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Preface

Underwater acoustic (UWA) channels have been regarded significantly different from wireless
radio channels, due to their unique characteristics, such as large temporal variations, abun-
dance of transmission paths, and wideband property in nature. Although there are a plethora
of digital and wireless communication textbooks, most of them are tailored towards wireless
radio channels, where simplified channel models are usually adopted to streamline presenta-
tion. Following standard receiver designs in textbooks, a practitioner might often be frustrated
by the receiver performance in real underwater acoustic environments. This book is written to
unfold and to address the challenges in UWA communications particularly for the multicarrier
modulation in the form of orthogonal frequency-division multiplexing (OFDM).

The last decade has witnessed the tremendous development and revolutionary impact of
OFDM on high data-rate radio communications. It is the workhorse of many wireless commu-
nication standards, such as WiFi (IEEE 802.11 a/g/n), WiMAX (IEEE 802.16), digital audio
and video broadcasting (DAB/DVB), and the fourth generation (4G) cellular systems. The
popularity of OFDM stems from its capability to convert a long multipath channel in the
time domain into multiple parallel single-tap channels in the frequency domain, thus consid-
erably simplifying receiver design. Such a feature makes OFDM an attractive choice for UWA
channels. However, the feasibility of underwater acoustic OFDM had not been validated with
experimental data sets until the mid 2000s, although OFDM has been tested in UWA envi-
ronments since the 1990s. Considerable progress for OFDM has been observed in the UWA
community since the late 2000s.

This book is dedicated to the techniques for OFDM in UWA channels, and different chapters
are focused on addressing different challenges. Readers are expected to have certain signal pro-
cessing and communication background. For readers within the UWA community, this book
could deepen their understanding in the design aspects specific to underwater systems. For
readers outside the UWA community, this book will help them to appreciate the distinctions
of system design in different domains.

The technical content of this book mainly originates from the research performed within the
UnderWater Sensor Network (UWSN) lab at the University of Connecticut (UCONN), which
is co-directed by Dr. Jun-Hong Cui and the first author Dr. Shengli Zhou. The past and existing
members who have contributed to the content of the book include: postdoctoral researchers:
Drs. Jie Huang, Hao Zhou, and Xiaoka Xu; past Ph.D. students: Drs. Baosheng Li, Christian
Berger, Jianzhong Huang; current Ph.D. students: Patrick Carroll, Lei Wan, Yi Huang; past
M.S. students: Sean Mason, Weian Chen, Wei Zhou; and visiting scholars: Yougan Chen,
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Haixin Sun, Yuzhi Zhang, Xiaomei Xu. The authors have benefited tremendously from
collaborations with faculty members affiliated with UWSN, in particular, Drs. Peter Willett,
Jun-Hong Cui, Zhijie Shi, James O’Donnell, and Thomas Torgersen. The sincere gratitude
of the authors also goes to the colleagues in the Systems Group at UCONN, especially
Drs. Yaakov Bar-Shalom, Peter Luh, Krishna Pattipati, and Peter Willett, for promoting an
atmosphere for academic excellence.

The authors would like to thank Mr. Lee Freitag, Dr. James Preisig, and their teams from the
Woods Hole Oceanographic Institute (WHOI), and Dr. Josko Catipovic and his team from the
Navy Undersea Warfare Center (NUWC) for providing multiple experimental opportunities.
The data sets from those experiments, especially from the SPACE08 experiment, the MACE10
experiment and the AUTEC network, are instrumental to our receiver development and vali-
dation. The experimental opportunities offered by Dr. T. C. Yang have also been very helpful
for our research development. We would also like to acknowledge Dr. Milica Stojanovic for
stimulating discussions at the early stage of research and Dr. Zhengdao Wang for his valuable
comments through regular discussions.

The feedback from the reviewers have helped to improve the presentation of this book.
We acknowledge Drs. Christian Berger, Tolga Duman, Dennis Goeckel, Georgios Giannakis,
Geert Leus, Aijun Song, Milica Stojanovic, Zhengdao Wang, Peter Willett, Chengshan Xiao,
and Ms. Xiaoyi Hu for reviewing different chapters with a short notice. Mr. Mark Hammond,
Ms. Liz Wingett, and Ms.Sandra Grayson from the publisher have been very patient and sup-
portive during this project.

The work in this book has been supported by the Office of Naval Research (ONR) and
National Science Foundation (NSF). We would like to thank the program managers: Dr. Robert
Headrick from ONR who has managed the YIP and PECASE projects, and Dr. Scott Midkiff,
Dr. David Du, Dr. Zygmunt Haas, and Dr. Zhi Tian from different programs at NSF. Dr. Keith
Davidson from ONR has provided a lot of encouragement during annual ONR PI meetings.
The University of Connecticut has provided matching funds to our NSF projects at various
occasions. The first author acknowledges the support of the United Technologies Corporation
(UTC) Associate Professorship in Engineering Innovation (2008–2011), and the Charles H.
Knapp Associate Professorship in Electrical Engineering (2012–2013).

The training from our advisors has laid foundation for the authors to pursue this project.
Dr. Shengli Zhou would like to thank his Ph.D. advisor Dr. Georgios B. Giannakis and his
MSc. advisor Dr. Jinkang Zhu, and Dr. Zhaohui Wang would like to thank her MSc. advisor
Dr. Huizhi Cai, for their mentoring during the graduate studies.

Last but not least, we are grateful to our family members for their continuous support and
encouragement throughout the project.

Shengli Zhou
University of Connecticut

Zhaohui Wang
Michigan Technological University



Acronyms

AF Amplify and Forward
ANC Analogy Network Coding
AoA Angle of Arrival
ARQ Automatic Repeat Request
AUTEC Atlantic Undersea Test and Evaluation Center
AUV Autonomous Underwater Vehicle
BCJR The Bahl-Cocke-Jelinek-Raviv Algorithm
BICM Bit Interleaved Coded Modulation
BP Basis Pursuit
BPSK Binary Phase-Shift Keying
BER Bit Error Rate
BLER Block Error Rate
CC Convolutional Code
CCDF Complementary Cumulative Distribution Function
CCI Cochannel Interference
CDF Cumulative Distribution Function
CDMA Coded-Division Multiple Access
CF Compress and Forward
CFO Carrier Frequency Offset
CP Cyclic Prefix
CRLB Cramer-Rao Lower Bound
CS Compressive Sensing
CSI Channel State Information
CZT Chirp Z-Transform
DBC Dynamic Block-Cycling
DCC Dynamic Coded Cooperation
DF Decode and Forward
DFE Decision-Feedback Equalization
DFT Discrete Fourier Transform
DSSS Direct Sequence Spread Spectrum
FDM Frequency Division Multiplexing
FFT Fast Fourier Transform
FH Frequency Hopping
FG Factor Graph



xx Acronyms

FSK Frequency Shift Keying
GIB GPS Intelligent Buoy
GLRT Generalized Log-Likelihood Test
GMP Gaussian Message Passing
GPS Globe Positioning System
HFM Hyperbolic-Frequency Modulation
IBI Interblock Interference
ICI Intercarrier Interference
i.i.d. Independent and Identically Distributed
IMM Interacting Multiple Model
ISI Intersymbol Interference
LASSO Least Absolute Shrinkage and Selection Operator
LBL Long Baseline
LDPC Low Density Parity Check Code
LFM Linear-Frequency Modulation
LLR Log-Likelihood Ratio
LLRV Log-Likelihood Ratio Vector
LMMSE Linear Minimum Mean-Square Error
LPF Low Bandpass Filtering
LPM Linear-Period Modulation
LS Least Squares
MAC Medium-Access Control
MACE10 Mobile Acoustic Communication Experiment in 2010
MAP Maximum A Posteriori Probability
MCMC Markov Chain Monte Carlo
MIMO Multi-Input Multi-Output
ML Maximum Likelihood
MP Matching Pursuit
MSE Mean Square Error
MMSE Minimum Mean Square Error
MRC Maximum Ratio Combining
MUD Multiuser Detection
MUI Multiuser Interference
NC Network Coding
NCM Nonbinary Coded Modulation
NLNC Network-Layer Network Coding
OFDM Orthogonal Frequency-Division Multiplexing
OMP Orthogonal Matching Pursuit
PAM Pulse Amplitude Modulation
PAPR Peak-To-Average-Power Ratio
PDA Probabilistic Data Association
PER Packet Error Rate
PLNC Physical-Layer Network Coding
PSNR Pilot Signal-To-Noise Ratio
QAM Quadrature Amplitude Modulation
QC Quasi-Cyclic



Acronyms xxi

QMF Quantize, Map and Forward
QPSK Quadrature Phase Shift Keying
RIP Restricted Isometry Property
RMSE Root Mean-Squared Error
S2C Sweep-Spread Carrier
SBL Short Baseline
SDA Sphere Decoding Algorithm
SIMO Single-Input Multi-Output
SINR Signal-to-Interference-and-Noise Ratio
SIR Signal-to-Interference Ratio
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
SOFAR Sound Fixing and Ranging
SONAR Sound Navigation and Ranging
SPA Sum Product Algorithm
SPACE08 Surface Processes and Acoustic Communication Experiment in 2008
SPRT Sequential Probability Ratio Test
SUD Single-User Detection
TCM Trellis Coded Modulation
TDOA Time Difference of Arrival
TVR Transmitter Voltage Response
USBL Ultra-Short Baseline
UUV Unmanned Underwater Vehicle
UWA Underwater Acoustic
VA Viterbi Algorithm
ZF Zero Forcing
ZP Zero Padding





Notation

Scalars
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⋃
D

h(t; 𝜏) Time-varying channel impulse response
Ap(t) Time-varying amplitude of the pth path
Ap Time-invariant amplitude of the pth path
𝜏p(t) Time-varying delay of the pth path
𝜏p Initial delay of the pth path
ap Doppler rate of the pth path
Npa Number of paths in the channel
a The main Doppler scaling factor in the UWA channel
𝜖 The residual Doppler shift after removing the main Doppler effect
𝜉p The equivalent amplitude of the pth path in the baseband
𝜏p The equivalent scaled delay of the pth path in the baseband
bp The equivalent residual Doppler rate of the pth path in the baseband
D ICI depth

 (𝜇, 𝜎2) Real Gaussian distribution with mean 𝜇 and variance 𝜎2

 (0, 𝜎2) Circularly symmetric complex Gaussian distribution with zero mean and
variance 𝜎2

x̃(t) The waveform in passband
x(t) The waveform in baseband; Conversion between x̃(t) and x(t):
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x̃(t) = 2ℜ{x(t)ej2𝜋fct}
x(t) = LPF[x̃(t)e−j2𝜋fct]

Vectors and Matrices

z Measurement vector formed by frequency samples at all the OFDM subcarriers
s Transmitted symbol vector formed by symbols at all the OFDM subcarriers
w Ambient noise vector formed by the ambient noise at all the OFDM subcarriers
𝜼 Equivalent noise vector formed by the equivalent noise at all the OFDM

subcarriers
H Channel mixing matrix
 (0,𝚺) Circularly symmetric complex Gaussian random vector with zero mean and

covariance matrix 𝚺

Operations

∝ Equality of functions up to a scaling factor
|| Cardinality of set 
[a]m The mth entry of vector a
[A]m,k The (m, k)th entry of matrix A
{a}j

𝓁=i
A set formed by elements {[a]i, [a]i+1, · · · , [a]j}

â The estimate of scale a
â The estimate of vector a
Â The estimate of matrix A
AT The transpose of matrix A
AH The complex conjugate transpose of matrix A
A† The pseudo-inverse of matrix A
tr(A) Trace of matrix A
Pr{A} Probability of an event A
𝔼(X) Expectation of random variable X
𝔼(x) Expectation of random vector x
Cov(X,Y) Covariance of two random variables
Cov(x, y) Covariance matrix of two random vectors
ℜ{x} Real part of a complex number x
ℑ{x} Imaginary part of a complex number x
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Introduction

1.1 Background and Context

1.1.1 Early Exploration of Underwater Acoustics

The Earth is a water planet, with two-thirds of the surface covered by water. Exploration of the
mysterious underwater world has never ceased in human history. As early as 400 BC, Aristotle
had noted that sound could be heard in water as well as in air. In AD 1490, Leonardo da Vinci
wrote: “If you cause your ship to stop and place the head of a long tube in the water and place
the other extremity to your ear, you will hear ships at great distances” [268]. In 1826, Charles
Sturm and Daniel Colladon made the first accurate measurement of sound speed in water at
Lake Geneva, Switzerland. The first practical application of underwater sound appeared in the
1900s: the underwater bells equipped on lightships were simultaneously sounded with a fog
horn to measure the offshore distance based on the difference of the airborne and waterborne
arrivals, and meanwhile the stereo headphones were also used for directions [397]. With the
sinking of Titanic in 1912, L. F. Richardson successively filed a patent of echo ranging with
sound in air and a patent application of echo ranging in water.

Along with the application of submarine and underwater mines in World War I (1914–1918),
considerable progress has been made in underwater acoustics, especially on the underwater
echo ranging for submarine and mine detection. In 1914, Constantin and Chilowski conceived
the idea of submarine detection by underwater echo ranging. Based on the discovery of the
piezoelectric effect by Jacques Curie and Pierre Curie in 1880, Paul Langevin in 1918 used
quartz (piezoelectric) transducers as source and receiver to extend one-way sound transmis-
sion to 8 km, and for the first time observed clear echoes from a submarine at distances as
large as 1500 m. Between World War I and World War II, scientists started to understand some
fundamental concepts of sound in water, such as sound refraction due to changes of water
temperature, salinity and pressure. Development of underwater sound applications during this
period can be found in echo ranging for commercial use, underwater tomography and fisheries
acoustics. The research effort on underwater acoustics during World War II (1941–1945) was
mainly focused on improving echo ranging systems which were later coined as “sonar” (for
SOund Navigation And Ranging). During this period, topics relative to sonar system perfor-
mance were extensively investigated, including the high-frequency acoustics, low-frequency
sound propagation, ambient noise, etc. By the end of World War II, the underwater sound had
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been primarily used for navigation and threat-finding. In 1945, an underwater telephone, which
was developed by the Navy Underwater Sound Laboratory in the United States for the purpose
of communication with submerged submarines, was the first application of underwater sound
for communications [321]. Since then, development on underwater acoustic communications
has been made in various underwater acoustic applications.

1.1.2 Underwater Communication Media

To establish communications among underwater assets and systems floating on the surface,
four different communication media have been used.

• Cables. There have been many cabled observatories established over the years. Cables pro-
vide robust communication performance; however, the deployment and maintenance cost is
very high. This motivates the use of wireless data transmission.

• Acoustic waves. For underwater wireless communication systems, acoustic waves are used
as the primary carrier due to their relatively low absorption in underwater environments.
However, acoustic waves have low propagation speed and a very limited frequency band.

• Electromagnetic (EM) waves. The use of EM waves in the radio frequency band has sev-
eral advantages over acoustic waves, mainly faster velocity and high operating frequency
(resulting in higher bandwidth). The key limitation of using EM waves for underwater com-
munication is the high attenuation due to the conductive nature of seawater [255].

• Optical waves. Using optical waves for communication obviously has a big advantage in
data rate. However, there are a couple of disadvantages for optical communication in water.
Firstly, optical signals are rapidly absorbed in water. Secondly, optical scattering caused by
suspended particles and plankton is significant. Thirdly, the high level of ambient light in the
upper part of the water column is another adverse effect for using optical communication.

Apparently, each of the three physical waves as wireless information carrier has its own
advantages and disadvantages. For a more intuitive comprehension, we summarize the major
characteristics of acoustic, electromagnetic and optical carriers in Table 1.1. Acoustic waves
propagate well in seawater and can reach a far distance. This justifies using acoustic waves
for most underwater wireless communications.

Table 1.1 Comparison of acoustic, EM and optical waves in seawater
environments

Acoustic Electromagnetic Optical

Nominal speed (m/s) ∼ 1500 ∼ 33 333 333 ∼ 33 333 333
Power loss relatively small large ∝ turbidity
Bandwidth ∼ kHz ∼ MHz ∼ 10–150 MHz
Frequency band ∼ kHz ∼ MHz ∼ 1014 –1015 Hz
Antenna size ∼ 0.1 m ∼ 0.5 m ∼ 0.1 m
Effective range ∼ km ∼ 10 m ∼ 10–100 m

Source: Liu 2008 [255], Table 2, p. 984. Reproduced with permission of Wiley.
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1.1.3 Underwater Systems and Networks

Along with the tremendous scientific and technology advances in last several decades, a wide
range of underwater exploration and applications have emerged. The scientific exploration
spans across multiple disciplines, such as physical oceanography, marine biology, and deep sea
archaeology (e.g., discovery of the wreck of the Titanic). Environmental applications involve
studies in pollution monitoring, climate change, and global warming. Commercial applications
of underwater technologies can be found in, e.g., offshore oil/gas field monitoring, fishery
industries, and treasure discovery. Military applications of underwater technologies include
tactical surveillance in coastal areas, harbors and ports etc.

In recent years, development of underwater vehicles of various sizes and capabilities,
such as sea gliders and autonomous underwater vehicles (AUVs), has enabled underwater
applications without human interaction. For example, sea gliders can be deployed in lakes or
oceans to collect data samples of water over a large time period, and then send the data back to
a control center for scientific studies. A fleet of underwater vehicles can form an underwater
network, in which vehicles can collaborate to accomplish predetermined tasks. As more
intelligent systems are deployed in underwater applications, the need of communications and
networking keeps growing.

1.2 UWA Channel Characteristics

Given the complexity of underwater acoustic medium and the low propagation speed of sound
in water, the underwater acoustic channel is commonly regarded as one of the most challenging
channels for communication. Next we will look into several distinguishing characteristics of
underwater acoustic channels. Comparisons between the underwater acoustic channel and the
terrestrial radio channel are made along with the descriptions of underwater acoustic channel
characteristics.

1.2.1 Sound Velocity

The extremely slow propagation speed of sound through seawater is an important factor that
differentiates it from electromagnetic propagation. The speed of sound in water depends on the
water properties of temperature, salinity and pressure; illustrative plots of the three parameters
as functions of water depth are shown in Figure 1.1 [305, Chap. 9]. A typical speed of sound
in water near the ocean surface is about 1520 m/s, which is more than 4 times faster than the
speed of sound in air, but five orders of magnitude smaller than the speed of light. The speed
of sound in water grows with increasing water temperature, increasing salinity and increasing
depth. Approximately, the sound speed increases 4.0 m/s for water temperature rising 1∘C.
When salinity increases one practical salinity unit (PSU), the sound speed in water increases
to 1.4 m/s. As the depth of water (therefore also the pressure) increases to 1 km, the sound
speed increases roughly to 17 m/s. It is noteworthy to point out the above assessments are only
for rough quantitative or qualitative discussions, and the variations in sound speed for a given
property are not linear in general.

A typical sound speed profile as a function of depth in deep water, is shown in Figure 1.2
[305, Chap. 9]. Depending on the depth, the profile can be divided into four layers.
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• Surface layer. The surface layer usually has a water depth of a few tens of meters. Due to the
mixing effect of wind, both temperature and salinity in this layer tend to be homogeneous,
which leads to a constant sound velocity. This layer is also called a mixed layer.

• Seasonal and permanent thermocline layers. In the thermocline layers, the water temper-
ature decreases as the water depth grows; as illustrated in Figure 1.1. In these two layers,
the effect of increases in pressure and salinity cannot compensate the effect of tempera-
ture decrease. Therefore, there is a negative gradient of the sound speed profile in depth.
In the seasonal thermocline layer, the negative gradient varies with seasons, while it is less
seasonal in the permanent thermocline layer.
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• Deep isothermal layer. The water temperature is nearly constant around 4∘C. The sound
speed is therefore mainly determined by the water pressure, which leads to a positive gra-
dient of sound speed in depth.

According to Snell’s law, a ray of sound bends toward the direction of low propagation
speed. In shallow water, the sound speed is usually constant throughout the water column. The
acoustic signal usually propagates along straight lines, as illustrated in Figure 1.3(a). The sound
speed profile of deep water channels diversifies the sound propagation paths. In particular
notice that there is a minimal sound speed at a particular water depth (named the channel axis)
between the permanent thermocline layer and the deep isothermal layer. For an acoustic signal
transmitted at the channel axis, a ray of sound will be bent downward when propagating to the
permanent thermocline layer and bent upward when propagating to the isothermal layer, thus
being trapped within the two layers without interacting with the sea surface and bottom, as
illustrated in Figure 1.3(b). This type of channel is called the deep sound channel, and the
corresponding propagation is called SOFAR (for SOund Fixing And Ranging). An interesting
phenomenon of SOFAR propagation is that a path traveling a longer distance could have a
shorter travel time. Due to the refraction caused by inhomogeneous sound speed, there exist
both shadow zones and convergence zones in the acoustic field, where a shadow zone denotes
an area which cannot be penetrated by direct sound paths, and a convergence zone denotes an
area which is insonified intensively by a bundle of sound paths.

1.2.2 Propagation Loss

There are three primary mechanisms of energy loss during the propagation of acoustic waves
in water: (i) absorptive loss, (ii) geometric spreading, and (iii) scattering loss. Note that the
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discussions in this section are based on empirical approaches, while discussions based on
propagation models will be provided in Section 1.2.4.

1.2.2.1 Frequency-Dependent Absorption

During propagation, wave energy may be converted to other forms and absorbed by the
medium. The absorptive energy loss is directly controlled by the material imperfection for the
type of physical wave propagating through it. For EM waves, the imperfection is the electric
conductivity of seawater. For acoustic waves, this material imperfection is the inelasticity,
which converts the wave energy into heat.

The absorptive loss for acoustic wave propagation is frequency-dependent, and can be
expressed as e𝛼(f )d, where d is the propagation distance and 𝛼(f ) is the absorption coefficient
at frequency f . For seawater, the absorption coefficient at frequency f in kHz can be written
as the sum of chemical relaxation processes and absorption from pure water [4, 266]:

𝛼(f ) =
A1P1f1f 2

f 2
1 + f 2

+
A2P2f2f 2

f 2
2 + f 2

+ A3P3f 2, (1.1)

where the first term on the right side is the contribution from boric acid, the second term is
from the contribution of magnesium sulphate, and the third term is from the contribution of
pure water; A1, A2, and A3 are constants; the pressure dependencies are given by parameters
P1, P2 and P3; and the relaxation frequencies f1 and f2 are for the relaxation process in boric
acid and magnesium sulphate, respectively. Please refer to [266, Chap. 2] for formulations
of the coefficients A1,A2,A3, P1,P2,P3, f1, and f2 as functions of temperature, salinity and
water depth.

In underwater acoustic communications, Thorp’s formula can be used as a simplified absorp-
tion model for frequencies less than 50 kHz,

𝛼(f ) =
0.11f 2

1 + f 2
+

44f 2

4100 + f 2
+ 2.75 × 10−4f 2 + 0.003 (1.2)

where f denotes frequency in kHz [51, 195].

1.2.2.2 Geometric Spreading Loss

Geometric spreading is the local power loss of a propagating acoustic wave due to energy con-
servation. When an acoustic impulse propagates away from its source with longer and longer
distance, the wave front occupies larger and larger surface area. Hence, the wave energy in each
unit surface (also called energy flow) becomes less and less. For the spherical wave generated
by a point source, the power loss caused by geometric spreading is proportional to the square of
the distance. On the other hand, the cylindrical waves generated by a very long line source, the
power loss caused by geometric spreading is proportional to the distance. For a practical under-
water setting, the geometric spreading is a hybrid of spherical and cylindrical spreading, with
the power loss to be proportional to d𝛽 , where 𝛽 is between 1, for cylindrical spreading, and
2, for spherical spreading [397]. Provided that the sound propagation in real channels can
hardly be classified into either of the two spreading models, a practical value of the spreading
exponent can be taken as 𝛽 = 1.5. Note that geometric spreading is frequency-independent.
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1.2.2.3 Scattering Loss

Scattering is a general physical process in which the incident wave is reflected by irregular
surfaces in many different directions. The sound scattering in underwater environments can be
attributed to the nonuniformities in the water column and interactions of acoustic waves with
nonideal sea surfaces and bottoms. Obstacles in the water column include point targets such as
fish and plankton, and scattering volumes such as fish schools and bubble clouds. The corre-
sponding scattering loss depends on the acoustic wavelength and target size. In particular, the
scattering loss increases as the acoustic wavelength decreases. The scattering property of sea
surface and bottom is mainly determined by the interface roughness. High interface roughness
induces large spatial energy dispersion. The roughness of sea surface is due to the capillary
waves caused by wind, the amplitude of which ranges from centimeters to meters (e.g., swells).
The roughness of sea bottom depends on the geology, including e.g., the roughness of rocks,
sand ripples, and organisms in sediments. The amplitude of the roughness also varies from
centimeters to meters. Similar to the target scattering in the water column, scattering loss at
sea surface and bottom is also frequency-dependent.

In real environments, the two types of scattering processes coexist. For example, in the pres-
ence of a high wind speed, the wind-generated waves increases the roughness of sea surface,
and breaking waves can create bubble clouds of a large size. Both types of scattering losses hap-
pen when the acoustic wave interacts with both sea surface and bubble clouds. Moreover, the
wind-generated waves become moving reflectors of acoustic waves, thus introducing energy
dispersion not only in the spatial domain but also in the frequency domain.

1.2.2.4 Propagation Loss Parametrization

Denote 𝜉 as the scattering loss. For an acoustic signal at frequency f , the attenuation after
propagating a distance of d can be formulated as

Patt(f , d) = 𝜉d𝛽e𝛼(f )d. (1.3)

Different from the propagation loss in the terrestrial radio channel which only has spreading
loss with an exponent 2 ∼ 6 [145], the propagation loss in underwater acoustic channels is
spreading-loss dominant in the near-distance transmission and absorption-loss dominant in
the long-distance transmission.

1.2.3 Time-Varying Multipath

An acoustic wave can reach a certain point through multiple paths. In a shallow water envi-
ronment, where the transmission distance is larger than the water depth, wave reflections from
the surface and the bottom generate multiple arrivals of the same signal. In deep water appli-
cations, surface and bottom reflections may be neglected. However, the wave refractions due
to the spatially varying sound speed cause significant multipath phenomena.

Assume that there are Npa paths, and let 𝜉p denote the scattering loss, dp the propagation
distance and 𝜏p the propagation delay of the pth path. Then the pass loss along the pth path
can be written as

Patt(f , dp) = 𝜉pd𝛽p e𝛼(f )dp (1.4)
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which combines the effects of spreading loss, absorptive loss, and scattering loss. For a channel
which is time-invariant within a certain time interval, the channel transfer function at frequency
f can be described as

H(f ) =
Npa∑
p=1

1√
Patt(f , dp)

e−j2𝜋f 𝜏p . (1.5)

The channel transfer function in (1.5) reveals that the overall channel attenuation is depen-
dent not only on the distance, but also on the frequency. Since 𝛼(f ) increases as f increases,
high frequency waves will be considerably attenuated within a short distance, while low fre-
quency acoustic waves can travel far. As a result, the bandwidth is extremely limited for
long-range applications, while for short-range applications, several tens of kHz bandwidth
could be available (a thorough study on the relationship between bandwidth (capacity) and
distance is reported in [362]).

1.2.3.1 Large Delay Spread

The channel delay spread is defined as the maximal difference in the times-of-arrival of channel
paths,

D𝜏 ∶= max{|𝜏p − 𝜏q|}, ∀p, q. (1.6)

The slow speed of acoustic waves and significant multipath phenomena cause very large chan-
nel delay spread. For example, two physical arrivals that differ 15 meters in path length lead
to an arrival time difference of 10 ms (here we assume the propagation speed of sound is
1500 m/s). In shallow water, the typical delay spread is around several tens of milliseconds;
an example is shown in Figure 1.4(a), but occasionally delay spread can be as large as 100 ms
[208]. In deep water, the delay spread can be of the order of seconds. For underwater acoustic
communications, the large delay spread leads to severe intersymbol interference due to the
waveform time-dispersion (also called time-spreading).

1.2.3.2 Large Doppler Spread

Time variability is one of the most challenging features of underwater acoustic channels. Due
to medium instability, such as the current-induced platform motion and wind-generated waves
as time-varying reflectors, different propagation paths could have different time-variabilities.
For example, the direct path without reflections could be very stable, while the sea surface
reflected paths could have time variations incurred by the motion of surface waves. The dif-
ferent time variabilities lead to different Doppler scaling effects or Doppler shifts of the trans-
mitted signal.

Denote 𝑣p as the Doppler rate of the pth path, namely the change rate of the propagation
length of the pth path. The channel Doppler rate spread is defined as the maximal difference
of the Doppler rates of channel paths,

Dd = max

{|𝑣p − 𝑣q|
c

}
, ∀p, q (1.7)
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Figure 1.4 Channel profiles from a shallow water stationary experiment of SPACE’08. (a) an example
channel impulse response as a function of delay; (b) an example channel scattering function on the
delay-Doppler plane.

where c is the sound speed in water. The slow propagation speed of sound introduces large
Doppler spread or shifts. For example, consider 𝑣 = 1.5 m/s and fc = 30 kHz, where 𝑣 is the
rate of change of the propagation path length (e.g, the platform velocity), and fc is the system
center frequency. The Doppler frequency shift at fc is given by fd = 𝑣∕cfc = 30 Hz.

On the outset, large Doppler spread results in a reduction in the channel coherence time (the
time period when the channel can be viewed as static) or an apparent increase in the rate of
channel fluctuation [316]. The large Doppler spread causes severe interference among different
frequency components of the signal (also referred to as frequency-spreading). An example of
the channel scattering function is shown in Figure 1.4(b).

1.2.3.3 Sparsity of Channel Paths

Despite the large delay spread and Doppler rate spread, multiple paths in the underwater acous-
tic channel tend to be sparse, with channel energy concentrated in a few paths; see Figure 1.4.
Although the joint presence of large delay and Doppler rate spread entails a complex commu-
nication channel, the multipath sparsity is one key feature to be exploited in communication
system design.
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1.2.4 Acoustic Propagation Models

Given environmental parameters, the acoustic propagation in the three-dimensional underwa-
ter environment can be characterized by the wave equation

∇2p = 1
c2(x, y, z)

𝜕2p

𝜕t2
(1.8)

where (x, y, z) represent the 3D coordinate of one point in water, p, t, and c(x, y, z) denote the
sound pressure, time, and sound speed in water, respectively, and ∇2 is the Laplacian operator.
For a sinusoidal wave of frequency f0, the wave equation can be written as the Helmholtz
equation,

∇2p + k2(x, y, z)p = 0 (1.9)

where k(x, y, z) ∶= 2𝜋f0∕c(x, y, z) is the wave number.
Despite of simplicity of the wave equation, finding its solution is a complicated task. Depend-

ing on applications, several typical solutions are available to characterize the acoustic field.

• Ray theory: By assuming that the phase varies much faster than the amplitude, this method
takes the three-dimensional sound pressure as a product of an amplitude function and a phase
function which are independent and thus can be solved individually. This above assumption
limits the application of the ray theory to the high-frequency systems. Compared to other
methods, the ray theory provides an appealing intuition of sound propagation. A commonly
used code is the Bellhop ray tracing program [313].

• Normal mode solutions: This method provides an exact solution of the wave equation, but
is restricted to the horizontally stratified channel which only has variation of sound veloc-
ity in the depth direction and assumes a flat and horizontal bottom. Hence, the solution
is range independent. This method is often used in the time-reversal processing and the
matched field processing. One general code is KRAKEN based on the KRAKEN normal
mode model [312].

• Wave number integration: Similar to the normal mode solution, this method assumes a strat-
ified channel, and computes the acoustic field using wave number integration. In particular,
using the fast Fourier transform (FFT), the fast field program (FFP) can directly evaluate the
integral solution to obtain a numerical solution of the wave equation. Although this method
can provide accurate solution, it fails to provide physical interpretation of acoustic fields
relative to the other three methods. An example of the FFP program is OASES (for Ocean
Acoustic and Seismic Exploration Synthesis) [335].

• Parabolic approximation: Considering only the forward propagation direction, this method
approximates the Helmholtz equation in (1.9) by a parabolic equation (PE) which can be
evaluated numerically. A large number of PE approximations have been developed since the
1970s [195]. The PE method is suitable for calculating acoustic field in a range-dependent
environment. In various PE codes, the bottom topography and surface roughness can be
accounted for. An example of the PE codes is MMPE based on the Monterey-Miami PE
model [344]. A recent application to high frequency acoustic transmission can be found
in [336].

Notice that the acoustic field is to be described with a resolution on the level of wavelength.
The latter three methods are mainly suitable to the low-frequency domain in which the acoustic
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field is stable for observation. For low-frequency communications, the Parabolic approxima-
tion can be used to simulate the underwater acoustic channel, while the ray-tracing theory is
commonly adopted for high-frequency systems. Please refer the textbook [195] for detailed
presentations of the theory and to the website [161] for variants and program codes of the
above four solutions.

1.2.5 Ambient Noise and External Interference

Noise is used to denote a signal that distorts the desired ones. Depending on applications,
underwater acoustic noise consists of different components. Specific to the underwater acoustic
communication system, the acoustic noise can be grouped into two categories: ambient noise
and external interference.

Ambient noise is one kind of background noise which comes from a myriad of sources. The
common sources of ambient noise in water include volcanic and seismic activities, turbulence,
surface shipping and industrial activities, weather processes such as wind-generated waves and
rain, and thermal noise [266]. Due to the multiple sources, ambient noise can be approximated
as Gaussian, but it is not white. The level of underwater ambient noise may have large fluctua-
tions upon a change with time, location or depth. For short-range acoustic communication, the
level of ambient noise may be well below the desired signal. For long-range or covert acoustic
communication, the noise level would be a limiting factor for communication performance.

External interference is an interfering signal which is recognizable in the received signal.
Corresponding sources include marine animals, ice cracking, and acoustic systems working
in the same environment. For example, snapping shrimp in warm water and ice cracking
in polar regions generate impulsive interferences [78]. Sonar operations could occasionally
happen at the same time with communications, creating an external interference which is
highly structured [422]. Relative to ambient noise, external interferences are neither Gaussian
nor white. The presence of this kind of noises may cause highly dynamic link error rate or
even link outage.

It should be noted that the noise level is highly frequency-dependent. The noise power spec-
trum density almost monotonically decreases as frequency increases, until up to about 100 kHz
when terminal noise becomes dominant. Thus, when selecting a suitable frequency band for
communication, besides the frequency-dependent path loss as shown in (1.3), noise should
also be taken into account [316, 362].

1.3 Passband Channel Input–Output Relationship

A diagram for the transmitter and receiver in the presence of underwater acoustic channels is
shown in Figure 1.5. Since acoustic signals have low frequency, the passband samples x̃[n]
are often directly generated. After digital-to-analog (D/A) conversion, the passband signal x̃(t)
is amplified, and passed to matching circuits, matched to the transducer. At the receiver side,
the weak signal is increased in level by a pre-amplifier, filtered by a simple bandpass filter,
and sampled at the passband. From the signal processing point of view, the channel includes
the imperfections of the transmitter and receiving circuits. All the modules that are lumped
together are called channel between x̃(t) and ỹ(t).

This book establishes the channel input–output relationship directly in the passband. This
allows us to capture the wideband channel effect: (a) the propagation effect is frequency
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Figure 1.5 The UWA system in the passband.

dependent, (b) each transducer has its own transmit voltage response (TVR), and the matching
is not uniform in the signal band, and (c) the Doppler distortion is frequency dependent. In all
these considerations, the absolute values of the frequency band do matter.

Assume that the channel is linear time-varying channel. Then we can represent it by h(t; 𝜏).
From the signal processing perspective, the overall channel between the transmitter and the
receiver is

ỹ(t) = x̃(t) ⋆ h(t; 𝜏) + ñ(t)

= ∫ h(t; 𝜏)x(t − 𝜏)d𝜏 + ñ(t) (1.10)

where ⋆ denotes the convolution operation.

1.3.1 Linear Time-Varying Channel with Path-Specific Doppler Scales

The channel h(t; 𝜏) is general with no specified structure. From the system identification point
of view, we need to parameterize the channel. We start with the assumption that the channel
consists of Npa discrete paths,

h(t; 𝜏) =
Npa∑
p=1

p(t)𝛿(𝜏 − 𝜏p(t)) (1.11)

where p(t) and 𝜏p(t) are the time-varying amplitude and delay for the pth path, respectively.
For a short block of length Tbl, one can assume that p(t) and 𝜏p(t) as slowly varying. For

this, one can adopt the following assumptions

• AS1): The amplitude is constant within a short block

p(t) = Ap. (1.12)

• AS2): The delay variation within one block can be approximated by a first-order polynomial

𝜏p(t) ≈ 𝜏p − apt, t ∈ [0,Tbl], (1.13)

where 𝜏p is the initial delay and ap is first order derivative of 𝜏p(t).
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The parameter ap is often termed the Doppler scaling factor. Based on assumptions AS1)
and AS2), we have a time varying channel with different Doppler scales on different paths as

h(t; 𝜏) =
Npa∑
p=1

Ap𝛿
(
𝜏 − (𝜏p − apt)

)
(1.14)

The received passband signal is related to the transmitted passband signal as

ỹ(t) =
Npa∑
p=1

Apx̃
((

1 + ap

)
t − 𝜏p

)
+ �̃�(t) (1.15)

where the equivalent noise �̃�(t) contains both ambient and model-mismatch noises as

�̃�(t) = ñ(t) + x̃(t) ⋆ h(t; 𝜏) −
Npa∑
p=1

Apx̃
((

1 + ap

)
t − 𝜏p

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

signal-dependent model mismatch noise

(1.16)

Note that a physical channel might not be able to be represented exactly, but it can be approx-
imated by (1.14) from a signal processing point of view.

Equations (1.14) and (1.15) are the foundations used by the receiver designs in this book,
where the input output relationship is parameterized by Npa triplets {Ap, ap, 𝜏p}; see Figure 1.6
for illustrations on the general and special cases.

The following special cases are often used.

1.3.2 Linear Time-Varying Channels with One Common Doppler Scale

Assume that all the paths have the same Doppler scale factor. The channel is simplified to

h(t; 𝜏) =
Npa∑
p=1

Ap𝛿
(
𝜏 −

(
𝜏p − at

))
. (1.17)

This channel is parameterized by Npa pairs {Ap, 𝜏p} plus the common Doppler scale. A com-
mon Doppler scale can be readily removed through a resampling operation.

1.3.3 Linear Time-Invariant Channel

Assume that all the paths are stable with no delay variations. The channel is simplified to

h(𝜏) =
Npa∑
p=1

Ap𝛿
(
𝜏 − 𝜏p

)
. (1.18)

The channel is parameterized by Npa pairs {Ap, 𝜏p}.
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Figure 1.6 Illustration of three channel models. 𝑣p denotes the Doppler speed associated with the
pth path.

1.3.4 Linear Time-Varying Channel with Both Amplitude and Delay
Variations

One can certainly extend the work to be more general, by using a Taylor expansion on the
amplitude and delay respectively. For example, the approximation on the amplitude can be the
Namp-th order. The approximation on the delay can be on the Ndelay-th order.

• AS1) The amplitude variation within one block can be approximated by a polynomial up to
order Namp:

p(t) ≈ A(0)
p − A(1)

p t + 1
2

A(2)
p t2 + · · · + (−1)Namp

Namp!
A
(Namp)
p tNamp

=
Namp∑
n=0

(−1)n

n!
A(n)

p tn (1.19)
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• AS2) The delay variation within one block can be approximated by a polynomial up to order
Ndelay:

𝜏p(t) ≈ a(0)p − a(1)p t + 1
2

a(2)p t2 + · · · + (−1)Ndelay

Ndelay!
a
(Ndelay)
p tNdelay

=
Ndelay∑
n=0

(−1)n

n!
a(n)p tn (1.20)

Channel parameterization based on these two polynomials is quite general, with special cases
available in the literature.

Setting Ndelay = 1 in AS2), the multipath channel is approximated as:

h(t; 𝜏) ≈
Npa∑
p=1

⎛⎜⎜⎝
Namp∑
n=0

(−1)n

n!
A(n)

p tn
⎞⎟⎟⎠ 𝛿

(
𝜏 −

(
𝜏p − apt

))
. (1.21)

Receiver designs based on up to the second-order polynomial amplitude fitting and up to the
first-order polynomial delay fitting have been reported in [442].

1.3.5 Linear Time-Varying Channel with Frequency-Dependent Attenuation

In a practical system as shown in Figure 1.5, the transmitter voltage response (TVR) is usually
not constant due to imperfect circuit matching to the transducer across all the frequency band.
Meanwhile, the signal attenuation in underwater acoustic channels is frequency-dependent.
One could extend the channel in (1.11) as

h(t; 𝜏) =
Npa∑
p=1

p(t)𝛾p

(
𝜏 − 𝜏p (t)

)
(1.22)

where 𝛾p(t) represents a combined effect of TVR and the frequency-dependent acoustic
channel attenuation. In practical systems, the TVR can be measured [34], and the propagation
pattern can be determined analytically or experimentally. Recent experimental results in
[404, 405] have further confirmed the wideband nature of the underwater acoustic channels.
Incorporating the frequency-dependent templates into practical receiver designs is yet to be
demonstrated.

1.4 Modulation Techniques for UWA Communications

The main techniques used in underwater acoustic communications are: frequency hopped FSK,
direct sequence spread spectrum, single carrier transmission, sweep-spread carrier modulation,
and multicarrier modulation.

1.4.1 Frequency Hopped FSK

In FSK modulation, information bits are used to select the carrier frequencies of the transmitted
signal. The receiver compares the measured power at different frequencies to infer what has
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Figure 1.7 An illustration of frequency hopped FSK.

been sent. Using only an energy detector at the receiver, this scheme bypasses the need for
channel estimation, and is thus robust to channel variations. However, guard bands are needed
to avoid the interference caused by frequency-spreading, and guard intervals are needed to
avoid the interference caused by time-spreading.

Frequency hopped (FH) FSK avoids the waiting of the channel clearing corresponding to
the previous symbol, by hopping to a different frequency, as illustrated in Figure 1.7. The
transmitted signal in passband is

x̃(t) = 2ℜ

{ ∞∑
i=−∞

ej2𝜋f (i;s[i])(t−iT)g(t − iT)

}
(1.23)

where T is the time duration of each tone with a frequency support of 1∕T , the tone of the ith
symbol is determined by f (i; s[i]) which is a function of both the time slot index i and the data
symbol s[i], and g(t) is the pulse shaper. Within a bandwidth B, the total number of tones that
can be used is BT . Since BT is larger than one, there is a gain on noise suppression on the order
of BT , a benefit from frequency-hopping spread spectrum. Due to the bandwidth expansion via
frequency hopping, the overall bandwidth efficiency is low, typically less than 0.1 bits/sec/Hz.

1.4.2 Direct Sequence Spread Spectrum

In DSSS modulation, a narrowband waveform of bandwidth W is spread to a large bandwidth
B before transmission. This is achieved by multiplying each symbol with a spreading code
of length N = ⌊B∕W⌋, and transmitting the resulting sequence at a high rate as allowed by
bandwidth B. For coherent DSSS, the baseband signal is

x(t) =
∞∑

i=∞
s[i]

N−1∑
n=0

c[i; n]p(t − (iN + n)Tc) (1.24)

where s[i] is the information-bearing symbol, c[i; n] is the chip sequence for the ith symbol, Tc
is the chip duration, and p(t) is the pulse shaper on the chip level. The corresponding passband
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signal is
x̃(t) = 2ℜ{x(t)ej2𝜋fct}. (1.25)

Multiple arrivals at the receiver side can be separated via the de-spreading operation which
suppresses the time-spreading induced interference, thanks to the nice auto-correlation proper-
ties of the spreading sequence. Channel estimation and tracking are needed as phase-coherent
modulation is used to map information bits to symbols before spreading [128, 443].

For noncoherent DSSS, information bits can be used to select different spreading codes to be
used, and the receiver compares the amplitudes of the outputs from different matched filters,
with each one matched to one choice of spreading code. This avoids the need for channel
estimation and tracking.

1.4.3 Single Carrier Modulation

One major step towards high rate communication is single carrier transmission of information
symbols from constellations such as phase-shift-keying (PSK) and quadrature-amplitude-
modulation (QAM) [367]. With symbols s[i] and pulse shaping filter p(t), the transmitted
signal is

x(t) =
∞∑

i=−∞
s[i]p(t − iT), (1.26)

where T is the symbol period. The corresponding passband signal can be similarly obtained
as in (1.25).

The channel introduces intersymbol interference (ISI) due to multipath propagation. When
data symbols are transmitted at a high rate, the same physical channel leads to more channel
taps in the discrete-time equivalent model. Advanced signal processing at the receiver side
is used to suppress the interference; this process is termed channel equalization. Although
widely used for slowly-varying multipath channels in radio applications, channel equalization
for fast-varying underwater channel is a significant challenge.

There are various receiver designs developed for single carrier transmissions.

• The canonical receiver in [367] successfully combined a second-order phase-locked-loop
to track channel phase variations with an adaptive decision feedback equalizer to suppress
intersymbol interference. Multichannel DFE is adopted when there are multiple receiving
elements [366].

• In the time-reversal approach, the signals from multiple elements are combined, followed by
a single channel equalizer, where the equalizer can be linear or based on decision feedback
[108, 148, 350, 355, 451].

• The complexity of time-domain equalization grows quickly as the number of channel taps
increases, which will eventually limit the rate increase for single-carrier phase-coherent
transmission. A frequency-domain equalization approach can effectively deal with channels
with a large number of taps [468].

Iterative channel equalization and data decoding can be carried out for decoding performance
improvement, which leads to the so-called Turbo equalization.
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1.4.4 Sweep-Spread Carrier (S2C) Modulation

In all the previous modulation schemes, the carrier frequency stays constant for the whole data
burst, or at least within each symbol duration as in FH-FSK. A new signaling method based
on the implementation of a sweep-spread carrier, which entails rapid fluctuation of carrier
frequency, has been proposed in [207]. Let fL and fH denote the lower and higher ends of the
signal band, and Tsw be the sweep time. The frequency variation rate is then m = (fH − fL)∕Tsw.
The sweep-spread carrier consists of a succession of sweeps as [207]

c(t) = exp
[
j2𝜋

(
fLt + 1

2
mt 2

)]
, t = t −

⌊
t

Tsw

⌋
Tsw. (1.27)

The baseband signal s(t), which could be coherent or differentially modulated, is converted to
the passband through

x̃(t) = 2ℜ{s(t)c(t)}. (1.28)

The receiver carried out the carrier demodulation through the multiplication of the received
signal with an appropriately varying gradient-heterodyne signal having the same sweep cycle
and the same slope of the frequency variation [207]. In the presence of a multipath fading
channel, the signals with different arrival times lead to different residual frequencies after
carrier demodulation. Bandpass filtering is used to separate different arrival paths. Signals
along stable paths are typically selected for data demodulation. This way, the interference from
unstable paths is suppressed. Note that a signal bandwidth several times larger than the symbol
rate is often used to ensure a large frequency variation rate m for a good multipath resolution;
hence, this method can be regarded as one special form of spread spectrum communication,
which entails some noise reduction capabilities.

1.4.5 Multicarrier Modulation

The idea of multicarrier modulation is to divide the available bandwidth into a large number
of subbands, where each subband has its own (sub)carrier. Within each band, the symbol rate
is reduced with an increased symbol duration, so that intersymbol interference can be less
severe, which helps to simplify the receiver complexity of channel equalization. There are
many variants of multicarrier modulation. One way to characterize them is to check whether
the subbands are overlapping or nonoverlapping, as illustrated in Figure 1.8.

Due to the existence of guard bands between neighboring subbands in the multicarrier
approach with nonoverlapping subbands, bandpass filtering can be used to separate the signals
from different subbands. Hence, this approach is essentially a frequency-division-multiplexing
(FDM) approach, by splitting a large bandwidth into smaller pieces. Within each band, one can
adopt signaling schemes such as M-ary frequency-shift keying, single carrier transmission, or
another multicarrier modulation with overlapping subcarriers in a small bandwidth.

Orthogonal frequency-division multiplexing (OFDM) is one prevailing example of multicar-
rier modulation with overlapping subcarriers. The waveform is carefully designed to maintain
orthogonality even after propagating over a long multipath channel to eliminate the need
for an equalizer [44, 418]. Precisely due to this advantage, OFDM has prevailed in recent
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Figure 1.8 Illustration of multicarrier modulation techniques. P(f ) denotes the power spectrum density.

broadband wireless radio applications, including digital audio/video broadcasting, wireless
local/metropolitan area networks, and fourth generation cellular networks. Filterbank based
approaches also belong to the category of multicarrier modulation with overlapping subbands,
making extensions to the Fourier bases used in OFDM.

The fast variations of underwater acoustic channels entail large Doppler spread which
introduces significant interference among OFDM subcarriers. Signal processing specialized to
underwater acoustic channels are needed to make OFDM work in underwater environments.

1.4.6 Multi-Input Multi-Output Techniques

A wireless system that employs multiple transmitters and multiple receivers is referred to as a
multiple-input multiple-output (MIMO) system. It has been shown that the channel capacity
in a scattering-rich environment increases linearly with min(Nt,Nr), where Nt and Nr are the
numbers of transmitters and receivers, respectively [123, 379]. Such a drastic capacity increase
does not incur a penalty on precious power and bandwidth resources; but instead it comes
from the utilization of spatial dimension virtually creating parallel data pipes. Hence, MIMO
modulation is a promising technology to offer yet another fundamental advance on high data
rate underwater acoustic communication [209, 210]. MIMO has been applied in both single
carrier transmission and multicarrier transmission.

MIMO introduces additional interference among parallel data streams from different trans-
mitters. Also, each receiver has more channels to estimate, which requires more overhead
spent on training symbols. For fast varying underwater channels, the number of transmitters
might not be large for best rate-and-performance tradeoff. In addition to co-located antennas,
distributed MIMO is also possible if clustered single-transmitter nodes could cooperate [398].
Certainly, implementation of distributed MIMO needs to address challenging practical issues
such as node synchronization and cooperation.
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1.4.7 Recent Developments on Underwater Acoustic Communications

The development of underwater acoustic communications prior to year 2000 has been sum-
marized in a number of overview papers published over the years [14, 65, 208, 360]. It is often
viewed that the first milestone in underwater telemetry is the introduction of digital techniques
in early 1980s. The second milestone is the introduction of phase coherent processing for single
carrier transmissions in early 1990, based on the seminal work in [367].

Since 2000, there have been extensive investigations on underwater acoustic communica-
tions [15, 79, 160, 343, 448]. Towards high data rate communications, the following three
major directions have been pursued.

• Various receivers have been designed to improve the performance of single carrier trans-
missions. Example approaches include the time reversal processing in [107, 121, 330, 354,
355, 449, 450], the combination of time reversal and decision feedback equalization (DFE)
in [108, 148, 346, 349, 350, 353, 355, 356, 451], the frequency domain equalization in [468],
and the joint channel estimation and data detection approach in [249, 411].

• Multicarrier modulation has been successfully applied to underwater acoustic channels.
For coherent demodulation, example approaches include the block-by-block based OFDM
receivers in [149, 201, 232, 235, 257, 375, 457] and the adaptive OFDM receiver in [361,
363]. Explicit intercarrier interference (ICI) cancellation is one key element for enhanced
receiver performance [38, 180, 392]. Noncoherent on-off keying and differential encoding
have been explored in [140] and [12, 365] for OFDM systems, respectively. Adaptive mod-
ulation and coding have been recently studied for underwater OFDM [324, 413]. Variants
of the multicarrier modulation other than OFDM have also been pursued [185, 287].

• MIMO techniques have attracted a lot of attention to increase the spectrum efficiency. For
MIMO single carrier transmissions, example receivers include the multi-channel DFE based
approach [209, 210, 331, 369], time-reversal combined with single channel DFE [347, 348,
352, 357], frequency domain equalization [460, 461], successive interference cancellation
[250, 251], and iterative (Turbo) equalizations [325, 374, 377, 415, 416]. For MIMO OFDM,
example approaches include the block-by-block receiver design in [172, 181, 233] and the
adaptive receiver in [67, 364]. Recent receiver designs for MIMO systems with transmis-
sions from multiple spatially distributed users can be found in [82, 83, 84, 183, 391, 423].

1.5 Organization of the Book

This book is solely focused on OFDM and MIMO OFDM for underwater acoustical channels.
It is worthwhile to point out that different modulation schemes have their strengths in different
situations. Generally speaking, FHSS and DSSS are good candidates for low data rates and
robust operations. For low-medium rates and longer range, single carrier transmission is a
suitable choice. S2C lies between DSSS and single carrier, depending on the spreading factor.
For short-range and large data rates over long channels, OFDM has its competitive advantage.
An intuitive illustration is shown in Figure 1.9, where the boundary and the overlapping regions
should not be interpreted quantitatively.

There are many books available on OFDM and MIMO OFDM in wireless radio channels.
However, as pointed out in this chapter, the challenges of radio and underwater acoustic
channels are drastically different, and the receiver designs for underwater acoustic OFDM
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Figure 1.9 Illustration of relative merits of different techniques.

have some unique features. Specifically, the receiver design adopts a novel signal processing
based model to parameterize UWA channels in (1.14), which is richer than that sufficient
for radio channels. This book necessarily uses the passband formulation rather than the
baseband formulation in existing books. This captures the wideband nature of underwater
acoustic channels. Channel sparsity is a key element of the book, where the latest advances in
compressive sensing have been incorporated into the channel estimation module. In addition,
explicit intercarrier-interference consideration is adopted in this book, and iterative receiver
processing is a central piece.

The chapters and appendices are arranged in the following order:

• Part I: Basics. Chapter 2 presents the basic principle of OFDM modulation and demodula-
tion. Chapter 3 presents nonbinary low-density parity-check (LDPC) coded OFDM, where
the LDPC codes are used within numerical and experimental results in this book. Chapter
4 discusses a property regarding to the peak-to-average-power-ratio of a transmitted
OFDM signal.

• Part II: Receiver components. Chapter 5 presents an overview of OFDM transceiver
design for point-to-point communications. Chapter 6 details the synchronization and
Doppler estimation modules. Chapter 7 presents the channel and noise variance estimation
algorithms. Chapter 8 contains the data detection algorithms under different channel
input–output relationships.

• Part III: Single-transmitter communications. Chapter 9 develops a block-by-block progres-
sive receiver along with its performance results. Chapter 10 describes a block-to-block
adaptive receiver with clustered channel adaptation. Chapter 11 deals with channels having
significantly separated multipath clusters, a concern in deep water horizontal communica-
tions. Chapter 12 presents an OFDM receiver in the presence of external interference.

• Part IV: Multi-input multi-output communications. Chapter 13 presents receiver design
for co-located MIMO OFDM. Chapter 14 deals with distributed MIMO OFDM, with
quasi-synchronous reception. Chapter 15 presents a receiver design for completely
asynchronous multiple user communication.
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• Part V: Receiver design in relay networks. Chapter 16 presents two cooperative relay pro-
tocols in OFDM modulated underwater acoustic networks. Chapter 17 considers the use of
physical layer network coding.

• Part VI: Modem development and underwater localization. Chapter 18 describes the
advances on the OFDM modem development. Chapter 19 covers underwater ranging and
localization solutions.

• Part VII: Appendixes. Appendix A contains various sparse channel estimation algorithms.
Appendix B describes the setup of two major experiments, from which data sets were col-
lected to validate many algorithms described in this book.



2
OFDM Basics

We illustrate the basic ideas of OFDM transmission and reception in a time invariant channel
h(t). Assume that h(t) has nonzero support within the interval [0, Tch]. The channel frequency
response is expressed as

H(f ) = ∫
Tch

0
h(t)e−j2𝜋ftdt. (2.1)

Denote x̃(t) as the transmitted passband signal. The received passband signal after channel
transmission is

ỹ(t) = h(t) ⋆ x̃(t) + ñ(t),

= ∫
Tch

0
h(𝜏)x̃(t − 𝜏)d𝜏 + ñ(t), (2.2)

where ñ(t) is the additive noise.
Given the dispersive nature of the channel, intersymbol interference appears for serially

transmitted data streams. Compared to the canonical single-carrier serial transmission scheme,
OFDM is a block transmission scheme, which partitions information symbols into blocks, and
a guard interval is inserted between consecutive blocks before transmission. There are two
different types of guard intervals: one is padding zeros at the end of an OFDM symbol, and
the other is inserting a cyclic prefix in the front of an OFDM symbol. Accordingly, OFDM
signaling has two popular formats: zero-padded (ZP) OFDM and cyclic-prefixed (CP) OFDM.

Prior to the discussion of OFDM signaling properties, we first specify the OFDM signal
generation and reception both ZP- and CP-OFDM in Sections 2.1 and 2.2, respectively.

2.1 Zero-Padded OFDM

2.1.1 Transmitted Signal

Consider one ZP-OFDM block from the transmission illustrated in Figure 2.1. Let T denote
the basic OFDM symbol duration, which dictates a subcarrier spacing of 1∕T . Assume K
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Figure 2.1 An illustration of ZP-OFDM blocks.

subcarriers in total. The kth subcarrier is located at the frequency

fk = fc +
k
T
, k = −K

2
, … ,

K
2
− 1, (2.3)

where fc is the center frequency. Let Tg denote the zero-padding interval, and Tbl the total
block duration corresponding to one OFDM block which includes both windowing operation
and guard interval.

Let s[k] denote the symbol to be transmitted on the kth subcarrier, where some of the symbols
might be zeros. LetA denote the set of active subcarriers which deliver nonzero symbols. One
OFDM symbol in the baseband is

x(t) =
∑

k∈A

s[k]ej2𝜋 k
T

tg(t), t ∈ [0, Tbl] (2.4)

where g(t) is the pulse shaping filter. After baseband-to-passband upshifting, the passband
signal is given by

x̃(t) =
∑

k∈A

s[k]ej2𝜋fktg(t) +
∑

k∈A

s∗[k]e−j2𝜋fktg(t)

= 2ℜ

{∑
k∈A

s[k]ej2𝜋fktg(t)

}
, t ∈ [0, Tbl].

(2.5)

Since for any real signal X̃(−f ) = X̃∗(f ), we focus on the Fourier transform at the positive
frequency range with f > 0, and ignore the negative frequency part in our presentation. The
Fourier transform of x̃(t) at the positive frequency range is

X̃(f ) =
∑

k∈A

s[k]G(f − fk), f > 0 (2.6)

where G(f ) is the Fourier transform of g(t).
As illustrated in Figure 2.2, the orthogonality of subcarriers in OFDM imposes a key property

of g(t), which is expressed as

G(0) = 1, and G
( k

T

)
= 0, ∀k ≠ 0. (2.7)

With such a property, the sample at fm is

X̃(fm) =
∑

k∈A

s[k]G(fm − fk) = s[m], (2.8)
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Figure 2.2 An illustration of ZP-OFDM waveform in the frequency domain.

which reveals that the symbols are separated in the frequency domain, and orthogonality is
embedded in the transmitted waveform.

There are several possible choices of the pulse shaping filter which satisfy (2.7).

2.1.1.1 Rectangular Window

The popular choice of the pulse shaping filter is a rectangular window,

grec(t) =

{
1
T
, t ∈ [0, T]

0, otherwise
(2.9)

with the Fourier transform expressed as

Grec(f ) =
sin(𝜋fT)
𝜋fT

e−j𝜋fT . (2.10)

The duration for each ZP-OFDM block is Tbl = T + Tg.

2.1.1.2 Raised Cosine Window

Raised cosine filters are good choices for the purpose of reducing sidelobes of G(f ) [318].
With T denoting the basic OFDM symbol duration, and 𝛽 denoting the roll-off factor, the
raised-cosine window is give by

grc(t) =

⎧⎪⎪⎨⎪⎪⎩

1
T
, t ∈ [𝛽T , T]

1
2T

[
1 + cos

(
𝜋

𝛽T

(|||t − 1+𝛽
2

T||| − 1−𝛽
2

T
))]

, t ∈ [0, 𝛽T) ∪ (T , (1 + 𝛽)T]

0, otherwise.

(2.11)
Its Fourier transform is

Grc(f ) =
sin(𝜋fT)
𝜋fT

⋅
cos(𝜋𝛽fT)

1 − 4𝛽2f 2T2
e−j𝜋f (1+𝛽)T . (2.12)

When 𝛽 = 0, grc(t) in (2.11) reduces to the rectangular window grec(t) in (2.9). The duration
for each ZP-OFDM block is Tbl = (1 + 𝛽)T + Tg. Figures 2.3(a) and 2.3(b) demonstrate the
rectangular and raised cosine pulse shapes and the amplitude of the corresponding frequency
transform, respectively.
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Figure 2.3 An illustration of rectangular and raised cosine windows.

2.1.2 Receiver Processing

Let the ZP-OFDM signal pass through the channel as described in (2.2). The Fourier transform
of the received signal ỹ(t) is

Ỹ(f ) = ∫
Tbl

0
ỹ(t)e−j2𝜋ftdt (2.13)

Note that a time-domain convolution amounts to a frequency-domain multiplication. We have

Ỹ(f ) = H(f )X̃(f ) + Ñ(f ), (2.14)

where Ñ(f ) is the Fourier transform of ñ(t).
The receiver draws samples at specific frequency points. The frequency-domain sample at

the subcarrier frequency fm is
y[m] = Ỹ(f )||f=fm

. (2.15)

Similarly define the noise sample as 𝜂[m] = Ñ(f )|f=fm
. Substituting (2.6) into (2.14), the fre-

quency sample at the mth subcarrier can be formulated as

y[m] = H(fm)
∑

k∈A

s[k]G(fm − fk) + 𝜂[m]

= H(fm)s[m] + 𝜂[m].
(2.16)

Clearly, a time dispersive channel in the continuous time is converted to parallel flat-fading
(nondispersive) channel in the frequency domain. The embedded orthogonality in the trans-
mission is kept even after a dispersive channel.
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(a) Time-domain received waveform

(b) Frequency-domain representation
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ỹ(t) 

Ỹ( f ) channel frequency response | H( f  ) |

Figure 2.4 Illustration of the received signals in the time and frequency domain; noise not included.

An illustration is shown in Figure 2.4, in a channel with several paths. There is no intercar-
rier interference (ICI), with each symbol experiencing an amplitude attenuation and a phase
rotation. Avoiding ISI and ICI in a time-invariant dispersive channel is the unique advantage
of OFDM.

2.2 Cyclic-Prefixed OFDM

2.2.1 Transmitted Signal

Consider one CP-OFDM block from the transmission illustrated in Figure 2.5. Let Tcp denote
the length of the CP, and define a rectangular window of length Tcp + T as

q(t) =

{
1
T

t ∈ [−Tcp, T],

0 otherwise.
(2.17)

The baseband signal is

xcp(t) =
∑

k∈A

s[k]ej2𝜋 k
T

tq(t) (2.18)

One can verify xcp(t) = xcp(t + T), when t ∈ [−Tcp, 0]. The passband signal is

x̃cp(t) = 2ℜ

{∑
k∈A

s[k]ej2𝜋fktq(t)

}
, (2.19)

where s[k] and A are as defined before.
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Figure 2.5 An illustration of CP-OFDM blocks.

2.2.2 Receiver Processing

Assume that Tcp > Tch, hence, when t ∈ [0,T] and 𝜏 ∈ [0,Tch], we have q(t − 𝜏) = 1∕T . A
closed-form expression of the received signal within the interval [0, T] is

ỹcp(t) = ∫
Tch

0
h(𝜏)2ℜ

{
1
T

∑
k∈A

s[k]ej2𝜋fk(t−𝜏)

}
d𝜏 + ñ(t)

= 2ℜ

{
1
T

∑
k∈A

H(fk)s[k]ej2𝜋fkt

}
+ ñ(t).

(2.20)

Performing the Fourier transform on the truncated waveform of duration T , we have

Ỹcp(f ) = ∫
T

0
ỹcp(t)e−j2𝜋ftdt

=
∑

k∈A

H(fk)s[k]Grec(f − fk) + Ñ(f ), f > 0
(2.21)

Draw the samples on the subcarrier frequencies, we have

ycp[m] = Ỹcp(f )
|||f=fm

= H(fm)s[m] + 𝜂[m].
(2.22)

Again, the symbols are separated at different subcarrier frequencies. The orthogonality is pre-
served after the dispersive channel.

Notice that due to different signaling formats within the guard interval, the receiver pro-
cessing of ZP-OFDM and CP-OFDM differs in that the Fourier transform of ZP-OFDM is
performed within the interval [0, Tbl] as in (2.13), while it is performed within the interval
[0, T] for CP-OFDM as in (2.21).

2.3 OFDM Related Issues

2.3.1 ZP-OFDM versus CP-OFDM

Due to the dispersive nature of channels, the guard interval is necessary to avoid intersym-
bol interference in OFDM block transmissions. Comparing (2.16) and (2.22), both ZP- and
CP-OFDM yield an identical input–output relationship in time-invariant channels.
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A majority of textbooks use CP-OFDM as the basis. In this book, we mainly use ZP-OFDM
for illustration. The derivations for CP-OFDM can be carried out similarly. For underwater
applications, the guard interval could be very long. Zero padding will save the transmission
power relative to CP, and reduces the duty cycle for a practical transducer. It also turns out
that the derivation of ZP-OFDM is simpler than that for CP-OFDM. For example, the window
effect can be easily incorporated in ZP-OFDM, while less convenient for CP-OFDM. Also,
all the received samples can be kept in ZP-OFDM, but the CP-OFDM has to throw away the
samples in the CP portion, as a result, ZP-OFDM can have more information gleaned from the
received signal.

2.3.2 Peak-to-Average-Power Ratio

Due to the summation operation in (2.5), OFDM signals have large peak-to-average-power
ratio (PAPR) relative to single-carrier transmissions. A mathematical formulation of PAPR is
given as

PAPR: = max(|x̃(t)|2)
𝔼[|x̃(t)|2] . (2.23)

PAPR reduction is an important issue in practical OFDM systems. Chapter 4 will be dedicated
to the PAPR control of OFDM, with several practical strategies discussed.

2.3.3 Power Spectrum and Bandwidth

Assume that there are many ZP-OFDM blocks transmitted in sequence and that the informa-
tion symbols are uncorrelated and have zero mean. The power spectral density (PSD) of the
ZP-OFDM signal at the positive frequency range can be easily obtained as

PSDzp-ofdm(f ) =
Es

Tbl

∑
k∈A

|G(f − fk)|2, f > 0 (2.24)

where Es ∶= 𝔼[|s[m]|2] denotes the average symbol energy at each subcarrier. Figure 2.6
provides an illustration of the PSD of ZP-OFDM transmissions.

Assuming that there are a few null subcarriers placed on the end of the frequency band, the
bandwidth is roughly defined as

B = K
T
. (2.25)

f

Bandwidth

fcNull subcarrier

Lowest active subcarrier Highest active subcarrier
Null subcarrier

Figure 2.6 Illustration of ZP-OFDM power spectrum density.
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A more careful definition of bandwidth, such as 3-dB bandwidth, can be computed by knowing
the exact locations of the null subcarriers on the edges of the frequency band.

2.3.4 Subcarrier Assignment

There are three types of subcarriers in OFDM transmissions, which are used for different
purposes.

• Null subcarriers are used at the edge of the frequency band to prevent leakage. Also, null sub-
carriers are mixed with active subcarriers to facilitate Doppler estimation and noise variance
estimation.

• Pilot subcarriers are used for channel estimation.
• Data subcarriers are used to carry information symbols.

In this book, a lot of experimental results are carried out using the subcarrier assignment
described in Table 2.1. Out of a total of K = 1024 subcarriers, Kp = 256 pilot subcarriers are
uniformly spaced; among Kn = 96 null subcarriers, 24 null subcarriers are on each side, and 48
null subcarriers are randomly inserted in the middle, and the remaining Kd = 672 subcarriers
are used as data subcarriers.

2.3.5 Overall Data Rate

Let us compute the overall data rate considering various overheads; the details of channel
coding and constellation mapping will be provided in Chapter 3. Let the coding rate be r. The
spectral efficiency in terms of bits per second per Hz is

𝛼 = r log2M
T

Tbl

Kd

K
, (2.26)

where M is the size of the constellation for mapping information bits into symbols. The
achieved data rate in bits per second is

R = 𝛼B. (2.27)

It can be simply computed as

R =
rKd log2M

Tbl
, (2.28)

by counting the number of information bits over one ZP-OFDM block duration.

Table 2.1 One example subcarrier assignment

Number of subcarriers K = 1024
Number of data carriers Kd = 672
Number of pilot carriers Kp = 256
Number of null subcarriers Kn = 96
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2.3.6 Design Guidelines

Finding suitable T and Tg is important for an OFDM system design.

• On the one hand, using a large symbol duration T increases the the spectral efficiency. On
the other hand, there could be more channel variations within a large symbol duration.

• On the one hand, a small Tg is desirable for lowering the overhead to achieve a large spectral
efficiency. On the other hand, Tg shall be larger than Tch to avoid interblock interference.

The selection of T and Tg depends on the channel characteristics such as delay spread and the
channel coherence time. Once the subcarrier spacing 1∕T is specified, the number of subcar-
riers can be found based on the desired signal bandwidth and the transducer characteristics.

2.4 Implementation via Discrete Fourier Transform

We have used the continuous time waveform for illustration of the orthogonality property of
OFDM modulation. Now let us consider the digital implementation.

Let fs denote the sampling rate, which has to be higher than twice of the highest frequency
of the signal component fK∕2−1. For ease of implementation, one can choose

fs = 𝜆B (2.29)

where 𝜆 is the ratio of the passband sampling rate and the baseband sampling rate. There are
Nbl = Tbl∕Ts samples to generate, where Ts = 1∕fs is the sampling step size.

The first step is to construct a complex baseband signal as

u(t) =
K∕2−1∑

k=−K∕2

s[k]ej2𝜋 k
T

t. (2.30)

This is a periodic signal with period T . So it suffices to generate the samples within only one
period [0,T]. There are N = T∕Ts samples, as denoted by

u[n] =
K∕2−1∑

k=−K∕2

s[k]ej2𝜋 kn
𝜆K =

𝜆K−1∑
k=0

s[k]ej2𝜋 kn
𝜆K , (2.31)

where the equivalent sequence s[k] is defined as

s[k] =
⎧⎪⎨⎪⎩

s[k], k = 0, … ,
K
2
− 1

0, k = K, … , 𝜆K − K
2
− 1

s[k − 𝜆K], k = 𝜆K − K
2
, … , 𝜆K − 1.

(2.32)

From (2.31), the sequence u[n] can be generated by a DFT of size 𝜆K applied on the input
sequence s[k].

u[n] = IDFT{s[k]}, n, k = 0, … , 𝜆K − 1. (2.33)

Once u[n] is obtained, the sequence x̃[n] can be simply obtained as

x̃[n] = 2ℜ{u[n mod N]ej2𝜋nfcTsg(nTs)}, n = 0, … ,Nbl − 1 (2.34)
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IDFT
Nbl

S/P
Zero

insertion
Upshifting and

windowing samples

s[k] x(t)˜K ×  1 λK ×  1 λK ×  1
D/A

Figure 2.7 The transmitter implementation.

This real sequence is passed to the D/A converter, amplified by a power amplifier, and trans-
mitted through the transducer. The illustration is shown in Figure 2.7.

It is desirable to choose 𝜆K to be a power of 2 so that an FFT can be applied. If 𝜆K is not a
power of 2, one can simply choose an FFT of a larger size by filling zeros at the edges of the
frequency band.

The digital implementation of the receiver in the presence of a time-invariant channel is
as follows: (1) Taking the time-domain samples at a sampling rate fs. (2) Downshifting the
passband sequence to the baseband. (3) Low pass filtering and downsampling the baseband
sequence to the sampling rate B. (4) Overlap-and-add followed by DFT for ZP-OFDM, or just
simply DFT for CP-OFDM where the FFT size is K. More details on the receiver implemen-
tation for underwater acoustic channels will be available in later chapters.

2.5 Challenges and Remedies for OFDM

To make OFDM modulation successful in a practical underwater system, the following three
issues must be adequately addressed.

• Plain (or uncoded) OFDM has poor performance in fading channels, since it does not exploit
the multipath diversity inherent to the channel.

• OFDM is sensitive to intercarrier interference (ICI) caused by channel variations. Under-
water channels vary fast due to the large ratio of the platform motion relative to the sound
propagation speed. Even with stationary transmitters and receivers, significant ICI could
still exist due to wave action and water motion.

• OFDM transmission has large peak-to-average power ratio (PAPR). The required large
power backoff reduces the transmission range.

Countermeasures need to be developed to address these challenges.

• Among other possible choices, diversity combining and channel coding are two effective
approaches that can drastically improve the system performance. Multichannel reception
introduces both power gain and diversity gain, through the use of multiple receiving ele-
ments. Channel coding introduces both diversity gain and coding gain through the use of
redundant signaling.

• Since ICI is inevitable in fast-varying channels, it has to be explicitly dealt with. This book
provides an in-depth treatment on advanced receiver design for OFDM systems in the pres-
ence of fast fading channels.

• The transmitter will apply PAPR reduction as much as possible. Although OFDM has high
PAPR, it is an ideal choice for short range, high data rate applications. Note that some
systems may not be peak power constrained, but instead average power constrained.
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Figure 2.8 A system with one transmitter and Nr receivers.

2.5.1 Benefits of Diversity Combining and Channel Coding

Here let us illustrate the performance gains of diversity combining and channel coding. Con-
sider a system with Nr receivers as shown in Figure 2.8. The system model in (2.16) can be
recast as

y𝜈[m] = H𝜈[m]s[m] + 𝜂𝜈[m], 𝜈 = 1, … ,Nr (2.35)

where H𝜈[m] ∶= H𝜈(fm) is the channel gain on the mth subcarrier.
On each subcarrier, maximum ratio combining (MRC) is applied, leading to a symbol

estimate:

ŝ[m] =
∑Nr
𝜈=1 H∗

𝜈 [m]y𝜈[m]∑Nr
𝜈=1 |H𝜈[m]|2 . (2.36)

Define the symbol energy 𝜎2
s = 𝔼[|s[m]|2] and noise variance 𝜎2

𝜂 = 𝔼[|𝜂[m]|2]. The instanta-
neous SNR at the mth subcarrier is

𝛾[m] =

(
Nr∑
𝜈=1

|H𝜈[m]|2) 𝜎2
s

𝜎2
𝜂

(2.37)

with the average SNR defined as 𝛾[m] = 𝔼[𝛾[m]].
First, let us consider uncoded transmissions. Assuming a BPSK symbol on each data sub-

carrier, and that there is no fading, i.e., 𝛾[m] = 𝛾[m], the average bit error rate (BER) on the
mth subcarrier is:

BERawgn[m] = Q
(√

2𝛾[m]
)
, (2.38)

where

Q(x) = ∫
∞

x

1√
2𝜋

e−t2∕2dt

= 1
𝜋 ∫

𝜋∕2

0
exp

(
− x2

2sin2𝜃

)
d𝜃.

(2.39)
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With fading, 𝛾[m] is random variable, and let f𝛾[m](𝛾) denote its probability density function
(pdf). The average BER on the mth subcarrier is

BERfading[m] = 𝔼[Q(
√

2𝛾[m])]

= ∫
∞

0
Q(

√
2𝛾)f𝛾[m](𝛾)d𝛾.

(2.40)

The average BER of the uncoded OFDM system can be obtained by taking the average of the
BER on all the data subcarriers.

Now consider channel coding is applied. In practical OFDM systems, coding is
applied across data subcarriers. For theoretical computation, let us consider channel
coding applied across time, and assume that long codewords and Gaussian signaling are used.
Without fading, the capacity on the mth subcarrier is

Cawgn[m] = log2(1 + 𝛾[m]). (2.41)

With fading, the ergodic capacity on the mth subcarrier is

Cfading[m] = 𝔼[log2(1 + 𝛾[m])]

= ∫
∞

0
log2(1 + 𝛾)f𝛾[m](𝛾)d𝛾.

(2.42)

The total ergodic capacity per OFDM symbol is the sum of the capacities on all the data
subcarriers.

The average BER and ergodic capacity of fading channels can be readliy evaluated once the
fading characteristic is known.

Example 2.1

We assume that H𝜈[m] is complex Gaussian with zero mean and unit variance, for all sub-
carriers at all receive elements. Thus, |H[m]| is Rayleigh distributed with unit variance, and
the same average SNR 𝛾[m] on all the subchannels is the same

𝛾 = Nr
𝜎2

s

𝜎2
𝜂

(2.43)

Since 𝛾[m] is Chi-square distributed with 2Nr degrees of freedom, its pdf is

f𝛾[m](𝛾) =
(

Nr

𝛾

)Nr 𝛾Nr−1

Γ(Nr)
exp

(
−

Nr𝛾

𝛾

)
. (2.44)

The average BER in (2.40) can be evaluated in a single integral as [342]:

BERfading[m] = 1
𝜋 ∫

𝜋∕2

0

(
1 + 𝛾

Nrsin2𝜃

)−Nr

d𝜃. (2.45)

Figure 2.9 plots the uncoded BER curves as a function of the average SNR 𝛾 (in decibels)
for both AWGN and Rayleigh fading channels. At uncoded BER 10−3, the SNR gap is
about 17 dB if no diversity combining is used. This comparison demonstrates that fading
channel drastically affects the uncoded performance.
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Figure 2.9 Comparison of the bit error rates in AWGN and Rayleigh fading channels, BPSK
constellation.
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Figure 2.10 Comparison of the capacities of the AWGN and Rayleigh fading channels.

Figure 2.10 plots the capacity curves of the AWGN and Rayleigh fading channels as a
function of the average SNR 𝛾 (in decibels), on each OFDM subcarrier. At data rate of
2 bits per symbol, the SNR gap is only about 2 dB even with Nr = 1, much smaller than
the gap as shown in Figure 2.9. This example illustrates that channel coding is a crucial
component for improving the performance of OFDM in fading channels.
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2.6 MIMO OFDM

A multiple-input multiple-output (MIMO) channel refers to the channel in a system with
a multi-element transmitter and a multi-element receiver, as illustrated in Figure 2.11.
MIMO can be used to enhance the system performance or improve the data rate. There is
a fundamental tradeoff between diversity and multiplexing gains [467]. Since the frequency
band is fundamentally limited in underwater acoustic channels, MIMO techniques appear
especially attractive.

Define the transmitted passband signal from the 𝜇th transmitter as

x̃𝜇(t) =
∑

k∈A

s𝜇[k]ej2𝜋fktg(t), t ∈ [0,Tbl], (2.46)

The symbols s𝜇[k] could be coded using the so-called space time codes or space frequency
codes. One simple method is spatial multiplexing, where the data streams on different transmit
elements are independent.

Let h𝜈,𝜇(t) denote the channel between the 𝜈th hydrophone and the 𝜇th transducer. The
received signal is

ỹ𝜈(t) =
Nt∑
𝜇=1

h𝜈,𝜇(t) ⋆ x̃𝜇(t) + ñ𝜈(t), (2.47)

where ñ𝜈(t) is the additive noise on the 𝜈th receiver. The received samples in the frequency
domain are

y𝜈[m] =
Nt∑
𝜇=1

H𝜈,𝜇[m]s𝜇[m] + 𝜂𝜈[m], (2.48)

where H𝜈,𝜇[m] ∶= H𝜈,𝜇(fm) is the frequencey response of the channel between the 𝜇th trans-
mitter and the 𝜈th receiver, evaluated at frequency fm.

Stacking frequency measurements at Nr receiving hydrophones yields⎡⎢⎢⎢⎣
y1[m]
⋮

yNr
[m]

⎤⎥⎥⎥⎦
⏟⏞⏟⏞⏟
∶=y[m]

=
⎡⎢⎢⎢⎣

H1,1[m] · · · H1,Nt
[m]

⋮ ⋱ ⋮

HNr,1
[m] · · · HNr,Nt

[m]

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=H[m]

⎡⎢⎢⎢⎣
s1[m]
⋮

sNt
[m]

⎤⎥⎥⎥⎦
⏟⏞⏟⏞⏟
∶=s[m]

+
⎡⎢⎢⎢⎣
𝜂1[m]
⋮

𝜂Nr
[m]

⎤⎥⎥⎥⎦
⏟⏞⏟⏞⏟
∶=𝜼[m]

(2.49)
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Figure 2.11 A system with Nt transmitters and Nr receivers.
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which can be compactly expressed as

y[m] = H[m]s[m] + 𝜼[m], m = −K
2
, · · · , K

2
− 1. (2.50)

Assuming that 𝜼[m] is complex Gaussian distributed with zero mean and covariance matrix
𝜎2
𝜂 INr

, the channel capacity at the mth subcarrier conditional on H[m] is expressed as

C(Nt,Nr|H[m]) = log2 det

(
INr

+
𝜎2

total

N0Nt
H[m]HH[m]

)
(2.51)

where 𝜎2
total =

∑Nt
𝜇=1 𝔼[|s𝜇[m]|2] is the transmission energy across all Nt elements. Averaged

over all possible channel realizations, the ergodic capacity on the mth subcarrier is [379]:

C(m;Nt,Nr) = 𝔼{H[m]}[C(Nt,Nr|H[m])]. (2.52)

Example 2.2

Now let us assume that all the entries of H[m] are i.i.d. Gaussian distributed with zero
mean and unit variance. Define 𝛾 as the average SNR at each receive antenna, which equals
𝜎2

total∕𝜎
2
𝜂 in this example. In the high SNR regime, the ergodic capacity can be approximated

as
C(m;Nt,Nr) ≈ min{Nt,Nr}log2(𝛾), (2.53)

which shows a linear growth with respect to the minimum number of transmit and receive
elements. Assuming an identical number of transmit and receive elements, Nt = Nr = N,
Figure 2.12 depicts the ergodic capacity at each subcarrier with different values of receiver
SNR. A considerable capacity growth can be observed by increasing the number of transmit
and receive elements.
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Figure 2.12 The ergodic capacity in MIMO transmissions, Nt = Nr = N.



38 OFDM for Underwater Acoustic Communications

There are more channels to estimate at each receiver in a MIMO system. The main challenge
of realizing MIMO in underwater communications is that the channels change very fast and
channel estimation may require substantial overhead, which can compromise the benefits of
MIMO. Also, the transducers at the transmitter side are often more costly than the hydrophones
at the receiver side.

2.7 Bibliographical Notes

The idea of OFDM dates back to 1960s. The first use of overlapping but noninterferencing
subchannels was due to Chang in 1966 [68]. Weinstein and Ebert proposed to use the discrete
Fourier transform for baseband modulation and demodulation in 1971 [432]. Peled and Ruiz
proposed the use of cyclic prefix to achieve orthogonality after the channel dispersion in 1980
[306]. The first commercial success of OFDM is in the application of asymmetrical digital
subscribe lines (ADSL) in early 1990s. Now, OFDM has a wideapread use in modern com-
munication systems, with prominent examples such as WiFi (IEEE 802.11 a/g/n), WiMAX
(IEEE 802.16), digital audio and video broadcasting (DAB/DVB), and fourth generation (4G)
cellular systems. A historic review of OFDM is recently provided by Weinstein, 2009 [431].

