

Object-Oriented Analysis and Design for
Information Systems

Modeling with UML, OCL, and IFML

Raul Sidnei Wazlawick

Table of Contents

Cover image

Title page

Copyright

Dedication

Acknowledgments

About the Author

Foreword

Preface

Chapter 1. Introduction
Key Topics in this Chapter

1.1 This book

1.2 Object-oriented systems development

1.3 Unified Modeling Language (UML)

1.4 Unified Process (UP)

1.5 The process so far

1.6 Questions

Chapter 2. Business Modeling

Key Topics in this Chapter

2.1 Introduction to business modeling

2.2 General view of the system

2.3 Business use cases

2.4 Business activity diagram

2.5 State-dependent aspects of a business

2.6 Remarks

2.7 The process so far

2.8 Questions

Chapter 3. High-Level Requirements
Key Topics in this Chapter

3.1 Introduction to high-level requirements

3.2 System actors

3.3 System use cases

3.4 How to find system use cases in the business model

3.5 Requirements

3.6 Preliminary conceptual model

3.7 The process so far

3.8 Questions

Chapter e4. Use Case Based Project Planning
4.1 Introduction to effort estimation and risk analysis in software projects

4.2 Use case point analysis

4.3 Planning an iterative project

4.4 The process so far

4.5 Questions

Chapter 5. Expanded Use Cases
Key Topics in this Chapter

5.1 Introduction to expanded use cases

5.2 Main flow

5.3 Alternate flows

5.4 Writing recommendations

5.5 Included use cases and fragments

5.6 Expansion of stereotyped use cases

5.7 Other sections of an expanded use case

5.8 System sequence diagrams

5.9 The process so far

5.10 Questions

Chapter 6. Conceptual Modeling: Fundamentals
Key Topics in this Chapter

6.1 Introduction to conceptual modeling

6.2 Attributes

6.3 Concepts

6.4 Associations

6.5 Collections

6.6 Organization of the conceptual model

6.7 Invariants

6.8 Iterative construction of the conceptual model

6.9 The process so far

6.10 Questions

Chapter 7. Conceptual Modeling: Patterns
Key Topics in this Chapter

7.1 Introduction to conceptual model patterns

7.2 High cohesion

7.3 Specification classes

7.4 Quantity

7.5 Measure

7.6 Strategy

7.7 Composite

7.8 Organizational hierarchy

7.9 Object joining

7.10 Account/Transaction

7.11 Range

7.12 Temporal patterns

7.13 Discussion

7.14 The process so far

7.15 Questions

Chapter 8. Functional Modeling with OCL Contracts
Key Topics in this Chapter

8.1 Introduction to functional modeling

8.2 Preconditions

8.3 Transient associations

8.4 Query return

8.5 Postconditions

8.6 Exceptions

8.7 Pattern contracts for CRUD

8.8 Pattern contracts for listing objects

8.9 Contracts related to use cases

8.10 The process so far

8.11 Questions

Chapter 9. Domain Tier Design
Key Topics in this Chapter

9.1 Introduction to domain tier design

9.2 Object responsibility distribution

9.3 Visibility

9.4 Dynamic modeling based on postconditions

9.5 System queries

9.6 Delegation and low coupling

9.7 Design class diagram

9.8 The process so far

9.9 Questions

Chapter e10. Code Generation
Key Topics in this Chapter:

10.1 Introduction to code generation

10.2 Classes and attributes

10.3 Unidirectional associations

10.4 Bidirectional associations

10.5 Delegated methods and system operations

10.6 Patterns for filtered queries

10.7 The process so far

10.8 Questions

Chapter 11. Testing
Key Topics in this Chapter

11.1 Introduction to testing

11.2 Functional testing

11.3 Stubs and drivers

11.4 Test-driven development

11.5 Unit testing

11.6 System operations testing

11.7 Use case testing (System, acceptance, and business cycle tests)

11.8 The process so far

11.9 Questions

Chapter 12. Interface Tier Design with IFML
Key Topics in this Chapter

12.1 Introduction to interface tier design

12.2 Interaction flow modeling language (IFML)

12.3 View components

12.4 Pages

12.5 Flows

12.6 Hypertext organization

12.7 Web Interface Patterns

12.8 Modeling operations in the interface

12.9 IFML models for CRUD operations

12.10 Use case interface modeling with IFML

12.11 The process so far

12.12 Questions

Chapter e13. Data Persistence
Key Topics in this Chapter

13.1 Introduction to data persistence

13.2 Object-relational mapping (ORM)

13.3 Saving and loading objects

13.4 The whole process

13.5 Questions

Postface

References

Index

Copyright

Acquiring Editor: Andrea Dierna
Editorial Project Manager: Kaitlin Herbert
Project Manager: Punithavathy Govindaradjane
Designer: Matthew Limbert

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA, 02451, USA

© 2013 Elsevier Editora Ltda.
Copyright © 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or any information
storage and retrieval system, without permission in writing from the publisher. Details
on how to seek permission, further information about the Publisher’s permissions
policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright
by the Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new
research and experience broaden our understanding, changes in research
methods or professional practices, may become necessary.

Practitioners and researchers must always rely on their own experience and
knowledge in evaluating and using any information or methods described
herein. In using such information or methods they should be mindful of their
own safety and the safety of others, including parties for whom they have a
professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors,

http://www.elsevier.com/permissions

contributors, or editors, assume any liability for any injury and/or damage to
persons or property as a matter of products liability,negligence or otherwise,
or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-418673-6

Printed in the United States of America

14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

For information on all MK publications visit our website at www.mkp.com

http://www.mkp.com

Dedication

This book is dedicated to my parents and ancestors; without them I would not exist.

Acknowledgments

I wish to thank some people that in some way helped me to make this book possible:
Prof. Luiz Fernando Bier Melgarejo, for introducing me to the world of object-oriented
systems back in 1987; my colleague Prof. Marcos Eduardo Casa, for all his work in
developing pair programming back in the 1980s when object-oriented concepts were
regarded as “something from another planet”; my colleague Prof. Antonio Carlos
Mariani, for developing the Actors World, a tool that helped us teach object-oriented
programming; the companies that allowed the use of the techniques explained in this
book in a real production environment; my advisees Everton Luiz Vieira, Kuesley
Fernandes do Nascimento, and I uri Cardoso for helping me consolidate some of the new
techniques; the D epartment of I nformatics and S tatistics (I NE) of the Federal University
of Santa Catarina (UFSC), for the opportunity to develop this work; and especially
software engineer Gilmar Purim, for the fruitful discussions that helped to define the
shape of the first version of this book in 2003.

I wish to thank also the more than one thousand students, who I refrain from
nominating, victims of my course on Object-Oriented Analysis and D esign for two
decades – their doubts, misunderstandings, and difficulties motivated me to research
and learn even more; my friend, Prof. Rogério Cid Bastos, for providing orientation and
motivation; and finally my friends and brethren, for the moments of joy and fraternity.

About the Author

Raul S idnei Wazlawick is an Associate Professor of Computer Science at UFS C, in
Florianópolis, Brazil. He has received a Bachelor’s and Master’s in Computer Science, and
D octor in Engineering (1993). Wazlawick was chair of the I FI P Working Group on
I nformatics and I CT in Higher-Education, trustee of the Brazilian Computer Society,
general chair of the Brazilian Symposium on Software Engineering (2006), and co-chair of
the I FI P World Conference on Computers in Education (2009). He has published three
textbooks in Portuguese and about 100 papers. His field of experience includes object-
oriented systems, with which he has worked since 1986. Wazlawick’s main research
interest is object-oriented software engineering. He is currently (2012–2015) heading a
software development team that is developing software systems to support the Brazilian
public health system.1 He often makes presentations at universities, companies, and
government institutions on topics related to software engineering. He also has worked as
a software engineering consultant since the early 1990s.
1http://dab.saude.gov.br/portaldab/esus.php.

http://dab.saude.gov.br/portaldab/esus.php

Foreword

Roger S. Pressman, Ph.D.

Because things are often fuzzy at the beginning of a software project, because it is
sometimes difficult to get stakeholders to agree, because required information and
functions are often unclear, because customers have no compunction about requesting
systems with frightening complexity and staggering size, and because it’s so tempting to
assume that we already know what is required, there remains a compelling need for good
books that teach software engineers a pragmatic, proven approach to analysis and
design. Raul Wazlawick provides us with such a book.

Over the past 50 years we have seen many methods proposed for analysis and design
of computer software, but in my view, the most intuitive and effective adopts an object-
oriented mindset. Remember, analysis and design occur relatively early in the software
process at a time when things are fluid, where iteration is not only common, but
mandatory, and where “objects” are often the most visible of all elements of the
problem.

The beauty of the object-oriented paradigm is that it is wonderfully elastic. We can
describe objects that are easily understood by business people at the conceptual level,
and then through a process of iteration and elaboration, refine those objects into much
lower levels of abstraction that technical people can use effectively. I n this book,
Professor Wazlawick provides us with guidance for accomplishing this.

Using UML as his notational form, he begins where all good analysts should start—at
the beginning! He provides us with the tools required to understand the problem
through a process of elicitation, elaboration, and representation. He emphasizes use
cases, and helps us understand that they serve as both an excellent mechanism for
problem understanding and as a mechanism that can greatly assist project planning.

He insists that good analysts and good designers must iterate as they develop an
increasingly be er and more detailed understanding of the problem. To accomplish this,
he provides the reader with object-oriented techniques and the UML tools to get that job
done.

Through the book, a continuing case study is used to provide examples of all analysis
and design techniques. Basic principles are introduced, expanded into a set of workable
techniques, and then used to develop analysis and design representations and models
using UML.

D uring my long professional career, I have met with hundreds of companies and
thousands of software professionals worldwide. Each company and every person has a
unique opinion on what makes software so challenging, and there are as many opinions

on how to meet those challenges in a particular situation. But few software professions
would disagree with a very simple statement: “I f you don’t know where you’re going, it is
very, very difficult get there.”

Effective methods for analysis and design provide software professionals with a
destination and a road map for ge ing there. I n Object-Oriented Analysis and Design for
Information Systems, Raul Wazlawick provides the tools software professionals need to
craft the road map, and as a consequence, this book helps every reader get where he
needs to go.

Preface

This book presents, in a deep and didactic way, elements of object-oriented analysis and
design for developing information systems.

The area of software development for information systems has evolved during the last
two decades around the Unified Modeling Language (UML) and the Unified Process
(UP), adopted as international standards by the Object Management Group (OMG). Even
agile developing methods nowadays use object-oriented development as the leading
paradigm.

I n contrast to some other books in this area, which are organized around the
presentation of UML diagrams and their many possible uses, this book concentrates on
the daily analyst’s and designer’s activities, and it explains how the different diagrams
may help them in developing better systems and developing systems better.

Although the object-oriented culture has more than 40 years of existence, there are still
companies that find it hard to produce good quality software, especially due to the lack
of maintainability and flexibility on the systems they produce. This book presents
information and techniques to minimize that deficiency.

The techniques described here were applied with success by the author in many
software development companies, as well as in research projects at the university level.

This book is intended for computing professionals (analysts, designers, and
programmers), and computer science students, both in undergraduate or graduate
studies with at least a basic knowledge of object-oriented development or modeling.
Beginners and experienced people will find the guidance presented in this book useful in
improving the quality of their projects. This book was wri en to help them achieve the
best design possible.

I n contrast to what occurs with the waterfall model (Royce, 1970), where analysis and
design activities happen sequentially, iterative models like UP propose that those
activities (also called disciplines) may happen with higher or lower emphasis at any phase.

This book gives more emphasis to the activities that are typically performed by
analysts and designers, including business modeling, requirements engineering,
analysis, and design. Other disciplines such as project management, implementation,
and testing are also referenced. For more information on other disciplines, books on
software engineering such as Pressman (2010) may be consulted, or books more specific
to the Unified Process such as Kruchten (2003).

The goal of the UP Inception phase is to build a general view of the system and its
context, and plan further development. The two main modeling tools for this phase are
conceptual modeling (Chapters 6 and 7) and high-level use cases (Chapter 3) . Business

modeling (Chapter 2) may be necessary with more or less emphasis, depending on the
project that is going to be developed.

At the end of the I nception phase, high-level use cases may be used as a basis for
planning the rest of the project (Chapter 4). Usually, that planning involves rating use
cases as small, medium, or large (the t-shirt scale) with regard to their complexity, and
deciding on their priority. When the complexity of each use case is known, it is possible
to estimate the average time necessary to develop them (Karner, 1993), and thus, the
iterations may be planned as a set of activities that can be realistically performed with
the time available.

The Elaboration phase of UP is performed as a sequence of iterations. Each iteration
has a set of use cases assigned for development.1 D eveloping an individual use case
usually starts with its expansion into flows (Chapter 5). Optionally, the use case flows
may be represented as system sequence diagrams, in order to help discover system queries
and commands that have to be implemented.

D uring the Elaboration phase, when the architecture is evolving, the conceptual model
(Chapters 6 and 7) is refined and completed.

System queries and commands may be implemented with a programming language.
But the designer may choose rather to specify contracts for system queries and commands
(Chapter 8), which besides being a higher-level definition for the expected behavior of
each procedure, may be very useful in helping to define test cases (Chapter 11). These
contracts correspond to the functional model of the system, because they define the
functionality of each query and command in terms of the input they receive and the
results they produce.

At this point, again, the system may be implemented, or its code may be automatically
generated if tools are available. However, if elegant code is desired, it may be helpful to
produce a new set of diagrams (sequence or communication diagrams) for each of the
system operations (Chapter 9). Those diagrams indicate how the different objects will
exchange messages in order to distribute responsibilities and a ain the desired
postconditions specified by the contracts. With this procedure, design pa erns are easier
to apply to the code. These diagrams also help to specify which methods (besides ge ers
and setters) must be implemented in each class, and how they must be implemented.

D uring Elaboration, the design of the interface can be completed (Chapter 12). This
book presents the I FML notation2 as an option for modeling that aspect of a system.
I FML is a brand-new standard modeling language for information flow that is being
adopted as one of the OMG standards from March 2013.

Although it is more emphatic during the construction phase, the elaboration phase
may also require the generation of a database structure (Chapter 13) and running code
(Chapter 10). D ata persistence may be generated automatically if the appropriate tools
are available. However, it is worth at least knowing how the persistence mechanism
works, even if it is automated. Code generation is also presented as a set of rules that can
be automated.

I n order to save space for a deep presentation of the topics, most of the exercises can
be accessed on the Internet.

1An iteration may also have a mitigation plan assigned for a given risk or a change request originated by the client, user, or
even the development team.
2http://www.ifml.org/.

http://www.ifml.org/

C H AP T E R 1

Introduction
The main goal of this book is to present a set of good practices that allows software developers to comprehend and
use object-oriented principles in an effective and efficient way. This chapter presents the motivation for this book
and a quick introduction to UML (Unified Modeling Language) and UP (Unified Process). The goal of this book is
not to be another reference manual to such technologies, but to help people who are working with them to
accomplish their jobs better.

Keywords
UML; Unified Process; object-oriented analysis; object-oriented design; object-oriented
development; design patterns

Key Topics in this Chapter
• Object-Oriented Systems Development
• Unified Modeling Language (UML)
• Unified Process (UP)

1.1 This book
There is a vast literature that aims at syntactically presenting UML1 diagrams, such as for
instance, Miles and Hamilton (2006). There are also a significant number of books about
development processes and management activities, such as Sa inger, J ackson and Burd
(2011). However, there are relatively few books that go really deep into the presentation
of best practices that allow the effective application of object-oriented techniques in
software development in the real world. This means that despite the vast literature in
this area, many questions faced by developers are still left unanswered.

This book presents more details on many object-oriented concepts and activities,
especially those presented by Larman (2004), which is based on the Unified Process,
commonly known as UP (Jacobson, Booch, & Rumbaugh, 1999; Scott, 2001).

The reason this book is based on Larman’s concepts is because he presents a concise
and efficient approach to systems analysis and design using an object-oriented
paradigm. I n his approach, each artifact (document or diagram) has a very clear and
practical reason to exist and the connections between artifacts are very precise.

I n our approach, agile principles adopted by Extreme Programming (XP) (Beck &
Andres, 2004) are largely accepted. However, we propose that programming must be
undertaken first using a modeling language before directly programming code. The use
of UML diagrams as high-level programming tools instead of just documentation tools is

recommended. With that approach, the artifacts used should contribute directly to the
understanding of the problem (analysis) or to the design of a solution. I n order to
improve the process of designing a solution, we consider model transformation and
automatic code generation fundamental.

Furthermore, in contrast to Larman’s work, this book presents some original concepts
and other details on topics as follows:
• Objective criteria to identify use cases and decide when to subdivide them or not.
• A technique to expand use cases that reduces the disparity among descriptions

created by different analysts (the concept of mandatory and complementary steps
allows one to decide exactly how many steps a use case must have).

• System sequence diagrams built with actor, interface, and control (instead of actor and
system only) to help realize a clear difference between system events and system
operations.

• An original approach for writing system commands and queries contracts with the use
of the Object Constraint Language, OCL (Object Management Group, 2010) that
allows for automatic generation of running code, and not only postcondition
checking, as current tools do.

• An adaptation of Fowler’s (2003) analysis patterns to UML, and restructuring some of
those patterns to simplify their identification and application in practice.

• A systematic technique to generate dynamic object models from OCL contracts, which
follows good design patterns, and reduces significantly the amount of code necessary
for running an application, avoiding, for example, redundant verifications.

• An interface tier design presented with the use of IFML (Interaction Flow Modeling
Language), a brand new OMG standard for interface modeling.

The aforementioned features are useful for producing high-quality software that is well
organized, based on a multitiered architecture, and able to change or accommodate new
requirements.

1.2 Object-oriented systems development
What is object-oriented systems development? By observing the way object-oriented
analysis and design is taught and practiced in some places, it can be concluded that
many professionals simply adopt an object-oriented programming language, or use
fragments of an object-oriented based development process. However, very often, they
are not as effective as one would expect.

I t is not sufficient to organize the system architecture in tiers and modules if the code
implemented inside of it is disorganized. S ome programmers organize the system
adequately in classes and packages, but they still write spaghe i code inside the methods
of these classes and packages. I n addition, other developers still use top-down functional
decomposition inside methods, which is not appropriate when using object-oriented
programming (top-down decomposition is adequate if structured programming is used
instead).

I n order to build code that is really object-oriented, developers should learn the

techniques of delegation and responsibility assignment, which can lead to reusable code and
low coupling. Those techniques are explained in this book.

I t is useless to invest heavily in object-oriented CASE (computer-aided software
engineering) tools without learning the way to think in terms of object-oriented
programming. The use of diagrams will not necessarily improve the quality of the
software, although it may help.

1.3 Unified Modeling Language (UML)
S ome developers believe that UML is a methodology, maybe because of the “M” in the
acronym. However, that is not true: UML means Unified Modeling Language, and it is
therefore a language that can be used to describe things.

Knowing a language does not necessarily imply the ability to produce useful artifacts.
For example, English is a language, but someone who knows how to speak English does
not necessarily know how to write good poetry or how to make good speeches. Besides
the language syntax, there are knowledge and techniques of best practices that greatly
help poets and speakers to place the elements of the language in an order and structure
that is adequate to produce the expected results.

The UML language has been under development since J ames Rumbaugh and Grady
Booch joined forces at Rational S oftware and started to unify their already well-known
diagrammatic notations and processes. Later, I var J acobson joined the group and added
his use cases and other notations to the unified language that was under development.

UML is constantly being revised and currently has the following three families of
diagrams:
• Structure diagrams: Includes package, class, objects, composite structure, component,

profile, and deployment diagrams. They are used to define what must be
implemented in the system in terms of components. They are useful to specify the
part of the system architecture that is time independent.

• Behavior diagrams: Includes use case, activity, and state machine diagrams. They
emphasize what must happen in the system or business process. They are used to
describe the functionality of the system.

• Interaction diagrams: Includes communication, sequence, timing, and interaction
overview diagrams. These are a subset of behavior diagrams and describe the control
flow between different components of the system.

Not every diagram must be used during the development of a system. Only those that
represent useful information for the project are recommended. This book emphasizes
the use of the activity, machine state, use case, sequence, communication, and class
diagrams for modeling information systems. However, other diagrams can be useful
depending on the features of the system being modeled. For more information on the
different UML diagrams, the book by Miles and Hamilton (2006) may be consulted.

1.4 Unified Process (UP)

The techniques presented in this book are compatible with the Unified Process, which is
heavily based (although not necessarily) on UML.

UP was also proposed by the three amigos, Grady Booch, J ames Rumbaugh, and I var
J acobson (J acobson, Booch, and Rumbaugh, 1999), as the result of their extensive
experience.

This process is based in the following principles:
• Use case driven: The development is planned and organized over a list of use cases.
• Architecture centered: The development process leads to the construction of a system

architecture that allows the implementation of the requirements. That architecture is
based on the identification of a structure that is iteratively built from a conceptual
model.

• Iterative and incremental: Development is divided into iterations or development
cycles. At each iteration, new features are added to the system architecture, or
corrected/refined, leaving it more complete and closer to the final desired system.

• Risk oriented: The elements of greater risk for a project are addressed early. For
instance, critical use cases are identified, detailed, and implemented before the
others.

UP includes in its disciplines the main activities related to software development.
Those activities have different levels or emphasis during the four major UP phases:
I nception, Elaboration, Construction, and Transition (Figure 1.1). Although sequential in
time, those phases must not be confused with the waterfall phases (Royce, 1970). I n the
waterfall model, requirements specification must be completed before design, design
must be completed before construction, and so on. I n UP, requirements specification,
design, construction, and other activities are performed in all phases with different
emphasis.

FIGURE 1.1 The emphasis of the different disciplines during the four phases of the Rational Unified Process

(RUP®).2, 3

Inception is the first phase of UP, in which the main requirements are discovered and
the extension of the system is understood. The output of this phase usually consists of a
preliminary conceptual model (S ection 3.6); a requirements document, usually in the
form of a list of high-level use cases (S ection 3.3) and supplementary specifications
(S ection 3.5.8); and a development schedule based on the use case list (S ection 4.3).
Additionally, a list of high-importance risks and their mitigation plans may be created, as
well as other plans a ending the special needs of the project. But those aspects are out of
the scope of this book, which will concentrate on modeling techniques, not management.
Only iteration planning based on high-level use cases is presented in detail.

T h e Elaboration phase includes a more detailed requirements analysis, which is
performed by expanding the use cases, that is, writing the sequence of steps that
characterizes each of their possible flows. The conceptual model is refined after each use
case is expanded. D epending on the priority of the use cases, it is expected that the
number of changes applied to the software architecture decreases as the project proceeds
during Elaboration.

D uring the Construction phase most of the code production and test activities are
performed. I t is expected that the Elaboration phase produces an architecture sufficiently
stable so that its refactoring will be minimized during this phase.

The Transition phase consists typically of the final tests and the delivery of the system
to its users including possibly its installation and data migration. D uring this phase, the
system will be deployed, possibly replacing an existing system (manual or automatic).

The Elaboration and Construction phases are performed in iterations. An iteration
may have as an objective developing one or more use cases, implementing change
requests, or mitigating selected risks. D uring an iteration, use cases are expanded and
the information learned from them is incrementally incorporated in the product. I t is
expected that the Elaboration phase deals with the major risks of the system, as well as
with the more complex or risky use cases that affect the system architecture significantly.
On the other hand, the Construction phase concentrates on producing code for the whole
application and implementing change requests.

UP is usually understood as a prescriptive process. But it may also be performed as an
agile method, with few artifacts. Two popular agile implementations of UP are AUP4
(Ambler & J effries, 2002) and OpenUP5 (Kroll & MacI saac, 2006). An agile process is one
that prioritizes:6

• People and iterations over tools and processes.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.

I n order to obtain such agility, all documentation must be directed to software
production. Each activity performed by the developer must have a very clear goal and a
precise use, aiming always toward the production of code that meets the requirements in
the best way possible and in the shortest reasonable time. S oftware is designed with two

goals in mind: understanding client needs, and producing a viable solution to those
needs. I n order to help people adequately communicate their needs and solutions,
different artifacts, such as diagrams, may be created; diagrams are more useful when
they allow code to be automatically generated from them.

1.5 The process so far
At the end of each chapter, a table shows which analysis and design activities have been
covered by the book, highlighting those that were covered by the current chapter. This
initial chapter is a general view of the Unified Process. Only the I nception and
Elaboration phases are addressed in this book, and only the disciplines of business
modeling, requirements, analysis and design, implementation, test, and some aspects of
project management are addressed.

1.6 Questions
1. What are the four fundamental principles of the Unified Process?
2. What is the goal of each of the four phases of the Unified Process?
3. How do the phases of UP differ from waterfall's phases?
1http://www.uml.org/.
2RUP (Rational Unified Process) is the oldest and most known implementation of the Unified Process.
3Source: http://www.ibm.com/
4http://www.ambysoft.com/unifiedprocess/agileUP.html
5http://epf.eclipse.org/wikis/openup/index.htm
6http://agilemanifesto.org/

http://www.uml.org/
http://www.ibm.com/
http://www.ambysoft.com/unifiedprocess/agileUP.html
http://epf.eclipse.org/wikis/openup/index.htm
http://agilemanifesto.org/

C H AP T E R 2

Business Modeling
Business modeling is the first time-consuming activity that is performed during the development of most projects in
the software industry. Although business use case diagrams and other UML diagrams are currently used to help
teams understand business processes, sometimes the connections between those elements are not clear. This chapter
shows how business use cases may be used to produce a high-level view of a business, and how they can be detailed
by using business activity diagrams and state machine diagrams that describe key business processes and key
business objects. It also shows how business use case diagrams may be used to define the scope of a system.

Keywords
Business modeling; business use case diagram; activity diagram; state machine diagram;
project scope

Key Topics in this Chapter
• General View of the System
• Business Use Case Diagram
• Activity Diagram
• State Machine Diagram

2.1 Introduction to business modeling
The I nception phase of the Unified Process (UP) consists of a period of time when the
analysts are looking to gather information about the business to be automated or
restructured. I t is assumed that the knowledge that the analysts have about the business
is minimal, and that the interaction with the stakeholders will be intense. The goal in this
phase is to discover if it is worth it to do the analysis without developing too deep into
the project.

Usually, before starting to discover and analyze system requirements, it is necessary to
understand the goals of the target organization. This view can be obtained by the UP
discipline called business modeling.

Business modeling is, therefore, an activity that supports the discovery of system
requirements by helping the team perceive the wider business context where the future
system will operate. D ifferent text or diagram artifacts can support it, as this chapter
presents.

The artifacts in this phase usually do not need to be too detailed. Meetings with
stakeholders could produce a record (minutes) that probably can register several ideas
about the goals of the company and the automation opportunities. By using this
information, the team may build a general view of the business.

Starting with the records obtained, the team can organize an initial document for the
project, which can be called general view of the system or executive summary. That
document usually includes the scope declaration.

Other relevant information is usually included in the general view as well, such as
stakeholders, power assignment, risk analysis, preliminary budget and schedule, and the project
premises.

The scope declaration of the project may be related to the business analysis activities.
After discovering useful information about the business, the team is be er able to
determine what must and what must not be included in the project. The general view of
the system may be elaborated with the help of some UML diagrams. Business use case
diagrams (Section 2.3), and business activity diagrams (Section 2.4) may be used, and
occasionally state machine diagrams (Section 2.5) can be used as well. Alternatively, the
Business Process Model and Notation,1 BPMN,2 may be used instead of the UML activity
diagrams. These diagrams help in determining if the scope of the project is complete and
consistent with the goals of the organization.

Business modeling consists of studying and understanding the organization and its
processes, because usually the system to be developed will not be an isolated product,
but an organic part of the organization context. The goals of this discipline are to:
• Understand the structure and dynamics of the target organization in which the software

will be used.
• Understand the current problems of the target organization and identify potential

improvements that can be obtained with the software.
• Assure that clients, users, and the development team share a consistent understanding

of the target organization.
• Derive the requirements that will lead to the desired improvements.
One of the critical points for the success of a software development project is its

funding. I n order to keep interest in the development of a software product a client must
always stay convinced that its investment represents a gain, and not a waste of time and
money. Comprehension of the business model is fundamental so that the development
team can keep the client interested in the project.

Another important aspect of business modeling is to bring the business team and the
software engineering team closer, so that the actual problems of the organization and its
needs are understood, analyzed, and solved using information technology.

Business modeling is very important when significant behavioral changes are
introduced to a group of people. I n this case, business context and the consequences of
installing a new system must be acknowledged and studied. I t may be less important
when such behavioral changes are not expected.

Thus, business modeling may have different levels of importance depending on the
project needs. Kruchten (2003) identifies six scenarios of growing complexity in terms of
the need for business modeling:
• Organizational chart: It may be necessary only to build an organizational chart in order

to know the sectors and responsibilities related to the area in which the project is
inserted. In this case, business modeling, in general, is very simple, and happens only

during Inception. The organizational chart will help analysts to locate the people that
are responsible for the different aspects related to the future system, and what degree
of authority is assigned to each one when deciding the requirements.

• Domain modeling: If the goal of the project is to build applications to manage and
present information, then business modeling may be performed during domain
analysis, that is, when a static model of the information (conceptual model) is
produced. In this case, business modeling is performed during Inception and
Elaboration.

• One company, many systems: It may be the case that the team is developing a whole
family of systems for a company. In this case, business modeling is not only about
one system, but spreads along many projects, and could even be a separated project
of its own. It will help to discover individual system’s requirements as well as to
determine a common architecture for the whole family.

• Generic business model: If the goal is to build one or more systems that will serve a pool
of organizations, then business modeling is useful in order to align the different
organizations to a common business view, or, if that is not possible, to obtain a
business view in which the specifics of the organizations are visible.

• New business: If an organization decides to start a new business, and a whole set of
systems must be developed to give support to it, then a significant business modeling
effort must be undertaken. In this case, the goal of business modeling is not only to
find requirements, but to verify the effective viability of the new business. Thus,
business modeling, in that situation, could be an independent project.

• Renewal: If an organization decides to completely renew its way of business, then
business modeling will be a separate project, performed in several steps: vision of the
new business, reverse engineering of the existing business, direct engineering of the
new business, and installation of the new business.

Other factors that increase or decrease the need for business modeling in a project are:
• Well-defined and stable requirements at the beginning of the project (for example,

creating a substitute for an existing system) reduce the need to perform intense
business modeling.

• If the new system is going to change the way people do their work, then special
attention must be paid to business modeling, especially when the business model is
going to be changed or rebuilt after the automation of some business use cases.

• If the project has important risks, especially business risks, then business modeling
must be more detailed and intense.

• If the user community is large and heterogeneous, then business modeling probably
will be more difficult.

• If it is necessary to integrate the new system with hardware and legacy systems, then
the comprehension of those elements must be included in business modeling,
generating more work.

• More uncertainty about requirements means more attention to business modeling.
No ma er the level of detail and effort to be put into business modeling, every project

must begin with preliminary documentation that allows for an understanding of its

scope. A project with poorly defined scope will certainly give rise to discomfort or even
fights between the client and development team, regarding the inclusion (or lack of
inclusion) of certain features.

2.2 General view of the system
The activities related to the definition of the scope of a project should usually take a
relatively small fraction of the time of the whole project, although variations may exist
depending on the kind of the project: projects with simple and well-defined
requirements may demand no more than a couple of days of business modeling while
complex and large projects may demand weeks or months. At the time of scope
definition, all information about the company business must be explored by interviewing
users, clients, and domain specialists, as well as by the examination of documents,
reports, existing systems, and related bibliography.

For most projects, the first question the analyst should answer is the following: What is
the vision of the company for the project? I n other words, what does the company want
with the project? Why is it being proposed, and why is the company going to spend
money with it?

At that moment, another question, often forgo en, may be raised: Buying or
developing? Sometimes, the product the client wants is available for purchase.

These questions must be answered in a relatively short time. That is why it is
suggested that the I nception phase proceed relatively quickly. Why? Because, at this
time, the client and the development team usually do not have an idea of the real
extension of the project and it is, from the point of view of both, an investment on the
future, and, therefore, a risk.

The general view of the system or executive summary is a free format document, where
the analyst may report the relevant items she discovered about the system after the
initial interviews with the stakeholders. The document usually includes the scope
declaration for the project.

We do not intend to propose rules for writing that document. But it is suggested that it
should not be too long. A few pages of text and some diagrams seem to be sufficient to
describe in a summarized way the scope of most systems. More than that could mean
that too much detail was included in the summary. These details could be alternatively
addressed in other documents such as the list of risks, requirements, or use cases.

The scope declaration in the general view must present, in general lines, the product
that must be developed: what must be included, and what could be included but should
not. This information may be obtained initially by interviewing the stakeholders, and
may be refined later with the use of the diagrams presented in this chapter.

I f possible, the main deliverables of the project should be also defined in the general
view as well as the time frame when the client is going to receive some kind of delivery
from the development team. Normally, this list of deliverables consists of implemented
versions of the software, but the list can also include other items, such as design,
manuals, installation media, training, etc. I t can be very difficult to establish deadlines

for deliveries before doing the requirements analysis of the system, because estimation
effort techniques such as function points (Albrecht and Gaffney J r., 1983), use case points
(Karner, 1993), or COCOMO II (Boehm, 2000) can only be applied after a good deal of the
requirements is known. Thus, the information about deadlines at this early stage is more
a guess than a formal strong commitment for development.

The general view document may also contain some acceptance criteria for the product,
that is, quantifiable items that will be used to decide whether the project was a success or
not. The product acceptance criteria must at least include metrics for deadlines, budget,
and quality. I f subjective criteria such as “customer satisfied,” “system easy to use,” or
“state-of-the-art technology” are used, they must be quantified, that is, it must be
defined how to measure “customer satisfaction,” “ease of use,” “state of the art,” and so
on. Examples of quantifiable acceptance criteria are “the system must support up to
50,000 simultaneous accesses without degrading performance,” “the system must
eliminate the need to use paper for performing processes x and y,” and “the system must
allow selling up to 100 books a minute on the Internet.”

More information may be added to the general view document if needed (for example,
main risks, technologies to be used, etc.). The general view of the system is the base
agreement document for the client and the developer. I t will be taken as a basis for
planning the rest of the project.

I t is important to mention that when the general view is being built, the requirements
analysis has not yet been completed, and therefore the information mentioned in the
general view consists of early commitments. I t is expected that the requirements analysis
will detail the scope in depth, but not augment its extension. For example, in
requirements analysis the process of selling books may be detailed with discounts, sales,
delivery, and so on (considering that “selling books” is mentioned in the scope
declaration), but if the payment roll of the company was not mentioned in the scope
declaration, then the inclusion of that item in the project would require a renegotiation
of the scope declaration.

Pressman (2008) proposes a number of techniques to communicate with stakeholders
in order to discover business goals, for example:
• Traditional focus groups, where a trained analyst meets with a group of end-users or

people representing their roles.
• Electronic focus groups, where the meetings are conducted by the use of electronic

media.
• Iterative surveys, where a number of surveys are conducted among end-users,

presenting them some questions and asking for clarification.
• Exploratory surveys, where an exploratory research is conducted among end-users that

use a similar existing product.
• Scenario building, where a group of end users is led to produce a description of a

number of scenarios for using the system.
The last option seems to be very popular among agile method practitioners, where

scenarios are sometimes identified as user stories.
Figure 2.1 presents a general view with very preliminary scope declaration for a

fictional virtual bookstore Livir,3 which will be used to illustrate the modeling techniques
within this book. This text would have been obtained after a quick preliminary meeting
with the client. Using this as a basis, a deeper study may be conducted with business use
cases and other diagrams, so that the information contained in it is refined, as shown
below in this chapter. The document is divided into two parts:
• A simple vision statement of what the project will offer to customers and the business

that’s creating it.
• The constraints for version 1.0.

FIGURE 2.1 General view for the Livir project.

To allow for the presentation of this project in a book, a series of simplifications were
considered. The description and modeling of a real project would be much more
extensive. Furthermore, the models presented would sometimes only be partial at a given
time, being refined or changed later.

I t can be seen that the general view is a nonstructured view of the project. I t includes
business information for managers, and operational information for developers.
S ometimes, even details about the technology to be used can be described if necessary.
What the analyst must consider is that the general view describes the main concerns of

the clients and those concerns will be better structured later during analysis and design.
A good analyst must act like a psychoanalyst, that is, she must avoid speaking in the

place of the client. The analyst must help the client to speak; when the client starts to
report some of her needs, the analyst must hear, instead of presenting fast prebuilt (and
often mistaken) solutions. The analyst must motivate the client to detail her
requirements and must question those requirements so that the client can decide which
are urgent and which are not.

2.3 Business use cases
J acobson (1994) presents in detail techniques for business modeling with business use
cases. I n general, in business models, there are entities (people or companies) external to
the target organization, called business actors, and internal entities, called business workers.
Business use cases are the processes performed by those actors and workers that allow
them to reach some of the company business goals.

The business use case model considers the entire company as a system, and the actors
may be people, companies, or other organizations that create business or maintain
relationships with the business (Kroll and Kruchten, 2003).

The first thing the team must think about when doing business modeling is that what
is being modeled is not a software system. A company is being modeled. Business
information is sought from higher-level management people and specialists, because
they know and sometimes create the company goals.

The quantity of business use cases that will be identified may be relatively small. A
business process is a long-range process that is performed by the company; think, for
example, of selling products, conducting marketing, providing services, solving customer
problems, etc. Each process of this type must contribute to a business goal. This is not
the moment for detailing such processes. For example, selling products may include
many subprocesses such as registering customers, offering products, sending products,
applying discounts, etc. But those processes (that later possibly will be identified as
system use cases if they are going to be automated) are involved by the highest-level
process, which is Sell books.

A lthough UML still does not have a standard symbol to differentiate business use
cases from system use cases (Chapter 3), it is usual to represent business use cases with
the stereotype business , or by cu ing the use case ellipse with an edge as shown in
Figure 2.2.

FIGURE 2.2 Business use case.

I n this example, Sell books is a business use case because it involves a relationship

between the company and an external entity (a customer), producing a perceptible and
consistent result: one or more books sold. This use case possibly will be performed by
the customer with the collaboration of some workers inside the company; it may or may
not use software systems.

Use case names must be chosen carefully, because at this stage they will summarize
critical information about the system, and wrong choices may prevent the team and
stakeholders from sharing comprehension about the real intention of business actors
and workers. Blain4 presents some best practices collected from many sources:
• Good use case names reflect user goals. Names such as Access system or Open main window

must be avoided because they reflect technology and not a business goal. Also names
without verbs such as Invoice must be avoided because it is not clear what is going to
happen to the invoice. Better names might be Generate invoice, Cancel invoice, Pay
invoice, etc.

• Good use case names are as short as possible. Although some people may propose that a
use case name should not have more than two or three words (or any other number),
it is unfeasible to define such a limit because there is a risk of losing clarity on the
business goal if the name is too short. As Blain points out, which word could be
removed from the name Collect late payment without obscuring its meaning?
However, that name is better than Collect late payment from customers that are past due.

• Good use case names use meaningful verbs. Use case names not only should have strong
verbs, but they must be meaningful. A meaningless verb is one that does not make
clear what the use case accomplishes; for example what does a use case such as
“Process order” accomplish? What result does it produce? A name such as “Separate
ordered items for dispatch” would be more meaningful in that case.

• Good use case names use active voice. As in general writing, active voice is preferable to
passive voice. Pay for order is better than The order is paid.

• Good use case names use present tense. The present tense indicates what the user is trying
to do. Past and future tense may sound confusing and unnecessary.

• Good use case names do not identify the actor. As use cases are linked to actors, actors are
not part of their names. Thus, a use case name must not identify the actor as in
Manager creates sales report. Just name the use case Create sales report and link it to a
manager or other actors if necessary.

• Good use case names are consistent. The same naming rules and naming conventions
should be applied along a project or group of projects. Avoid, for example, naming
one use case Generate sales report and another Produce reservations report. Chose one
verb for that meaning and use it consistently.

Additionally, Probasco (2001) proposes that the list of use case names should resemble
a to do list. Thus, instead of writing Cash withdrawal, Funds transfer, and ATM service, it
would be better to write Withdraw cash, Transfer funds, and Service the ATM, respectively.

Probasco also insists that the meaning of a use case name must be precise. For
example, is Auction a good use case name? I s it a verb or a noun? I f you consider that it is
a noun and that a verb must be added, is Execute auction a good name? The verb Execute
would probably be a programmer’s choice, but it probably has no meaning for an

auctioneer (I s the Auction going to be shot to death?). I n this case, an idea would be to
talk to a domain specialist in order to obtain a be er name. On the other hand, even if
“auction” is indeed a verb it is not sufficiently clear. I s it the auction of a single item? I s
it the auction of a complete set of items? I s it simply an auction participant placing a bid?
In that case, names such as Auction items, Auction single item, or Place bid would be clearer.

2.3.1 Business actors and business workers
D uring business modeling there are two kinds of actors that must be addressed (Figure
2.3):

• Business actors: People, organizations, or even systems that perform some activities
belonging to the process, but which are not part of the target company. That is, they
are not under company control. Business actors could be, for instance, customers,
publishers, external auditors, partner companies, or even other automatic systems
that the target company could interact with.

• Business workers:5 People, organizations, or even systems that perform some activities
belonging to the process and that are part of the target company. They could be the
company’s employees, its departments, or even existing software systems belonging
to the company. Graphically, they are distinguished from business actors by the use
of the stereotype worker .

FIGURE 2.3 Business actor (left) and business worker (right).

This differentiation is important because business actors usually cannot be automated,
that is, they will not be replaced by computational systems. However, business workers
roles can possibly be replaced by automatic systems (English, 2007).

Business actors and business workers are linked to the business use cases they
participate in by connecting lines without arrows,6 as shown in Figure 2.4.

FIGURE 2.4 Links between business actors, business workers, and business use cases.

2.3.2 Automation opportunities
A bookstore that intends to sell through the I nternet, like Livir, should produce a
business model that identifies its main business use cases, external actors (customers,
publishers, etc.), and business workers (managers, clerks, etc.). I f we suppose that the
bookstore company already exists and has no automation at all or very incipient
automation, then the business workers will be, basically, real people. These workers may
be candidates for automation if there is interest in increasing the level of automation of
the company. For example, the role of the clerk that currently helps customers find books
on the shelves may be replaced in the virtual bookstore by an automatic guidance
system. However, the customer role cannot be replaced by an automatic system.

Every business worker role will usually not be replaced. I t will depend on the scope of
the project to be defined. An advantage in making the business use case diagram, then,
is to help in visualizing and making decisions on automation. With the diagram, it is
possible to visualize what must stay inside and outside the automation scope, depending
on the project’s goals.

Normally, during an automation process within a company, it is useful to replace at
least the workers’ roles that correspond to mere proxies, that is, the ones that simply
perform actions in the place of an external actor. I n the case of the bookstore, the sales
clerk role is necessary only to help the customer at the physical store. But, when the sales
are moved to virtual space, that role is not necessary anymore, because the customer may
easily find her way on the website.

The association of the business use cases with the company’s major business goals
helps to identify the scope of the system, that is, the activities that will be effectively
automated in the project that is being initiated. I n the example of Figure 2.5, all use cases
are candidates for automation at differing levels of priority. However, the company could
be interested only in implementing sales and acquisition at this point, leaving marketing
and customer services left to a second project.

FIGURE 2.5 Business use cases: candidates for automation.

The system boundary can be used to identify the set of business use cases and
business workers that will be automated, as shown in Figure 2.6.

FIGURE 2.6 System boundary being used to indicate the scope of the project.

The business use case diagram shows that the automation project will include the
processes of buying and selling books and the role of the clerk. I t also shows that the
processes of advertisement and gaining client loyalty are outside the scope of the project.

However, a deeper analysis may show that the worker that buys books for the
bookstore cannot be easily automated. I t might be the case that all books could be
automatically bought by an automatic process that could analyze potential sales and
stock, without the participation of any human being. But, if that is not the case, the best
thing to do is to consider that the clerk really has two different roles: help the customer
(that role will be automated) and buy books for the bookstore (that role will not be
automated). Figure 2.7 shows an evolution of the diagram where part of the
responsibility of the clerk is reassigned to a worker named “Acquisition manager.” There

is no one-to-one equivalence between a role and a person: a person may perform many
roles and a role may be performed by many different people.

FIGURE 2.7 An actor is split because only part of its role will be automated.

I f the project, on the other hand, consists of a number of subprojects or stages, in
which different parts of the company would be automated, that could also be indicated
by the use of different system boundaries in the diagram: one for each subproject or
stage.

The next step that leads to the requirements analysis is the detailed study of the
business use cases that will be automated. The level of precision and detail depends on
the objectives of the project, as already discussed early in this chapter.

2.4 Business activity diagram
The UML activity diagram is a very popular option for studying the details of a business
use case. With this diagram, the different activities performed by business actors and
workers in order to reach the general goal of the use case can be specified.

For a be er understanding of the way the company works through its use cases, it is
possible to create an activity diagram for each business use case that is going to be
automated. The activity diagrams can be used to represent processes at the
organizational level.

2.4.1 Basic elements
Much of the UML activity diagram is similar to a flowchart. There are activities
sequentially linked. D ecision points and loops may be used and even parallelism may be
expressed in such diagrams.

The activity diagram may be divided into swim lanes, each one representing an actor or

worker that participates at a set of activities. As in the use case diagram, an actor or
worker may be a person, a department, a computational system, or even a complete
organization.

The process represented in the diagram usually has an initial node, represented by a
solid circle , and an activity final node, represented by a solid circle inscribed in a
circumference . The initial node may not be considered mandatory in some cases when
the beginning of the process can be inferred by observing an activity that does not have
an antecessor. However, the use of that mark improves the readability of the diagram
because it is easier to see where the process really begins.

The activities are represented by action nodes . When an activity is represented
inside a swim lane it means that the corresponding actor is the one responsible for the
activity.

Flows or dependencies between activities are represented by arrows →. Flows usually
link two activities, indicating precedence between them.

A path is a sequence of activities linked by flows: → → → → .
I n the Livir example, the activity diagram may be used as a way to visualize the details

of business use cases such as Sell books. The model presented in Figure 2.8 shows a first
approach to the process.

FIGURE 2.8 First approach to an activity diagram for modeling the book sales business process.

The diagram that is starting to be designed in Figure 2.8 is not intended to be a model
for the system to be built and should not be thought of like that. I ts utility is to help the
team understand which activities and actors are involved with the main business
processes of the company, so that, using that information, they can perform a more
effective requirements analysis later. The logical path of the diagram must be

understandable and validated by business people.
Later, the analyst will examine in detail each of the activities that must be performed.

I f a given activity belongs to the scope of the system that is going to be implemented,
then it must be a target for a more detailed analysis.

2.4.2 Control flow nodes
Two control flow nodes are common in the activity diagram: decision nodes and
parallelism nodes.
• The decision nodes (branch and merge nodes) are represented by diamonds . The

flows coming out of the decision node must have guard conditions (a logic expression
between brackets). Two or more flows may leave a decision node, but it is important
that the guard conditions are mutually exclusive, that is, only one of them may be true
at a time.

• The parallelism nodes (fork and join nodes) are represented by bars . The flows
coming out of a fork node are performed in parallel.

The diagram in Figure 2.8 is still a very crude representation of the real process of
selling books. J ust to illustrate a possible evolution of that diagram, let’s examine the
situation when some of the ordered books are not available in stock. I t would be
necessary to order them from one of the publishers and add them to the customer order
after arrival. Figure 2.9 shows this situation by indicating that if some books are not
available, then they have to be ordered from publishers, and the order is sent only after
they arrive.

FIGURE 2.9 Example of decision control flow.

J ust below the Confirm payment activity there is a branch node represented by the
diamond. As noted before, the decision node allows only one exit flow to be followed.
The guard conditions ([some books missing] and [all books in stock]) are mutually exclusive.
From the branch node, the flow follows one of the alternate paths until reaching the
merge node that is depicted just above the Send books activity.

Later, the analyst could discover that the model is still not satisfactory. For instance,
even if some books are not in stock, the order could be sent in two or more deliveries.
Thus, two paths could be performed in parallel: sending the books that are available in
stock and, if necessary, ordering the other books, and sending them later, as shown in
Figure 2.10.

FIGURE 2.10 Example of parallel flows.

The bar below the Confirm payment activity in Figure 2.10 represents a fork node
because it starts two parallel paths, and the other bar represents a join node because it
synchronizes the parallel paths into a single path.

The single path after a join node can only be followed if all paths that come to the join
node have been followed. I t can be seen that in that model, if all the books are in stock,
only one of the parallel paths will have activities to be performed, because the other path
immediately goes to the merge and join nodes.

The fork, join, decision, and merge nodes, as well as the initial and activity final nodes,
may be placed inside swim lanes. However, this does not affect their semantics. Thus, the
choice of a swim lane to place such nodes is only due to visual suitability.

Another node that can be useful sometimes is the flow final node, , which terminates
a path (parallel or not) that is being performed. The difference between it and the activity

final node is that in the case of the activity final node, all flows of the activity diagram are
terminated when a single flow reaches it, while in the case of the flow final node only one
flow (among other parallel flows) is terminated, but the activity continues.

I n the use case of Figure 2.7, only one actor (customer) and one worker (clerk)
participate in the use case Sell books. However, after detailing the activities related to that
use case, as done in Figure 2.10, it was discovered that two more actors are necessary: the
Publisher and the Credit card operator. Additionally, the Publisher is an actor that has to be
linked to the use case Buy books. Thus, depending on the level of detail desired at this
point of the project, the business use case diagram may be updated to reflect those
discoveries, as seen in Figure 2.11.

FIGURE 2.11 Business use case diagram updated with information discovered with the activity diagram.

Other options for detailing a business use case are the UML sequence diagram and
communication diagram. However, those diagrams are used to represent messages being
sent to elements. I t is not always quite natural to find names to label those messages in
the case of a business process, and meaningless names such as “seek data” and “check
result” are chosen eventually. Thus, the activity diagram is a more natural choice to
describe what happens in the real world, inside an organization of people. However, as
will be seen in Section 5.8, sequence diagrams are very useful to detail system use cases,
because system use cases usually consist of a sequence of information flows being
exchanged between actors and a system.

2.5 State-dependent aspects of a business
Besides business use cases, which may be detailed by activity diagrams, it may be
important to understand other aspects of a business that do not always appear clearly in
such diagrams, such as some key business objects that change state during their life
cycle.

Thus, another UML diagram that can help the team to understand the organization’s
business is the state machine diagram. Like the activity diagram, this is a behavioral
diagram, but, instead of modeling activities in processes, it represents a set of states in
which a system, actor, or entity could be at a given instant.

The state machine diagram specifies events in its flows. An event triggers the flow that
takes the entity from one state to another. That is, the flows are labeled with events that,
if they occur, make the entity change from one state to another.

Those occurrences may be, however, restricted by guard conditions. For example, the
login event may only send the system to a logged state if the password is correct.

Graphically, the events are represented in the flows by simple expressions, and guard
conditions are represented between brackets, as in the case of activity diagrams.

The transitions in a state machine diagram can also include effects that are performed
in response to a state transition. For example, the transition activated by the event login
and guarded by the condition [password correct] can activate the action /grant access, which
is an effect of the transition (not its cause). Actions associated to transitions are
represented by expressions initiated by a slash (/).

As an example on how that diagram can be useful during business analysis, we can
imagine that a team is interested in understanding the life cycle of a book in the
bookstore. Examining the different states of a key business object such as a book for this
project may reduce the risk of underestimating the complexity of the system
requirements.

Thus, the team may discover that the book is initially registered in the catalog of a
publisher. The bookstore can then order a set of copies of the book. When the delivery
arrives, the book is added to stock and made available for sale. Once sold, the book is
removed from stock and taken to the shipment department. I n some situations, books
may return to the bookstore, for example, due to a wrong address, or for being damaged
during shipment. I n the first case, the bookstore must contact the customer and,
depending on the contact, it can cancel the sale or resend the book. The book life cycle
finishes only when the transport company confirms the delivery. All those changes of
state (transitions) are represented in Figure 2.12.

FIGURE 2.12 First state machine model for the life cycle of a book.

However, the model presented in Figure 2.12 is still incomplete regarding the possible
transitions of a book. For example, a delivered book can return damaged and, in that
case, cannot be resent or sold again. This can be represented by adding a guard condition
to the transition that goes from the Returned state to the Sent state, and adding a new
final state in which the book is discarded, as shown in Figure 2.13.

FIGURE 2.13 State machine diagram with guard conditions.

These guard conditions are still very informal. But this is acceptable during business
modeling, because the goal is to understand the organization of the business, not specify
a computational system. Nevertheless, precise guard conditions may be obtained if a
formal language such as OCL (Object Constraint Language) is used. Later in this book
expressions using OCL are introduced.

I n some situations it is possible that an event causes a transition from more than one
state. I n the example of Figure 2.13, it can be imagined that a book may not only be
damaged when it is in state Returned, but also when it is in other states like In store and
Sold. Then, a transition to Discarded should exist from those three states. However, to
abbreviate this set of transitions a superstate may be used instead.

In Figure 2.14, any transition from the superstate In store represents a set of transitions
from each of its substates. I n the case of a transition to the superstate, it is necessary to
establish which of the substates would be the initial one. I n order to do that it is
necessary to include an initial state inside the superstate, or, instead, make the transition
go straight to the substate.

FIGURE 2.14 State machine diagram with a superstate.

An object may be simultaneously at more than one single state. For example, a book
may be a special offer or not from the moment it is ordered from the publisher until the
moment it reaches a final state as discharged or sold. Thus, a book may be modeled with
two concurrent states: the first state determines if it is a special offer or not, and the
second state determines its status regarding sales. I n the diagram in Figure 2.15 the
concurrent states are represented inside orthogonal regions in a superstate.

FIGURE 2.15 State machine diagram with regions.

When a transition leaves the superstate, then all concurrent substates are also left. For
example, when an arrival confirmation or discard event happens in the diagram in Figure

2.15, both concurrent states cease to be active and the book is considered to be at a final
state.

The analysis on the states of a book could continue. For example, it would be possible
to determine that a book in state Sold, Returned, or Sent could not change price from
Normal price to Special offer and vice versa. That could be modeled by adding a guard
condition to the transitions from states Normal price and Special offer: [not in state Sold,
Sent, or Returned].

Utilizing a state machine diagram to represent a business object is useful for
improving the discovery of system requirements related to some key business objects, as
shown in Section 3.4.

2.6 Remarks
I t is important to remember that the goal of business modeling is usually to find a
general view of the business, and not a detailed specification of its processes. Thus, in
most cases, the team’s goal is to concentrate on discovering information about the
business, and not on formally specifying how the business works as if it was a machine.

A question still may be asked: Which business elements deserve the production of a
state machine or activity diagram? Unless stated to the contrary, it is not advisable to
prepare a diagram for every business element, because, if this is done, I nception would
take too long to complete, and its objectives would be hindered. What is usually needed
at that point is a model for some key elements, so that their behavior can be be er
understood and their requirements derived later.

A clue to identify those key elements is to ask what the business objects are. I n the
case of a bookstore, they are books, in the case of a hotel, lodging, in the case of a court,
criminal processes, and so on. Thus, those are the key elements that must be modeled in
greater detail to help in understanding the business.

A second question could be the following: Which diagram should we use – activity or
state machine? The answer depends on the nature of the element to be modeled. A state
does not correspond necessarily to an activity. A TV, for instance, may be in state off,
when it is doing nothing. An activity diagram is useful when modeling people,
organizations, or systems doing things. On the other hand, the state machine diagram is
useful when a single entity passes through different states in which it is not necessarily
doing something. Furthermore, the activity diagram usually details a business use case
(that is, a process like selling, buying, checking, etc.), while the state machine diagram is
usually associated with a business object (like books, people, orders, etc.).

Business modeling is not just about building diagrams, however. The purpose of
diagrams is to help understand the context and the initial general requirements of a
project and a system. Business modeling is one of the key activities that help a team to
identify and prepare for project risks. Other risk mitigation activities may also be
performed during I nception, such as proof-of-concept, workshops, prototyping, early
tests, etc. Any strategy that helps in understanding the big picture and identifying the
major risks and complexities of a project are valid.

2.7 The process so far

2.8 Questions
1. What is the purpose of business modeling?
2. Business modeling can occur with different levels of intensity for different kinds of

projects. Explain and give examples!
3. What is the difference between a business worker and a business actor?
4. Which aspects of a business may be detailed by an activity diagram? Which may be

detailed by a state machine diagram?
1Formerly known as Business Process Modeling Notation.
2http://www.bpmn.org/
3Why a virtual bookstore? Because it is a typical commercial information system, and because most readers should
already have experience with that kind of system, and also because it is sufficiently simple, although rich, to illustrate the
modeling techniques of this book. Such systems are already available for acquisition and customization, and it might not
make sense to develop a new one from scratch, but the purpose here is just didactic.
4http://tynerblain.com/blog/2007/01/22/how-to-write-good-use-case-names/
5If we are modeling a company as a whole usually business workers do not appear, as they are internal to the company’s
system. But if connections between different subsystems of the company are shown, then business workers must appear.
6Some approaches suggest the use of arrows to indicate whether the actor only receives or sends information to the
system. But that practice, besides not being supported by UML 2, brings practically no useful information at this point of
the business analysis, because at the moment it is only important to know which use cases really exist, and which actors
are involved with them. The details on the interaction will be given later with the activity diagrams that will describe how
a business use case is performed.

http://www.bpmn.org/
http://tynerblain.com/blog/2007/01/22/how-to-write-good-use-case-names/

C H AP T E R 3

High-Level Requirements
This chapter presents system use case diagrams and supplementary specifications. It explains how the system use
cases are connected to the business use cases, and which business actors become system actors. The chapter explains
how high-level use cases represent the highest-level requirements of a system (functional and nonfunctional), and
how the supplementary specifications may be obtained based on the quality model of the recently consolidated IS O
25010 SQuaRE Model. The chapter also explains how to choose the granularity of a use case in order to avoid
diagrams so detailed that the number of elements hinders understanding, and how to avoid diagrams that miss
important use cases so that the analysis could be deluded by the apparent simplicity of an actually more complex
system. At the end of the chapter, we present the preliminary conceptual model, which is a class diagram used to
represent the concepts that are relevant to the system. This model is detailed in Chapters 6 and 7, but here it is
briefly introduced just to stress its importance in order to find the correct and complete set of requirements that a
system must implement.

Keywords
Use cases; actors; requirements; I SO 25010; SQuaRE; supplementary specifications;
preliminary conceptual model

Key Topics in this Chapter
• System Actors
• System Use Cases
• How to Find System Use Cases in the Business Model
• Requirements
• Preliminary Conceptual Model

3.1 Introduction to high-level requirements
Once the business has been reasonably understood and modeled, the requirements
analysis may begin. Although there are several approaches to represent requirements,
this book presents a technique based on use cases.

T h e system use case is an individual process that is identified from the business
activities (Section 2.4) . High-level (or brief) system use cases represent the more general
functional requirements of a system. The annotations on these use cases represent the
nonfunctional requirements, that is, the constraints and qualities related to those functions.
The supplementary requirements are nonfunctional requirements that apply to the system
as a whole – not only to individual functions. They may be represented in the
supplementary specification document (Section 3.5.8).

System use cases are useful for many activities related to systems development, such
as:

• Definition and validation of the system architecture: In general, classes, associations, and
attributes that form part of the system architecture are obtained from the use case1

texts (Section 3.6).
• Creation of test cases: Use cases can be seen as a basis for system and acceptance tests

(Section 11.7), where the functionality is tested from the point of view of the user.
• Planning iterations: Each use case receives a priority (Section 4.3), and the effort to

develop it is estimated (Section 4.2), so that the team can decide on which use cases to
develop at each iteration.

• Basis for user documentation: Use cases are descriptions of the system’s normal
operation flows, as well as alternate flows that represent how to deal with eventual
exceptional conditions (Chapter 5). These descriptions are an excellent basis for
starting the user manual, because all possible functionalities are described there in a
structured and complete way.

Each use case represents a coherent set of functional system requirements. Usually,
more than one function is related to a single use case, especially if it is a complex one.
Some functions, on the other hand, may be associated to more than one use case. I n
some situations it may also happen that a function corresponds to a single use case and
vice versa. This usually occurs with very simple use cases such as reports and entity
management.

There are at least three approaches for requirements and use cases:
• Create a list of functional requirements, and then identify use cases associated with

them.
• Create a set of use cases, and then extract the functional requirements from them.
• Consider that use cases are requirements. The brief version of the use cases

corresponds to high-level requirements and the expanded use cases correspond to the
complete set of requirements.

I n this book, the third approach is taken, because it is simpler, straighter, and avoids
generating different documents with the same goal. Requirements elicitation and
analysis corresponds, then, to the discovery of system use cases and their properties.

3.2 System actors
A system actor is an entity of the real world that interacts with the system through the use
case. Actors may be roles performed by people such as customers, publishers, sellers,
operators, etc. Actors can also be external systems, that is, systems that are outside the
scope of the project being developed.

Human actors or external systems interact with the target system by sending and
receiving information through an interface. I n the case of human actors, the information
is usually exchanged through data entry devices such as keyboards, mice, or other special
devices. Those actors receive information from the system through interfaces such as
screens, printers, or other special devices.

Communication with actors that are external systems usually happens through a
computer network. I n this case, the communication interface consists of the network and

its protocols.
The idea of external systems as actors must not be confused with internal ones that are

components of the system under development. For instance, a database management
system (D BMS), used to implement data persistence for the system under development,
is not an actor but a component of the inner architecture of the system. The following
rules may help to appropriately identify external systems that could be actors:
• System actors are complete information systems, and not only libraries of classes or

components. These systems store their own information, which can be exchanged
with the system being developed. That information may change independently from
the system being implemented.

• System actors are out of the scope of development, that is, the team will not necessarily
have access to the internal design of these systems, or the ability to change it. The
team must communicate with an system actor using the system actor’s own
definitions, because they cannot be modified.

S ome approaches consider that there are two kinds of actors: primary and secondary.
Primary actors are the ones whose goal the use case is trying to satisfy, while secondary
actors are actors that just provide some service to the process under discussion.
Examples of secondary actors are printers, web services, or people that must provide
information or confirmation, as for example, a clerk that confirms that the client has paid
in cash. I n this book we do not follow that distinction: we distinguish use case actors into
human or system actors only.

3.3 System use cases
S ystem use cases differ from business use cases (Section 2.3) in some aspects. For
example, business actors may spend days or even weeks performing a business use case,
while system use cases are often executed in a short period of time, usually minutes, with
one or a few actors interacting with a system and obtaining a consistent and complete
result for at least one of their goals. S ystem use cases also must be performed without
interruptions while business use cases are not restricted in that respect.

Another fundamental difference between a business use case and a system use case is
that the business use case is usually performed by many human actors, while the system
use case is normally performed by a few (sometimes just one) human actors. The fact is
that if a system use case is going to be performed by more than one human actor, then
they should be interacting at the same time with the system, and that is not a common
situation. Usually, each human actor accesses the system at a time of her convenience,
accessing necessary data and performing the necessary actions. This leads to a sequence
of system use cases and not to a single use case, as explained later. However, sometimes
more than one human actor may be available online; for example, at a supermarket when
a customer is buying goods, a supervisor may be summoned to perform actions that the
cashier is not allowed to do (e.g., cancel a sale). The point is that the supervisor must be
available online and the other actors must wait for her to show up before proceeding.

On the other hand, external computational systems may be considered online actors,

because they are available continuously. For example, it can be assumed that a credit
card operator is available online continuously. At the moment a customer decides to
make a payment with her credit card, the system actor Credit card operator will be
available.

A high-level system use case is represented only by a name inside an ellipse. I t is
usually associated to one or more actors as seen in Figure 3.1.

FIGURE 3.1 System use case diagram.

I n the diagram in Figure 3.1, the ellipses represent system use cases. By default, an
actor is a role performed by a human. Other kinds of actors may be represented by the
use of stereotypes, as shown in Figure 3.1, where the stereotype system indicates that
Credit card operator is an external system, not a human.

The use case diagram is a very popular UML diagram, but it is also frequently
misunderstood. I t is usual to see these diagrams with dozens of use cases and also some
of their fragments a ached. However, during I nception, the important thing is to know
what the major processes of the system are, and not to detail them. Thus, the presence of
fragments in the diagram, and the use of the include and extend relationships between use
cases (which sometimes reveal part of their internal structure) is not advisable. Concerns
about fragments and use cases including or extending others may be left for the moment
when those high-level processes are detailed by system sequence diagrams (Section 5.8).

Usually there is not enough information to discover all of the fragments at this time.
Why should only some of the use case fragments be shown and others not shown?
S imply show none at all in the diagram during I nception! This prevents the diagram
from having a large number of ellipses, which can hinder its comprehension. Thus, there
is a need for strong criteria to decide which use cases should be maintained in the
diagram to avoid, on one hand, a large number of excessively detailed processes, and on
the other hand, too few processes, which could lack important features of the system.

The rule is to consider as a use case only those processes that can be performed in
isolation. Partial processes that must necessarily be performed during other processes
must not be represented in the system use case diagram.

However, even following this guide the number of use cases in a real-world system
may still be too high, so that dealing with them may become difficult. To reduce the
number without losing information and precision a second rule may be used. I t consists

of grouping use cases that are somewhat related, especially if that may be done more
than once, like a pa ern. For example, there could be four use cases such as Create book,
Retrieve book, Update book, and Delete book, or just one use case called Manage book that
includes the four single processes. This is a pa ern, because it may be repeated for other
concepts: Manage publisher may be used instead of Create publisher, Retrieve publisher,
Update publisher, and Delete publisher. This pa ern is known as CRUD, which is an
acronym for Create, Retrieve, Update, and Delete.

The next subsections detail those rules and present other criteria for achieving the best
use case granularity.

3.3.1 Single session
A good system use case must be performed in a single session.2 This means that it
should begin and finish without interruption. For example, the registration of an order is
made during a single session of the system, involving the identification of the customer,
book selection, price visualization, payment, address selection, etc. Each of these aspects
is a functional requirement of the system.

Use cases must be performed as single processes. Processes that can only happen in
the context of other processes are just fragments, not use cases.

I n the case of the Livir system, calculating taxes is something that will happen only
during the process of ordering books. Let’s suppose that the requirements of the system
do not determine that it must be considered an independent process (although it could
be, if requirements were different). I n this case, Calculating taxes is not a use case, and
because of that fact, it should not be included in the diagram. Figure 3.2 illustrates the
situation that must be avoided – using fragments in the diagram.

FIGURE 3.2 Example of a use case fragment.

On the other hand, Order books can be considered a use case because it is a process
with a well-defined start and finish, it occurs in a contiguous time interval (without
interruptions), and it produces a sound result (the order is registered).

In the example represented in Figure 3.1, there are two possible scenarios that could be
investigated:
• The system will only confirm the order if the payment is made online (it is not

possible to save the shopping cart). In this case, the process of ordering books and
paying are just fragments of a single use case that could be called Buy books. If this is
the real requirement, then the diagram must be changed and the two use cases
replaced by a single use case named Buy books.

• The system will register the order, but not necessarily proceed to checkout, that is, the
shopping cart may be stored until the customer decides to finish the order (which can
be done immediately or at some other time). This is the case represented in Figure
3.1. In this case, Order books is one use case and Pay for books is another use case. They
can be performed immediately one after the other, or with an interval of some days,
and because of that, they should be considered independent use cases.

On the other hand, books are not automatically delivered when the order is paid:
someone is responsible for verifying, from time to time, which orders have been issued;
that person collects books in stock, and sends the package. The delivery process may
happen just after the order is paid, but it can also happen on the next day (or even six to
eight weeks later). This fact characterizes Delivery as a different use case. The Delivery
use case has buying books as a precondition, but buying is not part of delivery: delivery
just happens after it. Thus, buying and delivering, although sequential and even part of
the same business use case, must be considered as different system use cases, as shown
in Figure 3.3 where the Send books use case is introduced.

FIGURE 3.3 Use cases related to the business process of selling books.

3.3.2 Interactive
A use case must also be interactive, meaning that an actor must exist to interact with the
system. The internal processes of the system are not use cases no ma er how complex
they are. On the other side, a simple query on some information may be a use case if
there is an actor that starts it.

The aforementioned internal processes are either part of a use case (as, for instance,
Calculate taxes is part of Buy books), or supplementary requirements (as, for instance,
Store data at a relational database). I n the case of supplementary requirements, they are
usually implemented by internal mechanisms that do not depend on user interaction.
D uring the I nception phase they are recorded as supplementary specifications (Section
3.4.8) or nonfunctional requirements (annotations on use cases – S ection 3.4.5), so that
the risk and effort that they imply is not underestimated.

3.3.3 Consistent result
A use case must produce a consistent result, be it a complete entry or transformation on
a piece of information, or simply a query where relevant information is passed to a user.
A use case cannot leave the information at an inconsistent state at its end. For instance,
the registering of an order cannot be concluded without the identification of the
customer and the books she is ordering, or else the information about the order would
be incomplete regarding the business rules; the bookstore could not resume the order or
charge it without knowing who the customer is and which books are ordered.

To decide if a use case has a consistent result, one could think like this: only a
complete process is a system use case, in the sense that a user could go to the computer,
turn it on, perform the process, and at its end, turn off the computer, because the process
is complete, and some business goal was obtained (some relevant information was
received or updated by the user).

This excludes from the use case definition fragments such as Calculate taxes, in the case
of the bookstore example, because those taxes are calculated only inside the ordering
process, and not as an isolated process. That also excludes operations such as Login,
because performing a login and then turning off the computer cannot be seen as a
complete process. It may be just part of one or more use cases (Figure 3.4).

FIGURE 3.4 Login must not be considered a complete use case.

To avoid representing Login as a use case or even as part of one it may be simply
assumed that every system operation could only be performed by a user that is regularly

identified and authorized to perform it. This mechanism is part of the technological
design of the system and does not need to be considered in the high-level use case
model.

On the other hand, it is possible that complete use cases occur inside other use cases.
For example, the process of registering a customer can be considered a complete use
case. But that process can also occur during book ordering, especially if it is the first time
that the customer is using the system, or when she needs to update data (Figure 3.5).

FIGURE 3.5 Independent use cases that may be related.

The dependency association between use cases is stereotyped with extend to
indicate that the process of ordering books may occasionally be extended by the process
of registering the customer. Both processes may occur independently from each other,
but the customer registration can also occur during book ordering.

To avoid abusing extend in the use case diagram, it is important to keep in mind
that only complete use cases must be maintained in the diagram. Fragments like those
shown in Figures 3.2 and 3.4 must be avoided, even if they are extension points of a use
case. These fragments will be addressed appropriately later, when the high-level use
cases are detailed (Chapter 5). I n practice, at this point, any association between use
cases such as extend or include should be avoided in the diagram because they usually add
no useful information for the Inception phase.

3.3.4 Essential
Two styles for writing use cases may be identified:
• Essential use cases, which do not mention interface technology.
• Concrete (or real) use cases, which are specifically written for a given interface

technology.
D uring requirements elicitation and analysis, system use cases are considered

requirements, not design. I t is a common mistake to include among these use case
actions that are purely related to an interface technology (such as Open main window,
Print report, and Login). People prepared to handle that facet of design will decide on
those actions later, after the requirements are discovered.

Ambler (2000) points out that essential models are more flexible, leaving more options
open and more readily accommodating changes in technology. He also says that essential
models are more robust than concrete representations because they are more likely to

remain valid in the face of changing implementation technology.
Thus, essential use cases must be considered as the correct option during

requirements elicitation, although technology details or options may be annotated to
allow risk management and effort calculation. Later in this book (S ection 5.4.1), the
difference between essential and concrete use cases will be explained in more detail.

3.3.5 Brief
D uring I nception use cases usually are brief, meaning that they are described just by
their name or, in some cases, by one or two sentences. However, this is not the only way a
use case may be described. Later they will be extended and contain more details about
the requirements (Chapter 5) . Cockburn (2001) identifies three types of use cases with
regard to the level of detail:

• Brief: A one-paragraph synopsis of the use case.
• Casual: Written in simple, paragraph, prose style. It is likely to be missing project

information associated with the use case, and is likely to be less rigorous in its
description than a fully dressed use case.

• Fully Dressed: Expanded to include a main flow and alternate flows, as well as other
sections such as postconditions, preconditions, stakeholders, and technological
variations.

I n this book we expect that use cases considered during the I nception phase will be
brief. This means that usually their name is sufficient to explain their meaning. However,
additional explanation is allowed for the sake of requirements comprehension. Also, if
some key use cases have to be expanded in order to identify risks regarding their
inherent complexity, this is also acceptable. Usually, fully dressed or expanded use cases
will be useful only after Inception, when requirements must be detailed adequately.

3.3.6 System boundary
One of the decisions a team must make when designing system use cases is where to
place the system boundary. Graphically, the boundary is only a rectangle that is placed
on the diagram. I nside it are the use cases and outside are the actors. I n business use
case diagrams, the system boundary represents the limits of the organization (company,
department, etc.). Here, it represents the limits of a computational system.

A decision was made earlier on which workers to include in the automation border.
One example is the clerk that helps the customer buy books. I n that case, when modeling
system use cases the Clerk disappears, and the use case is performed by the customer
itself.

However, if it was not a virtual bookstore, but a regular one where customers buy at a
store, should the clerk be kept in the use case diagram? For a use case to be as essential
as possible, it is recommended that only actors that are really interested in the use case
be kept in the diagram. The clerk of the example is just a proxy of the customer; the clerk
has no personal goals in the process of buying books. I t acts simply as a system interface.

Whether the bookstore is virtual or not, the essential use case should be the same,
because the same information would be exchanged between the customer and the
system; the clerk would only transmit information as she receives it. I n this case, the only
actor would be the customer and the clerk should not even appear in the diagram. I n this
way, the analysis will produce use cases that are technology independent.

S omeone could ask the following: What if the clerk must indicate that she assisted in
the sale so that a percentage would be paid to her? I n that case, what we have is a use
case that is different from the one mentioned in the last paragraph. Here, both the
customer and the clerk should be actors: the customer is interested in the books and the
clerk is interested in the percentage. Also, if the clerk may perform actions that are not
allowed for the customer (e.g., overriding a product price) she must be considered an
actor and may not be removed from the diagram.

3.4 How to find system use cases in the business model
I n order to discover system use cases and actors, the team may examine the business use
case diagram with the defined automation boundary (scope of automation).

First, the actors that are really interested in the process to be automated should be
identified. These are the business actors that interact with the business use cases inside
the automation scope, and the business workers that interact with such use cases but
that are not themselves inside the automation scope. I n the case of Figure 2.11, the
following system actors could be identified:
• Customer, Publisher and Credit card operator, because they are business actors that

interact with use cases that will be automated.
• Acquisition manager, because it is a business worker that will not be automated, but

that interacts with a use case that will be.
On the other hand, the following will not be considered system actors:

• Clerk, because it is a business worker that will be automated.
• Marketing Department, because it is a business worker that does not interact with any

use case inside the automation scope.
The business workers whose functions will be partially or totally supported by the

system may be important sources of information, because knowing how they perform
their duties currently may be crucial to understand how the system must work.
Moreover, knowing how the duties are really performed may be valuable because
sometimes what happens in practice is not what is written in the procedure books.

Another source of requirements is the business actors that will become system actors.
However, they will not always be available for requirements elicitation, and, in that case,
they should be replaced by domain specialists. For example, it may not be possible to
interview the customer of a bookstore that does not exist yet. Thus, someone that knows
the business and can explain how it is supposed to work will be a key person for
obtaining the right requirements. I f the publishers and credit card operators are also not
available, it still would be possible to examine existing documentation on the
communication protocols and services offered, so that the interfacing requirements with

them can be known. I n the case of the customer, however, such a possibility would not
be feasible.

Once system actors have been identified from the business use case diagrams, it will
be possible to observe the activity and state diagrams that were produced during
business analysis in order to verify which activities performed by the system actors can
be considered system use cases.

By analyzing the activities of Figure 2.10, we can see that the activities performed by
the Customer are:

• Order books.
• Pay for books.
The only activity of the Publisher is Send books, and the only activity of the Credit card

operator is Confirm payment.
Not every activity of the original Clerk becomes a system use case. As seen in Figure

2.7, the clerk was split into two actors: Acquisition manager, which will not be automated,
and Clerk, which will be automated. The activities performed by the Acquisition manager
role may become system use cases. However, the activities performed by the business
worker Clerk, which is being automated, become internal actions of the system. For
example, the activities Register order and Inform availability and total in Figure 2.10 do not
become system use cases; they are just part of the use case Order books initiated by the
customer. However, Order books from supplier is a system use case whose actor is the
Acquisition manager.

Regarding processes that will be identified as use cases, one must still consider two
concerns:

• Do the activities connected by a flow necessarily occur immediately or can they occur
in different moments? In the example, are Order books and Pay for books activities that
must occur in a single session of use of the system, or can they be performed in
different moments? The answer will depend on the way the business is organized,
that is, it will depend on the business rules. If the company decides that the order is
received only after the payment is made, then those two activities form a single use
case. However, if the company decides that it is possible to register an order (save a
shopping cart) and pay for it some other day, then there are two different use cases.

• Are the activities selected complete and sound? For example, is Send books a good
description of the activity performed by the publisher? By the similarity to the
process performed by the customer, it can be inferred that the publisher will first
receive an order, and then it will send the books it has in stock. However, the payment
in the business-to-business case is usually not made immediately – an invoice is
generated and paid by the bookstore with a predefined deadline (for example, four
weeks after purchasing).

At this point, the diagram of Figure 2.10 should be revised. The publisher does not
simply Send books. I t is going to receive the order, send an invoice for payment, and
finally send the books that are available. The books must be received and registered by
some worker at the bookstore. That worker will be a new system actor and could be
called Deposit worker.

A recurrent question is if actors correspond to security profiles. This is not necessarily
the case. The goal behind the identification and modeling of actors is more related to the
process of finding and organizing requirements than to the process of granting access to
the system. A good software design will treat access permission in a dynamic way,
allowing user profiles to be created, and permissions to be associated to the different
profiles of individual users. As that aspect of the system is not domain dependent it is
not adequate to model it within the domain. I n other words, use case actors should not
be considered as security profiles. Those profiles will be created dynamically with the use
of a generic domain-independent mechanism.

The state machine diagram presented in Figure 2.15 is also particularly helpful in
terms of system use cases that must be analyzed. Each change of state of a book (main
business object), must be done by someone, and that “someone” is an actor performing a
use case. Thus, from the transitions in that diagram a new set of system use cases was
discovered as shown in Figure 3.6.

FIGURE 3.6 System use case model completed with information discovered on the state machine diagram of
Figure 2.15.

I n Figure 3.6, the use cases Catalog book and Order book from publisher are maintained
outside the scope of the Livir system. This is due to the fact that it was discovered at a
point that such use cases would be performed within the publisher system, not within

the system under development. As they are not included in the bookstore system, they
may be maintained in the diagram, but outside the system boundary, because they are
out of scope and will not be implemented.

After making sure that it is understood that they will not be implemented, they may be
removed from the diagram, in order to simplify it and avoid later confusion with people
who may not understand that what is outside the boundary will not be implemented. I n
that case, their names may be listed in an out of scope list, for recording purposes.

The use cases associated with the new actor Deposit manager are necessary to cover
most of the transitions indicated in the state machine diagram of Figure 2.15. I t is
interesting to notice that some transitions are performed outside the scope of the
company. For example, when a customer decides to return a book, this is not done
through the bookstore system; she simply sends the book back, usually by mail. The
information regarding the return only reaches the bookstore when it receives the book.
Thus, the use case referred to here is Register book return and not Return book, because the
registry is made by the deposit manager, and not by the customer. This is similar to the
registry of the arrival of books, represented by the use case Receive books, because when
the publisher sends the books it cannot be registered in the bookstore system directly
(unless both systems are integrated). Only the arrival can be registered by the bookstore.
This is a fundamental difference between a business use case and a system use case: in a
business use case the process as it happens in the real world may be described as part of
the use case, but when the focus is on the system, only processes that involve the system
may be represented.

