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Preface

WHY THIS BOOK?
A classic software engineering adage is “anyone can build a doghouse”. 
The idea is that doghouses are not usually equipped with indoor plumbing, 
central heat and ventilation, and are not mortgaged, multistory or subject 
to building codes, etc. The list goes on. In contrast, a skyscraper must meet 
building codes, is likely multistory and multi-use, and, traditionally has 
underground parking, etc. The analogy for software development is that 
small-scale endeavors may be undertaken with far less overhead, and are 
subject to far less scrutiny than large-scale or complex systems. Design 
becomes more important as scale, complexity, and/or performance expec-
tations increase.

Why then read this book? The short answer is to study software design 
from a structured but hands-on perspective and to understand different 
designs to manage types, program memory, dynamic behavior, extensi-
bility, etc. Software complexity, refactoring expectations, and the prom-
inence of legacy systems motivate an interest in software design. We 
evaluate and compare designs in this text using and contrasting C# and 
C++ implementations.

Software tools, standard libraries, testing methodologies, and 
modern IDEs have decreased the complexity of producing software. 
Hardware and environmental dependencies have been abstracted away. 
Data storage and retrieval have been streamlined. Utilities provide 
functions for sorting, selection, and comparison. Standard algorithms 
have been encoded. Yet, one design does not fit all. Many problems may 
be solved in more than one way. How does one choose the most appro-
priate design?

This text emphasizes design choices. Many CS texts are ‘learn to’ books 
that focus on a specific programming language or tool. When perspective 
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is so limited, high-level concepts are often slighted. Students may gain 
exposure to an idea via a ‘cookbook’ implementation and fail to recognize 
foundational paradigms. Students and/or practitioners can apply princi-
ples more readily when design is explicitly defined, illustrated, and evalu-
ated. This book analyzes competing design solutions, contrasting cost, and 
benefits as well and internal versus external perspectives. Expectations 
of code reuse trigger consideration of long-term versus short-term use. 
Design, not just syntax, must be stressed.

WHO SHOULD READ THIS BOOK?
This text originated from material developed and updated for an advanced 
undergraduate course on software design. Students then are a natural audi-
ence. Entry-level or immediate developers, especially those responsible for 
maintaining or refactoring a legacy system written in an Object-Oriented 
Programming Language (OOPL), may benefit from this explicit exposition 
of object-oriented design as well as the evaluation of design variants.

Some software development experience is assumed, as is knowledge of 
basic data structures. Expertise with any particular language, platform, or 
IDE is not required. Auxiliary definitions and references are noted in the 
text. Appendix A reinforces indirection and details relevant to C++ and 
C#. Appendices B and C present and analyze substantive design examples. 
An extensive glossary is included, defining over 150 common terms asso-
ciated with software design.

WHAT SHOULD READERS EXPECT 
TO GAIN FROM THIS TEXT?
This book provides a practical summary of object-oriented design (OOD), 
an emphasis on contractual design, a succinct overview of memory man-
agement and data integrity responsibilities, and evaluation of comparative 
design options, all promoting utility and reuse. Additionally, developers 
with backgrounds in either C++ or C#/Java, but not necessarily both, may 
benefit from explanations of language differences.

Sample design quandaries addressed are when to use inheritance 
(polymorphism) and when not; how to design extensible code; when to 
externalize dependencies; and how to simulate multiple inheritance. Each 
chapter ends with one or more problems which illustrate the key concepts 
just covered. Appendices provide solutions alongside analyses to reinforce 
a clear understanding of design and implementation.
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HOW IS THIS TEXT RELEVANT TO (PROFESSIONAL) 
SOFTWARE DEVELOPMENT?
In the rush to fill technical positions, acquisition of skills may be priori-
tized over concepts: learn a new programming language, use a new tool, 
assess a user interface in order to add functionality to an existing system, 
etc. A high-level perspective may be lost. Without such a perspective, 
software development may yield applications that are feature-rich but not 
easily usable or reusable. To place design into context, we uncover back-
ground processes and discuss reuse potential so that a software developer 
can gauge the impact of design.

WHO MIGHT NOT BENEFIT FROM READING THIS BOOK?
Developers with extensive software design and implementation experience 
may find this text too elementary, unless more exposure to contractual 
software design or a transition to OOD is desired. Developers interested 
in examining real-time systems, event-handling software, or distributed 
systems should consult a different text.

Novice programmers may be overwhelmed. This book is not a ‘learn 
to program’ book. It can be viewed as a ‘software design’ book. Though 
many code examples are given and supportive appendices provide specific 
C++ and C# examples, the book has a conceptual rather than a syntactic 
emphasis: design (not syntax) remains the focal point. A novice program-
mer who wishes to learn C++ or C# should consult another text, returning 
to this text after mastering fundamental data structures.
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xvii

Detailed Book Outline

This book compares designs variants and emphasizes the strategic use 
of types in object-oriented design (OOD). In addition to thorough con-
tent coverage, many design problems are presented with sample solutions 
discussed in appendices. The book is partitioned into three sections that 
cover type design, coupling, and reuse. Eight chapters, three appendices, 
a glossary of over 150 common software design terms, and a list of refer-
ences comprise the text. To accommodate a variety of readers, we provide 
sample reading suggestions.

Section I: Stable Type Design

This section reviews OOD with an emphasis on type, use of memory, and 
preservation of data integrity.

Chapter 1: Contractual Design and the Class Construct examines 
contractual design: software written to fulfill a contract with the client. 
Explicit contractual documentation with design assumptions, conditions, 
and invariants is reviewed. Foundational class design is defined in this 
context with a clear partition separating the responsibilities of the class 
designer and the client.

Chapter 2: Ownership – Abstracted but Tracked details memory 
management within the class construct. Allocation and deallocation 
are compared in C++ and C#. Examples and discussion enumerate class 
responsibilities when heap memory is allocated internally in a C++ object. 
The cost of memory ownership is considered for both languages. Storage 
versus computation as a primary design choice is explored.

Chapter 3: Data Integrity considers unwarranted aliasing as a chief 
cause of data corruption. Designs to avoid such problems are presented. 
Copying variants are analyzed, emphasizing the design responsibility to 
explicitly determine copy semantics. Modern constructs developed to sus-
tain correct memory management are examined.

BK-TandF-DINGLE_9780367820817-200297-FM.indd   17 03/12/20   3:48 PM
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Section II: Strategic Type Coupling

This section explores different ways in which to structure interdependent 
types, providing design examples, analyses, and guidelines.

Chapter 4: Composition examines the has-a relationship, analyzing 
deferred instantiation, echoed interfaces, and wrapped delegates as sample 
designs that afford significant internal control. Dependency Injection is 
defined and evaluated as a technique that externalizes dependencies to 
promote flexibility and to enable testing.

Chapter 5: Inheritance reviews the is-a relationship as a popular 
OOD choice, noting its overuse alongside analyses of costs and benefits. 
Language support of polymorphism, its costs, and utility via heteroge-
neous collections are noted.

Chapter 6: Inheritance versus Composition contrasts composition and 
inheritance as design preferences, exploring costs and reuse potential. The 
validity of different inheritance designs, the viability of composition, and 
the efficacy of using composition alongside inheritance are evaluated.

Section III: Effective Type Reuse

This section provides a detailed evaluation of OOD variants with a par-
ticular emphasis on type reuse.

Chapter 7:  Design Longevity considers design sustainability. Discussion 
includes short- and long-term assessment of abstract types, polymorphic 
delegates, and interface extensions. Simulated inheritance provides a foun-
dation for many design variants. Multiple inheritances and its simulation 
are covered. An abbreviated production code example is analyzed.

Chapter 8: Operator Overloading proposes a type of design that mimics 
primitives via overloaded operators, permitting use in generic algorithms 
and containers. Again, designs are evaluated for language differences and 
consistency.

Appendix A: The Pointer Construct

This appendix covers the ‘pointer’ type, a language construct provided in C 
and C++, but not in C# or Java. Proper use as well as inappropriate handling 
is illustrated through pertinent examples. With its thorough coverage of indi-
rection, Appendix A assists the C# or Java programmer who is learning C++.

Appendix B: Design Exercises

This appendix provides sample design solutions, in both C# and C++, to 
problems posited at the end of Chapters 1 through 5. Illustrative problems 
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and contractual designs are presented for class design, proper class mem-
ory management, copying, composition, and inheritance.

Appendix C: Comparative Design Examples

This appendix provides sample design solutions, in both C# and C++, to 
problems posited at the end of Chapters 6 through 8. Contractual designs 
are presented that compare inheritance versus composition, type reuse for 
longevity, multiple inheritance, and operator overloading.

Sample Readings:

To accommodate different levels of experience, sample suggested readings 
of the text are given below. Regardless of experience, Appendix A cov-
ers material highly recommended for readers without a C or C++ back-
ground. Appendices B and C serve to illustrate stable OO designs and to 
support design discussions.

Intermediate Programmers or Python/Ruby/Javascript Programmers:

the entire text is applicable -- Chapters 1-8, Appendices A, B, C

C Programmers Transitioning to OOD:

Chapters 1, 3-8, Appendices B, C

C# or Java Programmers Familiar with OOD but Transitioning to C++:

Language Impact:   Appendix A, Chapter 2, 3 and 8

Comparative Design:  Chapter 6, and 7, Appendix C

(OOD Review:  Chapter 1, 4, 5)

Chapter Format

The acronym SOLID traditionally summarized five principles of OOD: 
Single responsibility principle, Open closed principle, Liskov substitut-
ability principle; Interface segregation principle, and Dependency inver-
sion principle. This text covers these essential OOD principles and more. 
Each chapter is associated with at least one principle. The chapter’s design 
exercises are meant to highlight one or more relevant principle and are 
evaluated in that context in the corresponding Appendix.

Each chapter begins with a bulleted list of chapter objectives. Extensive 
code samples, design examples, figures, and summative tables augment 
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the prose. Common software terms (defined in the glossary) are bolded 
upon first use as are emphasized ideas. Italicized comments highlight 
design principles or key insights.

Each chapter ends with the same structure: definition of a relevant 
design principle, the chapter summary, one or more sample design prob-
lems (with solutions sketched in the noted Appendix), design insights, and 
conceptual questions intended to review major concepts.

Code Samples

All code samples were compiled and run. Visual Studio19 processed C# 
code. A gnu C++17 compiler processed C++ code. For brevity, common 
declarations (such as libraries and namespaces) were omitted when the 
code was copied into the text. For example, in C++, “using namespace 
std” was commonly omitted as was “#include <iostream>”. 
However, less common inclusions, such as “include <algorithms>”, 
were noted when used. C++ client code was assumed to execute in main. 
Similarly, in C#, common libraries were not noted, nor was the wrapping 
of client code in a class construct.
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3

C h a p t e r  1

Contractual Design 
and the Class Construct

CHAPTER OBJECTIVES

• Outline contractual design

• Define Programming by Contract

• Examine standard class components

• Identify relevant OOD principles

1.1 ENCAPSULATION
Edsger Dijkstra, a computer science pioneer, famously observed “simplic-
ity is prerequisite for reliability”. A simple design is easier to maintain than 
a complex one. Traceable control flow is easier to understand, and modify, 
than tangled branching. An elementary type is easier to manipulate than a 
complex one, etc. Much of design thus strives to make components simple, 
or appear to be so. Object-Oriented Design (OOD), when used appropri-
ately, promotes simplicity by partitioning type definitions: internal (imple-
mentation) and external (interface) perspectives distinguish functionality 
from use.

OOD dominated software development in the 1990s and early 21st 
century. A design approach that rests on the notions of abstraction, 

BK-TandF-DINGLE_9780367820817-200297-Chp01.indd   3 24/11/20   9:33 AM



4   ◾   Object-Oriented Design Choices

encapsulation, and information hiding, OOD supported the develop-
ment of large-scale software systems and advanced the concept of code 
reuse. Design Patterns standardized common solutions to reoccurring 
problems and popularized OOD design principles.

OOD encapsulates private data, providing public methods for the cli-
ent without direct access to encapsulated data. Class (type) definitions iso-
late the client from internal details, ensuring type consistency. OOD thus 
sustains the high level of abstraction needed to build and maintain large 
software systems. Many legacy systems are written in object-oriented pro-
gramming languages such as C++, Java, and C#. To maintain and refac-
tor legacy code for continued use, one must understand the structure and 
effect of OOD.

Intentional design builds on key object characteristics, such as lifetime, 
association, ownership, and cardinality, yielding insights that are trans-
ferable to higher level views of software. Are objects temporary or persis-
tent? Can object instantiation be postponed? Is the association between 
two objects permanent or transient? Who owns a subordinate object? Can 
ownership be transferred or shared? How many objects exist in a relation-
ship? Is that number fixed? Other questions arise. Deliberate design must 
identify assumptions.

Compilers do not enforce design! Maintainable, extensible code is 
developed by documenting assumptions, following established design 
principles, and choosing appropriate design variants. But the compiler will 
not verify design merit; its task is to follow a long, complex set of instruc-
tions for source code translation.

1.2 EXPLICIT DESIGN AND CONSTRAINTS
OOD starts with type definitions, where every type supports external 
and internal perspectives. Each object instantiated from a type definition 
has its own internal values and state. A client manipulates types from 
an external view, invoking public functions as needed. A class designer 
implements types with an internal perspective, defining properties, and 
preserving state control. OOD becomes more complex when reusing types 
in different structural and behavioral relationships.

Consider containers that provide functionality for data storage. The 
classic stack data structure defines functions to add and remove data as 
well as state queries. A client must know whether a container is in an 
empty or non-empty state. Functions such as isEmpty() operate in the 
same manner regardless of the data type stored in the stack. Structurally 
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then, as is true for most containers, a stack looks the same regardless of 
what type of data it holds. Functional independence from data type is 
implicit for standard containers such as queues, priority queues, trees, etc. 
A generic design thus promotes consistent use (and reuse) of containers.

In contrast, type impacts data classification systems – commercial 
inventory, library holdings, university courses, etc. A basic definition may 
isolate common features of classified items, such as quantity, date, etc. 
Specialization adds detail and functional variation. For example, restock-
ing games in a toy store differs from returning books to a library. To pro-
mote consistent use (and expansion), design rests on a type framework 
that permits variation.

Containers and classification systems illustrate different dependen-
cies. Containers are type agnostic: primary tasks of storing and retriev-
ing data are implemented without much regard to type. Classification 
systems are grounded in type: functions that verify, replace, order, etc. 
items rest on type.

1.2.1 Class (Type) Functionality

The class construct formalized the implementation of an abstract data 
type (ADT), and, in so doing, streamlined the idea of encapsulating data 
alongside functionality. The systematic design of a class generalizes to 
software design. Functionality can be delineated by intent: initialize data; 
allocate, deallocate, or manage resources; change or view data values; and, 
examine or resolve data dependencies. Fulfillment of functionality may 
be conditional: a request for access or change may be denied. Table 1.1 
categorizes standard functionality defined within a class: constructors, 

TABLE 1.1 Types of Functions Defined in Class Construct

Intent Invocation

Constructor Initialize data
Allocate or acquire resources

Object instantiation
Note language differences

Accessor View data values Depends on accessibility
Mutator Change data values

Preserve validity of state
Depends on accessibility

Public interface Support type definition
Provide needed utility

Unrestricted access  
client, type or subtype

Private utility Preserve data dependencies
Manage resources

Internal

Destructor (C++) Release resources
Bookkeeping

Exit scope (automatic)
Explicit call to delete
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destructor, accessors, mutators, private utility functions, and public inter-
face functions. Functions defined within the scope of a class are often 
called methods.

Each method in a well-designed class supports abstraction and 
encapsulation and, as much as possible, allows the client to treat the 
custom type as if it were a built-in type. Initialization and preservation 
of state are internalized and not left to the client. Hence, it is com-
mon to differentiate between private methods that may be called only 
from within other class methods and public methods that the client 
can directly invoke.

Example 1.1 provides C++ code for a sample Icon class which repre-
sents a visual element in a computer game. Example 1.2 shows comparable 
C# code. This incomplete design is not immediately usable but illustrates a 
type definition. Sample data fields display object form, and sample meth-
ods represent movement and/or change within a game session. A com-
puter game would be seeded with multiple Icon objects, each potentially 
in different states.

Example 1.1 Sample C++ Class Design

class Icon   // C++ data members and functions,  
//          private by default    

{      // data allocated for each  
// instantiated Icon object 

      double          mass, energy;
      int             x, y;
      // dependent on energy 
      bool            visible;  

       // static data: ONE per class;  
// shared by all objects

     //C++17 in-field initialization
     
     inline static int           count = 0;  

     // private utility method 
     void adjustEnergy();
   public:
      // constructor must set state, that is,  

//initialize fields and increment
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     //   static count: one more Icon object
     Icon(int xC = 0, int yC =0)     
     {    x = xC;            y = yC;
          mass = abs( x * y) + 10;
          energy = abs( x + y) + 100;     
                   // invariant 
          visible = mass < energy;
          count++;
     }

       // destructor decrement count:  
// one fewer Icon object

      // no resources to release   
      ~Icon() {  count--;  }

       // accessor: control view; may choose  
// NOT to return value

      double     getEnergy() const    
     {    if (visible)            return energy;
            return               -1;
     }

      bool   isVisible() const    
      { return  visible;  }

      static int  getCount()        
      { return  count;    }

       // mutator: controls state;   
// may reject change request

      bool refuel(double     fuel)
      {    if (!visible || fuel < mass) 
                 return false;
           energy += fuel;
           return true;
      }

      // may change visible  
      void  flicker()  {    …    }
       …
};
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8   ◾   Object-Oriented Design Choices

The Icon class defines private data: integers x and y to model 
grid placement, doubles mass and energy to control movement 
and Boolean visible to control fulfillment of client requests. Each 
instantiated object has its own copy of these data fields. A static 
integer (count) tracks the number of objects instantiated from the  
class. Static data members are allocated at the class level; all objects 
share a single copy. Static data members are initialized in the class 
definition for C#, Java, and C++17 but initialized in the .cpp file for 
legacy C++.

Example 1.2 Icon Class in C#

public class Icon
{    private     double     mass;
     private     double     energy;
     private     int        x;
     private     int        y;
     private     bool       visible;

                  // static data: ONE data  
// member PER class

     private     static int count = 0;
     
     // private utility method 
     private void adjustEnergy();

    public Icon(int xC = 0, int yC =0)      
    {   x = xC;     y = yC;
        mass = Math.abs( x * y) + 10;
        energy = Math.abs( x + y) + 100;    
        // invariant 
        visible = mass < energy;
        count++;
    }

     //not really a destructor:  
//called before object reclaimed

    // no resources to release   
    ~Icon() {  count--;  }
     
    //C# property: get (accessor) and set (mutator)
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    public bool Visible       //replaces isVisible
    {    get => visible;  }

    // Property replaces getEnergy 
    public double Energy        
    {    get   {      if (visible)   return energy;
                     return           -1;
              }
    }

    public static int     getCount()  
    { return     count;      }

     // mutator: controls state;  
// may reject change request

    public bool refuel(double  fuel)
    {    if (!visible || fuel < mass) 
               return false;
         energy += fuel;
         return true;
    }

     public void     flicker()    
{  // may change visible’ … }        

    …
}

1.2.2 Constructors

Constructors are special methods that share the class name and return 
no value after initializing an object’s data members. The compiler 
patches in a call to a constructor when an object is instantiated, because 
initialization is a class responsibility, not the client’s. The provision of a 
public initialize() undermines class control: at any time, an object 
could be reset to an initial state. Since constructors are called only once, 
there is no vulnerability to such an arbitrary reset. Constructors may be 
overloaded, that is, more than one may be defined, each distinguished 
by its parameter list.

An object definition is a two-step process: memory is allocated and then 
a constructor fires to initialize data fields and put the object into an initial, 
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valid state. When objects are declared in C++, the compiler automatically 
patches in a call to the no-argument constructor. The terms default con-
structor and no-argument constructor are often interchanged and thereby 
confusing. Default constructor is an older, C++ term and refers to the con-
structor provided by the compiler if the class designer does not define any 
constructors. The default constructor never takes any arguments. How 
could the compiler decide what arguments to pass? Java and newer lan-
guages refer to the no-argument constructor as the constructor (defined 
or default) that takes no arguments.

In Java and C#, object declaration allocates only a typed reference 
(which holds the address of an object after its allocation via a call to 
the new operator). Calls to the new operator explicitly identify the 
constructor to invoke. Similar to C#, a typed C++ pointer may be used 
to hold an address of memory allocated by a call to the new opera-
tor. Object allocation and management is discussed in more detail in  
Chapters 2 and 3.

Example 1.3 C++ object Instantiation

      // #1 no-argument constructor  
      Icon             objX;            
      // #2 overloaded constructor 
      Icon             objY(10);        
       //#3 no-argument constructor 

Icon*            ptrX = new Icon;     
       //#4 overloaded constructor 

Icon*            ptrY = new Icon(3); 

       // C++ array declaration: no-arg  
// constructor always invoked

       // all objects in array initialized  
// to same initial state

       // #5 100 calls to no-arg constructor 
Icon       db[100];    

       // overwrite default initialization  
// of array elements

      for (int j = 0; j < 100; j++)
      {
             // #6 constructor takes int 

Icon   replace(j); 
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             // #7 overwrite array entry 
db[j] = replace;         

      }

Example 1.3 illustrates different object instantiations in C++: statements 
#1, #3, and #5 invoke the no-argument constructor; statements #2, #4, and 
#6 invoke the overloaded constructor that accepts an integer parameter. In 
C++, when an array of objects is allocated, the compiler patches in mul-
tiple calls to the no-argument constructor, one call for each array element. 
What if the objects in an array should be ‘constructed’ (initialized) by a 
different constructor? Extra code must be inserted to overwrite array ele-
ments, as shown in statements #6 and #7.

All C# objects are allocated via a call to the new operator so the cli-
ent must specify a constructor. An array of C# objects is really an array 
of references, where each reference should be assigned the address of 
an object. Initializing an array of C# objects thus always requires step-
ping through the array of references to allocate the objects referenced 
therein. Example 1.4 illustrates different object instantiations in C#. 
Statements #1 and #3 invoke the no-argument constructor; statements 
#2 and #4 invoke the overloaded constructor that accepts an inte-
ger parameter. Statement #5 allocates an array of references on the  
heap; no objects are allocated. Individual objects are allocated in 
statement #6, a process that easily supports custom invocation of a 
constructor.

Example 1.4 C# object Instantiation

      // C# object declaration: Icon reference
       //   no object allocated yet;  

//   reference zeroed out
      Icon objA;

      // C# object declaration and instantiation
      Icon  objB = new Icon();               // #1
      Icon  objC = new Icon(12);             // #2
      …

       // C# object instantiation  
// overwrites references 

      objA = new Icon();                     // #3
      objC = new Icon(15);                   // #4
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       // C# array declaration:  
// array of 100 Icon references

      Icon  db[] = new Icon[100];            // #5

      // C# array initialization: 
      //    each reference (array element)
       //         holds address of object  

// allocated by new
      for (int j = 0; j < db.Length; j++)
           db[j] = new Icon(j);              // #6
      }

Constructors are responsible for setting the initial state of an object, which 
may include allocating or acquiring resources. As illustrated in the Icon 
class, data members may be initialized by a default value, a parameter, or 
another data member.

1.2.3 Accessors and Mutators

Accessors, often named with a prefix of get, or in C#, defined via a 
property, provide a controlled peek inside an object, returning the 
value of a private data member. In containers, a common query is get-
Size(), which returns the current size of the data set. No accessor 
should modify the state of an object. Hence, C++ accessors should be 
labelled const. Accessors may check state before returning a value, and 
may reject a request for data, as shown in Icon::getEnergy(): if the 
object is invisible, -1 is returned as an error code rather than the actual  
energy value.

Mutators, often named with a prefix of set, or in C#, defined via a 
property, allow the client to potentially alter state by changing an internal 
value. To preserve internal control, set()functions may be conditional. A 
set request may be rejected if the value provided would put the object in an 
invalid state. Common examples of refused requests include out-of-bounds 
values or values that violate a dependency between two or more fields in 
the class definition. The mutator method Icon::incEnergy(x) rejects 
the change request if the Icon object is invisible or if the passed value x 
is less than the mass data field. A class designer preserves integrity with 
externally inaccessible (private) data alongside conditional mutators that 
preserve type consistency.

C# properties are easily defined in modern IDEs but should not be 
overused. Class designers should ensure that only appropriate accessors 
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and mutators are provided to the client, and make fulfillment conditional 
if necessary. Accessors do not change state, as illustrated by const C++ 
methods in Examples 1.1. Mutators alter state in a controlled manner, as 
illustrated by incEnergy() in Example 1.1. Class methods should not 
give external access to private data, which would permit uncontrolled 
change of state, unless the provision of such access is a deliberate design 
decision.

Example 1.5 C++ Aliasing Undermines Encapsulation

      // mutator that rejects out of range values
      void myType::setValue(int   x)
      {    if    (x > 100)  hiddenInt = x;    }

       // standard accessor: data member  
// returned by value

      int  myType::getValue() const 
       {  return  hiddenInt; }   

       // name ‘get’ implies accessor  
// but a reference returned

      // #1 
       int& myType::getControl() 

{ return hiddenInt; }
      …

      // Client code
      myType     insecure;

      // change request OK 
      insecure.setValue(200);            
       // change request rejected 

insecure.setValue(13);             
      cout << insecure.getValue() << endl;   // #2

      int&   alias = insecure.getControl();  // #3
      cout << insecure.getValue() << endl;   // #4

       // #5 private data member altered 
alias = 13;      

      cout << insecure.getValue() << endl;   // #6
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Example 1.5 illustrates an accessor that compromises object state 
by aliasing an external data variable to an internal data member. 
getValue() is labelled const while getControl() is not. Yet, 
it still may be unclear how data integrity is undermined. The acces-
sor getControl()returns an integer value by reference (statement 
#1). Hence, the caller’s integer variable alias is aliased, or shares 
the same memory space, as the private data member hiddenInt  
(statement #3). Subsequent changes to alias change the private data field  
hiddentInt of the object insecure.

Contrast output values from statements #2, #4, and #6. Since the request 
insecure.setValue(13) was ignored, each output statement should 
print ‘200’. Yet, statement #6 outputs ‘13’. Why? The assignment to alias 
in statement #5 results in an unseen alteration of the hiddentInt data 
member of object insecure. This example is in C++ but aliasing (and 
data corruption) is possible in any language.

1.2.4 Utility and Public Methods

Private utility methods support functional decomposition and reuse 
within a class, reducing code complexity. For example, resize() 
expands the size of a container when capacity is reached, and may be 
called from any method that adds an element to the data set. Why should 
resize() be private? The client should not be responsible for main-
taining the container in a usable condition. If capacity is unbounded, 
the client should not have to track available storage. When overflow is 
imminent, resizing should be internally triggered. The client uses ser-
vices provided by a container to store and retrieve data, but should not 
manipulate internals. See Example 1.6.

Example 1.6 Private Utility Method resize()

// C++ resize() doubles capacity –  
// defined in .cpp file
// declared as private in .h file 
void container::resize()    
{         storedType* 
          temp = new storedType[2*size];
          for (int j=0; j < size; j++)
               temp[j] = heapData[j];
          size *= 2;

BK-TandF-DINGLE_9780367820817-200297-Chp01.indd   14 24/11/20   9:33 AM



Contractual Design and the Class Construct   ◾   15

          delete[] heapData;    // release old data
          heapData = temp;     // reset pointer
}

// C# resize() doubles capacity –  
// defined in class definition
private void resize()            
{         storedType[] 
          temp = new storedType[2*size];
          for (int j=0; j < size; j++)
                temp[j] = heapData[j];
          size *= 2;
          heapData = temp;     // reset reference
}

OOD restricts exposure of implementation and reduces client respon-
sibilities. Public methods should not require knowledge of internal form. 
For example, a client need not know or care how a container holds its data. 
Arrays and lists are common structures for data storage but neither choice 
should directly affect client code. Likewise, when manipulating Icon 
objects, a client should not have to manage encapsulated data: the depen-
dency of visible on mass and energy is internally controlled.

1.2.5 Destructors

The C++ compiler implicitly invokes the destructor when an object goes 
out of scope. Like constructors, a destructor is a special method that 
returns no value and its name is simply that of the class preceded by the 
special symbol ‘∼’. Destructors release resources that an object acquires at 
run-time. For example, destructors could release any file opened and used 
internally by an object. More commonly, if an object dynamically allocates 
data, a C++ destructor ensures deallocation. Chapters 2 and 3 provide 
more detail on memory allocation and deallocation as well as potential 
data corruption.

In C#, memory acquired at run-time is released ‘automatically’ via gar-
bage collection; Chapter 2, examines such implicit deallocation. C# classes 
then need not define a destructor. However, C# permits the definition of a 
finalizer method that syntactically looks like a destructor, which is called 
implicitly by the garbage collector when an object is reclaimed. The utility 
of C# finalizers is limited since the garbage collector usually runs outside 
program control. In contrast, destructors are essential in C++. Standard 
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C++ design guidelines suggest that they always be defined. Example 1.1 
illustrates a C++ destructor, ∼Icon(), which will be invoked whenever 
a stack-allocated Icon object goes out of scope or a heap allocated Icon 
object is deleted. Example 1.2 shows a C# finalizer, ∼Icon(), which is 
invoked only when the garbage collector runs and reclaims an unused 
(‘garbage’) Icon()object.

Destructors may be used for bookkeeping. Tracking the number of 
objects is a technique employed in resource management as well as debug-
ging. To do so, every constructor increments a static count upon object 
instantiation and the destructor decrements the count upon object deal-
location. The Icon class employs this design, allowing a game designer 
to track the number of allocated Icon objects. Since this static count is 
private, as it should be, a static accessor function is needed, as shown in 
Examples 1.1 and 1.2.

1.3 DESIGN AS A CONTRACT
To ensure consistent use, and to correctly manage dependencies, design 
must be recorded. Yet, inline comments interfere with readability and 
are less likely to be updated when software is modified. As noted by Ron 
Jeffries (one of three founders of Extreme Programming (XP) methodol-
ogy), “Code never lies. Comments sometimes do”. A distinction must be 
made between comments and design documentation. Inline comments 
should be avoided. Through judicious choice of names, and adherence to 
control flow conventions, etc., code should be readable on its own. Code 
should be self-documenting. At a higher level, design documentation iden-
tifies intent and implementation details in support of software evolution.

Tools and conventions abound for standardizing documentation. 
Contractual design is a documentation methodology that outlines design 
decisions and client responsibilities. Documentation as a contract sup-
ports both the client who uses the provided public interface and the class 
designer who implements the functionality to support published expecta-
tions. Introduced by Bertrand Meyers, the architect of the object-oriented 
language Eiffel, Design by Contract embodies a professional perspec-
tive on software development. Programming by Contract is an academic 
rendering of Design by Contract that uses blocked comments to publish 
requirements and to record design decisions. Microsoft advances a simi-
lar perspective, code contracts, where documentation serves as a contract 
between the client and the class designer. If the client adheres to specified 
restrictions, then objects should behave as expected.
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1.3.1 Error Handling

Defensive programming assumes that defined types may or may not be 
used correctly and, thus, extensive testing is mandated to prevent error. In 
contrast, Programming by Contract outlines a formal agreement between 
class designer and client. The contract identifies requirements to be met 
by both parties for safe and consistent use of a defined type. By specifying 
shared responsibilities, a contract clarifies outcomes and may alleviate the 
overhead of excessive error checking. Note though that the cost of contract 
violation cannot be too high. When a client breaks a contract and receives 
invalid data but there is no other penalty, the class designer may not be 
concerned. However, if a broken contract may lead to data corruption 
(without internal checks), then the class designer must exercise caution.

The stack data structure highlights the value and limits of contractual 
design. A standard precondition for pop() is that the stack object is not 
empty. What if a client erroneously requests data from an empty stack? 
A defensive approach internally checks state and rejects invalid pop() 
requests if the stack is empty – a safe but costly approach since every caller 
pays for the check. Design may be tricky. How does pop() communicate a 
rejected request? One solution is to return an error code indicating failure 
when the stack is empty. Error codes cannot use any value (such as zero) 
that legally could be stored. Another option is to return the popped value 
through a parameter passed by reference, using a Boolean value as the 
return type to indicate validity: true if pop() succeeds; false if it fails (and 
thus no change to the parameter passed by reference). The most secure 
approach is to use exceptions.

Assume a stack holds data in an internal array and that the stack is 
empty when the client calls pop(). C# and Java perform bounds check-
ing on each array access so an exception is thrown when the invalid index 
of an empty stack is used. No explicit internal check is then needed but 
contractual design should note that the client must be prepared to catch 
an exception if pop() is called when the stack is empty. In contrast, C++ 
does not perform bounds checking so the invalid array index would be 
used, triggering an exception if the referenced memory lies in a protected 
region, or, most likely, the return of invalid data. More insidiously, data 
corruption may result from this C++ scenario. Without bounds checking, 
if a push() follows an invalid pop(), the invalid C++ array index may 
overwrite memory outside the internal array. The consequences of data 
corruption are too severe for a C++ implementation to eschew both excep-
tions and defensive programming.
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When does contractual design offer a reasonable alternative to (exces-
sive) internal checks of defensive programming? When the cost of con-
tract violation is not too high. An error response of a thrown exception 
is an acceptable risk. Data corruption is not. Exceptions preserve system 
integrity, incurring overhead only if thrown. Therefore, exceptions do not 
degrade performance. Examples 1.1 and 1.2 provide a benign example 
of contract violation. If the client does not meet visible expectations 
for checking the energy reserves of an Icon object, then an error code is 
returned rather than accurate data. However, the integrity of the Icon 
object is preserved.

1.3.2 Published Assumptions

Contractual design specifies client responsibility. Stated preconditions must 
be met. Otherwise, the client breaks the contract with the class designer 
and behavior is not guaranteed. Preconditions must be verifiable. The cli-
ent should not have to count additions and removals to determine whether 
a container is empty or not. A query method, such as isEmpty(), must be 
provided to allow the client to verify state.

Programming by Contract delineates obligations across five documen-
tation categories, as noted in Table 1.2: function preconditions, func-
tion postconditions, interface invariants, implementation invariants, 
and class invariants. Pre and postconditions identify dependencies and 
assumptions about the environment in which functions execute. For cor-
rect execution, the client must meet preconditions before invoking a func-
tion. The class designer guarantees postconditions so that the client can 
track state, in order to satisfy precondition(s) of subsequent function calls. 
Encapsulation promotes data integrity, potentially reducing error check-
ing. Pre and postconditions should be published, when relevant, whether 
or not software is object-oriented.

Preconditions enumerate conditions require for correct execution, such 
as a container must not be empty for data extraction or an object must be 

TABLE 1.2 Programming By Contract

Intent Characteristics

Precondition Safe entry into function Required incoming state
Postcondition Identify state changes Possible altered state
Interface Invariant Promote consistent use Services supported
Implementation Invariant Software maintenance Design specifications
Class Invariant Communicate Type & Use Designed functionality
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‘on’ to enact change. The client fulfills preconditions so the function can 
avoid the overhead of verification. Preconditions identify potential error(s) 
and minimize internal error checking. Preconditions must be verifiable and 
must be published, typically as a comment preceding the function header. 
Callers must recognize the potential for error, or the need to catch excep-
tions, if preconditions are not satisfied. Preconditions may restrict accept-
able values for passed parameters but need not specify type (in a statically 
typed language) because the compiler checks type. In a dynamically typed 
language, like Python, a precondition may need to specify types for which 
the operation holds.

Evaluate the stability of preconditions, especially for resource manage-
ment since resource use may span multiple actions. Consider file existence: 
a check before opening a file seems secure but the file could be deleted 
after the existence check and before reading from the file. What designs 
are viable? Access could be wrapped in an exception block. Locks could 
be introduced. Contractual design identifies requirements and impedi-
ments before coding begins.

Postconditions publish the effect of function execution, identifying 
actual as well as potential changes, such as resource acquisition or release. 
Postconditions do NOT describe a function’s action. In the OO paradigm, 
postconditions identify possible change to object state after method execu-
tion, for example stack is non-empty after push(), stack is empty after 
clear(), stack may be empty after pop(). With postconditions, the client 
can track change and verify preconditions for subsequent function calls. 
See Table 1.3.

Preconditions specify requirements for correct use of a func-
tion, including any parameter restrictions and required object state. 
Programming by Contract highlights the shared responsibility between 
the caller and the callee. If the required preconditions are not met, there 
is no guarantee about resulting behavior. Postconditions record actual 
and potential change so that state may be tracked. Pre and postcon-
ditions support intentional design whether the function is declared 

TABLE 1.3 Common Pre- and Postconditions

State Resource Data Ownership

Precondition Non-empty Memory allocated Values in range Valid Handle
Postcondition Empty

May be empty
Non-empty

Memory allocated
Memory released

Ordered
Unique

Assumed
Released
Unaffected
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public, private, or protected in a class, or, in fact, whether the function 
is encapsulated in a class at all.

1.3.3 Invariants

All class member methods should ensure a valid state (legal values of data 
members). Constructors create objects in a valid, initial state. In C++, 
destructors release resources and track bookkeeping details. Accessors 
return copies of data values (or, with risk, aliases to internal data) without 
any state change. Mutators change state while preserving validity. Private 
utility functions provide functional decomposition within a class design. 
Additional methods implement core functionality.

Invariants serve to document stable state conditions. Invariants describe 
design decisions in the context of class structure, noting conditions and 
relationships to be preserved. Interface invariants are external constraints. 
Implementation invariants are internal constraints. Class invariants are 
the intersection of interface and implementation invariants – of interest to 
both the client and the class designer.

Interface invariants provide an overview of public use and inform the 
client of constraints. Interface invariants provide a higher level of abstrac-
tion than preconditions, and describe general restrictions on the use of 
objects. For example, no meaningful response from an ‘off’ sensor; no 
changes processed for a ‘closed’ inventory, etc.

Implementation invariants record all relevant design choices, in detail 
sufficient for software maintenance. Common decisions include: choice 
and expected use of subordinate data structures, legal values of data 
fields, ownership responsibilities, dependencies between fields, memory 
(resource) management, and bookkeeping details. Reasonable implemen-
tation invariant examples are: internal (static) registry guarantees unique 
id; data is not ordered; interface of subobject echoed – details that the cli-
ent need not know. By identifying data and design constraints, implemen-
tation invariants record how requirements are met.

Class invariants represent the overlap of interface and implemen-
tation invariants that is type design decisions that constrain both cli-
ent expectations and class designer responsibilities. Class invariants 
may specify: error processing; copy semantics; capacity limits (if any); 
ordering criteria (if any); processing of duplicate values (if any); etc. All 
operations should be designed to preserve class invariants. The closed 
nature of a class gives the designer complete control over all operations 
that modify data fields.
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Programming by Contract supports software maintainability by explic-
itly recording design assumptions: implementation priorities and design 
choices must be clearly specified. See Table 1.4 for sample invariants for a 
container. When a class design must be modified, the software developer 
must reexamine the class and determine how to incorporate additional or 
altered functionality. This task is more easily accomplished when original 
design and intent are clearly documented.

1.4 PROGRAMMING BY CONTRACT EXAMPLE
The class designer should enumerate minimal restrictions in a contract, 
recording only restrictions internally enforced. For example, if one client 
does not process duplicate values but another client may then data unique-
ness is not an internal constraint. To illustrate, we specify a contract for 
the cyclicSeq class sketched in Example 1.7. Encapsulation supports 
invariants, properties that always hold, ensuring that objects remain in 
a consistent, legal state (which can be tested at any point). Preservation 
of invariants may reduce error checking and promote software maintain-
ability by limiting dependencies on the client. Two benefits are: 1) the class 
may be treated as abstractly as a built-in type since the client need not 
know internal details; and, 2) the design is secure because an inattentive 
or malicious programmer cannot easily put an object in an invalid state.

Example 1.7 C# cyclicSeq class

// a cyclic arithmetic generator 
public class cyclicSeq
{      // C# data zero initialized 
       //   by default
      private bool           on = true; 
      private uint           place;     

TABLE 1.4 Common Invariants for a Container

Utility Data Constraints Error Handling

Class Storage Characteristics 
(unique, sign,,,)

Capacity 
Copying

Error Codes
Exceptions

Interface Type Meaning Validity Access Response
Implementation Functionality 

Data members
Algorithms

Dependencies
Stability
Ownership
Ordered  
(or not)

Resources
Data 
structures

Algorithms
Relationships

NOP
Recovery
Replacement
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      private uint           period;
      private readonly uint  a1;
      private readonly uint  dst;
      …
        public cyclicSeq 

(uint start, uint inc, uint lgth = 100)    
      {     a1 = start;
            dst = inc;
            period = lgth;
      }

      public int nextNum()
      {     if (!on)    return -1;
            place = (place + 1)% period;
            return (int)(a1 + dst*place);
      }

      public bool expand(uint scale)   
      {     if (!on || scale == 0) return false;
            period *= scale; 
            return true;     
      }
          
      public bool isOn() 
      {   return on;        }
     
      public bool toggleOn() 
      {   return on = !on;       }
          
}

Example 1.7 defines a generator that yields a number upon request. 
The number returned is the next number in a cyclic sequence, with its 
first value, additive factor, and sequence length defined in the construc-
tor. The starting and increment values must be specified but a default 
value may be used for sequence length. A client may change a cyclic-
Seq object in only two ways after construction: toggle the on state and 
expand the length of the sequence. The on state controls the validity 
of data returned as well as the ability to expand the sequence length. 
Sample contractual documentation for this example distinguishes mini-
mal, unnecessary, and problematic details. Invariants need not docu-
ment restrictions enforced by the compiler. Hence, it is unnecessary to 
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state that negative values are unacceptable for a parameter typed as an 
unsigned integer, etc. Problematic details are those inconsistent with 
the type definition.

Class invariants provide an overview of the defined type and expected 
use. Minimally, type functionality must be described alongside error pro-
cessing. Class invariants summarize the overlap of interface and implemen-
tation invariants – details that affect the client and that must be tracked by 
the class designer, such as the uniqueness of data values or the suppression 
of copying. Restrictive characteristics that may arise only through client 
actions should not be specified. Sample class invariant for cyclicSeq:

1. Minimal details needed to define cyclicSeq type

• Arithmetic generator yields next number in cyclic sequence upon 
request

• Constructor sets starting value, additive factor, and sequence 
length

• Default value defined for sequence length

• Starting value and additive factor stable throughout object 
lifetime

• Sequence length may be changed upon request after 
construction

• on state controls return of valid data and expansion of sequence 
length
→ Client must track on state

• Error processing

• If next number requested when not on, -1 returned as an 
error code

2. Unnecessary details implied by type definition

• Values returned will repeat

• Values non-negative

3. Problematic details that have no internal validity

• No prime numbers – no such filter in class
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The interface invariant summarizes intended use by the client. Initial 
and subsequent state requirements must be described. Comments on 
use or effect must be consistent with design. There is no need to describe 
error conditions that do not occur, for example arithmetic miscalcula-
tions or invalid initialization. What states ensure validity? What is the 
client’s responsibility for tracking state? Sample interface invariant for 
cyclicSeq:

1. Minimal details needed to specify correct use of cyclicSeq type

• Client must track on state

2. Unnecessary details implied by the interface

• State may be toggled

3. Problematic details that described unsupported behavior

• Starting value or additive factor may be modified

Implementation invariants document the class designer perspective, 
providing detail on internal design. Minimally, key design decisions must 
be described as well as error response. Explanations may be provided for 
details evident through self-documenting code, such as uint restricts 
cyclicSeq values to non-negative integers. Details are often language 
specific. Sample implementation invariant for cyclicSeq:

1. Minimal details describe internal data structures and dependencies

• Values in sequence not stored, computed upon request

• on state controls response to client requests

2. Unnecessary details implied by function prototype (syntactically 
evident)

• only non-negative integers generated

3. Problematic details inconsistent with internal response

• values may not be single digits – no such expectation established

Preconditions notify the client of the pre-requisites of a legal call, 
specifying any required state(s) before function entry. For example, con-
tainers must be non-empty before any data is extracted and must have 
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sufficient capacity for data insertion (or provide internal resizing). The 
cylicSeq class design uses on to control behavior. Hence, a valid pre-
condition may be ‘object is on’. Again, preconditions need not state condi-
tions enforced by the compiler, such as parameter type.

Postconditions document potential or actual state changes so that the 
client may track state. The client may need information about object state 
or resources in order to fulfill preconditions. Hence, the client must be able 
to query state since encapsulation hides data. To know when to query state, 
the client must recognize the potential for state change. const methods 
do not have postconditions because they do not change object data and 
thus cannot affect state. Postconditions do not describe what functions do.

Systematic documentation distinguishes form and use, separating struc-
ture from interface. More than an arbitrary convention, Programming by 
Contract delineates shared responsibility and records software design. It 
emphasizes the encapsulated design of objects, with separation of public 
and private interfaces, and summarizes the dual perspectives of client and 
class designer.

1.5 CONTRACTUAL EXPECTATIONS
A contract outlines responsibilities from both internal and external per-
spectives. In contrast, defensive programming makes no assumptions 
about correct input or fulfillment of preconditions and may require exten-
sive error checking. When class methods check arguments and object 
state, the overhead is borne by all callers. This expense may be acceptable 
for infrequently invoked methods but becomes expensive for repetitive 
calls. Class designers should evaluate internal versus external costs.

Encapsulation supports the development of reliable code because 
internal state is controlled: the client cannot put an object (of a well-
designed class) into an invalid state. Ideally, the class designer delineates 
public and private functionality so that objects are always initialized 
correctly and no method modifies internal data inappropriately. With 
controlled and checked modification, objects should always be in a  
valid state.

Internal responsibilities lie within a class. Control of object state should 
be internalized. A client may undermine design if allowed to uncondition-
ally change object state. Why? A client may not recognize design intent, 
internal dependencies between data members, or restrictions on state 
changes. In a well-designed class, object data members are private and 
only the execution of member functions may change state.
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The tradeoff between reliability and efficiency is explicit: error checking 
versus assumptions of correct use. The overhead of an internal conditional 
test is borne by all requests. Contractual design may be a viable alterna-
tive. The class designer should estimate consequences of contract viola-
tion, that is, the impact of error. What failures are acceptable and how 
are they handled? How often is error expected? The cost of failure cannot 
be too large. Exception handling provides a reasonable response to error. 
As a safeguard, exceptions incur no run-time overhead unless an excep-
tion is thrown. Exceptions can be used in both defensive programming 
and contractual design. The client should be informed of error codes and/
or the need to catch thrown exceptions. Critics complain that exception 
handling clutters code but many error conditions (such as resource acqui-
sition) generate exceptions that cannot be checked via if statements.

Contractual obligations, as enumerated by Programming By Contract, 
help refine design decisions, including selection from different designs. 
This text examines and contrasts various designs, exploring costs and 
benefits, with an emphasis on deliberate prioritization of alternatives, 
although choice remains subjective, with clearly specified assumptions, 
design options may be thoroughly assessed. Contractual design thereby 
advances the design of maintainable software.

1.6 OO DESIGN PRINCIPLES
Appropriate design for class form and functionality rests on the software 
engineering principles of low coupling and high cohesion as do OOD prin-
ciples. The Single Responsibility Principle (SRP) states: Every object should 
have a single responsibility that must be strictly encapsulated. Thus, there is 
only ever one reason to modify a class. SRP emphasizes cohesion and pro-
motes software maintenance by focusing class functionality on a primary 
goal. The class designer targets use and potential reuse so type integrity is 
easier to preserve. The cyclicSeq design adhered to SRP: cyclicSeq 
encapsulated a base number, additive factor and period length in order to 
generate values from a cyclic arithmetic sequence. When conditions for 
preservation of state (implementation invariant) are consistent with expec-
tations of use (interface invariant), the Single Responsibility Principle holds.

1.7 SUMMARY
In this chapter, we illustrated systematic design via the class construct, 
emphasizing the provision of a cohesive external interface alongside pres-
ervation of internal control. Standard class methods were differentiated 
by functionality (constructor, destructor, accessor, mutator, private utility, 
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and core public utility). When relevant, we discussed language differences 
between C++ and C#/Java.

Programming by Contract was described as an effective means of docu-
menting design. The clear specification of expectations across five catego-
ries (preconditions, postconditions, interface invariant, implementation, 
invariant, class invariant) streamlines the process of uncovering and vali-
dating design assumptions. Documentation then yields a contract between 
the class designer and the client. We closed the chapter by noting that the 
Single Responsibility design principle is sustained by the class construct 
and contractual design. Concepts covered here promote the development 
of usable and reusable software.

