiley, New York, 1970)
36. S.S. Sastry, Introductory Methods of Numerical Analysis (Prentice-Hall of India, New Delhi,

2006)
37. J.B. Scarborough, Numerical Mathematical Analysis (Oxford-IBH, New Delhi, 1966)
38. F. Scheid, Numerical Analysis, Schaum’s Outline Series (McGraw-Hill, New York, 1984)
39. K.G. Steffens, The History of Approximation Theory from Euler to Bernstein (Birkhäuser,

Berlin, 2006)
40. J. Stoer, R. Bulirsch, Introduction the Numerical Analysis (Springer, New York, 2002)
41. A.H. Stroud, D. Secrest, Gaussian Quadrature Formulas (Prentice-Hall, New Jersey, 1966)
42. T. Veerarajan, T. Ramchandran, Theory and Problems in Numerical Methods with Programs

in C and C++ (Tata McGraw-Hill, New Delhi, 2004)
43. E.A. Volkov, Numerical Methods (Mir Publishers, Moscow, 1986)
44. B. Wendroff, Theoretical Numerical Analysis (Academic Press, New York, 1966)
45. J.H. Wilkinson, Rounding Errors in Algebraic Processes (Prentice-Hall, New Jersey, 1963)
46. J.H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965)

Index

A
Acceleration of convergence (see Aitken’s

�2–process
Adams–Bashforth–Moulton method

corrector formula, 275
predictor formula, 274

Adaptive quadrature, 250
adaptive Simpson, 250
QUANC8, 251

Adaptive Step Size Runge–Kutta Methods,
288

Aitken’s �2–process, 77
Algebraic equation (see Polynomial equa-

tion
Algorithm, 1

complexity, 18
Approximation

Chebyshev (see uniform
best uniform, 339
least squares, 352
Maehly, 379
minimax (see best uniform
near-best uniform, 346
over discrete set of points, 365
Padé, 373
rational, 372, 377
trigonometric, 370
uniform polynomial, 336

B
Back substitution, 109, 113
Bairstow’s method, 99
Banach fixed-point theorem, 156

Banachiewicz’s Decomposition method,
119

Base of a number system, 2
Basis functions, 303
Basis vector, 389
Bernoulli numbers, 253
Bernstein polynomials, 336
Bessel’s function, 189
Best interpolation nodes (see Chebyshev in-

terpolation
Best uniform (minimax) approximation, 339
Binary system, 3, 445
Bit, 3
Bolzano bisection method, 58

algorithm, 59
Boundary conditions, 262, 315
Boundary value problems, 294, 309

program for two point, 296
Broyden’s method, 152
Bytes, 25

C
Canonic forms of FFT, 456
Central difference formula, 186
Characteristic equation of matrix, 385, 435

Leverrier’s Method, 435
Chebyshev alternants, 343
Chebyshev approximation (see Approxima-

tion uniform
Chebyshev interpolation, 191
Chebyshev–Markov–Markov theorem, 343
Chebyshev points, 193, 195, 346
Chebyshev polynomials, 192, 364

© Springer Nature Singapore Pte Ltd. 2019
S. K. Bose, Numerical Methods of Mathematics Implemented
in Fortran, Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-13-7114-1

461

https://doi.org/10.1007/978-981-13-7114-1

462 Index

Chebyshev series, 348
Cholesky’s method, 125

asymmetric, 125
Composite rules for numerical quadrature,

226
Computer software, 3
Condition number, 14, 133

poorly conditioned, 14
well conditioned, 14, 136

Condition of equations, 135
ill–conditioned, 136

Consistent method, 272
Convergence

general iteration method, 75
Jacobi and Seidel methods, 144
Lax’s equivalence theorem, 332
linear, 74
Muller’s method, 158
Newton’s Method, 75
order of, 74
QR Method, 407
quadratic, 75
rate of (see order of
secant method, 76
single-step methods for ODE, 272
theorems, 79
Young’s over relaxation method, 144

Cooley–Tukey method, 445
Corrector formulas

Adams–Moulton, 275
Milne’s, 277

Courant condition, 312
Cramer’s rule, 108
Crank–Nicolson method, 317
Crout’s method, 124
Cubic spline interpolation, 197