3.5 Requirements
Identifying system use cases is an activity that is part of the Requirements discipline of the
Unified Process. Requirements elicitation and analysis is a significant part of the
I nception phase. The team can and must use every available source to identify
requirements (specialists, users, documents, interfaces, literature, etc.), and, for each
source, a set of functions that the system must perform may be identified.

3.5.1 Requirements elicitation
Requirements elicitation corresponds to the search for information about the functions
that the system must perform, and for the constraints under which the system must
operate. I n the approach to requirements presented in this book, they will be recorded in
the system use cases.

Another way to register requirements without use cases would be by using a document
that consists of a list of functional requirements, possibly accompanied by a list of
constraints (S ommerville, 2006). The advantage of using use cases instead of a list of
functions is that a good use case has a well-defined granularity, which allows for the
generation of a high-level requirements list that is much more comprehensible than a list
of individual functions. Usually the number of high-level use cases is much lower than

the number of individual functions. The individual functions will appear in the use case
expansion, when the high-level use cases have their structure detailed.

I n the case of the Livir example, requirements elicitation will allow the team to
discover that the system must control buying and selling books, receiving payments,
allow damaged books to be registered, generate sales reports, verify if books are
available in stock, etc. These operations and many others will constitute the functionality
of the system, and this is why these requirements are called functional requirements.
These functions will be incorporated into one or more use cases.

On the other hand, during requirements elicitation the analyst may face business rules
or constraints on how functions must be performed by the system. For example, a
business rule could state that the bookstore only sends books after the payment is
confirmed. That kind of rule is a nonfunctional requirement that can be recorded as an
annotation or remark on the use case itself, in order to be recalled and verified when the
use case has to be detailed (Figure 3.7). Alternatively it could be recorded separately as a
numbered list or spreadsheet, with a reference to the use cases through a unique
number.

FIGURE 3.7 Nonfunctional requirements annotated in use cases.

As can be seen in Figure 3.7, the use case diagram with notes will quickly become too
complex to be useful. This is why it is recommended that such annotations should be
recorded inside the use case specifications or in a separate document. Most CASE
(Computer-Aided Software Engineering) tools allow that a diagram element such as a
use case have a specification window as shown in Figure 3.8. One exception to that rule
would be the case when the annotation is absolutely required to help understanding the
diagram. However, this is seldom the case.

FIGURE 3.8 Example of specification window for a use case. Image produced with the CASE tool Visual
Paradigm™ Community Edition.

3.5.2 Eliciting requirements is not design!
A system that is going to be analyzed is like a forest. To explore an unknown forest one
cannot start by examining each plant and animal. There is a saying that states that some
people cannot see the forest for the trees. The forest is the system and the trees are the
requirements. Only at the end of the process could a team say that they acquired
knowledge about the smallest parts. First, a view of the whole must be taken, and only
after that the details may be studied.

Thus, the I nception phase must provide a view of the whole – so that what is more
important can be seen first – and then the whole can be divided into parts so that the
details can be analyzed and finally a solution designed. The organization of iterations in
the Elaboration and Construction phases correspond to dividing the forest into sectors,
in order to see each sector at a time, and in that way, being able to deal with the inherent
complexity. Thus, one of the final goals for the I nception phase is to organize work
division in terms of use cases, which will be explored during the upcoming iterations.

D uring I nception, requirements elicitation must be quick and generic. The right way to
do this is to look at the extension of the requirements, not their details. The analyst must
understand the extension of what the system must do, without detailing how it will do
that. Only during the Elaboration iterations will the requirement analysis be deepened.

The time used for requirements elicitation time must be about discovery, not
invention. D uring this period, the team of analysts, with the clients, users, and other
stakeholders will try to list most of the capacities and restrictions with no concern about
detailing them. D etails about requirements will be conveniently accommodated during
the next iterations.

I t must also be clear that requirements are something that a client asks for, and not

something that the team designs. Some analysts mix requirements gathering – that is,
the memory of the demands of the client – with the beginning of the system’s design.
One example of this kind of confusion is a set of requirements involving relational
database design. Unless there are legacy systems that must be compatible to the new
system, how can it be justified that a set of relational tables is a client demand? That
could eventually be possible with some sophisticated clients with a degree in Computer
Science, but it is not the general rule. D atabase tables are part of the solution domain, not
the problem domain. The analyst must seek the requirements that correspond to the
client needs and goals in terms of information. Later, she may decide if that information
would be stored in a relational database or in another structure.

3.5.3 Requirements challenges
The requirements document, which can be formed by the use case diagrams with
annotations and by the supplementary specifications, must register the capacities of the
system and the conditions under which it must operate. The challenges regarding
requirements are, at a minimum, the following (Pressman, 2010):

• How to discover requirements.
• How to communicate requirements to the other phases and teams of the project.
• How to recall requirements during development in order to verify if they have all been

implemented.
• How to manage requirements change.

I t would be useless to develop a nice use case diagram, and later not be able to know if
the requirements incorporated there were included in the design. The existence of
automatic mechanisms to conduct this verification is crucial. Therefore, it is important to
maintain traceability relations between use cases and other parts of the design. The
following chapters show how those relations among design artifacts are obtained.

I t is necessary to keep in mind that requirements necessarily change during the
development of a project. Thus, the change must be managed, not avoided, after
Inception.

Sometimes, requirements change after the system is deployed. Context conditions,
regulations, company policies, or work methods may change anytime. Although the
analyst cannot foresee these changes, mechanisms to accommodate them may be created
in order to ease the change process when it is necessary. There are specific design
pa erns to deal with these requirement instabilities (as, for instance, the Strategy
pa ern, presented in Section 7.6). The changes are totally unpredictable. I f the system is
not structured to accommodate the changes in requirements it would probably be hard
to implement them.

This kind of situation makes requirements-driven analysis and design processes (Alford,
1991) inadequate for most systems. Using requirements as a base to support system
architecture is like building a house over moving sand; when requirements change, the
structure suffers. However, the Unified Process (UP) uses a much more stable basis for
the architecture, which is based on classes and components that encapsulate information

and behavior.
These classes implement functionalities that combined allow the implementation of

the requirements. I f requirements change, the combinations change, but not the basic
structure. This kind of architecture follows the open-close principle (Meyer, 1988), in the
sense that it is always closed for modification (it works), but open for extension (it may
accommodate new functionalities).

It is important to trace the origin of each requirement (e.g., a business actor, a business
worker, the client itself, or even a domain specialist), because it is necessary to validate
requirements with those sources, verifying if they are well written, complete and sound.

S ometimes it may also occur that different people or departments present different
specifications for the same requirement. I n that case, it is necessary to produce an
agreement among them, or identify who has the highest authority to determine the
acceptable form for the requirement.

3.5.4 Evident and hidden functional requirements
Functional requirements can be optionally identified as evident or hidden (Gause and
Weinberg, 1989):

• Evident functional requirements are functions that are performed with the user’s
knowledge. These requirements usually correspond to information exchange between
the user and the system, such as queries and data entry, which flows through the
system interface.

• Hidden functional requirements are functions performed by the system without
explicit knowledge of the user. Usually these functions are math operations and data
updating performed by the system without explicit user knowledge, but as a
consequence of other functions performed by the user.

Hidden requirements are performed internally by the system. Thus, although they do
not appear explicitly as use cases, they must be adequately associated to them in order to
be recalled at the time of design and implementation. Thus, they could also be added as
annotations to a use case.

An example of an evident requirement is the production of a report on bestselling
books, which is something a manager might require. An example of a hidden
requirement is applying a discount policy to a sale. I n that case, the user does not
explicitly request that the system perform the operation. As it is an activity that the
system performs automatically, it is a hidden requirement.

3.5.5 Nonfunctional requirements
Nonfunctional requirements are constraints or qualities that may be linked to specific
functions of a system (for example, “an order cannot contain more than one hundred
books,” “the order transaction must be preserved if communications are broken,” etc.),
and therefore they can be treated as annotations on the use cases that incorporate the
respective functions. Sometimes, however, nonfunctional requirements may be general,

that is, not necessarily a ached to a function (for example, “the system must be
implemented in J ava”), and in that case, they will appear in the supplementary
specifications document. Constraints and qualities that are specifically a ached to a
function are called nonfunctional requirements, and general constraints and qualities are
called supplementary requirements.

There are two kinds of nonfunctional requirements:
• Logical issues: Business rules attached to a function. For example, during sales

registration, a series of constraints could be considered, such as not closing the sale
until the credit card operator confirms the payment, or not closing the sale if the last
delivery to the same address has been returned due to invalid address.

• Technological issues: Constraints and qualities related to the technology used to
perform the function, such as, for example, the user interface, the kind of
communication protocol, security constraints, fault tolerance, and so on.

For example, establishing that the user interface to perform an order must follow a
design pa ern based on a sequential flow of screens is a technological constraint
(interface constraint) about the way that function must be performed. Another example
of a nonfunctional requirement is “the payment confirmation must not take more than 5
seconds.” This is a technological constraint related to system performance and it would
affect the way a designer would think about the communication mechanism with the
credit card operator. I n this case, the system design would have to consider seriously the
broadband connections to the operators.

A requirement does not establish how the constraint will be implemented, it just demands it.
The design and implementation of the system must meet the requirement in one way or
another, or otherwise the analyst should negotiate with the client for some requirement
flexibility.

3.5.6 Permanence and transience of nonfunctional
requirements
One of the most fundamental features of a requirement is whether a given nonfunctional
or supplementary requirement is permanent or transient.

Nonfunctional and supplementary requirements can be considered permanent (they
are not expected to change) or transient (they are expected to change) depending on a
decision made by the client. Permanence or transience is not an intrinsic feature of a
requirement: it is decided depending on the convenience. The same given requirements
can be considered permanent or transient depending on what is desired regarding the
time and cost of software development and maintenance.

I f one invests in flexible design, so that most constraints are transient, less effort will
be spent during maintenance in order to accommodate changes. However, the cost of
that flexible design during development may become prohibitive for some projects. I t
will always be a good idea to ponder which constraints should really be treated as
transient requirements.

For example, a supplementary requirement could establish that the Livir system must

deal with a single currency: the dollar. I f that requirement is considered permanent, then
the system will be designed for a single currency (“dollar” could even be a data type used
to define variables and a ributes). However, if the requirement is considered transient,
then even if there is no other currency being used today, the whole system must be
prepared to accommodate future currency, or even more than one currency at a time.

The consequences of deciding that a requirement is permanent are the following:
• It is cheaper and quicker to develop the system.
• It is more expensive and difficult to change the system if, by any chance, the

requirements change in the future.
On the other hand, deciding that the requirement is transient has the following

consequences:
• It is more expensive and complex to develop the system (it should accommodate

functionalities for changing the currency, for example).
• It is easier and quicker to maintain the system (if the currency changes, the system is

already prepared to accommodate that with a simple reconfiguration).
Thus, it is not the nature of the nonfunctional requirement that will decide whether it

is permanent or transient. I t is the client, with the help of the team, that must make the
decision. The ideal situation would be to list the requirements of greater importance
(those that are really expected to change in the near future with a bigger impact on the
system) and consider them transient, while leaving the others as permanent.

3.5.7 Mandatory and desired requirements
Requirements may also be considered mandatory or desired,3 that is, those that must be
obtained by any means and those that could be obtained if no bigger issue hinders the
development process.

I n the case of functional requirements, that classification indicates development
priorities. I f there is flexibility in the contract such that only the most important use
cases are implemented if there is no time to implement them all, then the team must
know which ones are mandatory.

However, if the team is able to make a good estimate of the effort needed to develop
the system, and if they have a good history of accurate estimation, there will be less
motivation for such distinction regarding functional requirements, because all
requirements are expected to be implemented in time.

On the other hand, nonfunctional and supplementary requirements are much more
unpredictable than functional ones with regard to effort estimation. Thus, in some cases,
it may be necessary to consider those requirements with some flexibility.

I n this case, some restrictions are defined such that they must be obtained by any
means and others may be considered simply desirable, and some time is allocated to
pursue them.

For example, in the case of the Livir system, the requirement for using a web interface
may be considered a mandatory supplementary requirement. I n that case, other
solutions are not acceptable. However, additional access through a cell phone could be

considered as desirable requirement, because such access is not absolutely necessary for
the effective success of the system.

Nowadays, with the formalization of software development contracts, there is less
flexibility regarding desirable requirements. I n most cases, the developer must state
which requirements will be implemented, how much time it will take, and how much it is
going to cost. S tepping outside that line may require the payment of fines or even
canceling the project.

3.5.8 Supplementary requirements
Supplementary requirements are all types of constraints and qualities related to the system
as a whole and not only to individual functions. For example, a supplementary
requirement may establish that the system must be compatible with a given legacy
database, or be implemented with a given programming language, or even follow a given
look and feel.

Care must be taken when supplementary requirements are defined. A requirement
such as “the system must be easy to use” is not sufficiently clear. I t would be be er to
say something like “novice users must be able to complete tasks without errors on their
first a empt.” That gives a more precise idea of what must be designed to accomplish
the requirement.

Nonfunctional and supplementary requirements may also be identified with different
groups such as, for example, interface, implementation, performance, fault tolerance, etc.
The goal of making such distinctions is to allow for better organization.

Although most UP practitioners would choose to use the FURPS+ classification system
(Grady, 1992) for organizing supplementary requirements, the newest source to decide
on supplementary requirements classification is ISO/IEC 25010,4 as shown in Table 3.1.

Table 3.1
Supplementary Requirements Classification Based on ISO/IEC 25010:2011 and
Requirements Generating Questions

Although this list is extensive, the team must keep in mind that it is only a
classification to improve the ability to identify which requirements are really important.
There is no need to seek nonexistent requirements, for example establishing complicated
packaging requirements for a client that does not care about the way the software will be
packaged.

I t is also advisable not to lose time discussing if a given requirement belongs to this or
that type. More important than deciding on its type is to know that it exists: long
discussions on requirements classification do not add significant knowledge to the
project.

Table 3.2 presents an example of supplementary requirements that could be assigned
to the Livir example.

Table 3.2
Supplementary Requirements for the Livir System

Not every field was filled because, as said before, requirements must not be invented,
they must be asked for by the client. Thus, usually there are not requirements in all
categories. The questions that generate requirements mentioned in Table 3.1 are a good
basis for finding eventual needs. But it is not mandatory to have an answer to all of those
questions.

3.6 Preliminary conceptual model
A lthough Chapters 6 and 7 present conceptual modeling techniques in detail, it is
necessary to mention here that there are interdependency relations between system use
cases and the so-called preliminary conceptual model (Larman, 2004). The preliminary
conceptual model is built during I nception, and consists of a class diagram that

represents the main information units of the system. I t is still not necessary to represent
a ributes. Although associations must appear in that model, it is not necessary to detail
their features.

By analyzing the system use case diagram, many important concepts may be
discovered. These concepts are represented as classes in the preliminary conceptual
model; they represent the structure of the information that will be managed by the
system. At the same time, an analyst, by observing the conceptual model, could notice if
the use case diagram is sufficiently complete. This verification usually occurs when new
entities are identified in a business process, and it is necessary that they be somehow
recorded by the system.

Figure 3.9 presents a possible preliminary conceptual model for the use case diagram
presented in Figure 3.6. The process for discovering classes consists of thinking about the
use cases and imagining which (high-level) information is exchanged between the actors
and the system to allow the process to work. The associations between classes represent
dependencies or relationships between the pieces of information represented by them.

FIGURE 3.9 Preliminary conceptual model for the use cases of Figure 3.6.

Looking at Figure 3.6 with the purpose of finding the concepts shown in Figure 3.9, it
can be seen that:

• Order books is probably the most important use case in the system. It gives rise to two
concepts, Book and Order, which are associated.

• Pay for books adds a new concept, Payment, which is associated with Order. At that
point the team could decide to change the name of the use case to Pay order.

• The Receive books use case gives rise to the concept Arrival, which is associated to Book.
Maybe at that point EntryOrder or BuyOrder could be introduced as a new concept.

• Deliver books produces a new concept, Delivery, which is associated to Order. Now
Deliver books may/should be renamed to Deliver order.

• Register delivery confirmation produces the concept Confirmation, which is associated
with Delivery.

• Register book return produces Return, which is associated to Order. Maybe at that point
the name of the use case should be changed to Register order return.

• Discard books produces Discard, which is associated to Book.
• Resend books does not create a new concept at first glance because it may be considered

the repetition of the use case Deliver books. However, that still must be analyzed
further.

• Cancel sale produces the Cancellation concept, which is associated to an Order. Maybe
the use case name should be changed to Cancel order at this point.

• Create/remove special offer creates the SpecialOffer concept, which is associated to Book.
The identification of that preliminary conceptual model is especially useful to ease the

visualization of the structure of the information that is going to be managed by the
system; this helps in unifying the vocabulary among the team members and other
stakeholders. The decisions about changing use case names in order to clean the
vocabulary are already implemented in Figure 3.10.

FIGURE 3.10 Use case model with names revised and CRUDs added.

But there is also the following important practical utility for the preliminary
conceptual model. Among the concepts shown, most are information elements created or
changed in the context of the use cases already identified. However, some of them are
neither created nor changed by those use cases, and that means that some use cases
could still be missing. This is the case especially for the classes Book, Publisher, and
Customer. Those concepts may be considered as a CRUD , because they allow the four
classical operations: Create, Retrieve, Update, and Delete. I f they are to be added to the
diagram, instead of representing them individually it would be be er to represent the
four operations by using a single CRUD use case, which is stereotyped with crud , as

seen in Figure 3.10.
A new actor was defined for managing the publishers and books: the Acquisition

manager. On the other hand, it was decided that the customer would be responsible for
its own record.

Why is there no CRUD for orders, canceling, returning, payment, etc.? Because those
are already managed by the use cases on the diagram, and it is not necessary to create
other use cases specifically for them. For example, an order is created by the use case
Order books; it is changed by use cases such as Cancel order and Pay order; it is visualized
(retrieved) in many use cases; and, finally, it is assumed that it cannot be removed from
the system.

Another question that could be raised with the stakeholders is: What are the reports
that the system must produce? Although they are the simplest use cases, as explained
later, reports are an important source of information for identifying which information is
necessary to fill the stakeholders’ needs.

There is a difference between reports and the retrieve query of CRUD : retrieving is
simply recovering stored data about an object; a report, however, usually involves a
number of objects, sometimes from different classes, and it necessarily includes some
kind of filtering or combination of data (sum, product, average, greater value, lower
value, etc.). For example, a query for information about a book, given its I SBN, should
not be considered as a report use case, because that query is already included in the
CRUD use case.

For the running example, some reports that are interesting to certain actors could be
identified, such as:

• Deposit manager: Report on upcoming orders by period of time, report on deliveries by
period of time, report on the total number of books available for sale, report on
returns received by period of time, and report on books discarded by period of time.

• Customer: Report on orders status, and report on past sales.
• Sales manager: Report on book sales by period of time.

The client could demand other reports, and the above are only examples. Those that
are used exclusively inside one of the existing use cases must be excluded from the
reports list. For example, the deposit manager could be interested in the list of orders
that are arriving. I f that list is going to be consulted only at the moment an order really
arrives and must be registered, then the query must be considered as part of the use case
Receive books, and must not be included in the diagram. Only reports that are not
necessarily part of other use cases must be included in the diagram; otherwise the list
could quickly grow far beyond the manageable, and would be redundant and incomplete
(because it is the use case expansion with sequence diagrams that will really indicate
which steps, including queries, are necessary for each use case). Figure 3.11 shows the
use case diagram updated with the reports (stereotyped with report) as indicated
above.

FIGURE 3.11 Use case diagram with reports.5

The quantity of report use cases will depend on the structure of the information
they present. When parameterization is possible it must be used. I t is not necessary, for
example, to have a Sales report by week and Sales report by month. Unless they present
different data structures, they are a single report. The reference to a week, month, or any
other period of time is just a parameter.

However, it is not advisable to group reports with diverse natures, for example Sales
report by book and Deliveries report by period of time: the inputs and outputs are different.
Thus, those two reports must be considered two different use cases.

As seen in Figure 3.11, the number of use cases may become high and the diagram
may quickly become hard to organize. This is one of the reasons to avoid including
fragments in these diagrams. Each single use case will be detailed by other means. Also,
the CRUD and report use cases may not be included in the main use case diagram if the
system is at least of moderate size. They must be listed somewhere else (a spreadsheet or
a separated use case diagram, for instance), in order not to pollute the main use case
diagram. Another solution that may be used sometimes is to represent them with a
different color (as done in Figures 3.10 and 3.11), so that they do not hinder the
visualization of the key use cases in the diagram.

3.7 The process so far

3.8 Questions
1. Explain the differences between a business use case and a system use case.
2. What is the utility of a system use case through the software development process?
3. Which business actors and business workers are converted into system actors?
4. What are functional, nonfunctional, and supplementary requirements and what

features might they have?
5. Why must a preliminary conceptual model be made during the Inception phase?
1From now on, system use cases will be referred to simply as use cases for simplicity, except when they are compared to
business use cases.
2That idea follows Larman’s (2004) definition of an EBP (Elementary Business Process) use case. The EBP definition comes
from the business process engineering field: “a task performed by one person in one place at one time, in response to a
business event, which adds measurable business value and leaves the data in a consistent state.”
3Another option is to use the MoSCoW scale: Must, Should, Could, and Would.
4http://www.iso.org/iso/catalogue_detail?csnumber=35733
5Use cases stereotyped with report have their names abbreviated to avoid repeating “Generate report for …”
repeated many times.

http://www.iso.org/iso/catalogue_detail?csnumber=35733

C H AP T E R E 4

Use Case Based Project Planning
This chapter shows how to plan and develop a project using iterations, risk analysis, and effort estimation based on
high-level use cases. It explains how the effort to develop the project is estimated based on the perceived complexity
of each use case and other features of the system and development team. Finally, the chapter explains how to
organize a series of incremental iterations based on a prioritized list of use cases and risks, which is the backbone for
the development plan with the Unified Process.

Keywords
Use case point analysis; risk analysis; effort estimation; iteration; project planning

4.1 Introduction to effort estimation and risk analysis in
software projects
The motivation for effort estimation in software projects comes from the fact that
historically most software development projects:
• Take more time to complete than expected.
• Cost much more than expected.
• Generate a product that does not have the quality expected.
• Generate a product that does not have the scope expected.
Thus, the point is that software development teams and clients must learn to expect

the right time, cost, quality, and scope regarding their project and their team. Effort
estimation techniques are used to accomplish these goals.

4.1.1 Ad hoc techniques
A number of techniques for effort estimation have been proposed and used in the last
several decades. One that is very popular is the Smith technique, which may be
summarized as “Smith, tell us how much time you need to develop that system!” A
variation of the Smith technique is the constrained Smith technique, which may be
summarized as “Smith, you have three months to develop that system!” Although
popular (and known by other names, such as Susan, Peter, Mary, etc.), this approach is
not very accurate.

Another ad-hoc technique that is used is the six months technique. I t consists of
estimating “six months” for any software project at the beginning of its development and
then adjusting it up or down as the scope and requirements are discovered. Variations of
that technique are virtually infinite, including the One Year technique and the Eighteen
Months technique, among others.

These kinds of techniques are known as nonparametric estimation because they are not
based on measures on the project to be developed. Somerville (2006) identifies some
other nonparametric techniques:
• Expert judgment. The expert judgment technique proposes that one or more experts on

the project domain and software development should meet and use their experience
to produce an estimate. The Smith technique is a potentially bad scenario for the
expert judgment technique: the technique may be very inaccurate, depending on the
expertise of the estimators. However, if the experts really have experience in similar
projects it is a feasible, quick, and relatively cheap technique.

• Estimation by analogy. That technique is in fact the pragmatic basis for the expert
judgment technique. It is assumed that the effort for developing a new system will be
similar to the effort for developing other similar systems. The technique is not
feasible if similar projects are not available for comparison. It can make good use of
one or more experts in order to determine what qualifies as a similar system and how
the time spent to develop it may be used as a basis to estimate the effort for the
current project. Thus, this technique usually may evolve to expert judgment.

• Parkinson’s Law. That technique is not usually adopted openly, but it is recurrent in
software projects and in other areas: the project costs whatever resources are available.
The advantage is that the project will not cost more than expected, but frequently the
scope of the system will not be completely covered.

• Pricing to win. The cost of the project is equal to the price that it is believed will win
the contract. The disadvantage of this method is that the system the client gets may
not be what she expected, because as costs must usually be reduced, this may impact
quality and scope. However, when there is no detailed information about the system
and the team lacks experience on more advanced estimation techniques this
technique may be chosen: the project cost is agreed based on common
understandings and the development is constrained by the cost.

The agile community usually adopts an estimation strategy that is based on story
points. A user story is a scenario of use of a system, and it is somewhat similar to a use
case. However, use cases are more structured and formal; they are produced by a team of
analysts. User stories, on the other hand, must be wri en by the users themselves. They
must represent a scenario where the users see themselves using the system that is going
to be produced. The idea behind this is that the users present the needs that are most
important for them first; the details would be remembered later.

O ne story point is considered to be an ideal working day (6 to 8 hours focused and
dedicated to a project). The estimation effort is then calculated for each user story in
terms of story points. The question to be answered by the team is, “How many ideal days
x people would take to develop a given user story?” I f the answer is x people would take
y days, then the number of story points is x*y. S tory points assignment is subjective and
may be considered a nonparametric technique. The team usually evaluates the effort
based on their experience on similar past projects. The assignment is made based on
effort, complexity, and risk. For example, the following questions could be asked:
• Complexity: Does this user story have many possible scenarios?

• Effort: Is the change going to be made in many different components?
• Risk: Does anyone in the team know the technology necessary to develop this story?
Another way to estimate user stories is to place all user stories on cards on the table.

Then, the simplest ones to develop are separated and one story point or less is assigned
to them. After that, the simplest of the remaining stories are separated and two story
points assigned to them. This procedure is repeated until no more user stories remain on
the table. I t is suggested that each iteration increase the number of story points by
following a series similar to the Fibonacci series such as 0, ½, 1, 2, 3, 5, 8, 13, 20, 40, 100,
etc.1 The reasoning behind this is that for an average human it is hard to estimate how
much a horse weighs; however, most people will agree that a horse weighs more than a
dog and less than an elephant.

I f a user story is determined to take less than one ideal working day, it must be
a ached to another story, and stories that are above a given limit (for example, 10 story
points) must be split into simpler stories.

4.1.2 Parametric techniques
Another class of estimation techniques includes the parametric ones which aim to
present an effort estimation based on the estimated size of the system, the technical
difficulty to develop it, and the capacity of the team, among other features. The size of
the system may be measured in terms of:
• Lines of code. Techniques such as COCOMO II – COnstructive COst MOdel II (Boehm,

2000) start estimating how many source lines of code (SLOC) the system will have. In
fact, as most systems have thousands of lines of code, the usual measure is kilo source
lines of code (KSLOC).

• Function points. Techniques based on function point analysis (FPA) (Albrecht, 1979)
and its variations are not concerned about lines of code. They estimate that the effort
to develop a system depends on the apparent functionality that is going to be
implemented. Thus, usually these techniques count the number of functional
requirements and evaluate their complexity by asking how many classes or data
records they need to use in order to be implemented and how many arguments a user
sends or receives from the system in order to perform the function.

• Use case points. That is a variation of the function point analysis technique that is
based on use cases instead of functional requirements for estimation. This technique
is explained in detail in Section 4.2.

Although COCOMO I I is the most detailed technique it has a disadvantage compared
to function points and use case points: the number of KS LOC must be estimated by
specialists before applying the method, and this is a significant source of uncertainty. 2

Function points and use case points are based on requirements, which may actually be
known at the beginning of a project (of course requirements may change during
development, but when they change estimation may be immediately updated in a
systematic way).

I n addition to the size of the system measured in lines of code or apparent

functionality, the parametric techniques also make use of technical adjustment factors. It is
assumed that implementing a function of the same size may be easier or harder
depending on the kind of system that is being developed. For example, an information
system like Livir is more straightforward to implement than a robot surgery system or a
core system embedded into an airplane. The same amount of source lines of code may
take more or less time to develop depending on the technical complexity of the system.

The most complete technique regarding technical adjustment factors is COCOMO I I ,
which proposed the use of up to 16 effort multipliers divided into four groups:
• Product attributes. These include the reliability required for the software, the relative

size of the test database, the inner complexity of the product, development aiming at
reusability, and the quantity of documentation expected and needed.

• Hardware attributes. These include aspects related to time and space efficiency and the
volatility of the development platform.

• Personnel attributes. These include the capacity of analysts and programmers,
personnel continuity, experience on similar applications, and experience on the
platform, programming language, and other software tools.

• Project attributes. These include the use of computer-aided software engineering
(CASE) tools, distribution of the development team, and the need to accelerate the
development schedule.

Use case points and function points have similar effort multipliers but with a different
organization and sometimes a different interpretation. I n both methods, the effort
multipliers are a numeric index that is multiplied by the estimated size of the system to
produce effort estimation. However, COCOMO I I has a unique feature: a set of scale
factors. There are five such factors:
• Precedentedness. Is the product similar to others that were already developed by the

same team?
• Development flexibility. Does the product have to be developed straight to the

requirements or are the requirements only general goals?
• Architecture and risk resolution. Is there good support to resolve risks and architectural

issues?
• Team cohesion. Have the team worked together before? Are they nicely integrated?
• Process maturity. What is the maturity of the organization? CMMI3 (SEI-CMU, 2010)

and SPICE4 (Emam, Melo & Drouin, 1997) may be used as a measure of maturity.
COCOMO II also proposes a simple questionnaire that helps to estimate the maturity
of the organization if other assessments are not available.

The difference here is that those scale factors are not multiplied by the system size:
they are used in an exponential. Average values (near 1) for these factors means a nominal
scale where each line of code produced costs the same regardless of the size of the
software. I f the scale factors are bad, then their numerical value is greater than 1 and this
means that a line of code in a bigger system costs more than a line of code in a smaller
system. I f the scale factors are good, then the team gains in scale, that is, a line of code in
a bigger system costs less than a line of code in a smaller system.

4.1.3 Risk analysis

4.1.3 Risk analysis
A risk is something that may happen and cause trouble.5 Risks are very frequent and
numerous in software projects. There are different categories of risk and they have
different impacts: there are some that are just a nuisance and others that may cause the
termination of the project. Usually the process of dealing with risks involves:
• Identification. The team must discover and be aware of the conditions that may trigger

problems in a project. Checklists such as the one by Carr et al. (1993) may help the
identification process.

• Analysis. Risks are analyzed so that some of their attributes are discovered. Usually at
least two attributes must be identified: the probability of the occurrence of the
condition that triggers the risk, and the impact that the risk has on the project. The
exposure or importance of a risk is a combination of probability and impact. Usually
risks with high probability of occurrence and high impact on the project are the most
important.

• Planning. Once the exposure of the risks is assessed, plans must be made for medium-
and high-exposure risks and the project must include activities to minimize the
probability and/or impact of the most important risks. These plans are the mitigation
plans. Moreover, recovery or contingency plans should also be prepared for the most
important risks and they will be executed if, despite the mitigation activities, the risk
still becomes a problem.

• Control. The risks of a project are even more unstable than its requirements: they
change frequently and unexpectedly. New risks are discovered during development
and their importance may change. Thus, the project manager must be aware of that
and pay close attention to the status of the risks during the whole project.

D ifferent sources of risks may be identified. Carr et al. (1993) presents the following
structure:
• Product engineering:

• Requirements: Are they stable, complete, clear, valid, and feasible? Is the project
something that has never been made before? Is the project bigger than any other
the organization has undertaken before?

• Design: Is it difficult to obtain? Are the interfaces with other systems clear and easy?
Are there performance, testability, and hardware constraints? Will software
developed outside the company be used?

• Code and test: Is the implementation feasible? Is the time reserved for testing
enough?

• Integration and test: Is the integration and test environment adequate?
• Engineering aspects: Will the software be easy to maintain? Are the reliability, safety,

and security requirements easy to obtain and verify? Are there special human
factors to be taken into account? Is the documentation adequate for the project?

• Development environment:
• Development process: Is there a clear and proven development process in use? Are

the plans formally controlled? Is the process adequate for this kind of system? Do
the members of the team know and use the process? Are there clear mechanisms

for managing changes to the product?
• Development system: Is there adequate hardware and other tools for the development

of the project? Are the tools easy to use? Does the team know how to use the tools?
Are the tools reliable?

• Management process: Are the plans adequate? Do they include contingency plans?
Are roles and authority inside the project well defined? Do the managers have
experience? How does the team communicate with other stakeholders?

• Management method: Are there metrics to help management? Are the project
personnel trained? Is quality management adequate? Is the configuration of code
and other artifacts controlled?

• Working environment: Is the team concerned about quality? Is the team cooperative?
Is communication among team members good? Is the morale of the team high?

• External constraints:
• Resources: Is the schedule reliable and stable? Is the team experienced and capable?

Is the budget adequate? Are the facilities adequate?
• Contract: What kind of contract exists? Are there contractual constraints? Does the

project depend on external partners?
• Communication interfaces: Are there problems with the client such as weak

communication or incomplete knowledge about the domain?
• Subcontracted personnel: Are there problems with partner companies such as weak

interfaces, poor communication, or lack of collaboration? Does the project depend
on them?

• Main contractor: If you are a subcontracted company, are there any difficult issues
regarding the main contractor?

• Management: Is the higher management absent or micromanaging?
• Sellers: Do the product sellers you are using solve issues quickly?
• Policies: Are policies creating trouble for the project?

This list is just a reference; many other unpredictable risks may appear in most
projects.

After being identified, risks must be analyzed. Many risk a ributes may be identified.
Among them, maybe the most important are:
• Probability: The chance that a risk really becomes a problem. If there is a historical

series of data, risk probability could be measured numerically. However, most risks
are assessed using the t-shirt scale, where “high” means that it is almost sure that the
risk will become a problem, “medium” means that it is expected that the risk will
become a problem, and “low” means that the chance for the risk to become a problem
is minimal.

• Impact: The price to pay (monetary or not) when the risk becomes a problem. Again,
numerical measures may be used if sufficient information is available. For most
projects, risk impact could be assessed as “high” (may terminate the project),
“medium” (may raise the project’s costs significantly), and “low” (may cause some
trouble, but losses are easily recoverable).

• Importance or exposure: The combination of probability and impact, as expressed in

Table e4.1.

Table e4.1
How to Calculate the Exposure of a Risk

High- and medium-exposure risks should have mitigation plans for reducing the
probability and/or impact. I n the case of high-exposure risks, it is advisable to execute
the plans as soon as possible, while medium-exposure risks may be addressed later.
Thus, risk mitigation activities will be included in the project effort at this time. Low-
exposure risks may just be monitored in order to detect if their exposure changes during
the project.

Among other possible definitions, it may be said that a risk is composed of three parts:
• Cause: An uncertain condition that may create trouble.
• Problem: A situation that could occur given the uncertainty of the cause.
• Effect: An impact over one or more of the project’s goals.

Thus, there are three kinds of plans that may be associated to risks:
• Mitigation plan for reducing risk probability: It must act on the cause of the risk, reducing

the probability of its occurrence.
• Mitigation plan for reducing risk impact: It must act on the effects of the risk, reducing

the cost of recoverability if the risk really becomes a problem.
• Contingency plan or disaster recovery plan: It states what to do after the risk actually

becomes a problem, that is, it acts on the problem created by the risk.
Mitigation plans are preventive: they should be executed before the risk becomes a

problem. Contingency plans, on the other hand, are performed only if the risk really
becomes a problem.

Table e4.2 presents an example with some risks related to the Livir project and a
simple statement of mitigation and contingency actions. More detailed plans could be
elaborated, though, if necessary.

Table e4.2
Example of Risks and Plans for the Livir Project

Risks must be monitored while the project is being developed. As requirements
usually do, risk may change over time. Even their names and properties may change.
That is why risks are identified by a code: to keep track of them even when they change.

4.2 Use case point analysis6

Once system use cases have been identified, the effort necessary to develop them may be
estimated. Furthermore, the use cases must be prioritized so that the most important use
cases are developed first. I n iterative processes such as the Unified Process, a relatively
small set of use cases will be developed at each iteration. Thus, planning a project using
this kind of process consists of determining a general plan or phase plan and a set of
iteration plans that determines which use cases or risks will be addressed at each
iteration. This is why it is important to determine a project’s priorities and estimate the
effort necessary to develop them. D uring I nception, only the phase plan and the plan for
the first iteration of Elaboration are built. Each further iteration is planned while the
previous one is being performed.

Phase and iteration planning are typical project management activities. Effort
estimation is a planning tool that indicates, among other things, how much time and
personnel is needed by the project.

The technique known as use case points (Karner, 1993) is based on function points
(Albrecht & Gaffney J r., 1983), specifically on the MK I I or Mark I I counting technique
(S ymons, 1988), which is a relatively simpler approach than that of the I FPUG
(International Functional Point Users Group).7

Use case point analysis is simpler than function point analysis, but it still suffers from

not having strong reports on its application to a wide number of projects, such as
function point analysis and COCOMO I I do. Another problem with use case point
analysis is that the team comprehension on what constitutes a use case may produce
disparate estimations. COCOMO I I suffers from a similar problem because it is based on
a crude estimation on the number of lines of code to be produced, but it allows
estimators to use a backfire table (Center for S oftware Engineering USC, 2000) to convert
function points into lines of code (with different conversion rates depending on the
language used). Moreover, function point analysis also depends on the capacity of the
estimators and the capacity of the analysts to identify the correct and complete set of
requirements. The conclusion is that each technique has a weak point; however, a team
that is well tuned, with historical records on estimates for past projects, and that applies
the same pa erns and conventions when developing software would produce be er
estimations than an inexperienced team, regardless of the estimation method they use.
All methods depend on a good estimation effort history and the quality of the
parameters obtained for the current project (lines of code, functional requirements, or
use cases).

The technique of use case point analysis was incorporated to the Unified Process
because that process is strongly based on use cases. As said before, one of the biggest
difficulties to applying it is not the method itself, which is very simple, but the lack of
standardization on what is effectively a use case (Anda, 2001). D ue to the absence of an
international standard, the team may create and use its own understanding of the
adequate granularity for use cases.

Use case point analysis is based on the quantity and complexity of system actors and
use cases, which corresponds to the unadjusted use case points (UUCP) value. The
application of technical and environmental factors leads to the UCP, or adjusted use case
points.

UUCP is calculated from the estimated complexity of the actors (UAW – unadjusted
actor weight) and use cases (UUCW – unadjusted use case weight), as discussed in the next
subsections.

4.2.1 UAW – unadjusted actor weight
The method for assigning complexity to actors is quite simple. Each actor is counted
once, even if it is associated to many use cases. I n the case of actors that are
specializations of more generic actors, only the most elementary specializations are
counted, that is, actors that do not have subtypes.

Once the actors have been identified, their complexity is defined as follows:
• Human actors that interact with the system through a graphic user interface are

considered complex and receive 3 use case points.
• Other systems that interact with the system through a protocol like TCP/IP and

human actors that interact with the system only through a command line are
considered of medium complexity and receive 2 use case points.

• Other systems that are accessed by application programming interfaces (API) are

considered of low complexity and receive 1 use case point.
The value of UAW (unadjusted actor weight) is simply the sum of the points assigned to

all system actors.
In the example of Figure 3.11 the following actors were considered:

• Deposit manager: 3 points.
• Acquisition manager: 3 points.
• Sales manager: 3 points.
• Customer: 3 points.
• Credit card operator system : 2 points.

Thus, for that example, UAW=3+3+3+3+2=14.
The use of UAW for effort estimation, however, is not unanimously accepted.

Sometimes, it is suggested that it can be ignored in the equations. Usually, even UCP
counting tools consider UAW an optional measure and using it or not is a decision left to
the team.

4.2.2 UUCW – unadjusted use case weight
Use cases are also counted once. Only complete processes should be counted. That
means that extensions, variants, and other fragments, in general, should not be counted.

I n the original proposal of Karner (1993), the complexity of a use case is defined based
on the estimated number of transactions (information being sent to or received from the
system), including alternate sequences (see Chapter 5 for more details). Then, use cases
could be characterized as follows:
• Simple use cases: No more than three transactions.
• Medium use cases: Four to seven transactions.
• Complex use cases: More than seven transactions.

However, if we are working with high-level use cases, it may be hard to know for sure
how many transactions each use case really has, and that makes that estimation a li le
risky.

An alternate way to estimate the complexity of a use case is by the number of classes
necessary to implement the use case functions. Thus:
• Simple use cases must be implemented with five classes or less.
• Medium use cases must be implemented with six to ten classes.
• Complex use cases must be implemented with more than ten classes.

The number of classes necessary for implementing a use case will depend also on
detailed requirements that usually are not known during I nception, given that the use
cases have not been yet expanded. That makes this approach also somewhat risky.

Another way to estimate the complexity of a use case is by the analysis of its risk. Thus:
• Reports usually have only one or two transactions and low risk, because they do not

change data. They can be considered simple use cases.
• Pattern use cases such as CRUD have a number of transactions that are known and

limited. Their risk is medium, because although their internal logic is known, obscure
business rules may affect them, and they can be considered medium complexity.

• Nonpattern use cases have an unknown number of transactions, and high risk, because
besides the fact that the business rules may be unknown or misunderstood, even the
internal structure of the use case is unknown (its main flow and alternate sequences).
Thus, this kind of use case is considered complex.

The UUCW (unadjusted use case weight) value is given by the sum of the value assigned
to each use case using the following criterion:

• Simple use case: 5 use case points.
• Medium use case: 10 use case points.
• Complex use case: 15 use case points.
Applying that technique to the example of Figure 3.11, there are eight use cases

stereotyped as reports, which receive 8*5=40 use case points. There are also three CRUD
use cases (pa ern use cases), which receive 3*10=30 points. Finally, there are 10 use cases
without any stereotype with higher risk, which receive 10*15=150 use case points. Thus,
the UUCW of this example is 40+30+150=220.

There are also other counting techniques. But most of them are based on the detailed
version of a use case. Some of them are presented in Section 4.2.9.

4.2.3 UUCP – unadjusted use case points
The value for UUCP, or unadjusted use case points, is calculated as the sum of UAW and
UUCW:

In the running example, UUCP=14+220=234.
As mentioned before, actors’ weights may be excluded from the computation of

UUCP, and that would make UUCP immediately equal to UUCW, that is,
UUCP=UUCW=220 in the example.

4.2.4 TCF – technical complexity factor
The technique of use case point analysis proposes that the UUCP should be adjusted by
two criteria: technical factors (which are associated to the project), and environmental
factors (which are associated to the team).

Each factor receives a rating from 0 to 5, where 0 means no influence on the project, 3
is nominal influence, and 5 is maximum influence on the project.

Surprisingly, this is the only information usually given in literature about the technical
factors of use case point analysis, and that makes the assessment of these factors highly
subjective, and even sometimes contradictory.8

There are 13 technical factors, each one with a specific weight, as shown in Table e4.3.

Table e4.3
Technical Factors for Adjusting use Case Points

Code
Factor
Weight

T1

Distributed system

2

T2

Response time/performance objectives

1

T3

End-user efficiency

1

T4

Internal processing complexity

1

T5

Design aiming for code reusability

1

T6

Easy to install

0.5

T7

Easy to operate

0.5

T8

Portability

2

T9

Design aiming for easy maintenance

1

T10

Concurrent/parallel processing

1

T11

Security

1

T12

Access for/to third-party code

1

T13

User training needs

1

Therefore, each of the technical factors has a rate between 0 and 5 that is multiplied by
its weight. The sum of those products corresponds to the TFactor value, that is, the

impact of the technical factors, which ranges between 0 and 70.
The TCF (technical complexity factor) may be calculated by adjusting TFactor to the range

0.6 to 1.3 with the following formula:

For a be er reference on the meaning of the ratings 0 to 5, it is suggested that one use
the directions below, adapted from the function point analysis technique (Albrecht &
Gaffney Jr., 1983).

T1 – Distributed system: Is the system architecture centralized or distributed?
0. The application ignores any aspect related to distributed processing.
1. The application generates data that will be processed by other computers with human

intervention (for example, spreadsheets or preformatted files sent by media or email).
2. Application data are prepared and transferred automatically for processing in other

computers.
3. Application processing is distributed, and data are transferred in just one direction.
4. Application processing is distributed and data are transferred in both directions.
5. Application processes must be executed in the most appropriate processing core or

computer, which is dynamically determined.
T2 – Response time/performance objectives: What is the importance of the application

response time to its users?
0. No special performance requirement was defined by the client.
1. Performance requirements were established and revised, but no special action must be

taken.
2. Response time and transfer rates are critical during peak hours. No special design for

processor core use is necessary. The deadline for most processes is the next day.
3. Response time and transfer rates are critical during commercial hours. No special

design for processor core use is necessary. Requirements regarding deadlines for
communication with interfaced systems are restrictive.

4. In addition to 3, performance requirements are sufficiently restrictive for requiring
performance analysis tasks during design.

5. In addition to 4, performance analysis tools must be used during design, development,
and/or implementation, in order to meet the client’s performance requirements.
T3 – End-user efficiency : I s the application designed to allow final users just to do

their job or is it designed to improve their efficiency?
0. The application does not need any of the items below.
1. The application needs one to three of the items below.
2. The application needs four to five of the items below.
3. The application needs six or more of the items below, but there is no requirement

related to user efficiency.
4. The application needs six or more of the items below, and the user efficiency

requirements are so strong that the design must include features to minimize typing,
maximize defaults, use templates, etc.

5. The application needs six or more of the items below, and the user efficiency
requirements are so strong that the design activities must include tools and special
processes to demonstrate that the performance goals are obtained.
The following items must be considered for the assessment of the end-user efficiency

item:9
• Navigational help (for example, dynamically generated menus, adaptive hypermedia,

etc.).
• Online help and documentation.
• Automated cursor movement.
• Predefined function keys.
• Batch tasks submitted from online transactions.
• High use of colors and visual highlights in screens.
• Minimizing the number of screens to reach the business goals.
• Bilingual support (counts as four items).
• Multilingual support (counts as six items).

T4 – Internal processing complexity: Does the application need complex algorithms?
0. None of the options below.
1. One of the options below.
2. Two of the options below.
3. Three of the options below.
4. Four of the options below.
5. All five options below.

The following options need to be considered for assessing internal processing
complexity:
• Careful control (for example, special audit processing) and/or secure processing

specific to the application.
• Extensive logical processing.
• Extensive mathematical processing.
• Lots of exception processing resulting from incomplete transactions that needs to be

reprocessed, such as incomplete automated teller machine transactions caused by
interruption of communication, missing data values, or failed data change.

• Complex processing to manage multiple inputs and output possibilities, such as
multimedia or device independency.

T5 – Design aiming for code reusability: I s the application designed so that its code
and artifacts will be highly reusable?
0. There is no concern about producing reusable code.
1. Reusable code is generated for use inside the same project.
2. Less than 10% of the application must consider more than the user needs.
3. 10% or more of the application must consider more than the user needs.
4. The application must be specifically packaged and/or documented for facilitating

reuse, and the application must be customizable by the user at the level of source
code.

5. The application must be specifically packaged and/or documented for facilitating

reuse, and the application must be customizable by the user with the use of
parameters.
T6 – Easy to install: Will the application be designed so that its installation is

automatic (for example, in the case of users with low or unknown technical capacity), or
is there no special concern about it?
0. The client established no special consideration, and no special setup is necessary for

installation.
1. The client established no special consideration, but a special setup is required for

installation.
2. The client established requirements for data conversion and installation, and

conversion and installation guides must be provided and tested. The impact of
conversion in the project is not considered important.

3. The client established requirements for data conversion and installation, and
conversion and installation guides must be provided and tested. The impact of
conversion on the project is considerable.

4. In addition to 2, tools for automatic conversion and installation must be provided and
tested.

5. In addition to 3, tools for automatic conversion and installation must be provided and
tested.
T7 – Easy to operate:10 Are there special requirements regarding the operation of the

system?
0. No special considerations about the operation of the system besides normal backup

procedures were established by the user.
1. One of the items below applies to the system.
2. Two of the items below apply to the system.
3. Three of the items below apply to the system.
4. Four of the items below apply to the system.
5. The application is designed to operate in nonsupervised manner. “Nonsupervised”

means that human intervention is not necessary for keeping the system operational,
even if crashes occur, except maybe for the first startup and final turn off. One of the
application features is automatic error recovery.
For the evaluation of the easy to operate factor, the following items must be

considered:
• Effective processes for initialization, backup, and recovery must be provided, but

operator intervention is still necessary.
• Effective processes for initialization, backup, and recovery must be provided, and no

operator intervention is necessary (counts as two items).
• The application must minimize the need for data store in offline media (for example,

tapes).
• The application must minimize the need for dealing with paper.

T 8 – Portability: I s the application or parts of it designed to work on more than one
platform?
0. There is no user requirement to consider the need for installing the application on

more than one platform.
1. The design must consider the need for the system to operate in different platforms,

but the application must be designed to operate only in identical hardware and
software environments.

2. The design must consider the need for the system to operate in different platforms,
but the application must be designed to operate only in similar hardware and software
environments.

3. The design must consider the need for the system to operate in different platforms,
but the application must be designed to operate in heterogeneous hardware and
software environments.

4. In addition to 1 or 2, a documentation and maintenance plan must be elaborated and
tested to support operation in multiple platforms.

5. In addition to 3, a documentation and maintenance plan must be elaborated and
tested to support operation in multiple platforms.
T9 – Design aiming for easy maintenance: D oes the client require that the application

must be easy to change in future?
0. None of the items below.
1. One of the items below.
2. Two of the items below.
3. Three of the items below.
4. Four of the items below.
5. Five or more of the items below.

To evaluate this factor, the following items are considered:
• A flexible report structure must be provided to deal with simple queries such as

logical binary operators applied to just one logical archive (count as one item).
• A flexible report structure must be provided to deal with medium complexity queries

such as logical binary operators applied to more than one logical archive (count as
two items).

• A flexible report structure must be provided to deal with high complexity queries such
as combinations of logical binary operators applied to one or more logical archives
(count as three items).

• Business control data are kept in tables managed by the user with interactive online
access, but changes must only be effective on the next day (count as one item).

• Business control data are kept in tables managed by the user with interactive online
access, and changes are effective immediately (count as two items).

T10 – Concurrent/parallel processing: Must the application be designed in order to
deal with problems related to concurrency such as, for example, data and resource
sharing?
0. No concurrent access to data is expected.
1. Concurrent access to data is expected sometimes.
2. Concurrent access to data is expected frequently.
3. Concurrent access to data is expected all the time.
4. In addition to 3, the user indicates that a lot of multiple accesses are going to happen,

forcing performance analysis tasks and deadlock resolution during design.
5. In addition to 4, the design requires the use of special tools to control access.

T 11 – Security: Are the security needs just nominal or are a special design and
additional specifications required?
0. There are no special requirements regarding security.
1. The need for security must be taken into account in design.
2. In addition to 1, the application must be designed so that it can be accessed only by

authorized users.
3. In addition to 2, access to the system will be controlled and audited.
4. In addition to 3, a security plan must be elaborated and tested to support access

control to the application.
5. In addition to 4, a security plan must be elaborated and tested to support auditory.

T12 – Access for/to third-party code: I s the application going to use code already
developed, such as commercial off-the-shelf (COTS) components, frameworks or
libraries? High reuse of good quality software reduces the value of this item as it implies
less development effort.
0. Highly reliable preexistent code will be used extensively for developing the

application.
1. Highly reliable preexistent code will be used in small parts of the application.
2. Preexistent code that eventually needs to be adjusted will be used extensively for

developing the application.
3. Preexistent code that eventually needs to be adjusted will be used in small parts of the

application.
4. Preexistent code that needs to be fixed or is hard to understand will be used in the

application.
5. No preexistent code will be used in the application or questionable quality code will be

used in the application.
T13 – User training needs: Will the application be easy to use, or must extensive

training be given to future users?
0. There are no specific requirements for user training.
1. Specific user training requirements have been mentioned.
2. There are formal specific user training requirements, and the application must be

designed to facilitate training.
3. There are formal specific user training requirements, and the application must be

designed to support users with different levels of training.
4. A detailed training plan must be elaborated for the transition phase and executed.
5. In addition to 4, the users are geographically distributed.

Applying the technical factors to the current example, a result similar to the one
presented in Table e4.4 could be obtained.

Table e4.4
Assessment for the Technical Factors of Livir

The technical factors value, TCF, for the example is obtained by:

As that value is less than 1, the technical factors for this project indicate a development
time that is smaller than nominal (82.5% of nominal). However, the environmental
factors still have to be determined.

4.2.5 EF – environmental factors
One aspect that distinguishes use case point analysis from function point analysis is that
use case point analysis uses an adjustment factor for the characteristics of the
development team. Thus, the same project, with the same technical factors, may have a
different number of adjusted use case points for different teams.

There are eight environmental factors that assess the working environment. Each one
has its own weight and two of them have negative weights. Again, ratings range from 0 to
5, but their meaning is a li le different from those of the ratings a ributed to the
technical factors. While the ratings of the technical factors evaluate the influence of those
factors on the project, the ratings of the environmental factors evaluate the quality of
those factors in the working environment. For example, a 0 rating for the “motivation”
factor means that the team is not motivated, a 3 rating means that motivation is average,
and a 5 rating means that the team is highly motivated.

The environmental factors are defined in Table e4.5.

Table e4.5
Environmental Factors for Adjusting Use Case Points

Code
Factor

Weight

E1

Familiarity with the development process

1.5

E2

Experience in the application

0.5

E3

Object-oriented experience

1

E4

Lead analyst experience

0.5

E5

Motivation

1

E6

Stable requirements

2

E7

Part-time workers

−1

E8

Difficulty with programming language

−1

Thus, the ratings multiplied by the weight of the environmental factors may range
from −10 to 32.5. This value is called the EFactor.

EFactor is adjusted to the interval 0.425 to 1.7, generating the EF (environmental factor)
by the following formula:

Ribu (2001) presents a reference for assigning ratings to the environmental factors,
which is described below with some adaptation.

E1 – Familiarity with the development process: This factor assesses the team’s
experience with the development process they are using. Originally the factor mentioned
the Unified Process, and some authors even mention UML here. But this has been
adjusted to reflect the fact that other processes and modeling languages could be used
instead.
0. The team does not have experience with the development process or does not use any

process.
1. The team has theoretical knowledge about the development process, but no

experience.
2. A few members of the team have already used the process in one project.
3. A few members of the team have used the process in more than one project.
4. Up to half the team has used the process in many projects.
5. More than half the team has used the process in many projects.

E2 – Experience in the application: This factor assesses the familiarity of the team with
the application area or domain. For example, if the application is about e-commerce, have
the team already worked with systems in the same area?
0. No team member has any experience in projects in the same area.
1. Some team members have 6 to 12 months of experience in projects in the same area.
2. Some team members have 12 to 18 months of experience in projects in the same area.
3. Most team members have 18 to 24 months of experience in projects in the same area.
4. Most team members have greater than two years of experience in the same area.
5. All team members have greater than two years of experience in the same area.

E3 – Object-oriented experience: This factor must not be confused with either
familiarity with the development process (E1) or experience in the application (E2): this is
about the experience of the team in doing object-oriented analysis, modeling, design, and
programming, independently of the application area and the development process used.
0. The team has no experience in object-oriented techniques.

1. All team members have some experience in object-oriented techniques (up to one
year).

2. Most team members have 12 to 18 months of experience in object-oriented techniques.
3. All team members have 12 to 18 months of experience, or most team members have 18

to 24 months of experience in object-oriented techniques.
4. Most team members have more than two years of experience in object-oriented

techniques.
5. All team members have more than two years of experience in object-oriented

techniques.
E4 – Lead analyst experience: This factor measures the experience of the lead analyst

with requirement analysis and object-oriented modeling.
0. The lead analyst has no experience.
1. The lead analyst has previous experience in a single similar project.
2. The lead analyst has about one year of experience in more than one similar project.
3. The lead analyst has about two years of experience in similar projects.
4. The lead analyst has more than two years of experience in similar projects.
5. The lead analyst has more than three years of experience in a variety of projects.

E5 – Motivation: This factor describes the team’s motivation.11

0. The team has no motivation at all. Without constant supervision the team becomes
unproductive. The team only does what is strictly asked.

1. The team has very little motivation. Constant supervision is necessary to keep
productivity at acceptable levels.

2. The team has little motivation. Management interventions are necessary from time to
time to maintain productivity.

3. The team has some motivation. Usually the team has initiative, but management
intervention is still necessary sporadically to keep productivity.

4. The team is well motivated. The team is self-managed usually, but the existence of
supervision is still necessary because productivity can be lost without it.

5. The team is highly motivated. Even without supervision everyone knows what has to
be done, and pace is maintained indefinitely.
E6 – Stable requirements: This factor evaluates if the team has been able to keep

requirements stable in past projects, minimizing their change during the project. This
factor may vary from project to project, because there are domains where requirements
change often independently of the capacity of the analysts. This factor must assess only
software changes that were caused by the team’s inability to discover the right
requirements.
0. There is no historic data about requirement stability or, in the past, poor analysis

caused big changes in requirements after the project started.
1. Requirements were predominantly unstable in the past. Clients asked for many

changes caused mainly by incomplete or incorrect requirements.
2. Requirements were unstable in the past. Clients asked for some changes caused by

incomplete or incorrect requirements.
3. Requirements were relatively stable in the past. Clients asked for changes in secondary

functionalities with some regularity. Changes to main functionalities were asked for
seldom.

4. Requirements were mostly stable in the past. Users asked for little changes, especially
cosmetic ones. Changes in main or secondary functionalities were unusual.

5. Requirements were totally stable in the past. Little changes, if any, had no impact on
projects.
E7 – Part-time workers: This is a negative factor, that is, contrary to the first six

environmental factors, higher values here represent more development time, not less. A
team with many members involved in other projects or activities is less productive than a
dedicated team.
0. No team member is part time on the project.
1. Up to 10% of the team is part time.
2. Up to 20% of the team is part time.
3. Up to 40% of the team is part time.
4. Up to 60% of the team is part time.
5. More than 60% of the team is part time.

E8 – Difficulty with programming language: This is another negative factor, meaning
that high values here are bad for the development time.
0. All team members are very experienced programmers.
1. Most team members have at least two years of experience in programming.
2. All team members have at least 18 months of experience in programming.
3. Most team members have at least 18 months of experience in programming.
4. A few team members have some experience in programming (not more than one year).
5. All team members are inexperienced programmers.

I n order to continue with the Livir example, let us assume that the company is formed
by a group of five professionals who recently obtained Computer Science degrees and
studied object-oriented techniques, but do not have significant professional experience.
Three of them are fully dedicated to the project, while the other two have other activities.
Livir will be the first project they are going to perform professionally together. With this
fictional company, the evaluation of the environmental factors could be something like
Table e4.6.

Table e4.6
Environmental Factors Evaluation for a Fictional Team Developing the Livir Project

Applying the adjustment formula to the company’s environmental factors the
following is obtained:

This indicates that the environmental factors are bad for this team of beginners, and
that their effort will be around 35% greater than nominal.

4.2.6 UCP – adjusted use case points
Once actor and use case weights as well as technical and environmental factors are
calculated, the adjusted use case points may be obtained by simple multiplication:

For the running example we obtain:

4.2.7 Effort
The key goal of all estimation techniques is to predict the effort necessary to develop a
project. I n the first place, it is necessary to define the extension of the effort that is being
estimated. The COCOMO I I method, for example, when applied with the Unified

Process, estimates the effort to be spent during Elaboration and Construction only.
Besides this, does the effort include administrative activities, sales, etc.? Or does it

include only the effort spent on software engineering activities? Literature on use case
points usually is not as detailed as COCOMO I I and function point analysis regarding
the kind of effort that is being estimated. As use case point analysis is based on function
point analysis Mk I I (UKSMA Metrics Practices Commi ee, 1998), we can assume that by
default the same definitions apply, such as “The project effort should include staff who is
clearly allocated to the project and who work according to the project requirements. The
time of a user being interviewed, for instance, would not be included, whereas the time
of a user allocated for a significant amount of time to the project team would be
included.” S imilarly, the following definition can also be applied: “The work effort
should be measured in units of a ‘productive’ or ‘net’ work-hours, which is defined as:
‘One hour of work by one person, including normal personal breaks, but excluding major
breaks, such as for lunch’.” Mk I I also states that a project starts when “it has been
agreed and approved that work should be undertaken to deliver an I S12 solution […] one
or more staff have been allocated to the project, and start working on it” (this happens
during the I nception phase), and that a project ends when “the application is made ‘live’
by moving it into the production environment for the first time, and the users make use
of it” (this happens during the Transition phase).

The effort that is calculated usually must include all risks and unexpected situations.
Estimation is not a precise science though. I n some situations things may get out of
control and adjustments must be made on the fly to keep the project on the rail. We can
say that the final schedule would define the maximum time tolerable for delivery of a
product with the minimum scope acceptable. That is, if we are lucky and risks cause li le
trouble, we can deliver the product earlier or deliver a better product than expected.

Once the number of use case points is calculated, they have to be transformed into an
effort measure by using a team productivity index (TPI). I f the TPI is measured as the time
one team member spent on a single use case point13 then the effort may be given by:

A s UCP is a scale-independent value, it must be decided in which scale the effort will
be measured. The use case point literature usually refers to staff hours per use case point.
However, other methods such as COCOMO II (Boehm, 2000) prefer staff months.

Because most formulas that are usually applied to productivity in the software industry
are defined in terms of staff months, and because the unit chosen may affect results, this
book adopts staff months as the productivity unit, but refers to staff hours when
necessary.

Considering that a month corresponds to 158 working hours on average (holidays and
weekends disregarded), then x staff hours per use case point correspond to x/158 staff
months per use case point.

O riginally, Karner (1993) estimated than 20 staff hours (approximately 0.127 staff
months) per use case point14 would be a good guess when a trustable history is lacking.

Later, Ribu (2001) determined that that value could range from 15 to 30 staff hours (0.095
to 0.190 staff months) per use case point.

The TPI value can also be estimated by taking past projects, looking for the total staff
time spent and dividing it by the number of use case points. Thus, for example, if the
total effort spent on a given project was 9 staff months and the total project UCP was 60,
then the team productivity index in that case is 9/60, that is, 0.15 staff months per use
case point.

Other work (Schneider & Winters, 1998) proposes that the number of environmental
factors E1 to E6 rated below 3 must be added to the number of environmental factors E7
and E8 rated above 3, and:

• If the result is 2 or less, assume 20 staff hours (0.127 staff months) per use case point.
• If the result is 3 or 4, assume 28 staff hours (0.177 staff months) per use case point.
• If the result is greater than 4, environmental factors present too high a risk for the

project, and must be improved before any development commitment is assumed, or
else assume 36 staff hours (0.228 staff months) per use case point.

I n the current example there are five negative environmental factors: E1, E2, E4, E6,
and E8. The recommendation, in this case, would be trying to improve the quality of the
environment before developing any project. However, if the team decides to take the risk,
the project should assume the worst estimate of 0.228 staff months per use case point.
Thus, the total effort for the Livir project is E=261.583*0.228=59.64 staff months.

4.2.8 Calendar time and average team size
The effort value obtained for the example in the last section (59.64 staff months) refers to
the total effort for developing the project from its start until the delivery of the product.
However, more than one staff member will be working on the project and thus calendar
time (linear time with weekends and holydays disregarded) will probably be much
smaller.

There is a simple rule of thumb formula that allows one to approximate the ideal
calendar time for a project from its total effort (McConnel, 1996). The formula is:

In this formula, T is the ideal calendar time for developing the project.
This formula only works if E is expressed in staff months. The use of other units such as

staff weeks, or staff hours, would cause distortions in the result due to the use of the
cubic radix.

Other formulae based on function points (J ones, 2007) or lines of code (Boehm, 2000)
are available. But, in order to be applied with use case points, some conversions are
needed. I f a more accurate approximation is desired maybe this is worth the effort
because Boehm’s and J ones’s formulae use information about the project complexity and
team capacity as parameters to produce the calendar time estimate.

Applying the rule of thumb formula above to the current example produces:

The average size of the team (P) is calculated by:

For the running example, we obtain:

Thus, the average size of the team, in that case, must be approximately equal to six. I n
summary, the project would be ideally developed by six people in about 10 months. For
this example, the development company could choose to hire a new professional
(especially a more experienced professional that could help to improve the
environmental factor ratings); trying to develop the project with five people could take a
time longer than the ideal. For this example, it is possible to calculate the time a team of
five would take for developing the project as 59.64/5=11.928. I n that case, the project
would be completed by five people in about 12 months. We said “it is possible” because
the number of people considered is smaller than the recommended size for the team.
However, it would be unrealistic to apply this division to calculate the calendar time for a
team larger than the ideal. For instance, it would not be realistic to assume that 20 people
could complete the project in 59.64/20=2.982 months. Any team size higher than the ideal
means that the total effort (E) must be adjusted to a higher value. The COCOMO I I effort
multiplier SCED (Required Development Schedule) indicates that running a project on a
time that is 85% of the ideal time implies adding 14% to the total effort, and running a
project on a time that is 75% of the ideal time implies adding 43% to the total effort
(Boehm, 2000).

I t may appear that those times are too high for the project presented in the example.
However, it must be considered that the environmental factors are very bad, because the
team has very li le experience. They will make errors and possibly will have to redo a lot
of work. Most important, the lack of experience may lead the team to misunderstand
requirements and have to fix them later, increasing development time significantly.

I f instead of those novices we had a dream team with the best rates possible for
environmental factors, then EF would be 0.425 (the best value possible). I n that case,
UCP=234*0.825*0.425=82.046. Using the recommendation of Schneider and Winters
(1998), it can be assumed that the dream team could work at a rate of 20 staff hours or
0.127 staff months per use case point. Thus, E=82.046*0.127=10.42. Applying the formula
for calendar time and average team size the result is T=5.46 and P=1.908. That is, a dream
team of two people could complete the project in about five and a half months. That
seems a very reasonable estimate considering the size of the project and the capacity of
the team.

However, it is important to mention that those formulas are somewhat “magical”
because there are a great range of projects and development teams. Before using them

seriously in a company it is always useful to test and adjust them to the local reality.

4.2.9 Counting methods for detailed use cases
The use case point analysis technique presented in previous subsections considers only a
guess on the complexity of the use cases because it deals with high-level use cases, which
are represented only by their name and, eventually, one or two explaining sentences.

There are techniques for counting use case points with expanded use cases (explained
i n Chapter 5), but their utility is more limited because, with the Unified Process, use
cases are usually only detailed during the iterations. D uring I nception, the team usually
only have high-level use cases.

Even so, those techniques may be useful if the use cases are already detailed, or if
effort estimation must be refined when an iteration starts. This is why those techniques
are summarized in this section.

Robiolo and Orosco (2008) suggest that the text of the detailed use case must be
analyzed and the entities (classes) and transactions (steps) counted. The size of an
application in unadjusted use case points would be the sum of those values.

Braz and Vergilio (2006) propose a technique named FUSP (Fuzzy Use Case S ize
Points), where counting is based on the complexity of:
• Actors that participate in the use case.
• Use case pre- and postconditions.
• Number of entities necessary for the use case.
• Number of transactions of the use case.
• Complexity of the alternate flows of the use case.
Thus, the measure is quite detailed, but a lot of work is necessary to apply it and the

use cases must be expanded for it to work.
Mohagheghi, Anda, and Conradi (2005) propose a technique (Adapted Use Case Points)

that assumes that every actor has medium complexity, and every use case is complex in
the beginning. Later, use cases must be split into smaller use cases and reclassified as
simple or medium as the refining process goes on. Extended use cases and alternate
flows are counted as well.

Kamal and Ahmed (2011) present an extensive comparison among the aforementioned
and other counting methods.

The Full Use Case Size method (I barra & Vilain, 2010) was proposed with the objective
of measuring the size of use cases. The method measures functional and nonfunctional
aspects and, to do that, it needs high-level use cases and a list of nonfunctional
requirements annotated for each use case. Measurement is based on three components:
• The kind of use case.
• The number of system operations (transactions) and business rules.
• The number of interface requirements.
Details about these techniques may be found in the original works cited above.

4.3 Planning an iterative project

The goal of project planning is to build a plan for the project as a whole. Among other
things, it is important that the person or group responsible for planning use the best
tools available to assess the amount of effort that should be expended in the project. That
estimate will lead to the project schedule and budget.

There are several aspects to consider at the start. The scope declaration has already
defined the goals of the project and acceptance criteria. Also, the necessary business
modeling has already been completed, and the high-level requirements were
incorporated to the system use cases.

With the technique of use case point analysis, the total effort for developing the project
may be estimated, as well as the ideal calendar time and the average size of the team;
these are global measures for the project.

Now it is necessary to define the duration and number of iterations.

4.3.1 Estimating the duration of iterations
An iteration begins with planning and finishes with a new version of the system being
released internally or delivered to the client. The duration of an iteration in UP and most
agile methods usually ranges from one to eight weeks,15 and it depends, among other
factors, on the complexity of the project and the size of the team.

S mall teams with up to five people16 may do the planning together on a Monday
morning, perform the work during the week, and generate a release on Friday.

Groups with more than 20 people might need more time to distribute and synchronize
activities. Consider that the amount of work is naturally higher. Moreover, the generation
of a release takes more time, because there will be a higher amount of software parts to
be integrated, verified, and fixed. Thus, in that case, iterations with three to four weeks
would be allowed.

Groups with more than 40 people need to work on a more structured and formal
environment, with more intermediary documentation, so that the information flow will
naturally be slower. Thus, an iteration with six to eight weeks would be advisable.

Other factors that may affect the duration of the iterations are the following:
• Automatic code generation and integrated life cycle software tools allow for shorter

iterations.
• A team that is very competent in UP and analysis, design, and coding techniques

allows for shorter iterations.
• If quality is a critical concern and consequently tests and revisions are intense, then

iterations must be longer, unless extensive automation and effective quality coding
patterns are used.

4.3.2 Number of iterations
The number of iterations of a project depends on the calendar time divided by the
duration of each iteration. For example, for the Livir project, with the novice team, the
project would take about 10 months with a team of six people. Thus, an iteration of two

weeks would be used, with a total of 20 iterations.
The number of iterations that would be considered for Elaboration and Construction

depends fundamentally on the need to address architectural problems. This can be
roughly estimated by the proportional quantity of complex use cases that should be
studied and developed. As the milestone of the Elaboration phase is a stable
architecture, it can be assumed that Elaboration will not terminate while there are
complex high priority use cases that need to be analyzed. Kruchten (2003) estimates that
the Elaboration would take about 30% of the linear time of a typical project and
Construction would take about 50% of the time of a typical project, while I nception and
Transition would take about 10% each.

Another question that comes to mind at this point is whether the effort estimation
includes the I nception phase or not (because I nception is practically finished when the
estimate is made). The COCOMO I I method, for example, when applied to the Unified
Process, estimates only the effort to be spent in Elaboration and Construction, leaving
I nception and Transition to be calculated as a percentage of the total effort. Usually, it is
believed that use case point analysis estimates the total effort of a project, from its
beginning to the delivery of the product. However, if the team uses another
interpretation, the important thing is to keep it coherent from one project to another.
Any discrepancy in estimation measures would be absorbed by the team productivity
index.

4.3.3 Effort per use case point
I n order to find the effort to develop each kind of use case (simple, medium, or complex),
the following procedure may be used:
1. Take the total effort for the project (E), and divide it by the total unadjusted use case

weight (UUCW) – ignore the actors’ weight.
2. The resulting value is the effort estimated per unadjusted use case point for the

specific project and team (EUCP=E/UUCW).
3. Finally, find the effort for each kind of use case by multiplying EUCP by 5 in the case of

simple use cases, by 10 for medium, and by 15 for complex ones.
For the running example we have:

Thus:
• Simple use cases demand 5*0.271=1.355 staff months.
• Medium use cases demand 10*0.271=2.71 staff months.
• Complex use cases demand 15*0.271=4.065 staff months.

Notice that the dream team would produce values much lower than those. I n the case
of the dream team:

Thus:
• Simple use cases demand 5*0.047=0.235 staff months.
• Medium use cases demand 10*0.047=0.47 staff months.
• Complex use cases demand 15*0.047=0.705 staff months.

4.3.4 Team load capacity
Other information that can be calculated is the team load capacity (TLC) for each iteration.
This is calculated as the number of team members multiplied by the iteration length
(expressed in months):

I n the running example, considering the novice team (six people) and two week
iterations (about 0.5 months), TLC=6*0.5=3. That means that each iteration for that
project has a team load of three staff months.

With a two-week iteration, the team would not be able to finish a complex use case (it
demands 4.065 staff months, as seen above). Two options may be considered:
• Extend the duration of the iterations to three weeks (about 0.75 months).
• Slice use cases so that they may be partially implemented in two-week iterations.

Although agile developers would prefer shorter iterations, if we choose to extend the
iterations, the calendar time for the project (10 months) divided by the iteration duration
(0.75) results in 13.3 iterations, which can be adjusted to 14, unless the project is to be
hurried. This way, the team load per iteration would be 6*0.75=4.5 and one iteration
would be sufficient to deal with a complete complex use case.

4.3.5 Defining use case priority
One of the main techniques for reducing risk in a project is dealing first with the most
complex use cases, especially if they are those that represent the most critical business
processes, because with them the team may learn more about the system than with other
use cases. Pa ern use cases such as CRUD (medium complexity) and reports (smallest
complexity) can be addressed later during Construction.

Planning indicates when each use case is going to be analyzed, designed, and
implemented. The Unified Process, like most agile techniques, does not expect that the
general project plan defines when each use case is to be implemented. However, they are
placed in a dynamic priority list, and although it may be updated on the fly, it is possible
to know when each use case is supposed to be completed. Planning an iteration begins
by choosing which use cases, risks, or change requirements would be addressed on the
next iteration. When planning an iteration, the following aspects must be considered
when choosing which use cases to address:

• Use case complexity: Use cases of higher risk and complexity should be addressed first
in most cases, unless special conditions (for example, a relatively simple use case with
high technological risk) justify choosing different use cases.

• Dependencies among use cases: Use cases that have a strong dependence to the ones that
were already accommodated in the iteration should be addressed together if possible,
because it avoids fragmenting the work on the classes.

• Team load capacity: The development work must be assigned to team members based
on their TLC.

One suggestion for prioritizing use cases for the Livir example presented in Figure 3.11
is given in Table e4.7.

Table e4.7
Suggestion for Use Case Priorities for the Livir Example

1. Order books

12. Manage books crud

2. Pay order

13. Manage publishers crud

3. Deliver order

14. Order status report

4. Register delivery confirmation

15. Past sales report

5. Receive books

16. Book sales by period report

6. Resend order

17. Books available for sale report

7. Register order return

18. Book returns by period report

8. Discard books

19. Upcoming orders by period report

9. Cancel order

20. Deliveries by period report

10. Create/remove special offer

21. Discarded books by period report

11. Manage customers crud

The order of this list is most critical for the complex use cases, because a wrong choice
in terms of their priorities could lead to otherwise unnecessary refactoring in subsequent
iterations. We considered that the most important use cases for this business are those
related to the process of selling books, because that is what generates profit for the
company. However, the order of use cases with lower risk such as cruds and reports is not
so critical.

4.3.6 Planning phase and iterations
With the information obtained in previous sections, it is possible to elaborate the
preliminary release plan utilizing the use case priorities, effort, and team load capacity.

The goals of an iteration may be of three types:
• Implementing totally or partially one or more use cases.
• Mitigating one or more risks, generating or performing a probability reduction, impact

reduction, or disaster recovery plan.
• Implementing totally or partially one or more changes requested. As the system

architecture evolves during iterations, changes may be asked for due to
nonconformities to requirements or design errors. Incorporating these changes into
the software may be one of the goals of an interaction. This kind of goal usually only
arises after the first iteration.

For each element (use case, risk, or change requested) there must be effort estimation.
The elements will be selected for inclusion in one iteration or another depending on their
priority (priorities may change as the project progresses – therefore, planning may
change too). Higher priority must be given to the more complex and risky elements,
which are the ones with greater potential for learning about the system. The suggestion
is to pick first:

• Use cases that represent the most critical business processes, for example, those

which help the company achieve its organizational goals, such as obtaining profit.
• High-importance (or high-exposure) risks, that is, those with high impact and a high

probability of becoming problems.
• Urgent change requests, for example those that demand architecture refactoring.
When considering the elements of highest priority, other elements with lower

priorities, but closely related to the higher priority ones, may be added to the same
iteration for convenience. The important thing is that the total effort assigned to the
iteration does not surpass the staff month value that corresponds to the team load
capacity.

Risk mitigation and some change requests may not be suitable for effort estimation
because their size cannot be measured in terms of use case points (or any other metric).
For example, finding and fixing a bug may take seconds or weeks. I n these cases, usually
a fixed amount of time is assigned, such as, for example, investing one team member
during one week to work on the mitigation of a given risk. At the end of the time box17

previously defined the result is evaluated and it is decided if the activity must continue
or not.

Let’s consider that the project has 10 months (40 weeks) and the iteration duration is
three weeks. Then, I nception and Transition would take about four weeks (10% of the
total time), Elaboration would take about 12 weeks (30% of the total time) and four three-
week iterations, and Construction would take about 20 weeks (50% of the total time) and
close to seven iterations (one of them could be a week shorter, or one week from the
Transition phase could be borrowed for the last Construction iteration – the chosen
alternative presented below).

Kroll (2004) presents a suggestion for a generic phase plan that is adapted for the Livir
example in Table e4.8. At the moment change requests were not included because they
appear only when the project is running, not at the beginning. Thus, the plan in this case
was made only based on use case release and risk mitigation.

Table e4.8
Generic Phase Planning for the Livir Example

After phase planning concludes (usually at the end of I nception), the plan for the first
Elaboration iteration E1 can be detailed, with use cases being chosen and activities
detailed and assigned to developers. Only when that iteration is running should the
planning for the second iteration begin.

The purpose of an iteration plan includes the following (Kroll 2004):
1. Define the scope of the iteration by defining its goals in terms of artifacts to be

produced such as:
• Detailing and implementing specific use cases.
• Mitigation of known risks.
• Performing requested changes.

2. Create a detailed plan on how the iteration must unfold.
3. Create, identify, and manage tasks dependencies.
4. Assign tasks to people.

For example, consider that you are planning the first Elaboration iteration E1 for the
Livir project. Consider the general goals presented in Table e4.8, and the current state of
the system. Some iteration goals could be defined such as:
• Expand and implement use case 01: Order books.
• Test and refine the preliminary architecture.
• Perform mitigation plans for risk K1: Unstable requirements.
Then, planning may continue by defining the iteration deliverables and the tasks

necessary to produce them, and assigning them to developers. Agile teams might prefer
to produce this plan in a team meeting, while teams following RUP may prefer to
instantiate some of the RUP workflows in order to determine which tasks should be
performed in order to achieve the iteration goals. Explaining this is out of the scope of
this book, but readers interested in learning more may start by consulting West (2002) or
Crain (2004).

4.4 The process so far

4.5 Questions
1. Explain the differences among COCOMO II, function point analysis, and use case

point analysis. What are their relative advantages and disadvantages?
2. In use case point analysis what is the difference between technical and environmental

factors? Why does use case point analysis consider them as separate groups?
3. Let E be the total effort for developing a project, and T the ideal calendar time

recommended for the same project. What happens with E when the project must be
developed in a time shorter than T? Does the same occur when the project may be
developed in a time longer than T?