1.8 DESIGN EXERCISE
Using the concepts covered in this chapter, design a class inRange to 
track the number of integers queried that fall within a specified range. 
For example, given a range of 100 to 900, rangeObj.query(117) yields 
true, rangeObj.query(11) yields false, rangeObj.query(747) 
yields true. After these three queries, the count of integers that fell within 
range would be two. Your design should include internal control of state: 
that is, model an on/off state. Caution: this problem description is inad-
equate – many details are missing. For example, is the range inclusive of its 
boundaries, [100,900], or exclusive, (100, 900)? Can the (internal) count of 
queries be reset? Is the range stable? Appendix B.1 provides and analyzes a 
sample C# solution – a C++ solution would not be substantively different 
and so is not presented.

DESIGN INSIGHTS Compilers do not enforce design

Contractual design identifies requirements and impediments before 
coding begins

Class Design

Two perspectives:

External utility (client)

Internal implementation (designer)

Encapsulation minimize exposure of internal details

remove dependencies on client

client cannot put object in an invalid state
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Initialization is responsibility of constructors

Accessors should not change state

Mutators control alteration of state (may reject requests)

Private utility functions support code reuse and functional 
decomposition

Contractual Design: Alternative to defensive programming

Identifies assumptions

Specifies correct usage and guaranteed response

Promotes maintainability

May reduce internal error checking

CONCEPTUAL QUESTIONS

1. Why study OOD?

2. Identify the key differences between client and class designer.

3. Why is a constructor needed?

4. What are the benefits of private utility functions?

5. Distinguish between the three invariants of Programming by 
Contract.

6. How does defensive programming differ from contractual design?

7. Describe the major components of standard class design.
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C h a p t e r  2

Ownership – Abstracted 
but Tracked

CHAPTER OBJECTIVES

• Outline program memory

• Identify C# and C++ differences

• Illustrate dynamic allocation

• Contrast deallocation processes

• Evaluate storage versus computation

2.1 THE ABSTRACTION OF MEMORY
When asked if creation of design admits constraint, American designer 
Charles Eames replied, “Design depends largely on constraint”. Resource 
dependencies constrain software. Whether evident or not, memory is a 
resource and so its usage is a constraint. Fortunately though, most code 
has limited or transient use of memory. Nonetheless, software develop-
ers must be aware of programmatic memory usage, for correctness and 
efficiency.

Logically, memory is a physical resource that is ‘owned’ when it is allo-
cated to a process. Memory is available for use or assignment when it is 
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not allocated. Control of memory processes typically resides within the 
run-time environment: utilities manage the assignment (allocation) and 
release (deallocation) of memory while preserving data integrity. Entire 
books have been devoted to operating systems and resource management. 
Here, we provide only a brief overview of memory usage by a running pro-
gram. For more information, please consult a standard operating systems 
text. Regardless of implementation, memory ownership should be explic-
itly noted and tracked.

The CPU accesses data stored in different physical types of memory 
(registers, cache, secondary store), all of which have different costs and 
performance characteristics. A cache is a smaller, faster memory store that 
is co-located with the processing core and holds data from main memory 
in order to reduce access time. Typically, memory is viewed abstractly as 
a means of storage, a uniform and unlimited resource whose low-level 
manipulation is left to utilities. The mapping of a relative memory address 
to an actual location is left to the operating system, sustaining develop-
ment of portable code.

The operating system handles and allocates memory as blocks of con-
tiguous memory cells. How a running program uses this memory does 
not concern the allocator. Each memory request will be filled or rejected 
based only on whether or not memory is available. Likewise, a running 
program (process) does not care how the allocator finds free blocks or 
reclaims memory. Processes make only the fundamental assumption that 
each memory block is uniquely allocated; if a request for memory is satis-
fied, the requestor assumes ownership.

Virtual memory presents storage as uniform, addressed locations 
without size or boundary limitations, abstracting away actual addresses 
of physical memory. Hardware support and operating system utilities map 
a virtual address to a physical address. The operating system manages 
memory blocks of uniform size, called pages. By overlaying (replacing) 
one page with another, the operating system may manipulate programs 
(and their associated data) that are larger than the main memory of a com-
puter. Thus, the size of allocated virtual memory may exceed that of physi-
cal memory.

A process accesses only a few memory locations within a given time-
frame, leaving most resident pages in physical memory idle. If referenced 
data is not currently loaded in actual memory, a page fault occurs and the 
needed page is swapped with a resident page. Data can be written out to 
secondary storage (usually a hard drive) which is much slower than main 
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memory. Hence, system performance degrades with excessive page faults. 
When memory references are confined to a set of relatively contiguous 
blocks of memory, the number of page faults may decrease. This princi-
ple of “locality of reference” may underlie designs pursued for enhanced 
performance. Cache misses may also be minimized through locality of 
reference.

2.2 HEAP MEMORY
When the executable image of a program is loaded into memory, its layout 
can be viewed as a partition between the code section and the data section. 
The code section contains the software instructions while the data sec-
tion holds data used and generated by the running software. The heap and 
the run-time stack constitute two portions of the data section. The heap 
consists of blocks of memory allocated for program use when explicitly 
requested as the program runs. Memory so allocated is called ‘dynamic’ 
because its address is not known or allocated until run-time. The size of 
memory so requested need not be specified until run-time.

The run-time stack stores data as it comes into scope via function calls. 
When a function is invoked, the stack frame (activation record) associ-
ated with the function is pushed onto the run-time stack, recording essen-
tial information, such as the program counter and local variables. When 
a function terminates, its scope is exited, and its stack frame popped off 
the run-time stack. A stack frame holds all variables local to the function, 
whether allocated by declaration, pass by value or return by value. Since 
the compiler assesses the size of a stack frame, its layout is determined at 
compile-time and, hence, is called static allocation.

The primary (heap) and stack allocators share the same pool of memory; 
each allocator starts at opposite ends of this memory chunk and ‘grow’ 
toward each other as each allocates memory. As sketched in Figure 2.1, 

FIGURE 2.1 Program Heap and Stack Memory.
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the heap allocator may start at a low address and grow upward while the 
stack allocator starts at a high address and grows downward. Obviously, 
the two must not cross. For an executing program, heap memory is more 
expensive than stack allocated memory. Why? The compiler determines the 
size of stack frames and, using relative addressing, lays out the required 
stack memory. Dedicated hardware, such as the stack register, supports 
fast updates to stack memory references. At run-time then, there is lit-
tle overhead for processing requests for stack memory. In contrast, heap 
memory is controlled through the allocator (and deallocator), incurring 
significant run-time overhead.

A memory allocation request must specify size. In C, using malloc or 
calloc calls, the caller passes in the amount of memory requested using 
the sizeof operator. In C++, C# and Java, the new operator is invoked 
with a typed pointer or reference: the size of memory requested is inferred 
from type; an int may require 4 bytes of memory, a char 2 bytes, etc. 
Example 2.1 gives sample C++ allocations; Figure 2.2 illustrates the cor-
responding memory diagrams.

Example 2.1 Allocating C++ (Heap) Memory at Run-Time

// “ptr” is a pointer variable  
// allocated on the stack
// “ptr” holds the address of the heap  
// object returned by new

// #1: MyType object allocated 
MyType*      ptr = new MyType;    

// deallocate heap memory via  
// call to delete operator
// #2: MyType object deallocated 
delete ptr;               

// null out pointer to indicate  
// it ‘points to nothing’
ptr = nullptr;            // #3: reset pointer  

// pointers can also hold the address of an array 
// #4: 900 MyType objects allocated 
ptr = new MyType[900];    
…
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// must use delete[] when deallocating  
// an array on heap
// #5: 900 MyType objects deallocated 
delete[]  ptr; 

// specify nothrow so that zero  
// returned if request fails
// #6: allocation uncertain 
ptr = new (nothrow) MyType[900];  

if (!ptr)    cout << "Asked  
  for too much!!" << endl;
// #7: conditional deallocation 
else   delete[] ptr; 

FIGURE 2.2 Heap Allocation at Run-Time.
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Responding to a call to new, the allocator finds and returns the starting 
address of a memory block large enough to hold the requested amount of 
memory. The size of each block allocated is recorded so that deallocation 
releases the correct amount of memory. The addresses and size of memory 
blocks available for allocation are stored in a ‘free’ list; the addresses and 
size of allocated blocks are stored in an ‘allocated’ list. The allocator pro-
cesses memory requests: it does not track address values held in pointer  
(or reference) variables. Consequently, the client MUST ensure that point-
ers (or references) are reset (to zero or null) when ownership of heap mem-
ory has been released!

Memory requests may fail and obviously will do so when the amount 
requested exceeds that available. When no single block is large enough 
to satisfy a memory request, even though enough memory is free on the 
heap, a memory request will also fail. In this case, when there is not 
enough contiguous memory, the heap is called fragmented. Consider 
allocating an array of 500 doubles. If a double takes 8 bytes,  
4,000 bytes are needed. If 30,000 bytes are available but all free blocks 
are of size 3200 or smaller, the memory request will fail, and typically the 
allocator will throw an OutOfMemory exception. In Example 2.1, state-
ment #4 should be wrapped in a try block if the memory request may fail. 
Alternatively, the call to new could specify nothrow, as in statement #6, 
so that the value of zero is returned, instead of a thrown exception, if the 
memory request fails.

2.3 OWNERSHIP OF HEAP OBJECTS
Stack allocation and deallocation is easy and lossless. The compiler gen-
erates and manipulates stack frames; hardware makes such processing 
efficient. However, stack allocation is rigid because the size of memory 
allocated must be known at compile time. Moreover, access to local 
memory in a function is transient since exiting scope releases the stack 
frame. Stack allocation is thus insufficient for persistent data. Heap 
allocation incurs the run-time overhead of calling new. Heap deallo-
cation is complex and may be incomplete. But heap memory provides 
f lexibility: memory requirements need not be specified until run-time, 
and can vary from one run to another (without code recompilation). 
Additionally, access to heap memory is not confined to local scope. 
Stack versus heap memory may be summed up as: efficient (fixed) ver-
sus f lexible; localized versus persistent; secure versus vulnerable; loss-
less versus leaky.
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Example 2.2 Object Definition (Allocation)

// C#/Java object definition:   
// objects are references
//     variables zeroed out if not initialized 
// #1 objA reference zeroed 
myType        objA;                   
// #2 no-arg constructor 
myType        objB = new myType();    
// #3 constructor takes int 
myType        objC = new myType(42);  

// C++ object definition:  
// by default, stack allocation
// #4 default constructor invoked 
myType       objD;        
// #5 constructor that takes int  
myType       objE(42);    

// C++ object definition: specification  
// of heap allocation
// #6 objPtr1 not zeroed 
myType*      objPtr1;              
// #7 objPtr2 zeroed out 
myType*      objPtr2 = nullptr;    
// #8 call to allocator …. 
myType*      objPtr3 = new myType;  

// must deallocate C++ heap object  
// when no longer used
// #8 heap memory released 
delete       objPtr3;              

C# and Java allocate objects only on the heap, requiring a call to the 
new operator for every object. C# and Java object declarations are only 
declarations of references that are zeroed out by default. Since the new 
operator is always called with a specified constructor, there are no hidden 
assumptions about which constructor is invoked. In Example 2.2, state-
ment #2 invokes the no-argument constructor, statement #3 invokes an 
overloaded constructor that takes a passed integer value.

C++ allocates objects on the stack, by default. C++ allocates heap 
objects in the same manner as Java and C#, via a call to the new operator. 
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C++ programmers use pointers to hold the addresses of heap-allocated 
memory but the C++ compiler does not automatically zero out pointers 
upon declaration. In Example 2.2, a no-argument constructor is called to 
initialize objD while a constructor that takes an integer value is called 
to initialize objE. For stack allocated objects, it may not be evident in 
C++ that constructors are invoked. A C++ programmer must remember 
to deallocate all heap objects before their handles (the pointer variables 
that contain their addresses) go out of scope. Otherwise, access to the heap 
memory will be lost; that is, a memory leak will occur. Figure 2.3 provides 
memory diagrams corresponding to Example 2.2.

FIGURE 2.3 Memory diagrams for Example 2.2.

BK-TandF-DINGLE_9780367820817-200297-Chp02.indd   36 25/11/20   4:40 PM



Ownership – Abstracted but Tracked   ◾   37

Caveats discussed in Appendix A apply here. The uninitialized C++ 
pointer, objPtr1 (statement #2), will not be zeroed out and hence con-
tains a value – the residual bit string left in memory. If objPtr1 then 
is dereferenced, the residual bit string will be interpreted as a legitimate 
address and memory that is not owned by objPtr1 may be modified, 
possibly resulting in data corruption. There would be no ill effects if the 
invalidly referenced memory is subsequently overwritten with valid data 
or if execution terminates before this memory is accessed again. A run-
time exception is also possible if the interpreted address is reserved for 
the operating system. Without proper initialization, it is hard to predict 
behavior. C++ design guidelines stress the need to zero out pointers upon 
declaration and when memory is released so that a non-zero value may be 
interpreted as a legal address.

2.3.1 Array Allocation

Array elements must be allocated contiguously. Consequently, requests for 
large arrays are more likely to fail (the new operator throws an exception)  
due to insufficient or fragmented heap memory. Unless specified, a failed 
memory request does not return a zero: programmers must specify a 
‘nothrow’ form of the new operator so that zero is returned to indicate a 
failed memory allocation request. Alternatively, exceptions can be used to 
avoid run-time errors. For details on secure coding, see [Sea13].

Example 2.3 Array Allocation: C# vs C++

// C# (and Java) object arrays: array of references
// #1  an array of 100 references allocated 
myType[]     db = new myType[100];

// #2  each C# reference individually initialized 
//     to hold address of heap-allocated object
for (int j = 0; j < db.Length; j++)
       db[j] = new myType(j);

// #3  C++: array of objects allocated on stack
//     default constructor implicitly  
//     invoked for each object
// PROBLEM IF CLASS myType DOES NOT  
// HAVE NO-ARGUMENT CONSTRUCTOR
myType        db[100];
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// #4     may overwrite default C++ initialization
for (int j = 0; j < 100; j++)
{    myType local(j);   // non-default constructor
       db[j] = local;   // #4.2
}

// #5  C++: if myType has only  
// constructors with arguments 
//     => cannot use array of objects
//     => HEAP MEMORY requires  
//        TRACKING OWNERSHIP (deallocation)
//     => use STL container OR array of pointers
myType*   dbP[100];
for (int j = 0; j < 100; j++)
       dbP[j] = new myType(j);

Allocating an array of objects requires multiple steps in C# and Java. 
First, a reference to an array is declared and then initialized to hold the 
address of an array of references. These two actions may be coded as 
separate statements but are commonly combined, as in statement #1 of  
Example 2.3. Finally, element by element, the array of references is ini-
tialized to hold addresses of individually allocated objects, as shown in 
statement #2. C# is not dependent on the no-argument constructor since 
a (any) constructor must be explicitly identified when calling new. See 
Figure 2.4.

2.3.2 Design Intervention

Details may be tricky for C++ object arrays because each element of the 
array is an object that, like other C++ objects, is implicitly initialized by a 

FIGURE 2.4 Memory diagrams for Example 2.3.
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constructor upon declaration. The C++ array declaration of statement #3 
in Example 2.3 requires that the compiler call the no-argument construc-
tor; syntactically, another constructor cannot be specified. The default ini-
tialization may subsequently be overwritten, as shown in statement #4.2 
(as well as in Example 1.3). If a class does not provide a public no-argu-
ment constructor, an array of C++ objects cannot be allocated. Typical 
workarounds are to use: 1) a STL container rather than an array; or 2) 
an array of pointers to hold addresses of objects individually allocated on 
the heap, as shown in statement #5, just as is done in Java and C#. Both 
solutions may impede performance requirements. Additionally, the sec-
ond option requires that the client track ownership of heap memory and 
ensure object deallocation.

Usually, a C++ class designer should provide a no-argument construc-
tor to support the allocation of object arrays. By design, the no-argument 
constructor could put the object in an unusable state, forcing an over-
write that utilizes a constructor with parameters. Example 2.4 rewrites the 
cyclicSeq class from Example 1.7 in C++ to demonstrate such a design: 
the no-argument constructor puts the object in an ‘off’ state. An array of 
C++ cyclicSeq objects may be allocated but the client cannot effectively 
use the array until each element is overwritten. Contractual design must 
specify the constraints of the no-argument constructor, stating support for 
array allocation alongside a disclaimer that overwriting is expected.

Example 2.4 Design to Facilitate C++ Array Allocation

class cyclicSeq // a cyclic arithmetic generator
{    bool        on = true;
     unsigned    place = 0;
     unsigned    period;
     unsigned    a1;
     unsigned    dst;
   public:
      cyclicSeq(unsigned start,unsigned inc, 

unsigned lgth = 100)   
     {    a1 = start;
          dst = inc;
          period = lgth;
     }

      // no-argument constructor sets  
// object in unusable state
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     cyclicSeq()    
     {    a1 = dst = period = place = 0;
          on = false;
     }
     int nextNum()
     {    if (!on)   return -1;
          place = (place + 1)% period;
          return int(a1 + dst*place);
     }

     bool expand(unsigned scale)    
     {    if (!on || scale == 0)    return false;
          period *= scale;     
          return true;    
     }
          
     bool isOn()     {     return on;      }
     
     bool toggleOn()
     {     if (!on && a1==0 && dst==0  

&& period==0 && place== 0)
               return false;
         return on = !on;          
     }   
};

2.3.3 Persistent Data

Stack allocated memory is released upon exiting scope. Heap memory is 
used for persistent data. Ownership of heap memory is often passed out 
of a function, making it unlikely that a delete is executed in the same 
scope as its corresponding new. C++ programmers must track and deal-
locate heap memory. Yet, matching every new to a delete is difficult to 
guarantee across function calls and aliases, and in the event of a thrown 
exception.

The first function in Example 2.5 calls the new operator to allocate 
a single integer on the heap. When the call executes at run-time, the 
address of the heap integer so allocated is returned and assigned to the 
local pointer variable heapInt. The second function in Example 2.5 
calls the new[] operator to allocate an array of 100 integers on the heap. 
When the call executes at run-time, the address of the first element of 
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the array of 100 heap integers is returned and assigned to the pointer 
variable heapIntA.

Example 2.5 C++ Memory Management

// C++ code: allocation, transfer  
// and deallocation of heap memory
void  matchNewDelete1()
{      int*  heapInt = new int;
       …
       delete  heapInt;
}

void  matchNewDelete2()
{      int*  heapIntA = new int[100];
       …
       delete[] heapIntA;
}

int* transferOwnershipOut(int threshold)
{      int*  heapInt = new int;
       *heapInt = threshold;
       …
       return  heapInt;
}

void assumeOwnership(int*& ptrPassedByRef)
{      int*  heapInt = ptrPassedByRef;
        // caller no longer owner 

ptrPassedByRef = 0;       
       *heapInt = 999;
       …
       delete             heapInt;
}

int* assumeThenTransfer(int*&  ptrPassedByRef)
{      int*  heapInt = ptrPassedByRef;
        // caller no longer owner 

ptrPassedByRef = 0;       
       …
       return   heapInt;
}
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….
matchNewDelete1();                        // call #1
matchNewDelete2();                      // call #2

int*  myPtr = transferOwnershipOut(33); // call #3
*myPtr = 21;

assumeOwnership(myPtr);                  // call #4
if (myPtr)   cout << *myPtr << endl;    // no output

myPtr = transferOwnershipOut(55);       // call #5
// call #6 
int*   yourPtr = assumeThenTransfer(myPtr);       
if (myPtr)    cout << *myPtr << endl;   // no output
// 55 output 
if (yourPtr)  cout << *yourPtr << endl;  

In C# and Java, explicit allocation, via new and new[], is compa-
rable to C++ but is not associated with responsibility for deallocation. 
Java and C# provide implicit deallocation via garbage collection which 
reclaims allocated but inactive memory from the heap. Garbage col-
lection frees the programmer from the headaches of tracking memory 
but has its own drawbacks: 1) program execution must be suspended 
for the garbage collector to run; 2) garbage collection is not perfect 
(not all garbage is marked for reclamation); and, 3) before collection, 
performance is degraded by heap fragmentation (the scattering of 
unused blocks among free blocks which reduces the size of contigu-
ous memory). To decrease the amount of memory allocated but left 
lingering on the heap until the garbage collector runs, design should: 
1) minimize the use of temporaries; 2) transfer ownership; 3) share 
memory.

C++ requires explicit deallocation via the delete operator. Released 
heap memory may be subsequently reassigned. For arrays, the delete[] 
operator should be invoked. In C++, every new should be matched with a 
delete, and every new[] should be matched with a delete[]. Aliases, 
transfer of ownership, parameter passing, exceptions, etc., make this sim-
plistic design guideline difficult to follow.

Example 2.5 illustrates appropriate management of heap memory. 
Functions isolate memory allocation and clearly identify when memory is 
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released or the responsibility to do so (ownership) is transferred. Figure 2.5 
provides the corresponding memory diagrams. matchNewDelete1() 
and matchNewDelete2() illustrate the allocation and deallocation of 
heap memory in the same scope. It is easy then to verify that no memory 
leaks as long as there is no premature exit (as when an exception is thrown) 
in between allocation and deallocation.

FIGURE 2.5 Memory diagrams for Example 2.5.
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assumeOwnership() and assumeThenTransfer() assume 
ownership of heap memory passed in by the caller (via a pointer passed 
by reference). The int pointer passed by reference into each function is 
zeroed out so that the caller can no longer access the transferred mem-
ory. Upon return from either function call, the parameter ptrPassed 
ByRef points to nothing, consistent with the caller’s release of ownership. 
By zeroing out the pointer passed by reference, each function records its 
assumption of ownership. It is crucial to track ownership. If ownership is 
transferred, the pointer that releases ownership must be nulled or zeroed 
out, indicating that it does not contain a valid address.

2.4 CLASS DESIGN
In C++, class design must consider ownership when heap memory is allo-
cated internal to an object. In C#, class design should consider ownership 
even though C# does not explicitly deallocate heap memory. In any lan-
guage, design may improve performance (and the efficacy of the garbage 
collector) by consciously tracking ownership and zeroing out references 
when appropriate.

Example 2.6 C++ Unseen Leaks

// client code uses hiddenLeak and noLeak objects 
//   NO CALLS to NEW => calls  
//   to DELETE inappropriate
void strangeFn()
{      hiddenLeak    objA;
       noLeak        objB;

        cout << “I am following design  
         guidelines” << endl;

}

The type names of Example 2.6 suggest that one object leaks but 
the other does not. For stack allocated objects, this distinction does 
not appear to make sense. Both objects are allocated memory in 
strangeFn()’s stack frame, which is popped off the run-time stack 
upon function exit. Where is the memory leak? Not on the stack. Is 
there a memory leak on the heap? There is no explicit call to the new 
operator in Example 2.6. The client code is correct. However, the inter-
nal structure of neither type of object is known. Perhaps the class design 
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is not correct. The hiddenLeak constructor in Example 2.7 allocates 
heap memory via a call to the new operator. But the class code does not 
contain a matching delete: there is no destructor to deallocate heap 
memory. Hence, the leak. A destructor should be defined in every C++ 
class that allocates heap memory. Output statements, though normally 
inappropriate in a class definition, have been added to the constructors 
and destructor of Example 2.7 to identify this discrepancy.

Example 2.7 C++ Class Design Must Address Memory

// IMPROPERLY DESIGNED: heap memory  
// allocated in constructor
//     no destructor, no deallocation:  
//     no delete[] to match new[] 
class hiddenLeak{
   private:
       int*   heapData;
       int    size;
   public:
       hiddenLeak(unsigned s = 100)
       {   size = s;       
           heapData = new int[size];  
            cout << size << “  ints allocated 

hiddenLeak” << endl;
       }
};

// Heap memory: constructor allocates;  
// destructor deallocates
class noLeak{
  private: // need copy semantics – see Chapter 3
       int*   heapData;
       int    size;
   public:
       noLeak(unsigned s = 100)
       {   size = s;   
           heapData = new int[size];  
            cout << size << “  ints allocated 

noLeak” << endl;
       }
 // destructor deallocates heapData
 ~noLeak() 
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 {    if (heapData)         delete[] heapData; 
 cout << size << “  ints DEallocated noLeak” << endl;
 }
};

The C++ compiler automatically patches in a call to the destructor 
when a stack object goes out of scope, or when a heap object is deal-
located via the delete (or delete[]) operator; the client should not 
directly invoke the destructor. Essentially, the destructor is a cleanup 
routine: it performs any actions, such as deallocating heap memory that 
must be executed before an object goes out of scope. Although some 
C++ design guidelines suggest that class designers should always define 
a destructor, many class designs meet expectations without a destructor. 
When is a destructor required? Minimally, when an object allocates or 
assumes ownership of heap memory. The class designs in Example 2.7 
appear similar, except that the noLeak class defines a destructor which 
provides a delete to match the new call in the constructor. We exam-
ine destructors relative to design longevity in Chapter 7. Safe and effec-
tive memory management is guaranteed through smart pointers which 
are examined in Chapter 3.

When the (stack) objects go out of scope in Example 2.6, the noLeak 
destructor is implicitly invoked and the heap memory allocated internal to 
objB will be deallocated. There is no hiddenLeak destructor to invoke. 
Hence, the heap memory allocated internal to objA remains allocated 
but is unused: the pointer (handle) that provides access to that mem-
ory, objA.heapData, goes out of scope when objA goes out of scope. 
Memory leaks can be prevented with destructors. C++ class design also 
requires explicit decisions with respect to copying, which is examined 
in Chapter 3.

2.5 MEMORY RECLAMATION
Correct memory management rapidly becomes complex: aliases, transfer 
of ownership, call by reference, exceptions and shared use all complicate 
the task of tracking ownership. It is challenging to reliably ensure deallo-
cation of heap memory. Failure to release memory yields a memory leak. 
Without aliasing, once a handle goes out of scope, the memory so refer-
enced is no longer accessible: the memory remains allocated on the heap 
(its block address remains on the allocated list) even though it can no 
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longer be accessed. The allocator does not know that this memory is inac-
cessible. To the allocator, the block is still in use because no release request 
was received.

2.5.1 C++ Explicit Deallocation

In C and C++, deallocation is explicit: the programmer must call free 
in C or delete (or delete[] for arrays) in C++ to release memory 
allocated on the heap. The freed memory block is taken off the allo-
cated list and returned to the free list. Normally, there is no output 
in response to the explicit release of a memory block. However, if an 
invalid pointer is supplied as the base address of the block, an exception 
may be thrown. A common mantra for C++ programmers is “match 
every new with a delete”. If only design could be so simple! Due to 
scope, aliasing, and transfer of ownership, matching each new with a 
delete is not a trivial endeavor. Modern C++ provides smart point-
ers as a safe alternative to raw pointers (the standard pointer construct 
that does not provide built-in resource management). Java and C# do 
not use explicit deallocation.

2.5.2 Garbage Collection

Memory reclamation may be explicit (calls to delete or free) or 
implicit deallocation (garbage collection). As a background process, the 
garbage collector is invoked when available heap memory is insufficient or 
too fragmented. Garbage collection tags all allocated blocks that are reach-
able, reclaiming blocks that are not reachable (and thus unusable). Data is 
reachable if it is directly addressed by a currently active variable, or indi-
rectly addressed via a pointer (reference) embedded in an active variable 
(or in a variable referenced by an active variable, etc.). The time between 
when data becomes inactive and when it is reclaimed may be significant. 
The legitimacy of a client request for reclamation is questionable. In Java, 
the call System.gc() is only a suggestion, not a directive. In C#, the call 
GC.Collect() may impede performance, especially if used when not 
warranted. Without explicit deallocation, memory tends to stay allocated 
so the heap may be more prone to fragmentation under garbage collection.

Software design may strive to minimize memory usage since memory 
access, allocation and reclamation impact performance. Heap allocation 
finds an appropriately sized free block, marks it allocated, and returns 
its base address. The overhead of allocation is unavoidable and depends 
mostly on the first step – the search for available memory in the heap. The 
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overhead of deallocation varies. There is no reclamation overhead if gar-
bage collector does not run. With implicit deallocation though, the heap 
is more likely to become fragmented, resulting in a costly search for free 
blocks during allocation and, thus, degraded performance. The overhead 
of explicit deallocation is borne incrementally, as each deallocation request 
is processed.

Garbage collection is the ‘automatic’ reclamation of heap memory no 
longer in use (garbage) and, thus, removes the responsibility of memory 
deallocation from software developers. Small applications that do not use 
much memory, or applications that run for only a limited time before ter-
mination (or restart), may never require garbage collection. Garbage collec-
tion incurs no overhead unless the garbage collector runs. Garbage collection 
strategies date back decades to the development of the programming lan-
guage LISP. The popularity of Java renewed interest in garbage collection 
algorithms and analyses. Research continues because garbage collection is 
not a perfect process: the identification of garbage must be conservative 
and therefore is incomplete. Memory leaks still exist in Java and C#. For 
advanced readings and current research, please consult sun.com.

Example 2.8 Classic Mark and Sweep Algorithm for  
Identifying Garbage

// start with direct references, the root set:
//     all visible variables (active memory)  
//     at time of sweep
// trace out to all variable indirectly referenced 
void markSweep()
{      for each Object r in rootSet
             mark(r);  
}

// recursive depth-first marking
// terminates when all reachable objects marked
void mark(Object x)
{      if (!x.marked)
       {      x.marked = true;
              for each Object y referenced by x
                    mark(y);
       }
}
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// if heap object marked: KEEP
//     clear marked status in preparation  
//     for subsequent sweeps
// if heap object unmarked: RECLAIM (garbage)
void sweep()
{
       for each Object x on heap
              if (x.marked)       x.marked = false;
              else                release(x);
}

An executing program is suspended when the garbage collector runs. 
Suspended processing may not be a viable option for many real-time appli-
cations but may not be noticed in others. The stack and static memory 
of the suspended process yields a root set of active variables (data). All 
memory blocks associated with this root set are marked and recursively 
examined for embedded references to other data. Example 2.8 illustrates 
the classic mark & sweep algorithm for marking all reachable data. Each 
recursive level of mark(y) corresponds to another step in a chain of refer-
ences traced from the root set. Recursion terminates when no additional 
blocks are marked, indicating that all reachable memory has been marked. 
sweep()then sweeps through the heap, reclaiming all unmarked blocks 
of memory.

Garbage collection distinguishes between live and dead data. When 
data is no longer used, it should be considered ‘garbage’ and reclaimed. 
However, only inaccessible objects (data variables) are collected. All 
variables reachable from the root set are marked for preservation even 
if such variables are not actively used and should be reclaimed. A ref-
erence that holds an address of an unused object prevents that object 
from being reclaimed. The mark and sweep algorithm will not reclaim 
any active blocks but may fail to reclaim all inactive blocks. An object 
that is no longer used but is still accessible because its heap address 
‘lingers’ in some reference cannot be reclaimed. Garbage collection 
may, in fact, miss some garbage. Design guidelines recommend the 
nulling or zeroing out of pointers and references once an object is con-
sidered inactive.

Since garbage collection is not a perfect process, C#/Java professionals 
should track memory ownership. Reinterpreting the responsibility to deal-
locate/delete, as the nulling or zeroing out of a reference, would recast C++ 
guidelines for Java and C#. Why? Effective garbage collection depends on 
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appropriate values in references: that is, nonzero for valid addresses and 
zero for inactive references. C# and Java provide weak references to assist 
garbage collection. For details, see msdn.microsoft.com or sun.com.

2.5.3 Reference Counting

Reference counting explicitly tracks aliases and disperses the cost of 
memory management across all allocation and deallocation requests. Each 
memory block has a counter associated with it that indicates how many 
references (or handles) refer to that memory block. If the reference count is 
zero then the memory block may be reclaimed since it is no longer in use. 
Reference counting cannot detect cyclic references and thus may not col-
lect all garbage. Figure 2.6 displays a cycle of four objects (allocated data 
blocks). There are no external references to this cycle. Yet, none of the four 
blocks will be reclaimed because each has a positive reference count, due 
to a reference from another (unused) block in the cycle.

Large data collections are more efficiently and securely managed when 
data is shared rather than copied. shared _ ptr provides the means 
to do so, as examined in the next chapter. At a design level though, to 
avoid costly copying, reference counting may be implemented on a class-
level, mimicking its implementation as a utility. A class may centralize 
data access, providing a public, static instantiation routine. Upon the first 
request to instantiate, data is allocated and the reference count set to one. 
Subsequent requests to instantiate involve no allocation of memory, sim-
ply an increment of the reference count: the same address is returned for 
all instantiation requests. Aliases abound in this scheme. Deallocation 
requests decrement the reference count. When the reference count reaches 
zero, the data may be deallocated.

Unlike reference counting, mark and sweep algorithms are not often 
implemented in customized software. We examined this approach to illus-
trate the effect of retaining a reference to memory that is no longer used: 
the memory block cannot be reclaimed. Specious references fragment the 
heap and degrade performance. The explosive growth of Java led to its 
quick adoption for many software projects. Many programs were designed 
without adequate consideration of memory usage, leading to performance 

FIGURE 2.6 Reference Counting defeated by Cyclic References.
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degradation, and poor scaling since expanded demand for memory could 
not be satisfied. Profilers, software that measures time complexity and 
memory usage of code, followed Java on the market as developers sought 
to uncover heap fragmentation and sources of inefficiency.

Neither reference counting nor mark-and-sweep algorithms tackle 
heap fragmentation, other than incidentally by returning blocks that 
can be coalesced with adjacent free blocks. Heap compaction is a sepa-
rate process but may follow (or be interwoven with) garbage collection. 
Compaction reassigns heap memory still in use to one end of the heap in 
order to maximize the amount of contiguous memory available for future 
allocation, and to minimize fragmentation. Compaction is expensive and 
complicated. To constrain heap fragmentation, design recommendations 
include minimizing both allocations and the use of temporaries.

Memory management strives to ensure data validity, consistent per-
formance, and correct deallocation. However, doing so is difficult, see 
Table 2.1. Data corruption occurs when hidden aliases permit uncoor-
dinated updates to memory (see Chapter 3). Errors due to data corrup-
tion are difficult to detect because they often occur far from their source. 
Performance degradation is often traced to a fragmented heap. Memory 
leaks occur when heap memory is not released before handles goes out of 
scope.

C++ leads the growth of large-scale software development, with a con-
comitant increase in the number of software developers, many without 
extensive knowledge of software design or experience with machine hard-
ware. Hence, the reliability of programmer-managed memory became a 

TABLE 2.1 Common Difficulties with Program Memory

Condition Cause Effect

Data Corruption Memory 
overwritten

Ownership 
undermined

Hidden aliases

Undefined behavior

Performance 
Degradation

Allocator overhead 
to find free 
memory

Fragmented heap Poor Scalability

Memory Leak Heap memory not 
released

delete not 
executed

Garbage not 
identified

Diminished resource

C++ Memory 
Leak

Memory 
inaccessible

Lost handle to 
memory

Diminished resource
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significant concern. Experienced professionals developed coding prin-
ciples to reduce memory errors and overhead, including: 1) match every 
new with a delete; 2) transfer ownership; 3) track aliases; 4) define 
classes with constructor(s), destructor and copy semantics (see Chapter 3). 
However, design guidelines cannot be enforced and thus are always insuf-
ficient. The popularity of garbage collected languages such as Java, and C# 
is somewhat due to reduced memory management responsibilities.

2.6 DESIGN: STORAGE VERSUS COMPUTATION
Memory management is complex but important for correctness and perfor-
mance. Although low-level memory management details can and should 
be ignored, software design may need to consider memory. Memory access 
can become the bottleneck of a system. Processor speeds cannot rescue 
a data-intensive system from a poor design. In general, one trades space 
for performance. Increased storage requirements are justified when, say, 
calculations are stored to avoid repeated computation. If specific computa-
tions are frequently made, and if the data values involved in such compu-
tations are infrequently modified, then storing computations for future 
lookup is a reasonable design option.

For example, given a stable data set that must support frequent queries 
that are dependent on the mean value of the set, a design that stores the 
mean likely yields better performance than a design that calculates the 
mean upon each request. Conversely, given an unstable data set (where 
values are frequently inserted or deleted) that must support infrequent 
queries, a design that calculates the mean upon request may reduce com-
putational overhead. Example 2.9 contrasts these two different designs.

Example 2.9 Storage versus Computation

public class storeMean
{      private List<int> values         
                         = new List<int>();
       private float             mean;
        
       public  void add(int x)
       {     values.Add(x);

             int sum = 0;
             foreach (int k in values)
                    sum += k;
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             mean = (float)(sum / values.Count);
       }
       
       public  void delete(int x)
       {      values.Remove(x);

              int sum = 0;
              foreach (int k in values)
                     sum += k;
              mean = (float)(sum / values.Count);
         }

         public float Mean() {  get => mean; }
}

public class computeMean
{      private List<int> values      
                         = new List<int>();
        
        public  void add(int x)        

{      values.Add(x);        }
        public  void delete(int x)      

{      values.Remove(x);     }

       public float getMean() 
       {      int sum = 0;
              foreach (int k in values)
                    sum += k;
              return (float)(sum / values.Count);           
       }
}

Design may depend on estimates of query frequency and data sta-
bility. The more stable a data set, and the more frequent inquiries, the 
greater the benefit of storing values like the mean (minimum, maxi-
mum, etc.). The converse also holds: frequent changes in data values 
alongside infrequent queries suggest that computation upon demand 
is more efficient. Caution is recommended when a class design uses 
unbounded storage, such as the generic list type. Why? Generic con-
tainers are so easy to use that developers may not notice how much is 
being stored, whether such storage is necessary, and the costs of resiz-
ing, reordering, etc.
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Consider the problem of monitoring access to data. The idea is to encap-
sulate a number and process queries that test whether a proffered number 
is less than, equal to, or greater than the internal number. Also, track the 
number of queries processed that were less than, equal to, or greater than 
the tracked number. For example, if a query passed in ‘35’ to an object 
that encapsulated ‘43’ then the ‘lessThan’ count would be incremented. 
Example 2.10 illustrates a simple design.

Example 2.10 Counts Stored; Queries Discarded

public class  tracker
{      private int  num;
       private int  less = 0;
       private int  equal = 0;
       private int  more = 0;

       public tracker(int x) {  num = x;         }

       public int query(int y) 
       {      if (y < num)
              {      less++;     return -1;      }
              if (y == num)
              {      equal++;    return 0;       }
              more++;       
              return 1;     
       }

        public int getLessCt()      
{      return less;   }

        public int getEqualCt()    
       {      return equal;  }      

       public int getMoreCt()    
       {      return more;   }
}

An overdesigned response is presented in Example 2.11. A list stores each 
query. Upon demand, the entire list is scanned to determine the relative 
counts of numbers that fell below, matched, or were above the encapsulated 
value. A tremendous amount of storage is used, and computational overhead 
is increased. Reassess any design that maximizes both storage and computation.
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Example 2.11 Queries Stored

public class  tooBig
{      private int          num;
        private List<int>     

queries = new List<int>();

       public tooBig(int x) {      num = x;      }
       public int query(int y) 
       {      queries.Add(y);
              if (y < num)          return -1;    
              if (y == num)         return 0;
              return 1;     
       }

       public int getLessCt()        
       {      int count = 0;
              foreach (int q in queries)
                     if ( q < num) count++;
              return count; 
       }

       public int getEqualCt()      
       {      int count = 0;
              foreach (int q in queries)
                     if ( q == num) count++;
              return count; 
       }

       public int getMoreCt()       
       {      int count = 0;
              foreach (int q in queries)
                     if ( q > num) count++;
              return count; 
       }
}

2.7 OO DESIGN PRINCIPLES
Memory must be managed correctly by both the client and the class 
designer. As much as possible, responsibility should be internalized. 
Memory management is more difficult in C++ than in C#. C++ relies on 
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explicit deallocation and does not zero initialize data (due to prioritization 
of efficiency). Memory access errors are more likely when a variable is not 
assigned a valid, initial value. In contrast, C# zero initializes all data. Yet, 
any class designer can establish safe and effective memory use and initial-
ization. The responsibility driven design principle generalizes this idea of 
identifying internal requirements and state control.

2.7.1 Responsibility Driven Design Principle

Identify all object responsibilities (functionality) and required 
information

Responsibility-driven design works in tandem with contractual design 
to specify assumptions and expectations as to use. The implementation 
invariant specifies the design of the object, as well as functionality and 
internal responsibility. The interface invariant specifies any client respon-
sibility for consistent use. A clear example of a responsible design is a prior-
ity queue type that internally resizes to expand capacity when needed and 
periodically ages stored data items so as to prevent starvation. The class 
invariant would specify unbounded capacity, prioritization and aging of 
items (aging is akin to modifying priority) and defined error response. 
The implementation invariant would record design decisions for storage 
and aging.

2.8 SUMMARY
Modern programming languages abstract away most memory manage-
ment details. Software developers can design portable and maintainable 
code when it is not directly tied to specific memory addresses. To illustrate 
differences in program memory management, we contrasted allocation 
and deallocation in C++ and C#. See Chapter 3 for detailed analyses of 
copying. Memory management is not a trivial endeavor; no approach eas-
ily prevents all memory leaks and data corruption. Hence, the competent 
developer should understand the memory models of different program-
ming languages and their effects on software design.

At the chapter end, we contrasted different designs: data storage for 
lookup (to reduce computational overhead) versus computation upon 
demand. Design evaluation must explicitly consider tradeoffs: memory 
requirements; frequency of computation requests; data stability. Extra 
memory can be justified by enhanced performance. Programmers should 
remember though that computation is typically fast while memory access 
remains slow.
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2.9 DESIGN EXERCISE
To apply the concepts covered in this chapter, define a feeLedger class, 
essentially a container to track fees, identifying the minimum, maximum, 
mean and median values. Capacity must be unbounded. Do not consider 
copy semantics – the details of copying within a class design are covered 
in the next chapter. Appendix B.2 provides and analyzes a sample C++ 
solution.

DESIGN INSIGHTS

Memory

Viewed abstractly and thus treated uniformly

Cost of access dependent on location (cache, secondary  
store, etc.)

Heap memory provides flexibility and persistence

but is vulnerable and leaky

Heap memory is more expensive than run-time stack

Compiler lays out stack frames, no run-time overhead

Heap memory allocated at run-time via call to allocator

Heap fragmentation dampens performance, to reduce fragmentation

Minimize allocations and use of temporaries

Language Differences for managing program memory

C++: explicit deallocation of heap memory

C#/Java: implicit deallocation of heap memory (garbage 
collection)

Software Design

C++ programmer must manage memory

Memory leaks prevented when ‘every new matched with a  
delete’

Memory must be deallocated before (last) handle goes out of 
scope
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Matching ‘every new with a delete’ difficult

Parameter passing, transfer of ownership, aliasing

Objects encapsulate dynamic memory allocation

→ obscured need for direct memory management

Design guidelines not enforced by compiler, and, thus, are inadequate

CONCEPTUAL QUESTIONS

1. What are the advantages and disadvantages of heap memory?

2. How does implicit and explicit deallocation differ?

3. Why is tracking the ownership of (heap) memory difficult?

4. Why is garbage collection imperfect?

5. Why is reference counting imperfect?

6. When is storage preferred over computation?
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C h a p t e r  3

Data Integrity

CHAPTER OBJECTIVES

• Identify causes of data corruption

• Design for Data Integrity

• Examine copying design options

• shallow, deep and suppressed copying

• relevant C# and C++ differences

3.1 DATA CORRUPTION
A classic saying in software development “fast, good, cheap – choose any 
two” became known as the Triple Constraint or the Iron Triangle. Used 
in project management, this directive confronts the difficulty of optimiz-
ing speed, quality, and cost simultaneously. When it comes to data integ-
rity though, must we choose? Stack allocated data implicitly achieves all 
three qualities. Here, we examine how to efficiently preserve the integrity 
of heap allocated data while minimizing client responsibility. Language 
differences arise and so are noted.

Since C# (and Java) object declarations are merely references, a call to 
the new operator is required to allocate an object. Thus, all C# objects 
reside on the heap, automatically providing data persistence. C# zeroes 
out declared but uninitialized variables, preventing invalid memory access 
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due to invalid addresses. However, passing objects (references) by value in 
C# and Java is not secure because address transmission yields aliases and 
potentially uncontrolled state change.

Example 3.1 displays a C# class, aboveMin, with a public method that 
conditionally alters an encapsulated int, alongside sample client code 
that passes an aboveMin object by value. Figure 3.1 traces correspond-
ing memory modifications. Pass-by-value provides separate memory for 
the formal parameter p (in function insecureFn) to be initialized with 
the value of the actual argument. Changes to the formal parameter within 

FIGURE 3.1  Three aboveMin objects.
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the function then do not affect the actual argument. Yet, after the func-
tion call in statement #5, object a has an internal count of 2 rather than 
1. Why? Both formal parameter p and actual argument a hold the same 
value – B100 – and thus address the same aboveMin heap object. Thus, 
p.upDate() modifies the memory of the object at location B100, that is, 
object a even though a was passed by value.

Example 3.1 C# Pass by Value (Objects Are References)

public class aboveMin

{      private bool active = true;
       private int  count;
       private int  min;

       public aboveMin(int v)     { min = v; }

       public bool upDate()       
       {  if (!active) return false;
          count++;                
          return count > min;     
       } 

       public int Min       { get  => min; }
       public int Count     { get  => count; } 
}
// object (reference) passed by value 
//    => address copied into local reference (p)
//    => both p and actual argument reference same  
//    heap memory
void insecureFn(aboveMin p)
{     p.upDate();
      return;
}
 
aboveMin a = new aboveMin(5);
aboveMin b = new aboveMin(10);
aboveMin c = new aboveMin(15); // #1: 3 heap objects

a.upDate();     // #2 equivalent to aboveMin.upDate(B100)
               // => a.count == 1  
for (int k = 0; k < 10; k++)

BK-TandF-DINGLE_9780367820817-200297-Chp03.indd   61 24/11/20   9:38 AM



62   ◾   Object-Oriented Design Choices

//  #3 equivalent to aboveMin.upDate(B108)
       b.upDate();  
                    // => b.count == 10 
for (int k = 0; k < 100; k++)
// #4 equivalent to aboveMin.upDate(B110)
       c.upDate();  
                    // => c.count == 100       
// #5 pass by value not secure for objects
insecureFn(a);      
                    // => a.count == 2  

Pass-by-value appears secure. Any change to a formal parameter in a 
function will not alter the actual argument because pass-by-value copies 
the actual argument to local storage in the function’s stack frame. Since 
C# objects are references though, the formal parameter has the same 
address value as the actual argument and thus references the same heap 
object. The invocation of state-changing method upDate() through 
formal parameter p thus ‘invisibly’ alters actual argument a. In any 
language, pass-by-value is not secure when the argument passed is an 
address.

3.2 COPYING
Rewritten in C++, Example 3.1 would not expose objects to change via 
pass-by-value if the actual argument passed was a stack-allocated object. 
The C++ compiler automatically provides a default copy constructor, 
invoked upon pass-by-value, to copy the values from the original object 
(the actual argument) into memory allocated for the new object (the for-
mal parameter). The same construction of a new object from an existing 
object occurs with return by value. However, this default copy constructor 
is insufficient for heap allocated objects. For persistence, C++ program-
mers must allocate data on the heap, via the new operator, yielding the 
same indirect manipulation of objects (via addresses) as C#, and the same 
potential for aliasing. Copying is more complicated with objects, aliases, 
and heap memory than with built-in types.

3.2.1 Shallow versus Deep Copying

Many developers do not think about copying because it occurs ‘automati-
cally’. When copying is needed for assignment, or for call by value, the 
compiler generates code for a bitwise copy. The bit string that resides in 
the source (the right-hand side of the assignment statement, or the actual 
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argument in a function call) is copied into the memory of the destination 
(the left-hand side of assignment, or the formal parameter, respectively). 
For primitives (which are allocated on the stack), this form of copying, 
called shallow copying, works well. However, it produces aliases when the 
values copied are addresses, as shown in Figure 3.2.

Figure 3.2 shows the result of a bitwise copy for the assignment objA = 
objB. Access to heap memory located at 8104 is lost because the pointer 
encapsulated in objA is overwritten with the address value from objB 
(8504). Now both objects address the same memory so objA can change 
data that objB assumes that it still owns. Shallow copying may yield data 
corruption and, in C++, a memory leak (access to 8104 is lost but the mem-
ory remains allocated).

When an object encapsulates references or pointers to address heap 
memory, should the assignment objA = objB yield aliasing or trig-
ger a true copy? Shallow copying provides the former. To initialize a 
replica, additional memory is allocated and the values in the source 
memory are copied into the newly allocated memory. Allocation of 
heap memory associated with objA is identical in size and value to the 
separate heap memory associated with objB. This process, called deep 
copying, yields a true copy because values that are addresses are not 
copied directly. Figure 3.3 illustrates the memory layout of two distinct 
objects, where each object has two data members: a handle (pointer or 
reference) to heap memory, and an integer value (2 and 200, for this 
example).