Influential tutorial-style papers on OFDM include [44, 120, 333, 418]. A number of books on
OFDM technology are available in the market, including Bingham, 2000 [45], Hanzo, Mun-
ster, Choi and Keller, 2003 [157], Prasad, 2004 [315], Bahai, Saltzberg, and Ergen, 2004 16,
Li and Stuber (eds), 2006 [243], Chiueh and Tsai, 2007 [81], Fazel and Kaiser, 2008 [118],
Narasimhamurthy, Banavarand, and Tepedelenlioglu, 2010 [291]. The application of OFDM
in optical communication is described by Shieh and Djordjevic, 2009 [340].



3
Nonbinary LDPC Coded OFDM

Channel coding is an integral part of a digital communication system. Various topics regard-
ing to channel coding have been covered by existing books. In this chapter, we first go over
two basic formats of coupling channel coding with OFDM modulation. Then, we will focus
on nonbinary low-density-parity-check (LDPC) codes, which are used in the simulation and
experimental results contained in this book.

3.1 Channel Coding for OFDM

Figure 3.1 shows a classic diagram of a digital communications system in wireless channels,
where information bits pass through source coding and channel coding modules before being
modulated for transmission. Channel coding is introduced to protect information bits from
errors after transmission through communication channels, and the bit-to-symbol mapping
are used to increase the transmission spectral efficiency. Figures 3.2 and 3.3 show typical
one-dimensional and two-dimensional constellations widely used in wireless systems, includ-
ing binary phase-shift keying (BPSK), M-ary pulse amplitude modulation (PAM), quadrature
phase shift keying (QPSK) and M-ary quadrature amplitude modulation (QAM).

Stemming from Shannon’s information theory [337], significant progress on channel cod-
ing has been made. Meanwhile, OFDM has emerged as an effective modulation technique
for high-rate communications. Next, we will give a brief overview on channel coding, coded
modulation, and discuss several channel coding schemes widely used in OFDM systems.

3.1.1 Channel Coding

To combat the imparity of communication channels, channel coding allows error detection and
correction at receiver side by introducing redundancy into transmitted symbols. As illustrated
in Figure 3.1, the information sequence from source can be divided into multiple blocks, and
each block is a k-tuple vector, denoted by u = [u0, · · · , uk−1]T and termed as message block.
Channel coding projects each message block into a larger space which is spanned by n-tuple
vectors, and the corresponding vector v = [𝑣0, · · · , 𝑣n−1]T is called a codeword. The corre-
sponding code is referred to as (n, k) code, with the code rate defined as r ∶= k∕n. The primary

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure 3.1 A schematic diagram of wireless communication system.
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Figure 3.2 One-dimensional constellations: BPSK, 4-PAM, 8-PAM.
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Figure 3.3 Two-dimensional constellations: QPSK, 8-QAM, 16-QAM, 64-QAM.
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task of channel coding is to design mapping and demapping strategies between the space
spanned by the k-tuple message vectors and that spanned by n-tuple vectors, which yields
desirable error detection and correction capabilities at moderate computation complexity.

There are two structurally different types of codes: block codes and convolutional codes
(CC). In block channel coding, each message block is encoded independently by multiply-
ing the message block with a generator matrix, while in convolutional coding, each message
block is encoded through convolutionary operations between message blocks and predefined
generator sequences of length m, leading to the obtained codeword as a function of the cur-
rent message block and previous m message blocks. Classical block coding schemes include
Hamming codes, Bose-Chaudhuri-Hocquenghem (BCH) codes, Reed-Solomon codes (RS),
cyclic codes, etc. The modern coding theory is defined by two types of codes: turbo codes and
low-density parity-check (LDPC) codes, both Shannon capacity-approaching. In particular,
turbo codes are generated with two or multiple convolutional encoders which are concate-
nated according to certain structures. LDPC codes are defined by sparse parity-check matrices,
which facilitates code design and implementation on graphs [137, 269].

Channel encoding and decoding are performed over finite fields, which are referred to as
Galois fields, in memory of the French mathematician Evariste Galois (1811–1832). A Galois
field of size q is denoted as GF(q), where q is often chosen as q = 2p. The simplest field is
GF(2), which only has two elements {0, 1}. Accordingly, elements in both u and v are therefore
binary bits, and the corresponding codes are called binary codes. For GF(q) with q = 2p and
p > 1, each element in both u and v is formed by a sequence of symbols, each represented by
p binary bits. From pure coding point of view, nonbinary coding can have better performance
than binary coding, especially when the code block length is small and the code rate is high.

3.1.2 Coded Modulation

The concept that channel coding and modulation in Figure 3.1 shall be taken as one entity
creates a research area called coded modulation [275]. Four important approaches are: trellis
coded modulation (TCM), block coded modulation (BCM), bit interleaved coded modulation
(BICM), and nonbinary coded modulation (NCM).

Different coded modulation strategies have applications in different scenarios. The key
idea of TCM is to encode message blocks onto an expanded modulation constellation set
[396]. It is effective for the AWGN channel, and has been widely used in wireline systems.
Through a multilevel coding method that uses multiple error-correcting codes of different
error correction capabilities, BCM is mainly used for unequal error protection [189]. In
BICM, the information bit sequence is firstly encoded into a coded bit sequence, and then
interleaved before mapped to information symbols. Compared with other schemes, BICM
can effectively counteract the fading property of wireless channels [52]. The binary coded
modulation involves constellation mapping that converts bits into symbols. As shown in
two examples of coded modulation in Figures 3.2 and 3.3, each symbol in a constellation
of size 2b carries b coded bits. Different ways of labeling the symbols with bit indices may
lead to different receiver performance. In practice, natural mapping, Gray mapping, and
set-partitioning based mapping have been studied.

At the expense of design complexity, nonbinary coded modulation has an advantage over
binary coded modulation that the nonbinary codeword can match very well with the under-
lying constellations, avoiding bit-to-symbol conversion at the transmitter and symbol-to-bit
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conversion at the receiver [31]. Suppose that a constellation size of 2b will be used. To couple
nonbinary coding with constellation mapping, it is desirable to match the field order with the
constellation size, i.e., p = b. This way, one element in GF(q) is mapped to one point in the
signal constellation. In occasions when b is small, it may be preferable to choose p > b. Then,
it is convenient to choose p

b
as an integer, and map each element in GF(q) to p

b
symbols drawn

from the constellation. In both scenarios, constellation labeling does not affect the receiver
performance.

3.1.3 Coded OFDM

As indicated in Section 2.5, channel coding is important for OFDM systems to address the
fading property of wireless channels. Figures 3.4 and 3.5 depict a binary coded BICM-OFDM
system and a nonbinary coded OFDM system, respectively.

Over the years, there have been many binary codes developed for binary coded OFDM sys-
tems. Several examples are as follows. Convolutional codes have been widely used in wireless
OFDM systems. For example, a 64-state rate- 1

2
convolutional code, has widespread use in

WiFi (IEEE 802.11a/g) systems, where the Viterbi algorithm is used for decoding. RS codes
are often used in combination with CC, where a high rate RS code is used as an outer code and
a CC is used as an inner code. The bursty errors from the Viterbi decoder can be effectively
mitigated by the RS decoder. Turbo codes and LDPC codes are more powerful channel cod-
ing schemes, which have been adopted into recent wireless standards, such as IEEE 802.16.
Iterative decoding algorithms are used for decoding.

In the literature, both nonbinary Turbo codes and nonbinary LDPC codes have been con-
structed. In this book, we focus on nonbinary LDPC codes and their application to underwater
OFDM systems.
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Figure 3.4 A schematic block diagram of a bit-interleaved coded OFDM system.
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3.2 Nonbinary LDPC Codes

Consider a high order Galois field of GF(q), and let {𝛼0 = 0, 𝛼1, … , 𝛼q−1} denote elements in
GF(q). Nonbinary LDPC code is a linear block code defined over GF(q). Define a codeword
consisting of N coded symbols as

c =
[
c[0] … c[N − 1]

]T
, (3.1)

where c[n] ∈ GF(q). The codeword c is a valid codeword if and only if it satisfies the parity
check constraint

Hc = 𝟎, (3.2)

where H denotes the parity check matrix1. For an LDPC code, the matrix H has low density
(or percentage) of nonzero entries. For binary codes over GF(2), the nonzero entries of H can
only have value 1. For nonbinary codes over GF(q), the nonzero entries of H take values from
{𝛼1, … , 𝛼q−1}. With a parity check matrix H of size M × N, the designed code rate of an
LDPC code is

r = N − M
N

. (3.3)

The column and row weights of H are defined as the number of nonzero entries in the column
and row, respectively. An LDPC code whose H has fixed column weight and fixed row weight
is called a regular code. Otherwise, it is called an irregular code.

Example 3.1

Consider a code of N = 12 symbols [c[0], … , c[11]]T from GF(8), where any valid code-
word satisfies six parity check equations as

𝛼5c[0] + 𝛼1c[3] + 𝛼1c[6] + 𝛼2c[9] = 0, (3.4)

𝛼3c[1] + 𝛼3c[4] + 𝛼5c[7] + 𝛼3c[10] = 0, (3.5)

𝛼1c[0] + 𝛼5c[5] + 𝛼2c[7] + 𝛼7c[11] = 0, (3.6)

𝛼5c[2] + 𝛼6c[4] + 𝛼3c[6] + 𝛼7c[11] = 0, (3.7)

𝛼2c[2] + 𝛼3c[5] + 𝛼1c[8] + 𝛼5c[9] = 0, (3.8)

𝛼2c[1] + 𝛼4c[3] + 𝛼2c[8] + 𝛼4c[11] = 0. (3.9)

The parity check matrix H then has M = 6 rows and N = 12 columns, as depicted in
Figure 3.6(a). The code rate is 1

2
. Each column has weight 2 and each row has weight

4, and hence it is a regular code. An LDPC code can be represented by a Tanner graph, as
illustrated in Figure 3.6(b), where variable nodes (VND) correspond to the columns of H
and the check nodes (CND) correspond to rows of H.

1 The H matrix in this chapter stands for the parity check matrix for an LDPC code, while it stands for a channel
matrix in other chapters.
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(a) Parity check matrix

(b) Tanner graph representation

Figure 3.6 An example code with M = 6, N = 12 over GF(8).

The performance of nonbinary LDPC codes depend on various factors. In general, the larger
the field size and the larger the block length, the better the performance for nonbinary LDPC
codes. Column and row weight distributions can be optimized to improve the performance. It
turns out that the relationship of the performance with the mean column weight is not mono-
tonic. In general, as the field size increases, the density shall get smaller. In this book, we focus
on two particular code designs, one being the regular cycle code suitable for a large q and the
other being irregular nonbinary LDPC codes suitable for a small or moderate q.

3.2.1 Nonbinary Regular Cycle Codes

An LDPC code whose H has fixed column weight j = 2 is called a cycle code [200]. The parity
check matrices of cycle codes have the the lowest density, as each coded symbol needs to at
least participate two parity check equations. Cycle codes can be regular or irregular depending
on whether the row weight is fixed or not.

Here we focus on regular cycle codes, assuming that the row weight is fixed to be d. Counting
the number of nonzeros entries in H, we have Md = 2N. The designed code rate of regular
cycle codes is restricted to

r = N − M
N

= d − 2
d

, (3.10)

where d is an integer. For example, r can be 1
3
,

1
2
,

3
5
,

2
3
,

5
7
,

3
4
, … ,

7
8
, … ,

15
16

, etc.

The check matrix H of a regular cycle code is well structured. Specifically, the parity check
matrix H of any regular cycle code can be put into a concatenation form of row-permuted
block-diagonal matrices after row and column permutations if d is even, or, if d is odd and the
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code’s associated graph contains at least one spanning subgraph that consists of disjoint edges
[176]. For convenience, let us only state the result here when d is even.

Let us use the notation of H1 ≅ H2 to denote the equivalence of two matrices H1 and H2
such that one can be transformed to the other simply through row and column permutations.
For any regular cycle GF(q) code with row weight d = 2𝜈, its parity check matrix H of size
M × N has the equivalent form

H ≅
[
H1 P2H2 … P𝜈H𝜈

]
, (3.11)

where Pi is an M × M permutation matrix, and Hi is of size M × M, 1 ≤ i ≤ 𝜈. The matrix Hi
has an equivalent block-diagonal form

Hi ≅ diag
([

H̃cir
i,1 H̃cir

i,2 … H̃cir
i,Qi

])
, (3.12)

where the matrix H̃cir
i,l is of size 𝜅i,l × 𝜅i,l that satisfies M =

∑Qi
l=1 𝜅i,l and has an equivalent

form

H̃cir =

⎡⎢⎢⎢⎢⎢⎣

𝜁1 0 0 … 𝛽𝜅
𝛽1 𝜁2 0 … 0

0 𝛽2 𝜁3 … 0

⋮ ⋮ ⋱ ⋱ ⋮
0 … 0 𝛽𝜅−1 𝜁𝜅

⎤⎥⎥⎥⎥⎥⎦
(3.13)

with all 𝜁i and 𝛽i being nonzero entries from GF(q).

Example 3.2

The H matrix of the regular cycle code in Figure 3.6 has d = 4. Applying Theorem 1,
one can obtain the two submatrices H1 and H2 in the block diagonal form as shown in
Figure 3.7. The permutation matrix

P2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
(3.14)

will permute the rows of H2, before appending it after H1. It can be verified [H1,P2H2] is
equivalent to the H matrix in Figure 3.6 after row and column permutations.

3.2.2 Nonbinary Irregular LDPC Codes

Cycle codes over large Galois fields (e.g., q ≥ 64) can achieve near-Shannon-limit perfor-
mance [169]. However, cycle codes over small to moderate Galois fields (e.g., 4 ≤ q ≤ 32)
suffer from performance loss due to a “tail” in the low weight regime of the distance



46 OFDM for Underwater Acoustic Communications

H̄1

5 0 2 0 0 0

1 5 0 0 0 0

0 3 5 0 0 0

0 0 0 3 0 3

0 0 0 6 7 0

0 0 0 0 4 2

1 0 0 1 0 0

3 5 0 0 0 0

0 2 1 0 0 0

0 0 2 4 0 0
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Figure 3.7 The equivalent form for a regular cycle code.

spectrum [169]. Irregular weight distribution can be used to improve the performance of
nonbinary LDPC codes. A simple strategy has been proposed in [175] that improves the code
performance while retaining the benefits of a regular cycle code as much as possible.

The approach is to replace a portion of weight-2 columns of H of a cycle code by columns of
weight t > 2, (e.g., t = 3 or t = 4). Let N1 columns of H have weight 2 and N2 columns have
weight t. The mean column weight is

𝜂 =
2N1 + tN2

N
. (3.15)

The matrix H can be arranged as
H = [H1 | H2] (3.16)

where H1 contains all weight-2 columns and H2 contains all weight-t columns. Clearly, H1 is
of size M × N1 and H2 is of size M × N2.

Note that H1 corresponds to the check matrix of a general cycle code. To maximally benefit
from the structure of regular cycle codes presented in Section 3.2.1, it is desirable to make H1
be as close to a regular cycle code as possible. Specifically, one can split the matrix as

H = [H1a | H1b | H2] (3.17)

where the matrix H1a is of size M × N1a and the matrix H1b is of size M × N1b. The number
N1a is the largest integer not greater than N1 that can render d1a = 2N1a

M
an integer, that is, H1a

is the largest sub-matrix of H1 that could be made regular, with row weight d1a. If N1a = N1,
then N1b = 0. As such, H1 itself is regular, which is a special case.

In a nutshell, the proposed nonbinary irregular LDPC codes try to make a large portion of
the check matrix come from a regular cycle code. This way, many benefits of a regular cycle
code can be retained.

3.3 Encoding

Encoding has been an important issue for LDPC codes. Encoding of a general LDPC code can
be done in almost linear time instead of quadratic time on the block length [270].

The proposed codes in Sections 3.2.1 and 3.2.2 can be encoded in linear time in parallel
as follows. Assume N1 ≥ M, then N1a ≥ M. Since H1a is regular, it can be decomposed as in
(3.11). Hence, the first M × M submatrix of H can be made to have the form in (3.12). Let us
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denote it as H1, and split H as H = [H1 | H⊥] where H⊥ is of size M × (N − M). Make sure
that H1 has full rank by suitable choices of its nonzero entries. Partition the codeword c into
two parts as c = [pT,dT]T where p is of length M. Let p contain the parity symbols and d
contain the information symbols. A valid codeword satisfies Hc = 𝟎, which implies that

H1p = −H⊥d. (3.18)

From (3.12), H1 can be made block diagonal as diag(H̃cir
1,1, … , H̃cir

1,Q1
). According to the sizes

of {H̃cir
1,l}

Q1
l=1, let us partition p and the right-hand side of (3.18) into Q1 pieces as

p =
[
pT

1 … pT
Q1

]T
, (3.19)

−H⊥s =
[
bT

1 … bT
Q1

]T
, (3.20)

respectively. Computation of p requires solving the following Q1 equations

H̃cir
1,ipi = bi, 1 ≤ i ≤ Q1. (3.21)

Now, let us describe how to solve an equation in the general form of H̃cirx = b, where p =
[p1, p2, … , pk]T, b = [b1, b2, … , bk]T, and H̃cir has the structure in (3.13). Let us rewrite the
relationship using the matrix-vector notation as⎡⎢⎢⎢⎢⎢⎢⎣

𝜁1 𝛽k

𝛽1 𝜁2

𝛽2 ⋱

⋱ 𝜁k−1

𝛽k−1 𝜁k

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
p1

p2

⋮

pk

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
b1

b2

⋮

bk

⎤⎥⎥⎥⎥⎦
. (3.22)

An LU decomposition leads to⎡⎢⎢⎢⎢⎢⎢⎣

1

𝛾1 1

𝛾2 ⋱

⋱ 1

𝛾k−1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1 u1

1 u2

⋱ ⋮

1 uk−1

uk

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝜁1

𝜁2

⋱

𝜁k

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
p1

p2

⋮

pk

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=[x1,x2,···,xk]T
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=[z1,z2,···,zk]T

=

⎡⎢⎢⎢⎢⎣
b1

b2

⋮

bk

⎤⎥⎥⎥⎥⎦
(3.23)

where the coefficients are defined as

𝛾i = 𝜁−1
i 𝛽i, i = 1, … , k (3.24)

ui = −𝛾1 · · · 𝛾i𝛾k, i = 1, … , k − 1, (3.25)

uk = (1 + 𝛾1𝛾2 · · · 𝛾k). (3.26)

The solution to the above question is the following algorithm [179].



48 OFDM for Underwater Acoustic Communications

1. z1 = b1; zi = 𝛾i−1zi−1 + bi, i = 2, 3, … , k;
2. xk = (1 + 𝛾1𝛾2 … 𝛾k)−1zk;

xi = zi − 𝛾1𝛾2 … 𝛾i−1𝛾kxk, i = 1, 2, … , k − 1;
3. pi = 𝜁−1

i xi, i = 1, 2, … , k.

Assume that the coefficients have been stored before computing. The computation complex-
ity is 2(k − 1) additions, 2(k − 1) multiplications, and k + 1 divisions over GF(q).

Note that solving those Q1 equations in (3.21) can be done in parallel. The overall complex-
ity of solving the equation (3.18) is about 2M additions, 2M multiplications, and M divisions
over GF(q), when some coefficients are precomputed. Fast and parallel encoding is quite
desirable especially when the block length is large, or, when multiple rounds of encoding
is needed for the proposed OFDM peak-to-average-power-ratio reduction as will be detailed
in Section 4.2.2.

3.4 Decoding

Decoding of LDPC codes can use standard sum-product algorithms (SPA) and its
low-complexity variants. When applying a standard SPA as described in [93], the com-
plexity is O(q2). An important variation is to use FFT based Q-ary SPA (FFT-QSPA) [351],
whose complexity is O(q log q). Using the log-domain representation, multiplication opera-
tions are replaced by additions [440]. In this chapter, we present the log-domain SPA, and an
approximation called Max-Log-SPA, or Min-Sum, following the lines in [440].

The decoder has the following four key steps, as illustrated in Figure 3.8.

S1. Initialize the decoder with soft metrics, in the form of the log-likelihood-ratio vector
(LLRV), from the demodulator block of the receiver.

S2. Variable to check node update. Define the set (n) as all the check nodes associated with
the variable node n. Each variable node n sends updated information to all the check nodes
in (n).

S3. Check to variable node update. Define the set  (m) as all the variable nodes associated
with the check node m. Each check node m sends updated information to all the variable
nodes in  (m).

S4. Make a tentative decision of the codeword as ĉ. If Hĉ = 0, the decoder declares success
and exits with the correct decision. If not, it returns to S2 for the next round of iteration.
The decoder stops and outputs soft information, once the maximum number of iterations
have been reached.

We next specify the details of these steps.

3.4.1 Initialization

How to compute the soft information in different contexts will be the subject of Chapter 8 on
data detection. Here we present a simple scenario to illustrate the concept. Assume that the
equivalent channel input–output model after symbol deinterleaving is:

y[n] = g[n]𝜙(c[n]) + 𝜂[n], n = 0, … ,N − 1, (3.27)
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Initialization

Variable-to-
check update

Check-to-
variable update

Tentative
decision

Hard or soft
decisions

Figure 3.8 The key steps in an iterative decoder for LDPC codes.

where y[n] is the receiver output, g[n] is the equivalent channel gain for the nth symbol, 𝜙(⋅)
denotes the mapping from a coded symbol to a constellation symbol, and 𝜂[n] is the equivalent
noise.

Assume that 𝜂[n] has variance 𝜎2 per real and imaginary dimension. The likelihood can be
computed as

Pr(c[n] = 𝛼i) =
1

2𝜋𝜎2
exp

(
− ||y[n] − g[n]𝜙(𝛼i)|| 2

2𝜎2

)
, (3.28)

for n = 0, … ,N − 1, and i = 0, … , q − 1. The log-likelihood-ratio vector (LLRV) of c[n] is
defined as

Lch[n] =
[
Lch

0 [n] Lch
1 [n] … Lch

q−1[n]
]T
, (3.29)

where

Lch
i [n] ∶= ln

Pr(c[n] = 𝛼i)
Pr(c[n] = 0)

. (3.30)

From (3.28), we have

Lch
i [n] = − 1

2𝜎2

(|||y [n] − g [n]𝜙
(
𝛼i

)||| 2 − |y [n] − g [n]𝜙 (0)| 2
)

= 1
𝜎2

ℜ{y∗[n]g[n](𝜙(𝛼i) − 𝜙(0))} −
1

2𝜎2
|g[n]|2(|𝜙(𝛼i)|2 − |𝜙(0)|2) (3.31)

3.4.2 Variable-to-Check-Node Update

As illustrated in Figurer 3.9(a), The variable node n sends a message to the check node m,
which summarizes the a priori probabilities from the channel and the beliefs from all the
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a priori information

a priori information

(a) Variable-to-check update

(c) Tentative decision

(b) Check-to-variable update

Figure 3.9 An illustration of LDPC decoding process.

check nodes in (n) excluding the check node m itself,

LVND[m, n] = Lch[n] +
∑

i∈(n)∖m

LCND[i, n], (3.32)

where LVND[m, n] denotes the LLRV sent from the nth variable node to the mth check node,
and LVND[i, n] denotes the LLRV sent from the ith check node to the nth variable node. Both
LVND[m, n] and LVND[i, n] are similarly defined as Lch[n] in (3.29).

3.4.3 Check-to-Variable-Node Update

At the mth check node, the parity check equation is∑
j∈ (m)

Hm,jc[j] = 0. (3.33)

Hence, the variable node n can be expressed as

c[n] =
∑

j∈ (m)\n
H−1

m,nHm,jc[j]. (3.34)

With this relationship, the LLRV for c[n] can be obtained based on the knowledge of LLRVs
for other symbols c[j], where j ∈  (m)\n, as illustrated in Figure 3.9(b).

Note that the addition in (3.34) is done in the finite field. By defining intermediate variables,
the LLRV updates are carried out repeatedly using the updating rules of adding two variables.
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In particular, assume A1, A2 as constants in GF(q), and 𝑣1 and 𝑣2 as variables in GF(q). The
LLRV for the sum A1𝑣1 + A2𝑣2 can be computed as follows:

L(A1𝑣1 + A2𝑣2 = 𝛼i) = ln
P(A1𝑣1 + A2𝑣2 = 𝛼i)
P(A1𝑣1 + A2𝑣2 = 0)

= ln

∑
x∈GF(q)P(𝑣1 = x)P(𝑣2 = A−1

2 (𝛼i + A1x))∑
x∈GF(q)P(𝑣1 = x)P(𝑣2 = A−1

2 A1x)

= ln

∑
x∈GF(q)

P(𝑣1=x)P(𝑣2=A−1
2

(𝛼i+A1x))
P(𝑣1=0)P(𝑣2=0)∑

x∈GF(q)
P(𝑣1=x)P(𝑣2=A−1

2
A1x)

P(𝑣1=0)P(𝑣2=0)

= ln

( ∑
x∈GF(q)

eL(𝑣1=x)+L(𝑣2=A−1
2

(𝑣2𝛼i+A1x))

)

− ln

( ∑
x∈GF(q)

eL(𝑣1=x)+L(𝑣2=A−1
2

(A1x))

)
(3.35)

One basic operation in (3.35) is ln(ex + ey). Define

max∗(x, y) = ln(ex + ey) = max(x, y) + ln(1 + e−|x−y|), (3.36)

which can be conveniently implemented by using a look up table for the second term. The
computation in (3.35) can be accomplished by repeatedly using the max∗(⋅) operation as

max∗(x, y, z) = max∗(max∗(x, y), z). (3.37)

The max∗(⋅) operation can be replaced by the max(⋅) operation, and corresponding algorithm
is called Max-log-SPA or Min-Sum [440]. The update rule is simplified as

L(A1𝑣1 + A2𝑣2 = 𝛼i) ≈ max
x∈GF(q)

(L(𝑣1 = x) + L(𝑣2 = A−1
2 (𝑣2𝛼i + A1x)))

− max
x∈GF(q)

(L(𝑣1 = x) + L(𝑣2 = A−1
2 (A1x))).

(3.38)

The advantage is that the LLRV can be now arbitrarily scaled in the Max-log-SPA decoder.
Hence, the noise variance in (3.31) can be set to an arbitrary value.

Note that the presentation here focuses on one individual symbol from the check equation.
Efficient implementation exists to update all the variable nodes connected to one check node
with shared intermediate computations [439].

3.4.4 Tentative Decision and Decoder Outputs

As shown in Figure 3.9(c), the decoder collects all the information from the channel and the
check nodes to compute the LLRV corresponding to the variable node n as

Lapp[n] = Lch[n] +
∑

m∈(n)
LCND[m, n]. (3.39)
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Hard decision is made on the symbol by symbol basis as

ĉ[n] = argmax
𝛼i

L app
i [n]. (3.40)

If Hĉ = 𝟎, then the decoder declares success. If it has reached the maximum number of
iterations, the decoder stops and reports the soft symbol estimates, which may be used as
additional inputs for channel estimation and data detection. The soft symbol estimates can
be computed based on either the a posteriori probability (APP) information Lapp[n], or the
extrinsic information. For ease of reference by later chapters, we spell out different soft symbol
estimates explicitly as follows.

• Soft information based on the APP information. First convert the LLRs into probabilities as:

P app
0 [n] = 1

1 +
∑q−1

i=1 eL app
i

[n]
, (3.41)

P app
i [n] = P0[n]e

L app
i

[n], i = 1, … , q − 1. (3.42)

The soft symbol estimate and its corresponding variance are computed as

s app[n] =
∑
𝛼i∈

𝜙(𝛼i)P
app
i [n] (3.43)

Var
(
s app[n]

)
=

(∑
𝛼i∈

|𝜙(𝛼i)|2 ⋅ P app
i [n]

)
− |s app[n]|2. (3.44)

• Soft information based on the extrinsic information. The extrinsic information is

Lext[n] = Lapp[n] − Lch[n], (3.45)

which leads to the corresponding probabilities

P ext
0 [n] = 1

1 +
∑q−1

i=1 eL ext
i

[n]
, (3.46)

P ext
i [n] = P ext

0 [n]eL ext
i

[n], i = 1, … , q − 1. (3.47)

The soft symbol estimate and its corresponding variance are then computed as

s ext[n] =
∑
𝛼i∈

𝜙(𝛼i)P ext
i [n] (3.48)

Var(s ext[n]) =

(∑
𝛼i∈

|𝜙(𝛼i)|2P ext
i [n]

)
− |s ext[n]|2. (3.49)

3.5 Code Design

Two steps are needed to design nonbinary LDPC codes. The first step is to design the code
structure that specifies the locations of nonzero entries in the parity check matrix. The second
step is to determine the nonzero entries of the parity check matrix. We next discuss some design
methodologies corresponding to different cases.
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3.5.1 Design of Regular Cycle codes

There are three methods outlined in [176] on the design of the code structure for regular
cycle codes.

1. One can utilize known regular graphs with good properties, such as the Ramanujan graphs
[134]. Ref. [169] first utilized this kind of promising graphs to construct cycle codes. Later,
Ref. [177] showed through simulations that these cycle codes can achieve performance
within 1 dB away from the corresponding Shannon limits, including codes of rate 1∕2, 2∕3
and 3∕4. However, good known graphs may be very limited in the number of code choices.

2. One can resort to computer search algorithms. Computer search based algorithms have
been widely adopted to construct LDPC codes [170, 272]. Among them the progressive
edge-growth (PEG) [170] algorithm has been shown efficient and feasible for constructing
LDPC codes with short code lengths and high rates as well as LDPC codes with long code
lengths. Although the original PEG algorithm aims to construct a bipartite Tanner graph,
the same principle of PEG can be adopted to construct the associated graphs for regular
cycle codes [176].

3. Based on the structures presented in Section 3.2.1, one can construct good regular associ-
ated graphs through carefully designing interleavers.

Once the nonzero locations of the check matrix are decided, one starts with the selection of
nonzero entries. References [177, 213, 277, 314] have addressed the issue for the selection
of nonzero entries for cycle codes. Essentially, resolvable cycles [179] with short length cor-
respond to low-weight codewords, which may induce undetected errors during the decoding
process [177, 213, 314]. Therefore, to lower the error floor, it becomes desirable to make all
cycles irresolvable, especially those with short lengths.

3.5.2 Design of Irregular LDPC Codes

Section 3.2.2 presented an irregular LDPC code whose check matrix has only column weights
2 and t. The proposed design steps in [175] are as follows.

• Step 1: Specify the structure of H1a.
Construct a cycle code of fixed row weight d1a using the design methodologies presented
in Section 3.5.1.

• Step 2: Specify the structure of H1b and H2.
Apply the progressive-edge-growth (PEG) algorithm [170] to attach N1b columns of weight
2 and N2 columns of weight t to the matrix H1a. This way, the structure of H in (3.17) is
established.

• Step 3: Specify the nonzero entries of H1.
Note that the sub-matrix H1 = [H1a | H1b] can be regarded as a check matrix of a cycle code.
Hence, we can apply the design criterion of [176] to choose appropriate nonzero entries for
H1 to make as many as possible short length cycles of the associated graph [179] of H1
irresolvable.

• Step 4: Specify the nonzero entries of H2.
The nonzero entries of H2 are generated randomly with a uniform distribution over the set
GF(q)\0.
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One key design issue of the proposed irregular LDPC codes is to decide the average column
weight, which has a considerable impact on the performance, as illustrated in the following
example.

Example 3.3

Figure 3.10 compares the performance of irregular LDPC codes over GF(16) with different
mean column weights. All the codes have rate 1∕2 and codeword length of 1008 bits that
correspond to 252 GF(16) symbols. BPSK modulation is used on the binary input AWGN
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Figure 3.10 Performance comparison of irregular codes over GF(16) with different mean column
weight; t = 3, r = 1∕2 and the codeword length is 1008 bits, i.e., 252 GF(16) symbols.
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Figure 3.11 Performance comparison of irregular codes over GF(16) with an optimized binary
irregular LDPC code; r = 1∕2 and the codeword length is 1008 bits, which correspond to 252 GF(16)
symbols, 168 GF(64) symbols, and 126 GF(256) symbols.
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channel and the decoder has a maximum of 80 iterations. One can observe from Figure 3.10
that the performance curves of the codes with 𝜂 = 2.0 and 𝜂 = 2.2 level off above 10−5 due
to the contribution from the probability of undetected errors. This is not the case if 𝜂 ≥ 2.4.
Actually no undetected errors have been observed for 𝜂 ≥ 2.4 in the simulations. Another
interesting observation is that as 𝜂 increases from 2.4 to 2.6 and 2.8, the code performance
degrades. Therefore, the code with 𝜂 = 2.4 is the best one for this particular example.

Figure 3.11 shows the performance comparison between the irregular LDPC codes over
GF(16) and an optimized binary irregular LDPC code. The performance of Mackay’s
(3,6)-regular code and cycle codes over GF(64) and GF(256) of the same block length
are also included (see more details on these codes’ parameters in [176]). It can be seen
from Figure 3.11 that by adopting an irregular column weight distribution, the code’s
performance can be greatly improved without having to use a very large q; this is desirable
from both the complexity and the constellation matching perspectives.

3.5.3 Quasi-Cyclic Nonbinary LDPC codes

Quasi-Cyclic (QC) LDPC codes are appealing to practical systems as the quasi-cyclic structure
of the parity check matrix allows for linear time encoding using only shift registers, renders
efficient routing for decoding implementation, and enables the storage of the coding matrix
with only a few memory units.

A binary QC-LDPC code is obtained as follows. First, construct a mother matrix, or base
matrix, M(H), which has a small size m × n. Then apply a cyclic expansion operation, that
is, replacing the entries “0” and “1” in M(H) with zero sub-matrices of size L × L and cir-
culant permutation sub-matrices of size L × L, respectively. Specifically, let P be an L × L
permutation matrix as

P =

⎡⎢⎢⎢⎢⎣
0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1
1 0 0 … 0

⎤⎥⎥⎥⎥⎦
. (3.50)

For a finite a, Pa denotes a circulant permutation sub-matrix of size L × L which is obtained
by cyclically shifting the identity matrix IL to the right by a times if a > 0, or to the left by −a
times if a < 0. For simple notation, P∞ denotes the zero matrix of size L × L. A parity check
matrix of size mL × nL for a binary QC-LDPC code is then obtained as [124, 289]

H =
⎡⎢⎢⎢⎣

Pa11 Pa12 · · · Pa1n

Pa21 Pa22 · · · Pa2n

⋮ ⋮ ⋱ ⋮
Pam1 Pam2 · · · Pamn

⎤⎥⎥⎥⎦ (3.51)

where the shift offset value aij ∈ {−(L − 1), … ,L − 1,∞}, i = 1, 2, … ,m, j = 1, 2, … , n.
Designing a binary QC-LDPC code amounts to the selection of the shift offset values {ai,j}.

Now, one needs to replace each “1” entry in H by an element from GF(q)\0 to obtain a
nonbinary QC-LDPC code. In each nonbinary circulant permutation matrix, let 𝜌ij denote
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the nonzero element in the first row of Paij , which could be randomly drawn from GF(q)\0,
the nonzero elements for the remaining rows of Paij are obtained by multiplying the one in the
row above it by 𝛼𝜆, where 𝛼 is a primitive element of GF(2p) and 𝜆 is an integer. To qualify
the codes as quasi-cyclic codes, the nonzero element in the first row needs to be made equal
to the nonzero element in the last row multiplied by 𝛼𝜆 [248, 308]. One example is to choose
the smallest 𝜆 for any given L such that 𝜆L = 𝛾(2p − 1) where 𝛾 is an integer [173].

Example 3.4

Here we show one example of rate compatible nonbinary QC-LDPC design [173], where
the mother matrices for eight different rates are constructed as shown in Figure 3.12.

This set of QC-LDPC codes falls into the family of rate-compatible codes. Here, the rate
compatibility means that lower rate codes are obtained by shortening higher-rate codes,
i.e., some information symbols of higher-rate codes are set to be zeros for lower-rate codes
(refereed to as information nulling [384]). The mother matrix is of size 6 × 54 when the
code rate is r = 8∕9. When the rate changes to r = 1∕2, 2∕3, 3∕4, 5∕6, the mother matrix
corresponds to the first 12, 18, 24, and 36 columns of M(H) in (3.12), respectively. Note
that all columns of M(H) have either weight 2 or weight t = 3. The mean column weights
for rates 1∕2, 2∕3, 3∕4, 5∕6, and 8∕9 are 2.5, 2.667, 2.75, 2.8333 and 2.8333, respectively.
The 6 columns inside the box marked on M(H), having columns weights of 2, correspond
to parity check symbols and can be used to facilitate linear time encoding for all codes
along the lines in Section 3.3.

For cyclic expansion, the shift offset values are designed to be

aij = rijlj, (3.52)

where rij is drawn from a difference set {0, 1, 3, 7, 12, …} sequentially for each nonzero
entry in the j-th column of M(H) and {lj}’s are obtained via computer search [173]:

l1 − l10 l11 − l20 l21 − l30 l31 − l40 l41 − l50 l51 − l54

4,0,3,-1,3,-7, 9,25,5,-4,6, 13,0,10,-8, 2,2,1,-2,4, 6,-2,9,3,0,5, 4,4,1,-1
-7,29,10,-21 -1,7,1,-2,5 2,-2,1,1,2,3 -3,1,-4,8,-5 -1,-3,10,-8

Two sets of codes with L = 30 and L = 60 are constructed over GF(8), where the
nonzero entry on the first row of each circulant matrix was randomly chosen. With
L = 30 the constructed codes over GF(8) have block lengths of 1080, 1620, 2160, 3240
and 4860 bits, respectively. With L = 60 the constructed codes over GF(8) have block
lengths of 2160, 3240, 4320, 6480 and 9720 bits, respectively. Figure 3.13(a) shows
the performance of these codes over the AWGN channel and Figure 3.13(b) shows the
performance of these codes over the i.i.d. Rayleigh fading channel, where BPSK is used.
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As shown in Figure 3.13, there is a coding gain of 0.2 to 0.5 dB at BLER of 10−4 when
the block lengths get doubled.

• The Shannon limits for rates 1∕2, 2∕3, 3∕4, 5∕6 and 8∕9 over the BPSK AWGN channel
are 0.188, 1.0, 1.6, 2.4 and 3.1 dB, respectively. It can be seen from Figure 3.13(a) that
at BLER of 10−4 the five codes with L = 60 are about 1.6, 1.3, 1.1, 0.9 and 0.7 dB from
the Shannon limit of the AWGN channel.

• The Shannon limits for rates 1∕2, 2∕3, 3∕4, 5∕6 and 8∕9 over the BPSK Rayleigh
fading channel are 1.83, 3.65, 4.9, 6.7 and 8.6 dB, respectively. It can be seen from
Figure 3.13(b) that at BLER of 10−4 the five codes with L = 60 are about 2.2, 1.95, 1.9,
1.9 and 1.7 dB from the Shannon limit of the Rayleigh fading channel.
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Figure 3.12 The first 6d columns form the PCM of size 6 × 6d for the code of rate r = (d − 1)∕d,
d = 2, 3, 4, 6, 9.
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Figure 3.13 Performance of rate-compatible nonbinary QC-LDPC codes of various lengths. Solid
curves correspond to L = 30 whereas dashed curves correspond to L = 60.
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3.6 Simulation Results of Coded OFDM

This section presents some Monte Carlo simulation results of coded OFDM. The OFDM
parameters are selected as in Table 2.1, where Kd = 672 subcarriers are used for data transmis-
sion out of a total of K = 1024 subcarriers. When constructing the nonbinary LDPC codes, the
coding alphabet is matched to the modulation alphabet, i.e., p = b. Using each OFDM block
to carry exactly one codeword, the codeword length is 672 symbols. Seven modulation-coding
pairs have been constructed in [175], as shown in Table 3.1, with the bandwidth efficiency rang-
ing from 0.5 to 5 bits/symbol. For LDPC codes over GF(64), regular cycle codes as described
in Section 3.5.1 are used [176]. For LDPC codes over GF(q) where q < 64, near regular con-
struction as described in Section 3.5.2 are used.

Assume a signal bandwidth B = 12 kHz, the subcarrier spacing is B∕K = 11.72 Hz, and the
OFDM symbol duration is T = 85.33 ms. Consider a Rayleigh fading multipath channel delay
spread of 10 ms, which will lead to a discrete-time with 120 channel taps in the baseband. For
illustration purpose only, all the channel taps are assumed to be complex Gaussian random
variables with equal variance. Perfect channel knowledge is assumed at the receiver. Perfor-
mance results in an additive white Gaussian noise channel, i.e., g[n] = 1,∀n in (3.27), are also
included as performance benchmarks.

• Performance of different modes. Figure 3.14(a) shows the block-error-rate (BLER) per-
formance of all the modes in Table 3.1 over the AWGN channel, while Figure 3.14(b)
shows the BLER performance in the Rayleigh fading channel. In both figures, the uncoded
bit-error-rate (BER) curves corresponding to the used constellations are also plotted. One
can see that as long as the uncoded BER is somewhat below 0.1, the coding performance
improves drastically. Indeed, the performance curves are very steep in the waterfall region.

• Comparison with convolutional codes based BICM. Figures 3.15(a) and 3.15(b) show the
performance comparisons between a BICM system [52, 459] based on a 64-state rate-1/2
convolutional code with the generator (133, 171) and the proposed nonbinary LDPC coding
system over the AWGN and Rayleigh fading channels, respectively. Gray labeling, random
bit-level interleaver, and soft decision Viterbi decoding are used in the BICM system. We
observe from Figures 3.15(a) and 3.15(b) that compared with the BICM system using the
convolutional code, nonbinary LDPC codes achieve several decibels (varying from 2 to
5 dB) performance gain at BLER of 10−2. Note that the performance of BICM could be

Table 3.1 Nonbinary LDPC codes designed for underwater system. 𝜂 stands for mean column weight.
Each codeword has 672b bits with a size-2b constellation

Mode Bits per symbol Code rate 𝜂 t Galois field Constellation

1 0.5 1∕2 2.8 4 GF(4) BPSK
2 1 1∕2 2.8 4 GF(4) QPSK
3 1.5 1∕2 2.8 4 GF(8) 8-QAM
4 2 1∕2 2.3 3 GF(16) 16-QAM
5 3 1∕2 2.0 - GF(64) 64-QAM
6 4 2∕3 2.0 - GF(64) 64-QAM
7 5 5∕6 2.0 - GF(64) 64-QAM

Source: Huang 2008 [175], Table I, p. 1691. Reproduced with permission of IEEE.
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Figure 3.14 BLER performance of different modes over the AWGN and Rayleigh fading channels.

considerably improved by using more powerful binary codes such as turbo codes and binary
LDPC codes, and through iterative constellation demapping [242]. The comparisons here
provide a basic reference.

3.7 Bibliographical Notes

Channel coding is an area extensively studied ever since Shannon’s classic paper in 1948 [337].
Channel coding is often covered in popular textbooks on digital communication systems, e.g.,
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Figure 3.15 Comparison between LDPC and convolutional codes of rate 1∕2 under different modula-
tion over the AWGN and the Rayleigh fading channels.

Proakis and M. Salehi, 2008 [318], Benedetto and Biglieri, 1999 [30], or on information theory
and learning algorithms, e.g., MacKay, 2003 [270]. There are also many books dedicated to
channel coding, e.g., Blahut, 1985 [46], Wicker, 1995 [433], Lin and Costello, 2004 [247],
Richardson and Urbanke, 2008 [328].
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Classic coding theory often covers topics such as Hamming Codes, BCH codes,
Reed-Solomon codes, Reed-Muller codes, and convolutional codes. The new era of modern
coding theory was marked by the invention of Turbo codes by Berrou, Glavieux, and Thitima-
jshima in 1993 [42]. Following the invention of LDPC codes by Gallager in 1960s [137] and its
rediscovery by MacKay in 1996 [269], major developments on LDPC codes are the extension
to irregular LDPC codes [261, 262] and the extension to higher order Galois field [93].





4
PAPR Control

Due to the superposition of data symbols on a large number of subcarriers, an OFDM waveform
has a large peak-to-average power ratio (PAPR). Since nonlinear amplification causes inter
modulation among subcarriers and undesired out-of-band radiation, the power amplifier at the
transmitter must operate with a large backoff to limit nonlinear distortion. The severity of
the PAPR issue in practical systems depends on the system operating conditions.

• In short range underwater acoustic applications, the average power matters more than
the peak power as the power amplifier is often not working in the full power mode. As
long as the transmitter circuits can handle occasionally large peaks, the PAPR issue is not
a major concern.

• In long range underwater acoustic applications, the power amplifier might work in the full
power mode. With the peak power limited by the hardware, a signal with large PAPR leads
to small average power output, reducing the transmission range. In such scenarios, the PAPR
issue is a major concern.

From the implementation point of view, more bits are needed for quantization to synthesize
a signal with large PAPR, which adds to the transmitter complexity.

Next, we explore the PAPR issue of OFDM modulation, and then present three simple yet
effective PAPR reduction methods.

4.1 PAPR Comparison

Let x̃(t) denote one OFDM block in the passband, as in (2.5). The PAPR is defined as

PAPR ∶=
max

(|x̃(t)|2)
𝔼[|x̃(t)|2] . (4.1)

The PAPR is a random variable, with its value decided by the realization of data and pilot
symbols on OFDM subcarriers. In addition to the mean and variance, the complementary
cumulative distribution function (CCDF) is often used as one performance metric:

CCDF(x) ∶= Pr(PAPR > x). (4.2)

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Now let us evaluate the PAPR of OFDM blocks. First, take samples from the continuous-time
signal

x̃[n] = x̃(t)|t= n
fs
, (4.3)

where fs is the passband sampling rate. Using a reasonably large sampling rate, there is a good
match between the continuous-time and the discrete-time formulation,

PAPR ≈
max

(|x̃[n]|2)
𝔼[|x̃[n]|2] . (4.4)

As a performance benchmark, we consider a discrete-time sequence of length N, where
all elements are independent and identically distributed (i.i.d.) following a standard normal
distribution  (0, 1). The CCDF of the PAPR of such a white noise sequence is

Pr(PAPR > x) = 1 − (1 − 2Q(x))N (4.5)

≈ 2NQ(x), (4.6)

where the Q-function is defined as

Q(x) ∶= 1√
2𝜋 ∫

∞

x
e−

t2

2 dt. (4.7)

Example 4.1

With a system bandwidth B = 6 kHz, center frequency fc = 17 kHz, and sampling rate
fs = 96 kHz, Figure 4.1 shows the PAPR distribution of OFDM modulation as a function
of the number of subcarriers K. Corresponding to different lengths of the OFDM symbol
N = Kfs∕B, the PAPR curves of Gaussian noise in (4.5) are also plotted. As the number
of subcarriers grows, an increase in PAPR is observed, and the PAPR characteristic of the
passband OFDM samples approaches that of Gaussian noise.
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Example 4.2

Now compare the PAPRs of OFDM and single-carrier transmissions. The number of
subcarriers is K = 1024 for OFDM modulation. The single-carrier waveform is generated
according to (1.26), using a raised cosine pulse shaping filter with 25% excess bandwidth.
Figure 4.2 shows the PAPR properties of OFDM and single-carrier transmissions. Clearly,
the PAPR of OFDM signal is not sensitive to the symbol constellation, in contrast to
single-carrier transmission. There is a significant gap in PAPR between OFDM and
a single-carrier signal. However, this gap decreases as the symbol constellation size
increases. At the CCDF value of 10−2, the gap decreases from 6 dB to 4 dB when the
constellation changes from QPSK to 16-QAM.
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Figure 4.2 Comparison of the PAPRs between OFDM and single-carrier transmissions.

4.2 PAPR Reduction

Next, we present three PAPR reduction approaches: clipping, selective mapping, and peak
reduction subcarriers. The first approach introduces signal distortion, while the other two are
distortionless at the expense of some signaling overhead.

4.2.1 Clipping

The transmitter can simply clip the signal before amplification, which provides effective PAPR
reduction and has no side information needed. Since it is a nonlinear process, clipping may
cause significant inband distortion and out-of-band noise.

We here illustrate the clipping effect using a simple model called soft limiter (SL). Operating
in the passband, the SL output is related to its input as

ỹ(t) =
⎧⎪⎨⎪⎩
−A, x̃(t) ≤ −A

x̃(t), |x̃(t)| < A

A, x̃(t) ≥ A.

(4.8)
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Define the clipping ratio Γ as

Γ ∶= A√
Pin

. (4.9)

where Pin is the power of the input signal before clipping.
Clearly, the clipping noise

ẽ(t) = ỹ(t) − x̃(t) (4.10)

is signal dependent. If the clipping ratio is high, clipping may only occur infrequently. In
such a case, the clipping noise is more of an impulse-like noise. On the other hand, one can
decompose the SL output to two uncorrelated signal components as

ỹ(t) = 𝛼x̃(t) + �̃�(t). (4.11)

where 𝛼 is the correlation coefficient. The noise �̃�(t) has both inband and out-of-band
components.

For underwater acoustic communication systems, the out-of-band noise is not of a concern
so far. Let us measure the variance of the inband noise. Let ym denote the FFT output on the mth
subcarrier corresponding to ỹ(t). In each OFDM symbol, there are pilot and null subcarriers,
as specified in Chapter 2. The pilot SNR can be directly measured as

Pilot SNR =
𝔼m∈P

[|ym|2] − 𝔼m∈N

[|ym|2]
𝔼m∈N

[|ym|2] , (4.12)

where P and N are the sets of pilot and null subcarriers, respectively.

Example 4.3

Using the same system parameters as in Example 1, Figure 4.3 shows the measured pilot
SNR as a function of the clipping ratio with both K = 512 and K = 1024. The pilot SNR
measured at the transmitter serves as an upper limit of its counterpart measured at the
receiver. Clearly there is a tradeoff: A smaller clip ratio reduces PAPR, and hence improves
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Figure 4.3 The measured pilot SNR and PAPR with different values of the clipping ratio; QPSK is
used; however, other constellations from BPSK to 64-QAM lead to the same curves.
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the transmission power, but leads to a reduction on the pilot SNR. Depending on the ambient
noise level, an optimal clipping ratio exists to maximize the signal to noise ratio of the
received signal where the noise includes both the clipping noise and the ambient noise.

4.2.2 Selective Mapping

The idea of selective mapping (SLM) was presented in different forms in [279, 401], and [26].
The key idea is that by introducing extra freedom, the transmitter generates a set of sufficiently
different candidate signals which all include the same information. The one with the lowest
PAPR is selected for transmission.

Denote L as the number of candidate signals available, and denote the PAPR value of the ith
candidate signal as PAPRi. The PAPR of the SLM output has a CCDF expressed as

Pr

(
min

i=1,… ,L
PAPRi > x

)
=
(
Pr(PAPRi > x)

)L
, (4.13)

which shows that the SLM method can reduce the PAPR effectively as L increases.
There are different ways of implementing the SLM idea. Phase rotations are applied on the

modulation symbols in [26, 279], where different scramblers are used on the information bits in
[401]. In these results, side information on which signal candidate has been chosen needs to be
transmitted. This causes signaling overhead. In addition, side information has high importance
and has to be strongly protected.

In the modified approach [50], prior to scrambling and channel encoding, additional bits
which are used to select different scrambling code patterns, are inserted to the information
bits; as illustrated in Figure 4.4. This way, the side information bits are contained in the data
and do not need separate encoding.

Following the SLM principle in [50], the fact that the generator matrix an LDPC code has
high density has been used in [175] to reduce PAPR through multiple times of LDPC encoding.
The transmitter operates as follows.

• For each set of information bits to be transmitted within one OFDM block, reserve z bits
for the PAPR reduction purpose.

• For each choice of the values of these z bits, carry out LDPC encoding and OFDM modu-
lation, and calculate the PAPR.

• Out of 2z candidates, select the OFDM symbol with the lowest PAPR for transmission.

Due to the nonsparseness of generator matrix, a single bit change will lead to a drastically
different codeword after LDPC encoding [270]. (For high rate codes such as 3/4, nonsystematic
LDPC codes are preferred relative to systematic codes [175]). Since z is very small, e.g., z = 2,

Scrambler

index
Scrambled information bits

Figure 4.4 The scrambled information bits to be encoded by a channel encoder. The decoded bits will
be scrambled using a descrambler as specified by the scrambler index.
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or z = 4, the reduction on transmission rate is negligible. At the receiver side, those z bits are
simply dropped after channel decoding. This is aligned with the principle in [50], but bypasses
the scrambling operation at the transmitter and the descrambling operation at the receiver.

Example 4.4

Using the same parameters as in Example 1, and pilot allocation specified in Table 2.1,
Figure 4.5 shows the PAPR CCDF curves for different values of z, in which mode 2
specified in Table 3.1 is used for LDPC encoding. Using a nonbinary LDPC code with
4 bits overhead can decrease the PAPR by 2.2 dB relative to the case with no overhead
at the CCDF value of 10−2. As z increases, there is a diminishing return, suggesting that
initial reduction of PAPR through SLM is very effective, while further reduction will get
more difficult. With z = 4 bits, the PAPR of OFDM blocks is essentially varying within
the range of 10.5 dB and 11.5 dB.
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The SLM principle can be applied to single-carrier transmissions as well. Figure 4.6
compares the PAPR of OFDM with single-carrier transmissions, both having K = 1024
information symbols in each data block. After PAPR control, the gaps between OFDM and
single-carrier transmissions at the CCDF of 10−2 are only 3.5 dB and 2.5 dB, for QPSK and
16-QAM, respectively.

4.2.3 Peak Reduction Subcarriers

The idea here is that a set of subcarriers are not used to transmit useful information, but reserved
to reduce the peak power. Let A denote the set of active subcarriers in an OFDM symbol, and
PRC as the set of peak reduction carriers (PRC) [380]. Corresponding to the OFDM expression
in (2.5), the resulting signal is

x̃(t) = 2ℜ

{ ∑
k∈A,k∉PRC

s[k]ej2𝜋fktg(t) +
∑

𝓁∈PRC

p[𝓁]ej2𝜋f𝓁 tg(t)

}
. (4.14)

The symbols {p[𝓁],𝓁 ∈ PRC} do not need to be drawn from the same constellations as infor-
mation symbols s[k], and can be arbitrary.

First the locations of the peak reduction subcarriers have to determined beforehand. Contigu-
ous subcarriers often provides worse results in comparison with randomly distributed subcarri-
ers. Once the locations are determined, the symbols p[𝓁] will be optimized for each individual
block. Optimal and some suboptimal algorithms can be found in e.g., [380].

For underwater acoustic communication systems, so far there is no regulation on out-of-band
radiation. Also, a typical transducer has a rather narrow frequency band, and can serve as a
filter naturally. Hence, the PRC do not need to be within the signal band, and the choice is
termed as out-of-band tone insertion (OTI) in [329]. The transmitted signal is

x̃(t) = 2ℜ

{∑
k∈A

s[k]ej2𝜋fktg(t) +
∑
f𝓁∉

p[𝓁]ej2𝜋f𝓁 tg(t)

}
, (4.15)

where  ∶= [fc − B∕2, fc + B∕2] denotes the useful signal frequency band. Extending the tone
reservation technique to the out-of-band carriers, the PAPR reduction is achieved without a loss
in the data rate, but with slight increase on the average power consumption.

4.3 Bibliographical Notes

The PAPR of OFDM symbols is a random variable. The number of signals with PAPR much
greater than a typical value is small, but the number of signals with PAPR much smaller than the
typical value is also small. Excluding only those signals with high peaks, it requires relatively
little effort to achieve the typical PAPR, and it is hard to decrease the PAPR further [253].

PAPR reduction is an area that has been extensively investigated, where various methods
have been proposed for DSL and wireless OFDM systems. In addition to the clipping [8, 98,
99, 241, 300], selective mapping [26, 163, 279, 401], and peak reduction subcarriers [230, 329,
380] approaches described in this chapter, other methods include coding methods [167], trellis
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shaping [162, 298], tone injection [220, 380, 381], active constellation extension [221], and
partial transmit sequences [288, 382]. These methods can be evaluated and compared based
on different metrics such as the PAPR reduction capability, the distortion on the signals, the
overhead on the data rate, the complexity of implementation, and whether the method requires
some side information to be delivered to the receiver. A comprehensive treatment can be found
in the research monograph by Litsyn, 2007 [253].



5
Receiver Overview and
Preprocessing

Chapters 5 to 17 contain the major body of this book–OFDM receiver design for underwater
acoustic communications. One prominent feature of receiver algorithm design in underwater
communications is that the receiving algorithms are heavily tailored to the characteristics of
underwater acoustic channels, computational capability of system hardware, and desired sys-
tem performance. Given large dynamics of an underwater acoustic environment and high cost
of the system hardware, the primary goal of the receiving algorithm design is to achieve effi-
cient and reliable communications with low computational cost, whereas a tradeoff always
exists between system performance and algorithm complexity. To suit the necessity of various
communication applications, both low-complexity and high-complexity receiving algorithms
have their own merits. Meanwhile, reducing computational complexity while maintaining reli-
able communication performance becomes a major theme of advanced receiver design.

Compared to terrestrial radio communications, one unique feature of underwater acoustic
communications is that communication channels in different applications could exhibit dras-
tically different characteristics, and hence a universal receiver design might not exist. As a
result, different communication applications have to be examined individually. Several typical
communication scenarios will be considered in the following chapters of this book: (i) shallow
water acoustic communications in Chapters 9, 10 and 13, (ii) deep water horizontal acoustic
communications in Chapter 11, (iii) acoustic communications with external interference in
Chapter 12, (iv) distributed multiuser acoustic communications in Chapters 14 and 15, and
(v) underwater relay communications in Chapters 16 and 17. Before moving to the overall
OFDM receiver design in above communication scenarios, the common structural compo-
nents in the OFDM receivers will be discussed in Chapters 5–8, and the major task of OFDM
receiver design for specific communication channels becomes addressing challenges posed by
the channel to particular receiver components.

In this chapter, we will have an overview on the OFDM receiver structure for three types
of channel settings: (i) the single-input single-output (SISO) channel, (ii) the single-input
multi-output (SIMO) channel, and (iii) the multi-input multi-output (MIMO) channel. We start
with a brief description on the overall OFDM receiver structure, then provide detailed discus-
sion on the receiver preprocessing which converts the analogous time-domain waveform to the

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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frequency-domain discrete samples. After the receiver preprocessing, the input–output rela-
tionship between frequency samples and transmitted data symbols in the above three types of
channel settings will be presented, which lay down the foundation for OFDM receiver design
in following chapters. Then, based on two data decoding philosophies, a general overview
on OFDM receivers will be presented. We also look into the system model for CP-OFDM
transmissions, and pinpoint the subtle difference between ZP-OFDM and CP-OFDM receiver
designs. The discussion applies to a variety of communication scenarios we will look into in
later chapters. In the last part of this chapter, numerical results on the OFDM receiver theoret-
ical performance bound will be presented, which will invoke resonance with the performance
of practical receivers to be covered in later chapters.

5.1 OFDM Receiver Overview

A typical OFDM frame structure in each transmission usually includes a detection pream-
ble and a synchronization preamble followed by a number of OFDM symbols; as shown in
Figure 5.1. Correspondingly, the OFDM receiver in UWA communications consists of several
components as shown in Figure 5.2.

• Preamble detection. This module keeps monitoring the environment to detect the arrival of
useful signal, or being more specific, the arrival of the detection preamble. Once the signal
is detected, the receiver starts recording the useful signal for processing.

• Synchronization and Doppler scale estimation. Based on the recorded waveform, this
module estimates the time-of-arrival of useful signal 𝜏0 and the Doppler scaling factor a
caused by platform mobility. These two parameters are used in the subsequent processing,

𝑡
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preamble
1 2 3 𝑁bl

OFDM blocks

Figure 5.1 An example frame structure of OFDM transmission.
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Figure 5.2 Diagram of typical receiver processing modules.
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including the Doppler scaling effect compensation and the OFDM signal partition for
block processing.

• Receiver processing. Based on the estimated time-of-arrival of useful signal, the received
OFDM signal is usually truncated into individual processing units according to the trans-
mitted OFDM block structure. Information symbols within each received OFDM block will
be recovered with an identical processing flow as indicated in Figure 5.2.

Among the above three modules, the receiver processing module is the major component
of an OFDM receiver. Taking the recorded time-domain waveform of one particular block as
input, this module deciphers the transmitted information bits carried by this block. Typical
processing units in this module are illustrated in Figure 5.2, including:

• Receiver preprocessing. At each receiving element, the receiver preprocessing is conducted
to convert the recorded time-domain signal to frequency-domain discrete samples. During
this process, the Doppler scaling effect caused by platform mobility will be compensated.

• Channel estimation. In most scenarios, the communication channel is unknown to receiver.
Prior to parameterizing the channel distortion effect on the transmitted signal, estimation of
channel parameters at each receiving element is necessary.

• Data detection. With the discrete frequency samples and channel estimates at all the receiv-
ing elements, information symbols in the transmitted signal are estimated. The reliability
information on information bits or symbols obtained.

• Channel decoding. Channel coding is an indispensable component in modern communica-
tion systems to approach the Shannon capacity. Taking the data detection results as input,
channel decoder deciphers the transmitted information bits within each OFDM block.

Inspired by the turbo decoding algorithm [42], iterative processing among the above compo-
nents is often adopted to improve system performance through back and forth message passing:
parameters estimated in the preceding iteration can be used as known parameters in the current
iteration [103, 439]. For example, the estimated data symbols from the channel decoder can
be fed back to facilitate channel estimation, which in turn improves data detection and chan-
nel decoding performance. We will defer detailed description on the iterative OFDM receiver
design to Chapter 9 and beyond.

5.2 Receiver Preprocessing

5.2.1 Receiver Preprocessing

The receiver preprocessing consists of Doppler compensation and time-to-frequency domain
conversion. This leads to measurements in the frequency domain, based on which channel
estimation, data detection, and channel decoding are carried out.

5.2.1.1 Two-Step Doppler Compensation

Let a and â denote the accurate and the estimated mean Doppler scaling factor, respectively.
A two-step operation can be performed within each OFDM block to convert the continuous
passband signal ỹ(t) to frequency domain samples at all subcarriers. Due to possible inaccuracy
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in the Doppler scale factor estimation, the channel Doppler scaling effect on the received pass-
band signal ỹ(t) is compensated in two steps.

(i) Main Doppler scale compensation. The main Doppler effect can be removed through a
resampling operation of ỹ(t) with a resampling factor (1 + â), leading to the resampled
signal ỹ

(
t

1+â

)
.

(ii) Residual Doppler shift compensation. After resampling, the effect of residual Doppler
shift can be approximately viewed as due to carrier frequency offset. Assume that 𝜖 is the
estimated residual Doppler shift, the Doppler shift compensation is performed to obtain

z̃(t) = ỹ
( t

1 + â

)
e−j2𝜋𝜖t (5.1)

5.2.1.2 Time-to-Frequency Conversion

The frequency-domain measurement at the mth subcarrier is obtained as

z[m] = ∫
T+Tg

0
z̃(t)e−j2𝜋fmtdt

= ∫
T+Tg

0
ỹ
( t

1 + â

)
e−j2𝜋(fm+𝜖)tdt

= (1 + â)Ỹ((1 + â)(fm + 𝜖)), (5.2)

which indicates that the mth frequency-domain measurement corresponds to the frequency
sample of Ỹ(f ) at the one particular frequency point (1 + â)(fm + 𝜖).

5.2.2 Digital Implementation

5.2.2.1 Passband-to-Baseband Downshifting

Define
Kbl ∶= K + (Tg∕T)K. (5.3)

The passband continuous-time signal ỹ(t) is sampled as

ỹ[n] = ỹ(t)|t=nTs,p
, n = 0, · · · , 𝜆pKbl − 1 (5.4)

where Ts,p ∶= 1∕fs,p denotes the sampling interval, and the passband sampling rate is fs,p =
𝜆pB with 𝜆p being the ratio between the passband sampling rate and the system bandwidth
(c.f. Section 2.4).

The baseband samples can be obtained by passing the passband samples through a low band-
pass filter,

LPF{ỹ[n]e−j2𝜋fcnTs,p}, (5.5)

for n = 0, · · · , 𝜆pKbl − 1, where LPF stands for the low bandpass filtering. For computa-
tional efficiency, a downsampling operation is usually adopted after the passband-to-baseband
downshifting. We denote fs,b ∶= 𝜆bB as the baseband sampling rate, with a sampling interval
Ts,b ∶= 1∕fs,b. The baseband sample is denoted as y[n], with n = 0, · · · , 𝜆bKbl − 1.
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5.2.2.2 Method 1: Interpolation and FFT

Based on the discrete time-domain sample y[n], the frequency-domain sample z[m] can
be obtained via a two-step operation: Doppler-scale compensation and time-to-frequency
transformation. The mean Doppler-scale compensation can be achieved via a sampling-rate
conversion, and the time-to-frequency transform can be accomplished via the fast Fourier
transform (FFT). We next illustrate the two-step approach in detail.

Denote yr(t) as the baseband signal of ỹr(t) = ỹ(t∕(1 + â)). We have

yr(t) = y
( t

1 + â

)
e−j2𝜋âfc

t
1+â , t ∈ [0, Tbl]. (5.6)

According to the sampling theory [317, Chapter 6], the continuous-time baseband signal
y(t)e−j2𝜋âfct can be expressed as

y(t)e−j2𝜋âfct =
∞∑

n=−∞
y[n]e−j2𝜋âfcnTs,b p(t − nTs,b) (5.7)

where p(t) is the interpolation function for signal reconstruction,

p(t) =
sin(𝜋t∕Ts,b)
𝜋t∕Ts,b

. (5.8)

Substituting (5.7) into (5.6) yields

yr(t) =
∞∑

n=−∞
y[n]e−j2𝜋âfcnTs,b p

( t
1 + â

− nTs,b

)
. (5.9)

Denote yr[l] as the discrete sample of yr(t) at a rate fs,b

yr[l] = yr(t)|t=lTs,b
(5.10)

which can be formulated as

yr[l] =
∞∑

n=−∞
y[n]e−j2𝜋âfcnTs,b p

(
lTs,b

1 + â
− nTs,b

)
. (5.11)

Define

Ts,b =
Ts,b

1 + â
. (5.12)

We rewrite (5.11) as

yr[l] =
∞∑

n=−∞
y[n]e−j2𝜋âfcnTs,b p(lTs,b − nTs,b) (5.13)

which shows that the mean Doppler compensation can be achieved by changing the sampling
rate of the discrete time-domain samples y[n]e−j2𝜋âfcnTs,b from 1∕Ts,b to a new sampling
rate 1∕Ts,b.

There are many approaches for signal sampling-rate conversion. Here we present two
approaches applicable in two different scenarios.
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Upsampler

by 𝐼r

Bandpass

filter

Downsampler

by 𝐷r

𝑦r[𝑛]𝑦[𝑛]𝑒−𝑗2πâ𝑓𝑐𝑛𝑇s,b

Sampling rate 𝐼r𝑓s,b

Figure 5.3 Sampling-rate conversion via interpolation and decimation.

• Large Doppler scale factor. For large values of â, one canonical procedure for sampling-rate
conversion is based on signal interpolation and decimation [317, Chapter 11] [338]. We
express the ratio Ts,b∕Ts,b as a rational number

Ts,b

Ts,b
=

Dr

Ir
= 1

1 + â
, (5.14)

where Dr and Ir are relative prime integers. The sampling-rate conversion can be achieved
by an interpolator of a factor Ir and a decimator of a factor Dr, as shown in Figure 5.3.
A bandpass filter is introduced to avoid aliasing in the interpolation and decimation process.
A polyphase filter structure can be used to implement the interpolator and decimator with
high computational efficiency [317, Chapter 11].

In some scenarios, Ir and Dr could be too large for implementation. One can approximate
1∕(1 + â) in (5.14) using smaller values of Ir and Dr at the expense of signal distortion.

• Small Doppler scale factor. Note that in practical underwater communication systems, the
Doppler scaling factor â can be very small. For example, with a platform speed 𝑣0 = 1.5 m/s,
the Doppler scale is a = 0.001. The interpolation and decimation factors are Ir = 1001 and
Dr = 1000, which require a very high computational load. Hence, in the scenario with small
values of â, direct calculation of (5.11) tends to be more efficient.

Notice that the operation in (5.9) can be interpreted as a convolution between the dis-
crete sequence y[n]e−j2𝜋âfcnTs,b and a continuous signal p(t∕(1 + â)). Corresponding to the
windowing method in the finite-impulse-response (FIR) filter design, the Doppler compen-
sated signal yr(t) can be closely reconstructed by replacing the infinite summation in (5.9)
by a finite summation in the practical implementation. To accommodate various values of
â, the discrete samples of p(t) can be pre-computed at a very high sampling rate, stored in a
lookup table, and interpolation can be used to calculate values of p(t) at arbitrary points. For
extremely small values of â, a very high sampling rate of p(t) is necessary to achieve a rea-
sonable reconstruction accuracy, which could incur a very large storage requirement. More
detailed studies on the interpolation-based sampling-rate conversion can be found from the
CCRMA group in Stanford University [66].

Once yr[l] is obtained, the residual Doppler shift can be compensated by multiplying yr[l]
with e−j2𝜋𝜖lTs,b . The frequency sample z[m] can then be obtained via a 𝜆bK-point FFT.

5.2.2.3 Method 2: Chirp z-Transform

Compared to the two-step approach, an alternative approach to the Doppler-scale com-
pensation operates in the frequency domain using the chirp z-transform (CZT) [317,
Chapter 8] [323].
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Figure 5.4 Illustration of CZT-based frequency-domain sampling.

With the baseband sample y[n], a direct calculation of (5.2) is

z[m] = (1 + â)
𝜆bKbl−1∑

n=0

y[n]e−j2𝜋
[
(1+â)

(
m
T
+𝜖

)
+âfc

]
n
𝜆bB . (5.15)

For illustration convenience, we redefine the frequency sample index 𝓁 = m + K∕2, with
𝓁 = 0, 1, · · · ,K − 1. The frequency sample in (5.15) can be reformulated as

z[𝓁 − K∕2] = (1 + â)
𝜆bKbl−1∑

n=0

y[n]e−j2𝜋
[
(1+â)

(
𝓁
T
− K

2T

)
+(1+â)𝜖+âfc

]
n
𝜆bB . (5.16)

Define

A ∶= e
−j2𝜋

[ (1+â)𝜖+âfc
𝜆bB

− 1+â
2𝜆b

]
, V ∶= e

j2𝜋(1+â) 1
𝜆bK . (5.17)

We have (5.16) rewritten as

z[𝓁 − K∕2] =
𝜆bKbl−1∑

n=0

y[n]A−nV−nl, (5.18)

for 𝓁 = 0, · · · ,K − 1. From (5.18), we can see that the discrete sample z[𝓁 − K∕2] corresponds
to sampling the z-transform of sequence y[n] over an arc of unit circle: the starting point of the
arc is defined by A, while the sampling interval over the arc is determined by V , as illustrated in
Figure 5.4. The transform in (5.18), corresponding to the chirp z-transform, can be evaluated
via FFT [317, Chapter 8] [323].

Relative to the first implementation method which performs sampling-rate conversion
and time-to-frequency transform individually, the CZT-based method yields frequency
samples directly based on discrete time-domain samples, hence achieves a higher accuracy
without making any approximation for complexity reduction. Meanwhile, leveraging FFT,
the CZT-based approach may require a lower complexity compared to the step-by-step
implementation.

5.2.3 Frequency-Domain Oversampling

Notice that for each ZP-OFDM block, a total of Kbl time-domain samples are obtained with
a baseband sampling rate, which contain all useful information about the current block, while
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there are only K < Kbl frequency-domain samples are retained after the time-to-frequency
transform. Hence, to avoid information loss, the frequency-domain oversampling is neces-
sary, especially in time-varying channels [424]. In Chapters 14 and 15, we will see that the
frequency-domain oversampling is necessary for purpose of converting samples from fre-
quency domain to time domain.

Define
f̌m̌ = fc +

m̌
𝛼T
, m̌ = −𝛼K

2
, … ,

𝛼K
2

− 1, (5.19)

where 𝛼 > 1 is an integer oversampling factor, m̌ and k are indices of the oversampled mea-
surements and the physical subcarriers, respectively. The frequency-domain samples at the
frequency oversampling point f̌m̌ is

z[m̌] = (1 + â)Ỹ
(
(1 + â)(f̌m̌ + 𝜖)

)
. (5.20)

Similar to the frequency-domain sampling with a sampling rate of 1∕T , the discrete samples
in (5.20) can be obtained via the two implementation methods discussed above. In particular
for the two-step implementation approach, an 𝛼K-point FFT operation will be performed after
padding (𝛼K − Kbl) zeros to the baseband samples after Doppler shift compensation.

5.3 Frequency-Domain Input–Output Relationship

5.3.1 Single-Input Single-Output Channel

We consider a path-based channel with path-specific Doppler scales defined in (1.14). Assume
that the channel consists of Npa discrete paths, with a triplet (Ap, 𝜏p, ap) representing the ampli-
tude, initial delay and Doppler rate of the pth path, respectively. Denote x̃(t) as the transmitted
passband signal. The received signal is expressed as

ỹ(t) =
Npa∑
p=1

Apx̃((1 + ap)t − 𝜏p) + ñ(t). (5.21)

The two-step Doppler compensation in (5.1) leads to

z̃(t) =
Npa∑
p=1

Apx̃

(1 + ap

1 + â
t − 𝜏p

)
e−j2𝜋𝜖t + �̃�(t), (5.22)

where the Doppler compensated noise is denoted by

�̃�(t) = ñ
( t

1 + â

)
e−j2𝜋𝜖t (5.23)

Based on the transmitted signal formula in (2.6) and the time-to-frequency conversion in
(5.2), the input–output relationship between the discrete frequency samples and the transmit-
ted symbols is expressed as

z[m] =
K∕2−1∑

k=−K∕2

H[m, k]s[k] +𝑤[m], m = −K
2
, … ,

K
2
− 1 (5.24)
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where 𝑤[m] is the noise sample in the frequency domain, and H[m, k] is the ICI coefficient
which specifies the contribution of the symbol transmitted on the kth subcarrier to the output
on the mth subcarrier. The ICI coefficient can be represented by the Npa path parameters as

H[m, k] =
Npa∑
p=1

𝜉pe−j2𝜋 m
T
𝜏p G

(
fm + 𝜖
1 + bp

− fk

)
, (5.25)

with

bp ∶=
ap − â

1 + â
, 𝜉p ∶=

Ap

1 + bp
e−j2𝜋(fc+𝜖)𝜏p , 𝜏p ∶=

𝜏p

1 + bp
. (5.26)

Using a matrix-vector notation, we can rewrite (5.24) as

⎡⎢⎢⎢⎣
z[−K

2
]

⋮

z[K
2
− 1]

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∶=z

=
⎡⎢⎢⎢⎣

H[−K
2
,−K

2
] · · · H[−K

2
,

K
2
− 1]

⋮ ⋱ ⋮

H[K
2
− 1,−K

2
] · · · H[K

2
− 1, K

2
− 1]

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=H

⎡⎢⎢⎢⎣
s[−K

2
]

⋮

s[K
2
− 1]

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∶=s

+
⎡⎢⎢⎢⎣
𝑤[−K

2
]

⋮

𝑤[K
2
− 1]

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

∶=w

(5.27)

which can be compactly expressed as

z = Hs + w. (5.28)

The channel mixing matrix H is specified by Npa triplets {𝜉p, 𝜏p, bp},

H =
Npa∑
p=1

𝜉p𝚲(𝜏p)𝚪(bp, 𝜖) (5.29)

where 𝚲(𝜏) is a K × K generic diagonal matrix with the mth diagonal entry,

[𝚲(𝜏)]m,m = e−j2𝜋 m
T
𝜏 , (5.30)

and 𝚪(b, 𝜖) is a K × K generic matrix with the (m, k)th entry,

[𝚪(b, 𝜖)]m,k = G

(
fm + 𝜖
1 + b

− fk

)
. (5.31)

5.3.2 Single-Input Multi-Output Channel

For a SIMO channel with Nr receiving elements as shown in Figure 2.8, denote Npa,𝜈 as
the number of paths between the transmitter and the 𝜈th receiving element, and the triplet
(A𝜈,p, 𝜏𝜈,p, a𝜈,p) is similarly defined as (Ap, 𝜏p, ap). With a transmitted signal x̃(t), the received
signal at the 𝜈th element is

ỹ𝜈(t) =
Npa,𝜈∑
p=1

A𝜈,px̃((1 + a𝜈,p)t − 𝜏𝜈,p) + ñ𝜈(t). (5.32)
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Based on the transmitted signal formula in (2.6) and the time-to-frequency conversion in
(5.2), the frequency measurement in the mth subcarrier can be expressed as

z𝜈[m] =
K∕2−1∑

k=−K∕2

H𝜈,𝜇[m, k]s[k] +𝑤𝜈[m], m = −K
2
, … ,

K
2
− 1 (5.33)

where the channel coefficient H𝜈[m, k] is similarly defined as H[m, k] in (5.25),

H𝜈[m, k] =
Npa,𝜈∑
p=1

𝜉𝜈,pe−j2𝜋 m
T
𝜏𝜈,p G

(
fm + 𝜖𝜈
1 + b𝜈,p

− fk

)
, (5.34)

with {𝜉𝜈,p, 𝜏𝜈,p, b𝜈,p} similarly defined as {𝜉p, 𝜏p, bp} in (5.26) based on {A𝜈,p, 𝜏𝜈,p, a𝜈,p}.
Hence, a compact expression of the discrete input–output relationship is

z𝜈 =
Nt∑
𝜇=1

H𝜈,𝜇s + w𝜈, (5.35)

for 𝜈 = 1, · · · ,Nr, with

H𝜈 =
Npa,𝜈∑
p=1

𝜉𝜈,p𝚲(𝜏𝜈,p)𝚪(b𝜈,p, 𝜖𝜈). (5.36)

The input–output relationship in (5.35) can also be put in a matrix form as

⎡⎢⎢⎣
z1
⋮

zNr

⎤⎥⎥⎦ =
⎡⎢⎢⎣

H1
⋮

HNr

⎤⎥⎥⎦ s +
⎡⎢⎢⎣

w1
⋮

wNr

⎤⎥⎥⎦ . (5.37)

5.3.3 Multi-Input Multi-Output Channel

For a MIMO channel with Nt transmitters and Nr receiving elements as shown in Figure 2.11,
denote Npa,𝜈,𝜇 as the number of paths between the 𝜇th transmitter and the 𝜈th receiving ele-
ment, and the triplet (A𝜈,𝜇,p, 𝜏𝜈,𝜇,p, a𝜈,𝜇,p) is similarly defined as (Ap, 𝜏p, ap). Define x̃𝜇(t) as the
transmitted signal from the 𝜇th transmitter. The received signal at the 𝜈th receiving element is

ỹ𝜈(t) =
Nt∑
𝜇=1

Npa,𝜈,𝜇∑
p=1

A𝜈,𝜇,px̃
(
(1 + a𝜈,𝜇,p)t − 𝜏𝜈,𝜇,p

)
+ ñ𝜈(t). (5.38)

Based on the transmitted signal formula in (2.6) and the time-to-frequency conversion in
(5.2), the frequency measurement in the mth subcarrier can be expressed as

z𝜈[m] =
Nt∑
𝜇=1

K∕2−1∑
k=−K∕2

H𝜈,𝜇[m, k]s𝜇[k] +𝑤𝜈[m], m = −K
2
, … ,

K
2
− 1 (5.39)
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where the channel coefficient H𝜈,𝜇[m, k] is similarly defined as H[m, k] in (5.25),

H𝜈,𝜇[m, k] =
Npa,𝜈,𝜇∑

p=1

𝜉𝜈,𝜇,pe−j2𝜋 m
T
𝜏𝜈,𝜇,p G

(
fm + 𝜖𝜈

1 + b𝜈,𝜇,p
− fk

)
, (5.40)

with {𝜉𝜈,𝜇,p, 𝜏𝜈,𝜇,p, b𝜈,𝜇,p} similarly defined as {𝜉p, 𝜏p, bp} in (5.26) based on {A𝜈,𝜇,p, 𝜏𝜈,𝜇,p,
a𝜈,𝜇,p}.

Hence, a compact expression of the discrete input–output relationship is

z𝜈 =
Nt∑
𝜇=1

H𝜈,𝜇s𝜇 + w𝜈, (5.41)

with channel mixing matrices

H𝜈,𝜇 =
Npa,𝜈,𝜇∑

p=1

𝜉𝜈,𝜇,p𝚲(𝜏𝜈,𝜇,p)𝚪(b𝜈,𝜇,p, 𝜖𝜈), (5.42)

for 𝜈 = 1, · · · ,Nr, and 𝜇 = 1, · · · ,Nt. The input–output relationship in (5.41) can also be put
into a matrix form as ⎡⎢⎢⎢⎣

z1

⋮

zNr

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

H1,1 · · · H1,Nt

⋮ ⋱ ⋮

HNr,1
· · · HNr,Nt

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

s1

⋮

sNt

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

w1

⋮

wNr

⎤⎥⎥⎥⎦ . (5.43)

5.3.4 Channel Matrix Structure

We take the SISO channel as an example to illustrate different structures of the channel matrix
in both time-invariant and time-varying environments. From (5.29) we see that the channel
matrix structure is determined by the matrix 𝚪(bp, 𝜖) defined in (5.31). For a rectangular pulse
shaping window in (2.9), we have the following observations on the channel matrix structure.

• In the time-invariant channel defined in (1.18) with bp = 0 and 𝜖 = 0, we have

[𝚪(bp, 𝜖)]m,k =

{
1, ∀m = k

0, ∀m ≠ k
(5.44)

which leads to a diagonal channel matrix H with the mth diagonal element expressed as

H[m] =
Npa∑
p=1

𝜉pe−j2𝜋 m
T
𝜏p , (5.45)

indicating that the orthogonality of subcarriers is well preserved in the received signal.
• In the time-varying channel defined in (1.14) with bp ≠ 0 and 𝜖 ≠ 0, we have

[𝚪(bp, 𝜖)]m,k ≠ 0, ∀m, k (5.46)

which leads to a full channel matrix, with its off-diagonal elements characterizing ICI in the
received signal.
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5.4 OFDM Receiver Categorization

Based on the input-output relationship in (5.28), (5.37) and (5.43), two types of OFDM
receivers exist for block processing:

• The ICI-ignorant receiver which takes the potential ICI in the received signal as ambient
noise. This type of receivers applies to the time-invariant channel, or the time-varying chan-
nel with computational capability constraint at receiver.

• The ICI-aware receiver which addresses ICI explicitly in receiver processing. This type of
receivers applies to the time-varying channel with a reasonable computational capability
at receiver.

For the OFDM transmission with multiple blocks, two methodologies exist for block-level
processing:

• The block-by-block processing which decodes received blocks individually. This type of
receivers assumes a large channel variation from one block to the next, having robust per-
formance in underwater communication systems.

• The block-to-block processing where the processing results of preceding blocks (e.g., the
channel estimate) is used for decoding the current block. This type of receivers enjoys a high
system throughput by reducing the number of pilots for channel estimation, but relying on
the channel coherence across blocks.

We next give a brief description about the above receiver design and processing methods.