4. How do you determine the ideal duration of an iteration for a given project?
5. How do you establish a list of priorities for use cases?
1In the actual Fibonacci series, each number is the sum of the previous two. Thus, the original series is 1, 1, 2, 3, 5, 8, 13,

21, 34, 55, 89, etc. However, for estimation purposes an approximate series is used because as numbers grow the
estimation is less accurate.
2To minimize this uncertainty, backfire tables that convert function points into KSLOC may be used (Boehm, 2000).
3Capability Maturity Model Integration.
4Software Process Improvement and Capability dEtermination.
5Some definitions also consider positive risks as situations that may happen and help the project.
6Readers not interested in knowing the details on how to estimate effort and develop a project plan may want to skip
from here directly to Chapter 5 where object-oriented analysis and design techniques continue to be explained.
7http://www.ifpug.org/
8For example, regarding the T12 factor, there are authors that say that more third-party access means less effort, because
there is code reuse, while other authors say that more third-party access means more effort, because it is necessary to
understand code written by others. In this book, a synthesis between those two views is built: it is considered good to
have access to well-written code, not so good to have access to code that needs revision, and worse to not have access to
any third-party code. Reusing code of bad quality is considered completely undesirable (it is usually easier to develop it
from scratch).
9Some items such as “menus” and “scrolling” that were originally considered in the function point analysis were removed
from the list because they are considered too trivial for current applications.
10Occasionally this item is referred to as “usability”, but the original concept of usability was already considered in factor
T3, end-user efficiency. We prefer to interpret this factor as “easy to operate” for its compatibility with the technical
factors of function point analysis, and also to avoid confusion and redundancy with the end-user efficiency factor.
11Surely that is one of the hardest environmental factors to assess, because the real motivation of the team may be
masked. Ribu’s (2001) suggestion seemed to help very little in rating this factor, and we took the liberty of reinterpreting
the reference.
12Information System.
13Optionally, the TPI could be expressed as the number of use case points a team member can produce in a given unit of
time. In that case, the formula should be E=UCP / TPI.
14Remember that a complex use case has 15 use case points and thus requires about 300 staff hours to be fully developed
according to Karner (1993).
15Agile methods prefer the shortest duration possible. Some methods such as XP are more radical by forbidding iterations
with more than three weeks, but other methods are more relaxed on that.
16Or larger teams that are very tuned and have excellent tool support.
17A time box is a fixed period of time allocated for a task.

http://www.ifpug.org/

C H AP T E R 5

Expanded Use Cases
This chapter explains how to detail use cases as text and how to evolve them to system sequence diagrams in order
to discover which high-level operations should be implemented by the system. It concentrates on explaining what is
really necessary for a use case description during Elaboration, when its functionality must be completely understood.
Technical and interface details are still avoided. Only information flows, including variant and exception flows, are
included in an essential use case description; this chapter explains how to discover them systematically. It also
explains how to transform a textual and informal description of a use case into a sequence diagram, which is a higher
ceremony artifact.

Keywords
D etailed use case; expanded use case; full-dressed use case; exception in use case; use
case alternate flow; essential use case; CRUD use case; system sequence diagram

Key Topics in this Chapter
• Main flow of an expanded use case
• Alternate flows: exception handlers and variants
• Writing recommendations
• System sequence diagrams

5.1 Introduction to expanded use cases
As explained in Chapter 3, use cases may be used to represent system requirements,
among other things. They are nowadays one of the leading approaches for requirements
because they allow the building of a structure that is easier to understand, communicate,
and manage than previous approaches. I var J acobson identifies some reasons why use
cases became so popular:1
• A use case model is a picture that allows a team to describe even a complex system. It

tells in simple terms what the system is going to do for its users.
• A use case produces value to a particular user, not to an unidentifiable community of

them.
• Use cases are also test cases; when the team finishes organizing requirements in use

cases they have also produced the structure needed for test cases.
• Use cases are the starting point to design effective user experiences, such as, for

example, a website.
• Use cases drive development from analysis to design, from design to code, and from

code to testing.
Frequently, the first analysis activity of Elaboration iterations is to detail the use cases

assigned to the iteration. The process of detailing or expanding a use case into a sequence
of steps corresponds to refining the requirements analysis, especially the functional
requirements. I n each iteration, it is possible to expand one or more use cases and
analyze and design the necessary structures for the software product to meet the
requirements, allowing users to interact with the system by following the steps indicated
in the expanded use case.

I n order to proceed with the expansion of a given high-level use case, it is necessary to
have at hand the system use case diagram, including all annotations, and the
supplementary specifications document. I t would also be useful, for the first iteration, to
have a version of the preliminary conceptual model if it was developed during I nception.
For iterations other than the first Elaboration iteration it is very useful to have a version
of the evolving conceptual model already refined by the activities of past iterations.

As use case expansion corresponds to the refinement of the requirements analysis, the
team must conduct a very detailed exam on the process incorporated into the use case
from the point of view of the user. The use case must be described step by step: how it is
performed and which interactions between actors and system do exist. Technology and
interfaces should be ignored at this point. Only the information exchanged between the
system and the actors is mandatory in these descriptions.

This step-by-step description, in principle, must not be structured with branches. I t
must be based on a default sequence, or main flow (Section 5.2), which describes what
happens when everything goes right during the use case interaction. This flow is also
called the “happy path” because in it there are no error, failure, or exception.

After describing the main flow of the use case, the business rules or nonfunctional
requirements annotated for the use case must be checked and analyzed from the point of
view of the user, in order to discover what could possibly go wrong in a given step, which
could generate an exception. After identifying a possible exception, a description of a
procedure to correct the problem should be described (Section 5.3.3). There may be at
least one exception for each business rule. The use case is then completed with alternate
flows that resemble the handlers used for exception handling in programming.

Besides the above, the team can verify if the user may be able to execute the use case in
a number of different ways or scenarios (S ection 5.3.1). I f its execution structure varies
greatly, then variants to the main flow may be identified (Section 5.3.2).

5.2 Main flow
The main flow is the most important section of an expanded use case. I t is the description
of the use case process when everything goes right, that is, when no alternate flow
occurs.

I n the bookstore example, a first draft of the main flow of the Order books use case may
include the customer identifying herself, searching and selecting books, and finally
proceeding to payment.

Regarding user identification, a recurrent problem arises here: What if the user has
already identified herself on a use case that was executed just before the current one?

This is a common situation and must be adequately dealt with. As at this point user
identification is optional, it may be left as an alternate flow, as explained in S ection 5.3.
Thus, it is assumed for the main flow of this use case that the user is already known by
the system; if this is not the case, an alternate flow where the user identifies herself
should be performed.

Therefore, the actions that be er describe the main flow of use case Order books are the
following: a user searches and selects books for buying and proceeds to payment.
However, this is not a one-way communication, and the system must present to the user
which books are available for sale, as well as other information that is important to the
user such as the books’ prices, and the total value of the order.

Figure 5.1 presents a draft for the main flow of the Order books use case, which is
considered the highest priority use case of the Livir system (Section 4.3.5).

FIGURE 5.1 First draft for the main flow of the Order books use case.

At step 1 the user may choose not to provide a keyword, and then at step 2 she would
receive a list with all the books available at the bookstore. For now it is not necessary to
decide on the interface format. For example, if the list of books is too long, maybe a
limited list with scrolling commands would be preferable to a complete list. This can be
decided when the interface is being designed. The interaction of the user with the
scrolling commands of the interface is something that should not be included in the
essential use case description.

I n order to execute step 5 it is necessary that the user is identified and validated, or
else how would she resume the order later? The main flow here assumes that she is
already identified, but if this is not the case, an exception would be raised as explained in
Section 5.3.3.

After step 5 it is assumed that the use case finishes and the shopping cart has been
saved (as it is an internal operation, it is not necessarily mentioned in the use case, as
explained in S ection 5.4.6). At this point, the user can chose to log off and resume
shopping some other day, or she can proceed immediately to the Pay order use case
(Figure 5.2).

FIGURE 5.2 First draft of the main flow of the Pay order use case.

Note that these use cases are drafts because we still must discuss some issues and
make some improvements in their formulations, which will occur in the upcoming
sections. For example, the alternate flows that will be presented later are related to the
possible exceptions and variants identified by the team. For example, step 3 of Order
books may present an exception such as insufficient quantity of the book in stock.
Another evident exception may happen in step 5 of Pay order, in which the credit card
operator approves the sale: although this is expected for the success of the use case, it
may not happen.

Exceptions, however, instead of producing conditional tests in the main flow, must be
ignored by it, and handled separately. I t would be harder to understand the purpose of a
use case that has in its body an algorithmic structure that considers all possible
exceptions, like the one shown in Figure 5.3.

FIGURE 5.3 Use case with exceptions inadequately handled in the main flow.

The problem with the use case flow in Figure 5.3 that makes it so unnecessarily
complex is the quantity of “if-then” statements in its formulation. The main flow should
not be sprinkled with conditions. I t should indicate what would happen in an ideal
situation in which all information passed is correct and complete. Exceptions and other
variations to the main flow should be handled as alternate flows, as seen in the following
section.

5.3 Alternate flows
A use case specifies a process that can be performed in real life in a number of different
ways. Two people buying books would take different sequences of steps. I f the sequences
are sufficiently similar, 2 then the same flow must be used to describe both. But in some
situations alternate flows must be used to indicate sequences that could occur in quite
different ways.

There are basically two kinds of alternate flows: variants (Section 5.3.2), which indicate
different ways to reach the same goal, and exception handlers (S ection 5.3.3), which
indicate how to deal with problems that appear during a use case execution.

However, sometimes the variants are so different that they can be considered
individual use cases. Then, variants may be simple scenarios (S ection 5.3.1) of a single
use case, or, sometimes, they may be the key to discovering brand new use cases.

5.3.1 Scenarios
A use case can be understood as a description or general specification that supports a set
of different scenarios. Each scenario is a particular realization or instance of the use case.

Usually, a use case has a main scenario (execution of the main flow) and alternate scenarios
(executions of the main flow that pass by one or more alternate flows). However, the
notion of main flow variants sometimes creates doubt on what should really be a use
case. I n the bookstore example, considering the process for buying books, at least two
different scenarios come to mind:
• A customer orders books and saves the shopping cart to continue shopping later.
• A customer orders books and pays for them.

I s it a single use case with two alternative ends? Or should it be split into two use
cases?

Both options are equally valid, although one of them is possibly more useful than the
other. The choices are:
• Create more use cases (one for each scenario). Each use case has a simpler structure,

but there would be a high number of similar use cases.
• Group similar scenarios in a single use case. There are a smaller number of use cases,

but each of them would be more complex.
At this point, it is more important to discover the information exchanged between the actors

and the system than to decide if two scenarios consist of one or two use cases. Thus, it is not so
important, with regard to the final result, if the operations are discovered or described in
a single use case with two scenarios or in two use cases each with a single scenario.

The advantage of joining alternate scenarios into a single use case is that the
description of some steps must not be repeated in different use cases. This is the same
advantage that is obtained when the a ributes of different classes are shared by a
superclass (Section 6.6.1).

However, use cases must not be considered similar to procedure calls: they are linear
descriptions of scenarios that may happen in the real world where a user is interacting
with a system.

5.3.2 Variants
I t is admi ed, in principle, that the main flow is a strict sequence of interaction steps: it
is neither branched nor nested. However, sometimes it could be useful to represent the
main sequence in a not-so-linear way.

As mentioned in the previous section, use cases for ordering books and paying for
them could be considered a single use case with two scenarios. In that case, each scenario
would be an alternate end for the use case: Save shopping cart or Proceed to checkout.

These two possible endings may be represented as variants of the main flow of a single
use case.

As shown in Figure 5.4, the use case Buy books has two possible ends: in the first, the
cart is saved so that the order can be resumed later, and in the second, the customer pays
for and finishes the order.

FIGURE 5.4 Main flow of a use case with variants.

S aving the cart to resume the order later is not an exception (in the sense given in
Section 5.3.3) but an option for the customer. That is not a condition that prevents the use
case from concluding, because the use case still produces something: the cart is stored to
be used later. This is just a main flow variant, and this is why both variants are shown
with the same status in the flow.3

S ome analysts might choose one of the variants to be in the main flow and the other to
be an alternative flow in the form of a variant. I n Figure 5.5 the variant Proceed to checkout
was chosen to be in the main flow, while the variant Save shopping cart was left out of the
main flow. An advantage of this choice is that it allows the variant to be associated to

more than one step in the main flow. For example, consider that the variant Save shopping
cart may be executed when the user is in any step from 1 to 8. I n this case the variant
code would be numbered 1-8a. I f the variant could be executed at any time during the
main flow, then its number would be *a.

FIGURE 5.5 Alternative way to represent a use case with variants where one is kept in main flow and the others
are alternate flow.

This style, although predominant in literature, forces the use case analyst to make a
choice between variants that may be artificial in some cases. I f there is not a clear
predominance among the different variants, then a style such as the one presented in
Figure 5.4 seems preferable, because it gives the same status to each variant.

5.3.3 Exception handling
After describing the main flow of a use case and adding variants (if any), the analyst
must concentrate on identifying the exceptions that could occur and create an alternate

flow for each one. There are basically two techniques for identifying exceptions:
1. Each business rule annotated for a use case may generate an exception. For example, if

the use case for ordering books has a business rule that states that the value of the
order cannot be lower than 50 dollars, then when an order is confirmed there will be
an exception if it does not reach that value. To deal with this exception it will be
necessary to add more books to the order, or it will be canceled.

2. Additionally, the analyst may look at each of the steps of the main flow, especially
those that represent information flowing from actors to the system. In those flows
there will be possibly data that the system cannot accept by definition, which
constitutes an exception. For example, in the step where the credit card operator is
asked to authorize the sale it could send a refusal code – this would be an exception,
because the use case cannot be successfully completed in that case. Corrective actions
must be taken (outside the main flow), or the use case will be terminated without
achieving its goals.
A n exception (in the sense used in computer science) is not necessarily an event that

seldom occurs, but an event that if not handled prevents a process from proceeding. An
exception is not necessarily something that prevents a use case from starting, but it is
normally something that prevents it from being concluded. The fact that the credit card
has reached its limit does not prevent the customer from accessing the bookstore site
and starting to shop, but it prevents her from completing the order unless a valid credit
card with available credit is provided. Therefore, although the use case may be initiated,
it cannot be concluded until every exception that occurs is handled.

Figure 5.6 shows an evolution of the use case Order books, now with some exceptions
identified after the main flow. Each exception is identified by a number that indicates the
line of the main flow where it originates, and a le er that helps differentiate exceptions
that may happen in the same step. For example, if step 5 has three exceptions, then they
will be identified as 5a, 5b, and 5c. I f an exception can occur in any step, then it is
identified as *a, *b, etc., and if it can occur in a range of steps, such as 3-7, than it is
identified as 3-7a, 3-7b, etc. Additionally, if an exception can occur in nonadjacent steps,
such as steps 3 and 6, than it may be identified as 3,6a. A sentence follow the
identification code that corresponds to the business rule or situation that is the cause of
the exception. Figure 5.6 also introduces variant 5d that allows the user to continue
shopping for other books instead of finishing the order. This is not an exception, just a
choice.

FIGURE 5.6 Example of use case with exceptions identified.

The number of exceptions a team may come up with may be very high; however, we are
interested in just a few of them. Most exceptions that could be thought of may be
resolved by other mechanisms than the logic of the use case. A key for reducing the use
case complexity and still dealing with the system complexity is to reduce the number of
exceptions identified here to those that really must be addressed. The exceptions that are
really interesting now are the ones where the user tries to send the system some data
that cannot be accepted. Any other kind of exception probably can be resolved by other
mechanisms. In the example of Figure 5.6:
• In step 1 there can be no exceptions because the system may accept any keyword that

the user provides. It just happens that for some choice of keywords there may not be
any book to present. In this case, the behavior of the system should show no books, or
maybe show the books that most closely meet the keywords (Google does that). This
is not an exception that prevents the use case from continuing, just a special case of
its behavior.

• In step 2, and any other step where the system is presenting data, there can be no
exceptions in logic, because in step 2 the system is not trying to accommodate data
sent by the user; if some exception could occur, then it probably would have
happened in the previous step and generated an effect here. The system showing a
list with no books is not an exception. Again it is a special case of its normal behavior,
and the user action would be choosing no book in step 3 and after that repeating step
1 or proceeding to finish the order in step 5.

• Still in step 2, an analyst could think “What if the calculations involved with the query
have a defect that makes the system halt when trying to present the result?” Well, if
the code has a defect, then it must be corrected, and not incorporated in the use case

logic. This is not the kind of exception we are interested in.
• At any step, an analyst could think that an exception could happen if the

communication between the system and the user fails. That is what developers
usually understand as a real world exception. However, this is not the kind of
exception we are interested in here, because it is not specific to the logic of the use
case; communication may fail at any time – it does not matter which step of which use
case is being executed. Additionally, this exception is related to technology, and we are
dealing with essential use cases, where references to implementation technology are
avoided. Thus, this kind of exception must be implemented by general mechanisms,
not by the logic of the use case.

• In step 3, what if the user indicates a negative quantity? What if she writes a letter in
the quantity field? Here the idea is that all bad user actions could be eliminated by
simple interface widgets. For example, instead of writing a number in a text box, the
user selects a quantity by sliding a bar that represents only positive quantities. These
interface mechanisms are part of technology and they are not to be mentioned in the
essential use case. However, the analyst may know that there are ways to prevent a
user from choosing a negative or a “xyz” quantity, and therefore this is not a
preoccupation that must be included in the use case structure. As explained in
Chapter 8, this kind of syntactic user error will be addressed by defining the type of
arguments that the system can receive. If the type is defined as “natural,4” then the
team must not be concerned with any other values; they simply cannot be produced
by the user. The interface will not allow it.

• However, there is a logical exception in step 3, which corresponds to the user asking
for a quantity that is more than is available in stock. The quantity of books available
in stock varies from book to book and varies in time. Thus it cannot be defined as a
static type. The system could prevent the user from choosing a quantity that is higher
than available, but in that case, the system would have to check for those quantities
prior to the user action.

• Finally, step 5 has at least three exceptions that are just the type we are looking for;
three problems that are related to the use case logic and that prevent the use case
from achieving its goals: a user that is not identified yet, a user that has no valid
identification, and an order with no books selected.

Through the discussion above we can conclude that in practice exceptions happen
usually in steps that correspond to information being sent to the system, because only in
those cases are there business rules or situations that prevent the system from accepting
the data and proceeding further. Lots of potential exceptions may be treated as type
check or technological issues, as explained above. And in most cases, exceptions
identified in a step where the system is presenting information should have been dealt
with at the previous step where the user was sending information to the system. I n
summary, interesting exceptions in a use case flow are those in which the user tries to send
information that the system cannot accept.

Each exception must be handled by an alternate flow that corresponds to a branch of
the main flow. This alternate flow defines a sequence of steps that should be performed

to eliminate the problem created by the exception. I f this sequence of steps cannot be
performed or if the actor does not want to perform them, the only option left is to abort
the use case, that is, terminate it without reaching any of its goals.

Therefore, each exception identified in a use case has an exception handler. An exception
handler has at least four parts:
• An identification code that, as explained above, consists of the number of the step(s)

that originates the exception followed by a letter that identifies the exception.
• The exception, which consists of a sentence that states which business rule was broken,

because in a single line in the main flow different kinds of exceptions may happen, as
in, for example, step 5 of the use case of Figure 5.6.

• Corrective actions that consist of an alternate flow, that is, a sequence of actions that
should be performed to correct the exception. The corrective actions are numbered
sequentially and each step is prefixed by the exception identification. For example,
exception 2a has steps numbered as 2a.1, 2a.2, 2a.3, etc.

• Finalization, which is the last line of the alternate flow and indicates if and how the
use case returns to the main flow after performing the corrective actions.

There are five basic ways to terminate a corrective actions sequence:
1. Terminate the use case normally after the corrective actions are performed. By default, if no

finalization action is mentioned, it is assumed that the use case terminates at the end
of the alternate flow. The use case does not return to the main flow but its goals are
reached by the alternate flow.

2. Go back to a step before the one that caused the exception. Sometimes it is necessary to go
back to the beginning of the use case or move back some steps before the one that
caused the exception. This is neither very common nor desirable, because it implies
that the user will repeat steps that have already been taken. However in systems that
must obtain data in real time or systems with intensive concurrent transactions this
may be the case.

3. Return to the step that caused the exception and perform it again. This is more usual. One
must choose this option when the step that caused the exception could eventually
cause other exceptions even if one of them has been already handled. This is the case
for the exceptions of step 6 in Figure 5.6, because in addition to not having a valid
identification the user could not have selected any books.

4. Advance to some step after the one that caused the exception. This can be done when
corrective actions have already produced what the step or sequence of steps were
supposed to do. However, it is still necessary to check if new exceptions could happen
in the main or alternate flow (see the previous option).

5. Abort the use case. In this case, the control does not return to the main flow and the use
case does not reach its goals. If it is necessary to perform some corrective actions (for
example, removing transient records) this may be indicated in the steps of the
alternate flow (this approach for handling an exception is known as organized panic).
Figure 5.7 presents a new version of the Order books use case, now with the corrective

actions for the alternate flows defined.

FIGURE 5.7 Example of use case with exception handlers. *Contrary to what was stated in chapter 2, here we
assume for simplicity that books out of stock cannot be sold.

I n the example, each exception identified and handled is specific for the step where it
occurs. For example, the quantity of books available may only be detected in step 3 when
the user provides it.

I t is important that only exceptions that are specific to some steps are effectively
included in the use case. Otherwise, it could quickly become unnecessarily complex.
Generic exceptions that may occur at any step of any use case must not be treated as
exceptions here. For example, the actor may cancel a process at any step. That kind of
situation is more adequately handled by generic mechanisms. For this example, a generic
mechanism of rollback should be provided for the system. I f this kind of exception was
included in every use case, then a huge number of similar exceptions would be

introduced with no practical result. I f at any step of any use case the user can cancel the
transaction, it is not necessary to repeat that information many times. There could exist
hundreds or thousands of steps in the set of use cases of a system. Generic exceptions
that are specific to a single use case may be numbered with the “*” notation. Otherwise,
if the exception may happen in any use case or in a great number of them, then it must
be recorded in the supplementary specifications document, and therefore must be
implemented by general mechanisms, not by specific use case steps.

5.4 Writing recommendations
The writing style of a use case should follow a pa ern like “actor provides… / system
informs….” S tyles like “system asks…” should be avoided because what must be
represented in the use case is the flow of information, not the occasional demands that
gave rise to those flows; those demands do not exist in every scenario, and in most of
them they are not even necessary.

The team must avoid placing tests in the use case main flow. Tests like “if the user has
a record then the system presents…” should be avoided. That kind of test is unnecessary
because exception handlers should already be associated to the steps of the main flow.
Then, if an exception occurs, it would be handled in an alternate flow.

These tests must not be placed in the main flow to keep it from becoming a complex
flowchart instead of a straight, simple sequence of steps. Lots of “if/then” statements can
make the flow obscure, and the stakeholder would not know what the expected flow
(happy path) is.

The only situation in which a test would be acceptable in a flow is when it is about an
optional single step, as, for example, “if the user wants, she may also provide her cell
phone number.” But even in that case, an alternate flow would be a better choice.

Another common writing concern is that a use case must alternate inputs and outputs
of information. I n other words, normally a use case has the form “actor provides … ,
system informs … , actor provides … , system informs … .”

S equences such as “actor provides … , actor provides … , actor provides …” or “system
informs … , system informs … , system informs …” must be avoided unless justified.

The idea behind the alternating pa ern is to reduce any discrepancy on the number of
steps that different analysts could assign to the same use case. Without that rule one
analyst could write:
1. The customer provides her name, ID,5 and phone number.

On the other hand, another analyst could write:
1. The customer provides her name.
2. The customer provides her ID.
3. The customer provides her phone number.

The most useful and correct version under this point of view is the first, because,
among other things, the second would demand that the information be provided in the
order of the steps: after providing her ID, the user cannot go back and correct her name.
Thus, the first version is more compatible with most information systems, which present

interfaces where information may be entered and edited before it is finally sent to the
system.

A sequence of two input steps can be justified only if the first step may cause an
exception that can prevent the use case from proceeding further. One example of this is:
1. The customer provides identification.
2. The customer provides the flag, number, expiration date, and security code of her

credit card.
I n this example, when the customer presents identification, an exception would occur

if the identification is invalid. I n that case, the information about the credit card must
not be given by the user. The actor will only give that information after the first step is
performed or corrective actions were taken.

Even in that case, an intermediary validation step could be used to improve the
understandability of the sequence, such as:
1. The customer provides identification.
2. The system validates customer identification.
3. The customer provides the flag, number, expiration date, and security code of her

credit card.
Finally, some system messages may be avoided in the use case flow because they do

not involve the system presenting stored information. For example, the first step for the
alternate flow for exception 5a in Figure 5.5 could be “The system informs the user that
the customer was not yet identified.” That is not an error, but the step is somewhat
redundant in the flow because the exception already states the condition that causes it.
When designing an interface for handling that exception the team should be concerned
about error messages like that. However, it is not necessary for understanding the flow of
information of the use case. Consider that if it was necessary then any exception handler
in any use case should start by presenting an exception message, this can already be
inferred by the exception condition. I t can be assumed by default that the message will
be shown, and thus mentioning it every time is not necessary.

5.4.1 Essential versus real use case
A frequent doubt about use cases is what system must be described? The current one? Or
the one that will be built? I f the current operations are performed manually, and in the
future they will be performed with a computer, what must be the description provided
by the use case? The answer is none, but both! The use case wri en for analysis purposes
must describe the essence of the operations, not their concrete realization. Thus, the
analyst should always try to avoid mentioning the technology used to perform the
process and concentrate only on the exchanged information. I nstead of writing “the clerk
writes the customer name and address on a paper sheet,” corresponding to a manual
technology used normally in nonautomated systems, or “the customer fills in the name
and address on the main screen,” which corresponds to an automated technology, the
analyst must register the use case simply as “the customer provides a name and
address.” The last form is technology-free and interface-independent and represents,

therefore, an essential description for the operation.
All use cases used for requirements purposes should be, in principle, essential.

Essential in this context means that the use case is described in a language where only
the essence of the operations is presented, not its concrete counterpart. I n other words,
the analyst must describe “what” happens between the user and the system without
informing “how” that interaction happens. The analyst should not, therefore, while
doing analysis, try to describe the interface technology between the user and system.
This will be described during design time in which real use cases could be wri en after
the real interface has been designed. Real use cases stay a ached to a specific interface
technology, while essential use cases are technology-free.

Why essential use cases? According to Ambler (2004), real use cases (those that
mention technology) contain too many built-in assumptions, often hidden or implicit
about the underlying technology of interface implementation strategies. That may be a
good feature during design, but not during requirements analysis. An essential use case,
on the other hand, states the user needs or intentions, and not the concrete technology
that could support those needs.

As the description of the use case at that moment is made without reference to the
interface technology, it is not necessary to decide what the interfaces look like, but only
wh a t information is exchanged between actors and system. References to menus,
windows, bu ons, and other graphical devices must be avoided in the text of the
essential use cases.

So how do we describe use cases that seem to be particularly concrete such as, for
example, drawing money from an automatic teller machine? How do we do that without
describing technology? I t is possible. I nstead of saying “the user passes a magnetic card”
one could say that “the user provides identification.” I nstead of saying that the machine
“prints the account details” one could say that the machine “presents the account
details.” Thus, by eliminating the reference to the physical technology, only the essence
remains. This opens the way for the design of innovative technologies later, that is,
interfaces different than those that can be seen at a first glance. For example, the user
could be identified by fingerprints, the receipt could be sent by SMS (S hort Message
Service), and even the money could be delivered in cash or in credits to a preloaded card.

I t is the responsibility of the analyst to study the current processes of the company and
produce an essential version of them in the form of use cases. Later, the designer will
give a new form to those processes by using technology to produce a new concrete
version of the system.

5.4.2 Explicit information
For the sake of understanding use cases as functional requirements, it is recommended
that the analyst make explicit the individual data pieces exchanged between actors and
the system. Thus, instead of a laconic “the customer provides her data,” the use case
should say “the customer provides her name, ID, email, phone, and address.”

Eventually, a term such as “customer” could be externally defined as meaning “name,

I D , email, phone and address.” An expression such as customer=<name, id, email, phone,
address> could be wri en. I f that definition is adequately registered, for example, in the
conceptual model, or in a data dictionary, then it can be used in the use case text to avoid
repeating the individual elements every time they are needed.

5.4.3 Identification and selection
A recurrent problem associated to use cases is how to identify people and things. For
example, a customer must be identified and validated in order to conclude the Order
books use case. How does she do it? Username and password? Social security number?
Fingerprints? S electing the name from a predefined list or menu? To keep the use case
essential, that particular action must be left generic, and references to possible ways for
identifying a customer must be left to design. Furthermore, the computer security
community already has established common methods to securely validate an identity,
and these proven methods should be used instead of reinventing the wheel. For now, the
use case will simply state that the user provides identification, without mentioning by
which means that identification was obtained and validated. This can be done when
security issues are designed into the system.

Another example is the selection of books for purchase. D oes the customer submit the
I SBN of the book? Select it from a list? Use a natural language speech interface? D uring
use case expansion these issues do not need to be decided (unless they are indeed
nonfunctional or supplementary requirements). At the essential level of the use case the
user simply selects books. Later, the design will present some options to provide the
means for the user to make that selection in the most comfortable way.

5.4.4 Mandatory steps
One of the biggest doubts reported by teams that work with use cases is about what
steps to include in the expanded use case.

I n fact, two people that describe the same use case, unless they have a nicely
established convention, may produce different step sequences. For example, in a
traditional bookstore, one analyst could state that the clerk asks the customer which
books she wants; but another analyst could ignore that step and state that the customer
simply picks up the books and give them to the clerk for purchase. The question is:
Which one of the two versions is right?

Both may be correct, but one of them is more useful. I n any scenario of that use case, it
is mandatory that the customer selects the books she intends to buy; otherwise the order
cannot be completed. However, it is optional for the clerk to ask for the books. That may
happen just in some scenarios, but not in all of them. Thus, selecting books to buy is
mandatory, but asking for that information is optional in the flow of the use case.

Analysts must be encouraged to build correct versions of the use cases, but we should
not stop there: different analysts should build similar descriptions for the same process.
This can be obtained when the number of optional steps is minimized.

Every use case has mandatory steps. These steps include information that is passed
from the actors to the system and from the system to the actors (Figure 5.8). Without one
of those steps, the use case may not make sense. Those steps must appear in any
expanded use case, and their absence implies that the use case is incorrect.

FIGURE 5.8 Mandatory use case steps.

Other steps such as “ask for books” are optional or complementary. They may help
contextualize the use case, but they are not fundamental because they do not transmit
any information through the system boundary.

Thus, an expanded use case for buying books must contain steps that indicate that the
customer selects books to be bought. The customer should also inform the system how
many copies she wants if this is the case. The system must inform the customer of the
total value of the purchase. Why are these steps mandatory? Because without exchanging
this information it would be impossible to adequately register a sale. Certainly it would
not be of great help if a system registers a sale without mentioning which books were
sold or how much was spent. Because that information is so important for the conclusion
of the use case it is considered mandatory for the expanded use case.

I n a use case description the information does not appear from nowhere. I t is
transmi ed from the actors to the system and vice versa. The absence of any mandatory
step may make the use case seem incomplete, as shown in Figure 5.9, where a use case
was poorly described because mandatory information was omitted.

FIGURE 5.9 An example of a poorly described use case that is missing a mandatory step.

The use case in Figure 5.9 is incomplete because an order would need more
information than the use case description provides. How could the system know which
books the customer wants to buy? No ma er how the information is obtained, it is
mandatory data that must be received by the system, and therefore it must be registered
in the use case.

There is a clear reason for making all mandatory information appear in the expanded
use case: this information will be used later to define what the system operations are,
that is, what methods have to be implemented in order to satisfy the requirements. I f
this information is not complete at this point, incomplete methods would be
implemented later, and that will raise a need to redo part of the system when the
problem is identified.

Furthermore, the information contained in the mandatory steps of the use cases will be
used to refine the conceptual model, which is the basis for the structure of the classes of
the system.

D epending on the direction the information goes, mandatory steps may be identified
as:
• System events: Steps that indicate that some information is transmitted from the actors

to the system.
• System returns: Steps that indicate that some information is transmitted from the

system to the actors.
Special care must be taken when considering system returns. For those steps to be

really mandatory they must pass some information that the system stores or can access.
That information must be something that in principle the actors do not have access to
except by querying the system.

For example, the system must inform the actor of the total value of the purchase in the
use case Order books. Otherwise, the actor will not know how much to pay. That
information could, maybe, be calculated by the customer if she mentally adds the
individual prices of the books, but even so she could not be sure about the total value
because information about discounts, taxes, and fees must be provided by the system.
The responsibility for providing that information belongs to the system.

On the other hand, when a customer sends some information to the system, the
interface may provide some kind of feedback to make clear the data were received and
adequately processed. However, that feedback (normally a message such as “OK”, or

“done”) is not a system return because it is not stored or derived information about
books, customers, and orders. This kind of message is just an interface feedback, and
therefore it belongs to the interface technology domain. As it does not consist of stored
information it must not be considered as a mandatory step.

I t may be interesting if system events and returns are explicitly identified in use cases.
A reader that is new to use cases may choose to clearly identify mandatory steps by
marking inputs with [IN] and outputs with [OUT]. Those markers may be placed just
after the line number, as shown in Figure 5.10.

FIGURE 5.10 A use case with mandatory steps marked.

Those marks can also help the analyst to verify if each step is really a single transaction
because no step can be marked with [IN] and [OUT] at the same time. I t also helps the

analyst to see if there are sequences of [IN] or sequences of [OUT] that could be joined
into a single step.

5.4.5 Complementary steps
Another kind of use case step is the optional or complementary step, which does not
represent an information flow between actors and the system. However, this kind of step
can be used sometimes to help understand the use case context.

This kind of step usually corresponds to communication between actors
(communication that does not involve the system, as shown in Figure 5.11) or to the
description of actions or a itudes that also does not configure information flow, such as
“the customer opens the bookstore home page,” “the customer decides to buy books,”
“the system asks the customer for identification,” or “the clerk asks the customer which
books she wants to buy.”

FIGURE 5.11 Complementary use case steps.

Complementary steps are not fundamental in essential use cases because they do not
correspond to system events or system returns, as they do not transmit information
through the system boundary.

S ome of them can be even mapped to navigation operations during interface design.
For example, a real use case (design) could have a step like “the customer selects an
option.” That line does not correspond to a system event because at that time the
customer does not pass any information to the system (such as name, phone, address,
book title, etc.). That action corresponds simply to a change of state that will be
implemented as interface navigation (a new screen is opened after the option is selected,
for example).

5.4.6 Unsuitable steps

The team must keep in mind that, as the use case is a description of the interaction
between actors and system, they must avoid including any internal system processes
(Figure 5.12), such as “the system stores the information into the database.”. Those steps
are considered unsuitable for the use case description.

FIGURE 5.12 Unsuitable use case steps.

The use case is a tool for describing the interaction between users and a system, not a
tool to describe internal processing. The internal processes of the system will be be er
described during design with more adequate tools, such as communication diagrams.

I n the use case description, the analyst must concentrate on describing the
information that is passed from users to the system (for example, “the user selects the
books to be ordered”) and from the system to users (for example, “the system presents
the total”). Any aspect about internal processing must be omi ed. I t can be said that the
system presents the total value, but not the steps taken by the system to calculate that
value. In other words, the system still must be seen as a black box at this time.

I f the analyst wants to record a formula or algorithm to perform a given calculation
that is needed to present some data, then it can be done in the use case annotations and
recorded as a nonfunctional requirement.

Figure 5.13 presents a situation where the description of a use case goes beyond the
recommended, and unsuitable steps are added. The unsuitable steps are marked with
[X].

FIGURE 5.13 Example of a use case with unsuitable steps.

The use case in Figure 5.13 includes all mandatory steps but also includes unsuitable
ones (steps 2, 5, and 8), which correspond to internal processing, not information input
or output.

The fact that the system performs verifications, calculations, and internal queries does
not affect its interaction with the user. The user only needs to know that the information
she sends is received by the system, and it may be recovered from the system when
necessary. How the system is going to do that is an internal problem that will be
answered only during design and coding.

5.5 Included use cases and fragments
I t is possible for two or more use cases to have coincident parts. For example, many use
cases may include a payment fragment. I n other cases a use case may include not only a
fragment, but a complete use case. The include relationship can be used only when the
duplicated fragment or use case is significant, that is, it should not be used when just
one step is duplicated. An included use case or fragment may be called in a flow by using
the “include” expression. Suppose that payment is a fragment that appears in more than
one use case in the system. This fragment could then be called by any use case as done in
Figure 5.14.

FIGURE 5.14 A use case that calls an included fragment.

The fragment itself can be defined as in Figure 5.15.

FIGURE 5.15 A use case fragment that may be included in more than one use case.

Notice that the fragment is not a complete use case in this example. I t cannot be
executed alone by a user; it only can be performed as part of another use case.

Some care must be taken here. First of all, use cases are not procedures like the ones used in
programming languages; they are linear descriptions of real world processes. Analysts are
not encouraged to structure use cases as they do with code. I ncluded use cases or
fragments may be used only when the situation really justifies it.

However, the analyst must keep in mind that the goal of the expanded use case in
analysis is to help in understanding the nature of the interactions between the system
and its actors, and not to structure a computer program to simulate that interaction.
Thus the included use case or fragment calls must be used carefully.

5.6 Expansion of stereotyped use cases
Stereotyped or pa ern use cases present medium or low risk to the software development
process because the structure of their flows is already known. The indication of <<crud>>
o r <<report>> stereotypes, if adequately documented, may pass to the programmers a
clear idea of what has to be implemented.

I deally, if functional requirements are sufficiently detailed, stereotyped use cases
would not need to be detailed. For example, if the specification of a report already
presents all information it receives and returns, there is no need to write a detailed use
case for it, because it would just repeat information that the analyst already has.

One concern that must be kept in mind during requirements elicitation is whether a
use case that was identified really belongs to a pa ern. Some analysis effort must be
spent on the use cases before deciding if they really belong to the pa ern.6 For example,
reports must never change data. I f the use case is presenting data but also changes data
then it must not be defined as a report use case. I t could be a variation of that pa ern or a
completely new structure that does not belong to any known pattern.

I n the case of CRUD s what can be said is that not every entity of the conceptual model
is suitable to be managed by the CRUD pa ern. CRUD s are expected to be the simplest
entities. I f they get more complex, a set of non-CRUD use cases is necessary for
describing how the user works with them.

For instance, an address or a credit card are very simple entities and could be nicely
managed by a CRUD use case. On the opposite side, an order is one of the more complex
entities of the bookstore system. Orders may be issued, canceled, completed, sent,
resent, received back, etc. That does not characterize it as a CRUD.

I n the middle of the scale there are concepts which the team must look at to decide if
they may be adequately managed as a CRUD or not. For example, is managing customers
a CRUD or not? Some time may be spent on analysis before the team can decide on that.
Section 5.6.2 shows that it may be considered a variation of the CRUD pattern.

The expansion models for pa ern use cases presented in the following subsections
serve as a reference to the reader. They are presented in a form of a template, so that
analysts can use them to write their own versions of pa ern use cases, or even work on
new patterns or subpatterns.

5.6.1 Report expanded
A report is a simple use case that consists of a single access and calculations on data
managed by a system. The information sent by the actor consists of arguments for
selection, filtering, ordering, grouping, etc. Figure 5.16 presents a general format for an
expanded report use case.

FIGURE 5.16 A template for the expanded report use case.

Figure 5.17 presents a concrete example of a report, that is, an instantiation for the
template, applied to the Livir example.

FIGURE 5.17 An example of an expanded report.

For the reasons explained in Section 5.3.3, this kind of use case does not have alternate
flows (otherwise it would not be a report, but a different kind of use case). The user
simply sends the arguments and receives a set of organized data in return. I f the user
passes the wrong arguments (for example, incorrect data), she will receive the right
answer for the wrong data. For example, if the user passes by mistake a period in which
there were no devolutions, then she will receive an empty list, which corresponds to the
right answer for the arguments passed. I n that sense, therefore, this kind of use case
cannot have exceptions.

However, the team still must assure that the use case is really a report before sending
it to design and coding, because it could be a variation of that pattern.

5.6.2 CRUD expanded
J ust like reports, CRUD s are also use cases that follow a known pa ern. This kind of use
case consists of the optional execution of one out of four possible operations: create,
retrieve, update, and delete.

This kind of use case has a main flow with four variants, because none of the
operations can be considered a “happy path” or “exception.” They are distinct operations
grouped more by convenience, for being associated to the same entity, than by
similarities among their steps. Therefore, the main flow is just a user decision on which
operation will be executed. Figure 5.18 presents a possible template for this kind of use
case.

FIGURE 5.18 A template for an expanded CRUD use case.

Observe that in that use case template variant 1c (Update) includes the steps of variant
1b (Retrieve).

Exception handler 1d.1a uses a specific strategy that consists of preventing the user
from deleting an object when there is some rule against it. I n Section 8.5.4, this issue is
revisited and other strategies to deal with this exception are discussed.

Figure 5.19 presents an example of expansion of a typical CRUD use case.

FIGURE 5.19 An example of an expanded CRUD use case.

In this example, two business rules were used to identify exceptions:
• The identification code for publishers must be unique, which must be verified both

when a new instance is included and when an instance is updated. This produces
exceptions in step 1a.1 and 1c.2, which may be identified as a single exception
(1a.1,1c.2)a.

• If the publisher already has a book associated to it (and that association is mandatory
for books, i.e., every book must be linked to a publisher) then it cannot be deleted.
This is a structural rule that must appear explicitly in the conceptual model as a
mandatory role from book to publisher (Section 6.4.1).

Figure 5.20 presents the CRUD use case Manage customers, which is a variation on the

pa ern. A customer can retrieve and modify only her own data. Thus, the use case must
be adapted to that fact. On the other hand, it may be desirable that a system manager
could access data from any customer. For that manager the use case would be a regular
CRUD . Would two use cases be created here? One for the customer to manage her own
data and the other for the system manager to manage data from all users? Maybe… but it
seems that this approach would be quite repetitive. To make things even worse, imagine
that it is possible for a regional manager to access the data of users only from her region.
Would this be a third use case? This does not sound like a good solution.

FIGURE 5.20 An expanded CRUD use case with access restrictions.

To solve this issue in an elegant way, the use case could be parameterized, indicating
that the user can only access data from customers she is authorized to review. When
customers are being managed, what must be verified by a given business rule is whether
the user really has permission to access or change the data from the customer she is
trying to access or change. I n Figure 5.20 checking that permission is performed by
exception handler (1b.1,1d.1)a: Access not authorized.

Notice that the use case in Figure 5.20 is a CRUD variation that could be called CRUD
with access restriction, because the access to data depends on who is the user.

Other CRUD variations exist, such as:
• CRUDL: Including a variant to list the existing elements. Thus, instead of simply

identifying an object to retrieve, update, or delete, the user can select it from a list.
• SCRUD: Including a variant to search elements.
• RUD: Where elements may be retrieved, updated, and deleted, but not created.
• CRU: Where elements may be created, retrieved, and updated, but not deleted.

Many other variations may be invented depending on the need and the cost/benefit of
having more patterns to remember.

There is a simpler way to define a pa ern-based use case if it fits perfectly on the
pa ern. This consists of simply listing the field to be filled and the business rules to be
observed. For the rest, the pattern is applied. Figure 5.21 shows an example.

FIGURE 5.21 Example of brief expansion for a CRUD use case.

With the information given in Figure 5.21 and the template of Figure 5.18 it is possible
to implement the use case without expanding it.

5.7 Other sections of an expanded use case
S ince the concept of a use case was created (J acobson, Christenson, J onsson, &
Övergaard, 1992), different formats have been proposed. Each proposal includes

different elements. The “main flow” and “alternate flows” sections are fundamental for
any detailed use case description. However, other sections can be included if the analyst
needs them. Some of the most popular are presented in the next subsections.

5.7.1 Stakeholders
There are often scenarios where groups other than actors are relevant to a use case. Other
sectors of the company could have some interest in the use case. For example, in the use
case Order books the only actor is the customer. But the results of that use case may
interest the stock and accounts departments, because the results of a sale may affect both
the quantity of books in stock as well as the quantity of money available or to be received.
Thus, even if those departments are not participants in the use case, they can be listed as
stakeholders.

The utility of the stakeholders list for a use case is that the use case must satisfy all
stakeholders. Thus, the documentation will be useful to remind the analyst to seek
information that needs to be stored, processed, or transmitted, so that those interests can
be satisfied.

5.7.2 Preconditions
By definition, preconditions are facts considered true before a use case even starts.
Preconditions must not be confused with exceptions: exceptions may be detected only
after the use case has started. Exceptions are detected during a use case because most of
the time it is not possible to verify if the conditions were true or not before the use case
begins. For example, it is not possible to assure that the customer has enough credit to
pay for the order before starting the Order books use case, because the value of the order
cannot be known at that time; therefore this is an exception. However, it is possible to
admit that only a book that was sold and delivered can be returned. Thus, the sale and
delivery of the book is a precondition for its return.

As preconditions are accepted as true facts before the use case starts, they will not be
checked during the use case. Although there can be other interpretations in literature,
these kind of preconditions do not generate exceptions. I f they are false it should be
impossible to start the use case (otherwise they are exceptions, not preconditions).

5.7.3 Success post-conditions
Success post conditions establish the results of a use case, that is, what will be true after the
use case is executed. For example, the Order books use case may have as a post-condition
the following result: “the order was registered by the system.”

5.7.4 Open issues
S ometimes, without the presence of the client, the team cannot decide about some issue
that may depend on company policies. For example, may the customer pay the order in

installments? Are there special offers for customers that buy more than certain
quantities?

I f the client is not immediately available, these doubts must be recorded in the use
case section “open issues” in order to be solved as soon as possible.

At the end of the analysis activities of one iteration it is expected that all open issues
have been resolved and incorporated into the use case description.

5.8 System sequence diagrams
Among other uses, the text of the expanded use cases may be used as:
• A source of information to discover the concepts and attributes for refining the

conceptual model (Section 6.8).
• A source of information to discover system operations, which consist of the methods

that encapsulate the domain tier of the system from the interface (Chapter 8).
There are two kinds of system operations:

• System commands, which change data and must not return data.
• System queries, which return data and must not change data.

That follows the Command-Query Separation or CQS principle of software engineering
(Meyer, 1988), which allows for be er code reusability and maintainability. A query that
changes data would be less cohesive than a query without collateral effect and a
command without return.

System commands are methods that are activated by a system event, that is, as a reaction
to a user action. System commands, by definition, implement a flow of information from
the outside to the inside of the system. Therefore, system commands update the
information that is managed by the system.

System queries are methods that correspond to the simple verification of information
already stored. That information may be presented exactly as it exists or modified by
logical and mathematical operations (such as sum, average, etc.). By definition, a system
query may not be responsible for the insertion of new information into the system. I t
should also not be responsible for updating or removing information from the system: it
can only read information.

The set of system operations correspond to the total functionality of a system, that is,
the set of all functions that can be performed by a user with the system.

Use cases are excellent sources for discovering system operations. S ystem commands
are basically associated to steps in which the user sends some information to the system
(those marked with [IN]). System queries are associated to use case steps in which the
system sends information to actors (those marked with [OUT]).

5.8.1 Elements of a sequence diagram
One of the UML diagrams that can be particularly useful for representing the sequence
of system events and returns in a use case is the sequence diagram. When a sequence
diagram is used to represent a use case it may be called a system sequence diagram

(Larman, 2004). The sequence diagram has elements that are instances of actors and
other system components. I n the first version of the system sequence diagram only the
actors and the system interface (or application tier) are represented (Figure 5.22).

FIGURE 5.22 System sequence diagram.

The activities related to use case analysis still do not deal with objects that are internal
to the system. Thus, the system must be represented as a single object: a black box. I n
this case, it can be represented by the interface symbol , as proposed by J acobson et
al. (1992). One actor can only communicate with a system through its interface. Messages
from the actor cannot reach the objects, as shown in Figure 5.23.

FIGURE 5.23 An example of an inadequate system sequence diagram, where actors communicate directly with
the objects.

Actors, interfaces, and other elements of the sequence diagram have a lifeline,
represented by a vertical line, where events may happen. When the line is dashed, the
actor or system is inactive. When the line is solid, the element is active (processing or
waiting for the result of an operation being performed by another element). Human

actors are always considered active.
The horizontal arrows represent the information flow. There are three kinds of

information flows in that diagram:
• Between actors: Actors’ communication among themselves, corresponding to

complementary steps of the expanded use case.
• From the actors to the system: Corresponding to system events, that is, steps that could be

marked with [IN] in expanded use cases.
• From the system to the actors: Corresponding to system returns, that is, steps that could

be marked with [OUT] in expanded use cases.
The information exchange between actors does not belong to the scope of the system,

but it may be useful to illustrate how information is exchanged from actor to actor until
reaching the system.

One thing to keep in mind when these diagrams are being built is that information is
not created during the process; it is only transferred from actors to system and vice versa. The
actor usually has some information that must be passed to the system in order to
perform a process. To process a book order, the customer must inform the system who
she is and which books she desires. I n the beginning, the customer is the only one who
holds that information; the system has the registry of all customers and books, but it
cannot know who that specific customer is until someone provides that information.

The sequence diagram can be built for the main flow of a use case and completed with
alternate flows. Optionally, different sequence diagrams could be built for each flow.
However, the most important thing at the moment is to know what information is
exchanged between the actors and the system. The analyst must build a catalog with all
system commands and queries (which are explained in the next sections) identified in the
main and alternate flows of the use case. This information will be used later to define
contracts that indicate how the system retrieves and transforms information (Chapter 8).

5.8.2 Expanded use cases as system sequence diagrams
The system sequence diagram is a tool for achieving more formal and detailed use case
descriptions. Additionally, developing the system sequence diagram makes the
connection between requirements analysis (the expanded use case) and software design
(the system operations that will be implemented).

The construction of the system sequence diagram may be done in two stages:
1. Representing the steps of the use case as information exchange between actors and the

system interface.
2. Representing system operations as methods calling between the interface and the façade-

controller,7 which encapsulates the domain tier of the system.
The first step is simple: for each use case input (a step that could be marked with [IN]),

there is an equivalent system event in which one actor sends information to the interface,
and for each use case output (a step that could be marked with [OUT]), there is an
equivalent system return in which an actor receives information from the system (Figures
5.24 and 5.25).

FIGURE 5.24 A reference use case.

FIGURE 5.25 The representation of a use case main flow as a system sequence diagram.

Note that between actors and interface the flows consist of sending and receiving
information. I nformation may be sent by an actor, for example, by typing it in a form.
I nformation can be received by an actor when it is printed on the screen, for example. At
this level, flows are not calling methods because actors are not internal objects.

The words or phrases used in sequence diagram flows to represent information are
sometimes a source of confusion and misunderstanding. To avoid such confusion, a
labeling pattern is recommended:

• Simple information (alphanumeric data) is represented by one or more words. For

example, keyword (step 1 of Figure 5.25), quantity (step 3), and total (step 5).
• Complex information may be represented between “<” and “>” in the diagram if it is

composed of a few elements (2 or 3). For example, <selected book, quantity> (step 3).
• Complex information composed of numerous elements (more than 3) may be

represented in a separate note or data dictionary.8 Only the name of the complex
concept is used in the diagram. For example, book (step 2) and item (step 4).

• A collection of values is indicated by the suffix “*”. For example, keyword* (step 1),
book* (step 2), <selected book, quantity>* (step 3), and item* (step 4).

• When one object is selected from a list presented by the system, the selection is
indicated by the word “selected,” as in step 3, where “selected book” stands for a book
that was selected from the list book presented in step 2.

Some other considerations on the diagram may follow:
• In step 1, the team could choose to use keywords instead of keyword*. However, in this

case, the fact that the information being sent is a list of words would not follow the
proposed notation.

• The information contained in a book is probably a subset of the attributes of the Book
class of the conceptual model; it does not necessarily correspond to the complete set
of attributes of the Book class.

• In step 3, when the user informs the system about the list of books she has selected it
is not necessarily the complete information about a book that is being sent by the user
to the system. Technologically speaking, the user just has to select a book from a list
and the interface sends to the system the correct identifier for the selected book (the
user does not even have to know which identifier it is).

• In step 4, an item was created to represent different aspects of a book: instead of page
count, publisher, ISBN, and cover image, an item presents quantity (which is not an
attribute of a book), and subtotal (which is calculated from price and quantity).

• Step 5 does not represent alphanumeric information being sent or received as in the
previous steps. Finish order is a control step. It just informs the system that the state
of the order has changed without passing any other new alphanumeric information.

• Variant 5d is a choice between finishing the order or resuming shopping. It is
represented by the loop fragment that includes steps 1 to 4.

5.8.3 Connecting the interface to the façade-controller
System events are actions that a user performs over the system interface. When a web
interface is used, for example, these actions consist of filling forms, pressing bu ons, etc.
These are not operations in the sense of programming languages, that is, these flows
from an actor to the system and vice versa do not represent method calling.

However, system commands and system queries are computational procedures that are
necessary to implement system events and system returns, respectively. S ystem
commands and queries are activated by messages that are sent from the interface to the
façade-controller. Now, we have a system component that invokes another system
component. I n this case, it is the interface that sends a message, asking the façade-

controller to perform a method that consists of a command or query. The set of all
possible messages is equivalent to the whole functionality of the system: all access and
updating of the logic for data is done by system commands and queries.

Thus, four kinds of arrows are of interest in system sequence diagrams:
• System event: As shown in Figure 5.26, this is an action performed by an actor that

sends some information to the system. In the diagram, it is represented by an arrow
from the actor to the interface.

• System return: As shown in Figure 5.27, this is a flow of information from the system to
one actor, represented in the diagram as an arrow from the interface to the actor.

• System command: As shown in Figure 5.28, this is a message that is sent from the
interface to the controller, usually in response to a system event. The system
command must, by definition, change some information stored or managed by the
system. In the diagram, this is represented by an arrow from the interface to the
controller labeled with a message (the use of parentheses is always recommended to
distinguish it from information flows, such as system events and returns).

• System query: As seen in Figure 5.29, this is a message that is sent from the interface to
the controller in order to obtain some information from the system. Queries must not
change data; they just return data. In the diagram, queries are represented by arrows
from the interface to the controller labeled with a message with an explicit return
value.

FIGURE 5.26 System event.

FIGURE 5.27 System return.

FIGURE 5.28 System command.

FIGURE 5.29 System query.

Query results could also be represented by dashed lines from the controller to the
interface, as shown in Figure 5.30. Both representations are allowed and the team may
choose one or the other. The approach of Figure 5.29 creates fewer arrows in the diagram,
but may be complicated if complex data must be returned by the query. That problem
can be minimized if notes such as those of Figure 5.25 are used to define complex data.
Other analysts would prefer the approach of Figure 5.30, which makes the return appear
explicitly as an arrow in the diagram. The disadvantage of this approach is that it splits a
single query call into two arrows.

FIGURE 5.30 Alternate representation of a system query.

Communication between actors can be represented in the system sequence diagram as
arrows from one actor to another. However, as explained before, these communications

do not affect the implementation of the system.
The domain tier of an application (the part of the system that contains all classes that

perform the logical operations on data) is encapsulated by its façade-controller, which is
an instance of a class that implements all system commands and queries that must be
accessed by a given interface or set of interfaces. There are at least three subpa erns for
the façade-controller. The first one, for smaller systems, consists of implementing a
single controller for the whole system. However, this would result in a large number of
operations implemented in a single class. A solution to this is to divide it into use case
controllers, that is, a different controller class for each use case. However, this is not a
good solution when different use cases call the same methods, which should be
implemented in different classes. The most adequate solution for most medium or large
systems is to implement component or subsystem controllers, that is, controllers that
encapsulate the functionality of subsystems or components as defined by the system
architecture.

The design of messages between the interface and the controller is made after an
examination of the system events and returns using the following rules:
• A system event that sends data to the system that must be stored, updated, or deleted,

that is, data that causes a change in the internal state of the system, requires at least
one system command (Figure 5.31).

• A system return that sends data from the system to the user requires at least one
system query, so that the data can be obtained from the controller in order to be
presented by the interface (Figure 5.32).

• A sequence of system event and return, where the event just provides arguments for
producing the return, requires a system query where the information received from
the system event are the arguments (Figure 5.33).

FIGURE 5.31 A system event that requires a system command.

FIGURE 5.32 A system return that requires a system query.

FIGURE 5.33 A sequence of system event and system return that requires a system query as the event just
passes its arguments.

The cause/consequence relation between events and commands and between returns
and queries is not always so direct. S ometimes, a query can use arguments that were
passed to the interface many steps earlier, or information passed by the actor to the
interface can be used many times by different system commands and queries.

These rules for deriving queries and commands from returns and events are just a first
approach for designing the interface tier. Later, modeling techniques and design
decisions may change the way these commands and queries are invoked.

5.8.4 Stateless strategy
When the system sequence diagram is being developed, each piece of information is
passed from the actor to the system once. However, in the next level, between interface
and controller, many different commands and queries may need the same arguments.
For example, the customer ID may be necessary to perform many subsequent operations.
At this point, the designer must decide if the controller must have transient memory for
storing these arguments (stateful strategy) or if it is not provided with memory (stateless
strategy). I n the stateless strategy each time a system query or command needs an
argument it has to receive it explicitly from the interface.

Figure 5.34 shows how the system sequence diagram would look for the use case Order
books with a stateless strategy. The information is passed from the actor to the interface
just once, but each time a system command or query needs that information, the

interface must send it again as an argument to the controller. Observe that cartId is
passed by the interface to the controller three times: when add2Cart, getCartSummary,
and finishOrder are called.

FIGURE 5.34 System sequence diagram for the main flow of use case Order books using a stateless strategy.

From this point it can be seen that the team is making a transition from analysis to
design, because design decisions must be made in order to accommodate the
requirements. For example, the fact that a user must be identified only when the order is
finished prevents the system from creating an order before that point (if the order is
really a concept that must be associated to a customer). Therefore, a shopping cart is
created instead of an order at the initialization of that sequence diagram. The order will
be created only when the user chooses to stop shopping (finishing the order). At that
point, if the user is not already identified an exception would be raised, as explained
later. One point to notice is that as the controller has no transient memory, it does not
register the information of who is shopping. I t is the interface that holds the customer
identification at this point. When the order is ready to be completed, the interface sends
to the controller the IDs of the customer and of the shopping cart (remember that the
shopping cart is not yet associated to any customer).

As the controller does not have state (transient memory), each operation sent to it that
refers to the shopping cart must refer to its number (cartId). Why is the cart ID used and
not the cart object itself? Are we not doing object-oriented design? The point is that the
domain objects are encapsulated by the controller. This means that the interface should
not have direct access to the domain objects. This is why the interface sends an ID as a
parameter instead of the cart object itself.

One remark must be made about the command createShoppingCart: as it creates a new
domain object and returns its identification code, one could ask if this is not against the
command-query separation principle. I t is not. I t is one of the acceptable exceptions to
that principle, because the command just creates a new object and returns its
identification code. I t can be made because trying to obtain the code of a newly created
object by other means would be counterproductive.

5.8.5 Stateful strategy
When the controller may have transient memory for holding working parameters during
the execution of a use case, then we are using the stateful strategy. Thus, after an
argument is sent to the controller by an operation, the subsequent operations would not
need to receive the argument again; the controller would keep it in local memory.

This argument is not necessarily persistent information, though; the transient
information is not stored in a database or other equivalent structure. I t consists of
transient information only (for example, who is the current customer, which shopping
cart is being used, etc.), which is available only during the use case transaction. Figure
5.35 presents the same use case that was shown in Figure 5.34, but this time with the
stateful approach. I t can be observed that, among other things, it is not necessary to
return the new shopping cart identification, because the controller will remember which
one it is.

FIGURE 5.35 System sequence diagram for the main flow of use case Order books using stateful strategy.

With the stateful strategy it is not necessary to return the reference to the new
shopping cart because the controller has an internal mechanism to store that value. I n
the same way, the methods add2Cart, getCartSummary, and finishOrder also do not need
to receive that argument. I t is maintained by the controller. I n the same way, the identity
of the customer, if known, is maintained by the controller, not by the interface.

One option for implementing this transient memory is to use transient associations, as
explained in Section 8.3. It is an architectural decision to choose one or another approach.
Some pros and cons of them are the following:

• The stateful strategy demands the implementation of a transient (not persistent)
memory mechanism in order to store some parameters (the use of transient
associations, for example). The stateless strategy does not demand that kind of
mechanism.

• The stateless strategy demands more parameter passing between the interface and the
controller. When it is the case of passing information through the network this may
be inconvenient. With the stateful strategy information is transmitted just once.

Additionally, it can be said that operations are more reusable with the stateless
strategy, because each of them receives all the parameters it needs, without depending
on operations that were performed before. Also, the stateless strategy scales be er than
the stateful one. Systems with many concurrent users would be easier to produce and
maintain with stateless strategy.

5.8.6 Alternate flows in system sequence diagrams
As seen at the beginning of this chapter, use case steps, especially system events, may
have exceptions, which are handled by an alternate flow.

The insertion of those alternate flows in a system sequence diagram may be done in
stages. I nitially, the exceptions may be indicated in the diagram as well as where they
occur. Then opt fragments can be produced, that is, optional parts as shown in Figure
5.36. The procedure is to take the complete use case as shown in Figure 5.7 and add each
exception as an opt fragment at the adequate position of the flow (usually just after the
step that could cause the exception).

FIGURE 5.36 Sequence diagram with exceptions included.

The diagram of Figure 5.36 shows literally that after step 3 and after step 5 optional
events may happen. Those events correspond to exceptions 3a, 5a, 5b, and 6c shown in
Figure 5.7.

Now, it is necessary to design what happens inside the optional fragments when each
exception is handled. The opt fragment contains the steps of the alternate flow, but it is
also important to look carefully at the termination of the alternate flow. S ome of the
alternate flows return to the step that generated the exception and must be treated as
repetitive loops that include the step which caused the exception. Others advance to the
next step, and should be treated as just an optional fragment of the diagram. When other
use cases are referenced or when a fragment is so long that it justifies its definition in a
separate diagram, then the ref fragment may be used, which indicates that another
sequence diagram is being called. The ref fragment may receive and return information
in the same way a programming function does, and using the same notation, as for

example, ref otherDiagram(arguments):result.
Now the diagram of Figure 5.36 is going to be improved with exception handling. This

may become a complex task unless some design decisions are made carefully. For
example, in step 3, a set of books and respective quantities is sent to the system and only
then the quantities are checked. This would require handling an exception where some
books are ordered above stock and others are not, which could be inconvenient.
Therefore it was decided to change the sequence diagram so that the exception would be
checked each time a quantity is provided. Notice that this decision changes a li le the
way the user perceives the system behavior: instead of complaining about quantities at
the end of the selection, the system would check the quantity after each book choice. The
resulting diagram is shown in Figure 5.37, where only the first three steps of the use case
are represented for simplicity.

FIGURE 5.37 Part of system sequence diagram with a design change and an exception handler.

Note in Figure 5.37 that the design could be improved again. Why try to perform a
command with a quantity that is above stock if the system already knows that
information? The information about stock could be returned by the searchBook query so
that the interface entry field could already be limited to the real quantity available. That
information could also be used by the interface to show books that are in the catalog but
not in stock as out of stock. Figure 5.38 shows the resulting design.

FIGURE 5.38 Part of the system sequence diagram where an exception handler was redesigned.

Observe that in Figure 5.38 the fragment that handles the exception simply disappears.
This happened because the exception was changed into a precondition for the system
command add2Cart. This is a popular technique to improve design that will be revisited
i n Chapter 8. The technique consists of preventing the user from sending an invalid
argument; the user choice is limited to the valid values. Thus, the exception cannot occur
anymore.

Exceptions 5a and 5b may be resolved together as they involve user identification.
When the command finishOrder is executed, an exception would occur if the user is not
yet identified. The user then has two choices: entering a valid identification or creating a
new one. The partial diagram is shown in Figure 5.39.

FIGURE 5.39 Dealing with user identification.

As seen in Figure 5.39, it is not necessary to try the command finishOrder in order to
discover that the user is not yet identified. The condition may be tested after the user
decides to finish the order but before trying the command. Thus, if the user is not
identified, she has two options, represented inside the alt fragment. The alt fragment
works like an if-then-else: if the user has an account, than she logs in, else she has to
create a new account. I n both cases, as those sequences may be highly reusable, a
reference to another sequence diagram is indicated by the fragment ref.

Finally, exception 5c states that if no book was selected the order cannot be closed.
This can be implemented as a loop fragment placed over the flows from 1 to 4 (excluding
flow 5) that would repeat until at least one book is selected. As there is already such a
loop in the diagram (see Figure 5.37), it is enough to add that condition to the existing
loop. The complete sequence diagram with all exceptions handled is shown in Figure
5.40.

FIGURE 5.40 Complete sequence diagram with exceptions handled.

The main practical result of the system sequence diagram is the discovery and design
of the system commands and queries that must be implemented to allow the
functionality of the system to be available for the users. According to Figure 5.40, these
commands and queries are:9

• createShoppingCart().
• searchBook(keyword*):book*.
• add2Cart(selected book, quantity).
• getCartSummary ():<item*, total>.
• finishOrder().
Chapter 8 shows how to use this information to build a set of contracts that define the

whole functionality of the system.

5.9 The process so far

5.10 Questions
1. Variants and exception handlers are alternate flows for a use case. In which situations

should one or the other be used?
2. What is the difference between an essential use case and a real use case? Why is the

essential use case more interesting for requirements purposes?

3. Explain the differences between mandatory, complementary, and unsuitable use case
steps.

4. Expand the main flow of use case 03, Deliver order, presented in Figure 3.10.
5. Finalize the expansion of the use case of Figure 5.2 by indicating its alternate flows.
6. Design the system sequence diagram for the main flow of the use case of Figure 5.2,

choosing one of the following strategies: stateless or stateful. After designing the
diagram for the main flow, add the alternate flows identified in Question 5.

1http://blog.ivarjacobson.com/use-cases-%E2%80%93-why-successful-and-popular/
2For example, one customer buys two books and another customer buys five books: both actions may be described
simply as “customer buys books” because the number of books is irrelevant for understanding the process.
3However, this style for variants must not encourage the reader to do the same with exceptions. As explained in Section
5.3.3, in the case of exceptions there is indeed a normal flow and an alternate one, which must be described outside the
main flow; in the case of variants the idea is that they are only different ways to perform the main flow.
4The set {1, 2, 3, …}.
5Here and in further examples in this book the ID provided by a customer is not a system-generated internal code, but
the number of a personal document that belongs to the customer. In the United States the social security number could
correspond to the ID number, while in other countries other numbers could be used.
6In the past the author ran a project in which a use case that seemed to be a simple CRUD at the beginning happened to
be the most complex use case of the whole system in the end.
7A façade-controller provides “a unified interface to a set of interfaces in a subsystem. Façade defines a higher-level
interface that makes the subsystem easier to use” (Gamma, Helm, Johnson, & Vlissides, 1995)
8Remember that it is not always the case that complex information exchanged with the system corresponds to the
complete set of attributes of a concept of the conceptual model.
9The strategy applied in Figure 5.40 is stateful. If the stateless strategy was used instead, the operations would be slightly
different, because they would have more parameters.

http://blog.ivarjacobson.com/use-cases-%E2%80%93-why-successful-and-popular/

C H AP T E R 6

Conceptual Modeling

Fundamentals
This chapter presents the basic elements of conceptual modeling with the UML class diagram. There is a detailed
discussion of the three main elements of a conceptual model: concepts, a ributes, and associations. It covers best
practices on how to use those elements so that models are kept clear and maintainable. The chapter also gradually
presents OCL (Object Constraint Language), especially in order to define derived a ributes and derived associations,
as well as class invariants, which improve significantly the quality of a conceptual model. Finally, the chapter
discusses the organization of the conceptual model; inheritance is not the only structure than can be used: it is best
suited for representing concepts that are structurally related, but associative roles and modal classes should also be
used to represent different kinds of organization that are not adequately described by inheritance. The chapter also
shows how to discover and refine conceptual elements in detailed use cases and system sequence diagrams, therefore
making the connection between those analysis artifacts.

Keywords
Conceptual model; class diagram; attribute; association; inheritance; OCL; invariant

Key Topics in this Chapter
• Attributes
• Concepts
• Associations
• Collections
• Organization of the conceptual model: structural, associative, and temporal
• Invariants
• Iterative construction of the conceptual model

6.1 Introduction to conceptual modeling
D omain analysis consists of discovering and modeling information that has to be
managed by the system. This means that the team should discover how the information
has to be structured and transformed. I t starts during I nception with the preliminary
conceptual model and continues during Elaboration, when that model is refined and
completed as requirements analysis is deepened with the expansion of use cases.

One can analyze two aspects of information: static (also called structural), which is
studied in this chapter and Chapter 7, and functional, studied in Chapter 8. The static
aspect may be represented in the conceptual model, and the functional aspect in the
system operation contracts.

D uring analysis there is no dynamic model for the objects, because analysis takes into
consideration only an external view of the system. The dynamic model, consisting of the
collaborations among objects, is made during design (Chapter 9), because only at that
time are internal aspects of the system addressed. Thus, the functional model of analysis
indicates only what information enters and leaves the system, without saying how the
information is transformed. Later, the dynamic model of design will show clearly how
object collaborations could change information.

The conceptual model describes information that the system is going to manage. I t is
an artifact from the problem domain, not the solution domain. Therefore, the conceptual
model should not be confused with the Design Class Diagram (DCD), which belongs to
the software architecture (Chapter 9). The D CD , although initially derived from the
conceptual model, belongs to the solution domain and therefore serves different
purposes.

The conceptual model should not also be confused with the data model (Chapter 13),
because the data model emphasizes stored data representation and organization, while
the conceptual model aims at representing the comprehension of information by users,
not its physical representation. Thus, a relational data model is just one of the possible
physical representations of a more essential conceptual model.

An interesting way to comprehend the conceptual model is to imagine that the
elements described by it correspond to information that initially exists only in the mind
of the user, as represented in Figure 6.1, and not in a physical store system.

FIGURE 6.1 The conceptual model is a representation of the users’ view of the information.

A user sends information to the system and receives information from the system
through system events and returns, respectively. At this point, the system does not even
need to be considered a computational system, because the information exists
independently of computer support for storing and managing it.

The goal of the analysis is to study the problem. But the computational system is a
solution, and therefore, it belongs to the design. The system solution could even be
designed without computer technology. I t is possible to analyze a whole situation and
then propose a manual solution to implement it, in which, for example, data are stored in
paper sheets, and operations performed by workers using pencil, eraser, and staplers.

J ust like essential use cases, the conceptual model is independent of the physical
solutions that could be adopted, and should contain only elements that belong to the
domain of the problem, leaving to the design the elements of the solution, that is, all
elements related to technology, such as interfaces, storage, communication, and so on.

The conceptual model represents only the static aspect of the information. Therefore,
in the conceptual model, references to operations or dynamic aspects of the system
cannot exist. Although the conceptual model is represented by the UML class diagram,
the analyst should not yet include any methods. Chapter 9 shows how to identify and design
methods using a systematic approach.

When the class diagram is used for conceptual modeling, there are precisely three
kinds of elements to use for representing information:
• Attributes: Simple alphanumeric or primitive information, such as numbers, texts,

dates, etc. Examples of attributes in the Livir project are customer name, payment
date, book title, and total value of an order. An attribute is always connected to a
more complex element: the concept.

• Concepts: The representation of the complex information that has coherent meaning in
the domain. Concepts usually aggregate attributes and cannot be described merely as
alphanumeric. Concepts also may be associated to each other. Examples of concepts
in the Livir project are book, customer, order, and payment.

• Associations: A kind of information that links different concepts. However,
associations are more than mere links: they are information. In the Livir example
associations should exist between orders and customer, and also between orders and
books, for example.

These three elements are detailed in the next sections. I t is practically impossible to
explain one without mentioning the others, because the three are strongly interwined.

6.2 Attributes
Attributes are, in the conceptual model, the alphanumeric and primitive elements such as
date, money, number, string, interval, etc.

Although most programming languages allow a ributes to be defined as data
structures such as lists, arrays, sets, trees, etc., it is not advisable in conceptual modeling
because those structures are be er modeled as associations, as explained in the

following sections.
Complex concepts (classes) should also not be used as a ributes of other concepts

(although, again, programming languages allow that). For example, a book should not be
an a ribute of an order. I f a relationship between books and orders exists, then an
association should be used instead, because books and orders are complex concepts. An
exception to this recommendation occurs when a primitive type (S ection 6.2.5) or
enumeration (S ection 6.2.4) is used to label an a ribute; primitive types and
enumerations are defined as stereotyped classes, but they do not behave like concepts.
They are used as a ribute types. For example, a date is composed by parts such as year,
month, and day, however a birth date is considered an a ribute of a person, not a
complex concept associated to a person.

A ributes in UML are always represented inside a class, as shown in Figure 6.2, where
the class Customer has the attributes: name, id, address, and phone.

FIGURE 6.2 Attributes represented inside a class.

6.2.1 Attribute types
A ributes may have a type, although this is not mandatory for the conceptual model.
Figure 6.3 presents a version of the class of Figure 6.2 with typed attributes.

FIGURE 6.3 Typed attributes.

Types in conceptual models have the same meaning they have in programming
languages. I n Figure 6.3, we have the classical type String, and primitive user-defined
types IdNumber and PhoneNumber.

When an a ribute is defined by formation rules, as in the case of id and phone, it is
advisable to define a primitive type especially for it, as is done in Figure 6.3.

The address is something special. I s it an a ribute or a complex concept? I s it simply a
string or complex concept composed of street, ZI P code, number, city, etc.? This case, as
many others, is decided by analyzing the information needs of the users. I f addresses are

used just to print envelopes and send mail, then they behave merely as strings, and may
be represented as a ributes typed as strings. However, if addresses are used to calculate
distances and routes, or if they are used to group customers that live in the
neighborhood, then they behave as complex concepts and should be modeled as a
primitive type. Furthermore, if they have a structure of associations between them, then
they should be modeled as complex concepts.

6.2.2 Initial values
An a ribute may be declared with an initial value, that is, every time a new instance of
the concept is created, that a ribute will automatically receive a defined initial value,
which can be changed later if necessary.

I n the Livir system, an order may be created, for example, with a total value that is
initially zero. This can be defined in the class diagram, as shown in Figure 6.4.

FIGURE 6.4 A class showing an attribute with an initial value.

The definition of an initial value for an a ribute may also be created with the use of
the Object Constraint Language (OCL) (Object Management Group, 2010).

Every OCL expression should be declared in a context that corresponds to a class. Most
OCL declarations also have a subcontext, consisting of a class property, that is, an
a ribute, association role, or even a method. When declaring the initial value for the
a ribute totalValue in class Order, the context is Order and the subcontext is totalValue.
Thus, the OCL expression starts as

Context Order::totalValue

Optionally, the type of the attribute may be added:
Context Order::totalValue:Money

In order to indicate that the OCL expression is defining an initial value for an attribute,
the clause init: is used, followed by the expression that when evaluated produces the
initial value for the a ribute. As in the example the initial value is the constant 0, the
expression may be defined as

Context Order::totalValue:Money

 init: 0

The expression may also be simplified by omitting the type of the attribute:

Context Order::totalValue

 init: 0

An a ribute may have its initial value defined by more complex expressions. Later,
examples of more complex OCL expressions are presented, which can be used to
initialize attributes with values produced by mathematical and logical operations.

6.2.3 Derived attributes
Derived attributes are understood here as derived alphanumeric values only. I f a “derived
a ribute” refers to objects or data structures, then they are called derived associations
(S ection 6.4.3). D erived a ributes differ from normal a ributes because they cannot be
changed directly. In other words, they are read only.

A derived a ribute is calculated and must be defined by an expression. I n the class
diagram, a derived a ribute may be represented by a slash (/) preceding the a ribute
name (and type), followed by “=” and the (OCL) expression that defines the a ribute.
Figure 6.5 shows an example in which profit is defined as the difference between price and
cost.

FIGURE 6.5 A class showing a derived attribute.

D erived a ributes may also be defined by OCL expressions.1 The expression again has
a class as context and an a ribute as subcontext. I t is followed by the word derive: this
indicates that the expression that follows it defines how the value of the derived a ribute
is calculated. The expression of the example of Figure 6.5 defines profit by using the
values of other two attributes of the same class: profit=price – cost.

For now, we can consider that the OCL expressions after clauses such as init: and
derive: start with an expression that denotes an instance of the context class. That
instance is referred to by the word self.

The notation self.property allows one to access the value of a property (a ribute,
association role, or method) belonging to the object. For example, in the context of the
class Book, the expression self.cost denotes the value of the a ribute cost of a given
instance of Book.

Thus, the OCL expression that defines the derived value for the a ribute profit of class
Book is

Context Book::profit

 derive:

 self.price-self.cost

I n OCL it is possible to omit the expression self when the context is not ambiguous. I n
the example above, the expression could be simplified to

Context Book::profit

 derive:

 price-cost

I n the Book context, price and cost may be nothing else but a ributes of Book. Then, the
word self may be omitted from the expression.

D erived a ributes may not be directly updated. I n the Book class of Figure 6.5 only the
attributes cost and price may be directly updated. The derived a ribute profit is read only:
it is calculated as the result of its defining expression.2

6.2.4 Enumerations
Enumerations are a balance between concepts and a ributes. They are basically strings,
and behave like that. But there is a predefined set of valid strings that constitutes the
enumeration domain. For example, a calendar day can only assume a value in a set of
seven possibilities: S unday, Monday, Tuesday, Wednesday, Thursday, Friday, and
S aturday. Thus, an a ribute defined as a CalendarDay (typed with that enumeration)
would only assume one out of those seven values.

Enumerations may appear in UML diagrams as stereotyped classes. It is suggested that
enumerations that are domain independent are not placed in the same diagram that
contains the conceptual model, but in a special package intended to contain the
enumerations, as shown in Figure 6.6, because domain-independent enumerations (such
as CalendarDay) are very reusable from application to application. Only domain-specific
enumerations should be kept together with the other classes of the conceptual model so
that people can see their meaning more easily.

FIGURE 6.6 Definition and use of an enumeration.

In Figure 6.6, the a ribute validity of class Offer may have assigned to it one out of the
seven possible values for the enumeration CalendarDay.

Enumerations may be considered stereotyped classes. While they may have
associations and a ributes of their own, the analyst is not encouraged to use those
features because they could simply turn the enumeration into a complex concept and it
would probably lose reusability. For example, consider the CalendarDay enumeration. I t
is simply a list of seven names. Suppose now that the analyst adds some a ributes to the
CalendarDay enumeration, such as, for example, the working hours. Then, for example,
Monday to Friday may have working hours defined from 9 am to 5 pm, S aturday from
9 am to noon, and S unday may have no working hours at all. D ifferent applications could
define working hours in a different way. I n this case, what is the difference between this
enumeration and a complex concept as it also has a ributes and possibly associations
and even methods later? I nstead of creating a ributes or associations for an
enumeration it would be advisable to create a new complex concept that accommodates
the enumeration and the other a ributes. I n the example, a new concept working day
could be created with two a ributes: calendar day (still an enumeration), and working
hours (normal a ributes as explained above). Thus, enumerations that are thought to
incorporate extra functionalities should be maintained without that structure and
included in normal classes.

To remain reusable, an enumeration should not be able to access another class
through an association, but any other class should be able to access the enumeration.
The fact that Offer in Figure 6.6 has an a ribute labeled with CalendarDay allows the
normal class Offer to access the enumeration CalendarDay but not vice versa. This keeps
the enumeration uncoupled from the classes that use it and therefore it is reusable.

Enumeration values in OCL may be represented by the enumeration name followed by
“:” and the value name, as, for example, CalendarDay::Tuesday.

6.2.5 Primitive types
The team can and should define primitive types when they deal with a ributes that have
formation rules, as in the case of I SBN. Primitive types may be defined as classes
stereotyped with primitive , as shown in Figure 6.7.

FIGURE 6.7 Example of a primitive type.

T he ISBN class, which is stereotyped in such a manner, is a type that can be used to
define a ributes. I t is not a complex concept like Book, Customer, etc. I t has a value with
public access (marked with “+”), and a validation predicate that is private (marked with

“−”), meaning that it can be accessed only by methods inside the class itself. That
predicate can be called to verify if the I S BN value is valid or not, considering its
formation rule.3 That predicate can be used in the constructor (the method that creates
instances of the class) to guarantee that only valid I SBNs are created. Remember that
conceptual classes do not have methods, but primitive types are not part of the
conceptual model. They are user-defined, reusable low-level components.