D
Damped Newton’s Method, 149
Data fitting (see least squares approximation
Decimal system, 2
Decimal to binary conversion, 105
Deferred approach to limit (see Richardson

extrapolation
Deflation, 89

for QR method, 412
De la Vallée Poussin’s theorem, 342
Descartes’ rule of signs, 92
Descent direction, 149

steepest, 158
Determinant, 122, 424

secular, 385

Diagonally dominant matrix (see matrices
Difference equation, 74, 273, 280–282
Difference quotient, 211
Differences

divided, 168
finite, 180

Differentiation
numerical, 204
opeartional, 252

Diffusion equation, 315, 330
Discrete Fourier transform, 442
Discretisation error, 205, 272
Double integration, 258
Double precision

complex, 24
numbers, 12
real, 24

E
Economisation of polynomials, 348
Eigenvalues of matrix

double QR method, 412
general theorems, 388
Givens’ transformation, 394
Hessenberg form, 398, 409
Householder transformation, 398
Hyman algorithm, 424
implementation, 418
inverse iteration method, 433
Jacobi’s method, 391
LR method, 405
Power method, 428
QR method, 406
shifts of origin, 410

Eigenvector, 385
Elliptic integral, 183, 209
Error

absolute, 5
bounds, 82
discretisation, 205, 272
in numerical integration, 215
in Polynomial Interpolation, 178
Propagation, 13
relative, 5
roundoff, 9
truncation, 5, 272

Error function, 190
Euler–Maclaurin summation formula, 252
Euler’s method, 263
Experimental errors, 353
Exponent (see floating point arithmetic
Extrapolation to the limit, see Aitken’s �2–

process

Index 463

F
Factorisation of matrix

LR, 405
LU, 119
QR, 406

Fast Fourier transform
Cooley–Tukey method, 445
Sande–Tukey method, 456

File, 3
Finite difference interpolation

Bessel, 191
Gregory–Newton Backward, 185
Gregory–Newton Forward, 183
sterling, 186

Finite difference methods, see Ordi-
nary/Partial diff. eqns., see Ordi-
nary/Partial diff. eqns.

Finite Differences, 180
Fixed point, 81
Fixed-point arithmetic, 9
Fixed point iteration, 70

for systems, 156
Floating-point arithmetic, 10
Floating-point operation, 12

double precision, 12
Fortran, 1, 23

arithmetic, 28
arrays, 27
assignment statement, 29
call statement, 35
case statement, 38
characters, 23
close statement, 37
comment statement, 26
common statement, 35
complex, 28
constants, 23
dimension statement, 27
do statement, 33
do while statement, 39
end statement, 26
external statement, 35
format statement, 37
function subprogram, 34
goto statement, 31
if constructs, 31
implicit statement, 27
input–output statements, 36
intent statement, 38
intrinsic functions, 34
label of statement, 23
logical expressions, 30
module, 39

open statement, 37
parameter statement, 25
pause statement, 31
precision

double, 26
single, 26

print statement, 37
program statement, 26
read statement, 36
real, 28
recursive subroutine, 35
return statement, 34
stop statement, 31
subroutine, 34
use statement, 39
variables, 26
write statement, 37

Fourier coefficients, 371
Fourier’s integral theorem, 442
Fourier transform, 441

direct, 441
discrete, 442
inverse, 441

Fundamental theorem of algebra, 91

G
Galerkin method, 302
Gauss elimination method, 112
Gauss–Hermite quadrature, 257
Gaussian quadrature formula, 235

Gauss Chebyshev quadrature, 244
Gauss-Laguerre quadrature, 241

General iteration method, 69
Gershgorin inequalities, 390
Gram matrix, 354
Gram–Schmidt orthogonalisation, 361

H
Haar spaces, 163
HeapSort algorithm, 48
Hermite interpolation, 167
Hermite polynomials, 365
Hessenberg matrices, 398
Hexadecimal numbers, 3
Horner’s scheme, 19, 96
Householder transformation, 398
Hyman algorithm, 424