5.4.1 ICI-Ignorant Receiver

Assuming the absence of ICI, the channel matrix H is taken as a diagonal matrix. The
input–output relationship of the three transmission systems is simplified as

• SISO channel

z[m] = H[m]s[m] + 𝜂[m] (5.47)

where the equivalent noise is

𝜂[m] =
∑
k≠m

H[m, k]s[k] +𝑤[m]. (5.48)

• SIMO channel

z𝜈[m] = H𝜈[m]s[m] + 𝜂𝜈[m], 𝜈 = 1, · · · ,Nr (5.49)

where the equivalent noise is

𝜂𝜈[m] =
∑
k≠m

H𝜈[m, k]s[k] +𝑤𝜈[m], 𝜈 = 1, · · · ,Nr (5.50)
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• MIMO channel

z𝜈[m] =
Nt∑
𝜇=1

H𝜈,𝜇[m]s𝜇[m] + 𝜂𝜈[m], 𝜈 = 1, · · · ,Nr (5.51)

where the equivalent noise is

𝜂𝜈[m] =
Nt∑
𝜇=1

∑
k≠m

H𝜈,𝜇[m, k]s𝜇[k] +𝑤𝜈[m], 𝜈 = 1, · · · ,Nr (5.52)

In (5.47), (5.49) and (5.51), the noise term 𝜂[m] or 𝜂𝜈[m] is formed by the ambient noise
and the ignored ICI. Based on the above input–output relationship, ICI-ignorant receiver pro-
cessing can be performed. With the frequency measurements at the pilot subcarriers, either
the least-squares based method or the compressive-sensing based sparse channel estimation
method can be adopted to estimate the channel path parameters, which are then used to recon-
struct the channel coefficients at the data subcarriers. The symbol detection is individually
performed for each data subcarrier, which is followed by channel decoding to recover infor-
mation bits.

5.4.2 ICI-Aware Receiver

As discussed in Section 5.3.4, the channel matrix H is full in time-varying channels. How-
ever, the ICI dispersion described by (5.31) reveals that the ICI at one subcarrier is mainly
contributed by subcarriers within its near neighborhood. For a reasonable receiver processing
complexity, a banded-ICI assumption is usually adopted [185, 196, 232, 332], by assuming
that each symbol only affects its D direct neighbors on each side, i.e.,

[𝚪(bp, 𝜖)]m,k ≃ 0, ∀|m − k| > D (5.53)

which leads to
H[m, k] ≃ 0, ∀|m − k| > D (5.54)

As illustrated in Figure 5.5, a banded channel matrix HD can be defined to approximate the
full channel matrix H, with its (m, k)th element formulated as

HD[m, k] =

{
H[m, k], |m − k| ≤ D,

0, |m − k| > D.
(5.55)

With the band-limited ICI assumption of the channel matrix, the effective system model
becomes

• SISO channel

z[m] =
m+D∑

k=m−D

H[m, k]s[k] + 𝜂[m] (5.56)



84 OFDM for Underwater Acoustic Communications
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Figure 5.5 The equivalent system model with different ICI depths.

where the equivalent noise is

𝜂[m] =
∑

|k−m|>D

H[m, k]s[k] +𝑤[m]. (5.57)

• SIMO channel

z𝜈[m] =
m+D∑

k=m−D

H𝜈[m, k]s[k] + 𝜂𝜈[m] 𝜈 = 1, · · · ,Nr (5.58)

where the equivalent noise is

𝜂𝜈[m] =
∑

|k−m|>D

H𝜈[m, k]s[k] +𝑤𝜈[m], 𝜈 = 1, · · · ,Nr (5.59)

• MIMO channel

z𝜈[m] =
Nt∑
𝜇=1

m+D∑
k=m−D

H𝜈,𝜇[m, k]s𝜇[k] + 𝜂𝜈[m], 𝜈 = 1, · · · ,Nr (5.60)

where the equivalent noise is

𝜂𝜈[m] =
Nt∑
𝜇=1

∑
|k−m|>D

H𝜈,𝜇[m, k]s𝜇[k] +𝑤𝜈[m], 𝜈 = 1, · · · ,Nr (5.61)

Building upon the above input–output relationship, the receiver processing with an explicit
consideration of ICI can be performed for information bits recovery. To reconstruct the chan-
nel matrix based on the frequency measurements at both pilot and null subcarriers, a sparse
channel estimator can be adopted. Based on the estimated channel matrix H, multiple symbol
detection algorithms can be employed to estimate the transmitted symbol, such as the maxi-
mum a posteriori probability (MAP) algorithm, the trellis-based message passing algorithm,
and the linear minimum mean squared error (LMMSE) algorithm. The transmitted information
bits are then recovered by a channel decoder.
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5.4.3 Block-by-Block Processing

The block-by-block processing takes each received OFDM block as one processing unit, and
performs channel estimation, symbol detection and channel decoding within each block; as
illustrated in Figure 5.2. The processing procedure ignores the channel coherence property
across blocks, hence has robust performance in channels with large variations.

5.4.4 Block-to-Block Processing

Relative to the block-by-block processing, the block-to-block processing exploits the pro-
cessing results of preceding blocks to facilitate the decoding process of the current block.
Depending on communication scenarios, different processing results from preceding blocks
can be used. For example, in Chapter 10, we will see that in shallow water communications
with a large channel coherence time, channel estimates from preceding blocks can be used for
channel estimation in the current block for systems with a small number of pilot subcarriers.
In Chapter 11, we will see that in the deep water horizontal communications, data decoding
results of preceding and succeeding blocks will be used for interblock interference cancellation
at the current block.

5.4.5 Discussion

With the above receiver processing procedures, there are four different combinations of
receiver structures. The desirable combination depends on the channel characteristics,
receiver computational capability, and targeted performance of one particular communication
system. In the following chapters, different combinations will be used for in different
application scenarios.

5.5 Receiver Performance Bound with Simulated Channels

Define 𝜎2
s as the average symbol energy, and 𝜎2

𝑤 as the ambient noise variance. The average
SNR of the received OFDM signal is

𝛾 =
𝜎2

s

𝜎2
𝑤

(5.62)

Let R denote the data rate in the unit of bits/symbol. Assuming that the symbols are Gaus-
sian distributed and perfect channel state information (CSI) is available at receiver, the outage
probability with full ICI equalization is formulated as

pout(𝛾,R) = Pr
{

log2
|||IK + 𝛾HHH||| < R

}
. (5.63)

For the time-varying channel with a banded assumption of ICI, the signal-to-interference-
and-noise ratio (SINR) is defined as

𝛾D ∶=
𝜎2

s

𝜎2
𝑤 + 1

K
tr(H−

D(H
−
D)H)𝜎

2
s

(5.64)
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with H−
D ∶= H − HD. Note that the residual ICI is colored. The outage probability is thus upper

bounded by

pout(𝛾,R,D) ≤ Pr
{

log2
|||IK + 𝛾DHDHH

D
||| < R

}
. (5.65)

5.5.1 Simulating Underwater Acoustic Channels

Based on the path-based channel model in Section 1.3, we simulate the underwater acoustic
channel by randomly generating Npa paths individually. Specifically, the amplitude, delay and
Doppler scale of each path are generated as follows.

• Delay: The interarrival time of paths is generated following an exponential distribution with
mean Δ𝜏, which leads to an average channel delay spread NpaΔ𝜏.

• Amplitude: The path amplitude is generated according a Rayleigh distribution with the
average power exponentially decreasing with delay. We denote ΔPpa dB as the average
path-power difference between the beginning and the end of the guard interval of length Tg.

• Doppler scale: We define 𝑣0 m/s as the relative platform moving speed between the trans-
mitter and receiver, and 𝑣p as the speed of the pth path. To simulate a time-varying chan-
nel, the speed of each path is drawn from a uniform distribution within the interval [𝑣0 −√

3𝜎v, 𝑣0 +
√

3𝜎v]m/s which leads to a standard deviation of 𝜎v m/s. Hence, the maximum
Doppler rate of each path is

√
3𝜎vfc∕c where c = 1500 m/s denotes the nominal sound speed

in water.

In the following chapters, the underwater acoustic channel will be simulated according to the
above specification. Two examples of the simulated channel profiles are shown in Figure 1.6,
with channel parameters: Npa = 15, Δ𝜏 = 1 ms, ΔPpa = 20 dB, Tg = 24.6 ms, and 𝑣0 = 0 m/s
and 𝜎v = 0 m/s for the time-invariant channel, 𝑣0 = 0.2 m/s and 𝜎v = 0 m/s for the channel
with a common Doppler, and 𝑣0 = 0 m/s and 𝜎v = 0.25 m/s for the channel with path-specific
Doppler scales.

5.5.2 ICI Effect in Time-Varying Channels

We use a numerical example to gain insights on the ICI level in the time-varying channel
with different path-speed variances. Consider a stationary system with center frequency fc =
13 kHz, symbol duration T = 104.86 ms, guard interval Tg = 24.6 ms, and subcarrier spacing
Δf = 9.54 Hz. The underwater acoustic channel is assumed consisting of Npa = 15 paths, and
simulated with parameters Δ𝜏 = 1 ms, ΔPpa = 20 dB, 𝑣0 = 0 m/s and a varying 𝜎v.

Figure 5.6(a) shows the average ICI power 𝔼{|H[m,m − D]|2} normalized by the desired
signal power 𝔼{|H[m,m]|2}, as a function of the relative subcarrier index for various standard
deviation of path speed 𝜎v. The ICI coefficients are calculated based on full CSI. As expected,
the average ICI power decreases as the ICI index increases. Most of the symbol energy concen-
trates around the neighborhood of the desired subcarrier, while the ICI energy increases with
𝜎v. Hence, it is necessary to increase the considered ICI depth when the path-speed variation
𝜎v increases.
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Figure 5.6 Illustration on ICI in time-varying channels.
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Figure 5.7 Outage performance of the ICI-ignorant/-aware receiver with full CSI, R = 1 bit/sec/Hz.

Figure 5.6(b) shows the normalized signal-to-ICI ratio (SIR) with different values of ICI
depth D,

𝛾SIR = 𝔼
m∈all

[∑
k∶|k−m|≤D|H[m, k]|2∑
k∶|k−m|>D|H[m, k]|2

]
. (5.66)

One can see that SIR increases as the considered ICI depth increase, which again reveals that
a larger ICI depth is desirable as the channel path-speed variation increases.

5.5.3 Outage Performance of SISO Channel

With identical system and channel settings in Section 5.5.2, Figures 5.7 and 5.8 show the
outage performance of a SISO channel in time-varying channels under different path-speed
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Figure 5.8 Outage performance of the ICI-aware receiver with full CSI, SNR = 1 dB.

variations. Agreeing with observations in Figure 5.6(b), the outage performance improves as
the ICI depth D increases. For a time-varying channel with a small channel path variation, the
outage performance converges fast with small values of D, while for a channel with a large
channel path variation, a larger D is necessary to achieve an ideal performance.

5.6 Extension to CP-OFDM

As an alternative to ZP-OFDM, CP-OFDM has also been used in many multicarrier underwater
acoustic communication systems. As shown in Chapter 2, the two signalling formats share a
majority of common features, and have differences as well. We next take the SISO channel as
an example to illustrate the difference between ZP- and CP-OFDM receiving processing. The
discussion applies to both SIMO and MIMO channels.

5.6.1 Receiver Preprocessing

Similar to (5.21), after passing through a time-varying channel with path-specific Doppler
scales, the CP-OFDM waveform at receiver side can be expressed as

ỹcp(t) =
Npa∑
p=1

Apx̃cp

(
(1 + ap)t − 𝜏p

)
+ ñcp(t), (5.67)

where ñcp(t) is the ambient noise, and the transmitted signal x̃cp(t) is described in (2.19).
During the receiver preprocessing, the two-step Doppler compensation approach for

ZP-OFDM can be applied directly to CP-OFDM. Different from the time-to-frequency
conversion of ZP-OFDM in (5.2), the frequency-domain samples of CP-OFDM after
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removing the cyclic prefix at the front of each block, can be obtained as

zcp[m] = ∫
T

0
ỹcp

( t
1 + â

)
e−j2𝜋(fm+𝜖)tdt. (5.68)

5.6.2 Frequency-Domain Input–Output Relationship

Based on (2.19) and (5.67), one can reformulate (5.68) as

zcp[m] =
K∕2−1∑

k=−K∕2

Hcp[m, k]scp[k] +𝑤cp[m], m = −K
2
, · · · , K

2
− 1 (5.69)

where 𝑤cp[m] corresponds to the noise sample in frequency domain, and the channel coeffi-
cient Hcp[m, k] is expressed as

Hcp[m, k] =
Npa∑
p=1

𝜉cp,pe−j2𝜋 k
T
𝜏p Grec(fm + 𝜖 − (1 + bp)fk) (5.70)

with Grec(f ) denoting the Fourier transform of the rectangular pulse shaping window in (2.10),
bp being defined in (5.26), and

𝜉cp,p ∶= Ape−j2𝜋fc𝜏p . (5.71)

Stacking frequency samples into a vector yields the matrix-vector expression,

zcp = Hcpscp + wcp (5.72)

where the channel matrix can be expressed as

Hcp =
Npa∑
p=1

𝜉cp,p𝚪(bp, 𝜖)𝚲(𝜏p). (5.73)

Comparing (5.24) with (5.69), one can see that CP-OFDM has an identical input–output
relationship structure as ZP-OFDM, except a slight difference between the channel coefficient
expressions in (5.25) and (5.70), which leads to different orders of 𝚪(⋅) and 𝚲(⋅) in (5.29) and
(5.73).

Despite the difference, discussions on the channel matrix structure for ZP-OFDM in
Section 5.3.4 carries over to the channel matrix Hcp in (5.73). Therefore, the receiver
processing techniques for one signalling format can be easily extended to its alternative with
slight modifications [37, 35].

5.7 Bibliographical Notes

Resampling is one module that is common to underwater sonar and communication appli-
cations. The two-step preprocessing, resampling followed by residual Doppler compensa-
tion, was specifically proposed for OFDM receivers in [235]. The formulation of the channel
input–output relationship for a multipath channel with path-specific Doppler scales was pre-
sented in [38] for ZP-OFDM and in [35, 36] for CP-OFDM.





6
Detection, Synchronization and
Doppler Scale Estimation

In practical communication systems, a vital component of receiver design is to detect the arrival
of the useful signal from the transmitter. As illustrated in Figure 5.1, once the useful signal is
detected, the receiver starts recording the waveform, and employs an appropriate synchroniza-
tion algorithm to identify the starting point of the useful signal from the recorded waveform.
Note that in the presence of platform motions, the transmitted signal is usually dilated or com-
pressed at the receiver side. Synchronization and Doppler scale estimation therefore often
operate together.

Three key components in the OFDM receiver design will be discussed in this chapter.

• Preamble detection. As revealed in Figure 5.1, a preamble is usually transmitted prior
to OFDM blocks for incoming signal detection. Depending on the preamble structure,
two popular methods exist. The first method is to perform cross correlation between the
received signal and the transmitted preamble which is known to the receiver. In this method,
Doppler-insensitive waveforms are usually adopted to account for channel variations.
The second method is to embed certain structure in the transmitted preamble, and signal
detection can be accomplished by monitoring the structure of the incoming signal at the
receiver side. In this method, the receiver can be ignorant of the transmitted preamble and
only needs to know the preamble structure. In this chapter, both methods will be discussed.

• Synchronization. It is well-known that detection and parameter estimation go hand in hand.
The signaling formats for detection apply well to the time-of-arrival and Doppler scale
estimation. Moreover, for ZP-OFDM data symbols which multiplex data, pilot and null
subcarriers, synchronization and Doppler scale estimation can be achieved using the mea-
surements at pilot and null subcarriers.

• Residual Doppler shift estimation. With the estimated Doppler scale factor, resampling the
received signal converts the frequency-dependent Doppler scaling effect to an approxi-
mately frequency-independent Doppler shift which can be taken as the carrier frequency
offset (CFO), a term which is commonly used in radio communications. Note that slight
inaccuracy of Doppler scale estimation could incur severe phase rotation of the resampled

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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samples in the time domain. The residual Doppler shift estimation and compensation are
vital for successful data decoding.

For clarity of presentation, this chapter focuses on detection, synchronization and Doppler
scale estimation in the underwater acoustic OFDM system in a linear time-varying channel
with a common Doppler scale factor

h(t; 𝜏) =
Npa∑
p=1

Ap𝛿(𝜏 − (𝜏p − at)). (6.1)

The developed methods can be applied to general channels with path-specific Doppler scales,
e.g., (1.14), where the Doppler scale estimate can be approximately viewed as the dominant
or the mean Doppler scale of the channel.

The layout of this chapter is as follows.

• In Section 6.1, based on Doppler-insensitive or Doppler-sensitive waveforms, sev-
eral cross-correlation based methods for detection, synchronization and Doppler scale
estimation.

• In Section 6.2, the detection, synchronization and Doppler scale estimation schemes are
developed for a specifically designed waveform, which consists of two identical OFDM
symbols preceded by a cyclic prefix and is referred to as CP-OFDM.

• In Section 6.3, the ZP-OFDM block structure is exploited for synchronization and Doppler
scale estimation. The Doppler scales estimation performance of CP-OFDM and ZP-OFDM
are compared in simulations.

• In Section 6.5, several design examples for practical systems are presented.
• In Section 6.6, the residual Doppler shift estimation methods for ZP-OFDM are discussed

and tested in simulation.

6.1 Cross-Correlation Based Methods

6.1.1 Cross-Correlation Based Detection

6.1.1.1 Matched Filter Processing

Denote H0 as the hypothesis that a useful signal is absent from the incoming waveform, and
H1 as the hypothesis that a useful signal is present. For a time-varying channel depicted in
(1.14), the received waveforms under the two hypotheses are expressed as

ỹ(t) =
⎧⎪⎨⎪⎩

ñ(t) H0 ∶ no useful signal
Npa∑
p=1

Apx((1 + a)t − 𝜏p) + ñ(t) H1 ∶ with useful signal
(6.2)

where ñ(t) is the ambient noise. After downshifting the passband waveform to baseband
and lowpass filtering (LPF), the baseband waveform y(t) ∶= LPF{ỹ(t)e−j2𝜋fct} can be
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formulated as

y(t) =
⎧⎪⎨⎪⎩

n(t) H0 ∶ no useful signal
Npa∑
p=1

Apej2𝜋fc(at−𝜏p)x((1 + a)t − 𝜏p) + n(t) H1 ∶ with useful signal
(6.3)

Taking the transmitted waveform in baseband x(t) as a local template, the matched filter
output of the received waveform can be formulated as

rMF(𝜏) = ∫ x∗(t)y(t + 𝜏)dt. (6.4)

Substituting (6.3) into (6.4) yields

rMF(𝜏) =
⎧⎪⎨⎪⎩

rxn(t) H0 ∶ no useful signal
Npa∑
p=1

Apej2𝜋fc(at−𝜏p)rxx((1 + a)t − 𝜏p) + rxn(t) H1 ∶ with useful signal
(6.5)

where rxx(t) is the auto-correlation function of x(t), and rxn(t) is the correlation between x(t)
and the ambient noise n(t). Let rMF[n] denote the discrete samples of rMF(t) with a baseband
sampling rate fs, b,

rMF[n] = rMF(t)|t= n
fs,b
. (6.6)

Assume that the correlation sample rxn[n] follows a complex Gaussian distribution, i.e.,
rxn[n] ∼  (0, 𝜎2

w). Define the normalized matched filter output squared as

cMF[n] ∶=
|rMF[n]|2
𝜎2

w

(6.7)

which follows a noncentrally chi-squared distribution under H0.
In the time-varying channel conditions, Doppler-insensitive waveforms are desirable for sig-

nal detection. Two popular waveforms widely used in radar and sonar systems are as follows.

Example 6.1

The linear frequency-modulated (LFM) waveform is a Doppler-shift insensitive waveform,
which is often used in narrowband systems. The LFM waveform is formulated as

x̃LFM(t) = 2 cos
[
2𝜋

(
f0t + 1

2
mt2

)]
(6.8)

where f0 is the starting frequency, and m is a frequency sweeping parameter. The instanta-
neous frequency is

fLFM(t) = d
dt

(
f0t + 1

2
mt2

)
= f0 + mt (6.9)

which is linearly proportional to time index t. Given a center frequency fc, the baseband
waveform is formulated as

xLFM(t) = exp
{

j2𝜋
[
(f0 − fc)t +

1
2

mt2
]}

. (6.10)
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The narrowband ambiguity function is defined as

𝜒NB(𝜏, f ) = ∫
∞

−∞
x(t)x∗(t − 𝜏)ej2𝜋ftdt. (6.11)

The absolute value and the contour of the narrowband ambiguity function of an LFM wave-
form are shown in Figure 6.1.
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Figure 6.1 Ambiguity functions of LFM and HFM waveforms, fc = 10 kHz, B = 6 kHz and
T = 200 ms.

Example 6.2

The hyperbolic frequency-modulated (HFM) waveform is a Doppler-scale insensitive
waveform, which is often used in wideband systems. The HFM waveform is formulated as

x̃HFM(t) = 2 cos
[2𝜋

k
ln(1 + kf0t)

]
(6.12)

where k is a design parameter depending on the available frequency band. The
instantaneous frequency is

fHFM(t) = d
dt

[1
k

ln(1 + kf0t)
]
= 1

1
f0
+ kt

. (6.13)
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The instantaneous period of the signal, which is the inverse of the instantaneous frequency,
is proportional to time index t. The HFM waveform is therefore also referred to as the
linear period modulation (LPM) waveform. Given a center frequency fc, the baseband
waveform is formulated as

xHFM(t) = exp
{

j2𝜋
[1

k
ln (1 + kf0t) − fct

]}
. (6.14)

The wideband ambiguity function which is defined as

𝜒WB(𝜏, a) =
√|a|∫ ∞

−∞
x(t)x∗(a(t − 𝜏))dt. (6.15)

The absolute value and the contour of the wideband ambiguity function of a HFM
waveform are shown in Figure 6.1.

6.1.1.2 Test Statistics

Based on the matched filter output, two test statistics are widely used for radar and sonar
detection.

• Thresholding method

max
{|rMF[n]|2} H0

≶
H1

Γth. (6.16)

• Constant false alarm rate (CFAR) test

max{cMF[n]}
H0

≶
H1

Γth. (6.17)

As indicated by its name, through constantly measuring the noise variance, the test statistic
in (6.17) can achieve a constant probability of false alarm.

In the wireless channel with multiple paths, the two methods declare detection based on
the signal propagating along the strongest path, thus incurring performance degradation in
the presence of dense paths and impulsive interferences, especially in underwater environ-
ments. To accommodate multiple propagation paths, two sequential detectors based on the
cumulative sum of the log-likelihood ratio (LLR) of cMF[n] can be used. The LLR of cMF[n]
is formulated as

L(cMF[n]) = ln
f (cMF[n] ∣ H1)
f (cMF[n] ∣ H0)

. (6.18)

• Sequential probability ratio test (SPRT): By approximating that {cMF[n]} are i.i.d., the SPRT
can be used for signal detection, where the cumulative sum of LLR is formulated as

TSPRT[n] = TSPRT[n − 1] + L(cMF[n]). (6.19)
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A stopping rule of SPRT is defined as

𝜙[n] =

{
0 Γ(L)

th < TSPRT[n] ≤ Γ(H)
th

1 TSPRT[n] > Γ(H)
th or TSPRT[n] ≤ Γ(L)

th

(6.20)

and a decision rule is defined as

𝛿[n] =
⎧⎪⎨⎪⎩

0 TSPRT[n] < Γ(L)
th

1 TSPRT[n] > Γ(H)
th

undefined else.

(6.21)

Decision can be made based on 𝛿[ñ], where ñ is the index of the first sample that 𝜙[n] = 1.
The two thresholds Γ(L)

th and Γ(H)
th are determined based on the probability of detection PD

and probability of false alarm PFA [341, 410]:

Γ(L)
th =

1 − PD

1 − PFA
, Γ(H)

th =
PD

PFA
. (6.22)

Note that except the calculation of LLR, SPRT is distribution free, which makes SPRT
very appealing in the scenario with dependent and nonidentically distributed measurement
samples.

• Page test: The cumulative sum of LLR in the Page test is defined as

TPage[n] = max
{

0,TPage[n − 1] + L
(
cMF[n]

)}
, (6.23)

and a decision of H1 is made if

TPage[n] > Γth (6.24)

A careful inspection on (6.19) and (6.23) reveals that Page test based sequential detector
can be taken as a serial execution of multiple SPRTs, hence achieves faster detection of any
change occurring in the data sequence [2].

Note that the LLR computation in (6.18) requires the probability density function of the
normalized matched filter output in the presence and absence of the useful signal. To avoid
such a requirement in the Page test, a locally optimal detector nonlinearity is often used [205].
For the noncentrally chi-squared distributed signal cMF[n], the locally optimal nonlinearity is

L(cMF[n]) = cMF[n] − b (6.25)

where b is a false alarm inhibiting bias. Appropriate choice of b in underwater acoustic appli-
cations can be found in [2]. The bias and the thresholds need to be fine tuned by practical
engineers to achieve a tradeoff between low false alarm rate and high probability of detection.

6.1.2 Cross-Correlation Based Synchronization and Doppler Scale
Estimation

The synchronization preamble is used to estimate the time-of-arrival and the Doppler scale
factor of the useful signal. Two types of waveforms are available for the above purpose.
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Figure 6.2 The wideband ambiguity functions of m-sequence and OFDM waveforms, fc = 10 kHz and
B = 6 kHz.
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Figure 6.3 A bank of cross-correlation branches for time synchronization and Doppler scale estimation.

6.1.2.1 Doppler-Sensitive Waveform

In radar and sonar applications, Doppler sensitive waveforms are usually adopted for joint
time-of-arrival and Doppler scale estimation. Typical Doppler sensitive waveforms include
m-sequence coded waveforms, Costas waveforms, and OFDM waveforms; see the thumbtack
wideband ambiguity functions of the Doppler-sensitive waveforms in Figure 6.2.

Denote T0 as the time duration of the synchronization preamble. Joint estimates of the
time-of-arrival and the Doppler scale factor can be obtained as

(â, 𝜏) = argmax
a,𝜏

|||||∫
T0

0
y(t + 𝜏)x∗ ((1 + a)t) e−j2𝜋afctdt

||||| . (6.26)

The above operation can be implemented via a bank of cross-correlators as shown in Figure 6.3,
where the branch yielding the largest peak provides the needed Doppler scale estimate and
location of the strongest path.

6.1.2.2 Doppler-Insensitive Preamble and Postamble

Besides the Doppler-sensitive waveforms, the Doppler-insensitive waveforms can also be used
for joint time-of-arrival and Doppler scale factor estimation. An example of the signal design is
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Figure 6.4 OFDM frame structure with Doppler-insensitive preamble and postamble.

to transmit two Doppler-insensitive waveforms before and after the useful signal transmission,
respectively; as shown in Figure 6.4 [338].

The time-of-arrivals of the preamble and postamble can be estimated with two matched
filters,

𝜏pre = argmax
𝜏

|||||∫
T0

0
y(t + 𝜏)x∗pre (t) dt

||||| , (6.27)

𝜏post = argmax
𝜏

|||||∫
T0

0
y(t + 𝜏)x∗post (t) dt

||||| . (6.28)

Denote Ttp as the time interval between the starting points of the preamble and postamble in
the transmitted signal, and denote Trp as the time-difference-of-arrival of the preamble and
postamble in the received signal, which can be estimated as

T̂rp = 𝜏post − 𝜏pre. (6.29)

The Doppler scale factor can be estimated as

â =
Ttp

T̂rp

− 1. (6.30)

Compared to the Doppler sensitive waveform, the two-LFM signaling format in Figure 6.4
enjoys a much lower complexity, but suffers a processing delay as it requires the whole data
burst to be buffered before parameter estimation, hence is not appropriate for online receiver
processing.

6.1.2.3 Precise Timing

Note that in underwater acoustic channels with multiple paths, the early arrival paths are not
necessarily the strongest paths. Due to channel fading, the strongest path can appear at random
positions within the delay spread, which is undesirable for the task of data block partitioning
after the synchronization. In contrast, the position of the first path is more stable. Rather than
taking the strongest path at the matched filter output as the time-of-arrival of useful signal, a
precise timing procedure is necessary to locate the first arrival in the presence of multiple paths.
Joint timing and channel estimation methods for fine timing have been investigated in [40, 97,
226, 246, 281, 282]. Note that for communication purposes, OFDM does not require precise
timing. Small or moderate offsets in the time domain translate to phase shifts in the frequency
domain, which can be estimated by pilot tones, or bypassed by differential modulation. For
this reason heuristic precise timing can be achieved based on the sequential test statistics, such
as the SPRT and Page tests which are described in Section 6.1.1.
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6.2 Detection, Synchronization and Doppler Scale Estimation with
CP-OFDM

The cross-correlation based detection and parameter estimation have been widely used in the
radar and sonar literature. Compared to those applications, communication systems usually
operate in the high signal-to-noise regime. This allows diversity in the waveform and algorithm
design, especially tailored to the particular characteristics of communication channels, such as
multipath and fading effects. In this section we present detection, synchronization and Doppler
scale estimation for a specifically designed waveform that consists of two identical OFDM
symbols preceded by a cyclic prefix (CP).

Note that OFDM symbols are Doppler sensitive. The cross-correlation based method dis-
cussed in Section 6.1.2 applies to the designed CP-OFDM waveform by taking one OFDM
symbol as the signal template. This section presents the algorithm design exploiting the embed-
ded signal structure.

6.2.1 CP-OFDM Preamble with Self-Repetition

Consider the CP-OFDM preamble structure in Figure 6.5, which consists of two identical
OFDM symbols of length T0 and a cyclic prefix of length Tcp in front, with an embedded
structure

xcp(t) = xcp(t + T0), −Tcp ≤ t ≤ T0. (6.31)

Let B denote the system bandwidth, and define K0 ∶= BT0 as the number of subcarriers. The
baseband CP-OFDM signal is

xcp(t) =
K0∕2−1∑

k=−K0∕2

d[k]ej2𝜋 k
2T0 q(t), t ∈ [−Tcp, 2T0] (6.32)

where d[k] is the transmitted symbol on the kth subcarrier, with k ∈  ∶= {−K0∕2, · · · ,K0∕2
− 1}, and q(t) is a pulse shaping window,

q(t) =

{
1

T0
, t ∈ [−Tcp, 2T0]

0, elsewhere.
(6.33)

The passband signal can be obtained as x̃cp(t) = 2ℜ{xcp(t)ej2𝜋fct}, where fc is the center
frequency.

After transmitting the passband signal x̃cp(t) through the multipath channel defined in (6.1),
the received passband signal is

ỹ(t) =
Npa∑
p=1

Apx̃cp(t − (𝜏p − at)) + ñ(t). (6.34)

Define the channel transfer function

H(f ) ∶=
Npa∑
p=1

Ape−j2𝜋f 𝜏p (6.35)
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Figure 6.5 A CP-OFDM preamble which consists of two identical OFDM symbols and a cyclic prefix
(CP), precedes the data transmission which uses zero padding.

and the frequency response on the kth subcarrier is

Hk = H(fk). (6.36)

Denote 𝜏max as the maximum delay of multipath arrivals, and define

cyclic ∶=
[
−

Tcp − 𝜏max

1 + a
,

2T0

1 + a

]
.

Conversion of the passband signal ỹ(t) = 2ℜ{y(t)ej2𝜋fct} to baseband leads to

y(t) =
∑
k∈

Hkd[k]ej2𝜋
(

k
T0

+afk
)

t + n(t)

= ej2𝜋afct
∑
k∈

Hkd[k]ej2𝜋 k
T0

(1+a)t + n(t), t ∈ cyclic (6.37)

where n(t) is the noise at baseband.
For the channel depicted in (6.1) where all paths have a common Doppler scale factor a, the

the received waveform in (6.37) has an embedded structure as

y(t) = e−j2𝜋 a
1+a

fcT0 y

(
t +

T0

1 + a

)
, −

Tcp − 𝜏max

1 + a
≤ t ≤ T0

1 + a
(6.38)

which has a repetition period T0∕(1 + a) regardless of the channel amplitudes.

6.2.2 Self-Correlation Based Detection, Synchronization and Doppler Scale
Estimation

By exploiting the structure in (6.38), the self correlation of the two repetitions is

rcp(a, 𝜏) = ∫
T0

1+a

0
y(t + 𝜏)y∗

(
t + 𝜏 +

T0

1 + a

)
dt, (6.39)

which does not require the knowledge of the channel and data symbols. Define a test statistic as

M(a, 𝜏) =
rcp(a, 𝜏)√

∫
T0

1+a
0 |y(t + 𝜏)|2dt ⋅ ∫

T0
1+a

0

||||y∗ (t + 𝜏 + T0
1+a

)||||2dt

. (6.40)
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Figure 6.6 Self-correlation bank for CP-OFDM preamble based detection.

The useful signal detection can be achieved via

max
a,𝜏

{|M(a, 𝜏)|} H0

≶
H1

Γth. (6.41)

The time-of-arrival and the Doppler scale factor of the CP-OFDM symbol in the received
signal can be jointly estimated via

(â, 𝜏) = argmax
a,𝜏

|M(a, 𝜏)| . (6.42)

This method can be implemented with a bank of self-correlators as shown in Figure 6.6,
where each branch calculates the correlation result with one tentative value of the Doppler scale
factor [274]. The quantization step size of a depends on the desired Doppler scale estimation
resolution and the receiver computational capability. We defer our discussion on the needed
Doppler scale resolution to Section 6.6.

6.2.3 Implementation

We now present implementation of the receiver processing based on the sampled baseband
signal. The baseband signal is usually oversampled at a multiple of the system bandwidth 𝜆bB:

y[n] = y(t)|t= n
𝜆bB
, (6.43)

where 𝜆b is an integer oversampling factor. The receiver processing includes the following
steps.

1. Each of the L branches calculates a correlation metric with one candidate value of the win-
dow size N𝓁 . The window size N𝓁 shall be close to 𝜆bK0, which is the number of samples
of one OFDM symbol when no Doppler scaling occurs. For each delay d, the correlation
metric corresponding to the window size N𝓁 is

M(N𝓁 , d) =
∑d+N𝓁−1

i=d y∗[i] y[i + N𝓁]√∑d+N𝓁−1
i=d |y[i]|2 ⋅∑d+N𝓁−1

i=d
||y[i + N𝓁]||2 , (6.44)

for 𝓁 = 1, … L.
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2. A detection is declared if the correlation metric of any branch exceeds a preset threshold
Γth:

H1 if: max
𝓁

||M(N𝓁 , d)|| > Γth (6.45)

Since the norm of the metric in (6.44) is between 0 and 1, the threshold Γth takes a value
from [0,1].

3. The branch with the largest correlation metric is viewed as having the best match on the
repetition length. Since Doppler scaling changes the period T0 to T0∕(1 + a), the Doppler
scale factor can be estimated as

â =
𝜆bK0

N̂
− 1, where N̂ = arg max

{N𝓁}
|M(N𝓁 , d)| (6.46)

The speed estimate follows as
�̂� = câ, (6.47)

where c is the speed of sound in water.
The Doppler scale estimate can be refined using a multi-grid approach for the implemen-

tation:
(a) Coarse-grid search for detection. Only a few parallel self-correlators are used to mon-

itor the incoming data. This helps to reduce the receiver complexity.
(b) Fine-grid search for data demodulation. After a detection is declared, a set of parallel

self-correlators with better Doppler scale resolution is used only on the captured pream-
ble. Fine-grid search is centered around the Doppler scale estimate from the coarse-grid
search.

Instead of a multi-grid search, one may also use an interpolation based approach to
improve the estimation accuracy beyond the step size. For example, consider the technique
from [192], which is usually used in spectral peak location estimation based on a limited
number of DFT samples. After coarse- or fine-grid search, let |Xk| denote the amplitude
from the branch with the largest correlation output, and |Xk−1| and |Xk+1| be the ampli-
tudes from the left and right neighbors. Let Δa denote the grid spacing. The quadratic
interpolation

𝛿 =
|Xk+1| − |Xk−1|

4|Xk| − 2|Xk−1| − 2|Xk+1|Δa (6.48)

can be used to estimate an offset 𝛿 of the Doppler scale deviating from the strongest branch
towards the second strongest branch.

4. Synchronization is performed on the branch that yields the maximum correlation metric.
After the maximum is determined, the start of transmission can be selected as suggested
in [334]; starting from the peak the 80% “shoulders” are found (first sample of this cor-
relator branch before and after the peak that is less than 80% of the peak) and the middle
is chosen as synchronization point. This is beneficial, since due to the CP structure the
correlation metric has a plateau around the peak [334].

6.2.3.1 Doppler Scale Resolution

Since the window size N𝓁 is an integer, the minimum step size on the Doppler scale is
1∕(𝜆bK0). To improve the Doppler scale resolution, the receiver operates on the oversampled
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baseband signal. The oversampling factor depends on the needed Doppler scale resolution
and the parameter K0. The maximum value of 𝜆b is the ratio of the passband sampling rate to
the baseband signal bandwidth, which is typically less than 50 in underwater applications.

6.2.3.2 Implementation Complexity

The three sliding summations in (6.44) can be computed recursively. For example, define
𝜓(N𝓁 , d) =

∑d+N𝓁−1
i=d y∗[𝓁]y[i + N𝓁]. Instead of summing over N𝓁 multiplications, one can use

𝜓(N𝓁 , d + 1) = 𝜓(N𝓁 , d) + y∗[d + N𝓁]y[d + 2N𝓁] − y∗[d]y[d + N𝓁], (6.49)

which amounts to two complex multiplications and two complex additions for each update.
Hence, for each delay d, the metric M(N𝓁 , d) in (6.44) can be computed by no more than seven
complex multiplications, six complex additions, one square root operation, and one division.
Note that the complexity does not depend on the window size.

6.2.3.3 Fine Timing

With the estimated Doppler scale â, the receiver can resample the preamble. This way, the
wideband channel effect of frequency-dependent Doppler shifts can be reduced to the nar-
rowband channel effect of frequency-independent Doppler shifts [235]. The fine-timing algo-
rithms developed for cross-correlation based synchronization methods in Section 6.1.2 can be
applied on the resampled preamble. This way, the first path instead of the strongest path can
be synchronized [40].

6.3 Synchronization and Doppler Scale Estimation for One ZP-OFDM
Block

To effectively deal with fast channel variations, the ZP-OFDM signaling format multiplexing
pilot and null subcarriers with data subcarriers is often adopted. This format allows synchro-
nization and Doppler scale estimation within each ZP-OFDM block [412].

Corresponding to (2.4), the baseband transmitted ZP-OFDM signal is

xzp(t) =
∑

k∈A

s[k]ej2𝜋 k
T

tg(t), t ∈ [0, Tbl] (6.50)

where g(t) is the pulse-shaping window. After transmitting the ZP-OFDM symbol through
a multipath channel defined in (6.1), the passband signal ỹ(t) reaches the receiver, with the
baseband signal obtained as y(t) = LPF{ỹ(t)e−j2𝜋fct}. The availability of null subcarriers, pilot
subcarriers, and data subcarriers will be exploited next for Doppler scale estimation.

6.3.1 Null-Subcarrier based Blind Estimation

Assume that coarse synchronization is available from the preamble. After truncating each
ZP-OFDM block from the received signal, the total of energy measurements at null subcarrier
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frequencies is used as a metric for the Doppler scale estimation

â = argmin
a

∑
k∈N

|||||∫
T+Tg

0
y
( t

1 + a

)
e−j2𝜋afcte−j2𝜋 k

T
tdt

|||||
2

, (6.51)

where a one-dimensional grid search can be used. For each tentative a, a resampling operation
is carried out, which is followed by a fast Fourier transform.

6.3.2 Pilot-Aided Estimation

As introduced above, a set of subcarriers in P is dedicated to transmit pilot symbols. Hence,
the transmitted waveform xzp(t) is partially known, containing

xpilot(t) =
∑

k∈P

s[k]ej2𝜋 k
T

tg(t), t ∈ [0, Tbl]. (6.52)

The joint time-of-arrival and Doppler scale estimation is achieved via

(â, 𝜏) = argmax
a,𝜏

||||||∫
T

1+a

0
y(t + 𝜏)x∗pilot ((1 + a)t − 𝜏)) e−j2𝜋afctdt

|||||| (6.53)

which can be implemented via a bank of cross-correlators.

6.3.3 Decision-Aided Estimation

For the OFDM transmission with multiple blocks, the Doppler estimated in one block can be
used for the resampling operation of the next block if there is small Doppler variation across
blocks. After the decoding operation the receiver can reconstruct the transmitted time-domain
waveform, by replacing s[k] by its estimate ŝ[k], ∀k ∈ D in (6.50). Denote the reconstructed
waveform as x̂zp(t).

Similar to the pilot-aided method, the decision-aided method performs the joint
time-of-arrival and Doppler scale estimation via

(â, 𝜏) = argmax
a,𝜏

||||||∫
T

1+a

0
y(t + 𝜏)x̂∗zp ((1 + a)t − 𝜏)) e−j2𝜋afctdt

|||||| (6.54)

which can, again, be implemented via a bank of cross-correlators. The estimated â can be used
for the resampling operation of the next block.

Relative to the pilot-aided method, the decision-aided method leverages the estimated infor-
mation symbols, thus is expected to achieve a better estimation performance. Assuming that
all the information symbols have been successfully decoded, the decision-aided method enjoys
a 10log10((|P| + |D|)∕|P|) dB power gain relative to the pilot-aided method.

6.4 Simulation Results for Doppler Scale Estimation

In this section, the Doppler scale estimation performance of the CP-OFDM waveform and
that of the ZP-OFDM waveforms are compared numerically. Specific to the CP-OFDM,
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Table 6.1 CP/ZP OFDM parameters in simulations

System parameters CP-OFDM ZP-OFDM

Center frequency 13 kHz 13 kHz
Bandwidth 4.88 kHz 4.88 kHz
# of subcarriers 512 1024
Frequency spacing 9.54 Hz 4.77 Hz
Time duration 104.86 ms 209.72 ms
Guard interval 100 ms 40.3 ms

the cross-correlation based method for Doppler sensitive waveforms in Section 6.1 and the
self-correlation based method in Section 6.2 will be examined. For the ZP-OFDM waveform,
the three methods discussed in Section 6.3 will be considered.

The OFDM parameters are summarized in Table 6.1. For CP-OFDM, the data symbols at
all the 512 subcarriers are randomly drawn from a QPSK constellation. For ZP-OFDM, out
of 1024 subcarriers, there are |N| = 96 null subcarriers with 24 on each edge of the signal
band for band protection and 48 evenly distributed in the middle for the carrier frequency offset
estimation; |P| = 256 are pilot subcarriers uniformly distributed among the 1024 subcarriers,
and the remaining are |D| = 672 data subcarriers for delivering information symbols. The
pilot symbols are drawn randomly from a QPSK constellation. The data symbols are encoded
with a rate-1∕2 nonbinary LDPC code and modulated by a QPSK constellation.

Two types of channels are considered. One is a single-path channel defined in (1.18) with
Npa = 1, and the other is a multipath channel defined in (1.17) where all paths have one com-
mon Doppler scale factor, and Npa = 15. For the multipath channel, the interarrival times of
paths are assumed to follow an exponential distribution with a mean of 1 ms. The amplitudes
of paths are Rayleigh distributed with the average power decreasing exponentially with the
delay, where the difference between the beginning and the end of the guard time is 20 dB.

A common Doppler scale a in these two types of channels is associated to a Doppler speed
𝑣 (with unit m/s) through

a = 𝑣∕c, (6.55)

where the Doppler speed 𝑣 is assumed to follow a uniform distribution within [−4.5, 4.5] m/s,
and c = 1500 m/s is the sound speed in water.

With the ground truths of 𝑣 and a, the root-mean-squared-error (RMSE) of the estimated
Doppler speed is adopted as the performance metric,

RMSE =
√
𝔼[|�̂� − 𝑣|2] = √

𝔼[|(â − a)c|2], (6.56)

which has the unit m/s.

6.4.1 RMSE Performance with CP-OFDM

For the single-path channel, Figure 6.7 shows the RMSE performance of two estimation meth-
ods at different SNR levels. One can see a considerable gap between the self-correlation
method and the cross-correlation method, while in the medium to high SNR region, both
methods can provide a reasonable performance to facilitate receiver decoding.
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Figure 6.7 CP-OFDM Doppler speed estimation in one path and multipath one common Doppler scale
channel.

For the multipath channel with a single Doppler speed, Figure 6.7 shows the RMSE perfor-
mance of two estimation methods. One can see that the cross-correlation method outperforms
the self-correlation method considerably in the low SNR region. However, the former suffers
an error floor in the high SNR region, while the latter does not.

Relative to the RMSE performance in the single-path channel, a considerable performance
degradation can be observed for the cross-correlation method in the multipath channel,
whereas the performance of the self-correlation method is quite robust. The reason for the
difference lies in the capability of the self-correlation method to collect the energy from
all paths for Doppler scale estimation, while the cross-correlation method aims to get the
Doppler scale estimate from only one path, the strongest path.

6.4.2 RMSE Performance with ZP-OFDM

Figure 6.8 shows the RMSE performance of three estimation methods for ZP-OFDM in the
single-path channel. In the low SNR region, one can see that the decision-aided method is
the best, while the null-subcarrier based blind method is the worst. With the ratio (|D| +|P|)∕|P| ≈ 4, the pilot-aided method is expected to suffer around 6 dB performance loss
relative to the decision-aided method, due to a lower matched-filtering gain. In the medium
and high SNR region, the pilot-aided method suffers an error floor due to the interference
from the data subcarriers, and the null-subcarrier based blind method gets good estimation
performance. The Cramer-Rao lower bound (CRLB) with a known waveform is also included
as the performance benchmark, whose derivation can be carried out similar to [129, 297].

Figure 6.9 shows the RMSE performance of the three methods in the multipath channel with
a single Doppler speed. Again, one can see that in the low SNR region, the decision-aided
method has the best performance, while the null-subcarrier based blind method is the worst.
As opposed to the performance in the single-path channel, the decision-aided method has an
error floor in the high SNR region, since it only picks up the maximum correlation peak of one
path. On the other hand, the null-subcarrier method has robust performance in the presence of
multiple paths.
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Figure 6.8 ZP-OFDM Doppler speed estimation in one path with delay channel. The CRLB with all
data known is included as a benchmark.
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Figure 6.9 ZP-OFDM Doppler speed estimation in multipath one Doppler offset channel.

6.4.3 Comparison of Blind Methods of CP- and ZP-OFDM

The self-correlation method for the CP-OFDM preamble is closely related to the
null-subcarrier based blind method for ZP-OFDM. This can be easily verified by rewriting
(6.32) as

xcp(t) =
K0−1∑

k=−K0

d[k]ej2𝜋 k
2T0

t
q(t), t ∈ [−Tcp, 2T0] (6.57)

where d[k] = 0 when k is odd and d[k] = s[k∕2]when k is even. The cyclic repetition pattern in
(6.31) is generated by placing zeros on all odd subcarriers in a long OFDM symbol of duration
2T0. Hence, the self-correlation implementation could be replaced by the null-subcarrier based
implementation for the CP-OFDM preamble.

Figure 6.10 shows the performance comparison between the blind method for ZP-OFDM and
that for CP-OFDM in the multipath channel with one Doppler scale factor, respectively. At low
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Figure 6.10 Null subcarrier based method in ZP-OFDM and CP-OFDM.

SNR, typically when it is lower than 0 dB, the null-subcarrier based method in CP-OFDM
system has a better performance than that in the ZP-OFDM system, which is due to the fact
that CP-OFDM system has 512 null subcarriers, far more than that the 96 null subcarriers in
the ZP-OFDM block. At high SNR, the null subcarrier based method in ZP-OFDM has better
performance. A possible reason is that the null subcarriers in ZP-OFDM are distributed with
an irregular pattern, which could outperform the regular pattern in the CP-OFDM preamble.

6.5 Design Examples in Practical Systems

Note that waveforms for synchronization can also be applied for detection. The detection
preamble and synchronization preamble will be a combination of the waveforms and tech-
niques, as listed in Table 6.2 and illustrated in Figure 6.11.

To further elaborate, several design examples for practical systems are shown in Figure 6.12.
In example 1, the LFM/HFM preamble can be used for detection, and the synchronization
and Doppler scale estimation can be performed for each individual ZP-OFDM data block; in
examples 2 and 3, both the m-sequence and CP-OFDM preamble can be used for all purposes,
i.e., detection, synchronization and Doppler scale estimation; in example 4, the LFM/HFM
preamble can be used for both signal detection and synchronization, and coupled with the
LFM/HFM postamble, the Doppler scale estimate can be obtained; in examples 5 and 6, the

Table 6.2 Typical waveforms and techniques for detection and synchronization

Waveform property Waveform Parameters Processing techniques Complexity

Doppler-insensitive LFM, HFM 𝜏 Matched filtering Low
Doppler-sensitive m-seq., OFDM (𝜏, â) Bank of matched filters High
Pulse combination LFM, HFM (𝜏, â) Matched filtering Low
Repetition CP-OFDM (𝜏, â) Bank of self-correlators Medium

𝜏: time of arrival, and a: Doppler scale factor
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Figure 6.11 Detection and synchronization diagram for different preambles.
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Figure 6.12 Design options of detection and synchronization preambles in a practical system.

LFM/HFM signal can be used for detection, and the m-sequence and the CP-OFDM preamble
can be used for synchronization and Doppler scale estimation.

Compared with other examples, example 1 requires synchronization and Doppler scale esti-
mation at each data block, incurring a very high computational complexity, and example 4
relying on a batch operation can only be used for the offline processing. Compared to examples
2 and 3, although examples 5 and 6 require two individual preambles for detection and syn-
chronization, the computational complexity of detection is much lower, hence they are more
suitable for online implementation.
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In practical systems, the optimal design depends on the system operation constraints and the
desired synchronization and estimation accuracy.

6.6 Residual Doppler Frequency Shift Estimation

6.6.1 System Model after Resampling

As illustrated in Section 5.2, in the preprocessing step the receiver resamples the received
OFDM block at passband to remove the main Doppler scaling effect using an estimated resam-
pling factor â

ỹr(t) = ỹ
( t

1 + â

)
=

Npa∑
p=1

Apx̃
(1 + a

1 + â
t − 𝜏p

)
+ �̃�(t), (6.58)

where �̃�(t) is the resampled noise.
The baseband signal can be obtained after a passband-to-baseband downshifting and a low

bandpass filtering (LPF),
yr(t) = LPF

{
e−j2𝜋fctỹr(t)

}
. (6.59)

After some manipulation, the baseband signal yr(t) can be expressed as

yr(t) = ej2𝜋 a−â
1+â

fct
∑

k∈A

⎧⎪⎨⎪⎩s[k]ej2𝜋kΔf 1+a
1+â

t
⎡⎢⎢⎣

Npa∑
p=1

Ape−j2𝜋fk𝜏p g
(1 + a

1 + â
t − 𝜏p

)⎤⎥⎥⎦
⎫⎪⎬⎪⎭ +𝑤(t), (6.60)

where 𝑤(t) is the baseband ambient noise. Note that

1 + a
1 + â

≈ 1. (6.61)

The baseband signal can be reformulated as

yr(t) ≈ ej2𝜋 a−â
1+â

fct
∑

k∈A

⎧⎪⎨⎪⎩s[k]ej2𝜋kΔft
⎡⎢⎢⎣

Npa∑
p=1

Ape−j2𝜋fk𝜏p g(t − 𝜏p)
⎤⎥⎥⎦
⎫⎪⎬⎪⎭ +𝑤(t), (6.62)

which reveals that the residual Doppler effect can be viewed as a frequency shift, which is
identical for all subcarriers

𝜖 ∶= a − â
1 + â

fc. (6.63)

The residual Doppler shift therefore can be compensated via multiplying yr(t) by e−j2𝜋𝜖t,
leading to

z(t) ∶= e−j2𝜋𝜖tyr(t). (6.64)

The frequency measurement at the mth subcarrier can be obtained as

z[m] = ∫
Tg+T

0
yr(t)e−j2𝜋𝜖te−j2𝜋 m

T
tdt. (6.65)
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6.6.2 Impact of Residual Doppler Shift Compensation

In this section, we analyze the impact of the residual Doppler shift compensation on the
receiver decoding performance, which will help to specify the needed Doppler scale resolution
in the Doppler scale estimators.

With the estimated residual Doppler shift estimate 𝜖, plugging in z(t) and carrying out the
integration, the frequency measurement z[m] can be rigorously formulated as

z[m] = H
(1 + â

1 + a
(fm + 𝜖)

) ∑
k∈A

s[k]𝜚m,k + 𝜂[m], (6.66)

where H(f ) is the channel frequency response defined in (6.35), 𝜂[m] is additive noise, and

𝜚m,k =
1 + â
1 + a

G
(
𝛽m,k

)
, (6.67)

𝛽m,k = (k − m) 1
T
+

(a − â)fm − (1 + â)𝜖
1 + a

, (6.68)

where G(f ) is the Fourier transform of the pulse shaping filter g(t). Defining the symbol energy
as 𝜎2

s = 𝔼
[|s[k]|2] and the noise variance as 𝜎2

𝜂 , the effective SNR on the mth subcarrier is

𝛾m =
|𝜚m,m|2𝜎2

s

𝜎2
𝜂||||H (

1+â
1+a

(
fm + 𝜖

))|||| 2

+
∑
k≠m

|𝜚m,k|2𝜎2
s

. (6.69)

The first term in the denominator is due to additive noise, while the second term is due to
the self-interference aroused by the Doppler scale mismatch. Even when the additive noise
diminishes, the effective SNR is bounded by

𝛾m ≤ 𝛾m ∶=
|𝜚m,m|2∑
k≠m|𝜚m,k|2 (6.70)

due to self-interference induced by Doppler scale mismatch.
The SNR upper bound is evaluated for two cases

• Case 1: No Doppler shift compensation by setting 𝜖 = 0.
• Case 2: Ideal Doppler shift compensation where

𝜖opt =
a − â
1 + â

fc, (6.71)

such that
𝛽m,k = (k − m) 1

T
+ a − â

1 + a
m
T
. (6.72)

For the first case, the leading term (k − m)∕T in 𝛽m,k is the frequency difference between
the kth and the mth subcarriers, while the second term a−â

1+a
fm is the extra frequency shift. For

the second case, the leading term (k − m)∕T in 𝛽m,k is the frequency difference between the
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kth and the mth subcarriers, while the second term a−â
1+a

⋅ m
T

is the extra frequency shift. Since
fm is much larger than m

T
, the performance of Doppler shift compensation will improve. Con-

sider an example of fc = 27 kHz and B∕2 = 6 kHz, we have fm ∈ [21, 33] kHz and max
m

m
T
=

6 kHz. Hence, the accuracy of (a − â) can be relaxed at least by four times to reach similar
performance. This illustrates that Doppler shift compensation is one crucial step in receiver
design [235].

The upper bound 𝛾m for 𝜖 = 0 and 𝜖 = 𝜖opt will be evaluated numerically. With system
parameters fc = 27 kHz, B = 12 kHz, and K = 1024, Figure 6.13 shows the bounds for these
two cases respectively. Suppose that it is targeted to limit the self-noise to be at least 20 dB
below the signal power. In the case 𝜖 = 0, Δ𝑣 should be less than 0.06 m/s. While in the case
𝜖 = 𝜖opt, the Δ𝑣 can be as large as 0.3 m/s.

Figure 6.13 provides guidelines on the selection of the Doppler scale spacing of the parallel
correlators. For example, assuming that the correlator branch closest to the true speed will
yield the maximum metric, then with fine Doppler shift compensation 𝜖 = 𝜖opt the Doppler
scale spacing can be set as 0.4 m/s (where Δ𝑣 needs to be less than 0.2 m/s) to achieve an SNR
upper bound of at least 25 dB. On the other hand, if an SNR upper bound of 15 dB is sufficient,
the Doppler scale spacing could be as large as 1.0 m/s.

6.6.3 Two Residual Doppler Shift Estimation Methods

In this section, two residual Doppler shift estimation methods will be discussed [267, 454,
469]. The first method takes advantage of the fact that most OFDM systems have null subcar-
riers, and estimates the residual Doppler shift by minimizing the energy of frequency measure-
ments at null subcarriers [267]. The second method exploits the non-Gaussianity of frequency
measurements at all subcarriers [454].
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6.6.3.1 The Null Subcarrier Based Method

Similar to the null subcarrier based method for Doppler scale estimation, the residual Doppler
shift can be estimated as

𝜖 = argmin
𝜖

∑
m∈N

|||||∫
T+Tg

0
yr(t)e−j2𝜋𝜖te−j2𝜋 m

T
tdt

|||||
2

, (6.73)

which can be solved using one dimensional search including coarse initial search followed by
fine bi-sectional search [235, 445].

6.6.3.2 The Y-G Algorithm

The key idea of this algorithm is that the distribution of frequency measurements is more
non-Gaussian when 𝜖 approaches the optimal value 𝜖opt. The non-Gaussianity of a distribution
can be measured by kurtosis. The objective function of the Y-G algorithm can be cast as

J(𝜖) =

∑
m∈A

|||∫ T+Tg

0 yr(t)e−j2𝜋𝜖te−j2𝜋 m
T

tdt|||4[ ∑
m∈A

|||∫ T+Tg

0 yr(t)e−j2𝜋𝜖te−j2𝜋 m
T

tdt|||2
]2
. (6.74)

With a sufficiently large number of data points, the objective function J(𝜖) resembles a period
of the cosine function and 𝜖 = 𝜖opt will be a unique global minimum or maximum solution of
the objective function. Instead of an exhaustive search, a closed-form estimate of 𝜖 is available.
Define two parameters

A ∶=
J( 1

4
Δf ) + J(− 1

4
Δf )

2
− J(0), (6.75)

B ∶=
J(− 1

4
Δf ) − J( 1

4
Δf )

2
, (6.76)

where Δf = 1∕T is the subcarrier spacing. The extreme point of the objective function J(𝜖)
normalized by the subcarrier spacing can be obtained analytically as

𝜖

Δf
=

⎧⎪⎪⎨⎪⎪⎩

1
2𝜋

tan−1
(

B
A

)
if A > 0

1
2
+ 1

2𝜋
tan−1

(
B
A

)
if A < 0,B ≥ 0

− 1
2
+ 1

2𝜋
tan−1

(
B
A

)
if A < 0,B < 0.

(6.77)

6.6.4 Simulation Results

In this section, the two residual Doppler shift estimators will be compared in simulations.
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Figure 6.14 MSE comparison of two residual Doppler shift estimators.

6.6.4.1 Simulation Setup

The underwater acoustic channel is simulated according to the specifications in Section
5.5.1. The channel parameters are Npa = 10, Δ𝜏 = 1 ms, ΔPpa = 20 dB, Tg = 24.6 ms, and
𝑣0 = 0 m/s. The OFDM parameters are identical to the parameters used in an experiment,
which are specified in Table B.1.

Note that the residual Doppler shift in (6.62) is identical to the carrier frequency offset (CFO)
in radio communications [267, 394]. To test the performance of the above two residual Doppler
shift estimators, a Doppler shift is artificially added in the received signal before receiver
processing; see (6.62). The artificial Doppler shift is generated uniformly and independently
within [−0.4, 0.4] × Δf for each OFDM block.

6.6.4.2 Computational Complexity

For the null subcarrier based algorithm, a coarse initial search followed by a bisection search
is performed [445]. The initial search range normalized by the subcarrier spacing Δf is from
−0.4 to 0.4 with a step size 0.1. During the bi-sectional search, the step size relative to Δf
decreases to 0.05, 0.025, 0.0125, and 0.00625, with two FFTs at each iteration searching the
left and right points around the previously obtained CFO value. Thus the total computational
complexity is 9 + 8 = 17 K-point FFTs.

For the Y-G algorithm, the desired estimate is a global minimum of the objective function
for all tested cases, thus the computational complexity is just that of three K-point FFTs.

6.6.4.3 MSE Comparison

Figure 6.14 shows the MSE performance of the two residual Doppler shift estimators with an
artificially added Doppler shift using QPSK, 16-QAM, and 64-QAM constellations. It can be
seen that the null subcarrier based method is very stable regardless of the adopted constellation.
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In fact, the performance of the null subcarrier based method depends only on the desired res-
olution which is related to the computational complexity. The Y-G algorithm degrades as the
constellation size increases from QPSK to 64-QAM. For QPSK modulation, the Y-G algo-
rithm can outperform the null subcarrier based method whereas for 16-QAM and 64-QAM
modulations the null-subcarrier based method outperforms the Y-G algorithm, especially in
the high SNR range. However, the Y-G algorithm has the least computational complexity.

6.6.4.4 Effect of Number of Null Subcarriers

The effect of the number of null subcarriers in the null subcarrier based method is shown in
Figure 6.15 for a 16-QAM constellation. The energy on a portion of the total 96 null subcarriers
is used as the objective function for this purpose. Figure 6.15 shows that the performance of
the null subcarrier based method degrades as the number of null subcarriers decreases. For this
setting, the MSE improvement after more than 60 null subcarriers is minimal.

6.7 Bibliographical Notes

Detection, ranging, and range rate estimation are the topics which have been well-investigated
in radar and sonar applications. The earliest collection of studies in series can be dated back
to 1968 by H. Van Trees in [402], and the masterpiece by A. Papoulis in 1965 on probability,
random variables and stochastic processes in [302]. Examples of the following publications
include signal detection in non-Gaussian noise in [205], the recursive estimation algorithms in
[358], and estimation for tracking and navigation in [22]. Classic texts for underwater telemetry
include Urick, 1983 [397], Medwin and Clay, 1997 [277] and Lurton, 2010 [266].

The basic principles for detection and estimation in radar and sonar systems carry over to
communication systems, whereas the latter operating in the high SNR regime allow diverse
signal and algorithm design to accommodate properties of communication channels. Parallel



116 OFDM for Underwater Acoustic Communications

studies on detection and estimation in both communication and radar systems are summarized
in [453]. Synchronization, channel estimation and signal processing for digital communication
receiver design are covered in [280]. Low-complexity synchronization for pilot-aided OFDM
systems is discussed in [146]. Synchronization for OFDM systems in IEEE802. 11a, DVB-T
is analyzed in [154].

Estimation of time delays is often achieved via correlation or generalized correlation meth-
ods [63, 214]. Doppler scale estimation for underwater acoustic communications can be found
in e.g., [338, 452] and particularly for OFDM signals in [274, 412, 455]. Carrier frequency off-
set (CFO) estimation has been a popular topic for wireless OFDM systems. Existing methods
include both data-aided estimators and blind estimators. The data-aided estimators, such as
[285, 286, 334], rely on either training symbols or periodically transmitted pilots for CFO
estimation. There is a rich set of blind estimators that exploit the signal structure or statistical
characteristics of measurements for CFO estimation, such as the CP segment in CP-OFDM
[228, 399], frequency measurements at null subcarriers [11, 85, 254, 267, 395], second-order
statistics of received signal [133], the nonlinearity or high-order statistics of frequency mea-
surements [264, 454], and relationships among time-domain oversampled measurements in
CP-OFDM [71]. Comparison of the null subcarrier based method [267], the O-M algorithm
[264] and the Y-G algorithm [454] in underwater acoustic OFDM systems can be found
in [469].



7
Channel and Noise Variance
Estimation

In this chapter, we focus on channel estimation within each received OFDM block. The under-
water acoustic channel is well-known to consist of sparsely distributed propagation paths.
Compared to the canonical least squares based method which estimates all the discretized
channel samples within the channel delay spread, channel sparsity can be exploited to reduce
the number of unknown parameters to estimate. This chapter treats sparse channel estimation
for OFDM in both time-invariant and time-varying environments.

Sparse channel estimation has been underpinned by the striking development of compressive
sensing theory in the last decade. To facilitate the development of sparse channel estimation
in this chapter, the basics of compressive sensing are presented in Appendix A. The reader is
encouraged to read this chapter and Appendix A in parallel for an in-depth understanding.

This chapter is organized as follows.

• In Section 7.1, to exploit the sparsity of underwater acoustic channels, a dictionary based
formulation of the system input–output relationship is developed. It subsumes the classical
input–output relationship formulation for the least squares (LS) based channel estimation,
yet allows channel parameterization with a limited number of measurements.

• In Sections 7.2 and 7.3, building upon the dictionary-based formulation, an ICI-ignorant
sparse channel estimator and an ICI-aware sparse channel estimator are derived for the
single-input channel. A variety of practical issues, such as dictionary construction and pilot
design, are also examined.

• In Section 7.4, two typical sparse recovery algorithms are briefly discussed.
• In Section 7.5, the sparse channel estimator for the single-input channel is extended to the

multi-input channel, such as the multi-input multi-output (MIMO) channels where chan-
nel estimation is conducted at each receiving element individually. The developed sparse
channel estimators will be widely used in the MIMO channels presented in Chapters 13–17.

• In Sections 7.6 and 7.7, noise variance estimation and noise pre-whitening in practical sys-
tems are examined. The estimated noise variance could be used in both symbol detection
and channel decoding.

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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The sparse channel estimators presented in this chapter lay the foundation of channel esti-
mation in the receivers developed in later chapters, such as the iterative receiver design in
Chapter 9 where the data symbols estimated from preceding iterations are used for channel
estimation refinement, and the block-to-block receiver processing in Chapter 10 in which chan-
nel estimates of preceding blocks are used for the channel estimation of the current block, thus
maintaining a decent channel estimation performance with a reduced pilot overhead.

7.1 Problem Formulation for ICI-Ignorant Channel Estimation

7.1.1 The Input–Output Relationship

We index pilot subcarriers as the set P = {q1, · · · , qKP
} with KP ∶= |P| subcarriers in total.

Based on the input–output relationship in (5.45) and (5.47), stacking frequency measurements
at pilot subcarriers into a vector yields

⎡⎢⎢⎢⎣
z[q1]
⋮

z[qKP
]

⎤⎥⎥⎥⎦
⏟⏞⏟⏞⏟

∶=zP

=
⎡⎢⎢⎢⎣
s[q1]

⋱

s[qKP
]

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

e−j2𝜋
q1
T
𝜏1 · · · e

−j2𝜋
q1
T
𝜏Npa

⋮ ⋱ ⋮

e−j2𝜋
qKP

T
𝜏1 · · · e

−j2𝜋
qKP

T
𝜏Npa

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=A

⎡⎢⎢⎢⎣
𝜉1

⋮

𝜉Npa

⎤⎥⎥⎥⎦
⏟⏟⏟

∶=𝝃

+
⎡⎢⎢⎢⎣
𝜂[q1]
⋮

𝜂[qKP
]

⎤⎥⎥⎥⎦
⏟⏞⏟⏞⏟

∶=𝜼P

, (7.1)

which can be written in the vector-matrix form

zP = A𝝃 + 𝜼P. (7.2)

Should the receiver be aware of path delays, the channel estimation problem can be solved
via the least squares (LS) approach,

�̂�LS = argmin
𝝃

||zP − A𝝃||2, (7.3)

= (AHA)−1AHzP = A†zP (7.4)

where A† denotes the pseudo-inverse of matrix A. However, the number of paths and the path
delays in (7.1) are usually not available at the receiver side.

7.1.2 Dictionary Based Formulation

Notice that the observed signal in (7.1) is a linear combination of an unknown number of
structured signals, each defined by an unknown delay 𝜏p. The estimation problem can be
reformulated by constructing a so-called dictionary, made of the signals parameterized by a
representative selection of possible values of parameter 𝜏p. In this model, parameter sets not
part of the solution will be assigned a zero weight coefficient, and weight coefficients of param-
eter sets within the combination basis will be selected to minimize the fitting error in (7.3).

Following the above line of thought, a representative set of 𝜏p is chosen as

𝜏 ∈
{

0,
1
𝜆bB

,
2
𝜆bB

, · · · ,
Nde − 1

𝜆bB

}
, (7.5)
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where 𝜆b is an oversampling factor, and the number of representative values is associated to
the maximal path delay 𝜏max via

Nde ∶=
⌈
𝜏max

𝜆bB

⌉
, (7.6)

with ⌈⋅⌉ denoting the ceiling operation. Without any prior information of channel path delays,
discretization of 𝜏 in (7.5) is based on the assumption that after synchronization all arriving
paths fall into the guard interval, i.e., 𝜏max = Tg.

One should note that the original 𝜏p can in general take any continuous value, e.g., within
[0, Tg]. So only as 𝜆b → ∞ are we guaranteed to include the original 𝜏p in the set (7.5). On
the other hand for 𝜆b > 1 the difference between a column in matrix A corresponding to a
particular 𝜏p and the closest 𝜏 diminishes rather quickly for any further increase in 𝜆b, more
on that in Section 7.2.1.

For channels that vary slowly, Chapter 10 will show that prior knowledge on the rough loca-
tions of channel paths within the guard interval can be obtained, through preamble processing
or channel estimates of preceding blocks. The representative values of 𝜏 can be drawn from
the possible delay zones of channel paths, leading to a reduced number of candidate paths and
thus a decrease in the number of necessary measurements. We will defer detailed discussions
on this topic to Chapter 10.

With the representative values of path delays in (7.5), the dictionary based formulation is
cast as

⎡⎢⎢⎣
z[q1]
⋮

z[qKP
]

⎤⎥⎥⎦
⏟⏞⏟⏞⏟

∶=zP

=
⎡⎢⎢⎣
s[q1]

⋱
s[qKP

]

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
1 · · · e

−j2𝜋
q1
K

(Nde−1)
𝜆b

⋮ ⋱ ⋮

1 · · · e
−j2𝜋

qKP
K

(Nde−1)
𝜆b

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝚿

⎡⎢⎢⎣
𝜉0
⋮

𝜉Nde−1

⎤⎥⎥⎦
⏟⏞⏟⏞⏟

∶=𝝃

+
⎡⎢⎢⎣
𝜂[q1]
⋮

𝜂[qKP
]

⎤⎥⎥⎦
⏟⏞⏟⏞⏟

∶=𝜼P

(7.7)

which can be put in the vector-matrix form

zP =
[
𝝍0 · · · 𝝍p−1 · · · 𝝍Nde−1

]
𝝃 + 𝜼P

= 𝚿𝝃 + 𝜼P

(7.8)

where 𝝍p−1 denotes the pth dictionary entry, and the size of the dictionary matrix 𝚿 is
KP × Nde.

Once the estimate �̂� is obtained, the channel coefficients at all subcarriers can be recon-
structed as

Ĥ[m] =
Nde−1∑

p=0

𝜉pe
−j2𝜋 mp

𝜆bK (7.9)

for m = −K∕2, · · · ,K∕2 − 1. Eq. (7.9) can be computed via the 𝜆bK-point FFT of �̂�.
The meaning of converting the measurement representation from (7.1) to (7.7) is two-fold:

• It changes a small-size nonlinear estimation problem to a large-size linear estimation prob-
lem. Rather than estimating the Npa path tuples {𝜉p, 𝜏p} based on the nonlinear input–output
relationship in (7.1), the channel estimation problem is reoriented as a combinatorial prob-
lem which estimates the linear combination coefficients in (7.8).
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When the number of unknowns is no more than the number of pilots, i.e., Nde ≤ KP, the
LS estimate is well-posed,

�̂�LS = (𝚿H𝚿)−1𝚿HzP. (7.10)

This corresponds to the canonical LS channel estimator widely used in the early days of
OFDM. Given a fixed pilot overhead, it has been shown [294, 299] that for LS channel
estimation, equally-spaced pilot subcarriers and equally-powered pilot symbols achieve the
minimal mean-square channel estimation error. Assume a baseband sampling rate (𝜆b = 1),
and define L as the number of channel samples, the input–output relationship can be put as

⎡⎢⎢⎣
z[q1]
⋮

z[qKP
]

⎤⎥⎥⎦ =
⎡⎢⎢⎣
s[q1]

⋱
s[qKP

]

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
1 · · · e−j2𝜋

q1(L−1)
K

⋮ ⋱ ⋮

1 · · · e−j2𝜋
qKP

(L−1)
K

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝜉0
⋮
𝜉L−1

⎤⎥⎥⎦ +
⎡⎢⎢⎣
𝜂[q1]
⋮

𝜂[qKP
]

⎤⎥⎥⎦ (7.11)

where the LS estimate in (7.10) can be computed efficiently using a KP-point FFT.
• The dictionary based representation enables exploring sparsity of underwater acoustic

channels for channel estimation, especially when the problem in (7.8) is ill-defined with
Nde > KP. Despite a large number of representative entries in 𝚿, the number of effective
channel paths could be far less than the number of unknowns, i.e., Npa ≪ Nde. The
estimation problem therefore can be formulated by constraining most of elements in the
vector 𝝃 to be zero.

In this chapter, we will focus on sparse channel estimation based on compressive sensing
techniques. A brief introduction of compressive sensing theory is included in Appendix A.

7.2 ICI-Ignorant Sparse Channel Sensing

When KP ≪ Nde, the problem in (7.8) is ill-defined in the least squares sense. Exploiting the
sparsity of UWA channels, the Npa paths can be identified by minimizing the number of channel
paths subject to a constraint on the mean-squared fitting error. The estimation problem can be
cast as

𝓁0-norm: �̂� = argmin
𝝃

||𝝃||0 s.t. ||||𝚿𝝃 − zP
||||2 ≤ 𝛿 (7.12)

where the 𝓁0-norm of vector 𝝃 is defined as the number of its nonzero elements, and 𝛿 is
a design parameter characterizing the fidelity of the estimate to the observations in the least
squares sense. Note that (7.12) is essentially a combinatorial problem with an unknown number
of entries. Directly solving this problem is NP-hard.

Since the formulation in (7.12) is not amenable to efficient computation, one variant of (7.12)
is to turn to convex relaxation by replacing the 𝓁0-norm by the 𝓁1-norm, so that linear pro-
gramming techniques can be applied. The Lagrangian formulation is cast as

𝓁1-norm: �̂� = argmin
𝝃

1
2
||||Ψ𝝃 − zP

||||2 + 𝜁 ||𝝃||1 (7.13)

where the 𝓁1-norm of 𝝃 is defined as ||𝝃||1 ∶=
∑Nde−1

p=0 |𝜉p|, and the factor 𝜁 is a tuning param-
eter which controls the solution sparsity.
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7.2.1 Dictionary Resolution versus Channel Sparsity

7.2.1.1 How Sparse is the Baseband Channel?

The channel representation with the baseband sampling rate (𝜆b = 1) is commonly used in
receiver design [389]. Although this representation can capture the full channel effect, it can
only be treated as approximately sparse due to the available observations within a finite fre-
quency band; as shown in Figure 7.1.
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Figure 7.1 The channel frequency response H(f ) maps to the impulse response h(𝜏), but from a lim-
ited number of samples H(fk) only the baseband model h[𝓁] can be determined unambiguously; in this
example there are Npa = 10 discrete paths, and K = 256 frequency samples; all plots are magnitude only.
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Figure 7.2 Approximation error of the frequency response with different degrees of sparsity.

To increase the sparsity of the baseband channel representation, one can increase the
time-domain oversampling factor 𝜆b. In other words, the representative set of path delays
in (7.5) can be constructed with a finer grained resolution Ts,b, which can more closely
approximate the continuous path delays 𝜏p.

7.2.1.2 Numerical Example

Let us consider a simple example as shown in Figure 7.1, where the noiseless frequency
measurements consist of the stacked frequency response H(fk) at K subcarriers, and each mea-
surement is a linear combination of Npa complex phases e−j2𝜋fk𝜏p with complex weighting
coefficients 𝜉p. The signal H(f ) is approximated using s basis vectors as Ĥs(f ); the corre-
sponding mean square error (MSE) is 𝔼k[|H(fk) − Ĥs(fk)|2]. Naturally when using a less sparse
approximation (increasing s) the MSE will decrease. For example, for known delays the error
will reach zero for s = Npa. In general, how fast the MSE reduces with s will indicate how
sparse the corresponding basis can approximate H(f ). While for the baseband model (𝜆b = 1)
there is a trivial way to determine the optimum s-sparse approximation, this is not the case for
the redundant dictionaries.

In Figure 7.2 the MSE decreases similarly for all cases up to about 10−1, this means that for
this multipath channel about 90 % of the channel energy is concentrated in the ten strongest
channel taps. On the other hand, the baseband model will need more than 30 nonzero channel
taps to approximate the frequency response with a MSE of 10−2, while using a redundant basis
one needs about half that. This points towards an interesting fact, that the baseband channel
taps are not approximately sparse in terms of a power law; if they would follow a power law,
the slope in the plot would be constant, while in fact it levels off.

7.2.2 Sparsity Factor

Since the sparsity of UWA channel depends on the signal-to-noise ratio (SNR) at the receiver,
it is suggested in [38] to choose the sparsity factor 𝜁 in (7.13) as a function of SNR for each
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Figure 7.3 Normalized mean square error of channel frequency response estimate in the ICI-ignorant
receiver with different number of randomly distributed pilot subcarriers. There are Npa = 15 paths in
simulation. An oversampling factor 𝜆b = 2 is used for channel estimation.

OFDM block as 𝜁 = 𝜅||𝚿HzP||∞∕
√

SNR, where 𝜅 is a constant, and ||x||∞ is the maximal
absolute value of the elements in vector x. Based on our simulation and experimental data
decoding experience, a good choice of 𝜅 is 0.6. Please refer to [109, 136, 147] for theoretical
discussions on the selection of 𝜁 .

7.2.3 Number of Pilots versus Number of Paths

Provided the fact that exploiting channel sparsity enables a reduced number of measurements
for channel estimation relative to that in the least squares sense, one question that arises nat-
urally is how many measurements are needed to estimate a channel with a certain degree of
sparsity. For the sensing problem with a well-conditioned sensing matrix, theoretical bounds
on the number of measurements have been presented in [110].

For the sensing matrix with highly correlated entries, as 𝚿 in (7.7), the normalized channel
estimation mean square error

NMSE(�̂�) =

∑
k∈all

|||H(fk) − Ĥ(fk)
|||2∑

k∈all

||H(fk)||2 (7.14)

is presented numerically in Figure 7.3, where an OFDM signaling format of K = 1024 sub-
carriers is used, with different numbers of pilot subcarriers randomly distributed. At an SNR
level of 20 dB, 64 pilots can achieve a fairly good estimation performance, with the normalized
MSE around 0.07, and 128 pilots can further reduce the estimation error to 0.02.

Note that different from LS channel estimation where equally-spaced pilot subcarriers
promise the minimal MSE, randomly distributed pilot subcarriers generate a sensing matrix
with a better sensing property through reducing the coherence of sensing entries. One
example is that when the number of pilots is less than the number of unknown channel
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samples, equally-spaced pilot subcarriers could result in identical entries in the sensing
matrix, leading to multiple unresolvable solutions.

7.3 ICI-Aware Sparse Channel Sensing

7.3.1 Problem Formulation

In contrast to the diagonal channel matrix in the time-invariant channels, the channel matrix
in the time-varying channel is a full matrix. ICI-aware channel estimation therefore relies on
the frequency measurements at all subcarriers.

For illustration convenience, define two vectors,

[sP]k =

{
s[k] k ∈ P

0 k ∈ D ∪ N,
[sD]k =

{
s[k] k ∈ D

0 k ∈ P ∪ N.
(7.15)

The frequency measurement vector in (5.28) can be reformulated as

z = HsP + HsD + w. (7.16)

Since data symbols in sD are unknown at the receiver, the frequency components corresponding
to the unknown data symbols can be combined with the ambient noise as one equivalent noise,
which leads to

z = HsP + vD. (7.17)

Substituting (5.29) into (7.17) yields

z =
Npa∑
p=1

𝜉p𝚲(𝜏p)𝚪(bp, 𝜖)sP + vD. (7.18)

7.3.2 ICI-Aware Channel Sensing

Given the nonlinearity between the frequency measurements and the path triplets {𝜉p, 𝜏p, bp}
in (7.18), a linear estimator, such as the LS channel estimator in ICI-ignorant receiver process-
ing, is not applicable. Similar to the sparse channel estimation in the ICI-ignorant receiver, to
circumvent the difficulty incurred by the nonlinearity, a dictionary based representation of the
frequency measurements can be used to convert the problem to a linear combinatorial problem.

We first define the representative sets of path parameters (𝜏p, bp) as

𝜏 ∈
{

0,
1
𝜆bB

,
2
𝜆bB

, · · · ,
Nde − 1

𝜆bB

}
, (7.19)

b ∈ {−bmax,−bmax + Δb, · · · , bmax}. (7.20)

The discretization in 𝜏 is identical to that used in the sparse ICI-ignorant channel measurement
representation, with Nde tentative delays. For the Doppler scaling factors, it suffices to assume
that they are spread around zero after a mean-Doppler scale compensation, and bmax can be
chosen based on the assumed Doppler spread. With a grid resolution Δb, there are NDop ∶=
2bmax∕(Δb) + 1 tentative Doppler scale values. Hence, a total of NdeNDop candidate paths will
be included in the dictionary construction.
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Define a vector formed by the amplitudes corresponding to all representative delays associ-
ated with the Doppler scale bi,

𝝃
(i) =

[
𝜉
(i)
1 · · · 𝜉

(i)
Nde

]T
(7.21)

for i = 1, · · · ,NDop. The NDop vectors are stacked into a long vector

𝝃 =
[
(𝝃(1))T · · · (𝝃(NDop))T

]T
. (7.22)

A linear formulation of the input–output expression in (7.18) is

z =
NDop∑
i=1

Nde∑
p=1

𝜉
(i)
p 𝚲(𝜏p)𝚪(b(i), 𝜖)sP + 𝜼D

∶= 𝚿𝝃 + 𝜼D (7.23)

where the frequency measurement vector is presented as a linear combination of entries from
the dictionary matrix 𝚿 with NdeNDop columns. When NDop = 1, the dictionary representation
in (7.23) degrades to the dictionary representation for the ICI-ignorant channel estimation in
(7.8); although there is a slight difference caused by the residual Doppler shift 𝜖, the two
representations are essentially identical.

Given an identical structure of (7.8) and (7.23), the sparse estimation problem can be for-
mulated as

𝓁0-norm: �̂� = argmin
𝝃

||𝝃||0 s.t. ||𝚿𝝃 − z||2 ≤ 𝛿 (7.24)

and its convex relaxation by 𝓁1-norm is

𝓁1-norm ∶ �̂� = argmin
𝝃

1
2
||𝚿𝝃 − z||2 + 𝜁 ||𝝃||1 (7.25)

Based on the estimated �̂�, the (m, k)th element of the channel matrix H can be reconstructed
as

Ĥ[m, k] =
NDop∑
i=1

Nde∑
p=1

𝜉
(i)
p e−j2𝜋 m

T
𝜏pG

(
fm + 𝜖
1 + b(i)

− fk

)
. (7.26)

Since the channel estimation error is determined by the relationship between the sparse esti-
mate and the channel coefficients as shown in (7.26), the estimation error on far off-diagonal
values of H will surely be much larger than the actual values. Therefore, one can reduce the
channel estimation error by approximating H as a banded matrix with D off-diagonals on each
side. How many off-diagonals to keep will depend on the estimation accuracy of �̂� and on the
rate with which the magnitude of the off-diagonal values of H decrease. The banded structure
of the reconstructed channel matrix resonates the banded assumption of the channel matrix in
Section 5.4.2.