3.2.2 C++ Copying of Internal Heap Memory

The new operator returns the address of allocated heap memory to its 
caller. The common expectation is that the caller retains ownership until 

FIGURE 3.2 Shallow Copy: objA = objB.
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release (via delete operator or by transferring ownership). An unseen alias 
may give the impression of ownership rather than shared memory, possibly 
leading to data corruption and, in C++, premature deallocation. Copying 
addresses establishes aliases. Although aliases support the sharing of data 
and may reduce data redundancy and inconsistency, aliases are problem-
atic when not tracked. If two different pointers (references) hold the same 
address to a heap object, as in Figure 3.2, and each pointer assumes that it 
owns this heap memory, then data values can be changed through either 
pointer (or, in C++, deallocated) without regard to any other ‘owner’.

In C++, a class with a properly defined destructor, but without proper 
copy semantics, unwittingly permits data corruption. For example, if 
objB goes out of scope before objA, triggering invocation of its destructor 
and deallocation of memory at 8504, then objA would point to memory 
that it no longer owns. Released heap memory could be reassigned by the 
allocator. If so, objA would point to memory ‘owned’ by another object, 
possibly yielding data corruption because both objects assume exclusive 
access. Premature deallocation, data corruption, and memory leaks are all 
undesirable side-effects of poorly managed aliasing.

Figure 3.3 illustrates deep copying: 1) the value of every non-pointer 
field is copied directly from one object to another; 2) additional heap 
memory is allocated and then the data values indirectly addressed via 
the source pointer are copied. After a deep copy, the source and destina-
tion objects have the same sized heap memory, with the same data values, 

FIGURE 3.3 Deep Copy: objA = objB.
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but they do not share the same memory space. Subsequently, if one object 
modifies its heap data, the heap data of the other object will be unaffected. 
As importantly, if objB were to go out of scope before objA, there would 
be no negative impact on objA because objA would continue to point to 
memory that it solely owned.

As a constructor, the copy constructor has no return type (not even 
void) and bears the same name as the class. It takes one passed parameter 
(the source for copying) that is an object of the same type. All primitive, 
non-pointer fields can be immediately copied because separate memory has 
automatically been allocated for these fields. Memory has also been allo-
cated for data members that are pointers but, as addresses, pointers should 
not be simply copied if data sharing is not warranted. Additional heap 
memory must be allocated before data values can be copied from the source 
object’s heap memory to the newly constructed object’s own heap memory.

The copy constructor is invoked to construct a new object; the assign-
ment operator is invoked through an existing object. The compiler auto-
matically generates an assignment operator that performs only a bitwise 
copy, resulting in unintentional aliasing if any data members are point-
ers. The assignment statement ‘b = a’ invokes the assignment operator 
through object b, so the address of b, ‘&b’ is implicitly passed as the this 
pointer; a is explicitly passed as a parameter. In Example 3.2, b = a is 
equivalent to goodMM::operator=(&b,a). Obvious self-assignment, 
such as ‘b = b’, is usually optimized away by modern compilers. Since all 
cases of self-assignment are not evident due to aliases, the this pointer 
is used to check for self-assignment. Like the copy constructor, the assign-
ment operator must allocate new heap memory but must also deallocate 
the heap memory owned by b.

Copying in C++ is onerous for the class designer but not for the client. 
The compiler automatically provides a default assignment operator and a 
default copy constructor which both perform bitwise copying. To avoid 
shallow copying, the class designer must define or suppress both the assign-
ment operator and the copy constructor. Copy suppression simplifies class 
design but prevents the client from using call by value or the assignment 
operator. To correctly manage heap memory allocated internally in an 
object, the C++ class designer must also define the destructor. Example 3.2 
displays a C++ class with properly managed internal memory: a destruc-
tor, copy constructor and overloaded assignment operator are all defined. 
goodMM objects allocate heap memory internally without memory leaks or 
hidden aliasing; call by value and assignment are both supported.
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Example 3.2 C++: Copy Constructor, Overloaded Assignment Operator

// good MemoryManagement: destructor and deep copying
class goodMM
{   private:
       int*  heapData;
       int   size;

       void copyData(const goodMM& source)
       {      size = source.size;
              heapData = new int[size];
              for (int j=0; j < size; j++)
                     heapData[j] = source.

heapData[j];            
       }
 public:
       goodMM(unsigned s = 100)
       {   size = s; 
            heapData = new int[size];  }
       // DEEP copying supported: copy constructor
       goodMM(const goodMM&  x)   { copyData(x); }

       // DEEP copying supported: overloaded  
       // assignment operator

       // if not self-assignment:  
       // delete old lhs memory 
       void operator=(const goodMM& rhs)
       {      // address comparison efficient,  
              // no self-assignment 
              if (this == &rhs)    return;
              delete[] heapData; 
              copyData(rhs);     
       }

       // destructor deallocates heapData
       ~goodMM()           {  delete[] heapData; }
};

The copy constructor and overloaded assignment operator are structured 
similarly: both copy primitive data directly, allocate heap memory of the 
same size as that held by the source object and then copy data values from 
the source heap memory. Hence, it is convenient to use a common private 

BK-TandF-DINGLE_9780367820817-200297-Chp03.indd   66 26/11/20   5:07 PM



Data Integrity   ◾   67

utility method, such as copyData in Example 3.2. The goodMM object 
which is the source for copying is passed by const reference to avoid the 
overhead of allocating and initializing a local copy. const provides secu-
rity: any attempt to alter the formal parameter in the body of the function 
would cause a compilation error. The copy constructor is invoked for the 
construction of a new object. Without an existing object, there is no ‘old’ 
heap memory to deallocate. The assignment operator is invoked through 
an existing object, and, thus, to prevent a memory leak, must deallocate the 
‘old’ heap memory associated with the object through which it was invoked.

If copying is not desired, as it is not for large data collections, a C++ class 
may suppress copying. Example 3.3 displays a C++ class with a destructor 
to prevent leaks but no support for copying. The copy constructor and over-
loaded assignment operator are declared private. Since private methods can-
not be externally invoked, no implementation must be provided. The client 
can allocate objects but cannot copy from one object to another (via call-by-
value or assignment). If client code attempts to assign one copySuppress 
object to another, the compiler generates an error, as shown in Example 
3.3. copySuppress objects allocate heap memory internally without the 
possibility of memory leaks or data corruption because call-by-value and 
assignment are not supported. With C++11, copying may be suppressed by 
setting the copy constructor and overloaded assignment ‘=delete’.

If copying is not desired, why bother to declare the copy constructor or 
overloaded assignment operator, labelling them as private or ‘=delete’? 
If copying is not defined or suppressed, the compiler provides default ver-
sions which perform only bitwise copying. Such shallow copying produces 
unintentional aliasing and potential data corruption when the data mem-
bers so copied are addresses. Class design must explicitly suppress the copy 
constructor and the overloaded assignment operator to prevent the com-
piler’s provision of default versions.

Example 3.3 C++: Suppressed Copying

// copying suppressed: private copy constructor  
// and overloaded= 
//    no need to define suppressed,  
//    private methods in. cpp file
class copySuppress{
   private:
       int*   heapData;
       int    size;
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       // copying suppressed
       copySuppress(const copySuppress&);

       // assignment suppressed
       void operator=(const copySuppress&); 

public:
       copySuppress(unsigned s = 100)
       {  size = s;    heapData = new int[size];  }

       // destructor deallocates heapData
       ~copySuppress() { delete[] heapData; }
       …
};

//client code – OK, invokes constructor
copySuppress c(20); 
//client code: ERROR cannot invoke copy  
//constructor
copySuppress d(c);          // compiler error    #1
//client code: ERROR, pass by value needs public  
//copy constructor 
void noLeakyFn(copySuppress x) // compiler error  #2
{            …                        }
//client code: ERROR, assignment needs public  
//operator= 
d = c;                      // compiler error   #3
 

The sample client code in Example 3.3 declares copySuppress 
objects and then triggers compilation errors by attempting to copy copy-
Suppress objects. In statement #1, the compiler attempts to allocate a 
new object d as a copy of existing object c but finds the copy constructor 
declared private in the copySuppress class and thus emits an error. 
With pass-by-value attempted in statement #2, the compiler again finds 
the copy constructor declared private and again emits an error. A compiler 
check of assignment in statement #3 finds a private operator= in the 
copySuppress class and, again, the compiler complains.

By default, copying is shallow, possibly leading to errors due to unin-
tentional aliasing. Shallow copying often may not be apparent. When two 
objects point to the same heap memory and both objects assume owner-
ship, data corruption is possible, in any language. Deep copies are more 
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expensive but are safer because each objects points to and owns distinct 
heap memory. C++11 supports move semantics, examined in Section 4, 
for efficient and safe copying.

3.3 UNSEEN ALIASING
When C dominated software development, the need to manage memory 
was overt but often incompletely addressed. With the introduction of 
C++, the object-oriented paradigm came into vogue. Objects encapsulated 
dynamic memory allocation and obscured the need for managing mem-
ory. If class designers failed to manage memory correctly, memory leaks 
occurred even when clients ‘followed the rules’.

Consider Figure 3.4, which displays the effects of pass by value: a is 
the formal parameter and b is the actual argument passed at the point of 
call. If the class does not define a copy constructor, the compiler provides 
the default bitwise copy constructor. With shallow copying, the formal 
parameter a accesses the heap memory allocated to the actual argument 
b, as seen in the first diagram, violating the security of pass by value. 
Moreover, when the function terminates, a goes out of scope. If a destruc-
tor is defined, as it should be, the destructor deallocates the heap memory 

FIGURE 3.4 Shallow Copy versus Deep Copy.
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that a ‘points to’. But this memory is the heap memory ‘owned’ by b! But 
b does not know that its heap memory has been released and could be re-
assigned to another ‘owner’. Data corruption is now possible, if b, under 
the impression of continued ownership, alters ‘its’ heap memory. The 
desired deep (true) copy, as displayed by the third diagram in Figure 3.4, 
results when the class designer defines the copy constructor appropriately.

The function definitions in Example 3.4 look correct but are not. 
Memory allocation should be seamless (and handled by the compiler) 
because all variables in this example reside in function stack frames. 
whatIsWrong() looks innocuous, and it does nothing. The formal 
parameter, of type hiddenHeap, is passed by value and so the actual 
argument is copied to localVar. What could be incorrect? If the fault is 
not in the client code, then the hiddenHeap class definition is suspect. A 
class without any internally allocated heap memory will not leak memory 
but a class that internally allocates heap memory may.

Example 3.4 Why Memory Leaks?

// function code looks correct 
void whatIsWrong(hiddenHeap  localVar)
{      int local = 42;    }

void howLeakMemory()
{      hiddenHeap   steal;
       hiddenHeap   share;
        
       steal = share;
       return;
}      

If hiddenHeap encapsulates a pointer that holds the address of heap 
allocated data then the class design should include a destructor and either 
suppress copying or support deep copying. Say hiddenHeap provides a 
destructor but fails to explicitly suppress copying or support deep copy-
ing. Then the compiler generates a default, bitwise copy constructor which  
is invoked when a hiddenHeap parameter is passed by value into 
whatIsWrong(). Consequently, the formal parameter localVar 
addresses the same heap memory as the actual argument because shal-
low copying establishes an alias by copying only address values. Data 
corruption is not a concern within function scope because the function 
does nothing; localVar does not alter the actual argument. True, but 
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the invocation of the hiddenHeap destructor upon function exit will 
deallocate the heap memory that localVar references, which is the same 
memory that the actual argument references. This setup is the same as that 
illustrated by objects a and b in the first two diagrams of Figure 3.4. Data 
corruption is possible, an outcome dependent on use of the actual argu-
ment after the return from function whatIsWrong().

The second function, howLeakMemory()assigns one locally allocated 
(stack) object to another. Any memory leak then must be associated with 
the assignment operator. Object steal assumes the values from share. If 
steal contains a pointer to heap data, that address is overwritten unless an 
overloaded operator= has been defined to support deep copying. When the 
address of heap memory is lost before delete is called then the heap mem-
ory cannot be reclaimed. The memory leak in howLeakMemory()mimics 
that illustrated by objects objA and objB in Figure 3.2.

Clients cannot easily detect or correct data corruption or memory 
leaks that arise from a poorly designed class. Example 3.4 suggests that 
the hiddenHeap class does not have proper support for call by value 
or for assignment. In other words, the hiddenHeap class is missing a 
copy constructor and an overloaded assignment operator. Scott Meyers 
authored definitive guidelines on C++ class design, including thorough 
coverage of C++ class design for memory management. Please consult 
one of his texts.

3.3.1 C# Cloning to Avoid Aliasing

In C#, the default (bitwise) copying automatically establishes aliases since 
objects are references. For deep copying, C# class designs rely on cloning 
which requires casting. Historically, a recommended C# class design was 
to override Clone(), a method implicitly associated with every C# object 
(as is MemberwiseClone()). However, Clone() returns a (generic) 
object, requiring the caller to cast the return value back to the desired 
type. Such type reclamation may not be intuitive and shifts responsibility 
for type consistency to the client. A recent design preference is to internal-
ize the casting process and provide two public class methods for copying –  
DeepCopy() and ShallowCopy(). Each method clones appropriately 
(a true copy of or a shared reference to an encapsulated subobject) and 
then casts the generic object back to the class type. Since both copy rou-
tines reclaim the appropriate type, the client does not bear any responsi-
bility for casting. Example 3.5 outlines this approach with corresponding 
memory diagrams in Figure 3.5.
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Example 3.5 C# Cloning

public class anotherClass
{      private static uint id = 1000;
       private readonly uint own;

       public anotherClass()     { own = id++; }

       public uint Own { get => own; }
}

public class uCopy
{      private       anotherClass  address;

       public uCopy()   
       { address = new anotherClass(); }
       // deep copy: heap memory allocated for  
       // true copy
       public uCopy DeepCopy()    // internal cast
       {       uCopy local = (uCopy) this.

MemberwiseClone();
              local.address = new anotherClass();

FIGURE 3.5 C# Cloning.

BK-TandF-DINGLE_9780367820817-200297-Chp03.indd   72 24/11/20   9:38 AM



Data Integrity   ◾   73

              return local;
       }
       
      // shallow copy: distinct objects have same  
      // address
      public uCopy ShallowCopy()
      {   return (uCopy) this.MemberwiseClone(); }
}
 
// client code WITHOUT casting
// #1: uCopy object allocated
uCopy  u1 = new uCopy();   
                        // embedded ‘own’ id of 1000
// #2: shallow copy, aliased with u1
uCopy  u2 = u1;             
                        //  embedded ‘own’ id of 1000
// #3: shallow copy, aliased with u1
uCopy  u3 = u1.DeepCopy();  
                        // embedded ‘own’ id of 1000
// #3: deep copy; DISTINCT object
uCopy  u4 = u1.DeepCopy();  
                        // embedded ‘own’ id of 1001

Data corruption arises from inappropriate aliasing, in any program-
ming language, and its effects may be immediate or delayed. If two objects 
hold the address of the same heap memory, either object can alter the 
shared data, thus ‘corrupting’ that data for the other object. Class design-
ers must determine whether or not copying should be supported, and, if 
so, whether deep or shallow copying is appropriate.

3.4 MOVE SEMANTICS
Appropriate design of suppressed, shallow, or deep copying assures cor-
rectness. Deep copying prevents aliasing but is more expensive than shal-
low copying, especially for large objects. Can one avoid this expense? Yes, 
by transferring ownership. C++11’s move semantics offer the ability to do 
so. Move semantics are an implicit optimization technique that reduces 
the number of allocator (new) and deallocator (delete) calls by assum-
ing the memory of an expiring temporary.

Consider return by value for a C++ object that contains a pointer to heap 
memory. The copy constructor is invoked to copy the local (stack) object into 
the temporary returned to the caller. When scope is exited, destructors are 
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invoked for all objects resident in the function’s stack frame, releasing all 
heap memory owned by stack objects. A shallow copy of the local (expiring) 
object to the return object would result in the caller’s return object indirectly 
addressing released heap memory, leading potentially to data corruption. 
Thus, shallow copying is not merely inadequate but dangerous. A deep copy 
of the local (expiring) object to the return object though is unwarranted. 
Deep copying invokes the new operator to allocate additional heap memory 
for a true replica so that the target copy (return object) does not interfere 
with the source for copying (the expiring local object). But when the local 
object goes out of scope, its destructor is invoked and thus its heap memory 
is deallocated. Hence, it is not possible for the object returned upon function 
exit to interfere with the expiring local object.

Transferring ownership from a local object to the return copy is a via-
ble alternative when the source for copying is expiring. Move semantics 
embodies the transfer of heap memory ownership. The move construc-
tor assumes the data content of the source object, avoiding a call to the 
new operator and the copying of data values. With ownership transfer, 
the expiring object has released its memory so there is no need to call the 
delete operator. The move constructor saves one allocator/deallocator 
pairing, making copying more efficient while preserving data integrity.

Similar inefficiencies arise when using deep copying for assignment. 
Consider the assignment statement “c = a + b” – which is actually two 
operations: construction of the composite of a and b; and then, copying this 
composite to existing object c. A temporary is returned from the opera-
tor+ method and is immediately assigned to c. Again, a shallow copy is 
inappropriate when objects internally reference heap memory: 1) copying 
only the values of data members that are addresses will overwrite c’s handle 
to heap memory yielding a memory leak; 2) destructor invocation when the 
temporary goes out of scope will yield a dangling pointer for c, possibly lead-
ing to data corruption. A deep copy is inefficient because, again, the source 
for copying is an expiring temporary so there is no need for it to retain heap 
memory. The move assignment operator swaps memory with the tempo-
rary, preventing data corruption, and achieving efficiency. No call to new is 
needed for c when it assumes the temporary’s memory. No call to delete 
is needed for c because the temporary now references c’s pre-assignment 
heap memory so deallocation is guaranteed when the temporary goes out of 
scope. Again, the overhead of one allocator/deallocator pairing is avoided.

As shown in Example 3.6, the move constructor and move assign-
ment operator are distinguished from the standard copy constructor and 

BK-TandF-DINGLE_9780367820817-200297-Chp03.indd   74 24/11/20   9:38 AM



Data Integrity   ◾   75

assignment operator by ‘&&’. Also note that the passed parameter (source 
object) cannot be ‘const’ because it must release ownership of its memory.

Example 3.6 C++11: Move Semantics

// copying avoided: assume data of source  
// reference
//    define move constructor and move assignment  
//    operator
class copyAcquire{
   private:
      int*    heapData;
      int     size;

public:
      copyAcquire(unsigned s = 100)
      {   size = s;  heapData = new int[size];  }

      // (deep) copy constructor
      copyAcquire(const copyAcquire&  a); 

      // copying avoided via move constructor&&
      //       source object c yields ownership 
      copyAcquire(copyAcquire&&  c)
      {    size = c.size;    heapData = c.heapData;
           c.size = 0;       c.heapData = nullptr;
      }
      
      // assignment with deep copy
      copyAcquire& operator=(const copyAcquire& a);

      // move assignment&& exchanges ownership
      copyAcquire& operator=(copyAcquire&&  c)
      {        swap(size, c.size);
               swap(heapData, c.heapData);

               return *this; 
      }
      
      // destructor deallocates heapData
      ~copyAcquire() 
      { if (heapData)        delete[] heapData; }
};
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How do move semantics work? The move constructor assumes owner-
ship from the source object. The newly constructed object acquires the 
heap address held by the source object (avoiding a call to new) and the 
source object’s heap pointer is set to null. The move assignment operator 
swaps the heap memory of the left-hand side of an assignment statement 
(lvalue) with that of the right-hand side of an assignment statement. When 
the source object subsequently goes out scope, its destructor deallocates 
the heap memory originally owned by the lvalue. Ownership transfer 
reduces run-time overhead by reducing allocator and deallocator calls. 
The parameter passed to a move constructor or a move assignment opera-
tor is an expiring temporary with no need to retain its memory.

The compiler is responsible for invoking the move constructor in place 
of the copy constructor or the move assignment operator instead of the 
assignment operator. The compiler identifies expiring temporaries and 
distinguishes between references that permit assignment (lvalues) and 
those that do not. The compiler determines the legality of transferring 
memory ownership and checks for class support of move semantics.

A move constructor and a move assignment operator should be defined 
whenever the copy constructor and an overloaded assignment operator 
are defined for deep copying. The compiler resolves which constructor or 
assignment operator to call, based on whether memory may be assumed. 
Hence, move semantics are safe and efficient.

3.5 HANDLE: C++ SMART POINTERS
A handle provides the means to access data. A variable is an abstraction 
of an assigned memory location but provides direct access to data through 
its name. Pointers and references hold data that is interpreted as addresses 
and thus provide an indirect means to access data (though indirection is 
not obvious when using a reference). A single piece of data may have mul-
tiple handles, as is evident with pass by reference.

A classic example of a handle is the smart pointer, first embodied by the 
C++ auto _ ptr class (now deprecated) in the STL (Standard Template 
Library). A smart pointer is a wrapped pointer used to control access to 
and manage memory. By wrapping a raw pointer inside a class, with a 
defined destructor, memory leaks are averted. The term ‘wrapper’ has col-
loquially subsumed the ‘term’ handle. Formally though, a smart pointer 
is a handle rather than a wrapper; a smart pointer does not wrap up an 
interface. By overloading operator->() and operator*(), calls to the 
functionality of the wrapped type may be forwarded transparently (see 
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Chapter 8). Thus, the client may use the wrapped pointer as if it were a 
pointer typed to encapsulated type.

C++11 deprecated auto _ ptr, replacing it with three generic smart 
pointer types that encapsulate a raw pointer: unique _ ptr assumes sole 
ownership; shared _ ptr models shared ownership via reference count-
ing; weak _ ptr provides (shared) access but cannot prevent deallocation. 
This refinement distinguishes different ways to control access to memory 
resources: a simple wrapper, a reference counter, a secondary reference. The 
notion of an encapsulated pointer, as a means to safeguard memory manage-
ment remains. A unique _ ptr triggers invocation of a destructor when 
it goes out of scope, and in so doing, prevents memory leaks. A shared _
ptr triggers invocation of a destructor only if the reference count drops to 
zero. A weak _ ptr cannot trigger invocation of a destructor.

C++11 smart pointers:

1. unique _ ptr automates transfer of ownership

a. Only one owner => exclusive access to wrapped raw pointer

b. Deallocation automatic when unique _ ptr goes out of scope

2. shared _ ptr automates reference counting to track aliases

a. Shared access to wrapped raw pointer

b. Deallocation only after last reference released

3. weak _ ptr facilitates transient access

a. shared access to wrapped raw pointer (may share with 
shared _ ptr)

b. No ownership claims => no effect on retention

Example 3.7 illustrates a wrapped pointer, grabMemoryPtr, whose 
constructor assumes ownership of the memory referenced by the pointer 
parameter. The passed pointer is zeroed out, preventing the caller from 
using the raw pointer after it has been wrapped. When a grabMemoryPtr 
object goes out of scope, its destructor is automatically invoked so the 
deallocation of heap memory is guaranteed. Overloaded operators pro-
vide transparency so the client may use the wrapped pointer as if it were a 
raw pointer. This design outlines the conceptual basis for unique _ ptr. 
Smart pointers though are generic and include restrictions on copying.
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Example 3.7 Wrapped Pointers in C++

// Destructor invocation prevents memory leaks
// Constructor assumes ownership of memory  
// addressed by parameter
//   =>   client cannot use raw pointer thereafter
class grabMemoryPtr 
{         SomeType*       ptr;
     public:
           // pointer passed by reference:  
           // value zeroed out
            grabMemoryPtr(SomeType*& p): ptr(p)   

{ p = 0;}

           ˜grabMemoryPtr()      { delete   ptr; }

           // forward calls transparently
           SomeType*  operator->() { return ptr; }
           SomeType  operator*()   { return *ptr; 
}
};

3.5.1 unique_ptr

Conceptually, unique _ ptr wraps a raw pointer that holds the address 
of a heap object and claims sole ownership of that ‘unique object’. With 
minimal overhead, unique _ ptr<T> manages a pointer to object of 
type T. When a unique _ ptr goes out of scope, its destructor is invoked, 
guaranteeing deallocation of the addressed (heap) object. When an excep-
tion is thrown after a call to new but before its matching delete, raw 
pointers may leak memory. unique _ ptrs do not leak memory upon 
premature exit due to a thrown exception. Since unique _ ptrs can-
not be copied, ownership is constrained. Unintended sharing or aliasing 
is prevented: there are no copy constructors or assignment operators for 
unique _ ptrs. To pass unique _ ptrs by value, unique _ ptrs 
must first be ‘move’d. unique _ ptrs may easily be passed by reference.

Example 3.8 illustrates the effective use of unique _ ptr to prevent 
memory leaks. Novice programmers may not anticipate the leakage implied 
by statement #1 in the twoLeaks function. The allocator is called via the 
new operator and the address of a heap object is returned. However, this 
address is not stored in a pointer: it is dereferenced and the values of the 
heap object are copied into a stack object. The address to the heap object 
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is lost. Hence, there is a memory leak because there is no pointer through 
which to call delete. The second leak in twoLeaks occurs because of a 
premature exit: the function is exited prior to the call to delete.

Example 3.8 unique_ptr Assumes Ownership => Leak Prevented

#include <memory>
void  twoLeaks(int  x)
{    // #1: value of heap memory copied to stack  
     // object
     //      address of heap object lost => memory  
     //      leak
     SomeType stackObj = *(new SomeType(x));

     SomeType*     trackAddress = new SomeType(x);  

     // #2:exit before delete, by DESIGN or THROWN  
     // EXCEPTION  
     int  preMatureExit;
     cin >> preMatureExit;  // IO error => exception
     if (preMatureExit)   return;  // coding error

     delete trackAddress;
}
void  noLeakAnonymous()
{     // #1 exit scope => memory addressed by  
      // p & q deleted 
      unique_ptr<SomeType> p( new SomeType(x));
      unique_ptr<SomeType> q( new SomeType(x));      

      // #2: premature exit ok: no delete needed 
      int  preMatureExit;
      cin >> preMatureExit;
      if (preMatureExit)   return;
}

Move semantics ensure consistency by avoiding copying. Consider trans-
ferring an object into an STL container, v.push _ back(std::move(p)), 
via unique _ ptr p. The move constructor releases ownership of p’s 
wrapped pointer to the container v and sets the internal pointer owned by 
p to null. Subsequent use of p may trigger compilation errors or generate a 
null pointer exception at run-time. In contrast, returning unique _ ptr 
from a function needs no special code.
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3.5.2 shared_ptr

Shared access broadens the scope of and dilutes ownership. Persistence 
may be controlled by associating a counter with an object which is set to 
‘1’ upon initial allocation. Each subsequent alias (‘copy’) increments the 
reference count; each handle thus tied to the data item decrements the ref-
erence count when it goes out of scope; the data is then deallocated when 
reference count is ‘0’.

Conceptually, shared _ ptr reflects shared access, and thus suppres-
sion of copying. A static count tracks how many shared _ ptrs point 
to the same heap object. When the last shared _ ptr goes out of scope, 
this reference count drops to zero and triggers the destructor so no mem-
ory leaks. shared _ ptrs simplify memory management. It is safer to 
return a shared _ ptr than a raw pointer from functions: the caller is 
not obligated to deallocate any returned data (and need not worry whether 
delete or free be called). shared _ ptrs make memory management 
more efficient since copying data is avoided. The ‘creation’ and ‘release’ of 
objects is faster because only the first allocation and the last deallocation 
involve a constructor or destructor; there is only one allocation/dealloca-
tion for the shared object and for its reference counter. STL containers 
accept shared _ ptrs.

For shared access, function make _ share hides the new opera-
tor and: 1) allocates contiguous memory for an object and its refer-
ence count; 2) invokes the instantiated class constructor, forwarding 
any arguments; 3) returns a shared _ ptr to newly created object. 
make _ unique and make _ shared are preferred over new and 
malloc; both encapsulate deallocation and eliminate the need for 
delete and free.

Carefully distinguish between the need for unique _ ptr versus 
shared _ ptr. Is sharing necessary? Should all indirect access be equal? 
How is data integrity ensured? Exclusive access mandates unique _ ptr. 
A common recommendation is to use a unique _ ptr, knowing that 
one can convert to a shared _ ptr, if necessary. In particular, caution 
is advised for concurrent software. shared _ ptr permits sharing of a 
resource thorough multiple pointers but does NOT enforce thread safety; 
wrapping an object in a shared _ ptr does not make it thread safe. 
Access to the shared resource managed by shared _ ptr must be con-
trolled. To prevent data corruption, synchronization must be addressed or 
a unique _ ptr should be used.
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3.5.3 weak_ptr

weak _ ptr, is a weak reference to an object managed by shared _ ptr. 
Like Java/C# weak references, weak _ ptr prevents cyclic references that 
impede memory reclamation. As a reference with no ownership claim to 
a shared heap object, a weak _ ptr does not contribute to the reference 
count of managed object. The referenced object is deallocated only after 
all shared _ ptrs release ownership, regardless of how many weak _
ptrs still reference the released resource. Since a weak_ptr has no con-
trol over deallocation, always check if a weak _ ptr is valid before use: 
a.expired()returns true if weak _ ptr a points to released resource.

Any weak _ ptr is easily converted to a shared _ ptr, which pro-
vides temporary ownership and safe access to an object. Consider using 
weak _ ptr when ownership of a resource is not needed, when control of 
object lifetime should not be a responsibility, or when cyclic references may be 
problematic. To confine responsibility, and to prevent memory leaks and data 
corruption, replace raw pointers with unique _ ptr or shared _ ptr.

3.5.4 Usage

Smart pointers were designed for safety, ensuring that heap allocated 
memory does not leak. As a wrapper, each smart pointer has a destructor 
which will automatically execute when scope is exited even when an excep-
tion is thrown. Smart pointers provide automatic resource management, 
cleanly compensating for failure to deallocate heap objects (via delete 
or free) as well as unreachable deallocation requests due premature exit. 
Available via <memory>, smart pointers provide transparent access to a 
wrapped type so that clients may manipulate smart pointers in the same 
manner as raw pointers.

1. Guidelines:Wrap raw pointers (use smart pointers) to ensure safe and 
efficient use of memory

2. Replace auto _ ptr in legacy code with unique _ ptr

3. Use unique _ ptr.reset() for deallocation => no need to unwrap 
the pointer

4. Avoid unique _ ptr.release() which transfers ownership (and 
deallocation responsibility) to the caller

5. Avoid shared _ ptr.get() which extracts the handle to a shared 
raw pointer
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=> caller should not delete raw pointer (but cannot be prevented  
from doing so)

Our brief coverage of smart pointers only highlight new language fea-
tures to support correct memory management. The distinction between sole 
ownership and shared references should have been reinforced. For imple-
mentation expertise, consult http://en.cppreference.com/w/cpp/memory for 
more detail

3.6 OO DESIGN PRINCIPLE
A class design with well-defined copy semantics minimizes client respon-
sibilities for data integrity. The Principle of Least Knowledge (also known 
as the Law of Demeter) exalts information hiding and directs the client 
only to the public interface.

Principle of Least Knowledge (PLK). Every object should assume 
the minimum possible about the structure and properties of other 
objects.

PLK implies that a client should know as little as possible about 
objects and is supported by Programming By Contract. The client 
should be guided by the class and interface invariants, not the imple-
mentation invariant. Pre and postconditions direct the client to verify 
passed data and to track only the publicly relevant notion(s) of object 
state. Client contractual responsibilities should center on externalities 
not implementation details. As long as the public interface remains 
stable, internal modifications to a type definition do not affect the 
client.

3.7 SUMMARY
This chapter examines correctly managed memory within a class design 
when copying is supported. Class design should explicitly consider copy-
ing techniques, for both correctness and efficiency. Internal resource man-
agement reduces client responsibility. Memory is abstracted but remains 
a design responsibility, especially when data integrity, performance, and 
scalability are critical requirements. Data corruption arises from poorly 
tracked or safeguarded ownership of allocated data. Contractual design 
thus should notify a C++ client of suppressed copying and a C# client of 
cloning options. Options are noted below.
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Design Choices for Copying:

1. Shallow Copying –  bit strings copied from source to 
destination

  default process sufficient for 
primitives

2. Deep Copying (or Cloning) –  avoid bitwise copy for addresses values
 replica requires own heap memory

3. Suppressed Copying in C++ – no replication

a. private (or ‘delete’d) copy constructor and operator=

b. controlled wrapper – smart pointer

c. move semantics – compiler transfers ownership only when safe

Class design, with internal copy semantics and published contrac-
tual expectations, supports abstraction and maintainable client code. 
Nonetheless, the overhead of memory access might still be significant. 
Since data and instructions are transferred in blocks from memory, over-
head is reduced when accessing contiguous data or sequential instruc-
tions. Software design principles for efficient data manipulation include: 
minimize I/O, use constants where appropriate, reduce the generation of 
temporaries, avoid unneeded copying, and transfer ownership. Table 3.1 
summarizes general design techniques for efficiency. This chapter also 
examined compiler optimizations for efficiency as supported by C++ 
move semantics.

TABLE 3.1 Design Techniques for Efficiency

Cost Response

I/O Memory Access Minimize
Function Call Call & Return

Loss of Spatial Locality
Inline (compiler optimization)

Use virtual methods carefully
Copying Time

Space
Aliases, Call by Reference
Smart Pointers

Temporaries Allocation/Deallocation
Fragmented Heap

Avoid Generation
Call by Reference
Move Semantics
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3.8 DESIGN EXERCISES
This chapter’s first exercise is to redesign the C++ feeLedger class 
from Chapter 2, using the same internal array structure, to support 
deep copying, correctly and efficiently. The second exercise is to redesign 
feeLedger again, using STL vector, to ‘automatically’ support deep 
copying, correctly, and efficiently. Appendix B.3 presents and analyzes 
sample solutions.

DESIGN INSIGHTS

Software

Ownership of persistent data may be transferred

Copy semantics

Deep copy versus shallow copy

Suppression as a viable option

Affect data usage (efficiency and correctness)

Require explicit class design decisions

Data corruption errors hard to track

Software Design

C# objects are references

Data persistence automatically obtained

Copying shallow by default

Client relies on class design and public methods for deep 
copying

C++ objects encapsulate dynamic memory allocation

obscure need for direct memory management

may suppress copying by design

may support compiler optimizations
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CONCEPTUAL QUESTIONS

1. When is heap memory used?

2. Why is tracking the ownership of (heap) memory difficult?

3. What is the primary difference between deep and shallow copying?

4. When is it appropriate to suppress copying?

5. What are the differences between C++ and C# copying?

6. Identify C++ class design requirements for safe and efficient use of 
memory.
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II
Strategic Type Coupling
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C h a p t e r  4

Composition

CHAPTER OBJECTIVES

• Define OOD relationships

• Illustrate composition and containment

• Examine association, ownership and cardinality

• Introduce Dependency Injection

4.1 OBJECT-ORIENTED RELATIONSHIPS
A famous quote from Aristotle, “the whole is greater than the sum of its 
parts”, emphasizes the power of combination. By reusing and combining 
types, class designers may expediently construct new types and new inter-
faces. A central design question is how to do so. An implied design respon-
sibility is to manage the dependency of the whole on its parts.

OOD defines different relationships (composition, containment, and 
inheritance) that determine the form and flexibility of reuse. How types 
are connected – association, cardinality, and ownership – differentiate 
design options. An association between two objects may be temporary, 
stable, or for the lifetime of the primary object. Cardinality may reflect a 
one-to-one or a one-to-many relationship, may be defined at the class or 
object level, and may vary or be stable. Ownership implies that the pri-
mary object is responsible for a secondary object, requiring explicit deci-
sions for allocation, release, replacement, or transfer of ownership.
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Basic structural relationships are has-a (composition), holds-a (contain-
ment), and is-a (inheritance). Historic OOD discussion defined aggrega-
tion as a structure where the aggregate object contains many subobjects 
of the same type. Aggregation addresses only form and not intent or effect. 
For example, both a container and a building toy (such as a Lego set) may 
be described as aggregates. However, a container retains no dependency 
on the subobject type while a building toy is strongly dependent on its 
components. A container illuminates a holds-a relationship where there 
is little restriction on the type of subobjects held while a composite illus-
trates a has-a relationship with significant dependency on the subobject 
type. While structurally similar, holds-a and has-a may be distinguished 
via design details such as association, ownership, lifetime, and reuse of 
functionality.

The simplest relationship is none: two types do not interact. Next in 
simplicity is the uses-a relationship where one type uses another in a tran-
sient fashion such as call by value. Other relationships represent associa-
tions that are more enduring and suggest some type dependency.

4.2 CONTAINMENT (HOLDS-A)
Standard containers model the holds-a relationship well because there is 
no type dependency on the subobjects. A stack provides the same utility 
no matter what type of data held. A stack is well-defined when empty, full, 
or in-between. The operations of push(), pop(), clear(), etc. function 
in the same manner regardless of the type of data processed. The type of 
data stored provides no functionality and has little or no effect on contain-
ers. The holds-a relationship reflects little or no type dependency.

Example 4.1 portrays weak type dependency: a customer holds-a gift 
card. The no-argument constructor zeroes out the pointer defined to hold 
the address of a (heap-allocated) gift card, suggesting that a customer may 
operate without a gift card and that not all customers have a gift card. If 
a customer is well-defined without a gift card, then a customer may have 
zero gift cards and still function as a customer. A customer is not depen-
dent on a gift card if gift cards do not drive core functionality, or if another 
item, such as a free shipping certificate, may replace a gift card.

Holds-a does not require ownership. The customer may not be respon-
sible for the destruction of a gift card, especially if ownership is temporary. 
Disposal of a gift card may differ by design. If the customer is the sole 
owner of a dynamically allocated gift card, then the gift card should be 
‘destroyed’ (reference zeroed out or destructor invoked) unless ownership 
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is transferred out. Since the presence of a gift card is optional in the cus-
tomer class of Example 4.1, any method that accesses the gift card must 
first test for existence, as is done in replace().

Example 4.1 C++ Customer Holds-A Gift Card

// transient ownership of subobject(s)  
// implies memory management
//     => must provide destructor
//     => support or suppress copying
class Customer            // replaceable gift card
// handle only, no object yet 
{      GiftCard*    c = 0; 
   public:
        // assumption constructor: ownership  

// of transfer assumed     
       Customer(GiftCard*& transfer)
       {      c = transfer;
              transfer = 0;
       }

        // no argument constructor:  
// no gift card allocated

       Customer()   {   c = 0;    }

       // again ownership transferred in 
       void replace(GiftCard*&    backup) 
        // dispose existing card 

{      if (c) delete c;    
              c = backup;  
              backup = 0;
       }
       ˜Customer()   {    if (c) delete c;     }
};

A container may hold objects, copies of objects or references to objects. 
The objects contained may be passed in and out, transferred, or destroyed 
(redeemed), yielding a fluctuating cardinality across the lifetime of the 
container. Logically, a customer may hold a positive number of gift cards, 
or none. If different gift card types are available (bonus, restricted by item 
or calendar date, etc.), the mix of gift card types held may vary over the 
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lifetime of a customer. Only a temporary association exists between the 
customer object and the gift card object.

Independent of implementation language, a containment relationship is 
flexible because cardinality, ownership, and association may vary. Designs 
differ though because of implementation language. In C++, memory 
management must be addressed for any object with internally allocated 
heap memory. The class must track ownership so that all heap-allocated 
memory is deallocated before objects owning the heap-allocated memory 
go out of scope. In all languages, aliases should be tracked so that dead 
objects may be reclaimed and data is not corrupted.

Copying is an essential design decision. Often, it is undesirable to copy 
large collections either for data integrity or performance concerns. What 
are the effects of supporting or suppressing copying? What does a con-
tainer hold: original data, duplicates, references? Copying may be more 
complex when data is referenced indirectly, that is, via a reference or a 
pointer. What is copied? – the address holder (reference or pointer), or the 
actual data values?

Copy semantics should be an explicit design decision. If a C++ class nei-
ther defines nor suppresses copying, the compiler generates a default copy 
constructor and overloaded assignment operator that yield shallow copies, 
and, thus aliasing and possibly data corruption. If no decision is made 
in C#, copying is also shallow. Recall the difference between shallow and 
deep copying as examined in Chapter 3.

4.3 COMPOSITION (HAS-A)
An intuitive example of composition is a signal that relies on sensors. A 
signal is activated when some number or proportion of its sensors are 
triggered. An alarm clock uses a timer as a sensor; a security light uses a 
motion detector, etc. Type dependency is clear: a signal is not well-defined 
without sensors – it is inoperable. In a has-a relation, the subObject pro-
vides key functionality and affects the state of the composing object; for 
example, sensors affect the state of the signal. A sensor in a failed state 
affects the functionality of the signal. If all sensors are off, then the signal 
is effectively off, etc.

In composition, the association between the composing object and its 
subobject(s) is usually stable. With fixed cardinality, the number of subob-
jects may be defined by design or set upon object construction but it does 
not vary within an object’s lifetime. For example, if a signal is designed 
with eight sensors, then all signal objects have eight sensors. In contrast, 
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as Example 4.2 demonstrates, the number of subobjects may vary from 
object to object when cardinality is defined in the constructor but not 
altered thereafter. Signal objects instantiated from the same class defini-
tion may have different numbers of encapsulated sensors but each signal 
object has a fixed number of sensors for its lifetime. Conveniently, C#’s 
keyword readonly prevents change after initialization. The implemen-
tation invariant should record the stability of subobject cardinality, espe-
cially when no keyword prevents change.

Example 4.2 C# Stable Number of subObjects

// cardinality fixed in constructor 
public class Signal
{      private Sensor[]          trigger;
       private readonly  uint    numSensors;

       public Signal(uint num)   
        // bound number of sensors 

{      numSensors = num % 10;  
              trigger = new Sensor[numSensors];
              for (int k = 0; k < numSensors; k++)
                     trigger[k] = new Sensor();
       }
       …
}

A subobject in a has-a relationship is typically considered owned by the 
object and not shareable – usually but not always. An object may depend 
on a subobject that is a shared resource. In which case, management of the 
shared resource is likely external to the object (as with a shared_ptr). 
Control of a shared resource (via reference counting, locks, etc.) is then 
not the responsibility of the composing object. Although ownership of 
subobject(s) typically resides with the object, any composition design may 
transfer ownership out to a caller or may assume ownership from a caller.

Composition reinforces internal control. The state of a subobject may 
affect its utility. Is a file read-only? Is a password valid? Composition buf-
fers the client from verification details. Composition affords much flexibil-
ity. Subobject volatility may be handled by replacement or excess capacity. 
Not all subobjects in a has-a relationship must be used. A signal with mul-
tiple sensors may sample or rely on only a subset of sensors. One or more 
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sensors may be off or may fail (or may not be instantiated) but the signal 
can still function if enough sensors remain operational.

4.3.1 Modification

Composition preserves control over the replacement and state change of 
an encapsulated data member. Example 4.3 illustrates a device that uses 
a (charged) battery. When the device is on, all functionality is supported 
but the battery charge is drained. Turning off a device saves its battery but 
disables functionality. Dead batteries may be recharged or replaced. State 
changes, such as recharging, often require less overhead than replacement 
but may not always be feasible.

Example 4.3 C# Modification of Encapsulated Data Member

public class Battery
{    private bool on = true;
     private double charge;

      public Battery(double chrg = 1212.12)  
{ charge = chrg; }

     public bool On { set; get; }
     public double Charge
     {    get => charge;
          set;
     }    
}

public class Device
{    private Battery          duraCell;

     public Device(uint       charge)          
     {      duraCell = new Battery(charge);      }

     private bool            flipOffOn(bool on)            
     {              // #1: no state changed needed
              if (on == duraCell.On) return on;

               // #2 request to turn off always met 
if (!on)       

              {            duraCell.On = false;
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                             return false;
                }
                if (duraCell.Charge < 100)           
                             duraCell.Charge *=10;  
                duraCell.On = true;
                return true;
                }
     }
 
     public void               operate()
     {          if (!duraCell.On)         return;
                flipOffOn(true);
                 // …perform requested operation  

// using battery
     }
}

Class control of subobject state and existence extends to realis-
tic examples where resources are files, passwords, connections, etc. 
Composition reuses rather redefines the utility provided via the sub-
object’s public interface. The composing class must compensate for any 
deficiencies in the subobject’s public interface, including restoration to 
a usable state. Thus, replacement is often employed. For example, if a 
battery is not rechargeable then a device may need to replace its battery 
data member.

4.3.2 Replacement

Example 4.4 provides a C++ implementation of Example 4.2 that retains 
the design of establishing a stable number of sensors in the constructor 
(while suppressing copying). Additionally, the wholesale replacement of 
sensors is provided. Replacement may be designed to preserve or alter car-
dinality. Recall that the allocation of heap memory internal to a C++ class 
requires an explicit design decision for copying – suppress or support with 
deep copying and move semantics.

Replacement strategies preserve utility when subobjects can no longer 
provide needed functionality, as when sensors malfunction or batteries 
die. Replacement may change the number of encapsulated subobjects. 
For example, more sensors may be added in order to increase surveil-
lance (e.g. motion detectors); fewer may be used to decrease power con-
sumption. Replacement should be designed carefully and controlled: 
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requests for replacement may be rejected, the number of replacements 
may be limited, etc.

Example 4.4 C++ Variable Number of subObjects  
with Replacement

class Signal
{      Sensor*            trigger;
       unsigned           numSensors;

        // copying suppressed 
Signal(const Signal&);            

       void operator=(const Signal&);

       void validateState()
       {      int    defects = 0;
              for (int k = 0; k < numSensors; k++)
                      if (trigger[k]->dead()) 

    defects++;
              if (defects > numSensors/2)             
                     replace(numSensors);
       }                    
   public:
       Signal(unsigned int num)            
       {      numSensors = num % 10;
              trigger = new Sensor[numSensors];
       }
       …
       ~Signal()      {     delete[] trigger;   }

       void replace(unsigned num)
       {      delete[]  trigger;
               if (num != numSensors) 

    numSensors = num % 10;
              trigger = new Sensor[numSensors];
       }
};

Resource acquisition should be securely managed. Internal con-
trol may limit replacement and may avoid (or postpone) the allo-
cation of expensive resources, to improve efficiency. Example 4.5 
illustrates internal management of a passcode. Theft or expiration 
may invalidate a passcode so replacement is anticipated. Class design  
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may restrict conditions for replacement and may limit the number of 
replacements.

Example 4.5 C# Internal Replacement

public class passCode 
{      public passCode(uint x)    { …   }
       public bool isValid()      { …   }
       public bool expired()      { …   }
}

public class Verifier 
{      private      passCode          key;
       private      uint              id;
       private      uint              numReplace;
       private      uint              maxReplace;
       …
       public Verifier(uint  id)       
       {      key = new passCode(id);
              maxReplace = 1 + id % 1000;
       }
       …
       public bool passOK()
        {      if (key.inValid())     return false;
              if (key.expired())   
               {      if (numReplace >= maxReplace) 

           return false;            
                     numReplace++;
                     key = new passCode(id);
              }
              return true;
       }
}

View replacement as a two-step process: release old resource; acquire 
new resource. Heap memory, locks, database connections, etc., are  
examples of resources that may be encapsulated and for which the 
replacement may be null. A key design decision is whether or not the 
client should be aware of subobject replacement. In Example 4.5, the 
use and replacement of passCode is completely internalized; the cli-
ent is unaware of the subobject existence. Our coverage of Dependency 
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Injection later in this chapter will consider designs that externalize 
replacement responsibility.

4.3.3 Postponed Instantiation

An early employee of DEC (Digital Equipment Corporation) once quipped 
“the most reliable components are the ones you leave out”. Composition 
affords the control of internal construction. A subobject may be instanti-
ated upon object construction. Alternatively, construction of a subobject 
may be postponed until use (like just-in-time manufacturing – only instan-
tiate (manufacture) when needed). When an object becomes responsible 
for subobject allocation (and possibly deallocation), copy semantics must 
be defined. Review Example 4.6, keeping in mind that internally allocated 
heap memory requires careful design in C++ (as shown in Chapters 2 and 
3). Note that the handle to the dataset is zeroed out in the constructor, 
indicating that no dataset has been instantiated. Hence, class methods 
must test for existence before using the dataset.