I
Ill-Conditioned equations, 105, 358
Improper integrals, 256

464 Index

Initial value problem, see Ordinary differen-
tial equations

Inner product (see Scalar product
Integration

adaptive-Simpson, 251
composite, 227
composite rules, 226
Gaussian rules (see Gaussian quadrature
Lobatto’s rule, 244
mid point rule, 216
Newton–Cotes’ formula, 224
numerical, 214
QUANC8, 251
rectangle rule, 216

composite, 227
Romberge (see Romberg integration
Simpson’s rule, 218

composite, 228
end-corrected, 223

trapezoidal rule, 217
composite, 227
end-corrected, 221

Interpolating polynomial
Bessel’s formula, 191
cubic spline, 197
Gregory–Newton backward difference
formula, 185

Gregory–Newton forward difference for-
mula, 183

Hermite formula, 167
Lagrange formula, 165
Neville’s scheme, 175
Newton’s divided difference formula,
168

Stirling’s central difference formula, 186
Interpolation

Chebyshev, 191
best interpolation nodes, 191

linear, 197
polynomial, 164
program RUNGE, 195
rational functions, 377
trigonometric, 163

Inverse iteration method, 433
Inverse of a matrix, 127
Iteration method for solving equation, see

fixed point iteration
Iteration methods for linear systems, see re-

laxation methods

J
Jackson’s theorem, 339

Jacobian matrix, 148
Jacobi’s method

for eigenvalues, 391
Jacobi’s transformation, 391
Jordan elimination method, 119

knots, 197

L
Laasonen method, 316
Lagrange formula for interpolating polyno-

mial, 165
Lagrange’s theorem on bounds of real roots,

95
Laguerre polynomials, 365
Laplace’s equation, 325
Least squares approximation, 352

by polynomials, 353
by trigonometric polynomials, 455

Least squares method for BVP, 305
Legendre polynomials, 237, 363
Leverrier’s method, 435
Linear combination, 303
Linear convergence, 75
Linear independence, 355
Linear operator, 203
Linear system of equations, 107
Lower triangular matrix, 120
LR method, 405
LU decomposition method, 119

M
Maehly’s method, 379
Mantissa of floating-point number, see float-

ing point number
Matrix

augmented, 114
characteristic equation, 385, 435
condition number, 135
decomposition, 119, 405, 406
diagonalisation, 390
diagonally dominant, 145
Givens’ transformation, 394
Hermitian, 389
Hessenberg, 398
Householder reflections, 398
inversion, 127
norm, 133
permutation, 115, 126
positive definite, 130, 146
similar, 389
symmetric, 129, 389, 391
triangular, 120

Index 465

tridiagonal, 108
unitary, 406

Maximum modulus eigenvalue (see power
method

Mesh points, 298
Method of eigenvalues, 104
Method of weighted residuals (see Galerkin

method
Milne’s method, 277
Minimax approximation (see Approxima-

tion uniform
Minimum modulus eigenvalue, 431
Minimum step size in differentiation, 210
Modulus of continuity, 338
Müller’s method, 85

algorithm, 86
Multiple root, 56
Multistep methods for ODEs, see Predictor–

corrector Methods

N
Near best approximation

rational, 379
uniform, 346

Nested form of a polynomial, see Horner’s
scheme

Nested multiplication
for orthogonal polynomials, 361
for series, 44
in fast Fourier transform, 445

Neville’s scheme, 175
Newton’s divided difference formula, 168
Newton’s method for roots, 62

generalised, 67
modified, 64
polynomial equation, 96

Newton’s method for systems, 148
damped, 149

Nodes, 163
Noise, 204
Non-linear system of equations, 147
Norm, 133

Euclidean, 133
function, 335
Laplace’s, 133, 335
matrix, 134
maximum, 133, 134, 335
vector, 133

Normal equations, 354, 357
Normal exponent form of floating-point

number, 10
Numerical differentiation, 204

Numerical integration (see Integration

O
Octal numbers, 3
Order (Rate) of convergence, 74

Bolzano bisection method, 74
general iteration method, 75
Müller’s method, 85
Newton’s method, 75
secant method, 76
symbols O and o, 8