7.3.3 Pilot Subcarrier Distribution

As paths with nonzero Doppler scale bp need to be identified based on their ICI pattern,
pilots on adjacent subcarriers are necessary. Conversely if one selects pilots adjacent to
data symbols, the ICI from these unknown symbols will be stronger. Therefore a random
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pilot assignment, as would be expected from compressed sensing theory, will very likely
be suboptimal due to the specific structure of the dictionary 𝚿. A primary investigation on
pilot placement for CP-OFDM [36] shows that a systematic pilot design which places pilots
in equally-spaced clusters of alternating size, outperforms the random pilot assignment and
the equally-spaced pilot assignment. The reason is explained by the necessity of sufficient
amount of adjacent observations for ICI estimation.

Meanwhile, in iterative receiver processing, the data symbols estimated in the previous round
can serve as pilot symbols for channel estimation in the current round, so that the ICI coefficient
estimation is refined as iterations go on. A detailed description of iterative sparse channel esti-
mation will be presented in Chapter 9.

7.3.4 Influence of Data Symbols

7.3.4.1 Small ICI Depth D

Note that the ICI energy decreases as the subcarrier distance increases; see Figure 5.5. In
a scenario with small values of ICI depth D, channel estimation can be achieved based on
frequency measurements within clusters of pilot subcarriers, by treating the ICI leakage from
adjacent data subcarriers as ambient noise. The frequency measurement vector z in (7.24) and
(7.25) will be replaced by the vector zP stacked by measurements at pilot subcarriers.

7.3.4.2 Large ICI Depth D

In scenarios with large ICI depth D, a pre-whitening procedure can be performed to reduce the
effect of unknown data symbols on channel estimation.

Assuming w ∼  (𝟎, 𝜎2I), the covariance matrix of the equivalent noise vector 𝜼D is

Cov(𝜼D) = 𝔼(H𝚺DHH) + 𝜎2I (7.27)

with 𝚺D denoting the covariance matrix of sD,

[𝚺D]k,k =

{
1 k ∈ D

0 k ∈ P ∪ N.
(7.28)

Assume 𝔼{HHH} ≈ 𝛾𝜎2I in (7.27), where 𝛾 is the average SNR at the receiver. The covariance
matrix of 𝜼D can be approximated by a diagonal matrix

Cov(𝜼D) ≈ 𝜎2 (𝛾𝚺D + I
)
. (7.29)

A pre-whitening operation can be performed prior to the channel estimation with a diagonal
pre-whitening matrix

[W]k,k =

{√
1
𝛾+1

k ∈ D

1 k ∈ P ∪ N.
(7.30)

Multiplying both sides of (7.17) with W leads to

zw = WHsP + 𝜼w (7.31)



Channel and Noise Variance Estimation 127

where the pre-whitened noise vector 𝜼w ∼  (𝟎, 𝜎2I). Substituting (5.29) into (7.31) yields

zw =
Npa∑
p=1

𝜉pW𝚲(𝜏p)𝚪(bp, 𝜖)sP + 𝜼w. (7.32)

The ICI-aware channel estimation will be performed based on (7.32).

7.4 Sparse Recovery Algorithms

The problem defined by the ICI-ignorant/-aware channel estimation directly falls into a
research area called compressive sensing. A variety of recovery algorithms have been
developed to obtain the sparse solution. In Appendix A, we provide a brief introduction
about compressive sensing theory and several typical sparse recovery algorithms which
are computationally tractable for practical applications. A current summary of compressive
sensing techniques can be found in, e.g., [110].

Algorithms that reconstruct a signal taking advantage of its sparse structure have been used
well before the term compressive sensing was coined. The surprising discovery is that it can be
shown that several of these algorithms will – under certain conditions – render the same solu-
tion as the combinatorial approach. These conditions largely amount to tighter constraints on
the sparsity of 𝝃 beyond identifiability. We briefly introduce the two main types of algorithms.

7.4.1 Matching Pursuit

In this type of approach the combinatorial problem is circumvented by heuristically choosing
which values of 𝝃 are nonzero and solving the resulting constrained least-squares problem.
The most popular algorithms of this type are greedy algorithms, like Matching Pursuit (MP)
or Orthogonal Matching Pursuit (OMP), that identify the nonzero elements of 𝝃 in an iterative
fashion.

A short algorithmic description of OMP would be:

1. Initialize the set of nonzero elements 𝛀0 as empty, the observation residual as, r = z, and
the iterative index i = 0.

2. Correlate all columns of 𝚿 with the residual r, viz., 𝚿Hr, choose the largest element by
magnitude and add its index pi to the set of nonzero elements 𝛀i = 𝛀i−1 ∪ {pi}.

3. With the constraint that only elements of 𝝃 with indices in 𝛀i are nonzero, find an estimate
�̂�i that minimizes ||z −𝚿�̂�||2.

4. Update the residual as r = z −𝚿�̂�i.
5. Repeat steps (2)-(4) until either a known degree of sparsity s is reached or the norm of the

residual ||r||2 falls below a predetermined threshold.

This type of algorithm has been popular mainly because it can be easily implemented and
has low computational complexity. However, it could fail to find the sparsest solution in certain
scenarios.
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7.4.2 𝓁1-Norm Minimization

Although the 𝓁1-norm optimization problem in (7.13) and (7.25) has been used in various
applications to promote sparse solutions in the past (see references in [56]), it is now
largely popular under the name Basis Pursuit (BP), as introduced in [73]. While originally
the term BP was used to designate the case of noiseless measurements and the qualifier
Basis Pursuit De-Noising (BPDN) to refer to the case of noisy measurements [73], we will
generally refer to both cases simply by BP. Under appropriate parameterization, BP can be
shown to be equivalent to the LASSO algorithm which is well-known in statistics [385]; see
Appendix A.2.2.

All these algorithms have in common that they lead to convex optimization problems, which
can be solved efficiently using existing computational techniques. Here we consider the pro-
jected gradient methods. A framework of algorithms in this category is as follows.

(1) Initialization. Set iteration index i = 0, and an initial estimate 𝝃0.
(2) Solution for a separable approximation

• Compute the observation residual

r = z −𝚿𝝃i. (7.33)

• Choose 𝛼i, and compute 𝝃+i in a separable approximation problem

𝝃
+
i ∶= argmin

u
(𝝃i − u)H𝚿Hr + 1

2
𝛼i||𝝃i − u||22 + 𝜁 ||u||1. (7.34)

For complex valued z, 𝚿 and 𝝃, the problem in (7.34) can be rewritten as

𝝃
+
i ∶= argmin

u

1
2
(𝜼i − u)H(𝜼i − u) + 𝜁

𝛼i
||u||1, (7.35)

with
𝜼i = 𝝃i −

1
𝛼i
𝚿Hr. (7.36)

For (7.35), an elementwise minimizer [435] is given by

𝜉+i,p = soft

(
𝜂i,p,

𝜁

𝛼i

)
(7.37)

where 𝜉+i,p denotes the pth element of 𝝃+i , and the soft-threshold function as shown in
Figure 7.4, is defined as

soft(a, b) = max{|a| − b, 0}
max{|a| − b, 0} + b

a. (7.38)

If 𝝃+i cannot satisfy certain acceptance criterion, such as yielding a decrease in the
objective function, increase 𝛼i by a factor 𝜂 > 1, i.e., 𝛼i = 𝜂𝛼i, and repeat this step; see
[435] for discussions on the acceptance criterion.
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a

soft (a,b)

−b b

Figure 7.4 Illustration of the soft-threshold function.

(3) Update estimate. The estimate in the (i + 1)th iteration is obtained via

𝝃i+1 = 𝝃i + 𝛾i(𝝃+i − 𝝃i) (7.39)

where 𝛾i ∈ (0, 1] specifies the step length.
(4) Repeat. Set i = i + 1, and repeat steps (2)-(3) until the stopping criterion holds.

The convergence rate of the 𝓁1-norm minimization algorithms highly depends on the initial
estimate 𝝃0. A warm-start method is investigated in [435]. For channel estimation in OFDM
block transmissions, channel estimates in preceding blocks can serve as initial estimate of the
channel in the current block. We defer our discussion on the block-to-block receiver processing
to Chapter 10.

Due to the 𝓁1-norm relaxation, the solution will not be exactly sparse, but will exhibit numer-
ous small values that do not contribute significantly to the estimation error. If an exactly sparse
solution is sought, an additional thresholding or debiasing stage [435] can remove the small
components. Specifically in the debiasing stage, components of small amplitude in �̂� are set
as zero, and indices of large components are taken as locations of effective channel paths.
With this information, the coefficient matrix in (7.7) or (7.23) can then be reconstructed. The
debiased solution is obtained as the LS solution.

Multiple variants under the above framework exist; see Section A.2. In this book, we take
the SpaRSA algorithm developed in [435] as an example to illustrate the application of com-
pressive sensing for underwater acoustic channel estimation. Other sparse recovery algorithms
can be applied with slight modifications.

7.4.3 Matrix-Vector Multiplication via FFT

To estimate the sparse vectors in (7.8) and (7.23), the sparse recovery algorithms require
frequent computation of the multiplication between the dictionary matrix 𝚿 and a tentative
solution �̂�, and of the multiplication between 𝚿H and the measurement residual vector r
(see, e.g., the OMP algorithm). Efficient implementation methods are vital in the practical
receiver design.
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For the ICI-ignorant sparse channel estimation, as the dictionary matrix 𝚿 in (7.8) itself is a
partial FFT matrix, efficient computation is trivial–the multiplication 𝚿�̂� can be simply per-
formed via a 𝜆bK-point FFT of �̂�, and 𝚿Tr can be performed via a 𝜆bK-point inverse FFT of �̂�.

7.4.3.1 Implementation of 𝚿�̂�

To seek an efficient computation of 𝚿�̂� in the ICI-aware sparse channel estimation, the dictio-
nary representation in (7.23) can be reformulated as

Ψ�̂� =
NDop∑
i=1

(
𝚪(b(i), 𝜖)sP

)
∘
(
𝚽𝜆b

𝝃
(i)
)

(7.40)

where ∘ denotes an element-wise product between two matrices, which is called Hadamard
product, and 𝚽𝜆b

is a K × Nde partial FFT matrix defined as

𝚽𝜆b
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · e
j2𝜋 (p−1)

2𝜆b · · · e
j2𝜋

Nde−1
2𝜆b

⋮ ⋱ ⋮ ⋱ ⋮

1 · · · e
−j2𝜋 m(p−1)

𝜆bK · · · e
−j2𝜋

m(Nde−1)
𝜆bK

⋮ ⋱ ⋮ ⋱ ⋮

1 · · · e
−j2𝜋

(
K
2
−1

)
(p−1)
𝜆bK · · · e

−j2𝜋
(

K
2
−1

) (Nde−1)
𝜆bK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7.41)

The computational load therefore can be saved by performing the multiplication between 𝚽𝜆b

and a tentative solution of �̂�
(i)

with a 𝜆bK-point FFT. Meanwhile, noting that the multiplication
𝚪(b(i), 𝜖)sP is independent of the tentative delay 𝜏p, the product matrix can be pre-computed
prior to executing the solution-finding algorithm. To further reduce the computational load, one
can retain only D off-diagonals on the template 𝚪(b(i), 𝜖), by assuming a limited ICI leakage
from D directly neighboring subcarriers on each side.

7.4.3.2 Implementation of 𝚿Hr

Based on the dictionary representation in (7.23), the multiplication can be reformulated as

𝚿Hr =
[
𝚿(1) · · · 𝚿(Nb)

]H
r (7.42)

where the submatrix 𝚿(i) of size K × Nde is defined as

𝚿(i) =
[
𝚲(𝜏1)𝚪(b(i), 𝜖)sP · · · 𝚲(𝜏Nde

)𝚪(b(i), 𝜖)sP
]
. (7.43)

The multiplication (𝚿(i))Hr can be effectively implemented as(
𝚿(i))H

r = 𝚽H
𝜆b

[(
𝚲(b(i), 𝜖)sP

)∗∘ r
]

(7.44)

where (⋅)∗ denote the conjugate operation. Based on (7.44), the matrix-vector multiplication
can be performed via a 𝜆bK-point inverse FFT after an element-wise multiplication between
the pre-computed vector (𝚲(b(i), 𝜖)sP)∗ and the residual vector r. Given NDop tentative Doppler
values, NDop inverse FFTs are necessary to obtain the multiplication 𝚿Hr.
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7.4.4 Computational Complexity

From (7.40), one can see that the channel estimation complexity is roughly linear with the
number of representative Doppler values NDop. The study in [171] shows that the average
runtime to solve the estimation problem in (7.40) with NDop = 15 tentative Doppler values is
about 30 times larger than that with NDop = 1, indicating that even being efficiently imple-
mented, the ICI-aware channel estimation still requires a much higher computational load
that its ICI-ignorant counterpart. In Chapter 9, we will look into a practical receiver design
with a progressive ICI coefficient estimation, which has a robust performance in time-varying
channels while maintaining a relative low computational complexity.

7.5 Extension to Multi-Input Channels

For a multi-input channel with Nt transmitters, the channel at each receiving element consists
of Nt individual subchannels. Channel estimation at each receiving element hence involves
recovering Nt sets of channel parameters. In spite of the difference in the problem size, tech-
niques for the multi-input channel estimation are essentially the same as those used for the
single-input channel estimation.

Focusing on one particular receiving element, a brief discussion will be provided next on
how to extend the sparse estimation method developed for the single-input channel to the
multi-input channel.

7.5.1 ICI-Ignorant Sparse Channel Sensing

Consider a multi-input multi-output (MIMO) channel with Nt transmitters and Nr receivers.
The system model at the 𝜈th receiving element derived in (5.60) is repeated as

z𝜈[m] =
Nt∑
𝜇=1

H𝜈,𝜇[m]s𝜇[m] + 𝜂𝜈[m] (7.45)

for m = −K∕2, · · · ,K∕2 − 1, where the channel coefficient is represented by path parameters
as

H𝜈,𝜇[m] =
Npa,𝜈,𝜇∑

p=1

𝜉𝜈,𝜇,pe−j2𝜋 m
T
𝜏𝜈,𝜇,p . (7.46)

Following the same spirit of sparse channel estimation in the ICI-ignorant receiver for
single-input channels, the path delays between the 𝜇th transmitter and the 𝜈th receiving
element are quantized into a set of representative values,

𝜏𝜈,𝜇 ∈
{

0,
1
𝜆bB

,
2
𝜆bB

, · · · ,
Nde − 1

𝜆bB

}
(7.47)

for 𝜇 = 1, · · · ,Nt.
The dictionary representation of the frequency measurement vector on pilot subcarriers at

the 𝜈th receiving element is formulated as

z𝜈,P =
Nt∑
𝜇=1

Ψ𝜈,𝜇𝝃𝜈,𝜇 + 𝜼𝜈,P, (7.48)

where Ψ𝜈,𝜇 and 𝝃𝜈,𝜇 are similarly defined as 𝚿 and 𝝃 in (7.7), respectively.
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Define a dictionary matrix 𝚿𝜈 and a vector 𝝃𝜈 as

𝚿𝜈 =
[
𝚿𝜈,1 · · · 𝚿𝜈,Nt

]
, 𝝃𝜈 =

[
𝝃

T
𝜈,1 · · · 𝝃T

𝜈,Nt

]T
. (7.49)

We have (7.48) rewritten as
z𝜈,P = 𝚿𝜈𝝃𝜈 + 𝜼𝜈, (7.50)

which shares an identical form as (7.8) except that the size of 𝝃𝜈 is Nt times of that in (7.8).
The sparse recovery algorithms discussed in Section 7.4 therefore can be applied.

With the estimate �̂�𝜈 , the channel coefficient H𝜈,𝜇[m] can be reconstructed as

Ĥ𝜈,𝜇[m] =
Nde−1∑

p=0

𝜉𝜈,𝜇,pe
−j2𝜋 mp

𝜆bK (7.51)

where 𝜉𝜈,𝜇,p is the (p + 1)th element in �̂�𝜈,𝜇.
Relative to the single-input channel, more frequency measurements are necessary to esti-

mate the Nt unknown subchannels simultaneously. In practical systems, one design example
is to divide the total pilot subcarriers into Nt nonoverlapping sets of equal size, each set cor-
responding to one transmitter. The numerical results in Figure 7.3 shows the average mean
square channel estimation error with different sizes of the pilot set for each transmitter and
receiver pair.

7.5.2 ICI-Aware Sparse Channel Sensing

The input–output relationship in the MIMO channel derived in (5.41) is repeated as

z𝜈 =
Nt∑
𝜇=1

H𝜈,𝜇s𝜇 + w𝜈 , (7.52)

with

H𝜈,𝜇 =
Npa,𝜈,𝜇∑

p=1

𝜉𝜈,𝜇,p𝚲(𝜏𝜈,𝜇,p)𝚪(b𝜈,𝜇,p, 𝜖𝜈). (7.53)

Similarly to the two symbol vectors sP and sD defined in (7.15) for the single-input channel,
two symbol vectors s𝜇,P and s𝜇,D are defined for the symbols from the 𝜇th transmitter. The
input–output relationship in (7.52) is rewritten as

z𝜈 =
Nt∑
𝜇=1

H𝜈,𝜇s𝜇,P +
Nt∑
𝜇=1

H𝜈,𝜇s𝜇,D + w𝜈, (7.54)

=
Nt∑
𝜇=1

H𝜈,𝜇s𝜇,P + 𝜼𝜈,D, (7.55)

where 𝜼𝜈,D is the equivalent noise including frequency components from unknown data sym-
bols and ambient noise. Substituting (7.53) into (7.55) yields

z𝜈 =
Nt∑
𝜇=1

Npa,𝜈,𝜇∑
p=1

𝜉𝜈,𝜇,p𝚲(𝜏𝜈,𝜇,p)𝚪(b𝜈,𝜇,p, 𝜖𝜈)s𝜇,P + 𝜼𝜈,D. (7.56)
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A sparse estimation of path parameters in the Nt-th subchannel can be carried out based on
(7.56).

To linearize the channel estimation input–output relationship in (7.56), define a representa-
tive set of path parameters for the 𝜇th subchannel,

𝜏𝜈,𝜇 ∈
{

0,
1
𝜆bB

,
2
𝜆bB

, · · · ,
Nde − 1

𝜆bB

}
, (7.57)

b𝜈,𝜇 ∈
{
−b𝜈,𝜇,max,−b𝜈,𝜇,max + Δb𝜈,𝜇, · · · , b𝜈,𝜇,max

}
, (7.58)

where b𝜈,𝜇,max and Δb𝜈,𝜇 specify the Doppler searching range and resolution of the 𝜇th sub-
channel, respectively, leading to a total of N𝜈,𝜇,Dop tentative Doppler scale values. For conve-
nience, here an identical representative set of delays is assumed for all subchannels; one can
easily extend our discussion to the settings that different subchannels use different path delay
searching ranges and resolutions.

Corresponding to the
(∑Nt

𝜇=1 NdeN𝜈,𝜇,Dop

)
representative paths, define two coefficient vec-

tors in order

𝝃
(i)
𝜈,𝜇 =

[
𝜉
(i)
𝜈,𝜇,1 · · · 𝜉

(i)
𝜈,𝜇,Nde

]T
(7.59)

𝝃𝜈,𝜇 =
[
(𝝃(1)𝜈,𝜇)T · · ·

(
𝝃
(N𝜈,𝜇,Dop)
𝜇

)T]T
(7.60)

for i = 1, · · · ,N𝜈,𝜇,Dop and 𝜇 = 1, · · · ,Nt, where 𝝃𝜈,𝜇 consists of combination coefficients of
the 𝜇th subchannel over NdeN𝜈,𝜇,Dop entries. Stacking all the 𝝃𝜈,𝜇 into a long vector yields

𝝃𝜈 =
[
𝝃

T
𝜈,1 · · · 𝝃T

𝜈,Nt

]T
. (7.61)

A dictionary representation of the frequency measurement vector in (7.56) follows as

z𝜈 =
Nt∑
𝜇=1

N𝜈,𝜇,Dop∑
i=1

Nde∑
p=1

𝜉
(i)
𝜈,𝜇,p𝚲(𝜏𝜈,𝜇,p)𝚪(b

(i)
𝜈,𝜇, 𝜖𝜈)s𝜇,P + 𝜼𝜈,D (7.62)

∶= 𝚿𝝃 + 𝜼D (7.63)

where the dictionary matrix𝚿 has
(∑Nt

𝜇=1 NdeN𝜈,𝜇,Dop

)
columns in total. Techniques for sparse

channel estimation discussed in Section 7.3.2 can be directly applied.
With the estimate �̂�𝜈 , the channel matrix of the 𝜇th subchannel can be reconstructed as

Ĥ𝜈,𝜇[m, k] =
N𝜈,𝜇,Dop∑

i=1

Nde∑
p=1

𝜉
(i)
𝜈,𝜇,pe−j2𝜋 m

T
𝜏p G

(
fm + 𝜖𝜈
1 + b(i)𝜈,𝜇

− fk

)
(7.64)

For an efficient implementation, (7.62) can be reformulated as

z𝜈 =
Nt∑
𝜇=1

N𝜈,𝜇,Dop∑
i=1

(
𝚪(b(i)𝜈,𝜇, 𝜖𝜈)s𝜈,𝜇,P

)
∘
(
Φ𝜆b

𝝃
(i)
𝜈,𝜇

)
+ 𝜼𝜈,D (7.65)

which shows that
(∑Nt

𝜇=1 N𝜈,𝜇,Dop

)
FFTs of 𝜆bK points are required for each multiplication

between the dictionary matrix 𝚿𝜈 and a tentative estimate �̂�𝜈 .
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7.6 Noise Variance Estimation

Following the OFDM signal design in Section 2.3, the frequency measurements at null sub-
carriers can be used for noise variance estimation. In the ICI-ignorant receiver processing, the
ICI is taken as the additive noise, hence the equivalent noise includes both ICI and ambient
noise. The noise variance can be estimated as

�̂�2
𝜂 =

1|N| ∑
m∈N

|z[m]|2, (7.66)

where |N| is the number of null subcarriers. The SNR in the frequency domain can be esti-
mated as

�̂� =
𝔼

m∈A

[|z[m]|2]
𝔼

m∈N

[|z[m]|2] − 1. (7.67)

In the ICI-aware receiver processing with a limited ICI-leakage assumption of depth D, the
equivalent noise consists of both residual ICI and ambient noise. Hence, based on the frequency
measurements at null subcarriers, the noise variance can be estimated as

�̂�2
𝜂 = 𝔼

∑
m∈N

⎡⎢⎢⎣
||||||z[m] −

m+D∑
k=m−D

Ĥ[m, k]ŝ[k]
||||||
2⎤⎥⎥⎦ , (7.68)

whereN denotes the set of null subcarriers within the signal band, and Ĥ[m, k] and ŝ[k] denote
the estimated ICI coefficient and transmitted symbol, respectively. The SNR in the frequency
domain can be estimated as

�̂� =
𝔼

m∈A

[|||∑m+D
k=m−D Ĥ[m, k]ŝ[k]|||2

]
𝔼

m∈N

[|||z[m] −
∑m+D

k=m−D Ĥ[m, k]ŝ[k]|||2
] − 1. (7.69)

In the MIMO channel with Nt transmitters and Nr receivers, the noise variance at the 𝜈th
receiver is estimated as

�̂�2
𝜂,𝜈 = 𝔼

m∈N

[| z𝜈[m] −
Nt∑
𝜇=1

k=m+D∑
k=m−D

Ĥ𝜈,𝜇[m, k]ŝ𝜇[k]|2] , (7.70)

where Ĥ𝜈,𝜇[m, k] and ŝ𝜇[k] denote the estimated ICI coefficient and transmitted symbol, respec-
tively.

7.7 Noise Prewhitening

In the ICI-ignorant/aware receiver processing, the unmodelled ICI and the ambient noise are
taken as one equivalent noise, with the equivalent noise at the mth subcarrier denoted as 𝜂[m]
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in (5.47) for the ICI-ignorant processing and in (5.56) for the ICI-aware processing with a
limited ICI-leakage assumption. As for the signal itself, the variance of the residual ICI is
frequency-dependent as (i) the transmitter often has a nonideal transmit voltage response
(TVR), and (ii) underwater acoustic propagation introduces frequency dependent attenua-
tion [266]. Furthermore, the ambient noise in underwater acoustic environments makes the
equivalent noise more colored [266], especially in the presence of ambient interference, such
as shrimp noise. Accordingly noise pre-whitening procedure is beneficial to facilitate receiver
processing [34].

7.7.1 Noise Spectrum Estimation

Consider a simple method to estimate the variance 𝜎2
𝜂 [m] = 𝔼{|𝜂[m]|2} of the ICI-plus-noise

across all subcarriers. It assumes that the spectrum is generally smooth, and can be approxi-
mated by a Qth-order polynomial Q(m) =

∑Q
q=0 pqmq, either in the linear domain

𝜎2
𝜂 [m] = PQ(m), (7.71)

or in the log domain
𝜎2
𝜂 [m] = 10Q(m)∕10, (7.72)

where m = −K∕2, … ,K∕2 − 1. The parameter p0 represents the noise variance at the center
frequency. The white noise model is included as a special case with Q = 0.

The measurements on the null subcarriers are used to estimate the model parameters. Two
methods are proposed next based on the log-domain approximation in (7.72).

• Linear regression in log-domain: A simple linear regression model in the log-domain can
be formulated as

{Q}LR = argmin
{pq}

∑
m∈N

||||||10log10|z[m]|2 − Q∑
q=0

pqmq
||||||
2

. (7.73)

This method is of very low complexity. However, fitting in the log-domain tends to lead to a
negative bias on p0 (i.e., underestimating the noise variance), as small values are amplified
in the log-domain. A simple remedy is to apply some smoothing on the observations |zm|2
before transforming to the log domain.

• Maximum likelihood based variance estimator: By the central limit theorem, 𝜂[m] can be
viewed to have a Gaussian distribution. Hence, |𝜂[m]|2 is exponentially distributed. The
maximum likelihood (ML) solution for the model parameters can be formulated as{Q

}
ML

= argmax
{pq}

∑
m∈N

−
[

ln
(
10Q(m)∕10) + |z[m]|2

10Q(m)∕10

]
. (7.74)

For any large Q the complexity of an exhaustive search quickly becomes prohibitive.
The ML approach is therefore mainly used for the two dimensional problem, i.e., Q = 1.
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Furthermore to keep the complexity low, a multi-grid search can be applied or a final
solution can be improved via simple interpolation techniques.

7.7.2 Whitening in the Frequency Domain

Once the variance of the equivalent noise has been estimated, the data can be easily whitened as

zw[m] = z[m]
�̂�𝜂[m]

, m = −K
2
, · · · , K

2
− 1 (7.75)

based on which the receiver processing algorithms, such as the equalization algorithms in
Chapter 8, and the sum-product algorithm for LDPC decoding, which requires the statistical
description of system noise, can be applied.

7.8 Bibliographical Notes

Estimation of the linear time-invariant frequency selective radio channel has been extensively
based on, e.g., subspace fitting [436], model order fitting using a generalized Akaike infor-
mation criterion [326], zero-tap detection [60], or Monte Carlo Markov Chain methods [322].
More recently, advances in the field of compressive sensing [24, 53, 55, 100] have led to exten-
sive investigations on sparse channel estimation, e.g., sparseness in delay only [18, 59, 88, 130,
204, 303, 339, 437] and very recently for sparseness in delay and Doppler [19, 378]. Specifi-
cally on UWA channels, the matching pursuit (MP) algorithm and its variants have been used
both in [188, 240] for a single carrier system and in [201] for a multicarrier system. A geometric
mixed-norm approach has been developed in [152] for sparse channel estimation and track-
ing, and an iterative adaptive approach (IAA) have been proposed in [251] for sparse channel
estimation in single-carrier transmissions where the Bayesian information criterion (BIC) is
adopted to determine the number of dominant channel taps.

In ICI-ignorant OFDM receiver processing, the channel estimation problem can also be
linked to the direction finding problem from the array processing literature [403]. Particu-
larly, applications of the direction finding algorithms, such as root-MUSIC and ESPRIT, have
been explored in [38]. In the time-varying scenario, besides the sparse channel estimator pre-
sented in this chapter, another known approach to estimating this class of channel is the use
of a basis expansion model (BEM) to reflect the time-varying nature of the UWA channel,
see e.g., [185, 232, 320]. Estimation of the sparse channel with high dimensionality has been
studied in [442].



8
Data Detection

This chapter presents the data detection (a.k.a channel equalization) module of the OFDM
receivers to be examined in later chapters. Due to the existence of channel coding in prac-
tical systems, the data detection module will compute the soft information as needed by the
channel decoder. In a noniterative receiver as shown in Figure 8.1(a), the data detection mod-
ule computes soft information based on the collected measurements only, and passes it to the
channel decoder. In an iterative receiver as shown in Figure 8.1(b), the data detection module
is coupled with the channel decoder with information exchange between the two modules,
where the soft information from the channel decoder is used as prior information of data sym-
bols in data detection. Such an iterative data detection and channel decoding is refereed to as
turbo equalization.

In the context of OFDM receiver design for underwater acoustic channels, data detection is
often carried out on each OFDM block. With a generic notation, denote s as the vector contain-
ing K information symbols transmitted in one OFDM block, and z as the vector collecting all
relevant measurements at the receiver. The exact relationship between z and s will be specified
later on based on different assumptions on the underlying channel. Aligned with the nonbi-
nary LDPC codes as discussed in Chapter 3, the soft information will be in the form of the
log-likelihood-ratios (LLRs) of each symbol. Assume that each symbol s[k] is taken from a
size-M constellation {𝛼0, … , 𝛼M−1}; see Figures 3.2 and 3.3 for widely used symbol constel-
lations. The channel decoder provides prior knowledge about the symbol s[k] based on the
reliability information of other coded symbols exploiting the code structure. The logarithm of
an a priori probability ratio is defined as

Lapr
i [k] ∶= ln

Pr(s[k] = 𝛼i)
Pr(s[k] = 𝛼0)

, (8.1)

and a corresponding vector is defined as

Lapr[k] =
[
Lapr

0 [k] Lapr
1 [k] … Lapr

M−1[k]
]T
. (8.2)
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Figure 8.1 Illustration of noniterative and turbo equalization, {Lext[k]} denotes the extrinsic informa-
tion from the channel equalizer. {Lapr[k]} represents the extrinsic information from channel decoder,
which is used as the a priori information for channel equalization.

Now define the a posteriori probability (APP) of the symbol s[k] being 𝛼i, given all the
measurements and the prior information of all the symbols, as Pr(s[k] = 𝛼i|z, {Lapr[k]}). The
logarithm of an a posteriori probability ratio is

Lapp
i [k] ∶= ln

Pr(s[k] = 𝛼i|z, {Lapr[k]})
Pr(s[k] = 𝛼0|z, {Lapr[k]})

(8.3)

and a corresponding vector is

Lapp[k] =
[
Lapp

0 [k] Lapp
1 [k] … Lapp

M−1[k]
]T
. (8.4)

When the data detector passes soft information back to the channel decoder, the contribution
from the channel decoder should be deducted. The so called extrinsic LLR, as needed by the
channel decoder, is defined as

Lext
i [k] ∶= ln

Pr(s[k] = 𝛼i|z, {Lapr[m]}m≠k)
Pr(s[k] = 𝛼0|z, {Lapr[m]}m≠k)

(8.5)

The corresponding vector

Lext[k] =
[
Lext

0 [k] Lext
1 [k] … Lext

M−1[k]
]T

(8.6)

is related to Lapp[k] and Lapr[k] through

Lext[k] = Lapp[k] − Lapr[k]. (8.7)

The collection of {Lext[k]}∀k is passed to the channel decoder for decoding. In the case of
noniterative receiver, or, in the initial round of the turbo equalization, there is no prior infor-
mation, hence Lapr

i [k] = 0, and the extrinsic information Lext
i [k] is equivalent to the a posteriori

information Lapp
i [k].

How difficult it is to compute the extrinsic LLRs depends on the system model which links
the measurements in z with the information symbols in s.
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• In Section 8.1, we consider the detection algorithms for ICI-ignorant OFDM receivers with
a single data stream. Since ICI is ignored, data detection is performed on each OFDM sub-
carrier individually. The soft information of each symbol can be easily computed and fed
into the channel decoder.

• In Section 8.2, we consider the ICI-aware receiver with full ICI among OFDM subcarri-
ers. We present two block detectors, the maximum a posteriori (MAP) detector and the
soft-input soft-output linear minimum mean squared error (MMSE) detector.

• In Section 8.3, we consider the ICI-aware receiver where the ICI is limited to only close
neighbors. The ICI mitigation problem is then viewed as equivalent to the intersym-
bol interference (ISI) equalization problem in the presence of time-varying channels.
A trellis-structure based equalization method and a factor-graph based equalization method
are presented respectively.

• In Section 8.4, we consider data detection in an OFDM system with multiple transmitters.
Depending on the assumptions on the ICI, the receivers in Sections 8.2 and 8.3 are extended
to the multiple-transmitter case.

• In Section 8.5, the Markov Chain Monte Carlo (MCMC) method is adopted for data detec-
tion for the OFDM system with multiple transmitters. Both ICI-ignorant and ICI-aware
systems are considered.

Data detection has been intensively investigated in the last several decades, and the tradeoff
between data detection performance and computational complexity is well understood. The
detection algorithms in this chapter are taken from the literature directly and presented in the
context of coded OFDM. Other algorithms, not covered here, can be also applied to reach
a desired tradeoff between performance and complexity.

8.1 Symbol-by-Symbol Detection in ICI-Ignorant OFDM Systems

8.1.1 Single-Input Single-Output Channel

For the system with single receiving element, the input–output relationship is copied from
(5.47) as

z[m] = H[m]s[m] + 𝜂[m], m = −K
2
, · · · , K

2
− 1, (8.8)

where the data symbol s[m] takes value from a finite constellation set = {𝛼0, 𝛼1, · · · , 𝛼M−1}.
Assume that constellation points are equally probable. A hard decision on the symbol s[m]

can be made through an exhaustive search

ŝ[m] = arg min
𝛼i∈ |z[m] − H[m]𝛼i|2 (8.9)

= arg min
𝛼i∈ |ŝLS[m] − 𝛼i|2 (8.10)

where ŝLS[m] is the least squares (LS) estimate of s[m]:

ŝLS[m] = z[m]
H[m]

. (8.11)
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The soft information as needed by the channel decoder is

Lext
i [m] = ln

Pr(s[m] = 𝛼i|z[m])
Pr(s[m] = 𝛼0|z[m])

(8.12)

= ln
f (z[m]|s[m] = 𝛼i)
f (z[m]|s[m] = 𝛼0)

. (8.13)

where f (z[m]|s[m]) is the likelihood function. Assuming that the noise follows a complex
Gaussian distribution 𝜂[m] ∼  (0, 𝜎2

𝜂 ), the likelihood function is

f (z[m]|s[m]) = 1

𝜋𝜎2
𝜂

exp

(|z[m] − H[m]s[m]|2
𝜎2
𝜂

)
. (8.14)

Thus the extrinsic LLR can be computed as

Lext
i [m] = 1

𝜎2
𝜂

[||z[m] − H[m]𝛼0
|| 2 − ||z[m] − H[m]𝛼i

|| 2] (8.15)

= 1

𝜎2
𝜂

[2ℜ{z∗[m]H[m](𝛼i − 𝛼0)} − |H[m]|2(|𝛼i|2 − |𝛼0|2)]. (8.16)

8.1.2 Single-Input Multi-Output Channel

For a single-input multi-output (SIMO) channel with Nr receiving elements, the frequency
measurement on the mth subcarrier at the 𝜈th element is

z𝜈[m] = H𝜈[m]s[m] + 𝜂𝜈[m] (8.17)

for 𝜈 = 1, · · · ,Nr. We assume that noises at all receiving elements are independently and iden-
tically distributed (i.i.d), with 𝜂𝜈[m] ∼  (0, 𝜎2

𝜂 ), ∀𝜈.

8.1.2.1 Maximum Ratio Combining

After the maximum ratio combining (MRC) of frequency measurements at all receiving
elements, one can obtain a sufficient statistic of the frequency measurements

zmrc[m] =
∑Nr
𝜈=1 z𝜈[m]H∗

𝜈 [m]√∑Nr
𝜈=1 |H𝜈[m]|2 . (8.18)

Define an equivalent channel coefficient

Hmrc[m] ∶=

[
Nr∑
𝜈=1

|H𝜈[m]|2]1∕2

. (8.19)
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A simplified expression of (8.18) is

zmrc[m] = Hmrc[m]s[m] + 𝜂mrc[m], (8.20)

where the noise after MRC is

𝜂mrc[m] ∶= 1
Hmrc[m]

Nr∑
𝜈=1

H∗
𝜈 [m]𝜂𝜈[m], (8.21)

which can be verified to follow a complex Gaussian distribution 𝜂mrc[m] ∼  (0, 𝜎2
𝜂 ).

8.1.2.2 Extrinsic LLR Computation

Notice that the input–output relationship after MRC in (8.20) has an identical form as (8.8),
the LS estimate of the information symbol is similarly obtained as

ŝLS[m] =
zmrc[m]
Hmrc[m]

. (8.22)

The extrinsic LLR in the SIMO channel is formulated as

Lext
i [m] = 2

𝜎2
𝜂

ℜ{z∗mrc[m]Hmrc[m](𝛼i − 𝛼0)} −
1

𝜎2
𝜂

|Hmrc[m]|2(|𝛼i|2 − |𝛼0|2) (8.23)

= 1

𝜎2
𝜂

[
2ℜ

{
Nr∑
𝜈=1

z∗𝜈 [m]H𝜈[m]
(
𝛼i − 𝛼0

)}
−

Nr∑
𝜈=1

|H𝜈[m]|2(|𝛼i|2 − |𝛼0|2)] . (8.24)

8.2 Block-Based Data Detection in ICI-Aware OFDM Systems

In an OFDM receiver with intercarrier interference, we copy the frequency measurement at
the mth subcarrier in (5.24) as

z[m] =
K∕2−1∑

k=−K∕2

H[m, k]s[k] +𝑤[m], m = −K
2
, · · · , K

2
− 1 (8.25)

Stacking frequency measurements at all subcarriers into a vector yields⎡⎢⎢⎣
z[K

2
− 1]
⋮

z[−K
2
]

⎤⎥⎥⎦
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∶=z

=
⎡⎢⎢⎣
H[K

2
− 1, K

2
− 1] · · · H[K

2
− 1,−K

2
]

⋮ ⋱ ⋮
H[−K

2
,

K
2
− 1] · · · H[−K

2
,−K

2
]

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=H

⎡⎢⎢⎣
s[K

2
− 1]
⋮

s[−K
2
]

⎤⎥⎥⎦
⏟⏞⏞⏞⏟⏞⏞⏞⏟

∶=s

+
⎡⎢⎢⎣
𝑤[K

2
− 1]
⋮

𝑤[−K
2
]

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

∶=w

(8.26)

where z, s and w are vectors of size K × 1, and H is the channel matrix of size K × K. Define
hm is the column of H corresponding to the symbol s[m], s−m as the vector s with s[m] removed,
and H−

m as the matrix H with hm removed. We rewrite (8.26) as

z = Hs + w (8.27)

= hms[m] + H−
ms−m + w. (8.28)
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The ambient noise samples are assumed following independent and identical distribution (i.i.d)
with 𝑤[m] ∼  (0, 𝜎2

𝑤), ∀m.

8.2.1 MAP Equalizer

Assuming the independence of the information symbols, the prior probability of s− is
expressed as

Pr(s−) =
K∕2−1∏

k=−K∕2, k≠m

Pr(s[k]) (8.29)

where Pr(s[k]) is computed from the LLRV Lapr[k] from the decoder; see e.g., (3.41) and (3.46)
on how to convert LLRs to probabilities. With the Gaussian noise, the likelihood function is

f (z | s−, s[m] = 𝛼i) ∝ exp

(
− 1

𝜎2
w

||||z − h𝛼i − H−s−||||2) (8.30)

The extrinsic LLR to be passed to the decoder is then:

Lext
i [m] = ln

∑
s− f (z | s−, s[m] = 𝛼i)Pr(s−)∑
s− f (z | s−, s[m] = 𝛼0)Pr(s−)

. (8.31)

The computational complexity of (8.31) is on the order of (MK). Hence, the MAP detec-
tor is not practical for block detection of an OFDM block with a reasonable K. Nevertheless
the general presentation of the MAP detector is useful, and its applicability is justified in the
scenario considered in Section 8.4.1.

8.2.2 Linear MMSE Equalizer with A Priori Information

8.2.2.1 MMSE Formulation

With the constraint that only linear operation can be applied on the vector z to obtain an esti-
mate of s[m], the estimate of s[m] that minimizes the cost function E[|ŝ[m] − s[m]|2] is [393]:

ŝapp
MMSE[m] = ŝ[m] + Cov(s[m], z)Cov−1(z, z)(z − 𝔼[z]). (8.32)

Based on the prior information, the mean and variance of symbol s[m] are obtained as

s[m] =
∑
𝛼i∈

𝛼i ⋅ Pr(s[m] = 𝛼i), (8.33)

𝜎
2
s [m] =

∑
𝛼i∈

(𝛼i − s[m])2 ⋅ Pr(s[m] = 𝛼i). (8.34)

Stack the mean of all data symbols into a vector ŝ, and the variances of all data symbols into
a diagonal matrix 𝚺s,

s =
[
s
[
−K

2

]
· · · s

[K
2
− 1

]]T
(8.35)

𝚺s = diag
(
𝜎2

s

[
−K

2

]
, · · · , 𝜎2

s

[K
2
− 1

])
. (8.36)
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The mean of the frequency measurement vector is obtained as

𝔼[z] = Hs. (8.37)

The covariance matrix of z and the cross-covariance matrix between s[m] and z can be com-
puted as:

Cov(z, z) = H𝚺sH
H + 𝜎2

wI, (8.38)

Cov(s[m], z) = 𝜎2
s [m]hH

m. (8.39)

The MMSE estimate in (8.32) can be expanded as

ŝapp
MMSE[m] = s[m] + 𝜎2

s [m] ⋅ fH
m (z − Hs), (8.40)

where the linear filter fm is defined as

fm ∶= (H𝚺sH
H + 𝜎2

wI)−1hm. (8.41)

The variance of the MMSE estimate is

�̃�2
s [m] = Cov(ŝapp

MMSE[m], ŝapp
MMSE[m]) = 𝜎4

s [m]fH
mhm. (8.42)

8.2.2.2 Extrinsic LLR Computation

Note that the MMSE estimate in (8.40) depends on the prior information on s[m] via s[m]
and 𝜎2

s [m]. To compute the extrinsic information needed by the channel decoder, it is required
that the MMSE estimate ŝ[m] shall be independent from the prior information on s[m]. To
achieve this goal, the receiver shall calculate the MMSE estimate of ŝ[m] by ignoring the prior
information on s[m] while unitizing the prior information on all other symbols.

Let 𝜎2
s be the average power of symbols in the constellation. Enforcing s[m] = 0 and

𝜎2
s [m] = Es when computing the MMSE estimate ŝ[m], one obtains:

ŝ ext
MMSE[m] = 0 + 𝜎2

s ⋅ f
′H
m (z − Hs + s[m]hm) (8.43)

with
f′m ∶= (H𝚺sH

H + 𝜎2
wI + (𝜎2

s − �̂�2
s [m])hmhH

m)−1hm. (8.44)

Using the matrix inversion lemma, f′m is related to fm as

f′m = (1 + (𝜎2
s − 𝜎2

s [m])fH
mhm)−1fm. (8.45)

The MMSE estimate can be reformulated as

ŝ ext
MMSE[m] = Km ⋅ fH

m (z − Hs + s[m]hm) (8.46)

with

Km ∶=
𝜎2

s

1 + (𝜎2
s − 𝜎2

s [m])fH
mhm

. (8.47)
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As suggested in [393], the key to simplify the extrinsic LLR computation is to assume that
f (ŝ ext

MMSE[m]|s[m] = 𝛼i) follows a Gaussian distribution with mean 𝜇m,i and variance 𝜎2
m,i,

f (ŝ ext
MMSE[m]|s[m] = 𝛼i) =

1

𝜋𝜎2
m,i

exp

(
−
|ŝ ext

MMSE[m] − 𝜇m,i|2
𝜎2

m,i

)
. (8.48)

The mean and variance are obtained as

𝜇m,i = Km ⋅ fH
m (𝔼[z|s[m] = 𝛼i] − Hs + s[m]hm)

= Km ⋅ 𝛼i ⋅ fH
mhm (8.49)

𝜎2
m,i = K2

m ⋅ fH
mCov(z, z|s[m] = 𝛼i)fm

= K2
m ⋅ fH

m (H𝚺sH
H + 𝜎2

wI − 𝜎2
s [m]hmhH

m)fm

= K2
m ⋅ (fH

mhm − 𝜎2
s [m]fH

mhmhH
mfm). (8.50)

The extrinsic LLR can be computed as

Lext
i [m] = ln

f (ŝ ext
MMSE[m]|s[m] = 𝛼i)

f (ŝ ext
MMSE[m]|s[m] = 𝛼0)

(8.51)

=
2ℜ{(𝛼∗i − 𝛼∗0 )f

H
m (z − Hs + s[m]hm)} − (|𝛼i|2 − |𝛼0|2)fH

mhm

1 − 𝜎2
s [m]fH

mhm

, (8.52)

which requires the computation of fH
m (z − Hŝ) and fH

mhm.
One can relate the extrinsic LLR computation with the MMSE estimate ŝapp

MMSE and its vari-
ance �̃�2

s [m]. Based on (8.40) and (8.42), we have

fH
m (z − Hs) =

ŝapp
MMSE[m] − s[m]

𝜎2
s [m]

, fH
mhm =

�̃�2
s [m]
𝜎4

s [m]
. (8.53)

Hence, the extrinsic LLR in (8.52) can be expressed as

Lext
i [m] =

2ℜ{(𝛼∗i − 𝛼∗0 )[𝜎
2
s [m](ŝapp

MMSE[m] − s[m]) + �̃�2
s [m]s[m]]} − (|𝛼i|2 − |𝛼0|2)�̃�2

s [m]

𝜎2
s [m](𝜎2

s [m] − �̃�2
s [m])

.

(8.54)
The relationship of (8.54) will be used in Section 8.3.2.

8.2.2.3 Complexity

For each symbol s[m], the linear filter fm as defined in (8.41) needs to be computed. Note that
only one matrix conversion in the form of (H𝚺sH

H + 𝜎2
wI)−1 is needed to calculate the fm’s

for all symbols. The linear MMSE equalizer has a computational complexity on the order of
(K3), which is affordable for a moderate K.
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8.2.3 Extension to the Single-Input Multi-Output Channel

Consider a SIMO channel with Nr receiving elements. For each element 𝜈 = 1, · · · ,Nr, the
frequency measurement vector is expressed as

z𝜈 = H𝜈s + w𝜈 (8.55)

where the matrices and vectors are defined similar to those in (8.27). Stacking frequency mea-
surements at all receiving elements into a vector yields

⎡⎢⎢⎣
z1
⋮

zNr

⎤⎥⎥⎦
⏟⏟⏟
∶=zsimo

=
⎡⎢⎢⎣

H1
⋮

HNr

⎤⎥⎥⎦
⏟⏟⏟
∶=Hsimo

s +
⎡⎢⎢⎣

w1
⋮

wNr

⎤⎥⎥⎦
⏟⏟⏟
∶=wsimo

. (8.56)

The system model in (8.56) shares an identical structure as that in (8.26), except that the
matrices and vectors have different sizes. The MAP equalizer in Section 8.2.1 and the MMSE
equalizer in Section 8.2.2 presented for the SISO channel can be directly applied to the
SIMO channel.

8.3 Data Detection for OFDM Systems with Banded ICI

To reduce the computational complexity involved in (8.25), a banded assumption of
the channel matrix is usually adopted. With the band-limited ICI assumption, we repeat the
input–output relationship of the frequency measurement on the mth subcarrier in (5.56) as

z[m] =
m+D∑

k=m−D

H[m, k]s[k] + 𝜂[m], (8.57)

where 𝜂[m] represents additive noise and the residual ICI beyond the band. For simplification,
we assume that 𝜂[m] are i.i.d. Gaussian distributed 𝜂[m] ∼  (0, 𝜎2

𝜂 ). The likelihood function
is then

f (z[m]|{s[k]}m+D
k=m−D) =

1

𝜋𝜎2
𝜂

exp
⎛⎜⎜⎝− 1

𝜎2
𝜂

||||||z[m] −
m+D∑

k=m−D

H[m, k]s[k]
||||||
2⎞⎟⎟⎠ . (8.58)

8.3.1 BCJR Algorithm and Log-MAP Implementation

The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm is a computationally efficient algorithm to
obtain the exact posterior probability over a trellis [17]. Here we choose to follow the presen-
tation in [408], which facilitates a direct log-main implementation. Such an implementation is
refereed to as? the Log-MAP detector.
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First, we need to define the trellis structure. With the variable change 𝓁 = m + D − k, (8.57)
is rewritten as

z[m] =
2D∑
𝓁=0

H[m,m + D − 𝓁]s[m + D − 𝓁] + 𝜂[m]. (8.59)

To simplify the notation, let us define the sequences

z̃[m] = z[m − D], �̃�[m] = 𝜂[m − D] (8.60)

and a set of time-varying coefficients

h̃[m;𝓁] = H[m − D,m − 𝓁], 𝓁 = 0, … , 2D. (8.61)

Eq. (8.59) then simplifies to

z̃[m] =
2D∑
𝓁=0

h̃[m;𝓁]s[m − 𝓁] + �̃�[m], (8.62)

which shows the convolution between the sequence s[m] and the sequence h̃[m;𝓁]. The ICI
mitigation problem is then related to a channel equalization problem in the presence of inter-
symbol interference, where the finite-impulse-response channel, h̃[m;𝓁],𝓁 = 0, … , 2D, has
time-varying tap weights.

Due to the memory length 2D, define the state at index m as

(s[m − 1], · · · , s[m − 2D]), (8.63)

which leads to a total of M2D states. As shown in Figure 8.2, let us use 𝜁 ′ and 𝜁 to rep-
resent the states in transition at index m. The joint probability Pr(𝜁 ′, 𝜁 , {z̃[k]}∀k) can be
partitioned as:

Pr(𝜁 ′, 𝜁 , {z̃[k]}∀k) = Pr(𝜁 ′, 𝜁 , {z̃[k]}k<m, z̃[m], {z̃[n]}k>m)

= Pr(𝜁 ′, {z̃[k]}k<m)Pr(z̃[m], 𝜁 |𝜁 ′)Pr({z̃[k]}k>m)|𝜁 ), (8.64)

where the second equality is based on the Markov chain property. Define three quantities asso-
ciated with the state transitions at index m as

𝛼m(𝜁 ′) = ln Pr(𝜁 ′, {z̃[n]}n<m) (8.65)

𝛽m(𝜁 ) = ln Pr({z̃[n]}n>m|𝜁 ) (8.66)

𝛾m(𝜁 ′, 𝜁 ) = ln Pr(z̃[m], 𝜁 |𝜁 ′), (8.67)

where 𝛾m(𝜁 ′, 𝜁 ) is the branch metric associated with the state transition from 𝜁 ′ to 𝜁 . Rewriting
the likelihood function in (8.58) as f (z̃[m]|𝜁 ′, 𝜁 ) and with the prior information on s[m], the
branch metric is

𝛾m(𝜁 ′, 𝜁 ) = ln f (z̃[m]|𝜁 ′, 𝜁 ) + ln Pr(𝜁 |𝜁 ′). (8.68)
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Forward recursion Backward recursion

Initial
node

Final
node

Trellis nodes,
k ≤ m − 1

Trellis nodes,
k ≥ m

ζ ζ

State transition
at time index m

Figure 8.2 The illustration of the trellis structure. (Source: Viterbi 1998 [408], figure 1, p. 261. Repro-
duced with permission of IEEE.).

The Log-MAP algorithm runs as follows.

• Forward recursion: Starting from m = −K∕2 to K∕2 − 1, compute 𝛼m(𝜁 ) recursively for
each state 𝜁 :

𝛼m(𝜁 ) = ln
∑
𝜁 ′

exp (𝛼m−1(𝜁 ′) + 𝛾m(𝜁 ′, 𝜁 )) (8.69)

• Backward recursion: Starting from m = K∕2 − 1 to −K∕2, compute 𝛽m(𝜁 ′) recursively for
each state 𝜁 ′:

𝛽m−1(𝜁 ′) = ln
∑
𝜁

exp (𝛾m(𝜁 ′, 𝜁 ) + 𝛽m(𝜁 )) (8.70)

• Compute the a posteriori probability ratio in the log-domain for each symbol s[m] as

Lapp
i [m] = ln

∑
𝜁 ′,𝜁∶ s[m]=𝛼i

exp (𝛼m−1(𝜁 ) + 𝛾m(𝜁 ′, 𝜁 ) + 𝛽m(𝜁 ))

− ln
∑

𝜁 ′,𝜁∶ s[m]=𝛼0

exp (𝛼m−1(𝜁 ′) + 𝛾m(𝜁 ′, 𝜁 ) + 𝛽m(𝜁 )) (8.71)

The extrinsic LLR Lext
i [m] can be obtained through (8.7).

The Log domain representation allows for efficient implementation. Equations (8.69), (8.70)
and (8.71) can be evaluated using the Jacobian logarithm [111, 215, 440]

max∗(x, y) = max(x, y) + ln (1 + e−|x−y|), (8.72)

where the second term can be implemented using a look-up table. It follows from the definition
that

max∗(x, y) = ln (ex + ey) (8.73)
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and
max∗(x, y, z) = max∗[max∗(x, y), z] = ln (ex + ey + ez) (8.74)

The max∗(x, y) operation could be replaced by the max(x, y) operation, and the corresponding
algorithm is referred to as the MAX-Log-MAP algorithm [111, 215].

As D increases, the complexity of the Log-MAP algorithm on the order of (M(2D+1)) grows
exponentially. Hence, the Log-MAP equalizer is only suitable for a small ICI depth D and a
small constellation size M.

8.3.2 Factor-Graph Algorithm with Gaussian Message Passing

Factor graph and related algorithms, such as the sum-product algorithm (SPA) and the Gaus-
sian message passing (GMP) principle, have been under extensive investigation in recent years
[223, 258, 259]. The application of the factor graph algorithm for ISI equalization has been
thoroughly documented in [104]. In the following, we will sketch the main idea on the use
of the factor graph algorithm for the mitigation of the banded ICI. Please refer to [104] for
detailed algorithm presentations, including fast and numerically stable implementations, of
the factor-graph based algorithm presented in the context of ISI equalization.

8.3.2.1 Message Passing in the Factor Graph

With the Gaussian message passing principle, all the messages are constrained to be in the
forms of Gaussian probability density function, denoted by f̂ (⋅) in the following.

Now define the variable nodes and check function nodes associated with a factor graph.
Based on the channel input and output model in (8.57), the variable nodes are defined through
(2D + 1) × 1 vectors

xm = [s[m − D], … , s[m], … s[m + D]]T (8.75)

for m = −K∕2, … ,K∕2 − 1. Surrounding each variable node, there are four check function
nodes as shown in Figure 8.3.

• The check node corresponding to the prior knowledge from the channel decoder on each
symbol s[m] will pass a message

f̂ (s[m]) = 1

𝜋𝜎
2
s [m]

exp

{
− 1

𝜎
2
s [m]

|s[m] − s[m]|2} , (8.76)

where the mean and variance is computed from Lapr[m].
• The check node corresponding to the observation z[m] will pass the message in the form of

the likelihood function f (z[m]|xm), as shown in (8.58).
• The check node m−1,m is introduced to specify the constraint that xm and xm−1 share

2D entries {s[m − D], … , s[m + D − 1]}. Based on the incoming message from the left
f̂ (xm−1 → m−1,m), the outgoing message to the right f̂ (m−1,m → xm) is generated as

f̂ (Cm−1,m → xm) = ∫ f̂ (xm−1 → m−1,m) ds[m − D − 1], (8.77)

where the marginalization is over the symbol s[m − D − 1].
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f (z[m] | xm)f (z[m − 1] | xm−1) f (z[m + 1] | xm+1)

f̂ (sm−1) f̂ (sm) f̂ (sm+1)

Figure 8.3 The factor graph based detector for mitigation of banded ICI, where all the messages illus-
trated on the graph are in the form of Gaussian probability distribution functions (pdf).

• The check node m,m+1 is introduced to specify the constraint that xm and xm−1 share 2D
entries {s[m − D + 1], … , s[m + D]}. Based on the incoming message from the right
f̂ (m,m+1 ← xm+1), the outgoing message to the left f̂ (xm ← m,m+1) is generated as

f̂ (xm ← m,m+1) = ∫ f̂ (m,m+1 ← xm+1) ds[m + D + 1], (8.78)

where the marginalization is over the the symbol s[m + D + 1].

The message passing over the factor graph in Figure 8.3 is carried out as follows.

• Forward message passing. Starting from the node x−K∕2 to the node xK∕2−1, generate the
message at each variable node to be passed to its right check function as:

f̂ (xm → m,m+1) = f̂ (m−1,m → xm)f̂ (s[m])f (z[m]|xm) (8.79)

• Backward message passing. Starting from the node xK∕2−1 to the node x−K∕2, generate the
message at each variable node to be passed to its left check function as:

f̂ (m−1,m ← xm) = f̂ (xm ← m,m+1)f̂ (s[m])f (z[m]|xm) (8.80)

• After the forward and backward message passing, the a posteriori probability of the state
vector xm can be computed as

f̂ app(xm) = f̂ (m−1,m → xm)f̂ (s[m])f (z[m]|xm)f̂ (xm ← m,m+1) (8.81)

The marginalization of f̂ app(xm) over 2D variables {s[m − D], s[m − 1], s[m + 1], … , s[k +
D]} will lead to f̂ app(s[m]).

8.3.3 Computations related to Gaussian Messages

Following the presentations in [104], introduce the function

𝛾(x,𝝁,W) ∝ exp {−(x − 𝝁)HW(x − 𝝁)} (8.82)
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where x and 𝝁 are vectors of length N and W is an N × N matrix. When W is positive def-
inite, 𝛾(x,𝝁,W) is a scaled Gaussian distribution with mean vector 𝝁 and covariance matrix
W−1. Note that a constant function is a degenerate form of (8.82) in which W is taken to be a
zero matrix.

Two important properties are as follows. First, the product of two functions of the form in
(8.82) maintains the same form:

𝛾(x,𝝁1,W1)𝛾(x,𝝁2,W2) ∝ 𝛾(x, (W1 + W2)†(W1𝝁1 + W2𝝁2),W1 + W2) (8.83)

where W† is the pseudo-inverse of W. Second, the marginalization of the function as in (8.82)
over some set of variables maintains the same form

∫
∞

−∞
𝛾

([
x
y

]
,

[
𝝁x
𝝁y

]
,

[
Wx Wxy
Wyx Wy

])
dx ∝ 𝛾(y,𝝁y,Wy − WyxW†

xWxy) (8.84)

Hence, when a factor graph represents a Gaussian distribution or a degenerate form, all
messages will also be Gaussian or in degenerate forms. As a result, only mean vectors and
the (pseudo) inverse of the covariance matrices need to be populated in the factor graph.
With the complexity on the order of ((2D + 1)3), the factor graph based equalizer is often
appealing for a computational point of view, since D is usually a small number and the
complexity does not depend on the constellation size M.

8.3.3.1 Extrinsic LLR Computation

The message f̂ app(s[m]) specifies the mean and covariance of s[m] conditioned on all the
measurements and the prior information, from which the MMSE estimate ŝ app

MMSE[m] as the
conditional mean and the variance �̃�2

s [m] can be extracted. When computing the LLRs needed
by the channel decoder, the prior information on the symbol itself needs to be excluded. Given
the availability of the MMSE estimates based on a posteriori and a priori probabilities, and
the corresponding variances, the expression in (8.54) can be used to compute the extrinsic
LLRs directly.

8.3.4 Extension to SIMO Channel

For the single-input multi-output channel, the channel input–output relationship is extended
from (8.57) to

z𝜈[m] =
m+D∑

k=m−D

H𝜈[m, k]s[k] + 𝜂𝜈[m], (8.85)

where 𝜈 = 1, … ,Nr. For simplicity, assume that the noises are i.i.d. Gaussian distributed,
𝜂𝜈[m] ∼  (0, 𝜎2

𝜂 ). The likelihood function is

f (z𝜈[m]|{s[k]}m+D
k=m−D) =

1

𝜋𝜎2
𝜂

exp
⎛⎜⎜⎝− 1

𝜎2
𝜂

||||||z𝜈[m] −
m+D∑

k=m−D

H𝜈[m, k]s[k]
||||||
2⎞⎟⎟⎠ . (8.86)

ICI equalization methods developed for the SISO channel can directly be applied to the
SIMO channel, simply having more measurements available due to the receive diversity.
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• For the Log-MAP algorithm, change f (z̃[m]|𝜁 ′, 𝜁 ) in (8.68) for the branch metric computa-
tion by

∏Nr
𝜈=1 f (z̃𝜈[m]|𝜁 ′, 𝜁 ).

• For the factor-graph based equalization, change the likelihood function f (z[m]|xm) to∏Nr
𝜈=1 f (z𝜈[m]|xm).

8.4 Symbol Detectors for MIMO OFDM

8.4.1 ICI-Ignorant MIMO OFDM

For a multi-input multi-output (MIMO) channel with Nt inputs and Nr receiving elements,
we repeat the frequency measurement on the mth subcarrier at the 𝜈th receiving element
in (5.51) as

z𝜈[m] =
Nt∑
𝜇=1

H𝜈,𝜇[m]s𝜇[m] + 𝜂𝜈[m], (8.87)

for 𝜈 = 1, · · · ,Nr, where s𝜇[m] denotes the transmitted symbol on the mth subcarrier from
the 𝜇th transmitter. Stacking the frequency measurements in (8.87) at all receiving elements
yields, ⎡⎢⎢⎣

z1[m]
⋮

zNr
[m]

⎤⎥⎥⎦
⏟⏞⏟⏞⏟
∶=z[m]

=
⎡⎢⎢⎣

H1,1[m] · · · H1,Nt
[m]

⋮ ⋱ ⋮
HNr,1

[m] · · · HNr,Nt
[m]

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=H[m]

⎡⎢⎢⎣
s1[m]
⋮

sNt
[m]

⎤⎥⎥⎦
⏟⏞⏟⏞⏟
∶=s[m]

+
⎡⎢⎢⎣
𝜂1[m]
⋮

𝜂Nr
[m]

⎤⎥⎥⎦
⏟⏞⏟⏞⏟
∶=𝜼[m]

(8.88)

On each subcarrier m, the matrix-vector formulation is

z[m] = H[m]s[m] + 𝜼[m]. (8.89)

Denote s−𝜇 [m] as s[m] with s𝜇[m] removed. Assuming that 𝜂[m] ∼  (0, 𝜎2
𝜂 ), ∀𝜇, the like-

lihood function of s𝜇[m] can be expanded as

f (z[m]|s−𝜇 [m], s𝜇[m] = 𝛼i) ∝ exp

(
− 1

𝜎2
𝜂

||||||z[m] − h𝜇[m]𝛼i − H−
𝜇 [m]s−𝜇 [m]||||||2

)
(8.90)

with h𝜇[m] denoting the 𝜇th column of H[m], and H−
𝜇 [m] as h𝜇[m] removed. Following the

same derivation in Section 8.2.1, the extrinsic LLR to be passed to the decoder is

Lext
i,𝜇 [m] = ln

∑
s−𝜇 [m] f (z[m]|s−𝜇 [m], s𝜇[m] = 𝛼i)Pr(s−𝜇 [m])∑
s−𝜇 [m] f (z[m]|s−𝜇 [m], s𝜇[m] = 𝛼0)Pr(s−𝜇 [m])

(8.91)

The MAP detector has the complexity of (MNt ) per subcarrier.
Similarly, the linear MMSE detectors can be applied with complexity (N3

t ) per subcarrier;
Note that the formulations in (8.89) and (8.26) are the same except different notations on
the noise.

Due to the small problem size on each OFDM subcarriers, a variety of detectors from the
open literature can be applied as well, such as the sphere decoding algorithm, the MCMC
detector, and the lattice reduction based linear equalizers.
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8.4.2 Full-ICI Equalization

For a MIMO channel with full ICI modeled at receiver side, we repeat the frequency measure-
ment vector at the 𝜈th receiving element in (5.35) as

z𝜈 =
Nt∑
𝜇=1

H𝜈,𝜇s𝜇 + w𝜈 , 𝜈 = 1, · · · ,Nr. (8.92)

Stacking frequency measurement vectors at all receiving elements, we have

⎡⎢⎢⎣
z1
⋮

zNr

⎤⎥⎥⎦
⏟⏟⏟
∶=zmimo

=
⎡⎢⎢⎣

H1,1 · · · H1,Nt

⋮ ⋱ ⋮
HNr,1

· · · HNr,Nt

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=Hmimo

⎡⎢⎢⎣
s1
⋮

sNt

⎤⎥⎥⎦
⏟⏟⏟
∶=smimo

+
⎡⎢⎢⎣

w1
⋮

wNr

⎤⎥⎥⎦
⏟⏟⏟
∶=wmimo

(8.93)

The block-based MAP and MMSE detectors can be applied to the model

zmimo = Hmimosmimo + wmimo. (8.94)

However, the matrices and vectors have large size, and computation complexity is high even
for the linear MMSE equalizer.

8.4.3 Banded-ICI Equalization

For a MIMO channel with a banded-ICI assumption at receiver side, the frequency measure-
ment on the mth subcarrier at the 𝜈th receiving element is copied from (5.60) as

z𝜈[m] =
Nt∑
𝜇=1

m+D∑
k=m−D

H𝜈,𝜇[m, k]s𝜇[k] + 𝜂𝜈[m]. (8.95)

Assume that the noise is Gaussian distributed 𝜂𝜈[m] ∼  (0, 𝜎2
𝜂 ). Define a likelihood func-

tion as

f (z𝜈[m]|{s𝜇[k]}∀𝜇,∀k) =
1

𝜋𝜎2
𝜂

exp
⎛⎜⎜⎝− 1

𝜎2
𝜂

||||||z𝜈[m] −
Nt∑
𝜇=1

m+D∑
k=m−D

H𝜈,𝜇[m, k]s𝜇[k]
||||||
2⎞⎟⎟⎠ . (8.96)

8.4.3.1 The Log-MAP Detector

Following the same steps to reach (8.62), we rewrite (8.95) into a convolutional form

z̃𝜈[m] =
Nt∑
𝜇=1

2D∑
𝓁=0

h̃𝜈,𝜇[m;𝓁]s𝜇[m − 𝓁] + �̃�𝜈[m], (8.97)

with proper definitions on z̃𝜈[m], �̃�𝜈[m] and the time-varying coefficients h̃𝜈,𝜇[m;𝓁]. The
Log-MAP algorithm itself directly applies with the following two changes.
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• The state in (8.63) is now changed to

(s1[m − 1], … , sNt
[m − 1], … s1[m − 2D], … ,, · · · , sNt

[m − 2D]). (8.98)

Hence, the number of states increases to M2DNt .
• The likelihood function f (z̃[m]|𝜁 ′, 𝜁 ) used in (8.68) for the branch metric computation needs

to be updated as
∏Nr

𝜈=1 f (z̃𝜈[m]|𝜁 ′, 𝜁 ), where f (z̃𝜈[m]|𝜁 ′, 𝜁 ) is redefined along the expression
in (8.96).

8.4.3.2 The Factor-Graph based Detector

The factor-graph based equalization algorithm as described in Section 8.3.2 can be directly
applied with slight changes.

• The variable node in the factor graph is redefined as

xm = [s1[m − D], … , sNt
[m − D], … , s1[m], … , sNt

[m], … ,

s1[m + D], … , sNt
[m + D]]T (8.99)

which has length Nt(2D + 1).
• The check function f (z[m]|xm) due to observations needs to be updated as

∏Nr
𝜈=1 f (z𝜈[m]|xm).

• The check function m,m−1 need to be updated as xm−1 and xm share 2NtD symbols. The
marginalization operations in (8.77) are over Nt symbols {s𝜇[m − D − 1]}Nt

𝜇=1.
• The check function m,m+1 need to be updated as xm and xm+1 share 2NtD symbols. The

marginalization operations in (8.78) are over Nt symbols {s𝜇[m + D + 1]}Nt
𝜇=1.

With these modifications, the message passing as described in (8.79) – (8.81) remains
unchanged. The computational complexity increases to be the order of (N3

t (2D + 1)3).

8.5 MCMC Method for Data Detection in MIMO OFDM

The Markov-Chain Monte-Carlo (MCMC) method has been successfully applied for mul-
tiuser detection and MIMO detection [72, 117]. It has been applied for ISI equalization for
single-carrier transmissions [309, 411] as well. In this section, we follow the presentation
in [180, 181] on the MCMC method for ICI and co-channel interference (CCI) equalization in
MIMO OFDM systems.

8.5.1 MCMC Method for ICI-Ignorant MIMO Detection

Note that the high complexity of the MAP equalizer lies in the exponential complexity to
compute (8.91), where all the possible combinations are involved. In fact, only a handful of
combinations, the importance set, contribute significantly to the summation in the numerator
and denominator of (8.91). The MCMC method tries to find the importance set by browsing
the possible choices of postulated data sequences in an efficient manner.
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Table 8.1 Procedure of the Gibbs sampler

Initialize s(−Nbu)[m] based on Pr(s[m])

For n = −Nbu + 1 ∶ Nsa

draw s(n)1 [m] from Pr(s1[m]|s(n−1)
2 [m], · · · , s(n−1)

Nt
[m], z[m],Lapr

1 [m]),
⋮

draw s(n)𝜇 [m] from Pr(s𝜇[m]|s(n)1 [m], · · · , s(n)
𝜇−1[m], s(n−1)

𝜇+1 [m], · · · , s(n−1)
Nt

[m], z[m],Lapr
𝜇 [m]),

⋮
draw s(n)Nt

[m] from Pr(sNt
[m]|s(n)1 [m], · · · , s(n)Nt−1[m], z[m],Lapr

Nt
[m])

End

The MCMC equalizer consists of two steps. The first step is termed as burn-in period, in
which Nbu iterations of the Gibbs sampling are performed to let the Markov Chain converge
to its nearest distribution [301]. In the second step, an important sample set Ω is generated
with Nsa loops of Gibbs sampling after removing the redundant samples, based on which the
extrinsic LLRs will be computed. The initializing samples s[m](−Nbu) can be drawn based on
the prior information Pr(s[m]). The sampling procedure is summarized in Table 8.1.

The marginal probability used in the sampling process is computed as follows:

Pr(s𝜇[m]|s(n)1 [m], · · · , s(n)
𝜇−1[m], s(n−1)

𝜇+1 [m], · · · , s(n−1)
Nt

[m], z[m],Lapr
𝜇 [m])

∝ f (z[m]|s(n)1 [m], · · · , s(n)
𝜇−1[m], s𝜇[m], s(n−1)

𝜇+1 [m], · · · , s(n−1)
Nt

[m])Pr(s𝜇[m]) (8.100)

which can be readily evaluated based on the likelihood function expression in (8.90).
After the sampling process, there are multiple samples available. Denote |Ω| as the cardinal-

ity of the importance set, and s−(n)𝜇 [m] as s(n)[m] with s(n)𝜇 [m] removed. With these important
samples, the LLR as needed by the channel decoder is computed as

Lext
i,𝜇 [m] ≃ ln

|Ω|∑
n=1

f (z[m]|s−(n)𝜇 [m], s𝜇[m] = 𝛼i)Pr(s−(n)𝜇 [m])

|Ω|∑
n=1

f (z[m]|s−(n)𝜇 [m], s𝜇[m] = 𝛼0)Pr(s−(n)𝜇 [m])
. (8.101)

Hence, the MCMC equalizer only uses the importance set to approximate the optimal
solution.

The complexity of the MCMC equalizer, on the order of (|Ω|MNt), depends on the size of
the importance set Ω, the constellation size M, and the number of transmitters Nt.

8.5.2 MCMC Method for Banded-ICI MIMO Detection

With slight changes, the MCMC method descried in Section 8.5.1 can be applied to the MIMO
OFDM detection with banded ICI. Compared to the ICI-ignorant MIMO detection, there are
Nt parallel data streams {s𝜇[k]}

Nt
𝜇=1. There are two different ways to define a mixed sequence

from which the samples are drawn sequentially. Denote 𝓁 as the symbol index in the mixed
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sequence. One way is to draw all the symbols from one transmitter continuously before moving
on to another transmitter, as

{s̃[𝓁]}NtK
𝓁=1

=
{

s1

[
−K

2

]
, · · · , s1

[K
2
− 1

]
, · · · , sNt

[
−K

2

]
, · · · , sNt

[K
2
− 1

]}
(8.102)

The other is to group symbols in the same subcarriers next to each other, with a sequence
defined as

{s̃[𝓁]}NtK
𝓁=1

= {· · · , s1[k], · · · , sNt
[k], s1[k + 1], · · · , sNt

[k + 1], · · · } (8.103)

The sampling procedure in Table 8.1 can be applied. Assume that symbol s̃[𝓁] corresponds
to s𝜇[m]. The marginal probability used in the sampling process is

Pr(s̃[𝓁]|s̃(n)[1], · · · , s̃(n)[𝓁 − 1], s̃(n−1)[𝓁 + 1], · · · , s̃(n−1)[KNt], {z𝜈[k]}∀𝜈,∀m,L
apr
𝜇 [m])

∝ f ({z𝜈[k]}∀𝜈,∀m|s̃(n)[1], · · · , s̃(n)[𝓁 − 1], s̃[𝓁], s̃(n−1)[𝓁 + 1], · · · , s̃(n−1)[KNt])Pr(s𝜇[m])

=
∏
∀𝜈

∏
∀k

f (z𝜈[k]|s̃(n)[1], · · · , s̃(n)[𝓁 − 1], s̃[𝓁], s̃(n−1)[𝓁 + 1], · · · , s̃(n−1)[KNt])Pr(s𝜇[m])

(8.104)

where the likelihood function can be evaluated based on (8.96).
Denote {s̃(n)[𝓁]}−𝜇,m as {s̃(n)[𝓁]} with s(n)𝜇 [m] removed. Similar to (8.101), the LLR is com-

puted as

Lext
i,𝜇 [m] ≃ ln

|Ω|∑
n=1

∏
∀𝜈

∏
∀k

f (z𝜈[k]|{s̃(n)[𝓁]}−𝜇,m, s𝜇[m] = 𝛼i)Pr({s̃(n)[𝓁]}−𝜇,m)

|Ω|∑
n=1

∏
∀𝜈

∏
∀k

f (z𝜈[k]|{s̃(n)[𝓁]}−𝜇,m, s𝜇[m] = 𝛼0)Pr({s̃(n)[𝓁]}−𝜇,m)
. (8.105)

Note that s𝜇[m] only contributes to the mth and its 2D neighboring subcarriers. For further
computational complexity reduction, the LLR in (8.105) can be approximated as

Lext
i,𝜇 [m] ≈ ln

|Ω|∑
n=1

∏
∀𝜈

m+D∏
k=m−D

f (z𝜈[k]|{s̃(n)[𝓁]}−𝜇,m, s𝜇[m] = 𝛼i)Pr({s̃(n)[𝓁]}−𝜇,m)

|Ω|∑
n=1

∏
∀𝜈

m+D∏
k=m−D

f (z𝜈[k]|{s̃(n)[𝓁]}−𝜇,m, s𝜇[m] = 𝛼0)Pr({s̃(n)[𝓁]}−𝜇,m)
. (8.106)

8.6 Bibliographical Notes

Symbol by symbol detection in additive white Gaussian channels and flat fading channels are
well documented in textbooks on digital communications. Block based data detection has been
extensively studied in the past 20 years in the multiuser detection and MIMO communication
context. An optimal detector based on the maximum likelihood criterion is often computation-
ally prohibitive. Linear equalizers, such as the zero-forcing (ZF) and MMSE detectors have
low complexity but may suffer from severe performance loss. There are a variety of suboptimal
or near-optimal detectors being developed in the literature such as: decision-feedback equal-
izers [318, 366], lattice reduction aided linear equalizers [464], sphere decoding algorithm,
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MCMC-based equalizer. These equalization methods strike a balance in equalization perfor-
mance and computational complexity between (near-)MAP equalizers and linear equalizers.
The books [166, 406] are good references dedicated to data detection algorithms.

Channel equalization in the presence of intersymbol interference channels has been well
treated in textbooks on digital communications. The use of Viterbi algorithm for maximum
likelihood sequence estimation dates back to 1973 [122], while turbo equalization was first
studied in 1995 [103]. The use of MCMC detectors for ISI channels was reported in [309],
and the use of linear MMSE equalizers and a factor-graph based representation are introduced
in [393] and [104] for ISI channels, respectively.



9
OFDM Receivers with
Block-by-Block Processing

Section 5.4 provided a brief categorization of OFDM receivers based on the ICI level and
the block-level processing procedure in burst transmissions. Chapter 9 to Chapter 12 will
present OFDM receiver designs for different communication scenarios over single-input
channels; while Chapter 13 to Chapter 15 will focus on various communication scenarios
over multi-input channels. These chapters illustrate how the individual modules developed in
Chapters 6–8 can be integrated to form complete receivers for specific applications.

For single-input channels, the focuses of the four chapters are briefly summarized as follows.

• Chapter 9: Block-by-block receivers. This chapter is centered on the OFDM receiver design
to process each block individually. Several receiver processing schemes will be developed
to accommodate the channel temporal variations within each block.

• Chapter 10: Block-to-block adaptive receivers. For the underwater acoustic channel with
coherence time larger than a block duration, block-to-block receivers will be developed in
this chapter to exploit the channel coherence property across OFDM blocks, which can
achieve similar performance to the block-by-block processing with less pilot overhead.

• Chapter 11: Receiver design for deep water acoustic communications. As a counterpart
to shallow water acoustic communications which has been a major focus of underwater
communication literature, this chapter looks into the receiver processing techniques for deep
water acoustic communications, with special focus on the deep water horizontal channel
which has widely separated multipath clusters.

• Chapter 12: Receiver design with external interference cancellation. The underwater acous-
tic channel is known prone to interference from various sources, whereas scant attention has
been paid to the external interference mitigation. Chapter 12 discusses a general interference
cancellation method in the OFDM receiver processing.

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure 9.1 Illustration of block-by-block receiver categories, D ∶ ICI depth.

The layout of this chapter on block-by-block OFDM receivers, as categorized in Figure 9.1,
is as follows.

• Section 9.1 focuses on a noniterative ICI-ignorant receiver, where the ICI is treated as addi-
tive noise.

• Section 9.2 focuses on a noniterative ICI-aware receiver for communications over channels
with large temporal variations, where the ICI is addressed explicitly in the receiver design.

• Section 9.3 briefly discusses iterative processing of the ICI-ignorant and ICI-aware
receivers.

• Section 9.4 presents an ICI-progressive receiver that adapts the ICI-level to channel vari-
ations. Sections 9.5 and 9.6 contain extensive performance results of the ICI-progressive
receiver via simulation and recorded data from field experiments.

9.1 Noniterative ICI-Ignorant Receiver

For a system with Nr receive elements, the input–output relationship for the ICI-ignorant
receiver processing is copied from (5.47) as

z𝜈[m] = H𝜈[m]s[m] + 𝜂𝜈[m], (9.1)

for m = −K∕2, · · · ,K∕2 − 1, and 𝜈 = 1, · · · ,Nr.

9.1.1 Noniterative ICI-Ignorant Receiver Structure

The goal of receiver processing is to estimate the channel coefficients and recover transmitted
information symbols. To this end, a noniterative ICI-ignorant receiver structure is depicted in
Figure 9.2.

Pre-
processing

z Channel
estimation

Ĥ Symbol
detection

{Lext[k]} Channel
decoding

Figure 9.2 The noniterative ICI-ignorant receiver structure.
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The receiver modules are briefly described in the following.

(i) ICI-ignorant channel and noise variance estimation: Taking the frequency measurements
at pilot subcarriers as input, the ICI-ignorant channel estimator developed in Section 7.2
can be used to reconstruct the channel coefficients at all subcarriers. The frequency mea-
surements at null subcarriers can be used to estimate the noise variance, as discussed in
Section 7.6.

(ii) Symbol detection and channel decoding: An ICI-ignorant symbol detector in Section 8.1
can be adopted to recover the transmitted information symbols. The maximum ratio com-
bination of frequency measurements at all the receiving elements is used to improve the
detection performance. The calculated extrinsic information of data symbols is then fed
into the channel decoder to decipher the information bits, as discussed in Chapter 3.

9.1.2 Simulation Results: ICI-Ignorant Receiver

The underwater acoustic channel is simulated according to the specifications in Section 5.5.1.
The channel parameters are Npa = 15, Δ𝜏 = 1 ms, ΔPpa = 20 dB, Tg = 24.6 ms, and 𝑣0 = 0
m/s. The OFDM parameters are identical to the parameters used in the SPACE experiment,
which are specified in Table B.1.

Figure 9.3 compares the ICI-ignorant receiver performance in the time-invariant channel
and the time-varying channel with mild Doppler spread. One can find that all receivers can
still achieve a low BLER, but at different levels of SNR. This implies that the level of ICI is
below the necessary SNR for the LDPC code to decode successfully. The performance loss in
Figure 9.3(b) is about 1.5 dB compared to the ICI-free case in Figure 9.3(a). It is postulated
that the performance loss is due to the unaddressed ICI, and that channel estimation is not
significantly affected by the model mismatch of the linear time invariant channel assumption.
Between the considered channel estimators, the compressed sensing based algorithm outper-
forms the least squares estimator.
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Figure 9.3 Performance comparisons for ICI-ignorant receivers with different channel estimation
methods: least squares (LS), orthogonal matching pursuit (OMP), and basis pursuit (BP).
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9.1.3 Experimental Results: ICI-Ignorant Receiver

The data sets collected in the SPACE08 experiment are used for the receiver performance
evaluation. The experiment setup is described in Appendix B. The recorded data files in two
different days, Julian Dates 297 and 300, are considered, where one day has rather calm sea
and one day has severe wind activity, respectively. On Julian Date 300, the five files recorded
during the afternoon were severely distorted and therefore unusable; only the remaining seven
files recorded during the morning and evening are decoded. The received OFDM blocks with
a 16-QAM constellation and a rate-1∕2 nonbinary LDPC code are used, leading to a spectral
efficiency 1.1 bits/s/Hz and a data rate 10.4 kb/s.

To test the performance of receiving algorithms, one common practice with the recorded
data is to investigate the performance as a function of the number of phones combined. With
more phones, the SNR after combining increases, hence performance improvement is due to
both diversity effect and SNR increase. In this experimental data processing throughout this
chapter, the phones are selected sequentially across the array, from top to the bottom. Channel
estimation is performed for each phone individually. Channel equalization is performed based
on signals received at multiple receiving elements.

The block-error-rate (BLER) is adopted as the performance measure, which is the average
number of erroneous OFDM blocks after LDPC decoding. This is a reasonable performance
criterion, since on unreliable channels such as UWA, it can be expected that there is a
mechanism in place to recover lost blocks, e.g., automatic repeat-request (ARQ) or a higher
layer block erasure code. In this context it has been recently shown that BLER’s around 10−1

to 10−2 achieve optimal overall spectral efficiency [41], when combined with a higher layer
erasure code.