Example 4.6 C++ Postponed Instantiation of SubObject

class justInTime
{       // need memory management:  

// destructor & copy semantics 
       bigData*      dataSet;
       int           fakeStart;
       bool          alive;
       …
   public:
       justInTime(int min = -1)            
       {      dataSet = 0; 
              fakeStart = min;
              alive = min > 0;
       }
       …
       bool wideRange()
       {      if (!dataSet) dataSet = new bigData;
               return (dataSet->getMax() >  

        100*dataSet->getMin());
       }

       bool validRange()
       {      if (!alive)         return false;
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              if (!dataSet) 
    dataSet = new bigData;

             return (fakeStart < dataSet->getMin());
       }

       ~justInTime()
       {     if (dataSet)        delete dataSet; }
       …
};

In client code, many temporary objects are generated but not fully used. 
Local objects, conditionally used in confined scope, and C++ temporaries, 
constructed via call by value, may not ever be used to invoke a method that 
relies on a subobject. In which case, there is no need to allocate subobjects. 
Postponed instantiation avoids allocating an unused resource, enhanc-
ing performance in any language. Postponed instantiation does not nec-
essarily indicate a weak dependency. Existence checks must be added to 
all methods that depend on a subobject whose instantiation occurs after 
object construction.

In Example 4.6, justInTime objects that do not invoke 
wideRange() or validRange() will not incur the cost of allocating  
the encapsulated bigData data member. Any justInTime objects 
instantiated without a value or with a negative integer will not trigger 
the allocation of the encapsulated bigData data member either in the 
constructor or in validRange(). When a justInTime object goes 
out of scope without a bigData subobject allocated, the destructor 
need not call the deallocator.

Constraining heap allocation reduces run-time allocation costs 
for both C++ and C#. Additionally, deallocation costs are reduced in 
C++ and heap fragmentation in C#. Deferring object instantiation is a 
popular design choice because it often decreases overhead, especially 
when objects are instantiated but not fully used as is often the case 
for temporaries. Postponed instantiation can be viewed as on demand 
instantiation.

4.3.4 Echoing an Interface

Since a subobject is a private data member, its existence and interface 
are hidden from the client. This encapsulation decouples the client from 
the subobject, buffering the client from change, and from responsibility 
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for the subobject. Software maintainability is thereby promoted. The  
client has little or no knowledge of encapsulated data members and cannot 
directly invoke any functionality published in the subobject’s public inter-
face. The class designer though can support indirect invocation of such 
encapsulated functionality by defining public methods to ‘echo’ subobject 
methods.

Example 4.7 C++ Echoed Interface

class Echo
{      workerB        subObject;
       unsigned       countQueries;
       bool           passThru;
   public:
        // initializer list: invoke  

// non-default constructor
       Echo(int seed = 10): subObject(seed)    
       {      countQueries = 0;   
              passThru = seed > 0;
       }
       …
       double work()     // #1 immediate pass thru
       {      return 2*subObject.work();  }

        // #2 preprocessing before pass thru 
bool   isValid()      

       {      countQueries++;
              return subObject.isValid();               
       }

        // #3 conditional pass thru 
int    sizeHive()      

        {      if (passThru)  
              return subObject.sizeHive();

              return -1;
       }      
};

The composition relationship of class Echo, as shown in Example 4.7, 
echoes a portion of the workerB interface. A client may invoke the meth-
ods work, isValid, and sizeHive through an Echo object, receiving 
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the results obtained from the encapsulated workerB data member. The 
Echo class designer chooses which methods to echo and may do so con-
ditionally, with or without pre and post processing. For example, size-
Hive() will not return valid information if the flag controlling echoing 
is false. The class designer may refine behavior by adding code in the shell 
method, such as the example of doubling the ‘work’ value. Echoing an 
interface reuses an existing type while maintaining control over the invo-
cation of methods so acquired.

Composition promotes internal control. Any composition design may 
choose to: modify subobject state, replace subobjects, defer instantiation, 
and/or echo a subobject interface. These design variants can be used singly 
or in conjunction with each other. With a stable interface, modification 
of internal design details has minimal impact on the client. Composition 
thus promotes maintainability.

4.4 INTERFACES FOR DESIGN CONSISTENCY
C# and Java provide the interface construct which promotes consis-
tency by forcing method definition(s). A class implementing an inter-
face must define all methods declared in that interface; otherwise, the 
compiler complains. Example 4.8 illustrates a simple interface: only one 
method prototype is declared. Every class that implements the ISocial 
interface must define media(). Interfaces allow different classes to provide 
different implementations for the same named functionality. Interfaces 
facilitate abstraction, like that realized by I/O streams, etc. Chapter 7 
examines the design effects of interfaces and abstract classes, relative to 
software longevity.

Example 4.8 C# Interface

public interface ISocial   {  string   media();  }

public class chat: ISocial
{      …
       public string media()     {      …      }
}

public class tweet: ISocial
{      …
       public string media()     {      …    }
}
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public class slack: ISocial
{      …
       public string media()        {      …    }
}

C# interfaces may be used to force a composing class to echo its subob-
ject’s interface. Example 4.9 redefines Example 4.7 in C# using a IWorker 
interface – by convention, C# interface names begin with a capital I. All 
methods defined in an interface must be implemented, otherwise, the com-
piler complains. The reworked C# class has more public methods than the 
C++ example because it must define transfer()to fulfill the IWorker 
interface. The compiler complains whenever it cannot find an implementa-
tion for a method defined in an assumed interface.

Example 4.9 C# Echoed Interface Forced

public interface IWorker
{      public double work();
       public bool  isValid();
       public int   sizeHive();
       public void  transfer();
}

public class workerB: IWorker
{      private int value;

       public workerB(int v = 100) { value = v; }

        // all four methods in IWorker  
// interface must be defined

       public double work()       {      …     }
       public bool   isValid()    {      …     }
       public int    sizeHive()   {      …     }
       public void   transfer()   {      …     }
}

public class Echo: IWorker
{      private      workerB        subObject;
       private      uint           countQueries;
       private      bool           passThru;
       …
       public Echo(int seed = 10)  
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       {      subObject = new workerB(seed);
              passThru = seed > 0;
       }
       …
        // #1 immediate pass thru 

public double work()        
       {      return subObject.work();    }

        // #2 preprocess then pass thru 
public bool   isValid()  

       {      countQueries++;
              return subObject.isValid();              
       }

        // #3 conditional passthru 
public int     sizeHive()    

       {      if (!passThru) return -1;
              return subObject.sizeHive();
       }
       
        // #4 pass thru then post process 

public void   transfer() 
       {      subObject.transfer();
              countQueries = 0;
       }      
}

Composition wraps up a subobject, hiding it from the client and 
thus buffering the client from change and tedious management details. 
An interface may force full or partial exposure of a subjobject’s public 
interface. Wrapping, with or without any exposure, is a popular design 
choice.

4.5 WRAPPERS AND DELEGATES
The terms wrapper, delegate, and handle are often used interchange-
ably even though meaning and intent differ. A wrapper defines and 
controls an interface layered over existing code, enabling code reuse. In 
Examples 4.7 and 4.9, the class Echo served as a wrapper. A delegate 
serves to provide functionality; it may be replaceable and thus provide 
variant behavior. In Examples 4.7 and 4.9, the class workerB served as 
a delegate. A handle provides access to target data without providing any 
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functionality or augmented behavior. Chapter 3 examined smart pointers 
which, as handles, wrap up raw pointers to prevent memory leaks.

Wrappers are what the name implies: an extra layer or coating. This 
extra layer thwarts dependencies on the encapsulated code and decreases 
coupling, which is especially desirable when the wrapped code is unstable. 
Wrappers streamline the reuse of legacy code by defining a more uniform, 
general, or simpler interface. A wrapper class layers an interface over an 
existing class to buffer clients from change. Wrappers may redefine inter-
faces, modify accessibility, augment or introduce conditional restraints on 
delegate functionality. Though they may provide extra functionality and/
or filter requests, wrappers primarily serve to maintain a stable and usable 
interface.

A popular design pattern, Façade [Gam95], is essentially a wrapper 
class. Wrappers are designed using composition: the wrapper has-a 
subobject and wraps up the subobject interface. The implementation 
invariant documents what is wrapped and why, explaining any exter-
nalization via echoing or delegate replacement by the client. Is the 
wrapped code unstable, proprietary, or dated? What dependencies are 
hidden? How does the wrapper streamline use? Is the client aware of the 
delegate? Expectations as to improved maintainability, or performance, 
should be recorded. Interface invariant details of a wrapper class are 
similar to those of any class: describe core utility provided and restric-
tions on use. Wrappers promote the reuse of existing classes for new 
or modified applications by providing a shell to encompass an existing 
class. If used well, wrappers reduce software complexity and promote 
maintainability.

Consider the task of tracking relative data values within a collection. 
Reuse of a previously defined container type is expedient – modern pro-
gramming languages routinely provide generic containers. A wrapper 
class could easily track values (such as minimum, maximum, mean) while 
using an encapsulated container to store data passed in by the client. The 
wrapper could echo as much of the embedded container’s interface as 
required, and provide customized functionality (such as getPrime(), 
etc.). Software development is accelerated when the class designer does not 
have to design, implement, debug, test or verify any of the standard opera-
tions associated with a generic container.

A delegate class provides functionality and promotes flexibility. 
Delegates held as subobjects may be instantiated internally or exter-
nally. When instantiated internally, the delegate may remain anonymous 
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to the client. When instantiated externally, the delegate must be passed 
in by the client and so its existence is published. Delegates exemplify 
effective code reuse. Example 4.10 shows an autoPay class that uses 
an accountVerifier object as a delegate in a composition relation-
ship. The delegate supports a public interface that provides validation of 
an account; autoPay (re)uses this functionality to verify its account 
data members. All calls for verification are forwarded to the delegate. 
Consequently, autoPay does not have to redesign validation if the pro-
cess for verification changes. Moreover, client code is stable as long as the 
accountVerifier type is retained as the delegate. The autoPay class 
does ‘wrap up’ an accountVerifier object as a delegate but replace-
ment exposes the delegate type. Hence, whether or not autoPay is con-
sidered to be a wrapper class depends on a strict interpretation of wrapping 
as hiding the delegate.

Example 4.10 C# Delegate Class

public class account { … }

public class accountVerifier
{    public bool approve(account a, uint amount)  
     { … }
     public bool isValid(account a)          { … }
}

public class autoPay 
{    private    accountVerifier      myDelegate;
     private    account              primary;
     private    account              secondary; 
     …
      public     void 

replaceDelegate(accountVerifier newImproved)
     {    myDelegate = newImproved;  }

     public bool fundsAvail(uint cash)     
      {    if (myDelegate.approve(primary,cash)) 

                    return true;
           if (myDelegate.approve(secondary,cash)) 

               return true;
          return false;
     }
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     public bool upDatePrimary(account p)
     {    if (!myDelegate.isValid(p)) return false;

          if (myDelegate.isValid(primary))
               secondary = primary;
          primary = p;
          return true;
     }               
}

How do delegate and wrapper differ? A delegate is a data member or 
passed parameter that provides functionality. A wrapper encapsulates and 
reuses existing code to isolate the client from change or to streamline an 
interface. A delegate serves to provide utility. A wrapper serves to redefine an 
interface. The two overlap. A wrapper may wrap up a delegate. Contractual 
design should specify any client responsibility for seeding or replacing a 
delegate. The implementation invariant should identify expected reuse 
of functionality via delegation as well as restrictions on delegate type or 
interface. As with any composition design, documentation should also 
describe cardinality, ownership, and stability (replacement) details.

Wrapper and delegate designs focus on reusing functionality. Handles 
control access. Why is a smart pointer considered a handle rather than a del-
egate? The smart pointer safeguards memory but provides no other functional-
ity, no augmented, critical, type-dependent functionality. Delegates provide 
functionality to an enclosing class but isolate the client code from changes 
in service. The enclosing class can easily modify or replace its delegate. 
Though C# offers a specific delegate construct (which is easier to use than, 
say, C++ function pointers), the definition and use of delegates is a general 
design technique. For flexibility, delegates, or actually any resource, may be 
‘injected’ into an object. We examine next this design option and the effects 
of externalizing what could otherwise be a fully encapsulated data member.

4.6 DEPENDENCY INJECTION
Software design values modularity, achieved through functional and 
structural (OO) decomposition, because modularity promotes code reuse, 
readability, and maintainability. Decomposition yields partition boundar-
ies, also known as “seams”. Shared data passes across these seams – param-
eters, return values, handles to static (or global) data, and other resources. 
With this hierarchical decomposition of code and data, dependencies are 
unavoidable but should be identified and constrained.
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I/O is a common dependency; data sources and sinks must be identi-
fied. Novice programmers often tie input to the keyboard and output to 
the console. However, maintainable code relies on the abstraction of I/O 
streams so that input sources and output targets may vary. The utility of a 
type that draws data from the keyboard or sends output to the console is 
limited. Is encapsulating an input filename an improvement? Selection of 
data source and storage is still limited and changing an encapsulated file-
name may be expensive. When an input or output filename is not encap-
sulated, but passed into, say, the constructor, the class loses control over 
the specification of the filename and should add checks for validity. But 
variety is gained by parameter passing – many different filenames can be 
passed. Abstraction promotes flexibility – viewing data source and sink 
as input and output streams, rather than specific resources, releases code 
from dependency on a specific environment.

A filename is a dependency. Passing a filename into a method trans-
mits a dependency from an external (client) to an internal (service) 
and thus illustrates Dependency Injection. We examine three forms of 
Dependency Injection, noting when memory management responsibili-
ties impact design. Each approach alters the implicit control of compo-
sition through the external provision of a data resource (dependency). 
An object’s internal instantiation of a delegate or resource is replaced 
by a dependency passed as a parameter. Any assumption that a passed 
(‘injected’) dependency is valid must be documented, preferably con-
tractually. Even with such a contractual requirement, for safety, the 
class designer should design appropriate error responses to the injec-
tion of invalid dependencies. The three types of Dependency Injection –  
constructor, property, and method – all shift responsibility to the client. 
We expand this discussion in Chapter 7 to illustrate built-in support for 
a wide variety of encapsulated objects.

4.6.1 Constructor Injection

As the name implies, Constructor Injection accepts a dependency via a 
parameter in the constructor call. Example 4.11 displays a Warrior class 
with a constructor that (conditionally) accepts a Weapon. Constructor 
injection is preferred for a class-wide dependency with an expected life-
time association. The dependency is initialized (constructed) by assign-
ment from a passed parameter. It is thus set once, is immediately available 
for all object methods, and is stable. Client responsibility is limited to point 
of object instantiation; clients should recognize the release of ownership.
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In all forms of Dependency Injection, the class cedes complete control. 
A client may pass in a null or invalid handle, or an exhausted resource 
that cannot be reset. Class design must define appropriate error responses. 
Since constructors do not return a value, an error code cannot indicate 
rejection of the injected dependency is inadequate. Options for error han-
dling within a constructor include: throwing an exception, reverting to 
a default, modifying the passed resource (if possible), or setting state to 
indicate compromised functionality. This last option is employed in the 
Warrior class which sets the armed control flag to false if the passed 
Weapon is a null handle or is in an invalid state. All methods that use a 
Weapon must then check this flag.

A key benefit of constructor injection is stable object-level variability. 
The client may pass any resource that satisfies the interface specified in the 
constructor parameter list. Since the constructor is called exactly once, 
any dependency so fulfilled will be set once, any error response will be 
executed at most once, and the resource will be available for the object’s 
lifetime.

Example 4.11 C# Constructor Injection

public class Weapon
{      // …
       public bool damaged() { … }
}

public class Warrior
{    private    readonly  Weapon     handle;
     private    bool                 armed = true;
     // client must release Weapon ownership
     public Warrior(Weapon w)
      {    if (w == null || w.damaged())     

           armed = false;
          handle = w;
     }

      // replace defective or missing 
public bool reArm(Weapon w)      

      {    if (armed && !handle.damaged())  
               return false;

           if (w == null || w.damaged())   
    return false;
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          handle = w;
          armed = true;
          return true;
     }                     
}

Languages differences impact the implementation of Dependency 
Injection. If Example 4.11 were written in C++, the Warrior class 
must manage deallocation and explicitly determine copy semantics. 
Regardless of implementation language, external instantiation of a 
dependency in an invalid state must be addressed. The possibility of a 
null handle requires the addition of existence checks to all methods that 
use the dependency.

Unused resources yield overhead that is not easily justified. Therefore, 
Constructor Injection should not be used for optional dependencies 
without the provision for a default handle setting of null. Constructor 
Injection may also complicate class hierarchies, as will be seen in  
Chapter 6. Constructor injection though does permit test code to cir-
cumvent the use of resources that are expensive, shared, or hard to 
instantiate in a test harness. Test code may instantiate, and pass, a mock 
object into a constructor in order to syntactically satisfy a dependency 
that is not directly tested.

4.6.2 Property Injection

Property (Setter) Injection supports deferred instantiation as well as 
replaceable and optional dependencies. Example 4.12 shows a C# class 
that implements the ISocial interface and encapsulates a data mem-
ber, msgDelegate, that satisfies this interface. Property Injection in 
this example is implemented using C# properties. The set method is 
conditional, rejecting dependency replacement if the number of replace-
ments exceed a bound established in the constructor. Use of proper-
ties is not necessary; one could simply use a (conditional) set method. 
Actually the name of the method that sets the property does not matter 
in either language.

Projection Injection may be used in conjunction with Constructor 
Injection for postponed instantiation: the constructor sets the handle to 
null, if in-field, or default initialization is not used; subsequently, a muta-
tor (setter) is invoked that accepts (and checks) a dependency. The client 
may set the dependency at any time but should do so before invoking any 
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class method that uses it. Hence, Property Injection is somewhat risky: 
there is no guarantee that the client will initialize the dependency prior to 
its use. If multiple clients use the same object, then it may be unclear who 
is responsible for marshalling and passing the required resource. The class 
designer should add existence checks before the use of required injected 
dependencies; the cost of such conditional evaluation will be proportional 
to the use of the dependency.

Property Injection easily supports the replacement of a dependency and, 
conceptually, can be invoked an unrestricted number of times (though the 
class can control its response to all requests). Checks may be added to con-
trol replacement, especially if excessive resets are a concern, and to verify 
dependencies.

Example 4.12 Property Injection

public interface ISocial    
{   string media();    }

public class messageBroker:  ISocial
{      private      ISocial       msgDelegate;
       private      uint          requestLimit;
       private      int           numRequests;   
               
       public messageBroker(uint  bound)
       {      requestLimit = 2*bound;   }
        public string media()  

{ return requestLimit.ToString(); }

       public ISocial MsgDelegate
       {      get    // possible to return null 
              {      return msgDelegate; }
              set
               {      if (numRequests < 

requestLimit)
                           msgDelegate = value;  
              }
       }

       public string nextAdvert()
       {       if (msgDelegate == null)  

    return null;
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              numRequests++;
               if (numRequests > requestLimit) 

    return null;
              
              return msgDelegate.media();
       }      
}

Property Injection may be used alongside Constructor Injection to sup-
port replacement. If used by itself, Property Injection potentially reduces 
the strength of the dependency since a lifetime association is not required. 
The client may defer instantiation and/or replace the dependency. This 
shift of responsibility to the client is a design risk. To ensure safety, the 
class designer must define appropriate error responses, possibly adding 
exception handling code, if a needed property is not injected. Checks for 
existence should precede all use of the dependency. And, again, in C++, 
the class designer must address responsibilities associated with resource 
management.

Property Injection allows a wide variety of objects, in various states, 
to be passed in order to satisfy the dependency. In contrast, internal con-
struction is strictly limited and Constructor Injection by itself permits 
variation only in initial fulfillment.

4.6.3 Method Injection

Method (Interface) Injection is preferred when dependencies are confined 
to specific method(s) and are not class-wide. If these method(s) are not 
invoked, there is no need to set the dependency. Method Injection sug-
gests an efficient design, assuming methods with dependencies are few 
and are infrequently invoked. Since the client must fulfill the dependency 
for all such calls, the client may pass any dependency that satisfies the 
interface. A different dependency may be passed with each call, potentially 
providing much variety. Method Injection can be viewed as a special case 
of the Strategy Pattern: an object (delegate, function pointer) is passed into 
method and used to perform some action. By passing different objects on 
different calls, the action is executed differently.

An intuitive example of Method Injection is a BST (Binary Search Tree) 
inorder traversal that accepts, as a parameter, a container to store the sorted 
data. No other BST functionality (insert, delete, clear, isEmpty) requires 
an auxiliary container. Method Injection supports isolated and volatile 
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dependencies. Example 4.13 illustrates a C# class that uses a Registry 
to verify current status of a data member. A Registry is not needed in 
other methods so no Registry subobject is retained.

Example 4.13 C# Method Injection

public class guardedClient
{    private    string    name;
     private    bool      closed;
     private    double    balance;
     // … 
     public double getBalance(Registry r)
     {  if (closed || !r.valid(name))  return 0.0;
        else                       return balance;
     }
}                    

Method Injection localizes a dependency, confining its scope to the 
method. A dependency so passed may be viewed as transient (i.e. a tem-
porary resource), used one-time and then released upon exiting scope. 
There is little responsibility for managing a single transaction resource. 
Unless the resource is retained after exiting scope, a C++ class need 
not supply a destructor or define copy semantics for that dependency. 
Independent of language, mutual dependencies may be difficult to man-
age with Method Injection.

Constructor and Property Injection may be used together in a class 
design: a dependency is set in the constructor but may be replaced in a set-
ter. Method injection is typically used on its own for a particular resource. 
In Example 4.11, a Weapon is injected via the constructor and also via a 
setter (rearm()) for replacement. Whereas, the resource Registry is 
injected only through the method getBalance() that uses it. All forms  
of Dependency Injection must account for an invalid parameters, respond-
ing with default settings, error codes, modification or exception handling. 
Any assumption that an injected dependency is valid must be documented, 
preferably contractually.

4.6.4 Dependency Injection Costs and Benefits

Dependency Injection transfers responsibility to the client, creating an 
implicit vulnerability. The client may not track state or correctly marshal 
resources. Efficiency may be compromised if many clients repeatedly have 
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to acquire the same resources. Remember that externalization of a depen-
dency replaces a centralized acquisition of a resource with a distributed 
endeavor. If the flexibility of such dispersed responsibility is warranted, 
then Dependency Injection is a valid design option. If not, then the over-
head placed on the client, and the possible redundant resource acquisition 
are not justified. Table 4.1 summarizes the intent and effect of each form 
of Dependency Injection.

Constructor injection is a stable design since the dependency is 
set upon object instantiation. With appropriate error mitigation, the 
resource may be used immediately by all member functions. Method 
injection is secure and may be efficient since it restricts exposure of a 
dependency. If a class design has many methods that used the same 
dependency, each acquiring the same resource through Method 
Injection, then Constructor Injection may be a better design – unless 
the dependency is fulfilled differently in each method call. On its own, 
Property Injection is an insecure design since correct execution relies 
on the client to invoke the setter prior to any use of the dependency. 
Existence checks must be added to all methods that use a dependency 
that is not set in the constructor.

Example 4.5 illustrated internal replacement when the state of the sub-
object (passcode) was internally determined to be invalid (expired). This 
example could be rewritten to use Method injection for replacement: 
the client would then be responsible for tracking state and providing an 
appropriate replacement. Example 4.6 illustrated postponed instantia-
tion wherein the subobject was internally instantiated upon demand. This 
example could be rewritten to use Property injection for instantiation: the 
client would then be responsible for tracking state in order to determine 
when the subobject should be instantiated.

TABLE 4.1 Dependency Injection Designs and Effects

Client Calls Scope Lifetime
Error 
Handling Benefit

Constructor Instantiation
one call

Class-wide Stable Exceptions
Defaults

Centralized

Property Unlimited Variable Volatile Existence 
Checks

Defer 
Instantiation

Replacement
Method Unlimited Localized None Error 

Codes
Exceptions

Confined use
Wide Flexibility
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Dependency Injection enables testing by decoupling a class from expen-
sive, shared or unreliable resources such as databases, file systems, web 
services, etc. Testing modern software must be as efficient as possible and 
should not rely on ‘slow’ resources such as network connections. Testing 
must be safe and not alter shared resources such as a database. Tests that 
evaluate resource usage are not responsible for testing the resource, just 
the response to resource acquisition, release, etc. Mock objects may be 
constructed and ‘injected’ so that testing proceeds safely and efficiently. 
The basic scenario is: 1) client needs a resource; 2) tie client to IResource 
interface rather than a specific resource; 3) support different fulfillments 
of IResource that do not break client code; 4) use mock objects to satisfy 
IResource for testing.

Criticism of Dependency Injection arises from its cost and misapplica-
tion. Overuse is possible, especially since passing a parameter is syntacti-
cally easy. As noted in Chapter 6, in regard to inheritance, any design that 
is easily implemented leads to overuse. Dependency Injection increases cli-
ent responsibility and may compromise readability by replacing an encap-
sulated, specific dependency with choice restricted only by an interface. 
The client must acquire knowledge of the dependency and assume respon-
sibility for its acquisition. Externalization undermines encapsulation and 
may introduce a significant degree of redundancy. Instead of confining 
the realization of a dependency to a single class design, every client must 
fulfill the dependency; the dependency must be passed for every construc-
tor call, or for a targeted setter (prior to invoking specific methods), or for 
every method that uses the dependency. Dependency Injection has also 
criticized for increasing build times and decreasing performance.

Dependencies must go somewhere. Should design internalize or exter-
nalize a resource? The costs and benefits of externalization may not be 
obvious. To design maintainable code, consider likelihood of change 
(resource and interface), testing requirements, and client expectations. 
With Dependency Injection, a good question for class designers is ‘when 
to stop externalizing resources’?

4.7 DESIGN PRINCIPLES
Composition is a design approach that structurally preserves internal con-
trol while supporting variable cardinality, lifetime, association, and own-
ership. Delegates support code reuse while isolating clients from change. 
Yet, variability and testing often warrant the acquisition of a delegate via a 
constructor or method. Exposure of a dependency (delegate) to the client 
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undermines encapsulation. This design tension drives the assessment 
of current expectations alongside anticipation of future requirements. 
Composition rests on encapsulation and promotes maintainability by 
wrapping instability. Dependency Injection externalizes the responsibility 
to acquire and initialize resources (dependencies). The two designs may be 
used together, with precise contractual details, to yield a viable, reusable 
structure.

The Dependency Inversion principle states that high-level modules 
should not depend on low-level modules, that is, abstractions (type defi-
nitions) should not depend upon details (e.g. encapsulated filenames). 
Adherence to this principle suggests the export of internal dependencies. 
An assumption underlying Dependency Injection, however, is that the pub-
lic interface (which would include the dependency) is stable and abstract. 
Satisfying an abstract interface for a variety of data input sources does not 
expose a specific dependency; nor does it tie the client to an unstable type. 
Nonetheless, Dependency Injection should be judiciously employed – all 
data could be injected for maximum flexibility but doing so would defeat 
the utility of the class construct.

4.8 SUMMARY
Encapsulation, appropriate OO relationships and contractual design pro-
mote maintainability and code reuse. Containment is an intuitive and 
straightforward design since the contained objects provide little or no 
functionality to the designed class. Composition reflects a higher degree of 
type dependency but retains internal control. Type dependency drives the 
choice between composition (has-a) and containment (holds-a). If an object 
must use functionality provided by a subobject then the object is dependent 
on the subobject. If subobject state affects the state of the object then type 
dependency exists. In both cases, composition (has-a) is the appropriate 
relationship. Reliance on a subobject for essential functionality suggests that 
the composing object is of little value without the subobject.

Contrast our signal/sensor and customer/gift card examples. Since a 
sensor provides core functionality, the relationship modeled must be has-
a: a signal cannot operate without a sensor. However, a gift card may or 
may not provide functionality essential to a customer. If a retail customer 
shops without a gift card, a holds-a relationship is appropriate. In contrast, 
if a guest member must use a gift card, a has-a relationship is implied.

Composition and containment permit variation in cardinality, asso-
ciation, lifetime, and ownership. Contractual design should specify these 
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details in the class or implementation invariant. How many subobjects 
exist? Can the number be zero? Is cardinality determined upon construc-
tion? Is number of subobjects fixed across the object’s lifetime? The more 
stable the structure, the more likely that a has-a relationship should be 
modeled. Likewise, consider ownership. Who owns the subobject(s)? 
Is ownership permanent? Ownership implies responsibility, even with 
implicit deallocation, and suggests a has-a (composition) relationship. Yet, 
the ability to transfer ownership, either assuming or releasing ownership, 
does not immediately imply either has-a or holds-a. What are the condi-
tions under which such transfers occur?

Although many terms used in design discussions overlap, their defini-
tion should be clear. Wrappers may wrap delegates and reflect the same 
or an altered interface. Delegates may fulfill dependencies and can be 
injected. Dependency Injection may support postponed instantiation as 
well as the replacement of delegates. Interfaces may force the echo of del-
egates’ public functionality, etc. Consistent use of terminology and explicit 
documentation clarifies design. Composition design may mix and match 
from a variety of design options: replacement, postponed instantiation, 
transfer of ownership, modification of state, echoing interface, variable 
cardinality. That’s the beauty of internal control!

4.9 DESIGN EXERCISE
To apply the design concepts covered in this chapter, consider the fol-
lowing problems. First, define a class openRange that tracks the num-
ber of given integers queried within a specified range, much like the 
inRange class from Chapter 1 but with the ability to provide bound-
ary values upon request. Key differences then are the lack of any state 
controlling access (on/off) and the provision of getters to retrieve upper 
and lower bound values. Next, define a class mmmRange that tracks 
the number of given integers queried within a specified range, much 
like the inRange class from Chapter 1 with support for querying 
minimum, maximum, and mean values. Both these class designs rest 
on code reuse. Hint: consider composition where the subobject is an 
instance of the inRange class.

A third design problem is to reuse the feeLedger class from  
Chapter 2 with postponed instantiation and suppressed copying. Define  
a trafficStats class that tracks traffic volumes and fines associated 
with a specific intersection. The primary functionality is to count cars, in 
the four directions through the intersections. A secondary task is to record 
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fines. A feeLedger delegate records fines and thus is not needed until 
the first fine is processed.

Finally, using Dependency Injection, define a class cyclicSeq that 
generates successive values from an encapsulated arithmetic sequence, 
skipping values contained in a forbidden set. Appendix B.4 provides and 
analyzes C# solutions.

DESIGN INSIGHTS

Implementation Invariants records key design decisions

Software Design

Much variety achievable by varying association, ownership, and 
cardinality

Containment models collections with weak type dependency

Subobject not essential

Composition suggests (internalized) code reuse with type dependency

Stable association, lifetimes correlated

Postponed instantiation of subobject possible

Flexible with respect to cardinality, ownership, and association

Dependency Injection

Accept subobject from client via constructor, method(s) or setter

CONCEPTUAL QUESTIONS

1. Why are lifetime, association, and cardinality important design details?

2. Describe the major differences between has-a and holds-a.

3. When is type dependency important in design?

4. How does modification and replacement affect the stability of 
subobjects?

5. Why would a class designer choose to echo all or part of a subobject 
interface?

6. What are the key benefits and costs of postponed instantiation?
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C h a p t e r  5

Inheritance

CHAPTER OBJECTIVES

• Define common forms of polymorphism

• Illustrate dynamic binding

• Outline virtual function tables

• Define abstract classes

• Evaluate inheritance design approaches

5.1 AUTOMATE TYPE CHECKING
When is an inheritance design valuable? When is it not? Unfortunately, 
these questions are not routinely asked. Yet, software designers should 
know when to use inheritance, and when not, especially since inheritance 
can be simulated with composition. To motivate appropriate use of inher-
itance, consider augmenting the Icon type (from Chapter 1) to support 
variant movement. Objects instantiated from this new IconM class can 
spin, slide, or hop, with the restriction that any particular IconM object 
is capable of only one type of movement. A spinner cannot hop, a hop-
per cannot slide, etc. The type of movement associated with an IconM 
object is set upon construction and thereafter does not change. A slider 
cannot spin, not now, not ever. Example 5.1 shows the monolithic class 
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design accommodating variant movement according to the movement 
‘type’ of an IconM object.
IconM is monolithic (meaning formed from a huge block of stone) 

because it carries all data and (private) functionality needed for move-
ment variants (spin, hop, slide). As the primary functionality of an 
IconM object, movement determines speed and energy consumption. 
For each IconM object to behave consistently, the class must track 
movement ‘subtype’. The constructor sets the ‘subtype’ upon instan-
tiation – a value that should not change during an object’s lifetime. 
Type identification is shared between the client and class designer via 
the ‘type’ value passed to constructor. IconM::move must check ‘sub-
type’, as shown in the if/else statement in move(). Such type iden-
tification must be replicated in every method that varies response 
according to subtype – an approach that invites inconsistency and 
is not maintainable.

Example 5.1 C++ Monolithic Class for Icon Movement

class IconM
{    float  speed, energy;
     int         x, y;
      //spinner, slider or hopper 

unsigned    subtype;            

     bool       clockwise;     // need for spinner
     bool       expand;        // need for spinner

     bool       vertical;      // need for slider
     int        distance;      // need for slider

     bool       visible;       // need for hopper
     int        xcoord, ycoord;      

     void  spin();
     void  slide();
     void  hop();
   public:
     // constructor must set subtype 
     IconM(unsigned value = 1)  
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      // use enum for readability 
{    subtype = value;            

           // and then test subtype to set  
// associated fields

     }
      // tedious subtype checking:  

// subtype drives movement 
     void move()
     {    if (subtype == 1)           spin();
          else if (subtype == 2)      slide();
          else                        hop();
     }
};

The IconM design is not extensible. Introduction of a new movement 
variant forces the incorporation of a new ‘subtype’ value in every exis-
tence check, in every method whose response is controlled by subtype. 
To define ‘oscillate’ as a fourth type of movement, the class designer 
must modify the IconM class to include the oscillate subtype value and 
to add data and functionality for oscillation. All methods dependent on 
subtype, such as move(), must be modified to test for the oscil-
late subtype. Example 5.2 shows this tedious, error-prone means of 
expanding a type system, for just one method. Enumeration literals 
would improve readability but the need to open up a class for modifica-
tion remains a design flaw.

Example 5.2 Tedious Type Expansion without Inheritance

     // ALL methods in Icon that check  
// subtype must be altered  
//         => ERROR PRONE software maintenance

     //   subtype drives movement 
void IconM::move()   

    {    if (subtype == 1)            spin();
         else if (subtype == 2)      slide();
         else  if (subtype == 3)      hop();
         else                         oscillate();
    }

Example 5.1 shows that variant movement requires specialized 
data and functionality. Subtype is internally tracked in order to select 
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appropriate data and functionality. ‘Manual’ tracking, via if/else or 
switch statements, is onerous and error-prone. Inheritance is an attrac-
tive alternative. Essentially, inheritance is the definition (derivation) of a 
new class using (based on) an existing class. Historically, C++ used the 
terms base and derived classes. A derived class ‘inherits’ everything from 
the base class. A derived class object has an implicit base component that 
the compiler allocates and initializes before entering the derived class 
constructor.

Java popularized the terms parent and child classes but there is no con-
ceptual limit to inheritance. A class hierarchy can be many levels deep: a 
derived class can inherit from another derived class. Equivalently, a child 
class can inherit from another child class. An initial class definition serves 
as the base from which multiple descendants may be defined. For consis-
tency, we use base to refer to the initial class in an inheritance hierarchy 
and derived to refer to any descendant. We use the terms parent and child 
when considering the relationship between an ancestor and its immediate 
descendant.

A redesign of IconM using inheritance produces a more consis-
tent and maintainable design, as shown in Example 5.3. The base 
IconParent class defines common data: location, speed, and energy 
reserves. Derived classes specialize movement: clockwise or coun-
terclockwise spinning; vertical or horizontal sliding; and, hopping. 
Cohesion and readability are improved by the encapsulation of special-
ized movement in child classes. What happens now if an oscillate 
subtype is needed? Define another child class. The IconParent 
class is not affected. The Spinner, Slider, and Hopper classes  
are not affected. IconParent improves maintainability, a primary 
benefit of inheritance. Type extension should not impact existing 
classes.

Example 5.3 C++ Icon Class Hierarchy

class IconParent
{    protected:
          float speed, energy;
          int   x, y;
     public:
           // sets base values 

IconParent (float accel)  
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       {  speed = accel;   }
           
          void move()     { … } 
};

class Spinner: public IconParent
{    protected:
          bool        clockwise, expand;         
          void  spin();
      public:
         // constructor may invoke  

// parent constructor
           Spinner(float accel): 

IconParent(accel)     { … } 
          void move()          { spin(); … }   
};         

class Slider: public IconParent
{     protected:
           bool       vertical;     
           int        distance;  
        void    slide();
      public:
            Slider(float accel): 

IconParent(accel)     { … } 
           void move()          { slide() ;… }  
};

class Hopper: public IconParent
{    protected:
          bool        visible;        
          int         xcoord, ycoord;
          void        hop();
     public:
           Hopper(float accel): 

IconParent(accel)      { … }
          void move()          { hop();  … }   
};

Object instantiation of a descendant class triggers the invocation of 
two constructors: the parent constructor fires first, followed by the child 
constructor. The compiler invokes the parent no-argument constructor 
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unless the descendant class constructor specifies a different parent con-
structor in its initializer list. Essentially, the compiler patches in a call 
to a parent constructor as the first statement in the child constructor. In  
Example 5.3, the descendants of IconParent pass up a float value to the 
parent constructor.
IconParent data members may be declared protected rather than 

private to permit access from derived classes. Parent classes may also 
declare utility methods as protected rather than private. Protected util-
ity functions exemplify code reuse: all derived classes can use the parent 
utility function so it need be defined only once. Sibling classes access the 
same public and protected interfaces. Sibling objects each have their own 
implicit copy of the parent component, sharing only static parental data. 
Thus, siblings share the commonality of an is-a relationship with the same 
parent type but sustain no direct relationship with each other.

Designing an inheritance relation, and determining the best accessibility 
(protected or private), may be tricky. Protected accessibility opens access only 
to descendants, but the number (and development) of descendant classes is not 
constrained. With protected accessibility, a parent cannot restrict the actions 
of a descendant class. Hence, protected data is more vulnerable than private. 
Private accessibility restricts access to the immediate class, insuring design 
consistency but limiting change. A parent class may keep its data private and 
provide conditional, protected mutators, and accessors. If descendant access 
is not to be restricted that data may simply be defined as protected.

In the IconParent inheritance hierarchy, data and functional-
ity for specialized movement are defined in the appropriate child class. 
Consequently, the subtype field, as defined in the monolithic IconM 
class of Example 5.1, is no longer needed. With inheritance, subtype is 
no longer ‘manually’ tracked; the derived class name denotes the sub-
type. For hopping, instantiate a Hopper object; for spinning, instanti-
ate a Spinner object, etc. An oscillate subtype is defined simply as 
another descendant of IconParent: its definition does not impact any 
existing classes. Inheritance is thus preferred for extensibility. Yet, inheri-
tance may not always be the optimal design. We contrast inheritance and 
alternative designs in Chapters 6 and 7.

5.2 POLYMORPHISM
Inheritance is easy to implement syntactically and does not require explicit 
design decisions with respect to copying and ownership of the parent com-
ponent. Inheritance designs are encouraged as a simple way to reuse code. 
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But composition also affords code reuse – the structural design of inheri-
tance can be mimicked with composition. Code reuse, on its own, is not a 
sufficient rationale for inheritance. A composing class can gain access to 
all the public data and functionality of an encapsulated object that could 
otherwise be a “parent”. If access to protected data and functionality is 
desired, a wrapper class can be defined with the sole purpose of open-
ing up the protected data and functionality. Accessibility, on its own, is 
not a sufficient rationale for inheritance. What then is so important about 
inheritance, the major design construct of OOD?

The true power of inheritance is behavioral modification. A base class 
with a ‘unifying’ interface allows descendant classes to define a range of 
variant behavior that conforms to this inherited interface. Heterogeneous 
collections and substitutability, two design touchstones of extensible 
code, are feasible only under such a shared interface. Functionality (behav-
ior) can vary within class hierarchies. OOPLs support polymorphism, that 
is, dynamic binding of function calls so that a single object handle can 
provide access to varying behavior at run-time.

The Greek roots of the word “polymorphism” are: many (poly) and 
form (morph). Polymorphism in software then refers to a function, 
method, class, or type name that is associated with more than one form 
or implementation. What are the costs and benefits of polymorphism? 
How does design effectively use polymorphism? It depends on the type of 
polymorphism.

5.2.1 Overloading

Software design employs different types of polymorphism. Overloading 
occurs when a function has multiple definitions, each distinguished by 
the function signature (function name and the number, type, and order 
of parameters). Constructors are commonly overloaded. Though not obvi-
ous, the constructor defined in Example 5.1 yields overloaded versions 
for the client. If the client provides a value when instantiating an IconM 
object, the compiler calls the constructor that takes an unsigned. If no 
value is provided (as when an array of C++ IconM objects is declared), the 
no-argument constructor is invoked; the compiler calls the constructor 
that takes an unsigned and patches in the default unsigned value of ‘1’.

Functions for routine processing may be overloaded. Example 5.4 illus-
trates various reset routines. Elements of an array could be reset to: a com-
mon value such as zero; a specified (passed) integer value; a value scaled up 
or down by an additive or multiplicative factor.
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Example 5.4 Overloaded Functions

void reset()
{    for (int k=0; k < size; k++)
          A[k] = 0.0;
}    
void reset(double value)
{    for (int k=0; k < size; k++)
          A[k] = value;
}    
void reset(bool op, int factor)
{    if (op)
         for (int k=0; k < size; k++)
               A[k]*= factor;
     else
          for (int k=0; k < size; k++)
               A[k] += factor;
}    

5.2.2 Generics

Parametric polymorphism refers to code that has the same structure but 
operates on different types of data. Swapping two values is a classic exam-
ple of a function that performs the same actions regardless of data type, 
as shown in Example 5.5. Likewise, similar actions unfold for sorting, 
searching, etc. Typed versions of essentially the same function are needed 
in a statically typed language because the compiler must know size (and 
thus type) to allocate space for local variables and parameters. Yet, if the 
underlying data type does not affect code instructions, a placeholder could 
stand in for the data type; the compiler could supply an actual type when 
needed. That is exactly what generic, or templated, code does.

Example 5.5 Consistent Behavior => C++ Generic Functions

void swap(int& x, int& y)     
{    int  hold = x;           
     x = y; y = hold;     
}
void swap(float& x, float& y) 
{   float  hold = x; 
     x = y; y = hold;
}
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template<typename     someType> // generic version
void swap(someType& x, someType& y)
{    someType  hold = x;
     x = y; y = hold;
}

Container are good candidates for templated code since data storage 
and retrieval is unaffected by type. A stack pushes, pops, tests for empty, 
and clears no matter the type of data it stores. A priority queue stores data 
in order, requiring any data type stored to support comparison; otherwise, 
a priority queue operates independent of type, etc. Templated code is a 
realization of parametric polymorphism: functions, methods, or classes 
that are defined independent of a specific type. C++ advanced the use of 
generics by developing and disseminating the STL (Standard Template 
Library). One generic version easily represents an unlimited number of 
implementations by using a type placeholder rather than a precise type. 
The compiler generates a specific implementation of the generic defini-
tion when the client designates a type. Design redundancy is thus greatly 
reduced though code bloat may ensue.

5.2.3 Subtype Polymorphism

Subtype polymorphism requires inheritance and relies on base class ref-
erences (or pointers). Subtype polymorphism provides ‘automatic’ support 
of variant behavior: the compiler tracks subtype, not the class designer 
(as was the case for IconM). Function call resolution is postponed until 
run-time, requiring an extra layer of indirection. Method invocation is 
processed through a base class reference (or pointer) that holds the address 
of an object (subtype) that conforms to the base class interface. The com-
piler verifies the legality of the call (proper form and public accessibility) 
and generates code for an indirect rather than a direct call. The call is 
resolved at run-time via a subtype check of the object whose address is 
held in the base reference (or pointer). The run-time subtype determines 
what method executes.

A base class reference (or pointer) is called a polymorphic handle 
because it can hold the address of an object of any subtype in the class 
hierarchy. Methods that are bound at run-time are called virtual (or 
dynamically bound) methods. Virtual methods usually have multiple 
implementations in a class hierarchy. Calling a virtual method through 
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a polymorphic handle may yield different results on different runs of the 
same software. Essentially, a method is chosen, at run-time, according to 
the subtype of the object whose address is held in the reference or pointer. 
Since, the address stored in a pointer (or reference) may change from one 
run to another, the subtype of the indirectly addressed object may vary.

Function invocation requires the compiler to generate the code neces-
sary to: store and transfer data, record the program counter so that control 
returns to the point of call upon function termination, and issue a direct 
or indirect JUMP statement. In C++ and C#, function calls are statically 
bound by default for efficiency. The compiler translates a call to a non-
virtual method into a direct JUMP to a specific method address. Since 
the address patched into the JUMP statement cannot change, there is no 
flexibility but there is also no run-time overhead. Virtual methods offer 
an alternative to static binding. The compiler translates a call to a virtual 
method into an indirect JUMP statement. With dynamic binding, method 
selection is postponed until run-time (for details, see Section 5.5), possibly 
yielding variant behavior. Subtype polymorphism provides run-time flex-
ibility by replacing the static resolution of a method call with dynamic res-
olution. OOD that uses inheritance well relies on (subtype) polymorphism.

Dynamically bound function calls provide flexibility. A virtual method 
call is not tied to one address. Yet, the impact on performance can be sig-
nificant. The software must absorb the run-time overhead of resolving 
function addresses. The inability to inline virtual methods though prob-
ably degrades performance more, as examined in the next section.

5.2.4 Function Inlining

Function decomposition improves readability and affords code reuse by 
isolating functionality. However, function calls are not free. Just like any 
branch statement, a function call breaks sequential processing – twice, in 
fact: a jump to the function and then a jump back (a return). Jump state-
ments flush the instruction pipeline, causing the loss of low-level parallel-
ism. An excessive number of jumps negatively impacts performance.

Inlining is an optimization technique that replaces a function call with 
the body (code) of the function. Call, return, and stack frame setup are 
avoided with inlining, as is flushing of the instruction pipeline. Such opti-
mization is best left to modern compilers. Although inlining may appear 
to be as simple as replacing a function call with the function body, local 
variables, and return statements must be transformed. Small functions are 
less likely to have several local variables or multiple returns and are easier 
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to inline. Compilers inline small functions because call overhead may 
exceed execution cost. Function inlining increases code size for improved 
performance. Ironically though, performance may decrease if inlining 
triggers excessive page faults due code bloat.

The keyword ‘inline’ is a suggestion to the compiler. It is unadvisable 
to ‘manually’ inline via copy & paste! Side effects interfere with ‘manual’ 
inlining. Common side effects include: 1) change to global or static vari-
ables, heap memory, or passed parameters; 2) control flow disruptions due 
to secondary function calls, event notification, or raised exceptions; 3) 
external effects of I/O and/or resource (database, registry, etc.) alteration. 
Custom replacement of a function call with code does not sustain change. 
Everywhere a function was manually inlined rather than called must be 
updated upon any change to the function definition – an error-prone and 
tedious endeavor. In general, inlining by design rather than by compiler 
reduces software readability, maintainability, and possibly, portability. Let 
the compiler work for you.

Compiler resolution of a type or a function call is called ‘static’ because 
the association between name and address does not change at run-time. 
Static resolution (binding) of function calls yields efficient code: since the 
exact function to invoke is known, the compiler may inline the function. 
Inlining avoids the loss of instruction-level parallelism that occurs when 
non-sequential code, such as a JUMP statement, is executed. This efficiency 
though produces less flexible code; if a function call is resolved at compile-
time, function selection cannot be modified at run-time. Enthusiasm for 
dynamic binding rests on the flexibility of run-time selection.

Dynamically resolved calls cannot be inlined. If the compiler cannot 
identify which function to invoke, the compiler cannot substitute actual 
function code for a function call, no matter how small the function. Thus, 
it can be especially costly to implement virtual set and get methods.

5.2.5 Costs and Benefits of Polymorphism

Table 5.1 summarizes these three types of polymorphism. Overloading, 
generics, and subtype polymorphism all provide variation with reduced 
design overhead. Overloaded function bodies look different. Generic 
function bodies and signatures look the same because identical actions 
are performed on different data types. Overridden methods support the 
same signature but alter behavior. Overloading is merely name reuse 
but enhances readability. Generics reduce development cost but may 
yield code bloat. Subtype polymorphism supports type extensibility and 
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maintainability, but increases run-time overhead and may impede optimi-
zation by preventing inlining.

5.3 DYNAMIC BINDING
“Insanity is doing the same thing over and over again and expecting 
the same results”, a quote misattributed to Einstein, may be common 
sense but can seem to contradict software execution. Run the same code 
twice with different input files, different results. Okay, technically, we 
are cheating because the two runs are not the same – the input data dif-
fers. When an input filename is chosen at run-time, different runs of the 
same code may yield different results. Such variability is also achieved 
via dynamic function selection. If a function to execute is chosen at 
run-time (via dynamic binding) then the same code may yield different 
results from one run to another. OOPLs automate such dynamic selec-
tion via inheritance.