Although the value of the primitive type has public access it is normally accepted that
it is immutable. That means that the value of the primitive type can be defined only at
creation time, and not updated later. This is to make it consistent with the idea of
primitive data elements as constants, and not as objects. Objects may change their internal
state, and constants usually do not.4

Some primitive types, such as Date and Money, are already available in some
programming languages and database management systems. Other not-so-common
types, such as ISBN, ZIP code, odd numbers, etc., may be created.

The primitive type formation rule must be defined syntactically, that is, by evaluating
expressions that do not need to consult data managed by the system. I f a formation rule
depends on consulting attribute or association values, then it is not, probably, a primitive
type, but a normal class. For example, the prime number formation rule may be checked
without consulting objects and associations, but a registered customer name may not be a
primitive type, because to check if a string is a registered customer name, it is necessary
to query existing names of current customers.

A primitive type usually is application independent, that is, its meaning usually is
independent from the system or project being developed. An I SBN has the same
meaning and formation rule in any application domain that uses it. Concepts such as
Customer, Book, and Order may have different definitions in different applications and
cannot usually be reused without some refactoring effort. However, primitive types are
usually 100% reusable, without adjustments or modifications.

6.3 Concepts
Concepts are more than alphanumeric values. They are also more than a bunch of
a ributes, because they carry meaning and may be associated to each other. Conceptual
modeling may begin with concepts and associations only, as shown in Section 3.6, that is,
a ributes are not needed right away. However, when examined in detail, a concept
usually contains a coherent group of attributes.

6.3.1 Unique attributes
I t is assumed that different instances of a concept are distinguishable from each other
just by the fact that they were created independently. This is not the case with primitive
types. Two dates, such as 05/03/2013 and 05/03/2013, are the same. But two customers
named J ohn S mith are not necessarily the same person. Some programming languages
indeed use two comparison predicates, one to check if two objects are equal (they have

the same values for their a ributes) and another to check if they are identical (they share
the same space in memory).

D ifferent instances are therefore always distinguishable from each other, but
additionally they may have a ributes that are unique to them. Once an a ribute has been
stereotyped as unique two instances of the concept cannot have the same value for
that a ribute. One example of a unique a ribute is the I S BN for books, which is unique
for each book (Figure 6.8), while the other a ributes may have identical values for
different books.

FIGURE 6.8 Class showing an attribute stereotyped as unique .

Unique a ributes must not be confused with primary keys, pk . Primary keys are
used especially for database design to provide a unique identification for an instance. But

unique and pk are not identical, because a concept may have only one primary
key, but more than one unique a ribute. Unique a ributes are closer to the idea of
candidate keys in relational databases (Date, 1982).

6.3.2 System control class
Usually, the conceptual model is expected to be a connected graph, that is, every concept
has a path (a sequence of associations) connecting it to every other concept. When that is
not the case, it is supposed that something is missing, that is, important associations or
concepts have not been discovered yet.

Although some authors oppose it, a concept that represents the system as a whole (in
our example Livir) may be useful in the conceptual model if some precautions are taken.
First of all, that concept should be declared as a Singleton;5 and second, it should not have
a ributes, being just a control class. This class corresponds to the system controller or
façade-controller already mentioned in Chapter 5. I t does not represent any data; it serves
only as a point of reference to add associations to other classes, as seen in the following
sections.

All concepts are associated directly or indirectly to the controller class in order to be
accessible by the application.

The system controller class may be stereotyped with control or drawn using
Jacobson’s (1994) icon, as shown in Figure 6.9.

FIGURE 6.9 A system controller class.

In Chapter 9, the advantages of using the controller class are explained in detail. There
are some situations that are nicely modeled as associations from the control class.6

6.4 Associations
When complex concepts are related, it is said that there is an association among them.
Associations usually happen only between two concepts, but they can also be defined
among three or more concepts. There may also be reflexive associations between
instances of the same class. For example, the association that links parents to children is
defined as a reflexive association from Person to Person.

When classes are associated, then their instances may be linked. For example, an order
is linked to the books being ordered, and also to the customer that creates the order. A
payment, if it exists, is linked to an order in the bookstore example.

Associations may be tricky to identify in use case texts, especially because sometimes
deciding if something is a concept or association may be fuzzy. For example, is a book
reservation an association between a book and a customer? Or is it a concept? I f it is
considered a concept, what are its own associations?

Moreover, use case texts often mention operations that are not exactly static
associations. Operations such as buying books, or making a reservation, are dynamic
transformations on data. They could produce concepts to represent their existence, but
usually representing them as associations would not be adequate. I t is necessary to take
into account the difference between the (static) associations and (dynamic) operations:

• An association is a static relation that may exist between complex concepts,
complementing the information about them in a given moment (a snapshot of their
state), or referring to new associative information (for example, neighborhood or
parent/children).

• An operation is the act of accessing and transforming existing information.
As a description of a dynamic process, a use case text is usually full of explicit

references to operations, but associations usually have to be inferred from the text.
At a used car dealer there are people who buy cars from other people. When someone

buys a car she is performing an operation. That operation changes the links between
objects: one ownership link ceases to exist, while another is created in its place. I t would
not be appropriate to represent an operation as an association, as shown in Figure 6.10.

FIGURE 6.10 An operation inadequately labeled as an association.

Why is that interpretation not adequate? Because to buy is not a state of the
information, it is a transition between states.

The state of the information about cars and people in this case is the ownership: a
given person owns a car or not. This can be represented as an association between Person
and Car (Figure 6.11).

FIGURE 6.11 Representation of a static association between two concepts.

However, there are different ways people and cars may be associated besides
ownership. A person may be passenger of a car, or its driver, or the association may
represent merely that someone likes a given car. To eliminate such ambiguities, it is
convenient in many cases to use a role name on one or both association ends in order to
indicate which role a class plays. Role names are not assigned to the association as a
whole, but to both of its sides. Thus, a binary association has two role names: one for
each participating class. I n Figure 6.12, for example, a person is in the role of owner
related to a car and a car belongs to the role fleet of a person.

FIGURE 6.12 An association with role names.

Different roles may be represented by different associations, as shown in Figure 6.13.

FIGURE 6.13 Multiple associations between the same concepts.

When an explicit role name is missing in the diagram, it is assumed that the class
name (not capitalized) is the default role name. I n the case of Figure 6.13, a car has two

roles related to people: owner and driver. From the point of view of a person, there are two
roles for cars: the fleet, which corresponds to the cars a given person owns, and a default
role name car, which corresponds to the car a person drives.

According to the UML specification, associations can also have names (Figure 6.11
presents an example), which are placed in the middle of the edge that links the classes.
However, such names, besides being difficult to give (novice analysts use to fill their
diagrams with lots of associations labeled with “has” or synonyms), do not have much
practical use.

I t may be easier and more useful to work with role names instead of association
names. I n practice, one can ignore the fact that associations may have a name.
Conceptual models can be perfectly clear with role names replacing association names.
Role names are easier to give because they define navigation possibilities between
concepts and are useful also for naming derived programming code elements such as the
variables that would represent the association when the code is generated. I f by any
means an association name is still needed it is always possible to create it by composing
the role names; the reverse is not true. For example, an association between a book and a
customer could be called book2customer if it indeed needs to have a name (for example,
for reference purposes).

Sometimes, it may be interesting to keep information about operations or transactions
that were performed. For example, it would be useful for the car sales system to store
information about sales transactions, as for example, date, value, etc. I n this case, the
information about the transaction is represented in the diagram, as a complex concept
(Figure 6.14), and it represents statically the operation that was performed.

FIGURE 6.14 A transaction represented as a concept.

I n this case, the transaction is represented as a concept, while its associations
represent static relations between concepts.

6.4.1 Role multiplicity
I n a conceptual model, it is fundamental to know how many elements a role accepts. For
example, in the association between Person and Car with role name driver in Figure 6.13,
how many cars can someone drive? How many drivers can a car have?

The answer depends on a study of the nature of the problem and on the real meaning
of the association, especially if it represents the present time or the past. For example, if
the association of Figure 6.13 represents the present, then the car may have just one
driver (one at a time). But if the association represents the past, then it is possible that a
car has had a number of drivers who drove it during different periods of time.

Thus, it is fundamental that the team decides clearly what the association means
before deciding on its role multiplicity. They have to remember that associations are
static constraints; they represent whatever can exist between the instances of the
associated classes. Therefore, depending on the meaning of the association, it may have
different role multiplicities.

There are, basically, two decisions to be made about the multiplicity of an association
role:
1. Is the role mandatory or not? For example, should a person have at least one car?

Should a car have at least one driver or owner?
2. Does the number of instances that may be linked through the role have a defined

conceptual bound? For example, is there a maximum number or minimum number of
cars that a person may drive or own?
The answers to these questions may be tricky. Regarding the first decision, for

example, returning to the Livir project, it is expected that each order must have a
payment. But that does not qualify the payment role for an order as mandatory, because
an order can exist without a payment for a period of time. Eventually, any order will
hopefully be paid for, but not necessarily soon. Thus, this role is not mandatory for the
order.

The other tricky issue concerns the maximum number of elements a role allows.
Physically speaking, the maximum number of cars that a person may own is the number
of cars that exist on planet Earth (the number is increasing, but it is defined at a given
moment of time, even if it is hard to count). But as new cars are built, they may be
purchased. Thus, although there is a physical limit for the ownership role, there is no
conceptual or logical limit. Thus, the role should be considered virtually without upper
bound.

Role multiplicity in UML is represented by a numeric expression where
• The asterisk “*” means “any quantity,” and indicates that there is no upper bound.
• The comma “,” means “or.”
• Two dots “..” means “up to.”

The following are examples of the usual multiplicity limits for conceptual models:
1 – exactly one
0..1 – zero or one
* – zero or more
1..* – one or more
2..5 – two up to five
2,5 – two or five
2,5..8 – two or from five up to eight

The multiplicity limits that include zero represent roles that are optional for a concept.
All the other limits are mandatory.

Figure 6.15 shows an example where one person may have a fleet with an
undetermined number of cars (optional), and a person may be a driver of one car at most
(also optional). On the other hand, it shows that a car must have a single owner
(mandatory) and that it may have a driver or not (optional).

FIGURE 6.15 Example of associations with role multiplicity.

According to many countries’ laws, a car may have more than one owner, or it may be
owned by a corporation; in some situations a car may also have no owner at all. The
conceptual model (such as the one in Figure 6.15) represents not necessarily a general
truth, but the information needs for a given application. For some information systems it
could be mandatory that a car, in order to be registered, have a single owner and that this
owner must be a person. I n this case, the conceptual model should represent the specific
and pragmatic information needs for that system.

6.4.2 Association direction
An association in a conceptual model should be nondirectional, that is, the navigability of
the association should not yet be determined (Booch et al., 2007). This is due to the fact
that for analysis purposes, it is only necessary to know whether two concepts are
associated or not; dynamic design will decide on navigability later.

There is, usually, li le benefit to a premature (before dynamic design) definition of
navigability direction. Unidirectional associations in general have the following
advantages over bidirectional ones:
• It is not necessary to define a role name for both sides (just one).
• They are easier to implement.

Only the first advantage has any meaning for conceptual modeling, but it is too weak
to justify making decisions prematurely.

6.4.3 Derived association
J ust as useful as derived a ributes are derived associations, that is, associations that
instead of being represented physically are calculated from available information. For
example, suppose it is often necessary to know which books a given customer has already
bought in the Livir system. As books are not linked directly to the customer in the
conceptual model, referring to that information could be a bit more complicated than
expected. Figure 6.16 shows an example of how a conceptual model for Livir could relate
books and customers indirectly through orders and purchasing items; in this case, the set
of all books bought by a customer would be referred as the set of books linked to the items
linked to the orders linked to the customer.

FIGURE 6.16 A customer indirectly associated to books.

Compared to the preliminary conceptual model of Chapter 3, Figure 6.16 introduces
the concept Item between Book and Order. I tems are necessary if the concept Book means
the published title, not the physical copy. I n this case, what is ordered is an Item, which
represents one or more physical copies of a given Book. The book may have its price
updated regularly, but a change in the book price should not affect the price of former
orders. Thus, the price of an item remains the same even if the price of the book was
changed.

Note that with this model there is no direct link between the customer and the books
she has already bought. Creating a new straight association between Customer and Book
would not be a good solution because it would be redundant to the model, as the set of
books may already be obtained indirectly. Furthermore, a new association between
Customer and Book could associate any customer with any book, not only those that were
already bought by the customer through her orders. This model allows the
representation of inconsistent information, which would require some checking
mechanism (for example allowing only books that were bought to be associated to the
customer).

A modeling solution for that case, when it is relevant to have straight access to a
collection of objects that can already be derived from existing information, is to use a
derived association, as depicted in Figure 6.17.

FIGURE 6.17 A derived association.

UML allows derived associations to be navigated in both directions. I t is assumed that
both roles are derived. I n the case of Figure 6.17 the opposite role Customer must also be
considered derived, even if its default role name does not indicate this in the diagram.

The multiplicity of both roles of the derived association of Figure 6.17 is multiple
because by navigating on the normal associations it can be seen that a customer may
have ordered zero or more books, and that a book may have been ordered by zero or
more customers. Usually, the multiplicity of a derived association is defined by the
product of the multiplicities of the roles that must be navigated to reach the target
concept. The following rules may be used to determine that multiplicity:

• The lower bound of the derived multiplicity is the product of the lower bounds of the
roles in the navigation path.

• The upper bound of the derived multiplicity is the product of the upper bounds of the
roles in the navigation path.

For example, if the multiplicities found in the path are 1..5, 2..* and 1, then the derived
multiplicity is 2..*, because the lower bounds are 1, 2, and 1 (1 * 2 * 1=2), and the upper

bounds are 5, infinite, and 1 (5 * infinite * 1=infinite).
However, if filters are applied to the definition of the derived association, the resulting

multiplicity may be different. For example, if the derived association is defined so that it
links a customer to the most expensive book she has already bought, then the derived
multiplicity is 1, and not *.

As opposed to normal associations that allow links between individual objects to be
added and removed, a derived association may only be consulted (similar to derived
attributes, which are read only).

A derived association may be defined by an OCL expression as well. The example of
Figure 6.17 may be defined as

Context Customer::orderedBook

 derive:

 self.order.item.book

The following observations can be made about this OCL expression:
• The context is the class at the origin of the derived association (Customer). The

subcontext is the role name of the derived association (orderedBook).
• The clause derive: is used similarly to the case of derived attributes. What determines

if the expression is defining a derived attribute or association is the context and the
type of information that is returned by the expression. Derived attributes are defined
by expressions that return an alphanumeric, enumeration, or primitive type, while
derived associations are defined by expressions that return an object or a collection of
objects (data structure).

I n object-oriented programming languages, usually the “.” notation can be used only
over a single object. OCL, however, allows it to be used over collections of objects.7 I f x is
a collection, then the meaning of x.y is the collection of y that can be obtained as
properties of x. For example, self.order denotes the set of orders of a customer in the
current example; self.order.item is the set of items linked to the orders of a given
customer; and self.order.item.book is the set of all books linked to the items that are linked
to the orders that are linked to the customer.

A derived association may also be used to define a subset of objects from a set of
linked objects by the application of a filter. For example, imagine that the bookstore has
a record on special clients that have bought above 1000 dollars worth of books. Let us call
them gold customers. Let us also assume that the Customer class has a derived a ribute
totalSales with the sum of all orders of a customer. The definition of that derived
a ribute is not important for the example and it will be ignored now. A derived
association between the controller and the Customer class may be used to model the gold
customers as a subset of the customers of Livir. Figure 6.18 shows the partial conceptual
model for this example.

FIGURE 6.18 Derived association defining a subset of a normal association.

The OCL expression for this derived association has as the context the Livir controller
itself, because it is at the origin of the association. The expression that defines the
derived association has to denote the set of customers that bought more than 1000
dollars, that is, the instances of Customer whose totalSales value is higher than 1000.

The OCL expression to obtain a subset of elements that satisfy a given Boolean
expression like this is select. The Boolean expression is placed inside parentheses after
the select command. The Boolean expression usually starts with an iteration variable that
in the case of the following expression was named: aCustomer.

Context Livir::goldCustomer

 derive:

 self.customer->select(aCustomer|aCustomer.totalSales>1000)

I n the case of this expression, the iteration variable is called “aCustomer” but it could
have any other name. I t denotes each one of the customers for the evaluation of the
expression aCustomer.totalSales>1000.

The arrow notation “->” is used before select instead of the “.” notation because the
select function is applied over the structure of the set, not over its elements.8

OCL also allows the iteration variable to be omi ed if the context of the expression is
not ambiguous. Thus, the expression above can be simplified to

Context Livir:goldCustomer

 derive:

 customer->select(totalSales>1000)

Observe that inside the parentheses after select the context is potentially ambiguous.
There, the property totalSales could refer both to a customer and to the instance of Livir.
What allows us to eliminate the ambiguity is the fact that the property totalSales exists
only in the Customer class; it does not exist in the Livir class. I f it existed in both classes,
then the nonabbreviated notation should be used in order to eliminate the ambiguous
expression.

6.4.4 Aggregation and composition
Some associations may be considered stronger than others in the sense that they define
one kind of object that is composed of others. A house, for example, is composed of
rooms, a book of chapters, an undergraduate career of courses, etc.

I f the association is exclusive, in the sense that an object may not be part of another
object at the same time, then it is considered a strong part-whole association, which is
called a composite aggregation,9 and it is drawn with a black diamond on the role that
represents the whole (Figure 6.19).

FIGURE 6.19 An example of composite aggregation.

The multiplicity of the role that represents the composite (the side where the diamond
is), in the case of a composite aggregation, should be 1 or 0..1, and nothing else, because
composites do not share parts, even with objects of the same class.

Composite aggregation indicates exclusivity in the part-whole association. When this
exclusivity is not mandatory (the part may be part of other aggregates), then a white
diamond is used instead, and the association is called a shared aggregation (Figure 6.20).

FIGURE 6.20 An example of shared aggregation.

The white diamond indicates a shared aggregation where the part may belong to
different wholes at the same time. I n Figure 6.20, a given Item must be part of an Order,
but also may be part of a Sale.

Composite and shared aggregation are special associations and should be used with
much parsimony, that is, they should be used only when the team is sure that it is the
case that an object is really part of another, and not just a normal association. Even the
UML specification (Object Management Group, 2011) states that the precise semantics of
a shared aggregation varies between application areas and modelers.

I t is common to see aggregation and composition being abused in models, when
objects that are not part-whole related are linked by that kind of association. For
example, a customer is not part of an order, if not for any other reason but the fact that a
customer is a person and an order is not a physical thing, but a transaction. Composite
and shared aggregations should unite elements of the same nature: physical with
physical, and abstract with abstract. An order may be associated to a customer, but the
order is not made of customers.

There are few real advantages in using aggregation in conceptual modeling. This is
another reason to minimize or even abolish their use in conceptual models. Among the

advantages is that composite or shared aggregation parts usually have a ributes that are
combined and derived in the whole. For example, the total value of an order is the sum of
its items; the weight of a package is the sum of the weight of each book; when a car is
sold, all its parts are sold too; and so on. However, these concerns usually appear only at
design time.

6.4.5 n-ary associations
Most associations are binary, that is, most associations have only two roles. However,
there are situations where associations with three or more roles are needed. I n UML,
these associations can be represented by using a diamond that connects all the roles of
the association, as in Figure 6.21.

FIGURE 6.21 An example of a ternary association.

The example in Figure 6.21 was taken from a budget control application. Each project
may be associated to multiple budget items and multiple financial years. Each financial
year may have a number of budget items per project. A ternary association (that is, an
association with three roles) represents this situation, as seen in Figure 6.21.

These cases are not frequent, but they may appear in a project. Before deciding to use a
ternary or n-ary association (which may be a headache during design and
implementation), the team should verify if they are not confusing it with a situation
where a combination of binary associations should be used instead. For example, the
case shown in Figure 6.22 is not correctly modeled as a ternary association, because the
relation between the author and the publisher happens only when the author publishes a
book with a publisher. Then, the association between the author and the publisher would
be a derived one.

FIGURE 6.22 An unsuitable ternary association.

The model represented in Figure 6.23 is more precise than the one in Figure 6.22 for
the case being discussed. Only in a scenario where the same author could publish the
same book using a different publisher and the publisher could publish the same book
with a different author (!) would there be a case for a ternary association.

FIGURE 6.23 The model of Figure 6.22 correctly represented with two binary associations.

Real ternary associations, however, may still be replaced by a combination of binary
ones. Maybe the simplest approach to accomplish this is to replace the ternary (or n-ary)
association by a new concept. Sometimes, naming the new concept may be tricky, but it
can be done. For example, the model of Figure 6.21 could be replaced by the one shown
in Figure 6.24.

FIGURE 6.24 Model where a ternary association is replaced by a new concept.

However, there is a subtle semantic difference between the models in Figures 6.21 and
6.24. I n the case of Figure 6.24, there may be two or more Spendable instances with exactly

the same budget item, financial year, and project. This cannot happen in the case of
Figure 6.21. Thus, for this simplification to have the same semantics as the ternary
association, it is necessary to complement it with an invariant (see Section 6.7).

6.5 Collections
S imple collections of objects that do not have any particular meaning or structure should
not be, in principle, represented as concepts, but as associations. Any association role
already represents a collection of objects of the associated class. Thus, considering again
the example of Figure 6.15, fleet is a role that associates a set of cars to a person. The
model presented in Figure 6.25 is, therefore, unnecessary and redundant.

FIGURE 6.25 A simple collection being inadequately represented as a class.

Thus, unless the fleet has its own a ributes or associations (for example a person
having multiple fleets located in different places) the correct form to represent a simple
collection of objects is through an association role, not through a class (Figure 6.26).

FIGURE 6.26 A simpler model for the situation presented in Figure 6.25.

Thus, the team must be aware that if the collection has particular a ributes or
associations, then it must be represented as a concept. For example, an Order is initially
understood as a set of items, but an Order also has a ributes such as issue date, total
value, discount, etc., and associations such as the one with the customer, who may have
multiple orders. I f that is the case, the collection is a concept. However, a collection with
no particular a ributes or associations is just a collection, and therefore it is modeled as
an association role.

Association roles may be thought as representing abstract data types (Liskov, 1974) in
conceptual models. I n design models they would also represent concrete data types.
Abstract data types are defined only by behavior, not by structure. They appear, for
example, in the following:

• The set structure, in which elements do not repeat and have no defined position.
• The bag structure, in which elements may repeat but still do not have a defined

position.
• The ordered set structure, in which elements do not repeat but have a defined position.
• The sequence structure, in which elements may repeat and have a defined position.
T h e concrete data types, on the other hand, are physical implementations for the

abstract versions. For example, a list may be implemented in many forms, such as an
array, binary tree, linked list, etc. I n the case of concrete data types, besides behavior,
there is also a physical structure that defines them.

6.5.1 Set
An association role, by default, is a set, that is, a structure where elements do not repeat
and where there is no defined position for them. I n Figure 6.26, the fleet is an example of
a set.

I f someone tries to link the same car to the same person a second time, nothing
happens, because it already belongs to the set.

6.5.2 Ordered set
S uppose a book that is not yet in stock has a list of people interested in buying it as soon
as it is available. I f it cannot be assured that the quantity of books received will fill all the
orders, then the fairer way to a end to these customers is by establishing a line from the
oldest reservation to the newest. This requires that the customers have a position in the
line.

I f the same customer cannot reserve the same book more than once, then it is still a
structure with no elements repeated, but now with defined positions. This leads to the
ordered set structure. I n the diagram, the role may be marked with the constraint {ordered}
to indicate that it is a collection where elements do not repeat but have defined positions,
as seen in Figure 6.27.

FIGURE 6.27 An ordered set of reservations for a book.

The constraint {ordered} over an association role means that the elements linked on that
role have position (first, second, third, … , last), but still cannot be repeated.

6.5.3 Bag
There are situations in which the position of the elements does not ma er, but each
element may appear more than once in the collection. That structure is called a bag.

For example, one may need to know how many people viewed the details of a book,
and it may be important also to know how many times each one viewed it. I t is not

necessary to know who viewed it first, but the information on the number of views is
necessary. That is a typical case for using a bag. Each time a person views the details of a
book, a new link is added on the association defined as a bag. The model is shown in
Figure 6.28.

FIGURE 6.28 An example of a bag.

6.5.4 Sequence
T he sequence allows elements to be repeated and also assigns a position to them. For
example, imagine that people that buy a given value worth of books qualify for receiving
a gift, but a limited quantity of gifts is available. Thus, a list of people that qualify to
receive the gift may be built and the gifts will be distributed to the first members of the
list as soon as gifts become available. I f someone again buys more than the limit
established to receive a gift, she will enter the list again. Thus, in that structure the
position of an element is relevant and each element may appear more than once: this
corresponds to a sequence structure, as seen in Figure 6.29.

FIGURE 6.29 An example of a sequence.

The multiplicity * on the Livir side means that not all customers are qualified for a gift
and that they may qualify more than once.

The sequence has two important special cases. When the first element to be removed is
always the oldest in the sequence, as in the case of Figure 6.29, then the structure is also a
queue. UML does not define a constraint for queues, but a stereotype on the sequence
constraint would do the job: {sequence} queue .

When the first element to be removed is the newest in the sequence, than it behaves
like a stack, and may be stereotyped as such: {sequence} stack . Queues and stacks that
do not repeat elements may be defined respectively as {ordered} queue and {ordered}
stack .

A general list may have elements removed and inserted at any position. Queues and
stacks have elements inserted and removed only at predetermined positions, as
explained above, although, in some cases, all of their elements may be browsed.

A curiosity to be mentioned now is that in the real world most collections are strict sets
and not sequences, but even so, the most used programming structure is still the

sequence, and not the set, which indicates a gap between reality and the data structures
used in programming.

6.5.5 Map
When a concept has a unique a ribute, a map may be created from that a ribute to the
concept, in such a way that it is easier to identify and find specific instances of the
concept. For example, as the I SBN is unique for a book, associations to Book may be
qualified by the I SBN, meaning that instead of having a set of books, the origin class has
access to a map that allows immediate identification of any book if its I SBN is known.
Figure 6.30 shows an example of qualified association.

FIGURE 6.30 An example of qualified association representing a map.

The small rectangle at the left side of the association in Figure 6.30 represents a
qualifier for the class at the opposite side of the association. Notice that instead of “*,”
the role of the right side is now bounded by “0..1”; the association should now be read as
follows: “for each possible I SBN there is no more than one book.” S ome valid I SBN
values may not be associated to any book, because they were not registered in the system
or because the I SBN, although valid, has simply not yet been assigned to a book;
however, if one I SBN is taken by a book, no other book may share it. I n practice, a
qualified association is still an association “to many,” but the objects belonging to the
role may be accessed by one of their attributes.

The role at the left side (the qualifier side) is marked with “1,” meaning that each book
has a single I SBN, not less or more. This has to necessarily be true, because an I SBN is
unique and not optional for the class Book, and therefore, it is mandatory and does not
allow repetition.

The qualifier is not only a way to access objects in an easier way. I t is also a powerful
modeling tool. For example, consider a situation where a person may own many phones,
but only one of each kind. How do we represent this? An elegant model for that situation
is shown in Figure 6.31.

FIGURE 6.31 Use of a qualifier as a modeling tool.

I n the case of Figure 6.31 one person may have up to four phones, but just one of each
kind. I f more kinds are added to the enumeration later, then more phones may be
associated to each person. I f the role on the right side was 1 instead of 0..1, then one
person should necessarily have four phones, each one a different kind. That use of a
qualified association with a mandatory role usually makes sense only when the qualifier
is an enumeration or a finite set.

I n the example of Figure 6.30, the qualifier is an a ribute of the qualified class, and in
that case it is called an internal qualifier. On the other hand, in Figure 6.31 the qualifier is
not an attribute of the class, and it is called an external qualifier.

6.5.6 Partition
I n Figures 6.30 and 6.31, the multiplicity 1 or 0..1 on the right side of the figure means
that the association is a mapping, that is, for each value of the key there is at most one
instance of the qualified class.

What if instead of “1” or “0..1” the multiplicity was marked with “*”? I n this case, the
association would read as follows: “for each key there is a set of instances of the qualified
class.”

For example, books may be classified by genre. As many books may belong to the
same genre, the genre a ribute may not be unique. But it is possible to define a partition
on the set of books based on their genre, as shown in Figure 6.32.

FIGURE 6.32 An example of a partition.

Figure 6.32 states that for each particular value of genre there is a set of books (with
zero or more elements). The role multiplicity 1 on the left side indicates that every book
has a genre.

6.5.7 Relation
Now, imagine that a book may have more than one genre, as, for example, The
Hitchhiker’s Guide to the Galaxy (Adams, 1979), which can be classified both as science
fiction and humor. For representing the possibility of a book having more than one genre
in the example of Figure 6.32, it would be sufficient to change the multiplicity on the left
side of the association to * (if a genre is optional) or 1..* (if it is mandatory). Additionally,
the genre should be removed from the a ributes of Book, becoming an external qualifier,
because the genre a ribute should allow multiple values. Figure 6.33 shows the resulting
relation.

FIGURE 6.33 An example of a relation.

The relation of Figure 6.33 states that a book may have one or more genres and a genre
has a set of books associated with it. As a book may have more than one genre, then the
qualifier should be necessarily external.

6.6 Organization of the conceptual model
The elaboration of the conceptual model involves more than just pu ing concepts,
a ributes, and associations together. For the conceptual model to be a reliable and
organized representation of real-world information, it is necessary to use some modeling
techniques.

The main organizational techniques for concepts may be distinguished into three
groups:

• Structural: Representing generalizations among concepts, as for example, BankAccount
generalizing SavingsAccount and CheckAccount.

• Associative: Representing associative roles that some concepts may play related to

others, as for example, Student and Professor being roles a Person may play related to a
school.

• Temporal: Representing relations among different states of a concept, as for example
an Order being in states AttendingPayment and Paid.

Novice analysts and sometimes even experienced ones tend to think that the only way
to factorize information is by the use of inheritance, or generalization.10 However, it is
necessary to apply some judgment before deciding on using this or that technique.
I nheritance may be used only when a concept effectively has two or more subtypes.
Although UML allows an instance to change its class, only a few languages, such as
Smalltalk (Goldberg & Robson, 1989), tried to implement such a feature, maybe because
there are some unresolved inherent difficulties associated to the fact that one instance
could change its internal structure on the fly. Most object-oriented languages ignore this
feature due to the problems it raises and due to the fact that it is usually unnecessary,
because most behaviors that could be modeled by this feature also have alternate
simpler representations. Thus, for practical terms, it is usually the case that an instance
may not change its class: it is born as a member of one class and it will die a member of
the same class.11 As students may become professors, they do not qualify as subtypes of
people (the best solution for modeling this situation is given in Section 6.6.2).

Another counterexample is Worker and Customer being modeled as subclasses of
Person. This is bad first because no one is born a worker or customer; a person becomes a
worker or customer when associated to a company. More than that, the same person may
be a customer or worker in more than one company. Using inheritance in this case would
create conceptual problems that can produce duplicity in records and data inconsistency.

The following subsections present details on the three approaches to the organization
of concepts.

6.6.1 Generalization, specialization, and inheritance
For years, inheritance was considered the most important feature of object-oriented
languages. Languages such as Smalltalk, for example, were built over a single hierarchy
of classes based on inheritance.

As time went by, this emphasis lost strength, because it was perceived that inheritance
is not always the best idea for solving modeling problems. Today, inheritance is
considered just one of the techniques that help to factorize information that otherwise
would be repeated in classes.

I nheritance, in object-oriented systems, occurs when two classes relate through a
special association called a generalization (or a specialization, depending on the direction
you look). A class that generalizes another class is its superclass, and the specialized one
is the subclass.

Generalization should be used every time there is a set of classes X1, …, Xn that have
specific differences and common similarities, so that the similarities can be grouped in a
superclass X (generalization of X1, …, Xn) and the differences maintained in X1, …, Xn.

The generalization has a semantic much different from the other associations of the

conceptual model. I t exists only between classes, not between instances as normal
associations do. For example, if a class Customer is associated to the class Order by a
normal association, then instances of Customer may be linked to instances of Order: the
normal association allows the links to exist. On the other hand if a class BankAccount is a
generalization of CheckAccount, then every instance of CheckAccount is also an instance of
BankAccount (Figure 6.34). There are not two instances to be linked, just one instance with
the properties defined in both class. I n the example, every instance of CheckAccount has
three a ributes: number, overdraftLimit, and overdraftFee. However, not every instance of
BankAccount is an instance of CheckAccount: the generalization is anti-symmetric. An
instance of BankAccount has only one attribute: number.

FIGURE 6.34 An example of generalization with inheritance.

Thus, one of the reasons to use inheritance is when there are some similar properties
(a ributes, associations, or methods) in different classes, which may be factorized in an
abstract construct such as a superclass.

I f the superclass may have its own instances, then it is a normal class. However, most
of the time superclasses are defined not to allow direct instances: only their subclasses
may have instances. I n this case they are known as abstract superclasses. Abstract
superclasses are represented in UML by a class with its name wri en in italic, or, more
visibly, with the constraint {abstract} (Figure 6.35).

FIGURE 6.35 Two classes being generalized by an abstract class.

I n Figure 6.35, the BankAccount class is abstract, and therefore cannot have direct
instances; only its subclasses may have instances. I nstances of CheckAccount have number,
overdraftLimit, and overdraftFee as a ributes; instances of SavingsAccount have number and
interestRate as a ributes. Both subclasses also inherit the association to the class

Customer, and all instances of both classes must, therefore, be linked to an instance of
Customer.

Generalization in not advisable when the superclass has no properties, that is, no
attributes, associations, or methods of its own (Figure 6.36).

FIGURE 6.36 Situation where generalization is not recommended, because there are no generalized properties.

Generalization should also not be used when subclasses do not have properties
(a ributes, associations, or methods12) that differentiate them from each other as in
Figure 6.37.

FIGURE 6.37 Situation where specialization is not recommended because there are no properties being
specialized in subclasses.

I n these cases, the ideal solution is to use a single a ribute, possibly typed with an
enumeration, to differentiate instance groups of objects that have the same properties
(Figure 6.38).

FIGURE 6.38 A more adequate model for the situation of Figure 6.37.

Besides these rules, before deciding on the use of inheritance, it is advisable to verify if

the generalization really represents a structural classification of the elements, and not an
associative or temporal organization, as seen in the following sections.

6.6.2 Association classes
One issue frequently misunderstood in conceptual modeling is related to the definition
of generalization among classes that are not really structural subtypes, but roles. For
example, a bookstore may have two “types” of people: customers and workers. After
discovering that both have a name, address, phone, etc., an analyst could assume that
they are two concepts that should be generalized as Person. But that apparently simple
solution (Figure 6.39) generates a complicated problem, because they are not different
types of people, but different roles that people could play when relating to a company.

FIGURE 6.39 Unsuitable way to represent roles with generalization.

Why is this a problem? I magine that a bookstore worker decides to buy books at her
workplace. I n this case the worker will be behaving like a customer. An unsuitable
although very frequent solution to this is to create a second record for the worker as a
customer, as if she was a different person. As a consequence, the same person would
have two records in the system: one as a worker and another as a customer. This
produces data redundancy and it is a source of data inconsistency, because, for example,
if the worker has registered a change in address, the customer may still keep the old
address. As they are the same person, this information is inconsistent.

A more suitable solution is to consider that there exists a Person that may relate to a
Company in at least two ways: as a customer and as a worker. The specific properties of a
customer (credit limit, for instance), and of a worker (salary, for instance), would be
properties of the associations, and not of the person. To represent these association
properties, an association class should be defined for each one, as shown in Figure 6.40.

FIGURE 6.40 More suitable representation of roles as class associations.

Therefore, when the same object may play different roles related to other objects, these
roles should not be represented as subclasses, but as association classes.

I n order to decide which situation demands inheritance and which situation demands
association classes, it may be verified if the “subtypes” depend on the existence of a third
class to make sense. I f the “subtype” depends on a third class, then the solution consists
of using an association class. For example, nobody may be simply a student; if someone
is a student, then she must be associated to a school or at least to a teacher.

Thus, it is unsuitable to create classes that represent kinds of people that in reality are
not subclasses, but roles. Workers, teachers, students, principals, customers, etc., should
not be subclasses of Person. Concepts like these only make sense if related to other
concepts such as Company, School, Department, etc. A person may be worker at a
company, student at a school, etc.

The difference between using an association class and an intermediary concept is
subtle. Figure 6.41 shows an example of a reservation being modeled as an intermediary
concept, and Figure 6.42 is a version of that reservation modeled as an association class.

FIGURE 6.41 A reservation being modeled as an intermediary concept.

FIGURE 6.42 A reservation being modeled as an association class.

I n the case of Figure 6.41, a reservation associates a customer to a book. I n the case of
Figure 6.42 the customer and the book are directly associated, and the reservation, as an

association class, is a consequence of that association. However, in Figure 6.41, the same
customer may have many reservations for the same book (nothing in the model prevents
it), while in Figure 6.42 one customer may have just one reservation for each book. The
link between the customer and the book may exist or not; it is not a bag. However, if both
roles of the association in Figure 6.42 were marked with {bag}, then a user could have
more than one reservation for the same book and the model in Figure 6.42 would be
equivalent to the one in Figure 6.41.

The issue of having different records for the same person, as discussed above,
frequently creates problems in information systems. For example, a student enters the
university and is registered as such. Then, she receives a scholarship and a new record is
created. Then, she works at a lab, and is registered again. Finally, she is hired as a
professor and a new record is created. She appears many times in the university records,
as if she was different people. Her old records become out of date; address and phone
numbers usually are only updated in the most recent records. This happens because
systems usually use inheritance (Figure 6.43), or completely separated records (Figure
6.44) in these cases.

FIGURE 6.43 Unsuitable representation of many records for the same person with inheritance.

FIGURE 6.44 Unsuitable representation of many records for the same person as separated concepts.

To avoid this problem, as seen before, the solution is to recognize that a person is
always the same. The person’s roles at the institution change, but the person does not
become a new person. Thus, the solution for this situation is more suitable when based
on association classes, as shown in Figure 6.45.

FIGURE 6.45 Representation of many records for the same person as association classes.

In Figure 6.45, if a person can play the same role more than once, then the multiplicity
at the left side of the association should be *.

A reasonable exception may be admi ed if just one kind of person exists in the context
of the system. For example, if the system only manages information about professors and
that is the only role a person may play at the university in the context of that information
system, then it would be easier just to create a class named Professor, and in the context
of that system, Professor is a synonym of Person because there are no other kinds of
people. The same thing happens in the Livir example, where it was decided to keep
Customer as the only class representing people, instead of transforming it into an
association class.

6.6.3 Modal classes
Modal classes are used to model concepts with instances that can change from one state
to another during their existence, changing, possibly, their properties’ structure,
including a ributes, associations, and behavior. Although a few programming languages
allow instances to change their structure by changing their class, this is not assumed as a
modeling principle because such changes may create unpredictable structural problems.

Even if an instance could change its class, redefining its a ributes and associations
remains a problem. However, there are modeling techniques that allow one to represent
situations that would need objects that change class without using this feature. The idea
is not to change the object class, but its state. When a TV is turned on it does not become
a new type of TV: it just changes its state.

Three increasingly complex situations related to state modeling may be identified:
• Stable transition: The different states of an object do not affect its structure, but only

its property values (attributes and links).
• Monotonic increasing transition: As the object changes state it may only keep its

properties or acquire new ones.
• Nonmonotonic transition:13 As the object changes state it may keep, acquire, or lose

properties.
Modeling solutions for the stable and monotonic increasing transitions are quite

simple. However, for modeling the nonmonotonic transition, a design pa ern named

State (Gamma, Helm, J ohnson, & Vlissides, 1995) is necessary, as seen in the following
subsections.

6.6.3.1 Stable transition
Frequently, different states of an object may be represented by a simple a ribute. I n fact,
the set of all a ributes and links of an object defines its state. For example, the state of
an order could be modeled simply as a state a ribute typed with an enumeration whose
values may be “ongoing,” “concluded,” and “paid.”.

Another example is the suspended a ribute of the Address class (Figure 6.46). I f a
package sent to that address returns, then the address is marked as suspended (the
a ribute is changed to true). When the customer updates the address it is changed to
false again. The default value for the suspended attribute is false.

FIGURE 6.46 A concept with a stable state transition.

If the attribute suspended is true, then the address cannot be used for deliveries.
The transition is considered stable because just the value of the a ribute changes. The

inner structure of the object is kept the same. This does not happen with the two cases
presented in the next subsections.

6.6.3.2 Monotonic increasing transition
The situation is a bit more complex when the concept may acquire new a ributes or
associations as it changes state. For example, invoices that are waiting for payment have
only dueDate and dueValue as a ributes. But an invoice that is paid additionally has
paymentDate and paidValue (Figure 6.47).

FIGURE 6.47 A concept with a monotonic increasing transition.

I t is said that the transition in Figure 6.47 is monotonic increasing because new
a ributes and associations may be created for it, but not eliminated. This implies that a
paid invoice cannot go back to be a new invoice again.

I t would not be adequate to model that situation with inheritance, as seen in Figure
6.48, because in that case, an instance of NewInvoice should be transformed into an
instance of PaidInvoice, or it has to be destroyed and created again from scratch, and all
its references should be rebuilt.

FIGURE 6.48 Unsuitable way to model a monotonic increasing transition with inheritance.

Another solution that is not very nice, but still very popular, consists of creating a
single class Invoice and allowing certain a ributes to be null until the class changes its
state, as shown in Figure 6.49. Usually, the verification of the instance consistency is done
in the updating methods. But an invariant could also be used (as explained in Section 6.7)
to guarantee that no instance reaches an invalid state, as, for example, with a defined
paymentDate and null paidValue.

FIGURE 6.49 Unsuitable way to model a monotonic increasing transition with a single class and null attributes.

This model is still not good because it generates a class with low cohesion, which has,
in consequence, complex consistency rules that should be checked frequently. This kind
of class is highly susceptible to design and programming errors.

I t would be be er to model the invoice concept so that the consistency of the objects
could be constrained by the structure of the model itself, and not by external rules. As it
is a monotonic increasing transition, then it is possible to model this situation just by
spli ing the original concept in two: one that represents the invoice, and another that
represents its payment with the properties that were added when the payment occurred.
These two concepts are, then, linked by a 1 to 0..1 association (Figure 6.50).

FIGURE 6.50 Effective way to model a monotonic increasing transition.

With the model presented in Figure 6.50 it is impossible for an invoice to have a
defined payment date and undefined paid value, and this is guaranteed without
performing any further constraint on its attributes or associations.

The state of an invoice is a derived a ribute, which is calculated as follows: if there is
no payment linked to the invoice, then the invoice is new; otherwise it is paid. I n OCL that
condition may be expressed as

Context Invoice::state

 derive:

 if self.payment->isEmpty() then

 InvoiceState::new

 else

 InvoiceState::paid

 endif

The expression above introduces two new OCL features:
• if-then-else-endif, which is one of the OCL selection functions. If the condition after the

if is true, then the function results in the evaluation of the expression after the then;
otherwise it results in the evaluation of the expression after the else.

• isEmpty(), which is a function applied to a collection structure and returns true if the
collection is empty or false otherwise. It is an easy way to check if there is some object
linked to another object or not.

6.6.3.3 Nonmonotonic transition
With nonmonotonic transition, an object may both gain and lose properties as it changes
its state.

Fortunately, it is not frequent that an information system requires any information to
be lost. However, sometimes, that can be exactly what should be done.

There are many ways to conceive and model a reservation system for a hotel, for
example. One of them consists of regarding the hosting as an entity that evolves from a
reservation in three steps:
1. Initially, a potential guest makes a reservation indicating the days she intends to arrive

and depart, the kind of accommodation, and the number of people. The hotel provides
the fee.

2. When the guest checks in, the arrival date is registered (it may be the same date of the
reservation or a different date). The hotel assigns a room that may be different from
the one initially reserved and, if this is the case, it informs the guest of the new fee.
The expected date of departure continues to exist, although it can be updated during
the stay.

3. When the guest checks out, the expected departure date ceases to exist and the
effective departure date is registered, and the bill has to be paid.
This set of states may be modeled during business analysis with a state machine

diagram similar to the one in Figure 6.51.

FIGURE 6.51 A state machine diagram for modeling a simple hosting process.

I f a hosting just acquires new a ributes and associations as it evolves through the
states of Figure 6.51, then it could be represented by a chain of concepts like the one
shown in Figure 6.52.

FIGURE 6.52 Possible model for reservations as monotonic increasing transitions.

However, it is possible to assume that some state transitions may eliminate some
a ributes or associations that have no more meaning in the new state, as, for instance,
estimated dates, which are replaced by real dates, and the type of room, which will be
replaced by a real room that already has a type.

I n order to represent this kind of situation, it is necessary to use a design pa ern
known as State (Gamma, Helm, J ohnson, & Vlissides, 1995). According to this pa ern, a
class should be separated from its states. Properties that are shared by all states are kept
in the original class, and properties that belong only to one or a few states are moved to
the respective states. These states are specializations of an abstract class, as shown in
Figure 6.53.

FIGURE 6.53 Nonmonotonic state transitions modeled with the State design pattern.

I n Figure 6.53, the a ributes nrPeople and fee exist in every possible state of a hosting,
and this is why they are represented in the Hosting class. The other properties are
distributed among the three possible states:
• Reservation: A hosting, in addition to the number of people, has estimated arrival and

leaving dates and the accommodation type (not yet a room), from which the initial
value for the hosting fee is obtained.

• CurrentLodging: A hosting, in addition to the number of people and fee, has an
effective check-in date, estimated leaving date, and an effective room assigned. The
estimatedArrival attribute and the straight link to the accommodation type are not
necessary anymore and are discarded.

• FinishedLodging: A hosting, in addition to the number of people and fee, has effective
check-in and check-out dates, and an effective room that was assigned. The estimated
leaving date is not necessary anymore and is discarded.

From the point of view of a Room, it can be linked to at most one CurrentLodging (0..1),
but it can be associated to many FinishedLodging (*). This way, the temporal property of
that association is already modeled too, because the association of a room to lodging may
be at most one in the present, but many in the past.

6.7 Invariants
There are situations where the expressivity of the diagrams is not enough to represent
rules that should be recorded in the conceptual model. I n these cases, the analyst should
use invariants.

I nvariants are general constraints over instances of the classes. S ome constraints are
represented in the association roles; for example, a constraint that states that an order
should have not more than five items can be represented as in Figure 6.54.

FIGURE 6.54 A constraint that can be represented as a role multiplicity.

However, not every possible constraint may be represented in the association roles.
Consider the model shown in Figure 6.55.

FIGURE 6.55 An example of a class with an invariant.

The totalValue of an order is a derived value in Figure 6.55. The sum function in OCL
returns the sum of the numerical elements that are produced for each of the elements of
the set. The expression between parentheses after sum indicates how each individual
numerical value is obtained from the elements of the set. The expression used to define
the totalValue in Figure 6.55 is an abbreviation of

Context Order::totalValue:Money

 derive:

 self.item->sum(anItem|anItem.subtotal)

S omeone could also try to write the expression above as self.item.subtotal-
>sum(aSubtotal|aSubtotal) or self.item.subtotal->sum(). However, in that case, as the role
item is a set and not a bag or sequence, the subtotals would be also a set. I f two items
have the same value for the subtotal, then it would appear just once in the set and the
sum would not reflect the intentions of the modeler.

The subtotal in the Item class is also a derived value calculated by the following
expression:

Context Item::subtotal:Money

 derive:

 self.quantity*self.price

The item price has an initial value defined as the price of the book that is linked to the
item:

Context Item::price:Money

 init:

 self.book.price

Now, if there is a constraint that states that no order can have a total value higher than
1000 dollars, it would not be possible to represent it in the role multiplicity, as done in
Figure 6.54. However, the constraint could be represented by using an invariant like the
following:

Context Order

 inv:

 self.totalValue<=1000

I nvariants may appear in the diagram indicated as constraints associated to a class.
The invariant mentioned above is represented just below the Order class name in Figure
6.55.

The invariant declaration in OCL does not have a subcontext; it must be true for every
instance of the class, not for a particular attribute or association role.

Many software developers, when faced with the need to use constrains like invariants,
choose to incorporate these rules in methods that update the a ributes and links of the
objects. For example, considering Figure 6.55, a test for the constraint could be added to
the method that adds a new item to the order to check if the total value surpasses one
thousand dollars; in that case, the operation would be prevented from completing.

The problem with that approach is that the verification would be made only on that
method, but it would not be a general rule for every method. The developer knows the
rule now, but what happens if another developer assumes the project later? What about
maintenance? A developer that changes the system some years later would not
necessarily know that that rule exists. S he would probably not review the requirements
document (assuming that it still exists and is updated), and she would potentially
introduce a conceptual error in the system if she allows other methods to not follow that
rule.

For instance, if the check was implemented only in the operation that adds a new item
to an order, what if the item has its price changed? What if the item has its quantity
changed?

Thus, general conceptual rules that always apply should be explicit in the conceptual model,
and not relegated to verifications in the programming code. I nconsistent instances may be

prevented. I f it is possible, such constrains may be represented in the diagram structure;
otherwise, they should be represented by invariants.

Another example, which happens frequently, is the need to constrain two associations
that would be independent otherwise. I n Figure 6.56, note that students are associated to
a chosen career, each career has courses, and students take courses.

FIGURE 6.56 A model that needs a further constraint to be consistent.

However, the model depicted in the figure does not guarantee that students will
choose courses associated to their career. According to the model, a student may take
any course, and if that is not the case, a constraint should be added to the model. UML
allows constraints to be added between associations (with the use of dashed lines). This
notation is an alternate form for an invariant.

To guarantee that a student can only take courses related to her own career an
invariant like the following should be provided:

Context Student

 inv:

 self.course.career=self.career

The expression uses a feature of sets (not allowing elements to be repeated) to verify
that all courses taken by the student belong to the student’s career. The expression
self.career results in the student’s career (a set with a single element because of the
multiplicity of the role from student to career). On the other hand, the expression
self.course.career results in the set of all careers associated to all courses taken by the
student. I f there are courses from different careers, then that set could not be equal to
self.career (which has a single element). Otherwise, if all careers are the same then the set
self.course.career will contain a single element (because sets do not repeat elements). I f
that element is the same as self.career, then the invariant will be true and valid.

6.8 Iterative construction of the conceptual model
This section shows how the conceptual model can be refined with information from the
expanded use cases. I nitially, we discuss how to find concepts and a ributes from the
use case texts. Next, we discuss how to identify associations of the model. Finally, we

present a complete example with some use cases from the first iterations of the Livir
project, and their contribution to the conceptual model.

6.8.1 How to find concepts and attributes
The process of discovering the elements of the conceptual model may vary. However, one
of the most useful techniques is to look at the text of the expanded use cases or system
sequence diagrams. From those artifacts one can discover all textual elements that
eventually refer to information to be managed.

Usually, these textual elements are composed by nouns such as “person,” “order,”
“payment,” etc., or by expressions that denote nouns (known in linguistics as noun
phrases), such as “payment authorization.” Moreover, sometimes even verbs may
represent concepts, when verbs express an act that corresponds to a noun, as, for
example, the verb “paying,” which corresponds to the noun “payment.”

The analyst should mind the project goals and scope when looking for the elements of
the conceptual model. I t is not advisable to represent in the conceptual model
information that is irrelevant to the system. Thus, not every noun, adjective, or verb
should be considered as a model element. The analyst is responsible for understanding
what the real information needs of the system are, and for filtering the irrelevancies.

The process of identification of concepts and attributes consists of the following:
1. Identify in the expanded use case text or in the arguments of the operations in the

system sequence diagram the words or phrases that correspond to concepts that are
relevant to maintain the record.

2. Group words or phrases that refer to the same entity as, for example, “buy” and
“acquisition,” “customer” and “client,” etc.

3. Decide which of the identified elements are complex concepts, and which are mere
attributes. Usually, attributes are the elements that may be considered alphanumeric
(names, numbers, codes, monetary values, Boolean values, etc.), enumerations, or
primitive (dates, ISBNs, etc.).
Applying this technique to the use case of Figure 5.10, the main elements related to the

use case may be found. Figure 6.57 shows these elements underlined.

FIGURE 6.57 Use case with candidate concepts and attributes underlined.

Even if there is no preliminary conceptual model, this use case is enough to identify
some concepts that belong to the system domain. I f the preliminary conceptual model
already exists, then the use case helps to refine the model, indicating new concepts, new
a ributes, or structure changes. For the example, we assume that there is already a
preliminary conceptual model, which is depicted in Figure 6.58.

FIGURE 6.58 Preliminary conceptual model for the current example.

The terms identified in the use case text of Figure 6.57 are, in order of appearance:
• Customer: A class that is already in the conceptual model.
• Keyword: Keywords are used for searching; they are not considered at this point

attributes of complex concepts on their own (although they could be if search history
or preferences have to be recorded).

• Book: A class that is already in the conceptual model.
• Sale: In the context of that use case and at this point of analysis “sale” and “order”

could be considered synonyms. Thus, this is a class that is already in the conceptual
model.

• Title, author, price, and page count: Attributes of Book. Author could still be considered a
complex concept if the information about authors is more complex than a single
name.

• Publisher: A class that is already in the model. The use case probably is referring to the
publisher’s name.

• ISBN and cover image: Attributes of Book.
• Desired quantity: Cannot be considered an attribute of Book because it varies

depending on the order. It cannot be considered an attribute of the order either
because it varies depending on the book (there may be many books in an order). The
desired quantity is, therefore, an attribute of the association between a book and an
order, represented by an intermediary concept or by an association class called Item.

• Order summary: This is referring to an Order; it does not seem to be a new concept.
• Title, author (or author’s name), quantity, unit price, and subtotal: Except for subtotal all

attributes have been already mentioned. Subtotal may be a derived attribute of an
Item. Unit price is equivalent to price, which is already considered an attribute of Book.
However, it may in fact also be an attribute of Item as well.

• Total value: Derived attribute of Order.
• Finishes the order: This indicates an action that represents a change in the state of an

order. Maybe an attribute would be sufficient to represent this state, but more

analysis would be advisable in order to see if finishing an order is not a more complex
operation (which is indeed it is).

• Quantity requested: Same thing as quantity.
• Quantity in stock: Probably a new attribute of Book.
• Available quantities: Synonym of quantity in stock.
• Identified: Could this be a state of a customer? Maybe not. It refers to whether the user

is logged in or not.
• Valid identification: This belongs to the security domain. However, the conceptual

model probably may have a way to identify customers. Usually ID numbers such as
the Social Security number are used for that purpose.

• Account: This again has to do with login.
• Username, password, and email address: Depending on the kind of security framework

that is used (or not) these may be attributes of a customer (or attributes of a user that
is attached to a customer), or they may even be completely addressed by the security
framework and ignored in the conceptual model. For now they are left as security
issues, and not included in the conceptual model.

From the information collected above, the preliminary conceptual model may be
refined, and it would become similar to the one shown in Figure 6.59, where new classes
and attributes are highlighted.

FIGURE 6.59 The second version of the conceptual model, refined after the analysis of use case 01: Order
books.

Note that a single use case added significant new information to the model. This is no

coincidence, because that use case was considered the most important in the system and
thus the first to be detailed in iterations. I ts complexity has a lot to contribute to the
comprehension of the information structure that the system should manage.

Not every association in Figure 6.59 had its multiplicities defined. The UML default for
undefined role multiplicity is 1, but the situation in Figure 6.59 is that associations with
no multiplicity defined were simply not analyzed up to this point and are considered “to
be defined.”

6.8.2 Dependent and independent concepts
A concept is dependent from others if it needs to be associated to them in order to make
sense, that is, to represent information that is minimally meaningful.14 Looking at Figure
6.59, it can be seen that an order would not make sense unless it was associated to a
customer and to a set of items. Without those associations, the concept of Order would
not make sense. The order also has other associations in that figure, but they are
optional.

A concept is independent if it has a meaning even without being associated to others.15

For example, the Publisher concept may be understood just from its a ributes, without
being associated to other concepts. The existing associations for a publisher are optional.
Thus, the Publisher concept, in that sense, is independent.

But, what purpose does this distinction serve? I t was discussed in Chapter 5 that only
the simplest concepts may be managed by CRUD use cases. D ependent concepts should
not be considered simple in principle, while independent concepts may be simple in
principle.

In Figure 6.59, almost all the concepts are dependent. For example, a delivery depends
on an order, a confirmation depends on a delivery, and so on. Only Publisher, Book, and
Customer are independent concepts and candidates to be managed by CRUD use cases.

Concepts that are managed by CRUD use cases are usually those that can be accessed
directly when information is being retrieved from a system. Although adding the façade-
controller class to the model could wait for design modeling activities (Chapter 9), it can
be added now to indicate which concepts are independent ones. I n principle, only
independent concepts have mandatory links to the controller class. Being linked to the
controller class means that the instances of the class may be accessed directly. For
example, an instance of Book may be accessed directly by its I S BN. However, an instance
of Item is not accessible directly. To access an Item one has to navigate from a Book or an
Order. Thus, the Item is not linked to the façade-control class.

A lthough Book is an independent class, it was not linked to the controller because it
has a mandatory association to another independent class: the Publisher. I n this case, any
book may be accessed by looking at the set of books of the publishers. I f later it is
discovered that books must be accessed directly, independently from its publisher or
that any other concept needs this kind of access, then (derived) associations to the
controller may be created as needed, but they are not created by default for every
concept, to avoid increasing coupling among classes.

There are, therefore, two main paths to reach information in the model of Figure 6.60:
from a publisher, and from a customer. All other concepts are reached by starting at one
of those. Later, as mentioned, information needs may require defining other paths. I n
Chapter 9, we see that an order must also be accessed directly, because a number of
system operations need to obtain an order by its number or date independently of who
the customer is or what books are in it.

FIGURE 6.60 Refined conceptual model with a façade controller.

6.8.3 How to find associations
I f the information related to concepts and a ributes is easily found in the use case texts,
the associations are not. As mentioned before, use cases indicate many operations that
transform information, but one must seek for clues about associations.

S o, how do we find associations between complex concepts? There are at least two
rules that can be used:

• Dependent concepts (such as Order, Payment, Cancellation, etc.) should be necessarily
associated to the concepts that complement them (which may be dependent or
independent).

• Associative information, that is, associations that are not mandatory, but that
complement the information in the model (such as “a person may own a car”), should
be represented by associations.

S ometimes, associative information appears in the use case texts as concepts. For
example, an order could be an association between a customer and books), but it is
sufficiently complex to be represented as a concept. As an order is a dependent concept,
there are associations between those concepts and their complements.

When one states that a person may own a car, that information should be represented
by an association. Many professionals who work with programming but not modeling
could produce models similar to the one presented in Figure 6.61. However, this is
unsuitable, because (first) a ributes should not have concepts as type, and (second) the
model is disguising a real association.

FIGURE 6.61 An attribute disguising an association.

I t is also unsuitable to use foreign keys (D ate, 1982), as shown in Figure 6.62, because
that also disguises associations. This mistake is commonly made by modelers used to
design relational databases. Foreign keys must not be used in conceptual modeling
because they are an implementation technique.

FIGURE 6.62 An association disguised as a foreign key attribute.

Thus, when two complex concepts are related to each other, the construct to be used is
the association (Figure 6.63).

FIGURE 6.63 Suitable representation for the situation shown in Figures 6.61 and 6.62.

The example of Figure 6.63, contrary to the others, respects a cohesion rule that states
that a concept should only contain its own properties. As the I D is an a ribute of the
owner, it should not be represented as an a ribute of a car (as in Figure 6.62). Another
reason to have visible nondisguised associations is more practical: it is easier to see
which objects have references to others. Later (Chapter 9), we discuss how these visibility
lines may be used for designing effective and good quality object-oriented code.

6.8.4 Example of iterative construction of the conceptual

6.8.4 Example of iterative construction of the conceptual
model
I t was mentioned before that the Unified Process is use-case driven and architecture
centered. But, what does that mean in practice? We have seen already how to identify and
detail use cases, and we have also seen that they can be used as a source of requirements
for refining the conceptual model, which is the basis for the design class diagram, an
important part of the system architecture. Section 6.8.1 showed how the preliminary
conceptual model could be refined with information from the first detailed use case
(Order books).

Applying that process again, simulating a second iteration for use case 02 Pay order,
new concepts and attributes are discovered (Figure 6.64).

FIGURE 6.64 Main flow of use case 02 Pay for books with candidate concepts and attributes identified.

The elements identified in this use case are:
• Delivery addresses: As a customer may have more than one delivery address and as

addresses are used to calculate delivery fees, they may not be represented by a simple
attribute, but instead are represented by a class.

• The second occurrence of delivery address refers to the specific address associated to
the current order. Thus, a new association is found between an order and one
address.

• Delivery fee: Attribute of the order. But from where is this value obtained? If
requirements are further analyzed it would be discovered that different cities have
different fees that depend fundamentally on the distance from the city to the
company headquarters. Thus a new class is created (City), which is associated to
Address, and the default fee for each city is defined as an attribute of that class.

• Credit cards: New concept. Should be associated to a customer.

• Flag: Probably not an attribute, but a complex concept associated to a credit card.
• Card for payment: An association between an order and a customer’s credit card.
• Credit card operator: It is in fact an external actor; its data may be associated to the

credit card flag.
• Card number, owner’s name, validity, security code: Attributes of a credit card.
• Purchase total value: Same as order total value.
• Code of the store: Not an attribute of the bookstore, as might be thought. This code

identifies the bookstore for each card operator. As different operators may provide
different codes, this attribute should be represented in the credit card flag concept,
unless a network of stores is being modeled.

• Approval: This happens when an authorization code is received (see next item).
• Authorization code: Can be thought of as an attribute of the order. But it may only exist

when a credit card is already linked to the order. Thus, it would be better placed as an
attribute of the association between credit card and order.

• Tracking number of the delivered package: May be an attribute of the delivery.
The new elements are highlighted in Figure 6.65, which is the third version of the

conceptual model for the Livir example. Notice that there are still some concepts with no
a ributes and some associations are left with undefined multiplicity. This is because the
use cases analyzed to this point did not produce information to refine those elements.
They would be refined la er when other use cases are expanded and their information
incorporated in the conceptual model.

FIGURE 6.65 Conceptual model refined with information from the main flow of the use case of the second
iteration: 02 Pay order.

Observe that just the main flow of this use case was used in the example. Alternate

flows of this use case still need to be analyzed and included. Recently, J acobson et al.
(2011) have proposed the use case 2.0 technology, which specifically suggests that a use
case should be addressed in slices, and not as an indivisible whole.

At least two invariants still should be added to the diagram of Figure 6.65 in order to
avoid the existence of inconsistent information: the address of the order must be one of
the addresses of the order’s customer and the credit card used to pay the order must be
one of the credit cards of the customer. Those invariants may be defined in the Order
class as

Context Order

 inv:

 self.customer.address->includes(self.address)

 and

 self.customer.creditCard->includes(self.creditCard)

The OCL predicate includes verifies if the object received as an argument is included in
the set. I t is equivalent to the math operator “⊇”. For example, self.customer.address-
>includes (self.address) means self.customer.address ⊇ self.address, that is,
self.customer.address contains self.address. I t is assumed that if the element received as an
argument is the empty set, then the expression is true. Thus, if the delivery address and
credit card were not yet defined, then the invariant is not being violated.

The analysis of the second use case has incremented the conceptual model with a
significant number of new classes and a ributes. The idea is that the quantity of
novelties decreases as the iterations advance, because, in the end, only CRUD s of
elements already studied and reports with information that should already be in the
system will be addressed. I t is not expected that they will bring any new information to
the conceptual model.

Observe that inverting that order would leave for the final iterations the insertion of
many classes and a ributes, and this would require a lot of rework in the design, and
some architecture refactoring would possibly be needed in order to accommodate those
needs. That is why it is so fundamental to initiate the project with the most complex use
cases and only later incorporate the simpler ones into the architecture.

6.9 The process so far

6.10 Questions
1. Try to imagine a real world situation where the right structure to be used is a sequence.

Remember that a real sequence allows elements to be repeated and assigns position to
elements. Try not to get fooled by natural language use of the word “list.” A “grocery
list,” for example, is not a sequence, because elements do not repeat and their position
in the list is irrelevant; a student roll call may be organized in alphabetical order, but
again, repetition is not allowed and the order is again irrelevant although convenient.
Thus, those are not real sequences.

2. What is the purpose of the controller class? What is its relation with dependent and
independent concepts?

3. Why should an attribute not be typed with a class name? Why should an attribute not
be used to reference another class?

4. Elaborate a list of concepts and subconcepts (subtypes of the original concept, as, for
example, dog and beagle) from common sense. Then, try to identify the type of each
relation: structural, associative, or temporal. Try to have at least one example of each
type in your list.

5. What is the difference between a normal association, an aggregation, and a
composition?

6. List some examples of data types that could be defined as primitive.
1Not necessarily, because many analysts may chose natural language or other specification languages. However, as OCL is
part of the UML package, it is advisable to use it.
2At this point, some readers that are also programmers could be worried about performance issues with the code that will
be used to implement derived attributes. As they are by definition “calculated,” it seems a waste of processing time to

repeat those calculations if the original values of cost and price do not change. However, the readers can stay calm
because code optimization mechanisms are available for derived attributes. For example, the value calculated for a
derived attribute may be kept in the cache and recalculated only when one of its components is changed. For example,
profit has to be recalculated only when the instance of Book changes the values of price or cost.
3The ISBN formation rule is explained in http://www.isbn.org/standards/home/isbn/us/isbnqa.asp.
4Some languages such as Smalltalk allow constants to change their value in runtime, but this is not usually the case and is
not recommended for most applications.
5A design pattern that states that a class with a single instance may be accessible globally.
6See also an example in Figure 6.18.
7In fact, in OCL, even a single object is considered a collection with a single element. This is equivalent to the natural
notion of a set, but not to the mathematical notion, because in set theory, a set with one element is not the element. In
OCL a set with one element and the element are the same thing.
8In the case of a set of people p, if someone wants to get the set of all ages, she could write p.age. However, the size of the
set is not a property of the people; it is a property of the set structure. Thus, to obtain the size of the set the expression p-
>size() should be used. If it was written as p.size, then it would be representing the set of the sizes of each person, not the
size of the set.
9“An association may represent a composite aggregation (i.e., a whole/part relationship). Only binary associations can be
aggregations. Composite aggregation is a strong form of aggregation that requires a part instance be included in at most
one composite at a time. If a composite is deleted, all of its parts are normally deleted with it. Note that a part can (where
allowed) be removed from a composite before the composite is deleted, and thus not be deleted as part of the composite.
Compositions may be linked in a directed acyclic graph with transitive deletion characteristics; that is, deleting an
element in one part of the graph will also result in the deletion of all elements of the sub graph below that element”
(Object Management Group, 2011).
10Just try to search Google for images with the keywords “UML” and “inheritance.” You will see lots of examples of bad
use of inheritance, as, for instance, Person as a generalization of Student and Professor.
11More specifically, an object is also an instance of all of its superclasses (Section 6.6.1). The idea is that the set of
superclasses should not change after the instance is created.
12Methods are only considered when design classes are being modeled. Remember that conceptual classes do not have
methods.
13The monotonic decreasing case can be considered here too (a transition that can only remove properties from an
instance).
14There is a parallel between dependent concepts and transitive verbs. The sentence “He opened” does not make sense,
because the verb needs a complement, as for example, “He opened the can.”
15A parallel exists between independent concepts and intransitive verbs. The sentence “He slept” makes sense because the
verb does not require a complement. However, even intransitive verbs may have supplemental information (for example,
“He slept for three hours”), as independent concepts do.

http://www.isbn.org/standards/home/isbn/us/isbnqa.asp

C H AP T E R 7

Conceptual Modeling

Patterns
Building a conceptual model is much more than placing concepts, associations, and a ributes together. Frequently
the model does not work not for being wrong, but for being too complex to maintain. Analysis pa erns consist of
solutions already tested that can resolve families of recurrent problems. When adequately used these pa erns may
reduce significantly the complexity of an otherwise naïve conceptual model. This chapter presents and sometimes
reinterprets some patterns such as high cohesion, quantity, strategy, account, temporal, and others.

Keywords
Design pattern; analysis pattern; high cohesion; temporal pattern; conceptual modeling

Key Topics in this Chapter
• High cohesion
• Specification classes
• Quantity
• Measure
• Strategy
• Composite
• Organizational hierarchy
• Account/transaction
• Range
• Temporal patterns

7.1 Introduction to conceptual model patterns
Class diagrams that represent conceptual models almost always become more complex
and hard to maintain than analysts and other team members would like. There exist
techniques that reduce the complexity of such diagrams, and at the same time, improve
their expressiveness. Naïve models may be unnecessarily complex.

These techniques are called analysis pa erns and may be understood as a special case
of design pa ers (Gamma, Helm, J ohnson, & Vlissides, 1995) that are applied specifically
to the conceptual model. Most pa erns presented in this chapter were first described by
Fowler (2003).

Analysis or design pa erns are not rules that must be obeyed, but recommendations

based on previous experience. I t is the responsibility of the analyst to decide when to
apply a given pattern in the models.

7.2 High cohesion1

High cohesion is so important for object-oriented modeling that it is considered more a
principle or guideline axiom than a pa ern itself. A concept with high cohesion is more
stable and reusable than a concept with low cohesion, which can become rapidly
confusing and hard to maintain. Most systems could have all their information
represented in a single table, but that would be an extreme worst case of low cohesion,
and it would not be practical.

Earlier, we mentioned that concepts should not have a ributes that belong to other
concepts (e.g., a car should not have the owner’s I D as one of its a ributes). A ributes
also must not have class names or data structures (set, list, array, etc.) as data types
because all those situations are evidences of low cohesion (a class with that kind of
a ribute is probably representing more than one single concept). For example, an
instance of Order should not have an itemsList a ribute because items have their own
attributes and associations; they should appear related to Order by a 1 to * association.

I n the example of Figure 6.65, when it was discovered that a customer could have more
than one address, instead of the naïve solution of creating a ributes like address1,
address2, etc., or even address:Array of Strings, we created a new concept (Address), which
was associated to the customer. I magine how hard it would be to deal with information
such as deliveryFee if the addresses were modeled as an array of strings.

Concepts and a ributes should have a simple structure with high cohesion elements.
Evidence of low cohesion includes scenarios where some a ributes of a class may be null
depending on the value of other a ributes. I f complex constraints (invariants) are
necessary to keep a concept consistent, this is equivalent to using duct tape to keep the
pieces of a broken pot together.

I n Figure 7.1, the a ributes paidValue and paymentDate are mutually dependent: both
are null or both are not null. An invariant must be added to the class to avoid the
situation where one of them is null while the other is not, in order to avoid inconsistent
instances. I nvariants are good to represent business rules that must always be valid. But
when an invariant just relates two a ributes of a class, it is a strong clue of lack of
cohesion.

FIGURE 7.1 A class with low cohesion because attributes depend on each other.

A be er way to model this situation is shown in Figure 7.2, where the concepts Order
and Payment appear separated but with high cohesion. I n this case, there are no optional
attributes depending on each other and no need for constraints.

FIGURE 7.2 A modeling solution with high-cohesion classes.

Another potential problem related to low cohesion is the existence of groups of
strongly correlated a ributes, as seen in Figure 7.3 where it can be observed that groups
of a ributes have stronger relations inside the group, such as street, number, city, and
state, which compose an address, or ddd (distance direct dialing) and phone, which are
part of a complete phone number, or passportNumber and issuingCountry, which are part
of passport information. The relation that exists inside each group appears implicitly on
the order they are presented in the class. This is bad, because if the a ributes were
sorted in alphabetical order, for example, the weak structure of the groups would be
messed up: city, ddd, issuingCountry, name, number, passportNumber, phone, state, and street.
The understanding of a concept should not depend on the ways its attributes are sorted.

FIGURE 7.3 A class with low cohesion because of strongly related attributes.

A be er solution to improve high cohesion in that model is shown in Figure 7.4. I t also
opens a way to other modeling possibilities such as, for example, allowing a person to
have more than one address, or more than one phone. I n those cases, it is simply the case
of changing the association multiplicity.

FIGURE 7.4 A solution to Figure 7.3 with high cohesion.

Yet another situation occurs when some a ributes repeat their values for a group of
instances. Figure 7.5 presents an example. I n this figure, the a ributes customerName,
customerId, and customerBirthDate repeat the same values for different orders when the
customer is the same.

FIGURE 7.5 A class with low cohesion because it has attributes that repeat values in different instances.

This type of situation can be eliminated by spli ing the concept into two associated
concepts with be er cohesion, as shown in Figure 7.6. Notice that even a ributes’ names
are shortened with this choice of model.

FIGURE 7.6 A model for the example of Figure 7.5 with high-cohesion classes.

7.3 Specification classes
A special case of low cohesion happens when an object is confused with its specification.
That situation is very frequent: sometimes, products or physical items share a common
specification, while their exemplars may have some differences among them.

One example of specification already discussed in the Livir example is the difference
between the concept of a book as a published title, and a book as a physical copy of a
published title. I f both book concepts are not distinguished, lots of trouble will occur. I n
past examples the class Book refers to the published title, while Item stands for a set of
physical copies. Thus, an instance of Book is a specification for a set of undistinguishable
instances of Item.

Another possibility is to consider that each item is a single copy of a book. That would
eliminate the need to include the quantity attribute in class Item, but it would create more

instances and associations for an order if the order includes more than one copy of the
same book.

D epending on the information needs, it would be necessary to differentiate one copy
from another. For example, if used books are to be sold, the conservation state should be
kept for each copy. I n this case, instead of a set of items, the Book class could be used as a
specification for the class Copy, whose instances are single copies of a book.

The specification class Book should contain the a ributes and associations that do not
vary for different copies. For example, different copies of the same book have the same
title, author, I S BN, base price, etc. However, conservation state and discount may be
distinct for each copy. Thus, these a ributes (and associations, if any) are placed in the
Copy class, as shown in Figure 7.7.

FIGURE 7.7 A class and its specification class.

I t is possible for a class to have more than one specification. For example, the discount
of the book could be predetermined depending on the conservation state of the book (an
enumeration with values such as new, used, damaged, etc.). Thus, a copy, besides being
specified by the published title, may also be specified by its state of conservation. Thus,
Conservation would be a class with some instances that may specify physical copies of
books, and define their discounts as shown in Figure 7.8.

FIGURE 7.8 A class with two specification classes.

The instances of class Conservation have two a ributes. The first is the conservation
state, which is a value obtained from the enumeration ConservationState. There are

initially only three possible values: new, used, and damaged. The second a ribute is the
discount percentage that would be applied to a copy depending on its conservation state.
As it is expected that books with the same conservation state have the same discount,
then the a ribute state in class Conservation must be unique and therefore marked with

unique . Otherwise, different discounts could be associated to the same conservation
state.

7.4 Quantity
Frequently the team faces the need to model quantities that are not merely numbers. For
example, the weight of a book could be defined as 400. But 400 what? Grams? Pounds?
Kilos? One solution is to define a specific type for the weight (Pounds, for example), and
then keep using it consistently. The a ribute then could be declared as weight:Pounds.
But that demands that all books have their weight expressed in pounds.

I n some cases, the system must be configurable to support different weight units. I n
some countries, grams and kilograms are used, while others use pounds, or even other
units. I f the a ribute has a type that refers to a specific unit, then the system must suffer
refactoring to accommodate new weight units.

However, the quantity pa ern allows different unit systems to coexist and to be easily
exchangeable. The pa ern consists of creating a new primitive type Quantity, which has
two attributes, as shown in Figure 7.9.

FIGURE 7.9 Definition and use of Quantity.

This way, the weight of each book is specified as a primitive quantity formed by a
numeric value and a unit, whose type is an enumeration with possible values defined as
grams, pounds, and kilos.

I f a unit conversion is needed, then an option is to transform the enumeration Unit
into a normal class, and associate a new class Ratio to two units, origin and destination, as
shown in Figure 7.10. When a quantity in the origin unit has to be converted to a quantity
in the destination unit, then the value of the quantity associated to the origin unit is
divided by the conversion ratio.

FIGURE 7.10 Unit with conversion ratio.

Thus, for example, an instance of Unit whose name is “grams” may be linked to an
instance of Ratio as origin, which may be linked to another instance of Unit, named
“kilos.” The value of that ratio should be 1000, because in order to convert grams into
kilos, the original value in grams must be divided by 1000.

7.5 Measure
An evolution of the quantity pa ern is the measure pa ern, which can be used when a
number of different measures over an object must be taken possibly at different times.
For example, a person in observation at a hospital may have many measures taken from
time to time: body temperature, blood pressure, blood glucose level, etc. Thousands of
different measures could be taken, but usually just a few are actually taken for each
patient. Therefore, to avoid creating a concept with thousands of a ributes with most of
them likely being null, a be er option is to use the measure pa ern as shown in Figure
7.11.

FIGURE 7.11 Definition and use of the measure pattern.

Thus, a patient may have a series of measures taken, each one assessing a different
phenomena and presenting a value that corresponds to a quantity (following the quantity
pattern).

I t is still possible to make these pa erns a li le more sophisticated by adding
a ributes in the Measure class to indicate the instant of time at which the measure was
taken, and also the validity of the measure. For example, the fact that a patient had a
fever a couple of hours ago does not mean that she still has it. This evolution is explained
in Section 7.12.1.

Another evolution for this pa ern is to add an a ribute to define the precision or
accuracy of the measure taken. For example, body temperature usually is measured with a
precision of 0.1 degrees (Celsius or Fahrenheit).

7.6 Strategy
I t was mentioned that one of the great requirements challenges is to manage their
change. Transitory requirements must especially be accommodated in the system design

so that when they change the impact to the system, is minimized.
S ome cases are relatively easy to address. For example, if it is already decided that the

system must operate in different countries, the quantity pa ern could be used to deal
with currency and other measures that may vary from country to country.

But there are much more complicated situations. For example, the tax calculation
procedure may vary a lot from country to country and even from state to state in some
countries. There are some taxes that are calculated in relation to the profit, others with
regard to the selling price, and so on. Methods for calculating taxes change from time to
time, and in some countries new taxes are created every year. S ystems must be prepared
to cope with that, but the changes are completely unpredictable. J ust configuring
parameters usually is not enough.

Another example is the bookstore’s discount policy. Current policy could be applying
10% off on orders above 100 dollars, for example. However, after some time, creative and
unpredictable policies may be defined by the sales department, such as:
• Give a free book with a value up to 50 dollars for orders above 300 dollars.
• Give 20% off for up to two books on the customer’s birthday.
• Give 5% off on horror books on Friday the 13th.
• The customer spins a wheel and it defines the discount she receives, from 1% to 10%.

Moreover, it would be possible to combine policies, if applicable, or choose the one
that gives the higher discount.

The strategy pa ern suggests that in these cases, the procedure (e.g., calculate taxes or
discount) must be separated from the data to which it applies. I n other words, if a
discount is applied to an order, then the discount should not merely be a method
implemented in the Order class. The discount should be defined as something easier to
change. The solution proposed by the strategy pa ern is to create an abstract class
associated to the order. This abstract class may have concrete subclasses that represent
concrete discount policies, as shown in Figure 7.12.

FIGURE 7.12 Strategy pattern.

Thus, each instance of Order is associated to an instance of one of the subclasses of the
Discount strategy.

UML does not allow an a ribute to be declared {abstract}; only classes and methods

may be declared so. However, as derived a ributes will be implemented by methods
eventually, the idea of an abstract derived a ribute stereotyped with abstract as shown
in Figure 7.12 is coherent to the UML spirit.

Thus, the abstract class Discount implements an abstract derived a ribute amount,
which is implemented in a concrete way in each of its subclasses. I f some of the
strategies need data from the customer or from the order to calculate the discount, that
data can be accessed through the associations from the discount abstract class to the
classes that own the information.

This pa ern minimizes two problems related to requirements change. First, it keeps
the discount strategy applied when the order was issued, even if strategies change in
future. S econd, if new strategies are created later, it is sufficient to implement one or
more subclasses for Discount. This does not affect the old strategies, or the old orders.