The sample channel responses based on the LS estimators at different receiver locations are
shown in Figure 9.4. The BLER performance combining an increasing number of phones is
shown next.

9.1.3.1 S1 Data (60 m)

At a short distance of only 60 m and with the shallow water depth, rich multipath and significant
Doppler variation are expected. This makes this receiver the most challenging in terms of its
channel response, but the easiest in terms of received signal strength or SNR. Figure 9.4 reveals
that there are three to four significant clusters of similar strength. The total delay spread is
around 10 ms.

The BLER performance for Julian Dates 297 and 300 is shown in Figure 9.5, where the order
of compressed sensing and LS stays the same as in the simulation.

9.1.3.2 S3 Data (200 m)

The middle distance might be the best tradeoff between channel difficulty and received SNR.
The example channel responses in Figure 9.4 seem to be more contained, with a more domi-
nating first cluster. The BLER performance in Figure 9.5 is generally better compared to the
S1 receiver, where the LS performance improves relative to the sparse estimators on Julian
date 297.
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Figure 9.4 Examples of channel impulse responses from the SPACE08 experiment, as estimated using
the Least Squares method.

9.1.3.3 S5 Data (1000 m)

At the 1 km distance only one significant cluster can be spotted in the channel estimates, and at
the day with a large wave height (Julian Date 300) the received energy seems to be vanishingly
small, c.f. Figure 9.4. Accordingly the trend of the LS channel estimator closing in on the
compressed sensing algorithms continues. On the day with a large wave height the performance
is generally not good, with even the CS algorithms successfully recovering only about 80% of
the OFDM blocks.

9.2 Noniterative ICI-Aware Receiver

With a banded assumption on the ICI depth, the input–output relationship for the ICI-aware
receiver is copied from (5.56) as

z𝜈[m] =
m+D∑

k=m−D

H𝜈[m, k]s[k] + 𝜂𝜈[m], (9.2)

for m = −K∕2, · · · ,K∕2 − 1, and 𝜈 = 1, · · · ,Nr.
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Figure 9.5 Performance results from the SPACE08 experiment using ICI-ignorant receivers
at three different locations (S1, S3, and S5), first on a day with calm weather, then a day with large
wave heights.

9.2.1 Noniterative ICI-Aware Receiver Structure

Similar to the ICI-ignorant receiver, the goal of receiver processing is to estimate the channel
coefficients and recover transmitted information symbols. A noniterative ICI-aware receiver
structure is depicted in Figure 9.6.
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Figure 9.6 The noniterative ICI-aware receiver structure.

The receiver modules are briefly sketched in the following.

(i) ICI-aware channel and noise variance estimation: Taking the frequency measurements
at the pilot and null subcarriers as input, the channel coefficients at all subcarriers and
the noise variance can be reconstructed at each receiving element using the ICI-aware
channel estimation and noise variance estimation methods discussed in Sections 7.3 and
7.6, respectively.

(ii) ICI equalization and channel decoding: Based on the frequency measurements at the data
subcarriers, a banded-ICI equalizer in Section 8.3 can be adopted to recover the transmitted
information symbols. The calculated extrinsic information of data symbols is then fed into
the channel decoder to decipher the information bits, as discussed in Chapter 3.

9.2.2 Simulation Results: ICI-Aware Receiver

During the simulation, single receive element is assumed at the receiver side. A sampling rate
being twice the bandwidth is used as the baseband sampling rate. The time-varying underwater
acoustic channel is simulated as specified in Section 5.5.1. The OFDM signalling format is
identical to that in the SPACE08 experiment as illustrated in Section B.1, but different from
the regular pilot subcarrier distribution in the SPACE08 experiment, irregularly distributed
pilot subcarriers are introduced: besides the 256 regularly distributed pilot subcarriers as in
the SPACE08 experiment, 96 subcarriers from the rest active subcarriers are selected to form
an irregular pilot subcarrier distribution pattern, leading to 352 pilot subcarriers and 576 data
subcarriers in total. The newly added pilots are grouped in clusters between zero subcarriers
and the regularly distributed pilots, creating groups of five consecutive known subcarriers.
Adjacent observations are needed to the ICI coefficients in time-varying channels.

Since 96 coded symbols are assumed known while the same LDPC code structure is used
(code truncation), this leads to an equivalent coding rate of rc = (336 − 96)∕(672 − 96) ≈ 0.4.
With a 16-QAM the spectral efficiency and the data rate are updated as

𝛼 = T
T + Tg

⋅
576

1024
⋅ rc ⋅ log216 = 0.76 bits/s/Hz, (9.3)

R = 𝛼B = 7.4 kb/s. (9.4)

To assess the need for explicit ICI equalization, Figure 9.7 shows the BLER performance
with different values of ICI-depth in the presence and absence of the channel state informa-
tion (CSI) respectively. A linear MMSE equalizer discussed in Section 8.2.2 is used for ICI
equalization. One can observe that more ICI can be removed by choosing a larger D, whereas
the receiver has to accept higher computational complexity. Due to the change in coding rate,
1 dB gap can be observed in the scenarios with and without full CSI when sufficient levels of
ICI is removed.
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Figure 9.7 BLER performance, only D off-diagonals from each side are kept in the channel matrix for
data demodulation. The simulated channel has a severe Doppler spread with 𝜎v = 0.25 m/s.

9.2.3 Experimental Results: ICI-Aware Receiver

During the SPACE08 experiment, the decoding performance in Figure 9.5 indicates that the
performance on Julian Date 300 was limited, most likely due to the ICI caused by signif-
icant Doppler spread which degrades the effective SNR of the ICI-ignorant receivers. The
effectiveness of the ICI-aware receiver is now tested using the data sets collected on Julian
Date 300.

To improve the channel estimation performance in the presence of severe ICI, similar to
the irregular pilot distribution in simulations for the ICI-aware receiver evaluation, 96 data
subcarriers are converted into additional pilots by assuming that 96 data symbols are known a
priori. For a 16-QAM constellation, the spectral efficiency and the data rate are computed in
(9.3) and (9.4), respectively.

The performance improvement for ICI-aware receivers can be seen in Figure 9.8. As a com-
parison the LS and sparse channel estimators operating ICI-ignorant (D = 0) are included,
as they also benefit from the additional pilots and reduced coding rate. These plots clearly
highlight that on channels with severe Doppler spread, adopting ICI-aware channel estimation
and equalization yields significant performance gain, and that using sparse channel estimation
another significant performance gain can be achieved compared to a conventional LS channel
estimator.

9.3 Iterative Receiver Processing

Iterative processing has been widely used to improve the receiver decoding performance. In
this section, a brief overview on the iterative operations in the ICI-ignorant and ICI-aware
receivers is provided. In these two iterative receivers the system model keeps unchanged during
iterations. In Section 9.4, we will look into another type of iterative receiver where the system
model keeps updated according to the channel condition.
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Figure 9.8 Performance results from the SPACE08 experiment using the ICI-aware receiver. The
results are averaged over data files collected in Julian date 300 and OFDM blocks with a 16-QAM
constellation at a data rate of 7.4 kb/s.

9.3.1 Iterative ICI-Ignorant Receiver

One typical iterative receiver structure for ICI-ignorant is shown in Figure 9.9, where the chan-
nel estimation is refined based on the estimated data symbols from the channel decoder. Due to
the absence of ICI, the feedback from the channel decoder will not be used for symbol detec-
tion. Based on the a posteriori probability from the decoding, several feedback strategies from
the channel decoder for channel estimation have been be described in Section 3.4. Please refer
to [201, 203] for more discussion on the iterative ICI-ignorant receiver.

9.3.2 Iterative ICI-Aware Receiver

The iterative ICI-aware receiver is shown in Figure 9.9(b). Similar to the iterative ICI-ignorant
receiver, the channel estimation is included into the iteration loop for channel estimate refine-
ment. The interaction between the channel equalization and decoding is identical to that in the
turbo equalization as discussed in Chapter 8, in which the extrinsic information is exchanged
between equalizer and channel decoder.
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Figure 9.9 Illustration of iterative receiver structures.

9.4 ICI-Progressive Receiver

Note that in the canonical iterative receiver design in Figure 9.9, the receiver processing pro-
cedure keeps unchanged within each iteration. Particularly for UWA communications, the
assumed channel ICI depth is a constant throughout iterations. This design philosophy might
raise one critical issue to the practical system which has no access to the information about
channel variations. For a reliable data transfer, a practical receiver prefers a safe hence a rel-
atively large ICI depth to cover the scenario with large channel variations. However, for the
channel with small variations, the computational complexity of the ICI-aware receiver assum-
ing a relatively large ICI depth, is much higher than that of the ICI-ignorant receiver, meaning
more power will be consumed by the ICI-aware processing unit.

Since the computational efficient receiving algorithm is critical to underwater networks, it is
necessary to design a receiver to adapt the ICI model to the unknown channel condition dur-
ing iterations. The ICI-progressive receiver is essentially an iterative receiver in nature, which
follows the turbo principle. However, in contrast to the canonical iterative receiver structure
(e.g. [217]), the system model used for channel identification and data demodulation changes
at each iteration. It starts with a simple channel model that allows for ICI-ignorant processing,
and then proceeds to ICI-aware processing where the severity of the assumed ICI increases as
the iteration goes on. The soft information obtained from the previous iteration contributes to
channel estimation and data demodulation for the current iteration. This way, the receiver can
self adapt to the unknown degree of channel variation progressively. The proposed receiver
keeps the complexity low when the channel conditions are good, while still maintaining excel-
lent performance when the channel conditions deteriorate.

The effective system model for the ICI-progressive processing is

z = HDS + (H − HD)S + w
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝜂

= HDS + 𝜂 (9.5)

where 𝜂 is the effective noise. In the proposed progressive receiver, the parameter D increases
as the iteration goes on, and hence more severe ICI can be addressed as the receiver processing
proceeds to deal with channels with large Doppler spread.
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Preprocessing,
D = 0

z = HD s + v
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Noise variance estimation
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Channel decoding

Success or D = Dmax?

Yes

Output decisions

No

Soft information;
D = D + 1

Figure 9.10 Progressive receiver structure.

As depicted in Figure 9.10, the ICI-progressive receiver consists of the following steps.

(i) Channel estimation: Estimate the channel matrix HD based on the assumed channel
model given in (9.5). The sparse channel estimators developed in Sections 7.2 and 7.3
are adopted.

During the first iteration, only the measurements on the pilot subcarriers are used for
channel estimation. In later iterations, the inputs to the channel estimator include (i) the
measurement vector z, (ii) the pilot symbols, and (iii) the a posteriori probabilities (APP)
of the information symbols from the channel decoder. Here, either soft decisions or hard
decisions on information symbols are used. Denote the decision on the information sym-
bol by s[k]. Denote P, N and D as the sets of pilot subcarriers, null subcarriers, and
data subcarriers, respectively. Hence, an estimate of s (denoted by ŝ) used for channel
estimation can be formed as

ŝ[k] =
⎧
⎪
⎨
⎪⎩

s[k], k ∈ P

0, k ∈ N

s[k], k ∈ D.

(9.6)

(ii) Noise variance estimation: After channel estimation, the variance of the effective noise
𝜂 is updated, as more ICI will be modeled as opposed to being treated as additive noise
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with an increasing D. The noise variance estimator in (7.66) and (7.70) are adopted for
D = 0 and D > 1, respectively.

Noise variance is needed for ICI equalization. Also, the sparsity factor 𝜁 in the 𝓁1-norm
based sparse channel estimator in (7.13) or (7.25) depends on the effective signal-to-noise
ratio (SNR) for each OFDM block, and hence the effective SNR will be updated as the
iteration goes on.

(iii) ICI equalization and symbol detection: By using the estimated channel matrix HD, the
equivalent noise variance, and the a priori information from the nonbinary LDPC decoder
in the previous iteration, the ICI equalizer generates soft output on the reliability of the
data symbols.

(iv) Nonbinary LDPC decoding: The nonbinary LDPC decoder yields the decoded informa-
tion symbols and the soft information that can be used for channel estimation and ICI
equalization. During the decoding process, the decoder will declare success if all the
parity check conditions are satisfied.

(v) Iterations among steps (i) to (iv): Increase D in the system model and increase the
assumed maximum Doppler spread of the channel to be estimated. Feed back the soft
information to the channel estimator and the ICI equalizer. Iteration stops when the
decoder declares a success, or when D reaches a pre-specified number Dmax.

In the receiver depicted in Figure 9.10, each iteration is associated with a different D. The
receiver can also iterate multiple times among step (ii) to step (iv) on channel estimation,
equalization and decoding for each fixed D, before increasing D to update the system model.
For exposition simplicity, such a possibility is not included.

9.5 Simulation Results: ICI-Progressive Receiver

With an identical simulation setup described in Section 9.2.2, Figures 9.11 and 9.12 show
the performance of the progressive receiver with QPSK and 16-QAM constellations, respec-
tively, where only one receive phone is used. The BLER after LDPC decoding is used as the
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Figure 9.11 Simulated performance for the progressive receiver with different Dmax, QPSK.
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Figure 9.12 Simulated performance for the progressive receiver with different Dmax, 16-QAM.

performance metric. The results are averaged over at least 1000 channel realizations or when
50 block errors are detected. The related parameters are Dmax = 3, and for sparse channel esti-
mation in (7.13) or (7.25), the delay resolution 𝜆b = 2, the Doppler resolution Δb = 4 × 10−5.
As Δb = Δ𝑣∕c, the corresponding velocity step size is Δ𝑣 = 0.06 m/s. During the iteration
process, ND

b = 7, 11 and 15 for D = 1, 2 and 3, respectively. Due to the high complexity,
only the MAP equalization results for QPSK up to Dmax = 2 are reported. It can be observed
that the MAP equalization outperforms the linear MMSE equalizer slightly, while both of them
achieve significant performance improvement relative to the ICI-ignorant receiver.

For 16-QAM with good channel conditions (see Figure 9.12(a)), at an operating SNR
of 11 dB, more than 90% OFDM symbols can be decoded in the first round, i.e., using
the ICI-ignorant receiver. In more adverse channel conditions (see Figure 9.12(b)), the
ICI-ignorant receiver has very poor performance, decoding barely half of the OFDM symbols
at 13 dB, while with Dmax = 1 about 80% of the OFDM symbols can be decoded, almost 97%
at Dmax = 2, and more than 99% for Dmax = 3. This also means that only 20% of the time
D = 2 has to be used and less than 3% of the time the algorithm runs to D = 3.

In the progressive receiver, the effective noise variance is re-estimated during each iteration,
as shown in (7.68). Define the effective SNR as the energy ratio of the signal portion to the
effective noise as in (7.69). Figure 9.13 illustrates how the effective SNR changes during the
progressive process across a certain range of SNR, where 𝜎𝑣 = 0.3 m/s and 𝜎𝑣 = 0.2 m/s for
QPSK and 16-QAM, respectively. As more ICI is addressed, rather than being regarded as
additive noise, the effective SNR increases as the iteration goes on.

The complexity issue is briefly explored next. Because both the sparse channel estimation
and the LDPC decoding are iterative processes, which can stop at any time once the stop-
ping criteria are met, the FLOPs of individual algorithms will not be counted. Instead, the
average receiver processing time per block for the proposed receiver is adopted. The numer-
ical results were carried on under MATLAB 2007b, on a personal computer with an Intel(R)
Core(TM)2 CPU 6600@2.4 GHz and 3GB of memory. A total of 104 OFDM blocks were
tested for each SNR point. Figure 9.14 shows the overall complexity of the progressive receiver
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for the setting of Figure 9.11. In Figure 9.14(a) when the channel conditions are good, the
average total run-times for different Dmax are close to the ICI-ignorant receiver at the medium
to high SNR region. This verifies that the proposed receiver structure keeps the complexity
low automatically when the channel conditions are good. In Figure 9.14(b) corresponding to
more challenging channels, the trend is similar that the average run-times decrease as the SNR
improves. However, the complexity is larger than the ICI-ignorant receiver, as a large portion
of OFDM blocks can only be recovered after explicit ICI mitigation. In this setting, the receiver
complexity with Dmax = 2, 3 converges to that of Dmax = 1 at high SNR, suggesting that the
D = 2 and D = 3 iterations are used infrequently.

The progressive receiver needs to implement all the functions of different D values. However,
the progressive receiver will likely be run on software-defined modems [445], where storage
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is not a concern. Rather, the processing speed is the main focus in order to meet real-time data
processing requirements.

9.6 Experimental Results: ICI-Progressive Receiver

The ICI-progressive receiver is evaluated using the data files recorded in the SPACE08 exper-
iment on Julian dates 295–302 at three receiving element arrays, labeled as S1, S3, and S5,
which were 60 m, 200 m, and 1000 m from the transmitter, respectively. The Doppler resolution
and the dictionary size are the same as used in the simulation. The typical channel responses
can be found in Figure 9.4.

9.6.1 BLER Performance

Table 9.1 reports the number of OFDM blocks that have not been decoded correctly as D
increases in the progressive receiver, using the MMSE equalizer, with different number of
phones combined. The data across eight days (Julian dates 295–302) is used. Since some
recorded files are corrupted, there are a total of 1560, 1640 and 1600 blocks processed for S1,
S3 and S5, respectively. Combining 12 receiving elements, all blocks in S1 and S3 are decoded
correctly using the progressive receiver when it reaches D = 3. There are 9 blocks that cannot
be decoded in S5.

Figure 9.15 shows the block success rate averaged over the eight consecutive days using the
proposed progressive receiver with the MMSE equalizer. Due to the geometry, rich multipath
and significant Doppler variation are expected at short (S1) to medium (S3) ranges. When
the number of receiving elements is small, the performance of the ICI-ignorant receiver (D =
0) is limited, and many more OFDM symbols can be decoded by applying the progressive
procedure, with a larger D. When the number of receiving elements is large, the ICI-ignorant
receiver already achieves excellent results for all the blocks. Checking the results using four
receiving elements, about 90% OFDM blocks can be decoded at the D = 0 stage, and the
success rate increases to 95% when Dmax = 1, and up to 98.8% when Dmax = 3.

For S5, similar trends as S1 and S3 can be observed, but the gap between the ICI-ignorant
and progressive receivers gets smaller. When four receiving elements are combined, over 93%
blocks can be decoded by ignoring the ICI, and the success rate increases to 96% when the
progressive receiver reaches D = 3.

9.6.2 Environmental Impact

Using four receiving elements for combining, Table 9.1 shows that there are 19 out of 1560
blocks with decoding errors in S1, 57 out of 1640 blocks with decoding errors in S3, and
66 out of 1600 blocks with decoding errors in S5, for the progressive receiver with Dmax =
3. Figure 9.16 illustrates the success level of each transmission of 20 OFDM blocks across
the 8-day period. Each day, there are about 12 files recorded (a few files are corrupted). “All
success” means that all 20 blocks in that file, of duration 20(T + Tg) = 2.59 s, can be decoded,
while “With errors” means that some blocks cannot be decoded out of 20 blocks in the file.
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Figure 9.15 The block success percentage averaged over Julian dates 295–302, SPACE08, linear
MMSE based ICI equalization. (Source: Huang 2011, figure 9, p. 1534. Reproduced with permission
of IEEE.).
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The decoding results in Figure 9.16 bear correlation with the environmental condition in
Figure B.2. There are two periods that the progressive receiver with D > 0 is used: Julian
dates 296–297 and Julian dates 300–301, during which the wind speed and the wave height are
high. For the rest of the days, the ICI-ignorant receiver can decode all the blocks. Figure 9.16
confirms that the progressive receiver can self adapt to channel conditions, maintaining both
good performance and low complexity.

9.6.3 Progressive versus Iterative ICI-Aware Receivers

Figure 9.17 compares the performance between the proposed progressive receiver and an iter-
ative ICI-aware receiver that fixes the channel model at D = 3, but iterates several times; the
channel with large Doppler spread (Julian date 300) is considered. Obviously, the latter receiver

2 4 6 8 10 12

Phones

(a) S1 (60 m) (b) S3 (200 m)

2 4 6 8 10 12

Phones

Dmax = 3
progressive

Dmax = 3
progressive

D = 3
4 iterations

D = 3
4 iterations

D = 3

D = 0

D = 3

D = 0noniterative

noniterative

10−3

10−2

10−1

100

B
L
E

R

10−3

10−2

10−1

100
B

L
E

R

(c) S5 (1000 m)

2 4 6 8 10 12

Phones

Dmax = 3
progressive

D = 3
4 iterations

D = 3

D = 0

noniterative

10−3

10−2

10−1

100

B
L
E

R

Figure 9.17 Performance comparisons between progressive and iterative ICI-aware receivers; Julian
date 300.
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has much higher complexity, and is not well-motivated in good channel conditions. After the
first iteration, the ICI-aware receiver outperforms the ICI-ignorant receiver. As the iteration
continues, the progressive receiver catches up with the iterative ICI-aware receiver, and the
performance difference is negligible. Hence, the progressive receiver collects the performance
benefits as the iterative ICI-aware receiver, but enjoys much lower complexity in various chan-
nel conditions.

9.7 Discussion

Different receivers have different characteristics. In practical systems, there are various factors
in selecting a suitable receiver structure.

• ICI-ignorant receivers assume that all the paths have a similar Doppler rate, and hence the
ICI can be ignored after the main Doppler scale effect compensation. As such, the channel
mixing matrix is diagonal, leading to low-complexity channel estimation and data demodu-
lation. The ICI-ignorant receiver works well in good channel conditions, but its performance
degrades considerably in adverse channel conditions.

• ICI-aware receivers assume that all the paths have different Doppler rates, and hence ICI
exists and should be explicitly dealt with by the receiver. The ICI-aware receiver achieves
excellent performance even in adverse channel conditions. However, a large number of
pilots is needed for channel estimation, leading to a spectral efficiency reduction. Moreover,
the complexity is much higher than that of ICI-ignorant receivers.

• The ICI-progressive receiver adapts themselves to channel conditions, without any prior
knowledge on the channel time-varying properties. It will have as low complexity as the
ICI-ignorant receiver in good channel conditions, while achieving as excellent performance
as the ICI-aware receiver in adverse channel conditions. Furthermore, compared to the non-
iterative receiver, the progressive receiver does not require any extra pilot overhead.

9.8 Bibliographical Notes

Studies of underwater acoustic OFDM prior to 2005 can be found in e.g., [29, 48, 77, 86],
[211, 225, 458]. The research activities have been increased significantly since 2006.

This chapter focuses on the block by block receivers for a single-transmitter system.
The receivers in [201–203, 235, 457] assume no ICI after Doppler compensation, while
the receivers in [38] and [392] addressing the ICI explicitly. The ICI progressive receiver
was developed in [180]. Other block by block receiver processing approaches include the
multiband OFDM approach [232] and combination of OFDM with the time-reversal approach
[149, 257]. The block-to-block receivers that utilize the channel coherence across blocks will
be covered in Chapter 10, and the extension to MIMO OFDM will be covered in Chapter 13.





10
OFDM Receiver with Clustered
Channel Adaptation

Chapter 9 focuses on the block-by-block receiver processing, where channel paths are esti-
mated solely based on the measurements from one individual block. This chapter will present
an OFDM receiver leveraging the measurements from both the current and past blocks. This
allows the system to reduce the number of pilots while maintaining robust operation over
fast-varying channels.
This chapter is organized as follows.

• Section 10.1 illustrates channel dynamics, notably different variations acrossmultipath clus-
ters. Section 10.2 presents a cluster-based channel variation model to parameterize the
channel variation from block to block.

• Section 10.3 describes the design of an adaptive OFDM receiver, developing key receiver
modules incorporating channel adaptation.

• Sections 10.4 and 10.5 contain performance results of the block-to-block adaptive receiver
using data sets collected in two field experiments.

10.1 Illustration of Channel Dynamics

In general, underwater acoustic channels have large temporal variations. From the receiver
point of view, whether the channels vary fast or slow depending on the relationship between
the channel coherence time and the transmission block length. Fig. 10.1 presents the channel
estimate samples in two experiments. Two important observations are as follows

• Channel paths tend to be clustered; according to the ray-tracing model [141], there are many
small paths centering around the eigen-paths associated with the medium refractions and
surface/bottom bounces.

• The channel coherence time varies across clusters, as different clusters are usually generated
according to different mechanisms. For example, the clusters formed by medium refraction
usually have larger coherence time than those formed by surface/bottom bounces.

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure 10.1 Time variations of block-by-block channel estimates over 20 consecutive OFDM blocks.

A constant-time (horizontal) slice across delay represents the magnitude of the channel impulse response.

No resampling is performed.

Amodel that describes the channel variation accurately is important for the adaptive receiver

design.

10.2 Modeling Cluster-Based Block-to-Block Channel Variation

Assume that the data burst is divided into multiple blocks, with each block of duration Tbl, and
let n denote the block index. Denote Ap[n], 𝜏p[n] and ap[n] as the amplitude, initial delay and
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the Doppler rate of the pth path during the nth block transmission, respectively. A path-based
channel model with path-specific Doppler scales yields the channel impulse response

h(t; 𝜏, n) =
Npa∑
p=1

Ap[n]𝛿(𝜏 − (𝜏p[n] − ap[n]t)). (10.1)

Based on the channel model in (10.1), one may want to model the variation of each path
individually. However, the effort of characterizing the variation of each path could be similar to
that of directly estimating the parameters of each path. Here, utilizing the clustering property
of channel paths, a cluster-based model for channel variations across blocks was proposed
in [426] via two steps:

• Step 1: Split the channel paths into Ncl clusters as

{(
Ap[n], 𝜏p[n], ap[n]

)}Npa
p=1 =

Ncl⋃
i=1

{(
Ap[n], 𝜏p[n], ap[n]

)
; ∀p ∈ Ωi

}
(10.2)

where Ωi is a collection of paths within the ith cluster.
• Step 2: Assume that all paths within one cluster share the same variations {𝛾 i,Δ𝜏i,Δbi} on

the complex amplitude, the delay, and the Doppler scale between adjacent blocks; however,
variations on different clusters are independent. The triplets of paths within the ith cluster
of the nth block after the cluster-offset compensation are

⎧
⎪
⎨
⎪⎩

Ap[n|n − 1] = Ap[n − 1] ⋅ 𝛾 i,
𝜏p[n|n − 1] = 𝜏p[n − 1] + Δ𝜏i,
ap[n|n − 1] = ap[n − 1] + Δai,

∀p ∈ Ωi (10.3)

where i = 1, · · · ,Ncl.

Consider the OFDM modulation with K subcarriers. Denote fk as the kth subcarrier fre-
quency. Define â[n] and 𝜖[n] as the estimate of the main Doppler scale factor and the residual
Doppler frequency shift at the nth block, respectively. The channel impulse response in (10.1)
translates into a matrix which is similarly formulated as in (5.29),

H[n] =
Npa∑
p=1

𝜉p[n]𝚲(𝜏p[n])𝚪(bp[n], 𝜖[n]), (10.4)

where the two generic K × K matrices 𝚲(𝜏) and 𝚪(b, 𝜖) are defined as

[𝚲(𝜏)]m,m ∶= e−j2𝜋
m
T
𝜏
, [𝚪(b, 𝜖)]m,k ∶= G

(
fm + 𝜖

1 + b
− fk

)
(10.5)

with G(f ) being the Fourier transform of the pulse shaping filter at transmitter, and

1 + bp[n] ∶=
1 + ap[n]
1 + â[n]

, 𝜉p[n] ∶=
Ap[n]

1 + bp[n]
e−j2𝜋(fc+𝜖[n])𝜏p[n], 𝜏p[n] ∶=

𝜏p[n]
1 + bp[n]

.

(10.6)
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It is suggested from (10.4) that the channel can be uniquely characterized by Npa triplets
{𝜉p[n], 𝜏p[n], bp[n]}. Based on the relationship in (10.6), prediction of path parameters in (10.3)
can be approximated as

⎧
⎪
⎨
⎪⎩

𝜉p[n|n − 1] = 𝜉p[n − 1] ⋅ 𝛾i,

𝜏p[n|n − 1] = 𝜏p[n − 1] + Δ𝜏 i,

bp[n|n − 1] = bp[n − 1] + Δbi,

∀p ∈ Ωi. (10.7)

After the receiver estimates the offsets {𝛾i,Δbi,Δ𝜏 i}
Ncl
i=1, the path parameters after cluster-offset

compensation in (10.7) will be used to assist channel estimation of the nth block.

10.3 Cluster-Adaptation Based Block-to-Block Receiver

Denote s[n] as the transmitted symbol vector which has pilot symbols multiplexed with infor-
mation symbols. Denote z[n] as the frequency measurement vector at the nth block. The
input–output relationship is expressed as

z[n] = H[n]s[n] + w[n] (10.8)

wherew[n] denotes the ambient noise vector. The goal of the receiver processing is to estimate
the channel matrix H[n] and to recover the information symbols in s[n].
The receiver incorporating the cluster-adaptation based channel estimator consists of four

steps as shown in Figure 10.2, with each step briefly described in the following.

(i) Cluster offset parameter estimation/compensation. Estimate the offset parameters of each

cluster based on the estimated path parameters {𝜉p[n − 1], �̂�p[n − 1], b̂p[n − 1]}Npap=1 of the

(n − 1)th block and the frequency observation at pilot subcarriers of the nth block. Pass the
offset-compensated path parameters {𝜉p[n|n − 1], �̂�p[n|n − 1], b̂p[n|n − 1]} to the hybrid
sparse channel estimation.

(ii) Hybrid sparse channel estimation. Perform hybrid sparse channel estimation based on the
measurement vector z[n] of the nth block.the compensated channel parameters of each

cluster, and the estimated cluster variances {�̂�2
i [n − 1]}Ncli=1. Pass the estimated channel

matrix Ĥ[n] to the symbol detection module.
(iii) Symbol detection and channel decoding. Symbol detection can be performed according

to the maximum a posterior (MAP) or the minimummean square error (MMSE) criteria.
A linear MMSE equalizer described in Section 8.2.2 is adopted here for receiver devel-
opment. After inputting the linear MMSE estimate of information symbols to a channel
decoder, the a posteriori probabilities (APP) of information symbols can be obtained at
the channel decoder output, which are used to calculate both soft and hard estimates of
information symbols. In this chapter, the soft decisions of information symbols are used
to refine the channel estimate.

(iv) Refined channel estimation and cluster variation estimation. Perform the sparse channel
estimation based on the estimate of information symbols and the measurement vector z[n]
within the nth block to refine the channel estimate {𝜉p[n], �̂�p[n], b̂p[n]}

Npa
p=1, and update

cluster variances {�̂�2
i [n]}

Ncl
i=1; both of them are passed to the next block.
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Figure 10.2 Flow chart of the processing for the nth block in the block-to-block receiver design.

For computational efficiency, a limited ICI-leakage assumption is usually adopted,

H[m, k; n] = 0, ∀|m − k| > D (10.9)

where H[m, k; n] denotes the (m, k)th element of H[n], and D is termed as ICI depth. When

D = 0, ICI is taken as ambient noise; when D > 0, ICI is explicitly considered in the receiver

processing.

Symbol detection and channel decoding have been presented in Chapters 8 and 3, respec-

tively. In the following, we will focus on the other three key receiver modules.

10.3.1 Cluster Offset Estimation and Compensation

For the nth block, the receiver knows symbols on the pilot and null subcarriers. We define a

K × K selector matrix𝚽which is a diagonal matrix with unit entry at pilot and null subcarriers,

and zeros elsewhere. Define

zP[n] = 𝚽z[n], u[n] = 𝚽s[n]. (10.10)

These two vectors, which are known to the receiver, will be used to estimate the offset triplets

{𝛾i,Δ𝜏 i,Δbi}
Ncl
i=1.

Based on the channel variation model in (10.7), define a K × K generic matrix

B
(
Δ𝜏 i,Δbi; n

)
=

∑
p∈Ωi

𝜉p[n − 1]𝚲(𝜏p[n|n − 1])𝚪(bp[n|n − 1], 𝜖[n]). (10.11)
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If the symbol vector u[n] is the input to an artificial channel containing only paths from the ith
cluster, the frequency-domain output would be

zi[n] = 𝛾iB(Δ𝜏 i,Δbi; n)u[n]. (10.12)

Combining the contributions from all clusters, one can write

zP[n] =
Ncl∑
i=1

zi[n] + 𝜼[n], (10.13)

where 𝜼(n) consists of the ambient noise, the error caused by the channel model mismatch, and

the intercarrier interference spilled from data subcarriers. If the offset parameters for all clus-

ters are correctly estimated,
∑Ncl

i=1 zi[n] would match zP[n] closely. Hence, offset parameters

can be estimated via the following optimization problem

min
{𝛾i,Δ𝜏 i,Δbi}

Ncl
i=1

||||||

||||||
zP[n] −

Ncl∑
i=1

𝛾iB(Δ𝜏i,Δbi; n)u[n]
||||||

||||||

2

2

. (10.14)

Once the offset triplets {�̂�i,Δ�̂� i,Δb̂i}
Ncl
i=1 are estimated, estimates of path parameters

{𝜉p[n|n − 1], �̂�p[n|n − 1], b̂p[n|n − 1]} are passed to the channel estimation module.

Two methods to solve the problem in (10.14) are presented in the sequel.

• Exhaustive search: The tentative measurement vector zi[n] in (10.12) is linear in 𝛾i, but non-
linear with respect to Δ𝜏 i and Δbi. Note that for each setting of {Δ𝜏 i,Δbi}

Ncl
i=1, the complex

amplitudes {𝛾i}
Ncl
i=1 can be easily obtained via the least-squares approach. Hence, a brute

force method is to try all the possible values {Δbi,Δ𝜏 i}
Ncl
i=1 and choose the optimal one.

Specifically, define a two-dimensional grid where {Δbi,Δ𝜏 i} falls on

Δ𝜏 i ∈ {−Δ𝜏max,Δ𝜏max + 𝛿𝜏 , · · · ,Δ𝜏max} (10.15)

Δbi ∈ {−Δbmax,−Δbmax + 𝛿b, · · · ,Δbmax} (10.16)

for i = 1, · · · ,Ncl, where 𝛿𝜏 and 𝛿b are the step sizes in the two-dimensional delay and

Doppler plane, which depend on the channel variation across blocks. Typically, one can

refer the variability of estimated channels in preceding blocks to decide a reasonable search

window size. Although here all clusters are assumed to share a common set of representa-

tive offset values, extension to the scenario defining different representative sets for different

clusters is straightforward, and will not be presented here.

Assume that there are N1 grid points on the delay dimension, and N2 grid points on the

Doppler scale dimension. The exhaustive search has a complexity proportional to (N1N2)Ncl ,
which becomes prohibitive when the number of clusters is large.

• Orthogonal matching pursuit: A suboptimal greedy algorithm, the orthogonal matching

pursuit (OMP) algorithm discussed in Section 7.4, can be used to solve (10.14) at low com-

putational complexity. On the delay-Doppler plane as defined in (10.15) and (10.16), let

𝛾i,𝓁,j denote the complex amplitude corresponding to the grid point (Δ𝜏[𝓁],Δb[j]) for the
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ith cluster. The frequency observation vector zP[n] can be formulated as

zP[n] =
Ncl∑
i=1

N1∑
𝓁=1

N2∑
j=1

𝛾i,j,𝓁B(Δ𝜏[𝓁],Δb[j]; n)u[n] + 𝜼[n]. (10.17)

Define a vector of size K × 1,

pi,j,𝓁 = B(Δ𝜏[𝓁],Δb[j]; n)u[n]. (10.18)

The observation vector in (10.17) can be rewritten as

zP[n] =
[
p1,1,1, · · · ,pNcl,N1,N2

] ⎡⎢
⎢⎣

𝛾1,1,1
⋮

𝛾Ncl,N1,N2

⎤
⎥
⎥⎦
+ 𝜼[n]. (10.19)

When the OMP algorithm is used to find �̂�i,𝓁,j, it enforces only one delay and Doppler offset
pair with nonzero amplitude for each cluster. Hence, the OMP algorithm will stop after Ncl

steps, and its complexity is linear in the number of clusters.

10.3.1.1 A Special Case with Only Amplitude and Delay Variations

Consider an important special case which has zero Doppler scale variation (i.e., Δbi = 0), and
only amplitude and delay variations

{
𝜉p[n|n − 1] = 𝜉p[n − 1] ⋅ 𝛾i,

𝜏p[n|n − 1] = �̂�p[n − 1] + Δ𝜏 i.
∀p ∈ Ωi (10.20)

It follows that

B(Δ𝜏 i, 0; n)u[n] =
∑
p∈Ωi

𝜉p[n − 1]𝚲(𝜏p[n|n − 1])𝚪(b̂p[n − 1], 𝜖[n])u[n] (10.21)

Note that
𝚲(𝜏p[n|n − 1]) = 𝚲(Δ𝜏 i)𝚲(�̂�p[n − 1]), (10.22)

and define a vector,

p̂i[n] ∶=
∑
p∈Ωi

𝜉p[n − 1]𝚲(�̂�p[n − 1])𝚪(b̂p[n − 1], 𝜖[n])u[n] (10.23)

which can be precomputed. The optimization problem in (10.14) is simplified to

min
{𝛾i,Δ𝜏 i}

Ncl
i=1

‖‖‖‖‖‖
zP[n] −

Ncl∑
i=1

𝛾i𝚲(Δ𝜏 i)p̂i[n]
‖‖‖‖‖‖

2

2

. (10.24)

Similarly, the optimization problem can be solved by exhaustive search and the OMP algo-

rithm. The exhaustive search along the delay grid in (10.15) has a complexity NNcl
1

. The OMP
algorithm still needs Ncl steps; however, within each step, there are much less templates to
correlate. This special case with Δbi = 0 hence has a major complexity advantage relative to
the general case with Δbi ≠ 0.
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10.3.2 Cluster-Adaptation Based Sparse Channel Estimation

The resources available to estimate the channel of the nth block include:

(i) the offset-compensated triplets {𝜉p[n|n − 1], �̂�p[n|n − 1], b̂p[n|n − 1]};
(ii) the frequency observation vector zP[n] and the corresponding symbol vector u[n].

To utilize the {(𝜉p[n|n − 1], �̂�p[n|n − 1], b̂p[n|n − 1]),∀p ∈ Ωi}
Ncl
i=1 in a way similar to the

pilot-based channel estimation approach, a set of artificial measurements {z̆i[n]}
Ncl
i=1 can be

constructed by passing a known symbol vector s̆[n] through Ncl channels formed by paths

from Ncl clusters, respectively. The transmitted symbol vector s̆(n) is arbitrary but known, and
is often constructed by drawing each symbol from a QPSK constellation.

Define two channel matrices corresponding to the ith cluster as

Ĥi[n|n − 1] =
∑
p∈Ωi

𝜉p[n|n − 1]𝚲(�̂�p[n|n − 1])𝚪(b̂p[n|n − 1], 𝜖[n]), (10.25)

Hi[n] =
∑
p∈Ωi

𝜉p[n]𝚲(𝜏p[n])𝚪(bp[n], 𝜖[n]). (10.26)

The artificial measurements are constructed as

z̆i[n] = Ĥi[n|n − 1]s̆(n) = Hi[n]s̆[n] + w̆i[n], (10.27)

where w̆i(n) denotes the error caused by the channel prediction inaccuracy,

w̆i(n) ∶=
(
Ĥi[n|n − 1] −Hi[n]

)
s̆[n]. (10.28)

The receiver thus has measurements from different sources
{

zP[n] = H[n]u[n] + w[n],
z̆i[n] = Hi[n]s̆[n] + w̆i[n], i = 1, · · · ,Ncl.

(10.29)

These measurements have different reliabilities. For simplicity, w[n] can be assumed follow-

ing a zero-mean Gaussian distribution with covariance matrix �̂�2
0
[n]IK , and similarly, w̆i[n]

follows a zero-mean Gaussian distribution with covariance matrix �̂�2
i [n − 1]IK . The noise vari-

ance 𝜎2
0
[n] can be estimated based on frequency measurements at null subcarriers as in (7.66).

Estimates of 𝜎2
i [n − 1], i = 1, … ,Ncl are passed from the previous block; see the estimation

procedure in Section 10.3.3.

For sparse channel estimation, define two sets formed by all the possible values of the path

delay and the Doppler scale factor, respectively,

𝜏 ∈
{
0,

T
𝛽K

,
2T
𝛽K

, · · · ,
Nde − 1

𝛽K

}
(10.30)

b ∈ {−bmax,−bmax + Δb, · · · , bmax} (10.31)

where T∕(𝛽K) and Δb are the uniform sampling steps on the delay and the Doppler scale,

respectively.



OFDM Receiver with Clustered Channel Adaptation 185

Denote 𝜉j,𝓁 as the complex amplitude of the path at the (𝜏𝓁 , bj) grid, and define

aj,𝓁 ∶= 𝚲(𝜏𝓁)𝚪(bj, 𝜖[n])u[n], bj,𝓁 ∶= 𝚲(𝜏𝓁)𝚪(bj, 𝜖[n])s̆[n]. (10.32)

The frequency measurements at the pilot subcarriers of the nth block can be expressed as

zP[n] =
NDop∑
j=1

Nde∑
𝓁=1

𝜉j,𝓁aj,𝓁 + w[n]. (10.33)

Define

A ∶ =
[
a1,1 · · · aNDop,Nde

]
, (10.34)

𝝃 ∶ =
[
𝜉1,1 · · · 𝜉NDop,Nde

]T
. (10.35)

The measurement vector in (10.33) can be recast as

zP[n] = A𝝃 + w[n]. (10.36)

Define 𝚯i as a selector of channel paths within the ith cluster, being a diagonal matrix of
size NDopNde × NDopNde, and with unit entry for grids within a zone where the paths of the ith
cluster can reside, and zeros elsewhere (see Figures 10.5 and 10.7 for the plots on the zones
for different clusters). Similar to (10.33), define

B ∶=
[
b1,1, · · · ,bNDop,Nde

]
, (10.37)

which leads to a similar expression for the artificial measurements

z̆i[n] = B𝚯i𝝃 + w̆[n]. (10.38)

Now we are ready to present two sparse channel estimators, where one does not enforce
paths to fall into the specified zones for all clusters and the other one does.

• Hybrid channel estimation without zone information: For the hybrid channel estimation
without zone information, the solution is obtained as

�̂� = argmin
𝝃

1

�̂�2
0
[n]

‖zP[n] − A𝝃‖2 +
Ncl∑
i=1

1

�̂�2
i [n − 1]

‖z̆i[n] − B𝚯i𝝃‖2 + 𝜁‖𝝃‖1 (10.39)

where |𝝃|1 denotes the 𝓁1 norm of vector 𝝃, and 𝜁 controls the sparsity of the solution.
• Hybrid channel estimation with zone information: For the hybrid channel estimation with

zone information, the solution is obtained as

�̂� = argmin
𝝃

1

�̂�2
0
[n]

‖‖‖‖‖‖
zP[n] − A

Ncl∑
i=1

𝚯i𝝃

‖‖‖‖‖‖

2

+
Ncl∑
i=1

1

�̂�2
i [n − 1]

‖z̆i[n] − B𝚯i𝝃‖2 + 𝜁‖𝝃‖1.

(10.40)
Clearly, in the solution of (10.40), the entries outside the specified zones of Ncl clusters are
zero.
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Compressive sensing techniques can be used to solve (10.39) and (10.40). In this chapter,

the SpaRSA algorithm from [435] is used. Once �̂� is obtained, Ĥ[n] can be computed from

(10.4), which will be used for symbol detection.

10.3.3 Channel Re-estimation and Cluster Variance Update

Denote s[n] as the soft decision on the symbol vector with the channel decoding. The

input-output relationship for channel estimation becomes

z[n] = H[n]s[n] + 𝜼[n] (10.41)

where 𝜼[n] includes the ambient noise and the error caused by the symbol estimation inaccu-

racy. The block-by-block sparse channel estimator in Chapter 7 applies directly. The refined

estimates on the path parameters are passed to the next block.

Based on the updated channel estimate �̂�, variance of the artificial measurements correspond-

ing to the ith cluster can be updated as

�̂�2
i [n] =

1

K
‖‖‖z̆i[n] − B𝚯i�̂�

‖‖‖
2

(10.42)

The variance �̂�2
i [n] will be be used for the hybrid channel estimation of the (n + 1)th block. A

smoothing operation can be adopted as well:

�̂�2
i [n] = 𝜈�̂�2

i [n − 1] + (1 − 𝜈) 1
K
||z̆i[n] − B𝚯i�̂�||2 (10.43)

where the forgetting factor 𝜈 needs to be tuned.

10.4 Experimental Results: MACE10

The MACE10 experiment setup is described in Appendix B, with OFDM parameters sum-

marized in Table B.2. Despite 256 pilots in the original signal design, only a subset of pilot

subcarriers, which is denoted asP, is used to investigate performance of the cluster-adaptation

based channel estimator. For a constellation size M, the spectral efficiency and the data rate

are formulated as

𝛼 = 1

2
⋅

T
T + Tg

⋅
|D|

|D| + |P| + |N|
⋅ log2M bits/s/Hz, (10.44)

R = 𝛼B bit/s. (10.45)

To remove the Doppler effect caused by the mobility of the source array, an overall resam-

pling operation is performed for each transmission. The overall resampling factor is estimated

based on a CP-OFDM preamble prior to each transmission as discussed in Section 6.2.

For multipath clustering, three algorithms have been tested in [426].

(1) From a cluster detection point of view, a Page-test along the delay axis, can be used to

determine the starting and ending points of the delay of each cluster at each possible

Doppler rate value [2];
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(2) From a clustering point of view, the traditional k-means algorithm [311] can be employed

after a thresholding operation to eliminate noise samples in the channel estimate;

(3) In scenarios with a stable clustering structure, cluster locations can also be taken as priors.

It was observed in [426] that there is not much difference of the three strategies in terms of

receiver decoding performance. The experimental results presented in this chapter are based

on the assumption that the clustering structure does not change within each transmission

and the fact that the Page-test is adopted for clustering using the channel estimate of the

preamble.

For the MACE10 data, the ICI-ignorant receiver with D = 0 is adopted. The step size for

the delay offset estimation in (10.15) is 𝛿𝜏 = 1∕(2B) with the maximum delay offset Δ𝜏max =
8𝛿𝜏 , and the step size for the Doppler offset estimation in (10.16) is 𝛿b = Δbmax∕7 where the

maximum Doppler offset is set as Δbmax = 5 × 10−4 which corresponds to a maximum speed

offset Δ𝑣max = Δbmaxc = 0.75 m/s where c = 1500 m/s is the sound speed in water. Hence,

the numbers of searching grids on the delay and Doppler domains are N1 = 17 and N2 = 15,

respectively. For the sparse channel estimation, the maximumDoppler scale in (10.30) is taken

as bmax = 5 × 10−4 with a step size Δb = bmax∕7.

10.4.1 BLER Performance with an Overall Resampling

To investigate the performance of the cluster-adaptation based channel estimator, |P| = 32

pilots are used for channel estimation and 24 data subcarriers are introduced as extra pilots to

estimate the Doppler scale offset, which leads to a spectral efficiency and a data rate

𝛼 = T
T + Tg

⋅
336 − 24

672 + 32 + 96
⋅ log216 = 1.31 bits/s/Hz, (10.46)

R = 𝛼B = 6.39 kb/s. (10.47)

By treating all paths as in one cluster, the block-error-rate (BLER) performance of the

receiver corresponding to several channel estimation schemes is shown in Figure 10.3, with

the setting of each scheme listed in the following.

(1) Pilot-based block-by-block processing: Each block is processed individually with the

ICI-ignorant receiver developed in Chapter 9.

(2) Block-to-block processing without offset compensation: The channel is assumed stationary

over blocks, setting Δ𝜏 = 0,Δb = 0, and 𝛾 = 1. The hybrid channel estimation is per-

formed without using the zone information of clusters;

(3) Block-to-block processing with Δb = 0 and without zone information: The channel vari-
ation is only modeled with the delay and amplitude offsets, and set Δb = 0. The hybrid

channel estimation is performed without using the zone information of clusters;

(4) Block-to-block processing with Δb = 0 and zone information: The channel variation is

only modeled with the delay and amplitude offsets, and set Δb = 0. The hybrid channel

estimation is performed with the zone information of clusters;

(5) Block-to-block processing with Δb ≠ 0 and zone information: the channel variation is

modeled with the delay, amplitude and Doppler scale offsets. The hybrid channel esti-

mation is performed with the zone information of clusters.
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Figure 10.3 BLER performance of the ICI-ignorant receiver, 16-QAM, with an overall resampling. All

the channel paths are treated as in one cluster.

Several observations from Figure 10.3 are in the following.

• Exploiting the time-coherence of UWA channels boosts the decoding performance signif-

icantly, as can be seen from the performance of the pilot-based block-by-block processing

and that of schemes corresponding to the block-to-block processing;

• Compensation of channel variation over blocks is necessary, as can be seen from the per-

formance of the block-to-block processing without the offset compensation and that of the

methods with the offset compensation;

• Utilizing the zone information is beneficial, as can be seen from the performance of the

block-to-block processing without zone information and that of the methods with the zone

information;

• Introducing the Doppler scale offset improves the decoding performance, as can be seen

from the performance of the block-to-block processing with Δb = 0 and that with Δb ≠ 0.

Figure 10.4 shows the estimated Doppler speed of each block, i.e. the accumulation of Δb
estimates up to the nth block, using the offset estimationmethod in Section 10.3.1. One can find

that the estimate matches well with the Doppler speed estimate using the null-subcarrier based

method. Hence, even after an overall resampling operation performed on each data burst, the

residual Doppler scaling effect within each block is not negligible. The block-to-block process-

ing is able to estimate the Doppler scale variation across blocks, which leads to performance

improvement.

10.4.2 BLER Performance with Refined Resampling

In this subsection, the cluster-adaptation based channel estimation after a refined resampling

operation on each individual block is evaluated. The resampling factor in each block is
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Figure 10.4 Samples of estimated offset Doppler speed over 20 OFDM blocks after an overall resam-

pling operation. All the channel paths are treated as in one cluster.
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Figure 10.5 MACE10: Sample of channel estimates with an OFDM preamble. A Page-test based clus-

tering algorithm is used.

estimated using the null-subcarrier based method. As shown in Figure 10.5, the paths after

the refined resampling are quite centered around the zero Doppler scale. It hence suffices to

assume Δbi = 0 and test the performance of the cluster-adaptation based channel estimation

using different numbers of clusters.
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Figure 10.6 BLER performance of the ICI-ignorant receiver with different number of phones com-

bined, 16-QAM,with refined resampling for each block, 64 pilots. The curves marked with “without zone

information” correspond to the formulation in (10.39), and those marked with “with zone information”

correspond to the formulation in (10.40).

To compare the channel estimation performance with different number of clusters, two

clustering schemes are considered: (i) treating the whole channel as a single cluster; and

(ii) dividing channel paths into two clusters as shown in Figure 10.5. |P| = 64 pilots are

used for channel estimation, which corresponds to a spectral efficiency 𝛼 = 1.36 bits/s/Hz

and a data rate R = 6.62 kb/s, resulting a 23% increase relative to the original signal design

with 256 pilots.

The decoding performance of several channel estimation schemes is shown in Figure 10.6.

One can see a significant performance gap between the block-by-block channel estimator

and the cluster-adaptation based channel estimators. Moreover, utilizing the zone information

and treating the multipath clusters individually bring considerable performance improvement.

Although paths in the second zone in Figure 10.5 can be further divided into different clusters,

the decoding performance with more than two clusters has been found almost identical to that

with two clusters.

10.5 Experimental Results: SPACE08

The SPACE08 experimental setup and OFDM parameter settings have been described in

Chapter 9. Due to the interesting clustered channel structure, only the data sets collected by

the receiver labeled as S1 which was 60 m away from the transmitter are considered. Despite

256 pilots in the original signal design, only |P| = 64 pilot subcarriers are used for channel

estimation. Formulation of the data rate is identical to (10.45). The ICI bandwidth D = 1 is

adopted during the receiver processing. To perform the ICI-aware channel estimation, 24 data

subcarriers are introduced as extra pilots for ICI coefficients estimation, leading to a spectral

efficiency 𝛼 = 1.22 bits/s/Hz and a data rate R = 11.9 kb/s.
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face/bottom reflections. A Page-test based clustering algorithm is used.

During the experiment, since both transmitter and receiver were stationary, no resampling
operation is applied to the received signal, and it is assumed that there is no Doppler scale
offset over consecutive blocks, i.e., {Δbi = 0} for all clusters. The maximum delay offset and
grid size are identical to the values described in Section 10.4, so as the parameter values for
the hybrid channel estimation.
Sample of one particular estimated channel impulse response is demonstrated in Figure 10.7,

where channel paths are grouped into three clusters: the first cluster corresponds to direct trans-
missions, the second and the third clusters correspond to the surface and bottom reflections,
respectively.
As can be seen from Figure 10.1, paths formed by the direct transmissions are quite stable,

while the paths constituted by the reflected paths tend to scatter around with a very large
fluctuation. To compare the channel estimation performance with different number of clusters,
three clustering schemes are tested: (i) treating all the paths as in one single cluster; (ii) dividing
channel paths into two clusters, i.e. one cluster formed by refractions and the other cluster
formed by reflections; and (iii) dividing channel paths into three clusters, i.e. one cluster by
refractions and two clusters by reflections, respectively, as shown in Figure 10.7.
Figure 10.8 shows the estimated variances of three clusters normalized by the power of each

cluster averaged over twelve phones of data files collected in Julian date 297, which confirms
that the first cluster is much more stable than the other two clusters. It hence is advantageous
to model different variations for different clusters.
Figure 10.9 demonstrates the averaged BLER performance of files collected in Julian

date 297 and Julian date 300 using the cluster-adaptation based channel estimator and the
pilot-based block-by-block channel estimator. One can find that the block-to-block receiver
outperforms the pilot-based block-by-block receiver considerably. By modeling the variations
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of multipath clusters independently and utilizing the cluster support information for hybrid

channel estimation, the system performance has been significantly improved.

10.6 Discussion

Chapter 9 presents receivers based on block-by-block processing, while Chapter 10 presents

an adaptive receiver based on block-to-block processing. The concepts can be combined in

practical systems.

• The first possible extension is that the adaptive receiver in Figure 10.2 can be combined with

the iterative receivers developed in Chapter 9 to improve the block decoding performance.

With the estimates of information symbols from the channel decoder, all the frequency mea-

surements of the current block can be used for the hybrid channel estimation.

• The second possible combination is that the adaptive receiver can be used to initialize the

ICI-progressive receiver. Here, the channel prediction from the preceding block is based on

the ICI depth D = 0. The hybrid channel estimation yields an initial ICI-ignorant channel

estimate which is used to start the receiver iteration. As iteration goes on, the ICI depth

D will increase gradually. Assuming that all paths are within one cluster, the above ini-

tialization method has been tested in [182] for both single-input and multi-input channels,

confirming that a considerable reduction on the pilot overhead can be achieved.

10.7 Bibliographical Notes

Adaptive receiver has played an important role in the advancement of underwater acoustic

communications. Symbol-level adaptation was adopted in the seminal work for single-carrier

transmissions in [366, 367], where a phase-locked loop tracks the channel phase variations.

Block-level adaptation was utilized for single-carrier block transmissions with frequency

domain equalization in [376, 468]. For OFDM transmissions, a block-adaptive receiver

was proposed in [361, 363] for the single-input channel and later extended in [67] for the

multiple-input channel, where a single parameter referred to as the Doppler scaling factor is

introduced to model the time variability of the channel across blocks. The clustered-adaption

approach presented in this chapter is based on the work in [425, 426].





11
OFDM in Deep Water Horizontal
Communications

For the OFDM receiver designs in Chapters 9 and 10, one underlying assumption is that the
channel delay spread is less than the guard time and hence there is no interblock interference
(IBI). This is suitable for shallow water acoustic channels or deep water vertical channels,
where the channel delay spread is often around several tens of milliseconds. This chapter
focuses on two scenarios where the channel consists of long separately clusters, leading to an
extremely large delay spread, e.g., on the order of seconds. The first scenario is in deep-water
horizontal channel, as illustrated in Figure 11.1, where the transmitter and receiver are hor-
izontally separated, and could also be at different water depths. The second scenario is an
underwater broadcasting networking, where multiple surface nodes broadcast the same infor-
mation to underwater nodes.

This line of research is motivated by the strong need of forming acoustic local area networks
(ALAN) in deep oceans, as illustrated in Figure 11.2. One example is the cellular network
in the Atlantic Undersea Test and Evaluation Center (AUTEC) located around Andros Island
near the Tongue of the Ocean, Bahamas, where 96 fixed nodes are deployed in an area of
size 30 × 50 km2. The water depth is about 1.5 km to 2 km, and the distance of nodes is larger
than 4 km [159, 428]. Acoustic communications are in extensive daily use between mobile
users and fixed network nodes. Figure 11.1 illustrates the horizontal channel structure in the
AUTEC network, where the transmitter and the receiver are both anchored closely to the sea
floor. The first cluster as shown consists of both direct transmission paths and paths arising
from bottom reflections. Given the short distance of both transmitter and receiver to the sea
floor, the first cluster has a very small delay spread. The paths associated with the first surface
reflection and possible bottom refections constitute the second cluster, which has a relatively
large delay spread and a severe Doppler spread due to the dispersion caused by reflections.
The third cluster and beyond are formed by the paths with more than one surface reflections.
The energy of the third cluster and beyond has been observed much smaller than the first two
clusters, thus can be neglected.

The widely separated clusters in the deep sea horizontal channels incur severe inter-block
interference (IBI) in the received signal. This chapter is devoted to designing receiver

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure 11.1 Illustration of deep water acoustic communication channels.

Figure 11.2 Illustration of a deep-water bottom network.

processing algorithms to address both IBI and possible ICI in the received signal. This chapter
is organized as follows.

• Section 11.1 introduces the system model where clustered physical channel is converted
into a summation of two quasi-synchronous channels.

• Sections 11.2 and 11.3 describe a decision-feedback based equalizer and a factor-graph
based equalizer, respectively, for joint IBI and ICI equalization.

• Section 11.4 presents an iterative block-to-block receiver, where all the received blocks
within one batch of transmission are decoded jointly.

• Sections 11.5 and 11.6 contain the performance results using both simulation and experi-
mental data sets collected from the AUTEC network.

• Section 11.7 applies the receiver developed for the deep water horizontal channel to an
underwater broadcasting network, where emulated experimental results are provided.

11.1 System Model for Deep Water Horizontal Communications

This section presents an approach to modeling the multipath channel with widely-separated
clusters, upon which an input–output relationship will be built. Throughout this chapter,
we limit our discussion to the channel with two clusters – a typical situation observed from
field experiments.
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11.1.1 Transmitted Signal

Consider an OFDM system with K subcarriers. Denote fk as the kth subcarrier frequency,

fk = fc +
k
T
, k = −K

2
, · · · , K

2
− 1 (11.1)

where fc is the center frequency, and T is the OFDM symbol duration. Let s[k; n] denote the
symbol on the kth subcarrier of the nth block. The passband signal of the nth transmitted block
can be expressed as

s̃(t; n) = 2ℜ

(
K∕2−1∑

k=−K∕2

s[k; n]ej2𝜋fktg(t)

)
, (11.2)

where g(t) is the rectangular pulse shaping window, defined in (2.9). To avoid the inter-symbol
interference caused by channel dispersion, a guard interval is usually inserted between con-
secutive OFDM symbols. Denote Tg as the length of the guard interval. The total OFDM block
duration is thus Tbl ∶= T + Tg.

For a transmission burst with Nbl blocks, the transmitted signal is

x̃(t) =
Nbl∑
n=1

s̃(t − nTbl; n), t ∈ [0, NblTbl]. (11.3)

One difference exists concerning the signal design for the channels with widely-separated
clusters and that for the shallow water channels. Shallow water acoustic channels usually have
small or moderate delay spreads, and hence the guard interval is usually larger than the maxi-
mum channel delay spread, so that the IBI is avoided at the receiver [38, 201, 232, 235, 361,
392]. For channels with widely-separated clusters, it is recommend to have the guard interval
larger than the maximum channel delay spread, as that would lead to a significant data rate
reduction. With Tg smaller than the channel delay spread, one has to address the IBI in the
received signal.

11.1.2 Modeling Clustered Multipath Channel

For OFDM block transmissions over a channel with the intercluster delay 𝜏1,2 much larger
than the OFDM block length Tbl, decompose the intercluster delay as

𝜏1,2 = ΔTbl + 𝜍, (11.4)

where Δ is an integer and 𝜍 is the residual within [−Tbl∕2, Tbl∕2]. To model the two-cluster
channel, denote h(1)(t, 𝜏; n) as the channel impulse response of the first cluster for the nth
transmitted block,

h(1)(t, 𝜏; n) =
N(1)

pa∑
p=1

A(1)
p [n]𝛿

(
𝜏 − (𝜏(1)p [n] − a(1)p [n]t)

)
(11.5)
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where N(1)
pa denotes the number of paths, A(1)

p [n], 𝜏(1)p [n] and a(1)p [n] denote the amplitude, the
initial delay and the Doppler rate of the pth path within the first cluster, respectively. The
impulse response of the second cluster h(2)(t, 𝜏; n) is similarly defined but with an offset of
ΔTbl in path delays; see Figure 11.3. The overall channel impulse response corresponding to
the nth transmitted block can be formulated as

h(t, 𝜏; n) = h(1)(t, 𝜏; n) + h(2)(t, 𝜏 − ΔTbl; n). (11.6)

The decomposition in (11.4) reveals that the nth transmitted block propagating along the
first cluster will be superimposed with the (n − Δ)th transmitted block propagating along
the second cluster, which implies that the received signal can be taken as the summation of the
signals from two virtual users, while the two virtual channels, h(1)(t, 𝜏; n) and h(2)(t, 𝜏; n − Δ),
are quasi-synchronous with an offset of 𝜍. Let 𝜒i denote the delay spread of the ith cluster.
When 𝜍 ≥ 0, h(2)(t, 𝜏; n − Δ) lags behind h(1)(t, 𝜏; n); as illustrated in Figure 11.3. The impulse
responses of h(1)(t, 𝜏; n) and h(2)(t, 𝜏; n − Δ) are within the interval of [0,max{𝜒1, 𝜍 + 𝜒2}].
On the other hand, when 𝜍 < 0, h(1)(t, 𝜏; n) lags behind h(2)(t, 𝜏; n − Δ), and their impulse
responses are within the interval of [𝜍,max{𝜒1, 𝜒2 + 𝜍}]. The combined delay spread of the
two channels is

Tch ∶=

{
max{𝜒1, 𝜍 + 𝜒2}, 𝜍 ≥ 0

max{𝜒1 + |𝜍|, 𝜒2}, 𝜍 < 0.
(11.7)

11.1.3 Received Signal

Design a guard interval larger than the effective delay spread of the quasi-synchronous channel
in (11.7), i.e., Tg ≥ Tch. The receiver can partition the received signals into blocks of dura-
tion Tbl, without interblock interference due to the channel spreading within each cluster; see
Figure 11.4. The nth received block is expressed as

ỹ(t; n) =
N(1)

pa∑
p=1

A(1)
p [n]s̃

(
(1 + a(1)p [n])t − 𝜏

(1)
p [n]; n

)

+
N(2)

pa∑
p=1

A(2)
p [n − Δ]s̃

(
(1 + a(2)p [n − Δ])t − 𝜏

(2)
p [n − Δ]; n − Δ

)
+ ñ(t; n), (11.8)

where ñ(t; n) is the ambient noise.
After receiver preprocessing, the input–output relationship in the frequency domain is

expressed as

z[n] = H(1)[n]s[n] + H(2)[n − Δ]s[n − Δ] + w[n] (11.9)

which can be rewritten as

z[n] =
[
H(1)[n] H(2)[n − Δ]

] [ s[n]
s[n − Δ]

]
+ w[n], (11.10)

where z[n] is frequency measurement vector of the nth received block at all the subcarriers,
s[n] is the transmitted symbol vector of the nth transmitted block, and the channel matrix is
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Figure 11.3 Illustration of a deep water horizontal channel with two clusters. Δ: an integer; Tbl ∶ time
duration of each transmitted block.
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Figure 11.4 Illustration of received signal; 𝜍 > 0 in this example.

formulated as

H(i)[n] =
N(i)

pa∑
p=1

𝜉
(i)
p [n]𝚲(𝜏(i)p [n])𝚪(b(i)p [n], 𝜖[n]), (11.11)

with the two generic K × K matrices 𝚲(𝜏) and 𝚪(b, 𝜖) defined in (5.30) and (5.31), respectively,
𝜖[n] being the estimated Doppler shift, and the triplet (𝜉(i)p [n], 𝜏(i)p [n], b(i)p [n]) is associated to
(A(i)

p [n], 𝜏(i)p [n], a(i)p [n]) as in (5.26).

11.2 Decision-Feedback Based Receiver Design

As shown in (11.10), the received signal is the block-level convolution of the transmitted
blocks and the channel clusters. Given the convolutional structure of the system model, a
block-by-block equalization with decision feedback as depicted in Figure 11.5 is developed.

Since one transmitted block is included in two received blocks, it is wise to incorporate the
two received blocks for symbol detection. Eq. (11.10) suggests that s[n] shows up in both of
the nth and (n + Δ)th received blocks. Stacking two received blocks yields

[
z[n]

z[n + Δ]

]
=
[

H(2)[n − Δ] H(1)[n] 𝟎
𝟎 H(2)[n] H(1)[n + Δ]

] ⎡
⎢
⎢⎣

s[n − Δ]
s[n]

s[n + Δ]

⎤
⎥
⎥⎦
+
[

w[n]
w[n + Δ]

]
. (11.12)
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Figure 11.5 The decision-feedback based channel equalization.

Depending on whether the interfering block s[n − Δ] has been successfully recovered upon
detecting block s[n], two input–output relationships for data detection are possible.

• Equalization without decision feedback: From (11.12), the desired symbol vector s[n] can
be estimated by treating the interference from symbol vectors s[n − Δ] and s[n + Δ] as part
of an equivalent noise w, as illustrated in

[
z[n]

z[n + Δ]

]
=
[

H(1)[n]
H(2)[n]

]
s[n]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
desired signal

+
[

H(2)[n − Δ] 𝟎
𝟎 H(1)[n + Δ]

] [
s[n − Δ]
s[n + Δ]

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
IBI from the preceding and succeeding blocks

+
[

w[n]
w[n + Δ]

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
ambient noise

. (11.13)

• Equalization with decision feedback: If the block s[n − Δ] transmitted prior to the current
block s[n] has been successfully detected, it can be used to facilitate the estimation of s[n].
After subtracting the contribution of s[n − Δ] from the received blocks, the input–output
relationship can be put as

[
z[n] − H(2)[n − Δ]ŝ[n − Δ]

z[n + Δ]

]
=
[

H(1)[n]
H(2)[n]

]
s[n]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
desired signal

+
[

𝟎
H(1)[n + Δ]

]
s[n + Δ]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
IBI from the succeeding block

+
[

w[n]
w[n + Δ]

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
ambient noise

. (11.14)

Both (11.13) and (11.14) define a detection problem with colored noise. A linear MMSE
equalizer developed in Section 8.2.2 can be applied.

11.3 Factor-Graph Based Joint IBI/ICI Equalization

11.3.1 Probabilistic Problem Formulation

For the sake of computational efficiency, the channel matrix H(i)[n] is usually assumed having
energy concentrated on the main diagonal and several off-diagonals, i.e.,

H(i)[m, k; n] ≈ 0, ∀|m − k| > D (11.15)
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where D is termed as the ICI depth, meaning that only the ICI from D-direct neighboring
subcarriers is considered explicitly.

The input–output relationship corresponding to (11.10) at each subcarrier is

z[m; n] =
m+D∑

k=m−D

H(1)[m, k; n]s[k; n] +
m+D∑

k=m−D

H(2)[m, k; n − Δ]s[k; n − Δ] + 𝜂[m; n],

(11.16)

where 𝜂[m; n] denotes an equivalent noise consisting of ambient noise and ignored ICI.
Define two vectors:

hn,k ∶= [H(1)[k, k − D; n], · · · ,H(1)[k, k + D; n],

H(2)[k, k − D; n − Δ], · · · ,H(2)[k, k + D; n − Δ]]T,

𝝃n,k ∶=
[
s[k − D; n], · · · , s[k + D; n], s[k − D; n − Δ], · · · , s[k + D; n − Δ]

]T
.

The input–output relationship in (11.16) can be rewritten as

z[k; n] = hT
n,k𝝃n,k + 𝜂[k; n]. (11.17)

Assume that (i) transmitted symbols are independent, and (ii) frequency noise samples are
independent across subcarriers. With the second assumption, the frequency measurements can
be shown independent conditional on the transmitted symbols. The a priori probability and
the likelihood function of transmitted symbols are expressed, respectively, as

Pr({ s[n]}Nbl
n=1) =

Nbl∏
n=1

K∕2−1∏
k=−K∕2

Pr(s[k; n]), (11.18)

f
(
{z[n]}Nbl+Δ

n=1 ∣ {sn}
Nbl
b=1

)
=

Nbl+Δ∏
n=1

K∕2−1∏
k=−K∕2

f (z[k; n] ∣ 𝝃n,k). (11.19)

The a posteriori probability can be obtained as

Pr
(
{ s[n]}Nbl

n=1 ∣ {z[n]}Nbl+Δ
n=1

)

∝

[
Nbl+Δ∏

n=1

K∕2−1∏
k=−K∕2

f (z[k; n] ∣ 𝝃n,k)

]
×

[
Nbl∏
n=1

K∕2−1∏
k=−K∕2

Pr(s[k; n])

]
. (11.20)

Hence, the optimal estimate of the information symbols can be obtained via

{ŝ[n]}Nbl
n=1 = arg max Pr

(
{s[n]}Nbl

n=1 ∣ {z[n]}Nbl+Δ
n=1

)
. (11.21)

Solving (11.21) requires a very high computational complexity, especially when the number
of OFDM blocks per data burst and the number of subcarriers are large. To make the problem
tractable, one can exploit the fact that each symbol only shows up in several frequency mea-
surements of two blocks. The posterior probability of each symbol thus can be obtained by
performing the probability marginalization over a factor graph.
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11.3.2 Factor-Graph Based Equalization

Gaussian approximation is adopted for the prior probability function and the likelihood func-
tion of transmitted symbols. Let f̂ (s[k; n]) represent the Gaussian approximation of Pr(s[k; n]),
with the mean and variance denoted by s[k; n] and 𝜎2

s,k,n, respectively, and f̂ (z[k; n] ∣ 𝝃n,k) rep-
resents the Gaussian approximation of f (z[k; n] ∣ 𝝃n,k) where the variance of equivalent noise
𝜂[k; n] in (11.17) is denoted by 𝜎2

𝜂,k,n. The probability density functions can be put as

f̂ (s[k; n]) ∝ exp

(
− 1

𝜎2
s,k,n

|s[k; n] − s[k; n]|2
)
, (11.22)

f̂ (z[k; n] ∣ 𝝃n,k) ∝ exp

(
− 1

𝜎2
𝜂,k,n

|||z[k; n] − hT
n,k𝝃n,k

|||
2
)
, (11.23)

where the mean s[k; n] and variance 𝜎2
s,k,n of f̂ (s[k; n]) are computed based on the prior proba-

bility Pr(s[k; n]), and estimation of 𝜎2
𝜂,k,n will be discussed in the later section.

Taking the symbol vector 𝝃n,k as the variable node, the factor graph representation of (11.20)
is shown in Figure 11.6, where the function nodes are formed by the prior probability density
function, the likelihood function, and two delta functions 𝛿1(𝝃n,k, 𝝃n,k+1) and 𝛿2(𝝃n,k, 𝝃n+Δ,k)
which are introduced to ensure the consistency of identical symbols in adjacent variables.
The messages m1 ∼ m12 in the graph represent either the prior probability function or the
marginal probability density function related to the function nodes. The posterior proba-
bility of each individual symbol vector 𝝃n,k can be found by passing messages over the
graph according to the sum-product algorithm [223] and the Gaussian message passing
principle [259].

According to the sum-product algorithm and the Gaussian message passing principle, the
outgoing message of each variable node is the product of incoming messages from all the
other edges. Take the variable node 𝝃n,k in Figure 11.6 as an example. The outgoing message
m8 can be updated as

m8 = m1m2m3m5m7. (11.24)

Meanwhile, the outgoing message from the delta functions corresponds to the extraction of
the probability distribution of common symbols among consecutive variable nodes from the
incoming message.

To update all the messages in the graph in Figure 11.6, all the messages are initialized as
one. Then the messages are passed from the left node to the right node row by row. Once the
last row has been updated, the messages are updated in an inverse direction, i.e., from the right
node to the left node, and from the last row to the first row.

The posterior probability of the variable node is obtained as

f̂ (𝝃n,k ∣ {z[n]}Nbl+Δ
n=1 ) = m1m2m3m5m7m9, (11.25)

from which the posterior probability of each individual symbol f̂ (s[k; n] ∣ {z[n]}Nbl+Δ
n=1 ) can

be directly obtained. With the Gaussian approximation, computation in (11.24) and (11.25)
can be simplified by operating only over the mean and covariance matrices, as illustrated in
Section 8.3.2.
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Figure 11.6 Factor-graph based joint IBI/ICI equalization, empty boxes represent the prior probability
density function nodes; filled boxes represent the likelihood function nodes; messages m1 ∼ m12 represent
either the prior probability density function or the marginal probability density function over the factor
nodes.

Three remarks on the factor-graph based equalization are in the following.

• For the channel with either IBI or ICI, the factor graph corresponding to one column or one
row of the graph in Figure 11.6 does not have cycles. However, for the channel under consid-
eration with both IBI and ICI, the factor-graph in Figure 11.6 is not cycle-free. Nonetheless,
message-passing algorithms can achieve excellent performance over graphs with cycles,
e.g., decoding of the low-density-parity-check codes.

• For the receiver with turbo equalization, it is the extrinsic information of each data symbol
that should be computed and sent to the channel decoder. Calculation of the extrinsic infor-
mation based on the obtained a posteriori probability has been discussed in Section 8.3.2.

• To ensure the well-conditioned property of covariance matrices of messages in both hori-
zontal and vertical message propagation, the prior information f̂ (s[k; n]) can be factorized
into several components during the implementation. For the practical implementation of the
factor graph in Figure 11.6, please refer to [421].

11.4 Iterative Block-to-Block Receiver Processing

Due to the block-level convolution shown in (11.10), it is necessary to recover the transmitted
symbols based on all the received blocks of one data burst. An iterative block-to-block receiver
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Figure 11.7 Flow chart of the iterative batched-processing receiver with ICI-progressive processing.

can be developed, as shown in Figure 11.7, where blocks within one burst are decoded as one
batch. To accommodate the unknown ICI in the received signal, after Imax iterative operations,
the channel ICI depth D is updated to include more ICI into the system model. Once the par-
ity check conditions of all blocks are satisfied during the channel decoding, or the ICI depth
reaches a predetermined threshold Dmax, the iterative process stops.
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The receiver modules are briefly sketched in the sequel.

• Clustered Channel Estimation: The channel estimation is performed for each received block
individually. Note that the sub-channels corresponding to H(1)[n] and H(2)[n − Δ] in (11.10)
are synchronized on the block level with a small offset on the channel support, as shown
in Figure 11.3. As such, estimation of a channel with two widely-separated clusters is con-
verted to the estimation of two quasi-synchronous virtual channels. Hence, based on the
knowledge of the delay offset, the channel estimation methods in multiuser systems devel-
oped in Section 7.5 can be applied to the current channel setting.

In the iterative receiver structure, the input of the channel estimator at each received block
includes the frequency observation vector z[n], the pilot symbols and the a posteriori proba-
bilities of information symbols fed back from the decoder. In this chapter, the soft decisions
of information symbols are used for channel estimation; please refer back to Chapter 3 on
the soft decision computation based on the a posteriori probabilities from the decoder.

• Noise Variance Estimation: With the estimated channel matrices and the soft decisions of
information symbols, the noise variance estimate at each received block is updated as

�̂�2
𝜂 [n] = 𝔼m∈N

⎡
⎢
⎢⎣

||||||
z[m; n] −

m+D∑
k=m−D

(
Ĥ(1)[m, k; n]ŝ[k; n] + Ĥ(2)[m, k; n − Δ]ŝ[k; n − Δ]

)||||||

2⎤
⎥
⎥⎦

(11.26)

which is used as the estimate of {𝜎2
𝜂,n,k,∀k} in (11.22) for the factor-graph based channel

equalization.
• Channel Equalization and Decoding: Based on the extrinsic and a posterior probabilities

from the channel decoder, the channel equalizer developed in Sections 11.2 or 11.3 can be
applied. Specifically,

– For the decision-feedback based equalizer, only the decision on s[n − Δ] is used to mit-
igate IBI in (11.12), as shown in (11.12). The linear MMSE equalizer is adopted for
symbol detection, in which the extrinsic information fed from the channel decoder is
used as a priori information.

– The extrinsic probabilities will be translated to the a priori probabilities of transmitted
symbols for the factor-graph based equalization.

After obtaining the extrinsic probabilities of transmitted symbols from the channel equalizer,
they will be fed into the channel decoder, and both a posteriori probabilities and extrinsic
probabilities of information symbols will be updated, these then being fed back for channel
estimation and equalization in the next loop.

11.5 Simulation Results

Each cluster of the time-varying horizontal acoustic channel is simulated according to the spec-
ifications in Section 5.5.1. The channel parameters are Npa = 10, Δ𝜏 = 1 ms, ΔPpa = 20 dB,
Tg = 24.6 ms, 𝑣0 = 0 m/s and 𝜎v = 0.10 m/s. The interarrival time of the two clusters follows
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a uniform distribution with Δ ∼  [0, 2] and 𝜍 ∼  [−0.2Tbl, 0.2Tbl]. The OFDM parameters
are identical to the parameters used in an experiment, which are specified in Table B.1, except
that there are Nbl = 10 blocks in each transmission.

In the following, three receiver configurations will be compared in three cases.

• Configuration 1: Receiver design which treats signal propagating along the second cluster
as ambient noise; the linear MMSE equalizer is adopted;

• Configuration 2: Receiver design with decision-feedback based equalization;
• Configuration 3: Receiver design with factor-graph based equalization.

In the sequel, the three configurations are referred to as the receiver without IBI mitigation,
the DFE based receiver and the factor-graph based receiver, respectively.

Test Case 11.5.1 In this test, the ICI-depth is fixed as D = 1, and compare the performance
of the factor-graph based receiver and the DFE based receiver. The average powers of both
clusters are simulated as identical, and only one receiving element is used. To estimate the ICI
coefficients, 96 data subcarriers are converted to pilot subcarriers. With a 16-QAM constella-
tion, the data rate is R = 7.4 kb/s.

For all the simulation results, at least 100 block errors are collected for each signal-to-noise-
ratio (SNR) level. Figure 11.8 depicts the block-error-rate (BLER) performance of the two
receivers. For the factor-graph based receiver, one can observe significant performance
improvements with iterations between the equalizer and the decoder. Moreover, relative
to the DFE based receiver, the factor-graph based receiver has more than 1 dB gain when
the iteration time reaches three, since the latter can utilize the decoding results of all the
other blocks to facilitate the decoding of a particular block, while only the knowledge of the
previous blocks can be utilized in the former.
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Figure 11.8 BLER performance of the factor-graph based receiver versus the DFE based receiver with
mild Doppler spreads 𝜎v = 0.10 m/s. ICI depth is fixed at D = 1.
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Figure 11.9 BLER performance of three receivers with mild Doppler spreads 𝜎v = 0.10 m/s. SNR of
the first cluster is fixed at 11 dB; ICI depth is fixed at D = 1. Five iterations are performed.

Test Case 11.5.2 To get insights on how the performance of both the factor-graph based
receiver and the DFE based receiver with interference cancellation change at different inter-
cluster interference levels, fix the SNR of the signal arriving along the first cluster to be 11 dB,
and vary the power ratio of the signal arriving along the first cluster to that arriving along the
second cluster from −12 dB to 0 dB. The same OFDM parameter set in test case 11.5.1 is used.

Figure 11.9 shows the performance curves of the factor-graph based IBI/ICI-aware receiver,
the DFE based receiver, and the receiver without IBI mitigation, with different power ratios
between the second and the first cluster.

• As the signal arriving along the second cluster becomes stronger, performance of both the
factor-graph based receiver and the DFE based receiver increases, while the performance of
the receiver without IBI mitigation decreases. This result shows that signal arriving along
the second cluster can be utilized by both the factor-graph based receiver and the DFE based
receiver to improve decoding performance, while the decoding performance of the receiver
without IBI mitigation deteriorates due to the intercluster interference.

• The performance gap between the factor-graph based receiver and the DFE based receiver
gets pronounced as the power of the second cluster increases. This is due to the fact that
the DFE based receiver can only partially mitigate the intercluster interference while the
factor-graph based receiver can fully exploit all the available information from both clusters.

Test Case 11.5.3 In this test, the performance of the factor-graph based receiver is evaluated in
ICI-progressive framework, where the receiver starts with D = 0 and 256 regularly distributed
pilot subcarriers are used for channel estimation. With a 16-QAM constellation, the data rate
is R = 10.4 kb/s. Figure 11.10 plots the BLER performance of the progressive receiver, which
shows that progressively updating the system model improves the performance quickly.
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Figure 11.10 BLER performance of the factor-graph based ICI-progressive receiver with mild Doppler
spreads 𝜎v = 0.10 m/s.

11.6 Experimental Results in the AUTEC Environment

In this section, the performance of the iterative receiver is evaluated using the data sets col-
lected from an experiment conducted in the AUTEC network in March 2010, which is abbrevi-
ated as the AUTEC10 experiment. Detailed descriptions on the AUTEC network are presented
in this chapter. Among 96 network nodes, node 45 is used as the transmitter, and the remaining
nodes as receivers.

The OFDM parameters in the AUTEC10 experiment are specified in Table 11.1. In the signal
design, 860 subcarriers are formed by the random distribution of three pilot subcarrier patterns
and three data subcarrier patterns,

• pilot patterns: {[N PN](50), [P P](16), [P P P](114)}
• data patterns: {[D](48), [D D](105), [D DD](26)},

Table 11.1 OFDM parameters in AUTEC10 experiment

Carrier frequency fc 11 kHz
Bandwidth B 5 kHz
No. subcarriers K 860
Symbol duration T 170.7 ms
Subcarrier spacing Δf 5.86 Hz
Guard interval Tg 250 ms
# of null subcarriers |N| 0
# of pilot subcarriers |P| 424
# of data subcarriers |D| 336
# of blocks in each transmission Nbl 10
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Figure 11.11 Samples of HFM correlation results at two receiving nodes in the AUTEC10 experiment.

where N, P and D denote null subcarrier, pilot subcarrier and data subcarrier, respectively,
and the sub-index denotes the number of different patterns, which results in 424 pilot sub-
carriers and 336 data subcarriers in total. With a rate-1/2 nonbinary LDPC code and a QPSK
constellation, the data rate is computed as

R = 1
2
⋅

336
0.1707 + 0.25

⋅ log24 = 798.7 bits/s (11.27)

or 3
8
R = 299.5 Bytes/(3s). There are 22 transmissions in total, with 10 blocks in each trans-

mission.
In this experiment, a hyperbolic frequency modulated (HFM) waveform [222] was used

as the preamble to probe the channel. The matched filtering operation at the receiver side
provides the multipath profile of the two-cluster channel. As a detection scheme for Sonar
applications, the modified Page test [2] is employed at the matched filter output to detect the
rising and falling edges of clusters; the intercluster delay 𝜏1,2 and the delay spreads 𝜒1 and 𝜒2
thus become available (c.f. Page test in Section 6.1).