Example 5.6 shows a simple C++ class hierarchy, where all defined 
methods are statically bound by default. The C# class design is similar, as 
shown in Example 5.9. The base (First) class defines two public methods 
(whoami and simple), in addition to a constructor with default values. 
Its immediate descendant, (Second), redefines one of these two inherited 
methods, (simple), and defines a new method (expand) as well. At the 
third level of the class hierarchy, the Third class redefines the inherited 
methods (simple) and (expand), and defines another public method 
(grand).

Example 5.6 C++ Class Design: Default Static Binding

// C++ class design – by default,  
// method calls statically bound
//        efficient but rigid
class First

TABLE 5.1 Types of Polymorphism

Characteristics Distinguished by Sample Effect

Overloading Parameters differ Function signature Multiple constructors
Generic Type-less Type placeholder Typed versions generated 

by compiler
Subtype Overridden methods Class scope Heterogeneous collections

Polymorphic delegates
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{   protected:
     int        x, y;
     int   level;
    public:
     First(int a = 1, int b = 10)
     {    x = a;     y = b;    level = 1;  }
      
     int whoami()     { return level;       }
     int simple()     { return x + y; }     
};  

class Second: public First
{   public:
      Second(int a = 10, int b = 100): 

       First(a,b) { level = 2; }
     
     int simple()    { return x * y; }
     int expand()    { return x * y * level;    }     
};  

class Third: public Second
{   public:
       Third(int a = 100, int b = 1000): 

      Second(a,b){ level = 3;}
     
     int simple()    { return x*y + x + y; }
      int expand()     

{ return x*y*level + x + y + level;  }
     int grand()      { return (x+y)*(x+y) * level; }
};  

With methods overridden at each level, there are three different 
definitions for simple()and two different definitions for expand(). 
What happens when simple()is invoked? Since a base class pointer 
(or reference) can hold the address of a base or derived class object, 
the firstPtr pointer array may hold addresses of any type in the 
First class hierarchy while the secondPtr pointer array may hold 
addresses of Second and Third objects. Statements #1, #2, and #3 
show the initialization of the two pointer arrays. Figure 5.1 shows sam-
ple memory layout of the typed pointer arrays and objects defined in 
Example 5.7.
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Example 5.7 C++ Client Code: Binding Dependent on  
Class Design

int main()
// default internals, x=1, y=10 
{    First      f1;  
      // default internals, x=10, y=100 

Second     f2;  
      // default internals, x=100, y=1000 

Third      f3;  
      
      First*         firstPtr[3];
      Second*        secondPtr[2];

      firstPtr[0] = &f1;                     // #1
      firstPtr[1] = secondPtr[0] = &f2;      // #2
      firstPtr[2] = secondPtr[1] = &f3;      // #3

       // invocation thru C++ stack objects  
// ALWAYS statically bound

       // same as cout << First::simple(&f1)  
       // #4: output 11 = 1 + 10 

cout << f1.simple() << endl;    

       // same as cout << Second::simple(&f2)  
       // #5: output 1000 = 10*100 

cout << f2.simple() << endl;    

       // same as cout << Third::simple(&f3)  

FIGURE 5.1 Sample Memory Layout for Example 5.7.

BK-TandF-DINGLE_9780367820817-200297-Chp05.indd   132 25/11/20   1:01 PM



Inheritance   ◾   133

      cout << f3.simple() << endl; 
       //#6: output 101100
                    //         = 100*1000+100+1000
       // invocation thru C++ pointer  

// can be dynamically bound
      //        BUT NOT HERE!
      for (int i=0; i< 3; i++)
            cout << firstPtr[i]->simple();// #7

      for (int i=0; i< 2; i++)
            cout << secondPtr[i]->simple();  // #8
      return 0;
}

The values printed at lines #4, #5, and #6 in Example 5.7 are con-
sistent with the type of object through which simple() is invoked. 
The pointer type (First) in statement #7 drives the invocation of 
First::simple(), computing “x+y” which yields 11, 110 and 1100. 
Although each pointer in the firstPtr array holds the address of a 
different subtype, simple()does not compute “x*y” and “x*y + x +y” for 
a Second object and a Third object, respectively. The compiler trans-
lates a statically bound call into a direct jump statement, based on the 
type of the handle through which the method is invoked: a handle typed 
to First yields First::simple(). With such static binding, it does 
not matter that simple() is overridden.

The output at point #7 – 11, 110 and 1100 – differs from output at points 
#4–6 – 11, 1000 and 101100 – despite the source of calls being the same 
object: namely, firstPtr[0]contains the address of f1, firstPtr[1] 
contains the address of f2, etc. With static binding as the default,  
the method invocation firstPtr[i]->simple() is resolved at compile- 
time. The compiler processes statements individually so it does not 
track the type of the object whose address is placed in a firstPtr 
array pointer. The key advantage of static binding is optimization. Since  
simple is merely a single return statement, it can be inlined: the code to 
compute “x+y” is generated in place, avoiding the overhead of a function 
call and return.

A trace of output point #8 yields similar results: simple() always 
computes “x*y”, yielding 1000 and 100000, despite the fact that the 
two pointers in the secondPtr array hold addresses of objects of 
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different subtype. Each simple() call is statically bound, and most 
likely inlined, computing “x*y” upon each call. With static binding, 
the subtype of the object whose address is held in the pointer does not 
matter.

5.3.1 whoami() Type Identification

All three classes define a constructor with default values. Integers pro-
vided by the client (or default values) initialize protected data members 
x and y. Descendant classes use the initializer list to pass values to the 
parent constructor. First class defines a whoami() method to return 
the value of protected data member level (which is reset in each class 
constructor). whoami() identifies the subtype of any object instantiated 
from the First class hierarchy: 1 for a First object; 2 for a Second 
object; 3 for a Third object. Since the statically bound whoami() 
accesses level after it is reset in each descendant constructor, type is 
correctly identified.
whoami() is a classic identification design. Each derived class con-

structor must initialize the protected data member level to the unique 
value associated with its class definition. The client may track subtype if 
the association between level and its type is exposed. Design vulner-
abilities include failure of the class designer to set level appropriately in 
constructors (especially in derived classes defined long after the original 
design) and failure of the client to track subtype correctly. Modern lan-
guage constructs (polymorphism!) reduce the need to explicitly track type 
in this insecure manner. Again, the automation of type checking is a key 
motive for using inheritance.

5.3.2 Keywords for Dynamic Binding

To achieve dynamic binding in C++ and C#, one must tag a method as 
“virtual” in the base class. Simply adding the keyword virtual to a 
method name is the only change needed in Example 5.6 to trigger dynamic 
binding. Example 5.8 shows this modification. Once a method has been 
labelled virtual, all descendant classes inherit that method as a virtual 
method. We explain subsequently why a method is “once virtual, always 
virtual”. Using the class First, as defined in Example 5.8, wherein sim-
ple() has been modified by virtual, the client code of Example 5.7 
produces dynamic function resolution at statement #7, yielding output: 11, 
1000, 101100.
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Example 5.8 C++: Virtual Keyword Tags Functions  
for Dynamic Binding

// C++ – dynamic function identified  
// by keyword virtual 
// ONLY change to Example 5.6 to  
// achieve dynamic binding
class First
{   protected:
     int       x, y;
     int       level;
    public:
     First(int a = 1, int b = 10)
     {    x = a;     y = b;    level = 1; }
      
     int whoami()         { return level; }
     virtual int simple() { return x + y; }    
};  

class Second: public First
{   public:
        Second(int a = 10, int b = 100): 

       First(a,b){ level = 2; }
     
     virtual int simple() { return x*y;   }
     virtual int expand() { return x*y*level;   }     
};  

class Third: public Second
{   public:
       Third(int a = 100, int b = 1000): 

      Second(a,b){ level = 3; }
     
     virtual int simple(){ return x*y + x + y; }
      virtual int expand() 

{return x*y*level + x + y + level;}
      virtual int grand()  

{return (x+y)*(x+y)*level;  }    
};  

As in C++, default binding in C# is static; methods must be declared 
virtual in order to postpone call resolution until run-time. C# syn-
tax though documents polymorphic behavior: to override an inherited, 
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virtual method in C#, the descendant implementation must be labeled 
override. Example 5.9 illustrates this forced pairing of virtual 
with override. In C++, it is not necessary to label an overridden 
virtual method but design guidelines recommend using the keyword 
virtual so that class designs are self-documenting. C++11 added  
the optional keyword override in order to promote self-document-
ing code.

Using the C# First class hierarchy, defined with virtual methods, the 
C# client code in Example 5.10 is analogous to that of Example 5.7. At out-
put point #G, the values printed are “1100”, “100000”, and then “101100”. 
Why? The call simple() is not resolved until run-time. The compiler 
does not translate the method invocation into a direct JUMP statement 
but generates the code necessary to determine, at run-time, which method 
to execute. Each element of the firstPtr array is examined at run-time 
to determine the type of the object whose address is held therein. Since 
firstPtr[0] holds the address of a type First object, simple() from 
class First is invoked, yielding 100 + 1000. Since firstPtr[1] holds 
the address of a type Second object, simple() from class Second 
is invoked, yielding 100*1000. Since firstPtr[2] holds the address  
of a type Third object, simple() from class Third is invoked, yield-
ing 100*1000 + 100 + 1000. A similar analysis confirms “1000” and then 
“101100” as the output at point #H.

If the keywords virtual and override were missing in the class 
hierarchy of Example 5.9, then the C# client code in Example 5.10 would 
display the same static binding effects as those from the C++ class hier-
archy in Example 5.6. (Aside: a C# child class redefinition of an inherited 
non-virtual method produces unexpected behavior – both the child and 
the parent functionality runs when the non-virtual method is invoked 
through a child object.) What about Java? Java uses dynamic binding for 
all methods and does not have (or need) a keyword virtual. Hence, 
Java code is more consistent than C++ and C#: there is no guesswork with 
respect to binding; function call resolution is always postponed until run-
time. Java’s code consistency though is costly – the compiler cannot opti-
mize via inlining when methods are dynamically bound.

Example 5.9 C#: Virtual Functions Tagged and Then Overridden

// C# class design – tagged  
// function calls dynamically bound
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//   redefined functions must be  
//   labeled ‘override’
public class First
{    protected int x;
     protected int y;
     protected int level;

    public  First(int p = 100, int q = 1000)
    { level = 1;          x = p;        y = q;   }
     
      public  virtual int simple()      

{   return x + y;  }         
}  

public class Second: First
{    public Second(int p = 100,  
     int q = 1000): base(p,q)
     { level = 2; }
     
     public override int simple() 
     { return x*y; }
      public virtual int expand()    

{ return x*y*level; }            
}  

public class Third: Second
{    public  Third(int p = 100,  
     int q = 1000): base(p,q)
     { level = 3; }
     
      public override int simple() 

{   return x*y + x + y;   }
     public override int expand()
     {    return x*y*level + x + y + level;     }

      public virtual int grand()  
{ return (x+y)*(x+y)*level;     

}  

Figure 5.2 illustrates the C# object layout for the client code of  
Example 5.10. Since C# defines all objects as references, dynamic bind-
ing is immediately achievable through such reference variables. C# virtual 
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methods are invoked in the same manner as statically bound methods – 
through an object (which is reference). The indirection mandated by using 
objects as references supports flexibility. If the address held in a reference 
changes, the object (and possibly the subtype) so referenced changes.

By default, C++ objects are allocated on the stack; the compiler assigns 
an object a (relative) address in a stack frame with space allocated for all its 
data members. An object allocated on the stack cannot change type due to 
a potential change in size. Method invocation through a C++ object can-
not be postponed because the type of a stack object cannot vary. Hence, 
dynamic binding is not directly achieved through C++ objects; base class 
pointers must be used. A base class pointer can hold the address of a base 
or derived class object. Changing the address held by a base pointer may 
change the subtype of the object so indirectly accessed. Using C++ point-
ers to access (heap) objects provides the same indirection that is implicit in 
C#. In C++, dynamic method invocation is a two-step process: 1) declare 
a method virtual in the base class; and 2) call the virtual method through 
a base class pointer.

Example 5.10 C# Client Code for Example 5.9

// client code 
First     a = new First();

FIGURE 5.2 Sample Memory Layout for Client Code in Example 5.10.
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Second    b = new Second();
Third     c = new Third();

First[]        firstPtr = new First[3];
Second[]       secondPtr = new Second[2];

firstPtr[0] = a;
firstPtr[1] = secondPtr[0] = b;
firstPtr[2] = secondPtr[1] = c;
 
for (int i=0; i< 3; i++)
    Console.WriteLine(firstPtr[i].simple());  //#G

for (int i=0; i< 2; i++)
    Console.WriteLine(secondPtr[i].simple()); //#H

In C++ and C#, the only method that may not be virtual is the con-
structor. Conceptually, a virtual constructor implies the postponement 
of type selection until run-time. But if type determines call resolution at 
run-time, how can type selection be postponed until run-time? Several 
design patterns mimic virtual construction [Gam95] by adding a layer to 
construction code. In C++, virtual methods may not be called from the 
constructor (restricting the application of the Template Method design 
pattern).

5.4 HETEROGENEOUS COLLECTIONS
In Examples 5.7 and 5.10, sample arrays firstPtr and secondPtr 
represent heterogeneous collections: aggregates of different (sub)types of 
data that can be treated uniformly. Heterogeneous collections support a 
common interface for all types within the collection. Varying behavior 
results when each different subtype satisfies the inherited interface but 
implements different functionality. In the First example, simple() 
provides variable response according to subtype.

For software maintainability, isolate code that deals directly with type. 
Code construction functions may be defined to cleanly seed heteroge-
neous collections. If a new subtype is added to a class hierarchy, then the 
construction routine(s) must be modified. Example 5.11 illustrates the 
isolation of object construction code in a function, and is an appropriate 
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design for both C++ and C#. The key language difference is that C++ pro-
grammers must manage heap memory while C# programmers do not. 
Every C++ caller to GetObjAddr() assumes responsibility to deallocate 
or transfer the ownership of the heap object so received. GetObjAddr() 
returns the address of a default object if none of the tested conditions hold.  
In contrast, GetObj() returns a null reference so the caller most likely  
must add existence checks before using the reference.

Example 5.11 Polymorphic Object Construction Code

// object construction evaluates  
// environment, possibly file input
//   generates an object of some  
//   type from class hierarchy
//   => can return address of  
//   any object from class hierarchy
//   => subtype of object allocate  
//   determined at run-time
// 
// addresses generated at run-time 
//   => cannot ‘guess’ what  
//   (sub)type of object allocated 

// C++ base class pointer can  
// hold address of ANY subtype object 
First* GetObjAddr()
{    if (condA) return new First;          
     if (condB) return new Second;    
     return new Third;          // derived type II
}    // ownership of object passed back

// C# base class reference can hold 

 
// address of ANY subtype object 
First GetObj()
{    if (condA) return new First();       
     if (condB) return new Second();      
     if (condC) return new Third();       
     return null;        // DANGEROUS
          // may yield System.NullReferenceException
}     // ownership of object passed back
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Polymorphism promotes extensibility – the ability to extend a given 
class hierarchy without breaking existing client code. There is no need for 
a whoami method with well-designed polymorphism. Additional classes, 
say Fourth and Fifth, could easily be added to the class hierarchies 
in Examples 5.8 and 5.9 without affecting existing classes. These type 
extensions would not break any client code using polymorphic handles; 
the only needed change would be the object construction code isolated  
in GetObjAddr() or GetObj(). As shown in Example 5.12, use of a 
heterogeneous collection is stable since the subtype of a particular object 
is not exposed.

Example 5.12 Heterogeneous Collections Hide Subtypes

// initialization of heterogeneous  
// collection:subtype hidden
// at compile-time, do NOT know  
// type of object generated 

// C++ heterogeneous collection  
// => must handle heap memory
First*          bigPtrArray[100];
for (int k = 0; k < 100; k++)
     bigPtrArray[k] = GetObjAddr();

for (int k = 0; k < 100; k++)
      // dynamic behavior 

bigPtrArray[k]-> simple();      
//   …
// MEMORY MANAGEMENT: release heap  
// memory before leaving scope
// deallocate dynamically allocated objects 
for (int k = 0; k < 100; k++)
     delete     bigPtrArray[k];

// C# heterogeneous collection 
First[]      bigArray = new First[100];
for (int k = 0; k < bigArray.Length; k++)
     bigArray[k] = GetObj();

for (int k = 0; k < bigArray.Length; k++)
     bigArray[k].simple();     // dynamic behavior
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5.5 VIRTUAL FUNCTION TABLE
How does dynamic binding work? The solution is both elegant and 
efficient: jump tables. Each class has its own jump table, called a vir-
tual function table or vtab, which stores the address of each virtual 
method inherited or redefined in the class. For dynamic call resolution, 
the compiler generates code to, at run-time, select a vtab according to 
subtype and extract the appropriate method address. When a child class 
is defined, the compiler copies the parent vtab over as a default vtab for 
the child class. A child class inherits a copy of its parent’s vtab even 
if it does not add or redefine any inherited virtual methods. Hence, a 
method defined as virtual in the base class automatically is virtual in all 
descendant classes.

Each virtual method in a class definition is associated with an offset 
within the virtual function table (vtab). Assuming that a pointer (address) 
is allocated 4 bytes, the first virtual function address is stored at offset 0, 
the second virtual function address will be stored at offset 4, the third vir-
tual function address will be stored at offset 8, etc. Table 5.2 displays sam-
ple vtabs for Examples 5.8 and 5.9. Since an additional virtual method was 
introduced in each descendant class, one additional entry was appended to 
each descendant class vtab. Function addresses may not be laid out exactly 
as illustrated: language standards need not specify layout. However, for 
any particular method, the offset in every vtab is the same. For example, 
the offset for method simple is always 0; the offset for method expand 
is always 4, etc. Only the addresses of methods tagged as virtual are placed 

TABLE 5.2 vtabs for Examples 5.8 and 5.9

First virtual function table (vtab)
Table Entry Virtual Function Address (Class definition)
Offset 0 simple() First::simple()

Second virtual function table (vtab)
Table Entry Virtual Function Address (Class definition)
Offset 0 simple() Second::simple()

Offset 4 expand() Second::expand()

Third virtual function table (vtab)
Table Entry Virtual Function Address (Class definition)
Offset 0 simple() Third::simple()

Offset 4 expand() Third::expand()

Offset 8 grand() Third::grand()
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in the class vtab. Recall that simple(), expand() and grand()) were 
all denoted virtual; whoami() was not labeled virtual.

Whenever a child class overrides a virtual, inherited method, the corre-
sponding entry in its vtab is updated to hold the address of the overridden 
implementation. If the child class does not override an inherited, virtual 
method, its vtab retains the parent’s address. The compiler’s vtab con-
struction explains the dictum: once virtual always virtual. If a descendant 
introduces a new, virtual method, the compiler expands the vtab, adding 
an entry at the bottom of the table thus preserving the existing offsets.

Rather than translating a function invocation directly into to a JUMP 
statement, as done with statically bound calls, the compiler generates addi-
tional instructions:

1. Get type tag of the object whose address is stored in pointer/reference

2. Go to the class vtab of the resolved subtype

3. Add the offset associated with the method name to the vtab base 
address

4. Extract the address of the target method from the vtab entry

5. Jump to the extracted address

Since polymorphic calls are invoked through a base class pointer (or 
reference), the compiler checks the base class for a matching signature, 
public accessibility and the presence (or absence) of the keyword virtual. 
The compiler generates extra instructions to extract an address from the 
vtab at run-time for virtual methods. The exact vtab used, base or derived, 
is not selected until run-time. Thus, it does not matter if the derived class 
fails to override the virtual method: the derived class already has an entry 
in its vtab, initialized with the address of its parent’s method.

5.6 ABSTRACT CLASSES
Heterogeneous collections are typed to an interface and can hold (addresses 
of) any object that conforms to that specified interface. Through this com-
mon interface, method resolution can be postponed until run-time. Data 
members and preliminary functionality are not typically considered part 
of an interface (and were not included in the C# interface construct prior 
to C#8.0). Abstract classes sit between a fully defined class and an inter-
face. An abstract class is an incomplete type definition, providing form but 

BK-TandF-DINGLE_9780367820817-200297-Chp05.indd   143 25/11/20   1:01 PM



144   ◾   Object-Oriented Design Choices

not all implementation details needed for a complete definition – either 
public constructors or implementation of at least one method are miss-
ing. Abstract type definitions may define data members and some default 
functionality even if implementation is incomplete.

Example 5.13 illustrates different ways to define abstract classes. Java 
and C# provide a keyword abstract to indicate that a class or method 
is not fully defined. Any C# class that contains an abstract method 
must be labelled abstract. C++ does not provide such a keyword, instead 
using the idea of ‘initializing a function to zero’. If the header of a virtual 
function is set “=0;”, there is no definition and the method is called a pure 
virtual function. Since it has no implementation, a pure virtual function 
has an entry in the class vtab initialized with the value “0”.

Example 5.13 Abstract Class Definitions

// C# abstract method MUST be in abstract class 
public abstract class Shape      
{    public  abstract void rotate(int degree);  
     public  abstract void draw();  
     …       
}

// C++ pure virtual methods make class abstract
class Shape
{    public:
          virtual void rotate(int) = 0;  
          virtual void draw() = 0;              
};

// any language: protected constructor,  
// no public constructor
public class Vehicle
{    protected  Vehicle(double value) { …  }
     // public methods but no public constructor
     …    
}  

In Example 5.13, rotate() and draw() are not implemented, so 
Shape is abstract. The compiler cannot support instantiation of Shape 
objects because it could not then resolve calls to rotate() and draw() 
through a Shape object. An abstract class forces inheritance. The derived 
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class(es) must provide an implementation for each pure virtual (abstract) 
method inherited from the base class, or the derived class remains abstract. 
The descendant Circle class provides a definition for each inherited pure 
virtual function, in Example 5.14. Note that Circle::rotate() does 
nothing. Because a NOP operation defines an implementation, the client 
can instantiate Circle, as shown in Example 5.15.

An abstract class may be defined by declaring at least one method 
without an implementation or by not providing any public constructors. 
Inheritance is required to complete an abstract class definition by provid-
ing a public constructor or completing all method implementations. A 
child class can invoke a protected constructor but a client cannot. The com-
piler patches in a call to the protected parent constructor from the child 
class constructor. Thus, a client may instantiate a Bicycle object but not 
a Vehicle.

Example 5.14 Derivation Completes Definition of Abstract Classes

// public constructor => C# descendant  
// class not abstract
public class Bicycle: Vehicle
{    public Bicycle(double value):  
     base(value)  { …  }
     …    
} 
 
// inherited methods defined  
// => C++ descendant class not abstract
class Circle: public Shape
{         point center;
          int        radius;
     public:
           Circle(point p, int r): 

center(p), radius(r) {}
          …    
           // once virtual, always virtual,  

// need not tag as virtual
          void rotate(int){} 
 
           // for readability tag as virtual          

virtual void draw(); 
};
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Example 5.15 C++ Client Cannot Instantiate Abstract Class

// cannot instantiate object from abstract class 
Shape s;  
// pointer can hold address of derived objects 
Shape*    sptr;  
// can instantiate fully defined descendant 
Circle    c;     

// given abstract class Shape and derived subtypes 
//        Circle, Square, Triangle, Star, …     
// initialize array of Shape pointers
//        each pointer can contain  
//        address of different subtype
// given GetObject() to construct  
// Shape subtype (on heap)
int main()
{    Shape*     composite[100];
     for (int i=0; i<100; i++)
          composite[i] = GetObjectAddr();  
          …
     // what is drawn?
     for (int i=0; i<100; i++)
          composite[i]->draw();      
}

Abstract methods are also known as deferred methods since defi-
nition is deferred to descendant classes. There is no code laid out in 
memory, and, thus, no address associated with a deferred method. The 
compiler cannot resolve invocation of a deferred method because, with-
out an address, it cannot translate the function call to a JUMP state-
ment. To forestall such errors, the compiler prevents object instantiation 
from an abstract class. Design intent and effect of abstract classes are 
summarized below.

1. Abstract Class Design Intent: – derived class(es) define behavior

• Incomplete Type Definition – deferred methods

• Function prototypes serve as placeholders

• Polymorphism – base class defines unifying interface for class 
hierarchy
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• Typed pointer (reference) holds address of derived object

• Calls through base pointer (reference) checked against base 
interface

2. Abstract Class Design Effect: – inheritance required

• Cannot instantiate objects

• Derived class remains abstract unless it redefines inherited 
deferred methods

• Heterogeneous collections expected => variant behavior 
supported

• Extensibility => new subtype definition does not affect existing 
types

An abstract class defines an interface without full implementation, 
establishing a dependency on descendants. The interface invariant for an 
abstract class should note the expected use (and any restrictions) of the 
public interface. The implementation invariant must describe expectations 
of descendant classes, the intended utility of polymorphic methods, and 
any default behavior that the abstract class may provide.

Abstract classes enforce a common interface for a class hierarchy, 
thereby promoting extensibility, and use of polymorphic objects and het-
erogeneous collections. Applications that handle data with common core 
functionality but specialized details are served well by abstract classes. 
For example, inventory and classification systems support common func-
tionality (toy selection in stores, timepieces) but hold data with varying 
characteristics.

5.7 INHERITANCE DESIGNS
Examples of inheritance abound but many do not illustrate effective or 
maintainable designs. Budd [Bud02] classified inheritance designs and 
distinguished between original (clean-slate) and modified (reused) design. 
Clean slate designs supporting the is-a relationship are summarized in 
Table 5.3.

Specialization describes subtyping: the child class redefines or overrides 
core, inherited functionality. When a parent provides default behavior and 
a child augments or redefines that behavior, preserving the interface, the 
design reflects specialization. Inheritance is anticipated but not required. 
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For example, the Icon subtypes varied movement: a Spinner is an Icon 
that spins, a Slider is an Icon that slides. Specialization may not unam-
biguously support the is-a relationship. A priority queue is a queue that 
specializes enqueueing while retaining the queue interface. Yet, potential 
starvation could prevent the use of a priority queue in place of a regular 
queue, thereby undermining the is-a relationship.

Specification defers implementation: child classes inherit a stable inter-
face from an abstract parent class but must implement all undefined behav-
ior; otherwise, a child class remains abstract. No object can be instantiated 
from an incomplete class. Consequently, specification requires inheritance 
and expects polymorphism. Specification differs from specialization: the 
child class does not refine an existing usable type but fulfills an incomplete, 
abstraction. A car is-a vehicle is a clear example of specification. A vehicle 
interface may ensure that all derivations (car, plane, boat) move but imple-
mentation details are deferred to child classes.

Extension idealizes augmented functionality: child classes add new 
methods but do not override parent class methods. Traditionally, exten-
sion was considered a pure form of inheritance because the inherited par-
ent interface was expanded but not compromised or redefined. In contrast, 
subtyping (specialization) retains the is-a relationship but its modification 
of inherited behavior may compromise substitutability. However, extension 
undermines heterogeneous collections because any method introduced by 
a child class is not accessible via the base class interface. Extension may not 
be an innocuous design, as seen in Chapter 7.

A simple example of extension is a TriAthlete class. A TriAthlete is-a 
BiAthlete: a TriAthlete runs and bikes like a BiAthlete but also swims. 
A BiAthlete is-a Runner: a BiAthlete runs like a Runner but also bikes. 
Extension differs from specification in that the base class is not abstract 
but an existing usable type. Extension differs from specialization in 
that the derived classes extend, and does not compromise, the inherited 
interface. Child classes have stricter broader interfaces. Yet, longevity is 
compromised when the base class interface is too narrow. For example, a 
heterogeneous collection typed the base Runner class may hold objects of 
type Runner, BiAthlete and TriAthlete. But the augmented functionality 

TABLE 5.3 Budd’s Inheritance Design Approaches

Characteristics Parent Interface Relationship

Specialization Redefines behavior Retained Is-a
Specification Completes abstract base Implemented Is-a
Extension Type expansion Extended Is-a
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of biking and swimming is not accessible through this heterogeneous col-
lection. Type extensibility is undermined when a client must extract (sub)
type to appropriately use derived subtypes in a heterogeneous collection. 
Chapter 7 examines design longevity in more detail.

5.8 OO DESIGN PRINCIPLES
Polymorphism justifies inheritance designs. A type interface defines core 
functionality. A polymorphic type expects redefinition in descendant 
classes. Use of heterogeneous collections exercises such variant behavior. 
Abstract classes promote an interface that requires inheritance. The Liskov 
Substitutability principle tags the inherent type extensibility of inheri-
tance and implies the power of heterogeneous collections. Any subtype 
can stand in for a base class object. Great variability can thus be achieved 
in stable software systems.

LSP (Liskov Substitutability Principle)
Given a type T with a subtype S defined via inheritance, any object of sub-
type S can serve in place of an object of type T.

Inheritance is warranted when substitutability and type checking are 
needed. Inheritance suggests maintainability due to the ease of type exten-
sion. Copy-and-paste reuse, a technique known to be error prone and a 
maintenance headache, is avoided with inheritance. In the next chapter, 
the choice between inheritance and composition is examined in detail.

5.9 SUMMARY
This chapter evaluated inheritance design, noting the benefits of substitut-
ability and heterogeneous collections. Polymorphism provides tremendous 
support for the design of elegant and extensible software. Subtypes conform 
to the base interface while providing variant behavior. If properly used, 
inheritance improves software maintainability. The exposition of virtual 
function tables clarified dynamic binding. Abstract classes were examined 
as a stable design, a placeholder for extensibility and for supporting heteroge-
neous collections. The chapter closed by examining classic, clean slate inher-
itance designs that justified the overhead of this fixed, stable relationship.

5.10 DESIGN EXERCISES
When constructing a class hierarchy, designers must consider accessibility 
(protected versus private) as well as appropriate binding (default of static 
or dynamic via virtual designation). Child classes should reuse rather than 
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replicate parent functionality. As the first exercise, design an inheritance 
hierarchy of generators where descendants specialize the retrieval of data 
values from an arithmetic sequence:

1. An arithSeq object yields the next value from its arithmetic sequence 
when in ‘advance’ mode, the previous value when in ‘retreat’ mode, 
and the current value when in ‘stuck’ mode. The client may alter an 
arithSeq object’s mode and reset an arithSeq object.

2. oscillateA is-a arithSeq and thus each oscillateA object operates like 
an arithSeq object, except that successive values returned from an 
oscillateA object oscillate between negative and positive values.

3. skipA is-a arithSeq and thus each skipA object operates like an arith-
Seq object, except that values returned from a skipA object reflect 
the skipping of some number of values – this skip value should be 
constant but variable from object to object.

A second design exercise is to extend the arithSeq class hierarchy by 
adding a skipA2 descendant that skips generated values that appear in a 
forbidden set. The client passes in the array of forbidden values (a simpli-
fied version of Dependency Injection – the injected resource is a data set 
rather than a database handle or network connection). Appendix B.5 pro-
vides and analyzes sample solutions.

DESIGN INSIGHTS

Code reuse, on its own, is not a sufficient rationale for inheritance.

Accessibility, on its own, is not a sufficient rationale for inheritance.

The true power of inheritance is behavioral modification.

Software Design

Isolate code that is highly dependent on explicit type

Let the compiler work for you!

Polymorphism is powerful

Promotes type extension and thus software maintainability

Removes need for external type validation
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Polymorphism is NOT free

Overhead of run-time binding

Prevents inlining of functions (key optimization technique)

Common interface required for heterogeneous collections

Documentation

Evaluate expectations for type extension

CONCEPTUAL QUESTIONS

1. What are the three common forms of polymorphism?

2. How is the notion of type relevant in each form of polymorphism?

3. How does each type of polymorphism impact software 
maintainability?

4. Describe the different effects of static and dynamic binding.

5. When would a heterogeneous collection be useful?

6. What does the phrase ‘once virtual, always virtual’ mean?

7. Why is tracking (sub)type not desirable?

8. Define type extensibility.
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C h a p t e r  6

Inheritance versus 
Composition

CHAPTER OBJECTIVES

• Identify constraints on inheritance designs

• Contrast code reuse via inheritance and composition

• Define callback and the Template Method pattern

• Illustrate the use polymorphic delegates

6.1 CONSTRAINED INHERITANCE
“Design first, then code”: software development should start at a high level, 
moving from requirements to design and onto implementation. Yet, no one 
has a crystal ball. Current design choices may limit the reuse of legacy code, 
especially if language features are not analyzed. Composition may be impeded 
by constrained access. Inheritance may be constrained by restricted type def-
initions, narrow interfaces, and the overlap of binding and accessibility.

6.1.1 When Only Composition Is Viable

Java uses the keyword final to tag constants, values that cannot change. 
Constants are broadly used for maintainability, efficiency and readability. 
Arbitrary values, such as capacity limits or cardinality, are best defined as 
constants to confine change to only one place in the code. Constants are 
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stored in the symbol table so that the compiler can replace them with their 
defined value. The symbol table may be retained for debugging but there 
is no program memory allocated for constants and thus no associated exe-
cution overhead for fetching a constant value from memory. Well-named 
constants improve readability, maintainability, and possibly performance.

Java’s keyword final prevents change in defined functionality and 
type. A final method cannot be overridden; a final class cannot have 
descendants. C#’s keyword to tag constants (like C++) is const and its 
keyword to prevent is inheritance is sealed. C#’s keyword sealed may 
also be used to prevent redefinition of an overridden virtual method: a child 
class can thereby prevent future method modifications from descendants. 
Traditionally, C++ provided no keyword to prohibit inheritance. C++11 
introduced the final modifier, to suppress inheritance. Prohibiting 
inheritance restricts future use and impedes testing.

Example 6.1 Suppressed Inheritance in C#

public sealed class Childless           
{    public bool isReady() { … }
     public int getKey()   { … }
     …    
}                     

// failed attempt to inherit   // compilation errors

public class reuseChildless   // reuse via composition
{    private Childless myDelegate;
     …
     bool isReady()
     {    return myDelegate.isReady();   }
}

// client code: Childless obj may  
// call isReady() and getKey()
// reuseChildless wrapper may call echoed isReady() 
Childless      obj = new Childless();
reuseChildless wrapper = new reuseChildless();  

Class design (in any language) may suppress inheritance. The absence 
of public and protected constructors prevents both clients and descen-
dants from instantiating objects. A public static access method must then 
be defined in order to give the client access to class functionality. Unable 
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to invoke a constructor to instantiate an object, a client must rely on this 
public static method – a design employed for resource management. See 
the Singleton pattern [Gam95].

Suppressed inheritance impedes testing. Recall that Dependency 
Injection supports testing by allowing test code to ‘inject’ a mock object 
rather than a real resource (such as a database or network connection). 
Mock objects, defined through inheritance, override methods dependent 
on external resources so that real resources are not used. Clearly, neither a 
C# sealed class or a C++ final class can be so easily mocked.

Whether mocked for test code or not, a sealed C# (or a final C++11) 
class may be reused via composition, as shown in Example 6.1. The class 
designer decides whether or not to echo the interface of the encapsulated 
object. In the reuseChildless class, isReady() is echoed; get-
Key() is not. Other design variants of composition not shown in this 
example include postponed instantiation and delegate replacement.

6.1.2 When Inheritance Leaks Memory: C++ Destructors

C++ class designers must carefully manage heap memory as shown in 
Chapters 2 and 3. To avoid heap memory leaks and data corruption, the 
class designer must explicitly determine copy semantics: suppress copying, 
or efficiently support deep copying. A destructor must be defined for deallo-
cation. The client is not responsible for invoking destructors; the compiler 
patches in destructor calls when stack objects go out of scope or when the 
delete operator is invoked for the release of heap objects.

C++ memory management becomes more complex when derived classes 
allocate heap memory. Destructors fire in reverse order of constructors. 
However, when delete is invoked through a polymorphic handle, binding 
affects outcome. To release a stack allocated Base class object, the compiler 
invokes only the Base destructor. To release a stack allocated Derived class 
object, the Derived destructor is invoked first, followed by the Base destruc-
tor. The Base destructor is implicitly invoked from the Derived destructor (a 
call to the Base destructor is the last instruction in the Derived destructor).

If a Base class pointer, myPtr, contains the address of a Base object, 
delete myPtr invokes the Base class destructor: no problem. What if 
myPtr holds the address of a Derived object? The compiler resolves calls 
based on the type of the pointer. With (default) static resolution of the 
destructor, only the Base class destructor is invoked so the Derived class 
destructor never runs. Failure to invoke the Derived class destructor leaks 
memory when the Derived class allocates heap memory. Ouch!
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Example 6.2 illustrates such a hidden memory leak. Test this code your-
self. When delete is called with Base class pointer b, the destructor 
call is statically bound so only ~Base() fires. Through no fault of the 
client, the 500 integers allocated on the heap for a Derived object leak 
because ~Derived() does not run. In statement #3, the client correctly 
calls delete for each heap object but with statically resolved destructors, 
only ~Base() is invoked. The client has followed convention (match every 
new with delete) and yet there is an invisible memory leak.

With heterogeneous collections, Base class pointers often hold addresses 
of Derived class objects. To ensure that the appropriate destructor is called 
through a base class pointer, destructor invocation must be postponed. 
The (sub)type of the object whose address in held in the base class pointer 
must be examined at run-time in order to execute the proper destructor(s). 
The setup is the same as with other virtual methods. A Base class pointer 
may hold the address of Derived object so if the destructor is dynami-
cally bound, the subtype resolved at run-time determines which destruc-
tor is called first (remember invocation of ~Derived() automatically 
yields ~Base()).

The fix is easy: make the Base destructor virtual. That’s all. No need 
to replicate Example 6.2. All code is the same except the keyword vir-
tual is placed in front of the destructor in statement #1. Now the address 
of each class destructor will be placed in its vtab (because once virtual, 
always virtual!). Hence, for “delete b” (statement #2) or “delete 
db[i]”(statement #3), the compiler patches in an indirect call to the 
destructor via the virtual function table, postponing destructor selection 
until run-time. If the Base pointer holds the address of a Derived object, 
the Derived class vtab yields the address of the Derived destructor, so 
the Derived destructor will be called, followed by a call to the Base 
destructor. Rerun the client code of Example 6.2, once the Base class has 
been defined with a virtual destructor. No memory leaks!

Example 6.2 Memory Leak Because Only Base Destructor Called

// class hierarchy: Derived class  
// allocates heap memory 
class Base
{   public:

     Base()  // NO heap memory allocated
     { cout << “Base CONstructor” << endl; }
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     ~Base() 
     { cout << “Base DEstructor” << endl; }     
};

class Derived: public Base
{    int*       ptr;
     int        size;
     …
     // copying suppressed                 
   public:
     Derived(int     aSize = 900)
     {    size = aSize;
          // heap memory allocated
          ptr = new int[size]; 
          cout << “allocated  ”   
          << size << “ints” << endl;
     }

     ~Derived()          // #1      
     {    delete[] ptr;  // deallocate heap memory
          cout << “deallocated  ”   
          << size << “ints” << endl;
     }
};

// Client code correct BUT MEMORY LEAK
void hiddenProblem()  
{    Base*      b = new Derived(500);
          // Base destructor non-virtual =>  
          // statically resolved
          // Compiler resolves call based on type  
          // of pointer b
          // => Derived destructor not invoked: 
          // 500 ints leak
     delete    b;     // #2     destructor invoked
     
     Base*     db[10];         // 500*10 ints leak
     for (int k = 0; k < 10; k++)
          db[k] = new Derived;
     
     for (int k = 0; k < 10; k++)
          delete db[k];  // #3  destructor invoked
}
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Base class destructors must be virtual if any descendants allocate heap 
memory (or acquire a resource that must be released when the object goes out 
scope). An accepted guideline is to make the base class destructor virtual if 
the base class contains any virtual methods. Why? When a base class has vir-
tual methods, it is likely that descendant objects will be used in heterogeneous 
collections. A virtual destructor will prevent memory leaks when a derived 
object is deallocated through a base class pointer. There is no way to prevent a 
descendant class from allocating heap memory. To ensure proper deallocation, 
tie destructor invocation to subtype rather than base type: that is, declare the 
base destructor virtual. Yet, it is not cost-effective to declare every destruc-
tor virtual. The performance cost of dynamic invocation is not the few extra 
instructions, which are minimal, but the inability to inline a virtual method.

What if a base class design did not anticipate that a descendant class 
would allocate heap memory? Heterogeneous collections may then leak 
memory. Opening up the base class to redefine its destructor virtual 
may not be a viable option. Although composition is often used to ame-
liorate interface deficiencies, wrapping cannot easily compensate for an 
inadequate destructor. Wrapping solves inheritance problems only for 
descendants of the wrapper. The client may have to modify its heteroge-
neous collections. Alternatively, with C++11, the derived class could use a 
container, such as a vector, or smart pointers in place of raw pointers to 
guarantee deallocation of its own heap memory while continuing to rely 
on statically bound base class destructor.

6.1.3 Inconsistent Access: C++ Accessibility and Binding

C++ allows direct suppression of an inherited interface by redefining a 
public inherited method as private or protected (or by redefining a pro-
tected inherited method as private). Downgrading access is called ‘closing 
down a class’ because the interface is narrowed; it is permissible in C++ 
but not in Java or C#. Independent of syntactic constraints, a descendant 
class could redefine an inherited method with no meaningful functional-
ity (essentially a NOP). In this manner, inherited functionality could be 
effectively reduced, regardless of language.

The effects of binding and accessibility overlap. When the compiler 
resolves method invocation through a polymorphic handle, it examines only 
the base class. Accessibility (public or not) and binding (virtual or default) 
is checked only in the base class. The compiler does not evaluate descendant 
class modifications such as the introduction of the keyword virtual or 
(in C++) reduced access. Consider the interplay of accessibility and virtual 
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functions in C++. The parent Diva and child Shy classes in Example 6.3 
define virtual methods sing() and hum(). Both methods are public in par-
ent Diva but child Shy reduces the accessibility of sing() by declaring it 
private. Hence, a client may call both sing() and hum() through a parent 
Diva handle but cannot call sing() through a child Shy object.

Example 6.3 Interplay of C++ Accessibility and Binding

class Diva
{   public:
     virtual void sing() 
     { cout << “ Diva SING” << endl; }
     virtual void hum()    
     { cout << “ Diva HUM” << endl; }
};

// derived class suppresses part  
// of inherited interface 
class Shy: public Diva
{  // public inherited virtual function SUPPRESSED
   virtual void sing()   
      { cout << “ Shy and silent” << endl; }
 public:
   virtual void hum()  { cout << “ Shy hum” << endl; }
};

// client code
Diva       b;
Shy        d;

b.sing();   // #1
b.hum();    // #2
d.hum();    // #3
d.sing();   // #4 compiler error, Shy::sing() private

Diva* bPtr = &b;
bPtr->sing();   // #5
bPtr->hum();    // #6

bPtr = &d;      // d is a Shy object; Shy::sing() 
private
bPtr->sing();   // #7
bPtr->hum();    // #8
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The sample client code in Example 6.3 compiles except for statement #4: 
calling sing() through a Shy object triggers an error because sing() 
is private in the Shy interface. Why then does statement #7 work? At 
that point, bPtr contains the address of a Shy object, so sing() should 
also be an illegal call. Yet, statement #7 compiles and produces output. 
To the compiler, statement #7 is no different than #5. In fact, statements 
#5–8 are all processed identically. Since bPtr is typed to the class Diva, 
the compiler verifies that sing() and hum() are defined and declared 
public in Diva. Since both methods are virtual, the compiler generates 
extra instructions for an indirect JUMP: identify (sub)type at run-time 
and then extract the method’s address from the appropriate class vtab. 
The compiler generates the same indirect JUMP for statements #5 and 
#7 (and for #6 and #8), with the counter intuitive outcome. The private 
method Shy::sing() is executed at run-time because the method 
address for the indirect jump is extracted from the Shy vtab. A client 
has thus defeated a restricted interface. Dynamic binding interferes with 
constricted accessibility.

Tracing the compiler’s actions uncovers the interplay of accessibil-
ity and binding. The compiler resolves the legality of a call relative to the 
type of the handle through which the call is made. If the virtual method 
invoked is present and public in the base class, the compiler generates the 
code needed for dynamic function resolution (an indirect jump). The (sub)
type of the object whose address would be held in a base class pointer is not 
identifiable at compile-time. Subtype is extracted at run-time to identify 
the appropriate vtab: method accessibility is not re-checked so the sup-
pression of an inherited, virtual method in C++ would not be evident. Put 
a simple output message in the class methods of Example 6.3 and test this 
code yourself.

When the client invokes functionality through a base class handle, the 
compiler resolves accessibility and binding only relative to the base class 
interface. Class designers cannot change the compiler. Hence, suppression 
of a public, inherited method, while possible in C++, is ineffective when 
virtual methods are invoked through a base class handle. A more reliable 
option would be to override with a NOP implementation.

6.2 CODE REUSE
The environmental mantra “reduce, reuse, recycle” may apply to 
software design as well. Reuse is clear. Recycle implies some degree 
of reformation (possibly through refactoring or wrapping). Reduce 
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should suggest the deliberate constraint of complexity. However the 
class designer chooses to reuse types, the client should be minimally 
impacted.

Is reuse of a class more effective via inheritance or composition? Consider 
class minMax in Example 6.4 which accepts incoming numeric data, num-
ber by number, tracking minimum and maximum values. Say that, after the 
successful design, implementation, testing and deployment of minMax, a 
need for a minMaxMean type arises. Development could start from scratch 
or reuse minMax. The existing class can clearly be incorporated into a new 
design using either inheritance or composition. Is there a difference? Design 
selection must identify tradeoffs, as well as impact.

Example 6.4 Simple Data Class

class minMax
{         unsigned  min= MAX_INT;  
          unsigned  max = 0;
     public:
          void rec(unsigned x)
          {    if (x > max)     max = x;
               if (x < min)     min = x;
          }

          unsigned getMin()     { return min; }
          unsigned getMax()     { return max; }
};

Inheritance offers immediate reuse, access to protected data and 
functionality, and support of the is-a relationship. Composition also 
offers immediate reuse, but without access to protected data and func-
tionality, and does not support the is-a relationship. Since the min-
Max class does not have a protected interface, or any protected data, 
will employing inheritance or composition to reuse minMax make 
much difference? Not structurally. Both the minMaxMeanInherit 
class and the minMaxMeanCompose class contain exactly one min-
Max component. The minMaxMeanInherit class has one minMax 
parent component and the minMaxMeanCompose class contain 
exactly one minMax data member. Compare the two classes, and 
their interfaces, as defined in Example 6.5. Is there a need for an is-a 
relationship?
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Example 6.5 Reuse via Inheritance vs Composition

class minMaxMeanInherit: public minMax
{          unsigned  sum = 0, count = 0;
     public:
          void rec(unsigned x) 
          {    minMax::rec(x); // call parent method
               count++;        
               sum += x;
          }

          float getMean() { return (float) sum/count;}
};
class minMaxMeanCompose
{          minMax    m;
           unsigned  sum = 0, count = 0;
     public:
           void rec(unsigned x)
           {    m.rec(x);
                count++;         
                sum += x;
           }

           float getMean() {return (float) sum/count;}

           // echo subobject interface
          unsigned getMin()  { return m.getMin(); }
           unsigned getMax()  { return m.getMax(); }
};

With inheritance, the client automatically receives access to parent 
functionality via a derived object so the class designer need not echo the 
parent interface. When a minMax component is encapsulated as a sub-
object, the client cannot directly access the public interface of the min-
MaxMeanCompose object. Hence, any required public functionality of 
minMax must be echoed. The impact on performance is negligible when 
small, echoed functions, such as accessors, are inlined.

Consider reusing minMax again to define a maxRange class that tracks 
the difference between minimum and maximum values. Is inheritance or 
composition more appropriate? Again, there is no difference with respect to 
data: both forms of reuse require exactly one minMax component. Contrast 
the two classes defined in Example 6.6: they seem almost identical. Why 
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bother with the distinction between code reuse via inheritance or composi-
tion? Echoing an interface requires more effort than simple inheritance but 
may be justified if any flexibility afforded by composition is used.