7.7 Composite2

As mentioned in Section 7.6, sometimes different strategies must be grouped and a
combination or selection of them must be applied. The combination of different discount
strategies can be obtained, for example, by the sum of the values obtained for the derived
attribute amount for each individual strategy, or by choosing the highest or lowest values
among them. The choice of one or another combination produces different aggregated
strategies.

I n Figure 7.13 there are two composite strategies shown. SumDiscount defines amount
as the sum of the values returned by each component discount:

FIGURE 7.13 Example of the composite pattern.

Context SumDiscount::amount:Money

 derive:
 self.discount->sum(aDiscount|aDiscount.amount)
MajorDiscount selects the highest discount among each aggregated subclass:

Context MajorDiscount::amount:Money

 derive:
 self.discount->maxElement(aDiscount|aDiscount.amount)
The current version of OCL does not define a function maxElement to take the highest

element of a collection, but it could be defined as a new operation. Another solution is
defining the expression by using functions already provided by the language, such as

Context MajorDiscount::discountAmount:Money

 derive:
 self.discount->sortedBy(aDiscount|aDiscount.amount)->last()
The reader could find that it is not necessary to produce a sorted version of an entire

list just to obtain its highest element. But remember that this is specification, not
implementation; it is the final result that counts. Anyway, defining a new operation in
this case, if possible, would be be er because the meaning of the specification would be
clearer.

7.8 Organizational hierarchy
Another common situation consists of the need to represent organizational hierarchies.
I t is commonplace, for example, to represent the administrative organization of a
company as a composition hierarchy as shown in Figure 7.14.

FIGURE 7.14 Straight representation of a company’s organizational structure by using classes for the different
levels of composition.

However, hierarchies like this usually do not behave well. First of all, this kind of
organization is not followed by every company: other companies may have different
levels or different compositions among them. Second, the company structure may
change over time. New divisions or offices may be created, some may be joined, and
others split. Last, but not least, different views of an organization may exist at the same
time; for example, the finance department may have a different view of the same
organization.

How to deal with all that complexity in a conceptual model? By using the organizational
hierarchy pattern.

The solution consists of not considering the different levels of an organization as
concepts, but as instances of a single concept, as shown in Figure 7.15.

FIGURE 7.15 Application of the organizational hierarchy pattern.

I n this way, flexibility is gained related to dealing simultaneously with organizational
structures from different companies. Also, eventual changes in the organizational
structure, such as adding more levels, or changing dependencies, may be easier to
accomplish.

This pa ern has some variations that may be used if concurrent hierarchies,
superseding structures, or equivalent structures should also be represented. Those
variations are discussed in the following sections.

7.9 Object joining
One of the team’s assumptions that usually fails is that users will do everything right.
That is not always the case. User failure (and sometimes sabotage) is still frequent,
despite the efforts to build failsafe interfaces. A user could, for example, register a new
publisher in the system, and later discover that it was already registered. Entering an
incorrect code or the impossibility of having a unique identification for a real world
object may cause this situation. The result is that two objects are registered in the
system, both representing the same publisher, and each of them may possibly have its
own set of books associated, some repeated, some not.

The solution when this kind of error happens is to join the objects, usually copying one
over the other. This operation can be performed directly within the database, but in some
situations it may be so common that it would be necessary that the system be prepared
to allow this possibility as a user feature.

Besides, it is not always an error that causes the need for a join. I n some situations,
there are objects considered equivalent by one group of people and not by another, and
both situations must be represented simultaneously. I n other cases, as in multiple view
organizational hierarchies, it may be necessary to indicate that two structure elements in
different views are equivalent, or that one succeeds another in time.

The following subsections present the main strategies to deal with these kinds of
situations.

7.9.1 Copy and replace
The first strategy that comes to mind when it is necessary to join two objects consists of
copying the data of one object over the second (copy and replace). The copy/replace
command could be defined by a contract (see Chapter 8), and the team should define, for
each a ribute and each association, what must happen during the copy/replace
command. Rules should be defined to decide if an attribute is going to be copied over the
other, or if their values are to be added, or if the newest or highest of them must prevail,

etc. Regarding the associations, the team must decide what happens: if one replaces the
other, or if their properties are added, and so on.

The registry of the date of the last inclusion or change of a concept may be useful for
deciding which a ribute must be kept in the case of a conflict. For example, if a
registered customer makes a new record, and it is going to be resolved, then the most
recent address must be kept, not the oldest one. On the other hand, all of her orders
must be added to the resulting instance.

After performing the copy/replace command the instance that was copied must be
destroyed, and any references to it must be redirected to the instance that received the
data.

7.9.2 Superseding
Superseding is a technique that can be used when the original object must be kept and not
destroyed. Superseding is applicable, for example, in the case of organizational
structures that are succeeded in time. Suppose that the departments of marketing and
sales are joined into a single department of customer contact; the original departments
must be marked as no longer active, and a new department must be added as their
successor. The superseding strategy may be implemented by a reflexive association, as
shown in Figure 7.16.

FIGURE 7.16 An example of the superseding strategy.

The derived a ribute active indicates if the structure is active or if it has been
superseded. It is true if the set of superseders is empty and false otherwise.

To maintain the original organizational structure even if it is not active anymore may
be important for registry purposes. Someday someone could need to know how much a
given department that does not exist anymore spent on toothpicks.

I t would be useful to add an association class to the superseded/supersede association; its
a ributes could indicate, for example, the date when the superseding event taken place,
or the context or view in which it must be considered. I f that kind of information is
necessary, the team should consider applying one of the temporal patterns (Section 7.12).

7.9.3 Essence/Appearance

Another situation that can still often happen is the existence of objects that are
considered equivalent but must be kept as separated objects. This is not a registry error
and it is not an object that supersedes another: this is object equivalence.

Object equivalence may be modeled by the use of an essence object that is associated
to a set of equivalent objects. As opposed to copy/replace, the original objects are kept,
and as opposed to superseding there is no active or superseded object: all associated
objects are equivalent. Figure 7.17 shows an example of a class (Book) that accepts that its
members share a common essence.

FIGURE 7.17 Essence/Appearance technique.

I n the example, we consider that the same book in essence, especially a classic work,
may be published by different publishers. Each publication is distinct, with a different
I S BN and number of pages. Even the title and author’s name may vary (proper names
may be translated or abbreviated sometimes). But the essence of the text is the same.
Some users may be interested in ordering Plato’s The Republic from a specific publisher,
and others may be interested in the book independently of the edition or publisher.
Thus, the users interested in a specific publication are looking for the appearance (a
given instance of Book), and the users interested in the text are looking for the book in
essence – the publisher does not ma er. The second group of users, when viewing any
edition of The Republic must also be allowed to view other instances of Book linked to the
s ame EssenceBook if they exist. I n other words, if you look for book aBook and if
aBook.essenceBook->notEmpty(), then you will see aBook.essenceBook.book, which is a set of
books with the same essence.

N ot every Book must be linked to an EssenceBook, only those that participate in an
equivalence class. Also, there must be at least two equivalent books to create an
EssenceBook. This is why the association role from EssenceBook to Book is marked with 2..*.

Objects are considered equivalent if they are linked to the same essence object. The
essence object exists only to establish that equivalence; usually it will not have any other
properties. Otherwise, maybe the specification class pattern could be used instead.

7.9.4 Undoing a join
J ust when you think that the real world cannot be more complex, it becomes so.
Therefore, if there is a possibility of joining objects, it is also possible that joined objects
must be separated again. Once again, these commands may be performed directly in the
database, or through well-planned operations available at the system’s user interface.

To allow the joins of the copy/replace technique to be undone, a backup of the original
objects must be kept, because the technique destroys one of the objects and disfigures
the other. The superseding technique allows the join to be undone just by removing the
association. I n the case of essence/appearance, it is necessary to remove the association
(and the essence object if less than two links to it remain).

However, in every case it is important to decide how to deal with eventual changes
within the object that occurred while it was joined with the others.

A way to implement the possibility of undoing joins and any other operation is to use
a variation of the temporal pa ern (Section 7.12.3), which keeps track of former values of
objects attributes and associations.

7.10 Account/Transaction
The account/transaction pa ern is closely related to business, but it has wide applicability.
I t was mentioned before that books may be cataloged, ordered, received, delivered,
discarded, etc. S uch movements, as well as the financial transactions involved with them,
give origin to concepts such as Order, Delivery, Discard, Return, etc., each one with its own
attributes and associations.

However, it is possible to identify a common core for all these concepts and many
more, which is constituted by a single and powerful pattern.

A n Account is a concept that bears quantities of something (such as items, products, or
money). An Account has a balance that usually consists of the sum of every deposit or
withdrawal.

On the other hand, deposits and withdrawals are usually just entries of goods or
money from an account to another. Thus, a Transaction consists of two entries: a deposit
in one account and a withdrawal of the same value in another account. Figure 7.18
illustrates those classes.

FIGURE 7.18 Classes for the account/transaction pattern.

A consistent transaction with two entries such as the one in Figure 7.18 needs two
entries with the same absolute value but opposite signs. I n other words, if a transaction
takes 5 dollars from an account, it must necessarily deposit 5 dollars into another
account; the withdrawal has a negative sign and the deposit a positive sign. Thus, the
Transaction class needs the following invariant:

Context Transaction

 inv:
 entry->sum(value)=0
This means that for each instance of Transaction the sum of the value of the two

associated entries must be zero.
The derived a ribute balance of class Account is defined as the sum of every entry

linked to that specific Account:

Context Account::balance

 derive:
 entry->sum(value)
Many situations related to the bookstore example could be modeled from a set of

instances of class Account, such as:
• For each publisher there is an instance of Account from which books are “withdrawn,”

that is, it is an entry account, and its balance becomes more negative as books are
ordered from the supplier.

• There is an account for orders expected, which contains the books that were ordered
from the supplier but that had not yet arrived.

• There is an account for stock containing the available books.
• There is an account for sold books containing books sold but not yet delivered.
• There is an account for delivered books containing books delivered but not yet

confirmed by the customer.
• There is an account for confirmed delivery containing books delivered and confirmed by

the customer. Its balance represents the whole set of books that the customer has
bought from the bookstore.

I n parallel to book transactions there are concomitant money transactions. There are
receivable accounts, payable accounts, received accounts, paid accounts, investment,
debts, values saved for paying taxes, etc.

Thus, many transactions of the bookstore example could be modeled as an instance of
Transaction. For example:
• An order is a transaction that takes books from a publisher account, and deposits them

into an orders expected account.
• The arrival of the books is a transaction that takes from the orders expected account and

adds to the stock account.
• A sale is a transaction that takes from the stock account and adds to the sold books

account.
• A delivery is a transaction that takes from the sold books account and adds to the

delivered books account.
• A return is a transaction that takes from the delivered books account and adds to the

stock account (if the books are in good shape).
• A confirmation of delivery is a transaction that takes from the delivery account and adds

to the confirmed delivery exit account.
As an example, imagine a company that just started, where five instances3 of the

Account class were created: supplier, pendingOrders, stock, sold, and delivered. Figure 7.19
shows the initial state for those objects, when all accounts have a zero balance.

FIGURE 7.19 Initial state of an accounting system for products.

Figure 7.20 shows the resulting set of objects when a purchase order (instance of
Transaction) is created. The order was issued for 50 books.

FIGURE 7.20 State of the accounts after a purchase order of 50 books is issued.

Figure 7.21 shows the state of the accounts if only 40 of the 50 ordered books arrive.

FIGURE 7.21 State of the accounts after 40 books arrive at the bookstore.

Figure 7.22 shows the state of the accounts after 25 books are sold.

FIGURE 7.22 State of the accounts after 25 books are sold.

And finally, Figure 7.23 shows how the accounts look like after the 25 books sold are
delivered.

FIGURE 7.23 State of the accounts after the delivery of 25 books.

New transactions and accounts may be created dynamically (i.e., without having to
recompile the system). For example, a new transaction may be created for returning
books, which moves books from the delivered account back to the stock account. Also, a
new transaction for discarding books could be created moving books from the stock or
sold accounts to a new account for discarded books. Parallel financial transactions could be
created as well by using Account and Transaction.

This pa ern is very interesting as an example of how a simple powerful idea can deal
with so many different situations. I t has many variations and sophistications. For
example, multi-legged transactions may be created if necessary, for moving from more
than one account to a single account, or from a single account to more than one account,
or even from more than one account to more than one account at the same time. To
accomplish this variation, the multiplicity role from Transaction to Entry in Figure 7.18
should be changed to 2..*.

Another important variation is the use of memo entries. For example, when money is
received, taxes must be paid, but not necessarily immediately. Thus, when a transaction

moves money from a customer account to the bookstore balance account, a quantity of
money equivalent to the taxes due could be registered into a tax memo account. When it
is time to pay taxes, the balance of the memo account registers the amount to be paid.

Memo accounts and normal accounts could be distinguished. However, as they share
the same definition, they were kept as instances of a single Account class in Figure 7.24.
On the other hand, memo entries are distinguished. A transaction must have at least two
normal entries, but any number of memo entries (zero in most cases). Furthermore, only
normal entries are subjected to the invariant of the Transaction class. Memo entries are
ignored because they do not really move goods or money.

FIGURE 7.24 Evolution of Account/Transaction with memo entries.

D espite normal and memo accounts both having the same structure and behavior, it
would be wise to clearly differentiate both kinds in order to avoid the system linking
memo entries into normal accounts and vice versa.

7.11 Range
When an object has a pair of a ributes indicating the beginning and end of some
phenomena, such as initial and final date, instead of representing it as two separated
a ributes, it is advisable to declare a single a ribute type such as Range (or Interval), as
shown in Figure 7.25.

FIGURE 7.25 A generic primitive type Range.

The primitive Range is parameterized, meaning that when an instance is created it
must indicate the Type to be used to define its a ributes. For example, a range over Date
could be referred to as Range[Date], and a range over a quantity defined as Distance could
be referred to as Range[Distance].

There are two reasons for using a range instead of two attributes:
• If the lower and upper bounds are separated attributes in a conceptual class, they

would have a strong relation between them. This goes against the high cohesion
principle explained in Section 7.2.

• Operations that are specific to ranges (for example, checking if a value is inside a
range) will be needed. If there is a specific Range primitive type, these operations may
be implemented once just in the primitive. If two attributes are used instead, each
class where they are declared should implement its own version of the operations on
ranges.

It is much more reasonable to implement operations just once in a high-cohesion class,
than implementing them many times in low-cohesion classes.

As seen in Figure 7.25, both a ributes of the Range class are optional, which means
that ranges may be undefined in one or both ends. For example, a range that starts at
J anuary 1st, 2013 and has no upper bound could be defined with
lowerBound=“01/01/2013” and upperBound=null.

Evolutions of this pa ern could take into account the mathematical properties of
intervals. For example, there are open and closed intervals: [0..10] is an interval that
includes 0 and 10, while (0..10) is an interval that excludes 0 and 10. Furthermore, (0..10]
excludes 0 and includes 10 and [0..10) includes 0 and excludes 10. This evolution could be
implemented simply by adding two Boolean a ributes to the class: lowerBoundOpen and
upperBoundOpen.

7.12 Temporal patterns
Frequently the analyst faces the need to deal with time. For example, it may be necessary
to represent the relations between people and their jobs. But, if the association between
people and jobs represents only the present time, then the information of former jobs
will be lost when someone quits the job. This section discusses some pa erns that deal
with that important notion.4

7.12.1 Effectivity
When an object is valid for some time (for example, a temperature measure, which has a
time it was taken and a time it is considered valid), then the effectivity pa ern may be
used. I t consists of declaring an effective a ribute in the class, which is typed with a
range, as seen in Figure 7.26.

FIGURE 7.26 Use of the effectivity pattern.

7.12.2 History
I f historical information has to be stored about the past states of an association, then the
history association pa ern may be used. This kind of association may be identified by the
stereotype history , as seen in Figure 7.27.

FIGURE 7.27 An example of the history association pattern.

The stereotype of the association of Figure 7.27 means that a person must have just
zero or one job currently, but she may have had other jobs in the past. These past jobs
may be recovered as items in a list. I n other words, it is possible to recover the last job,
the job before the last, and so on.

When it comes to design, each class with an association with a navigable role
implements a method for accessing the elements linked. I n the example of Figure 7.27,
the design class for Person would have a ge er method getJob() that returns the company
of the current job of a person or the empty set if there is no current job. I f the association
is stereotyped with history , in addition to that standard method there would exist
another method with a parameter, getJob(index:Natural) , where getJob(1) returns the
current job, getJob(2) returns the last job, getJob(3) returns the job before the last, and so
on. If there is no job for the index given, then the method returns the empty set.

I n practice, this pa ern can be modeled by two associations, as shown in Figure 7.28.
The stereotype is, then, a way to abbreviate that complex structure, replacing it with a
simpler one.

FIGURE 7.28 Concrete model for the <<history>> stereotype.

7.12.3 Temporal
The history association pa ern is not capable of answering what the job of a person was
at a given date, or if a person was unemployed in the past. I n order to represent that kind
of information, an evolution of that pa ern may be used: an association that in addition
to sequential memory also has time memory, as shown in Figure 7.29.

FIGURE 7.29 A temporal association.

A temporal association has, in addition to the aforementioned two get methods, a
method for obtaining the value of the association at a given time. I n the example, that
method could be getJob(date:Date). Thus, the Person class presented in Figure 7.29 would
have at least three getters for the temporal job role:

• getJob(): Returns the current job of a person or the empty set if the person is currently
unemployed.

• getJob(index:Natural): Returns the current or former job of a person depending on the
index argument, or the empty set if there is no job at that index.

• getJob(date:Date): Returns the job a person had at a given date or the empty set if the
person was unemployed at that date.

I f it was required to know the job of a person at a given time of the day, then instead of
the Date the primitive type Time could be used, which refers to year, month, day, hour,
minute, and second. For some applications, milliseconds, microseconds, and so on could
be used instead.

Figure 7.30 presents a model for implementing the temporal stereotype.

FIGURE 7.30 A possible implementation of the temporal stereotype.

The Job class does not have a pair of a ributes such as initialDate and endDate, but a
single a ribute interval with type Range[Date], representing an interval between two
dates.

Not only can associations be temporal, but a ributes as well. I f an a ribute must keep
a record of its former values, then the temporal stereotype can be used to keep track
of them.

For example, some countries allow people to change their names after marriage,
divorce, or decision of a judge. I n Figure 7.31, the I D and birthdate of a person are not
supposed to change or, if they change, old values are not kept. However, former names
must be kept.

FIGURE 7.31 Temporal pattern applied to an attribute.

Another variation of this pa ern is to define a temporal class. I n the case of a class
stereotyped with temporal , all of its a ributes and association roles are temporal. The
class also could provide a method for producing a version of its instances at a given
instant of time; for example, if x is an instance of a temporal class, one could obtain a
previous state of x by using a function such as x.atInstant(aTimeInstant). Each time one of
the attribute’s values or links is changed, a new version of the object is created.

7.12.4 Bitemporal
Not only in science fiction, but also in many current information system applications,
time may be considered two-dimensional. There is a dimension of time in which events
occur and another dimension where we acknowledge that an event occurred.

Look back at Figure 7.29, and imagine that Mary is currently working for Company X.
Today (August 11th, 2013) we discover that in fact Mary changed jobs on March 1st, 2013.
We update Mary’s job, and the date she changed jobs is recorded as March 1st, 2013.
However, we only knew about the change on August 11th, 2013. Any actions the
company could have performed between March 1st and August 11th were taken with the
knowledge that Mary still worked at Company X. Sometimes, especially for
accountability or legal procedures, knowing when a record that was made is very
important. The bitemporal pa ern is an elegant way to keep track not only of the line of
events but also the line of our knowledge about events (Figure 7.32).

FIGURE 7.32 Bitemporal pattern.

Now a new ge er may be introduced for the role job: getJob(date,knowledgeDate:Date).
The first argument is the instant of time we are interested in and the second argument is
the instance of time of our knowledge about it. For example, if we want to answer the
question “On J une 15th, 2013, where did we believe that Mary worked on J une 1st, 2013?”
we could use getJob(“06/01/2013”,“06/15/2013”) to get the answer, which would be
“Company X.”

I f we want to know where Mary worked on J une 1st, 2013 based on our current
knowledge, we could use the ge er mentioned for the temporal pa ern (Section 7.12.3):
getJob(“06/01/2013”), which is short for getJob(“06/01/2013”, today).

Figure 7.33 presents a possible model for implementing that stereotype.

FIGURE 7.33 A model that implements the bitemporal pattern.

Now there are two date ranges in the class Job, one for registering the time the job was
effective and the other to represent the range of time when the registered time was
recorded.

Each time our knowledge about the job of a person is changed a new instance of Job is
created. The interval a ribute establishes when the job was effective, and the record
a ribute establishes the point from when we believed that. The upper bound of the
record range will be kept undefined while it represents our current knowledge, that is,
while that information was not overridden by newer (eventually contradictory)
information.

The bitemporal pa ern can also be applied to a ributes or entire classes, just like the
temporal pattern.

7.13 Discussion
A good conceptual model produces an organized structure that is suitable to generate an
already normalized database. I t incorporates structural rules that prevent information
from being represented in an inconsistent way; it also simplifies the code that will be
generated because it minimizes and organizes consistency checks, and several
verifications that are guaranteed by the model itself do not need to be performed by the
code.

The use of suitable design pa erns in situations where they are necessary simplifies
the conceptual model and gives it more flexibility and quality. I t is, therefore, a powerful
tool. Many other pa erns exist, and analysts may create their own new pa erns. I t just
has to be kept in mind that the creation of a pa ern is justified only when its benefits
pay for the effort expended in creating it.

7.14 The process so far

7.15 Questions
1. In Figure 7.18, the Transaction class needs another invariant. A transaction cannot be

linked to entries that are linked to the same account. Elaborate that invariant in OCL.
2. Apply the account/transaction pattern to the parallel financial transactions of the

example shown in Figures 7.19 to 7.23. As the bills may be paid forward it may be
necessary to use memo entries. Define the set of instances of Account and Transaction
that are necessary and describe them.

3. Use Google to find examples of conceptual models including classes with attributes.
Analyze those classes and check if they present cohesion problems. Propose
alternative solutions to them if necessary.

4. A system for registering genealogical trees allows different users to check if they have
coincident people in their own trees. If this is the case, the shared person is marked in
each tree as equivalent to the other. Thus, two cousins, for example, who have the
same grandfather, may have a coincident registry in their trees. Which of the three
strategies of object joining is best for dealing with this case? Why? Elaborate a model

for representing people in the genealogical trees using that pattern.
5. Complete the diagram of Figure 7.12 with information about orders, items, books, and

customers. Then use OCL to define the derived attribute amount for both subclasses of
Discount.

1Usually, high cohesion is mentioned in conjunction with low coupling. However, as coupling problems appear to
emerge when object collaborations are designed, discussion on low coupling is left for Section 9.6.
2Composite is the classic name for this pattern. However, if basic elements may be shared by different composite elements,
it is the shared aggregation association that is used instead of the composite aggregation. This happens when strategies are
composed.
3The example deals with only five instances for simplification. Many others could be included.
4Martin Fowler presents a nice summary on many temporal patterns at
http://martinfowler.com/eaaDev/timeNarrative.html.

http://martinfowler.com/eaaDev/timeNarrative.html

C H AP T E R 8

Functional Modeling with OCL Contracts
Commands and queries identified in the system sequence diagram must be implemented. Contracts are high-level
specifications for those operations. They may be wri en in natural language or in a formal language such as OCL.
This chapter presents a writing discipline for OCL contracts that avoids ambiguous interpretations and that is
relatively easy to read and write. Contracts are composed of preconditions, postconditions, exceptions, and return
values. Contracts for CRUDs are presented as well as contracts for other operations found in system sequence
diagrams.

Keywords
System operation contract; precondition; postcondition; exception; formal specification;
OCL; Object Constraint Language

Key Topics in this Chapter
• Preconditions
• Query return
• Postconditions
• Exceptions
• System operation contracts

8.1 Introduction to functional modeling
Before functional modeling, the analysis process in the Elaboration phase produces two
important artifacts:
• The refined conceptual model (Chapters 6 and 7), which represents statically the

information managed by the system.
• The expanded use cases or system sequence diagrams (Chapter 5), which show how

potential users exchange information with the system, without mentioning how that
information is processed internally by the system and without mentioning the
interface technology.

When system sequence diagrams are built, the system commands and queries that
must be implemented are identified. Each system command and query implies a user
intention or goal; for example, the user may be providing information on which books
she intends to buy, or she could be asking how much a book costs. That intention is
captured by system command contracts and system query contracts, generically referred to as
system operation contracts, which incorporate the functional model of the system.

A system command contract may have three sections:
• Preconditions (optional): States what is assumed to be true by the command and

therefore should not be checked by it.
• Postconditions (mandatory): States how the command changes existing information if it

is successfully executed.
• Exceptions (optional): States what conditions that could prevent the command from

succeeding will be checked by it.
On the other hand, a system query contract may have the following sections:

• Preconditions (optional): States what is assumed to be true by the query and therefore
should not be checked by it.

• Results (mandatory): Defines the information that the query returns.
• Exceptions (optional): States the conditions that were added by the designer to prevent

the system from performing the query in some situations.
Preconditions exist in both types of contracts. They define constraints that are

complementary to the ones already existing in the conceptual model. Preconditions are
assumed to be true by the operation. This means that preconditions are not tested by the
operation that is defined by the contract; they must be tested and assured before the
operation is performed.

Postconditions exist only in system command contracts because they specify how the
information kept by the system is changed. Special care must be taken to not confuse
postconditions with query results. By the Command-Query Separation principle (Meyer,
1988) it is not appropriate for a command to return any result (except in special justified
cases). Queries, on the other hand, must return some result, but cannot produce any
change in the existing information. Therefore, system queries must have results and
system commands must have postconditions.

As opposed to preconditions that must be true before the operation is called, exceptions
are situations that usually cannot or should not be tested before; exceptions are tested by
the operation itself. Exceptions are events that, if they occur, prevent the operation from
succeeding.

Exceptions in command contracts and exceptions in query contracts may have distinct
purposes. I n command contracts, exceptions are used when arguments or existing
information do not satisfy a given business rule (for example, trying to register a
customer that is already registered).

However, in query contracts, exceptions have a different meaning. As a query does not
change information, there is no invalid argument that could possibly prevent a well-
defined query from being performed. I f a user queries a system about a customer that
does not exist, the query is not prevented from being performed: it would answer that
there is no customer for the query; this is the right answer, not an exception. Exceptions
in queries would be used only if by any chance the team decides that for a given
condition the query must not be performed. Usually, those conditions are related to
security issues, or other technological concerns such as multi-window interface,
concurrency, communication, etc. As these issues are usually not addressed by
functional modeling, exceptions in queries contracts are not frequent.

Normally, in an operation contract, be it a command or query, an exception can be
transformed into a precondition and vice versa. The decision on designing an issue as a

precondition or exception determines which part of the system is responsible for testing
that issue: the calling operation or the called operation. Usually, in large multiuser systems,
race conditions1 may lead to choosing to avoid preconditions; however, if the system is not
subject to complex concurrency or a concurrency control mechanism that prevents data
from changing during transactions exists, then a design based on preconditions may be
the better choice.

For the examples in this chapter a partial refinement of the conceptual model
presented in former chapters is used (Figure 8.1), as well as a stateless version of the
system sequence diagram for use case 01: Order books (Figure 8.2).

FIGURE 8.1 Reference conceptual model.

FIGURE 8.2 Reference system sequence diagram.

T h e immutable stereotype used for some a ributes and roles in Figure 8.1 is
explained in Section 8.7.2.

I n the partial conceptual model of Figure 8.1, the concept of a shopping cart was added
because a user may start shopping even if she is not yet identified. Thus, the shopping
cart has an identification code (because as the stateless strategy is being adopted it must
be identified in some way). Also, despite the fact that the shopping cart is not an
independent concept, it should be connected to the controller because it may exist
without a customer and even without items (a shopping cart may be empty).

I n class Book, the a ribute quantityInStock could probably be a derived a ribute if
stock was modeled using the account/transaction pattern (Chapter 7). But here it is kept as
a simple attribute.2

The first command in the system sequence diagram creates a shopping cart and
returns its identifier. This is an acceptable exception for the Command-Query S eparation
principle, because the interface needs a reference to the shopping cart in order to send
further messages to it. I f the stateful strategy was used instead of the stateless strategy,
this return would not be necessary because the controller would remember which order
was just created.

I f the customer is not logged in, a fragment named login is called (which could be
specified by a reusable separated sequence diagram). The fragment returns a customer
identifier and replaces the two fragments that were mentioned in Figure 5.40: if the user
has an account, she may log in; otherwise she may create a new account and log in.

The operations (commands and queries) found in Figure 8.2 are the following (the

argument passing shown in the diagram was adapted to a style that is more common in
programming languages):
• createCart():CartId – This is a command that creates a new empty instance of Cart and

assigns an identifier to it. It returns the identifier.
• searchBook(keywords:Set[String]):OrderedSet[Tuple] – This is a query that returns an

ordered set of tuples that contain information about the books that are relevant to the
search. Each tuple has title, author’s name, price, page count, publisher name, isbn, cover
image, and quantity in stock for a book.

• add2Cart(aCartId:CartId, anIsbn:Isbn, aQuantity:Whole) – This is a command that
creates a new instance of Item and links it to the cart and book identified by the
parameters.

• getCartSummary(aCartId:CartId):OrderedSet[Tuple] – This is a query that returns an
ordered set of tuples with information on the cart identified by the cart ID. The
information returned, as stated in the note of Figure 8.2, is title, author’s name,
quantity, unit price, and total.

• finishOrder(aCartId:CartId, aCustomerId:CustomerId) – This is a command that creates a
new instance of Order and links it to the customer and the cart identified by the
parameters.

8.2 Preconditions
Preconditions establish what must be true when a system query or command is
performed. For example, considering the reference conceptual model of Figure 8.1, the
operation add2Cart(aCartId:CartId, anIsbn:Isbn, aQuantity:Natural) may assume that the
cart I D is valid because it was obtained by the previous operation createCart():CartId.
Thus, a precondition that states that this is true could be written:

Context Livir:: add2Cart(aCartId:CartId, anIsbn:Isbn, aQuantity:Natural)

 pre:

 cart[aCartId]->notEmpty()

The OCL expression above states that in the context of the method add2Cart, which is a
system command implemented by the controller Livir, there is a precondition that
establishes that there is indeed an instance of Cart that is identified by the argument
aCartId.

I f the association between Livir and Cart in Figure 8.1 was not qualified, then the
precondition could be written by applying select to the set of carts:

Context Livir:: add2Cart(aCartId:CartId, anIsbn:Isbn, aQuantity:Natural)

 pre:

 cart->select(id=aCartId)->notEmpty()

However, when an association is qualified as in Figure 8.1, a key value should be used

to directly access the element mapped by the association. Thus, as the add2Cart
command has an argument aCartId, the expression cart[aCartId] produces the same result
as the expression cart->select(id=aCartId). Remember that the former expression is also an
abbreviation of self.cart->select(aCart|aCart.id=aCartId).

I n order to be useful for software development, preconditions must be expressed in a
careful way. They must reflect facts that can be identified in the previously developed
conceptual model, or the model has to be updated to reflect the new information just
discovered. This justifies the use of formal languages such as OCL for writing contracts
(Warmer & Keppe, 1998) instead of natural language.

Two families of preconditions may be identified:
• Parameter guarantee: Preconditions that assure that the arguments of a command or

query correspond to valid objects (for example, “there exists a shopping cart with the
ID passed as an argument”).

• Complementary constraint: Preconditions that further constrain the conceptual model
when performing a given command or query, in order to assure that the information
is in a given state when the operation is being executed (for example, “the cart has at
least one item”).

8.2.1 Parameter guarantee
There is a systematic way to know if a given operation must have a parameter guarantee
precondition (or exception). This technique is also related to the operation’s functional
test, as seen in Chapter 13. The team must look at each parameter of the operation and
ask if there are valid and invalid values considering the type of the parameter.

For example, if the parameter type is Isbn, and the command is add2Cart(…, anIsbn:Isbn,
…), then, considering the business rules, there is a group of valid values (I S BNs that
belong to a registered book), and a group of invalid values (I S BNs that are valid but not
assigned to any book in the system).

On the other hand, if the type of the parameter is String and the command is
add2Cart(…, anIsbn:String, …), then three classes should be considered: one valid (the
same as before: I S BNs for books that are registered), and two invalid classes consisting
of the I S BNs that are valid but do not belong to any registered books (as before), and
incorrectly formed I S BNs (because the type String admits any string, not only I S BNs).
That distinction between incorrectly formed and nonexistent I S BNs can be useful to
prevent, for example, misunderstandings related to typos when the user is entering I S BN
as a search parameter.

Thus, considering the type of the parameter and identifying the groups of invalid
parameters, the rule for finding parameter guarantee preconditions is the following:

For each group of invalid values for a system operation parameter, a precondition or
exception must be defined.

Regarding parameter guarantee preconditions, special care must be taken not to

confuse semantic preconditions with simple syntactic verifications. Semantic verification
requires that the database is consulted: for example, verifying if there is a book with a
given I S BN. However, syntactic verification may be done by mechanisms other than
preconditions. I f a parameter has a type Natural, no database query is needed to verify if
a given argument belongs to the type or not. Then, if a parameter is declared as x:Natural
it is not necessary to write any preconditions to assure that x is a positive number: the
type already states that.

Another example is the I S BN, which has a formation rule, and can be checked
syntactically. I nstead of writing preconditions to verify if a parameter is a well-formed
ISBN, the team should simply create a primitive type Isbn with a verification method, and
use it.

What about PrimeNumber? Could it be a type? The answer is yes, because in order to
know if a given number is a prime number, a syntactic verification is sufficient.

Types must be defined in the command signature. I f the type does not exist, a primitive
type can be defined by the team. For example, Figure 8.1 presents primitive types such as
CustomerId and OrderId that may incorporate not only identification and checksum
mechanisms but also security mechanisms, because those identifiers could be encrypted
to avoid unauthorized access. I n both cases, primitive types could be defined to deal with
the complexity of the verification mechanism.

8.2.2 Complementary constraints
A complementary constraint consists of assuring that certain constraints stronger than
those of the conceptual model are obtained while a given command is performed. Thus,
if the conceptual model states that a given role has multiplicity 0..1, for example, a
complementary constraint could just say that when performing a given command that
role is filled (1) or not (0). For example, in general a Cart may have an Order associated
with it or not (0..1). But the command that finishes an Order must have a precondition
that states that the Cart was not yet linked to any order (the role from Cart to Order must
not be filled: 0).

Thus, a precondition can never contradict the conceptual model. I f the conceptual
model states 0..1, then no precondition could state a multiplicity of 2 or more for the
same role. But if the conceptual model states 0..2, then the precondition can further
restrict it, stating, for example, 0..1 or 1..2.

Complementary constraints are common in designs that use the stateful strategy,
because in that case each command will need information that was left in transient
memory by other commands, such as, for example, the identification of the client, which
is passed by one command and used by others. Thus, those other commands would have
established as a precondition that the client was adequately identified (possibly by a
transient association).

It is possible to identify at least three kinds of complementary constraints:
• A specific statement about an instance or about a set of instances.
• An existential statement about a set of instances.

• A universal statement about a set of instances.
One example of a specific statement about an instance, considering again the model of

Figure 8.1, could be to state that a customer with I D 123 has a birthDate equal to J uly
14th, 1970:

Context Livir::someCommand()

 pre:

 customer[123].birthDate=Date.getDate(1970,7,14)

As OCL does not define any literals for the Date type, a predefined operation
Date.getDate may be used to define a given date.

An example of an existential statement would be to say that there is at least one
customer born on July 14th, 1970 (does not matter who):

Context Livir::someCommand()

 pre:

 customer->exists(aCustomer|

 aCustomer.birthDate=Date.getDate(1970,7,14))

An example of a universal statement would be to say that every customer was born on
July 14th, 1970:

Customer Livir::someCommand()

 pre:

 customer->forAll(aCustomer|

 aCustomer.birthDate=Date.getDate(1970,7,14))

Both the expressions exists and forAll may be wri en in simplified form as
exists(birthDate=Date.getDate(1970,7,14)) and forAll(birthDate=Date.getDate(1970,7,14)),
keeping the same meaning stated above.

8.2.3 Precondition assurance
As the preconditions are not tested by the command that declares them, an external
mechanism should exist to assure that they will be guaranteed before the command is
called.

This guarantee can be made by explicitly calling a query that verifies if the condition is
true before calling the command, or by interface mechanisms that prevent the command
from being called with invalid data.

For example, instead of allowing the user to type any string in an I SBN field, the user
could be led to select from a list of valid I S BNs. That way, the parameter would be
validated before performing the command.

Usually the flow of messages expressed in the system sequence diagram is a way to
verify if preconditions are viable instead of exceptions. For example, in Figure 8.2 observe
that the cart ID received by the operation add2Cart is valid because it was returned by the
command createCart; the I SBN of the book is also valid because it was collected from a
list returned by the searchBook query. Finally, the quantity may be accepted as valid
because the interface can compare it to the quantity available in stock that was returned
with other information about the book.3

8.2.4 Preconditions and exceptions versus invariants
I nvariants (Section 6.7) are used in the conceptual model to represent rules that are
always valid, independent of any command or query. Preconditions are used for rules
that are valid only when a given command or query is being performed.

When an invariant already exists for a given situation, it is equivalent to the existence
of an exception for any operation. For example, if there is an invariant that states that a
student may enroll only in courses related to her career, then the invariant functions as
an exception for any command. Thus, commands for enrolling a student may consider
that the exception already exists in the form of the invariant and if the student tries to
enroll in a course that does not belong to her career an exception would be raised.

However, an invariant does not work as a precondition. The existence of an invariant
does not assure that the design does not violate it. However, a command may add a
precondition that states that the invariant must be assured before it is executed.

Test mechanisms must verify if the invariants and preconditions are being respected
during the system test activities. I f those conditions are violated at any moment, they
should raise exceptions. However, in those cases, the designer must revise the design to
correct that error so that it will not happen again. When the system is delivered to the
final user, it must be guaranteed that no invariant and precondition is violated at any
time.

8.3 Transient associations
When the stateful strategy is used in the system sequence diagram, it is necessary for the
controller to keep in memory certain information that is not persistent, but that must be
stored during the execution of the use case.

Some objects, a ributes, or associations that are not persistent may be defined to
indicate information that is stored only in main memory during a use case, and discarded
after that. Those elements may be stereotyped with transient .

For example, a transient association may be used to indicate that the controller should
store information about who is the current customer in the refined conceptual model, as
shown in Figure 8.3.

FIGURE 8.3 A transient association.

Thus, a precondition of a command, for example, could state that a current customer
already exists:

Context Livir::someCommand()

 pre:

 currentCustomer->notEmpty()

Transient a ributes or classes, if needed, may be defined with this stereotype as well.
In any case it means that the stereotyped information piece is not persistent.

8.4 Query return
As mentioned before, system commands change data while queries just return data to
the user. The contracts for system queries must define what is returned, and this can be
done in OCL by using the body clause.

Expressions that represent preconditions are all Boolean, but expressions that
represent the return of a query may have other types. They can return strings, numbers,
lists, tuples, or even more complex structures. The following examples are based on the
model of Figure 8.1. Initially, a query is defined that returns the total of a given cart:

Context Livir::getCartTotal(aCartId:CartId):Money

 body:

 cart[aCartId].total

System queries as well as system commands always have the Controller as their context.
Therefore, in the example above, cart is a property of the controller Livir: an association
role from it to the class Cart.

The following query returns the name and birthdate of a given customer:

Context

 Livir::getCustomerNameBirthDate(aCustomerId:CustomerId):Tuple

 body:

 Tuple {

 name=customer[aCustomerId].name,

 birthDate=customer[aCustomerId].birthDate

 }

The Tuple constructor is one of the ways to represent DTOs4 in OCL; the tuple works as
a Pascal record in the example with two fields: name and birthDate. The values of the
fields are defined by the expressions after the “=”.

To avoid repeating expressions like customer[aCustomerId] or even more complex
expressions, the def clause can be used in order to define a constant that refers to the
original expression. Using the def clause, the contract above would look like the
following:

Context

 Livir::getCustomerNameBirthDate(aCustomerId:CustomerId):Tuple

 def:

 aCustomer=customer[aCustomerId]

 body:

 Tuple {

 name=aCustomer.name,

 birthDate=aCustomer.birthDate

 }

The expression inside the def clause indicates that the identifier aCustomer is referring
to the customer whose ID is the parameter aCustomerId received from the query.

The following expression makes a projection in the set of customers returning the
names of all customers:

Context Livir::listCustomerNames():Set

 body:

 customer.name

The next expression applies a filter and a projection, returning the names of all
customers that are less than 25 years old:

Context Livir::listYoungCustomers():Set

 body:

 customer->select(birthDate.addYear(25)>Date.getCurrent()).name

The idea in the example above is to add 25 years to the birthdate of the customer and
compare it with the current date: if the customer reaches her 25th birthday after the
current date then she is younger than 25 years. OCL also has operations to add days and
months to dates: addDay and addMonth, respectively. The expression Date.currentDate

returns the system’s current date.
The last example is a query that returns the cart summary, as shown in Figure 8.2.

Context Livir::getCartSummary(aCartId:CartId):Tuple

 def: aCart=cart[aCartId]

 body:

 Tuple {

 total=aCart.total,

 items=aCart.item->collect(anItem|

 Tuple {

 title=anItem.book.title,

 authorsName=anItem.book.authorsName,

 quantity=anItem.quantity,

 unitPrice=anItem.unitPrice,

 subtotal=anItem.subtotal

 }

)

 }

T h e collect expression is a way to obtain a set whose elements are properties or
transformations on properties of another set. The dot notation (“.”) itself is an
abbreviated form of collect. For example, customer.name is equivalent to customer-
>collect(aCustomer|aCustomer.name) or customer->collect(name).

When possible, the dot notation is preferred because it is shorter. But in the
getCartSummary example, the need to create a tuple instead of accessing a property of the
elements of a set prevents the use of the dot, because the Tuple operator is prefixed.
Thus, the collect expression has to be explicitly used in that case.

I n the example, two tuple structures were built: the outer one contains the total of the
cart and the ordered set of its items; the inner one contains for each item the information
that is needed as mentioned in Figure 8.2: book title, author’s name, etc.

8.5 Postconditions
Postconditions establish what changes in the information managed by the system after
some command is performed. Postconditions also must be carefully specified in terms
that can be immediately recognized on the conceptual model structures. Thus, although
contracts can be wri en in natural language, they should be carefully wri en so they can
be immediately translated into OCL expressions.

An OCL post condition is wri en in the context of a (system) command by using the
post clause:

Context Livir::someCommand()

 post:

 <OCL expression>

I f there is more than one postcondition, then they can be combined by the use of the
and operator:5

Context Livir::someCommand()

 post:

 <OCL expression> and

 <OCL expression> and

 …

 <OCL expression>

I n order to classify the types of postconditions that can be used in a contract, we must
take into account that the conceptual model has three basic elements, which are
concepts, a ributes, and associations. Thus, considering that instances of classes can be
created and destroyed, association links can be added and removed, and a ribute values
can be changed, only five types of postconditions are possible:

• Change an attribute value.
• Create a class instance.
• Add an association link.
• Destroy a class instance.
• Remove an association link.
These commands are the most fundamental or basic commands that may be defined

for an object-oriented system. They may not be decomposed any further and all other
commands are defined as combinations of them.

Thus, a basic command is a command that performs one of the five postconditions listed
above. The meaning and behavior of a basic command is predefined.

Unfortunately, programming languages still do not provide a standard
implementation for such basic commands. I mplementing these commands sometimes is
left as a difficult manual task for programmers, especially in the case of commands that
add and destroy links.

The basic commands, as defined in the following subsections, are effectively basic in
the sense that they do the task without performing certain consistency verifications. For
example, a command that adds a link would not verify if the upper bounds for both roles
of the association were reached. That kind of consistency verification is preferably made
for a whole set of commands belonging to the same contract.

The discussion about keeping objects consistent in contracts is continued in Section
8.5.6.

8.5.1 Changing an attribute value
One of the postcondition types consists of indicating that the value of an a ribute was
changed. That is usually written in OCL as

object.attribute=value

But, as OCL is a declarative language, this expression must not be understood as an
assignment. It has, in fact, three possible ways to become true:
• object.attribute may be changed to become equal to value. This is usually the default

interpretation.
• value may be changed to become equal to object.attribute.
• Both value and object.attribute may be changed to a third value and become equal.

Therefore, in terms of code generation, this kind of expression may produce
ambiguous interpretations. Cabot (2007) proposes a default semantic for interpreting
such expressions so that ambiguity is reduced. However, another approach is possible,
which does not require changing the original semantics of OCL. The idea is to use the “^”
(caret) predicate instead of the “=” (equals sign) predicate, as explained below.

We can indicate without ambiguity that an attribute was changed just by declaring that
a basic message concerning the change was sent to the object. The basic message is
predefined, and its name should start with the prefix “set” followed by the name of the
attribute. The new value is passed as an argument.

The message setAttribute may be sent to an instance of a class that contains the
a ribute. For example, if we are interested in changing the price of a given book, the
following OCL expression could be used:

Context Livir::updateBookPrice(anIsbn:Isbn;newPrice:Money)

 post:

 book[anIsbn].price=newPrice

But we have already seen that it can be interpreted in ambiguous ways. The expression
below expresses the same intention but without any ambiguity:

Context Livir::updateBookPrice(anIsbn:Isbn;newPrice:Money)

 post:

 book[anIsbn]^setPrice(newPrice)

The caret notation means that the message at the right was sent to the object or
collection of objects at the left. Thus, it is a Boolean predicate and the result of the
expression above is Boolean.

The expression book[anIsbn].price=newPrice means that two values are equal no ma er

how that result was accomplished. But book[anIsbn]^setPrice(newPrice) states
unambiguously that the attribute price of object book[anIsbn] was changed to newPrice.

This form of writing is still considered a declarative specification, not imperative. The
expression book[anIsbn]^setPrice(newPrice) just states that an object has received a
message; it does not say who sent that message. The decision about which object is going
to send that message to book[anIsbn] is left for dynamic modeling (Chapter 9).

8.5.2 Creating an instance
The command that creates an instance must just do that: create a class instance.
Although OCL is not an imperative language, it has a constructor to indicate that a new
instance of a class was created. This is expressed as a property of an object, and is
referenced as follows:

object.oclIsNew()

I ts meaning, when used in a postcondition, is that the object was created during the
command being specified by the postcondition. This property may be used in
conjunction with another that declares the class of the object:

object.isTypeOf(class)

However, as it would be a bit tedious to keep declaring the creation of an instance
using two expressions, the definition of a single predicate that states that an object was
created as an instance of a given class is suggested. The expression
object.isNewInstanceOf(class) is therefore defined as being equivalent to

object.oclIsNew() and object.oclIsTypeOf(class)

Thus, a postcondition that declares that a new instance of Book, referred to as newBook,
was created can be defined as

newBook.newInstanceOf(Book)

I n this case, the caret notation is not used because it is not a message sent to an
instance of Book. It is a declaration that an instance newBook of class Book was created.

The message newInstanceOf does not say anything about the instance’s a ributes and
links, even the mandatory ones. As before, it can be assumed that other expressions will
initialize mandatory a ributes and links, and that the new instance’s consistency will be
checked for the contract as a whole and not for each individual basic command.

A ributes with initial values are considered automatically initialized when the
instance is created. Thus, it would be redundant to specify postconditions to update the
attributes with initial values, unless values different from the default are desired.

D erived a ributes, on the other hand, are calculated, and cannot be directly modified.
Thus, they are not initialized.

A ributes stereotyped with optional may be kept undefined at creation time;
defining a value for them is not mandatory.

But what happens with other (normal and mandatory) a ributes at the moment an
instance is created? The basic command represented by the predicate newInstanceOf
simply produces the instance. I t does not initialize a ributes and links except for those
that are defined with default initial values. I f mandatory a ributes and links are not
initialized the instance may be inconsistent; thus, the contract should specify further
postconditions that assure that all mandatory a ributes and links are initialized when an
object is created.

We have seen so far postconditions to create instances and change a ributes. This
allows us to combine them to create a contract for a CRUD command that creates a new
instance of Book. The system command createBook may have the following as an initial
draft of a contract:

Context Livir::createBook(anIsbn:ISBN;

 aTitle,anAuthorsName:String; aPrice:Money;

 aPageCount:Natural; aCoverImage:Image)

 post:

 newBook.newInstanceOf(Book) and

 newBook^setIsbn(anIsbn) and

 newBook^setTitle(aTitle) and

 newBook^setAuthorsName(anAuthorsName) and

 newBook^setPrice(aPrice) and

 newBook^setPageCount(aPageCount) and

 newBook^setCoverImage(aCoverImage)

Note that quantityInStock is defined with an initial value and does not need to be
initialized in this contract.

T he coverImage a ribute is an optional a ribute and for that reason it is the only
parameter that could accept the null value; alternatively, it could be suppressed from the
parameter list of createBook.

The publisherName a ribute is derived, and as it is read only it cannot be defined in the
contract (instead, the derive clause in the class defines its value for every instance).
However, its value depends on a link between the book and its publisher and the first
version of this contract does not define how that link is added. This is discussed in the
next section.

There is one more concern here: if we consider that all information is accessible by
navigating links starting at the controller instance, then it would not be advisable to
declare that an instance was created if it is not linked to any other instance with a path to
the façade-controller. Unless another core search mechanism allows one to find instances
that are not linked (directly or not) to the controller, the newly created instance is

unreachable. Therefore, the creation of an instance should always happen in conjunction
with the adding of a link, which will be explained in the next section.

8.5.3 Adding a link
As mentioned earlier in the chapter, another kind of basic command is one that states
that a link was added between two objects. Although link additions are bounded by the
multiplicity of the roles, this is only checked for the contract as a whole and not for each
individual basic command.

Usually, an OCL postcondition to indicate that a link was created would look like the
following:

object.role->includes(anotherObject)

But, again, this expression may be ambiguously interpreted when at the code
generation stage, because there are at least four ways for it to become true:

• Include anotherObject in object.role.
• Assign to anotherObject an object that is already in object.role.
• Assign a third object to anotherObject and include it in object.role.
• Assign the empty set to anotherObject, because independently of the contents of

object.role it includes the empty set.
Usually, the first option is the intended meaning. But again we suggest a notation that

does not cause ambiguous interpretations and at the same time is more familiar to
software developers. Once again, the “^” notation and a basic command are used to
indicate that a link was created.

There are many dialects for naming commands that modify association roles. Here, we
use the prefix add followed by the name of the role. Another common option would be to
use the set prefix, as in the case of a ributes. However, a ributes have their values
changed or replaced, while links are added; thus, different goals should have different
names.

Considering the association between the Book and Publisher classes, and considering
two instances, aBook and aPublisher, respectively, a link between the instances may be
created in two different ways. First, from the point of view of a book:

aBook^addPublisher(aPublisher)

Second, from the point of view of a publisher:

aPublisher^addBook(aBook)

Both expressions are symmetric and produce exactly the same result (a link based on
the association is created between the instances).

Associations with mandatory roles, such as the one from Book to Publisher, usually
require that their links are created in the same contract that creates the object that must
have the role filled. Thus, a link from Book to Publisher will be added when an instance of
Book is created, as shown below:

Context Livir::createBook(anIsbn:ISBN; aTitle,anAuthorsName:String;

 aPrice:Money; aPageCount:Natural; aPublisherName:String; aCoverImage:Image)

 post:

 newBook.newInstanceOf(Book) and

 newBook^setIsbn(anIsbn) and

 newBook^setTitle(aTitle) and

 newBook^setAuthorsName(anAuthorsName) and

 newBook^setPrice(aPrice) and

 newBook^setPageCount(aPageCount) and

 newBook^setCoverImage(aCoverImage) and

 newBook^addPublisher(publisher[aPublisherName]) and

 self^addBook(newBook)

I n the contract above, two mandatory links were added to the new book: one from it to
its publisher, and another from it to the controller Livir. Remember that as Livir is the
context of the contract, self stands for a Livir instance.

8.5.4 Destroying an instance
Although destroying objects is rare in object-oriented systems, it may sometimes occur.
Usually out-of-print books and deceased customers are not deleted from the records:
they are simply marked as inactive or moved to an alternate place. The information must
not be lost if trustable records of the company activities in the past are needed.

However, if a publisher or any other class instance was inserted in the system record
twice by mistake, the instances may be merged if both have already been changed or, if
no activity was registered for the second instance, it may simply be deleted from the
records. In this case, an object must be destroyed.

There are two approaches to indicate that an instance was destroyed:
• Explicit: It is declared that an object was destroyed by sending an explicit destruction

message to it.
• Implicit: All associations to the object are removed so that it becomes inaccessible. In

programming languages it is possible to implement garbage collection to remove from
memory objects that are not accessible anymore.

I n this book, the explicit approach is chosen because it makes the modeler’s actual
intention clearer. An object that has to be destroyed, then, must receive a basic message
such as the following:

object^destroy()

The meaning of this expression in a system command postcondition is that the
referred object was destroyed during the execution of the command.

I t is assumed that all links to the destroyed object are removed as well. I f any object
formerly linked to it became inconsistent, then the contract must specify what happens
to that object (if it is removed as well or if the role is replaced by a link to another object).

8.5.5 Removing a link
The removal of a link between two objects is made by a basic command prefixed by the
word remove,6 followed by the role name and receiving as a parameter the object member
of the role that must be removed. For example, for removing the last item of a given cart,
the following contract could be used:

Context Livir::removeLastItem(aCartId:CartId)

 def: aCart=cart[aCartId]

 def: lastItem=aCart.item->last()

 post:

 aCart^removeItem(lastItem)

When the multiplicity of the destination role of the link to be removed is 1 or 0..1, it is
optional to inform the parameter, because there is only one possible link to be removed.
I f instead of removing the link from the point of view of the cart it was done from the
point of view of the item, the final result would be the same, but the basic command
would not need a parameter:

Context Livir::removeLastItem(aCartId:CartId)

 def: aCart=cart[aCartId]

 def: anItem=aCart.item->last()

 post:

 anItem^removeCart()

However, both contracts above leave the item inconsistent, because it has a mandatory
association to Cart that does not exist anymore if the contract succeeds. The contract
must consider that as the role from Item to Cart is mandatory (1), the removal of this link
implies the destruction of the Item or the linking of it to another Cart, which has to be
completed in the same contract.

I f the choice is to delete the item, then only that basic command should be used in the
contract because with it, all links to the item are considered automatically removed as
well:

Context Livir::removeLastItem(aCartId:CartId)

 def: aCart=cart[aCartId]

 def: lastItem=aCart.item->last()

 post:

 lastItem^destroy()

Trying to remove a nonexistent link is a design error and cannot be declared in well-
formed contracts, which are discussed in the next section.

8.5.6 Well-formed postconditions
I f we assume that the basic commands do not check if the objects and links are left in a
consistent state after they are performed, then the designer must do the verification
when she is specifying the system command contracts.

The verifications that must be done can be summarized as follows:
• A command that creates an instance must also have postconditions stating that all the

instance attributes were initialized, except for (1) derived attributes (which are
calculated), (2) attributes with an initial value (which are predefined by an init clause,
unless a different value is desired), and (3) optional attributes, which can be null (in
that case, initialization is optional).

• All mandatory links for a newly created instance must be added.
• Even if it has no links or associations, a newly created instance must be linked to at

least one instance that has a link path to the controller or be linked to the controller
itself.

• All created links must stay within the lower and upper bounds defined by their
association roles.

• All invariants affected by changes in attributes, links, or instances must stay true.
The invariant-checking mechanism does not assure that the designer is writing a

contract that keeps all invariants true. I t is the responsibility of the designer to be aware
of the invariants and avoid raising exceptions. I f an invariant happens to raise an
exception that is not handled by the system, then there is certainly a design problem.

Another issue involves a ributes declared with initial values. I f the definition of the
initial value of an a ribute uses information that may be obtained only by navigating its
links, how can it be calculated before the links are created? We must consider that the
initialization of a ributes with initial values will be one of the last tasks in the
programming code that implements a contract, that is, a ributes with initial values may
be defined only after all links are added and the instance is consistent. For example, the
unitPrice of an item in Figure 8.1 may only be initialized after a link between the item and
the book is added, because the initial value depends on the link. The contract designer
does not need to worry about this because contracts are declarative, but the programmer
must be concerned with it when producing code.

8.5.7 Combinations of Postconditions
Usually, a system command will have many postconditions that can be joined by the and
operator, as mentioned before. But it is also possible to use the or operator, which

establishes that one of the postconditions was obtained, but not necessarily the other:

post:

 <postcondition1> or

 <postcondition2>

The main problem with this operator is that it is inherently ambiguous in terms of code
generation, and thus, its use should be avoided if deterministic expressions are possible.

Another operator that can be used to connect OCL expressions is the implies operator,
which has the same meaning of the implication operator of Boolean logic. Implies is used
when a postcondition is to be obtained only if a certain condition is true. For example,
the following contract adds a book to a cart only if it is not there yet:

Context Livir::add2Cart(aCartId:CartId, anIsbn:Isbn,aQuantity:Natural)

 def:aCart=cart[aCartId]

 def:aBook=book[anIsbn]

 def:anItem=aCart.item->select(book.isbn=anIsbn)

 pre:

 aCart->notEmpty() and

 aBook->notEmpty()

 post:

 anItem->isEmpty() implies

 newItem.isNewInstanceOf(Item) and

 aCart^addItem(newItem) and

 newItem^setQuantity(aQuantity) and

 newItem^addBook(aBook) and

 newItem^setUnitPrice(aBook.price)

The implies operator can also be replaced by an if-then-endif expression. This expression
is especially useful if an alternate postcondition must be obtained when the condition is
false; in this case the form if-then-else-endif should be used instead. I n the case of the last
example, if the book is already in the order, the quantity ordered may be added to the
quantity of the existing item. The contract below shows how to use this operator:

Context Livir::add2Cart(aCartId:CartId, anIsbn:Isbn,aQuantity:Natural)

 def:aCart=cart[aCartId]

 def:aBook=book[anIsbn]

 def:anItem=aCart.item->select(book.isbn=anIsbn)

 pre:

 aCart->notEmpty() and

 aBook->notEmpty()

 post:

 if anItem->isEmpty() then

 newItem.isNewInstanceOf(Item) and

 aCart^addItem(newItem) and

 newItem^setQuantity(aQuantity) and

 newItem^addBook(aBook) and

 newItem^setUnitPrice(aBook.price)

 else

 anItem^setQuantity(anItem.quantity@pre + aQuantity)

 endif

The meaning of the @pre operator is explained in the next section.
The advantage of implies is that it is shorter. The advantage of if-then-endif or if-then-

else-endif is that it is more familiar to programmers, and includes a way to specify what
must be obtained for both cases of a Boolean expression that is shorter than using two
implies structures.

8.5.8 Former values
Sometimes a postcondition is built upon values that a ributes and roles had before the
command is performed. Those former values are referred to by the function @pre to
indicate that they do not correspond to the value of the a ribute after the command is
performed (which could be different). For example, a postcondition that establishes that
a quantity in stock for a given book has increased may be expressed as

Context Livir::add2Stock(anIsbn:Isbn; aQuantity:Natural)

 def:aBook=book[anIsbn]

 post:

 aBook^setQuantityInStock(

 aBook.quantityInStock@pre + aQuantity

)

So, why was @pre used above? Because after the command is performed, the quantity in
stock would already be incremented, and the argument for the setQuantityInStock basic

command has to be defined as the previous quantity plus the new quantity.
Remember that OCL is declarative, just as arithmetic is. x=x+1 is not a true statement

in mathematical notation, because it cannot be true for any value of x. But when you
write x :=x+1 in a programming language it means the same as x=x@pre+1.

The operator @pre may also be used over the links of a given role. For example, to
indicate the set of items that were linked to an order before the system command was
performed, the following expression could be used:

def:anOrder=…

post:

 anOrder.item@pre …

Another example with a more intense use of this operator is an expression that obtains
the total value derived from an order before the system command is performed. Not only
may the quantities and item prices have changed, but the list of items itself as well. Thus
it is necessary to use the @pre operator three times:

def:anOrder=…

post:

 anOrder.item@pre->sum(unitPrice@pre*quantity@pre) …

I f, on the other hand, the analyst believes that the values of the a ributes and links are
not changed by the system command, then the @pre expression may be omi ed, as in the
following example:

def:anOrder= …

post:

 anOrder.item->sum(unitPrice*quantity) …

8.5.9 Postconditions covering collections of objects
I t is possible with a single OCL expression to state that a whole set of objects was
changed. For example, an expression that states that the price of every book was raised
by x% may be written using the forAll expression:

Context Livir::raiseBookPrice(x:Percent)

 post:

 self.book->forAll(aBook|

 aBook^setPrice(aBook.price@pre*(1+x))

)

I f there is no need to use the former values in the equation, that is, if every object is

going to be updated with the same price, then it is possible to abbreviate this notation.
For example, if the price of all books has to be set to x dollars, then the following
expression could be used instead:

Context Livir::setBookPrice(x:Money)

 post:

 self.book->forAll(aBook|

 aBook^setPrice(x)

)

In this case, there is an even more abbreviated form:

Context Livir::setBookPrice(x:Money)

 post:

 book^setPrice(x)

Remember that in our examples, book is a role of an association from the controller to
the class Book, and therefore it is equivalent to self.book, that is, it represents the set of all
books that are registered in the system. As in the case of the “.” notation, the “^”
notation can be used with sets as well.

8.5.10 Postconditions and real-world events
The process of creating contracts is intimately related to the expansion of the use case
and the conceptual model. The conceptual model should be used as a reference at every
moment because it is the source of information with which assertions can be made about
the information.

Contracts should be always wri en with expressions that can be interpreted in terms
of elements of the conceptual model. Thus, assertions like “the books were shipped”
would hardly be postconditions because they do not represent information contained in
the conceptual model; they describe real-world events. I f the team wishes to express this
in a contract, they should create a conceptual structure (a ribute, role, or concept) to
represent it. For example, the fact that the books were shipped could be represented by
creating an instance of the Delivery class and linking it to the current instance of Order.

8.6 Exceptions
Exceptions in contracts are fail conditions that the designer cannot or does not wish to
avoid before performing the command itself.

Sometimes, conditions identified as exceptions may be converted into preconditions. I f
it is possible to transform an exception into a precondition, it is generally advisable to do
so, because it is preferable to avoid problems as soon as possible. I t is preferable to keep

the user from performing a mistaken action rather than allowing her to do it and
reporting the error later.

OCL does not present a specific clause to manage exceptions, but they can be
simulated in contracts by conditional postconditions such as

post:

 if <condition> then

 <raise exception>

 else

 <all other post conditions, including other exceptions>

endif

As it would not be easy to represent many exceptions using this nested approach, we
use a new stereotyped clause, exception, which is a shorter version of the expression
above:

exception:

 <condition> implies <raise exception>

Now, for a contract to indicate an exception it is sufficient to identify the condition that
produces the exception and name the exception.

A contract just indicates that exceptions may occur, but their handling must be
defined only during the design of the interface or application tier, because if an exception
is raised by the façade-controller, it should be handled by the tier immediately above: the
application or interface tier.

The following example shows a contract with an exception based on Figures 8.1 and
8.2:.

Context Livir::finishOrder(aCartId:CartId, aCustomerId:CustomerId)

 def: aCustomer=customer[aCustomerId]

 def: aCart=cart[aCartId]

 pre:

 aCustomer->notEmpty() and

 aCart->notEmpty()

 post:

 newOrder.isNewInstanceOf(Order) and

 newOrder^addCart(aCart) and

 newOrder^addCustomer(aCustomer) and

 newOrder^setDate(Date.getCurrent()) and

 newOrder^setNumber(OrderNumberGenerator.getNew())

 exception:

 aCart.item->isEmpty() implies Exception.throw(‘Cannot finish an empty order’)

Here, a basic throw message is used to signal the exception to a class named Exception,
which is not a basic OCL class. When the code for that command is generated, the
exception must be signaled to the object that called the system command (possibly an
object from the application or interface tier), and we assume none of the postconditions
are obtained.

A system command exception should be a condition that cannot be resolved internally
by the implementation of the system command, and that requires the execution flow
control to be returned to the interface tier so that the user can be asked to try other
options.

I nternal software exceptions that a system command can handle internally are not
raised to the interface; therefore, they are simply not mentioned in contracts: they will be
addressed when internal control mechanisms are designed and programmed.

I t is also assumed that when an exception is raised the command cannot be executed
and none of its postconditions are obtained, because the data must be kept in a
consistent state even when an exception occurs.

As mentioned a bit earlier, some exceptions may be converted into preconditions if the
designer devises a way to assure the condition before calling the command. Thus, the
contract with an exception shown above could be converted into the following:

Context Livir::finishOrder(aCartId:CartId, aCustomerId:CustomerId)

 def: aCustomer=customer[aCustomerId]

 def: aCart=cart[aCartId]

 pre:

 aCustomer->notEmpty() and

 aCart->notEmpty() and

 aCart.item->notEmpty()

 post:

 newOrder.isNewInstanceOf(Order) and

 newOrder^addCart(aCart) and

 newOrder^addCustomer(aCustomer) and

 newOrder^setDate(Date.getCurrent()) and

 newOrder^setNumber(OrderNumberGenerator.getNew())

I n this case, the command assumes that the previous operations in the system
sequence diagram have checked and assured that at this point the cart is not empty;
therefore, the command will not check it again. This prevents the finishOrder command
from performing unnecessary verifications when called, and therefore it simplifies its
code.

Only conceptual elements (concepts, a ributes, and associations) may appear in the
OCL expressions of the contracts. These elements are necessarily related to the business
rules of the system being analyzed. The exceptions mentioned here must be exceptions
related to the business rules, and not exceptions related to hardware or communication
problems. Exceptions that may occur in physical storage, communication, or external
devices must be addressed by specific mechanisms in the tiers where those elements
belong. Usually, users are not even aware of them.

8.7 Pattern contracts for CRUD
The following subsections present models for contracts for typical CRUD commands.
There are three system command contracts and one system query contract. The
commands and query are performed within the Book class, defined following the model
in Figure 8.1. Contracts for CRUD operations are similar and may be considered patterns.

8.7.1 Create contract
The contract for a create command usually should include the instantiation of a new
object, initialization of its mandatory a ributes, and addition of its mandatory links. As
an example, the following is a complete contract for creating a new book:

Context Livir::createBook(anIsbn:ISBN;aTitle,anAuthorsName:String;aPrice:Money;

 aPageCount:Natural;aPublisherName:String;aCoverImage:Image)

 pre:

 publisher[aPublisherName]->notEmpty()

 post:

 newBook.newInstanceOf(Book) and

 newBook^setIsbn(anIsbn) and

 newBook^setTitle(aTitle) and

 newBook^setAuthorsName(anAuthorsName) and

 newBook^setPrice(aPrice) and

 newBook^setPageCount(aPageCount) and

 newBook^setCoverImage(aCoverImage) and

 newBook^addPublisher(publisher[aPublisherName]) and

 self^addBook(newBook)

This contract assumes that the publisher’s name was already checked and is valid;
otherwise that condition should be an exception instead of a precondition.

As the isbn a ribute is already stereotyped with unique , it is not necessary to
establish an exception related to the issue of creating a book with an existing I SBN,
because that exception would be raised by the class invariant defined by the unique
stereotype. The designer might want to make it explicit in the contract that such an
exception exists; however, it is redundant to declare an exception that is already defined
as an invariant, and as redundancy is a possible source of problems it should be avoided.

However, if the team wants to assure that the argument anIsbn passed to the command
is really an I S BN that is not registered yet, they can do it by adding a precondition to the
contract. This does not invalidate the exception that could be raised by the invariant, but
it assures that this specific operation is not going to raise that exception:

Context Livir::createBook(anIsbn:ISBN;aTitle,anAuthorsName:String;aPrice:Money;

 aPageCount:Natural;aPublisherName:String;aCoverImage:Image)

 pre:

 publisher[aPublisherName]->notEmpty() and

 book[anIsbn]->isEmpty()

 post:

 newBook.newInstanceOf(Book) and

 newBook^setIsbn(anIsbn) and

 newBook^setTitle(aTitle) and

 newBook^setAuthorsName(anAuthorsName) and

 newBook^setPrice(aPrice) and

 newBook^setPageCount(aPageCount) and

 newBook^setCoverImage(aCoverImage) and

 newBook^addPublisher(publisher[aPublisherName]) and

 self^addBook(newBook)

8.7.2 Update contract
T h e update command usually involves just changing the value of some a ributes,
although sometimes it may involve adding or removing links. Before defining a contract
for updating an object however, the designer must decide which a ributes and links are

immutable. The immutable stereotype added to some a ributes and association roles
in Figure 8.1 declares that those properties cannot change after an object is created. I t is
only meaningful when one begins to consider if objects can change or not, and the time
for writing contracts is just the time to take that feature into consideration. I n the case of
an immutable a ribute, its value can be defined when an instance is created, but it
cannot change after that. An example is the I SBN of a book. An immutable role refers to
a link that is usually mandatory and added when the object is created. The object at that
role cannot be changed. For example, an item is linked to a cart when created and cannot
change to a different cart after that.

The update command cannot change immutable a ributes and links. I n the case of a
Book in Figure 8.1 only the following a ributes may be updated: price, coverImage, and
quantityInStock.

The update contract in this case might look like the following:

Context Livir::updateBook(anIsbn:ISBN; aPrice:Money; aCoverImage:Image;

 aQuantity: Natural)

 def: aBook=book[anIsbn]

 pre:

 aBook->notEmpty()

 post:

 aBook^setPrice(aPrice) and

 aBook^setCoverImage(aCoverImage) and

 aBook^setQuantityInStock(aQuantity)

The I SBN is only used to find the book. But as it is immutable, it cannot be updated. I f
it could be updated, then two I SBN values should be passed as parameters: the old I S BN
used to locate the book, and the new ISBN that would replace the old value.

Remember that unique a ributes are not primary keys , as explained in Chapter 6; they
are just a ributes with values that do not repeat in different instances. They may or may
not be immutable depending on the nature of the concept.

8.7.3 Delete contract
The command that deletes an object must consider structural rules of the conceptual
model before deciding if an object can or cannot be destroyed.

I n the case of Figure 8.1, for example, an instance of Book cannot be deleted without a
decision on what happens to possible instances of Item eventually linked to it, because,
from the point of view of an Item, a link to a Book is mandatory.

I n order to perform deletion without violating any structural rules, one must choose
one of the three approaches below:

• Assure by precondition that the object being deleted would not leave other objects
inconsistent regarding the lower bound of their associations. With this approach, only
books with no associated items may be selected for deletion. This means that only
books that were never sold may be deleted.

• Use an exception to abort the delete command if it is attempted for an object that will
leave other objects inconsistent. If a user tries to delete book that has items linked to
it, an exception would be raised.

• Assure by postcondition that all objects that would be left inconsistent after deletion
are deleted as well. In this case, items linked to a book to be deleted would be deleted
as well.

The third approach is used when we want to propagate the delete command to every
object that has mandatory associations to the object being deleted. This propagation is
recursive: deletion will continue until no more objects with mandatory links to objects
that were deleted are found.7 This approach may not always be used; there are situations
in which propagating deletion is against business rules. I n the case of books, for
example, deleting items linked to a book that is being deleted would create problems
with old orders that are already registered; it is not acceptable. However, deleting items
when a cart is being deleted is acceptable, because if a cart is deleted it is expected by
business rules that all information related to its items are deleted as well.

A possible contract that uses the precondition approach would look like the following:

Context Livir::deleteBook(anIsbn:ISBN)

 pre:

 book[anIsbn]->notEmpty() and

 book[anIsbn].item->isEmpty()

 post:

 book[anIsbn]^destroy()

As indicated earlier, the destroy message removes the instance of Book as well as its
eventual links, which do not need to be removed one by one. The preconditions assure
that the book exists and that the book does not have any items linked to it. I f a given
book has items, then the command cannot be called.

A possible contract that uses the exception approach would be something like the
following:

Context Livir::deleteBook(anIsbn:ISBN)

 pre:

 book[anIsbn]->notEmpty()

 post:

 book[anIsbn]^destroy()

 exception:

 book[anIsbn].item->notEmpty() implies

 self^throw(‘The book cannot be deleted because copies of it have already been sold’)

A possible contract using the postcondition approach that propagates deletion to all
items linked to a cart would look like the following:

Context Livir::deleteCart(aCartId:CartId)

 pre:

 cart[aCartId]->notEmpty()

 post:

 cart[aCartId].item^destroy() and

 cart[aCartId]^destroy()

The postcondition above states that besides the cart, every item linked to it is deleted
as well. As the Item class does not have associations with mandatory links coming from
other classes, the destruction process may stop there (the books linked to the items, for
example, are not destroyed). Otherwise it would be necessary to destroy other objects,
and that should be established by the contract.

The postcondition approach must be chosen when it is desirable to propagate deletion
to all objects that depend on the object that is being deleted. I s it also useful when the
composite aggregation is deleted; by definition, all components must be deleted as well,
unless previously removed from the composite.

However, as mentioned earlier, there are situations in which this propagation is not
desirable. For example, removing a book from the catalog is not possible if there are
already sales registered for that book. I n this case, the precondition or exception
approaches must be chosen. The first requires that a book that cannot be deleted is
prevented from having its I SBN passed as an argument to that command. For example,
the list of books available for deletion at the interface could contain only those books
that could really be deleted. I f this assurance is not possible or desirable, the exception
approach should be chosen. I n this case, the interface lets the user try to delete, and if it
is not possible, an exception is raised.

Usually, information systems do not allow information to be deleted. A book that is
removed from a catalog, for example, is not deleted, but marked as inactive; if the
information about the book is removed, then the information about former sales would
be left inconsistent with reality. For implementing this approach, one simple solution is
to define a new Boolean active a ribute for the class whose members may be inactivated
instead of deleted. The default value for this a ribute is true, because the object usually
is active when it is created. I n the example, for the Book class, the solution is shown in
Figure 8.4.

FIGURE 8.4 A variation of the Book class whose instances cannot be deleted, but instead are marked as
inactive.

In this case, a contract to inactivate a book would be

Context Livir::inactivateBook(anIsbn:ISBN)

 pre:

 book[anIsbn]->notEmpty()

 post:

 book[anIsbn]^setActive(false)

There is no need to check if the book has items in this case because none will be
actually deleted.

Another approach is to move inactive objects to a different space, by for example using
a new association to the controller that keeps inactive objects separated from active ones.
Figure 8.5 shows an example of this approach for the Book class.

FIGURE 8.5 Alternate way to represent inactive books with two associations.

I n Figure 8.5 there are two sets of books: (active) book and inactiveBook. The constraint
in the Book class assures that a book belongs only to one or the other set.

S till another approach is to use the state design pa ern to model the two states of an
object, as shown in Figure 8.6. Again, there are two sets of books; the usual set of (active)
books may be accessed directly by a derived association while the set of inactive books in
the figure must be accessed by consulting the set of books linked to the instances of
Inactive (however, nothing prevents the creation of another derived association to access
inactive books if desired).

FIGURE 8.6 An alternative way to represent inactive objects using the state design pattern.

This model is a bit more complex visually but it avoids the need for a constraint. I t also
could be transformed into a pattern and a stereotype could be created for it.

8.7.4 Retrieve contract
The simple CRUD retrieve query returns available data about an instance of a given
concept that is identified by one of its unique identifiers. These queries do not return
data that is not explicitly in the class definition. Queries that return data calculated from
one or more objects are reports (use cases stereotyped with report). Retrieve
operations do not perform calculations.

A simple retrieve query for the class Book of Figure 8.1 could be defined as follows:

Context Livir::retrieveBook(anIsbn:ISBN):Tuple

 body:

 Tuple {

 isbn=anIsbn,

 title=book[anIsbn].title,

 authorsName=book[anIsbn].authorsName,

 price=book[anIsbn].price,

 pageCount=book[anIsbn].pageCount,

 publisherName=book[anIsbn].publisherName,

 coverImage=book[anIsbn].coverImage,

 quantityInStock=book[anIsbn].quantityInStock,

 }

The retrieve query returns a tuple or record with the data from the a ributes of the

object selected by the query parameter.

8.8 Pattern contracts for listing objects
Frequently it is necessary to list objects where one or more a ributes are presented. A
first example of this kind of contract is listing the title of all books available in the
bookstore:

Context Livir::listBook():Set

 body:

 book.title

As the book role from the controller is a strict set in Figure 8.1, the result of the
expression book.title will be a set as well. Thus, if there are two books with the same title,
they will be listed just once, even if the books have a different ISBN.

I f a list with multiple columns is desired (for example, author and title), then it is
necessary to return a collection of tuples:

Context Livir::listBook():Set

 body:

 book->collect(aBook|

 Tuple {

 authorsName=aBook.authorsName,

 title=aBook.title

 }

)

S ometimes, it is necessary to apply a filter to the list, for example returning only the
author and title of books that do not have any items linked to them (books that were
never sold). In this case, select may be applied to the set before forming the tuples:

Context Livir::listBookNotSold():Set

 body:

 book->select(

 item->isEmpty()

)->collect(aBook|

 Tuple {

 authorsName=aBook.authorsName,

 title=aBook.title

 }

)

Most listing queries likely have only these two constructors: select (filter) followed by
collect (projection). But more complex queries may be created. I n those cases, they do not
necessarily fit the list pa ern (list) and are considered more complex reports (
report).

8.9 Contracts related to use cases
An expanded use case is a chain of commands and queries than will be performed in a
given sequence. Usually, each operation will supply information or assure preconditions
for other operations. The best approach to write contracts for this sequence of operations
is to follow the use case flow that is depicted in the system sequence diagram. I n this
sequence, the designer must ask:

• What is the goal of each operation?
• What do they produce in terms of information?
• What do they expect their predecessors have produced?
• Which exceptions could happen during execution?
• Can their exceptions be reconfigured as preconditions?
• Do their parameters include groups of values that are invalid?
• Do the operations follow a known pattern?
When answering these questions, the designer will be building contracts that allow the

commands and queries to be performed in a consistent way in the context of the use case
transaction. I f it is necessary to add new queries or commands to the sequence diagram
in order to assure certain preconditions, then this is the right moment to do that.

This chapter shows many examples related to the system sequence diagram of Figure
8.2. The reader is encouraged to review that figure and ask the questions above for each
operation to understand how they have been answered during the chapter.

8.10 The process so far

8.11 Questions
1. Explain and present an example on how an exception may be transformed into a

precondition and vice versa.
2. What is the difference between exceptions in command contracts and in query

contracts?
3. What are the five possible postconditions, and what basic commands define each of

them? How can they be represented in OCL contracts?
4. Produce the contract for the searchBook query in Figure 8.2.
1For example, after a user orders a book, while the user is closing the order and providing payment, the only available
book could be sold to another user. This must be avoided with concurrency control mechanisms, as explained in Chapter
13.
2The type Whole stands for the set {0, 1, 2, 3, …}.
3Remember that race conditions are not yet being considered here and they could invalidate this precondition if
concurrency is an issue.

4Data Transfer Objects are a design pattern that indicates that objects passed by the façade-controller to the interface and
vice versa cannot be instances of domain classes (those in the conceptual model). They must be pure data, and not
domain objects with behavior. This may be implemented with objects that only have attributes and their respective
getters and setters (if any), nothing else. The record type in Pascal and the OCL Tuple are examples of DTOs.
5The OCL and operator may be used also to combine preconditions, exceptions, and invariants.
6Some dialects might use unset.
7In fact, in the general case, the lower bound of the role is the information that must be considered. For example, if a role
has multiplicity 3..*, than removing a link when only 3 are left makes the object inconsistent.