Two receiving nodes are used for receiver decoding. Distances between these two receiving
nodes and the transmitter are about 3.7 km and 4.4 km, respectively. The average input SNR
of received signals is about 17.9 dB at the first node, and about 14.9 dB at the second node.
Samples of correlation results of the received signal with an HFM local replica at nodes with
two cluster-structures are shown in Figure 11.11, which shows that power of the signal arriving
along the second cluster is about 20 dB lower relative to that of the signal arriving along the
first cluster. The intercluster delay of these two nodes can be rounded into two OFDM blocks,
with the residual term being 𝜍 = −70 ms and 𝜍 = −169 ms, respectively.

Samples of channel estimates at one receiving node are shown in Figure 11.12. Again, the
channel estimates agree well with the HFM correlations results in Figure 11.11. Combining
the received signals from these two receiving nodes, the decoding results of 22 transmissions
are shown in Figure 11.13. It can be observed that:

• As the number of iterations increases, more and more blocks become decodable.
• With 5 progressive operations, all blocks can be decoded with the factor-graph

based ICI-progressive receiver, while only one block error occurs for the DFE based
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Figure 11.13 Decoding results of three receivers in the AUTEC10 experiment; 22 transmissions are
involved. Imax = 2 for each value of D.

ICI-progressive receiver and the receiver without IBI mitigation. Due to the significant
power difference between the two clusters, the advantage of the factor-graph based receiver
over the other two receivers is small, which agrees with the results in Figure 11.9.

The above receiver processing schemes have also been compared in [420, 421] using another
field experimental data sets collected over the AUTEC network, which the second cluster has
much larger power than the first cluster. The advantage of the factor-graph based receiver over
the DFE based receiver is pronounced in that experiment [421].
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Figure 11.14 Illustration of an underwater broadcasting network with multiple gateways.

11.7 Extension to Underwater Broadcasting Networks

11.7.1 Underwater Broadcasting Networks

The receiver for deep-water horizontal acoustic communications applies to other communica-
tion scenarios with similar channel characteristics. One application example is the underwater
broadcasting network [5, 295, 310] as shown in Figure 11.14, in which the gateways com-
municate with a control center using radio links, then broadcast the information they received
from the control center to underwater sensors via acoustic links using an identical transmission
waveform. Related research on this broadcasting network with multiple gateways can be found,
e.g., [90, 186, 187]. The broadcasting network illustrated in Figure 11.14 falls into a large cat-
egory called single frequency networks (SFNs). The concept of SFNs has been widely used in
Digital Audio Broadcasting (DAB) and Digital Video Broadcasting (DVB) systems [245].

Note that the time-difference-of-arrivals of signals from different gateways at one particular
sensor could be much larger than the typical OFDM block length. For example, if the distances
between the sensor to the two transmitters differ by 450 meters, the relative delay is about
300 ms, which is much larger than the typical block duration. The IBI will occur in the received
signal at the sensor. To recover the broadcast information, one can regard the received signal
as the one from a single source but passing through a channel with widely-separated multipath
clusters. The receiver developed for the deep water horizontal acoustic channel with widely
separated clusters therefore applies.

We next evaluate the receiver performance using emulated data sets.

11.7.2 Emulated Experimental Results: MACE10

The experimental setting and the OFDM parameters have been described in Appendix B. Out
of two tows in the experiment, only the data sets collected in the first tow are considered.
There are 31 transmissions in total, with 20 blocks in each transmission. One transmission
file recorded during the turn of the source is excluded, where the SNR of the received signal
is quite low. With a rate-1/2 nonbinary LDPC code and a 16-QAM constellation, the data rate
is R = 5.4 kb/s.
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Figure 11.15 BLER performance of three receivers, averaged over 30 transmissions. Imax = 2 for each
value of D.

Note that this experiment was carried out in shallow water with a single source. To create
a scenario that multiple gateways transmit the same information to underwater sensors, the
received signal of each transmission is shifted two OFDM blocks behind, and take the shifted
signal as the signal from the second source. Then, by adding up the shifted signal with the
originally received signal, a set of semi-experimental signal is obtained, which can be regarded
as the received signal at one sensor in the underwater broadcasting network with two gateways.
The intercluster block delay of the broadcasting channel is Δ = 2, and the fractional delay 𝜍

follows a uniform distribution 𝜍 ∼  [−0.1Tbl, 0.1Tbl].
The receiver without IBI mitigation, the DFE based receiver and the factor-graph based

receiver will be tested in three cases.

Test Case 11.7.1 During the preprocessing, the received signal is resampled to compensate
the mobility of the source array. With five iterations, the decoding results of the receiver with-
out IBI mitigation, the DFE based receiver and the factor-graph based receiver are shown in
Figure 11.15. One can see that the receiver without IBI mitigation almost cannot work, and
there is a considerable performance gap between the DFE based receiver and the factor-graph
based receiver. Meanwhile, one can find that the decoding performance converges after three
to four iterations for the DFE based receiver and the factor-graph based receiver.

Test Case 11.7.2 Based on the estimated ambient noise variance �̂�2
𝜂 , the white Gaussian noise

is added to the received signal to create a semi-experimental data set to test three receivers
under different SNR levels. Decoding results of the receiver without IBI mitigation, the DFE
based receiver and the factor-graph based receiver are shown in Figure 11.16. One can see that
the decoding performance keeps decreasing as the added noise variance level increases, and
the factor-graph based receiver has the best performance.
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Figure 11.16 BLER performance of three receivers by adding white Gaussian noise with different
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Figure 11.17 BLER performance of three receivers with different power ratios between two clusters,
averaged over 30 transmissions. Two phones are combined. Three curves for each receiver correspond
to D = 0, 1, 2, respectively, and Imax = 2 for each value of D.

Test Case 11.7.3 To test the three receivers with different power ratios between the second
cluster and the first cluster, the weighting coefficients are varied when adding the delay-shifted
signal with the originally received signal. Decoding results of the receiver without IBI mitiga-
tion, the DFE based receiver and the factor-graph based receiver are shown in Figure 11.17.
One can see that the DFE based receiver is sensitive to the relative power levels of the two
clusters, while the decoding performance of the factor-graph based receiver is very stable.
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11.8 Bibliographical Notes

Relative to shallow water acoustic communications, deep-water acoustic communications
belong to a regime which has been rarely explored. The earliest work for deep-water acoustic
communications can be found in [49] and the follow-on work in [159, 472] for multiple
access of sea-bottom anchored sensors to a surface receiver. The transceiver design presented
in this chapter is based on the one of the earliest works in [420, 421] for deep-water horizontal
acoustic communications.

Factor graph based approach has been widely used for receiver design, such as joint channel
estimation and co-channel interference mitigation in [471], iterative channel estimation and
LDPC decoding in [296], intersymbol interference mitigation in [104, 150]. The extension to
joint IBI and ICI equalization in OFDM systems is carried out in [421].



12
OFDM Receiver with
Parameterized External
Interference Cancellation

Underwater acoustic communication channels are prone to external interference from various
sources, such as the interference from marine animals, human activities and sonar operations.
Malicious jammers could also inject interfering signals into the communication channel to
destroy the communication link. External interference could incur significant performance
degradation if not accounted for.

This chapter focuses on explicit mitigation of an external interference with a certain time
duration and bandwidth. One example of the type of interference under consideration is the
waveform from sonar users, as depicted in Figure 12.1. Exploiting the prior information on
the time duration and frequency band of the interference, a parameterized interference can-
cellation approach will model the interference explicitly via a number of parameters, where
the number of parameters is equal to the time-frequency-product of the interference. With the
parameterized interference model, an iterative OFDM receiver with interference cancellation
is designed to perform data processing and interference estimation/cancellation iteratively. The
chapter is organized as follows.

• Section 12.1 introduces the parameterization method that represents an external interference
via a number of parameters.

• Sections 12.2 and 12.2.2 present an OFDM receiver, where OFDM receiver decoding is
performed with interference estimation and cancellation iteratively.

• Sections 12.3, 12.4 and 12.5 contain simulation and experimental results that validate the
performance of the iterative receiver.

12.1 Interference Parameterization

Interference is different from the ambient noise. The interference considered in this chapter
overlaps with the OFDM signals partially in the frequency band and partially in the block
duration, as illustrated in Figure 12.1.

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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signal at one hydrophone after bandpass filtering. The transmitted signal consists of a hyperbolic fre-
quency modulated (HFM) preamble followed by 10 zero-padded OFDM blocks. The circle and the square
in subfigure (a) denote the locations of interference and useful signal, respectively. (Source: Wang 2012
[422], figure 1, p. 1783. Reproduced with permission of IEEE.).

Denote the center frequency, bandwidth and time duration of the interference as fIc, BI and
TI, respectively. The bandwidth BI is taken as the 3-dB bandwidth of the interference, but does
not need to be very accurate. As will be seen later, a loose upper bound on BI is sufficient. Let
Ĩ(t) denote the passband waveform of the interference, and I(t) the baseband waveform. Since
I(t) is time limited, it adopts a Fourier-series representation as

I(t) =
∞∑

𝓁=−∞
c𝓁e

j2𝜋 𝓁
TI

t
, t ∈ [0, TI] (12.1)

where c𝓁 is the coefficient on the basis e
j2𝜋 𝓁

TI
t
. Without loss of generality, assume that NI =

⌈BITI⌉ is an even number. Since I(t) is bandwidth-limited to [−BI∕2,BI∕2), the coefficient c𝓁
is approximately zero for 𝓁 < −NI∕2 or 𝓁 ≥ NI∕2. Hence, the baseband signal in (12.1) can
be rewritten as

I(t) ≈
NI∕2−1∑
𝓁=−NI∕2

c𝓁e
j2𝜋 𝓁

TI
t
, t ∈ [0, TI]. (12.2)

The corresponding passband signal is

Ĩ(t) = 2ℜ

(
NI∕2−1∑
𝓁=−NI∕2

c𝓁ej2𝜋f 𝓁 t

)
, t ∈ [0, TI] (12.3)

where f 𝓁 ∶= fIc + 𝓁∕TI. The Fourier transform of Ĩ(t) in the frequency band I ∶= [fIc −
BI∕2, fIc + BI∕2) can be expressed as

̃(f ) =
NI∕2−1∑
𝓁=−NI∕2

c𝓁
sin(𝜋(f − f 𝓁)TI)

𝜋(f − f 𝓁)
e−j𝜋(f−f 𝓁 )TI , ∀ f ∈ I. (12.4)
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Note that the interference overlaps the received OFDM signal with an unknown delay. Define
𝜏I as the delay of the interference relative to the starting point of the OFDM block in which it
resides. After the preprocessing of the OFDM receiver, the interference component at the mth
subcarrier is

𝚼[m] =
∫

T+Tg

0
Ĩ
( t − 𝜏I

1 + â

)
e−j2𝜋(fm+𝜖)tdt. (12.5)

Following the derivation to (12.4), 𝚼[m] can be formulated as

𝚼[m] = e−j2𝜋 m
T
𝜏I

NI∕2−1∑
𝓁=−NI∕2

𝜌m,𝓁u𝓁 (12.6)

where

u𝓁 ∶= (1 + â)TIe
−j2𝜋(fc+𝜖)𝜏Ic𝓁 , 𝜏I ∶=

𝜏I

1 + â
,

𝜌m,𝓁 ∶=
sin(𝜋((1 + â)(fm + 𝜖) − f 𝓁)TI)

𝜋((1 + â)(fm + 𝜖) − f 𝓁)TI

e−j𝜋((1+â)(fm+𝜖)−f 𝓁 )TI .

Stacking interference components at all subcarriers into a vector 𝚼 yields

𝚼 = 𝚲(𝜏I)𝚪Iu (12.7)

where 𝚲(𝜏I) is a K × K diagonal matrix, 𝚪I is a K × NI matrix, and u is an NI × 1 vector,

[𝚲(𝜏I)]m,m = e−j2𝜋 m
T
𝜏I , [𝚪I]m,l = 𝜌m,𝓁 , u =

[
u−NI∕2 … uNI∕2−1

]T
. (12.8)

12.2 An Iterative OFDM Receiver with Interference Cancellation

For easy exposition, we focus on an OFDM system in single-input single-output channels.
Denote K as the total number of subcarriers. The received signal in the presence of interference
is then formulated as

z = Hs + 𝚲(𝜏I)𝚪Iu + w, (12.9)

where z is the frequency measurements at all the subcarriers, s is the transmitted symbol vector,
H is a K × K channel matrix, and w is the ambient noise vector.

The received signal model in (12.9) shows that four sets of parameters: (i) the channel matrix
H; (ii) the information symbol vector s; (iii) the interference vector u; and (iv) the delay 𝜏I,
need to be estimated from the same measurements z. Although pilots are usually multiplexed
with information symbols to separate channel estimation and information symbol detection in
the conventional OFDM receiver, frequency measurements at both pilot and data subcarriers
within the interference band are contaminated.

To estimate these four sets of parameters, an iterative receiver for interference detec-
tion/estimation, channel estimation and information symbol detection was proposed in [422],
as shown in Figure 12.2. Relative to the iterative OFDM receivers in Figures 9.9 and 9.10
for the scenario without interference, the receiver structure includes several new modules for
interference detection and estimation. It is thus a more general framework than the one in
which only the self-interference in the form of ICI is addressed.
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Figure 12.2 Receiver structure for interference mitigation and data detection.

After a preprocessing to remove the main Doppler effect and residual Doppler shift via the
resampling operation and the Doppler compensation (see Chapter 5), and setting the initial
value of the iteration index I = 0, the iterative OFDM receiver operates according to the fol-
lowing steps.

(i) GLRT interference estimation/detection. A generalized log-likelihood ratio test (GLRT)
detector is used to detect the interference. During this process, maximum likelihood (ML)
estimates of the interference u and the delay 𝜏I are obtained. Comparison of the GLRT
statistics with a predetermined threshold yields a decision about the presence of the inter-
ference.

(ii) Interference subtraction. If interference exists, the contributions of interference will be
estimated and subtracted from the measurements.

(iii) Channel estimation. Based on both pilot symbols and the soft decisions on information
symbols fed back from the decoder, the ICI-ignorant or ICI-aware channel estimation
methods in Sections 7.2 and 7.3 can be applied.



OFDM Receiver with Parameterized External Interference Cancellation 219

(iv) Channel equalization and decoding. The linear MMSE channel equalizer in Section 8.2.2
and channel decoding schemes in Chapter 3 can be used. Interactions between the two
models are identical to the iterative receivers developed in Chapters 9 - 11. The decoded
information symbols and soft decisions about the information symbols from the channel
decoder are used for both channel estimation and linear MMSE equalization in the next
iteration.

(v) Noise variance update. Due to the iterative estimation of the interference, the chan-
nel matrix and information symbols, the noise variance is kept updated within each
iteration.

Once the information symbols have been successfully decoded, i.e., the parity check con-
ditions of the nonbinary LDPC decoder are satisfied, or the number of iterations reaches a
predetermined threshold Imax, the iterative loop will stop.

Initialization of the proposed iterative receiver is discussed in Section 12.2.1. A brief descrip-
tion on sparse channel estimation, channel equalization and decoding, and noise variance
estimation will be discussed in Sections 12.2.3 and 12.2.4. A detailed description of GLRT
interference detection will be presented in Section 12.2.2.

12.2.1 Initialization

As discussed in Chapter 2, null subcarriers are usually inserted into the signal band to estimate
the carrier frequency offset and the variance of the ambient noise. To initialize the iterative
interference cancellation in Figure 12.2, the following operations are carried out.

(1) Based on the frequency measurements at null subcarriers, a linear interpolation is per-
formed to estimate the variance of interference within the signal band.

(2) Assume that the interference components at all the frequency subcarriers are independent.
The pre-whitening operation in Section 7.7 is performed for the frequency measurements.

(3) With the pre-whitened frequency measurements, the channel estimation is carried out
based on the frequency measurements at pilot subcarriers, which is followed by the ICI
equalization and nonbinary LDPC decoder to estimate the information symbols and to
recover the information bits.

(4) If the parity check conditions of the nonbinary LDPC decoder cannot be satisfied, the
estimated information symbols are fed into the GLRT interference detector to initialize
the iterative interference mitigation.

12.2.2 Interference Detection and Estimation

Let us first assume that both channel and symbol estimates (Ĥ and ŝ) are available. Within
the interference band I, there are MI = ⌈BIT⌉ subcarriers contaminated. Denote the set of
subcarriers within the interference band as {i1, · · · iMI

}. Define a selector matrix 𝚯 of size
MI × K with unit entry at the (m, im)th position (m = 1, · · · ,MI) and zeros elsewhere.
The selection matrix 𝚯 is determined based on the prior knowledge of the interference
frequency band.

The relevant measurements within the interference frequency band are contained in

z = 𝚯(z − Ĥŝ) = B(𝜏I)u + w, (12.10)
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where
B(𝜏I) ∶= 𝚯𝚲(𝜏I)𝚪I , w = 𝚯w +𝚯(Ĥŝ − Hs). (12.11)

Here, w denotes the equivalent additive noise within the frequency band, which consists of
the ambient noise and the residual noise due to imperfect channel and information symbol
estimates.

Assume that the noise samples are independent and follow a complex Gaussian distribution
 (0, 𝜎2

I
IMI

), where 𝜎2
I

denotes the noise variance. The likelihood function of the interfer-
ence component z in the presence of interference is

f (z ∣ 𝜏I,u) ∝ exp

[
− 1

𝜎2
I

‖‖z − B(𝜏I)u‖‖
2

]
. (12.12)

Let 0 and 1 denote the absence and presence of interference, respectively. To detect the
presence of interference in one particular OFDM block, define the generalized log-likelihood
ratio test (GLRT) statistic

L(z) = max
{𝜏I,u}

ln
f (z ∣ 𝜏I,u,1)

f (z|0)

= max
{𝜏I,u}

ln
exp

[
−‖‖z − B(𝜏I)u‖‖

2∕𝜎2
I

]

exp
[
−‖‖z‖‖

2∕𝜎2
I

]

= max
{𝜏I,u}

1

𝜎2
I

[
zHB(𝜏I)u + uHBH(𝜏I)z − uHBH(𝜏I)B(𝜏I)u

]
≷ Γth (12.13)

where Γth is a predetermined threshold.
Define an objective function to be maximized over {𝜏I,u},

J ∶= zHB(𝜏I)u + uHBH(𝜏I)z − uHBH(𝜏I)B(𝜏I)u. (12.14)

Setting the derivative ∇Ju to zero yields the optimal estimate of u as

û =
[
BH(𝜏I)B(𝜏I)

]−1
BH(𝜏I)z, (12.15)

Substituting û into (12.14), the estimate of 𝜏I is obtained as

�̂�I = argmax
𝜏I

zHB(𝜏I)
[
BH(𝜏I)B(𝜏I)

]−1
B(𝜏I)Hẑ, (12.16)

which can be solved using the grid search.
Based on the estimated parameters {û, �̂�I}, the test statistic is evaluated as

L(z) = 1

�̂�2
I

ûHBH(�̂�I)B(�̂�I)û ≷ Γth, (12.17)

where the estimate �̂�2
I

is obtained following the procedure to be discussed in Section 12.2.4.
The test statistic L(z) is actually the ratio of the energy of the estimated interference to the
energy of the equivalent noise. See [422] for discussions on the selection of the detection
threshold and efficient implementations.
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12.2.3 Channel Estimation, Equalization and Channel Decoding

If the presence of interference is declared from the GLRT detector (either true detection or false
alarm), the desired OFDM component can be obtained by subtracting the estimated interfer-
ence from the received signal

ž = z − 𝚲(�̂�I)𝚪Iû = Hs + w̌, (12.18)

where w̌ denotes the equivalent noise which consists of the ambient noise and the residual
interference

w̌ = w + [𝚲(𝜏I)𝚪Iu − 𝚲(�̂�I)𝚪Iû]. (12.19)

If no interference is detected (either absence of interference or missed detection), simply set
û = 0 in (12.18). The following processing will be carried out based on ž.

Based on the observation vector ž and the symbol vector ŝ, the sparse channel estimator in
Section 7.2 can be used to estimate the channel matrix H, where the banded assumption can
be used to reduce computational complexity. Here, the linear MMSE equalizer is used as the
performance benchmark. After inputting the linear MMSE estimate of information symbols
into the channel decoder, both hard and soft decisions on the information symbols can be
obtained, these being fed back for interference detection, channel estimation and equalization
in the next iteration. A detailed description of the channel decoder and linear MMSE equalizer
can be found in Chapters 3 and 8.

12.2.4 Noise Variance Estimation

Due to the partial-band property of the interference, the noise variance should be estimated
individually for noise within and outside of the interference band I based on the frequency
measurements at null subcarriers. Based on the estimates of the channel matrix and transmitted
symbols, the variance of the equivalent noise outside the interference band, which consists of
the ambient noise and the residual ICI due to the banded assumption of the channel matrix,
can be estimated as

�̂�2
I

= 𝔼{m∈N,fm∉I}

⎡
⎢
⎢⎣

||||||
z[m] −

m+D∑
k=m−D

Ĥ[m, k]ŝ[k]
||||||

2⎤
⎥
⎥⎦
. (12.20)

For the equivalent noise within the interference band, which consists of the ambient noise, the
residual ICI and the residual interference, the noise variance can be estimated as

�̂�2
I

= 𝔼{m∈N,fm∈I}

⎡
⎢
⎢⎣

||||||
z[m] −

m+D∑
k=m−D

Ĥ[m, k]ŝ[k] −
NI∕2−1∑
𝓁=−NI∕2

[𝚲(�̂�I)]m,m[𝚪I]m,lû[𝓁]
||||||

2⎤
⎥
⎥⎦
. (12.21)

The estimated variance is then used for interference detection and information symbol
estimation.

12.3 Simulation Results

The underwater acoustic channel is simulated according to the specifications in Section 5.5.1.
The channel parameters are Npa = 10, Δ𝜏 = 1 ms, ΔPpa = 20 dB, Tg = 24.6 ms, and



222 OFDM for Underwater Acoustic Communications

𝑣0 = 0 m/s. The interference is generated by passing white Gaussian noise of a given duration
through a bandpass filter according to the following parameters: center frequency fIc = 15 kHz,
bandwidth BI = 2.4 kHz and time duration TI = 26.2 ms. The delay of the interference relative
to start of each OFDM block is uniformly distributed within [0, T + Tg − TI].

Throughout this chapter, the signal-to-noise ratio (SNR) and signal-to-interference
ratio (SIR) are defined as

SNR = Ps∕Pn, SIR = Ps∕PI, (12.22)

where Ps denotes the average power of OFDM frequency measurements within the useful
signal band, PI denotes the average power of interference frequency components within the
interference frequency band, and Pn denotes the variance of the additive noise in frequency
domain.

Four configurations are introduced to compare the performance of the proposed receiver with
the receiver which does not perform interference cancellation.

• Configuration 1: the receiver without interference cancellation in the interference-free envi-
ronment;

• Configuration 2: the proposed receiver in the interference-free environment;
• Configuration 3: the receiver without interference cancellation in the presence of

interference;
• Configuration 4: the proposed receiver in the presence of interference.

The block-error-rate (BLER) performance will be used as the performance metric. When
applying the proposed receiver in configurations 2 and 4, it is assumed that the interference has
been detected in each OFDM block such that interference cancellation is always performed.

12.3.1 Time-Invariant Channels

To examine the performance of the proposed receiver in a time-invariant channel, the Doppler
rate of each path is set zero. The ZP-OFDM parameters and subcarrier distributions are iden-
tical to the simulation setup in Section 9.1.2. With a rate-1∕2 nonbinary LDPC code and a
16-QAM constellation, the data rate is R = 10.4 kb/s.

Averaged over 2000 Monte Carlo runs, Figure 12.3 demonstrates the BLER performance of
the four configurations with SIR = 0 dB. In the presence of interference, the receiver without
interference cancellation does not work, while the proposed receiver can approach the perfor-
mance of the conventional receiver in the absence of interference. Meanwhile, in the scenario
without interference, there is only slight performance degradation of the proposed receiver
relative to the conventional receiver.

Figure 12.4 shows the performance improvement of the proposed receiver with different
number of iterations. One can observe a large performance gap between the receiver without
iteration, i.e., the receiver which performs interference suppression via noise pre-whitening as
described in Section 12.2.1, and the proposed receiver which iteratively mitigates the interfer-
ence through interference estimation and subtraction.
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Figure 12.3 BLER performance of several receivers in the time-invariant scenario, SIR = 0 dB.
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Figure 12.4 BLER performance improvement against iterations of the proposed receiver in the
time-invariant scenario, SIR = 0 dB.

12.3.2 Time-Varying Channels

To explore the receiver performance in a time-varying channel, the Doppler rate of each path
is drawn independently from a zero-mean uniform distribution with the standard deviation
𝜎v m/s. The ZP-OFDM parameters and subcarrier distributions are identical to the simulation
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Figure 12.5 BLER performance of receivers in the time-varying channels, D = 1, SIR = 0 dB.

setup in Section 9.2.2. With a nonbinary LDPC code of rate 0.4 and a 16-QAM constellation,
the data rate is R = 7.4 kb/s.

Figure 12.5 shows the performance of the four configurations in the scenario with a mild
Doppler spread 𝜎v = 0.1 m/s and a significant Doppler spread 𝜎v = 0.2 m/s, respectively.
Resampling operation is not performed (i.e., â = 0). A banded assumption of the channel
matrix is adopted with the ICI depth D = 1. It can be observed that in the presence of inter-
ference, the performance of the proposed receiver can still approach that of the conventional
receiver in the scenario does not work without interference, while the conventional receiver
without interference cancellation.

12.3.3 Performance of the Proposed Receiver with Different SIRs

By varying the SIR level, performances of the proposed receiver in both time-invariant and
time-varying scenarios are shown in Figure 12.6. One can observe that when the SIR is very
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Figure 12.6 BLER performance of the proposed receiver at different SIR levels.
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Figure 12.7 ROC of the GLRT interference detector.

small, a BLER error floor shows up, and that as the SIR increases, the decoding performance of
the proposed receiver gradually converges to the decoding performance in the scenario without
interference.

12.3.4 Interference Detection and Estimation

Define EI as the interference energy, and N0 as the power of ambient noise. The receiver operat-
ing characteristic (ROC) curve of the GLRT detector with different EI∕N0 and time-bandwidth
product of interference is shown in Figure 12.7. One can observe that with an identical EI∕N0,
the larger time-bandwidth product of the interference, the more difficult for it to be detected,
because it appears more like the ambient noise.

12.4 Experimental Results: AUTEC10

The AUTEC10 experimental setup and OFDM parameters are described in Section 11.6. With
rate-1/2 nonbinary LDPC coding and QPSK constellation, the data rate is R = 798.7 bits/s, or
3R∕8 = 299.5 Bytes/(3s) according to the unit used in the current AUTEC system. A hyper-
bolic frequency modulated (HFM) waveform with time duration 100 ms and bandwidth 5 kHz
was used as the preamble to probe the channel.

There are two transmission trials of an identical data set, with the first trial and the second trial
including 18 transmissions and 22 transmissions, respectively. During the experiment, sonar
operations were carried out by others simultaneously. At sensors close to the sonar operation,
the received signal of all the transmissions in the first trial and the first portion of transmissions
in the second trial were contaminated. Based on the received signal waveform in Figure 12.1,
the receiver can infer that TI ≈ 45 ms and the frequency band [11, 15] kHz, and hence sets
fIc ≈ 13 kHz, the interfering bandwidth BI ≈ 2 kHz.
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Figure 12.8 Block error rate of 13 transmissions with/without interference cancellation (IC) versus
different levels of added noise, Imax = 7.

In the sequel, the proposed interference cancellation receiver will be tested with the exper-
imental data in two different cases. Note that as opposed to the simulations, only parts of the
OFDM blocks contain interference; the interference detection module in the receiver is thus
started to decide the necessity of interference cancellation.

Test Case 12.4.1 In this test case, the interference cancellation performance of the receiver
at different SNR levels is investigated. Thirteen transmissions with the SIR level rang-
ing from 0 dB to 9 dB from the second trial are used for this test. With the received
interference-contaminated waveform shown in Figure 12.1, white Gaussian noise is added to
the received signal to generate several semi-experimental data sets with different SNRs.

The decoding performance of the semi-experimental data sets with and without interfer-
ence mitigation is shown in Figure 12.8. One can observe that the receiver with interference
cancellation outperforms the receiver without interference cancellation, and the performance
gap between the iterative interference cancellation method and the noise-prewhitening method
is large.

Test Case 12.4.2 In this test case, the interference cancellation performance of the
receiver at different SIR levels is investigated. By modifying the weighting coefficients, the
semi-experimental data sets of different SIRs are constructed through adding the received
signal of pure interference with one received OFDM signal which is not contaminated by
interference. The received signals at two hydrophones are shown in Figure 12.9, where the
signal in Figure 12.9 (a) is interference-free, while the signal in Figure 12.9 (b) is almost
purely interference with a very weak useful signal masked by ambient noise.

Figure 12.10 shows the decoding performance of the semi-experimental data sets with and
without interference cancellation. Again, one can observe that the receiver with interference



OFDM Receiver with Parameterized External Interference Cancellation 227

0 1 2 3 4 5 6 7 8
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time [s]

P
a

s
s
b

a
n

d
 s

ig
n

a
l

HFM Preamble
10 OFDM Blocks

0 2 4 6 8

−0.02

−0.01

0

0.01

0.02

Time [s]

(a) OFDM signal at one hydrophone (b) Pure interference waveform at the
other hydrophone

P
a

s
s
b

a
n

d
 s

ig
n

a
l

Interference

Figure 12.9 Sample of the received signals at two hydrophones after bandpass filtering. The two data
sets are added together with different weights to generate semi-experimental data sets at different SIR
levels.

−4 −2 0 2

0.001

0.01

0.1

1

SIR [dB]

B
L
E

R

Without interference cancellation

With interference
cancellation

it 0
it 1

it 3

it 5

Figure 12.10 Block error rate of 18 transmissions with/without interference cancellation (IC) versus
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cancellation outperforms that without interference cancellation considerably, and the perfor-
mance improvement brought by the iterative interference cancellation is significant.

12.5 Emulated Results: SPACE08

The experimental setting and OFDM parameter are described in Section B.1. The data
recorded on Julian dates 297 and 300 are used to verify performance of the proposed
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Figure 12.11 BLER performance comparison of receiver with/without interference cancellation,
16-QAM, D = 3, JD: Julian date. Marker x: receiver without interference cancellation; marker ⋄: pro-
posed interference cancellation receiver; marker ∗: original BLER without adding interference; dashed
line: 0 iteration, solid line: 10th iteration.

method in the time-varying scenario. Note that there was no external interference during this
experiment. The interference from the recorded sonar waveform in the AUTEC10 experiment
at one hydrophone, as shown in Figure 12.9 (b), is extracted. Each sonar waveform is
artificially added to one OFDM block to create a semi-experimental data set with interference
contamination. The delay of the added sonar waveform relative to the OFDM block follows a
uniform distribution within the interval [0, T + Tg − TI]. To estimate the channel accurately,
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the setting described in Section 9.2.2 is used, where 352 pilots are used, leading to a data
rate R = 798.7 bits/s. Again, different from the simulations, the receiver incorporates the
interference detection module to determine the necessity of interference cancellation.

The decoding performance of the proposed receiver and the conventional receiver without
interference cancellation, and the decoding performance of the signal without adding the inter-
ference are depicted in Figure 12.11. One can find that relative to the decoding performance
of the original received signal, significant performance degradation of the ICI-aware receiver
without interference cancellation is incurred by introducing the interference. Meanwhile, the
proposed receiver can effectively eliminate the interference after a number of iterations.

12.6 Discussion

The parameterized interference cancellation method is general in that the number of
parameters only depends on the time-bandwidth product of the interference. With a given
time-bandwidth product, the time duration or the bandwidth of the interference could be arbi-
trary. Therefore, it can be used to address other types of interferences, such as the impulsive
noise and the narrowband interference. The impulsive noise has very short time duration and
large bandwidth which is comparable to system bandwidth. The narrowband interference
occupies partial system frequency band and has very large time duration. Both of them have
limited number of degrees of freedom and hence allow for a compact parameterization.

Underwater OFDM receiver in the presence of impulsive noise has been investigated in
[372]. The impulsive noise is parameterized by a long time-domain vector, which is con-
strained to have only a few nonzero entries. Hence, a compressive sensing approach is adopted
to estimate the impulsive noise in the frequency domain.

One immediate application of the parameterized interference cancellation is in Chapter 15
to mitigate asynchronous multiuser interference, which overlaps the desired OFDM blocks
partially in the time domain.

12.7 Bibliographical Notes

Various methods for external interference suppression have been investigated for wireless com-
munications in the last two decades [143, 229]. Mainly, the external interferences are divided
into two categories according to the time-frequency characteristics: (i) impulsive interference
with short time duration and large bandwidth; and (ii) narrowband interference with small
bandwidth and long time duration.

In contrast, rare attention has been paid to interference in underwater acoustic environments.
Sporadic progress on the impulsive noise cancellation in water can be found in [78, 307].
The impact of impulsive like noise on OFDM is investigated by [77, 372]. Mitigation of the
partial-band partial-block-duration interference in an underwater OFDM system is studied
in [422].
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Co-located MIMO OFDM

Chapters 9–12 presented receiver designs for single-transmitter OFDM systems in different
scenarios. From this chapter to Chapter 15, we will look into receiver designs for multi-input
multi-output (MIMO) systems, where multiple transmitters could be co-located or spatially
distributed.

• Chapter 13: Co-located MIMO OFDM. This chapter focuses on the MIMO-OFDM recep-
tion for a MIMO system with co-located transmitters, in which, as illustrated in Figure 13.1,
multiple parallel data streams are used to increase the bandwidth efficiency. The signals
from co-located transmitters are quasi-synchronized at the receiver and experience similar
Doppler scaling effects.

• Chapter 14: Distributed MIMO OFDM. This chapter considers a particular scenario
with multiple geometrically distributed users, where the moving velocity could be dras-
tically different from user to user. The signals from different users are assumed to be
quasi-synchronized at the receiver, and the focus is on how to deal with different moving
velocities of users.

• Chapter 15: Asynchronous multiuser OFDM. This chapter looks into a communication sys-
tem with multiple geometrically distributed users in which signals from users are misaligned
at the receiver but have a similar Doppler effect. It will present an OFDM receiver for asyn-
chronous multiuser reception.

In this chapter, we look into the co-located MIMO-OFDM receiver design in both
time-invariant and time-varying channels. Note that with co-located transmitters, various
space time coding approaches could be adopted to either improve the system performance or
increase the bandwidth efficiency. The spatial multiplexing scheme, where different trans-
mitters send independent data streams, is adopted so that the data rate linearly increases with
the number of transmitters. This choice is attractive to underwater acoustic communication
systems, which are fundamentally bandwidth-limited.

Compared to the single-input OFDM, challenges in the co-located MIMO-OFDM are
two-fold. In terms of channel estimation, the number of frequency-domain channel coeffi-
cients increases proportionally to the number of transmitters. In terms of data detection, both
co-channel interference (CCI) and potential ICI have to be equalized, leading to a problem of

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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(a) Stationary transmitters (b) Mobile transmitters
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Figure 13.1 Illustration of a co-located underwater MIMO-OFDM system.

size proportional also to the number of transmitters. The rest of this chapter is organized as
follows.

• Sections 13.1 to 13.4 present a noniterative and an iterative ICI-ignorant MIMO-OFDM
receiver. By ignoring the ICI, data detection is carried on each OFDM subcarrier
individually.

• Sections 13.5 to 13.9 describe an ICI-progressive MIMO-OFDM receiver, which is a coun-
terpart of the progressive receiver in Section 9.4. Section 13.10 discusses an initialization
method to the ICI-progressive MIMO OFDM receiver.

13.1 ICI-Ignorant MIMO-OFDM System Model

Consider a MIMO-OFDM system with Nt transmitters and Nr receiving elements, and copy
the input–output relationship from (5.51) as

z𝜈[m] =
Nt∑
𝜇=1

H𝜈,𝜇[m]s𝜇[m] + 𝜂𝜈[m], (13.1)

where H𝜈,𝜇[m] is the coefficient that specifies how the symbol transmitted on the mth subcarrier
of the 𝜇th transmitter contributes to the output on that subcarrier of the 𝜈th receiver, and 𝜂𝜈[m]
is the equivalent noise in the frequency domain which consists of the ambient noise and the
unmodeled ICI.

A matrix representation of frequency measurements on the mth subcarrier can be easily
obtained based on (13.1),

⎡
⎢
⎢⎣
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⋮

zNr
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⎥
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⋮
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[m]

⎤
⎥
⎥⎦

⏟⏞⏟⏞⏟
∶=𝜼[m]

. (13.2)

For each transmitted symbol of interest s𝜇[m], there exists the co-channel interference from
other parallel transmissions on the same subcarrier. We next present an ICI-ignorant MIMO
receiver structure to recover the data streams from Nt transmitters.
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Figure 13.2 The noniterative ICI-ignorant MIMO-OFDM receiver diagram.

13.2 ICI-Ignorant MIMO-OFDM Receiver

13.2.1 Noniterative ICI-Ignorant MIMO-OFDM Receiver

The noniterative ICI-ignorant receiver for a MIMO-OFDM with Nt transmitters and Nr
receivers is shown in Figure 13.2.

• ICI-ignorant channel estimation and noise variance estimation: If the pilot subcarriers for
different transmitters are nonoverlapping, then channel between each transmitter-receiver
pair is estimated individually, with the estimation methods described in Sections 7.1 and 7.2.
If the pilot subcarriers are overlapping, then the channels from all transmitters to one receiver
will be estimated jointly, with the methods described in Section 7.5.1. The noise variance
is estimated with (7.66). The estimated channel coefficient Ĥ𝜈,𝜇[m] and noise variance are
then used for MIMO symbol detection.

• MIMO demodulation and channel decoding: Different from the single-user scenario, the
signals from Nt data streams are superimposed at the receiver. With the input-output rela-
tionship specified by (13.2), the MAP or the MMSE detector developed in Section 8.4.1 can
be used on each subcarrier. The estimated LLRs of each data stream are then fed into the
channel decoder to recover the information bits from the corresponding transmitter.
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Figure 13.3 The iterative ICI-ignorant MIMO-OFDM receiver diagram.

13.2.2 Iterative ICI-Ignorant MIMO-OFDM Receiver

The iterative ICI-ignorant MIMO-OFDM processing with Nt transmitters and Nr receivers is
shown in Figure 13.3. The initial round processing is the same as the noniterative receiver as
shown in Figure 13.2. With the outputs from the equalizer, channel decoding is run for each
data stream to be decoded. In later iterations, all the estimated information symbols are fed
back from the channel decoder and used to refine channel estimation and data detection. Dur-
ing the decoding process, the decoder will declare success if the parity check conditions are
satisfied. When one data stream is decoded successfully, its contribution will be substracted
from the received signals, and the number of parallel data streams decreases by one. The itera-
tive receiver stops after all Nt streams have been successfully decoded, or after a pre-specified
number of runs.

13.3 Simulation Results: ICI-Ignorant MIMO OFDM

Consider MIMO systems with Nt = 2 or Nt = 3 transmitters. The parameter setting is identi-
cal to that in the SPACE08 experiment specified in Table B.1. The 256 pilots are divided into
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nonoverlapping sets among all transmitters so that each transmitter has roughly the same num-
ber of pilots. The pilot patterns are randomly drawn, rendering irregular positioning. This is
usually seen as advantageous in compressed sensing theory, as it can guarantee identifiability
of active channel taps with high probability [100]. The pilot symbols are drawn from the QPSK
constellation whereas the data symbols are drawn from QPSK or 16-QAM constellations. The
pilots are scaled to ensure that about one third of the total transmission power is dedicated to
channel estimation regardless of the number of transmitters. The data rate after accounting all
overheads and rate 1∕2 coding is

R = 1
2
⋅ Nt ⋅

672 ⋅ log2M

T + Tg
=

{
5.2Nt kb/s, QPSK,

10.4Nt kb/s, 16-QAM.
(13.3)

With Nt = 2, the data rates are 10.4 kb/s and 20.8 kb/s for QPSK and 16-QAM modulations,
respectively. With Nt = 3, the data rates are 15.6 kb/s and 31.2 kb/s for QPSK and 16-QAM
modulations, respectively.

The underwater acoustic channel between any transmitter and receiver is generated accord-
ing to the specifications in Section 5.5.1. The channel parameters are Npa = 15, Δ𝜏 = 1 ms,
ΔPpa = 20 dB, Tg = 24.6 ms, and 𝑣0 = 0 m/s. As each OFDM symbol is encoded separately,
the block-error-rate (BLER) is used as the figure of merit. In the simulation, each OFDM sym-
bol experiences an independently generated channel. The BLER performance is evaluated at
different SNR levels, where SNR is the signal to noise power ratio on the data subcarriers.

The following receivers are considered.

(1) Noniterative ICI-ignorant receiver: The sparse channel estimator in Section 7.2 is used.
(2) The ICI-ignorant receiver with turbo equalization: The sparse channel estimator is out-

side the iteration loop. Multiple rounds of iterations occur between the data detection and
channel decoding modules.

(3) The iterative ICI-ignorant receiver (soft decision): Channel estimation is inside the itera-
tion loop. The soft decisions on information symbols are used for channel estimation:

s̃𝜇[k] =
⎧
⎪
⎨
⎪⎩

s𝜇[k], k ∈ P,𝜇,

0, k ∈ N
⋃
(P\P,𝜇),

s𝜇[k], k ∈ D.

(13.4)

where P,𝜇 is set of pilots for the 𝜇th data stream, P =
⋃Nt

𝜇=1 P,𝜇, and s𝜇[k] is the soft
symbol estimate, computation of which can be found in (3.43).

(4) The iterative ICI-ignorant receiver (hard decision): The hard decisions on information
symbols are fed back for channel estimation.

s̃𝜇[k] =
⎧
⎪
⎨
⎪⎩

s𝜇[k], k ∈ P,𝜇,

0, k ∈ N
⋃
(P\P,𝜇),

ŝ𝜇[k], k ∈ D.

(13.5)

where ŝ𝜇[k] is the hard decision estimate of s𝜇[k].
(5) The ICI-ignorant receiver with turbo equalization (full CSI): The receiver iterates between

MIMO detection and LDPC decoding, where the full channel state information (CSI) is
assumed at the receiver.



236 OFDM for Underwater Acoustic Communications

In subsequent figures, Noniterative, Turbo-equalization, Soft feedback, Hard feedback, and
Full CSI are used as legends for the above receivers, respectively. For the iterative receiver,
other feedback strategies have been discussed in [172].

Figure 13.4 compares different receivers for two MIMO-OFDM systems under different
setups. The maximum number of iterations for performing iterative updating between sparse
channel estimation, MIMO detection and nonbinary LDPC decoding is 10, where both the
channel estimation and the MIMO detection are updated in each iteration.

Figure 13.4 shows that employing a turbo-equalization receiver gains about 0.5–1 dB over a
noniterative receiver. Including channel estimation in the iteration loop leads to gains of about
1 dB for Nt = 2 and 1.5 dB for Nt = 3. This seems intuitive, as with an increasing number of
transmitters there are less pilots available per data stream, making the additional pilots from
feedback more valuable. The gap between the proposed receivers and the full CSI case is
approximately between 0.5 dB and 1 dB.
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Figure 13.4 Simulation results in different settings.
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13.4 SPACE08 Experimental Results: ICI-Ignorant MIMO OFDM

Experimental settings of the SPACE08 experiment can be found in Appendix B. The OFDM
parameters are specified in Table B.1. Consider the receivers S3 and S5 located 200 m and
1000 m away from the transmitter. The recorded data files from Julian dates 298 and 299 are
used. For each day, there are twelve recorded files consisting of twenty OFDM symbols each.
On the Julian date 298, the five files recorded during the afternoon were severely distorted and
therefore unusable, and the remaining seven files recorded during the morning and evening are
used here. Due to the more challenging environment, only the small-size QPSK constellation
is considered. The signaling format for SPACE08 is identical to that in the simulation setup
in Section 13.3. The data rates for the MIMO system using QPSK modulation are the same
as (13.3).

Performance results are plotted in Figure 13.5 for Nt = 2 and Nt = 3, respectively. The
maximum number of iterations for performing iterative updating between sparse channel esti-
mation, MIMO detection and nonbinary LDPC decoding is Imax = Nt. A sizable gain using
updated channel estimates is observed, while all iterative receivers gain significantly over the
noniterative receiver. For the Nt = 3 setup, the gain of updated channel estimates is more pro-
nounced, matching the observations based on numerical simulation.

13.5 ICI-Aware MIMO-OFDM System Model

For a MIMO-OFDM system with Nt transmitters and Nr receive elements in a time-varying
environment, the frequency measurement on the mth subcarrier at the 𝜈th receiver with a
band-limited ICI leakage assumption is copied from (5.60) as

z𝜈[m] =
Nt∑
𝜇=1

k=m+D∑
k=m−D

H𝜈,𝜇[m, k]s𝜇[k] + 𝜂𝜈[m], (13.6)

where D is the ICI depth, H𝜈,𝜇[m, k] is the coefficient that specifies how the symbol transmitted
on the kth subcarrier of the 𝜇th transmitter contributes to the output on the mth subcarrier of
the 𝜈th receiver, and 𝜂𝜈[m] is the equivalent noise consisting of both residual ICI/CCI and
ambient noise.

Define HD
𝜈,𝜇 as a banded channel matrix with H𝜈,𝜇[m, k] as its (m, k)th entry, where D specifies

the ICI depth on each side. Using the matrix-vector notation, the frequency measurements at
the 𝜈th receiver can be compactly expressed as

z𝜈 =
Nt∑
𝜇=1

HD
𝜈,𝜇s𝜇 + 𝜼𝜈, (13.7)

where z𝜈 is the frequency domain observation at the 𝜈th receiver, s𝜇 is the transmitted data
stream at the 𝜇th transmitter, and 𝜼𝜈 is the equivalent noise.

13.6 ICI-Progressive MIMO-OFDM Receiver

The ICI-progressive MIMO-OFDM receiver is an extension of the ICI-progressive receiver
in the single-user system developed in Chapter 9: it continually updates the ICI model
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Figure 13.5 Experimental results from the SPACE08 experiment, QPSK, for S3 (200 m) and S5
(1000 m).

during iterations. Compared to the single-user OFDM system, benefits of the ICI-progressive
processing in the MIMO-OFDM system are two-fold.

• As in the single-user system, the ICI-progressive MIMO receiver can adapt its system
model, thus the processing complexity, towards the unknown severity of the channel
conditions.

• The number of pilots per data stream is limited for MIMO-OFDM, which might not be
sufficient for channel estimation when using a complicated model at the beginning. The
progressive receiver starts with the ICI-ignorant model with a limited number of pilots,
while later iterations can afford more detailed ICI modeling as the decoded symbols become
more accurate and available for channel estimation.
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Figure 13.6 The progressive receiver for co-located MIMO-OFDM.

In the following, we first provide an overview of the progressive receiver, then take a brief
discussion on the channel and noise variance estimation and joint ICI/CCI equalization.

13.6.1 Receiver Overview

Figure 13.6 shows the structure of an ICI-progressive receiver for MIMO-OFDM sys-
tems. The equivalent system model used in the receiver is shown as in (13.7). During the
progressive iteration process, the parameter D increases after every few iterations, and hence
more severe ICI can be addressed as the receiver processing proceeds to deal with channels
with large Doppler spread. The progressive MIMO-OFDM reception structure consists of the
following steps.

(i) Pre-processing. For each received OFDM block, each receiver applies the preprocess-
ing operation to remove the dominant Doppler effect caused by the platform mobility.
Set D = 0.
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(ii) Channel estimation and noise variance estimation. Estimate the equivalent channel mix-
ing matrix HD

𝜈,𝜇 based on the assumed channel model given in (13.7). After channel
estimation, variance of the effective noise 𝜼𝜈 is computed. This quantity is needed for
the MIMO ICI/CCI equalization.

(iii) MIMO ICI/CCI equalization. With the estimated channel matrix HD
𝜈,𝜇, the equivalent

noise variance, and the a priori information fed back from the nonbinary LDPC decoder
in the previous iteration, the MIMO ICI/CCI equalizer generates soft output on the reli-
ability of the data symbols for the remaining undecoded data streams.

(iv) Nonbinary LDPC decoding. The nonbinary LDPC decoder yields the decoded infor-
mation symbols and the soft information that can be used for channel estimation and
ICI/CCI equalization for each independent data stream. During the decoding process,
a data stream will declare success if all the parity check conditions are satisfied. Once
one data stream is recovered, hard decision will be made and fed back to the channel
estimator and the ICI/CCI equalizer to improve the channel estimates and the detection
performance, respectively.

(v) Iteration among steps (ii) to (iv) for each D. For each parameter D, it is reasonable to
iterate multiple times among steps 2 to 5, and feed back the soft information to the channel
estimator and the ICI/CCI equalizer. For example, one can iterate Imax = Nt times on each
D for simplicity by assuming that a new data stream is ready to be decoded successfully
for each iteration.

(vi) Further iteration among steps (ii) to (iv) after model update. Increase D in the sys-
tem model, and the assumed maximum Doppler spread of the channel to be estimated.
Iteration stops when all data streams are decoded successfully, or when D reaches a
pre-specified number Dmax.

13.6.2 Sparse Channel Estimation and Noise Variance Estimation

Since channel estimation is carried out for each receiving element separately, the
ICI-progressive channel estimation in Section 9.4 can be directly applied. In each iteration,
the soft symbol feedback in (13.4) will be adopted.

During the iteration of D = 0, all ICI terms are regarded as additive noise, and variance of
the effective noise is measured on the null subcarriers N directly as in the ICI-ignorant MIMO
receiver. As D increases, ICI becomes modeled as opposed to being treated as additive noise.
The variance of the effective noise hence needs to be updated at each iteration, using (7.70).
As the iteration goes on with D > 0, the spillover from the neighboring subcarriers to the null
subcarriers is extracted as in (7.70). As less ICI and CCI are viewed as additive noise, the
effective signal-to-noise ratio (SNR) is expected to increase.

13.6.3 Joint ICI/CCI Equalization

Based on the input–output relationship in (13.7), the joint ICI/CCI equalization methods
developed in Sections 8.4.3 and 8.5 can be applied. In this chapter, we mainly focus on
the factor-graph based MMSE equalizer and the MCMC equalizer. Particularly for the
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MCMC-based joint ICI/CCI equalization there are two possible Gibbs sampling strategies
available. One is to draw the samples in a horizontal manner, i.e., symbols in the same data
stream are drawn continuously; see (8.102). The other is to draw samples in a vertical manner,
i.e., symbols in the same frequency bin are drawn continuously; see (8.103). In the numerical
results of this chapter, the former strategy is used.

13.7 Simulation Results: ICI-Progressive MIMO OFDM

Similar to the simulation setting in Section 13.3, the OFDM parameters specified in Table B.1
are used. Consider MIMO systems with Nt = 2, 3, 4 transmitters. With Nt = 2, QPSK and
16-QAM modulation schemes will be investigated. For Nt = 3 and Nt = 4, only QPSK results
will be presented. The data rate is computed in (13.3).

As Section 13.3, the total 256 pilots are divided into nonoverlapping sets randomly among
all transmitters so that each transmitter has roughly the same number of pilots. The pilot
symbols are drawn from QPSK constellation and scaled to ensure that one-third of the total
transmission power is dedicated to channel estimation regardless of the number of transmitters.

The underwater acoustic channel between any transmitter and receiver pair is generated
according to the specifications in Section 5.5.1. The channel parameters are Npa = 15,
Δ𝜏 = 1 ms, ΔPpa = 20 dB, Tg = 24.6 ms, and 𝑣0 = 0 m/s.

Figure 13.7 shows the MIMO-OFDM performance in mild Doppler spread channels with
𝜎v = 0.1 m/s, and in adverse channel conditions with 𝜎v = 0.2 m/s. The following receivers
are considered.

(1) A noniterative receiver with an LS channel estimator.
(2) An ICI-ignorant iterative receiver with a sparse channel estimator and a linear MMSE

equalizer.
(3) An ICI-progressive receiver, denoted as prog in the figures, with different Dmax based on

the MMSE equalizer.
(4) An ICI-progressive receiver with different Dmax based on the MCMC equalizer.

From Figure 13.7, one can have the following observations.

• Significant system performance improvement is achieved by the iterative receivers com-
pared to the noniterative receiver, using either MMSE or MCMC equalizer.

• The iterative ICI-ignorant receiver has similar performance to the proposed receiver based
on the MMSE equalizer for the mild Doppler spread channels. A sizable performance dif-
ference can be observed in the adverse channel conditions.

• The MCMC equalizer outperforms the MMSE equalizer. The performance gap becomes
obvious when more transmitters are involved, or as the channel conditions become more
adverse. For the mild Doppler spread channels as shown in Figure 13.7, the performance
gap increases as Nt increases. One possible reason could be that the MCMC equalizer is
more effective for CCI mitigation, while the ICI patterns in OFDM systems are relatively
well-behaved [180]. Comparing the same transmitters and modulation setting one can see
that the performance gap between the MCMC and MMSE equalizers widens as 𝜎v increases.
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Figure 13.7 Simulated performance for the progressive receiver with different Dmax. For the progres-
sive receiver, there are Imax = Nt iterations in each D.

13.8 SPACE08 Experiment: ICI-Progressive MIMO OFDM

For SPACE08 experiment, the performance results for Julian dates 298–299 (Oct. 25–26,
2008) are reported here at the receivers S3 and S5, which were 200 m and 1000 m from the
transmitter, respectively.

Performance results are plotted in Figure 13.8(a)-(d) for Nt = 3 with different
transmitter-receiver distances. For comparison, the corresponding iterative ICI-ignorant
receiver based on the MMSE equalizer with eight iterations is also included. Compared with



Co-located MIMO OFDM 243

6 7 8 9 10 11 12
10−3

10−2

10−1

100

Number of phones

B
L

E
R

MCMC
MMSE

6 7 8 9 10 11 12

Number of phones

B
L

E
R

MCMC

MMSE

(a) S3, Nt = 3, Julian date 298 (b) S3, Nt = 3, Julian date 299

6 7 8 9 10 11 12
10−3

10−2

10−1

100

10−3

10−2

10−1

100

10−3

10−2

10−1

100

Number of phones

B
L

E
R

MCMC

MMSE

6 7 8 9 10 11 12

Number of phones

B
L

E
R

MCMC
MMSE

(c) S5, Nt = 3, Julian date 298 (d) S5, Nt = 3, Julian date 299

8 9 10 11 12
10−2

10−1

100

Number of phones

B
L

E
R

MMSE

MCMC

(e) S3, Nt = 4, Julian date 298

Progressive, Dmax = 0, MCMC equalizer

Noniterative

Progressive, Dmax = 3, MCMC equalizer

Progressive, Dmax = 2, MCMC equalizer
Progressive, Dmax = 1, MCMC equalizer

Dmax = 0, with 8 iterations

Progressive, Dmax = 0, MMSE equalizer

Progressive, Dmax = 3, MMSE equalizer

Progressive, Dmax = 2, MMSE equalizer
Progressive, Dmax = 1, MMSE equalizer

Legend:

Figure 13.8 SPACE08 experimental results with Nt = 3, 4 transmitters, QPSK, S3 (200 m) and S5
(1000 m); For the progressive receiver, there are Nt iterations in each D. The spectral efficiency is
1.60 bits/s/Hz when Nt = 3, and is 2.13 bits/s/Hz when Nt = 4.
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the ICI-ignorant processing, a sizable gain can be achieved by using the proposed progressive
ICI/CCI mitigation receiver. One can see that the MCMC equalizer outperforms the MMSE
counterpart uniformly, and the performance difference between the iterative ICI-ignorant
and progressive receiver based on the MMSE equalization is negligible as the Julian dates
298–299 are relative calm days, which is consistent with the simulation results in mild
Doppler spread channels.

Figure 13.8(e) plots the performance for Nt = 4, QPSK, only for the Julian date 298, S3
(200 m). With more independent data streams transmitted together, the effectiveness of the
MCMC equalizer to address the two-dimensional equalization shows up, compared to the
MMSE equalizer. Note that for Nt = 4, almost all the transmitted OFDM symbols cannot be
recovered with the noniterative MMSE equalizer, while about 15% of them can be recov-
ered by the noniterative MCMC counterpart. When combining Nr = 12 receive-elements, the
BLER reduces from 10−1 to 2 × 10−2 with the MCMC equalizer, when incorporating the ICI
explicitly.

13.9 MACE10 Experiment: ICI-Progressive MIMO OFDM

The MACE10 experimental setting is provided in Appendix B. In different MIMO settings of
the MACE10 experiment, different constellations were used together with rate 1∕2 nonbinary
LDPC codes. The available transmitted MIMO settings in MACE10 were QPSK, 8-QAM,
16-QAM for Nt = 2 transmitters with the data rate as 5.4 kb/s, 8.1 kb/s and 10.7 kb/s, respec-
tively; QPSK, 8-QAM for Nt = 3 transmitters with the data rate as 8.1 kb/s and 12.1 kb/s. For
Nt = 4 transmitters, only QPSK was transmitted with the data rate as 10.7 kb/s.

13.9.1 BLER Performance with Two Transmitters

During the tow duration of two hours, there were 31 transmissions in total. One transmission
out of 31 data sets was badly distorted, preventing correct decoding of the information symbols;
ten other transmissions cannot be fully decoded after combining 12 phones. One can see that
satisfactory performance can be achieved with 8 hydrophones during all the transmissions
except four data sets at the 44th, 56th, 68th and 72th minutes.

The QPSK performance in the Nt = 2 setting is quite good. The overall BLER performance
for 8-QAM and 16-QAM with different ICI/CCI equalizers is shown in Figures 13.9(a)-(b).
Note that all files except the badly distorted one at 64th minute are included, and some chal-
lenging files lead to the error floors. The following observations are in order.

• Impressive gains are achieved with the proposed progressive receiver compared with the
noniterative receivers.

• The performance difference between the MMSE and MCMC equalizers is negligible when
the receiver uses Dmax = 1 or less than five hydrophones are combined, which is true in both
8-QAM and 16-QAM settings.

• An error floor can be observed in both 8-QAM and 16-QAM settings with the MMSE equal-
izer. However, the MCMC equalizer can decode all the OFDM blocks after combining 7
phones in 8-QAM; and more 16-QAM OFDM blocks can be decoded by the MCMC equal-
izer than the MMSE counterpart, leading to a lower error floor.
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Figure 13.9 Overall BLER results for MACE10 with Nt = 2, 3, 4. For the progressive receiver, there
are Nt iterations in each D.
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13.9.2 BLER Performance with Three and Four Transmitters

Figures 13.9(c)-(d) depicts the overall coded BLER with different ICI/CCI equalizers for
Nt = 3 transmitters. Comparing with the noniterative and ICI-ignorant receivers, similar obser-
vations as in the Nt = 2 transmitters setting can be drawn. In particular, MCMC outperforms
its MMSE counterpart uniformly across the different numbers of combined hydrophones.

The performance difference between the MCMC and MMSE equalizers increases further
with more independent data streams transmitted together as shown in Figure 13.9(e) with
Nt = 4, QPSK. When combining Nr = 12 receive-elements, the BLER reduces from 10−1,
using ICI-ignorant receivers, to 10−2, using the MCMC equalizer in the progressive receiver
to deal with ICI/CCI explicitly.

13.10 Initialization for the ICI-Progressive MIMO OFDM

Similar to the ICI-progressive receiver in the single-user system, an adaptive block-to-block
initialization approach discussed in Section 10.6 can be applied to obtain an initial estimate
of the channel between each transmitter-receiver pair for the ICI-progressive MIMO receiver.
With the hybrid initialization method, the MIMO-OFDM works decently with limited number
of pilots [182].

13.11 Bibliographical Notes

MIMO can help to improve the diversity gain, or, the multiplexing gain, or a com-
bination of both. With MIMO, signal design over both time and spatial dimensions
are possible. MIMO have been well covered in textbooks on wireless communications
[145, 284, 389], and also there are a plenty of books dedicated to the MIMO topic:
[43, 106, 142, 144, 168, 193, 194, 227, 304, 409]. Since underwater acoustic channels are
inherently bandwidth-limited, improving the spectral efficiency in terms of bits per second
per Hertz is of paramount importance for high data rate applications.

Multi-input multi-output (MIMO) techniques have been actively pursued for underwater
acoustic communications. Different MIMO techniques can be coupled with single-carrier or
multicarrier systems. Early explorations and measurements have been done in [209, 210].
MIMO with stationary transmitters distributed and the time-reversal approaches can be found
in 2006 [357]. There are a boom of activities of MIMO design after 2007.

• Single-carrier MIMO. Space time coding has been studied by [331]. For spatial multi-
plexing in MIMO systems with parallel data transmissions, there are a variety of receivers
being developed. One approach is time-domain equalization. A multi-channel decision
feedback equalizer (DFE) has been presented in [331], A single-channel DFE following a
time reversal preprocessing module has been used in [347, 357]. In [376], iterative block
decision-feedback equalizer (BDFE) was proposed with successive interference cancel-
lation (SIC) in each iteration. The other approach is the frequency-domain equalization
[461], where a frequency-domain turbo equalizer combined with phase rotation and soft
successive interference cancellation was proposed.

• Multicarrier MIMO. The majority of work for MIMO OFDM has been on the receiver
design with spatial multiplexing. The first category of approaches are the block-by-block
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receivers. The block-by-block receivers rely on embedded pilot symbols in each OFDM
block for channel estimation [233], which can be further refined by using soft symbol esti-
mates from the channel decoder [172, 181]. The second category of approaches are the
adaptive block-to-block processing [67, 364]. The adaptive receiver uses the channels esti-
mated from the previous block for data detection of the current block, after proper phase
compensation [67, 364]. The combination of Alamouti space-time block coding with OFDM
has also been investigated in [319] and [234].





14
Distributed MIMO OFDM

Chapter 13 was concentrated on co-located MIMO OFDM where data streams arriving at
the receiving element experience similar mobilities. This chapter considers an OFDM system
with multiple distributed users as depicted in Figure 14.1, where different users could have
significantly different mobility patterns. Via some coordination mechanisms, the signals from
different users are assumed to be synchronized on the OFDM block level and the major chal-
lenge for receiver design lies on how to deal with the significantly different Doppler distortions
on different data streams. In such scenarios, a single resampling operation at the receiver does
not suffice to remove the main Doppler distortion of all data streams.

• Section 14.2 introduces a front-end processing module that consists of multiple resampling
operations, as proposed in [390, 391].

• Section 14.3 presents one receiver termed as a multiuser detection (MUD) based iterative
receiver [183]. It adopts a frequency-domain oversampling approach to generate discrete
samples, on which joint channel estimation and multiuser data detection are carried out in
an iterative fashion.

• Section 14.4 presents another receiver termed as a single-user detection (SUD) based iter-
ative receiver [183]. Adopting the front end with multiple resampling branches suggested
in Section 14.2, it introduces to each branch a module for multiuser interference (MUI)
reconstruction/cancellation prior to data decoding, thus leading to a receiver framework
with iterative MUI cancellation and data decoding.

The MUD-based receiver is more computationally demanding than the SUD-based receiver.
Performance results reveal that the MUD-based receiver outperforms the SUD-based counter-
parts at the first several iterations, but the performance gap decreases quickly as the iteration
goes on. With emulated data sets, it was shown that the SUD-based receiver can handle various
distributed MIMO OFDM settings with satisfactory performance [183].

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure 14.1 Illustration of a distributed underwater MIMO-OFDM system.

14.1 System Model

Consider an underwater system with U users, where the ith user has Ni transmitters. The basic
signaling format is zero-padded (ZP) OFDM, with Ni parallel data streams transmitted from
Ni transmitters. Hence, the total number of data streams is Nt =

∑U
i=1 Ni.

Within each OFDM block for the ith user, Ni independent data streams are separately channel
encoded. Let s(i)𝜇 [k] denote the encoded information symbol, e.g., quadratic phase-shift-keying
(QPSK) or quadratic amplitude modulation (QAM), to be transmitted on the kth subcarrier by
the 𝜇th transducer of user i, where i = 1, 2, … ,U and 𝜇 = 1, 2, … ,Ni, and denote s̃(i)𝜇 (t) as
the passband signal from the 𝜇th transducer of user i. Following the notations in Section 2.1,
s̃(i)𝜇 (t) is expressed as

s̃(i)𝜇 (t) = 2ℜ

{
K∕2−1∑

k=−K∕2

s(i)𝜇 [k]ej2𝜋fktg(t)

}
, t ∈ [0, Tbl]. (14.1)

where g(t) is the pulse shaping filter with the Fourier transform denoted by G(f ), and fk denotes
the kth subcarrier frequency out of a total of K subcarriers,

fk = fc +
k
T

k = −K
2
, · · · , K

2
− 1. (14.2)

Consider an underwater acoustic (UWA) multipath channel which consists of N(i)
pa,𝜈,𝜇 dis-

crete paths between the 𝜇th transmitter of user i and the 𝜈th element. Adopting a time-varying
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channel model with path-specific Doppler scales in (1.14), the channel impulse response can
be expressed as

h(i)𝜈,𝜇(𝜏, t) =
N(i)

pa,𝜈,𝜇∑
p=1

A(i)
𝜈,𝜇,p𝛿

(
𝜏 − (𝜏(i)𝜈,𝜇,p − a(i)𝜈,𝜇,pt)

)
, (14.3)

where A(i)
𝜈,𝜇,p, 𝜏(i)𝜈,𝜇,p and a(i)𝜈,𝜇,p are the amplitude, the delay at the start of the OFDM block and

the Doppler scale for the pth path, respectively.
Assume that the users are quasi-synchronous via some coordinations, and the guard interval

is larger than the maximum channel delay spread plus the slight asynchronism among users.
As such, there is no interblock interference (IBI), and block-by-block processing is viable. For
one OFDM block, the passband signal at the 𝜈th element is

ỹ𝜈(t) =
U∑

i=1

Ni∑
𝜇=1

N(i)
pa,𝜈,𝜇∑
p=1

A(i)
𝜈,𝜇,ps̃(i)𝜇

(
(1 + a(i)𝜈,𝜇,p)t − 𝜏

(i)
𝜈,𝜇,p

)
+ ñ𝜈(t), (14.4)

where ñ𝜈(t) is the additive noise.

14.2 Multiple-Resampling Front-End Processing

To gain insights on why multiple-resampling front-end processing is needed, we first
assume perfect channel state information at receiver. Consider a simple scenario that all the
paths between the 𝜈th receiving element and the 𝜇th transmitter of user i have a common
Doppler scale factor a(i)𝜈 , i.e., a(i)𝜈,𝜇,p = a(i)𝜈,𝜇, ∀p in (14.3). Similar to the receiver design
in [318, Chapter 9] and [391], the transmitted data symbols can be obtained using the
maximum-likelihood (ML) rule

{ŝ(i)𝜇 [k]} = arg min
Nr∑
𝜈=1

∫

Tbl

0

|||||||
ỹ𝜈(t) −

U∑
i=1

Ni∑
𝜇=1

N(i)
pa,𝜈,𝜇∑
p=1

A(i)
𝜈,𝜇,ps̃(i)𝜇

(
(1 + a(i)𝜈,𝜇)t − 𝜏

(i)
𝜈,𝜇,p

)|||||||

2

dt. (14.5)

Define the channel impulse response at the kth subcarrier fk as

h̃(i)
𝜈,𝜇,k(t) =

N(i)
pa,𝜈,𝜇∑
p=1

A(i)
𝜈,𝜇,pe−j2𝜋fk(t−𝜏

(i)
𝜈,𝜇,p)g(t − 𝜏

(i)
𝜈,𝜇,p). (14.6)

Eq. (14.5) can be rewritten as

{ŝ(i)𝜇 [k]} = arg min
Nr∑
𝜈=1

∫

Tbl

0

||||||
ỹ𝜈(t) −

U∑
i=1

Ni∑
𝜇=1

K∕2−1∑
k=−K∕2

s(i)𝜇 [k]h̃(i)
𝜈,𝜇,k

((
1 + a(i)𝜈,𝜇

)
t
)||||||

2

dt. (14.7)

As shown in [318, Chapter 9], the sufficient test statistics for data detection are:

r(i)𝜈,𝜇[k] = ∫

Tbl

0
ỹ𝜈(t)

(
h̃(i)
𝜈,𝜇,k

((
1 + a(i)𝜈,𝜇

)
t
))∗

dt, (14.8)
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Figure 14.2 Matched-filtering front end with full channel state information at receiver. For the ith user,
there are NiK branches at each receiving element.

where 𝜈 = 1, · · · ,Nr, 𝜇 = 1, · · · ,Nt, and k = −K∕2, · · · ,K∕2 − 1. This correlation operation
corresponds to matched-filtering of the passband signal with the equivalent channel impulse
responses for information symbols at different subcarriers. The correlation operation in (14.8)
can be rewritten as

r(i)𝜈,𝜇[k] =
1

1 + a(i)𝜈,𝜇
∫

Tbl

0
ỹ𝜈

(
t

1 + a(i)𝜈,𝜇

)(
h̃(i)
𝜈,𝜇,k(t)

)∗
dt, (14.9)

where ()∗ denotes complex conjugate operation. The implementation corresponding to (14.9)
is illustrated in Figure 14.2.

The receiver illustrated in Figure 14.2 assumes perfect channel information. We next look
into two practical receiver designs in Sections 14.4 and 14.3, respectively, which involves
iterative channel estimation, data detection, and channel decoding operations.

14.3 Multiuser Detection (MUD) Based Iterative Receiver

This section presents an iterative receiver based on multiuser channel estimation and data
detection, as shown in Figure 14.3. This receiver adopts the frequency-domain oversampling
approach discussed in Section 5.2.3 as the receiver front-end, which converts the received
continuous-time signal into discrete-frequency samples without information loss. Based on
the oversampled frequency-domain samples, a joint channel estimation and multiuser detec-
tion will be performed. We next describe the receiver in details.

14.3.1 Pre-processing with Frequency-Domain Oversampling

With an integer frequency-domain oversampling factor 𝛼 > 1, a total of 𝛼K frequency-domain
samples on each element are obtained for one OFDM block. Define

f̆m̆ = fc +
m̆
𝛼T

, m̆ = −𝛼K
2

, … ,
𝛼K
2

− 1, (14.10)
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Figure 14.3 MUD-based iterative receiver with joint channel estimation and joint data detection.

where m̆ is the index of the oversampled measurements. The measurement z𝜈[m̆] on the
frequency f̆m̆ is related to ỹ𝜈(t) as

z𝜈[m̆] =
∫

Tbl

0
ỹ𝜈(t)e−j2𝜋 f̆m̆tdt, (14.11)

which can be implemented by an 𝛼K-point FFT operation after padding zeros to the sampled
baseband signal.

Due to intercarrier interference (ICI), the measurement on the m̆th frequency is potentially
affected by all transmitted symbols s(i)𝜇 [k], as

z𝜈[m̆] =
U∑

i=1

Ni∑
𝜇=1

K∕2−1∑
k=−K∕2

H
(i)
𝜈,𝜇[m̆, k]s(i)𝜇 [k] +𝑤𝜈[m̆], (14.12)

where𝑤𝜈[m̆] is the additive noise and H
(i)
𝜈,𝜇[m̆, k] is the coefficient that specifies how the symbol

transmitted on the kth subcarrier of the 𝜇th transmitter from user i contributes to the output on

the m̆th subcarrier at the 𝜈th element. Following the derivation in Section 5.3, H
(i)
𝜈,𝜇[m̆, k] can

be related to the channel parameters in (14.4) as

H
(i)
𝜈,𝜇[m̆, k] =

N(i)
pa,𝜈,𝜇∑
p=1

A(i)
𝜈,𝜇,p

1 + a(i)𝜈,𝜇,p
e
−j2𝜋 f̆m̆

𝜏
(i)
𝜈,𝜇,p

1+a(i)𝜈,𝜇,p G

(
f̆m̆

1 + a(i)𝜈,𝜇,p
− fk

)
. (14.13)

For each element, collect the 𝛼K frequency-domain samples into a vector z𝜈 , 𝜈 = 1, … ,Nr.
For each transmitter of user i, collect the K transmitted symbols into a vector s(i)𝜇 . Now define

z = [z1, z2, … , zNr
]T, s = [s(1)1 , … , s(i)N1

, … , s(U)
1 , … , s(U)

NU
]T. (14.14)

Define the channel mixing matrix

H =
⎡
⎢
⎢
⎢⎣

H
(1)
1,1 … H

(1)
1,N1

… H
(U)
1,1 … H

(U)
1,NU

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

H
(1)
Nr ,1

… H
(1)
Nr ,N1

… H
(U)
Nr ,1

… H
(U)
Nr ,NU

⎤
⎥
⎥
⎥⎦

(14.15)
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where the submatrix H
(i)
𝜈,𝜇 of size 𝛼K × K has an (m̆, k)th entry as shown in (14.13). The

matrix-vector channel input–output relationship is then

z = Hs + w (14.16)

where w is the additive noise similarly defined as z. On (14.16), there are two remarks in order.

• As mentioned in Section 5.2.3, for 𝛼 > 1, the measurements in y from Nr front ends provide
a set of sufficient statistics as all information contained in the received continuous-time
signal has been collected.

• The matrix-vector formulation in (14.16) looks similar as (13.1) for co-located MIMO

OFDM. The key difference is that in co-located MIMO OFDM, the channel matrix H
(i)
𝜈,𝜇

has its energy mainly concentrated on its main diagonal and several off-diagonals as shown
in Figure 5.5, whereas this is not true for the system under consideration. Since different
users have significantly different Doppler scales, a single resampling operation does not suf-

fice. For the MUD-based receiver without resampling performed, the main energy of H
(i)
𝜈,𝜇

could be shifted from the main diagonal and scattered among multiple off-diagonals, and
the ICI patterns could be different for different users.

14.3.2 Joint Channel Estimation

The sparse channel estimator described in Chapter 7 can be applied with the following modi-
fications.

• The Doppler search ranges for different data streams are different. For each user, the dom-
inant Doppler scale due to platform motion can be estimated, e.g., by preamble preceding
data transmission or training sequences embedded in the transmission.

• During the initialization period of the MUD-based receiver, the data symbols are unknown,
and the measurements on pilot subcarriers are severely contaminated by ICI. For the 𝜇th
data stream of user i, the frequency-domain observation template is generated as

𝜙
(i)
𝜈,𝜇[m̆] =

∑
k∈P

G

(
f̆m̆

1 + â(i)𝜈,𝜇
− fk

)
s(i)𝜇 [k], (14.17)

where â(i)𝜈,𝜇 is the estimated mean Doppler scale for the 𝜇th data stream of user i (note that
the Doppler scales can be quite different for different data streams of the same user, which
is not applicable to the SUD-based receiver to be developed in Section 14.4). To address
the ICI incurred by the unknown data symbols, one strategy is to choose only those mea-
surements with 𝜙

(i)
𝜈,𝜇[m̆] larger than a given threshold for some user i for channel estimation,

and exclude other measurements. The other strategy is to use a pre-whitening method to
reduce the ICI effect, as discussed in Section 7.3.4. In later iterations, the observations on
all subcarriers can be utilized for channel estimation as tentative decisions on all information
symbols are available.
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14.3.3 Multiuser Data Detection and Channel Decoding

After obtaining the estimated channel mixing matrix
̂H, joint MIMO detection with a pri-

ori information fed back from the channel decoder can be applied. Based on the channel
input-output model in (14.16), the linear MMSE equalizer developed in Section 8.2.2 can

be used. Note that the size of the channel mixing matrix
̂H is (𝛼KNr × KNt), so inverting a

(KNt × KNt) matrix is computationally demanding. Outputs of the linear MMSE detector are
fed into Nt separate channel decoders to recover the information bits from users.

14.4 Single-User Detection (SUD) Based Iterative Receiver

This section considers a practical receiver design for the distributed MIMO-OFDM system.
Here, the channel model with path-specific Doppler scales as in (14.3) is adopted; however,
it is assumed that data streams from the same user will experience one dominant Doppler
scale. A single-user-detection (SUD) based iterative receiver is depicted in Figure 14.4, where
a multi-resampling front end in Section 14.2 is adopted, and a MUI cancellation module is
added to address the co-channel interference (CCI) among multiple users.

14.4.1 Single-User Decoding

Let â(i)𝜈 denote an estimated dominant Doppler scale for the Ni received data streams for user i.
The receiver for user i will apply the resampling operation on the 𝜈th element and then perform
OFDM demodulation to generate frequency-domain measurements

z(i)𝜈 [m] =
∫

Tbl

0
ỹ𝜈

(
t

1 + â(i)𝜈

)
e−j2𝜋fmtdt, m = −K

2
, · · · , K

2
− 1 (14.18)

where the superscript (i) stresses that the output is associated with user i. The measurement on
the mth subcarrier can be expressed as

z(i)𝜈 [m] =
Ni∑
𝜇=1

K∕2−1∑
k=−K∕2

H(i)
𝜈,𝜇[m, k]s(i)𝜇 [k] +

U∑
𝓁=1,𝓁≠i

𝜒
(𝓁→i)
𝜈 [m] +𝑤

(i)
𝜈 [m] (14.19)

where 𝜒 (𝓁→i)
𝜈 [m] is the interference from user 𝓁 to user i on the mth subcarrier, and the channel

coefficient can be expressed as

H(i)
𝜈,𝜇[m, k] =

N(i)
pa,𝜈,𝜇∑
p=1

𝜉
(i)
𝜈,𝜇,pe−j2𝜋 m

T
𝜏
(i)
𝜈,𝜇,pG

(
fm

1 + b(i)𝜈,𝜇,p
− fk

)
(14.20)

b(i)𝜈,𝜇,p =
a(i)𝜈,𝜇,p − â(i)𝜈

1 + â(i)𝜈
, 𝜉

(i)
𝜈,𝜇,p =

A(i)
𝜈,𝜇,p

1 + b(i)𝜈,𝜇,p
e−j2𝜋fc𝜏

(i)
𝜈,𝜇,p , 𝜏

(i)
𝜈,𝜇,p =

𝜏
(i)
𝜈,𝜇,p

1 + b(i)𝜈,𝜇,p
.
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Figure 14.4 SUD-based iterative receiver with MUI cancellation, with UNr resampling branches.

Suppose that an estimate of 𝜒 (𝓁→i)
𝜈 [m] is available, the receiver will obtain

z(i)𝜈 [m] = z(i)𝜈 [m] −
U∑

𝓁=1,𝓁≠i

�̂�
(𝓁→i)
𝜈 [m] (14.21)

=
Ni∑
𝜇=1

K∕2−1∑
k=−K∕2

H(i)
𝜈,𝜇[m, k]s(i)𝜇 [k] + 𝜂

(i)
𝜈 [m] (14.22)

where 𝜂
(i)
𝜈 [m] is the equivalent noise containing both the ambient noise and the residual inter-

ference. After MUI cancellation, channel estimation and data detection for co-located MIMO
OFDM in Chapter 13 can be directly applied based on {z(i)𝜈 [m]}K∕2−1

m=−K∕2
from all Nr elements.

14.4.2 MUI Construction

In the SUD-based receiver, the key issue is how to reconstruct the MUI knowing that different
users have carried out channel estimation and data detection based on the measurements from
different front-ends. Let â(i)𝜈 and â(𝓁)𝜈 denote the resampling factors used in the front ends of
user i and 𝓁, respectively.

For the 𝜇th data stream from user 𝓁, assume that (𝜉(𝓁)𝜈,𝜇,p, �̂�
(𝓁)
𝜈,𝜇,p, b̂

(𝓁)
𝜈,𝜇,p) and ŝ(𝓁)𝜇 have been

estimated. Then, one can construct a virtual signal as

ẑ(𝓁)𝜈,𝜇(t) =
∑

p

(1 + b̂(𝓁)𝜈,𝜇,p)𝜉
(𝓁)
𝜈,𝜇,pej2𝜋fc �̂�

(𝓁)
𝜈,𝜇,p ̂̃x

(𝓁)
𝜇

(
(1 + b̂(𝓁)𝜈,𝜇,p)(t − �̂�

(𝓁)
𝜈,𝜇,p)

)
(14.23)
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whose Fourier transform satisfies

Ẑ(𝓁)
𝜈,𝜇(f )|f=fm

=
∑

p

𝜉
(𝓁)
𝜈,𝜇,pe−j2𝜋 m

T
�̂�
(𝓁)
𝜈,𝜇,p

K∕2−1∑
k=−K∕2

G

(
fm

1 + b̂(𝓁)𝜈,𝜇,p

− fk

)
ŝ(𝓁)𝜇 [k], (14.24)

which is compatible with the channel and symbol estimates. With N𝓁 data streams, one can
construct

ẑ(𝓁)𝜈 (t) =
N𝓁∑
𝜇=1

ẑ(𝓁)𝜈,𝜇(t). (14.25)

One can view ẑ(𝓁)𝜈 (t) as the reconstructed signal after the 𝓁th user’s front-end processing, and
hence the corresponding version before the resampling operation is ŷ(𝓁)𝜈 (t) = ẑ(𝓁)𝜈 ((1 + â(𝓁)𝜈 )t).
Letting ŷ(𝓁)𝜈 (t) pass through the ith user’s front-end, the MUI from the user 𝓁 to user i can be
expressed as

�̂�
(𝓁→i)
𝜈 [m] =

∫

Tbl

0
ẑ(𝓁)𝜈

(
1 + â(𝓁)𝜈

1 + â(i)𝜈
t

)
e−j2𝜋fmtdt (14.26)

Straightforward manipulation leads to

�̂�
(𝓁→i)
𝜈 [m] =

N𝓁∑
𝜇=1

K∕2−1∑
k=−K∕2

Ĥ(𝓁→i)
𝜈,𝜇 [m, k]ŝ(𝓁)𝜇 [k] (14.27)

where H(𝓁→i)
𝜈,𝜇 [m, k] can be computed as

Ĥ(𝓁→i)
𝜈,𝜇 [m, k] =

N(𝓁)
pa,𝜈,𝜇∑
p=1

𝜉
(𝓁→i)
𝜈,𝜇,p e−j2𝜋 m

T
�̂�
(𝓁→i)
𝜈,𝜇,p G

(
fm

1 + b̂(𝓁→i)
𝜈,𝜇,p

− fk

)
(14.28)

with

1 + b̂(𝓁→i)
𝜈,𝜇,p =

1 + â(𝓁)𝜈

1 + â(i)𝜈
(1 + b̂(𝓁)𝜈,𝜇,p), �̂�

(𝓁→i)
𝜈,𝜇,p =

1 + â(i)𝜈

1 + â(𝓁)𝜈

�̂�
(𝓁)
𝜈,𝜇,p (14.29)

𝜉
(𝓁→i)
𝜈,𝜇,p =

1 + â(i)𝜈

1 + â(𝓁)𝜈

𝜉
(𝓁)
𝜈,𝜇,pe−j2𝜋fc(�̂�

(𝓁→i)
𝜈,𝜇,p −�̂�

(𝓁)
𝜈,𝜇,p) (14.30)

Hence, the amplitudes, delays, and Doppler scales need to be properly modified when recon-
structing the MUI from one user to another user.