Ordinary differential equations
Adams–Bashforth–Moulton method,
274

Adaptive step size methods, 288
boundary value problems, 262, 294
collocation method, 302
Euler’s method, 263
finite difference methods, 298
Galerkin method, 302
Heun’s method, 264
initial value problem, 261
least squares method, 305
Milne’s method, 277
modified Euler’s method, 264
multistep methods, 274
Runge–Kutta Methods, 264
shooting methods, 294
Stiff differential equations, 292
System of first order, 282

Orthogonal functions, 358
Orthogonal polynomials, 339

Gram–Schmidt orthogonalisation, 361
over discrete sets of points, 365
recursive generation, 362

Overflow, 11

P
Padé approximations, 373
Partial differential equations

classification of second order, 328
Courant condition, 312
Crank–Nicolson method, 317
diffusion equation, 315, 330
elliptic, 328
explicit, 310
first order, 310
hyperbolic, 328
implicit scheme, 317
Laasonen method, 316
Laplace’s equation, 325
Lax-Friedrichs method, 310

466 Index

Lax’s equivalence theorem, 332
Lax-Wendroff method, 311
leapfrog scheme, 315
parabolic, 328
Peaceman–Rachford ADI method, 330
Poisson equation, 325
Schmidt method, 315
second order, 328
upwind scheme, 314
von Neumann stability analysis, 311
wave equation, 321, 330

Partial pivoting, 114
Pivot, 112
Pivotal equation, 112
Polynomial equation, 91

application of Newton’s method, 96
Bairstow’s Method, 99
DeCartes’ Rule of Signs, 92
fundamental theorem of algebra, 91
root bounding theorems, 94
Sturm’s theorem, 92

Polynomial interpolation (see Interpolating
polynomial

Polynomial representation of number, 2, 445
Polynomials

algebraic, 91
generalised, 353
orthogonal, 361
trigonometric, 370

Power method, 428
Precision

double, 24
single, 25

Predictor–Corrector methods, 274
Predictor formulas

Adams–Bashforth, 274
Milne’s, 277

Product computation of matrices, 46
Program, 4
Pseudocode, 18

Q
QR method, 406
Quadratic computation, 15

R
Rayleigh quotient, 429
Rectangle rule, 216
Recurrence relations, 192, 364
Recursion, 16
Regula falsi method, 59

algorithm, 61

modified, 60
Relaxation methods, 138

cycle, 139
Jacobi’s method, 139
Seidel’s method, 140
Young’s overrelaxation, 143

Remez exchange algorithm, 344
Residual, 303
Richardson extrapolation, 211
Romberg integration, 245
Root bounding heorems, 94
Roots of equations

complex, 85
multiple, 56
real, 56

Rounding rule, 11
Roundoff error, 9

propagation of, 13
Rule, 203
Runge–Kutta methods, 264

adaptive, 288

S
Sande–Tukey algorithm, 456
Scalar product of functions, 353
Scaled partial pivoting, 116
Schur’s theorem, 406
Secant_bisection method, 62
Secant method, 61
Seidel’s method, 140
Series summation, 255
Shooting methods, 294
Signal flow graph of FFT, 448
Significant digits, 3
Similar matrices, 389
Simpson’s rule (see Integration
Single precision, 25
Smoothing, 366
Software, 3
SOR, 143
Spectral radius of matrix, 135
Stability

Adams–Bashforth–Moulton method,
282

Milne’s method, 280
Runge–Kutta methods, 282
von Neumann analysis, 311

Stable
evaluation, 15
numerically, 15
strongly, 282
weakly, 281

Index 467

Stiff differential equations, 292
Sturm sequence, 92, 395
Sturm’s theorem, 92
Subroutines