C H AP T E R 9

Domain Tier Design
This chapter shows how to design interaction among objects (dynamic modeling) in order to implement system
operation contracts using UML interaction diagrams (communication and sequence). Initially, object responsibility
and visibility are explained in order to show that objects may only communicate to each other to perform their
responsibilities if they have a visibility line to follow. Next, the chapter discusses how to build dynamic models in
which objects change messages in order to perform the actions that are necessary to meet the postconditions of a
contract, and how the preconditions and exceptions affect it. Design pa erns for responsibility distribution among
objects are presented in order to improve the design of object-oriented code with delegation and low coupling.
Finally, the chapter explains how to use the information learned during dynamic modeling to improve the design
class diagram.

Keywords
Object responsibility; object visibility; delegation; low coupling; communication
diagram; interaction diagram; design class diagram

Key Topics in this Chapter
• Responsibility
• Visibility
• Low coupling
• Delegation
• Dynamic modeling
• Design class diagram

9.1 Introduction to domain tier design
Software design in general aims to produce a solution to a problem that has already been
sufficiently clarified by analysis. The static aspects of the problem are represented in the
conceptual model and the functional aspects are represented in the expanded use cases,
system sequence diagrams, and system operation contracts. Now it is time to design a
software (and possibly hardware) solution to implement the logical and technological
aspects of the system. In this sense design is a solution for a problem modeled by analysis.

D uring iterations, after expanding use cases, refining the conceptual model, and
writing contracts, the team may conduct design activities, which can be divided into two
groups:
• Logical design (this chapter), which includes the aspects of the problem that are related

to the business logic. Usually the logical design is represented in the design class
diagram (DCD), which evolves from the conceptual model, and by interaction

diagrams, which show how objects exchange messages in order to perform system
operations and achieve the postconditions of the contracts.

• Technological design, which includes all aspects of the problem that are inherent to the
technology used: interface, data storage, security, communication, fault tolerance, etc.
Activities related to technological design are addressed later:
• Interface tier design (Chapter 12), which consists of designing the user interface and

preferably keeping it decoupled from the domain tier.
• Persistence tier design (Chapter 13), which consists of the definition of a persistency

mechanism to allow data load and save, which can be performed automatically,
preventing the designer from being (over) concerned about those aspects.

Logical design is also known as domain tier design. The domain tier corresponds to the
set of classes that perform all data transformation and queries. Other tiers implement
technological aspects of the system: persistency, interface, communication, security, etc.
They are usually derived from and dependent on the domain tier and their utility is to
connect the pure logic of the domain to the physical computer aspects (communication
networks, human interfaces, storage devices, etc.).

The design of the domain tier consists basically of two activities that can be performed
iteratively:
• Dynamic modeling, which consists of building execution models for the system

operation contracts. In object-oriented systems, such models are usually represented
by interaction diagrams such as communication and sequence diagrams, or even as
pure text algorithms.

• DCD building, which consists basically of adding to the conceptual model some
information that was not possible or desirable to obtain earlier, such as, for example,
the association’s navigation direction, and the methods to be implemented in each
class. Those aspects can be effectively included in the software design if dynamic
modeling is done. Additionally, the structure of design classes may be a little
different from the conceptual model as new classes or a different class organization
may be necessary to perform some functions that will be required at this point.

The logical design can be performed systematically if the team is in possession of two
artifacts:
• The evolving design class diagram.
• The functional model represented by system operation contracts.
The logical design activities consist of building interaction diagrams for system

operations found in the system sequence diagrams (especially system commands, as
explained later), taking into account the D CD and the respective system operation
contract.

D ynamic modeling, as mentioned before, can make use of communication or sequence
diagrams, or even algorithms. Each of those forms has advantages and disadvantages:
• Algorithms, for programmers, are easier to write, but it may be difficult to realize

clearly the connections among objects in simple text. Thus, the choice for algorithms
to use object-oriented dynamic modeling may raise the risk of high coupling among
classes, generating bad design.

• Communication diagrams are better than algorithms for visualization and responsibility
distribution purposes, and they are better than sequence diagrams for providing an
explicit view of the visibility lines between objects. However, these diagrams may be
difficult to organize and in the case of complex collaborations they may become
harder to read than sequence diagrams.

• Sequence diagrams are usually easier to read than communication diagrams, but they
do not show explicitly the visibility lines between objects. If the designer is not
vigilant, invalid or impossible communications may be included in the diagram.

This chapter uses communication diagrams for dynamic modeling in order to ease the
visualization of the visibility lines between objects. I n some cases, the equivalent
sequence diagrams are shown for comparison.

The class diagram examples in this chapter assume that it is design time. Thus,
associations may be directed and classes may have methods and private attributes.

The chapter initially discusses object responsibility, which is a key concept in
understanding how to distribute methods among objects. Knowing which object should
implement which responsibility allows design classes to be highly cohesive.

Another key concept that is presented in detail is visibility, which establishes that
communication among objects must occur only when visibility lines exist. I f the quantity
of those lines is minimized, low coupling (Meyer, 1988) is achieved in the design.

Finally, the chapter explains how to transform contracts into dynamic models by using
responsibility distribution and visibility, as well as other design pa erns, to produce the
best design possible.

9.2 Object responsibility distribution
Responsibility distribution among objects has to do with the following question: What
methods must be implemented in which classes?

Many designers find it difficult to build an elegant solution to that problem when they
simply try to add methods to a class diagram. The use of interaction diagrams and design
pa erns may, however, provide a more efficient and effective way to discover the most
suitable place to implement each method.

The D CD is built from the conceptual model, which provides the basic set of classes,
a ributes, and associations that are needed. Then, it is necessary to develop interaction
diagrams for each system operation contract. Those diagrams show objects exchanging
messages in order to achieve the postconditions of the respective contracts. There are
techniques that help in building those diagrams in an elegant way. The use of diagrams
is be er than algorithms, especially for novice designers, because with algorithms, the
designer may fall for the temptation of concentrating all responsibilities in a single class,
while the diagrams allow be er visualization of the distribution of responsibilities
among the objects. An example of that situation is presented later in this chapter.

When a team builds object-oriented code without an adequate method for dynamic
modeling (that is, simply making a class diagram and adding ad-hoc methods to it) there
is a risk that the responsibilities may be poorly distributed among the classes, and the

final result may be as unstructured as the old spaghe i code . Usually, object-oriented
systems are well organized at the class level, but unhappily the code wri en inside
methods is often poorly designed.

Thus, for a system to be elegant, responsibilities have to be well distributed. I f a
systematic method is not used, responsibilities can become concentrated in the
controller class, or in classes that represent business actors, such as Customer or Clerk. I n
the end, classes such as Book, Order, and Payment would have no relevant method besides
their own attribute getters and setters.

When one or two classes do all the work, and others are passive, there is no object-
oriented code worthy of that name, but a concentrating structure. I t would be preferable
perhaps to make a good structured design than a bad object-oriented design.

On the other hand, designers, sometimes, make the mistake of believing that an
object-oriented system is a simulation of the real world. But that is not usually true. An
object-oriented model represents the information about the real world, and not the things
themselves. The difference is subtle: methods do not correspond to real-world action, but
to the internal information processing of the system. That is why concepts such as Book
that are passive in the real world may perform commands in object-oriented systems.

Thus, designing object-oriented software must be understood as a precise method,
guided by learned pa erns, and not simply as the act of creating classes and associating
ad hoc methods to them.

Before explaining how to distribute responsibilities among objects, a taxonomy of
those responsibilities will be defined. Basically, there are two high-level groups of
responsibilities:
• The responsibility of knowing, which corresponds to the queries on objects.
• The responsibility of updating, which corresponds to the commands performed by

objects.
Both high-level groups are divided into three subgroups:

• Things that the object knows or updates within itself (its attributes).
• Things that the object knows or updates in its neighborhood (its links).
• Other things that the object knows or updates that are not classified in the previous

two groups. Normally these things correspond to derived knowledge (derived attributes
and associations, and other queries in general) and coordinated activities (delegate
methods).

I n the case of the responsibilities of knowing, the three subgroups could be
characterized as follows:
• Things that the object knows about itself: This is equivalent to being able to access the

attributes of an object. Such responsibilities are incorporated to the classes by basic
query methods named with the prefix get followed by the name of the attribute.1 For
example, if the class Person has an attribute birthDate, then the method getBirthDate
has the responsibility of knowing the value of that attribute.

• Things that the object knows about its neighborhood: This is equivalent to being able to
access directly linked objects. This responsibility is incorporated in the methods that
obtain the set of objects linked through a given role. Such methods are usually

prefixed with get and followed by the role name (or the name of the class in the
absence of the role name). For example, if Car is associated to Person and the role
name for Person is driver, then the method getDriver returns the set of people that are
drivers of a given car.

• Derived things that the object knows: This is equivalent to information that is composed
or calculated from other information. This responsibility may be associated to derived
attributes and derived associations, in which case the methods are also prefixed by get
followed by the name of the derived attribute or association. For example, if
totalValue is the name of a derived attribute of class Order, then getTotalValue is a
method that returns that derived attribute. Derived knowledge also includes other
queries about an object that cannot be represented as derived attributes or
associations, such as, for instance, queries with parameters; in that case, names may
vary.

I n the case of responsibilities related to updating information, the three subgroups
could be characterized as:
• Things that the object does over itself: This corresponds to the basic command that

updates a single attribute, which is prefixed with set,2 followed by the attribute name.
For example, if the class Person has an attribute weight then setWeight is a method that
incorporates the responsibility of changing that attribute.

• Things that the object does over its neighborhood: This corresponds to the basic
commands that add and remove links between objects. These commands are
identified respectively by the prefixes add and remove,3 followed by the name of the
association role. For example, if the class Customer has an association with Reservation,
the methods addReservation and removeReservation incorporate that responsibility.

• Things that the object coordinates: This corresponds to commands that perform multiple
tasks, possibly in different objects. These commands are known as delegated methods
and they are crucial for class design because the methods of the other groups are just
basic commands with previously known behavior; but delegate methods must be
designed. For example, if all the books in a given order must be marked as delivered,
the coordination of the marking activities must be made by the instance of Order
itself, because it is the object with the most immediate access to the objects that
participate at the operation.

Table 9.1 summarizes the six kinds of responsibilities and the methods typically
associated to each kind.

Table 9.1
Object Responsibilities

There is no standard name for delegated methods and general queries, which are
named depending on the operation they perform. Usually, these names must not include
the name of the class where they are implemented. For example, if Livir implements a
system command finishOrder, and that command delegates that responsibility to the
class Order, then the name of the method implemented in class Order must be simply
finish, because it would be probably invoked as anOrder.finish().

9.3 Visibility
For two objects to be able to exchange messages to perform their responsibilities, it is
necessary that some kind of visibility exists between them. There are four basic forms of
visibility between objects:
• By association: If there is a link between two objects defined by an association between

their classes.
• By parameter: If an object, when performing a method, receives another object as

parameter.
• Locally declared: If an object that is performing a method receives another object as a

query return.
• Global: If an object is visible by any other object.

None of the visibility forms are symmetric. That is, if x has visibility to y that does not
mean that y necessarily has visibility to x. Visibility by association may be symmetric if
the association is bidirectional, but this is not always the case.

9.3.1 Visibility by association
There is visibility by association between two objects only when there is an association
between their respective classes. The kind of visibility allowed depends on the role
multiplicity and other features, such as the association being qualified, ordered, and so
on.

An association role may be considered a collection of instances, especially if its upper
bound is greater than 1. But, in the case of multiplicity 1 or 0..1, it is possible to interpret
the role as a set or as an individual object. OCL, in these cases, considers the role both as
an object and a collection. Regarding multiplicity, then, the following kinds of visibility

may be identified:
• If the multiplicity is 1, then there is straight visibility to one instance and to the set

that contains one instance.
• Any other multiplicity allows only visibility to a set of instances.4

The D CD is not the only specification that determines the multiplicity of a role. I t is
complemented by the preconditions of the contracts, which can constrain multiplicity
bounds even more, as seen in the following sections.

9.3.1.1 Visibility to a single object
Figure 9.1 shows a Payment class that has a unidirectional association to Order with
multiplicity 1. In this case, any instance of Payment has straight visibility to an instance of
Order.5

FIGURE 9.1 Association role with multiplicity 1.

I n this way, when an instance of Payment is represented in an interaction diagram, as
shown in the communication diagram in Figure 9.2, it can send messages directly to the
instance of Order that is linked to it.

FIGURE 9.2 Communication diagram where a payment has visibility to a single order.

9.3.1.2 Visibility to multiple objects
Multiplicity values different from 1, such as *, 1..*, 0..1, or 5, provide visibility to a
collection6 of objects, not just to a single instance. From now on, all those cases will be
addressed as * multiplicity, or association to many.

Figure 9.3 shows class Order with a unidirectional association with multiplicity * to
class Item.

FIGURE 9.3 Association role with multiplicity *.

I n this case, an instance of Order can send a message to a set of instances of Item. I t is

possible to send messages to the set structure itself,7 as shown in Figure 9.4. I n the
example, the message verifies if the set is empty.

FIGURE 9.4 Communication diagram with a message being sent to a set structure.

But it is possible to send a message iteratively to each element of the set, as shown in
Figure 9.5. In the example, the message requests the subtotal value of each item.

FIGURE 9.5 Communication diagram with a message being sent to each element of the set.

Thus, messages, in communication diagrams, may be addressed to the collection
structure or to the collection elements individually. When a message is sent to the
structure, the type of the object that receives the message should be a collection, such as
Set<Item> in Figure 9.4. The fact that the message is iterative and sent to all elements in
the set is represented by the “*” that precedes the message. The condition [for all]
indicates that all elements of the set receive the message.

A filter could be used here if the message was intended just for some selected
elements. For example, if the message getSubtotal is intended only for items with quantity
greater than 1 then it could be written as *[quantity>1]: anAmount:=getSubtotal().

9.3.1.3 Visibility by association with ordered roles
I f the association role is ordered with the use of the {ordered} or {sequence} constraints, the
visibility to the collection as a whole is kept, but additionally straight visibility to
individual elements indexed by their position is allowed.

Figure 9.6 presents a class diagram with a unidirectional association with an ordered
role.

FIGURE 9.6 Ordered association role.

I n Figure 9.7 the message is sent to each element of the ordered collection, as in the
case of Figure 9.5.

FIGURE 9.7 Communication diagram with a message being sent to an ordered set structure.

Part (A) of Figure 9.7 is the explicit way to represent an iterative message sent to the
elements of an ordered set or sequence. Part (B) is a shorter acceptable way to represent
the same thing. The form *[for all]: used for sets would be acceptable as well.

I n Figure 9.8 only the third element of the ordered set receives the message, and
visibility is not to multiple objects like before, but to a single object. This is indicated in
the index used to represent the name of the object: orders[3]. The value between brackets
may be a constant, as in the example, or a variable known by the Customer instance, or
even a math expression that results in an integer.

FIGURE 9.8 Communication diagram with a message being sent to a specific element of an ordered set.

In Figure 9.9 only the last element of the ordered collection receives the message.

FIGURE 9.9 Communication diagram with a message being sent to the last element of an ordered set.

9.3.1.4 Visibility by association with qualifiers
I f the association is qualified as a map (only one element for each value of the qualifier),
there are at least two forms of straight visibility:

• Visibility to the set of elements as a whole (as if it were a regular set).
• Visibility to a single element if the object has a key to access the element in the

association role.
Figure 9.10 presents a class diagram with a qualified association from Customer to

CreditCard.

FIGURE 9.10 Class diagram with a qualified association defining a map.

Figure 9.11 shows that in this case, an instance of Customer has visibility to the set of
instances of CreditCard that are linked to it.

FIGURE 9.11 Communication diagram with a message being sent to the structure of the mapped set.

Figure 9.12 shows a message being sent to each of the credit cards in the mapped set.

FIGURE 9.12 Communication diagram with a message being sent to each element of the mapped set.

Finally, Figure 9.13 shows that if the instance of Customer has a key value for the
qualifier (aNumber in the example), then it has straight visibility to the element of the
mapped set qualified by that key value.

FIGURE 9.13 Communication diagram showing an object with straight visibility to a qualified object in a mapped
set.

On the other hand, if the qualified association represents a partition, as in Figure 9.14,
a set of values is associated to each qualifier.

FIGURE 9.14 Class diagram with a qualified association defining a partition.

I n this case, the whole set may be accessed (all the books in the example of Figure
9.15).

FIGURE 9.15 Communication diagram with a message being sent to each element of the partitioned set.

But the use of the qualifier allows for access to books belonging to a given subset
(thriller books, in the example of Figure 9.16).

FIGURE 9.16 Iterative message to each element of a partition of a qualified set.

Both examples in Figure 9.15 and Figure 9.16 show messages that are sent to the set
elements and not to the set structure.

9.3.1.5 Association visibility with association class
As explained in S ection 6.6.2, an association class instance is created and deleted when
links are added and removed from the participating classes’ instances. Thus, if Person has
a unidirectional association to Company and that association has an association class Job,
as shown in Figure 9.17, when a link between instances of Person and Company is added,
an instance of Job is created; and every time a link from Person to Company is removed,
the respective instance of Job is deleted. Therefore, an instance of Person has visibility to
two sets8 with the same size: one with instances of Company, and another with instances
of Job. An instance of Job has visibility only to a single instance of Company.

FIGURE 9.17 Association class.

I f the association in Figure 9.17 were bidirectional, then an instance of Company would
also have visibility to a set of Person and a set of Job. Additionally, any instance of Job
would have visibility to one instance of Person and one instance of Company.

Figure 9.18 represents the visibility that an instance of Person has to the set of instances
of Company. That corresponds to the default visibility obtained for multiplicity *.

FIGURE 9.18 A message being sent to the elements of the set linked by an association with an association
class.

Figure 9.19 represents the visibility that an instance of Person has to a set of instances
of Job, the association class.

FIGURE 9.19 A message being sent to the elements of the set of instances of the association class.

The association class also works as a mapping in a way that is very similar to the
qualified association. The model in Figure 9.17 is equivalent to mapping a job for each
company a person works for. Thus, if an instance of Person has visibility to a specific
instance of Company, it may find its job at the company, as illustrated in Figure 9.20.

FIGURE 9.20 A message being sent to a specific element of the association class.

Also in Figure 9.20, we can see that aCompany must be an instance of Company and that
the instance of Person must have some kind of visibility to it in order to use it to access
the respective instance of Job.

Finally, Figure 9.21 shows the visibility that instances of the association class have to
the instances of the participating classes: a visibility that is strictly one.

FIGURE 9.21 Visibility from the association class instance to one of the participating classes’ instances.

9.3.1.6 The influence of preconditions on visibility by association
When a precondition in a contract states a multiplicity that is more restrictive than the
one allowed in the class diagram, it is the visibility established by the precondition that
must be considered valid in the context of that operation.

For example, consider the class diagram of Figure 9.22, which defines that an order
may or may not have a payment linked to it.

FIGURE 9.22 Association with optional role.

Consider now that a given operation contract has a precondition that states

pre:

 anOrder.payment->notEmpty()
Then, in the context of that operation, and for the specific instance anOrder, a more

restrictive visibility must be considered, as shown in Figure 9.23.

FIGURE 9.23 How the original visibility of Figure 9.22 must be considered for a specific instance if a contract has
a more restrictive precondition.

9.3.2 Visibility by parameter
Visibility by parameter is obtained when an object A, performing a method, receives an
object B as a parameter. I n that case, the object A can communicate to B even if their
classes are not associated.

Consider the example of Figure 9.24, where the Book class has no association to the
Delivery class. Therefore, no instance of Book may send a message directly to an instance
of Delivery or vice versa.

FIGURE 9.24 Reference class diagram.

Consider an instance of Order that is linked to an instance of Book and to an instance of
Delivery as shown in Figure 9.25.

FIGURE 9.25 Initial situation where the instance of Delivery has no direct visibility to the instance of Book.

Now, consider that the instance of Order sends a message registerWeight to the instance
o f Delivery, passing a reference to the instance of Book as an argument, as shown in
Figure 9.26. Then, the instance of Delivery acquires visibility by parameter to the instance
of Book.

FIGURE 9.26 The instance of Delivery acquires visibility by parameter to aBook.

I n the case of visibility by parameter, it should be assumed that the object that sends
the argument originally has some kind of visibility to the object that was sent.

Good design practice demands care with visibility by parameter. This is not the same
kind of coupling that is obtained with visibility by association. With visibility by

association, the participating classes are already coupled by a semantic association, that
is, they are linked anyway because the meaning of one is a ached to the meaning of the
other (for example, an order and its items). But in the case of visibility by parameter, any
object may be passed as a parameter to another object, even if they have absolutely no
relation between them.

Each time a class declares methods with parameters belonging to classes it is not
associated to, a new (and possibly unnecessary) coupling may be created. High coupling
means poor design. Thus, it is convenient to avoid that whenever possible.

The best use for visibility by parameter is to receive and resend objects until they reach
the terminal (basic) operations. I n practice, what happens is that certain objects will be
passed to other objects in a chain until they reach some object that must be linked or
unlinked to them, as in the example below.

I nitially, consider the class diagram of Figure 9.27, with classes Livir (the façade-
controller), Book, Customer, and Reservation.

FIGURE 9.27 Reference class diagram.

Figure 9.28 presents a collaboration where instances of these classes cooperate to
perform the system command reserveBook, which adds a reservation for a given book to a
given customer. The system command, implemented in the controller, is called by the
interface tier, which passes as arguments the I SBN of the book and the I D of the
customer. The controller, initially, gets visibility to the specific instance of Book (message
labeled “1”) by sending to itself a query message on the role book: the message
getBook(anIsbn). Then it gets visibility to the instance of Customer (message labeled “2”)
in a similar way. The instances returned by the messages are assigned to the local
variables aBook and aCustomer. Finally, the controller delegates to the instance of
Customer the reservation of the book (message labeled “3”).

FIGURE 9.28 Creation of visibility by parameter.

The message labeled “3,” reserveBook(aBook), is sent from the controller to the
customer whose I D is aCustomerId. The controller should not be responsible for creating
the reservation because it has no association to Reservation, and thus it delegates the
responsibility to aCustomer. At this point, aCustomer acquires visibility by parameter to
aBook.

At this point, aCustomer can start performing its responsibilities. I t creates a new
instance of Reservation and links it to itself and to aBook. Figure 9.29 shows the
constructor message Create being sent in order to create a reservation with its
initialization parameters: aBook and aCustomer. This message is labeled with 3.1 because
it is called inside the implementation of message 3, which was received by aCustomer.

FIGURE 9.29 A communication diagram where a new instance of Reservation is created.

As a last observation on the example, try to figure out what would happen if instead of
passing the instance of Book to the customer, the controller had passed its I SBN code as
received from the interface. When the instance of Reservation is going to add the book to
its links it would have to obtain the instance, because it cannot just add the I SBN code.
How could the instance of Reservation seek an instance of Book by its I SBN if it has no
access to the set of all books? I t would have to send a message to the controller, asking
for the book. This is not good quality design because the flow of messages in this case
goes back to the controller for no reason. I n the example shown in Figure 9.29, the
controller obtains the book as soon as it gets the original message. There is no motive to
delay it in order to reverse the flow of control later.

9.3.3 Locally declared visibility

Another form of visibility happens when an object sends a query to another and receives
as return a third object, as shown in Figure 9.31. The collaboration is based on the class
diagram of Figure 9.30.

FIGURE 9.30 Reference class diagram.

FIGURE 9.31 An example of the creation of local visibility.

I n the example, an instance of Customer sends a message getPayment to an instance of
Order. The customer and the order are initially linked, but the customer and the payment
are not. However, after the getPayment method is performed, and an instance of Payment
is returned to the customer, it acquires local visibility to the payment, because, at that
point, the payment is assigned to a local variable (aPayment) of the method the customer
is executing.

From this moment on, the instance of Customer acquires local visibility to the payment
and may communicate directly with it.

However, a design pa ern known as Don’t talk to strangers (Larman, 2004)9 does not
recommend that an object send messages to objects that are only locally visible.
According to that pa ern the customer should not send messages to aPayment. As seen
in Section 9.6, there is always a design option that avoids this kind of communication.
The problem here again is high coupling: if the customer acquires local visibility to an
instance of Payment, it acquires a link that is not semantically supported by the
conceptual model. On the other hand, the price to pay for low coupling in this case is
sometimes having to implement more methods, as seen later.

An acceptable use for local visibility occurs when a basic command that creates an
object is invoked. When an object is created, the new instance is usually referenced by a
local variable. That local visibility may be immediately transformed into visibility by
association, as shown in Figure 9.32.

FIGURE 9.32 An example of new local visibility being transformed into visibility by association.

I n the example, the first message is a basic command, a constructor that produces the
instance of Payment. At that moment the instance of Order gets a new local visibility to it,
through the local variable aPayment. The second message links that new instance to the
order, which acquires visibility by association to it.

Both local and parameter visibilities are valid only in the scope of the method that
originated them; just like parameters and local variables in programming languages,
they are only valid inside the methods where they have been declared, and disappear
after the methods go out of scope. But visibility by association is permanent, persisting
until it is explicitly removed by a basic command that removes a link.

9.3.4 Global visibility
There is global visibility for an object when it is accessible by any object at any time. The
singleton design pa ern (Gamma, Helm, J ohnson, & Vlissides, 1995) suggests that an
instance may be globally visible if it is the only instance of a class. This makes sense,
because if that class has only one instance, it is not necessary to create associations from
other objects to it. Also, if that class has a single instance, it is not necessary to pass it as
an argument to a function because the idea with parameters is that they may vary, and
that does not happen if the class has a single instance. Global visibility is the choice in
this case.

Examples of singletons are classes that represent services, such as CurrencyConverter,
TimeCounter, OrderNumberGenerator, etc. There must be a single instance of service
classes that can be accessed by any object at any time. An example is shown in Figure
9.33.

FIGURE 9.33 Global visibility.

If the singleton pattern is overused it may turn into an anti-pattern. Designers must not
use singletons for entities of the conceptual model; for example, if the system is single
user and a single shopping cart may exist at a time, it should not be declared a singleton
because it is a conceptual entity, not a service class. A conceptual entity that is unique
today may admit multiple instances in the future and declaring it a singleton would
hinder the evolution of that class.

Also, a singleton, in principle, should not have direct references to entities, because

that reduces its reusability potential and creates high coupling problems. Service classes
must not be associated to entity classes; they are globally visible but grant access to no
other instances.

9.4 Dynamic modeling based on postconditions
We saw that system command contracts present a set of postconditions that correspond
to certain basic commands for creating and deleting instances, adding and removing
links, and modifying a ribute values. These contracts only indicate what is supposed to
happen, but they do not show how messages are exchanged between objects in order to
achieve those goals. UML interaction diagrams may be used to exactly design how these
collaborations may happen. The following principles are recommended:
• The kind of visibility among objects depends fundamentally on the role features, such

as multiplicity, ordering, and qualification, that are defined in the class diagram and
sometimes further constrained by preconditions (Section 9.3).

• Each postcondition in the contract must be achieved in the interaction diagram by a
message that calls a basic command in the object that holds the responsibility
(Section 9.2).

• The control flow in a dynamic model begins at the instance of the façade controller
that receives a message from the interface.

• When an object that is executing has no visibility to the object that must perform a
basic operation, it should delegate the responsibility and the execution to another
object that is closer to the one that holds the responsibility.

Santos (2007) presents a systematization of those principles by defining an automatic
search-based production system capable of generating well-designed communication
diagrams from a broad selection of contracts.

I n addition to these principles, design pa erns should be applied whenever possible
to help the designer build methods that are effectively reusable and maintainable.

9.4.1 Instance creation
When a contract establishes that some instance was created, some other object must
actually create it by sending a basic create message in the respective communication
diagram. The creator design pa ern (Larman, 2004) states that the choice should be
preferably:
• An instance of a class that has a composite or shared aggregation to the class of the

object to be created.
• An instance of a class that has a one to many association to the class of the object to be

created.
• An object that has the initialization data for the object to be created, and that is

preferably associated to it.
Each rule applies only if the previous one does not apply.
To serve as a reference for the following examples, let’s go back to the operations of

the use case 01: Order books, presented in Chapter 8. The reference conceptual model of
Figure 8.1 is repeated here as Figure 9.34.

FIGURE 9.34 Reference class diagram.

The first system command of the system sequence diagram of use case 01 is
add2Cart(aCartId:CartId, anIsbn:ISBN, aQuantity:Natural). I ts contract establishes that if
the book is not in the cart already, a new item is created and linked to the book and cart.
The item quantity is set to the value received as an argument, and unitPrice is set to the
price of the book. Otherwise, if the book is already in the order, the new quantity is
added to the current one. The contract again is the following:

Context Livir::add2Cart(aCartId:CartId; anIsbn:ISBN; aQuantity:Natural)

 def:aCart=cart[aCartId]
 def:aBook=book[anIsbn]
 def:anItem=aCart.item->select(book.isbn=anIsbn)
 pre:
 aCart->notEmpty() and
 aBook->notEmpty()
 post:
 if anItem->isEmpty() then
 newItem.isNewInstanceOf(Item) and
 aCart^addItem(newItem) and
 newItem^setQuantity(aQuantity) and
 newItem^addBook(aBook) and
 newItem^setUnitPrice(aBook.price)
 else
 anItem^setQuantity(anItem.quantity@pre + aQuantity)
 endif
Among other postconditions, an instance of Item must be created if the book is not yet

in the cart. The question at this moment is: I f the control flow starts at the façade
controller (Livir), which class has to create an instance of Item? The options are:

• The façade controller itself, which already holds the control flow (it would be the
choice of novice designers).

• An instance of the Book class, because it has a one-to-many association to Item.
• An instance of the Cart class, because it is a composite aggregation of Item.

I f the controller option is chosen, then a coupling that did not exist before between it
and the class Item would be created. That would be a bad choice for design.

Following the creator design pa ern, the best choice would be Cart. The association
between Item and Book is normal while the association between Cart and Item is a
composite aggregation.

For the first version of the communication diagram, let us forget for a while the
conditional if, and the postconditions that add links and change a ributes values. Let us
concentrate on creating an instance of Item.

The first task for the designer is to obtain the correct instance of Cart given its I D , and
delegate to it the creation of the new instance of Item. This is shown in Figure 9.35.

FIGURE 9.35 Communication diagram that shows an instance being created.

This diagram implements only one postcondition: creation of an instance of Item.
I nitially, the controller must determine which cart is given aCartId. This is performed by
the message labeled “1,” getCart, which queries the cart role of the controller Livir and
stores the resulting instance in the variable aCart, which is a local variable for the system
command add2Cart that is being modeled. As the precondition aCart->notEmpty() assures
that aCartId is valid, the dynamic model does not need to check it again.10

I n the sequence, the message labeled “2,” createItem, delegates to the cart the
responsibility of creating an item, because the controller does not have any association to
Item. I f the controller has created the new item without delegating, then Livir would need
to be coupled to class Item and issues related to high coupling would occur. The
parameters of createItem were left to be added later as they are not yet necessary.

Finally, the instance of Cart achieves the postcondition by sending a basic message
Create, labeled “2.1” in the diagram, which produces a new instance of Item. This instance
is stored in a variable named newItem that is local to the createItem method in the Cart
class.

S ome designers would prefer to visualize the collaboration among objects shown in

Figure 9.35 as a sequence diagram. Figure 9.36 presents a sequence diagram that is
equivalent to the communication diagram of Figure 9.35.

FIGURE 9.36 Sequence diagram equivalent to the communication diagram of Figure 9.35.

The sequence and communication diagrams used for dynamic modeling here have
three kinds of messages:

• A message that invokes a system operation, which is sent by the interface and received
by the controller: add2Cart in the example.

• Basic messages that invoke operations that need not be refined further: getCart and
Create in the example.

• Delegate messages that may be used when an instance does not have visibility to the
object that must perform a responsibility: createItem in the example.

The first and second types of messages are always present in those diagrams. The
message that invokes the system operation is the root of the messages tree of the
dynamic model. The basic messages are the leaves of the messages tree, which
correspond to the final object queries and updates.

Basically, there is one basic message for each individual postcondition. Those
messages are basic in the sense that they do not need to be refined further: the control
flow ceases when they are reached.

The third kind of messages referred to above, delegate messages, are optional. They may
be used if the controller, instead of sending the basic messages itself, has to delegate
responsibilities to other objects that have more immediate visibility to the objects that
must be queried or updated.

D elegated messages are the branches of the messages tree, and the flow usually must
continue after them. The message flow only finishes when a basic message is reached.

9.4.2 Link addition
I t was mentioned that when an instance is created, it must be immediately linked to
another instance so that it may be accessible from the façade controller. The contract for
add2Cart presented in Section 9.4.1 states that the recently created instance of Item must
be linked to a book and an order. Figure 9.37 shows an evolution of the dynamic model
with those two postconditions being achieved.

FIGURE 9.37 Evolution of the model in Figure 9.35 showing the addition of links.

Now, when the cart is performing the createItem method, it creates the new item
(message 3.1), adds a link between itself and the new item (message 3.2), and adds a link
between new item and the book identified by anIsbn (message 3.3).

This design could be acceptable because it reproduces almost literally what is specified
by the contract. However, this would be the case only if the code generated by that
design would not be manually changed later. I f the final programming code is going to
be directly changed some time in the future then additional precautions must be taken,
and that is almost always the case.

The problem is that when an Item is created by a basic constructor with no parameters,
it is not consistent with its definition until every mandatory a ribute and link is defined
for it. I n the case of Figure 9.37, newItem is inconsistent in the interval between messages
3.1 and 3.3. The solution to this problem is to avoid having the constructors return
inconsistent objects. The constructor in this case has to receive all parameters that are
needed to generate a consistent instance. Therefore, the Create constructor is not simply
a basic message in the initial conception of the term, because it must be further refined.
Figure 9.38 shows a new version of the dynamic model where the constructor of Item
produces an instance with the necessary mandatory associations.

FIGURE 9.38 A variation of the model of Figure 9.37 where the constructor of Item produces a consistent
instance.

Now, even if the final programming code is changed manually in the future, the
designer knows that anytime an instance of Item is used it is consistent to its definition.

9.4.3 Attribute value modification
Another kind of postcondition that must be considered in dynamic modeling is the
attribute value modification, which may be achieved by the basic setter message that can be
sent by the object that owns the a ribute or by one of its neighbors. Continuing the
example, the quantity a ribute of the new instance of Item must be filled with the
respective aQuantity parameter of add2Cart, and the unitPrice a ribute of Item must be
initialized with the respective book price, as stated by the initial value declaration for
that a ribute in the diagram. These postconditions are added to the diagram and shown
in Figure 9.39.

FIGURE 9.39 Evolution of the model in Figure 9.38 showing attributes being changed.

9.4.4 Instance destruction
The destruction of an instance is dynamically modeled by sending a destroy basic
message to an object. The same principles of the creator design pa ern apply here: the
object that destroys an instance must have a shared or composite aggregation
relationship with the object that is supposed to be destroyed, or an association from one
to many, or, at least, be associated to the object.

Care must be taken to avoid leaving objects with mandatory links inconsistent after an
object is destroyed. I f the contract is well formed no orphan objects will be left, and the
communication diagrams only need to represent the postconditions that are mentioned
in the contract.

Figure 9.40 presents a dynamic model for the CRUD delete command for an instance of
Book. The contract assumes that only I SBNs of instances that can be deleted may be
passed as an argument:11

FIGURE 9.40 Communication diagram with an object being destroyed.

Context Livir::deleteBook(anIsbn:ISBN)

 pre:
 book[anIsbn]->notEmpty() and
 book[anIsbn].item->isEmpty()
 post:
 book[anIsbn]^destroy()

9.4.5 Removing and replacing a link
When a postcondition establishes that a link must be removed, some object in the
dynamic model has to send a remove basic message to one of the participating instances.
Figure 9.42 shows an example of a dynamic model, based on the class diagram of Figure
9.41, where a link is removed and replaced by another; it is the dynamic version of the
following contract that specifies how a car changes its owner:

FIGURE 9.41 Reference class diagram.

FIGURE 9.42 Communication diagram with a link replacing command.

Context Control::

 changeOwner(newOwnerId:IdNumber,aLicense:CarLicense)
 pre:
 person[newOwnerId]->notEmpty() and
 car[aLicense]->notEmpty
 post:
 car[aLicense]^removeOwner() and
 car[aLicense]^addOwner(person[aNewOwnerId])
As the owner role has multiplicity 1, the command removing the link does not require

the specification of the parameter.
Also, as the role has multiplicity 1, a new basic message to replace the association

could be created instead of the remove/add sequence. That message could be called
setOwner(newOwner:Person) or replaceOwner(newOwner:Person), and it would be thread-
safe. The remove/add sequence may be dangerous if in the short time between those
commands some other process (thread) makes a query on the object that is in a
temporarily inconsistent state. I f a single command such as replace is used instead and if
it is assured that while it is being performed the object is locked even for reading, then
the dangerous situation described above would not occur.

9.4.6 Conditional postconditions
As explained before, sometimes a postcondition must be obtained only if the given
conditions are valid. I n these cases, it is possible to use conditioned messages in
interaction diagrams that are similar to the guard conditions used in machine state and
activity diagrams.

Resuming the add2Cart example, the conditional expression verifies if the cart already
has one item with the book. That expression does not qualify as a derived a ribute
because it is parameterized (it is Boolean, but its value depends on the book), and

therefore it may be defined as a normal query in the Cart class:

Context Cart::includeBook(aBook:Book):Boolean

 body:
 item.book->exists(aBook)
Figure 9.43 shows the evolution of the model of Figure 9.39, now testing if a book

already belongs to the cart or not. Notice that message 3 was renamed insertItem, because
it is not just creating a new item anymore: it may be created or incremented.

FIGURE 9.43 A complete draft of a dynamic model for the add2Cart contract.

I f the conditional is simply an “implies,” then a conditional message would be
sufficient in the diagram. But if the conditional involves a structure of the if-then-else-
endif kind, as in Figure 9.43, two mutually exclusive conditional messages must be used.
In Figure 9.43, message 3.1 is executed only if includeBook(aBook) is true, and message 3.2
is executed only if that condition is false.

Notice that messages 3.1.1 to 3.1.5 are subordinated to 3.1 and they are executed only if
3.1 is executed. S imilarly, messages 3.2.1 and 3.2.2 are subordinated to 3.2 and are
executed only if 3.2 is executed.

Message 3.2.1, selectItemFor, is another query that is useful for the Cart class. I t may be
defined as

Context Cart::selectItemFor(aBook:Book):Item

 body:
 item->select(book=aBook)
Message 3.2.2 is also important: if only basic messages (as defined earlier) were used,

instead of message 3.2.2, a sequence of currentQuantity:=getQuantity() and
setQuantity(currentQuantity+aQuantity) would be used. However, that construction is not
thread-safe. Unless concurrency is perfectly controlled, that sequence of messages could
leave the quantity in an inconsistent state if it is updated between those two messages by
another process. Thus, usually, instead of performing a sequence of get and set to

increment numeric a ributes, it is preferable to define an increase basic message that
simply adds the quantity passed as a parameter to the respective numeric attribute.

Up to this point, dynamic modeling produced two new queries for the Cart class:
includeBook and selectItemFor. I t also produced two delegate methods for the Cart class:
insertItem and incrementItem. For the Item class, a constructor was defined, and as the
quantity item must be incremented, a new basic message was defined too:
increaseQuantity. The other messages in the diagram such as getCart, setQuantity, etc., are
all basic messages.

However, another concern must be addressed now: Are the items, after their creation,
supposed to change? This question is related to the immutability design pa ern that
establishes that an object that is not supposed to change should not implement public
update methods. Specifically, in the case of the Item class, which has an instance created
in Figure 9.43, we must consider if its book, cart, price, or quantity may be changed later.
That depends, of course on other dynamic models that will be constructed for other
system operations, but we can assume now that quantity and unitPrice may change while
the linked book and cart are immutable. Therefore, the item must not leave addBook and
addCart as public methods. Private methods may be declared in UML class diagrams by
adding a minus (“−”) sign before the method name. They are shown in the diagram in
Figure 9.50. Private methods exist but can be called only by the instance that owns them;
for other objects they are not accessible.

9.4.7 Exceptions
Conditionals may also be used to model exceptions. Consider again the contract for
deleting a book, but this time, instead of assuring that the book may be deleted by
precondition, an exception is raised if the book is linked to at least one item:

Context Livir::deleteBook(anIsbn:ISBN)

 pre:
 book[anIsbn]->notEmpty() and
 post:
 book[anIsbn]^destroy()
 exception:
 book[anIsbn].item->notEmpty() implies
 Exception.throw(‘Cannot delete a book that was sold’)12

Exceptions usually are the first conditions to be tested in the dynamic model, because
if one of them occurs, all other postconditions must not be obtained. Thus, a conditional
message would be used to test the exception condition before anything else.

The diagram in Figure 9.44 shows how to test and raise an exception if the book has
items.

FIGURE 9.44 A dynamic model for a contract with an exception.

The model in Figure 9.44 assumes that the throw message is terminal, that is, the
execution of the system operation is interrupted by it. This means that if the exception
condition is true, message 3 (the actual destructor) is not executed.

9.4.8 Postconditions over collections
When system commands have contracts with postconditions that specify updates over
collections of objects, the iteration structure may be used in the communication diagram
to indicate that a message is iteratively sent to all of the elements in the collection. For
example, the following system command increases the price of every book by aPercentage:

Context Livir::raisePrices(aPercentage:Percentage)

 post:
 book->forAll(aBook|
 aBook^setPrice(aBook.price@pre*(1+aPercentage))
)
The diagram in Figure 9.45 is a dynamic model for that contract.

FIGURE 9.45 Dynamic model for a contract with a postcondition over a collection of objects.

Again, the choice to define a new basic message raisePrice instead of a sequence of
getPrice and setPrice is because it is thread-safe. The basic message raisePrice changes the
value of the attribute price by multiplying it by 1 plus the parameter aPercentage.

Another common situation occurs when the iteration must not occur over every object
in the collection, but only over those that satisfy a given condition. The following
command raises by aPercentage the prices of books with more than aPageCount pages:

Context Livir::raiseThickBooks(aPercentage:Percentage; aPageCount:Natural)

 post:
 book->select(pageCount>aPageCount)->forAll(aBook|
 aBook^setPrice(aBook.price@pre*(1+aPercentage))
)
The communication diagram for that contract is shown in Figure 9.46.

FIGURE 9.46 Communication diagram with iteration and selection.

9.5 System queries
The system query contracts usually define only combinations of data that are obtained
from the objects. I t is possible, although not always useful, to develop communication or
sequence diagrams for such contracts, as, for example, the communication diagram of
Figure 9.47 that was built for the contract of the listBooks system query below:

FIGURE 9.47 Collaboration diagram for a system query.

Context Livir::listBooks():Set

 body:
 book->collect(aBook|
 Tuple {
 isbn=aBook.isbn,
 title=aBook.title,
 authorsName=aBook.authorsName,
 price=aBook.price,
 pageCount=aBook.pageCount,
 publisherName=aBook.publisher.name,
 coverImage=aBook.coverImage,
 quantityInStock=aBook.quantityInStock
 }
)
The most difficult aspect related to these diagrams when they are used to model

system queries is that they do not ease the representation of data composition. For
example, in Figure 9.47 the controller sends eight messages to each instance of Book; each
message produces a different return. What does the controller do with all those values?
We know, from the contract of the query, that it forms a tuple with the eight values and
groups the tuples into a set that is the final return data for the query. But representing
that on the diagram would only repeat what is already known in the contract. Therefore,

the utility of these diagrams in the case of queries is limited.
There are some important issues about modeling queries, however. First of all, three

types of query messages may be identified:
• The system query, which is implemented in the controller and is called directly by the

interface. As the domain objects are encapsulated into the domain tier and the
interface deals with fields and buttons, system queries should receive alphanumeric
data as parameters and return alphanumeric data as well.

• Basic queries, which consult actual attributes and links corresponding to the basic get
queries.

• The intermediate queries, which correspond to the derived attributes and associations.
Derived attributes return alphanumeric data and derived associations return objects
or data structures holding objects. Another type of intermediary query is the
parameterized query, which cannot be defined as a derived attribute or association,
such as includeBook in Figure 9.43.

I n Figure 9.47, the only intermediary query is getPublisherName, sent by the controller
to the book. The book, during its turn, sends the basic query getName to its publisher.
Thus, publisherName may be considered a derived attribute of Book.

With regard to the question, “Should the intermediary query return the publisher
name or the publisher itself?” some considerations must be taken into account:
• If a single attribute of an object is needed, avoid returning the object, because it may

generate a risk of nonconformance to the “Don’t talk to strangers” pattern. If a single
alphanumeric value is needed, then it is better to define it as a derived attribute such
as publisherName in the Book class.

• When a set of attributes or values must be obtained from one or more objects, and the
intention is to operate over them, for example, performing a sum, or finding the
highest value or the average, it is preferable to perform the operation on the class that
has the most immediate access to the values. In other words, the operation should be
performed as soon as possible, and the already processed result should be returned
as a derived attribute. For example, totalValue, which is a derived attribute of Cart,
must be calculated by the cart itself, not by the customer or the controller. It would be
a bad design if the cart returned the items to the controller for it to perform the sum
over the subtotals.

• When collections of values with a complex structure must be returned and cannot be
transformed into a single alphanumeric value, it is preferable to return that
information as a collection of objects, defining it as a derived association, because
that way, the methods that the classes already have to perform calculations and
operations over the data remain available. However, this choice can possibly create
more coupling, and it must be used only if the other choices are really not applicable.

9.6 Delegation and low coupling
To this point, we have seen some techniques for building communication diagrams. But
in most situations there is more than one design option, and more than one way to send

a message.
As discussed earlier, sometimes the object that has control does not have visibility to

the object that can perform the responsibility. I n this case, two opposite design
approaches can be identified:

• The object that has control tries to obtain a reference to the object that can perform
the responsibility, and communicate directly with it.

• The object delegates the message to another object that is closer to the object that can
perform the responsibility.

I n order to understand the difference between these two approaches, imagine that
Mary is the boss of Peter. The boss wants to order a buffet for the office party, but she
does not know any catering companies. The boss knows that Peter has contact with some
catering companies, and then, two approaches are possible:

• The boss asks Peter for the phone numbers of the companies and makes the
arrangements herself. The only thing that Peter does is to pass his contacts to the
boss.

• The boss sends Peter the parameters for the party: how many people, what kind of
food, how much to spend, etc., and asks Peter to do the arrangements. The party
happens, and the boss was never informed about the catering contact: he delegated to
Peter.

Although in real life it may be interesting to make contact with many people and
companies, this is not the case in object-oriented systems. When objects are highly
coupled, the system is more complex than it really needs to be. Thus, it is necessary to
avoid creating connections between objects that were not connected in the first place.

The first approach discussed just above is called concentration. With it the object that
has execution control manages to obtain references to all objects needed and performs
the operation itself. The second approach is called delegation, and it consists of making
the objects delegate responsibilities when they cannot perform them. The second
approach is usually preferable, because it provides more potential for reusing classes and
methods, because the intermediary queries or delegated methods that this approach
creates usually are reusable.

A concrete example of this is shown below. Consider a system query getCartTotal
defined as follows:

Livir::getCartTotal(aCartId:CartId):Money

 body:
 cart[aCartId].item->sum(quantity*unitPrice)
The system query contract above has as objective of obtaining the total value of a given

cart (the definition of the contract intentionally does not use the derived a ributes
defined in Figure 9.34, assuming that they are not yet defined). This value must be
calculated from the value and quantity of each of the items of the order.

With the concentration approach, the whole process would be implemented in the
Livir class. This class would obtain all necessary data to perform the calculation and
return the result to the interface. The concentration communication diagram has all the

messages that are sent by Livir. No delegation happens, as no object sends messages
besides the Livir instance. The pseudocode for that system query could be described as
follows:

CLASS Livir

 ASSOCIATION VAR carts:MAP[CartId->Cart]
 …
 METHOD getCartTotal():Money
 LOCAL VAR aCart:Cart
 LOCAL VAR cartsItems:SET<Item>
 LOCAL VAR total:Money
 aCart:=carts.at(aCartId)
 cartsItems:=aCart.getItem()
 total:=0
 FOR EACH item IN cartsItems DO
 total:=total+(item.getValue()*item.getQuantity())
 END FOR
 RETURN total
 END METHOD

END CLASS

We can take the following away from this code:
• It solves the problem.
• It produces no reusable software element besides the query itself that is implemented

in the Livir class.
• It increases coupling among classes, because Livir acquires visibility to Item, which

was not the case in the class diagram of Figure 9.34.
By using the delegation approach, the query can be implemented correctly as well, but

at the same time, new reusable structures with more cohesion and less coupling are
created.

I n the first place, the Livir class must be prevented from having access to any instance
o f Item, since there are no connections between those classes in the class diagram. I n
order to perform the required responsibilities, Livir must delegate the calculation to the
cart. As the return value is Money (a specific alphanumeric), creating this intermediate
query for the Cart class is equivalent to defining a derived a ribute for it with the
following OCL specification:

Context Cart::total:Money

 derive:
 item->sum(subtotal)
Besides creating a derived a ribute in Cart, a derived a ribute should also be created

in the Item class, in order to return the subtotal:

Context Item::subtotal:Money

 derive:
 unitPrice*quantity
Now, with those two derived a ributes, the pseudocode may be defined with

responsibilities distributed among the classes:

CLASS Livir

 ASSOCIATION VAR carts:MAP[CartId->Cart]
 …
 METHOD getCartTotal(aCartId:CartId):Money
 RETURN carts.at(aCartId).getTotal()
 END METHOD

END CLASS

CLASS Cart

 ASSOCIATION VAR items:SET<Item>
 …
 METHOD getTotal ():Money
 LOCAL VAR total:Money
 total:=0
 FOR EACH item IN items DO
 total:=total+item.getSubtotal()
 END FOR
 RETURN total
 END METHOD

END CLASS

CLASS Item

 ATTRIBUTE VAR quantity:Natural
 ATTRIBUTE VAR unitPrice:Money
 …
 METHOD getSubtotal():Money
 RETURN quantity*unitPrice
 END METHOD

END CLASS

With that approach, most of the calculation happens in the class that effectively has
the most immediate access to the necessary information, which is Cart. Thus, the

calculation procedure here is more reusable than the one produced by the concentration
approach, because it is now inside the Cart class. I f the Cart class is reused it can
calculate its own total without depending on a class that is not a component of it (Livir).
The same is true for Item, which now knows how to calculate its own subtotal.

I n the case of system commands, the low coupling principle is also obtained when the
designer chooses to delegate instead of returning an object. Consider again the class
diagram of Figure 9.34, but suppose that the role from Cart to Item is marked with
{ordered}. The communication diagram of Figure 9.48 shows the system command
deleteLastItem, using the concentration approach. Figure 9.49 shows the same command
with the delegation approach, avoiding unnecessary coupling among classes.

FIGURE 9.48 Concentration design style.

FIGURE 9.49 Delegation design style.

The price for using delegation is usually having more methods declared in the
intermediary classes. However, reusable methods are usually produced to counteract this
issue. The price for using the concentration approach is having a design where
responsibilities are concentrated in the façade controller instead of being distributed
among the objects; this produces a model that is hard to evolve and maintain in the long
term.

9.7 Design class diagram
One of the goals of the logical design is to build and refine the design class diagram
(D CD), which is created from the conceptual model and from information obtained
during dynamic modeling (when the interaction diagrams for the contracts are being
built).

The first version of the D CD is an exact copy of the conceptual model, which will be
modified later. The basic modifications that are made in the D CD during domain tier
design are the following:
• Methods are added. During analysis, only system commands and queries were

discovered and added to the façade controller class. During design, delegate and
basic methods belonging to other classes are added.

• Associations are directed. During analysis, associations were nondirectional. During
design their direction is determined by the direction of the messages flowing between
objects in the interaction diagrams.

• Attributes and associations may be detailed. It is not mandatory to present details about
attributes and associations during analysis. These details may be added during
design. Additionally, in analysis only abstract data types are used to specify
association roles, and they may be replaced by concrete data types during design (for
example, replacing sequence by array list or linked list).

• The structure of classes and associations may change. It may be necessary to create new
classes to implement certain design structures, such as strategies and services, for
example. Thus, it is possible that the class structure of the DCD does not correspond
exactly to the structure of the conceptual model, in some cases.

• Possible creation of protected and private attributes. In the conceptual model all attributes
are public, because they represent static information and not behavior. However,
when the dynamic aspects of objects are represented, it may be necessary to work
with private attributes in order to encapsulate internal states that determine the
behavior of some objects. These attributes sometimes may not be directly accessible
through a getter or setter, but their influence on some methods is felt.

D uring the construction of a communication diagram, each time an object receives a
delegated message, its class must implement the corresponding method.

In Figure 9.43, the communication diagram shows that a number of messages must be
implemented as methods in some classes:
• Livir must implement:

• add2Cart(aCartId:CartId, anIsbn:ISBN, aQuantity:Natural) – the system command.
• getCart(aCartId:CartId):Cart – basic query.
• getBook(anIsbn):Book – basic query.

• Cart must implement:
• insertItem(aBook:Book, aQuantity:Natural) – delegate command.
• includeBook(aBook:Book):Boolean – query or predicate.
• incrementItem(aBook:Book, aQuantity:Natural) – delegate command.
• selectItemFor(aBook:Book):Item – query.

• Item must implement:
• Create(aBook:Book, aCart:Cart, aQuantity:Natural) – constructor.
• addBook(aBook:Book) – private basic command.
• addCart(aCart:Cart) – private basic command.
• setQuantity(aQuantity:Natural) – basic command.
• increaseQuantity(aQuantity:Natural) – basic command.
• setUnitPrice(aValue:Money) – basic command.

• Book must implement:
• getPrice():Money– basic query.

The D CD may also include information about the direction of the associations if the
designer chooses not to implement every association as bidirectional. This is usually the
case because unidirectional associations tend to be simpler to implement and more
efficient when compared to bidirectional associations.

D eciding whether an association is unidirectional or bidirectional depends on the flow
of messages on the interaction diagrams. No association should be, in principle,
navigable in the direction of the controller: the controller sees the classes, but they do
not see it. Other associations may be unidirectional if the messages only flow in one
direction, and bidirectional if messages flow in different directions, even if that occurs in
different diagrams. Figure 9.50 presents an evolution of the diagram in Figure 9.34 where
methods and association directions discovered in the dynamic model of Figure 9.39 are
included.

FIGURE 9.50 Design class diagram with methods and association direction.

Not every association in Figure 9.50 is directed because the diagram in Figure 9.39
shows messages being sent just from the controller to Cart, Cart to Item, and Item to Book.
Associations that were not followed by messages in the communication diagram are left
undefined until another diagram eventually decides on their direction.

I f other collaboration diagrams developed for different system operations require
messages navigating in the opposite direction as those that were already discovered, then
the respective associations should be bidirectional.

As the direction of the associations depends on the direction of the messages sent in
the dynamic models, it would not make sense to try to define that direction during
preliminary conceptual modeling (Chapter 3). At that time the information available is
insufficient to make those design decisions. The same is valid for deciding on which
methods a class must implement.

I t is assumed by default that unidirectional associations have no restrictions on their
origin. However, that is not always the case. I t is true, for example, for the association
from Item to Book, which has no multiplicity restriction at its origin. But the association
from Cart to Item is restricted at the origin, because it demands that an item is linked to
exactly one cart. I f the association is implemented simply as a variable in the Cart class
holding a set of Items, then that constraint would not be easily assured. This is why, in
the next chapter, unidirectional associations with restrictions at the origin are handled as
bidirectional associations: they may not be navigated in both directions, but they must
be implemented at both ends.

The logical design activity finishes when the D CD has enough information to
implement the domain tier classes. That usually happens when all system operation
contracts have been examined and their dynamic models incorporated into the design.

9.8 The process so far

9.9 Questions
1. What are the six kinds of responsibilities that objects may have? What kind of method

is used to perform each responsibility?
2. What are the four kinds of visibility that may exist between objects? Are they

symmetrical? How does each of them influence high coupling among classes?
3. Read again the last paragraph of Section 9.3.2. Try to draw a communication diagram

that illustrates that situation. Why is it a worse design than the diagram presented in
Figure 9.29?

4. Explain the influence of contract preconditions and exceptions in dynamic models.
How do they affect the complexity of the dynamic model?

5. Draw a sequence diagram equivalent to the one in Figure 9.43.
1That is valid for normal attributes belonging to classes of the conceptual model, though. During the construction of the
DCD, new design attributes that represent the internal state and influence the behavior of an object may become
necessary and those attributes do not necessarily have to be accessed by other objects: in that case, they should not have
getters (they are private or protected).
2Remember that not every attribute must have a setter. Immutable attributes should not have a setter. Derived attributes
never have setters, and private attributes also should not have public setters.
3The add and remove prefixes could be used here even for associations to 1, because conceptually they are links like any
other. However, usually associations to 1 do not implement commands such as add and remove: they implement the set
or replace command instead, which can replace the current mandatory link with another, leaving the role always
consistent.

4It could be considered that a 0..1 role is filled with a single object or a null value. However, that is not coherent with the
interpretation of other multiplicities such as, for example, 0..2 or *, where 0 stands for the empty set and not for the null
value. To avoid such inconsistency it is preferable to consider that multiplicity 0..1 refers to a set that can be empty or
contain a single element.
5And additionally to a set that contains an order, even if that option would not be used often.
6A set by default.
7In this text it is assumed that the operations available for sets and other collections are the ones defined by OCL (Object
Management Group, 2010). However, if different languages or packages are used, a different set of operations would be
available.
8The association probably would be physically implemented not as two sets, though (see Chapter 10). Here the visibility
means that two sets of objects may be obtained by an instance; this does not mean that they are implemented like that.
9A summarization of the Law of Demeter (Lieberherr & Holland, 1989)
10This is true in normal conditions. However, if the system is subjected to complex race conditions and if security is a big
issue, sometimes double-checking would be advisable.
11For example, the delete command could be called only for books selected from a list that contains only books that can
be deleted, i.e., books with no items linked to them.
12Usually exceptions would not receive the very message as a parameter, but an exception code that refers to a list of
messages. However, to keep examples simpler they are left here as they are.

C H AP T E R
E 1 0
Code Generation

This chapter presents some techniques to automatically or systematically generate source code from design
diagrams, specifically for the design class diagram and communication diagrams. S tructural rules are presented to
explain how code may be generated for a class’s structures, such as a ributes and associations. A significant part of
the chapter is dedicated to the explanation of the many kinds of associations and the code generation pa erns
available for them. Finally, the chapter explains how running code may be generated for interaction diagrams that
represent dynamic models.

Keywords
Automatic code generation; delegation; implementation; programming

Key Topics in this Chapter:
• Code generation for classes, attributes, and associations
• Code generation for delegated methods and system operations
• Patterns for filtered queries

10.1 Introduction to code generation
T h e Implementation discipline of UP includes code generation activities for design
models. I t is necessary to generate code for the classes from the domain tier, and also for
the other technological tiers of the system. This chapter concentrates on code generation
for the domain tier.

Once the communication diagram and the D CD are produced, code generation is an
activity that may be systematized to a point that it can be practically done automatically.
Automatic code generation is feasible for domain classes, which perform all the logical
processing specified by the system operation contracts.

This chapter presents rules for code generation for the D CD and communication
diagrams. Examples are presented in pseudocode, which may be translated to most
programming languages (preferably object-oriented ones).

10.2 Classes and attributes
D CD classes are usually directly converted into programming language classes. Class
attributes are converted into private instance variables in the respective class.

As explained in Chapter 6, a ribute types should be alphanumeric (such as Integer,
Real, String, Boolean, etc.), primitive (such as Date, Money, Isbn, etc.), or enumerations
(such as CalendarDay, Gender, PhoneType, etc.).

I f other objects can access the a ribute then it should be implemented with a ge er
method. I f the a ribute can be updated then it must be implemented with a se er,
which can be a straight setAttribute method or another type such as incrementAttribute if
the a ribute is numeric, for example. Figure e10.1 presents an example of a design class
that is used to show how programming code is generated.

FIGURE E10.1 A reference class for code generation.

The following code corresponds to the pseudocode implementation of the class shown
in Figure e10.1. First, the a ributes of the class are transformed into programming code
private attributes:

CLASS Book

 PRIVATE ATTRIBUTE VAR isbn:Isbn
 PRIVATE ATTRIBUTE VAR title:String
 PRIVATE ATTRIBUTE VAR authorsName:String
 PRIVATE ATTRIBUTE VAR price:Money
 PRIVATE ATTRIBUTE VAR pageCount:Natural
 PRIVATE ATTRIBUTE VAR coverImage:Image
 PRIVATE ATTRIBUTE VAR quantityInStock:Natural
 …
Observe that all a ributes, except for publisherName, which is derived, are defined as

pseudocode a ributes. Most languages would not differentiate ATTRIBUTE VAR from
ASSOCIATION VAR. I n this book those names are used to make a clear distinction
between variables that represent a ributes and variables that implement association
roles. However, for most languages any instance variable would be simply declared as
VAR, or an equivalent language specific expression.

On the other hand, most languages differentiate between PRI VATE and PUBLI C
variables and methods. Whenever private variables are allowed, they are the best choice,
because this way, a ributes are encapsulated into the object, and they may not be
changed by objects that have no authorization to do that.

Now, we must consider how the class attributes are going to be updated. Some of them
can be updated virtually at any time, while others should be defined only at creation time
and prevented from changing after that: these are immutable a ributes . I n Figure e10.1
a ributes that must not be changed after the object is created are stereotyped as

immutable .
A set of setters and one1constructor may be defined following these recommendations:

• The constructor must receive as parameters the initial values for all attributes that are
not optional, derived or with a defined initial value (if any).

• The implementation of the constructor initializes attributes with initial values with
the respective values (if any).

• The constructor must receive as parameters the objects to fill the mandatory roles (if
any) of the associations (later this will be shown in a more complete example).

• Only attributes that are not derived and immutable should define one or more setters
(setAttribute, incrementAttribute, etc., depending on the case).

Thus, the following code may be created as a continuation of the definition of the
implementation class that started above:

 …
 CONSTRUCTOR METHOD create(anIsbn:Isbn; aTitle:String,
 anAuthorsName:String; aPrice:Money; aPageCount:Natural)
 isbn:=anIsbn
 title:=aTitle
 authorsName:=anAuthorsName
 price:=aPrice
 pageCount:=aPageCount
 quantityInStock:=0
 END CONSTRUCTOR METHOD
 METHOD setPrice(aPrice:Money)
 price:=aPrice
 END METHOD
 METHOD raisePrice(aPercentage:Percent)
 price:=aPrice*(1+aPercentage)
 END METHOD
 METHOD setCoverImage(aCoverImage:Image)
 coverImage:=aCoverImage
 END METHOD
 METHOD increaseQuantityInStock(anIncrement:Integer)
 quantityInStock:=quantityInStock+anIncrement
 END METHOD
 …
Notice that inside the constructor, each a ribute is assigned to the respective

argument and that quantityInStock is assigned 0 (its initial default value).
Only three a ributes may be updated. The a ribute price has two se ers: setPrice,

which defines a brand new price independent from the original one, and raisePrice, which
raises the price by a percentage.

T he quantityInStock a ribute is updated only by adding an increment to it. As the
anIncrement parameter may be negative, decrements may be done with this method as

well.
Let us suppose now that the design produced interaction diagrams that demonstrate

that all a ributes of this class must be accessed by other objects. I n this case, all
a ributes must implement a getter method, even the derived a ribute. Thus, the
following code may be a continuation of the code started above:

 …
 METHOD getIsbn():Isbn
 RETURN isbn
 END METHOD
 METHOD getTitle():String
 RETURN title
 END METHOD
 METHOD getAuthorsName():String
 RETURN authorsName
 END METHOD
 METHOD getPrice():Money
 RETURN price
 END METHOD
 METHOD getPageCount():Natural
 RETURN pageCount
 END METHOD
 METHOD getPublisherName():String
 RETURN …2

 END METHOD
 METHOD getCoverImage():Image
 RETURN coverImage
 END METHOD
 METHOD getQuantityInStock():Natural
 RETURN quantityInStock
 END METHOD
At this point the reader could be asking why authorsName is still an a ribute typed as

String and not a class with a many-to-many association to Book. The reason is that the
example is simulating an ongoing project and not the final version of it. Up to this point,
the only use cases examined did not require authors to be addressed as a complex
concept. The authorsName a ribute is perfectly adequate for the functionalities
discovered to this point. We may even believe that this would change as other use cases
are examined in the future, but as William of Ockham (1495) said “Numquam ponenda est
pluralitas sine necessitate” (plurality must never be posited without necessity). This also
adheres to the agile principle of never implementing functionality before it is necessary
just because it would be easy to do so now.

10.3 Unidirectional associations

10.3 Unidirectional associations
Unidirectional associations with no multiplicity constraints at the origin and
unidirectional associations from singletons such as the façade controller may be
implemented similarly to a ributes as instance variables, and if necessary they should
have methods for updating and querying.

However, if there are multiplicity constraints at the origin role, these associations must
be handled as bidirectional, even if they are navigable only in one direction. Figure e10.2
shows an example of that situation, where although the association is only navigable
from Car to Person, every car must be linked to a single person. I f the association is
implemented as an instance variable in the Person class, it will be hard to assure that a
car belongs to a single person.

FIGURE E10.2 Unidirectional association with multiplicity constraint at the origin role.

There are still some considerations we must discuss about the differences between an
a ribute and a unidirectional association. First, a ributes are always implemented by
variables whose types are alphanumeric, primitive, or enumerations. Associations, on the
other hand, are implemented by variables whose types are domain classes (in the case of
associations to one) or data structures (in the case of associations to many).

I n addition, considering different role multiplicities and other features of associations,
there are distinctions to be made regarding the methods to be implemented for each
type of association.

Code generated for transient or persistent associations and a ributes is the same. The
only difference between these kinds of elements resides in the way they are stored.

I n general and if necessary, a class may implement three kinds of methods for each
association:
• Methods to add links: Usually referred to as addRole.
• Methods to remove links: Usually referred to as removeRole.
• Methods to get linked objects. Usually getRole would be implemented to return the

whole set of linked objects. This set must be protected in the sense that it may be
consulted and its elements may be iterated, but no element can be added or removed
from the original set. Additionally, methods to get a specific element or subset given
a key or other search criterion may be implemented if necessary.

Usually associations to one may be implemented as a single variable and not as a
collection. I n this case, the addRole and removeRole methods do not apply and the class
implements instead a replaceRole method that replaces the current link with a new link.

Associations to 0..1 also require the implementation of the replaceRole method. But, in
this case, addRole and removeRole may be implemented as well. I f the addRole and
removeRole methods are implemented for 0..1 roles, then they must check the role

bounds.
D erived associations must implement only the get method, in accordance with their

definition.
Other methods would still be necessary depending on the kind of the association, such

as:
• If the association is qualified, there may be an additional get that receives as an

argument the qualifier key and returns the qualified object or subset. Additionally, if
the qualifier is external, the add method should receive the value for the qualifier; if it
is an internal qualifier that argument must not be passed because it may be obtained
from the object itself. A new remove method also may be added to remove a link to an
object based in the value of its qualifier.

• In the case of ordered associations, an additional get method may return an object
based on its position in the collection. Also, the add method could add elements at a
given position, which is indicated as a new parameter for the method, and the remove
method may remove a link from a given position. Ordered associations may also have
methods to access, add, and remove elements from their head or tail.

• Stacks and queues may have special methods such as push and pop that follow specific
rules for those structures.

Table e10.1 presents a summary of the methods that may be implemented for each
kind of association in a class, depending on the design needs.

Table e10.1
Typical Operations over Associations Depending on their Type

Observe that in Table e10.1, each kind of association has a different set of methods for
accessing and changing links. The implementation of these methods follows definitions
that are usually kept the same from class to class. The following subsections show
examples of some of those methods.

10.3.1 Unidirectional association to one
The unidirectional association with role multiplicity 1 may be stored in a single instance
variable in the origin class, and its type should be the destination class. Figure e10.3
shows a unidirectional association to one from Car to Person with role name owner.

FIGURE E10.3 A class with unidirectional association to 1.

The implementation of the Car class requires an instance variable named owner
implemented with type Person. Regarding the association methods, following Table e10.1,
only getOwner and replaceOwner should be implemented. The pseudocode for the Car
class in this case could be

CLASS Car

 PRIVATE ASSOCIATION VAR owner:Person
 CONSTRUCTOR METHOD Create(anOwner:Person)
 owner:=anOnwer
 END CONSTRUCTOR METHOD
 METHOD getOwner():Person
 RETURN owner

 END METHOD
 METHOD replaceOwner(newOwner:Person)
 owner:=newOwner
 END METHOD

END CLASS

In the case of a role with multiplicity 0..1, there are two possibilities:
• It may be implemented as a set, that is, similar to the role with multiplicity *. In this

case, if there is no object linked, the get method would return the empty set.
• It may be implemented as a single variable, that is, similar to the roles with

multiplicity 1. In this case, as shown above, if there is no object linked, the get method
would return the null object.

The second approach is widely adopted. There is even the possibility of using the null
object design pa ern (Woolf, 1998) instead of the language-provided null value. The
advantage is that the null object is language independent. The null object is an instance
of a Null class whose behavior consists of doing nothing. I f there is iteration over a null
object it produces nothing, just as with an empty set. On the other hand, iterating over a
null or nil value would produce an exception, which would not be desired in that case.

I f we assume that the role multiplicity in Figure e10.3 is 0..1, there are two possible
implementations. The first one considers the association as a set:

CLASS Car

 PRIVATE ASSOCIATION VAR owner:Set<Person>
 CONSTRUCTOR METHOD Create()
 owner:=Set.new()
 END CONSTRUCTOR METHOD
 METHOD getOwner():Set<Person>
 RETURN owner.protected()
 END METHOD
 METHOD addOwner(newOwner:Person)
 IF owner.size()>0 THEN
 Exception.throw(‘Car already has an owner’)
 ENDIF
 owner.add(newOwner)
 END METHOD
 METHOD removeOwner()
 IF owner.size()=0 THEN
 Exception.throw(‘Car does not have an owner’)
 ENDIF
 owner.removeOneElement()
 END METHOD

 METHOD replaceOwner(newOwner:Person)
 IF owner.size()=1 THEN
 owner.removeOneElement()
 ENDIF
 owner.add(newOwner)
 END METHOD

END CLASS

Every time a method such as getOwner returns a set of objects, the collection must be
protected against change. That is explained in more detail later in this chapter.

T he removeOwner method was implemented by calling the removeOneElement method
over a set. That method removes one element (any one) from the set without the need to
specify which one. As the set would have only one element at this point it would not be
necessary to know which element it is in order to remove it from the set. The
removeOwner method could also be implemented as owner:=Set.new(), with the same final
result. However, as most programmers should notice, that implementation would
produce a lot of garbage in memory if objects are often added and removed from that
role, and this could degrade performance.

The second approach considers the association as a single variable, and uses the Null
object design pattern:

CLASS Car

 PRIVATE ASSOCIATION VAR owner:Person
 CONSTRUCTOR METHOD Create()
 owner:=NullObject.instance()
 END CONSTRUCTOR METHOD
 METHOD getOwner():Person
 RETURN owner
 END METHOD
 METHOD addOwner(newOwner:Person)
 IF owner<>NullObject.instance() THEN
 Exception.throw(‘Car already has an owner’)
 ENDIF
 owner:=newOwner
 END METHOD
 METHOD removeOwner()
 IF owner=NullObject.instance() THEN
 Exception.raise(‘Car does not have an owner’)
 ENDIF
 owner:=NullObject.instance()
 END METHOD

 METHOD replaceOwner(newOwner:Person)
 owner:=newOwner
 END METHOD

END CLASS

Both implementations of replaceOwner shown above assume that if the owner exists it
is replaced, and that if it does not exist it is defined. No exception is raised if
replaceOwner is called for a car that does not have an owner. I n that case, it behaves just
like addOwner.

10.3.2 Unidirectional association to many
The unidirectional association to many may be implemented as a data structure. I f it is a
simple association with multiplicity * in the destination role, then it may be implemented
as a set. Below is a pseudocode example for the association represented in Figure e10.4:

FIGURE E10.4 A class with a simple unidirectional association to many.

CLASS Customer

 PRIVATE ASSOCIATION VAR wishes:SET<Book>
 METHOD getWishes():SET<Book>
 RETURN wishes.protected()
 END METHOD
 METHOD addWish(aBook:Book)
 wishes.add(aBook)
 END METHOD
 METHOD removeWish(aBook:Book)
 wishes.remove(aBook)
 END METHOD

END CLASS

I t is not necessary to implement the replaceWish method here, because wishes usually
are only added and removed from a customer. I t is not common to replace a wish with
another. Thus, that method is not considered for implementation.

T h e protected message sent to a collection produces a noneditable version of that
collection, to avoid elements being removed or added to the original collection by means
other than the add and remove messages that are implemented in the class.

The implementation of that protection may be done in a number of ways; some of
them are language specific. Examples include making a copy of the original collection
(shallow copy or deep copy depending on the degree of protection intended), or using
the protection proxy design pa ern (Gamma, Helm, J ohnson, & Vlissides, 1995), which
suggests the implementation of a class that encapsulates the original collection, and
implements only a method to iterate over the elements but not to modify the original
collection.

I f the association role is labeled with {ordered} or {sequence} the data type of the variable
that represents the role must be replaced by the corresponding data type supported by
the language, and additionally, other specific methods must be implemented, as
mentioned in Table e10.1.

I n the case of a role with identical lower and upper bounds, it may be implemented as
an array. For example a multiplicity of 5 could be implemented as an array of 5 positions.
The original add and remove commands are not applicable to the array structure because
its size cannot be changed. However, elements may be replaced based on their position,
as shown in Table e10.1.

Roles whose multiplicity is an interval, such as 3..8, may be implemented just like roles
to many (*). The only difference is that the collection must have its bounds checked when
objects are added or removed from it.

10.3.3 Unidirectional qualified association
The unidirectional qualified association is implemented in a manner similar to the
association with multiplicity to many. However, instead of the data type Set, we use a
mapping, or dictionary structure (MAP) that associates an alphanumeric, primitive, or
enumeration type (key) to one object or a set of objects (values).

As for any other unidirectional associations, we must keep in mind that the
unidirectional implementation is only possible when the association has no multiplicity
bounds in its origin, that is, the origin role must have multiplicity *. If this is not the case,
a bidirectional implementation must be considered.

Figure e10.5 shows the implementation of a qualified association defining a map to 0..1
with an internal qualifier. The customer wish list is now considered a qualified
association. The respective code is presented below:

FIGURE E10.5 Qualified association with an internal qualifier.

CLASS Customer

 PRIVATE ASSOCIATION VAR
 wishes:MAP<Isbn,Book>

 METHOD getWishes():SET<Book>
 RETURN wishes.getValues()
 END METHOD
 METHOD getWish(anIsbn:Isbn):Book
 RETURN wishes.atKey(anIsbn)
 END METHOD
 METHOD addWish(aBook:Book)
 wishes.add(aBook.getIsbn(),aBook)
 END METHOD
 METHOD removeWish(aBook:Book)
 wishes.removeValue(aBook)
 END METHOD
 METHOD removeWish(anIsbn:Isbn)
 wishes.removeKey(anIsbn)
 END METHOD
 METHOD replaceWish(oldBook,newBook:Book)
 -- not implemented
 END METHOD

END CLASS

T he replace method is not implemented for wishes again because it would not make
sense to replace a book with another.

We note here that the basic map data structure has the usual operations for accessing a
value given its key (atKey), accessing the set of all values (getValues), including a
key/value pair (add), removing a pair given its key (removeKey) or given its value
(removeValue), and so on.

I t is important to stress that the design of the qualified association with an internal
qualifier only works if the qualifier a ribute is immutable. I f this was not the case, the
a ribute could change and that change would not necessarily propagate to the value that
is the key for the association. This would create an inconsistency. That constraint,
however, does not apply to maps with external qualifiers, because in that case the
qualifier is not an attribute of the qualified class.

Figure e10.6 presents a map with an external qualifier. The corresponding code is
shown below:

FIGURE E10.6 Qualified association with an external qualifier.

CLASS Customer

 PRIVATE ASSOCIATION VAR phones:MAP<PhoneType,Phone>
 METHOD getPhones():SET<Phone>
 RETURN phones.getValues()
 END METHOD
 METHOD getPhone(aType:PhoneType):Phone
 RETURN phones.atKey(aType)
 END METHOD
 METHOD addPhone(aType:PhoneType;aPhone:Phone)
 phones.add(aType,aPhone)
 END METHOD
 METHOD removePhone(aPhone:Phone)
 phones.removeValue(aPhone)
 END METHOD
 METHOD removePhone(aType:PhoneType)
 phones.removeKey(aType)
 END METHOD

END CLASS

I n the case of Figure e10.6 there is an issue to be considered: as the origin of the
association has no multiplicity restriction, and the qualifier is not an a ribute of the
class, nothing assures that the same phone is not associated to two or more keys. For
example, the following sequence of commands would produce a phone associated to two
different types:

aCustomer.addPhone(“residential”,aPhone)

aCustomer.addPhone(“comercial”,aPhone)

I f that is what is expected, nothing else must be said. But if that is not what is meant,
the role on the left side should be 1 and the association should be implemented as a
bidirectional association, and control mechanisms should be implemented to avoid a
phone from being associated to more than one type.

For the next example, we consider that different publishers could edit the same book.
Thus we have books and book specifications: a book has one single publisher, but a book
specification has a set of publishers. The I SBN of the book for each publisher may be
different, but the book specification is the same for different publishers, and so is its genre.
Figure e10.7 illustrates that a book specification has the genre as an a ribute, and
therefore each book specification has only one genre that may be associated to different
publishers. Figure e10.7 presents a partition, that is, a qualified association to many, with
an internal qualifier. The corresponding code is shown below:

FIGURE E10.7 Qualified association as a partition with an internal qualifier.

CLASS Publisher

 PRIVATE ASSOCIATION VAR bookSpecs:RELATION<BookGenre,BookSpec>
 METHOD getBookSpecs():SET<BookSpec>
 RETURN bookSpecs.getValues()
 END METHOD
 METHOD getBookSpec(aGenre:BookGenre):SET<BookSpec>
 RETURN bookSpec.atKey(aGenre)
 END METHOD
 METHOD addBookSpec(aBookSpec:BookSpec)
 bookSpecs.add(aBookSpec.getGenre(),aBookSpec)
 END METHOD
 METHOD removeBookSpec(aBookSpec:BookSpec)
 bookSpecs.removeValue(aBookSpec)
 END METHOD

END CLASS

The implementation above uses a data structure named RELATION, which does not
exist in most programming languages. But it can be easily implemented. I t has an
interface similar to MAP, but it allows the same key to be associated to many values and
not just one. I n the example above, for each BookGenre the structure associates a set of
instances of BookSpec.

There is an issue here too. The qualifier a ribute genre in class BookSpec must be
immutable because the qualifier is internal. I f this was not the case, problems like the one
aforementioned for the qualified map could jeopardize the design. The a ribute is not
unique because different book specifications may have the same genre.

D oes the design presented in Figure e10.7 allow a book specification to be linked to a
publisher or different publishers with different genres? The answer is no. As the genre is
immutable and the addBookSpec method takes the key from the BookSpec attribute genre, it
is only possible to add a book specification once to the publisher. As the genre is
immutable, the book specification should never be added again with a different genre.

This would not be the case if the genre were not immutable: the same book
specification could change its genre and be linked again to one or another publisher. I n
that case, an inconsistent link to the book specification with the old genre would be left
behind.

10.3.4 Unidirectional association with association class
When the association has an association class, it is necessary to implement the creation
and destruction of instances of that class each time a corresponding link is added or
removed.

Association classes may exist in associations with any multiplicity. However, they are
more common and useful in associations that are many to many.

One possible implementation for this kind of association is to create a map associating
instances of the opposite class to instances of the association class.

Figure e10.8 shows an association class, and its implementation is shown below:

FIGURE E10.8 Unidirectional association with association class.