14.5 An Emulated Two-User System Using MACE10 Data

The MACE10 experimental setup and OFDM parameter setting can be found in Appendix B.
Here we use the single-transmitter signals in MACE10 to emulate a distributed system with
two users. The Doppler scales estimated from the single user case will be used to decode the
distributed MIMO-OFDM systems.
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Figure 14.5 Example channel scatting functions for the distributed MIMO setting with two
single-transmitter users from MACE10.

Tow 1 has n = 31 transmissions, with 20 OFDM blocks in each transmission. The estimated
speed of source array is depicted in Figure B.6. To emulate a distributed MIMO-OFDM system
with different mobilities, we add the received passband signals of the 1st and the nth trans-
missions, the 2nd and (n − 1)th transmissions together, and so on. A total of 15 emulated data
sets for a two-user system are obtained while the 16th transmission is excluded. Note that the
OFDM blocks in one transmission are reversed in order so that the overlapping blocks have
different pilot and data symbols. From Figure B.6, the absolute value of projected velocity was
around 1 m/s, which will lead to a frequency shift as about ±7 ∼ ±10 Hz while the subcarrier
spacing in MACE10 was 4.8 Hz. A measured channel response is plotted in Figure 14.5, where
the channel energy for two users are well separated in the Doppler plane. The Doppler spreads
are around 0.1 m/s and the delay spread is around 10 ms.

14.5.1 MUD-Based Receiver with and without Frequency-Domain
Oversampling

Figure 14.6 shows the performance results by using the MUD-based receiver for both the
conventional sampling (𝛼 = 1) and the frequency-domain oversampling with 𝛼 = 2. The ICI

is not limited to only near neighbours, and we assume H
(i)
𝜈,𝜇(m̆, k) ≠ 0, ∀|f̆m − fk| ≤ 37

T
for all the

channel matrices H
(i)
𝜈,𝜇 in (14.15). The frequency-domain oversampling method outperforms

the conventional sampling uniformly at early iterations. As the number of iterations gets large,
the performance gap decreases to a negligible level. In the following, we use the conventional
sampling with 𝛼 = 1 for the MUD-based receiver.

14.5.2 Performance of SUD- and MUD-Based Receivers

Figure 14.7 shows the performance for distributed MIMO-OFDM systems with two users,
where 8 iterations are used. In the SUD-based receiver, the channel matrix in (14.20) is
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Figure 14.6 Distributed MIMO OFDM with two single-transmitter users from MACE10. Solid lines:
conventional sampling with 𝛼 = 1; Dash-dotted lines: frequency-domain oversampling with 𝛼 = 2.
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Figure 14.7 Distributed MIMO OFDM with two single-transmitter users from MACE10. Dash-dotted
lines: MUD-based receiver; Solid lines: SUD-based receiver.

diagonal, thus ignoring the ICI from the same user. When constructing the MUI �̂� (𝓁→i)[m]
in (14.27), the contributions from all the transmitted symbols of user l on each measurement
are considered. Both the SUD-based and MUD-based receivers work very well for QPSK,
8-QAM and 16-QAM. The following observations are in order.

• At the first several iterations, the SUD-based receiver is much worse than the MUD-based
receiver. This is due to the severe residual MUI at early iterations.

• With continuing iterations, the performance of the SUD-based receiver catches up that of
the MUD-based receiver as more and more MUI is cancelled out. For the 8-QAM in this
data set, the SUD-based receiver even slightly outperforms the MUD-based counterpart,
while on the other hand the MUD-based receiver work slightly better than the SUD-based
counterparts for QPSK and 16-QAM.

Figure 14.8 shows an example of the estimated channel impulse responses (CIRs) for the
distributed two-user system. It is obvious from Figure 14.8 that as the iteration goes on, the
CIRs look like MUI-free ones, which verifies the effectiveness of the MUI cancellation in the
SUD-based receiver.
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Figure 14.8 Estimated channel impulse responses with the SUD-based receiver, 8-QAM.

The constellation scattering plots in Figure 14.9 show the soft-decision symbols at the output
of the MMSE detector for users 1 and 2. The improvement over iterations is clearly observed
by comparing subfigures in each column in Figure 14.9. Also, from Figures 14.8 and 14.9, one
can see that during the start up stage, the CIRs and scatter plots for both users look very noisy
due to the severe MUI, as expected.

14.6 Emulated MIMO OFDM with MACE10 and SPACE08 Data

In this section, the MACE10 and SPACE08 data are used to emulate various distributed
multiuser settings. The SPACE08 experimental setup can be found in Appendix B. In partic-
ular, the data set collected by receiver S3 (see Figure B.1) in Julian dates 296–297 is used.
Note that the user from SPACE08 data has multiple co-located transducers, as specified later.
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Figure 14.9 Constellation scattering plots at the output of the MMSE detector for users 1 and 2 with
the SUD-based receiver, 3 phones are combined. ⋄: 8-QAM constellation points.

14.6.1 One Mobile Single-Transmitter User plus One Stationary
Two-Transmitter User

In this setting, one user is from MACE10 with transmissions 1 to 15 (a negative Doppler scale),
as shown in Figure B.6. The second user owns the data from SPACE08, with two transmitters.
This distributed MIMO OFDM hence has two users and three data streams. As the carrier
frequencies and the guard intervals used in MACE10 and SPACE08 were different, we add
the baseband signals together on the OFDM block level. Figure 14.10 shows the decoding
results for this setting with the SUD-based receiver, using QPSK constellation. Due to the
high computation complexity, the MUD-based receiver performance is not reported.

Figure 14.10 shows that the performance at the first iteration is pretty bad due to the severe
MUI. The performance improvement from the first iteration to second iteration is impressive,
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Figure 14.10 Distributed multiuser setting with one mobile single-transmitter user from MACE10
(0.55 bits/s/Hz) plus one stationary two-transmitter user from SPACE08 (1.10 bits/s/Hz). SUD-based
receiver, QPSK.

which is similar with the setting in Figure 14.7. Good performance is achieved after four to
five iterations.

14.6.2 One Mobile Single-Transmitter User plus One Stationary
Three-Transmitter User

In this setting, one user is from MACE10 with transmissions 1 to 15, and the other user is using
SPACE08 data with three transmitters. The resulting distributed MIMO OFDM has two users
and four data streams. Figure 14.11 shows the system still work well with the SUD-based
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Figure 14.11 Distributed MIMO OFDM with one mobile single-transmitter user from MACE10
(0.55 bits/s/Hz) plus one stationary three-transmitter user from SPACE08 (1.65 bits/s/Hz). SUD-based
receiver, QPSK.
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Figure 14.12 Distributed MIMO OFDM with two mobile single-transmitter users (0.55 bits/s/Hz
per user) from MACE10 plus one stationary two-transmitter user from SPACE08 (1.10 bits/s/Hz).
SUD-based receiver, QPSK.

receiver. Due to the larger number of data streams, the improvement from first iteration to
the second iteration is shrunk compared with the settings in Figure 14.7 and Figure 14.10.
However, satisfactory performance can still be achieved and the system performance saturates
after five iterations.

14.6.3 Two Mobile Single-Transmitter Users plus One Stationary
Two-Transmitter User

In this setting, two users are from MACE10 as described in Section 14.5. A third user has data
from SPACE08 with two transmitters. Hence, the distributed MIMO OFDM has three users and
four data streams. Figure 14.12 depicts the overall coded BLER with the SUD-based receiver.
With 12 elements, the BLER after the first iteration is around 0.8, but reduces to below 10−2

after 6 iterations.

14.7 Bibliographical Notes

This chapter studies receiver designs for distributed multiuser OFDM systems, where differ-
ent users have significantly different Doppler scales. This is a problem unique to underwa-
ter acoustic communications, due to the slow sound propagation speed, which creates large
Doppler deviations among users. Such a problem was first studied in [390, 391], where the
multiple-resampling front-end was proposed. The two iterative receivers presented in this
chapter are based on the following-on work in [183]. The multiple-resampling concept is also
applicable to the single user case when different clusters have different Doppler scales [391].
A receiver design for single carrier transmissions with users having different Doppler scales
is provided in [84].





15
Asynchronous Multiuser OFDM

This chapter continues the discussion on the application of OFDM in multiuser underwater
acoustic communications. Should signals from multiple users be synchronized at the receiver
on the OFDM block level, multiuser communication can be treated as a co-located or dis-
tributed multi-input multi-output (MIMO) problem, and techniques developed in Chapters 13
and 14 directly apply. However, due to large propagation delays and lack of a well-defined
network infrastructure, synchronization is a challenging task in distributed underwater acous-
tic systems. Figure 15.1 shows one example system where multiple autonomous underwater
vehicles (AUVs) communicate to a fixed cabled network on the sea bottom [159, 421], and
another example system where multiple sensor nodes communicate data back to buoys on the
water surface. Without a well-defined coordination mechanism, the receiver needs to handle
the asynchronous nature of multiuser transmissions explicitly.

This chapter presents a receiver design for asynchronous multiuser transmissions, where all
users adopt zero-padded OFDM modulation. To simplify the discussion, this chapter only con-
siders the scenario where all the users have similar mobility patterns, so that the main Doppler
effect can be compensated via a resampling operation at the receiver. For an asynchronous
distributed multiuser system where different users experience different Doppler distortions,
techniques developed in Chapter 14 and this chapter could be combined, although the receiver
complexity would increase considerably.

• Section 15.1 describes the system model for asynchronous multiuser OFDM in underwater
acoustic channels.

• Section 15.2 introduces the concepts of overlapped truncation and interference aggre-
gation, built on which an asynchronous multiuser reception problem is converted to a
quasi-synchronous multiuser reception problem with interference contamination.

• Section 15.3 presents an iterative burst-to-burst OFDM receiver for asynchronous multiuser
reception, leveraging the techniques developed for co-located MIMO-OFDM reception in
Chapter 13 and for external interference cancellation in Chapter 12.

• Section 15.4 provides an example analysis on the statistic distribution of the maximal mis-
alignment of multiuser transmissions in a data collection network using a classic handshak-
ing protocol.

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Water
surface

Water
bottom

AUV

Sensor

Buoy

(a) A sea bottom-anchored network (b) A data collection network

Figure 15.1 Two examples of underwater acoustic networks. The nodes anchored at the water bottom
in the first network are connected to a control center via cables. The gateways in the second network can
communicate with satellites or ships using radio waves.

• Sections 15.5 and 15.6 contain performance results using both simulation and emulated
data sets. The numerical results highlight that the decoding performance degrades as the
maximum relative delay among users increases.

The developed asynchronous multiuser reception approach allows the transmissions of mul-
tiple users without performing coordination, which could simplify the multi-access control
protocol design for certain underwater acoustic networks. On the other hand, the receiver needs
a high computational capability to decode the asynchronous transmissions from multiple users.

15.1 System Model for Asynchronous Multiuser OFDM

Consider an underwater system consisting of Nu asynchronous users and a receiver equipped
with Nr co-located receiving elements, and Nr > Nu. Assume that all users use the OFDM
block transmission with an identical parameter set. Denote fk as the kth subcarrier frequency
out of a total of K subcarriers,

fk = fc +
k
T

k = −K
2
, · · · , K

2
− 1 (15.1)

where fc is the system center frequency, and T is the OFDM symbol duration. With a guard
interval of Tg between consecutive OFDM symbols, the total time duration of each OFDM
block is thus Tbl ∶= T + Tg. Define s𝜇[k; n] as the symbol transmitted at the kth subcarrier of
the nth block from the 𝜇th user. The nth transmitted block is expressed as

s̃𝜇(t; n) = 2ℜ

(
K∕2−1∑

k=−K∕2

s𝜇[k; n]ej2𝜋fktg(t)

)
, t ∈ [0, Tbl] (15.2)

where g(t) is a rectangular window which has nonzero support within [0, T]. Assume Nbl
blocks in each transmission burst. The transmitted signal from the 𝜇th user is

x̃𝜇(t) =
Nbl∑
n=1

s̃𝜇(t − nTbl; n), t ∈ [0, NblTbl]. (15.3)
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Assume a channel model with path-specific Doppler scaling factors. The channel impulse
response between the 𝜇th user and the 𝜈th receiving element during the transmission of the
nth block is expressed as

h𝜈,𝜇(𝜏, t; n) =
N(n)

pa,𝜈,𝜇∑
p=1

A(n)
𝜈,𝜇,p𝛿(𝜏 − (𝜏(n)𝜈,𝜇,p − a(n)𝜈,𝜇,pt)) (15.4)

where N(n)
pa,𝜈,𝜇 is the number of discrete channel paths, A(n)

𝜈,𝜇,p, 𝜏
(n)
𝜈,𝜇,p and a(n)𝜈,𝜇,p are the ampli-

tude, initial delay, and Doppler scaling factor of the pth path, respectively. The triplets
(A(n)

𝜈,𝜇,p, 𝜏
(n)
𝜈,𝜇,p, a

(n)
𝜈,𝜇,p) could vary across blocks. The signal from the 𝜇th user at the 𝜈th receiving

element can be expressed as

ỹ𝜈,𝜇(t) =
Nbl∑
n=1

ỹ𝜈,𝜇(t − nTbl; n), t ∈ [0, NblTbl] (15.5)

with

ỹ𝜈,𝜇(t; n) =
N(n)

pa,𝜈,𝜇∑
p=1

A(n)
𝜈,𝜇,ps̃𝜇((1 + a(n)𝜈,𝜇,p)t − 𝜏

(n)
𝜈,𝜇,p). (15.6)

Let 𝜀𝜇 denote the time-of-arrival the 𝜇th user, which can be obtained at the receiver by
detecting the preamble of this user. On the block level, one can assume that 𝜀𝜇 ≤ Tbl∕2, as
integer block delays can be incorporated by reindexing the blocks. Without loss of generality,
assume that 0 = 𝜀1 ≤ 𝜀2 ≤ · · · 𝜀Nu

≤ Tbl∕2, and define 𝜀max ∶= 𝜀Nu
. The passband signal at

the 𝜈th receiving element is the superposition of Nu waveforms,

ỹ𝜈(t) =
Nu∑
𝜇=1

ỹ𝜈,𝜇(t − 𝜀𝜇) + ñ𝜈(t), (15.7)

where ỹ𝜈,𝜇(t) is defined in (15.5), and ñ𝜈(t) denotes the ambient noise.

15.2 Overlapped Truncation and Interference Aggregation

15.2.1 Overlapped Truncation

To facilitate the decoding operation at the receiver, the received signal is usually truncated into
individual processing units. For (quasi-)synchronous multiuser transmissions, the truncation
can be easily carried out according to the block structure of the transmitted signal, as described
in Chapters 13 and 14. However, for asynchronous transmissions, the block structure of the
transmitted signal at the receiver is destroyed. As shown in Figure 15.2, a block from one user
can collide with multiple blocks from other users. Different truncation methods could lead to
different decoding schemes [156]. One existing method is to synchronize the truncation to the
time-of-arrival of one desired user [198, 199, 238, 383], with each truncation having a block
length Tbl, including one complete block from the desired user and partial blocks from other
users. However, this method is not effective when the overlap length of the desired user and
others is large.
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ỹ ν,Nu(𝑡 − εNu)←εNu→
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Figure 15.2 Illustration of the overlapped partition of the received signal and the aggregated interfer-
ence in an asynchronous Nu-user system.

Figure 15.2 shows the overlapped truncation method proposed in [423], where each truncated
block length is T̆bl ∶= Tbl + 𝜀max. The nth truncated block consists of the information from
(3Nu − 2) transmitted blocks, including:

(i) part of the (n − 1)th blocks from users 2 ∼ Nu at the beginning of this truncation;
(ii) complete information of the nth blocks from the Nu users;

(iii) part of the (n + 1)th blocks from users 1 ∼ (Nu − 1) at the end of this truncation.

The received signal within the nth truncation can be expressed as

ỹ𝜈(t; n) =
Nu−1∑
𝜇=1

ỹ𝜈,𝜇(t − 𝜀𝜇 − Tbl; n + 1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
interference from preceding processing units

+
Nu∑
𝜇=1

ỹ𝜈,𝜇(t − 𝜀𝜇; n)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
desired OFDM signal

+
Nu∑
𝜇=2

ỹ𝜈,𝜇(t − 𝜀𝜇 + Tbl; n − 1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
interference from succeeding processing units

+ ñ𝜈(t; n), t ∈ [0, T̆bl]. (15.8)

With (15.8), an optimal receiver can be designed by treating the asynchronous Nu-user prob-
lem as a synchronous (3Nu − 2)-user problem [406]. However, solving the problem therein
usually requires more efforts than solving a typical synchronous (3Nu − 2)-user problem, since
the orthogonality of subcarriers of the (2Nu − 2) misaligned users in (15.8) is destroyed.

15.2.2 Interference Aggregation

Rather than modeling the partial block interferences from (2Nu − 2) users individually with
the transmitted signal, an interference aggregation concept is used to treat the aggregated IBI
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as one interfering waveform as shown in Figure 15.2, which is formulated as

Ĩ𝜈(t; n) =
⎧
⎪
⎨
⎪⎩

∑Nu
𝜇=2 ỹ𝜈,𝜇(t − 𝜀𝜇 + Tbl; n − 1), t ∈

[
0, 𝜀max

]

0, t ∈
[
𝜀max, Tbl

]
∑Nu−1

𝜇=1 ỹ𝜈,𝜇(t − 𝜀𝜇 − Tbl; n + 1), t ∈
[
Tbl, T̆bl

]
.

(15.9)

The received signal in (15.8) is reformulated as

ỹ𝜈(t; n) =
Nu∑
𝜇=1

ỹ𝜈,𝜇(t − 𝜀𝜇; n) + Ĩ𝜈(t; n) + ñ𝜈(t; n), t ∈
[
0, T̆bl

]
. (15.10)

Hence, the asynchronous Nu-user problem can be regarded as a synchronous Nu-user problem
in the presence of an external interference.

Note that the bandwidth of the aggregated interference is taken as identical to that of the
useful signal denoted by B. Given the maximum delay 𝜀max, one can see that the number
of the degrees-of-freedom (DoF) of the interfering waveform, i.e., the time-bandwidth prod-
uct of the aggregated interference ⌈2B𝜀max⌉, does not change as the number of asynchronous
users increases.

15.3 An Asynchronous Multiuser OFDM Receiver

15.3.1 The Overall Receiver Structure

Leveraging the overlapped truncation method and the interference aggregation concept,
an asynchronous multiuser reception approach was developed in [423] by performing a
burst-by-burst decoding with interference cancellation.

Different from the external interference considered in Chapter 12, the time-domain
input-output relationship in (15.8) shows that the interference term in (15.10) actually consists
of part of useful signals corresponding to the (n − 1)th and the (n + 1)th transmitted blocks
from the Nu users. If these blocks have been successfully decoded or estimates of transmitted
symbols within these blocks are available, one can get initial estimates of the interferences
that spill over from these blocks to the nth block, and thus take the estimates as the a priori
knowledge of the interferences. After subtracting initial estimates of the interferences from
the received signal, the joint multiuser decoding and cancellation of the aggregated residual
interference can be performed in the nth block.

Prior to the interference subtraction, the passband-to-baseband downshifting and baseband
lowpass filtering are performed. Based on the baseband samples, the burst-by-burst asyn-
chronous multiuser receiver for each block consists of the following three steps.

(1) Interference subtraction: With the estimated interference passed from the preceding and
the succeeding processing units, interference subtraction can be carried out prior to the
multiuser decoding;

(2) Joint multiuser processing with residual interference cancellation: Techniques for syn-
chronous multiuser decoding and approaches for external interference cancellation devel-
oped in Chapter 12 can be used;

(3) Interference reconstruction: Based on the multiuser decoding results, the interference of
the current block to the preceding and the succeeding blocks will be reconstructed.
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Figure 15.3 Illustration of the burst-by-burst asynchronous multiuser receiver with iterative for-
ward/backward processing, with Nbl blocks in each burst.

To improve the interference cancellation performance, an iterative forward/backward pro-
cessing of blocks within one burst can be performed, as shown in Figure 15.3. As the iteration
goes on, the accuracy of interference estimation improves gradually, thus leading to a better
multiuser decoding performance, which in turn boosts the performance of interference esti-
mation. Compared with a synchronous multiuser receiver, the burst-by-burst asynchronous
multiuser receiver can only perform multiuser decoding after receiving the whole burst from
all users, hence incurring a processing latency. Similar to the Viterbi algorithm for channel
equalization, by using the sliding block techniques proposed in, e.g. [256, 408], the latency
can be reduced with a batch-by-batch processing, and the batch size depends on the maxi-
mal tolerant latency and the storage capability of the receiver. When the batch size is one, the
burst-by-burst iterative receiver degrades to a block-by-block receiver.

The detailed descriptions on the receiver modules are provided next.

15.3.2 Interblock Interference Subtraction

Define y𝜈(t; n) and I𝜈(t; n) as the baseband waveforms corresponding to the passband signals
ỹ𝜈(t; n) and Ĩ𝜈(t; n), respectively. Denote Î𝜈(t; n) as the reconstructed time-domain interference
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waveform in baseband (c.f. Section 15.3.5 for details on interference reconstruction). Prior to
the receiver processing, subtraction of the initial interference estimate from y𝜈(t; n) in (15.10)
leads to

y𝜈(t; n) =
Nu∑
𝜇=1

y𝜈,𝜇(t − 𝜀𝜇; n) + (I𝜈(t; n) − Î𝜈(t; n))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=Υ𝜈 (t;n)

+ n𝜈(t; n) (15.11)

=
Nu∑
𝜇=1

y𝜈,𝜇(t − 𝜀𝜇; n) + Υ𝜈(t; n) + n𝜈(t; n), t ∈ [0, T̆bl] (15.12)

where Υ𝜈(t; n) denotes the residual interference. As the residual interference has an identical
time duration and bandwidth as the interference I𝜈(t; n), the number of DoF of Υ𝜈(t; n) is also
⌈2B𝜀max⌉. Note that interference subtraction is performed on the baseband discrete samples,
although continuous-time expressions are used in (15.11).

To facilitate the residual interference estimation, an interference parameterization method in
Chapter 12 is used. Define the time-bandwidth product NI ∶= ⌈B𝜀max⌉. The residual interfer-
ence in baseband can be approximated by the Fourier series expansion

Υ𝜈(t; n) ≈

⎧
⎪
⎪
⎨
⎪
⎪⎩

∑NI∕2−1
𝓁=−NI∕2

c𝓁,𝜈,hee
j2𝜋 𝓁

𝜀max
t
, t ∈ [0, 𝜀max]

0, t ∈ [𝜀max, Tbl]
∑NI∕2−1

𝓁=−NI∕2
c𝓁,𝜈,tae

j2𝜋 𝓁
𝜀max

t
, t ∈ [Tbl, T̆bl]

(15.13)

where {c𝓁,𝜈,he} and {c𝓁,𝜈,ta} represent the Fourier series coefficients of the front and end por-
tions of the interference, respectively.

In the initial forward block-to-block decoding of the burst-by-burst receiver, the a priori
knowledge of the interference from the subsequent block is not available. Hence, we set it as
zero at the beginning. Once all the blocks have been processed, the initial estimates of the
interference spilled over from both neighboring blocks are available. During the following
processing, the latest estimates of the decoded blocks are used for interference cancellation.

15.3.3 Time-to-Frequency-Domain Conversion

Note that the interference subtraction is performed in the time domain, while multiuser
decoding operates in the frequency domain. An information-lossless transformation of
signals between the two domains is thus necessary for iterative processing. To this end, the
frequency-domain oversampling approach developed in Section 5.2.3 is used.

Define 𝛼 as the frequency-domain oversampling factor. The mth frequency component of
the time-domain signal y𝜈(t; n) can be obtained via

z𝜈[m; n] =
∫

T̆bl

0
y𝜈(t; n)e−j2𝜋 m

𝛼T
tdt, (15.14)
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for m = −𝛼K∕2, · · · , 𝛼K∕2 − 1. This can be expanded as

z𝜈[m; n] =
Nt∑
𝜇=1

K∕2−1∑
k=−K∕2

H𝜈,𝜇[m, k; n]s𝜇[k] + Υ𝜈[m; n] +𝑤𝜈[m; n] (15.15)

where H𝜈,𝜇[m, k; n] is the channel coefficient which specifies the contribution of the symbol
on the kth subcarrier of the 𝜇th transmitter to the mth subcarrier of the 𝜈th receiver, 𝑤𝜈[m; n]
is the ambient noise in the frequency domain, and Υ𝜈[m; n] is the frequency component of
the residual interference Υ̃𝜈(t; n). The mth frequency component of the residual interference
Υ𝜈(t; n) can be formulated as

Υ𝜈[m; n] =
∫

T̆bl

0
Υ𝜈(t; n)e−j2𝜋 m

𝛼T
tdt. (15.16)

Substituting (15.13) into (15.16) yields

Υ𝜈[m; n] = (u𝓁,𝜈,he + u𝓁,𝜈,tae−j2𝜋 m
𝛼T

Tbl)𝜌m,𝓁 (15.17)

with

u𝓁,𝜈,he ∶= 𝜀maxc𝜈,𝓁,he, u𝓁,𝜈,ta ∶= 𝜀maxc𝜈,𝓁,ta

and

𝜌m,𝓁 ∶=
sin (𝜋

(
m
𝛼T

− 𝓁
𝜀max

)
𝜀max)

𝜋

(
m
𝛼T

− 𝓁
𝜀max

)
𝜀max

e
−𝜋

(
m
𝛼T

− 𝓁
𝜀max

)
𝜀max

.

Stack the frequency components z𝜈[m; n], 𝚼𝜈[m; n] and 𝑤𝜈[m; n] into vectors z𝜈[n], Υ𝜈[n]
and w𝜈[n] of size 𝛼K × 1, respectively. Stack H𝜈,𝜇[m, k; n] into a matrix of size 𝛼K × K. Denote
s𝜇[n] as the transmitted symbol vector of size K × 1 from the 𝜇th user. Stack u𝓁,𝜈,he and u𝓁,𝜈,ta
into vectors u𝜈,he and u𝜈,ta of size NI × 1, respectively, and stack 𝜌m,𝓁 into a matrix 𝚪 of size
𝛼K × NI, and define

𝚿 ∶=
[
𝚪, 𝚲(Tbl)𝚪

]
, [𝚪]m,𝓁 ∶= 𝜌m,𝓁 , u𝜈[n] ∶=

[
uT

he,𝜈, uT
ta,𝜈

]T
. (15.18)

Define a generic diagonal matrix,

[𝚲(𝜏)]m,m = e−j2𝜋 m
𝛼T

𝜏
. (15.19)

The input–output relationship in (15.15) can be compactly expressed as

z𝜈[n] =
Nu∑
𝜇=1

𝚲(𝜀𝜇)H𝜈,𝜇[n]s𝜇[n] + 𝚼𝜈[n] + w𝜈[n] (15.20)

where the residual interference vector is compactly expressed as

𝚼𝜈[n] = 𝚿u𝜈[n]. (15.21)
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Note that using the baseband sampling rate B = K∕T , there are ⌈T̆blB⌉ = ⌈T̆blK∕T⌉
samples in each processing unit. To avoid information loss during the Fourier transform, the
frequency-domain oversampling factor 𝛼 should satisfy 𝛼K ≥ T̆blK∕T , i.e., 𝛼T ≥ T̆bl. Based
on 𝜀max < Tbl∕2, it requires that 𝛼 ≥ 3(1 + Tg∕T)∕2. Taking 𝛼 = 2 for example, the guard
interval should satisfy Tg ≤ T∕3.

15.3.4 Iterative Multiuser Reception and Residual Interference
Cancellation

Based on the frequency-domain input–output relationship in (15.20), an iterative receiver as
in Chapter 12 can be used for joint multiuser decoding and residual interference cancellation.
The iterative receiver structure is shown in Figure 15.3. The iterative receiver has two steps as
follows.

Step 1: Residual interference estimation/subtraction
With the estimated channel matrices {Ĥ𝜈,𝜇[n]} and transmitted symbols {ŝ𝜇[n]} from the last
iteration, the frequency-domain interference measurements after subtracting the OFDM com-
ponents are

𝛏𝜈[n] = z𝜈[n] −
Nu∑
𝜇=1

𝚲(𝜀𝜇)Ĥ𝜈,𝜇[n]ŝ𝜇[n] (15.22)

= 𝚼𝜈[n] + w̃𝜈[n] (15.23)

where the noise term w̃𝜈[n] is formed by the ambient noise, and the channel and information
symbol estimation errors

w̃𝜈[n] ∶= w𝜈[n] +
Nu∑
𝜇=1

𝚲(𝜀𝜇)(Ĥ𝜈,𝜇[n]ŝ𝜇[n] − H𝜈,𝜇[n]s𝜇[n]). (15.24)

Based on the measurements in (15.22) and the interference parameterization in (15.21), the
least-squares estimate of the interference vector is

û𝜈[n] = (𝚿H𝚿)−1𝚿H𝛏𝜈[n]. (15.25)

Note that (𝚿H𝚿)−1𝚿H only depends on 𝜀max, hence can be pre-computed before receiver pro-
cessing.

Step 2: Multiuser channel estimation and data decoding
The desired OFDM component is obtained by subtracting residual interference from the fre-
quency measurements,

z𝜈[n] = z𝜈[n] −𝚿û𝜈[n] =
Nu∑
𝜇=1

𝚲(𝜀𝜇)H𝜈,𝜇[n]s𝜇[n] + w̆𝜈[n], (15.26)



274 OFDM for Underwater Acoustic Communications

where the equivalent noise term consists of both the ambient noise and the interference
estimation error,

w̆𝜈[n] ∶= 𝚿(u𝜈[n] − û𝜈[n]) + w𝜈[n]. (15.27)

With {z𝜈[n]}
Nr
𝜈=1, the receiver processing is then carried out similar to that for co-located

MIMO OFDM in Chapter 13. For example, to reduce the receiver computational complexity,
a band-limited intercarrier interference (ICI)-leakage assumption is adopted, i.e.,

H𝜈,𝜇[m, k; n] ≈

{
H𝜈,𝜇[m, k; n], |||

m
𝛼
− k||| ≤ D

0, otherwise.
(15.28)

where D is defined as the ICI depth. The sparse channel estimation in Section 7.5 and the
factor-graph based MMSE equalization in Section 8.4.3 for a given D can be used with minor
modifications. Both hard and soft decisions on the information symbols can be obtained at the
decoder output, these being fed back for the residual interference estimation, channel estima-
tion and symbol detection in the next iteration.

Once the parity check conditions of the channel decoders of all users are satisfied, or the
number of iterations reaches a predetermined threshold Imax, the iteration stops. Similar to the
iterative interference cancellation receiver in Chapter 12, the iterative receiver is initialized by
first treating the residual interference as the ambient noise when getting the initial estimates
of channel matrices and information symbols, which are then used to initialize the iterative
operation.

15.3.5 Interference Reconstruction

Once the processing of the nth block stops, with the estimated channel coefficients
{Ĥ𝜈,𝜇[m, k; n]} and the information symbols ŝ𝜇[k], the time-domain OFDM waveform in
baseband can be reconstructed via the inverse discrete-time Fourier transform

ŷ𝜈,𝜇(t; n) =
𝛼K∕2−1∑

m=−𝛼K∕2

K∕2−1∑
k=−K∕2

Ĥ𝜈,𝜇[m, k; n]ŝ𝜇[k]e
j2𝜋 m

𝛼T
t
, (15.29)

for t ∈ [0, Tbl]. Based on the aggregated interference representation in (15.9), estimates of
the interference components in I𝜈(t; n − 1) and I𝜈(t; n + 1), which are spilled over from the
nth block to the (n − 1)th and the (n + 1)th blocks, respectively, can be obtained by replacing
y𝜈,𝜇(t; n) by ŷ𝜈,𝜇(t; n) in (15.9),

Î𝜈(t; n − 1) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

∑Nu
𝜇=2 ŷ𝜈,𝜇(t − 𝜀𝜇 + Tbl; n − 2), t ∈ [0, 𝜀max]

0, t ∈ [𝜀max, Tbl]∑Nu−1
𝜇=1 ŷ𝜈,𝜇(t − 𝜀𝜇 − Tbl; n), t ∈ [Tbl, T̆bl].

(15.30)

The estimate Î𝜈(t; n + 1) can be similarly computed. These estimates are then passed to the
preceding and the succeeding processing units.
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15.4 Investigation on Multiuser Asynchronism in an Example Network

As shown in (15.9) and (15.13), the number of degrees of freedom of the interference is decided
by its time-bandwidth product ⌈2B𝜀max⌉. This section provides the analysis of the time dura-
tion of the interference in an example network with one data collection unit and multiple
sensors, which operates in a collision-tolerant fashion by allowing simultaneous transmis-
sions from Nu sensors. For simplicity, assume that the receiver and sensors are at the same
water depth, the sensors are uniformly distributed within a circle of diameter DN, and the
receiver is located at the origin.

Suppose that the network operates according to a multiple-access control (MAC) protocol
with handshaking. The data collection unit first broadcasts the clear-to-send (CTS) frame to
allow simultaneous transmissions of Nu active sensors which requested to send packets. Once
receiving the CTS frame, each sensor starts the data transmission.

Let di denote the distance between the ith active sensor and the receiver. Based on the uniform
distribution of the ith sensor within the circle, the probability density function (pdf) of di will
satisfy

f (di) ∝ 2𝜋di, (15.31)

which leads to the expression:

f (di) =
8di

D2
N

, for di ∈ [0, DN∕2]. (15.32)

Assuming that the acoustic waveform propagates along a straight line, the time-of-arrival of
the data burst from the ith sensor is thus �̃�i = 2di∕c, with the pdf,

g(�̃�i) =
2c2�̃�i

D2
N

, for �̃�i ∈ [0, DN∕c] (15.33)

where c is the sound speed in water.
Notice that for the block transmissions, the time-of-arrival of the burst �̃�i and the

time-of-arrival of each block within the burst �̆�i is related via

�̆�i = [�̃�i]mod Tbl∕2 = [2di∕c]mod Tbl∕2. (15.34)

Take Tbl = 200 ms and c = 1500 m/s as an example. For di = 15 m, di = 45 m, and di = 75
m, one can verify that �̆�i = 20 ms, �̆�i = 60 ms, and �̆�i = 0 ms, respectively. Therefore, the pdf
of �̆�i is the folded summation of g(�̃�i), with

f (�̆�i) =
L∑

𝓁=0

g

(
�̆�i +

𝓁Tbl

2

)
=

L∑
𝓁=0

8(�̆�i + 𝓁Tbl∕2)
D2

N

, for �̆�i ∈ [0, Tbl∕2] (15.35)

where L = ⌈ 2DN
Tblc

⌉, and the cumulative distribution function (cdf) of �̆�i follows as

F(�̆�i) =
L∑

𝓁=0

4(�̆�2
i + 𝓁Tbl)

D2
N

, for �̆�i ∈ [0, Tbl∕2]. (15.36)
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Figure 15.4 Probability density function of the maximum asynchronism on the OFDM block level in an
asynchronous multiuser system, where the users are uniformly distributed within a circle of diameter DN.

Assume that the arrival times of Nu users follow an independent and identical distribution
with the pdf f (�̆�) and cdf F(�̆�). The maximum delay 𝜀max is the range of the arrival-time
sequence [94],

𝜀max = max{�̆�1, �̆�2, · · · , �̆�Nu
} − min{�̆�1, �̆�2, · · · , �̆�Nu

}. (15.37)

which has the pdf expressed as [94]

fNu
(𝜀max) = Nu(Nu − 1)

∫

∞

−∞
f (�̆�)[F(�̆� + 𝜀max) − F(�̆�)]Nu−2f (�̆� + 𝜀max)d�̆�. (15.38)

Substituting (15.35) and (15.36) into (15.38), the distribution of the interference time duration
𝜀max can be obtained.

Using the numerical integration, the pdf of 𝜀max corresponding to different number of users
is shown in Figure 15.4, where DN takes integer multiples of cTbl. One can see that as the
number of users increases, the pdf shifts to the large value region of 𝜀max gradually. A similar
trend happens as the diameter DN increases, but the pdf shifts quite slowly.

15.5 Simulation Results

In simulation, the underwater acoustic channel between the transmitter of each user and each
receiving element during each block transmission is generated randomly according to the spec-
ifications in Section 5.5.1. The channel parameters are Npa = 10, Δ𝜏 = 1 ms, ΔPpa = 20 dB,
Tg = 24.6 ms, and 𝑣0 = 0 m/s. Each transmission burst has Nbl = 10 blocks.

The ZP-OFDM parameters in the SPACE08 experiment are used for simulation, which are
listed in Table B.1. All the users share an identical set of pilot subcarriers. The pilot symbols
are drawn randomly from a QPSK constellation, and different users have different pilot symbol
sets. The data symbols are encoded with a rate-1∕2 nonbinary LDPC code and modulated by
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a QPSK constellation, which leads to a data rate of each user

R = 1
2
⋅

|D|
T + Tg

⋅ log24 = 5.2 kb/s/user. (15.39)

Throughout this chapter, the block-error rate (BLER) averaged over all users is used as the
performance metric. A frequency-domain oversampling factor 𝛼 = 2 is used.

The decoding performance of four receiver processing configurations will be compared.

• Configuration 1: A block-by-block multiuser reception: By treating the interference
as ambient noise, the iterative multiuser decoding techniques for co-located MIMO in
Chapter 13 are used;

• Configuration 2: A block-by-block multiuser reception with interference cancellation: By
treating the interference as an external interference, the iterative joint multiuser processing
and interference cancellation in Section 15.3.4 is performed;

• Configuration 3: A block-to-block receiver with forward interference cancellation: After
the interference subtraction based on the interference estimate from the preceding block,
iterative joint multiuser decoding and residual interference cancellation are performed, as
in Section 15.3.4;

• Configuration 4: The burst-by-burst receiver with multiple rounds of forward and backward
processing.

For fairness of comparison, the frequency-domain oversampling is used for all the configura-
tions, and an identical iteration number threshold of Imax = 4 is used in each block processing.
Four rounds of forward/backward block-to-block processing in configuration 4 are used. In
configuration 4, there are 10 blocks within one burst processed in one batch, while for config-
urations 1 ∼ 3, the batch size can be regarded as one.

In terms of the decoding complexity, one can see that configuration 1 has the lowest com-
plexity, the complexities of configurations 2 and 3 are similar, and configuration 4 has about
eight times of the complexity of configuration 3 due to the iterative forward and backward pro-
cessing. Meanwhile, configurations 1 ∼ 3 are capable of on-line processing without decoding
latency, while configuration 4 suffers a decoding latency of the burst length.

15.5.1 Two-User Systems with Time-Varying Channels

To explore the receiver performance in the time-varying UWA channels, the Doppler rate
of each path independently is drawn from a zero-mean uniform distribution with standard
deviation (std) 𝜎v m/s according to the path-based channel model in (15.4). To achieve a
good decoding performance, the ICI incurred by the channel variation is considered explicitly.
For the sake of receiver complexity, a band-limitedness assumption of the channel matrix is
adopted by assuming the ICI depth D = 1.

For ICI estimation with regularly distributed pilots, a progressive decoding procedure
described in Section 13.6 is employed. During the iterative processing, the receiver assumes
the absence of ICI to get an initial estimate of the transmitted information symbols. Coupled
with pilots, the information symbol estimates are then used in the following iterations for
channel estimation.
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Figure 15.5 Block-error-rate performance of four receiving configurations, 𝜎v = 0.1 m/s.

Assume that three receiving elements at the receiver and that the relative delay of the second
user is uniformly distributed within the interval [0, Tbl∕2]. In the channel with a mild Doppler
spread 𝜎v = 0.1 m/s, Figure 15.5 shows the BLER performance of the four receiving configu-
rations with different signal-to-noise (SNR) levels. One can see that the conventional receiver
without interference cancellation almost cannot work, that the block-by-block interference
cancellation brings some performance improvement, and that the burst-by-burst receiver has
the best performance. Relative to the one-way message passing in the block-to-block receiver,
the two-way message passing in the burst-by-burst receiver improves the decoding perfor-
mance considerably.

Corresponding to a mild Doppler spread with 𝜎v = 0.1 m/s, Figure 15.6 shows the BLER
performance of the burst-by-burst receiver when the relative delay of the second user is uni-
formly distributed within five consecutive intervals: [0, 0.1]Tbl, [0.1, 0.2]Tbl, [0.2, 0.3]Tbl,
[0.3, 0.4]Tbl and [0.4, 0.5]Tbl. One can see that as the relative delay of the second user, i.e.,
the time duration of the interference increases, the required SNR for successful decoding of
the two data streams also increases.

With three receiving elements, the BLER performance of the four receiving configurations
in the channel with severe Doppler spreads 𝜎v = 0.3 m/s and 𝜎v = 0.5 m/s are shown in
Figure 15.7. Similar to the observation in the channel with a mild Doppler spread, the
burst-by-burst receiver with forward and backward message passing outperforms other
configurations considerably.

Assuming two receiving elements, the BLER performance of the conventional receiver
and the burst-by-burst receiver with and without perfect channel knowledge is shown in
Figure 15.8. Relative to the scenario with channel estimation, one can see that the perfor-
mance gap between the two receiving schemes decreases when perfect channel knowledge
is available. One could infer that channel estimation accuracy degrades drastically if the
interblock interference is not accounted for.
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Figure 15.6 Block-error-rate performance of the burst-by-burst iterative receiver in a two-user system
with different relative delays, 𝜎v = 0.1 m/s; three receiving elements.
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Figure 15.7 Block-error-rate performance of four receiving configurations, solid lines: 𝜎v = 0.3 m/s;
dashed lines: 𝜎v = 0.5 m/s.

15.5.2 Multiuser Systems with Time-Invariant Channels

In the time-invariant channel, the channel matrix H𝜈,𝜇 satisfies

H𝜈[m, k; n] ≈

{
H𝜈[m, k; n], m∕𝛼 = k

0, otherwise.
(15.40)
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Figure 15.8 Block-error-rate performance of two receiving configurations with and without perfect
channel knowledge, two receiving elements are used, and 𝜎v = 0.3 m/s.
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Figure 15.9 Block-error-rate performance of the burst-by-burst iterative receiver in a four-user system
with different relative delays, six receiving elements.

The ICI-ignorant receiver processing is adopted. To examine the performance of the
burst-by-burst receiver as a function of number of users, we set 𝜀1 = 0, and assume that the
relative delay of the second user is uniformly distributed within a certain interval, and that
the delays of users 3 ∼ Nu are uniformly distributed between zero and the upper bound of
this interval. By dividing half of the OFDM block duration [0, Tbl∕2] into five intervals:
[0, 0.1]Tbl, [0.1, 0.2]Tbl, [0.2, 0.3]Tbl, [0.3, 0.4]Tbl and [0.4, 0.5]Tbl, Figures 15.9 and 15.10
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Figure 15.10 Block-error-rate performance of the burst-by-burst iterative receiver with four rounds of
forward/backward processing, 𝜀max ∼  [0.3, 0.4] × Tbl, four users, six receiving elements.

show the BLER performance of the burst-by-burst receiver with four asynchronous users and
six elements at the receiver. Relative to the BLER performance in the two-user scenario in
Figure 15.6, one can see that as the number of users increases, the maximum delay of the
users, i.e., the time duration of the interference has more impact on the decoding performance.
Meanwhile, one can also observe a considerable performance improvement brought by the
iterative forward and backward message passing.

15.6 Emulated Results: MACE10

The data sets collected in the MACE10 experiment are used to test the burst-by-burst receiver
for asynchronous Nu-user transmissions; detailed description about the MACE10 experiment
can be found in Appendix B. Within the data set, a rate-1/2 nonbinary LDPC code and a QPSK
constellation for information bit encoding and mapping are used, leading to a data rate of each
user

R = 1
2
⋅

|D|
T + Tg

⋅ log24 = 2.7 kb/s/user. (15.41)

The data sets from an asynchronous multiuser system with Nu users are emulated as follows.
First consecutively divide the received data blocks within each transmission into Nu groups and
then add the Nu groups together, regarding the blocks within each group as the signal from each
user. A resampling operation is used to remove the Doppler effect caused by the mobility of the
source array before the summation. The emulated system is assumed time-invariant; the chan-
nel matrix therefore satisfies (15.40) with ICI depth D = 0. Note that due to the existence of
ambient noise in the received data blocks, the SNR per user in the emulated data set decreases
according to 10 log (Nu) dB as the number of users increases.
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Figure 15.11 Emulated results: Block-error-rate performance of four receiving configurations.

Similar to the simulation setup, the relative delay of each user is uniformly distributed within
a certain interval. By setting the distribution interval corresponding to the second user as
[0, Tbl∕2], Figure 15.11 shows the decoding performance of four configurations in simula-
tions, and four rounds of forward/backward block-to-block processing in configuration 4 are
used. Again, one can see that the conventional multiuser reception approach without interfer-
ence cancellation almost cannot work, the block-by-block interference cancellation method
improves the performance a bit, and the burst-by-burst receiver with the forward and backward
message passing is the best.

With different distribution intervals of the relative delay, the BLER performance of the
burst-by-burst receiver with two asynchronous users is shown in Figure 15.12. One can see
that as the relative delay increases, i.e., the time duration of the interference increases, more
receiving elements are required for successful decoding.

Assuming that the relative delays of users are uniformly distributed within [0, Tbl∕2],
Figure 15.13 shows the packet-success rate of the burst-by-burst receiver with different
number of users. One can see that as the number of users increases, the decoding performance
gets worse gradually. The degradation can be attributed to the increased multiuser interference
and the increased ambient noise power due to the generation of the emulated data sets.

To achieve a robust decoding performance of the burst-by-burst receiver, a block-level
Reed-Solomon (RS) erasure-correction code over Galois field can be used as an interblock
code while the nonbinary LDPC code is used as an intra-block code [247]; the optimal
combination between the erasure- and error-correction codes for the layered coding approach
has been studied in [41]. With a rate-8/10 block-level shortened RS codeword applied for
each data subcarrier across a packet consisting of 10 blocks, any two blocks can be received in
error (hence erased), while the whole data burst can be recovered. Here, a shortened RS code
can be obtained by setting some information symbols as zeros from a RS code of longer length
[247]. Figure 15.13 shows the packet-success rate of the burst-by-burst receiver with different
number of users. Compared with the packet-success rate without using erasure-correction
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Figure 15.12 Emulated results: Block-error-rate performance of the burst-by-burst receiver with dif-
ferent relative delays, four rounds of forward and backward processing and eight iterations within each
block processing.
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Figure 15.13 Emulated results: Packet-success rate of the burst-by-burst receiver with different num-
ber of users with and without a rate-8/10 Reed-Solomon erasure-correction code across 10 blocks, four
rounds of forward/backward processing, eight iterations within each block processing.
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coding, introducing two redundant blocks leads to a considerable performance improvement.
This option is appealing for practical systems with asynchronous users.

15.7 Bibliographical Notes

There is a rich literature on asynchronous multiuser reception with code-division multiple
access (CDMA) transmissions; see e.g., [184, 265, 406] and references therein. The related
works on the asynchronous OFDM receiver are rather limited and can be broadly grouped into
two main categories. The works in the first category focus on the demodulation and decod-
ing modules of the receiver, assuming that perfect channel knowledge is available [198, 238,
383, 386]. The works in the second category focus on channel estimation in asynchronous
OFDM systems, e.g., a subspace based semi-blind channel estimation method [199]. The asyn-
chronous multiuser OFDM receiver in [423] address channel estimation, data detection, and
channel decoding modules for underwater acoustic channels. Asynchronous multiuser receiver
for single carrier underwater acoustic transmissions can be found in [82, 472].



16
OFDM in Relay Channels

Cooperative communication through the use of relay nodes has been extensively studied in
recent years for wireless radio systems. Some example relay strategies include:

• Amplify and forward (AF): A relay node simply amplifies the signal received from the source
and sends it to the destination [57];

• Decode and forward (DF): A relay node tries to decode the signal received from the source,
and sends the re-encoded message to the destination [89];

• Compress and forward (CF): A relay node transmits a quantized and compressed version
of the received signal to the destination [7, 89, 237];

• Quantize, map and forward (QMF): A relay quantizes the received signal at the distortion
of the noise power, then randomly maps these bits to a transmit Gaussian codeword [13].

This chapter presents two scenarios of relay networks in underwater acoustic channels,
where OFDM is used as the underlying modulation. The first scenario considers a dynamic
coded cooperation (DCC) scheme in a three-node network, where the half-duplex relay listens
until it can decode the message correctly and then switches to the transmission mode. When
transmitting, the relay superimposes its transmission on the ongoing transmissions from the
source. The second scenario considers a dynamic block cycling (DBC) protocol in a line net-
work with multiple relays. As in DCC, each relay starts the transmission once it successfully
decodes the incoming packet. This helps to reduce the end-to-end transmission delay without
requiring feedback from the receiver. This chapter is organized as follows.

• Section 16.1 describes the OFDM modulated dynamic coded cooperation.
• Section 16.2 provides one DCC design example based on rate-compatible coding, while

Section 16.3 provides another example based on the layered erasure-correction and error-
correction coding.

• Section 16.4 presents the DBC protocol in a line network.

16.1 Dynamic Coded Cooperation in a Single-Relay Network

Consider a three-node network as shown in Figure 16.1 consisting of a source, a destination
and a relay which helps the transmission from the source to the destination. All the transceivers

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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relay (surface buoy)

source destination

Figure 16.1 One example setup with underwater three-node cooperative communication.

work in a half-duplex fashion, which is the case in underwater acoustic networks. The channels
among the source, the relay, and the destination are multipath fading channels with large delay
spread. For this reason, OFDM modulation is adopted. Assume that the guard interval between
consecutive OFDM symbols is larger than the maximum delay spread plus the offset between
the signals from the source and the relay to reach the destination. As such, there is no interblock
interference (IBI) between consecutive OFDM blocks at the relay and at the destination.

The source divides a packet into multiple blocks, say Nbl blocks, with each block modulated
on one OFDM symbol. The source transmits Nbl OFDM blocks, which will reach both the
relay and the destination. Note that these blocks are related to each other, depending on the
coding schemes to be specified later, and the whole packet can be recovered based on a subset
of these blocks.

16.1.1 Relay Operations

The relay has two operational phases: the listening phase and the cooperative transmission
phase. First, the relay is in the listening phase. For every new OFDM block that it collects, the
relay tries to decode the whole packet using the accumulated OFDM blocks. After successfully
decoding the transmitted packet before the end of the transmission from the source, the relay
switches to the cooperation phase.

16.1.1.1 Cooperation Strategies

Denote Nli as the number of OFDM blocks that the relay has used for successful decoding.
The relay starts to superimpose its transmission to the ongoing transmission from the source,
from the (Nli + Δ + 1)-th block to the Nbl-th block, where Δ is an integer to be determined.
Two possible cooperation strategies at the relay are the following.

• Repetition redundancy (RR) cooperation: The relay regenerates and transmits identical
OFDM blocks as the source, from the block index (Nli + Δ + 1) to Nbl.
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• Extra redundancy (ER) cooperation: The relay generates and transmits different redundant
OFDM blocks from the source from the block index (Nli + Δ + 1) to Nbl.

An illustration of RR and ER will be provided in Figure 16.3 for a design example in
Section 16.2.

16.1.1.2 Block-level Synchronization

During the cooperative transmission phase, the OFDM blocks from the source and the relay
need to be aligned at the block level at the receiver side. This is achieved through a delay
control mechanism at the relay.

Define Tsr, Trd and Tsd as the transmission delays between the source and the relay, the relay
and the destination, and the source and the destination, respectively. Denote the start time of
the Nli-th block at the source as t0, the relay processing time as Tproc, and the relay waiting time
as Twait. To synchronize the reception of the (Nli + Δ + 1)-th OFDM block at the destination,
the following relationship should be satisfied as illustrated in Figure 16.2:

t0 + Tsr + Tbl + Tproc + Twait + Trd ≈ t0 + (Δ + 1)Tbl + Tsd. (16.1)

Hence, the extra waiting time prior to the cooperative transmission at the relay is:

Twait ≈ ΔTbl − Tproc − (Tsr + Trd − Tsd). (16.2)

The parameter Δ should be taken as a small integer that leads to a nonnegative waiting time
Twait. The processing time Tproc is known to the relay. The difference (Tsr + Trd − Tsd) depends
on the source-relay-destination geometry. In a favorable geometry where (Tsr + Trd − Tsd) is
small and with a relay having Tproc < Tbl, the value of Δ could be as small as one.

The relay needs to have the knowledge of the source-relay distance dsr, the relay-destination
distance drd, and the source-destination distance dsd to determine the waiting time from (16.2).
Since the acoustic modems are often equipped with the ranging functionality, the relay needs
to probe the source and the destination to obtain dsr and drd. The source needs to probe the des-
tination to obtain dsd, and conveys it to the relay. For example, the source-destination distance
could be put into the packet header, along with the source ID and destination ID.

Nli Nli + 1 Nli + Δ + 1

Tproc Twait

Listening & processing Transmission

t0

t0 + Tsr + Tbl + Tproc + Twait + Trd

t0 + (Δ + 1)Tbl + Tsd

t0 + (Δ + 1)Tbl

Source

Destination

Relay

t0 + Tsr

Nli Nli + 1

Nli

Nli + Δ + 1

Nli + Δ + 1

Nli + Δ + 1

Figure 16.2 Relay introduces a waiting time prior to the cooperative transmission to achieve the
block-level synchronization.
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The cooperation phase lasts for Nbl − Nli − Δ OFDM blocks, hence the duration is dynamic
depending on the channel quality from the source to the relay.

16.1.2 Receiver Processing at the Destination

Use Nr as the number of receive elements at the destination and K as the number of sub-
carriers in the OFDM modulation. For the first Nli + Δ blocks, the destination only receives
the transmission from the source. After the necessary pre-processing steps which involves
Doppler compensation and FFT operation [235], the input–output relationship of the lth
received OFDM block at the 𝜈th receive element is

z𝜈[l] = H𝜈,sd[l]s[l] + w𝜈[l], 𝜈 = 1, … ,Nr, l = 1, … ,Nli + Δ, (16.3)

where z𝜈[l] is the vector containing the frequency measurements across K subcarriers, s[l] is
the vector of transmitted symbols on K subcarriers, H𝜈,sd[l] denotes the channel mixing matrix
for the channel between the source and the destination, and w𝜈[l] is the ambient noise.

For the last Nbl − Nli − Δ blocks, the destination receives the superposition of the sig-
nals from the source and the relay. The receiver processing depends on the cooperation
strategy used.

16.1.2.1 RR Cooperation

Since the relay transmits identical OFDM blocks as the source, the input–output relation-
ship is

z𝜈[l] = (H𝜈,sd[l] + H𝜈,rd[l])
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=H𝜈,equ[l]

s[l] + w𝜈[l],

= H𝜈,equ[l]s[l] + w𝜈[l], 𝜈 = 1, … ,Nr, l = Nli + Δ + 1, … ,Nbl (16.4)

where H𝜈,rd[l] denotes the channel mixing matrix for the channel between the relay and the
destination. Clearly, an equivalent channel, which consists of multipath arrivals from both the
source and the relay, is formed.

16.1.2.2 ER Cooperation

Since the relay and the source transmit different OFDM blocks, the input–output relation-
ship is

z𝜈[l] = H𝜈,sd[l]s[l] + H𝜈,rd[l]s̃[l] + w𝜈[l], 𝜈 = 1, … ,Nr, l = Nli + Δ + 1, … ,Nbl,

(16.5)

where s̃[l] is the information block transmitted by the relay. Since s̃[l] is different from s[l],
two parallel data streams need to be separated at the receiver side, leading to a receiver design
problem that has been addressed in the context of multi-input multi-output (MIMO) OFDM.

For the first Nli + Δ OFDM blocks without cooperation and the next Nbl − Nli − Δ OFDM
blocks during the RR cooperation phase, the destination can adopt a receiver as described in
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Chapter 9. For the Nbl − Nli − Δ OFDM blocks received during the ER cooperation phase, two
data streams in s[l] and s̃[l] need to be separated. The MIMO-OFDM receivers as described
in Chapter 13 can be adopted. At the end of the source transmission, the soft information
accumulated for all the symbols during the direct transmission phase and the ER cooperation
phase are used to decode the whole packet.

16.1.3 Discussion

In the RR cooperation, the relay transmission increases the received power and provides mul-
tipath diversity benefits to the last Nbl − Nli − Δ OFDM blocks. While in the ER cooperation,
the relay could provide both the diversity and the coding benefits through newly added blocks
that contain more parity symbols. Hence, ER is expected to have better performance than RR.
On the implementation side, however, RR is more convenient than ER.

• The ER cooperation requires the destination to detect the starting point of the coopera-
tion phase. The generalized log-likelihood ratio test (GLRT) was proposed in [224], and a
power detector was developed in [190]. For the OFDM signals, one could reserve several
subcarriers for the detection of relay cooperation, which however introduces extra overhead.

• For the ER cooperation, the destination needs to demodulate two data streams in the coop-
eration phase. Hence, the receiver needs to adjust its processing modules between the non-
cooperation phase and the ER cooperation phase.

For the RR cooperation, no change is needed at the destination. Note that the OFDM
receivers in Chapter 9 perform channel estimation on a block-by-block basis, in order to deal
with fast channel variations in underwater environments. Hence, the receiver does not need
to be aware of the existence of a relay. Further, instead of one relay, multiple relays can be
easily added into the OFDM-DCC scheme if using the RR cooperation.

16.2 A Design Example Based on Rate-Compatible Channel Coding

Code design for the dynamic coded cooperation is an important task. The relay deals with
truncated codewords with different truncation lengths, while the destination deals with
extended codewords in the ER cooperation. Rateless coding has been suggested in [64, 224],
which requires a large number of blocks. Multiple turbo codes have been designed in [190]
for dynamic coded cooperation. Here, we present a design example leveraging nonbinary
rate-compatible (RC) quasi-cyclic LDPC codes [178], which have good performance for
short block lengths and low encoding and decoding complexities.

16.2.1 Code Design

This specific design is based on [178], where the rate-compatible code is designed in Galois
field (GF) of size 16, with a protograph of 8 information nodes and a set of code rates 8/9, 8/10,
… , 8/19. The main difference with [178] is that the approximate cycle extrinsic (ACE) algo-
rithm factor is 16 here, resulting in the information length of 8×log2(16)×2×16 = 1024 bits.
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The 1024 information bits are divided into 8 blocks, with 128 bits per block. The source
transmits 8 blocks of information symbols and 6 blocks of parity check symbols, hence the
code rate at the source is 8/14. In the ER operation, the relay generates additional redundant
blocks of parity check symbols with the lowest code rate to be 8/19. Figure 16.3 illustrates the
six possible cases that can occur at the relay, for both RR and ER operations, where Δ = 1.
In Case 1 of Figure 16.3, the relay can successfully decode the source message after only
receiving the information blocks, while in Case 6 the relay cannot decode the source message
in time to perform cooperation.

Figure 16.4 shows the packet error rate (PER) performance of the RC-LDPC codes in AWGN
channels with BPSK modulation. All the codes perform about 2∼2.5 dB away from the Shan-
non limit with the BPSK input. Considering the small block length, this is a set of good codes
for the dynamic coded cooperation.

relay
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source

Information blocks Redundancy blocks

0 0 0 0 0 0 0 0 # 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 # 11 12 13 14
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0 0 0 0 0 0 0 0 0 0 0 # 13 14

0 0 0 0 0 0 0 0 0 0 0 0 # 14

0 0 0 0 0 0 0 0 0 0 0 0 0 #

case 2

case 3

case 4

case 5

case 6

0 0 0 0 0 0 0 0 # 19 18 17 16 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 # 18 17 16 15

0 0 0 0 0 0 0 0 0 0 # 17 16 15

0 0 0 0 0 0 0 0 0 0 0 # 16 15
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(a) Repetition redundancy (b) Extra redundancy

Figure 16.3 One OFDM-DCC example. The numbers shown are the indexes of the OFDM blocks
transmitted. Δ = 1 in this example.
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Figure 16.4 Performance of nonbinary RC-LDPC codes over AWGN channel. Dashed lines: Shannon
limit with BPSK input; right to left: 8∕9, 8∕10, · · · , 8∕19.
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16.2.2 Simulation Results

The simulated OFDM system contains 128 data subcarriers, and a BPSK constellation
is used for symbol mapping. The channels of source-to-relay, source-to-destination and
relay-to-destination are independently generated, each consisting of 16 Rayleigh distributed
taps. The channels are quasi-static, meaning that they remain constant for each OFDM block,
but change independently from block to block. Perfect channel estimation is assumed at both
the relay and the destination.

Test Case 16.2.1 Assume a topology where the relay is much closer to the source than to the
destination. Let 𝛾sd and 𝛾sr denote the average signal-to-noise-ratio (SNR) of the signal from
the source at the destination and the relay, respectively. Let 𝛾 rd denote the average SNR from
the relay to the destination. For this topology, set

𝛾sr = 𝛾sd + G, 𝛾sd = 𝛾 rd, (16.6)

where G is a constant.
Figure 16.5 depicts the performance of the proposed schemes with one and two receive

elements at the destination, respectively, where G = 20 dB. As a comparison, the theoretical
outage probability performance bounds assuming perfect channel coding with BPSK input
are also included, where the approach in [260] is used to calculate the mutual information
for single-input or multi-input OFDM systems with PSK constellations in fading channels.
An outage occurs if the total mutual information at the destination after the dynamic coded
cooperation is lower than the transmission rate.

As one can see, both RR and ER outperform the noncooperative case by about 1 dB. ER is
slightly better than RR. The performance gaps of the RC-LDPC coded system to the outage
probabilities vary from 1.5 dB to 3 dB. This is consistent with the performance gap in AWGN
channels.
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Figure 16.5 Performance comparison with one or two receive elements at the destination.
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Figure 16.6 Performance with different numbers of hydrophones at the buoy.

Test Case 16.2.2 Consider a UWA network where the water depth is 50 m, the distance d
between the source and the destination is 1 km, and the surface buoy is deployed in the middle.
A spreading loss of about 𝛾 ∝ d−1.5 in UWA transmissions is assumed, which leads to 𝛾sr ≈
𝛾sd + 4.5 dB, and 𝛾sr = 𝛾 rd.

Figure 16.6 depicts performance with different number of hydrophones at the surface buoy,
where the destination has one hydrophone. Note that multiple hydrophones at the relay are used
for reception purpose only, and the relay has only one transducer for transmission. Clearly, as
the number of hydrophones increases at the relay, the performance of dynamic coded relay
improves. With four hydrophones, there is 2 dB gain at PER = 10−2 for RR and 2.5 dB for ER
relative to the noncooperative transmission.

16.3 A Design Example Based on Layered Erasure- and Error-
Correction Coding

The OFDM-DCC design in Section 16.2 suggests rate-compatible channel coding across mul-
tiple OFDM blocks. In many existing designs of underwater OFDM transmissions, channel
coding has been applied on a block-by-block basis [235]. Without altering the channel cod-
ing performed within each OFDM block, a separate layer of erasure-correction coding can be
applied across OFDM blocks [41]. Rateless coding has been suggested in [64, 224] to enable
the DCC operation. However, rateless coding requires a large number of blocks, which might
not be suitable for underwater acoustic communications. Next, we present an approach to use
erasure-correction coding over a finite number of blocks [74].

16.3.1 Code Design

Here, nonbinary linear precoding is used to perform the interblock erasure-correction coding.
Operating over GF(28), every eight bits are group into one byte before encoding. First, divide
one packet into Ibl information blocks, where each block contains P symbols in GF(28). Denote
the pth symbol of the ith block as b[i; p]. An encoder which generates Nbl coded symbols from
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Ibl information symbols is applied as

⎛
⎜
⎜⎝

c[1; p]
⋮

c[Nbl; p]

⎞
⎟
⎟⎠
=

⎛
⎜
⎜
⎜
⎜⎝

1 1 · · · 1

1 𝛼 · · · 𝛼Ibl−1

⋮ ⋱ ⋱ ⋮

1 𝛼Nbl−1 · · · 𝛼(Nbl−1)(Ibl−1)

⎞
⎟
⎟
⎟
⎟⎠

⎛
⎜
⎜
⎜⎝

b[1; p]
⋮

b[Ibl; p]

⎞
⎟
⎟
⎟⎠
, (16.7)

where 𝛼 is a primitive element in GF(28) [247]. After the erasure-correction coding, each set
of P symbols {c[l; 1], · · · , c[l;P]} will be forwarded to the error-correction channel encoder
to generate the coded symbols to be modulated in the lth OFDM block.

The OFDM blocks which fail in channel decoding will be discarded; (each block has its own
CRC flags, as done in e.g., [444]). Thanks to the Vandermonde structure of the code generation
matrix in (16.7), any square submatrix drawn from it is guaranteed to be nonsingular and thus
invertible in the finite field. Hence, as long as the relay collects Ibl correctly decoded blocks,
all the information symbols can be recovered, and the whole packet can be regenerated. Note,
however, that this layered decoding approach is expected to be suboptimal relative to a joint
decoding approach where all accumulated blocks are decoded jointly.

16.3.2 Implementation

The OFDM-DCC scheme with layered coding and RR cooperation was implemented into the
modem prototype [444]. For simplicity, the ICI-ignorant receiver from Section 9.1 with the
least-squares channel estimator is used. Each OFDM block carries 80 bytes of payload data.
Here, we set Ibl = 8 and Nbl = 18 for the erasure-correction coding, and hence each packet has
640 bytes of information data.

Two major tasks on implementation have been accomplished.

• Erasure-correction decoding. Gaussian elimination is used for matrix inversion over the
finite field for erasure-correction decoding. Thanks to the small code length, a very small
computational overhead is added to the modem processing.

• Synchronization. To achieve the block-level synchronization as described in Section 16.1.1,
two changes have been made to the modem: 1) the relay performs a fine synchronization
step to locate the starting time of each OFDM block that it has received [39]; and 2) After
correctly decoding the packet, the relay needs to hold on its transmission for Twait seconds.
A timer is issued, and when it expires, a hardware interrupt is triggered that will get the
transmission of the OFDM blocks actually started. This way, the relay can align its trans-
mission to achieve the block-level (quasi-) synchronization for the OFDM blocks received
at the destination from both the source and the relay.

16.3.3 An Experiment in Swimming Pool

The experiment was carried out in Aug. 9, 2012, in the Brundage Pool at the University of
Connecticut, with the setup shown in Figure 16.7. With the source node and destination node
set in two sides of the pool, the relay node was put in three different locations in the middle, as
shown in Figure 16.8. The distance from the source node S to the destination node D is about
d = 50 feet. Relay node was placed between the source node and the destination node.
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Figure 16.7 Experimental setup in the swimming pool.
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Figure 16.8 There is only one relay used between the source and the destination. The relay can be
placed at different locations, as marked.

According to its distance to the source node S, three possible relay locations were included,
d∕4, d∕2 and 3d∕4 away from the source node, respectively. In all the three settings, the relay
node has the same transmit power as the source node. Since the source, relay, and destination
are on a line, Tsr + Trd − Tsd = 0. The value of Δ is set to be one in this experiment as
Tproc < Tbl.

A total of 4 scenarios were tested: no relay, and one relay at three different locations.
In each scenario, 40 packets of data were recorded at the destination node D, where each
packet has Nbl = 18 OFDM blocks with interblock erasure-correction coding as specified
in Section 16.3.2. The input SNRs as measured at the received blocks without relay are
high, e.g., about 20 dB. Figure 16.9 shows the channel statistics of one packet from the
scenario of relay at d∕4 away from the source node. Clearly, the RR cooperation leads to
an equivalent multipath channel that is stronger than the original multipath channel through
signal superposition.
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Figure 16.9 Samples of the estimated channels without the relay cooperation and with the relay
cooperation.
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Figure 16.10 The packet error rate is obtained by adding noise to the recorded data at the destination.
Note that the relay operation is done online in real time.

Now add white Gaussian noise of different levels to the 40 recorded packets in each test
scenario. Figure 16.10 plots the packet error rate (PER) performance in different test scenarios,
as a function of the variance of the added noise which is normalized by the variance of the
recorded ambient noise in the signal band. Note that during this experiment, the source node
has enough transmission power so that the decoding performance at the relay is similar in all
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GPS coordinates

Node 5

Node 9

Node 4

Node 5: (N22.64844, E120.21405)

Node 4: (N22.66038, E120.21450)

Node 9: (N22.64169, E120.23450)

dsr ≈ 1.63 km

drd ≈ 2.39 km

dsd ≈ 3.72 km

Figure 16.11 Illustration of the locations of the source (node 4), the relay (node 5) and the destination
(node 9); The distances marked on the figures are obtained using the ranging function of the modems.
The water depths at the source, relay, and destinations were about 27, 26, and 22 meters, respectively.

locations, with Nli = 8. Since the noise is only added at the recorded data set at the destination
locally, the closer the relay node to the destination, the better the PER performance becomes
due to the higher SNRs for the OFDM blocks received at the cooperation phase. This trend is
clearly observed in Figure 16.10.

16.3.4 A Sea Experiment

An OFDM-DCC experiment was carried out on May 26, 2013, at the sea near the Kaoh-
siung City, Taiwan. The source, the relay, and the destination were deployed as shown in
Figure 16.11. The OFDM modems were attached to the surface buoys, at a water depth of
6 meters.

The OFDM-DCC firmware from the swimming pool test was loaded to the OFDM modems
deployed in this experiment. A total of 189 transmissions were transmitted, and each transmis-
sion contained 20 zero-padded OFDM blocks encoded using (16.7) with Ibl = 8 and Nbl = 20.
The block delay was set as Δ = 4 during the experiment.

The waveform of one data set recorded at the destination is shown in Figure 16.12, where
the received signals were much stronger during the relay cooperation phase. Note also that
there existed impulsive noises, which would affect the communication performance for those
affected blocks. Both the relay and the destination decoded the received blocks online. The
performance results are as follows.

• Due to the short distance to the source, the relay decoded the data very well. In 188 trans-
missions, the relay was able to decode the whole packet with the first eight received blocks,
and in one transmission, the relay used 9 blocks to decode the packet.

• The destination kept decoding 20 OFDM blocks for each transmission. For each block index
from 1 to 20, define the block error rate as the ratio of the number of erroneous blocks to the
total number of transmissions. As shown in Figure 16.13, the BLER is around 0.05 before
the relay cooperation, and it decreases to around 0.01 after the relay cooperation, when
averaged over all 189 transmissions.

The pilot signal to noise ratio (PSNR), defined as the signal power at the pilot subcarriers
to the power at the null subcarriers, is shown in Figure 16.14, averaged over 189 transmis-
sions. A 2.5 dB increase is observed after the relay cooperation.



OFDM in Relay Channels 297

0 0.5 1 1.5 2 2.5 3

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sample index

V
o

lt
a

g
e

Figure 16.12 One received waveform after bandpass filtering; there are some impulsive noises.
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Figure 16.13 The block error rate as a function of the block index.
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Figure 16.14 The pilot SNR as a function of the block index.
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Figure 16.15 The estimated channels before and after the relay cooperation.
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Figure 16.15 shows the estimated channels before and after the cooperation. For the com-
posite channel after relay cooperation, the first cluster corresponds to the channel from the
source to the destination, and the second cluster corresponds to the channel from the relay to
the destination. It can be seen that there is a 15-millisecond gap between the peaks of these two
clusters, reflecting the synchronization offset. This sea experiment shows that the relay with
the RR strategy improves the performance of the source to destination communication without
introducing any changes to the transmission procedure between the source and the relay.

16.4 Dynamic Block Cycling over a Line Network

Consider a linear network with (M + 1) nodes, as illustrated in Figure 16.16(a). The first node
indexed by 0 is the source, and the last node indexed by M is the destination. The nodes between
the source and destination indexed by 1, 2, · · · ,M − 1 are relay nodes. Assume that all the
nodes operate in the half duplex mode. The linear network topology can be found in many
realistic networks. One example is shown in Figure 16.16(b), where nodes in the relay route
can be regarded as unequally spaced nodes in a linear network.

16.4.1 Hop-by-Hop Relay and Turbo Relay

Two classic relay protocol over a linear network are shown in Figure 16.17. The first is a
hop-by-hop relay protocol, in which signal from source is relayed to destination sequentially
by each intermediate node. The second is a turbo relay protocol which was originally proposed
for a tree network in [153]. Exploiting the broadcasting nature of wireless transmissions, each
relay node and its direct neighbors in this protocol cooperatively relay the message to destina-
tion. The relay strategies discussed at the beginning of this chapter, such as AF, DF, and QMF,
can be applied to both protocols. Here we consider the extension of the DCC protocol from a
single-relay network to a line network with multiple relays.

Compared to the single-relay network, each intermediate node in the line network acts as
destination, relay, and source of the single-relay network successively. Moreover, each inter-
mediate node could play dual roles in the single-relay network. For example, one intermediate

Source Destination

(a) A linear network

Source

Destination

(b) An ad-hoc network

Figure 16.16 Relaying over underwater acoustic networks, with dashed line denoting the relaying
route. The source and destination could be autonomous underwater vehicles (AUVs) or bottom-anchored
nodes. The nodes in the linear network need not be in a line or equally spaced. (a): an illustrative linear
network; (b): a more realistic network showing the context for a linear network.
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Figure 16.17 Illustration of two relay strategies over a linear network.

node can act as a rely node for its direct downstream neighbor when its upstream neighbor is
transmitting, and simultaneously acts as a source node for its downstream nodes which locate
beyond the communication range of its upstream neighbor.

In the following sections, we will describe a relay protocol for a linear network, termed
dynamic block cycling (DBC), which is easy to operate and resembles the adaptive feature of
DCC in single-relay networks [427].

16.4.2 Dynamic Block-Cycling Transmissions

Assume a burst-based transmission, where each burst consists of Nbl blocks. Each block
can be an OFDM block as explained in Section 16.3.1. A layered channel coding scheme
is adopted [41]. Different from the layered channel coding scheme, the Ibl information
blocks are spreading into Nbl transmitted blocks via an erasure-correction code (e.g., the
Reed-Solomon coding scheme). Each transmitted block is error-correction coded, and all the
nodes use the same codebook.

To relay Nbl coded blocks from the source to the destination, the proposed protocol incorpo-
rates two strategies.

• Instantaneous transmission upon successful decoding: To reduce the latency, each relay
node attempts burst decoding and performs parity check when receiving one more block;
immediately after the information bits within one burst are successfully recovered, it starts
relaying the message to downstream nodes.

• Cyclically synchronized transmissions: To remove the coordination overhead between the
transmitting and receiving nodes, the transmitted block-indices from one node are cyclically
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Figure 16.18 Illustration of the cyclically synchronized transmission over a linear network at node n
with three temporal progressive listening phases. Two-hop communication distance is assumed as an
example.

synchronized with those transmitted by the upstream nodes, as illustrated in Figure 16.18.
Specifically, when one node starts transmission, the transmitted block is identical to the
block that it will receive from its upstream nodes (denote the transmitted block index as
k), so that the signal at the receiving node can be taken as the signal from one source but
propagating along multiple paths. Once a node finishes transmission of the block with index
Nbl, it continues to transmit the blocks with indices 1, · · · , (k − 1), thus completing the
transmission of total Nbl coded blocks.

Two special examples shed light on the dynamics of the proposed protocol.

• In the scenario with a large transmission power such that the destination can directly hear
the source, the DBC protocol enables an end-to-end transmission, thus avoids the latency
in the hop-by-hop relay;

• In the scenario with a small transmission power such that one node can only hear its direct
neighbor, the DBC protocol becomes the classical hop-by-hop relay protocol.
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16.4.3 Discussion

Tailored to the UWA channel characteristics, the DBC protocol possesses the following desir-
able features:

• Transmission latency adaptation based on link quality: The proposed protocol adapts its
transmission schedule according to the link dynamics. Specifically, for the node with good
link quality, it only requires a small number of receiving blocks from upstream transmitters
for successful decoding, hence can quickly relay the message to the downstream nodes. For
the node with low link quality, a large number of receiving blocks for successful decoding
is necessary, so as to maintain a high reliability.

• Simplicity of implementation: Given the spatial and temporal variations of UWA channels,
the number of transmitting nodes and the transmission schedule during one burst trans-
mission are dynamic. With the cyclically synchronized transmission, the receiving nodes
can be oblivious of the number of transmitting nodes and their transmission schedule. This
eliminates the coordination overhead of the cooperative relay.

• Robustness to synchronization offset: With each node aligning its transmitted block starting
point with its own local received blocks on the block level, the proposed cyclically synchro-
nization transmission enables the synchronization of signals from different transmitters at
the receiving node, and this applies to a linear network with non-equally spaced nodes.

16.5 Bibliographical Notes

Cooperative communication for wireless networking has been extensively explored in the
wireless radio systems. Application of relay to underwater systems is very recent, see e.g.,
[6] for an overview. Optimization of relay-aided underwater acoustic communications was
pursued in [57]. OFDM modulated dynamic coded cooperation in a three-node network was
studied in [74]. For a regular linear underwater network, a hop-by-hop transmission proto-
col was investigated in [465]. In [58], the error propagation in both cooperative and multihop
transmissions over the regular linear network and the regular plenary network was examined.
A dynamic block-cycling based protocol over a linear network was proposed in [427].



17
OFDM-Modulated Physical-Layer
Network Coding

This chapter considers a two-way relay network, where two terminals A and B desire to
exchange information with the help of a relay R. The conventional approach based on
time-division multiplexing requires a total of four time slots for messages exchange, with
each terminal having two time slots individually, as illustrated in Figure 17.1(a). Network
coding techniques can reduce the number of time slots required.

• Network-layer network coding (NLNC): As illustrated in Figure 17.1(b), A and B take turns
to send their messages to R in the first two time slots, and R transmits the XOR-ed version
of the two messages in the third time slot. Each terminal can recover the message from
the other terminal based on the message from the relay and its own message. The scheme
applying network coding at the network layer reduces the number of required time slots
from four to three by exploiting the broadcasting nature of the message from relay.

• Physical-layer network coding (PLNC): As illustrated in Figure 17.1(c), in the first time
slot which is known as the multiple-access (MAC) phase, both A and B transmit their own
messages to R simultaneously. In the second time slot which is known as the broadcast (BC)
phase, R broadcasts the XOR-ed version of the two messages. This scheme further exploits
the superposition nature of wireless signals, and reduces the number of required time slots
to two [131, 218, 462, 463].

This chapter considers the application of PLNC in underwater acoustic systems. Examine
the scenario in Figure 17.2, where two terminals (e.g., autonomous underwater vehicles or
sensors) need to exchange information but cannot reach each other due to the long distance
or obstacles in between. By incorporating a relay within the communication ranges of both
terminals, PLNC enables the message exchange with two time slots. Moreover, relative to
the relay node in radio channels, the relay node (e.g., the buoy as shown in Figure 17.2) in
the underwater acoustic setting can be more capable, such as being equipped with multiple
receiving elements and strong processing capability.

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure 17.2 Illustration of physical-layer network coding (PLNC): two terminals (AUVs) A and B
exchange information in a block manner with each other via the help of the relay (buoy) R which can be
equipped with multiple receiving elements. The message exchange consists of a MAC and a BC stage.

With OFDM as the underlying modulation scheme, this chapter presents the receiver design
at the relay node in the presence of underwater acoustic time-varying multipath channels.

• Section 17.1 introduces the system model for the OFDM-modulated PLNC at the relay node.
• Section 17.2 presents three iterative receivers to recover the XOR-ed version of the

messages.
• Section 17.3 derives outage performance bounds of the relay operation in a time-invariant

multipath channel. Sections 17.4 and 17.5 contain performance results based on simulated
and emulated data, respectively.
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17.1 System Model for the OFDM-Modulated PLNC

Consider a half-duplex two-way relay network, which consists of two single-transmitter ter-
minals A and B, and a relay node R with Nr receiving elements, as shown in Figure 17.2.
Assume that the two terminals use an identical parameter set for OFDM modulation. Denote
X𝜇 as a channel coded sequence over GF(M) from the 𝜇th terminal with 𝜇 = A or B. Define
T as a modulation mapping operator. The transmitted data symbol vector at the 𝜇th terminal
is obtained via

s𝜇 = T(X𝜇), (17.1)

where each symbol is drawn from a finite constellation set  = {𝛼0, · · · , 𝛼M−1}. Although not
stated explicitly, the symbol vector s𝜇 also contains known symbols as multiplexed pilots and
zero symbols at null subcarriers. The transmitted passband waveform s̃𝜇(t) is then obtained
via the OFDM modulation.

The multipath channel between each terminal and receiving element pair follows the model
in (1.14) with path-specific Doppler scales. Define Npa,𝜈,𝜇 as the number of paths between the
𝜇th terminal and the 𝜈th receiving element. The channel impulse response can be written as

h𝜈,𝜇(t; 𝜏) =
Npa,𝜈,𝜇∑

p=1

Ap,𝜈,𝜇𝛿(𝜏 − (𝜏p,𝜈,𝜇 − ap,𝜈,𝜇t)) (17.2)

where 𝜇 = A or B, Ap,𝜈,𝜇, 𝜏p,𝜈,𝜇, and ap,𝜈,𝜇 are the amplitude, initial delay and Doppler rate of
the pth path, respectively.

Assume that both terminals are aware of their distances to the relay node. By adjusting the
transmission time at one terminal, signals from the two terminals can be quasi-synchronized
at the relay node. The passband signal received at the 𝜈th element can be expressed as

ỹ𝜈(t) =
Npa,𝜈,A∑

p=1

Ap,𝜈,As̃A((1 + ap,𝜈,A)t − 𝜏p,𝜈,A)

+
Npa,𝜈,B∑

p=1

Ap,𝜈,Bs̃B((1 + ap,𝜈,B)t − 𝜏p,𝜈,B) + ñ(t), (17.3)

where ñ(t) is the ambient noise.
After the preprocessing operation specified in Chapter 5, the channel impulse response in

(17.2) translates into a K × K channel matrix H𝜈,𝜇 in the frequency domain, where K is the total
number of subcarriers. The (m, k)th element of the channel matrix H𝜈,𝜇 is related to channel
path parameters via (5.25). Define z𝜈 as the frequency measurement vector of the 𝜈th receiving
element at the relay node, and w𝜈 as the ambient noise vector in the frequency domain. The
input–output relationship at the 𝜈th receiving element is expressed as

z𝜈 = H𝜈,AsA + H𝜈,BsB + w𝜈. (17.4)

For the sake of computational efficiency, a band-limited ICI leakage assumption is adopted by
approximating

H𝜈,𝜇[m, k] ≃ 0, ∀ |m − k| > D (17.5)
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where D is the ICI depth. The input–output relationship can be recast as

z𝜈 = H𝜈,AsA + H𝜈,BsB + 𝜼𝜈 (17.6)

where 𝜼𝜈 is the equivalent noise vector, with each element consisting of the residual ICI and
ambient noise,

𝜂𝜈[m] =
∑

|m−k|>D

H𝜈,A[m, k]sA[k] +
∑

|m−k|>D

H𝜈,B[m, k]sB[k] +𝑤𝜈[m]. (17.7)

Putting {z𝜈} at all receiving elements into a long vector yields

⎡
⎢
⎢⎣

z1

⋮
zNr

⎤
⎥
⎥⎦

⏟⏟⏟
∶=zR

=
⎡
⎢
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H1,A

⋮
HNr,A

⎤
⎥
⎥⎦

⏟⏟⏟
∶=HA

sA +
⎡
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⎢⎣

H1,B

⋮
HNr,B
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⎥⎦

⏟⏟⏟
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sB +
⎡
⎢
⎢⎣

𝜼1

⋮
𝜼Nr

⎤
⎥
⎥⎦

⏟⏟⏟
∶=𝜼R

(17.8)

which can be rewritten as
zR = HAsA + HBsB + 𝜼R, (17.9)

where the size of zR is NrK × 1, and the size of HA and HB is NrK × K.
The primary task of the relay node at the MAC phase is to recover XR ∶= XA ⊞ XB, with

the corresponding modulated symbol vector denoted by sR. After decoding and successfully
recovering XR, the relay broadcasts the OFDM modulated symbol sR to both terminals, as
shown in Figure 17.2. Both A and B will recover XR from its corresponding received signal.
With the estimated X̂R, the intended message can be extracted through X̂B = X̂R ⊞ XA at
terminal A and X̂A = X̂R ⊞ XB at terminal B.