ABM, 276
ADAPTIVE RK4, 290
ADAPTIVE SIMPSON, 251
BAIRSTOW, 102
BANACHIEWICZ, 121
BROYDEN, 154
CHEBYSHEV, 347
CHOLESKY, 131
DAMPED NEWTON, 149
DIVDIFF, 173
FFT, 445
FRANCIS, 420
GAUSS, 116
GIVENS, 395
HEAPSORT, 49
HOUSEHOLDER, 401
HYMAN, 426
LEVERRIER, 437
MAEHLY, 380
MATINV, 128
MULLER, 86
NEVILLE, 177
NEWTON, 63
NEWTON HORNER, 97
PADE, 375
POWER, 430
RATIONAL_APPROX, 377
RK4, 284
ROMBERG, 247
SECANT_BISECTION, 62
SEIDEL, 142
SIMPSON, 251
SIMPSON2D, 259
SOLVE, 123
SPLINE, 199
STEEPEST_DESCENT, 160

THOMAS, 110
TRAPEZOIDAL, 228

Successive overrelaxation (see SOR
Sum computation, 45
Synthetic division, 436

T
Table of function, 163
Thomas method, 108
Transcendental equation, 55
Trapezoidal rule (see Integration
Triangular factorisation (see LU decomposi-

tion
Tridiagonal matrices (see Matrix tridiagonal

U
Unconstrained optimisation, 157
Unstable evaluation, 15
Upper triangular matrix, 119

V
Vandermonde determinant, 164

W
Wallis’s equation, 57
Wave equation, 321, 330
Weierstrass’s approximation theorem, 336
Weight function, 241, 353

Y
Young’s overrelaxation method, 143

Z
Zero of function, 55

	Preface
	Contents
	About the Author
	1 Computation in FORTRAN
	1.1 Calculators and Computers
	1.1.1 Computer Driver: Software

	1.2 Errors in Computing
	1.2.1 Truncation Errors
	1.2.2 Roundoff Errors

	1.3 Complexity of Algorithms
	1.4 Elements of FORTRAN
	1.4.1 The PROGRAM, END and COMMENT Statements
	1.4.2 FORTRAN Variables and Type Declarations
	1.4.3 FORTRAN Arrays (Subscripted Variables) and DIMENSION
	1.4.4 Arithmetic Operations and the Assignment Statement
	1.4.5 Relational Operators and Logical Expressions
	1.4.6 PAUSE and STOP Statements
	1.4.7 The GOTO Statement
	1.4.8 The IF Statement and the IF Construct
	1.4.9 The DO Statement
	1.4.10 Functions in FORTRAN
	1.4.11 Input and Output (I/O) Statements
	1.4.12 Other Statements
	1.4.13 Fortran Programming Examples

	2 Equations
	2.1 Real Roots
	2.1.1 Isolation of a Real Root
	2.1.2 Refinement: Computation of a Real Root

	2.2 The General Iteration Method
	2.3 Rate of Convergence
	2.3.1 Acceleration of Convergence of Linearly Convergent Sequences: Aitken's 2–process

	2.4 Convergence Theorems
	2.5 Complex Roots
	2.5.1 Mller's Method

	2.6 Algebraic Equations
	2.6.1 Root Bounding Theorems
	2.6.2 Application of Newton's Method
	2.6.3 Bairstow's Method
	2.6.4 Method of Eigenvalues
	2.6.5 Ill-Conditioned Equations

	2.7 Choice of Methods

	3 System of Equations
	3.1 Linear System of Equations
	3.1.1 Tridiagonal Matrices: Thomas Method
	3.1.2 Gauss Elimination for General Linear System
	3.1.3 LU Decomposition Method
	3.1.4 Matrix Inversion
	3.1.5 Cholesky's Method for Symmetric Matrices

	3.2 Error: Matrix Norms and Condition Number
	3.3 Relaxation Methods
	3.3.1 Jacobi's Method
	3.3.2 Seidel's Method
	3.3.3 Young's Over Relaxation Method
	3.3.4 Convergence Theorems

	3.4 Non-linear System of Equations
	3.4.1 Newton's Method for n Equations
	3.4.2 Broyden's Method
	3.4.3 General Iteration for n Equations
	3.4.4 Unconstrained Optimization of a Function