Example 6.6 Reuse via Inheritance vs Composition: Full Interface

class maxRangeInherit: public minMax
{  public:
     unsigned getRange() {return getMax() – getMin();}
};

class maxRangeCompose
{    minMax     m;
   public:
     unsigned getRange()    
     { return m.getMax() – m.getMin(); }

     // subobject interface echoed
     void rec(unsigned x) {  m.rec(x); }
     unsigned getMin()    {  return m.getMin(); }
     unsigned getMax()    {  return m.getMax(); }
};

Without a designed echo or deliberate suppression, the interfaces of the 
maxRange classes would be different. Under the inheritance relationship, 
the client can extract the min and the max values via the public parent 
methods getMin and getMax because maxRangeInherit is-a min-
Max object. In contrast, with composition, the client would have no auto-
matic access to minMax methods because minMax is a private subobject. 
To achieve equivalent, broad interfaces, the public interface of minMax 
may be echoed in the composition design, as in Example 6.6. Alternatively, 
to achieve comparable narrow interfaces, the inherited public methods 
may be suppressed (via declaration as private methods in C++) or overrid-
den by a NOP implementation. In Example 6.7, neither class supports the 
public interface of the reused minMax type.

Example 6.7 Reuse via Inheritance vs Composition:  
Suppressed Interface

class maxRangeInherit2: public minMax
{          unsigned getMin() { }  
           // suppress inherited interface 
           unsigned getMax() { }

BK-TandF-DINGLE_9780367820817-200297-Chp06.indd   163 25/11/20   1:03 PM



164   ◾   Object-Oriented Design Choices

     public:
          unsigned getRange()    
          { return getMax() – getMin(); }
};
class maxRangeCompose2
{          minMax m; // encapsulation hides interface
     public:
          void rec(unsigned x) { m.rec(x); }
          unsigned getRange() 
          { return m.getMax() – m.getMin(); }
};

Choosing inheritance rather than composition, or vice versa, yields little 
difference in this example. Code is reused either way. There is no variability 
in the relationship between the minMax component and the minMaxMean 
type or the maxRange type. Each design defines an object with exactly one 
embedded minMax component. The relationship between parent and child 
(or object and subobject) is fixed, in terms of lifetime association, unit cardi-
nality and ownership. There does not appear to be any need for substitutabil-
ity or heterogeneous collections. Practitioners prefer composition, especially 
when postponed instantiation, delegate replacement, or variable cardinality 
are desired. Inheritance is not warranted if there is no imperative for type 
extensibility, substitutability, or polymorphism.

6.3 CLASS DESIGN: HAS-A OR IS-A?
To choose an appropriate design, evaluate tradeoffs. What are the costs 
and benefits of deriving a child class from a defined class versus using an 
instance of a defined class as a data member? The consequences of using 
inheritance instead of composition may not be obvious. Structurally, the 
layout of the two designs is similar, whether an instance of the reused 
class serves as a parent component or as a private data member. But design 
involves more than form. What is the impact on ease of use? conceptual 
understanding? interface flexibility? software maintainability?

Table 6.1 summarizes characteristics of composition, containment, and 
inheritance. With inheritance, the child class may access the public and 
protected interfaces of its parent class. Externally, the client may access the 
public interface of the parent through a child object. In contrast, composi-
tion shuts off all external access to the subobject. Internally, the composing 
object may access the public but not the protected interface of its subobject. 
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The composing object manages the subobject and may choose to echo all 
or part of its interface. To avoid overhead, instantiation of the subobject 
might be postponed until use. With delayed instantiation, construction 
and cleanup responsibilities must be assumed by the class.

In comparison to inheritance, composition reduces accessibility, 
increases internal responsibility, and cannot directly provide the benefits of 
substitutability and extensibility. Yet, practitioners prefer composition over 
inheritance. Why? A composing object may selectively echo a subobject’s 
interface, replace its subobject, and/or postpone instantiation of the subob-
ject. The composing object controls its subobject while a child object may 
not alter its relationship with its parent component. Inheritance is a precisely 
defined, implicit structural relationship that offers less flexibility than compo-
sition. Each child object ‘owns’ exactly one parent component which is not 
replaceable or shareable. This parent component is automatically initialized 
via the parent no-argument constructor. The child class designer can specify 
the invocation of a non-default parent constructor via the initializer list but 
cannot circumvent the allocation or initialization of the parent component. 
A lifetime association exists between parent and child. The child absorbs 
the overhead of the parent component even if the parent is not used. With 
inheritance, a child object always has an implicit parent class component. 
This unavoidable overhead should be warranted.

Contrast minMax to IconParent from Chapter 5. IconParent 
defined a virtual move method that was redefined by descendant classes 
to provide specialized movement. A heterogeneous collection, referencing 
objects of any subtype defined in the IconParent class hierarchy, would 
support the uniform invocation of the move method. Whenever poly-
morphism or substitutability is required, inheritance is the best approach. 
Inheritance supports type extension; composition does not. Dynamic method 
selection yields maintainability; new subtypes may be added without break-
ing client code, as seen with IconParent. Composition designs may use 
polymorphic subobject(s), such a design still uses inheritance. Table 6.2 
summarizes the design effects of has-a, holds-a and is-a. Composition may 
be preferred over inheritance because of reduced overhead.

TABLE 6.1 Relationship Characteristics

Association Cardinality Ownership Dependency Replacement

Containment Temporary Variable No No Not relevant
Composition Stable Variable Transferable Yes Yes
Inheritance Permanent Fixed: 1-1 Implied Yes No
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In contrast to inheritance, composition supports variable cardinality, 
association, ownership, and time of instantiation. Composition retains 
internal control, explaining the professional preference embodied in the 
Composite Principle. Through composition, a class design may wrap up 
the interface of existing code (isolating the client from change), alter car-
dinality, postpone instantiation (efficiently allocating subobjects upon 
demand), support replacement, transfer ownership, and/or share subob-
jects. An immediate benefit of composition is the ability to avoid overhead 
when desired.

6.4 INHERITANCE WITH AND WITHOUT COMPOSITION
What does inheritance provide that composition does not? Type exten-
sion, substitutability, and support for heterogeneous collections. When 
the precise type of object needed is not known until run-time and, in 
fact, could easily change, as will be seen in the disassembler example in 
Chapter 7, polymorphism, and thus inheritance is needed. When exten-
sibility is anticipated because code modifications may add new subtypes, 
as in the IconParent example, inheritance is again justified. When 
the contents of a collection may vary, and the heterogeneous subtypes 
contained therein offer polymorphic behavior, inheritance is required. 
Inheritance designs are preferred when polymorphism, substitutability, 
and extensibility are needed.

For example, consider a generator class that provides successive values 
from an arithmetic sequence. Modification of basic values so generated 
is desired – filtering, augmentation, replacement, etc. Inheritance designs 
support variability in different ways: 1) a direct is-a relationship; 2) the 
Template Method; and 3) composition with polymorphic delegates. See 
Example 6.8. The first inheritance design defines separate and stable types. 
The parent class defines the unifying interface for the class hierarchy and 
in so doing defines accessible utility via heterogeneous collections. New 

TABLE 6.2 Relationships Effects Relative to Reused Type

Client  
Access

Internal 
Access Overhead

SubObject 
Interface Control

Containment None Public Minimal Not relevant None
Composition None Public Variable

Avoidable
Suppressed
May echo

Replacement
Instantiation

Is-a Public Public
Protected

Unavoidable Support
Extend

None
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subtypes may be added to the class hierarchy without affecting existing 
types. As before, this inheritance design yields maintainable, extensible 
code with the expense of dynamic binding. Though the parent class estab-
lishes key utility via its defined interface, the child classes are free to over-
ride inherited methods without restriction.

Example 6.8 C# Variant Generators

// 1) inheritance alone – subtypes modify 
// inherited behavior 
public class Generator1
{   public  virtual int getValue() { … } 
       …
}

public class filterG: Generator1
{   public  override int getValue(){ … }            
        …
}

public class boostG:  Generator1
{   public  override int getValue(){ … } 
      …
}

// 2) the Template Method – base class  
// preserves control flow

public class Generator2
{   private int get()             { … }
    private int check(int x)      { … }
    protected virtual int process(int x) { … }
    public int getValue()
    {      // common pre-processing
           int v = get();       
           // dynamic call resolved by this
           v = process(v);    
           // common post-processing
           return check(v);     
    }
   …
} 
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// 3) composition - polymorphic delegates supply  
// variant behavior

public interface Igenerate      { int getValue(); }
public class modData: Igenerate   
{      public virtual int getValue() 
       …
} 

public class filter:            modData 
{      public override int getValue(){…}            
       …
}

public class boost: modData 
{      public override int getValue(){…} 
       …
}

public class Generator3: Igenerate 
       // satisfied by modData delegate
{      private Igenerate   caller;  
       …     

       public Generator3(Igenerate injectDelegate)
       {      caller = injectDelegate;  }

       public int getValue()
       {      return caller.getValue(); }
       …
}

The second design in Example 6.8 illustrates the Template Method 
design pattern, an inheritance design that uses callback to retain some 
control over polymorphic behavior [GAM95]. The classic callback design 
supports variant behavior while constraining code replication. Any func-
tion may provide custom functionality alongside standard processing 
by ‘calling back’ a specialized function through a passed delegate. The 
passed delegate may be any object that conforms to the specified inter-
face. In Example 6.9, chameleon is the delegate acquired via Method 
Injection. Typically, a test confirms that the passed delegate is not null, 
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possibly followed by a check on the state of the delegate. Common pre-
processing executes, independent of the delegate, before variant behavior 
is called back through the delegate. Thereafter, common post-processing 
runs, independent of the delegate, before the function terminates with 
another delegate call. The caller may pass delegates in different states or 
of different subtypes.

Traditionally, C++ used function pointers to implement callback. 
C# supports the delegate construct, which, for many, serves as a 
wrapped function pointer. To generalize design concepts, and to avoid 
a focus on language constructs, we use the term ‘delegate’ as defined 
in Chapter 4 – an object reused to provide specific functionality. With 
Method Injection, either C# or C++ may use (polymorphic) objects 
as delegates: dynamic binding and/or object state may yield different 
behavior via callback.

The Template Method easily supports variant behavior by partitioning 
functionality into three segments: common pre-processing, variant behav-
ior, common post-processing. The common pre- or post-processing is pro-
vided through parent methods since only one version of such processing 
need be defined. The delegate is implicit: the this pointer. Variant behav-
ior is ‘called back’ through the virtual protected process(). Essentially, 
the expected chain of method calls (the child calls the parent) is inverted 
because the parent calls (back) the child.

Example 6.9 C++ Callback Using Polymorphic Delegate

// caller may pass any object satisfying  
// polyDelegate interface
//   Method Injection => verify delegate  
//   is not null or invalid
bool varyBehavior(polyDelegate chameleon) 
{    if ( !chameleon || !chameleon->verifyID() ) 
           return false;
     commonPreProcessing();
     chameleon->variantSteps();
     commonPostProcessing();

     return chameleon->ok();
}
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The Template Method design pattern, as implemented in Generator2, 
intrinsically uses child classes as delegates whose customized imple-
mentations of process() provide variant behavior when ‘called 
back’ in the statically bound method getValue(). The client invokes 
getValue()which executes a fixed sequence of actions. Stable behavior 
is defined by parent methods, get() and check(), which are private and 
may not be altered by descendants. Variant behavior arises via the virtual 
protected method process() which may be overridden by descendant 
classes: the call to process() is dynamically bound through the this 
reference. Descendant classes may redefine process() but may not alter 
structure (control flow) defined in getValue().

Delegates may be externalized, as seen in the third design of Example 
6.8. In Generator3, a polymorphic handle, caller, holds the address 
of any type of object that satisfies the Igenerate interface. Objects 
from the modData hierarchy satisfy this interface and provide variety 
of functionality via the dynamically bound getValue(). By using a 
polymorphic handle, a class designer may: 1) postpone instantiation; 2) 
assume ownership of an external modData object; 3) replace a mod-
Data object; and, 4) share a modData object. #2 and #3 suggest that the 
subtype of a modData object, and thus its behavior, may vary. Delegates 
must conform to the established interface but delegates (subtype and 
state) can change. In this manner, object response varies without chang-
ing the type of a Generator3 object. Dependency Injection, with the 
client passing in (the address of) the modData delegate, yields a main-
tainable design. If another subtype is added to the modData class hier-
archy, no internal code change is required in the Generator3 class. In 
fact, with C# interfaces, a delegate instantiated from a different class or 
class hierarchy could be passed, as long as it conforms to the Igenerate 
interface.

Reliance on a polymorphic object may be built into a composition 
design. A composing class may have a polymorphic subobject (delegate) 
that fulfills key functionality. A hidden delegate may be instantiated 
completely internally or the client may pass in a code (int or enum) to 
specify the (sub)type to instantiate. Illustrated in Example 6.10, both 
approaches to internal construction allow the composing class to main-
tain control over its internal delegate and to ensure a valid initial state. 
The chief drawback is that extension of the delegate hierarchy requires 
the composing class to be opened for change. Delegate replacement like-
wise may be internalized.
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Example 6.10 Internal Construction of Polymorphic  
Delegate in C++

public class hasAdelegate
{    private delegateType  worker;

     private delegateType getDelegate(uint id)
     {    if (id == 1)    return new MinType(…);
          if (id == 2)    return new MaxType(…);
          if (id == 3)    return new MeanType(…);
          return new delegateType();
     }
     // completely internalized construction
     public hasAdelegate() {worker = getDelegate(1); 
}

      // client passes in shared (code) for subtype
      public hasAdelegate(uint what)
      {    if (1 <= what && what <= 3)      
               worker = getDelegate(what);
           else             worker = getDelegate(1);
      }

      public void echo()  { return  worker.echo(); }
      …               
}

Dependency Injection externalizes instantiation and so exposes the 
interface of encapsulated delegates. Through constructor, method or prop-
erty injection, delegates may be passed from the client into the composite 
object. When delegate instantiation becomes the client’s responsibility, 
flexibility is easily sustained: the client may supply any delegate that con-
forms to the specified interface; delegate subtype may change. Class design 
though must include appropriate error processing since the externaliza-
tion of a dependency introduces the possibility of non-compliance. What 
is an appropriate error response if a passed delegate is null, or in an invalid 
state? External delegate acquisition may be less efficient than a central-
ized internal instantiation when multiple clients have to marshal the same 
resource. Vulnerability to error and client overhead (possibly evident in 
build times) may constrain use of Dependency Injection.

A flexible, extensible, and maintainable design may use both inheritance 
and composition. When a base class specifies core functionality, any object 
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instantiated from that hierarchy provides that functionality. Composition 
may use a replaceable object from a class hierarchy as a delegate. By replac-
ing a delegate of one subtype with a delegate of another subtype, internally 
or via Dependency Injection, a composition design alters the provided 
behavior without changing external type or interface.

Delegates provide functionality to an enclosing class, potentially iso-
lating the client from change. With complete internalization, the del-
egate type may be modified or replaced without altering the interface of 
the composing class. With Dependency Injection, a polymorphic del-
egate may be extended without altering class internals. Again, remember 
the impact of language: C++ class designers must manage heap allocated 
(polymorphic) delegates – a task simplified through the use of smart 
pointers; C# class designers may use interfaces to further abstract client 
selection of delegates.

The choice between inheritance and composition should rest on more 
than code reuse. What is lost when inheritance is replaced by composition? 
Consider the need for extensibility, heterogeneous collections and substi-
tutability. If neither substitutability nor heterogeneous collections is antic-
ipated, then inheritance may not be warranted. The primary drawback of 
using composition rather than inheritance is the loss of direct support for 
polymorphism and the resulting lack of extensibility and substitutability. 
The variability afforded by composition with respect to lifetime, associa-
tion and cardinality of subobjects increases when one considers polymor-
phic subobjects, as in Example 6.8. Instead of a permanent 1-1 relationship 
with a parent, a composing class may interact with polymorphic subob-
jects. The next chapter examines polymorphic delegates as a design option 
for the combination of two inheritance hierarchies.

6.5 SOFTWARE MAINTAINABILITY
A maintainable design rests on an accurate prediction of future changes 
but no one has a crystal ball. Still, an assessment of priorities – perfor-
mance, control, extensibility, etc. – should guide design. Critical differ-
ences between inheritance and composition include flexibility and type 
support. In composition, the subobject may easily change because there 
is no external dependency on its hidden interface. If subobject type is 
changed, client code should not be impacted. With inheritance, type vari-
ability (via substitutability) and type extension are sustained by language 
constructs. Tracking subtype is not a client responsibility.
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Cost of change depends on interface stability. Inheritance elevates an 
interface; composition hides interface. If a parent class is modified (unde-
sirable but possible), a child class receives such updates ‘automatically’ 
through recompilation. A child class may need to make its own modifica-
tions, in response to parental changes. Any change to the base interface in 
a class hierarchy may significantly impact the client. If a subobject class is 
modified, the composing class may be forced to recompile but client code 
is isolated from change: if a subobject’s interface changes, the composing 
object is not forced to modify its external interface.

Examine design rationales carefully. Any type relationship that reflects 
strong dependencies will increase coupling and decrease cohesion. While 
it is true that inheritance increases coupling because the child class is 
tightly coupled to its parent, in composition the composing class may be 
similarly tightly coupled to its subobject. Cohesion is decreased whenever 
a single type definition spans multiple classes. Inheritance decreases cohe-
sion because the child class type definition is spread across the inheri-
tance hierarchy. Composition also dilutes cohesion: the functionality of 
a composing class may be understood best by examining the subobject. 
Coupling and cohesion then are not sufficient arguments for choosing either 
inheritance or composition. Coupling is unavoidable due to structural and 
functional decomposition.

To select the most appropriate relationship, assess intended use, 
expected impact, and anticipated reuse. Evaluate current priorities and 
predict future demands. Review cardinality, ownership, and association 
design options as summarized below – * indicates the only option avail-
able for an inheritance design:

Cardinality: Fixed by design* => same for all objects
Fixed at instantiation (via constructor) => stable for object lifetime
Variable during object lifetime

Ownership: Fixed by design*
Assumed (via Dependency Injection)
Transferable
Shareable

Association: Permanent*
Temporary
Stable but Replaceable

What are the expectations for software maintenance? If a type defini-
tion may be extended, or if heterogeneous collections must be supported, 
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then inheritance is preferred. If a class interface is unstable, or the overhead 
of a parent component is significant then composition may be preferred. 
Software maintenance arguments must be posited carefully. Predicting 
future maintenance costs is not equivalent to comparing existing overhead.

6.6 OO DESIGN PRINCIPLE
Two design principles summarize this chapter’s contrast of inheritance 
and composition designs. The Open Closed Principle (OCP) emphasizes 
type extensibility as dependent on a stable interface: a class should be Open 
for extension but Closed for modification. If OCP holds, then once a base 
class is deployed, its design and implementation do not change. Any num-
ber of descendant classes may be defined when the parent interface is suf-
ficient for all descendant functionality. Essential to such design is the use 
of virtual functions.

The Composite Principle states simply that practitioners prefer compo-
sition. An unstated assumption is that there is no need for polymorphism, 
substitutability, or heterogeneous collections. As seen with minMax, types 
may be extended via composition but only effectively if there is no need 
for substitutability. Practitioners prefer composition because the class 
designer maintains internal control, more easily acquiring efficiency, and/
or flexibility. The authors of the seminal book, Design Patterns, specify a 
preference for object composition over inheritance despite standardizing 
patterns that rely on inheritance. [Gam95].

6.7 SUMMARY
If well defined, a class provides immediate utility and the prospect of code 
reuse. Both composition and inheritance reuse existing classes but may 
yield significant differences in overhead and maintainability. Inheritance 
supports the is-a relationship, yields code reuse, type familiarity, inter-
face recognition, direct polymorphism, and substitutability. Composition 
supports the has-a relationship, yields code reuse, buffering of unstable 
interfaces, efficiency, and flexibility with respect to cardinality, associa-
tion, ownership, and overhead.

Polymorphism is a key object-oriented construct. Polymorphic objects 
yield different behavior by postponing function resolution until run-time. 
Compilers use virtual function tables (vtabs) to retrieve appropriate func-
tion addresses at run-time. Polymorphic designs are flexible, promote sub-
stitutability, and support heterogeneous collections but incur the overhead 
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of run-time binding. Software maintainability is improved by common 
interfaces, type extension, and “automatic” type resolution. However, poly-
morphism is not free. Extra instructions must be executed at run-time in 
order to support the indirect jump needed for run-time resolution. Most 
importantly, dynamic function calls cannot be inlined.

As a design choice, inheritance is often justified because of immediate 
code reuse, and the resulting reduction in development time. The child 
class can automatically reuse parent class functionality. But an exist-
ing class, already designed, implemented, debugged, and tested, may be 
reused as a parent class OR as a subobject in a composition relationship. 
An extended type may reuse functionality through either inheritance or 
composition. When considering whether to use inheritance or composi-
tion, code reuse as an argument is moot: the class will be reused either way; 
it is the impact of design that must be evaluated.

Both composition and inheritance reuse code to shorten development 
time. Yet, inheritance is often overused, possibly because it is trivial to 
define syntactically. In contrast, composition must explicitly address more 
design details (such as copying). For performance and maintenance, design 
choices should be thoroughly evaluated. Inappropriate use of inheritance 
may impede efficiency or require type extraction. Excessive composition 
may interfere with readability and maintainability. Design should depend 
on goals and priorities.

Different priorities encourage different choices for class design and rela-
tionships. OOD clearly illustrates tradeoffs and supports evaluation of both 
long-term and short-term cost and benefits. Enumerating contractual obli-
gations may uncover assumptions, restrictions, and unstated obligations, 
possibly driving the choice between inheritance and composition. Both is-a 
and has-a relationships are beneficial in particular contexts. Inheritance 
promotes an interface, offering familiarity to a client and supporting het-
erogeneous collections, yielding extensibility. However, is-a is a fixed design, 
with unavoidable overhead. Composition wraps subobjects, and controls 
cardinality and instantiation. Has-a isolates client code from unstable 
interfaces but loses sustitutability. Interfaces somewhat mitigate this loss by 
preserving the ability to place objects in heterogeneous collections.

6.8 DESIGN EXERCISES
Three exercises aim to contrast the use of composition and inheritance. 
The first task is to design a filterLedger class, reusing the feeLedger 
class from Chapter 2. The idea is to expand the original functionality by 
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adding an internal filter – only fees within a given range are recorded. The 
inRange class from Chapter 1 may also be reused to reduce development.

The second exercise starts with factorD, a type that encapsulates one 
non-zero value (j), provides a public divide(z) which determines if z 
is evenly divisible by j and, counts the number of evenly divisible values 
received. Next, define a second type twoFactor that reuses factorD 
and supports the public interface of factorD while tracking the effect of 
two internal values (j and k). divide(z) then determines if z is evenly 
divisible by j and k. For example, if j=2 and k=5, then 30 is evenly divis-
ible by j and k but 21 is not. Reuse may be achieved through inheritance 
or composition.

The third exercise is to design a amorph inheritance hierarchy to 
model variant behavior. Each amorph is associated with a non-stable 
location (x, y), a size, a designated color and a brightness. dimmer is-a 
amorph that can vary its brightness but only if it has moved. swatch 
is-a amorph that can change its color but only if it has not moved more 
than some number of times. nimble is-a amorph that can change its size 
but only relative to the number of times it has moved. The final exercise 
is to reuse the amorph inheritance hierarchy to define shapeShifter: 
a type that can be switch from one amorph subtype to another after it 
moves. Appendix C.1 presents and discusses sample solutions.

DESIGN INSIGHTS

No one has a crystal ball.

  Software Design

Carefully evaluate the choice between inheritance and composition

Assess the need for polymorphism, substitutability, and heterogeneity

Evaluate any requirement for efficiency or flexibility

Consider interface stability

  Type Reuse

Both inheritance and composition reuse code

Inheritance is a precisely defined, implicit structural relationship 
that offers less flexibility than composition.
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Inheritance supports type extension; composition does not.

Composition supports variable cardinality, association, ownership 
and time of instantiation.

  Documentation

Note type dependencies

Record rationale for design choice in the implementation invariant

Evaluate immediate use versus anticipated change

CONCEPTUAL QUESTIONS

1. Why would suppression of inheritance be problematic?

2. Define an unstable interface and note its effects.

3. Why is the choice between is-a and has-a important?

4. When should composition be chosen in lieu of inheritance, and vice 
versa?

5. What is callback and why is it used?

6. How does design impact maintainability?
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III 
Effective Type Reuse
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C h a p t e r  7

Design Longevity

CHAPTER OBJECTIVES

• Evaluate design longevity

• Illustrate effective use of abstract types

• Examine type extraction

• Assess response to inadequate interfaces

• Analyze multiple inheritance and alternatives

7.1 SOFTWARE EVOLUTION
A fallacy of software, as noted by Jessica Kerr, is “if it works and we don’t 
change anything, it will keep working”. Hardware upgrades, UI modifi-
cations, user base expansion (likely with different levels of proficiency), 
increased load, altered distribution, managed resources, etc. all affect how 
software ‘works’. Hence, with continued use, software must evolve.

Change comes in many forms, is costly, and may conflict with prior 
design priorities. Performance improvements may impede portability. 
Interface modifications may undermine code stability. Data reclamation 
may impact error processing. Change may cause ripple effects, especially in 
tightly coupled code. Self-documenting software that conforms to require-
ments is easier to modify than unreadable, undocumented code. Deliberate 
design assesses immediate use and anticipates change. Contractual design 
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records the rationale for design selection, identifying key assumptions that 
should hold even with change. Documentation of intent and effect exposes 
trade-offs taken – efficiency versus generality, stability versus flexibility, 
etc. – allowing any change agent to preserve class design.

Sustainable design rests on language constructs, as supported by the 
compiler, rather than on idiosyncratic customization. The compiler lays 
out and invokes parent and subobject constructors. The compiler controls 
exposure by enforcing accessibility constraints (public, private, protected). 
The compiler automates subtype checking by generating vtabs, and extra 
instructions for the indirect jumps of dynamic binding. The compiler 
enforces interfaces.

What characteristics of OOD promote longevity? A stable interface 
promotes maintainability. Encapsulation internalizes control and isolates 
clients from implementation details and internal change. Composition 
may wrap unstable code and manage ownership in a flexible, responsive 
manner. Yet, selective relaxation of encapsulation (externalization via 
appropriate Dependency Injection) produces a maintainable and testable 
design. Abstraction further enhances maintainability: clients track only 
interfaces.

What characteristics of OOP sustain longevity? Inheritance with poly-
morphism provides type extensibility at little or no cost to the client. With 
virtual methods, the definition of a new child class minimally impacts 
existing code. A heterogeneous collection remains stable, providing vari-
ant behavior via polymorphic calls that conform to the base class interface. 
We next examine a disassembler design that rests on abstract classes and 
supports heterogeneous collections.

7.2 DISASSEMBLER EXAMPLE
Sample C++ production code [Hil00] for a disassembler illustrates the util-
ity of abstract classes. A disassembler is a reverse engineering tool, used 
by embedded systems engineers to quantify code coverage. As the inverse 
of an assembler, a disassembler translates machine code into assembly 
language code. Since machine code contains variable-width instructions 
and uses different storage types and sizes, regenerating assembly code is 
difficult. Disassemblers cannot regain symbolic constants and comments 
removed before the assembly code was converted into an executable image.

Working backwards from a trace, the process of identifying type, and 
thus inferring size, is one of trial and error. The disassembler must support 
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multiple attempts to classify a value. Think of type identification as a 
guessing game. Is the value read only? Is storage a register or addressed 
memory? Is the location sized to hold an integer or a real? To guess, and 
then guess again, the disassembler must use a malleable representation for 
data until it can resolve storage, location, and the type of the value.

Inheritance is the most appropriate design here. A base class publishes 
the core functionality needed to guess storage and type. Descendant classes 
may modify response to reflect emerging resolution of storage and type. 
Since all descendants have an is-a relationship with the base, an object of a 
specific subtype is interchangeable with any other subtype object. Siblings 
may not have a direct relationship with each other but since any child 
object can stand in for a parent object, all siblings are interchangeable.

Table 7.1 lists the design intent of the abstract base class 
AbstractLocation shown in Example 7.1. The disassembler may 
use any AbstractLocation subtype, each of which represents a via-
ble type interpretation. Summarized in Table 7.2, essential methods to 
guess type include: Clone() to copy an object; IsKnown() to confirm 
(or deny) classification of location; IsA() to confirm (or deny) ancestry; 
HasAddress() and IsReadOnly() to confirm (or deny) physical 

TABLE 7.1 Disassembler Design

Design for Memory Location Discernment

Disassembler AbstractLocation class AbstractLocation interface

Collect information Abstract type resolution Self-identification functions
View trace Multiple type interpretation IsA(),IsReadOnly(),…

Resolve R/W access Manipulate data Reinterpret data
Postpone type resolution Re-evaluate type Simulate different views

TABLE 7.2 AbstractLocation Interface: Key Virtual Functions

Function Name Purpose Details
Clone Makes copy Uses this pointer
IsKnown True only if type known Default false
IsReadOnly True only if no storage Default true
HasAddress True only if needs storage Default false
GetClass Returns class enum value Default unknown
IsA Verify type test Default: = = unknown
DerivesFromA Verifies ancestry Default: invoke IsA
Set Supply value for address Default NOP
GetAs Translation between various address types Default return 0
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storage; and GetClass() to return an enumerated value, identifying 
type. Multiple GetAs() and Set() methods support evaluation and re-
evaluation of type.

The disassembler tracks fundamental types, such as float, double, 
int, long, bool, …. For readability, an enumerated type lists the types 
tracked and, hence, possible interpretations of a bit string. To avoid redun-
dant details, we consider only float and int; Figure 7.1 shows the simpli-
fied class hierarchy. Initial guesses determine whether a value is constant 
(cannot change) or variable (may be updated). Constants are stored in the 
symbol table by the compiler and retained by debuggers but do not need 
physical storage for execution. Memory must be assigned to variables to 
support changes in value.

Example 7.1 Abstract Base Class Establishes Key Functionality

class AbstractLocation 
{ protected:
     enum Class{unknown, constant, variable, 

           constantInt, constantFloat,  
           memory, register};

 public:
   virtual ~AbstractLocation() {}

   virtual AbstractLocation* Clone() const = 0;

   virtual bool IsKnown()  const {return false;}
   virtual bool IsReadOnly() const {return true;}
   virtual bool HasAddress() const {return false;}

   virtual Class GetClass() const {return unknown;}
   virtual bool IsA(Class C) const   

FIGURE 7.1 Disassembler Type Hierarchy
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   { return (C == unknown); }  
   virtual bool DerivesFromA(Class C) 
   const { return IsA(C); }

   // various Set()       – NOP as default
   // various GetAs() – zero (cast) returned as default
}; 

Attempts to classify a bit string must guess storage requirements: 
none for constants; physical storage for variables. Example 7.2 shows 
the middle tier of descendant classes which provide this distinction. 
AbstractConstant and AbstractVariable remain abstract 
because Clone() cannot be not defined without knowledge of type. 
AbstractVariable redefines the inherited NOP set functions as 
pure virtual, forcing descendant classes to define their own set functions. 
Why? Descendant classes gain enough type information to implement set 
methods.

Example 7.2 Derived Classes Still Abstract

// class remains abstract because Clone() not defined
class AbstractConstant: public AbstractLocation 
{ public:
     virtual ~AbstractConstant() {}

     virtual bool IsKnown() const { return true; }
     virtual Class GetClass()    
     const { return constant; }
     virtual bool IsA(Class C)   
     const { return (C == constant);}
   
     virtual bool DerivesFromA(Class C) const 
     {return IsA(C) 
     || AbstractLocation::DerivesFromA(C); }
};
// class remains abstract because Clone() not defined
// pure virtual set() functions force 
// definition in derived class 
class AbstractVariable: public AbstractLocation 
{ public:
     virtual ~AbstractVariable() {}
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     // variables require memory => IsReadOnly
     // overridden
     virtual bool IsReadOnly() const {return false;}
     virtual Class GetClass() const {return variable;}
     virtual bool IsA(Class C)   
     const { return (C == variable);}  

     virtual bool DerivesFromA(Class C) const 
     {return IsA(C) 
     || AbstractLocation::DerivesFromA(C); }

     // plus various set(), each “=0;”
};

Clone() must know type because data cannot be copied without size 
information. Example 7.3 shows the bottom tier of descendant classes, 
each of which defines Clone() so these classes are no longer abstract. 
Disassembler code can instantiate objects from this tier of classes, hold-
ing addresses in AbstractLocation pointers. Type interpretation is 
supported by polymorphic handles. If the interpretation of a bit string 
as a ConstantInt fails then try ConstantFloat, etc. Using a base 
class pointer, switching subtype is easy, just change the address held in the 
pointer.

Example 7.3 Two Fully Defined Descendant Classes

// class NO LONGER abstract: Clone() defined
class ConstantInt: public AbstractConstant 
{     unsigned long    value;
  public:
     ConstantInt(unsigned long val): value(val) {}
     virtual ~ConstantInt() {}
 
     virtual AbstractLocation* Clone() const
           {    return new ConstantInt(*this); }
     virtual Class GetClass() const             
           { return constantInt; }
     virtual bool IsA(Class C) const 
           {    return (C == constantInt);}
  
     virtual bool DerivesFromA(Class C) const 
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     {return IsA(C) 
     || AbstractConstant::DerivesFromA(C); }
     // + various GetAs() – retrieve object  
     // of correct size
};
…

// class NO LONGER abstract: Clone() and set() defined
class Address: public AbstractVariable 
{     unsigned long   address;
 public:
      Address(unsigned long a): address(a) {} 
      virtual ~Address() {}
      virtual AbstractLocation* Clone() const
            {    return new Address(*this);  }
     virtual Class GetClass() const {return memory;}
     virtual bool HasAddress() const {return true;}
     virtual bool IsA(Class C) const  
     { return (C == memory); }

     virtual bool DerivesFromA(Class C) const 
     {return IsA(C) 
     || AbstractVariable::DerivesFromA(C); }

     // plus various set(), each defined
};

7.2.1 Virtual Function Table

Excluding SetAs and GetAs methods, AbstractLocation has 
eight virtual methods; eight corresponding vtab entries are ordered con-
sistently across subtypes so that all classes use the same offset for a spe-
cific method name. With vtab entries ordered by method declaration, 
IsKnown() is the third entry in all AbstractLocation hierarchy 
vtabs. To invoke IsKnown(), the compiler uses an offset of 8 bytes (off-
set of 0 for first method; offset of 4 for second method, etc.) to extract 
the correct address for an indirect jump from the vtab. Tables 7.3–7.5 
illustrate vtabs for one branch of the class hierarchy. Overridden meth-
ods should be evident because the compiler copies the parent vtab over 
to the child vtab, updating each entry only when an inherited method is 
redefined.
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7.3 TYPE EXTRACTION
With polymorphism, the client need not ‘manually’ check subtypes. A 
method tagged as virtual in the base class triggers dynamic binding. Type 
extensibility is guaranteed, with little impact on client code other than 
the additional construction code needed for new subtype(s). Any heteroge-
neous collection typed to the base class interface can address objects that 
satisfy that interface. What if legacy code did not tag methods as virtual? 

TABLE 7.3 AbstractLocation virtual function table (vtab)

Table Entry Virtual Function Address (Class definition)

Offset 0 ~AbstractLocation() AbstractLocation::

Offset 4 AbstractLocation* Clone() 0 (no valid address) 
Offset 8 bool IsKnown() const AbstractLocation::

Offset C bool IsReadOnly() AbstractLocation::

Offset 10 bool HasAddress() AbstractLocation::

Offset 14 Class GetClass() AbstractLocation::

Offset 18 bool IsA(Class C) AbstractLocation::

Offset 1C bool DerivesFromA(Class C) AbstractLocation::

TABLE 7.4 AbstractConstant virtual function table (vtab)

Table Entry Virtual Function Address (Class definition)

Offset 0 ~AbstractConstant() AbstractConstant::

Offset 4 AbstractLocation* Clone() 0 (no valid address) 
Offset 8 bool IsKnown() const AbstractConstant::

Offset C bool IsReadOnly() AbstractLocation::

Offset 10 bool HasAddress() AbstractLocation::

Offset 14 Class GetClass() AbstractConstant::

Offset 18 bool IsA(Class C) AbstractConstant::

Offset 1C bool DerivesFromA(Class C) AbstractConstant::

TABLE 7.5 ConstantInt virtual function table (vtab)

Table Entry Virtual Function Address (Class definition)

Offset 0 ~ConstantInt() ConstantInt::

Offset 4 AbstractLocation* Clone() ConstantInt::

Offset 8 bool IsKnown() const AbstractConstant::

Offset C bool IsReadOnly() AbstractLocation::

Offset 10 bool HasAddress() AbstractLocation::

Offset 14 Class GetClass() ConstantInt::

Offset 18 bool IsA(Class C) ConstantInt::

Offset 1C bool DerivesFromA(Class C) ConstantInt::
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Not a problem in Java: all methods are dynamically bound. But, for effi-
ciency, C++ and C# class designs may rely on the default of static binding. 
When methods in a parent class are non-virtual, the client must extract 
subtype to select an overridden method, as shown in Example 7.4.

Type casting converts the value of one type to the equivalent value of 
another type, e.g. casting integer 7 to float 7.0. Implicit casting or type 
conversion is performed automatically by the compiler, as when a float is 
assigned to an integer or vice versa. Explicit casting must be requested. 
Verifying type before casting is standard practice when manipulating 
objects from a heterogeneous collection. For type extraction, C++ pro-
vides dynamic _ cast and static _ cast; C# provides as and is. 
The client may use these casting operators to compensate for static bind-
ing, compromising maintainability. Client type extraction suggests poor 
design. To reclaim type when type is unknown, the client must test for 
each possibility. This tedious and error-prone type extraction requires a 
lengthy switch (or a multi-arm if-else) to check for all possible subtypes, a 
costly process of elimination.

The C++ client specifies the desired type for generic dynamic _
cast and static _ cast operators. “dynamic _ cast<Child1*> 
(basePtr)” attempts to reclaim the Child1 subtype from a polymorphic 
handle by: 1) at run-time, check the subtype of the object whose address 
is held in basePtr; 2a) return the address held in basePtr if subtype is 
Child1; 2b) return a zero, indicating failure, if subtype is NOT Child1. 
The statement “if (Child1* ptr = dynamic _ cast<Child1*> 
(HeteroDB[i]))” from Example 7.4 examines the (i+1)st pointer value 
from the heterogeneous array. If this address ‘points to’ a Child1 object, 
then the address is assigned to ptr which is of type Child1; since an 
address is non-zero (true), the condition is fulfilled and the rest of the if-
else is skipped. If this address does NOT ‘point to’ a Child1 object, then 
zero (false) is assigned to ptr, the conditional test fails, and control flows 
onto the next arm of the if-else statement.
dynamic _ cast is an expensive run-time check. Using static binding 

for efficiency may backfire if clients must perform dynamic _ cast opera-
tions. Multiple dynamic _ cast calls cost more than a single, virtual call. 
static _ cast is not expensive because it does not perform a run-time 
check: it simply cast the given object to the specified type. static _ cast 
should be used only when type is known but still should be wrapped in excep-
tion handling code because an invalid cast triggers a run-time error. C#’s 
operators are comparable to those in C++ though the syntax is easier to read.
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Example 7.4 Type Extraction

// SETUP:  class hierarchy with two public 
// methods in base class
// 1) void process() is NOT virtual =>  
// statically bound call
//     => always yields Base functionality
// C++ descendant may simply redefine as  
// ‘void process()’
// C# descendant redefine (hide) as  
// ‘new public void process()’
// 2) void surprise() is virtual => yields  
// subtype functionality

// CLIENT code uses heterogeneous collection 
//     virtual function == automatic type checking
//     non-virtual function == no automatic  
//     type checking
//            => manual type-checking if  
//            Derived behavior desired 

// C++ dynamic_cast: run-time type check  
// of ‘pointed to’ object 
// address returned if type matches;  
// zero returned if cast fails
for (int i=0; i < 100; i++)
{  // virtual call, elegant: compiler sets  
   // up dynamic invocation
   HeteroDB[i]->surprise();

   // clunky, tedious, not extensible
    if (Child1* ptr = dynamic_cast<Child1*>  

                  (HeteroDB[i])) 
       ptr->process();
    else if (Child2* ptr = dynamic_cast<Child2*>  

                       (HeteroDB[i])) 
       ptr->process();
    else if (Child3* ptr = dynamic_cast<Child3*>  

                       (HeteroDB[i])) 
       ptr->process();
   …           // for all relevant subtype  
               // variants, test cast
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   else HeteroDB[i]->process();       
// catchall: unmatched subtype
}

// C# CLIENT code:  is checks type;  
// as casts type when match
for (int i=0; i < 100; i++)
{  // virtual call, elegant: compiler sets up  
   // dynamic invocation
   HeteroDB[i].surprise();

   // clunky, tedious, not extensible
   if (HeteroDB[i] is Child1)
   {   Child1 x = HeteroDB[i] as Child1;   
       x.process();
   }
   else if (HeteroDB[i] is Child2)
   {   Child2 x = HeteroDB[i] as Child2;   
       x.process();
   }
   else if (HeteroDB[i] is Child3)
   {   Child3 x = HeteroDB[i] as Child3;   
       x.process();
   }
   …          // for all relevant subtype 
              // variants, test cast
   else …     // catchall: subtype unmatched 
}

Without polymorphism, the client must check type in order to invoke the 
desired subtype behavior. In Example 7.4, process() is not dynamically 
bound and so must be invoked through a specific subtype. Type checking 
is tedious, error-prone, and not extensible. Clients must remember to check 
for subtypes wherever needed: a vulnerable proposition in the modern era 
of large-scale software. Say subtype extraction is performed in 15 different 
places. What happens if a new descendant extends the type hierarchy? Every 
place that performs type checking must add another arm to the if-else or 
switch statement. An update is expected in those 15 different places. What 
happens if one update is missed? Software becomes inconsistent and pos-
sibly unreliable. Type checking code may be isolated in a function but the 
difficulty of ensuring all updates in a large software system remains.
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Testing type, incrementally, as shown in the multi-arm if statement of 
Example 7.4, is inefficient. If one must exclude eight subtypes before a match 
is found on the ninth cast, then nine dynamic casting operations are required 
– much more expensive than a single virtual method call. Type verification 
may be curtailed when the public interface of the base class provides type 
identification. Illustrated in Chapter 5, whoami(), defined in the base class, 
returned the value of data member level, as set in each descendant con-
structor. A single call to whoami() returns subtype identity, typically a 
number or an enumerated value for readability. With a known type, a static 
cast may directly reclaim type, as shown in Example 7.5, thereby reducing 
the number of casts to one. A static _ cast converts type directly while 
a dynamic _ cast calls wraps type casting in exception handling code, 
nicely returning a zero if the cast fails. Use of static _ cast is vulnerable 
unless the client knows the precise subtype to be reclaimed.

Although whoami() reduces the cost of type extraction, responsibility 
for proper use still resides externally. The client must correctly associate an 
ordinal value with a subtype. Hence, for safety, static _ cast should be 
wrapped in exception handling code. Type-checking methods cannot com-
pensate for poor maintainability. Updating software is difficult when code 
relies on type extraction. Type checking code may reflect inadequate design. 
Design is not extensible when a client must serve as a compiler and extract type.

Example 7.5 Type Reclamation with Static Cast in C++

// whoami() in class hierarchy yields identifying int
//     myObj is base class pointer, just like  
//     HeteroDB[i]
int typeId    myObj->whoami();

switch (typeId)
{ case 0:   
  { SubType0*  ptr = static_cast<SubType0*> (myObj);
    ptr->process(); 
    break; 
  }
  case 1:   
  { SubType1*  ptr = static_cast<SubType1*> (myObj);
    ptr->process(); 
    break;
  }
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       …
  case 8:   
  { SubType8*  ptr = static_cast<SubType8*> (myObj);
    ptr->process(); 
  }
}

As much as possible, type checking should be left to the compiler – the 
most consistent, secure, and maintainable approach. Client type check-
ing is onerous, insecure, and unmaintainable. Type checking internalized 
within a class provides an uncomfortable middle ground: security is not 
much improved but efficiency is.

7.4 PROBLEMATIC TYPE EXTENSION
External benefits of reuse via inheritance may be limited. Although any 
object of a derived class may be substituted for an object of the base class, 
public utility is restricted to that published in the base class interface. If a 
derived class extends its inherited interface by defining additional meth-
ods, one cannot call those additional methods through a base handle. 
In Example 7.6, the child function LOL() cannot be invoked through a 
parent handle. Code must be added to extract subtype in order to invoke 
LOL() – not a maintainable design.

A child class may expand its inherited interface. Such extension was tra-
ditionally considered a ‘pure’ form of inheritance. However, when hetero-
geneous collections are typed to the base class, the client must extract (sub)
type to invoke any method not in the base interface. Distinguish between 
interface extension which may be problematic and behavior extension (re-
definition) which usually is not.

Example 7.6 Child Extends Parent Interface

class  narrowParent {..};
class  widerChild: public narrowParent
{     …
   public:
      // method added to interface, not in parent  
      // interface
      void LOL();
      …
};
….
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// client code
narrowParent*    db[100];
for (int j = 0; j < 100; j++)
      db[i] = GetObj();
// LOL() not in base interface => compilation error
for (int j = 0; j < 100; j++)
{     db[i]->process();     // ok, in parent interface  
}
// must add code to extract subtype in order  
// to invoke LOL()
for (int j = 0; j < 100; j++)
{     db[i]->process();     // ok, in parent interface
      
     if (widerChild* ptr = dynamic_cast 
              <widerChild*> (db[i]))
          ptr->LOL();    // child class pointer used 
}

In an inheritance design, defining the base class interface may be 
the most crucial decision. A base class interface is inadequate when 
a derived class: 1) wishes to override inherited methods but the base 
class uses static binding; 2) expands its inherited interface. In both 
cases, clients must extract type. How can design reduce the burden 
of type checking when future modifications and expansions cannot 
be predicted? When the base class provides type identification via a 
method like whoami(), as shown in Example 7.5, the scope of type 
checking is reduced. The client does not need an exhaustive sequence 
of checks to identify type because a whoami() query yields immediate 
type identification. We next examine a design with such internalized 
type reclamation.

Example 7.7 sketches a class hierarchy for Creatures defined for 
gameplay. Only the virtual reCharge() method is of interest. Assume 
that each Creature has a store of energy reserves which is tapped when 
reCharge() is invoked. Descendants of the base class may refine the 
inherited reCharge() but must match its signature. Hence, a derived 
class cannot accept a parameter when overriding reCharge(). What if 
a new subtype, predator, recharges by consuming energy reserves from 
another Creature? Unfortunately, the Creature interface cannot 
accommodate this modification.
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Example 7.7 Mask Type for General Use

public class Creature
{    protected uint reserves;
     public virtual bool reCharge()          { … }
}
public class agileCreature: Creature
{    …
     public override bool reCharge()         { … }
}
// method signatures do not match => cannot override
//    if method defined as virtual, new entry in vtab
//    extended interface not accessible via base  
//    class interface
{     …
      public bool reCharge                     { … }
}
public class CreatureG
{    protected object reference = null;
     …
      public virtual bool reCharge(object  

  handle = null) { … }
}
public class agileCreatureG: CreatureG
{            …
      public override bool reCharge(object  

  handle = null)   { … }
}
public class Scavenger: CreatureG
{    …
     public override bool reCharge(object c = null)                  
    {      // type conversion code
          CreatureG          yummy = c as CreatureG;
          if (yummy = = null) return false;
          …
          return true;
    }
}

A generic placeholder leaves room for variability. In Example 7.7, 
class CreatureG alters the Creature class only by introducing a 
parameter of type object, with a default value of null, into the signa-
ture of reCharge(). Clients do not have to pass a parameter – a call 
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to reCharge()without a parameter causes the compiler to insert a null 
reference. In C#, object is a generic reference that can hold the address 
of any type of object. C++ use the void pointer (void*) as a generic 
address holder. If the optional parameter is provided, as expected in the 
Scavenger class, then the class code internally extracts the type and 
proceeds to use the parameter as intended.

A derived class interface that is incompatible with the base interface may 
indicate that inheritance is a suboptimal design. Consider a tricky question, 
from an OOD perspective: is a square a rectangle? Mathematically, yes, a 
square is a rectangle where width matches length. However, a rectangle base 
class may support chgLength() and chgWidth() methods. To conform 
to the inherited interface, the square descendant class may: 1) override the 
inherited methods so that any change to length (or width) results in an equal 
adjustment to width (or length) – a change that is misleading to the client; 2) 
use the inherited methods as is, resulting in square objects that do not retain 
the property of equal width and length. What if the square class just wants to 
support a resize() method that takes a single value to modify both width 
and length, preserving the property of a square?

Maintainability concerns may arise even when an interface is sufficient. 
If a base class employs Constructor Injection then its descendants must 
pass the dependency up (through their constructor initializer lists). If 
these descendants have descendants, then the base class dependency must 
pass through three constructors, etc. With Constructor Injection, a depen-
dency propagates down from the base class to all descendants. Combining 
interfaces may also be problematic, as seen next with multiple inheritance.