CLASS Company

 PRIVATE ASSOCIATION VAR employees:MAP<Person,Job>
 METHOD getEmployee():SET<Person>
 RETURN employees.getKeys()
 END METHOD
 METHOD getJob():SET<Job>
 RETURN employees.getValues()
 END METHOD
 METHOD getJob(aPerson:Person):Job

 RETURN employees.atKey(aPerson)
 END METHOD
 METHOD addEmployee(aPerson:Person)
 employees.add(aPerson,Job.Create())
 END METHOD
 METHOD removeEmployee(aPerson:Person)
 LOCAL VAR aJob:Job
 aJob:=employees.atKey(aPerson)
 employees.removeKey(aPerson)
 aJob.destroy()
 END METHOD
 METHOD removeJob(aJob:Job)
 employees.removeValue(aJob)
 aJob.destroy()
 END METHOD
 METHOD replaceEmployee(oldEmployee,newEmployee:Person)
 self.removeEmployee(oldEmployee:Person)
 self.addEmployee(newEmployee:Person)
 END METHOD

END CLASS

I n Figure e10.8 we see that when a new link is created from Company to Person, a new
instance of Job is automatically created.

The operations that explicitly destroy a job when the link is removed are included in
the code to make clear that this is what must be done, as the job cannot exist
independently of the link that created it. I n languages with a garbage collector and no
explicit disposal of objects, it must be ensured that after the link is removed, no other
references remain to the object.

The replace command only deletes the old link with its job and creates a new one. The
instance of Job is not maintained when the role is replaced. However, in some cases that
could be the meaning intended.

10.4 Bidirectional associations
As mentioned before, the unidirectional implementation of associations is only possible
when they are navigable in one direction and there is no multiplicity constraint in the
origin role. In other situations, the bidirectional implementation is necessary.

At least three pa erns for implementing bidirectional associations have been
proposed (Fowler, 2003):

• Implementing the association as two unidirectional associations (mutual friends
pattern).

• Implementing the association as a unidirectional association in just one of the classes.

Navigation would be possible from the opposite direction by means of a query.
• Implementing an intermediary object that represents the association.

I n all of the cases above, if the association is navigable in both directions the get
method must be implemented in both participating classes, because navigation must be
allowed in both directions. However, if we have the case of a unidirectional association
with a multiplicity restriction at the origin, then the get method must be implemented
only at the origin class.

T he add and remove methods, if required, may be implemented only in one of the
classes, because if they exist in both classes they would be redundant as they would do
exactly the same thing.

10.4.1 Mutual friends
The option for implementing bidirectional associations in both directions is the most
efficient in terms of time, but it is less efficient in terms of space allocation because each
association is implemented twice. I t may also require more control overhead, because the
implementation of the association in both classes must be synchronized.

The implementation of the unidirectional components of the association follows the
recommendations given in Section 10.3. However, three subcases still have to be
considered here:

• Both roles are optional.
• Only one role is mandatory.
• Both roles are mandatory.

10.4.1.1 Both roles optional
I f both roles are optional and no other constraints are present, then links may be added
and removed at will. As links must be added and removed from both sides of the
association, auxiliary methods would be needed to add and remove the individual
unidirectional links.

These auxiliary methods must not be called in any other place except the add and
remove methods. That is why they must be declared as private, but the opposite class
must have access to them; thus, they are exported exclusively to that class.

Figure e10.9 presents a bidirectional many-to-many association. The corresponding
implementation code is shown below:

FIGURE E10.9 Bidirectional association from many to many.

CLASS Customer

 PRIVATE ASSOCIATION VAR wishes:SET<Book>
 METHOD getWishes():SET<Book>
 RETURN wishes.protected()
 END METHOD
 METHOD addWish(aBook:Book)
 self.privateAddWish(aBook)
 aBook.privateAddWisher(self)
 END METHOD
 METHOD removeWish(aBook:Book)
 self.privateRemoveWish(aBook)
 aBook.privateRemoveWisher(self)
 END METHOD
 PRIVATE METHOD privateAddWish(aBook:Book)
 EXPORTED TO: Book
 wishes.add(aBook)
 END METHOD
 PRIVATE METHOD privateRemoveWish(aBook:Book)
 EXPORTED TO: Book
 wishes.remove(aBook)
 END METHOD

END CLASS

CLASS Book

 PRIVATE ASSOCIATION VAR wishers:SET<Customer>
 METHOD getWishers():SET<Customer>
 RETURN wishers.protected()
 END METHOD
 PRIVATE METHOD privateAddWisher(aCustomer:Customer)
 EXPORTED TO: Customer
 wishers.add(aCustomer)
 END METHOD
 PRIVATE METHOD privateRemoveCustomer(aCustomer:Customer)
 EXPORTED TO: Customer
 wishers.remove(aCustomer)
 END METHOD

END CLASS

The auxiliary methods in the code above are declared as private but exported to the
other participating class.

As mentioned before, the access (get) methods must be implemented in both classes if

the association is navigable in both directions. But the add and remove methods may be
implemented in just one class. I n the example above, they are implemented only in
Customer class.

10.4.1.2 Only one mandatory role
I f one of the roles is mandatory, as for example 1 to *, then the team must ask if the
mandatory role is immutable or not. For example, a payment has one order and cannot
change to another order (it is immutable), but a car has an owner and can change to
another owner if it is sold.

Let us first examine the case of an association link that can be updated, as shown in
Figure e10.10.

FIGURE E10.10 A bidirectional association with one mandatory role that can be updated.

The code for implementing the classes in Figure e10.10 might be like the following:

CLASS Car

 PRIVATE ASSOCIATION VAR owner:Person
 CONSTRUCTOR METHOD Create(anOwner:Person)
 owner:=anOwner
 anOwner.privateAddCar(self)
 END CONSTRUCTOR METHOD
 METHOD getOwner():Person
 RETURN owner
 END METHOD
 METHOD replaceOwner(anOwner:Person)
 owner.privateRemoveCar(self)
 anOwner.privateAddCar(self)
 owner:=anOwner
 END METHOD

END CLASS

CLASS Person

 PRIVATE ASSOCIATION VAR cars:SET<Car>
 METHOD getCars():SET<Car>
 RETURN cars.protected()
 END METHOD

 PRIVATE METHOD privateAddCar(aCar:Car)
 EXPORTED TO: Car
 cars.add(aCar)
 END METHOD
 PRIVATE METHOD privateRemoveCar(aCar:Car)
 EXPORTED TO: Car
 cars.remove(aCar)
 END METHOD

END CLASS

As we can see, the Car class implements the only public updating method, which is
replaceOwner. An ownership link is created every time a new instance of Car is created, as
defined in the car’s constructor. Then, the ownership may only be changed from one
person to another. The Person class only implements the private methods to add and
remove a car from its own local collection.

When a car owner is replaced, it is done in three steps: first the car is removed from
the old owner, then it is added to the new owner, and finally the owner is updated to be
the new owner.

The second case to be considered here is when the role is immutable. This is the case
of a 1 to * association from Customer to Order, for example: it is mandatory for Order and
an order can never change its customer. This situation is shown in Figure e10.11, and the
corresponding code follows:

FIGURE E10.11 A bidirectional association with one mandatory immutable role.

CLASS Order

 PRIVATE ASSOCIATION VAR customer:Customer
 CONSTRUCTOR METHOD create(aCustomer:Customer)
 customer:=aCustomer
 aCustomer.privateAddOrder(self)
 END CONSTRUCTOR METHOD
 METHOD getCustomer():Customer
 RETURN customer
 END METHOD

END CLASS

CLASS Customer

 PRIVATE ASSOCIATION VAR orders:SET<Order>
 METHOD getOrders():SET<Order>
 RETURN orders.protected()
 END METHOD
 METHOD removeOrder(anOrder:Order)
 orders.remove(anOrder)
 anOrder.destroy()
 END METHOD
 PRIVATE METHOD privateAddOrder(anOrder:Order)
 EXPORTED TO: Order
 orders.add(anOrder)
 END METHOD

END CLASS

I n this case, an order is immediately associated to a customer when it is created. I f an
order is removed from a customer then it must be destroyed.

10.4.1.3 Two mandatory roles
There are situations when the two roles of an association are mandatory. I n this case, no
object can exist without being linked to another. This means that the creation of the links
must happen in the constructor of both classes. Figure e10.12 shows an example of a 1 to
1..* association; it is mandatory on both ends.

FIGURE E10.12 A bidirectional association that is mandatory on both ends.

Once more, the methods that will be implemented depend on deciding if the roles are
immutable or not. The customer role from the point of view of an address is immutable.
This means that an address cannot change from one customer to another.3

When a customer is created it must be created with at least one address. This means
that the creator of a customer should receive all the data needed to instantiate that
address (only street and number in the example, for simplification).

An existing customer may add a new address, but the method that adds an address
cannot simply receive an instance of address as an argument because no address may
exist without being linked to a customer. Thus, the customer should implement a
method to add a new address that receives the data necessary to instantiate such an
address. The code for implementing this situation is shown below:

CLASS Address

 PRIVATE ASSOCIATION VAR customer:Customer
 PRIVATE ATTRIBUTE VAR street:String
 PRIVATE ATTRIBUTE VAR number:Natural
 CONSTRUCTOR METHOD Create(aCustomer:Customer;
 aStreet:String; aNumber:Natural)
 customer:=aCustomer
 street:=aStreet
 number:=aNumber
 END CONSTRUCTOR METHOD
 METHOD getCustomer():Customer
 RETURN customer
 END METHOD

END CLASS

CLASS Customer

 PRIVATE ASSOCIATION VAR addresses:SET<Address>
 PRIVATE ATTRIBUTE VAR name:String
 PRIVATE ATTRIBUTE VAR birthDate:Date
 CONSTRUCTOR METHOD create(aName:String; aBirthDate:Date;
 aStreet:String; aNumber:Natural)
 name:=aName
 birthDate:=aBirthDate
 addresses:=Set.new()
 addresses.add(Address.Create(self,aStreeet,aNumber))
 END CONSTRUCTOR METHOD
 METHOD getAddresses():SET<Address>
 RETURN addresses.protected()
 END METHOD
 METHOD addAddress(aStreet:Street; aNumber:Natural)
 addresses.add(Address.create(self,aStreet,aNumber))
 END METHOD
 METHOD removeAddress(anAddress)

 IF address.size()>1 THEN

 addresses.remove(anAddress)
 anAddress.destroy()

 ELSE

 Exception.throw(‘Customer must have at least one address’)

 ENDIF

 END METHOD
 METHOD getName():String
 RETURN name
 END METHOD
 METHOD getBirthDate():Date
 RETURN birthDate
 END METHOD
 METHOD setName(aName:String)
 name:=aName
 END METHOD

END CLASS

I f the role from Address to Customer was not immutable, then a replaceCustomer
command could be implemented as well in the Address class. But that is not the case.

10.4.2 Unidirectional implementation
Even if the association is bidirectional, it may be the case that navigation occurs much
more often or is more critical in just one direction. I f that happens, an option is to
implement the association physically in only one direction, and implement the get method
for the opposite side as a search query. The advantage is that the code is simpler, faster
in one direction, and space saving. The disadvantage is that the navigation from the
opposite direction would be much slower.

This form of implementation is also only possible when the role on the origin of the
implemented direction has no multiplicity restriction. I f there is a restriction, then the
unidirectional implementation is possible only if additional mechanisms to control
multiplicity at the origin of the association are implemented, with loss of performance.
Below there is an example of unidirectional implementation for the association of Figure
e10.10, where the association is physically implemented only in the Car class:

 CLASS Car
 PRIVATE ASSOCIATION VAR owner:Person
 CONSTRUCTOR METHOD Create(anOwner:Person)
 owner:=anOwner
 END CONSTRUCTOR METHOD
 METHOD getOwner():Person
 RETURN owner
 END METHOD
 METHOD replaceOwner(newOwner:Person)
 owner:=newOwner
 END METHOD

 END CLASS
 CLASS Person
 METHOD getCars():SET<Car>
 LOCAL VAR cars:SET<Car>
 cars:=Set.new()
 FOR EACH car IN Car.getAllInstances() DO
 IF car.getOwner()=self THEN
 cars.add(car)
 END IF
 END FOR
 RETURN cars
 END METHOD
 END CLASS
The Car class above is implemented just like if the association was unidirectional from

it to Person. The Person class implements only the getCars method through a search query
on the set of all instances of Car. This implementation only works well if the role
multiplicity at the origin has is unconstrained.

Regarding the time complexity of the get methods, the bidirectional implementation
runs in constant time4 in both directions, and the unidirectional implementation has
constant time for getOwner and linear time5 for getCars, that is, the performance of the
getCars method depends on the number of cars registered. This design may be optimized
by using hash techniques to index the set of customers relative to their orders. This way,
the complexity of the getCars query may almost become constant in practice with the cost
of some extra memory space.

A limitation of this technique is that the programming language must provide a
method to access all instances of a class. Otherwise, the programmer must supply such a
mechanism. Unfortunately, this is a hazardous design that may cause trouble due to the
global visibility of those instances (Cardoso, 2011).

10.4.3 Implementation with an intermediary object
A bidirectional association may also be implemented by means of an intermediary object
that represents the association. The intermediary object consists of a table with pairs of
linked instances. Possible implementation for the bidirectional association from many to
one of Figure e10.11 with an intermediary object follows:

GLOBAL VAR orderXcustomer:MAP<Order,Customer>

VISIBILITY RESTRICTED TO: Order, Customer

CLASS Customer

 METHOD getOrders():Set<Order>
 RETURN orderXcustomer.getKeysFor(self)

 END METHOD
 METHOD addOrder(anOrder:Order)
 orderXcustomer.add(anOrder,self)
 END METHOD
 METHOD removeOrder(anOrder:Order)
 orderXcustomer.remove(anOrder,self)
 END METHOD

END CLASS

CLASS Order

 CONSTRUCTOR METHOD Create(aCustomer:Customer)

 orderXCustomer.add(self,aCustomer)

 END CONSTRUCTOR METHOD

 METHOD getCustomer():Customer

 RETURN orderXcustomer.atKey(self)
 END METHOD

END CLASS

I f the programming language allows it, the association should be declared a global
variable that is visible only by the participating classes. Unfortunately, most commercial
languages would not allow such feature and the association would be implemented as a
global variable with no visibility restriction.

I f the association was many to many instead of one to many, then the MAP data type
used above should be replaced by RELATION with small adjustments in the ge ers and
setters.

The intermediary object approach tends to be much simpler and maintainable than the
former ones. I t also mimics the structure of a relational database because associations, as
seen in Chapter 13, are implemented as intermediary tables, which correspond to the
intermediary object here.

The disadvantage of this method is that ge ers are slower in both directions when
compared to the bidirectional approach and the global visibility of the intermediary
object may cause design hazards if not used carefully.

10.5 Delegated methods and system operations
To this point, we have shown how to generate code for classes, a ributes, associations,
and their corresponding basic methods that may be considered part of their basic
structure. Now it is the time to explain how to implement delegate methods and system
operations. These should be implemented by following the dynamic models explained in

Chapter 9.
System operations are implemented as a sequence of messages labeled 1, 2, 3, …, n

that are sent by the controller. A delegate method labeled with x in the interaction
diagram should be implemented by a sequence of messages labeled x.1, x.2, x.3, x.n that
are sent by the object that receives the message labeled with x.

Let us look again at Figure 9.43, reproduced here as Figure e10.13.

FIGURE E10.13 Reference communication diagram.

T he add2Cart system command should therefore be implemented as a sequence of
messages labeled with 1, 2, and 3. The corresponding pseudocode could be something
like the following:

CLASS Livir

 ASSOCIATION VAR carts:MAP<CartId,Cart>
 ASSOCIATION VAR books:MAP<Isbn,Book>
 METHOD add2Cart(aCartId:CartId; anIsbn:Isbn;
 aQuantity:Natural)
 LOCAL VAR aCart:Cart
 LOCAL VAR aBook:Book
 aCart:=carts.at(aCartId) -- message 1
 aBook:=books.at(anIsbn) -- message 2
 aCart.insertItem(aBook,aQuantity) -- message 3
 END METHOD
 …
END CLASS

The implementation of the insertItem delegate method in the Cart class consists of the
sequence of messages 3.1 and 3.2, because insertItem is labeled with 3. These messages
are conditional and mutually exclusive. Thus, their implementation corresponds to an
if-then-else-endif structure, as shown below:

CLASS Cart

 …
 METHOD insertItem(aBook:Book,aQuantity:Natural)
 LOCAL VAR newItem:Item
 IF self.includeBook(aBook) THEN
 newItem:=Item.Create(aBook,self,aQuantity) --3.1
 ELSE
 self.incrementItem(aBook,aQuantity) --3.2
 ENDIF
 END METHOD

END CLASS

Notice that the variable name aCart is not known in this method and must be replaced
here by self, which stands for the instance of Cart that is performing the method.

The incrementItem delegate method in the Cart class is labeled with 3.2. Therefore, its
implementation is the sequence of messages 3.2.1 and 3.2.2:

CLASS Cart

 …
 METHOD incrementItem(aBook:Book; aQuantity:Natural)
 LOCAL VAR anItem:Item
 anItem:=self.selectItemFor(aBook) --3.2.1
 anItem.increaseQuantity(aQuantity) --3.2.2
 END METHOD

END CLASS

The constructor of the Item class is complex and as it is labeled with 3.1, its
implementation consists of the sequence of messages 3.1.1 to 3.1.5. The Item class would
look like this:

CLASS Item

 CONSTRUCTOR METHOD Create(aBook:Book; aCart:Cart;aQuantity:Natural)
 LOCAL VAR aPrice:Money
 self.addBook(aBook) --3.1.1
 self.addCart(aCart) --3.1.2
 self.setQuantity(aQuantity) --3.1.3
 aPrice:=aBook.getPrice() --3.1.4
 self.setPrice(aPrice) --3.1.5
 END CONSTRUCTOR METHOD

END CLASS

…

The other methods that appear in Figure e10.13 are basic ones and must be
implemented following their default definition.

10.6 Patterns for filtered queries
I n the examples shown to this point, basically two kinds of get queries were
implemented: those that return all objects linked by a role, and those that return a single
object given its identification, such as a qualifier or position.

However, sometimes it will be necessary to obtain a subset of objects in a given role.
That subset is usually obtained by a filter such as “customers older than 30 years old,”
“orders between 100 and 200 dollars,” “orders above 100 dollars issued last week,” etc.

There are at least three patterns to deal with this diversity of queries (Fowler, 2003):
• Implement a single query that returns all objects, and let the object that needs the

information apply a filter to that collection.
• Implement specific queries, each one with a different filter, so that the object that needs

the information calls a specific method in each case.
• Implement a generic query that uses a filter object.
The single query and filter object approaches imply the implementation of a single

method that leaves the class that has the responsibility simpler. However, it requires
more code to be written in the classes that need the information.

The specific queries approach has as a consequence a greater number of methods in
the class that holds the responsibility. But the classes that need the information would
make simple calls and receive the information without any need for postfiltering.

The choice of one pa ern or another must be made by the designer depending on the
number of possible filters and potential calls. I f there are only a few possibilities for
filtering and many calls, the best choice is specific queries. I f the quantity of filters is
high and there are only a few calls for each filter, then the single query or filter object
approach would be be er. S ingle query is more straightforward, but produces more work
during the coding phase: each time a filter is used, the respective code must be
implemented in the class that calls the query. Filter object requires defining a class that
implements the filter object, but after that investment is done, filter object tends to be
simpler than single query.

A filter object is a parameter that is passed to the general query method. The filter
object must contain a ributes and associations to other objects. Those a ributes and
associations are used by the query to decide which objects must be returned.

For example, let us revisit the definition of the Book class shown in Figure e10.14.

FIGURE E10.14 Reference class for queries.

Suppose now that we need to query books filtered by title, authorsName, or price.
Applying the single query approach, a getBooks() method should be implemented in

the Livir class, which is responsible for returning the set of all books. I f another object
needs to filter that set, it must apply the filter to the resulting set.

I f the specific queries approach is used, the Livir class should implement three queries
that may be considered variants of the base query:
• getBooksByTitle(aTitle:String).
• getBooksByAuthorsName(anAuthorName:String).
• getBooksByPrice(aRange:Range<Money>).

Each of these queries return only the elements that satisfy the respective filters
indicated as arguments. I f a combination of criteria is needed, then new queries usually
should be created for the combined criteria.

The filter object approach requires the definition of a class to represent the filter
object. For the example, a BookFilter class could be defined as shown in Figure e10.15.

FIGURE E10.15 A class for a filter object.

I n this case, the Livir class should implement a single
getBooks(aBookFilter:BookFilter):Set<Book> method for querying the set of all books.

Using this method, a query to return the books wri en by “D ouglas N. Adams” that
cost less than 10 dollars could be written like this:

 …
 myFilter:=BookFilter.Create()
 myFilter.setAuthorsName(“Douglas N. Adams”)
 myFilter.setPriceRange(Range(US$0,US$10))
 cheapAdamsBooks:=self.getBooks(myFilter)
 …
As a result, the variable cheapAdamsBooks contains the set of all instances of Book

whose author is “D ouglas N. Adams” and that cost less than 10 dollars. As the a ribute
title of BookFilter was not filled for the query, it is ignored, and any title would qualify for
the filter.

10.7 The process so far

10.8 Questions
1. Explain in detail how a delegate message that appears in a communication diagram

must be implemented.
2. What are the basic operations that must be implemented for most kinds of

associations? Which ones must be implemented for specific kinds of associations?
3. Propose a generic implementation for the query

getBooks(aBookFilter:BookFilter):Set<Book>. Try to keep it as general and reusable as
possible.

4. Propose an implementation for the system commands and delegate methods
presented in Figures 9.42 and 9.44.

1In some cases, classes may allow more than one constructor, though.
2This method involves associations, which are explained in Sections 10.3 and 10.4.
3In fact, in real life an address could change from one customer to another if we consider that a customer could move to
the house of another customer whose address is already registered. However, usually systems do not treat addresses in
such a precise way: pragmatically, if a customer moves, it is always a new address that is registered.
4Time remains the same even if the number of cars increase.
5Time increases as the number of customers increase. Linear time means that time is a function t(x)=ax+b, where x is the
size of the set for customers and a and b are constants.

C H AP T E R 11

Testing
This chapter explains how object-oriented software developed with the techniques shown in previous chapters can
be tested. S pecifically, three levels of testing are presented: unit tests for methods and classes, system operations
tests, and use case tests. The chapter focuses on the functional approach to tests based on the operation contracts. For
each parameter of a system or basic operation, the designer should define if it has acceptable and/or unacceptable
values. A success test must be created for each success scenario and a failure test for each set of unacceptable values.
With this approach test cases may be systematically designed. Equivalence partition and limit value analysis are also
presented in order to determine the best choices for the test cases.

Keywords
Unit test; system operations test; system test; test-driven development; functional test

Key Topics in this Chapter
• Functional testing
• Stubs and drivers
• Test-driven development
• Unit testing
• System operations testing
• Use case testing

11.1 Introduction to testing
No ma er how sophisticated the modeling and specification techniques used to develop
software are, no ma er how disciplined and competent the team is, there is a factor that
makes software testing always necessary: human error. I t is a myth to think that good
developers working with state-of-the-art tools are capable of developing error-free
software (Beizer, 1990).

Murphy’s Law (Bloch, 1980) in many of its corollaries seems to speak directly to the
software industry. For example:
• Anything that can go wrong will go wrong.
• If everything seems all right, you have not checked appropriately.
• Nature always sides with the hidden flaw.
For many years, software-testing activities were considered a punishment to

programmers. Testing was considered as a waste of time because software was supposed
to be correct from the beginning.

However, things have changed. The test discipline now is considered extremely
important. Today it is an integral part of the software development process and one of

the disciplines of the Unified Process.
Furthermore, leading software development companies started to outsource software

testing, by hiring test factories. That means that not only developers, but teams are
specially trained to conduct testing.

This chapter presents test activities that are strongly adapted for use with the
techniques shown in previous chapters.

Unit tests are used basically to check the behavior of classes, including their basic and
delegate methods. I f automatic code generation is used, such tests may be suppressed,
because it is assumed that automatic code generators do not make human errors.

System operation tests are top-level functional tests that may be based on the
examination of the system operation contract: its parameters, preconditions, and
exceptions determine sets of valid and invalid parameters that must be systematically
checked, and the postconditions determine the results that must be accomplished when
valid entries are tested.

Finally, system tests are performed as systematic use case tests. Each use case is a script
that establishes normal and alternative flows for accomplishing business goals. Use case
tests may be executed manually or may be automated. I f the client executes use case
tests, they are called acceptance tests.

There are two major categories of test techniques:
• Structural tests, which evaluate the internal structure of the code.
• Functional tests, which evaluate operations based only on their inputs and outputs.
I n this book, only functional techniques applied specifically to the three levels of

testing are introduced:
• Functional unit test for basic and delegate operations.
• Functional system operation tests based on contracts.
• System and acceptance tests based on system use cases.
Readers interested in understanding automated testing in more detail should take a

look at the book of Meszaros (2007), whch presents a significant set of xUnit style test
pa erns, a family of frameworks for innumerous languages based on the design
originally created by Kent Beck (1989).

11.2 Functional testing
Functional testing consists of a sequence of tests that define entry values for an operation
and observe if the result is what was expected. Functional tests may be run without any
knowledge of the programming code that implements the operation; only its behavior is
observed. The quantity of tests to be conducted in order to assure that an operation is
correct may be virtually infinite. Functional testing may use techniques to reduce the
number of necessary tests without losing coverage. The most useful techniques for
accomplishing that goal are equivalence partitioning and limit value analysis, which are
explained in the following subsections.

11.2.1 Equivalence partitioning

One of the principles of functional testing is the identification of equivalent situations.
For example, if an operation accepts a set of data (normality) and rejects another set
(exception) then it may be said that there are two equivalence sets1 of input data for that
operation: accepted and rejected values. I t is usually impossible to test every value included
in those sets, because they may be virtually infinite. Thus, the technique of equivalence
partitioning indicates that at least one element in each equivalence set must be tested
(Burnstein, 2003).

Classically, the equivalence partitioning technique considers the division of the inputs
through the following criteria (Myers, Sandler, Badgett, & Thomas, 2004):
• If the valid values are specified as an interval (for example, from 10 to 20), then we

define one valid set (10 to 20) and two invalid sets (less than 10, and greater than 20).
• If the valid values are specified as a quantity of values (for example, a list with five

elements) then we define a valid set (list with five elements) and two invalid sets (lists
with less than five elements, and lists with more than five elements).

• If the valid entries are specified as a set of acceptable values that may be processed in
different forms (for example, the strings of an enumeration such as “male” and
“female”), then we define a valid set for each of the valid options and an invalid set
for any other value.

• If the valid values are specified by a logical condition (for example “final date must be
greater than initial date”) then we must define a valid set (when the condition is true)
and an invalid set (when the condition is false).

The sets of valid inputs may be defined not only in terms of restrictions on the input
data but also in terms of the results that may be produced. I f the operation that is being
tested has different behavior depending on the value of the input, then different valid
sets must be defined for each behavior. For example, consider a simple operation
half(x:Integer):Integer. This operation accepts that x may be any positive number.
Consider also that the operation is defined so that it cannot accept zero or negative
numbers. Finally, consider that the operation produces (x−1)/2 for odd numbers and x/2
for even numbers. Thus, we must consider that half has three equivalence sets for the
parameter x:
• A valid set composed of odd positive integers: 1, 3, 5, ….
• A valid set composed of even positive integers: 2, 4, 6, ….
• An invalid set composed of nonpositive integers: 0, −1, −2, −3, ….
The equivalence set values must be always restricted to the domain defined by the type

of the parameter. For example, if the type of the parameter were something other than
Integer, then different equivalence sets would be defined. I f the operation was
half(x:Natural):Integer, then the equivalence sets should be redefined so that they remain
inside the Natural domain, which does not include zero and negative numbers:
• A valid set composed of odd positive integers: 1, 3, 5, ….
• A valid set composed of even positive integers: 2, 4, 6, ….
• No invalid sets.
On the other hand, assume the operation is defined with a broader parameter type

such as half(x:Real):Integer; then the equivalence sets would be:

• A valid set composed of odd positive integers: 1, 3, 5, ….
• A valid set composed of even positive integers: 2, 4, 6, ….
• An invalid set composed of nonnatural numbers: .
We can see from the examples above that if the designer restricts the type of the

parameter as much as possible, then fewer or simpler invalid equivalence sets are
defined. That is why examples in previous chapters use the Natural type instead of
Integer whenever zero or negative numbers could not be accepted. And that is why
enumerations should be used rather than unrestricted strings whenever possible.

11.2.2 Limit value analysis
People that work in software testing used to say that (software) bugs hide in the slits.
D ue to this, the equivalence partitioning technique is usually used in conjunction with
another technique known as limit value analysis.

Limit value analysis consists of not choosing any random value from an equivalence
set, but choosing two or more limit values if they can be determined.

I n ordered domains, such as numbers, this criterion may be applied. For example, if an
operation requires an integer parameter that is valid only if included in the interval
[10..20], then there are three equivalence sets:
• Invalid for any x<10.
• Valid for x≥10 and x≤20.
• Invalid for any x>20.
Limit value analysis suggests that eventual errors in the logic of a program are not at

arbitrary points inside those intervals but at the boundary points where two intervals
meet. Thus if the domain of the parameter is Integer:
• For the first invalid class, the value 9 must be tested.
• For the valid class, 10 and 20 must be tested.
• For the second invalid class, the value 21 must be tested.
Thus, if there is a logic error in the operation for some of these inputs it is much more

probable that it will be found in this way rather than if a random value is chosen inside
each interval that defines an equivalence set.

11.3 Stubs and drivers
Frequently, parts of the software must be tested separately from the main body of code,
but at the same time they must communicate with other parts.

When a component A that is going to be tested calls operations from a component B
that has not yet been implemented, component B may be replaced by a simplified
version of it that implements only the behavior that is absolutely necessary to perform
the test of component A. This simplified implementation that is used in the place of a
component that has not yet been implemented is called a stub.

For example, suppose that a class A needs a prime number generator B that has not yet
been implemented. The nth prime number would be generated by a function

prime(n:Natural):Natural. A simplified version of B may be implemented just for allowing
class A to be tested. Suppose that the first five prime numbers are enough to adequately
test class A. Thus, a stub for B could be implemented like this:

CLASS B

 STUB METHOD prime(n:Natural):Natural
 CASE n OF
 1: RETURN 2
 2: RETURN 3
 3: RETURN 5
 4: RETURN 7
 5: RETURN 11
 OTHWERWISE Exception.throw(‘Stub implementation
 requires argument less or equal to 5’)
 END CASE
 END STUB METHOD

END CLASS

I n this way, class A may be tested without investing time in implementing a more

complex function in class B.
On the other hand, operations implemented in class A will be called by other

components of the system. But when class A is being tested, these components may not
yet exist. Furthermore, if we are testing class A we usually desire that that test occurs in a
systematic and reproducible way. I n order to assure this, a test driver for class A may be
implemented. The driver is a component of code (possibly a new class) that aims
uniquely to systematically test a component.

For class A mentioned above, a driver could be implemented as a new class named
Driver4A, for example. An example of a driver is shown in Section 11.5.

Thus, stubs and drivers are simple implementations that simulate the behavior of
other components. The stub is used in the place of a component that should be called
but is not yet implemented. The driver is used in the place of a component that should
call the component to be tested in a systematic and reproducible way.

Stubs are usually throwaway code. When the real component is implemented the stub is
not necessary anymore and may be discarded.

On the other hand, drivers are important pieces of code that must be kept forever.
Every time a component must be tested – and it happens frequently during software
development and evolution – the driver would be available for automatically performing
the test.

11.4 Test-driven development

Test-driven development or TDD (Beck, 2003) is a technique and a programming
philosophy that incorporates automatic testing to the process of producing code. I t
works like this:
1. First, the programmer that receives the specification for a new functionality that must

be implemented should create a set of automatic tests for the code that does not yet
exist.

2. This set of tests must be executed and observed to fail. This is done to show that the
tests won’t succeed unless a new feature is implemented in the code. If the test passes
at this time there are two explanations: either the test is badly written or the feature
that is being tested is already available in the code, supposing that it is an update on
existing code that is being produced and not new code from scratch.

3. Then, the code must be developed with the only objective being passing the tests. If
any other feature is detected, then the tests must be updated before it is introduced in
the code. In that case, the process restarts from step 1.

4. After the code passes all tests it must be cleaned and improved if necessary in order to
meet internal quality standards. After passing final tests it is considered stable and
may be integrated into the main body of code of the system.
The contracts that were developed in Chapter 8 and the dynamic models of Chapter 9

are exceptional sources of information for developing complete and consistent test cases
before producing any code, as explained in the following sections.

The motivation for TD D is to incentivize the programmer to keep the code simple and
to produce a test asset that allows any part of the system to be automatically tested.

11.5 Unit testing
Unit tests are the most elementary tests and consist of verifying if an individual
component (unit) of the software was implemented correctly. That component may be a
complex method, or an entire class. Usually, this unit is still disconnected from the
system it will be integrated with later.

Unit tests are usually performed by the programmer and not by the test team. TD D
requires that the programmer develop the test code before writing the code to be tested.
This test code is a driver that must systematically generate the set of data necessary to
test all valid and invalid equivalence sets, applying limit value analysis when possible.

An example of unit testing consists of checking if a method was correctly implemented
in a class. Take a look again at Figure 10.13 and delegate method 3.2,
incrementItem(aBook:Book; aQuantity:Natural), which must be implemented in the Cart
class.

Now let us consider what the equivalence sets are for these parameters. First let us
consider the parameter aBook:Book. As the type of the parameter is Book, it can be
assumed that no other kind of object could be passed as an argument. For example, this
operation would never receive an instance of Customer or Delivery instead of a Book2

because the language typing mechanisms would avoid that. The team must be concerned
about whether objects that can be received here are valid or not.

I f the language mechanisms cannot prevent a method from receiving a null value as a
parameter, then the null case would always be considered a (usually invalid) equivalence
set for any parameter that is typed with a class name.

T he incrementItem method was developed with the following goal: to increment the
quantity of an item that is already in the cart. We may start by considering that there are
three equivalence sets for the aBook parameter:
• A valid equivalence set that contains instances of Book that are linked to an item in

aCart.
• An invalid equivalence set that contains instances of Book that are not linked to any

item in aCart.
• An invalid equivalence set that contains only the null value.

The second parameter of incrementItem is a natural number identified as aQuantity.
The operation assumes that the existing quantity of the item already in the order will be
incremented by aQuantity. The Natural type does not include zero and thus that
potentially invalid quantity is not allowed as an argument. However, ordering a number
of copies of a book that exceeds its quantity in stock could be considered an error
condition unless the system allows ordering books that are not yet available. Assuming
that the system operation add2Cart that calls incrementItem has not defined as a
precondition that the order quantity is available in stock (see its contract in the next
section), then the incrementItem operation may receive invalid quantities regarding that
business rule. Therefore, the following equivalence sets may be considered for the
aQuantity:Natural parameter:
• A valid equivalence set that includes natural values that added to the quantity of the

respective item produce a result that is less or equal to the quantityInStock attribute of
aBook.

• An invalid equivalence set that includes all natural values that added to the quantity
of the respective item are greater than the quantityInStock attribute of aBook.

The potential test cases for incrementItem are combinations of the equivalence sets for
the two parameters, as seen in Table 11.1.

Table 11.1
Combinations of Equivalence Sets for IncrementItem

There is only one success condition, which is obtained when valid values are obtained
for both parameters. It happens when aBook is linked to an item in the cart and aQuantity
plus the current quantity is less than or equal to the quantity in stock. I n OCL that
condition can be expressed in the context of aCart as

self.item.book->include(aBook) and

self.item->select(book=aBook).quantity+aQuantity<=aBook.quantityInStock

Although there are five combinations in Table 11.1 that produce failure, only three
have to be tested because if the book is not linked to any item or if the book is null, the
value of aQuantity cannot be determined to be valid or invalid because there is no
current quantity to be compared to it. Usually the rules to obtain combinations for
testing are:
• Get all the success combinations and define a test case for each of them.
• Get one invalid set at a time. Even if the operation has n parameters, consider only one

invalid set for just one parameter at a time. The other parameters should be valid or it
should be impossible to determine their validity.

• Only take a combination with more than one invalid set if that combination is
possible and useful.

Therefore, there are three failure tests that must be performed to determine how
incrementItem behaves with invalid parameters. The first happens when aBook is not in
aCart. The second happens when aBook is null. The third happens when the desired
quantity surpasses the quantity in stock:
(1) not self.item.book->includes(aBook)
(2) aBook.isNull()
(3) self.item->select(book=aBook).quantity+aQuantity >

 aBook.quantityInStock
I n order to avoid tests that leave side effects on the system, they are usually performed

in three steps:
1. Prepare the stage for the test. Usually special objects called fixtures are created with the

sole purpose of allowing the test to be performed.
2. Execute the test.
3. Clean the environment. The system must return to the state it was in prior to the test.

Fixtures must be disposed of at this point.
Let’s consider first the success test scenario for incrementItem. Any fixture created for

this test should evaluate true for the success condition mentioned above. An example of
code for generating such fixtures is the following:

CLASS Driver4Cart

 METHOD testIncrementItemSuccess()
 FIXTURE VAR aBook:Book
 FIXTURE VAR aCart:Cart
 FIXTURE VAR anItem:Item
 aBook:=Book.Create(‘0752201360’,

 ’Bring me the head of Willy the mailboy!’, ’Scott Adams’,
 US$12.30, 128, 5) -- quantity in stock is 5.
 aCart:=Cart.Create() -- cart id is assigned internally
 anItem:=Item.Create(aBook,aCart,3)
 …
As we are going to test the Cart class it is possible that some of its methods or

methods from other classes such as Book and Item are not yet implemented. I n that case,
stubs could be used here to allow the test on incrementItem to be performed.

After the initialization code, the test itself may be performed:
 …
 aCart.incrementItem(aBook,2) -- using limit value analysis
 IF anItem.getQuantity()=5 THEN
 Write(‘incrementItem success test: successful’)
 ELSE
 Write(‘incrementItem success test: failed’)
 ENDIF
 …
Finally, we must dispose of the fixtures:
 …
 anItem.destroy()
 aCart.destroy()
 aBook.destroy()
 END METHOD
Now, the failure conditions should be tested as well. Here, they are implemented as

three independent methods in the Driver4Cart class:
 …
 METHOD testIncrementItemFailure1 ()
 -- not self.item.book->includes(aBook)
 FIXTURE VAR aBook:Book
 FIXTURE VAR aCart:Cart
 aBook:=Book.Create(‘0752201360’,
 ’Bring me the head of Willy the mailboy!’, ’Scott Adams’,
 US$12.30, 128, 5)
 aCart:=Cart.Create() -- the book is not in the cart
 TRY
 aCart.incrementItem(aBook,2)
 Write(‘incrementItem failure test 1: failed’)
 CAPTURE Exception.itemAbsent
 Write(‘incrementItem failure test 1: successful’)
 END TRYCAPTURE
 aCart.destroy()

 aBook.destroy()
 END METHOD
 METHOD testIncrementItemFailure2 ()
 -- aBook.isNull()
 FIXTURE VAR aBook:Book
 FIXTURE VAR aCart:Cart
 aCart:=Cart.Create() -- the book is null
 TRY
 aCart.incrementItem(aBook,2)
 Write(‘incrementItem failure test 2: failed’)
 CAPTURE Exception.bookIsNull
 Write(‘incrementItem failure test 2: successful’)
 END TRYCAPTURE
 aCart.destroy()
 END METHOD
 METHOD testIncrementItemFailure3 ()
 -- item->select(book=aBook).quantity+aQuantity > aBook.quantityInStock
 FIXTURE VAR aBook:Book
 FIXTURE VAR aCart:Cart
 FIXTURE VAR anItem:Item
 aBook:=Book.Create(‘0752201360’,
 ’Bring me the head of Willy the mailboy!’, ’Scott Adams’,
 US$12.30, 128, 5) -- quantity in stock is 5.
 aCart:=Cart.Create() -- cart id is filled internally
 anItem:=Item.Create(aBook,aCart,3))
 TRY
 aCart.incrementItem(aBook,3) -- limit analysis
 Write(‘incrementItem failure test 3: failed’)
 CAPTURE Exception.quantityAboveStock
 Write(‘incrementItem failure test 3: successful’)
 END TRYCAPTURE
 anItem.destroy()
 aCart.destroy()
 aBook.destroy()
 END METHOD

END CLASS

The style of the code of the test case depends on the language and framework used.
Here a generic pseudocode implementation is illustrated to allow the logic of the test to
be understood by readers with knowledge about programming languages but not
necessarily experience with test frameworks.

As we can see in the code above, fixtures and test procedures are usually similar, and
thus uniform and parameterized methods could be used to create such objects, reducing
the quantity of code that is being produced. This is usually provided by frameworks such
as xUnit.

Unit tests may be extremely minimized if an automatic code generator is used to
generate the basic operations and delegate methods. I n that case, it may be assumed that
the code is correct because the generator does not make human mistakes. The test could
begin at the level of system operations, which is explained in the next section.

11.6 System operations testing
The top level of functional testing occurs when the team verifies if the system operations
really perform according to the contract specifications.

System operations may call methods from many classes, delegate responsibilities, and
coordinate the execution of basic and delegate methods. Thus, at the level of integration
of the classes that perform a consistent set of responsibilities, the system operation test
verifies if each system operation correctly implements its contract.

The system operations test, then, consists of verifying if in normal conditions
(preconditions are true and exceptions false), the desired postconditions are really
obtained, and if in abnormal conditions, exceptions are effectively raised. System
operation tests are very similar to unit tests, except that now the operation has a contract,
and this eases the identification of the necessary test cases.

Let us now examine the system operation add2Cart in Figure 10.13. I ts contract was
defined in Chapter 8 and is the following:

Context Livir::add2Cart(aCartId:CartId, anIsbn:Isbn, aQuantity:Natural)

 def:aCart=cart[aCartId]
 def:aBook=book[anIsbn]
 def:anItem=aCart.item->select(book.isbn=anIsbn)
 pre:
 aCart->notEmpty() and
 aBook->notEmpty()
 post:
 if anItem->isEmpty() then
 newItem.isNewInstanceOf(Item) and
 aCart^addItem(newItem) and
 newItem^setQuantity(aQuantity) and
 newItem^addBook(aBook) and
 newItem^setUnitPrice(aBook.price)
 else
 anItem^setQuantity(anItem.quantity@pre + aQuantity)
 endif

 exception:
 anItem.quantity+aQuantity > aBook.quantityInStock implies
 Exception.throw(‘quantity not available’)
The precondition aCart->notEmpty() implies that there is an invalid set for the

parameter aCartId. The precondition aBook->notEmpty() implies that there is an invalid
set for the parameter anIsbn. Finally, the exception in that contract establishes that there
are invalid values for aQuantity as well.

Regarding valid values, each parameter must have at least one valid equivalence set,
otherwise the method would always fail. However, as the postconditions are conditional
(they include an if-then-else-endif structure), there are at least two possible behaviors for
this operation, and this defines two valid equivalence sets: one when anItem is empty and
another when anItem is not empty. The test cases for this system operation are presented
in Table 11.2.

Table 11.2
Functional Test Cases for a System Operation

Type
Condition to Be Tested
Expected Result

Success

aCart->notEmpty() and
aBook->notEmpty() and
anItem->isEmpty() and
aQuantity <=
 aBook.quantityInStock

aCart.item->
 select(book=aBook).quantity=
 aQuantity

Success

aCart->notEmpty() and
aBook->notEmpty() and
anItem->notEmpty() and

anItem.quantity+aQuantity <=
 aBook.quantityInStock

anItem.quantity=
 anItem.quantity@pre+
 aQuantity

Exception

aCart->isEmpty()

‘There is no such cart’

Exception

aBook->isEmpty()

‘There is no such book’

Exception

anItem->notEmpty() and
anItem.quantity+aQuantity <=
 aBook.quantityInStock

‘Quantity not available’

Combinations of exceptional conditions could be tested as well. For example, one
situation that does not appear in Table 11.2 is when both the I S BN and cart I D are
invalid. I f that is the case, just one of the exceptions would be raised in any case.
Furthermore, as mentioned before, sometimes invalid conditions are not compatible. For
example, if the I SBN is invalid, there is no quantityInStock to be compared to the ordered
quantity, and thus the corresponding exceptions could never occur together.

This is usually why the only combinations that are tested are the ones that just include
success conditions or just one failure condition combined with success conditions.
However, if the team finds it easy and safer to add new variations that include
combinations of invalid failure conditions that may be implemented.

Thus, although not every combination is tested, it is necessary to test at least:
• All possible combinations of valid equivalence sets.
• All combinations of one invalid equivalence set with valid sets.
This means that after testing the valid combinations, the tester must include one

invalid set at a time for the exception test.
The code for testing system operations is very similar to the one presented for unit

tests: fixtures must be created before each test, success and failure tests are run, and the
environment is cleaned after each test.

11.7 Use case testing (System, acceptance, and business
cycle tests)
Use case tests consist of manually or automatically following all the possible flows of a
use case and checking if the desired results (usually stated as the use case
postconditions) are obtained.

I f the test is run over a single use case by the development team, then it is a system test.
I f the test is run by the client or under her supervision, then it is an acceptance test. I f a
whole set of system use cases related to a business use case are performed in a logical
sequence such as the one defined by the business activity diagram, then it is a business
cycle test.

The use case test aims to verify if the current version of the system correctly performs
the use case processes from the point of view of a user that performs a sequence of
system operations in an interface (not necessarily a graphic interface) and is able to
obtain the expected results.

The use case test may be understood as a systematic execution of the use cases flows. If
each of the system operations and queries has already passed their own tests, then it
must be verified that the main flow and alternate flows of the use case can be performed
correctly and that they produce the desired results.

I t is possible to automate these tests so that they can be performed by a test robot that
makes calls directly to the controller or simulates the actions of the user on the graphic
interface.

Consider, for example, a system test that must be conducted to evaluate the use case of
Figure 5.7, reproduced here as Figure 11.1.

FIGURE 11.1 Reference use case.

A use case test would deal with scenarios that are successful but run through different
paths. First of all, the main flow of the use case must be considered as a base scenario for
test purposes. Then, each variant or exception may be included one at a time for testing
alternate scenarios. This is the least that is expected of a use case test suite.
Combinations of exceptions and variants may be tested as well if the team considers
them useful and viable.

The technique for elaborating use case tests then consists of selecting a set of paths
that passes at least once by each variant and exception flow. The test cases for the
example of Figure 11.1 may be defined as the following:
• 1,2,3,4,5.
• 1,2,3a(1,2,3),4,5.
• 1,2,3,4,5a(1).
• 1,2,3,4,5b(1).

• 1,2,3,4,5c(1),1,2,3,4,5.
• 1,2,3,4,5d,1,2,3,4,5.

The system test plan for the use case of Figure 11.1 is shown in Table 11.3.

Table 11.3
Example of a Test Plan for a Use Case

The use case test is only performed on a system version in which all system operations
were already tested. I f many errors are still detected in system operations during the
system test, the usual approach is to abort the use case test and redo the system
operation tests until a sufficiently stable version of the system is produced and made
available for use case tests.

Although automatic use case testing3 may check if the functionality is correct or not,
human-powered use case tests are also recommended because there are aspects of the
test that are hard for a machine to assess. For example, are the error messages clear? Are
the buttons and text fields well positioned and sized?

Furthermore, a whole set of nonfunctional tests may be necessary depending on the
supplementary specifications and nonfunctional requirements of the system (Chapter 3).
Examples of nonfunctional tests are compatibility, compliance, endurance, load,

localization, performance, recovery, resilience, security, scalability, stress, and usability.
Explaining all these kinds of tests is beyond the scope of this book. Nonfunctional
testing demands heterogeneous techniques and are covered by a large number of books
such as: Molyneaux (2009) on performance testing, Nelson (2004) on stress testing, and
Nielsen (1994) on usability testing.

11.8 The process so far

11.9 Questions
1. Consider the methods defined in Section 10.2 for the class in Figure 10.1, and write a

sequence of unit tests for each of the basic operations defined for that class.
2. Look at the four contracts for the deleteBook operation in Section 8.7.3. Write a system

test in your favorite language or in pseudocode to test each of the versions of that
operation.

3. Prepare a use case test table for the use case in Figure 5.4.

1Although literature usually uses the term equivalence classes, which is a mathematical concept, in this book the term
equivalence sets is used instead to avoid becoming confused with object-oriented classes.
2Unless they were subclasses of Book, which is not the case.
3An example of a robot framework for interface testing is:
http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.4. Accessed
September 1st, 2013.

http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.7.4

C H AP T E R 1 2

Interface Tier Design with IFML
This chapter shows how to design a web interface for an information system using the Interaction Flow Modeling
Language (IFML). Initially, the information view components of IFML are presented. They are used in connection
with the design class diagram to manage the presentation of information. The integration of view components and
flows into containers such as pages and areas is presented as well as some interface design pa erns. Operation
components may also be used in connection with view components to define basic operations over objects. The
chapter concludes with the presentation of a complete CRUD interface modeled in IFML and a high-level design for
a system use case.

Keywords
I FML; I nteraction Flow Modeling Language; user interface; user interface pa ern; view
component; web navigation; web page

Key Topics in this Chapter
• The interaction flow modeling language (IFML)
• View components
• Hypertext organization
• Web page patterns
• Operations in IFML

12.1 Introduction to interface tier design
The interface tier design of a system depends fundamentally on the detailed use cases or
system sequence diagrams, because the interface must allow a user to follow all use case
flows. Design class diagrams and contracts may be very useful as well.

D uring interface design the nonfunctional requirements that were annotated with the
use cases should be revised again, because they may contain indications on how to
design the use case interface.

The I nteraction Flow Modeling Language (I FML) is an extension of UML for modeling
data intensive user interfaces. I t is an evolution of WebML (Ceri, Fraternali, Bongio,
Brambilla, Comai, & Matera, 2003). IFML is being adopted as an OMG standard.1

This chapter intends to present the most fundamental concepts of I FML, and its
modeling potential. More information may be found at the official site of the language.2

As I FML is still evolving as a pa ern, the reader may expect to find some discrepancies
between this text and the current specification of I FML, which may have changed after
this book was published.

12.2 Interaction flow modeling language (IFML)

12.2 Interaction flow modeling language (IFML)
I FML is suitable for modeling interfaces, especially those that make intensive use of data
such as information systems. The development method proposes the building of five
models in order to define an application:
• Structural model: This represents the data structure and data organization. Ceri et al.

use the entity-relationship diagram to define the structural model. However, the UML
class diagram (Chapters 6 and 7) may be used for the same purpose.

• Derivation model: This was originally proposed for modeling data that can be
calculated from other data. The derivation model may be understood as the set of
definitions of derived attributes and associations that usually are defined in the
conceptual model and may be written in OCL (Sections 6.2.3 and 6.4.3).

• Composition model: This includes the definition of containers as aggregates of basic
view components (Section 12.3), pages (Section 12.4), and areas (Section 12.6.2).

• Navigation model: Where the flows between pages and view components are defined
(Sections 12.5 and 12.6).

• Presentation model: Where the positioning of view components at the interface and
their appearance are defined.

This chapter addresses particularly the composition and navigation models. The
structural and derivation models were already discussed in Chapters 6 and 7). For the
presentation model, the WebRatio® tool3 provides the use of XS L S tyle Sheets.4 The code
generator of the tool uses these presentation rules to produce pages according to the
design produced with other tools. For the examples presented in this chapter, the
standard interfaces rendered by the tool, without the use of styles, are shown. Even
names of fields were left identical to the names of class a ributes in the aim of
promoting understandability instead of graphic quality.

12.3 View components
View components are the most basic elements in an I FML specification. View components
may be directly associated to design classes and allow the viewing of instances of these
classes.

There are many types of view components in IFML. Some examples are:
• Details: Displays information about a single object.
• Multiple details: Displays information about a collection of instances of the same class.
• Simple list: Displays multiple instances of a class in the form of a list.
• List: An enhancement of simple list that allows scrolling and dynamic sorting.
• Checkable list: A list that allows multiple selection.
• Hierarchy: Displays multiple instances of different classes organized in a hierarchy,

such as master-detail or whole-part.
• Recursive hierarchy: Displays multiple instances of a single class that are organized

hierarchically, such as organizational structures.
• Scroller: Allows the typical scroll operations on a sequence of objects.
• Form: Allows form-based data entry.

• Multiple form: Similar to form, but allows editing multiple objects at once.
• Message: Allows printing messages on the page.
• Calendar: Shows a perpetual calendar.
There are other view components and new ones may be defined. This chapter presents

details on the most fundamental ones. For each kind of view component a graphical
definition is presented, as well as the possible appearance of the web page rendered by
WebRatio for the definition. All examples are based on the DCD of Figure 12.1.

FIGURE 12.1 Reference design class diagram.

12.3.1 Details
The details view component presents information about a single object of a given class. I t
is defined by the following properties:
• A name, which is chosen by the designer.
• An entity or source of data, which is usually a class from the design class diagram.
• Display attributes, which is a list of attributes from the class to be displayed when the

details view is rendered.
Most view components such as details also allow for the definition of one or more

conditional expressions that work like selectors or filters over the set of instances to be
shown. There are three kinds of conditional expressions:
• Key condition: Each object in the data model is identified by an OID (Object IDentifier) –

an attribute that is unique, mandatory, and immutable. It must not be confused with
any of the attributes of a conceptual class, even the ones stereotyped with unique
and immutable , such as ISBN and Social Security number. The OID is an
internally generated code that corresponds to the primary key of an object. OIDs
cannot be known or updated by the user. A key condition allows one to select one or more
instances from a given class based on the value of its OID attribute.

• Attribute condition: This allows for the selection of one or more instances based on the
values of their attributes. Operations such as greater than, equal, or contains may be
used to compare the value of an attribute to a given parameter.

• Relationship role condition: This allows for the selection of one or more instances based
on their association links.

Figure 12.2 presents a details view component intended to show data about an instance
of a book for a given ISBN. The conditional expression isbn=0517149257 determines which
instance is shown. I f such an instance does not exist, then no information is rendered by
that component.

FIGURE 12.2 A details view component with a simple attribute condition.

T he attributes property usually does not appear in the graphical representation. I f a
modeling tool is being used, this property may probably be accessed by browsing the
component. As an I S BN is an a ribute that is unique and mandatory, it is safe to assume
that no more than one book is presented by this details view.

Figure 12.3 shows a possible web rendering for the details view component shown in
Figure 12.2.

FIGURE 12.3 A possible rendering for a details view component with all attributes of class Book.

The final rendered page may vary, because it is possible to add style definitions so that
interfaces with different designs and appearance are produced.

I f the details view component of Figure 12.2 is changed to show only the title and
authorsName attributes, it would produce the rendered result shown in Figure 12.4.

FIGURE 12.4 A possible rendering for a details view with fewer attributes selected.

12.3.2 Multiple details
Multiple details presents a group of instances of a single class at once. Besides the three
properties already shown for details view components, they add new optional properties:
• Sort attributes: Defines the attributes used for sorting the instances.
• Max results: Specifies the maximum number of instances to be retrieved. By default,

all instances are retrieved.
• Distinct: Specifies that duplicate elements will not be shown more than once.

Multiple details also allows for the definition and use of conditional expressions in
order to select which elements are to be shown. Figure 12.5 presents an example of
multiple details.

FIGURE 12.5 A multiple details view component.

Figure 12.6 presents a possible rendering for the multiple details of Figure 12.5
considering that only three books satisfy the conditional expression and that sorting is by
title.

FIGURE 12.6 A possible rendering for a multiple details view component.

As opposed to the details view component that shows only one instance at a time,
multiple details presents all the objects that satisfy the conditional expression.

I f it is necessary to use more than one a ribute to determine the objects to be
presented by the component, then a combination of conditional expressions may be
used. This combination may use the operands and and or. Figure 12.7 presents a multiple
details view component that shows instances that have pageCount higher than 100 and
price lower than US$150.00.

FIGURE 12.7 Multiple details view with a composite conditional expression.

12.3.3 Simple list
The simple list presents one or more a ributes of a set of instances of a class in the form
of a list. While multiple details are normally used to visualize the details of many objects
in the same page, a simple list and its variations are used when a list or menu is
necessary for the user to select one or more elements and perform actions with them.
The properties of simple lists are the same as those of the multiple details view
component.

I t is possible, for example, to define simple lists for selecting books based on their
titles. Figure 12.8 presents the view component for a simple list of book titles, and Figure
12.9 shows a possible rendering. The absence of a conditional expression in the simple
list view component means that all instances of Book are listed.

FIGURE 12.8 Simple list.

FIGURE 12.9 Possible rendering of a simple list.

12.3.4 List
A list is an enhanced version of the simple list that allows one to scroll elements and
dynamically reorder them by a simple click on the head of the respective a ribute
column. Besides the properties already defined for simple lists, it includes the following
specific properties:
• Sortable: A Boolean attribute that when true defines that the list may be dynamically

sorted.
• Default sort attributes: If the list is sortable it defines the sorting attributes that may be

selected by the user to sort the list and also the default sorting criteria when the list is
rendered for the first time.

• Sort history size: Specifies how many sort actions from the user must be remembered
by the list.

• Checkable: If true, a check box is rendered for each element of the list.
• Block factor: Specifies how many elements are shown at a time. If unspecified or set to

−1, all elements are shown. If the block factor is defined, then scrolling commands are
rendered for the list.

Figure 12.10 shows the I FML view component for a list. This list is defined for the Book
class with three a ributes: authorsName, title, and price. The block factor is defined as 3.
Figure 12.11 shows a rendered version of that list.

FIGURE 12.10 List.

FIGURE 12.11 Possible rendering for a list.

Observe at the top of Figure 12.11 the commands to scroll the list from the first to the
last group of three elements. Currently the first three elements are being shown, sorted
by their title.

I f the user clicks one of the links at the top of each data column, then the elements on
the list are rearranged and sorted by that column. I f the user clicks, for example, on
authorsName, the lines will be sorted by the author’s names, as seen in Figure 12.12.

FIGURE 12.12 Rendering of Figure 12.11 after a user action.

Notice that the elements shown are different because the entire list is sorted again and
the elements that are being viewed are the first three.

12.3.5 Checkable List
T he checkable list allows the user to select a set of elements from a list. Otherwise it is
very similar to a simple list. Figure 12.13 presents the I FML definition of a checkable list
and Figure 12.14 presents its rendering.

FIGURE 12.13 A checkable list.

FIGURE 12.14 Rendering for a checkable list.

While simple lists allow the selection of only one object at a time, checkable lists allow
the selection of any quantity of objects.

12.3.6 Forms
A form is used for data input. I t is very useful for creating new instances, and also to
provide parameters for searches, queries, and commands.

A form is composed of a set of fields. Each field holds an alphanumeric value. There are
text fields, selection fields, and multiselection fields.

A form may or may not be associated to a class. I f it is associated to a class, then its
fields may be associated to the attributes of a class.

Forms that are used to collect parameters for a query or command usually do not need
to be associated to classes. For example, a form that collects keywords for searching
books does not need to be associated to any class.

The fields of a form have the following properties (among others):
• Name: The name of the field, given by the designer.
• Attribute: If the form is associated to a class, then the field may be associated to one of

its attributes.
• Content type: Defines the type of the field, which may be string, text, blob, or url.

• Preloaded: The field may be preloaded with values that are shown to the user when the
form is rendered.

• Modifiable: Defines whether the initial value of the field may be changed or not. The
default is that a field value may be changed.

Figure 12.15 presents a form that is associated to the Book class, and Figure 12.16
presents its rendering.

FIGURE 12.15 A form.

FIGURE 12.16 Rendering of a form.

12.3.7 Hierarchies
Hierarchies are used to show object dependencies with two or more levels. They are
useful, for example, for showing objects that are related by a one-to-many association
such as Publisher and Book, or whole-part associations such as Book and Chapter. Figure
12.17 shows a definition of a two-level hierarchy with Publisher at the top and Book at the
second level.

FIGURE 12.17 A hierarchy.

The second level usually defines a role-based conditional expression. I n the example, the
role-based conditional expression defines that only books that are linked to a given
publisher are shown below it. I n the absence of a conditional expression, all books would
be shown below each publisher, but that is not the case now.

Figure 12.18 shows a rendering for the hierarchy of Figure 12.17 with books linked to
their respective publishers.

FIGURE 12.18 Rendering of a hierarchy.

There are situations that require the application of the organizational hierarchy pa ern
explained in Section 7.8, where a concept has subconcepts that belong to the same class,
which may be recursively nested. For these cases, IFML provides a recursive hierarchy view
com pon e n t . Figure 12.19 shows a recursive hierarchy defined for the
OrganizationalStructure class shown in Figure 7.15.

FIGURE 12.19 A recursive hierarchy.

The definition and rendering of a recursive hierarchy is similar to that of a normal
hierarchy. The only differences are that the detail class and the master class are the same
and the number of levels is undetermined.

12.4 Pages
Pages are the interface elements that are effectively accessed by the user. Typically, a
page contains one or more view components and possibly some other pages.

The I FML representation of a page contains a name and an optional set of included
view components and subpages. For example, Figure 12.20 presents a page that contains
a list of publishers and a list of books, and Figure 12.21 presents its rendering.

FIGURE 12.20 A page with two view components.

FIGURE 12.21 Rendering of a page with two view components.

The symbol in Figure 12.20 indicates that this page is a homepage, that is, the initial
page of an application. The other symbol in the upper-right corner of the page does not
have any special meaning in I FML; it is just a tool-specific command to highlight and
obscure graphic elements.

The view components that appear inside the page in Figure 12.20 are independent of
each other because there are no flows between them.

By default, view components defined in the same page are rendered one on top of the
other, and occupy the entire width of the page. But it is possible to use the presentation
model, as mentioned before, to define view components in different positions and sizes.
The presentation model consists basically of a grid in which the view components are
positioned and dimensioned inside a page. I n the example of Figure 12.22 the view
components were placed side to side.

FIGURE 12.22 A different rendering arrangement for the page shown in Figure 12.21.

12.5 Flows
A flow is an oriented connection between two pages or view components. Flows may be
used not only to define navigation possibilities between pages, but also to define data
dependencies. For example, selecting an element in a list view component may cause
information about the element to appear in a details view component. This can be
accomplished by defining a flow from the list to the details.

12.5.1 Normal navigation flow
Normal navigation flows are a type of flow that is rendered as a clickable link in its origin
page or view component. When the link is clicked it navigates to the destination page or
view component. It is represented by an arrow.

Figure 12.23 shows an example of a normal navigation flow between two pages. The
resulting rendering of the Publishers page contains a link to the Books page (at the right
top corner of Figure 12.24).

FIGURE 12.23 A normal navigation flow between pages.

FIGURE 12.24 Rendering of a normal navigation flow as a link.

We can see in Figure 12.23 that the flow is not a ached to the view components, but to
the pages. Therefore, the link will be rendered only once in the page where the list of
books is visualized.

I f the flow had its origin at the list view component as in Figure 12.25, then each line in
the list would have an individual link to the Books page.

FIGURE 12.25 A flow from a view component to a page.

Figure 12.26 shows how the model in Figure 12.25 would be rendered.

FIGURE 12.26 Rendering a link for each element of a list.

This list is still just a set of links that have the same effect: navigating to the Books
page. The following sections show how this kind of flow can be used to transport
information from one view component to another, making it possible, for example, to
visualize only the books of a given publisher.

12.5.2 Data flow
Data flows are a kind of flow that is not rendered, but that define data dependency
between view components.5 Dashed arrows represent data flows.

D ata flows do not define navigation between view components. They are used to get
values from one component without navigating from it. They are particularly useful
when a component needs data from more than one component. The following sections
present examples of data flows that get data from different sources.

12.5.3 Parameter binding
A parameter binding is a piece of information that is transmi ed from the origin to the
destination of a flow. A parameter binding has a name and a value, which is obtained at
its origin component.

A flow may have a multiple parameter binding, passing a set of values instead of a
single one.

Usually, object keys or a ribute values are passed by parameter bindings. By default, a
flow from a view component binds the key of the selected object at the origin component
and takes it to the destination, where it can be used, for example, by a conditional
expression.

I n previous examples only constants were used in conditional expressions to select the
elements to be shown in view components such as lists and details. Now, with flows and
parameter binding, it is possible to use a view component to define which elements are
shown in another view component.

The I FML diagram shown in Figure 12.27 shows a list of books with a flow to a details

view component. The details view has a key condition [oid=?]. As the key of the selected
book at the list is bound to the flow that goes to the details view, only that book is shown
when the details view is rendered.

FIGURE 12.27 A normal navigation flow connecting two view components.

When the user selects a book in the list, by clicking the respective link, the details view
presents information about the book. Figure 12.28 shows the state of the page when the
link associated to the first book is clicked.

FIGURE 12.28 Rendering of the model of Figure 12.27 when the first book is selected in the list.

Parameter binding may also be used to associate a form to another view component.
For example, the form may provide a search field, and a list would present only the
elements that satisfy some search criteria.

Figure 12.29 shows an example where a search field is used to find the books of a given
author. The user may type the author’s name or part of it in the search field, and the
results are shown in the Books list.

FIGURE 12.29 A flow that transports data from a form to a list.

The parallelogram that is next to the flow indicates that this flow has a parameter
binding that is not the default object key.

In the rendering shown in Figure 12.30, the user just typed “Clarke” in the search field,
and the results produced are shown in Figure 12.31.

FIGURE 12.30 Rendering of the model of Figure 12.29 before the search is performed.

FIGURE 12.31 Rendering of the model of Figure 12.29 after the search is performed.

12.5.4 Multivalued parameter binding
I t is possible to define flows from multiple-choice components such as checkable lists. I n
these cases, a parameter binding passes a set of values (checked elements keys, for
example).

I f a checkable list is linked to a multiple details view like in Figure 12.32, the user may
select a number of elements on the checkable list as in Figure 12.33 and press the bu on
on the bo om to navigate to the page that shows the details of the selected books only
(Figure 12.34). The multiple details view has a key condition that states that only books
whose OID belong to the set that is bound to the flow are shown.

FIGURE 12.32 A flow with multivalued parameter binding.

FIGURE 12.33 Rendering of the model in Figure 12.32 before clicking on the button.

FIGURE 12.34 Rendering of the model in Figure 12.32 after clicking on the button.

12.6 Hypertext organization
View components, flows, and their organization inside pages constitute the most local
interface models. However, it is also necessary to create wider models for an interface,
including groups of interrelated pages, navigation regions, landmarks, and so on. This
kind of model is described in this section and is referred to as hypertext organization.

12.6.1 Site views
A site view is a package that contains an entire application that may be delivered for
users. I t usually contains a group of areas (see next section) and pages for the application.
Figure 12.35 presents an example of a site view with a page (Main) and two areas
(Administrative and Customer).

FIGURE 12.35 A site view.

This example has not yet been fully developed, though. Only the top-level structure is
shown in Figure 12.35.

12.6.2 Areas
A site view may be organized in areas. Areas and pages are referenced in I FML as

containers. Areas are groups of containers that have affinities, such as, for example, a set
of functions related to a given user goal.

I n the I FML model of Figure 12.35, the areas appear as shadowed rectangles. Areas
provide hierarchical organization to a site view.

12.6.3 Home, landmark, and default
In Figure 12.35 some containers have special properties:

• [H] or indicates the homepage. The homepage is the initial page of an application.
When a user accesses the website she will access the home page by default. Areas do
not have this property.

• [D] indicates the default page of an area. When a user navigates to a given area, she
will land on the default page. Thus, the default page is a kind of “homepage” for a
specific area. Areas do not have this property.

• [L] represents a landmark page or area. This means that the page or area is directly
accessible from any other page included in the same area. Thus, it avoids the need to
create lots of flows to pages that must be accessed from many places.

Only one homepage may exist for a given site view and only one default page for a
given area. However, any number of landmark areas or pages may exist.

12.7 Web Interface Patterns
Most web interface pa erns presented in this section are adapted from Ceri et al. (2003)
and Tidwell (2005).

12.7.1 Cascade Index
A cascade index is a sequence of menus based on lists that eventually reaches a details
view. For example, a user could begin by selecting a publisher. Then, the user could
select a book from a publisher’s list, and finally access the book details. Figure 12.36
illustrates that pattern.

FIGURE 12.36 Example of a cascade index.

I n the diagram of Figure 12.36, as the parameter bindings are default, the flows carry
the OI D s of the selected elements. Those OI D s may be used by the conditional
expressions at the destination view component to define which elements are to be
shown.

The view component Books List uses a role-based conditional expression that shows
only the books linked to the publisher whose OI D is bound to the entry flow that comes
from Publishers List.

Notice that the Books List has a conditional expression that is based on the role
PublisherToBook, that is, only books linked to the publisher at the origin of the flow are
shown by Books List.

T he Book details view shows the complete information of the book selected in Books
List. The selected book’s OI D is bound to the flow that comes from Books List to the
details view. Figures 12.37 to 12.39 show a sequence of rendered interfaces that illustrates
that pa ern. I n Figure 12.37 a publisher may be selected. I n Figure 12.38, after selecting
the second publisher, one of its books may be selected. Finally in Figure 12.39 the third
book was selected and its details are shown.

FIGURE 12.37 Rendering of Publishers List.

FIGURE 12.38 Rendering of Books List.

FIGURE 12.39 Rendering of Book details.

One variant of this pa ern consists of showing some data from the object selected in
one of the intermediary lists. Figure 12.40 illustrates that situation.

FIGURE 12.40 Cascade index with intermediary data presentation.

There, when a publisher is selected, the interface shows the publisher’s details and a
list of books for further selection. Notice that in the intermediary page Publisher Details
is connected to Books List by a data flow. I t is not necessary for the user to navigate from
Publisher Details to its list of books: both view components are shown at the same time
when the Select Book page is accessed. Figure 12.41 shows how the intermediary page
could be rendered.

FIGURE 12.41 Rendering of the intermediary page of a cascade index with intermediary data.

12.7.2 Filtered index
I n some cases it may be necessary to show a list with selected elements. For example, if
the bookstore has thousands of books in its catalog, it would not be feasible for a user to
simply browse for a book in that list. A filtered list could be used instead, for example,
asking the user to provide a keyword in order to show a reduced book list.

This pa ern is accomplished by a connection between a form, a list, and a details
component, as shown in Figure 12.42.

FIGURE 12.42 An example of a filtered index.

As the results are shown by a list (not a simple list), a scroll block factor may be defined
as well as the possibility of dynamically sorting the results. Furthermore, a maximum
number of results may be defined for this list so that unnecessarily large lists are not
presented.

12.7.3 Guided tour
A guided tour is a pa ern that allows one to visualize details of a set of objects one at a
time by using scroll operations. I t is implemented by using a scroller component with
blockFactor 1 linked to a details view, as seen in Figure 12.43.

FIGURE 12.43 Specification of a guided tour.

Figure 12.44 shows a rendering of that specification where the fifth of eight books was
selected by the user.

FIGURE 12.44 Rendering of a guided tour.

12.7.4 Viewpoints
Sometimes, it may be interesting to present different faces of certain objects in different
moments. For example, summarized data about a book may be presented by default, but
that data may be expanded or contracted again at the user’s will.

I n order to implement the viewpoints pa ern, two or more details components may be
defined for the same class, with different sets of a ributes. Flows may be defined
between the different components to allow the user to change from one view to another,
as shown in Figure 12.45.

FIGURE 12.45 Specification of viewpoints.

Figure 12.46 shows the appearance of the summarized viewpoint and Figure 12.47
shows the complete information viewpoint.

FIGURE 12.46 Summarized viewpoint.

FIGURE 12.47 Complete information viewpoint.

12.7.5 Overview plus detail
The overview plus detail pa ern is very common in applications such as email browsers,
but it can be applied to a variety of other situations. The idea is to have in the same page
a scrolling list of elements and the details view of one selected element in a region next
to the list.

Figure 12.48 shows an I FML definition that uses this pa ern with a list with block
factor 3 and a details view component linked to it by a flow.

FIGURE 12.48 Specification of an overview plus detail pattern.

Figure 12.49 shows a rendering for the page specified in Figure 12.48.

FIGURE 12.49 Example of rendering of a page using the overview plus detail pattern.

12.7.6 Top-level navigation
Top-level navigation is a frequent pa ern in web pages where a top-level menu allows
access to different areas of the site. The example in Figure 12.50 illustrates top-level
navigation being defined by a set of landmark areas, each containing one page (they
could contain more pages if needed).

FIGURE 12.50 Example of specification of top-level navigation.

For the example, only the third area was partially defined. A rendering of that model is
shown in Figure 12.51 where the third area, “Catalog,” is selected from the top menu
showing the default page Books.

FIGURE 12.51 Example of rendering of a page using top-level navigation.

A variation of this pa ern is menu-based top level navigation. This may be
accomplished by adding a set of landmark pages to each of the top landmark areas, as
shown in Figure 12.52.

FIGURE 12.52 Example of specification of menu-based top-level navigation.

Figure 12.53 shows the rendering when the mouse is positioned over the menu item
“Catalog.”

FIGURE 12.53 Example of rendering of a page using menu-based top-level navigation.

12.8 Modeling operations in the interface
I FML allows basic operations to be modeled by using operation components that allow for
the creation, deletion, update, connection, disconnection, and reconnection6 of instances.
These components perform most of the basic operations that were presented in Section
8.5. Figure 12.54 shows the graphical representation of those operations.

FIGURE 12.54 Operation components: create, delete, modify, connect, disconnect, and reconnect.

The operation components do not hold or render information; they just process
information. Therefore, they are represented graphically outside the pages.

Every operation component should have at least one input flow. Sometimes all the
information the operation needs is obtained from a single view component, but
sometimes more than one view component may be necessary to supply all the data

needed by an operation.
Operation components have special output flows. Two different kinds of output flows

exist for operations:
• OK flow, which defines where the focus goes when the operation is successfully

performed for every object.
• KO flow, which defines where the focus goes when the operation fails for at least one

of the objects affected by it.
The operation components are based on classes or associations that are their data

sources. Create, delete, and update operations are defined over a single class, while connect,
disconnect, and reconnect are defined over an association, and therefore they have a source
and a target class.

For example, a delete operation could be defined over the Book class as in Figure 12.54;
this operation would be responsible for deleting instances of Book.

A connect operation, on the other hand, would be defined over an association such as
BookToPublisher, as shown in Figure 12.54. Therefore, it would be responsible for
connecting (adding links between) instances of the Book class (source) and the Publisher
class (target).

12.8.1 Create operation
The create operation creates new instances of a given class. A navigation or data flow may
be used to provide initialization data for the new instance. Usually, the initialization data
are obtained from a form based on the same class. A flow from the form to the create
operation passes the values for all necessary a ributes except for the OI D , which is
generated automatically by the create operation. For example, Figure 12.55 shows a
structure for creating instances of Book.

FIGURE 12.55 Example of application of a create operation.

Figure 12.56 shows the rendering of the form that is the origin of the flow to the create
operation. The flow is rendered as the Save button.

FIGURE 12.56 Rendering of a form with a flow to a create operation.

As we can see, the user may type in the form the initialization values for the new book.
The flow from the form binds the data and takes the data to the create operation. The
create operation then creates the new instance and defines its a ributes with the values
received from the flow.

I f the operation is successful, then the OK flow is followed to a details component that
shows the newly created book. The OK flow binds automatically the OID of the new book
so that the conditional expression at the details may be used to define which book to
present.

If the operation fails, the control goes to an error page following the KO flow.

12.8.2 Delete operation
T h e delete operation may be performed over one or more objects that satisfy the
conditional expression defined for it.

The delete operation may be used in conjunction with a list (any kind of list), where
the user may select the object(s) to be deleted. Figure 12.57 shows an example where the
user selects a book to delete from a simple list. Notice that the selector of the delete
operation is based on the book’s OI D , which is received as a parameter from the input
flow.

FIGURE 12.57 A delete operation being activated from a list.

This page may be rendered as in Figure 12.58, where the word “delete” corresponds to
the flow name.

FIGURE 12.58 Rendering of a simple list associated to a delete operation by a flow named “delete.”

When all objects that qualify to be deleted are really deleted, the OK flow is followed.
When at least one object cannot be deleted, the KO flow is followed and passes as a
parameter binding the OI D s of the objects that could not be deleted. Thus, the KO flow
could, for example, lead to a list or a multiple details view where the objects that could
not be removed are shown, as seen in Figure 12.57.

12.8.3 Update operation
An update operation contains a selector for one or more objects of the same class and a set
of assignments for updating the a ributes of those objects. Usually, new values for
attributes are received by normal navigation or data flows.

Figure 12.59 shows how to use an update operation to change the price of an existing
book.

FIGURE 12.59 An update operation being used to change the price of a book.

On the Book Prices page, a book is selected from a list (Figure 12.60). Then a new page
(Update Price) shows details of the book and a field preloaded with the old price. The user
may change that value and update it by pressing “Save” (Figure 12.61).

FIGURE 12.60 Rendering of the Book Prices page.

FIGURE 12.61 Rendering of the Update Price page.

The old price is loaded in the New Price field by a data flow from Book Details. The

update operation is activated by the navigation flow that is rendered as the Save bu on
on the Update Price page. That navigation flow has a parameter binding that passes the
new price of the book from the respective field in the New Price form to the update
operation. Other a ributes of the book, including its OI D , are received by a data flow
from Book Details.

I n Figure 12.59, the OK flow from the update operation leads back to the list on the
Book Prices page, where the new price may be visualized. The KO flow leads to an error
window. Again, the OK flow is followed when all objects qualified by the conditional
expression are changed. I f at least one object cannot be updated, the KO flow is followed
with the set of OIDs of the objects that could not be updated as binding parameters.

12.8.4 Connect, disconnect, and reconnect operations
T he connect, disconnect, and reconnect operations have an association as a source of data.
The connect and disconnect operations have two conditional expressions: one for the
origin role and the other for the target role of the association. The reconnect operation
may be understood as a combination of the former ones. I t has three conditional
expressions: one for the origin role, another for objects in the target role to be
disconnected, and a third for objects in the target role to be connected to the source
objects.

The connect, disconnect, and reconnect operations may add, remove, or replace links
between sets of objects. I f, for example, five objects satisfy the source conditional
expression and three objects satisfy the target conditional expression, then a connect
operation would create 15 links: each of the five origin objects will be linked to each of
the three target objects.

The example in Figure 12.62 shows how a link between a book and a publisher may be
created. First of all, the link is mandatory from the book to the publisher. Thus, it is not
possible simply to get a list of books and a list of publishers and choose which ones
should be linked. A link between a book and a publisher must be created as soon as the
book is created. Furthermore, that link is immutable and cannot change later.

FIGURE 12.62 IFML model showing an interface in which books may be created and linked to publishers.

On the first page, Choose Publisher, there is a simple list of publishers. The user may
choose one and be taken to Publisher Page. There, the publisher’s details and a list of
books already linked to it are shown. Notice that Publisher Details has a key condition
and a flow from Publishers List, and therefore, it shows the publisher selected in the list.
The Publisher’s Books list has a data flow coming from Publisher Details and a role-based
conditional expression so that only books that are linked to the publisher of Publisher
Details are shown. Figure 12.63 shows the Publisher Page rendered after the publisher
“Bantam” was selected from the list.

FIGURE 12.63 Rendering of the Publisher Page.

From the Publisher Page the user may navigate to the New Book Form by using a normal
navigation flow between both pages, which is rendered as the New Book link. I n this page
the user may fill in the form with information about the new book, which will be
automatically linked to the publisher presented in the Publisher Page. I nitially the create
operation creates the new instance of book. I ts OK flow leads to a connect operation that
is based on the association BookToPublisher. The flow that comes from the create
operation has the new book key as a parameter binding; that key is used in the source
conditional expression. The publisher is the target and it is obtained by a data flow
coming from Publisher Details.

I f the connect operation is successful, it returns focus to the Publisher Page, where the
new book can be seen in the list of the current publisher’s books. I f the create or connect
operation fail then focus goes to a page with an error message.

However, the design shown in Figure 12.62 is not safe. I f a book is created and the
connect operation fails, that book would remain inconsistent regarding its definition.
I FML allows a transaction to be defined as a group of operations. Figure 12.64 shows an
operation group being defined to include both the create and connect operations. As the
operation group may be defined as a transaction ([T]), either all of the operations inside
the group succeed or the whole group fails. I n that case a single KO flow from the group
is followed.