	4 Interpolation
	4.1 Polynomial Interpolation
	4.1.1 Lagrange's Method
	4.1.2 Newton's Method: Divided Differences
	4.1.3 Neville's Scheme
	4.1.4 Error in Polynomial Interpolation

	4.2 Equally Spaced Points: Finite Differences
	4.2.1 Gregory–Newton Forward Difference Formula
	4.2.2 Gregory–Newton Backward Difference Formula
	4.2.3 Stirling's Central Difference Formula

	4.3 Best Interpolation Nodes: Chebyshev Interpolation
	4.4 Piecewise–Polynomial Spline Interpolation

	5 Differentiation and Integration
	5.1 Numerical Differentiation
	5.1.1 Minimal Step Length h
	5.1.2 Richardson Extrapolation

	5.2 Numerical Integration
	5.2.1 Basic Rules of Numerical Integration
	5.2.2 Newton–Cotes Formula
	5.2.3 Composite Rules
	5.2.4 Gaussian Quadrature Formula
	5.2.5 Romberg Integration
	5.2.6 Adaptive Quadrature

	5.3 Euler–Maclaurin Summation Formula
	5.4 Improper Integrals
	5.5 Double Integration

	6 Ordinary Differential Equations
	6.1 Initial Value Problem for First-Order ODE
	6.1.1 Euler's Method
	6.1.2 Modified Euler's Method
	6.1.3 Runge–Kutta Methods
	6.1.4 Convergence of Single-Step Methods
	6.1.5 Adams–Bashforth–Moulton Predictor–Corrector Method
	6.1.6 Milne's Predictor–Corrector Method
	6.1.7 Stability of the Methods

	6.2 System of ODEs
	6.2.1 Adaptive Step Size Runge–Kutta Methods

	6.3 Stiff Differential Equations
	6.4 Boundary Value Problems
	6.4.1 Shooting Methods
	6.4.2 Finite Difference Methods
	6.4.3 Collocation, Least Squares and Galerkin Methods

	7 Partial Differential Equations
	7.1 First-Order Equation
	7.1.1 Lax–Friedrichs Method
	7.1.2 Lax–Wendroff Method
	7.1.3 von Neumann Stability Analysis

	7.2 The Diffusion Equation
	7.2.1 Schmidt Method
	7.2.2 Laasonen Method
	7.2.3 Crank–Nicolson Method

	7.3 The Wave Equation
	7.4 Poisson Equation
	7.5 Diffusion and Wave Equation in Two Dimensions
	7.6 Convergence: Lax's Equivalence Theorem

	8 Approximation
	8.1 Uniform Approximation by Polynomials
	8.2 Best Uniform (Minimax) Approximation
	8.2.1 Near-Best Uniform Approximation
	8.2.2 Chebyshev Series and Economisation of Polynomials

	8.3 Least Squares Approximation
	8.3.1 Least Squares Polynomial Approximation over Given Data Set

	8.4 Orthogonal Polynomials
	8.5 Orthogonal Polynomials over Discrete Set of Points: Smoothing of Data
	8.6 Trigonometric Approximation
	8.7 Rational Approximations
	8.7.1 Padé Approximations
	8.7.2 Rational Function Interpolation
	8.7.3 Near-Best Uniform Rational Approximation: Maehly's Method

	9 Matrix Eigenvalues
	9.1 General Theorems
	9.2 Real Symmetric Matrices
	9.2.1 Jacobi's Method
	9.2.2 Givens' Transformation
	9.2.3 Householder Transformation: Hessenberg Matrices

	9.3 General Matrices
	9.3.1 The LR Method
	9.3.2 The QR Method

	9.4 Maximum Modulus Eigenvalue: The Power Method
	9.4.1 Any Real Eigenvalue: The Inverse Iteration Method

	9.5 The Characteristic Equation

	10 Fast Fourier Transform
	10.1 Discrete Fourier Transform
	10.2 Fast Fourier Transform
	10.2.1 Signal Flow Graph of FFT
	10.2.2 Bit-Reversal
	10.2.3 FFT Subroutine
	10.2.4 Canonic Forms of FFT

	 Bibliography
	Index