7.5 MULTIPLE INHERITANCE AND ITS SIMULATION
Multiple inheritance establishes two (or more) is-a relationships when a 
child class inherits from two (or more) parent classes, providing the usual 
benefit of code reuse. Multiple inheritance increases software complexity: 
cohesion decreases because the child class definition is spread across three 
or more classes; coupling increases because the child class is tied to two or 
more parent classes. Unlike single inheritance, it may not be clear what the 
child class reuses from a specific parent.

C# and Java do not support multiple inheritance, possibly because the 
costs of such complex designs often outweigh benefits. Multiple inheri-
tance is supported in C++ but must be simulated in C# and Java. Examples 
of multiple inheritance that cannot be designed as well, or better, by simu-
lating multiple inheritance are few. The classic Observer pattern [Gam95] 
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used multiple inheritance – the need for this pattern has decreased with 
support for event notification in modern programming languages.

Example 7.8 Multiple Inheritance

class Signal            
{  protected:
       bool           on = true;
       unsigned       count = 0;
   public:
       int feedback(int value)
       {      if (!on)       return -1;
              count++;
              on = value != 9999;   
              return count;
       }

       bool isOn()   {      return on;  }

       void reset()
       {      count = 0;
              on = true;
       }
};

class Counter 
{      unsigned       count;
       unsigned       max;
       unsigned       min = UINT_MAX;
   public:
       unsigned getMax()     {      return max;   }
       unsigned getMin()     {      return min;   }

       void record(unsigned k)
       {      if (k < min)  min = k;
              if (k > max)  max = k;
              count++;
       }

       void reset()   
       {      count = max = 0;
              min = UINT_MAX;      
       }
};
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class signalCounter: public Signal, public Counter 
{  public:
       void reset()   // redefinition forced
       {      record(Signal::count);
              Signal::reset();
       }
};

Example 7.8 defines a multiply inherited signalCounter, a type that 
combines a Signal (receives and counts values until an error code (9999) 
is received) with a Counter (receives values indefinitely, recording only 
the minimum and maximum values). The combined type tracks the mini-
mum and maximum number of values processed before an error code is 
received. The two parent classes Signal and Counter provide distinct 
functionality but reset() has the same signature in both parent classes. 
Both methods are inherited so which method executes when invoked 
through a signalCounter object? When two parent classes contain the 
same method with identical signatures, it is unclear (ambiguous) which 
method is called through a child object. Compilers cannot handle ambi-
guity. Compilers follow long, complex directions, and use definitive rules 
when faced with a choice. Compilers cannot capriciously select an option. 
To remove ambiguity, the child class designer must override all methods 
in an overlapping interface. The signalCounter class must redefine 
reset() so that the compiler may resolve a call through a child object.

Ambiguity prevents compilation. The C++ language standard does not 
specify any correlation between the declaration order of multiple parents 
and the layout of parent components. Thus, compilers cannot prioritize 
parents in order to select methods from overlapping interfaces. Without a 
rule for resolving overlapping interfaces, the compiler generates an error. 
Ambiguity forces the child class to override any method inherited from 
two (or more) parents. The child class may call zero, one or both parent 
methods in its overridden method.

7.5.1 Design Difficulties

Diamond inheritance occurs when two parents of a child class both inherit 
from the same ancestor, giving a child object two ancestor components, 
one embedded in each parent component. Such redundancy is not eas-
ily resolved. C++ virtual inheritance tags possible redundancy. The class 
designer must anticipate diamond inheritance and derive each parent class 
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‘virtually’, for example class parent1: public virtual com-
monC and class parent2: public virtual commonC. When 
two parents inherited “virtually” from a common ancestor, the compiler 
suppresses the redundant copy in the multiply inherited child and adjusts 
internal references. Hence, class child: public parent1, pub-
lic parent2 has only one commonC component. Virtual inheritance is 
only effective if all parents derived virtually from their common ancestor. 
Unfortunately, no one can accurately predict all future uses of a class and 
tagging every inherited relationship as ‘virtual’ is overkill, especially since 
diamond inheritance is uncommon.

7.5.2 Single Inheritance with Composition

Multiple inheritance may be mimicked via single inheritance with compo-
sition: an encapsulated delegate serves as the rejected parent. The delegate 
is considered a subordinate type given the loss of an is-a relationship. Type 
dependency should drive design: the stronger the association between 
parent and child types, the more feasible the parent’s reuse via inher-
itance rather than composition. For example, [Din14], the design of a 
studentEmployee class subordinates the Employee class because 
the most important functionality of a studentEmployee is being a 
Student. When a child has comparably dependency on both parents, 
the choice of parent to subordinate is arbitrary. In Example 7.9, Counter 
is subordinated, with the assumption that the feedback functionality of 
Signal is more essential that identifying minima and maxima.

For full simulation, the composing class should echo the functional-
ity of the subordinated parent. C# interfaces effectively mimic the is-a 
relationship and may be used to force implementation. Since C# does not 
support multiple inheritance, simulation must subordinate at least one 
parent. Use of an interface though provides design consistency and sup-
ports heterogeneous collections. Without the interface construct, a C++ 
class is not forced to echo any functionality, possibly yielding design 
omissions.

Example 7.9 C++ Subordinated Parent

class signalCounter: public Signal  
{      Counter          delegate;
   public:
       signalCounter(unsigned d = 1000): Signal(d) { }
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       void reset()
       {      delegate.record(count);
              Signal::reset();
       }

       // echo
       unsigned getMax() { return delegate.getMax();}
       unsigned getMin() { return delegate.getMin();}
       void record(unsigned k) { delegate.record(k);}
};

7.5.3 Simulation without Inheritance

Inheritance may be avoided completely. Advantages of composition – 
transfer of ownership, postponed instantiation, polymorphic delegates, 
subobject replacement, variable lifetime, association, and cardinality – 
accrue when each parent type is subordinated to data member status. C# 
interfaces force key functionality to be echoed thus mitigating the loss of 
the is-a relationship with demoted parent(s).

Delegates may be instantiated internally or assume ownership from a 
caller. Internal construction retains control and obviates the need for error 
checking but is not extensible: defining a new delegate subtype may require 
altering construction of the internal delegate. In contrast, Dependency 
Injection requires defined error response but supports maintainability. 
Delegates are always held indirectly in C# because all objects are refer-
ences. C++ must use base class pointers to reference delegates, in order to 
achieve type extensibility. With a polymorphic delegate, type extension (of 
the delegate subtype) does not affect class implementation since the client 
passes the delegate.

When the client injects a null object, via Constructor, Method, or 
Property Injection, an appropriate error response should be triggered. 
Standard error handling includes throwing an exception, returning 
an error code (not possible with Constructor Injection), replacing the 
null reference with a default instantiation, or peppering checks for null 
throughout the class.
signalCounter in Example 7.10 uses Signal and Counter del-

egates, displaying both internal and external approaches to instantiat-
ing delegates. The Signal object is internally constructed; a Counter 
object is injected. Any object that satisfies the CounterI interface may 
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be passed into the signalCounter constructor. If the Counter class 
is extended, both signalCounter and legacy client code are stable. 
Variant behavior might be observed if a client passes in a new Counter 
subtype delegate but the internals of signalCounter are unaffected. 
However, class code must check that the data member externalObj is 
not null wherever it is used. Similar observations arise from the Property 
Injection of any delegate object typed to the CounterI interface. In con-
trast, the Signal delegate is constructed internally so there is no need 
for error checking. However, if a new Signal delegate subtype is defined, 
the signalCounter class cannot use it without altering its internal con-
struction code.

Example 7.10 C# Double Composition => Internal Type 
Extensibility

// interfaces forces provision of Signal & Counter 
// functionality
//     => supports heterogeneous collections
public class signalCounter: SignalI, CounterI
{   private   SignalI        internalObj;
    private   CounterI       externalObj;

    // Constructor Injection 
    public signalCounter(CounterI b, uint choice)
    {  //any subtype typed to CounterI is  
       //legal => extensible
       //external instantiation => client may  
       //pass null object
       externalObj = b;

       //internal instantiation => not extensible
       //=> subtype selection altered for new  
       //delegate subtype
       if (choice == 1)  internalObj = new signal();
        else if (choice == 2)  

        internalObj = new skipSignal();
       …
       else         internalObj = new flashSignal();
       }
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       // must check for existence of Counter object
       public void record(uint k)
       {      if (externalObj = = null) return;
              externalObj.record(k);
       }

       // Property Injection
       public bool switchCounter(CounterI loud)
       {      if (loud = = null)    return false;
              externalObj = loud;
              return true;
       }
}

When simulating multiple inheritance, the choice between double 
composition or single inheritance with one subordinate parent may not 
be clear. If the child type sustains a strong is-a relationship with one 
parent type, then single composition is warranted. Otherwise, double 
composition yields control and f lexibility. Data members held indi-
rectly, via a base class pointer or reference, can be: 1) stubbed out until 
needed (postponed instantiation); 2) replaced (with the same or a dif-
ferent subtype); 3) internally or externally constructed; and, 4) used 
conditionally.

Multiple inheritance may proceed smoothly when inherited interfaces 
are compatible but not overlapping. Stable interfaces support maintain-
ability and may be established via abstract classes in either language or 
by C# interfaces. Defining an abstract class (or a C#8 interface) does not 
require a definition of data members or default functionality. Even with-
out such baseline definitions, multiple inheritance increases complexity, 
especially when the two ‘parent’ types represent class hierarchies that 
continue to evolve.

7.6 CLASS HIERARCHIES CROSS-PRODUCTS
Composition may encapsulate a delegate to mimic a parent compo-
nent. Even in C++, composition may be a preferred design choice despite 
language support for multiple inheritance. Polymorphic delegates (with 
interfaces) may offer more options for variant ‘parent’ behavior. Previous 
examples of multiple inheritance reused two existing, standalone classes. 
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What is a streamlined design for combining two class hierarchies? We trace 
an intuitive example that melds two existing type hierarchies. Assume two 
defined class hierarchies: Runner (Marathon, Sprinter, Jogger) 
and Dog (GreyHound, Husky). The goal is to construct a DogWalker 
type that combines canine and human exercise preferences. Define a 
multiply inherited child class, DogWalker, matching dog, and runner 
subtypes so that exercise regimes are compatible.

Blending two class hierarchies is not a trivial endeavor. The multi-
ply inherited child type DogWalker: public Dog, public 
Runner inherits only the functionality of the basic Dog, not special-
ized dog breeds, and the basic Runner type, not the variance of a 
striving Olympian or fitness enthusiast. How would canine or human 
exercise specialization be replicated inside the multiply inherited child 
class? What happens if another descendant is define for either Dog or 
Runner? OCP is violated because the class has to be opened up for spe-
cialization and type extensibility.

Using multiple inheritance, there is no easy or maintainable way to com-
bine two existing class hierarchies. How are incompatible combinations, 
such as GreyHoundMarathon, handled? How many child classes are 
needed? The definition of five classes, each inheriting from one Runner 
(Marathon, Sprinter, Jogger) and one Dog (GreyHound, 
Husky) but excluding GreyHoundMarathon seems like a lot of work. 
The definition of three different DogWalkers subtypes (distance, fast, 
steady), each inheriting from Dog alongside one Runner, forces an inter-
nal specialization for dog breeds which likely duplicates code. For example, 
a child class inheriting from Dog and Sprinter would have to internally 
specialize the Dog component as would a child class inheriting from Dog 
and Jogger, etc. Moreover, the introduction of a new breed would require 
altering the DogSprinter and DogJogger and DogMarathon inter-
nal code. Likewise, defining two classes each inheriting from Runner 
alongside one of the two types of Dogs, forces an internal specialization 
for runners, again duplicating code.

Abandoning multiple inheritance for a type combination of Dog 
and Runner improves maintainability. Composition with polymor-
phic delegates supports type extension, that is, the possible contin-
ued evolution of the Dog or Runner hierarchies. The addition of a 
SaintBernard or an UltraMarathon subtype does not derail 
design. The four design approaches in Example 7.11 are ranked from 
least to most extensible.
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Example 7.11 C# Composite Class Hierarchies

// 1) C++ single inheritance with excessive delegates
//    not maintainable and potentially unstable
//    restriction that only one delegate active  
//    at a time
//            inefficient and not enforceable
// no automatic exclusion => internal check for  
// GreyHoundMarathon
// C++ class avoids overhead of heap memory  
// (& copy semantics)
class DogWalker1: public Husky
{      Sprinter       s;
       Marathon       m;
       Jogger         j;
       …      
};

class DogWalker2: public GreyHound
{      Sprinter       s;
       Marathon       m;
       Interval       i;
       …      
};

// 2) C++ direct specification of subtype  
// without replication
//  supports exclusion – no GreyHoundMarathon,  
//  GreyHoundJogger
//  but does not provide extensibility 
//     new Runner or Dog subtypes require new  
//     class definitions
class DogWalker1: public Marathon { Husky  dog;   … };
class DogWalker2: public Sprinter { Husky  dog;   … };
class DogWalker3: public Sprinter { GreyHound     
dog;   … };
class DogWalker4: public Jogger   { Husky  dog;   … };

// 3) C# single inheritance with polymorphic  
// delegate
// delegate construction internal or via  
// Dependency Injection
// internally suppress invalid combinations:  
// no GreyHoundMarathon
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// ok if Dog hierarchy extended
//     new Runner subtype requires new class  
//     definition
// alternatively use Runner delegate and  
// Dog subtype as parent
public class DogWalker1: Sprinter { private Dog d; … }
public class DogWalker2: Marathon { private Dog d; … }
public class DogWalker3: Jogger { private Dog d; … }

// 4) C# ‘double composition’ – two polymorphic  
// delegates 
// internally suppress invalid combinations:  
// no GreyHoundMarathon
// ok if either Runner or Dog hierarchy extended
public class DogWalker
{      private Runner        r;     
       private Dog           d;
       …      
}

The first two designs of Example 7.11 are not extensible. Data member 
declarations of each specific subtype are redundant since only one subtype 
should be active for each DogWalker1 etc. object instantiated. To avoid heap 
memory management, some older C++ class designs worked so directly with 
specific types. But this approach does not provide the flexibility of pointers 
or references which can hold the address of any subtype that conforms to 
the base type (or interface). In modern C++, smart pointers may be used 
for flexibility alongside the reduction of management responsibility. Due to 
the limited typing, and inherent redundancy, these designs would not be 
improved if written in C#. The only advantage that the second design offers 
is that incompatible combinations are excluded simply by not being defined.

The third design of Example 7.11 uses single inheritance alongside com-
position of a polymorphic delegate. OCP is upheld because the definition 
of a new subtype from either hierarchy does not affect any existing classes 
– all remain closed to modification. Invalid type combinations though 
must be filtered internally. A new Dog delegate subtype will not force 
change, if Dependency Injection is used for external instantiation of the 
delegate, and if the new Dog subtype is not incompatible with the defined 
parent. Similarly, a new Runner subtype requires no modification: a new 
child class inheriting from the new Runner subtype must be defined. 
This third design is extensible.
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Double Composition may be the most extensible design. Two polymor-
phic delegates – one Dog and one Runner – support all combinations 
of Dog and Runner subtypes within a single class definition. A poly-
morphic delegate is typed to the base class, and may indirectly address an 
object of any subtype in the class hierarchy. Extensibility is easily satis-
fied but all incompatible combinations must be screened internally. For 
example, DogWalker must disallow the combination of delegate r being 
of type Marathon alongside delegate d being a GreyHound. Since each 
delegate is replaceable, the designer must consider subtype stability and 
requirements for replacement.

Any simulation of multiple inheritance must determine what interface 
the composite class supports – a strict sum of two interfaces is not neces-
sarily required. Overlapping functionality may be combined; some func-
tionality may be melded. Error responses must be defined, or omission 
contractually noted.

7.7 OO DESIGN PRINCIPLE
The DRY (Don’t Repeat Yourself) principle emphasizes the judicious 
reuse of code in preference to copy & paste replication which is tedious 
and error-prone. From the abstract classes in the disassembler example to 
the simulation of multiple inheritance, designs in this chapter sought to 
reuse code so as to minimize code replication. In particular, composition 
designs that use inheritance via polymorphic delegates achieved much 
flexibility. A virtual call through a polymorphic delegate automatically 
yields a wide variety of behavior.

7.8 SUMMARY
Software design’s immediate goal is to meet user expectations by providing 
required functionality. Other priorities may include performance, secu-
rity, usability, scalability, maintainability, software product line exten-
sion, etc. A software designer cannot optimize all criteria simultaneously 
and so must evaluate tradeoffs. Comparative analyses may be difficult if 
short-term and long-term priorities conflict. For example: maintainability, 
via type extensibility as provided by virtual methods, may impact per-
formance; abstract interfaces may increase layering; retention of existing 
structure, via code reuse, may force wrapping; accommodation of testing 
and/or environment change may yield Dependency Injection. When dif-
ferent designs are viable, an assessment of costs and benefits may drive 
selection. Though design decisions may be difficult, competent software 
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designers can simulate missing features and determine when and how to 
avoid expensive approaches.

Both composition and inheritance reuse code effectively. Pure inheri-
tance, or type extension, rests on interface stability. Support of the is-a 
relationship suggests type continuity as manipulated through the base 
class interface. Composition relies less on stability and often wraps unsta-
ble interfaces. The relevance of type is a dominant factor in design selec-
tion. Data types promote safe and consistent manipulation of memory.

Type combination exemplifies design complexity. Multiple inheritance 
is vulnerable to two design difficulties: ambiguity (overlapping interfaces) 
and redundancy (overlapping type representation). The compiler forces 
a design resolution to ambiguity. No tool assists with redundancy. Both 
problems occur when parent type definitions overlap. When two or more 
parent classes do not overlap in form or function, the parent classes are 
orthogonal. Multiple inheritance designs that are clear, maintainable, and 
effective arise from orthogonal parents that serve as individual types (not 
type hierarchies).

7.9 DESIGN EXERCISES
The first design challenge is to construct a hierarchy of maps, where each 
map object encapsulates a two-dimensional array of integers, restricting 
data values, and provides the following functionality:

1. populate an encapsulated 2D array of integers, with special border 
values

2. conditionally overwrite the value in row x, column y

3. ‘freeze’ a map location; frozen locations may not be overwritten

4. for a specified row, return the minimum or maximum value to client

5. for a specified column, return the minimum or maximum value to 
client

Make the base class abstract and define two descendant classes of the basic 
map type: modMap is-a map that encapsulates a two-digit ‘mod’ value m 
used to ensure that all values in the map are evenly divisible by m. mod-
Map objects will not freeze any values in a row or column whose indices 
are evenly divisible by m; and, uniqueMap is-a map that holds no dupli-
cates and will not freeze values.
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Since the base class is abstract, inheritance is required to complete any 
type definition. Type extensions though are uncontrolled and are not 
guaranteed to be fully utilized through the base class interface. The second 
and third design problems intend to illustrate difficulties with inheritance 
designs. Ideally, the reader should consider these problems only after con-
structing a solution to the first problem.

The second design problem is to define subtype primeMap that stores 
only non-primes numbers, limits the number of possible replacements and 
freezes no more than half the values in the array. The third design problem 
is to define subtype thawMap that has no restrictions on the data values 
stored and supports the unfreezing of frozen values.

The last design problem appears to be a multiple inheritance design – 
and that is an option but only in C++. Start by defining two marker types 
that move across a two-dimensional grid: inchworm crawls along a ver-
tical or horizontal line, marking all cells in its path; leapFrog jumps 
from one cell to another along a diagonal, marking only the destination 
cell. Next, define a leapWorm class that crawls along a diagonal, reus-
ing these existing types. Viable design options include: 1) multiple inheri-
tance (C++); 2) single inheritance from one parent alongside composition 
(the second parent is subordinated to a data member); and 3) double com-
position with both parents subordinated to data members. Solutions are 
sketched and discussed in Appendix C.2.

DESIGN INSIGHTS

  Software

Compilers do NOT handle ambiguity

Interfaces promote consistency and use of heterogeneous collections

  Software Design

Poor design cripples the possibilities of extension.

Software complexity often seems unavoidable.

Forced reuse may make design difficult.

Composition provides more flexibility than inheritance

Polymorphic subobjects promote variation
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  Documentation

Identifying optimal designs is difficult => record rationale for choice

Evaluate tradeoffs

Document intent and effect

CONCEPTUAL QUESTIONS

1. When would suppression of inheritance be appropriate?

2. What are the costs and benefits of multiple inheritance?

3. How can multiple inheritance be simulated?

4. Describe the notion of type subordination and how it affects design 
choices.

5. When should composition be chosen in lieu of inheritance, and vice 
versa?
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C h a p t e r  8

Operator Overloading

CHAPTER OBJECTIVES

• Define operator overloading

• Contrast C++ and C# support

• Consider conceptual framework

• Assess utility of operator overloading

8.1 OPERATORS REPRESENT FUNCTIONS
Interfaces should be intuitive. This common observation is easily under-
stood by replacing ‘code’ with ‘interface’ in Cory House’s wry comment 
“Code is like humor; if you have to explain it, it’s bad”. Much work is put 
into the design of user interfaces to facilitate use. The same should be true 
of designing a class interface. Overloaded operators, often described as 
syntactical sugar (sweetens but does not add functionality), can sustain 
intuitive use of a type.

Overload operators require type resolution of the operands in order to 
invoke the appropriate implementation – a more efficient and less error-
prone process in a statically type language where the compiler resolves 
type. Casting of an operand may impact function resolution. For example, 
if x is an integer and y is a real then y may be cast to an integer and added 
to x via integer addition. In contrast, if x is a real and y is an integer then 
y may be cast to a real and added to x via real addition. Casting offers 
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convenience but may causes difficulty when overloading operators for 
user-defined types, especially with mixed-mode arithmetic.

Operator overloading can increase abstraction and readability:  
‘x + y’ is more readable than ‘add(x,y)’ or ‘x.add(y)’; ‘x < y’ is more readable 
than ‘isLessThan(x,y)’ or ‘x.lessThan(y)’. Moreover, overloading an opera-
tor permits instantiation of that type in a generic container or algorithm 
(e.g. ‘<’ for std::sort). Table 8.1 delineates the different types of opera-
tors commonly available, identifying return values as well as whether the 
operations are destructive, that is, alter an operand. Although counter-
intuitive, for example, ‘+’ is not destructive: neither operand is altered; ‘+’ 
returns a temporary object as the sum.

C++ permits all but four operators to be overloaded. Java does not sup-
port any operator overloading. C# supports limited operator overloading 
with specific restrictions. C++ implements overloaded operators in two 
ways: non-static class methods and global methods outside class scope. 
A C++ binary operator overloaded as a class method is invoked through 
the left operand (object) and the right operand (object or literal) is passed 
as a parameter. The this pointer holds the address of the left operand. 
Non-destructive class methods should be labelled const. A C++ opera-
tor overloaded as a global method passes all operands as parameters. C# 
overloads operators via static class methods, also requiring all operands to 
be passed as parameters. See Example 8.1.

Example 8.1 Invocation of Addition

x + y;          // operator syntax
add(x,y)        // function call syntax

TABLE 8.1 Types of Operators

Semantic Meaning Operators Destructive Value Returned

Mathematical +, -,  *, /, % No Temporary
Relational/
Comparison

<,<=, ==,!=, >, >= No Boolean

Logical &&, ||, ! No Boolean
Increment/
Decrement

++,   -- Yes Object

Access [],   ->,   * No subObject
Function () Possibly Varies
Stream I/O <<,   >> No/Yes Stream
Assignment =, +=, *=, -=, /= Yes Lvalue
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x.operator+(y)  // C++ non-static method call syntax
operator+(x,y) // C# static method call syntax

Software design cannot change the compiler: ‘x + y’ is always parsed 
as a binary operation; ‘a*b + c’ is always processed as ‘(a*b) + c’ since 
multiplication has higher precedence than addition. Neither the par-
ity nor the precedence of an operator may change when overloaded. 
Compilers are written relative to a language standard which defines 
the legal use of symbols as operators. A class designer cannot define 
methods for symbols not used as operators, e.g. ‘#’ is only a preproces-
sor symbol in C++.

8.2 OVERLOADING ADDITION IN C++
Example 8.2 illustrates the overloading of addition, via a class that cycles 
through an encapsulated sequence, emitting its values one by one upon 
request. A design goal is to support client use of a sequence object as if 
it were a primitive type. The cyclicSeq class uses a STL vector to 
ensure correct memory management. (The STL vector is an effective 
alternative to raw arrays when size is stable.)

Example 8.2 C++ cyclicSeq

class cyclicSeq
{    int             index;
     unsigned        size;
     vector<int>     seq;
public:
     cyclicSeq(vector<int> s)
     {    seq = s;
          size = seq.size();
          index = -1;
     }
     
     int getValue()
     {    index = (index + 1) % size;
          return seq[index];
     } 
      
      // x + y is NOT destructive:  

// x & y not altered
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       // return by value returns  
// temporary cyclicSeq object

       cyclicSeq  operator+ 
(const cyclicSeq&  b) const

      {    cyclicSeq       local(seq);
           int num = size < b.size? size: b.size;
           for (int i=0; i < b.size; i++)
                  //#1 equivalent size? 

local.seq[i] += b.seq[i];  
           return local;
      }
      …
};

Syntactically, overloading operators is easy: define methods using 
the keyword operator. Design may not be as simple. Addition of two 
cyclicSeq objects could be the summation of ‘corresponding’ values 
or the union of two sequences. For example, if the first cyclicSeq 
object holds values 1, 14, 10 and the second holds values 2, 6, -3, the 
sum of the two could be 3, 20, 7 (value addition) or 1, 14, 10, 2, 6, -3 
(union). Example 8.2 takes the former approach and adds corresponding 
sequence entries.

Example 8.3 Client Expectations => Potential Difficulties

 // client code: getHeapInt(num)  
// returns a vector of num ints
cyclicSeq  large(getHeapInt(500));
cyclicSeq  tiny(getHeapInt(5));
cyclicSeq  holder(getHeapInt(100));
                     // #1 capacity inconsistencies
// 5 values of tiny added to large 
holder = large + tiny;     
// 500 values added to tiny? 
holder = tiny + large;     

                     // #2 literals are not objects
// value 2 added to values of large 
holder = large + 2;        
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// large added to literal 2? 
holder = 2 + large;        

                        // #3 increment destructive
holder = large + 1;        // ok, large not altered
holder = large++;         // ++ destructive

Overloading addition appears trivial, and it can be, but is design con-
sistent? Sample client code in Example 8.3 uses the public interface of 
cyclicSeq without knowledge of encapsulated details, and illustrates 
three potential inconsistencies: size; object vs. literal manipulation; non-
destructive vs. destructive operations.

Cardinality of any encapsulated sequence is not evident. What if oper-
ands are of different (internal) cardinality? If the left operand is smaller 
than the right, should trailing sequence values be appended, as in state-
ment #1 of Example 8.2? Design should manage size (cardinality, capacity). 
Example 8.4 modifies cyclicSeq to accommodate size inconsistency: a 
local cyclicSeq is allocated a size equal to that of the larger operand. 
Then, element by element, values from the two cyclicSeqs are added 
together, until every item in the smaller cyclicSeq has been processed. 
Capacity inconsistencies are problematic in C++ when raw arrays are used, 
due to the possibility of run-time errors or data corruption if array indices 
are out of bounds.

A client may wish to add a number to a cyclicSeq object, say increase 
each element in a sequence by a given value. Example 8.4 includes a sec-
ond (overloaded) version of addition which adds an increment to each 
element stored in a cyclicSeq for mixed-mode addition. Note that the 
first operand is a cyclicSeq; the second operand is an integer value to 
be added to each element in the left operand. The cyclicSeq operand 
is not altered: ‘+’generates a temporary cyclicSeq object that holds the 
defined sum.

Example 8.4 Overloaded Overloaded +

//updated operator+   -- handle  
//different capacities
cyclicSeq   cyclicSeq::operator+(const cyclicSeq&  b)
{    // copy larger vector for local allocation
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     vector<int>     copy = size > b.size?  
                            seq: b.seq;
     cyclicSeq       local(copy);

      unsigned   number = size < b.size?  
                    size: b.size;

     for (int i=0; i < number; i++)
          local.seq[i] = seq[i] + b.seq[i];    
     return local;
}

// overloaded overloaded + : add increment  
// to each element seq
cyclicSeq  cyclicSeq::operator+(int increment)
{    vector<int>     copy = seq;
     cyclicSeq       local(copy); 
     for (int i=0; i< size; i++)
          local.seq[i] += increment;    
     return local;
}

// Addition COMMUTATIVE: a + b == b + a
// GLOBAL function to invert “7 + a”  
// invocation via callback
cyclicSeq  operator+(int literal, cyclicSeq b)
{    return     b + literal;         }

Logically, ‘y + 5’ is the same as ‘5 + y’ because addition is commutative. 
The compiler examines the left operand for type information in order to 
invoke the appropriate addition function. If left operand ‘y’ is a primitive, 
the compiler chooses the addition function for that primitive type (inte-
ger, real, etc.). If left operand ‘y’ is a user-defined type, the compiler looks 
in the class for a publicly defined operator+(int)method. When ‘5’ is 
the left operand and ‘y’ is not a primitive type, there may be a problem. A 
class method cannot be invoked through a literal! Since ‘a + b’ represents 
the C++ function call ‘a.operator+(b)’, operand a must be an object. 
Given the two class methods for operator+ shown in Example 8.4, b can 
be either an object or an integer. However, ‘a.operator+(b)’ cannot be 
fulfilled by a class method when a is a literal: ‘7.operator+(b)’ is not a 
valid invocation of a class method and it cannot be turned into one. Class 
designers cannot rewrite the compiler.
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Global functions are defined outside of class scope and so are not 
invoked through an object: no this pointer is passed as an implicit param-
eter. Without the left operand serving as an implicit parameter (the ‘this’ 
pointer), both operands for an overloaded binary operator must be passed 
as parameters. Commutative expectations may be met through a global 
function: ‘7 + a’ will compile given the last overloaded ‘+’ in Example 8.4. 
If an operation is commutative, as is addition, the global function simply 
forwards the call to the class method, reversing the order of the operands 
as specified by the client. Call inversion removes the need to: 1) write new 
code; 2) access private data of the operands.

The last noted inconsistency of Example 8.3, non-destructive versus 
destructive operations, arises from assignment. When a client may use ‘+’ 
and ‘=’, then support for ‘+=’ is expected; Example 8.5 illustrates a C++ 
implementation of an overloaded ‘+=’. A C# class designer cannot overload 
any assignment operator but does not need to do so: ‘+=’ is ‘automatically’ 
provided if ‘+’ is overloaded. A C++ class designer must overload every 
assignment operator that the client may expect to use (=, +=, -=, etc.).

Assignment is implied with support for mixed-mode addition. If a lit-
eral number may be added to an object, an increment of ‘1’ is possible. 
Consequently, support for pre and post increment may be expected. Yet, 
pre and post increment are destructive operations while addition is a 
non-destructive operation – a temporary is returned from the addition 
method. Type definitions appear inconsistent if client expectations exceed 
functionality provided by the class. A client comfortable using a user-
defined type as a primitive type may expect support for all operations in a 
‘conceptual framework’.

Example 8.5 Shortcut Assignment

// overloaded +=     (shortcut for addition  
// AND assignment)
//   a += b is destructive  // same as a = a + b
//   += invoked through object a =>  
//       object a altered 
cyclicSeq&    cyclicSeq::operator+=(cyclicSeq&  b)
{    un signed  number = size < b.size?  

                size: b.size;

     for (int i=0; i < number; i++)
           seq[i] += b.seq[i];                                  
     return *this;
}
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‘++’ is a placeholder for two different actions: pre-increment and post-
increment. The compiler uses the placement of ‘++’ before or after a vari-
able to resolve the call to either pre or post increment. Both methods 
have the same name (operator++) and one implicit parameter (this 
pointer). To distinguished between pre and post overloaded increment, a 
C++ class designer defines two different methods, where post-increment 
has (a dummy) int parameter in order to provide a distinguishing sig-
nature. The compiler automatically patched in a dummy int (typically of 
value 1) when generating the call; implementation code should ignore the 
dummy int since its value is not guaranteed.

When pre-increment fires, the updated object state is returned to the 
caller. When post-increment fires, the updated object state is recorded 
internally but the original state of the object is returned to the caller. In 
this manner, pre- and post-increment mimic the defined operators for 
primitives. Example 8.6 displays the standard implementation of pre- and 
post-increment for an intuitive example (a Clock) as well as client code 
illustrating the use of pre- and post-increment.

Example 8.6 Pre- and Post-Increment

 // overloading ++: class must  
// distinguish between pre & post
 // compiler inserts a dummy int  
// for post increment call
 // two methods:    operator++()          
// -- pre-increment
 //                 operator++(int)       
// -- post-increment
 // => 1) same process for decrement;  
// 2) client not impacted 
class Clock
   {      …
          // pr ivate utility function  

Clock tick();          
     public:
           Cl ock operator++()     

{  return            tick();  }
           // …
           Clock operator++(int)
           {    Clock      oldState = *this;
                tick();
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                return     oldState;
           }    
};
// …
// client code
Clock      am(11, 59);    // 11:59 am
int        x = 10, y = 14;
   
// display1 holds time of 11:59 am 
Clock display1 = am++;     
                               // post++: am holds 

// time of 12:00 pm
    // display2 holds time of 12:01 pm 

Clock display2 = ++am;     
   
   c out << display1.time()   

    << display2.time()  << endl;      
    // 11 and 14 output 

cout << ++x  << y++  << endl;      

Example 8.6 illustrates the general design for overloading the pre- 
and post-increment and decrement operators. A private utility function 
(e.g. tick) increments according to type definition. Pre-increment sim-
ply forwards the call to private utility function tick which returns a 
copy of the ‘incremented’ object. Post-increment stores a copy of the 
original object, calls the private utility function (tick) to advance the 
state of the object and then returns the copy of the original: the current, 
incremented object is not returned because the client chose post (after) 
increment.

Comprehensive support for addition may not end here. How many 
methods must be defined to thoroughly support addition? When 
mixed-mode addition is not supported but assignment is, the C++ class 
designer overloads ‘+’ and ‘+=’ to support ‘object + object’ addition and 
‘object += object’ addition assignment. When assignment and mixed-
mode addition are supported the number of methods overloaded 
expands:

object + object object += object

object + literal object += literal

literal + object object++ ++object
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If ‘+’ is supported, it may be reasonable to expect support for ‘-’. 
Here we go again! With subtraction, one must again consider mixed-
mode arithmetic, pre- and post-decrement, and subtraction assign-
ment. Regardless of support for addition or subtraction, the equality 
operators should be overloaded, and if ordering objects is relevant, 
the comparison operators as well. Operator overloading can be a com-
plex design problem. Class designers must strive to provide a coher-
ent set of overloaded operators so that clients may manipulate objects 
consistently.

8.3 CLIENT EXPECTATIONS
If ‘a = a + b’ is supported, ‘a+= b’ is expected to compile and run correctly. 
If ‘a = a + 1’ is a valid statement, then ‘a++’ and ‘++a’ should be valid. 
A class should overload a consistent set of operators to provide a con-
ceptual framework. If ‘==’ is overloaded, then ‘!=’ should be overloaded,  
etc. C# enforces some design expectations. C++ does not. Table 8.2  
delineates common operators and their associations.

A class should control the state of instantiated objects. For C++ classes 
then, destructive operations should be defined as non-static class methods. 
Non-destructive operators need not be so restricted. An exception is the 
input stream operator ‘>>’, which must be overloaded as a global function 
even though, by accepting input, it alters state – see Section 8.5. Table 8.3 
delineates recommendations for overloading C++ operators.

8.4 OPERATOR OVERLOADING IN C#
C# supports limited operator overloading and defines all overloaded 
operators as static class methods. All operands must be processed as 
parameters: there is no this pointer representing an operand. Mixed-
mode arithmetic presents no design difficulties in C#, unlike C++, since 
both operands must be passed for a binary operation. The C# class simply 

TABLE 8.2 Operators in Conceptual Framework

Operator Related Operators Associated Operations

+ - +=, ++, -=, --

* / *=, /=

<< >>

< > <=, >=

== !=

&& || !
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defines three overloaded functions, e.g. taking parameters (type, type), 
(type, int), (int, type). The type amplify in Example 8.7 illustrates C# 
operator overloading.

Example 8.7 C# Overloaded Operators: Static Class Methods

public class amplify            
{    private uint    scale;
     private bool    on = true;
     
      public amplify(uint amp = 1)     

{ scale = amp % 100;  }
     
      public bool isOn()               

{ return on;            }
      public bool toggleOn()           

{ return  on = !on; }
     
     public double increase(double x)
     {    if (!on)   return 0.0;
          return     x + (x*scale/100);
     }    
     
      // =>  both operands passed,  

// no implicit this parameter 
      // three versions of operator+ to  

// support mixed-mode
     //        += automatically overloaded 
      // non-destructive: new amplify  

// object returned
      public static amplify  

operator+(amplify a, amplify b)        
{    return new amplify(a.scale + b.scale); }

     

TABLE 8.3 C++ Operators

Class Method Only Global Method Only Either

[] << +, -, *, /, %

() >> <, >

=,+=,-=,*=,/=, %= <=, >=
*, -> ==, !=

++, -- ||, &&

!
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      public static amplify  
operator+(amplify a, int b)         

     {    return new amplify(a.scale + (uint)b); }  
          
      public static amplify  

operator+(int b, amplify a)             
     {    return a + b;   }

      // one version of ++ --  
// accommodates pre & post

     public static amplify operator++(amplify obj)
     {   amplify local = new amplify(obj.scale);
         obj.scale++;
         return local;
     }

      public static bool  
operator==(amplify a, amplify b)          
{ return a.scale == b.scale; }

      public static bool  
operator!=(amplify a, amplify b)          
{ return a.scale != b.scale; }

      public static bool  
operator<(amplify a, amplify b)           
{ return a.scale < b.scale; }

      public static bool  
operator>(amplify a, amplify b)           
{ return a.scale > b.scale; }

 
      public static bool  

operator<=(amplify a, amplify b)          
{ return a.scale <= b.scale; }

      public static bool  
operator>=(amplify a, amplify b)          
{ return a.scale >= b.scale; }

 
}

In C#, overloading arithmetic operators automatically supports shortcut 
assignment. For example, if ‘+’ is overloaded then ‘+=’ is “automatically” 
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overloaded. Why? By the language standard, C# compilers treat ‘+=’ as 
two distinct operations: addition followed by assignment. To process ‘+=’, 
the C# compiler invokes ‘+’, followed by a call to the assignment opera-
tor. In contrast, C++ processes shortcut assignment operators as distinct 
operations. In C++, overloading ‘+=’ is required for design consistency if 
‘+’ is overloaded and ‘=’ is supported. Table 8.4 enumerates C# operators 
that may be overloaded, including parenthetically, the implied short-cut 
assignment operators.

C# appears to automatically support the equality (and inequality) 
comparison operators. Actually though, ‘x!=y’ is just a comparison of 
addresses since all C# objects are references. For value-based comparison, 
the ‘!=’ and ‘==” operators must be overloaded; C# requires that both be 
overloaded. See Example 8.7. The compiler generates an error if a paired 
operator is not overloaded. C# enforces conceptual expectations: if ‘not 
equal’ is meaningful, then ‘equal’ must be meaningful, etc. Relational 
operators in C# must also be overloaded in pairs; an overload of ‘<’ forces 
an overload of ‘>’, etc.

8.5 OPERATORS OVERLOADED ONLY IN C++
Most C++ operators may be overloaded. Direct access, I/O, casting 
and transparency all are supported. The potential to alter state and 
the need to access data members, may present obstacles as seen in this 
section. Contractual design should specify supported operators in the 
class invariant. The implementation invariant should record the inter-
pretation of an operator’s meaning and all details relevant to destruc-
tive operators.

8.5.1 Indexing Support

Overloading the [] or index operator provides direct data access, similar 
to an array: ‘x = A[i]’ extracts an element from array A and assigns that 
value to the variable x. The overloaded [] operator may include bounds 
checking, as shown in Example 8.8, a safety feature missing for C++ raw 
arrays. An exception is thrown if the index value passed is out of range. 

TABLE 8.4 C# Operators

Pairwise 
Operators

Arithmetic
( => Assignment)

Logical, Increment
And Other Operators

==, != +, -, *, /, % <<, >>
<,> (+=, -=, *=, /=, %=) &, |,!,˜
<=,>= ++,--
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The client can manipulate a cyclicSeq object as if it were an array, 
but without the possibility of data corruption due to over or underflow. 
Contractual design should specify restrictions, such as the client must 
handle thrown exceptions for bounds errors.

Why is a reference returned from the overloaded []? An array name 
is viewed as the address of the first element of the array. Subsequent ele-
ments of the array are located using this base address and adding an offset 
(the product of the index times the element size). With zero-based index-
ing, A[0] is the address of the first element, A[1] the address of the sec-
ond element,…, A[i] the address of the i+1st element. When the reference 
so returned is used in a read-only manner, the cyclicSeq object is not 
altered, as in statement #1 of Example 8.8. However, the reference returned 
does yield an addressable memory location which can be overwritten: as 
shown in statement #2, the cyclicSeq object is altered. Since an external 
provision of a memory address permits uncontrolled change, the decision 
to overload operator[]should be made carefully.

Example 8.8 C++ Index Operator => May Change State

// overloaded operator provide bounds checking
int&       cyclicSeq::operator[](int index)
{    if (index < 0 || index > size) 
         throw range_error(“out of bounds”); 
     return seq[index];
}
…
// client code
cyclicSeq       a(getHeapInt(30));

// #1 data retrieved but not altered 
cout << a[11] << endl;    

// #2 element of sequence altered 
a[14] = 77;               

8.5.2 I/O via the Stream Operators

The C++ stream operators ‘<<’ and ‘>>’ may be overloaded to facilitate use 
of output and input streams. Again, designers must address the quandary 
of supporting a destructive operator. Access to private data members must 
be granted because ‘<<’ and ‘>>’ cannot be overloaded as class methods: 
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the left operand is an IO stream. Since the C++ utility classes cannot be 
opened up to add overloaded methods for user-defined types, overloading 
the stream operators requires the definition of global functions. However, 
unlike mixed-mode arithmetic, the call cannot be simply inverted.

How do global functions operator>>(cin,object) and 
operator<<(cout, object) access an object’s private data mem-
bers? Class designers should not make private data members public just to 
accommodate overloaded stream operators. Public data members violate 
encapsulation and information hiding, making every object vulnerable to 
uncontrolled change. The answer is friends. The C++ friend construct 
permits controlled external access to private data and functionality. Using 
the reserved word friend, a class designer selectively denotes which 
external functions, and/or classes, are privileged with private access. 
Declaring an external class a friend is bolder than identifying a single 
function: if class TypeX is declared friend of class TypeY then all 
methods in class TypeX have access to all private methods and data 
members of class TypeY.

Example 8.9 Overloading C++ Stream Operators: Friends

class cyclicSeq
{    …
     unsigned        size;
     vector<int>     seq;
      friend ostream& operator<<(ostream&,  

                const cyclicSeq&);
public:
     …
};
   
…
// function must be ‘friend’ to access  
// private ‘size’ and ‘seq’
ostream& operator<<(ostream& out,  
         const cyclicSeq& c)
{    for (int i=0; i < c.size; i++)
          out << c.seq[i];
     out << endl;
     return out;    
}
…
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// cin >>object;    cout << object; 
// more abstract client code than  
// object.input();  object.display()

Friend declarations may be placed anywhere in a C++ class header  
file – either the public or private section. Despite the compiler’s indiffer-
ence, placement should be consistent for code readability, and documenta-
tion should note external support for overloaded operator(s). Example 8.9 
defines a global function for overloading the output operator. To access 
private object data, the global function must be declared a friend.

The friend construct violates encapsulation, selectively exposes a class 
and increasing coupling. Yet, restrictions on the friend construct diminish 
its violation of encapsulation. Friendship is not transferable or assumable. 
Friendship is not transitive: if A is friend of B and B is friend of C, A is not 
a friend of C unless C explicitly declares A as a friend. Friendship is not 
be inherited: if A is friend of Parent, A is not friend of Child, unless Child 
also declares A as a friend. Friendship is not symmetric: if A is a friend 
of B, B is not friend of A, unless class A also declares B as a friend. The 
C++ friend construct allows the class designer to control access through 
explicit labelling.

The friend construct is controversial. For software maintainability, the 
class designer should document all friendships, typically in the implemen-
tation invariant. The friend construct is necessary to support mixed-mode 
operations and the stream operators.

8.5.3 Type Conversion

Data types promote safe and consistent manipulation of memory. 
Chapters 6 and 7 examined type reclamation from base class pointers and 
references when the base class interface was insufficient. Both C++ and 
C# provide operators to do so. static _ cast and as efficiently check 
type at compile-time but are prone to error if the extracted type does not 
match the specified cast at run-time. dynamic _ cast and is check 
type at run-time in order to avoid such errors. C++ permits the overload-
ing of ‘()’ in order to support type casting (as distinguished from type 
reclamation).

Casting is the action of converting the value of one type to the equiv-
alent value of another type. Most everyone is familiar with casting an 
integer to real, as in 3 becomes 3.0. Casting a real to an integer is often 
accomplished via truncation. Implicit casting or type coercion is an action 
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undertaken automatically by the compiler. Explicit casting or type con-
version is by directive, as shown in Example 8.10. While type conversion 
is supported for primitives, C++ class designers may support comparable 
type conversion by overloading the ‘()’ operator. Example 8.10 also shows 
the overloaded operator for converting a cyclicSeq object to an int.

Example 8.10 Converting cyclicSeq Object to Int Value

// overloading type conversion operators
int        i;
float      f;
f = i;          // implicit conversion
f = (float) i;  // explicit conversion, C-style
// explicit conversion, functional style 
f = float (i);  

//   cyclicSeq object => int 
//        method returns type (converted value)
//        non-destructive:  
//        object state not changed
// overload type conversion:  operator othertype();
//        operator  int();

// conversion operator
cyclicSeq::operator int()
{    int sum = seq[0];
     for (int i=1; i < c.size; i++)
          sum += seq[i];
     return sum
}

8.5.4 Transparent Access

Overloading C++ operators for memory management is laborious, and 
relevant only to applications that must closely manage memory alongside 
tight performance criteria [Loshin99]. C++ class designers may overload 
the new and delete operators for efficiency. The general idea is to man-
age a cache internal to a class so that all but the first call to new and the 
last call to delete may be intercepted and handled locally. Overhead is 
reduced by circumventing most of the run-time calls to the heap alloca-
tor and deallocator. Yet, management of a local, internalized cache is not 
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trivial, and is not recommended. Ownership of heap memory is shared 
and transferred via smart pointers and move semantics in modern C++, 
thereby safely promoting efficiency and reducing the need to overload the 
new and delete operators.

Prior to C++11, class designers had to define their own smart pointers. 
When doing so, the access operators operator-> and operator* were 
overloaded, as shown in Example 8.11, for transparency. With the access 
operators overloaded, the client could manipulate the wrapped pointer as 
if it were raw. The generic definition of smart pointers essentially overloads 
operator-> and operator* for transparency.

Example 8.11 Transparent Access

class SmartPtr
{       Type*      ptr;
    public:
          SmartPtr(Type*& p): ptr(p) { p = 0; }
          ~ SmartPtr()             { delete  ptr; }
  
          … // copying etc
  
          Type* operator->()   {    return  ptr; }
          Type& operator*()    {    return *ptr; }
};

8.6 OO DESIGN PRINCIPLE
Operator overloading elevates the intuitive manipulation of a defined 
type, allowing clients to manipulate objects as primitives. Design empha-
sis rests on the interface, supporting the PINI (Program to Interface 
Not Implementation) principle. Clients remain unaware of encapsulated 
details through judicious design and, in C++, careful use of the friend 
construct.

8.7 SUMMARY
From a design perspective, overloading operators establishes a class inter-
face with ‘built-in’ support for primitive operations. The specification of a 
complete and consistent conceptual framework for such overloading is not 
trivial. Operator overloading can effectively increase abstraction and code 
readability, promoting maintainability. However, operator overloading 
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may be viewed as just syntactical sugar – it just makes code look prettier. 
Not surprisingly then, different languages provide different levels of sup-
port for operator overloading.

C++ broadly supports operator overloading, permitting the overload of 
all operators except four:

?: (ternary conditional)

:: (scope resolution)

. (member access)

.* (member access through pointer)

Design difficulties associated with operator overloading in C++ include 
inconsistent management of programmer expectations as well as viola-
tion of encapsulation through the use of the friend construct. All C++ 
operators are inherited EXCEPT the assignment operator. Note though 
that if a child class extends the parent class by adding data that is relevant 
to any parent overloaded operator(s), then the child class should overload 
the same operator(s) to accommodate the manipulation of the child data 
members.