FIGURE 12.64 A safer design for Figure 12.62 using an operation group.

12.9 IFML models for CRUD operations
This section shows step-by-step how to implement a CRUD -style interface for managing
information about publishers using IFML view components and operations.

The CRUD main page, Manage Publishers, presents a list of existing publishers. The
creation of a new publisher is initiated by clicking on a link on the main page that gives
access to a new page with a form. I f the creation of a new publisher is successful, control
returns to the main page, and the new publisher appears in the list. I f there is an error,
control goes to an error page, from which it is possible to return to the main page (Figure
12.65).

FIGURE 12.65 Defining an interface for “create”.

The second operation of a CRUD , retrieve, is the query that allows the visualization of
all a ributes of a given publisher. This query may be modeled by a flow from the main
list that leads to a page with a details view component, as shown in Figure 12.66.

FIGURE 12.66 “Create” and “retrieve” defined.

The third operation, update, allows a publisher to be selected in the main list, and the
a ributes of the selected book are used to fill the fields of a form with Publisher as the
source class. There they can be edited by the user and saved as shown in Figure 12.67.

FIGURE 12.67 “Create,” “retrieve,” and “update” defined.

Finally, the operation for deleting a publisher is added, as shown in Figure 12.68. A
delete operation may be accessed from the main list.

FIGURE 12.68 Complete CRUD interface specification.

Figure 12.69 shows the rendering of the main page of the CRUD of Publisher, as
defined in Figure 12.68. At the top of the page, we can see the link for creating a new
book, and just below is the main list, where the options for retrieving, updating, and
deleting each publisher are available.

FIGURE 12.69 Main window for the CRUD for Publisher.

Figure 12.70 shows the rendering for the retrieve page, which is accessed by selecting
the details option for the third publisher on the main page list. The Back link on the top
of the page allows a user to return to the main page.

FIGURE 12.70 Rendering for the publisher retrieve page.

Figure 12.71 presents the publisher update page, which is accessed by pressing the
update link on the main page list. This page is identical to the page for creating a new
publisher except for the fact that it preloads data instead of being blank, and that as the
name attribute is immutable, the respective field is defined as not modifiable.

FIGURE 12.71 Rendering for the publisher update page.

12.10 Use case interface modeling with IFML
As seen in the previous section, working with basic operations at this level may rapidly
make the diagram too complex to be read easily. One option to deal with this complexity
is to separate the interface project into different areas and deal with one at a time. This is
possible at this time because use cases have already been explored and the team has a
deeper understanding about the system structure and user needs, which allows them to
design an acceptable interface.

The design of the customer interface may start with the use case diagram of Figure
3.11, part of which is presented in Figure 12.72.

FIGURE 12.72 Partial use case diagram of Livir with the customer’s use cases.

Based on this use case diagram one possible interface design that could be prepared
has three main areas:
• Shopping cart: orders and payment.
• My account: login and personal data.
• Reports.

This is still a very crude design, in the sense that no usability issues were raised in
deciding on the best organization. However, it is effective. Figure 12.73 shows the I FML
design of those areas.

FIGURE 12.73 Initial high-level design for the customer site view of Livir.

Now let us take a look at the use case 01: Order books. I ts system sequence diagram is
depicted in Figure 12.74.

FIGURE 12.74 System sequence diagram for use case 01: Order books.

I n order to prepare an interface design based on that sequence diagram, the team
should look at the system operations, including their parameters and results:
• Any system operation, be it a command or query, must be activated somewhere in the

interface. The activation can be obtained by clicking a button or a link, by selecting an
item from a list, etc. Sometimes the same event may activate more than one system
operation: if two or more system operations happen just after a system event (left side
of the sequence diagram), then they are possibly activated by the same user action.

• Any parameter a system operation has must be obtained somewhere. Some
parameters could be obtained from other sources (such as a clock, for example), but
most parameters would be obtained in the interface. Thus, for most parameters there
will be an interface view component (usually a form field) that allows the user to
introduce the necessary data.

• Any result obtained by a system query must be presented somewhere. Some results
may be hidden from the user in some cases, but usually they are presented. View
components such as lists, details, and others may be used to show system query
results.

I n order to proceed with the interface design the recommendations above are followed
and view components are created to hold all necessary parameters and results. System
operation actions (shaped as hexagons) are added to the diagram as well. Figure 12.75
presents the evolution of the interface design for the My shopping cart page, which
implements part of the use case 01: Order books.

FIGURE 12.75 Further refinement of the interface design for the My shopping cart page.

The system operation createCart produces a new cart which is presented by the details
Shopping Cart. The user can use the form Search to search for books, which are presented
in list Search Results. There the user can select a book and define the desired quantity at
the form Quantity. That activates the system operation add2Cart. That operation takes
parameters from Shopping Cart (the cartId) , Search Results (the isbn) and Quantity (the
quantity). After a book is inserted in the cart it is automatically shown in the multiple
details Cart Summary.

Before finishing the order, the customer should login if she has not yet done that.
Finally, the order may be finished by performing the system operation finishOrder, which
takes parameters from Customer (the customerId) and Shopping Cart (the cartId).

Thus, instead of using I FML operations for defining system operations, the team can
use procedures defined externally as in Figure 12.75. I n this case, the team may
implement them in their favorite programming language.

12.11 The process so far

12.12 Questions
1. Chose at least three use cases of the Livir system (Table 4.7): a CRUD, a report, and a

nonstereotyped use case. Create a complete interface model for them.
2. Research some sources concerning the MVC (Model-View-Controller) and MVP (Mode-

View-Presenter) design patterns. How many different definitions and variations for
those models are you able to find? How do they differ from each other?

1IFML is currently an ongoing standards project, and the first draft was published in March 2013. It may be accessed at
http://www.omg.org/spec/IFML/.
2Available at www.IFML.org/.
3The first IFML-compliant tool.
4www.w3.org/Style/XSL/
5And operations as explained later.
6Replacing a link.

http://www.omg.org/spec/IFML/
http://www.IFML.org/
http://www.w3.org/Style/XSL/

C H AP T E R
E 1 3
Data Persistence

This chapter explains how to transform object-oriented models into relational databases and also how to load and
save data automatically. Initially the object-relational mapping (ORM) technique, used to convert objects into
relational database records, is explained. Then, we present a persistence mechanism based on virtual proxies,
brokers, and caches.

Keywords
broker; commit; lazy load; object-relational mapping; ORM; relational database; rollback;
virtual cache; virtual proxy

Key Topics in this Chapter
• Object-relational mapping (ORM)
• Virtual proxy
• Brokers
• Virtual caches

13.1 Introduction to data persistence
The availability of persistence mechanisms for commercial languages1 has made
database design much easier for many projects. With adequate tools, it is possible to
automatically generate the persistence tier for a great number of information systems.
For some critical and legacy systems, however, database adjustments may be still
necessary in order to accommodate special features or to satisfy performance or security
requirements.

Usually, object-oriented systems are implemented in object-oriented languages, but
persistent2 data storage is accomplished with relational databases. A lthough other
techniques such as object-oriented databases (Won, 1990) and XML databases (Bourret,
2010) are also options for implementing permanent storage of data, ORM, object-
relational mapping, is still the preferred approach.

The goal of this chapter is to explain what happens inside the persistence tier of a
system when a persistence mechanism based on ORM is used. First of all, a good
persistence mechanism requires domain and data storage to be separated into different
tiers within the application. Remember that the interface tier is modeled with essential
use cases and the domain tier is designed using the conceptual model and contracts as
the basis. None of the aforementioned tiers addresses data storage or persistence.
Persistence should be designed as a separate concern: a background system that will

keep data securely and permanently in its place without interfering on the domain or
interface logic.

The persistence mechanism should assure that the objects are saved in a permanent
memory device, and that they are loaded from there when necessary. D omain and
interface logic should not be polluted by persistence concerns.

Object-oriented design provides lots of good concepts such as encapsulation,
responsibility, and delegation that help designers deal with the complexities of the logic
for accessing and transforming information. But when data must be stored in a more
permanent way – disks and tapes, for example – the relational database is a good option
because it is very efficient in terms of time performance and there are lots of
optimization techniques to improve relational database operations. Thus, if the team
wants to work in the best of two worlds (object and relational), the mapping between
them must be understood.

The literature refers to the problem of object-relational impedance mismatch (Ireland,
Keynes, Bowers, Newton, & Waugh, 2009), because most of the good features obtained by
object-oriented design are lost when a flat relational database is used.

The implementation of a persistence mechanism minimizes that problem by using a
set of predefined classes not belonging to the domain tier that take care of all logic
involving domain objects being saved and retrieved from a relational database.

13.2 Object-relational mapping (ORM)
A complete and detailed design class diagram (D CD) allow for the automatic generation
of a relational database structure that reflects in secondary memory3 the information that
the objects represent in main memory. The following sections present some equivalence
rules that should be observed when using ORM.

13.2.1 Classes and attributes
The first set of rules addresses classes and their a ributes. Each persistent class of the
D CD corresponds to a relational table. Each a ribute is a column of the table, and each
instance is a line or record of the table.

The stereotypes of some a ributes such as unique , optional , and immutable
affect the properties of the columns of the relational tables. S ome of the features
described here may not be implemented by some commercial database management
systems. I n that case, adjustments might be necessary in order to provide a safe
implementation free from the object-relational impedance mismatch.

A ributes stereotyped with unique are represented as columns marked as unique
or uniq, which cannot repeat values. However, even objects with no unique a ribute have
an identity that distinguishes them from other objects. Even objects with the same value
for every single a ribute may be differentiated by their identity. I n the case of relational
tables, this is accomplished by defining a primary key to each relational table. A primary
key, just like a unique column, may not repeat elements. An element in a primary key

column may also not be null. Primary keys usually are simply sequential numbers
generated automatically by the application in such a way that the same number is never
generated twice for the same table. Primary keys do not correspond to any of the a ributes of
an object: they correspond to the object identity.

Figure e13.1 shows the class that is the basis for the following examples, and Table
e13.1 shows the equivalent relational table with three instances of that class represented.

FIGURE E13.1 Reference class.

Table e13.1
Relational Table Equivalent to the Class of Figure e13.1

Although other formats could be used to specify the constraints on the columns here
they are presented as acronyms for quick reference:
• Uniq, or unique, means that the column cannot repeat values.
• Im, or immutable, means that the value in the column cannot be updated.
• NN, or not null, means that the column does not admit the null value. It is exactly the

opposite of the optional stereotype used for design classes. It is used here because
not null is a common constraint implemented in databases.

• PK, or primary key, means that the column is the primary key of the table. If a column

is PK it is necessarily immutable and not null. If only a single column is PK then it
must be unique as well. However, if the PK is composite, spreading over more than
one column, then each individual column may or may not be unique.

The first column in Table e13.1 is pkBook. Notice that it does not correspond to any
a ribute of the reference class. I ts value is artificially generated by a number sequence
generator so that it is unique for the whole application or at least for that table. S ome
authors (Wieringa & J onge, 1991) refer to it as a surrogate key, that is, a value that has no
semantic meaning, and is unique systemwide, never reused, system generated, and not
handled by the user or application.

The other columns correspond to the attributes of the reference class:
• isbn is a unique attribute. Therefore the equivalent column is unique, immutable, and

not null.
• title, authorsName, and pageCount are normal attributes that are immutable and

mandatory. Therefore the equivalent column is immutable and not null, but not
unique.

• price and quantityInStock are normal attributes that may change but cannot be null.
Therefore the equivalent column is not null only.

• coverImage is an optional attribute that may be updated. Therefore, the respective
column has no constraint: it may be updated and may be null.

• publisherName is a derived attribute. Therefore it is not represented in the relational
table.

I f an a ribute of the design class is marked with transient then it also should not
appear in the relational table.

13.2.1.1 Number sequence generator
Most database management systems provide number sequence generators that generate
numbers that never repeat. This is necessary to provide values for primary keys,
especially when multiple users are producing new records at the same time. The number
sequence generator must assure that different users would not produce the same
number at the same time.

Number sequence generators may be associated directly to the column of the table
that contains primary keys. Every time a new record is inserted in the table, a new
number in the sequence is created.

The database designer may choose an initial value for the sequence as well as an
increment. For example, beginning with 500 with an increment of 5 the sequence
generated would be 500, 505, 510, 515, etc.

13.2.1.2 Index selection
By default, a relational table is just a set of records. Finding a given object at a table
would require iterating over all elements until the desired element is found. For example,
looking for a book given its ISBN would require an exhaustive search.

D atabases usually provide, however, the possibility of indexing columns. An indexed

column has an auxiliary table that allows specific records to be found in almost constant
time. For example, if the isbn column of the table is indexed, then when a book is
searched based on its I SBN, no iteration is performed over the set of all records: the
system simply would translate the value of the I S BN into a position in memory by using
a hash function and retrieve the element from that position. I f that is not the desired
element, then it looks for the next, and so on until finding it. I f the hash function is well
implemented and the hash table has enough space to avoid collisions (two values being
translated to the same hash value), then usually the desired element is really in the first
place searched, or very close to it at least.

The use of indices improves query speed. However, it slows database updating because
every time a record is updated, inserted, or deleted, the auxiliary table must be updated
as well (Choenni, Blanken, & Chang, 1993). Furthermore, indices also require more
storage space for accommodating the auxiliary tables.

A primary key is indexed by default. Other columns may be indexed if the designer
chooses to do that. Given the restrictions mentioned before, creating other indices may
be an advantage in the case of an a ribute that is used as internal qualifier. I n that case,
finding the objects quickly may be crucial for the application’s performance. Otherwise,
indices should be avoided. For example, columns that are rarely used for searching
purposes (for example, a book’s page count) should not be indexed.

13.2.2 Associations
Generally, associations between classes (except transient associations that do not persist)
correspond to associative tables in the relational model, that is, tables with a primary key
composed by the primary keys values of the tables that represent the participating
classes.

I n this case, the primary key of the associative table is in fact composed of two (or
more) columns. Each column may repeat values individually depending on the
association multiplicity; but the pair (or tuple) of values that compound the primary key
can never be repeated.

D epending on the multiplicity of the association roles, some rules must be observed.
Many-to-many associations will have no individual unique restrictions. However one-to-
many and one-to-one associations require primary keys in which one or both columns are
unique. This is explained in further details in the following subsections.

13.2.2.1 Many-to-many associations
I f the association is many to many with both role multiplicities defined as *, then there is
no restriction on the columns that compose the primary key of the associative table.
Figure e13.2 shows an example of a many-to-many association.

FIGURE E13.2 Many-to-many association.

Consider again the three books of Table e13.1 and the three customers shown in Table
e13.2.

Table e13.2
Relational Table for the Customer Class

Notice that in Table e13.2 a customer has two codes: one is its idNumber, for example, a
S ocial S ecurity number. That value is known outside the information system. I t is usually
preforma ed and although in normal conditions it does not change, nobody may prevent
the government from changing all citizens’ S ocial Security numbers if that is necessary.
Therefore, though idNumber is unique for a customer, it does not qualify as a good
primary key. The primary key for Table e13.2 is pkCustomer, which is a number created
automatically by the number sequence generator; it is unique and assured never to
change, because it has no meaning outside the database.

Table e13.3 shows an associative relational table that represents the links between
some customers and some books desired by them. Notice that the PK spreads over two
columns now. Each column contains a foreign key (FK), that is, a value that corresponds to
the primary key of another table.

Table e13.3
Associative Table Representing a Many-to-Many Association

I n the associative table interested_wishList, the columns fkCustomer and fkBook together
form the composed primary key. Both of them cannot be null, and pairs of
fkCustomer/fkBook cannot be repeated. However, as the association is many to many, each
individual column may repeat values, as seen in the table.

Table e13.3 shows that Abe (customer 20001) desires the books “Rama I I ” (10001) and
“The Long Dark Tea-Time of the Soul” (10003). Beth (customer 20002) only desires “Rama
II” (10001), and Charles (20003) has no wishes.

I nstead of naming the associative table with the names of the classes (Customer_Book),
it is preferable to name it with the names of the roles (interested_wishList), because more
than one association may exist between two classes.

I f the association is mandatory in one direction or both directions, then special
considerations must be observed:
• If the association is mandatory on one side, then all instances from the other side must

appear at least once in the associative table. If in the example of Figure e13.2, the role
interested was mandatory (1..*), then each book should have at least one associated
customer. Then each primary key value from the Book table should appear in the
interested_wishList table at least once.

• If the association is mandatory on both sides, then all instances from both classes
should appear at least once in the associative table. If in the example of Figure e13.2,
both roles were mandatory (1..*), then each book from the Book table and each
customer from the Customer table should appear at least once in the associative table.

More generally, considering that A has an association to B, and that the lower bound of
the B role is n while the upper bound is m (multiplicity is n..m), the number of times that
each instance of A must appear in the associative table is at least n, and no more than m.
For example, if the multiplicity of role B is 2..5, then each instance of A must appear in
the associative table at least twice and no more than five times. Unfortunately that
constraint is not usually present in database management systems.

13.2.2.2 One-to-many associations
When the association is one to many, then the column on the many side must have a
unique constraint. This means that the column may not repeat elements individually
while the other column may repeat elements. The elements that cannot be repeated in

the associative table therefore can be linked to a single element of the other table; this
constraint assures that the association is one to many. Figure e13.3 shows an example of a
one-to-many association.

FIGURE E13.3 Example of a one-to-many association.

Table e13.4 shows an associative table for the one-to-many association represented in
Figure e13.3. Notice that the unique constraint in the right column prevents the table
from associating a book to more than one publisher.

Table e13.4
Associative Table Representing a One-to-Many Association

As seen in Table e13.4, publisher 30001 has one book (10002) and publisher 30002 has
two books (10001 and 10003). As books cannot be repeated in this table, no book can
belong to more than one publisher.

I t is also possible to represent associations from many to one as foreign keys in the
table that represents the class at the many side of the association. For example, as each
book may have only one publisher, then the association between book and publisher
could be implemented as in Table e13.5.

Table e13.5
Alternative Way to Implement a Many-to-One Association Without an Associative
Table

The foreign key publisher is a direct reference to the primary key of the Publisher table.
I f the association is straight to 1, then the foreign key column must not be null. I f the
association is to 0..1, then the foreign key column should not have that constraint.

Although this approach is not as homogeneous as associative tables, it is usually
preferred by designers because it avoids the need to implement a new table. One
disadvantage is that in this case many-to-many associations are implemented as
associative tables and many-to-one associations are implemented inside one of the
original tables. Also, if the association is not mandatory (if its multiplicity is 0..1), and
relatively few elements are associated, there would be lots of null values in the foreign
key column, wasting storage space and degrading performance. However, if the
association is straight to 1, this disadvantage does not apply.

13.2.2.3 One-to-one associations
One-to-one associations, mandatory or optional, require that the associative table have a
unique constraint in both columns of the composed primary key in order to prevent any
element on both sides from appearing more than once in the associative table. Figure
e13.4 shows an example of one-to-one association that is mandatory on one side and
optional on the other.

FIGURE E13.4 Example of one-to-one association.

Table e13.6 shows the relational table that implements the one-to-one association of
Figure e13.4.

Table e13.6
Associative Table Representing a One-to-One Association

As the role is mandatory for payments, all instances of Payment must appear in the
associative table, but not all instances of Order must appear, because the role is not
mandatory for them.

As in the case of many-to-one associations, one-to-one associations may also be
implemented as foreign keys in one of the original tables. The foreign key column must
necessarily be unique in that case. I f the association role is also mandatory, then the
foreign key column should not be null.

13.2.2.4 Ordered associations
An association with an ordered role (sequence or ordered set) may be implemented as an
associative table with an extra column to represent the order of the element in the role’s
collection of elements. Figure e13.5 shows an example with two situations: ordered set
and sequence (a list in which elements may be repeated).

FIGURE E13.5 Example of ordered roles.

The difference between the relational implementation of an ordered set and a
sequence is that in the case of the ordered set the order column must not be included in
the composed primary key, as shown in Table e13.7. However, in the case of a sequence
(elements may be repeated), the order column must be part of the composed primary key,
which in this case is composed of three columns (Table e13.8).

Table e13.7
Relational Table Representing an Ordered Set

Table e13.8
Relational Table Representing a Sequence

In Table e13.8, the fact that the order column is included in the primary key allows the
same person to reserve the same book more than once (for example, 20001, Abe, has two
reservations for book 10001, Rama I I , in the first and fourth positions on the reservation
list. A repetition like this would not be possible in Table e13.7, because the primary key
does not include the order column: the same pair fkBook/fkChapter cannot appear more
than once in the table, regardless of its position.

I n both cases, to prevent a given position to be occupied more than once, a uniq
constraint spreading over the origin class and the position should be defined. I n the case
of Table e13.7 and Table e13.8 the pair fkBook/order should be unique.

13.2.2.5 Associations representing bags
I n the case of bags, in which elements may be repeated but have no position, the usual
solution is to add an extra column to the associative table with a counter for the number
of times a given pair participates in the association. Figure e13.6 shows an example of
this kind of association.

FIGURE E13.6 Example of a bag.

Table e13.9 shows the implementation of the associative table for the example in
Figure e13.6.

Table e13.9
Associative Table Representing a Bag

Table e13.9 specifies that Abe (20001) has viewed the book “Foundation and Empire”
(10002) six times. Beth (20002) viewed “Rama I I ” (10001) twice, “Foundation and Empire”
(10002) once, and “The Long D ark Tea-Time of the Soul” (10003) once. I t is not necessary
to represent in the table any pair whose quantity is zero; this is why Charles (20003) does
not appear in the table: he has never viewed any book.

13.2.2.6 Qualified associations
I n the case of a qualified association defined as a map (multiplicity 1 or 0..1) with an
internal qualifier (the qualifier is an a ribute of the qualified class), it is sufficient to
implement the association as a regular one-to-many or many-to-many association
depending on the multiplicity on the side of the qualifier, as explained in previous
sections.

The only special care that the database designer must take in that case is to ensure that
the column of the qualifier a ribute is unique and immutable. I t may be indexed if quick
access to the records is necessary.

However, when the qualifier is external, it is necessary to add a third column to the
associative table to allow for the representation of the qualifier. Figure e13.7 shows an
example of that situation.

FIGURE E13.7 Example of a map with an external qualifier.

Table e13.10 shows the implementation for the map defined in Figure e13.7. The
associative table has a primary key that is composed only of the origin class key and the
qualifier. The destination class is left out of the primary key. However, it must be marked
as unique because, in the example, each phone has a single type.

Table e13.10
Associative Table Representing a Map With an External Qualifier

I f the external qualifier defines a partition (multiplicity *), as shown in Figure e13.8, it
is implemented as shown in Table e13.10. But in the case of a partition with an external
qualifier, the primary key must have three parts, including the origin and destination
foreign keys as well as the qualifier. Also, as the origin role multiplicity is 1, the
destination class column must be marked with unique. I n the example shown in Table
e13.11, this means that a book may not have more than one genre.

FIGURE E13.8 Example of a partition with an external qualifier.

Table e13.11
Associative Table Representing a Partition with an External Qualifier

I f the role multiplicity at the origin were * (defining a relation where a book could have
more than one genre), the implementation would basically be the same. The only
difference is that the unique constraint in the destination column (fkBook) should not
exist.

13.2.2.7 Association classes
An association with an association class is represented in two parts: a relational table for
the association class with its a ributes, and an associative table for the association with a
reference to the association class table.

Figure e13.9 shows an association class, and Tables e13.12 and e13.13 implement its
relational equivalent.

FIGURE E13.9 Example of an association class.

Table e13.12
Relational Representation of an Association with an Association Class – Part 1: The
Association Class

Table e13.13
Relational Representation of an Association with Association Class – Part 2: The
Association

Thus, one way to represent associations with association classes is to use a table to
represent the association class (Table e13.12), and an associative table (Table e13.13) with
three columns: the primary keys of the participating classes (which forms the composite
primary key of the association) and the primary key of the association class, which is not
part of the composite primary key of the association, but must be immutable and unique
in that table.

A further constraint is that all values for pkJob in the Job table must appear in the fkJob
column of the employee_employer table.

13.2.2.8 n-ary associations

I n the case of associations among three or more classes (n-ary), an associative table is
defined in which the primary key is formed by the primary keys of all participating
classes. Figure e13.10 shows an example of a ternary association and Table e13.14 shows
its relational representation.

FIGURE E13.10 An example of a ternary association.

Table e13.14
Relational Equivalent of a Ternary Association

In Table e13.14, pairs such as fkBudgetItem/fkProject may repeat elements (90001/100001,
for instance). But the triple fkBudgetItem/fkFinancialYear/fkProject may never repeat.

13.2.2.9 Transient and façade controller associations
Transient associations are not represented in relational tables because, by their own
definition, they exist only in primary memory, and it is not necessary neither desirable to
persist them.

S ome of the associations from the façade controller also do not need to persist.
Associations from a controller to all instances of a class, which are mandatory for the

instances, do not need to be transformed into association tables, because they always
repeat the same value for the controller and have all the elements of the other side. That
information is already available in the primary key column of the table representing the
conceptual class, and, therefore, that association table would be redundant. For example,
in Figure e13.11, the association between the controller and Customer with no explicit role
name is mandatory for all customers. Thus, an associative table for representing that
association would contain only the primary keys of all customers. As they are already
represented in the Customer table, repeating them in a different table is unnecessary.

FIGURE E13.11 A mandatory and an optional association to a façade controller.

However, this observation is valid only if the association role is strictly 1 on the
controller side. I f the controller side has multiplicity 0..1, then the association should be
represented separately. I n Figure e13.11 the premium association must be represented
because not every customer belongs to it. Not every customer is a premium customer,4

and thus they must be listed somewhere. There are at least two choices for representing
premium customers: adding a Boolean field to the Customer table indicating which
customers are premium, or creating a single column table that contains the primary keys
of premium customers.

The premium customer table does not have to include a column that represents the
primary key of the controller (1) because the controller is not an entity (and therefore it
has no primary key), and (2) because the controller is a singleton and even if a primary
key is assigned to it, repeating the same value in all rows of the table would be
unnecessary.

Table e13.15 shows a possible implementation for this optional association.

Table e13.15
Implementation of an Optional Association from the Façade Controller

Table: premium

PK

NN

fkCustomer
20001
20002

According to Table e13.15 only Abe (20001) and Bea (20002) are premium customers,
and Charles (20003) is not.

13.2.3 Inheritance
Relational databases do not support inheritance directly. Mapping inheritance relations
to relational databases is an issue that demands a ention. There are many different
approaches and this section discusses some of them. All examples in the following
subsections are based on Figure e13.12.

FIGURE E13.12 A situation with inheritance of attributes.

13.2.3.1 Implementing the entire hierarchy in a single table
One solution for representing inheritance that sounds straightforward at first glance is to
implement the entire hierarchy in a single table. This table contains all the a ributes of
all classes in the hierarchy. I t also has to identify which class is being represented in each
record; this can be accomplished by adding a type column, as in Table e13.16.

Table e13.16
Implementation of Inheritance in a Single Table with a Type Field

Only a ributes that belong to the class at the top of the hierarchy may not be null,
because all other a ributes could be null when the record belongs to one subclass and
the a ribute to another subclass. For example, if the type of the record is promptPayment,
then firstDate and numberOfInstallments must necessarily be null. I f it is assumed that an
object cannot change its class after instantiation, then the type type should be immutable.

I f multiple inheritance is used (for example, if a payment could be prompt and
installments at the same time),5 then the type column should be replaced by a set of
Boolean columns: isPromptPayment and isPaymentInInstallments. I n this case, a payment
could be prompt, in installments, or both (or neither, if they could also be instances of
Payment, which in the present example cannot occur because it is an abstract class).

This approach has some disadvantages. I t is hard to manage consistency between
subclasses because all data is stored in the same place. Managing it adequately would
require various complex control mechanisms. Also, lots of fields in the table would be
null all the time and the big table would be a very sparse one, especially if a big and
complex hierarchy is being represented.

13.2.3.2 Each concrete class as a single table
Another approach to represent inheritance is to represent each concrete class as a
separate table. Each table would contain the a ributes of the concrete class and the
a ributes of all of its superclasses. Tables e13.17 and e13.18 show a possible
implementation using that approach.

Table e13.17
Implementation of Inheritance Using a Table for Each Concrete Class:
PromptPayment

Table e13.18
Implementation of Inheritance Using a Table for Each Concrete Class:
PaymentInInstallments

I f only a ributes are inherited, this approach may work. However if superclasses
define their own associations that must be inherited, then managing this becomes a
headache because either an associative table should fill in data from different tables in a
single column, or a single associative table should be implemented for each subclass that
inherits the association.

13.2.3.3 Each class in a single table
A be er choice for implementing inheritance given the aforementioned problems is to
define one table for each class of the hierarchy, even the abstract ones. That way,
a ributes and association inheritance may be easily implemented. The main
disadvantage is that for instantiating an object, a number of tables equal to the number
of its superclasses plus one should be accessed. Tables e13.19 to e13.21 show how to
implement this approach. There must be references from the subclasses’ tables to each
immediate superclass table.

Table e13.19
Implementation of Inheritance Using a Table for Each Class: Payment

Table e13.20
Implementation of Inheritance Using a Table for Each Class: PromptPayment

Table e13.21
Implementation of Inheritance Using a Table for Each Class: PaymentInInstallments

13.3 Saving and loading objects
The equivalence between object-oriented design and the relational database is just part
of the compatibility issue between these two models. I t is necessary also to decide how
and when objects will be loaded and saved to the database. Some designers prefer to
determine themselves the moment when such operations should be performed.
However, that handcrafted approach for saving and loading objects is subject to logic

errors, and usually it pollutes the domain-level code.
I n addition, if the designer is the one who decides when to save and load objects,

sometimes those operations could be performed unnecessarily (for example, loading
objects that are already in memory and saving objects that were not changed).
Controlling these issues case by case, method by method is not the most productive way
to develop software.

It is possible to implement the processes for saving and loading objects with automatic
mechanisms. I n this case, the designer should only decide which classes, a ributes, and
associations are persistent, and a whole set of methods and data structures will be
automatically created to allow those elements to be loaded and saved at the appropriate
moments. I nitially this section presents the basic or naïve implementation of this
mechanism. Later, the limitations of the technique are explained and possible solutions
drafted.

13.3.1 Virtual proxy
I n order to implement an automatic mechanism for saving and loading objects, we can
use a design pa ern called virtual proxy (Gamma, Helm, J ohnson, & Vlissides, 1995). A
virtual proxy is a very simple object that implements only two responsibilities:

• It must know the value of the primary key of the real object it represents.
• It must redirect to the real object all messages it receives in its name.
Below is a draft of the way a virtual proxy works:

Class VirtualProxy

 var realObjectPk:PrimaryKey
 for any message msg received do
 realObject:=BrokerManager.get(realObjectPk)
 realObject.msg()
 end for

end class

Later, in the following sections, the way the BrokerManager works is gradually
explained.

Thus, the design with virtual proxies requires that instead of associating domain
objects directly with other domain objects, they must be associated to their proxies. I n
this way, it is possible to bring into memory an instance of Publisher without loading all
instances of Book that are linked to it. The instance of Publisher is associated to the proxies
of books, which are very simple objects. The proxies are created in main memory and
require much less space than the instances of the real class, such as those of Book. An
instance of Book is loaded only if necessary, that is, only if a message is sent to it through
its proxy. This economic way of using memory is called lazy load, and it is very efficient in
terms of time and main memory in some situations.

To prevent the designer from worrying about when the objects must be loaded, the
virtual proxy mechanism must be interposed to all persistent links in main memory. Real
objects send messages to each other as if the proxies did not exist. But proxies intercept
every message. The proxies ensure that the real object will be loaded if it is not in
memory.

Figure e13.13 is an example of the lazy load mechanism. I nitially (Figure e13.13a), only
an instance of Publisher is in main memory. I t is associated to three books. However,
instead of having the books in memory, only their proxies are there. I f the instance of
Publisher must send a message to one of the books, it simply sends the message through
the link; the message is intercepted by the proxy that calls the BrokerManager, which
ensures that the book is loaded into the memory (Figure e13.13b). As the book is
associated to some chapters, only the chapters’ proxies are created in memory, not the
real objects.

FIGURE E13.13 (a) Initial state in which only a publisher and book proxies are in main memory. (b) Situation after
the publisher sends a message to one of the books.

I f one of the chapters receives a message from the book, then only that chapter would
be brought into memory.

13.3.1.1 Virtual data structures
The implementation of virtual proxies for each object may be very inefficient when an
object has many links; for example, a publisher with 50,000 registered books would
demand the instantiation of 50,000 proxies to be associated to it when it is brought into
memory. Fortunately, there is a way to avoid instantiating large quantities of proxies,
which is the implementation of virtual data structures to physically replace the
implementation of the associations in main memory.

Thus, a publisher would not have 50,000 links to 50,000 proxies of Book, but a single
link to a VirtualSet structure with 50,000 PKs. The VirtualSet implements regular

operations to add, remove, update, and query objects: the same operations a normal set
must implement. The only difference is that it does not store the real objects, but only
their primary keys. The virtual set does not bring objects into memory; it brings only
their primary key numbers. The VirtualSet and its counterparts, VirtualSequence,
VirtualOrderedSet, VirtualBag, VirtualMap, etc., use the BrokerManager to load real objects
when necessary instead of holding all the real objects.

A virtual data structure may be implemented with the following principles:
• Instead of a physical representation of a collection of objects, it is a physical

representation of a collection of the primary key values of the real objects.
• The method that adds an object to the collection must only add the primary key of the

real object to the physical representation.
• The method that removes an object from the collection must only remove the primary

key of the real object from the physical representation.
• Any method that performs a query on the data structure to return one or more objects

receives the real object(s), which are requested from the broker manager.
Thus, adding and removing links between objects may be performed without having

the real objects in memory (at least from one side of the link). An object is only brought
into memory when information about it becomes necessary, that is, when it receives a
message.

13.3.1.2 Discussion
Lazy load is useful because it only brings into memory objects that are going to receive a
message. For example, if an instance of Publisher is in main memory and one of its books
is going to be updated, then it is not necessary to load all instances of Book linked to the
publisher, but only one.

On the other hand, if the instance of Publisher must search its books to find the most
expensive of them, then all instances of Book that are linked to it must be loaded into
main memory. This is the drawback of the technique. Performing all operations on
objects in main memory can be an extraordinary waste of time. I magine loading 50,000
instances of books to main memory just to discover which one of them has the highest
price.

Virtual proxies work well when relatively few objects are brought into memory for each
user operation. For example, a user searching for books to buy will only view a relatively
small quantity of books in the list. That user would operate over just a single shopping
cart and order. Those kinds of operations over small sets of objects are perfectly handled
automatically by virtual proxies. However, when queries or commands involve iterating
over large collections of objects, such as increasing the price of all books in the store,
then using virtual proxies should be avoided, unless wasting processing time is not a
problem; but that usually is not the case.

Thus, for performing queries or commands over large collections of objects, if the
query or command uses just a few a ributes of the objects, it would be advisable to
consider replacing the virtual proxy mechanism in that specific case by a query or
command directly performed over the database. Therefore, some messages, when they

reach specific objects, would be redirected to a specific encapsulated implementation
that performs the necessary actions in the database and returns the results as necessary,
rather than being redirected to a proxy.

13.3.2 Brokers and materialization
The process of loading an object from the database into main memory is called
materialization. Materialization is usually requested by a proxy from a broker manager,
which may in turn delegate materialization to a specialized broker. The broker manager
looks if the requested object is in memory. I f it is not, then the broker manager activates
the specialized broker to materialize the object.

Each class may have its own specialized broker. However, a single broker may also be
implemented to serve all classes. A specialized broker must implement a method called
materialize that does the following:
1. It creates in main memory an instance of the persistent class.
2. It initializes the values of the attributes of the new instance with values taken from the

respective line and column in the database.
3. It loads and initializes the virtual data structures that implement the associations of

the object with the primary keys of the respective linked objects.
I n order to obtain the values for the primary keys of the linked objects, the specialized

broker must know what associations are a ached to the object being loaded; then it
searches the occurrences of the primary key of the object in the associative tables that
implement those associations. The primary keys of other objects associated to the
primary key of the object being materialized are added into the virtual data structure,
which has the responsibility of holding the respective association.

For example, Broker4Book should materialize instances of Book, as defined in Figure
e13.14.

FIGURE E13.14 Reference conceptual model.

According to this conceptual model, Broker4Book must implement the materialize
method by performing the following operations:
1. Create an instance of Book.
2. Fill in the isbn, title, authorsName, price, pageCount, coverImage, and quantityInStock

attributes of the new instance with the values stored in the respective columns of the

Book column in the database.
3. Search the book_chapter table for occurrences of the primary key of the book in the

fkBook column. For every occurrence, add the corresponding value found in the
fkChapter column to the virtual set chapters of the new instance of Book, which
implements the association role for the book.
The materialization performed by the specialized broker must not be confused with

the creation of a new instance as defined by the system operation contracts (Chapter 8).
I n the contracts, the creation of an instance refers to the insertion of new information in
the system, independent of the physical storage (main memory or secondary memory).
The materialization performed by the broker only refers to the operation of bringing into
the main memory an existing object that is not there physically yet. Materialization is,
therefore, an operation that belongs exclusively to the persistence tier; it has nothing to
do with the business tier.

13.3.3 Caches
Objects in main memory may be classified as follows regarding their state related to the
database:

• Clean or dirty, depending on whether or not they are consistent with the version
stored in the database.

• Old or new, depending on whether or not they already exist in the database.
• Deleted or kept, depending on whether they have been deleted in main memory but

not yet deleted in the database.
A cache is a data structure, similar to a map or dictionary, that associates primary key

values to the real objects it represents.
Although there are eight possible combinations for the features defined above, in

practice only four combinations are sufficient to manage objects in main memory:
• Old clean cache: Keeps objects that are consistent with the database.
• Old dirty cache: Keeps objects that exist in the database but have been updated in main

memory and are, therefore, inconsistent with the database.
• New cache: Keeps objects that have been created in main memory, but which are not

yet in the database.
• Delete cache: Keeps objects that were deleted in memory, but still exist in the database.
The broker manager verifies that an object is in main memory by performing a query

on the existing caches, asking for the primary key of the object being requested. I f the
broker manager finds a reference to that object in one of the caches, it returns the
reference to the proxy that asked for it. On the other hand, if the broker manager does
not find any reference to the requested object in any cache, then it asks a specialized
broker (as, for example, Broker4Book) to materialize the object. The object is then
materialized and inserted into the old clean cache.

I f, by any chance, that object is updated in main memory, that is, if some of its
attributes or links have been changed, it must be moved to the old dirty cache.

The persistence mechanism must have ways to assure that every time the inner state of

an object in the old clean cache is changed it is moved to the old dirty cache. This could
be accomplished, for example, by adding a special command such as
BrokerManager.becomeDirty(self) to any method that changes the object. I f the object
originally is in the old clean cache, that method will move it to the old dirty cache.

Objects that were created in memory as a result of a contract postcondition are stored
into the new cache. An object that is in the new cache may not be moved to the old dirty
cache, even if its a ributes have been changed. I t stays in the new cache until a commit is
performed. After the commit it is moved to an old clean cache.

When an object is deleted from main memory, the result will depend on which cache
the object came from. I f it was in the old clean cache or in the old dirty cache, then it is
moved to the delete cache. However, if it was in the new cache, then it may be simply
deleted from main memory.

13.3.3.1 Commit and rollback
The commit and rollback operations are usually activated by the interface tier to indicate
that a transaction was successful and confirmed, or that it was cancelled, respectively.
These operations are implemented by the broker manager. I n the case of a commit, the
broker manager should do the following:
1. Perform an update in the database for every object in the old dirty cache, and move

those objects to the old clean cache.
2. Perform an insert in the database for every object in the new cache, and move those

objects to the old clean cache.
3. Perform a remove in the database for every object in the delete cache, and delete those

objects from main memory.
I n the case of a rollback, the broker manager must simply remove all objects from all

caches, except those in the old clean cache.
As the old clean cache may grow indefinitely, it is necessary to implement some

mechanism to remove the oldest objects from it every time its size reaches some
previously established threshold.

The other caches only grow up to the moment a commit or rollback is performed. At
that moment, they are emptied.

13.3.3.2 Cache control in a multiuser server
I f more than one user connects to the system, it is necessary to determine how to share
objects among different users. Assuming we have a client/server architecture with
interface, domain, and persistence tiers, at least two approaches are possible:

• The three tiers are executed in the client. There is no main memory share in the server,
only the database. The client is heavy and the server is used only to access or store
data after a commit is performed. In this case, what travels in the network is data in
the form of relational table records and SQL6 instructions. Information travels only
when an object must be materialized or committed. The disadvantage of this design
is that the client node is overloaded. However, client applications have recently

become richer and more complex: not depending on a server to process the logic of
the application may be a crucial requirement.

• The domain and persistence tiers are implemented in the server, and the interface tier is
implemented in the client. In this case, the objects will exist in main memory only in the
server, and what travels through the network are the parameters of the system
operations and the returns from queries. The advantage is that clients are lighter, and
usually it is cheaper to upgrade a server than upgrading thousands of clients.
However, for some applications that require fast processing of the data, waiting for
the server may not be viable.

I f the objects are physically in the server only, there are still more possibilities. I n one
case, all users share the four caches, with the disadvantage that a user could have access
to objects that are being modified but have not yet been commi ed by another user. This
option seems to be unadvisable for most applications.

The other option is to share only the objects in the old clean cache among the users.
There should be multiple instances of other caches that are private to each user. I f an
object is in a private cache of one user, then the other users cannot access it. They must
wait for a commit or rollback from the first user. Thus, the persistence mechanism for
multiuser access could be implemented like this:
• An old clean cache is shared by all users.
• Each user has a private old dirty cache, delete cache, and new cache.
By doing this, it is possible to ensure that no user would have access to objects that are

being modified by other users. Therefore, it is possible to use the caches to implement a
lock mechanism, that is, when a user is updating an object, the other users cannot access
it. Only when the user that has the object performs a commit or rollback, and the object
is moved to the old clean cache or cleaned from main memory, can the other users gain
access to it again.

An advantage of this method is the optimized usage of server main memory. All users
share the objects in the old clean cache, which is the only one that grows indefinitely. The
other four caches, which are specific for each user, only grow during a transaction. When
a commit or rollback happens, those caches are emptied.

However, this may negatively affect scalability, because some users could be stuck
while others are dealing with some objects. I t is possible to implement a more
sophisticated control mechanism based on optimistic merges: two or more users may
edit the same object as long as they do not update the same attribute or association.

This must be used with care, however. Concurrency issues are always complicated
concerns and many decisions may depend on business rules. For example, may the price
of a book be updated while a user is finishing an order?

Some applications could even require a more pessimistic locking strategy: if a user is
browsing an object, no other user may even have access to view it. This is the case for
banking applications, for example, which require maximum data security.

13.4 The whole process

13.5 Questions
1. What kind of associative table should be used to represent an association that is

ordered in both directions? How do you represent it in the case of two ordered sets, or
two sequences, or one ordered set and one sequence?

2. What kind of association table should be used to represent an association with an
association class that is marked with {bag} on one side?

1See, for example: http://www.hibernate.org/.
2Persistent in this context is the opposite of transient, that is, persistent information is information that must be kept until
some user explicitly deletes it. Transient information is kept only during a session of use of the system.
3Secondary memory is usually slower than main memory. However it is also much cheaper, and thus it is widely used to
store large quantities of data that do not fit in the more expensive main memory. Usually secondary memory consists of
media such as magnetic or optical discs or tapes. Data stored in secondary memory usually cannot be processed directly
by the computer unless it is loaded into main memory. Main memory is also known as RAM (random access memory) and
physically it is usually implemented by electronic integrated circuits.
4Note that this is a normal association and not a derived one.
5Of course this cannot be true. It’s just a supposition for the sake of the example.
6Structured Query Language, the dominant language for defining, accessing, and updating relational databases (Date,
1982).

http://www.hibernate.org/

Postface
Raul Sidnei Wazlawick

At this point the reader must have been asking why a picture of a loom is on the front
cover of this book. Even if you are not asking that, I ’ll tell you anyway. The reason is
twofold: symbolic and historical.

The symbolic reason is that there are similarities between the process of producing
software and producing fabrics with a loom. First you plan, and you draft the result you
intend to produce; and then you execute your work and see if it is going well. The many
colors of string used to produce a fabric may be compared to the many aspects of
information and technology that must be weaved to produce the patterns that are desired
in the product. Work done on a loom can be undone as work done on software can. After
that, it can be refactored.

Producing nice pa erns in fabrics may appear complex and confusing for unskilled
people; the same is true for producing software. But if the best practices, techniques, and
tools are used, the process is smoothed.

A difference between these processes is that working on looms has been automated
since the eighteenth century, while the software industry is just taking the first steps
towards automation. Furthermore, software development is so complex that many people
doubt that it could be successfully automated someday. However, although the
complexity of software is growing each year, new techniques to improve our capacity to
cope with that complexity are being learned and used.

The historical reason that links looms to this book is based on the six degrees of
separation:
1. One of the first automatic complex machines were looms controlled by punched cards

that were invented in France around 1725 and greatly improved by Joseph Marie
Jacquard in 1801. They became a big commercial success and almost cost Jacquard his
life because of the fierce opposition of silk weavers that were afraid of losing their
jobs.

2. Punched cards were used by Herman Hollerith as a data entry mechanism for his Electric
Tabulating Machine, which was used in the American census of 1890, reducing
drastically the time to obtain results.

3. Hollerith’s company, the Tabulating Machine Company, fused with other companies in
1911 to form the Computing Tabulating Recording Company (CTR), which in 1924
changed its name to the International Business Machines Corporation (IBM).

4. In 2003, IBM acquired, for 2.3 billion dollars, the Rational Company, which was
responsible, among other products, for the Unified Process and the Unified Modeling

Language (UML).
5. The present book addresses many aspects of the Unified Process, and uses UML and its

byproducts OCL and IFML for modeling.
As far as I can see, five degrees of separation were sufficient.
September 12th, 2013.

References
1. Adams DN. The Hitchhiker’s Guide to the Galaxy Completely Unexpected

Productions Ltd. 1979;
2. Albrecht, A.J., 1979. Measuring application development productivity.

Proceedings of the Joint SHARE/GUIDE and IBM Application Development
Symposium, Chicago. pp. 83–92.

3. Albrecht AJ, Gaffney Jr JE. Software function, Source lines of code, and
development effort prediction: a software science validation. IEEE Trans Softw
Eng. 1983;9(6):639–648 November.

4. Alford M. Requirements-Driven Software Design McGraw-Hill 1991.
5. Ambler, S.W., 2000. Web Services Programming Tips and Tricks: Modeling

essential use cases. Available at:
<http://www.ibm.com/developerworks/library/ws-tip-essentialuse/index.html>.

6. Ambler SW. The Object Primer: Agile Model-Driven Development with UML 2.0
third ed. Cambridge University Press 2004.

7. Ambler SW, Jeffries R. Agile Modeling: Effective Practices for eXtreme Programming
and the Unified Process John Wiley and Sons 2002.

8. Anda B. Estimating software development effort based on use cases: Experiences from
industry. Fourth International Conference on the Unified Modeling Language Toronto:
Springer-Verlag; 2001; pp. 487–502.

9. Beck, K., 1989. Simple Smalltalk Testing with Patterns. Available at:
<http://www.xprogramming.com/testfram.htm> (accessed 31.08.13).

10. Beck K. Test-Driven Development by Example Addison-Wesley 2003.
11. Beck K, Andres C. Extreme Programming Explained: Embrace Change second ed.

Addison-Wesley 2004.
12. Beizer B. Software Testing Techniques second ed. Van Nostrand Reinhold 1990.
13. Bloch A. Murphy’s Law, and Other Reasons Why Things Go Wrong Los Angeles:

Price/Stern/Sloan Publishers, Inc.; 1980.
14. Boehm BW. Software Cost Estimation with COCOMO II Prentice-Hall 2000.
15. Booch G, Maksimchuk RA, Engle MW, Young BJ, Conallen J, Houston KA. Object-

Oriented Analysis and Design with Applications third ed. Addison-Wesley
Professional 2007.

16. Bourret, R., 2010. XML Database Products. Available at,
<http://www.rpbourret.com/xml/XMLDatabaseProds.htm> (accessed 11.09.13).

17. Braz, M., Vergilio, S., 2006. Software effort estimation based on use cases.
Proceedings of the 30th Annual International Computer Software and
Applications Conference, pp. 221–228.

18. Burnstein I. Practical Software Testing Springer-Verlag 2003.
19. Cabot J. From declarative to imperative UML/OCL operation specifications. Lect

http://www.ibm.com/developerworks/library/ws-tip-essentialuse/index.html
http://www.xprogramming.com/testfram.htm
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

Notes Comput Sci. 2007;198–213.
20. Cardoso IS. Introducing support to the declaration of associations in UML 2 in an

object-oriented language Florianópolis, Brazil: Masters Dissertation. UFSC – Federal
University of Santa Catarina, PPGCC – Computer Science; 2011.

21. Carr MJ, Konda SL, Monarch I, Ulrich FC, Walker CF. Taxonomy-Based Risk
Identification SEI Pittsburgh: Carnegie Mellon University; 1993.

22. Center for Software Engineering, USC, 2000. COCOMO II – Model definition
manual – version 2.1. Available at:
<http://csse.usc.edu/csse/TECHRPTS/2000/usccse2000-500/usccse2000-500.pdf>.

23. Ceri S, Fraternali P, Bongio A, Brambilla M, Comai S, Matera M. Designing Data-
Intensive Web Applications Morgan Kaufmann 2003.

24. Choenni S, Blanken H, Chang T. Index selection in relational databases. Proc Int
Conf Comput Inf. 1993;491–496.

25. Cockburn A. Writing Effective Use Cases Addison-Wesley 2001.
26. Crain A. RUP Iteration Planning IBM 2004; Available at:

<http://www.ibm.com/developerworks/rational/library/5335.html> (accessed
15.09.13).

27. Date CJ. An Introduction to Database Systems Addison-Wesley 1982.
28. Dustin E. Automate regression tests when feasible. In: Dustin E, ed. Effective

Software Testing: 50 Specific Ways to Improve Your Testing. Addison-Wesley
Professional 2002.

29. Emam KE, Melo W, Drouin J-N. Spice: The Theory and Practice of Software Process
Improvement and Capability Determination Los Alamitos, CA, USA: IEEE
Computer Society Press; 1997.

30. English, A.V., 2007. Business Modeling with UML: Understanding the Similarities
and Differences between Business Use Cases and System Use Cases. Retrieved
November 14, 2012, from
<http://www.ibm.com/developerworks/rational/library/apr07/english/>.

31. Fowler M. Patterns of Enterprise Application Architecture Addison-Wesley 2003.
32. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable

Object-Oriented Software Addison-Wesley 1995.
33. Gause, D.C., Weinberg, G.M. Exploring Requirements: Quality before Design.

Dorset House Pub.
34. Goldberg A, Robson D. Smalltalk 80: The Language Addison-Wesley 1989.
35. Grady R. Practical Software Metrics for Project Management and Process Improvement

Prentice-Hall 1992.
36. Ibarra, G., Vilain, P., 2010. Software estimation based on use case size. Brazilian

Symposium on Software Engineering, Florianópolis. pp. 178–187.
37. Ireland, C., Keynes, M. Bowers, D., Newton, M., Waugh, K., 2009. A classification

of object-relational impedance mismatch. Advances in Databases, Knowledge,
and Data Applications, DBKDA ’09, Gosier pp. 36–43.

38. Jacobson I. The Object Advantage: Business Process Reengineering with Object
Technology Addison-Wesley 1994.

http://csse.usc.edu/csse/TECHRPTS/2000/usccse2000-500/usccse2000-500.pdf
http://www.ibm.com/developerworks/rational/library/5335.html
http://www.ibm.com/developerworks/rational/library/apr07/english/

39. Jacobson I, Christenson M, Jonsson P, Övergaard G. Object-Oriented Software
Engineering: A Use Case Driven Approach Addison-Wesley 1992.

40. Jacobson I, Booch G, Rumbaugh J. The Unified Software Development Process
Addison-Wesley 1999.

41. Jacobson I, Spence I, Bittner K. Use Case 2.0: The Guide to Succeeding with Use Cases
Ivar Jacobson International 2011.

42. Jones, C., 2007. Software Estimating Rules of Thumb – version 3. Available at:
http://www.compaid.com/caiinternet/ezine/capers-rules.pdf.

43. Kamal MW, Ahmed MA. A proposed framework for use case based effort
estimation using fuzzy logic: building upon the outcomes of a systematic
literature review. Int J New Comput Archit Appl. 2011;1(4):976–999.

44. Karner G. Use Case Points: Resource Estimation for Objectory Projects Objective
Systems 1993.

45. Krasner GE, Pope ST. A cookbook for using the model-view controller user interface
paradigm in smalltalk-80. The Journal of Object Technology – JOT SIGS Publications
1988; August-September.

46. Kroll, P., 2004. Planning and Estimating a RUP Project Using IBM Rational
SUMMIT Ascendant. Available at:
<http://www.ibm.com/developerworks/rational/library/4772.html>.

47. Kroll P, Kruchten P. The Rational Unified Process Made Easy: A Practicioner's Guide
to RUP Addison-Wesley 2003.

48. Kroll P, MacIsaac B. Agility and Discipline Made Easy: Practices from OpenUp and
RUP Addison-Wesley Professional 2006.

49. Kruchten P. The Rational Unified Process: An Introduction third ed. Addison-Wesley
2003.

50. Larman C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process third ed. Prentice-Hall 2004.

51. Lieberherr K, Holland I. Assuring good style for object-oriented programs. IEEE
Softw. 1989; pp. 38–38, September.

52. Liskov, B., 1974. Programming with abstract data types, in Proceedings of the
ACM SIGPLAN Symposium on Very High Level Languages (pp. 50–59), Santa
Monica, California.

53. McConnell S. Rapid Development Microsoft Press 1996.
54. Meszaros G. xUnit Test Patterns: Refactoring Test Code Addison-Wesley 2007.
55. Meyer B. Object-Oriented Software Construction Prentice Hall 1988.
56. Miles R, Hamilton K. Learning UML 2.0 O’Reilly 2006.
57. Mohagheghi P, Anda B, Conradi R. Effort estimation of use cases for incremental

large scale software development. Int Conf Softw Eng. 2005.
58. Molyneaux I. The Art of Application Performance Testing: Help for Programmers and

Quality Assurance O’Reilly Media 2009.
59. Myers GJ, Sandler C, Badgett T, Thomas TM. The Art of Software Testing second ed.

New Jersey: John Wiley & Sons; 2004.
60. Nelson WB. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis

http://www.compaid.com/caiinternet/ezine/capers-rules.pdf
http://www.ibm.com/developerworks/rational/library/4772.html

John Wiley & Sons 2004.
61. Nielsen J. Usability Engineering Academic Press 1994.
62. Object Management Group. OCL 2.3.1 Specification OMG 2010.
63. Object Management Group. OMG Unified Modeling LanguageTM (OMG UML),

Superstructure, Version 2.4.1 OMG 2011.
64. Ockhan W. Questions and decision in four books - Sentences of Petri Lombardi

Johannes Trechsel 1495.
65. Potel, M., 1996. MVP: Model-View-Presenter: The Taligent Programming Model for

C++ and Java. Available at: <http://www.wildcrest.com/Potel/Portfolio/mvp.pdf>
(accessed 01.09.13).

66. Pressman RS. Web Engineering: A Practicioner’s Approach McGraw Hill 2008.
67. Pressman RS. Software Engineering: A Praticioner’s Approach McGraw Hill 2010.
68. Probasco L. What Makes a Good Use Case Name? The Rational Edge 2001; March.
69. Ribu, K., 2001. Estimating Object-Oriented Software Projects with Use Cases.

Master of Science Thesis, University of Oslo, Department of Informatics.
70. Robiolo G, Orosco R. Employing use cases to early estimate effort with simpler

metrics. Innov Sytems Softw Eng. 2008;4(1):31–43.
71. Royce WW. Managing the development of large software systems. Proceedings of the

IEEE WESCON Los Angeles: IEEE; 1970; pp. 1–9.
72. Santos, C.C., 2007. Automatic generation of communication diagrams from OCL

contracts. Masters Dissertation, UFSC, Florianópolis.
73. Satzinger JW, Jackson RB, Burd DS. Systems Analysis and Design in a Changing

World sixth ed. Course Technology 2011.
74. Schneider G, Winters JP. Applying Use Cases: A Practical Guide Addison-Wesley

1998.
75. Scott K. The Unified Process Explained Addison-Wesley 2001.
76. SEI-CMU. CMMI for Development version 1. 3 Carnegie Mellon University 2010.
77. Sommerville I. Software Engineering seventh ed. Addison-Wesley 2006.
78. Symons CR. Function points analysis: Difficulties and improvements. IEEE Trans

Softw Eng. 1988;14(1):2–11.
79. Tidwell J. Designing Interfaces: Patterns for Effective Interaction Design O’Reilly

Media 2005.
80. UKSMA Metrics Practices Committee, 1998. Mk II Function Point Analysis

Counting Practice Manual – Version 1.3.1. Available from
<http://uksma.co.uk/products.asp> upon registration.

81. Warmer J, Keppe A. The Object Constraint Language: Precise Modeling with UML
Addison-Wesley 1998.

82. West, D., 2002. Planning a Project with the Rational Unified Process. Rational
White Paper. Available at: http://www.nyu.edu/classes/jcf/CSCI-GA.2440-
001/handouts/PlanningProjWithRUP.pdf> (accessed 15.09.13).

83. Won K. Introduction to Object-Oriented Databases The MIT Press 1990.
84. Woolf B. Null object. In: Martin R, Riehle D, Buschmann F, eds. Pattern Languages

of Program Design 3. Addison-Wesley 1998.

http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://uksma.co.uk/products.asp
http://www.nyu.edu/classes/jcf/CSCI-GA.2440-001/handouts/PlanningProjWithRUP.pdf

Index

Note: Page numbers followed by “f”, “t” and “b” refers to figures, tables and boxes
respectively.

A

Abstract data types, 133

Abstract superclasses, 139, 140f

Acceptance tests, 272, 282–283

Ad hoc techniques, e1–e3

Adapted use case points, e26

Adjusted use case points (UCP), e22

Aggregation, 129–130, 130f

Aggregation

composite, 129, 130f

shared, 129, 130f

Agile process, 5

Algorithms, 228

Analysis patterns, 165

Apparent functionality, e3

Association classes, 141–144

reservation modeled as, 143f

reservation modeled as intermediary concept, 143f

suitable representation of many records, 144f

suitable representation of roles, 142f

unsuitable representation of many records, 143f, 144f

unsuitable representation of roles, 141f

Associations, 115, 122–132

derived, 126–129, 127f, 128f

direction, 126

n-ary, 130–132, 131f, 131f, 132f, 132f

role multiplicity, 124–126, 125f

Associative information, 157

Attributes, 115, 115–120, 116f

derived, 117–118, 117f

enumerations, 118–119, 119f

initial values, 116–117, 117f

primitive types, 119–120, 120f

types, 116, 116f

Average team size, e24–e25

B

Backfire table, e9

Bag structure, 134, 134f

Basic queries, 258

Bidirectional associations, e39, e50–e60

implementation

with intermediary object, e59–e60

unidirectional, e57–e59

many-to-many associations, e52f

mutual friends, e51–e57

both roles optional, e51–e53

one mandatory role, e53–e55, e53f

two mandatory roles, e55–e57, e56f

Brokers, e90–e92

Business activity diagram, 18–22

control flow nodes, 20–22

decision control flow, 20, 20f

parallel control flow, 20, 21f

elements, 18–19, 19f

Business actors, 13, 15, 15f
See also System actors

Business cycle test, 282–283

Business modeling, 7–9
See also Business activity diagram, Business use cases, State machine diagram

general view of system, 9–13

deliverables, 10

example of, 12f

product acceptance criteria, 10–11

scope declaration, 7–8, 10

goals of, 8

need for, 8–9, 9

scenarios in

domain modeling, 8

generic business model, 9

new business, 9

one company, many systems, 9

organizational chart, 8

renewal, 9

Business Process Model and Notation (BPMN), 7–8

Business renewal, 9

Business use cases, 13–18, 13f
See also System use cases

automation, 15–18

candidates for automation, 17f

system boundary, 16, 17f

updated, 22f

use case names, 13–14

Business workers, 13, 15, 15f

C

Caches, e92–e94

commit and rollback operations, e93

control, e93–e94

Calendar time, e24–e25

Calling operation, 194

Cascade index, 309–311, 310f, 310f, 311f, 311f, 312f, 312f

Casual use cases, 37

COCOMO II, 10, e3

scale factors, 9–10

Code generation, e35

for attributes, e35–e38

automatic, e35

for classes, e35–e38, e36f

for delegated methods, e60–e62

for system operations, e60–e62

Command-Query Separation (CQS), 92

Communication diagrams, 228

Composition, 129–130, 130f

Composition model, 290

Concentration, 260, 263f

Conceptual model

organization of, 138–149

associative, 138

structural, 138

temporal, 138

refinement of, 152–162

associations, 157–158, 159f, 159f, 159f

concepts and attributes, 152–155, 154f

dependent concepts, 156–157

example of, 159–162

independent concepts, 156–157

static aspect, 113

Conceptual model patterns, 165

account/transaction, 178–181, 178f, 180f, 181f, 182f

composite, 173–174, 174f

high cohesion, 165–168, 166f, 167f, 167f, 167f, 168f, 168f

measure, 171, 171f

object joining, 175–178

copy and replace, 176

essence/appearance, 177, 177f

superseding, 176–177, 176f

undoing join, 177–178

organizational hierarchy, 174–175, 175f, 175f

quantity, 170–171, 170f, 171f

range, 182–183, 185f

specification classes, 168–170, 169f, 169f

strategy, 172, 173f

temporal, 183–189

bitemporal pattern, 187–189, 188f

effectivity, 185, 185f

history association, 185–186, 186f

temporal association, 186–187, 187f, 187f, 188f

Conceptual modeling, 113–115, 114f
See also Preliminary conceptual model

associations, 115, 122–132

attributes, 115, 115–120, 116f

collections, 132–138, 133f, 133f

concepts, 115, 120–122

Concrete data types, 133

Concrete use cases, 36

Contingency plan, e5, e7

Contracts

for CRUD, 216–222

create contract, 217–218

delete contract, 218–221, 221f, 221f

retrieve contract, 221–222, 221f, 221f

update contract, 218

for listing objects, 222–223

for use cases, 223–224

CRUD (Create, Retrieve, Update, and Delete), 32, 55

CRUD expanded use case, 86–89

with access restrictions, 90f

example of, 88f, 91f

template for, 87f

CRUD operations, IFML models for, 325–328, 326f, 326f, 327f, 327f, 328f, 328f

D

Data flow, 304

Data model, 113

Data persistence, e67–e68

Database management system (DBMS), 30–31

DCD building, 228

DCD (design class diagram), 227

Delegate methods, e60–e62

Delegation, 2, 259–262, 263f

Derivation model, 290

Derived associations, 117

Design class diagram (DCD), 113, 227, 262–265, 265f

Design patterns, 165

Disaster recovery plan, e5, e7

Domain modeling, 8

Domain tier design, 227–229

Dynamic model, 113

Dynamic modeling, 228, 245–256

attribute value modification, 250, 251f

conditional postconditions, 253–255, 254f

exceptions, 255, 256f

instance creation, 246–248, 248f, 249f

instance destruction, 250–251, 252f

link addition, 249–250, 249f, 250f

postconditions over collections, 255–256, 256f

removing link, 251–253, 253f

E

Effort, e23–e24

Effort estimation, e1, e7

Effort per use case point, e28

Effort value, e23

Electronic focus groups, 11

Equivalence partitioning, 272–273

Essential use cases, 36, 75–76

Estimation by analogy, e2

Exception handler

corrective actions, 72

example of, 73f

exception, 72

finalization, 72

identification code, 72

Exceptions, 69, 194, 214–216

in command contracts, 194

in query contracts, 194

transformed into precondition, 214

Expanded use cases, 61–62

alternate flows, 64–74

exception handling, 69–74, 70f, 73f

scenarios, 65–66

variants, 66–69, 67f, 68f

main flow of, 62–64

exception handling, 63–64, 65f

first draft, 63f, 64f

open issues, 92

preconditions, 91–92

stakeholders, 91

success post conditions, 92

as system sequence diagrams, 95–97, 96f, 96f

uses, 92

writing recommendations, 74–83

complementary steps, 81, 81f

essential vs real use case, 75–76

explicit information, 76–77

identification and selection, 77

mandatory steps, 77–81, 78f, 80f

unsuitable steps, 82–83, 82f, 83f

Expert judgment, e1

Exploratory surveys, 11

F

Filter object, e63, e63f

Filtered index, 312, 312f

Filtered queries, patterns for, e62–e64

Full use case size method, e26

Fully dressed use cases, 37

Function point analysis, e3

Function points, 10, e3

Functional modeling, 193–196

Functional requirements, 41, 45

Functional testing, 272–274

Functional tests, 272

FUSP (Fuzzy Use Case Size Points), e26

G

Generalization, 139–140, 139f, 140f

Generic business model, 9

Guided tour, 313, 313f, 314f

H

Hardware attributes, e4

High-level requirements, 29–30

Human actors, 30

I

If-then-else-endif, 147

IFML (Interaction Flow Modeling Language), 289, 289–290

Immutable attributes, e36

Included fragments, 83–84, 84f, 84f

Included use cases, 83–84

Indexed column, e71

Inheritance, 139–140

Instance variables, e38

Interaction Flow Modeling Language (IFML), 289, 289–290

areas, 308

default page, 309

flows, 302–305

homepage, 309

hypertext organization, 305–309

landmark page, 309

pages, 301–302, 301f, 301f, 302f

site view, 307–308, 309f

view components, 290–300

checkable list, 297, 297f

details, 291–293, 292f, 292f, 293f

forms, 297–298, 299f

hierarchies, 298–300, 299f, 300f, 300f

list, 295–296, 296f, 296f, 297f

multiple details, 293–294, 293f, 294f, 294f

simple list, 294, 295f, 295f

Interface tier design, 227, 289

Intermediate queries, 258

Invariants, 149–152

constraint, 149f

example of, 150f

IsEmpty(), 147

Iteration planning, e30–e32

Iterative surveys, 11

K

Kilo source lines of code (KSLOC), e3

KO flow, 319

L

Lazy load, e88, e89f, e90

Limit value analysis, 274

Lines of code, e3

Logical design, 227, 227–228
See also Domain tier design

Low coupling, 259–262

M

Map, 135–136, 135f, 136f

Mark II counting, e7–e9

Materialization, e90–e92

Modal classes, 144–149

Modeling operations in interface, 317–325, 318f

connect, disconnect, and reconnect operations, 323–325, 324f, 324f, 325f

create operation, 319, 320f, 320f

delete operation, 319–320, 321f, 321f

update operation, 321–322, 322f, 322f, 323f

Monotonic increasing transition, 145, 145–147, 146f

effective way to model, 147f

unsuitable way to model, 146f, 147f

Multivalued parameter binding, 305, 307f, 308f, 308f

N

Navigation model, 290

New business, 9

Nonfunctional requirements, 45–46

Nonfunctional tests, 283–284

Nonmonotonic transition, 145, 147–149

modeled with state machine diagram, 148f

modeled with the state design pattern, 149f

Nonparametric estimation, e1–e2

Nonpattern use cases, e11

Normal navigation flow, 302–304, 303f, 303f, 303f, 304f

Number sequence generator, e71

O

Object equivalence, 177

Object-oriented CASE tools, 2

Object-oriented databases, e67

Object-oriented design, e67–e68

Object-oriented systems development, 2

Object-relational impedance mismatch, e68

Object-relational mapping (ORM), e67, e68–e87

associations, e71–e83

association class, e80–e82, e81f, e81t, e81t

bags, e78, e78f, e79t

façade controller, e83f

many-to-many associations, e72–e73, e72f, e73t

n-ary, e82, e82f, e82t

one-to-many associations, e74–e76, e74f, e74t, e75t

one-to-one associations, e76–e77, e76f, e76t

ordered associations, e77–e78, e77f, e77t

qualified associations, e79–e80, e79f, e80t

transient, e83

attributes, e68–e71

classes, e68–e71, e69f, e70t

inheritance, e83–e87, e84f

each class, e86–e87, e87t, e87t, e87t

each concrete class, e86, e86t, e86t

implementation of, e84–e86, e85t

Object responsibility distribution, 229–232, 231t

Object visibility, 232–245

by association, 232–239

with association class, 237–239, 238f, 238f, 238f, 239f, 239f

multiple objects, 233, 234f, 234f, 234f

with ordered roles, 233–235, 234f, 235f, 235f, 235f

preconditions, 239, 239f, 240f

with qualifiers, 235–237, 236f, 236f, 236f, 236f, 237f, 237f

single object, 233, 234f, 234f

global, 244–245, 245f

locally declared, 242–244, 244f, 244f

by parameter, 240–242, 240f, 240f, 241f, 241f, 242f, 243f

OCL (Object Constraint Language), 23, 116

OK flow, 319

One company, many systems, 9

Open-close principle, 44

Ordered set structure, 134, 134f

Organizational chart, 8

Overview plus detail pattern, 313, 316f, 316f

P

Parameter binding, 304–305, 305f, 306f, 306f, 307f, 307f

Parametric techniques, e3–e4

Parkinson’s Law, e2

Partition, 136–137, 137f

Pattern use cases, e10, 84–89

Persistence tier design, 227

Personnel attributes, e4

Phase planning, e29, e32t

Postconditions, 194, 203–214

changing attribute value, 205

collections of objects, 213–214

combinations of, 211–212

former values, 212–213

instance creation, 206–207

Instance destruction, 209

link addition, 207–208

and real-world events, 214

removing link, 209–210

well-formed, 210–211

Preconditions, 194, 196–200

assurance, 199–200

complementary constraints, 198–199

and exceptions versus invariants, 200

parameter guarantee, 197–198

Preliminary conceptual model, 52–56, 53f, 54f, 56f

Presentation model, 290

Pricing to win, e2

Primary actors, 31

Product attributes, e3

Project attributes, e4

Project planning, e26–e32

duration of iterations, e27

number of iterations, e27–e28

Q

Query return, 201–203

R

Real use cases, 75–76

Reference class, e69f

Reference conceptual model, 195f, e91f

Refined conceptual model, 193

Relation, 137–138, 137f

Relational databases, e67

Relational table, e68

Report expanded use case, 85–86

example of, 86f

template for, 86f

Reports, e10

Requirements, 41–51

challenges, 44–45

desired, 47

functional, 45

evident, 45

hidden, 45

mandatory, 47

nonfunctional, 45–46

logical issues, 45

permanent, 46

technological issues, 45

transient, 46

supplementary, 45, 47–51

classification, 48t

example of, 51t

Requirements elicitation, 41–42

Responsibility assignment, 2

Risk, e4–e5

cause of, e7

control, e5

effects of, e7

exposure, e6, e6t

identification, e4

impact, e6

planning, e5, e7, e8t

probability, e6

sources of, e5–e6

Risk analysis, 59–60, e4–e7

Risk mitigation plans, e5, e7

S

Scenario building, 11

Secondary actors, 31

Semantic verification, 198

Sequence diagrams, 93, 228

Sequence structure, 134–135, 135f

Smalltalk, 138, 139

Source lines of code (SLOC), e3

Spaghetti code, 2

Specialization, 139–140, 141f, 141f

Stable state transition, 145, 145, 145f

State machine diagram, 23–26, 25f, 26f, 26f

Stereotyped use cases, 84–89

Story points, e2

Structural model, 289–290

Structural tests, 272

Stubs and drivers, 274–275

Subclass, 139

Superclass, 139

Supplementary requirements, 45, 47–51

Surrogate key, e69

Syntactic verification, 198

System actors, 30–31

System command contract, 193

exceptions, 193

postconditions, 193

preconditions, 193

System commands, 92, 97–98, 99f

System control class, 121–122, 121f

System events, 79, 97, 98f

System operation contracts, 193

System operations testing, 272, 280–282, 282t

System queries, 92, 98, 99f, 257–259, 258f

System query contract, 194

exceptions, 194

preconditions, 194

results, 194

System returns, 79, 97, 98f

System sequence diagrams, 92–109

alternate flows in, 104–109, 105f, 106f, 107f

complete, 109f

connecting interface to façade-controller, 97–101, 100f, 101f, 101f, 104–109

construction of, 95

defined, 93

elements of, 93–95, 93f

inadequate, 94f

main flow, 94–95, 102f, 104f

stateful strategy, 103, 104f

stateless strategy, 101–103, 102f

user identification, 108f

System tests, 272, 282–283

System use cases, 29, 31–38, 32f

avoiding fragments, 33f

brief, 37

and business use cases, 31, 38–41, 40f

consistent result, 35–36, 35f, 36f

essential, 36

high-level, 29, 31

interactive, 35

single session, 33–34, 34f

system boundary, 37–38

uses, 29–30

T

TCF (technical complexity factor), e11–e17, e12t, e18t

Team load capacity (TLC), e29, e29

Team productivity index (TPI), e23

Technical adjustment factors, e3

Technical complexity factor (TCF), e11–e17

environmental factors, e17–e22, e19t

technical factors, e11–e17, e12t, e18t

Technological design, 227

Test-driven development, 275–276

Testing, 271–272
See also Functional testing

Top-level navigation, 314–316, 317f, 317f, 318f, 318f

Traditional focus groups, 11

Transient associations, 200–201, 201f

U

UAW (unadjusted actor weight), e9–e10

UML (Unified Modeling Language), 3

Unadjusted actor weight (UAW), e9–e10

Unadjusted use case points (UUCP), e9

Unadjusted use case weight (UUCW), e10–e11

Unidirectional associations, e38–e50, e39f, e41t

to 1, e40–e44, e42f

advantages, 126

with association class, e49–e50, e49f

to many, e44–e45, e44f

qualified association, e45–e49, e45f, e47f, e48f

Unified Modeling Language (UML), 3

diagrams

behavior diagrams, 3

interaction diagrams, 3

structure diagrams, 3

Unified Process (UP), 3–5

phases of, 4f

construction, 5

elaboration, 5

inception, 4–5, 7

transition, 5

vs waterfall phases, 4

principles of, 3–4

Unique attributes, 121, 121f

Unit testing, 276–280

Unit tests, 271, 276

UP (Unified Process), 3–5

Use case complexity, e29

Use case diagram, 56f

Use case interface modeling, 328–331, 329f, 330f, 330f, 331f

Use case point analysis, e7–e26

Use case points, 10, e7–e9, e3

Use case priority, e29–e30, e30t

Use case testing, 282–284, 285t

Use case tests, 272, 282

Use cases
See also Business use cases, System use cases

complex, e10

dependencies among, e29

detailed, counting methods, e26

expanded, See Expanded use cases

importance of, 61

medium, e10

simple, e10

User stories, 11, e2

UUCP (unadjusted use case points), e9, e11

UUCW (unadjusted use case weight), e10–e11

V

Viewpoints, 313, 314f, 315f, 315f

Virtual proxy, e88–e90

data structures, e89–e90

W

Web interface patterns, 309–316

WebRatio® tool, 290

X

XML databases, e67

	Title page
	Table of Contents
	Copyright
	Dedication
	Acknowledgments
	About the Author
	Foreword
	Preface
	Chapter 1. Introduction
	Key Topics in this Chapter
	1.1 This book
	1.2 Object-oriented systems development
	1.3 Unified Modeling Language �⠀唀䴀䰀)
	1.4 Unified Process �⠀唀倀)
	1.5 The process so far
	1.6 Questions

	Chapter 2. Business Modeling
	Key Topics in this Chapter
	2.1 Introduction to business modeling
	2.2 General view of the system
	2.3 Business use cases
	2.4 Business activity diagram
	2.5 State-dependent aspects of a business
	2.6 Remarks
	2.7 The process so far
	2.8 Questions

	Chapter 3. High-Level Requirements
	Key Topics in this Chapter
	3.1 Introduction to high-level requirements
	3.2 System actors
	3.3 System use cases
	3.4 How to find system use cases in the business model
	3.5 Requirements
	3.6 Preliminary conceptual model
	3.7 The process so far
	3.8 Questions

	Chapter e4. Use Case Based Project Planning
	4.1 Introduction to effort estimation and risk analysis in software projects
	4.2 Use case point analysis
	4.3 Planning an iterative project
	4.4 The process so far
	4.5 Questions

	Chapter 5. Expanded Use Cases
	Key Topics in this Chapter
	5.1 Introduction to expanded use cases
	5.2 Main flow
	5.3 Alternate flows
	5.4 Writing recommendations
	5.5 Included use cases and fragments
	5.6 Expansion of stereotyped use cases
	5.7 Other sections of an expanded use case
	5.8 System sequence diagrams
	5.9 The process so far
	5.10 Questions

	Chapter 6. Conceptual Modeling: Fundamentals
	Key Topics in this Chapter
	6.1 Introduction to conceptual modeling
	6.2 Attributes
	6.3 Concepts
	6.4 Associations
	6.5 Collections
	6.6 Organization of the conceptual model
	6.7 Invariants
	6.8 Iterative construction of the conceptual model
	6.9 The process so far
	6.10 Questions

	Chapter 7. Conceptual Modeling: Patterns
	Key Topics in this Chapter
	7.1 Introduction to conceptual model patterns
	7.2 High cohesion
	7.3 Specification classes
	7.4 Quantity
	7.5 Measure
	7.6 Strategy
	7.7 Composite
	7.8 Organizational hierarchy
	7.9 Object joining
	7.10 Account/Transaction
	7.11 Range
	7.12 Temporal patterns
	7.13 Discussion
	7.14 The process so far
	7.15 Questions

	Chapter 8. Functional Modeling with OCL Contracts
	Key Topics in this Chapter
	8.1 Introduction to functional modeling
	8.2 Preconditions
	8.3 Transient associations
	8.4 Query return
	8.5 Postconditions
	8.6 Exceptions
	8.7 Pattern contracts for CRUD
	8.8 Pattern contracts for listing objects
	8.9 Contracts related to use cases
	8.10 The process so far
	8.11 Questions

	Chapter 9. Domain Tier Design
	Key Topics in this Chapter
	9.1 Introduction to domain tier design
	9.2 Object responsibility distribution
	9.3 Visibility
	9.4 Dynamic modeling based on postconditions
	9.5 System queries
	9.6 Delegation and low coupling
	9.7 Design class diagram
	9.8 The process so far
	9.9 Questions

	Chapter e10. Code Generation
	Key Topics in this Chapter:
	10.1 Introduction to code generation
	10.2 Classes and attributes
	10.3 Unidirectional associations
	10.4 Bidirectional associations
	10.5 Delegated methods and system operations
	10.6 Patterns for filtered queries
	10.7 The process so far
	10.8 Questions

	Chapter 11. Testing
	Key Topics in this Chapter
	11.1 Introduction to testing
	11.2 Functional testing
	11.3 Stubs and drivers
	11.4 Test-driven development
	11.5 Unit testing
	11.6 System operations testing
	11.7 Use case testing �⠀匀礀猀琀攀洀Ⰰ 愀挀挀攀瀀琀愀渀挀攀Ⰰ 愀渀搀 戀甀猀椀渀攀猀猀 挀礀挀氀攀 琀攀猀琀猀)
	11.8 The process so far
	11.9 Questions

	Chapter 12. Interface Tier Design with IFML
	Key Topics in this Chapter
	12.1 Introduction to interface tier design
	12.2 Interaction flow modeling language �⠀䤀䘀䴀䰀)
	12.3 View components
	12.4 Pages
	12.5 Flows
	12.6 Hypertext organization
	12.7 Web Interface Patterns
	12.8 Modeling operations in the interface
	12.9 IFML models for CRUD operations
	12.10 Use case interface modeling with IFML
	12.11 The process so far
	12.12 Questions

	Chapter e13. Data Persistence
	Key Topics in this Chapter
	13.1 Introduction to data persistence
	13.2 Object-relational mapping �⠀伀刀䴀)
	13.3 Saving and loading objects
	13.4 The whole process
	13.5 Questions

	Postface
	References
	Index