The receiver design at each terminal during the broadcasting phase is identical to that con-
sidered in Chapter 9. This chapter focuses on the MAC phase, where three iterative receivers
to recover XR at the relay node are presented next.

17.2 Three Iterative OFDM Receivers

The system model in (17.6) corresponds to a co-located MIMO with two parallel data streams,
with the major difference that the goal of the symbol detection and channel decoding modules
is to recover XR = XA ⊞ XB. The channel estimation module is identical to the one discussed
in Chapter 13 with two parallel data streams, and hence the presentation below assumes the
availability of the channel state information. In all the iterative receivers, the channel esti-
mation can be included in the iteration loop, so that the channel estimates can be refined by
utilizing soft or hard decisions of the transmitted symbols from two terminals, similar to the
iterative receivers described in Chapters 13.

17.2.1 Iterative Separate Detection and Decoding

In this scheme, the relay node first tries to recover both XA and XB individually. The relay
encoded symbol XR can then be obtained by doing simple XOR operation. By treating sA and
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sB as two independent data streams throughout the decoding process, the receiver design is
identical to the problem studied in Chapter 13 for the co-located MIMO OFDM. The iterations
between data detection and channel decoding are as follows.

(1) The extrinsic information Prext(XA) and Prext(XB) from the two channel decoders is trans-
formed to the a priori information Prapr(sA) and Prapr(sB) for symbol detection.

(2) Based on the a priori information, the symbol detector computes the extrinsic information,
Prext(sA) and Prext(sB), which are then transformed into the a priori information, Prapr(XA)
and Prapr(XB), for the decoder.

For data detection in an ICI-ignorant receiver, calculation of the extrinsic information
Prext(sA) and Prext(sB) has been discussed in Section 8.4.1. In the ICI-aware case, the detec-
tors in Section 8.4.3 can be adopted to compute the extrinsic information Prext(sA) and
Prext(sB).

(3) The channel decoding is applied on XA and XB separately. The decoder outputs extrin-
sic information Prext(XA) and Prext(XB) to the date detection module, and also makes a
tentative decision for XA and XB based on the a posteriori information, separately.

The iteration between data detection and channel decoding goes on until two decoders succeed
or the number of iterations reaches a predetermined threshold.

17.2.2 Iterative XOR-ed PLNC Detection and Decoding

Since the objective at the relay is to compute XR, instead of recovering both XA and XB,
this scheme directly performs iterative detection and decoding on the XOR-ed codeword
XA ⊞ XB; note that XR is a valid codeword by itself. The receiver diagram for this scheme is
shown in Figure 17.3, where the iterations between data detection and channel decoding are
as follows.

(1) The extrinsic information Prext((XA ⊞ XB)) from the channel decoder is transformed to
the a priori information Prapr((sA, sB)) for symbol detection. Given that the mapping from
(sA, sB) to sR, i.e., from (XA,XB) to XA ⊞ XB is noninvertible, the transformation is done
by equally splitting the probability of each value of XA ⊞ XB to all corresponding pairs
of (sA, sB).

(2) Based on the a priori information, the symbol detector computes the extrinsic information,
Prext((sA, sB)). The data detectors in Sections 8.4.1 and 8.4.3 need proper modifications,
as (sA, sB) are now correlated, instead of independent as assumed in the I-SDD case. To
deliver Prapr((XA ⊞ XB)) needed by the decoder, a transformation is done by merging the
probability of all pairs of (sA, sB) corresponding to sR as

Prext(sR[k] = 𝛼𝓁) =
∑

(sA[k],sB[k])∈(sR[k]=𝛼𝓁 )
Prext(sA[k] = 𝛼i, sB[k] = 𝛼j) (17.10)

where (sR[k] = 𝛼𝓁) denotes a set formed by all the possible values of (sA[k], sB[k]), with
each value satisfying XR[k] = XA[k]⊞ XB[k].

(3) Channel decoding is applied on XR = XA ⊞ XB directly. The decoder outputs extrinsic
message to the detector and also make a tentative decision on XR.
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Figure 17.3 Three iterative processing schemes; The operator T stands for the mapping between the
codeword X and and the symbol vector s. The operator M stands for the PLNC mapping between the
component codewords XA, XB and the XOR-ed version XR.
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17.2.3 Iterative Generalized PLNC Detection and Decoding

Compared to recovering both XA and XB separately or recovering XA ⊞ XB directly, a better
way to exploit all potentials of PLNC is to construct a super-code and perform channel decod-
ing on (XA,XB), as proposed in [438]. A super-code over (XA,XB) is established by operating
over a larger Galois field. For example, with codewords XA and XB over GF(4) together with
QPSK modulation, (XA,XB) can be viewed a codeword over GF(16). In this scheme, iterative
detection and decoding are performed based on the super code over (XA,XB). At the end, the
PLNC mapping is used to recover XA ⊞ XB on a symbol by symbol basis, based on soft infor-
mation from the decoder for the super code. The receiver diagram for this scheme is shown in
Figure 17.3, with the following iterations between data detection and channel decoding.

(1) The extrinsic information Prext((XA,XB)) exported from the channel decoder is trans-
formed to the a priori information Prapr((sA, sB)) for symbol detection.

(2) Based on the a priori information, the symbol detector computes the extrinsic informa-
tion, Prext((sA, sB)). Same as the I-XPDD case, the data detectors in Sections 8.4.1 and
8.4.3 need proper modifications, as (sA, sB) are now correlated. Different from the I-XPDD
case, joint probabilities are directly passed to the decoder as the a priori information,
Prapr((XA,XB)).

(3) Channel decoding is applied on the super code (XA,XB) with a properly defined
parity check matrix. The decoder outputs extrinsic probabilities on the symbol pairs
{(XA[k],XB[k])} to the data detector, and also a posteriori probabilities for tentative
decisions.

The iteration between detection and decoding goes on until the decoder succeeds or the number
of iterations reaches a predetermined threshold. In the former case, the XOR-ed codeword XR
is obtained via XOR operation based on hard decisions, while in the latter case, the PLNC
mapping rule in (17.10) is used to recover {XR[k]} based on a posteriori probabilities of
{(XA[k],XB[k])}, and thus an estimate of XR is available.

17.3 Outage Probability Bounds in Time-Invariant Channels

Here we present the outage probability analysis with one receive element. In the time-invariant
scenario, both HA and HB are diagonal matrices, meaning that there is no ICI. For this simple
case, it is possible to derive a tight lower bound and a loose upper bound on the achievable
rate for successful decoding at the relay node.

Consider the case where the two nodes are transmitting at the same rate R. Define

Hmin[k] = min
(|HA[k]|, |HB[k]|

)
, k ∈ D (17.11)

where D denotes the set of data subcarriers, and H𝜇[k] denotes the kth diagonal element of
matrix H𝜇 with 𝜇 = A or B. To derive the achievable rate for successful relay decoding, it is
shown possible, using lattice encoding at both transmitters and lattice decoding at the relay
node, to achieve a rate of ([290], Theorem 3)

R[k] = log2

[ |Hmin[k]|2
|HA[k]|2 + |HB[k]|2

+ |Hmin[k]|2𝛾
]
, ∀k (17.12)
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where 𝛾 is the average SNR per subcarrier. On the other hand, the single-user bound dictates
that

R[k] ≤ log2

[
1 + |Hmin[k]|2𝛾

]
, ∀k. (17.13)

This bound is valid because if R[k] is larger than the bound, the relay node will not be able to
decode the XOR-ed symbol, even given the information of one of the two transmitters (side
information). Given such information, the decoding becomes a single user decoding problem.

Assume that there is no power loading across the OFDM subcarriers, as the channel state
information is not available at the transmitters. Combining the achievable rate and upper
bound, and summing over the data subcarriers D, one has

R ≤
1

|D|
∑

k∈D

log2

[
1 + |Hmin[k]|2𝛾

]
, (17.14)

R ≥
1

|D|
∑

k∈D

log2

[ |Hmin[k]|2
|HA[k]|2 + |HB[k]|2

+ |Hmin[k]|2𝛾
]
. (17.15)

With the upper and lower bounds on the achievable rate, a loose lower bound and a tight upper
bound for the outage probability are obtained

Pout(R) ≥ Pr

[
1

|D|
∑

k∈D

log2

(
1 + |Hmin[k]|2𝛾

)
< R

]
, (17.16)

Pout(R) ≤ Pr

[
1

|D|
∑

k∈D

log2

( |Hmin[k]|2
|HA[k]|2 + |HB[k]|2

+ |Hmin[k]|2𝛾
)

< R

]
. (17.17)

The outage performance bounds are used to benchmark the simulated performance.

17.4 Simulation Results

The ZP-OFDM parameters in the SPACE08 experiment are used for simulation, which are
specified in Table B.1. The two terminals share an identical pilot subcarrier sets, but use differ-
ent pilot symbols which are drawn independently from a QPSK constellation. The data within
each OFDM symbol is encoded by a rate-1∕2 GF(4) nonbinary near-regular LDPC code of
length 672 symbols and modulated using a QPSK constellation, leading to a data rate

R = 1
2
⋅

|D|
T + Tg

⋅ log24 = 5.2 kb/s/user. (17.18)

Based on the channel model depicted in (17.2), the underwater acoustic channel between
each terminal and each receive element is generated randomly according to the specifica-
tions in Section 5.5.1. Unless specified, The channel parameters are Npa,𝜈,𝜇 = 10, Δ𝜏 = 1 ms,
ΔPpa,𝜈,𝜇 = 20 dB, Tg = 24.6 ms, and 𝑣0 = 0 m/s. In the time-invariant channel, the Doppler
rate of each path is set zero. To simulate the time-varying channel, the Doppler rate of each
path is drawn independently from a zero-mean uniform distribution according to the standard
deviation of path speed 𝜎v m/s.
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Figure 17.4 Performance comparison of different receivers for OFDM modulated PLNC without ICI
in the additive white Gaussian noise channel, one receive element.

To explore the benefit of iterative processing between channel equalization and decoding,
the channel estimate is assumed available prior to the symbol detection. As each OFDM sym-
bol is encoded separately, the block-error-rate (BLER) of the XOR-ed symbol is used as the
performance merit. We next examine the PLNC decoding algorithms in three channel settings.

17.4.1 The Single-Path Time-Invariant Channel

First consider a single-path time-invariant channel described by (17.2) with Npa,𝜈,𝜇 = 1, where
the path has a unit amplitude, a random delay and a zero Doppler rate. Figure 17.4 demonstrates
the BLER performance of three receivers with a MAP equalizer. One can see that I-GPDD has
the best performance, I-XPDD is in the middle, and I-SDD has the worst performance. This
is consistent with the observation in [438]. Despite the performance improvement with the
iterative processing, there is still a considerable gap between I-SDD and the other two schemes.

17.4.2 The Multipath Time-Invariant Channel

Corresponding to the multipath time-invariant channel described by (17.2) with Npa,𝜈,𝜇 = 10
and ap,𝜈,𝜇 = 0, ∀p, Figure 17.5 shows performance comparison of three receivers with different
numbers of receive elements. Note that in this case the iterative processing for I-XPDD and
I-GPDD is not necessary. As a performance benchmark, the lower and upper bounds of the
outage probability with single receive element are provided.

One can see from Figure 17.5 that the iterative processing can improve the performance of
I-SDD significantly. When the number of receive elements is one, I-SDD performs worse than
I-GPDD. This is reasonable because the I-SDD scheme tries to recover both XA and XB, which
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Figure 17.5 Performance comparison of different receivers for OFDM modulated PLNC without ICI
as a function of the number of receive elements.

is under-determined when the relay node has only one receive element. When the number of
receive elements is larger than one, the iterative I-SDD receiver can catch up with the I-GPDD
scheme with only one iteration. Note that the decoding complexity of I-GPDD is much higher
than that of I-SDD.

Meanwhile, Figure 17.5 shows that the performance of I-XPDD degrades significantly in
the multipath channel relative to that in the AWGN channel shown in Figure 17.4. Hence, the
scheme I-XPDD will not be included in the following simulations.
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17.4.3 The Multipath Time-Varying Channel

Now consider doubly selective channels with path-specific Doppler scales, as described by
(17.2) with Npa,𝜈,𝜇 = 10 and |ap,𝜈,𝜇| ≥ 0, ∀p. Figure 17.6 shows the performance comparison
of I-SDD and I-GPDD with different numbers of receive elements and different standard devi-
ations of path speed. The factor-graph based MMSE equalization is used, and the channel
matrix between each terminal and receive element pair is banded with D = 1 and D = 3 for
𝜎v = 0.1 m/s and 𝜎v = 0.2 m/s, respectively.

Figure 17.6 shows that the iterative processing improves the performance of I-SDD signif-
icantly for both values of 𝜎v. For I-GPDD, iterative processing also boosts its performance
when 𝜎v = 0.2 m/s as shown in Figure 17.6 whereas not much improvement is seen when
𝜎v = 0.1 m/s. With one receive element, I-GPDD outperforms I-SDD considerably. With more
than one receive elements, the iterative I-SDD receiver with a lower decoding complexity can
catch up with the noniterative I-GPDD scheme by using more iterations.
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Figure 17.6 Performance comparison of different receivers for OFDM modulated PLNC with ICI as a
function of the number of receive elements and the standard deviation of path speed 𝜎v.
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17.5 Experimental Results: SPACE08

The data collected in the SPACE08 experiment are used to test the three iterative receivers.
The experimental setup is described in Appendix B. The data sets collected in a two-input
multiple-output (TIMO) experimental setting are adopted to emulate a two-way relay system.
Specifically, the two co-located transmitters at the source in SPACE08 are taken as two termi-
nals in a two-way relay network, and the receivers labeled as S1 and S3 in SPACE08, which
were 60 meters and 200 meters away from the transmitter, respectively, are taken as two indi-
vidual relay nodes. Each receiver was equipped with twelve elements. Although in a two-way
relay network the two terminals do not necessarily have the same distance to the relay node,
the TIMO experimental setting in the SPACE08 experiment captures the main feature of UWA
channels in the two-way relay network.

The ZP-OFDM parameter setting is listed in Table B.1. Out of the |P| = 256 pilot subcar-
riers, terminal A only transmits nonzero pilot symbols at the even indexed subcarriers, while
terminal B transmits the nonzero pilot symbols at the odd indexed subcarriers. With a rate-1/2
nonbinary LDPC code and a QPSK constellation for information bit encoding and mapping,
the data rate of each terminal is identical to (17.18).

During the experiment, the waveform height and wind speed in Julian date 298 are relatively
low than other days. Hence, the data sets collected in this day correspond to slow-varying chan-
nels. Different from the simulation, the channel state information is unknown to the receiver.
When processing this data set, the ICI-ignorant sparse channel estimator developed in Section
7.2 is used. Especially for I-SDD, channel estimation is included in the iterative operation as
depicted in Figure 9.9(a).

Figure 17.7 demonstrates the BLER performance of three receivers. Similar to the simula-
tion results, one can see that I-XPDD has the worst performance due to multiple paths in the
channel, and in the channel setting of S1, the performance of I-SDD gradually approaches that
of I-GPDD after several iterations.
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Figure 17.7 SPACE08: Performance comparison of three different receivers in the time-invariant sce-
nario, Julian date 298.
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Figure 17.8 SPACE08: Performance comparison of two different receivers in the time-varying sce-
nario, Julian date 300.

The data sets collected on Julian date 300 are used to test the decoding performance of
I-SDD and I-GPDD in the fast-varying channel with large Doppler spreads. Some distorted
files collected in this day are excluded for performance test. To estimate the ICI coefficients
with regularly distributed pilots, an ICI-progressive receiver structure developed in Section 9.4
is adopted. With an iterative processing, the receiver in the first iteration assumes the absence
of ICI and gets initial estimates of the transmitted information symbols. Then, the ICI-aware
receiver processing with ICI depth D = 1 is carried out based on both pilot symbols and esti-
mated information symbols.

Figure 17.8 demonstrates the BLER performance of two decoding schemes. One can see
that the iterative operation improves the decoding performance of I-SDD and I-GPDD consid-
erably. Although I-GPDD outperforms I-SDD overall, in some scenarios the performance of
I-SDD can approach the performance of I-GPDD by using more iterations.

17.6 Bibliographical Notes

The concept of network coding was introduced by Ahlswede, Cai, Li, and Yeung [3] in 2000,
where network nodes can combine data streams from multiple sources at into one or several
data streams before forwarding. The last decade has witnessed extensive investigation on net-
work coding from various aspects including network code generation [20, 21, 135, 165, 206,
216, 239, 417], decoding algorithm design [244], information theoretical analysis [327], and
applications of network coding in a broad range of areas [125, 126, 151, 263], to name a few.
Several books are available such as Yeung, 2008 [456], Ho and Lun, 2008 [164], Medard and
Sprintson [276].

The so-called physical-layer network coding was introduced in [462, 463] in the context of
two-way relay networks. Regarding to the receiver operation at the relay node as covered in
this chapter, decoding the XOR-ed codeword directly was suggested in [131, 462], while the
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generalized algorithm of decoding an expanded code with a larger alphabet followed by PLNC
mapping was suggested in [438]. Iterative receiver processing at the relay node was suggested
in [174, 419] in the presence of doubly selective channels.

One variant of PLNC is that the relay node can use the complex field coding [236, 417] or a
more general computation coding [292], instead of the Galois field coding. Another variant of
PLNC is the analog network coding, where the relay node simply amplifies and forwards the
received superimposed signals [135, 139, 206, 244].



18
OFDM Modem Development

Chapters 9 to 17 have presented OFDM receiver designs in various system setups. The algo-
rithm development relies on simulations and offline processing of data sets collected from field
experiments. To build a real communication system with multiple nodes, acoustic modems
with real time processing need to be developed. This chapter describes the modem implemen-
tation aspect and presents some example designs of OFDM based acoustic modems.

18.1 Components of an Acoustic Modem

Implementation of an acoustic modem goes much beyond algorithm development. To have
a standalone underwater acoustic modem which support point to point communications, the
following components are needed.

• Hardware. A hardware platform involves various units.

– A transducer or multiple transducers that can convert the electronic signals into acoustic
signals.

– A hydrophone or an array of hydrophones that can convert the acoustic signals into elec-
tronic signals. Note that a transducer can be used for both transmission and reception. If
so, transmit-receive (TR) switch mechanism needs to be incorporated.

– A digital signal processing board that contains DSP chips, and A/D, D/A converters.
Communication algorithms are often run inside a DSP chip, and hence an acoustic
modem can be viewed as a software defined modem.

– Power amplifier with matching circuits to the transducer.
– Preamplifier circuits with interface to the hydrophones.
– Waterproof housing with the desired depth rating and water-proof connectors that can

connect sensor packages to the modem.
– Battery supply which could be internal or external to the modem.

• Firmware. The firmware inside the DSP unit deals with data acquisition and data processing.
The functionalities include the following:

– Data acquisition and buffer management
– Detection of an incoming packet and synchronization

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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– Demodulation, channel estimation, and data decoding
– Ranging support
– Command interface

The DSP firmware could be frequently updated without changing the hardware platform.

Note that the performance results in published papers, in terms of the data rate and the bit
error rate, are often much more impressive than those achieved with existing modems, since
the practical modems have limited processing capabilities and less hardware resources.

In addition to point-to-point communications, a modem could also be equipped with
networking functionalities. Although networking protocols, such as medium access control,
routing, and data transport protocols, are often implemented on a different micro-controller
separate from the modem, it is possible to integrate the protocols into the modem itself. In
such cases, the modem provides application programming interface (API) for networking
applications. Cross layer optimization would be necessary to improve the protocol efficiency,
as upper layer protocols can certainly benefit from the channel measurements available at the
physical layer.

18.2 OFDM Acoustic Modem in Air

Demonstration of acoustic communication algorithms can be accomplished with low cost in
the air, which often serves the educational purposes. A team of undergraduate students at
the University of Connecticut has constructed a two-way communication platform based on
OFDM modulation [273]. As shown in Figure 18.1, the hardware platform for each node con-
sists of one computer, one speaker, one microphone and one external sound card. The two
laptops run Matlab programs for acoustic signal processing. The sampling rate is 44.1 kHz,
the bandwidth used is 5.5 kHz, and the center frequency is 12 kHz. A total of 1024 subcarriers
are used, and the subcarrier assignment follows that in Table 2.1. With rate 1/2 coding, QPSK
modulation and guard interval Tg = 30 ms, the achieved data rate was 3.1 kb/s with a single
data stream [273].

A MIMO-OFDM implementation has been further explored. As shown in Figure 18.2,
the transmitter uses two speakers, and the receiver uses two hydrophones. The data rate
increases to 6.2 kb/s due to two parallel data streams, with the same parameters as the
single-transmitter case.

18.3 OFDM Lab Modem

The Underwater Sensor Network (UWSN) lab at University of Connecticut has developed
an OFDM lab modem prototype based on a DSP development board [444–446]. As shown in
Figure 18.3, each OFDM lab modem consists of one development board with the OMAP-L137
chip (having TMS320C6747 DSP inside) from Texas Instruments, one hydrophone as the
transmitter, two hydrophones as the receiver, and a small custom made board having one power
amplifier and two channels of pre-amplifiers. The lab modem was placed in a gray plastic box
with power and RS-232 connectors on its panel. The sampling rate is 48 kHz, the bandwidth
is 6 kHz, and the center frequency is 17 kHz. The total number of subcarriers is 1024, and
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Figure 18.1 Computer-based in-air two-way communication using OFDM modulation.

Figure 18.2 Computer-based in-air MIMO-OFDM demonstration.
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Figure 18.3 The OFDM lab modem as deployed in a swimming pool.
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the subcarrier assignment is the same as the in-air modem. With QPSK modulation, rate 1/2
channel coding, and a guard time Tg = 50 ms, the data rate is 3.0 kb/s.

These OFDM lab modems are good for network testings in the water lank and in swimming
pools [371]. These are good educational tools to have students engaged in hand-on networking
experiments in a water environment.

18.4 AquaSeNT OFDM Modem

AquaSeNT, a startup from the University of Connecticut, has licensed the OFDM modem tech-
nologies from the University of Connecticut and has launched a commercial modem product
in Fall 2012. Figure 18.4 shows a picture of the modem.

Five transmission modes shown in Table 18.1 have been developed. All of them use LDPC
channel codes in GF(4), due to the implementation considerations. These 5 modes have dif-
ferent channel code lengths, code rates (rc) and modulation size (BPSK, QPSK, 16-QAM).

All the modes have 672 data symbols after coding and modulation, which corresponds to
|D| = 672 data subcarriers. The implemented OFDM system has bandwidth B = 6 kHz, total
number of subcarriers K = 1024, which will lead to symbol duration T = 170.7 ms. With
Tg = 50 ms, the payloads in each OFDM data block for the five transmission modes are listed
in Table 18.2.

The power level, the transmission mode, and the guard time are controlled by the users. Using
these five modes, adaptive modulation and coding can be developed as shown in [413]. The
AquaSeNT OFDM modems have been used to test the DCC-OFDM protocol in Chapter 16
and the localization algorithms in Chapter 19. They have also been used to develop networking
testbeds as reported in [91, 430].

Figure 18.4 The AquaSeNT’s OFDM modem (photo courtesy of AquaSeNT).

Table 18.1 Modulation and coding pairs in the OFDM modem

Index Matrix size Code rate Constellation

1 168 × 336 1/2 BPSK
2 336 × 672 1/2 QPSK
3 168 × 672 3/4 QPSK
4 672 × 1344 1/2 16-QAM
5 336 × 1344 3/4 16-QAM
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Table 18.2 Payload of the five transmission modes with Tg = 50 ms (note that
4 bytes reserved by the modem physical layer are excluded in the computation)

Transmission mode Payload per block [bytes] Data rate [kb/s]

TM 1 38 1.38
TM 2 80 2.90
TM 3 122 4.42
TM 4 164 5.94
TM 5 248 8.99

18.5 Bibliographical Notes

There are several commercial acoustic modem products on the market, e.g., Teledyne Benthos
[33], LinkQuest [252], EvoLogics [116], Develogic [95], Kongsberg [219], SonarDyne [345],
DSPCOMM [105], and AquaSeNT [10]. A research modem widely used in the research com-
munity is the micro-modem from the Woods Hole Oceanographic Institution (WHOI) [127,
138]. A recent research modem, the UNET-2 modem, from National University of Singapore
is described in [80]. The implementation of OFDM has been reported in [447] and [444–446].
The prototyping efforts reported in [32, 132, 359, 359, 434] are based on other modulation
schemes.
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Underwater Ranging and
Localization

Underwater localization is a topic of great interest and study, and application demands drive
the need for better and better solutions. Several current systems feature augmented inertial
navigation methods, which use filtering and tracking methods to provide corrections and
improvements upon traditional onboard navigational equipments [158, 231]. Aside from these
methods, there are several localization techniques based on acoustic signaling.

• Long baseline (LBL) system. Several transponders are installed at the sea floor, and an
underwater vehicle interrogates the transponders for round-trip delay estimation followed
by triangulation [370]. LBL has good localization accuracy, but it requires long-time cali-
bration.

• Short baseline (SBL) system. A series of closely spaced receivers can be installed on a
platform such as a surface ship to monitor the incoming signals from an underwater emitter.
The time differences of arrivals (TDoAs) are used for localization.

• Ultra-short-baseline (USBL) system. A small array of hydrophones is used to estimate the
angle of arrival (AoA) of the incoming signal from an underwater emitter. The AoA infor-
mation is combined with a range estimate for much improved localization performance than
SBL systems.

• Floating buoy based system. This system acts like a long base line system except that the ref-
erence points are surface buoys. There are commercial products – the GPS Intelligent Buoys
(GIB) – that route signals from an underwater node to surface buoys [27], and using radio
links the surface buoys forward all information to a mother ship, wherein the localization is
performed. The floating buoys are easier to deploy and calibrate than LBL systems.

The LBL, SBL, USBL, and GIB systems are commercially available, and one can find tech-
nical specifications from the providers. This chapter focuses on two localization schemes that
are developed and evaluated using OFDM modem prototypes [62] and [61]. Both approaches
are based on range measurements, and are applicable to a network with multiple nodes.

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure 19.1 Illustration of ranging via measurement of the propagation delay.

19.1 Ranging

Ranging is to determine the distance d between the transmitter and the receiver. Let Tprop be
the one way signal propagation time between the two nodes, and c be the speed of sound in
water. The distance estimate can be found as

d̂ = T̂propĉ, (19.1)

where both the propagation time and the sound speed need to be estimated in practice.

19.1.1 One-Way Signaling

As shown in Figure 19.1(a), the sender sends a message to the receiver and the receiver records
the arrival time of the message. This can be done by cross correlation or other approaches. One
way ranging needs clock synchronization between the transmitter and the receiver. The start
time can be triggered on a fixed time interval, or the transmission time can be stamped into the
message.

T̂prop = treceive − tsend (19.2)

Assuming that there is a clock offset b between the transmitter and the receiver, then the esti-
mate can be modeled as:

T̂prop = Tprop + b +𝑤 (19.3)

where 𝑤 is the measurement noise.

19.1.2 Two-Way Signaling

The transmitter sends a message to a transponder. The transponder receives the message and
sends back an immediate acknowledgement, as illustrated in Figure 19.1(b). With a fixed pro-
cessing delay Tproc at the transponder, the one way propagation time is estimated as

T̂prop = 1
2
(treceive − tsend − Tproc) (19.4)

If Tproc is accurate, the estimate in (19.4) is unbiased as

T̂prop = Tprop +𝑤 (19.5)
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Hence, two-way message passing eliminates the need of synchronization of the transmitter
and the receiver.

19.1.3 Challenges for High-Precision Ranging

Underwater acoustic channels consist of many propagation paths. The first path is not nec-
essarily the strongest, due to the superposition effect of neighboring paths that may not be
resolved individually. Timing accuracy depends on how effectively the first path can be iden-
tified, rather than the strongest path. Also, the sound speed might not be constant spatially or
temporally. Due to nonuniform sound speed, the propagation path might be slanted rather than
a straight line. These effects need to be properly compensated to improve the ranging accuracy.

19.2 Underwater GPS

This section presents the localization approach in [62] based on messages broadcast from mul-
tiple surface nodes, coupled with tracking algorithms and implemented on a physical system
to provide a complete analysis. With the time-of-arrival measurements, the receiver computes
its own localization based on the differences of the travel times from multiple senders to the
receiver. The advantage of the proposed localization method is that the broadcast messages
can serve an arbitrary number of underwater nodes once they are in range, in contrast to many
existing solutions which can only serve a small number of users.

19.2.1 System Overview

Figure 19.2 depicts the system setup considered, with several surface nodes and multiple
underwater nodes. The surface nodes are equipped with satellite-based GPS receivers. Relying
on the internal pulse provided by the GPS device that is accurate to within 1 microsecond GPS
time, the surface nodes are assumed to be well synchronized. At predetermined intervals, the
surface nodes sequentially broadcast their current location and time.

Surface buoys with GPS

Sensors passively
listen to the broadcast
and self-localize

Figure 19.2 An underwater sensor network with multiple surface buoys.
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Receiving broadcast

Localization within
one broadcast cycle
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Figure 19.3 One round of surface buoy broadcasting leads to one point estimate, while tracking algo-
rithms improve the localization accuracy when multiple point estimates are available.

The underwater nodes within the broadcast range will detect a series of transmissions
and decode those messages. By comparing the reception time with the transmission time
encoded in the message, each underwater node can obtain estimates of the time-of-arrival (or
time-of-flight) of messages from different surface nodes, based on which it tries to compute
its own position. Note that the broadcast from the surface to underwater nodes is a one-way
transmission, that localization quality is independent of the number of underwater nodes
in the network. Also, it is assumed that there is no additional interference involved among
different underwater nodes.

The overall scheme of localization refinement is presented in Figure 19.3. For one round
of transmissions, the receiver obtains the travel times from all the surface buoys, based on
which a point estimate is available. Once several of these broadcast periods have occurred,
individual point estimates may be combined via tracking algorithms to form a more accurate
understanding of the current node position. The algorithms at different stages are described in
the following sections.

19.2.2 One-Way Travel Time Estimation

Let us focus on one receiver at position (xr, yr, zr). Suppose that there are N surface nodes, at
positions (xn, yn, zn), n = 1, … ,N. Let dn denote the distance between the receiver node and
the nth surface node:

dn =
√

(xr − xn)2 + (yr − yn)2 + (zr − zn)2. (19.6)

Without loss of generality, set the first surface node at the origin, i.e., x1 = y1 = z1 = 0, such
that

d2
1 = x2

r + y2
r + z2

r . (19.7)

The actual time of arrival is tn = dn∕c, where c is the sound propagation speed.



Underwater Ranging and Localization 327

The transmission time is encoded at each broadcast message. The receiver needs to estimate
the arrival time of each message to provide an estimate on the time of arrival tn. First, the
communication channel is monitored to detect signal arrivals, based on a background noise
level monitoring performed by the modem at initialization. When a signal is detected, coarse
synchronization can be achieved via a correlation method. After coarse synchronization, the
known preamble can be used to estimate the instantaneous underwater channel conditions, and
from there, a more refined estimation of the time of arrival is performed via the modified Page
test as in [2].

Assume that the synchronization offset is nearly identical across modems with similar hard-
ware and operating software with the GPS synchronization, the localization algorithms will
be carried out based on

t̂n = tn + b +𝑤n, n = 1, … ,N. (19.8)

19.2.3 Localization

In each round of broadcasting from all surface nodes, a node collects N travel time measure-
ments, and can form a single point estimate of its current position. This is accomplished by
way of localization algorithms based on the intersection of spherical surfaces.

Since the bias b is unknown and usually large, time-of-arrival (TOA) based methods are not
suitable. The time-difference-of-arrival (TDOA) method cancels the common bias term b by
forming

Δt̂n1 = t̂n − t̂1, n = 2, … ,N. (19.9)

The distance difference dn1 = dn − d1 is then estimated by

d̂n1 = cΔt̂n1. (19.10)

The TDOA method also corrects for clock skew alongside this bias term, due to the nature
of the shared GPS clock. Each receiving node will have its own internal clock, which at some
update period k will have drifted by an unknown skew factor𝜙(k). Each of the surface transmit-
ters, however, will have the same clock skew, and due to the periodic corrections by the GPS
clock, this value can be assumed approximately 0 for any period k. Thus, each transmission
time can be represented as

t̂n = tn + b + 𝜙(k) +𝑤n, n = 1, … ,N. (19.11)

and again, by taking the difference of the time-of-arrival estimates, this common clock skew
is eliminated from the timing estimate.

Next two localization methods are presented, based on the exhaustive search and
least-squares formulations.

19.2.3.1 Exhaustive Search

The individual time estimates t̂n generally have correlated noise in the underwater channel.
For simplicity, assume that they are independent and identically distributed (i.i.d.), and hence
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a maximum likelihood solution can be found through

(x̂r, ŷr, ẑr) = arg min
xr,yr,zr

N∑
n=2

[cΔt̂n1 − (dn − d1)]2. (19.12)

The solution to (19.12) is found by exhaustive search.
Subtracting a common random variable, t̂1, from all subsequent TOA estimates leads to

correlation among measurements by a factor of approximately 1∕2. As such, assuming again
i.i.d. measurements, a differencing measurement bias modification can be made as follows:

(x̂r, ŷr, ẑr) = arg min
xr,yr,zr

(ct̂Δ − dΔ)T𝚺−1(ct̂Δ − dΔ)T. (19.13)

where

t̂Δ =
⎡
⎢
⎢
⎢⎣

Δt̂21
Δt̂31
⋮

Δt̂n1

⎤
⎥
⎥
⎥⎦
, dΔ =

⎡
⎢
⎢
⎢⎣

d2 − d1
d3 − d1

⋮
dn − d1

⎤
⎥
⎥
⎥⎦

and 𝚺 is an (N − 1) × (N − 1) normalized covariance matrix

𝚺 =
⎡
⎢
⎢
⎢⎣

1 1∕2 1∕2 … 1∕2
1∕2 1 1∕2 … 1∕2
⋮ ⋮ ⋮ … ⋮

1∕2 1∕2 1∕2 … 1

⎤
⎥
⎥
⎥⎦
. (19.14)

19.2.3.2 Least-Squares Solution

Here we present the least-squares solution from [278]. Since dn = dn1 + d1, it follows that

(dn1 + d1)2 = x2
n + y2

n + z2
n − 2xnxr − 2ynyr − 2znzr + d2

1 , (19.15)

which can be simplified as

xnxr + ynyr + znzr =
1
2

([
x2

n + y2
n + z2

n − d2
n1

])
− dn1d1. (19.16)

Define the following matrix and vectors

H =
⎡
⎢
⎢
⎢⎣

x2 y2 z2
x3 y3 z3
⋮ ⋮ ⋮

xN yN zN

⎤
⎥
⎥
⎥⎦
, v =

⎡
⎢
⎢
⎢⎣

−d̂21

−d̂31
⋮

−d̂N1

⎤
⎥
⎥
⎥⎦

(19.17)

u = 1
2

⎡
⎢
⎢
⎢
⎢⎣

x2
2 + y2

2 + z2
2 − d̂2

21
x2

3 + y2
3 + z2

3 − d̂2
31

⋮
x2

N + y2
N + z2

N − d̂2
N1

⎤
⎥
⎥
⎥
⎥⎦

, a =
⎡
⎢
⎢⎣

xr
yr
zr

⎤
⎥
⎥⎦
. (19.18)

The least-squares solution can be obtained as

â = d1H†v + H†u, (19.19)



Underwater Ranging and Localization 329

where † stands for pseudo-inverse. Substituting the entries of â into (19.7) yields a quadratic
equation for d1 [278]. Solving for d1 and substituting the positive root back into (19.19) pro-
vides the final solution for the receiver position a.

19.2.4 Tracking Algorithms

To further reduce the localization error from a single point measurement, tracking algorithms
can be implemented to combine the knowledge of multiple measurements into a more accurate
position estimate.

In deciding which tracking approach would be best one needs to consider the scenarios in
which the node is being localized. There are two distinct modes in which underwater nodes
typically move: either passively, with the water currents as a free-floating node, or actively
as an underwater vehicle such as an AUV. Both are characterized primarily by long periods
of relatively straight motion at a fairly constant speed. Typically, AUV motion differs in that
at certain random intervals, it will change direction according to operator or pre-programmed
instruction. Most search patterns for AUVs are defined by spiral paths, or by rectangular search
grids. In either case, the vehicle is likely to alter its direction by way of a continuous turn; that
is, to make a turn at a fixed angular velocity until the desired heading is achieved (or in the
case of a spiral, until the search area is exhausted).

19.2.4.1 Kalman Filter

In the KF, one can model the movement of the node as set of nearly constant velocity (“kine-
matic”) models [22], with a separate model for each possible direction; that is, x, y and z. The
state vector at time k is defined as 𝓵(k) = [x(k), ẋ(k), y(k), ẏ(k), z(k), ż(k)]T . The state equation
for the Kalman filter at time index k + 1 based on information from time step k becomes

𝓁(k + 1) = F(k)𝓁(k) + 𝝇(k) (19.20)

with measurement

p(k + 1) = H(k + 1)𝓁(k + 1) + w(k + 1) (19.21)

where

F(k) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 𝜏 0 0 0 0
0 1 0 0 0 0
0 0 1 𝜏 0 0
0 0 0 1 0 0
0 0 0 0 1 𝜏

0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(19.22)

H(k + 1) =
⎡
⎢
⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎤
⎥
⎥⎦
, (19.23)
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𝜍(k) is process noise, w(k) is measurement noise and 𝜏 is the sampling interval of the discrete
model in seconds.

The state covariance is modeled as

P(k + 1|k) = F(k)P(k|k)F(k)T + Q(k) (19.24)

The corresponding process noise has a covariance given as:

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1
4
𝜏4 1

2
𝜏3 0 0 0 0

1
2
𝜏3 𝜏2 0 0 0 0

0 0 1
4
𝜏4 1

2
𝜏3 0 0

0 0 1
2
𝜏3 𝜏2 0 0

0 0 0 0 1
4
𝜏4 1

2
𝜏3

0 0 0 0 1
2
𝜏3 𝜏2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

𝜎2
𝜍 . (19.25)

Here, 𝜎𝜍 is a design parameter that is chosen to match the most likely level of process noise
to be experienced by the object in question; which is to say it controls how much the model
anticipates the object to maneuver. Given that the object in question is likely to be either sta-
tionary or altering its velocity at a slow, steady rate, a process noise level of 𝜎𝜍 = 0.5 m∕s2

was selected to best emulate this behavior for the test results in this chapter. The filter was
initialized with two-point differencing [22].

19.2.4.2 Probabilistic Data Association Filter

Within a tracking window, there might be point estimates which would appear as outliers by a
considerable margin, due to timing errors at the physical layer. Due to the assumption implicit
to the KF approach that all of our messages are the direct-path propagation, this resulted in a
drastic alteration of the point estimate, to the point where it could be classified as a false mea-
surement. In that context, the Probabilistic Data Association Filter (PDAF) offers an improved
performance over the standard KF, by allowing outlier estimates such as these to be ignored
as false-alarm or clutter detections [23]. The PDAF is very similar to the KF in terms of state
equations, presented here for measurement k + 1:

𝓁(k + 1) = F(k)𝓁(k) + 𝜍(k) (19.26)

with measurement

p(k + 1) = H(k + 1)𝓁(k + 1) + w(k + 1) (19.27)

where F(k) and H(k + 1) are given in (19.22) and (19.23), respectively.
The state covariance is modeled similarly as

P(k + 1|k) = F(k)P(k|k)F(k)T + Q(k). (19.28)

The difference is on how to compute P(k|k). First, let PD denote the probability of detection,
which is a design parameter. Operating under the assumption that the measurement is always
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gated, define

b = 2

(
1 − PD

PD

)
. (19.29)

Define the following variables and matrices:

𝛎(k) = p(k) − H(k)𝓁(k) (19.30)

e(k) = e−
1
2
𝛎(k)TS−1(k)𝛎(k)

, (19.31)

S(k) = H(k)P(k|k − 1)H(k)T + R, (19.32)

W(k) = P(k|k − 1)H(k)TS−1(k), (19.33)

where R is the observation noise covariance. The probability of no correct measurement avail-
able (meaning that the measurement provided is so corrupted as to be “false”) is

𝛽0(k) =
b

b + e(k)
(19.34)

the probability of a correct measurement is

𝛽1(k) =
e(k)

b + e(k)
. (19.35)

Further defining

Pc(k|k) = P(k|k − 1) − W(k)S(k)W(k)T, (19.36)

P̃(k) = W(k)(𝛽1(k)𝛎(k)𝛎(k)T − 𝛎(k)𝛎(k)T)W(k)T, (19.37)

the covariance matrix update is as follows:

P(k|k) = 𝛽0(k)P(k|k − 1) + 𝛽1(k)Pc(k|k) + P̃(k). (19.38)

Assume that the measurement is always gated, and that there is only a single target and
a single measurement at each time step. Accordingly, PD is the probability that the current
measurement is a valid estimate of the node being tracked. Based on experimental data used
in this chapter, the number of “false detection” measurements was around 5% of the total
samples, and so a value of 0.95 was selected for PD.

19.2.4.3 Interacting Multiple Model (IMM) Filter

For the more complex motion of an active underwater node, an Interacting Multiple Model
filter (IMM) was implemented, as the expected maneuvering index of underwater vehicles
can easily exceed the threshold for which a single linear filter is likely to have any benefit.
To this end, the IMM was a simple two-model filter, with a single, linear, low process noise
(𝜎𝜍 = 0.05 m∕s2) KF to account for the straight motion travel, and an extended Kalman filter
(EKF), configured in a coordinated-turn mode [414]. This validity of the coordinated turn
assumption is dependent on the scenario in question, though given the previously described
search patterns, it should be sufficiently accurate [119].
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The linear KF uses similar system equations as given previously, augmented with an addi-
tional column and row of zeros in order to accommodate the use of the EKF’s additional state
in the IMM. The EKF in this problem uses one of two sets of state equations: the first set is
an approximation used when the predicted coordinated turn rate is near 0 (Ω̂(k) ≈), and the
second set is used when the predicted coordinated turn rate is greater than some detection
threshold (|Ω̂(k)| > 0) [22].

The first set of EKF state equation modifications (Ω̂(k) ≈ 0) is as follows:

FL(k) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 𝜏 0 0 0 0 − 1
2
𝜏2 ̂̇𝜂(k)

0 1 0 0 0 0 −𝜏 ̂̇𝜂(k)
0 0 1 𝜏 0 0 1

2
𝜏2 ̂̇𝜉(k)

0 0 0 1 0 0 𝜏 ̂̇𝜉(k)
0 0 0 0 1 𝜏 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(19.39)

where 𝜂 and 𝜉 represent the x and y directions, respectively, and �̇� is the velocity component
in the 𝜂 direction. When |Ω̂(k)| > 0,

FL(k) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 sin Ω̂(k)
Ω̂(k)

𝜏 0 − 1−cos Ω̂(k)𝜏
Ω̂(k)

0 0 fΩ,1(k)
0 cos Ω̂(k)𝜏 0 − sin Ω̂(k)𝜏 0 0 fΩ,2(k)
0 1−cos Ω̂(k)𝜏

Ω̂(k)
1 sin Ω̂(k)𝜏

Ω̂(k)
0 0 fΩ,3(k)

0 sin Ω̂(k)𝜏 0 cos Ω̂(k)𝜏 0 0 fΩ,4(k)
0 0 0 0 1 𝜏 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(19.40)

where the partial derivatives fΩ,1(k),...fΩ,4(k) are found as:

fΩ,1(k) =
(cos Ω̂(k)𝜏)𝜏 ̂̇𝜉(k)

Ω̂(k)
− (sin Ω̂(k)𝜏) ̂̇𝜉(k)

Ω̂(k)2

− (sin Ω̂(k)𝜏)𝜏 ̂̇𝜂(k)
Ω̂(k)

− (−1 + cos Ω̂(k)𝜏) ̂̇𝜂(k)
Ω̂(k)2

(19.41)

fΩ,2(k) = −(sin Ω̂(k)𝜏)𝜏 ̂̇𝜉(k) − (cos Ω̂(k)𝜏)𝜏 ̂̇𝜂(k) (19.42)

fΩ,3(k) =
(sin Ω̂(k)𝜏)𝜏 ̂̇𝜉(k)

Ω̂(k)
− (1 − cos Ω̂(k)𝜏) ̂̇𝜉(k)

Ω̂(k)2

+ (cos Ω̂(k)𝜏)𝜏 ̂̇𝜂(k)
Ω̂(k)

− (sin Ω̂(k)𝜏) ̂̇𝜂(k)
Ω̂(k)2

(19.43)

fΩ,4(k) = (cos Ω̂(k)𝜏)𝜏 ̂̇𝜉(k) − (sin Ω̂(k)𝜏)𝜏 ̂̇𝜂(k) (19.44)
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Figure 19.4 Outline of an Interacting Multiple-Model (IMM) filter.

In both cases, the process noise covariance is determined in the following state equations:

P(k + 1|k) = FL(k)P(k|k)FL(k)T + ΓEKFQ(k)ΓT
EKF (19.45)

where

ΓEKF =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1
2
𝜏2 0 0 0
𝜏 0 0 0
0 1

2
𝜏2 0 0

0 𝜏 0 0
0 0 1

2
𝜏2 0

0 0 𝜏 0
0 0 0 𝜏

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(19.46)

Based on the assumptions of AUV motion, the value of Q(k) was selected as:

Q(k) =
⎡
⎢
⎢
⎢⎣

rs 0 0 0
0 rs 0 0
0 0 rs 0
0 0 0 rd

⎤
⎥
⎥
⎥⎦

(19.47)

where rs = (1.25 m/s2)2 and rd = (0.3𝜋∕180 rad)2 are used in this chapter.
The IMM-CT is outlined in Figure 19.4. It combines a set of filters (in this case a KF and

an EKF) and mixes the weighted previous state estimates to determine the current hypothesis
of each of the filters. The linear KF is designed as described previously, whereas the nonlin-
ear EKF has a different set of model selection parameters which define how it interprets large
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differences in the measurements. In particular, its covariance matrix describes how much vari-
ation is expected during a coordinated maneuver in terms of the angular velocity, represented
as two directional speed components and a rate of angular change component.

19.2.5 Simulation Results

Simulations are carried out using a simple noise model to generate the TOA measurements
and evaluate the localization accuracy. For simplicity, z is assumed to be known, and only x
and y coordinates are sought. Four transmitters are placed on a square grid with coordinates
(0, 0), (100, 0), (0, 100), and (100, 100). One receiver is placed at the (0, 50) point, and moves
at a constant rate of 0.125 m/s parallel to the x-axis.

Let t̂n denote the estimate of tn from the modem. The TOAs are generated according to (19.8)
where b is a fixed large bias, and 𝑤n is i.i.d. zero-mean white Gaussian noise corresponding
to a standard deviation of 7.5 m in distance. Position updates were taken every 16 seconds.

The localization position error is shown in Figure 19.5 as a function of total number of
measurements acquired. The Kalman Filter clearly outperforms the point estimation based on
exhaustive search (the LS solution has similar performance as the exhaustive search).

In addition to the Kalman filter, simulations for the proposed IMM-CT were also run, using
the relatively challenging scenario presented in Figure 19.6, with the corresponding RMS posi-
tion error given by Figure 19.7. The dashed lines depicted in the figure indicate the beginning
or end of one of the maneuvers from Figure 19.6. As can be seen in Figure 19.7, the point
estimates are drastically improved upon by all three of the trackers, with the KF and and
PDAF slightly outperforming the IMM-CT on the straight-path portion after exiting a maneu-
ver. There was no noticeable difference in the performance of the KF and PDAF, which is to
be expected, as the scenario did not feature any indirect path propagations.
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Figure 19.5 Root-mean-squared error (RMSE) as a function of the number of measurements acquired
as the receiver moved in a straight line.
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Figure 19.6 Simulation path for the IMM-CT, with distances in meters.
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Figure 19.7 Root-mean-squared error (RMSE) as a function of the number of measurements acquired
as the receiver moved in the scenario.

19.2.6 Field Test in a Local Lake

One lake test was performed in the Mansfield Hollow lake, located in Mansfield, CT dur-
ing August 2011. The average depth of the area in which the test occurred is approximately
2.5 m, with minor variations of approximately 0.5 m. During the test, wind speed was minimal,



336 OFDM for Underwater Acoustic Communications

0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

140

X−coordinate [m]

Y
−

C
o

o
rd

in
a

te
 [
m

]

Measured

Anchor node

Actual

Figure 19.8 Plot of measurements and ground truth of lake test.

typically less than 5 mph. The nodes where positioned in a roughly square formation, with an
average separation of 110 m. The receiver was attached to a boat which would freely float
inside of this node formation for the duration of the testing.

For this test, the ground-truth was determined via an onboard GPS device which would
record the position of the receiver whenever a message was received. The data for a single
run is presented, during which the boat moved at approximately 1 knot while moving along
a slightly curved trajectory (approximately 10∘). Note, however, that at a certain point dur-
ing the test, the ground-truth GPS stopped updating its position while the boat continued to
move. In order to correct for this, the remaining ground truth was extrapolated from the initial
GPS measurements. This introduces a nonnegligible amount of uncertainty, but still enables
conclusions to be drawn regarding the behavior of the tracking algorithms. The approximate
trajectory and measurements of the boat, along with relative node positions are depicted in
Figure 19.8.

As can be seen in Figure 19.9, the tracking algorithms smooth the error out over the course of
the maneuver and eventually reduce the overall error by a slight amount. Over the whole period,
the approximated error never exceeded a combined 5 m. On inspection, the PDAF does not
perform much better than the Kalman Filter in most cases. There was one measurement where
it clearly offered an improvement, but overall they did not differentiate much in performance.
In almost all cases, the IMM-CT was superior to both filters.

19.3 On-Demand Asynchronous Localization

This section presents an on-demand asynchronous localization (ODAL) scheme [61, 271]. The
network is established in a manner as shown in Figure 19.10. Several fixed-position anchor
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Figure 19.9 Localization error during second lake test.

nodes are deployed throughout the network and are assumed to have perfect knowledge of
their own positions. These anchors need only know their own locations, and are not required
to be surface nodes or have synchronized clocks, in contrast to the assumptions in Section
19.2.3. All nodes within the network know of the existence of the anchor nodes.

19.3.1 Localization Procedure

The localization process is initiated on demand by one underwater node. Other nodes in the
network listen passively and can infer their own positions based on the broadcast messages
from the source and the anchor nodes. The localization procedure is as follows.

S1. The source node sends out an initiator message to obtain its position at time ts,s. The initia-
tor message contains the sending order for the anchor nodes, indexed by n = 1, 2, … ,N,
and the maximum waiting time 𝛿n before node n responds to the initiator message. The
source node then goes into the listening mode, waiting for the message from the anchors
to come in sequentially.

S2. All the anchor nodes operate as follows. Upon receiving the initiator message at t̂s,n, node n
enters the listening mode and decodes all the messages from nodes 1, … , n − 1, recording
the arrival times as t̂k,n where k = 1, … , n − 1.

After node n finds out that node n − 1 has transmitted, it can proceed to the transmission
mode and sends out its own message at time tn,n. In case the message from node n − 1 is
lost, node n will wait the specified maximum time and send out its message at time tn,n =
t̂s,n + 𝛿n. The message from node n contains t̂s,n, {t̂k,n}∀k, and the transmission time tn,n.1

1 This is reasonable for the OFDM modem as each OFDM block contains several tens of bytes upon transmission
[444]. A hardware interrupt mechanism is used to control the exact transmission time after a fixed processing delay.
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Figure 19.10 A brief overview of the transmission protocol in a sample network. The AUV initiates a
transmission to all nodes, subsequently receiving a reply from the first anchor node. As time passes, all
anchors reply sequentially until the AUV is finally localized.

S3. The source node receives the reply from node n at time t̂n,s, n = 1, … ,N. After the recep-
tion of the last anchor node, the source node analyzes the collected measurements and
computes its own position. Finally the source node sends out a final acknowledgement,
which includes its estimated location, to terminate the localization process.

S4. Any passive node in the network can record the arrivals of the messages from the source
and the anchor nodes as t̂s,p, {t̂n,p}∀n. Based on these measurements and the measurements
from in the received messages, the passive node computes its own position.

For ease of presentation, assume that all the anchor nodes specified in the initiator mes-
sage have participated in the localization procedure. If there are Nf nodes with communication
failures, then the effective number of anchor nodes reduces from N to N − Nf, while the local-
ization algorithm can still be carried out.

19.3.2 Localization Algorithm for the Initiator

Since all the nodes are asynchronous, the time measurements from each node are subject to an
unknown time shift. With the time measurements at the source, and the measurements collected
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Figure 19.11 Illustration of the timing diagram of the asynchronous localization scheme.

by the anchor nodes, the initiator node computes the differences as:

Δt̂n,s = (t̂n,s − ts,s) − (tn,n − t̂s,n) (19.48)

Δt̂k,n = (t̂k,n − t̂s,n) − (tk,k − t̂s,k) (19.49)

which is illustrated in Figure 19.11. The available measurements at the initiator are

{Δt̂s,n}N
n=1, {Δt̂k,n}

n−1,N
k=1,n=2. (19.50)

Define the distance between the source node and the anchor node n as:

ds,n =
√

(xs − xn)2 + (ys − yn)2 + (zs − zn)2, (19.51)

and the distance between anchor nodes k and n as

dk,n =
√

(xk − xn)2 + (yk − yn)2 + (zk − zn)2. (19.52)

The one-way propagation delay between the source node and an anchor node is defined as:

𝜏s,n =
ds,n

c
, (19.53)

while the one-way propagation delay between anchor nodes k and n is defined as:

𝜏k,n =
dk,n

c
, (19.54)

where c is the propagation speed of sound in water and is approximately 1500 m/s.
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As illustrated in Figure 19.11, the time-difference measurements are related to the ground
truth through

Δt̂n,s = 2𝜏s,n +𝑤n,s, (19.55)

Δt̂k,n = 𝜏s,k + 𝜏k,n − 𝜏s,n +𝑤k,n, (19.56)

where 𝑤n,s and 𝑤k,n represent the noise terms. Assume that all the nodes have the same
measurement quality, and that each single timing measurement has variance 𝜎2

mea. The noise
component𝑤n,s has variance 2𝜎2

mea and𝑤k,n has variance 3𝜎2
mea, as can be inferred from (19.48)

and (19.49).
The location can be found by using only the local measurements at the initiator node as

(x̂s, ŷs, ẑs) = arg min
xs,ys,zs

1

4𝜎2
mea

N∑
n=1

(Δt̂n,s − 2𝜏s,n)2. (19.57)

This corresponds to a long-base-line (LBL) system.
The ODAL method in [61] uses both the measurements at the initiator and the measurements

at all the anchor nodes of the message broadcast sequence. The localization is formulated as

(x̂s, ŷs, ẑs) = arg min
xs,ys,zs

{
1

4𝜎2
mea

N∑
n=1

(
Δt̂n,s − 2𝜏s,n

)2

+ 1

6𝜎2
mea

N∑
n=2

n−1∑
k=1

[
Δt̂k,n − (𝜏s,k + 𝜏k,n − 𝜏s,n)

]2

}
. (19.58)

19.3.3 Localization Algorithm for a Passive Node

Noting that the system is intended to operate within a network of nodes, and leveraging the
broadcast nature of the medium, all the nodes in the network can self-localize by monitoring
the traffic resulting from the localization procedure for the initiator. Denote a general passive
node p as being located at (xp, yp, zp) and define the distances as before:

ds,p =
√

(xs − xp)2 + (ys − yp)2 + (zs − zp)2 (19.59)

dn,p =
√

(xn − xp)2 + (yn − yp)2 + (zn − zp)2 (19.60)

The corresponding propagation delays are

𝜏s,p =
ds,p

c
, 𝜏n,p =

dn,p

c
(19.61)

The passive node receives the localization message from the initiator, and the responding
messages from the anchor nodes. The time differences are taken as:

Δt̂s,n,p = (t̂n,p − t̂s,p) − (tn,n − t̂s,n), n = 1, … ,N (19.62)

Δt̂k,n,p = (t̂n,p − t̂k,p) − (tn,n − t̂k,n), n = 2, … ,N; k = 1, … , n − 1; (19.63)
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The time differences are related to the true propagation delays through

Δt̂s,n,p = 𝜏s,n + 𝜏n,p − 𝜏s,p +𝑤s,n,p, (19.64)

Δt̂k,n,p = 𝜏k,n + 𝜏n,p − 𝜏k,p +𝑤k,n,p, (19.65)

where the equivalent noises 𝑤s,n,p and 𝑤k,n,p has variance 3𝜎2
mea.

The passive node initially does not know the position of the initiator node, and localization
can be carried out as

(x̂p, ŷp, ẑp) = arg min
(xp,yp,zp)

{
1

6𝜎2
mea

N∑
n=2

n−1∑
k=1

[
Δt̂k,n,p − (𝜏k,n + 𝜏n,p − 𝜏k,p)

]2

}
. (19.66)

After hearing the announced position from the initiator node, the estimate 𝜏s,n is available, the
passive node can improve its own position through:

(x̂p, ŷp, ẑp) = arg min
(xp,yp,zp)

{
1

6𝜎2
mea

N∑
n=2

n−1∑
k=1

[
Δt̂k,n,p − (𝜏k,n + 𝜏n,p − 𝜏k,p)

]2

+ 1

6𝜎2
mea

N∑
n=1

[
Δt̂s,n,p − (𝜏s,n + 𝜏n,p − 𝜏s,p)

]2

}
. (19.67)

Note that an arbitrary number of passive nodes can carry out localization independently, and
without any additional broadcasting of their own. The “silent” positioning approach based on
the “reactive beaconing” mechanism was first proposed in [76].

19.3.4 Localization Performance Results in a Lake

A test of the ODAL localization system at Mansfield Hollow Lake was carried out on July
24, 2013, as illustrated in Figure 19.12. During the test, 4 anchor nodes were deployed in

Anchor node

Anchor node

Passive node
Anchor node

Moving source node

Figure 19.12 A photograph taken during the lake test demonstrating the node locations.
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Figure 19.13 Initiator node position estimates during lake test. True positions estimated via laser rang-
ing triangulation (units are meters).

an approximately square composition with sides of approximately 100 m in length. A single
passive node was positioned along one edge of this square where it remained for the duration
of the test. An initiator node was moved repeatedly through the test and was localized during
the periods for which it was stationary. The ground truth of the anchor nodes, the initiator
node and the passive nodes are determined using a triangulation with a laser rangefinder and
multiple reference points along the shore.

The source node was positioned in five different places in the lake. The ODAL algorithm
was run to determine the source position. There were a total of 22 position estimates obtained
from the ODAL algorithm at five different source locations. The scatter diagram is shown
in Figure 19.13. The location error is presented in Figure 19.14. In general, the errors are
relatively small, with a mean RMS location error of 5.6106 m and median of 4.6138 m in the
case of the laser ranging.

For the passive scenario, the error presented in Figure 19.15 has two representations: the first
is the positioning based solely on knowledge of the anchor nodes positions and the passively
heard transmissions, and the second is positioning based on the additional knowledge of the
position of the initiating node. Overall, the error was low, with the exception of a rather large
outlier, which as in the pool case was determined to be the miss of the line-of-sight path, and
was removed. The mean error for the passive position (without initiator data) was 3.2326 m
with a median value of 2.2457 m. In the case where initiator information was utilized, the mean
value becomes 2.9673 m and the median is 2.0457 m. Thus there is a degree of improvement
(approximately 10%) from including the additional initiating node information, as expected.
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Figure 19.14 Initiator node positioning error during lake test.
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Figure 19.15 Passive node positioning error during lake test.
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19.4 Bibliographical Notes

Long baseline (LBL), short baseline (SBL), and ultrashort baseline (USBL) have been
extensively used in practical applications [266]. The GPS intelligent buoys (GIB) are
described in [27]. Recent interest on localization is on underwater sensor networks, where
a large number of nodes in a network need to be localized. Two tutorials [373] and
[113] described various approaches recently developed, including [75, 76, 96, 112, 114,
115, 191, 283, 407, 429, 441, 470]. This chapter presents the underwater GPS solution from
[62] and the on-demand asynchronous localization from [61, 271].



Appendix A

Compressive Sensing

Since the term compressive sensing was coined a few years ago [53, 100] this subject has
been under intensive investigation [24, 56, 70]. It has found broad application in imaging, data
compression, radar, and data acquisition to name a few. Overviews on compressive sensing
can be found in, e.g., [56, 70]. Extensive references and resources on compressive sensing are
also available online [1].

In a nutshell, compressive sensing is a novel paradigm where a signal that is sparse in a
known transform domain can be acquired with much fewer samples than usually required by
the dimensions of this domain. The only condition is that the sampling process is incoher-
ent with the transform that achieves the sparse representation and sparse means that most
weighting coefficients of the signal representation in the transform domain are zero. While
it is obvious that a signal that is sparse in a certain basis can be fully represented by an
index specifying the basis vectors corresponding to nonzero weighting coefficients plus the
coefficients – determining which coefficients are nonzero would usually involve calculating
all coefficients, which requires at least as many samples as there are basis functions. The def-
inition of incoherence usually states that distances between sparse signals are approximately
conserved as distances between their respective measurements generated by the sampling pro-
cess. In this sense the reconstruction problem has per definition a unique solution.

Research on compressive sensing are mainly centered on two critical issues.

• Design of sensing matrices to achieve the incoherence property with a feasible sampling
scheme;

• Design of recovery algorithms to reconstruct the original signal from these samples with
tractable computational complexity.

The answers to these questions created the field of compressive sensing, which will be briefly
reviewed in this appendix.

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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A.1 Compressive Sensing

A.1.1 Sparse Representation

Consider a signal y ∈ ℂn that can be represented in an arbitrary basis, {𝝍k}n
k=1, with the

weighting coefficients xk. Stacking the coefficients into a vector, x, the relationship with y
is obviously through the transform

y =
[
𝝍1 𝝍2 · · · 𝝍n

]
x (A.1)

∶= 𝚿x (A.2)

where 𝚿 is a full rank n × n matrix. A common example would be a finite length, discrete
time signal that one could represent as discrete sinusoids in a limited bandwidth. The matrix
𝚿 would then be the discrete Fourier transform (DFT) matrix.

In compressive sensing one is particularly interested in any basis that allows a sparse repre-
sentation of y, i.e., a basis {𝝍k}n

k=1 such that most xk are zero. Obviously if one knows y, one
could always choose some basis for which y = 𝝍k0

for some k0; then all xk, k ≠ k0, would be
zero. This trivial case is not of interest, instead one is interested in a predetermined basis that
will render a sparse or approximately sparse representation of any y that belongs to some class
of signals.

A.1.2 Exactly and Approximately Sparse Signals

A signal is called s-sparse, if it can be exactly represented by a basis, {𝝍k}n
k=1, and a set of

coefficients xk, where only s coefficients are nonzero. A signal is called approximately s-sparse,
if it can be represented up to a certain accuracy using s nonzero coefficients. Since the desired
accuracy depends on the application, signals considered as approximately sparse usually have
the property that the reconstruction error decreases super-linearly in s, therefore any required
accuracy can be achieved by only sightly increasing s.

As an example of an s-sparse signal, consider the class of signals that are the sum of s
sinusoids chosen from the n harmonics of the observed time interval. Now obviously the DFT
basis will render an s-sparse representation of any such y, i.e., taking the DFT of any such
signal would render only s nonzero values xk.

An example of approximately sparse signals is when the coefficients xk, sorted by magni-
tude, decrease following a power law. This includes smooth signals or signals with bounded
variations [56]. In this case the sparse approximation constructed by choosing the s largest
coefficients is guaranteed to have an approximation error that decreases with the same power
law as the coefficients.

A.1.3 Sensing

So far it was assumed that y is available, and that one can simply apply the transform into
the domain of {𝝍k}n

k=1 to determine which xk are relevant (nonzero). Although this case does
exist and is important for some forms of data compression, the real application of compressive
sensing is the acquisition of the signal from m, possibly noisy, measurements

z𝓁 = 𝝓H
𝓁 y +𝑤𝓁 , 𝓁 = 1, … ,m (A.3)
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where here it is assumed that 𝑣𝓁 is zero-mean complex Gaussian distributed with variance
𝜎2

w and the noiseless case is included for 𝜎2
w → 0. The signal acquisition process can now be

written using a measurement matrix 𝚽,

z = 𝚽Hy + w, (A.4)

where 𝚽 = [𝝓1 , 𝝓2 , … , 𝝓m] is an n × m matrix and z = [z1 , z2 , … , zm]T is the stacked
measurement vector. Substituting (A.1) into (A.4) yields

z = 𝚽H𝚿x + w ∶= Ax + w. (A.5)

Since this is a simple linear Gaussian model, it is well-posed as long as A is at least of rank n. By
well posed we simply mean that there exists some estimator x̂ (or ŷ for that matter), whose esti-
mation error is proportional to the noise variance; therefore as the noise variance approaches
zero, the estimation error does as well. This generally requires at least m ≥ n measurements if
y is unconstrained in ℂn.

A.1.4 Signal Recovery and RIP

The novelty in compressive sensing is that for signals y that are s-sparse in some {𝝍k}n
k=1, less

measurements are sufficient to make this a well-posed problem. The requirement on A to have
at least rank n is replaced by the restricted isometry property (RIP), defined as follows [54]:

For any matrix A with unit-norm columns one can define the restricted isometry constants
𝛿s as the smallest number such that,

RIP: 1 − 𝛿s ≤
||Ax||22
||x||22

≤ 1 + 𝛿s (A.6)

for any x that is s-sparse. This can be seen as conserving the (approximate) length of s-sparse
vectors in the measurement domain and effectively puts bounds on the eigenvalues of any s × s
submatrix of AHA.

Now assuming that under all s-sparse vectors, one chooses the estimate x̂ that has the smallest
distance to the observations,

x̂ = arg min
{x∶||x||0=s,x∈ℂn}

||z − Ax̂||22, (A.7)

where the 𝓁0 norm ||x||0 is defined as the number of nonzero elements in x. Using the fact
that the estimation error x̃ ∶= x − x̂ is (2s)-sparse, it is easily shown that the estimation error
is bounded by

𝔼{||x − x̂||22} ≤
2m𝜎2

w

1 − 𝛿2s
. (A.8)

So one can see that the signal recovery problem is well-posed as long as 𝛿2s < 1, but since the
constant 𝛿s is monotonic in s, 𝛿s ≤ 𝛿s+1, and usually increases gradually, it is commonly said
that A obeys RIP if 𝛿s is not too close to one.

In case of approximately sparse signals, the error caused by noisy observations is additive
with the error caused by the approximation as s-sparse. Therefore a good choice of s needs to



348 Appendix A: Compressive Sensing

consider the noise level 𝜎2
w, since a tradeoff exists between choosing a smaller s that increases

the approximation error, but decreases the error caused by the noise due to the monotonic
nature of the 𝛿s and vice versa.

A.1.5 Sensing Matrices

While evaluating the RIP for a particular matrix at hand is (at worst) an NP-hard problem, there
are large classes of matrices that obey the RIP with high probability, that is 𝛿s ≪ 1 for any
s ≪ m. Specifically for random matrices like i.i.d. Gaussian or Bernoulli entries, or randomly
selected rows of an orthogonal (n × n) matrix (e.g., the DFT), it can be shown that for m ≥

Cs log (n∕s)measurements the probability that 𝛿s ≥ 𝛿 decreases exponentially with m and 𝛿. In
other words, as long as one takes enough measurements, i.e. increase m, the probability of any
such matrix not obeying the RIP for a given threshold 𝛿 can be made arbitrarily small. Although
the constant C is only loosely specified for the various types of matrices, the fact that the
probability decreases exponentially is encouraging as to the number of required measurements.
Furthermore it is important to consider that these bounds are on worst cases, so that on the
average much fewer measurements, m, will be sufficient.

A.2 Sparse Recovery Algorithms

Section A.1.4 considered the estimator that chooses the solution with minimum distance from
the observations between all s-sparse vectors in ℂn to show that the average estimation error
is bounded. This is in essence a combinatorial problem, which has exponential complexity. In
case s is not known, or for an approximately sparse signal, a natural optimization problem to
find a maximally sparse representation of z is

x̂ = arg min
x

||x||0 s.t. ||z − Ax||22 ≤ 𝜀. (A.9)

A joint cost function can also be used that penalizes less sparse solutions versus a better fit of
the observations. This can be achieved using a Lagrangian formulation

x̂ = arg min
x

1
2
||z − Ax||22 + 𝜁 ||x||0 (A.10)

where 𝜁 is a design parameter balancing the sparse approximation error and solution sparsity.
Compared to the combinational problem defined in (A.7), the size of problems in (A.9) and
(A.10) is increased as all s-sparse vectors for various values of s have to be considered now.

Besides a brute-force approach that searches over all the possible values of x to find the
best fit, algorithms that reconstruct a signal taking advantage of its sparse structure have been
used well before the term compressive sensing was coined. The surprising discovery of com-
pressive sensing is that it can be shown that several of these algorithms will – under certain
conditions – render the same solution as the combinatorial approach. These conditions largely
amount to tighter constraints on the sparsity of x beyond identifiability.

We next briefly introduce two major types of algorithms: matching pursuit algorithms and
the convex 𝓁1-norm relaxation algorithms. Borrowing the message passing and belief propa-
gation principles from the coding community, heuristic algorithms have also been proposed to
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Table A.1 Sparse recovery algorithms

Matching pursuit MP, OMP, StOMP, CoSaMP, IHT
Convex relaxation IST, TwIST, FISTA, GPSR, SpaRSA, 𝓁1-𝓁s,

𝓁1-magic, YALL1 [466]
Bayesian framework Heuristic methods based on belief propagation and

message passing; see [25, 102, 197]
Nonconvex relaxation Relax the 𝓁0-norm to 𝓁p-norm with p < 1; see [69]

recover the sparse representation under the Bayesian framework; see, e.g., [25, 102, 197] and
references therein. Instead of performing the 𝓁1-norm convex relaxation in the algorithms to
be discussed, sparse recovery algorithm based on a nonconvex relaxation by 𝓁p-norm (p < 1)
has also been investigated [69]. Several example sparse solution solvers under the four cate-
gories are listed in Table A.1. A complete summary of sparse solution solvers can be found in
e.g., [110].

A.2.1 Matching Pursuits

An alternative approach to the combinatorial problem is based on dynamic programming. In
this type of approach the combinatorial problem is circumvented by heuristically choosing
which values of x are nonzero and solving the resulting constrained least-squares problem.
The most popular algorithms of this type are greedy algorithms, like Matching Pursuit (MP)
or Orthogonal Matching Pursuit (OMP), that identify the nonzero elements of x in an iterative
fashion.

This type of algorithms has been popular mainly because it can be easily implemented and
has low computational complexity. Recently it has been shown that this algorithm will also
render the optimal solution [387], whereby the constraints are somewhat stronger. This has
lead to renewed interest in dynamic programming based solutions, leading to new matching
pursuit algorithms, such as the stagewise orthogonal matching pursuit (StOMP), the compres-
sive sampling matching pursuit (CoSaMP) and iterative hard thresholding (IHT); see, e.g.,
[47, 101, 293] and references therein).

A.2.2 𝓁1-Norm Minimization

Since the exact formulation using the zero-norm ||x||0 is not amenable to efficient optimization,
an immediate choice is its convex relaxation, leading to the following Lagrangian formulation,

BP: x̂ = arg min
x

||Ax − z||22 + 𝜁 ||x||1, (A.11)

where the 𝓁1-norm is defined as ||x||1 =
∑n

k=1 |xk|. While the 𝓁1-norm has been used in various
applications to promote sparse solutions in the past (see references in [56]), it is now largely
popular under the name Basis Pursuit (BP), as introduced in [73]. While originally the term
BP was used to designate the case of noiseless measurements and the qualifier Basis Pursuit
De-Noising (BPDN) to refer to the case of noisy measurements [73], we will generally refer to
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both cases simply by BP. Generally the optimal value of 𝜁 in (A.11) is unknown to the solver.
Theoretical investigations on the selection of 𝜁 can be found in e.g., [109, 136, 147].

One variant of the convex relaxation in (A.11) is

LASSO: x̂ = arg min
x

||z − Ax||22 s.t. ||x||1 ≤ 𝛽 (A.12)

which is well-known as the least absolute shrinkage and selection operator (LASSO) algorithm
in statistics [385]. It can be shown that LASSO and BP are equivalent in that the solution path
of LASSO defined by 𝛽 coincides with that of BP after a reparameterization of 𝜁 (𝛽) [400].

All these algorithms share an aspect that they lead to convex optimization problems, which
can be solved efficiently with advanced techniques, such as interior-point methods [73, 212],
projected gradient methods [87, 155, 435], or iterative thresholding [28, 92]. A description on
these methods can be found in [388].

The discovery that there are conditions under which convex relaxation will render the same
result as the combinatorial formulation was the birth of compressive sensing [53, 100]. These
conditions usually consider the minimum number of measurements m required to identify an
s-sparse signal with high probability, given a certain measurement matrix. For example, in [53]
it is shown for m noiseless measurements taken using random rows of the DFT matrix, that if
m > CMs log (n), any s-sparse signal can be recovered with at least probability 1 − (n−M),
where the constant CM is roughly linear in the parameter M. One immediately notices that
this formulation closely resembles the criterion for identifiability, but the constants will take
different values.

A.3 Applications of Compressive Sensing

A.3.1 Applications of Compressive Sensing in Communications

So far compressive sensing has been successfully applied in several signal processing fields,
specifically in imaging the technology has achieved a certain level of maturity. In communi-
cations the range of applications so far has been rather limited, with the exception of channel
estimation – although in many variations. To cite a few examples:

• Sparse channel estimation in ultra-wideband, was motivated by the ability to resolve indi-
vidual arrivals or clusters of arrivals in multipath channels [303].

• Considering mobile radio channels, each path is characterized by a delay and a relative
Doppler speed [18, 378].

• Underwater acoustic channels are known to exhibit only few arrivals in a long delay spread
with each path having a different Doppler speed [38].

A variation on channel estimation is the combination with active user detection in code
division multiple access [9] or spectrum sensing for cognitive radios.

Another proposed application of compressive sensing in communications is coding over the
real numbers (versus finite fields as commonly used in coding theory) under a channel model
that produces few very large errors (similar to erasures) [54].
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A.3.2 Compressive Sensing in Underwater Acoustic Channels

Clearly the motivation to use compressive sensing in channel estimation is the observation
that some channels are characterized by sparse multipath, meaning that there are much fewer
distinct arrivals as there are baseband channel taps. With this in mind compressive sensing
promises to estimate the channel with much less pilot overhead or at higher accuracy with a
constant number of pilots. The common assumption is that a sparse multipath channel leads to
a baseband channel model where most taps are negligible. Note that in a channel modeled by
specular (point) scatterers the number of nonzero baseband taps depends very much on what
one defines as negligible. Using instead an oversampled baseband model, the representation
of the channel becomes ambiguous, but also more sparse.

In underwater acoustic (UWA) communications, channels are characterized by long
delay spread and significant Doppler effects. The long channel delay spread leads to
severe inter-symbol interference (ISI) in single carrier transmissions, while in multicarrier
approaches like orthogonal frequency division multiplexing (OFDM) the aforementioned
Doppler effects destroy the orthogonality of the sub-carriers and lead to intercarrier inter-
ference (ICI). On top of high equalization complexity, the ISI or ICI corresponds to a
convolution with a time-varying impulse response, leading to a large amount of unknown
channel coefficients. While it is well recognized in the community that UWA channels are
usually sparse [378], there are major challenges to overcome when applying compressive
sensing to exploit channel sparsity.

As an example, Chapter 7 presents a block-by-block OFDM receiver that re-estimates the
channel for every OFDM symbol. To apply compressive sensing, one has to consider the
following issues: (i) A channel model needs to be established that leads to a sparse representa-
tion of the channel coefficients, and is accurate (enough) within the considered time interval.
(ii) When placing the pilots, one needs to ensure that ICI from other pilots can be observed.
(iii) When estimating the channel based on pilots, ICI from the unknown data symbols has to
be accounted for. The channel estimators in Chapter 7 are developed with some strategies to
address these issues.
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Experiment Description

B.1 SPACE08 Experiment

The Surface Processes and Acoustic Communication Experiment (abbreviated as SPACE08)
was conducted at the Air-Sea Interaction Tower (ASIT) from Oct. 14 to Nov. 1, 2008, which
is located in around 15 meters of water and 2 miles south of the coast of Martha’s Vineyard,
MA. The experiment was led by Dr. James Preisig and his team from the Woods Hole Oceano-
graphic Institution (WHOI). Several universities and research institutions have participated in
the experiment.

The acoustic source was deployed about 30 meters in a direction of 240∘ True from the tower,
and are formed by five ITC-1007 spherical transducers. One transducer is located approxi-
mately 4 meters above the bottom on a stationary tripod, and the remaining four transducers
are in a vertical array where the center-to-center spacing of transducers in the array is 50 cm
and the top transducer is around 3 meters above the bottom. Any combination of the five
transducers can be used for multiple-input and multiple-output (MIMO) transmissions.

As illustrated in Figure B.1, six receiving arrays are located on two paths radiating in orthog-
onal directions (150∘ and 240∘) from the source at distances of approximately 60 meters,
200 meters and 1000 meters. The arrays are mounted on fixed tripods with the top element
3.25 meters above the sea floor. S1 and S2 have a cross-shaped configuration (vertical and
horizontal) with 16 elements on each leg. The spacing between each element is 3.75 cm. S3
and S4 are 24-element vertical arrays with a 5 cm spacing between elements. S5 and S6 are
12-element vertical arrays with a 12 cm spacing between elements. The sampling rate of the
transmitter and all the receivers is 1e7/256 Hz. The received signals are recorded in situ at the
receiving arrays.

During the experiment, a transmission occurs every two hours, leading to 12 recorded files
each day. For each transmission, there are 20 OFDM blocks with the parameters specified in
Table B.1. A detailed subcarrier allocation is described in Section 2.3.

The significant wave height and average wind speed across all the days are shown in
Figure B.2. The significant wave height is calculated as H = 4

√
m0, where m0 is the

zeroth-moment of the variance spectrum obtained by integration of the variance spectrum.

OFDM for Underwater Acoustic Communications, First Edition. Shengli Zhou and Zhaohui Wang.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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Figure B.1 Setup of the SPACE08 experiment.

Table B.1 OFDM Parameters in SPACE08

Carrier frequency fc 13 kHz
Bandwidth B 9.77 kHz
Symbol duration T 104.86 ms
Subcarrier spacing Δf 9.54 Hz
Guard interval Tg 24.6 ms
# of subcarriers K 1024
# of data subcarriers |D| 672
# of pilot subcarriers |P| 256
# of null subcarriers |N| 96
Channel coding rate rc 0.5

B.2 MACE10 Experiment

The Mobile Acoustic Communication Experiment (abbreviated as MACE10) was carried out
off the coast of Martha’s Vineyard, Massachusetts, in June 2010. The experiment was led
by Mr. Lee Freitag and his team from WHOI. Signals from several universities and research
institutions have been transmitted in this experiment.

Source and receiving arrays were deployed in the water with a depth about 95 to 100 meters.
The source array has four ITC-1007 transducers. The receivers include two buoy receive arrays
(labeled as B1 and B2) and two moored receive arrays (labeled as M1 and M2), as illustrated
in Figure B.3. Each buoy receiver has four receive elements, with a 20 cm spacing between
elements, and is deployed at a depth of 50 meters. The moored array M1 has 24 elements with
a spacing of 5 cm between elements, and is deployed at a depth of 40 meters. The moored array
M2 has 12 elements with a spacing of 12 cm between elements, and is deployed at a depth of
40 meters.
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Figure B.2 The average wind speed and significant wave height for selected days in SPACE08.
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Figure B.3 Experimental setup in MACE10.

B.2.1 Experiment Setup

During the experiment, the receive arrays were stationary, while the source array was towed
slowly away from the receivers and then towed back, at a speed around 1 m/s. The relative dis-
tance of the transmitter and the receiver M1 changed from 500 m to 4.5 km. The OFDM signals
from the University of Connecticut were transmitted in two tows. There are 31 transmissions
in each tow, with 20 blocks in each transmission.
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Parameters of this experiment are summarized in Table B.2, while the subcarrier allocation
is described in Table 2.1. A rate-1/2 nonbinary LDPC code is used, where the size of the Galois
field matches the size of the constellation.

B.2.2 Mobility Estimation

Figure B.4 shows the received signal magnitude fluctuation during the first tow.
One transmission file recorded during the turn of the source is excluded, where the
signal-to-noise-ratio (SNR) of the received signal is quite low. The received signal strength
becomes gradually weaker as the transmitter array was towed away from the receiver, and
then gradually stronger when it was towed back.

For each block, the Doppler scaling factor can be estimated based on null subcarriers
(c.f. Chapter 6). The relative speed between the transmitter and the receiver was estimated

Table B.2 OFDM Parameters in MACE10

Center frequency fc 13 kHz
Bandwidth B 4.883 kHz
Time duration T 209.7 ms
Frequency spacing Δ 4.77 Hz
Guard interval Tg 40.3 ms
# of subcarriers K 1024
# of data subcarriers |D| 672
# of pilot subcarriers |P| 256
# of null subcarriers |N| 96
Channel coding rate rc 0.5
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Figure B.4 MACE10: Received signal magnitude fluctuations in tow 1.
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Figure B.5 MACE10: Channel estimates of blocks in one transmission.
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Figure B.6 The estimated relative moving speed in tow 1; MACE10.

as �̂� = â ⋅ c, using a nominal sound speed of c = 1500 m/s. Figure B.5 shows the channel
estimates of blocks within one transmission, which reveals a large Doppler speed variation
across blocks. Figure B.6 shows the relative speed for the first tow. The relative speed was
about 1.2 m/s when the transmitter was moving away from the receiver array, and about
1 m/s when it was towed back. The estimated speed changes from negative to positive after
60 minutes, indicating that the transmitter array began to be towed back from the maximum
range at 60th minute.
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