Java does not support any operator overloading. C# partially supports 
operator overloading. In C#, one can overload the binary arithmetic oper-
ators, the shortcut increment and decrement, some logical operators as 
well as the comparison operators. However, all operators overloaded in C# 
are static methods.

C++ provides only a bitwise copy for the assignment operator, by default. 
C# does not have explicitly overload short-cut assignment operators  
because ‘+=’ is a combination of the two operators ‘+’ and ‘=’. Mixed-mode 
arithmetic complicates design, as does assignment, short-cut assignment 
and internal capacity constraints. Once one operator is overloaded, the cli-
ent may expect similar or associated operators to also be supported.

8.8 DESIGN EXERCISE
The primary motive of overloading operators is to increase abstraction and 
facilitate use of a type definition. Consequently, design should focus on 
building a consistent framework. This chapter’s design exercise is trans-
form the C# amplify class, defined in Example 8.7, to a C++ implemen-
tation. Since C++ supports more extensible operator overloading, consider 
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what other operators should be overloaded. A design solution is sketched 
in Appendix C3.

DESIGN INSIGHTS

Software

C# and C++ process assignment differently

Comparison of C# objects are address-based

=> overloaded C# operators may provide value-based comparison

Smart pointers overload operator-> and operator* for 
transparency

Software Design

Overloaded operators may increase abstraction and readability

Clients expect consistency

=> if ‘==’ is overloaded, then ‘!=’ should be overloaded, etc.

Overloaded operators support type use in generic algorithms (and 
containers)

CONCEPTUAL QUESTIONS

1. When is operator overloading appropriate?

2. Why would it be unlikely for a class design to overload just one 
operator?

3. How many operators should a class overload?

4. What are the benefits and vulnerabilities of the C++ friend 
construct?

5. Describe the key differences between C# and C++ operator 
overloading.
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Appendix A: The 
Pointer Construct

A.1 POINTER DEFINITION
High-level languages rest on abstraction. Design usually proceeds without 
much attention to system hardware or memory allocation and dealloca-
tion. Software development is thus faster and yields more maintainable 
and portable code. C provided the pointer construct to retain the ability to 
manipulate memory addresses. C++ supports the pointer construct to be 
backwards compatible with C and to retain its emphasis on performance.

A pointer holds a memory address. Example A.1 shows sample pointer 
declarations, initializations, and use. Figure A.1 sketches corresponding, 
sample memory assignments for variables data and myPtr. Initially, both 
variables are declared but not defined. That is, no value is assigned to either 
variable, as represented by question marks in the diagram. Actually, there 
are always values in memory. If variables are not initialized, residual bit 
strings lingering in memory may be erroneously interpreted as valid data. 
C# and Java zero initialize data declarations. C++ does not. C++ design 
guidelines recommend initialization but compilers do not enforce conven-
tion. Uninitialized pointers are particularly dangerous since a wildcard bit 
string could be interpreted as a valid memory address. Statements #4 and 
#5 show initialization after declaration: data holds value 100; and myPtr 
holds the address of data (B500).

Operators ‘*’ and ‘&’ appear throughout the code of Example A.1. ‘*’ is 
the indirection operator, it is used to define pointers and to extract data 
values from the memory addressed by a pointer. ‘*’ does not distribute: 
statement #3 declares two variables, int pointer iPtr and int x. ‘*’ may 
be placed immediately after a typename (statement #1) or may precede 
the variable name (statement #2) in a declaration. The latter style is often 
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preferred because of the lack of distribution but neither style is enforced. 
For consistency, developers should adhere to one convention.

Statement #1, “int* myPtr;” declares a pointer variable that is “typed” 
to hold the address of an integer: it may not hold the address of any other type. 
Typed pointers promote consistency. int pointers may hold only addresses 
of int variables; float pointers may hold only addresses of float vari-
ables, etc. Type incompatibilities trigger compilation errors. Any statement 
assigning the address of an int variable to a float pointer will not compile, 
etc. This restriction is relaxed with inheritance: a base class pointer may hold 
the address of a derived class object, as seen in Chapters 5–8.

Untyped (void) pointers were broadly used in C code. The address of 
any type may be held in a void pointer. Statement #2 declares a void 
pointer typelessPtr that, starting at statement #6, is assigned three 
different addresses: the address of int variable data (B500), then the 
address of a float variable, and, finally, the address of pointer variable 
myPtr (B504). void pointers provide flexibility but mask type so the cli-
ent must extract type information when needed. C++ discourages but still 
supports the use of void pointers.

‘&’ is called the address of operator, and may be used to extract the 
address of a variable. Statement #4 “myPtr = &data;” places the address 
of variable data (B500) in pointer variable myPtr. ‘&’ is also used for 
call by reference. Function header “void passByRef(int& formal)” 
specifies that the formal parameter formal is not allocated its own space; 
upon function invocation, formal is aliased to the actual argument. 
Function call “passByRef(x)” thus causes formal to reference the 
same memory location as x. Call by reference is efficient (no extra space 
or copying overhead) but insecure since modifying the formal param-
eter alters the actual argument as well. Unless declared const, pointer 

FIGURE A.1 Memory Sketch for Example A.1
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values may change, just like any other type of variable. A variable’s address 
though represents assigned data storage which cannot change if deter-
mined by the compiler. As shown in Figure A.1, the values held in myPtr 
and data may change, but their assigned memory locations do not.

A.2 DEREFERENCING POINTERS
Placing ‘*’ in front of a pointer variable ‘dereferences’ the pointer: it tells 
the compiler to manipulate the value located at the memory address held 
in the pointer. Contrast the output of data values versus addresses of vari-
ables in statements #7 and 8. *myPtr and data are aliases, referring to 
the same memory, because myPtr holds the address of data. A change to 
either *myPtr or data is equivalent to a change to both. Altering *myPtr 
modifies data (and vice versa) as long as myPtr holds the address of 
data. The integer value *myPtr (100) output in the cout statement #7 is 
the same as that output in statement #8.

Example A.1 Declare, Initialize, and Use Pointers

// C++ variable declarations  
// => all allocated on stack
int    data;
float  realV;          
int*   myPtr;         // int pointer              #1 
void   *typelessPtr;  // void pointer             #2 
int*   iPtr, x;       // int pointer and int      #3 

// data initialized with value 100                #4
data = 100;           
myPtr = &data; // myPtr initialized  
               // with address of data            #5

typelessPtr = &data;      // void pointers        #6
typelessPtr = &realV;     // may hold address of
typelessPtr = &myPtr;     //any type
//cout value stored in memory followed  
//by memory address 
//   100 B500 is output                           #7
cout << data << &data << endl;      
//   100 B500 is output                           #8
cout << *myPtr << myPtr << endl;    
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(*myPtr)++;               // 101 B500 output      #9             
cout << *myPtr << myPtr << endl;                         
iPtr = myPtr;                                            

*myPtr++ = 42;                                   #11
*myPtr = 4242;        // what is output below?   #12
cout << *iPtr << iPtr << endl;                   #13
cout << *myPtr << myPtr << endl;                 #14

Both *myPtr++ and (*myPtr)++ are valid statements but their 
effects are different. The post-increment operator ++ has higher prece-
dence than the dereferencing operator *. Parentheses may be used to cir-
cumvent precedence constraints, as shown in statement #9. (*myPtr)++ 
forces dereferencing to occur before the post-increment operator, yielding, 
as desired, an incremented integer value. When (*myPtr) is incremented, 
the value altered is the data in memory location B500 because B500 is the 
value (address) held in myPtr. Hence, data becomes 101. The value of the 
pointer variable myPtr is not altered; the value held in the memory that 
it addresses is.

Without parentheses to circumvent precedence, *myPtr++ in state-
ment #11 invokes the post-increment operator first, incrementing myPtr. 
Yes, the value of the pointer variable, an address, is incremented (by 
‘4’, assuming pointers allocated 4 bytes – verified, C++17 via CLion). 
*myPtr++ first increments the value of myPtr, B500, to B504, followed 
by assignment of value 42 to the integer held at address B500 (the address 
increment is post not pre). Statement #12 is particularly dangerous because 
the value 4242 is assigned to a pointer (possibly yielding a run-time error, 
or data corruption). It is unclear what data could be erroneously altered 
at memory location 4242. Overwriting addresses held in references and 
pointers is a tactic of malicious software.

Syntactically, it does not matter what memory is addressed by a pointer. 
However, at run-time, memory accessed must be within the range of 
addresses allocated to the running program. If a pointer variable contains 
an invalid address, that is, a value outside the range of addresses assigned 
to the executing program, dereferencing that pointer triggers a run-time 
error. The dereferencing of myPtr discussed in the previous paragraph 
could yield a run-time error if 4242 was not a valid program address. 
Abstractly, it is not easy to distinguish invalid from valid addresses. A 
pointer variable should be initialized to the address of a variable, or to zero 
to indicate that it currently does not contain a valid address. C and legacy 
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C++ often initialized pointer variables to zero, or used a defined constant, 
such as NULL. Modern C++ uses nullptr; C# uses null.

A.3 INAPPROPRIATE USE OF POINTERS
Example A.2 illustrates illegal and unwise manipulations of pointers. 
Figure A.2 shows the corresponding memory allocation. A pointer may 
not hold the address of a constant value or a literal value. Why? There is no 
program memory associated with constants or literals. The strike-through 
statements in Example A.2 indicate compilation errors. More problematic 
are statements that compile but have unknown effect because the pointer 
variable may or may not contain a valid address (statement #3).

Example A.2 Danger of the Uninitialized

// C++ code: missing and illegal initialization
float*        fPtr3; // uninitialized pointer variable
int*  iPtr3 = nullptr; // pointer initialized to zero
const float   pi = 3.14159;
*iPtr3 = 15;  // do not deference null pointer!   #1  
fPtr3 = &pi; // pointer cannot hold address of constant
// pointer cannot hold address of literal 
iPtr3 = &1000;

if (iPtr3) *iPtr3 = 100; // Safety check. Effect? #2

*fPtr3 = 99.99;          // Effect?               #3

FIGURE A.2 Stack Pointers and Heap Data
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Following convention, iPtr3 was initialized to nullptr (points to 
nothing), indicating that it does not contain a valid memory address. 
Dereferencing a null pointer, as in statement #1, yields a run-time excep-
tion. Why? Memory location 0 is in the operating system domain and is 
inaccessible to user programs. Exceptions may be used to preserve integ-
rity. It is preferable to generate a run-time exception (which can be caught 
by exception handling code) from a null pointer than to permit data cor-
ruption. Alternatively, a simple safety check may verify that a pointer is not 
null or zero, as in statement #2. When the conditional fails, dereferencing 
a null pointer is prevented. Thus, 100 is not assigned to the memory (loca-
tion 0) ‘pointed to’ by iPtr3.

What is troubling about statement #3 in Example A.2? fPtr3 was not 
initialized. Failure to initialize does NOT yield variables with no value, 
just uncertainty. No one knows the value stored in an uninitialized vari-
able: whatever bit string resides in the memory associated with the variable 
may be interpreted as valid data. Thus, whatever bit string resides in the 
memory associated with the pointer fPtr3 will be interpreted as an address 
of a float. If the residual bit string yields an address outside the range of 
valid program addresses, a run-time error occurs. Otherwise, the addressed 
memory is overwritten by value 99.99. Data corruption! Although erroneous 
memory overwrites do not always affect running software, data corruption 
can lead to failure. Such errors are often hard to trace because they may 
occur far from the source. Design guidelines explicitly recommend that pro-
grammers initialize pointer variables either to the address of an appropriate 
variable or to zero (or nullptr) when pointers point to nothing. Modern 
IDE (integrated development environment) flag the use of pointers before 
initialization but legacy code may not have been so vetted.

Pointers support the sharing of data. Multiple handles (pointers) can 
hold the same address value. Pointers may lead to data corruption if the 
data value in memory is changed through an alias without the knowledge 
(or permission) of other aliases. The same is true for references. Hence, 
software developers should track who ‘owns’ allocated memory. Chapter 
2 covers design responsibility for memory in detail. Here, we briefly sum-
marize managing memory allocated at run-time.

A.4 TRANSIENT VERSUS PERSISTENT MEMORY
Every function has its own memory for local data: parameters passed by 
value and variables declared in scope are stored in a stack frame asso-
ciated with the function. The compiler efficiently supports local memory 
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but access to such data is restricted. Upon function entry, a stack frame 
is pushed onto the run-time stack; upon exit, this stack frame is popped 
off. Thus, local data ‘disappears’ when function scope is exited and the 
memory previously occupied by its stack frame is reused. Local data is 
inaccessible after a function terminates but copies of data may be explicitly 
returned from a function call.

What if persistent data is needed? Global data may undermine integrity 
and confound linkage. Instead, programmers may store data on the heap; 
retaining handles to such memory allows data to be accessed across mul-
tiple scopes. C++ programmers access heap data via pointers but, unlike 
Java and C# programmers, retain responsibility for the explicit release of 
such data.

Two operators are used for managing heap memory: new is invoked to 
satisfy a run-time request for memory; delete is invoked for the run-
time release of memory. Both operators depend on pointers. new returns 
the address of allocated memory; a pointer should hold that address so 
that delete may be subsequently called to release the heap memory. 
When heap memory is allocated via new but the address returned is not 
retained, the programmer loses access to the heap memory. For example, 
the declaration of variable a via “queryCount a = *(new query-
Count(12))” is assigned the value of a dereferenced ‘anonymous’ address 
– a heap object (initialized via its constructor). How can the heap memory 
be deallocated after this statement? It cannot because there is no pointer 
variable retaining its address. Chapter 3 briefly discusses smart pointers 
which provide a C++11 solution to such memory leaks.

Example A.3 shows sample allocations and deallocations of heap mem-
ory using new and delete. Three pointer variables (residing in a stack 
frame) hold addresses of heap allocated memory. The heap integer whose 
address is held in pointer leak in Example A.3 is not deallocated. Hence, 
the memory so assigned may not be reused by any subsequent new request 
during program execution. Figure A.2 sketches memory assignments for 
Example A.3, using addresses that start with ‘B’ to indicate stack memory 
and addresses that start with ‘9’ to indicate heap memory. Stack mem-
ory, handled via stack frames that are pushed (popped) upon function  
entry (exit), is efficiently and securely processed: it does not leak. Heap 
memory is more difficult to manage.

To prevent memory leaks, every new should be matched with a delete, 
that is, every memory acquisition should be released. In confined scope, it 
is easy to match every new with a delete (though throwns exceptions 
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may interfere with this local pairing). In a broader context, it is more diffi-
cult to match every new with a delete. Since a key motive for using heap 
memory is data persistence, addresses (pointer values) are often passed in 
and out of functions. Hence, the call to delete may occur far from the 
call to new, making such matching challenging. Chapters 2 and 3 explore 
design responsibilities for memory in more detail.

Example A.3 Allocation and Deallocation of Heap Data

int*   leak = new int; //single int allocated on heap
int*   dynamicInt = new int; 
                      //array of 5 ints allocated
int*   heapArray = new int[5];      
               
*dynamicInt = 17;     //single int assigned value 17
        
for (int k = 0; k < 5; k++)     // array initialized
       heapArray[k] = k*10 + 1;
 
delete         dynamicInt;         // memory release
delete[]       heapArray;          // array released

// leak NOT deallocated => memory leak

A.5 REFERENCES
Like a pointer, a reference is an address holder. Example A.4 illustrates 
the declaration, initialization and use of C++ references. Figure A.3 shows 
corresponding memory allocations. A reference is manipulated in the 
same syntactical manner as the variable with which it is aliased. Variables 
z, alias, *iPtr and in Example A.4 all refer to the same data because all 
three variable reference the same memory location. Thus, the three output 
statements in this example will print out three copies of the same value: 
first, the value of the residual bit string in the shared memory location; 
then the value 100; and finally, the value 1.

Example A.4 References

// C++ code: aliases (two or more handles  
// point to same memory)
int           z;
           // reference to int variable declared
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int&          alias = z;     
           // compile-time error: no alias specified
int*  iPtr = &z; // int pointer declared and defined
// #1 Initial stack allocation complete here      

z++;
alias++;
cout << z << alias << *iPtr << endl;
// #2 post increment of (uninitialized)  
// variables complete here

z = 100;
cout << z << alias << *iPtr << endl;

alias = 1;
cout << z << alias << *iPtr << endl;
// #3 assignment to alias complete here 

Like pointers, references may yield corrupted data if not handled 
appropriately. Consider return by reference, illustrated in Example A.5. 
returnByRef() returns the address of a variable. When a function ter-
minates, its stack frame is popped off the run-time stack and all local vari-
ables ‘disappear’. A returned address that references a local variable then is 
invalid. The caller might think the address is valid and, hence, may unwit-
tingly access or modify data values located at that address. Modification 
may lead to data corruption. When returning a reference, programmers 
must ensure that the address returned is currently valid, and will remain 

FIGURE A.3 Memory allocated for one int and one pointer
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valid after function scope is exited. Local variables go out of scope when 
a function is exited and so should not be returned by reference. Again, 
modern IDEs may flag such errors and issue a warning.

Example A.5 Do NOT return local variables by reference!

int&   returnByRef()
{      int    local;  // stored in stack frame    

       cin >> local;
       if (local % 2)    local++;

       return local;
}
// client code 
int& alias = returnByRef(); //access memory in 
                            //popped stack frame

Addresses of persistent variables may be returned from a function. 
Example A.6 shows the definition of a persistent int on the heap. Passing 
out the address of heap data is valid because heap memory remains allo-
cated until explicitly deallocated via a call to delete. The caller assumes 
responsibility then for the heap memory transferred out of the function. 
Example A.6 is overkill: it is much simpler and cheaper to directly copy an 
integer value. Preserving heap memory allocation, and transferring own-
ership via pointers, though yields significant savings when data so stored 
is large because the overhead of allocation and initialization is reduced.

Example A.6 Heap Objects Persist

int*   returnPtr()
{      int*   localPtr;  // pointer stored  
                         // in stack frame 

       int    stackObj;  // int stored in stack 
                         // frame

       localPtr = new int;  // int stored on heap
       return localPtr;
}

// client code 
int* persist = returnPtr(); //object still on heap
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Aliases become invalid when scope exceeds the lifetime of allocation. 
Clients may not recognize such discontinuity. Example A.5 demonstrated 
this problem via poorly designed return by reference: guidelines mandate 
that one should not return local variables by reference. If a caller holds 
an address to memory in a stack frame, the caller is left with a handle to 
memory that will be reassigned, providing an unchecked opportunity for 
data corruption. In contrast, Example A.6 returns the address of a persis-
tent, heap allocated object, ensuring valid access.

A.6 THE this POINTER
Object-oriented design encapsulates data alongside privileged access to 
defined functionality via the class construct. Functions defined within 
classes, often called methods, lie within in class scope. If a test() 
function is defined in the queryCount class, its full name would be 
queryCount::test(). If a test() function is defined in a track-
Mean class, its full name would be trackMean::test(), etc.

Example A.7 defines a C++ class that tracks the number of que-
ries made of an object. For clarity, most other functionality has been 
omitted. Object instantiation for three variables is also presented, and 
Figure A.4 shows sample memory allocation for these objects. How 
does the queryCount::test() method invoked in statement #2 of 
Example A.6 know that it should update the hit count of object a? 
Likewise, how does the queryCount::test() method invoked in 
statement #3 know that it should update the hit count of object b?

Example A.7 Class Definition => need this pointer

class queryCount
{      int    count;
       int    min;
   public:
       queryCount(int x = 1)    
       {      count = 0;      
              min = x; 
       }
       void   test(int min)   
                        // #1 this disambiguates min
       {   if (min > this->min)  
              count++;  //same as (min > (*this).min)
       }
};
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// … client code
queryCount    a, b(2), c(77);
a.test(5);           // #2 equivalent to  
                     // queryCount::test(B100,5)
       
for (int k = 0; k < 10; k++)
       b.test(k);    // #3 equivalent to 
                     // queryCount::test(B108,k)
       
for (int k = 0; k < 100; k++)
       c.test(k);    // #4 equivalent to  
                     // queryCount::test(B110,k)

The compiler translates the method invocation a.test() to 
queryCount::test(&a). That is, the compiler passes in an implicit 
parameter – the address of object a, ensuring that a.count is incre-
mented. Similarly, the compiler translates the invocation b.test() 
to queryCount::test(&b)– the address of the object b is passed. 
When count is now incremented, it is b.count++. The implicit 
parameter is called the this pointer. A standard definition of the 
this pointer is the address of the object through which a class method 
is invoked.

The this pointer is defined for each object instantiated, whether code 
is written in C++, C# or Java. The this pointer resolves access to data 
members and member functions defined in a class but referenced through 
distinct objects. The this pointer may be used to disambiguate refer-
ences. In a class method, formal parameters often carry the same name as 
the associated data field. One cannot use the same name in one scope to 
reference different memory locations. The this pointer clarifies that the 
field referenced is a data member of the object through which the method 
was invoked, as shown in statement #1 of Example A.7. As always, a pointer 
must be dereferenced before accessing the data it addresses. An equivalent, 
and more readable, syntax is achieved by using the -> operator. “(*this).
min” is equivalent to “this->min”.

FIGURE A.4 Three queryCount objects
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A.7 ARRAYS
Fixed-sized array allocation is easily managed in a stack frame. If  
variable-sized is needed, often an STL container is used. Here, we exam-
ine the use of heap memory, calling new (and then delete) for variable-
sized arrays, in order to reinforce understanding of dynamic allocation. 
Example A.8 shows several array declarations. The first is a standard defi-
nition. The second is also a fixed-sized allocation but the data type of the 
array is a pointer. When the compiler allocates an array of objects, it also 
generates code to invoke the no-argument constructor to initialize each ele-
ment (object) in the array. Since noObjArray provides only a constructor 
that takes an integer, the compiler is unable to resolve the array declara-
tion because there is no no-argument constructor to call. In C++, to support 
array declarations, every class must define a no-argument constructor or 
provide no constructors (so that compiler provides a default, no-argument 
constructor). Unable to declare an array of noObjArray objects, a pro-
grammer can instead use an array of pointers, as shown in Example A.8.

Example A.8 C++ Array of Pointers

const int size = 100;
int    fixedSize[size];        // #1  standard array
… 
class noObjArray
{      int    secret;
   public:
       noObjArray(int x)  { secret = x; }
};
 
noObjArray*   db[100];  // #2  array of 100 pointers

// #3 array initialized with addresses of  
// heap-allocated object
for (int j = 0; j < 100; j++)
       db[j] = new noObjArray(j);

noObjArray**       ptrPtr; // #4  pointer to pointer 
// #5 pointer holds array address
ptrPtr = new noObjArray*[100]; 
// #6 array initialized with addresses of  
// heap-allocated object
for (int j = 0; j < 100; j++)
       ptrPtr[j] = new noObjArray(j);
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                      // #3B deallocate heap objects
for (int j = 0; j < 100; j++)  
       delete db[j];

                      // #6B deallocate heap objects
for (int j = 0; j < 100; j++)  
       delete ptrPtr[j];

delete ptrPtr;        // #4B deallocate heap objects

When using heap objects, every allocation must be matched with a 
deallocation. In Example A.9, statement #2 allocates an array of 100 point-
ers; the pointers are initialized in statement #3 to each hold the address 
of a heap object. Statement #3B provides the corresponding deallocation 
of each individual heap object in another for loop. Array db, assigned 
memory in the stack frame, is automatically released when scope is exited. 
Statement #4 is the declaration of a ‘pointer to a pointer’; ptrPtr holds the 
address of another pointer; in this case, the address of an array of pointers. 
Statement #5 is the declaration of a heap array of 100 pointers. Statement 
#6, like statement #3, initializes each pointer in ptrPtr[] to hold the 
address of a heap object. Statement #6B, like statement #3B, provides the 
corresponding deallocation of each individual heap object. Statement #4 
deallocates the heap array of pointers. Note that statement #5B must run 
before statement #4 so that the heap objects are deallocated before the 
pointers that hold their addresses. Figure A.5 contrasts the allocation of 
an array of objects an array of pointers.

FIGURE A.5 C++ array of pointers initialized to hold addresses of heap objects
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A stack-allocated array may be used when a class has a no-argument 
constructor but the client wishes to initialize each object in an array using 
a different constructor. Since the compiler always patches in calls to the 
no-argument constructor for each array element, the client must overwrite 
the default initialization, as shown in Example A.9. This approach is easier 
and cheaper than using an array of pointers because there is no run-time 
overhead for allocating and deallocating memory.

Example A.9 C++ Array Allocation

// #1  array of objects allocated on stack
//     default constructor implicitly invoked  
//     for each object
// want to overwrite NO-ARGUMENT constructor  
// default of 1
queryCount           db[100];

for (int j = 0; j < 100; j++)
{      queryCount local(j); // non-default constructor
       db[j] = local;      // #2
}

A.8 SUMMARY
C and C++ support the indirect addressing of memory via the pointer con-
struct. C# and Java do not. Another key difference between C++ and C#/
Java is the allocation and deallocation of objects. C# and Java allocate all 
objects on the heap, implicitly using references. C++ allocates objects on 
the stack by default and on the heap upon request. C++ heap memory is 
directly accessible via the pointer construct, yielding more control but also 
more vulnerability.

The responsibility to deallocate heap memory in C++ is significant. 
‘Match every new to a delete’ is a simplistic mantra that is difficult to 
follow in the midst of function calls and aliases. Aliases, transfer of owner-
ship, parameter passing, etc., make such a naive design guideline difficult 
to follow, especially without adequate documentation AND in the context 
of modern, large-scale software. Aliases to heap memory should be stable. 
Nonetheless, in C++, one must track ownership of heap memory so mem-
ory leaks and data corruption do not occur.
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Appendix B: Design 
Exercises

Design Choices and OOD Principles for Chapters:

1. Contractual class design Single Responsibility Principle

2. Ownership (Memory) Responsibility Driven Design

3. Data Integrity (Copying) Principle of Least Knowledge

4. Composition Dependency Inversion Principle

5. Inheritance Liskov Substituability Principle

B.1 CONTRACTUAL CLASS DESIGN
Chapter 1 examined contractual class design, summarizing goals for type 
definitions as well as client responsibilities. Class design defines key func-
tionality, accessibility, and state transitions that preserve internal control. 
Consistency of private data and functionality are not client responsibilities. 
The class construct publishes functionality but encapsulates data, decou-
pling the client from implementation details and ensuring that objects 
remain in a consistent, legal state. Standard class functionality includes 
constructors, accessors, mutators, private utility method, public interface 
methods, and, possibly for C++, destructors.

Chapter 1’s design exercise was to define a class inRange to track 
the number of integers that fall within a specified range. For example, 
given a range of 100 to 900, rangeObj.query(117) yields true, ran-
geObj.query(11) yields false, rangeObj.query(717) yields true. 
After these three queries, the count of integers that fell within range 
would be two. As noted at the end of Chapter 1, this problem description is 
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inadequate – many details are missing. Is the range inclusive of its bound-
aries, [100,900], or exclusive, (100, 900)? One class design can support both 
by using a Boolean, set in the constructor and thereafter not modifiable. 
Another Boolean is needed to control on/off state.

Data members needed for inRange objects include: boundary values; 
a flag (Boolean) to indicate whether the range includes the end values, for 
example [100, 900] includes 100 and 900 while (100, 900) does not; and 
another Boolean to indicate whether an object is on or off. Methods defined 
for inRange include: a constructor to accept boundary values; accessors 
to retrieve state (on/off) and the query count; a mutator to change on/off 
state; reset capability to restore the object to its initial state but not modify 
boundary values; and the main functionality to determine if a given num-
ber lies within the range or not.

Tracking the number of values queried that fall within a given range 
does not require storing data. Example B.1.1 gives a C# solution; there 
would be no interesting differences in a comparable C++ solution.  
The range is stable: the upper and lower bounds do not change after object 
instantiation. C# supports data stability through the keyword readonly 
– a value cannot change after first assignment. C# also zero initializes data 
members by default.

Example B.1.1 C# Class with On/Off State

public class inRange
{     private bool          on = true;
      private uint          count;
      private readonly bool inclusive;
      private readonly int  lowBound;
      private readonly int  upBound;

       public inRange(int  x, int y,  
bool border = true)

      {     inclusive = border;
            lowBound = x < y ?  x: y;
            upBound =  x < y ?  y: x;
      }
      public bool   isOn()    {     return on;     }

     // PRECONDITION:   must be ‘on’ for valid 
     // action & response
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     public bool  valid(int x)
      {    if (!on)    return false;
            if (x < lowBound || x > upBound)  

        return false;
           if (x == lowBound || x == upBound) 
      {    if (inclusive) count++;
                return inclusive;
           }
           count++;
           return true;
      }

     // PRECONDITION: must be ‘on’ to trigger action
     public bool   reset()
      {    if  (!on)   return false;
           count = 0;
           return true;
      }

     // POSTCONDITION:      state of ‘on’ inverted
      public bool   toggleOn()  { return on = !on; }

     // PRECONDITION:  must be ‘on’ for valid response
      public int getCount()
      {   if (on)     return (int)count;     
          return -1;
      }     
}

The class inRange provides two accessor methods (which would be 
const in C++): 1) isOn() which is unconditional so that client can 
determine, without restriction, whether an object is usable or not; 2) get-
Count() which is conditional because an inactive object does not support 
queries and should return an error code. Two mutators are also provided: 
1) toggleOn() which is unconditional so that client can invert the active 
state of an object; 2) reset() which is conditional to support the design 
decision that an inactive object cannot alter state.

Programming by Contract documents design and client responsibility 
across method pre and postconditions, and interface, implementation, and 
class invariants. Only one post condition is evident in the class inRange 
because only one method changes state. Post conditions describe only an 
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actual or potential state change; they do not describe what the method does: 
valid(int) may alter count but that increment would not constitute 
a state change. The simplicity of inRange yields an interface invariant 
that specifies only expected values for the constructor – all other, relevant 
details for use are enumerated in the class invariant. Self-documenting 
code leaves little to be specified for Example B.1.1. Sample class and imple-
mentation variants are listed below.

1. Class invariant for inRange:

• encapsulation of range (low <= upper)

• provisional inclusion of boundary values

• support for both negative and positive boundary values

• queries of values in range counted

• delineate utility relative to state on (or off)

• describe error response if methods invoked when off

2. Implementation invariant:

• re-ordering of boundary values in constructor

• logic behind error response

This problem is an abstraction (simplification) of a query or logging 
process that counts legal inquiries, values that fall within some continuous 
range (cost, age, quantity, etc.). Our design only tracked queries relative to 
a specified range and thus supports the Single Responsibility Principle: 
every object should have a single responsibility that is strictly encapsulated. 
The only reason to modify this class would be if the tracking criteria 
changed. We reuse this class in Section B.3 and examine maintainability 
in Section B.4.

B.2 OWNERSHIP: C++ CLASS MEMORY MANAGEMENT
Chapter 2 examined ownership, emphasizing the C++ class designer’s 
responsibility to track heap memory. The design exercise from Chapter 2 
was to construct a feeLedger container. Using the classic notion of a 
ledger, as an archive of financial transactions, the feeLedger type pro-
vides functionality to record fees and to identify minimum, maximum, 
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mean, and median values. Since transactions are not removed from a 
record, deletion of fees is not supported. However, a reset method is 
provided so that the entire ledger can be erased (comparable to delet-
ing a ledger object but allows the allocated heap memory to be reused). 
Internal storage is required to determine the median. Minimum and 
maximum values may be easily updated upon receipt of each incoming 
value. A running sum is tabulated so that the mean (average) value can 
quickly calculated.

Expectations for unbounded capacity are common and can be sup-
ported by using a vector (or another STL container). However, STL struc-
tures often incur a performance cost. Example B.2.1 uses an array to 
demonstrate direct manipulation of heap memory and the definition of a 
constructor and destructor. Design rests on encapsulation: the client need 
not know or care about resources used to hold data; when incoming data 
would overflow the container, resizing is automatically triggered.

Example B.2.1 highlights internalized memory management respon-
sibilities for C++ classes with suppressed copying. See Section B.3 for 
support of deep copying in both C++ and C#. Acquisition and release of 
heap memory is illustrated via the constructor, the destructor and a resize 
method. A constructor sets the initial capacity of the object, which is set 
to a default if not specified by the client. C++17 supports in-field initial-
ization of data members. A comparable constructor in legacy C++ code 
would call reset() to initialize data members. A destructor is needed 
to deallocate internal heap memory when an object goes out of scope. 
resize() supports unbounded storage capacity by allocating an array 
of doubled capacity, copying previously stored values into the new array 
and deallocating prior storage.

Example B.2.1 C++ Class with Heap Memory

#include <algorithm>

class feeLedger
{    const int  HIGHEST_FEE = 10000;
     unsigned   min = INT_MAX;
     unsigned   max = 0;
     unsigned   sum = 0;
     unsigned   count = 0;
     unsigned   capacity;
     unsigned*  array;
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     // copy suppressed – for full support  
     // see Section B.3
     feeLedger(const feeLedger&);
     void operator=(const feeLedger&);

     void resize()
     {    capacity *= 2;
          unsigned* temp = new unsigned[capacity];
          for (int k = 0; k < capacity/2; k++)
               temp[k] = array[k];
          delete[] array;
          array = temp;
     }
public:
     feeLedger(unsigned alloc = 100)
     {    capacity = alloc;
          array = new unsigned[capacity];
     }

     ~feeLedger()         {     delete[] array;  }

     //PRE CONDITION:  x may not be zero
     bool record(unsigned x)
     {    if (x == 0)               return false;
          if (count == capacity)    resize();
          array[count] = x;
          count++;
          if (x > max)   max = x;
          if (x < min)   min = x;
          sum += x;
         return true;
     }

     void reset()
     {    min = INT_MAX;
          max = sum = count = 0;
     }

     unsigned   getMax()  {     return max;  }

     unsigned   getMin()  
     {    if (count == 0)       return 0;
          return min;    
     }
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     double     getMean() 
     {    if (count == 0)       return 0;
          return sum/count;     
     }
     
     unsigned   getMedian()
     {    if (count == 0)       return 0;
                              // sort in <algorithm>
          sort(array, array + count);       
          return array[count/2];
     }         
};

To reduce unnecessary computation, with the assumption that the 
median is requested infrequently, stored values are sorted only when 
the median value is requested. A feeLedger object may be reset, that 
is, returned (mostly) to its initial state. HIGHEST _ FEE is an arbitrary 
value, encapsulated as a constant. Should the (language provision of the) 
maximum integer value be used instead? Should an upper bound on fees 
be passed to the constructor? Such design decisions should be documented 
in either the class or implementation invariant.

Programming by Contract details for Example B.2.1 differ from those 
of Example B.1. Most strikingly, there is little need for pre and postcon-
ditions. Why? The capacity of the container is unbounded, with internal 
resizing. The use of uint in C# and unsigned in C++ documents the 
exclusion of negative integers (but the client should be aware of coercion, 
when a negative number is converted to a very large positive). There is 
no state (such as on/off) that restricts valid use of public functionality. 
Only one precondition is specified: the non-negative integer passed to 
record() cannot be zero. If the client does pass a zero, no fee is recorded. 
Since this singular precondition does not involve object state, the client 
need not track state and thus, there is no need for post conditions.

1. Class invariant for feeLedger:

• unbounded capacity

• suppressed copying

• zero as invalid (non-negative) input fee

• error response – zero as an error code
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2. Interface invariant:

• Call by value not supported

• Assignment not supported

3. Implementation invariant:

• resizing details – double capacity

• conditional processing of input fees—zero invalid

• logic behind error response

• heap memory is not released in reset() for efficiency

This design of feeLedger clearly restricts copying while storing 
incoming values and supporting queries for min, max, mean, and median 
values. Single Responsibility is upheld as is the principle of Responsibility 
Driven Design (RDD) – all object responsibilities (functionality) and 
required data are identified.

B.3 COPYING
Chapter 3 examined the complexity of copying objects when encapsulated 
data members (pointers) address heap memory. Use of the STL obviates 
the need to track many C++ memory management details. Yet, developers 
should understand the mechanics of copying for both legacy code and per-
formance customization. Shallow copying, the default in both C# and C++, 
was sufficient in Example B.1 because no heap memory was allocated inside 
inRange. Copying was suppressed in Example B.2.1, invalidating call by 
value and assignment for the C++ client. Chapter 3’s design exercises serve 
to contrast C# and C++ approaches to deep copying. The first problem was 
to redesign feeLedger from Chapter 2 to support copying.

Example B.3.1 C++ Class B.2.2 with Deep Copying

#include <algorithm>

class feeLedger
{    const unsigned  HIGHEST_FEE = 10000;
     unsigned  count = 0;;
     unsigned  capacity;
     unsigned* array = nullptr;
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                           // deep copying supported
     void copy(const feeLedger& src) 
     {    count = src.count;
          capacity = src.capacity;
          array = new unsigned[capacity];
          for (int k = 0; k < capacity; k++)
               array[k] = src.array[k];
     }
     

     void resize()
     {    capacity *= 2;
          unsigned* temp = new unsigned[capacity];
          for (int k = 0; k < capacity/2; k++)
               temp[k] = array[k];
          delete[] array;
          array = temp;
     }
public:
     feeLedger(unsigned alloc = 100)
     {    capacity = alloc;
          array = new unsigned[capacity];
     }
     ~feeLedger()            {    delete[] array;  }
     

     feeLedger(const feeLedger& source) 
     {  copy(source);   }
      
     void operator=(const feeLedger& rhs)
     {    if (this == &rhs)    return;
          delete[] array;
          copy(rhs);
     } 
     

     feeLedger(feeLedger&& source) // move semantics 
     {    count = source.count;
          capacity = source.capacity;
          array = source.array; 
          
          source.count = 0;
          source.capacity = 0;
          source.array = 0;
     }
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      void operator=(feeLedger&& rhs)
      {    swap(count, rhs.count); //using std::swap()
           swap(capacity, rhs.capacity);
           swap(array, rhs.array);
      }

      void add(unsigned x)
      {    if (count == capacity)    resize();
           array[count] = x;
           count++;
      }

     void clear()         {    count = 0;      }

     unsigned   getMin()  
     {    if (count == 0)      return 0;
          unsigned min = HIGHEST_FEE;
          for (int k = 0; k < count; k++)
                if (array[k] < min)   

  min = array[k];
          return min;     
     }

     unsigned   getMax()  
     {    if (count == 0)      return 0;
          unsigned max = 0;
          for (int k = 0; k < count; k++)
                if (array[k] > max)   

  max = array[k];
          return max;     
     }

     float      getMean()   
     {    if (count == 0)      return 0;
          unsigned sum = 0;
          for (int k = 0; k < count; k++)
               sum += array[k];
          return (float) sum/count; 
     }
     unsigned  getMedian()
     {    if (count == 0)      return 0;
                              // sort in <algorithm>
          sort(array, array + count); 
          return array[count/2];
     }               
};
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Contractual documentation is comparable for the C++ and C# 
feeLedger designs. The class invariant for both should note capacity, 
bounded or not, as well as data validity and error responses since these 
details affect client and class designer. The C++ class invariant records 
copy semantics when copying is suppressed or the client is aware of inter-
nally allocated heap memory. Otherwise, the client may assume that copy-
ing proceeds ‘normally’. The C# class invariant would record support for 
shallow and deep copying when so provided.

As a record of design decisions, the implementation invariant should 
note resizing details, the logic behind defined error responses and data pro-
cessing. The C++ implementation invariant documents support for move 
semantics – the client need not know about move semantics since it is a 
compiler optimization, not a client responsibility. The C# implementation 
invariant documents internal cloning and type reclamation to buffer the 
client from type casting responsibilities. Like the Example B.2.1 example, 
pre and postconditions are not required – there is no state that restricts 
invocation of public functionality.

1. Class invariant for feeLedger:

• unbounded capacity

• zero is invalid (non-negative) input fee

• error response – zero as an error code

2. Interface invariant:

• no extraction of individual items

• clear() discards all contents

3. Implementation invariant:

• resizing details – double capacity

• conditional processing of input fees—zero invalid

• logic behind error response

• heap memory is not released in clear() for efficiency

• (C++) move semantics for efficiency

• (C#) internal casting (retrieval of type from Clone())
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The C# design promotes data integrity by providing deep or shallow 
copies upon request from the client. MemberwiseClone() may yield 
shallow copying for references; the class designer must use it carefully.

Example B.3.2 C# Version of Class B.3.1

public class feeLedger
{    private const int    highestFee = 10000;
     private uint count;
     private uint capacity;
     private uint[] array;

     private void resize()
     {    capacity *= 2;
          uint[] temp = new uint[capacity];
          for (int k = 0; k < capacity / 2; k++)
               temp[k] = array[k];
          array = temp;
     }

     public feeLedger(uint alloc = 100)
     {    capacity = alloc;
          array = new uint[capacity];
     }
     public feeLedger ShallowCopy()
     {    return (feeLedger) this.MemberwiseClone();}
     public feeLedger DeepCopy()
     {feeLedger f = (feeLedger)this.MemberwiseClone();
          f.array = new uint[capacity];
          for (int k = 0; k < capacity / 2; k++)
               f.array[k] = array[k];
          return f;
     }

     public void add(uint x)
     {    if (count == capacity) resize();
          array[count] = x;
          count++;
     }
     
     public void clear()  {     count = 0; }
     
     public uint getMin()
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     {    if (count = = 0) return 0;
          uint min = highestFee;
          for (int k = 0; k < capacity; k++)
               if (array[k] < min) min = array[k];
          return min;
     }    
     
     public uint getMax()
     {    if (count = = 0) return 0;
          uint max = 0;
          for (int k = 0; k < capacity; k++)
               if (array[k] > max) max = array[k];
          return max;
     }
     
     public float getMean()
     {    if (count == 0) return 0;
          uint sum = 0;
          for (int k = 0; k < capacity; k++)
               sum += array[k];
          return sum / count;
     }
     
     public uint getMedian()
     {    if (count == 0) return 0;
          Array.Sort(array);
          return array[count / 2];
     }
}

For Example B.3.2, contractual documentation informs the client 
of the choice between shallow and deep copying. The implementation 
invariant must explain the copying technique used since C# supports 
different approaches. As noted in Chapter 3, when a C# design for deep 
copying implements the ICloneable interface and overrides Clone(), 
the client must cast the returned object to the desired type. In con-
trast, as shown in Example B.3.2, internal casting design frees the cli-
ent from managing type, that is, reclaiming the appropriate type from a 
generic reference.

In Example B.3.1, the C++ design promotes efficiency and preserves data 
integrity by providing deep copying when needed, and allowing the compiler 
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to transfer ownership (via move semantics) when not. In Example B.3.2, 
the C# client must assess the need for copying, choosing between deep and 
shallow copying. Both designs adhere to the Principle of Least Knowledge 
(PLK) – also known as the Law of Demeter – minimize dependencies by lim-
iting knowledge that objects have of each other. Why? Copying is internalized 
in each class design: the client need not track implementation details. Since 
deep copying in C# requires casting, and Example B.3.2 internalizes type 
reclamation from the generic object, PLK is further supported.

Example B.3.3 C++ Redesign Using STL Vector

#include <algorithm>
#include <vector>
#include <numeric>        
// C++ redesign using vector 
class feeLedger
{    const int  HIGHEST_FEE = 10000;
     vector<unsigned>           fees;
public:
     void add(unsigned x) {  fees.push_back(x);    }
     void clear()         {  fees.clear();         }

     unsigned   getMax()  
     { if (fees.size() == 0)     return 0;
       return *max_element(fees.begin(),fees.end());
     }
     
     unsigned   getMin()  
     { if (fees.size() == 0)     return 0;
       return *min_element(fees.begin(),fees.end());
     }
     
     float      getMean() 
     {  unsigned sum = accumulate(fees.begin(), 

               fees.end(),0);
          return (float) sum/fees.size(); 
     }
     
     unsigned   getMedian()
     {    sort(fees.begin(), fees.end());
          return fees[fees.size()/2];
     }              
};
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B.4 COMPOSITION
Chapter 4 examined composition designs that reflect type dependency 
and reuse code. Composition yields stability via wrapping, callback via 
delegates, efficiency via postponed instantiation, and maintainability via 
Dependency Injection. Internal control stressed variability of ownership, 
association, cardinality, and lifetime for encapsulated subobjects.

The first exercise was to define class openRange to track integers que-
ried within a specified range, much like inRange from Chapter 1 but 
with the ability to provide boundary values upon request. Key differences 
are the: 1) provision of getters to retrieve upper and lower bound values; 2) 
exclusion of boundary values from the encapsulated range; 3) lack of state 
control over access (on/off). openRange is a simple wrapper, with com-
plete type dependency on its inRange subobject. The openRange class 
designer chooses what functionality to echo since composition supports 
selective accessibility. getCount(), valid(), reset()) are all likely to 
be inlined so there is no run-time penalty for accessing these wrapped 
methods. Example B.4.1 demonstrates a C# implementation of wrapper 
class openRange which operates as a data evaluator, tracking data rela-
tive to a specified range and supporting the retrieval of boundary values.

Example B.4.1 C# Class with Composition for Code Reuse

public class openRange
{    private inRange      reUsed;         
     private readonly int lowBound;
     private readonly int upBound;

     //  1) provision of getters
     public int  getLowerBound()      { return lowBound;}
     public int  getUpperBound()  { return upBound;}

     public int  getCount()      
     {    return reUsed.getCount(); }

     public bool valid(int x)   
     {    return reUsed.valid(x);   }
     public bool reset()  { return reUsed.reset(); }
     
     public openRange(int  x, int y)
     {    lowBound = x < y?  x: y;
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          upBound =  x < y ?  y: x;
          // 2) boundary values always excluded  
          // by passing false
           reUsed = new inRange(lowBound,  

         upBound, false);
     }
     // 3) state control of inRange NOT supported  
     // => NOT echoed
     //   bool   toggleOn()    and  bool   isOn()    
}

As defined in Example B.1, inRange operated as a data evaluator, 
tracking data with respect to a specified range but did not store data or 
support the retrieval of boundary values. What if the client wishes to 
retrieve boundary values? Requiring the client to record values passed into 
a constructor, and retain the connection between a specific object and its 
instantiation, defeats the abstraction and encapsulation of OOD. Since a 
persistent object may be used far from its instantiation point, it is diffi-
cult for a client to preserve the association between an object and values 
passed into its constructor. The openRange wrapper thus augments the 
inRange design, expanding its utility.

1. Class invariant for openRange:

• encapsulation of range

• boundary values not included in range

• boundary values revealed upon request

• queries of values in range counted

2. Implementation invariant:

• Wrap a inRange object to record boundary values

• on/off state suppressed

• inRange methods for on/off not echoed

• record boundary values as passed into constructor

Our wrapper class suppresses the (on/off) state of inRange – a viable 
design option because the change to on/off is externally triggered. There 
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is no limit to wrapping. openRange could easily be wrapped to add the 
tracking of the minimum, maximum, and average (mean) incoming val-
ues, see Example B.4.2.

Example B.4.2 C# Class: Two Layers of Wrappers

public class mmmRange
{    private openRange    reUsed;         
     private int          min = Int32.MinValue;
     private int          max = Int32.MaxValue;
     private int          sum;

     public mmmRange(int x, int y, bool border = true)
     {    reUsed = new openRange(x, y);        }

     public int getLowerBound() 
     { return reUsed.getLowerBound(); }
     public int getUpperBound() 
     { return reUsed.getUpperBound(); }
     
     public int getCount()  
     { return reUsed.getCount(); }
     public bool  valid(int x)
     {    if (!reUsed.valid(x))        return false;
          if (x < min)    min = x;
          if (x > max)    max = x;
          sum += x;
          return true;    
     }
     
     public int getMin()        {    return min;   }
     public int getMax()        {    return max;   }
     public double getMean()   
     { return sum/reUsed.getCount(); }
}

1. Class invariant for mmmRange:

• encapsulation of range

• boundary values not included in range

• queries of values in range counted

• boundary values revealed upon request
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2. Implementation invariant:

• Wrap a openRange object to track interest in values in range

• Minimum and maximum updated with each check

• openRange methods echoed

Wrapping is a common example of composition and is an effective 
design technique to reuse, customize, update, or improve code. The intent 
to hide unstable details minimizes client responsibilities. Double wrap-
ping can do so as well but realize that each additional layering obscures 
design. What if a need to track median values, along with minimum, max-
imum, and mean, arises? One could then wrap mmmRange (which wraps 
openRange which wraps inRange) and add data storage. At some point 
though, starting over with a clean design becomes more maintainable, if 
only because software developers must wade through fewer layers of code.

Designs use composition to avoid unnecessary overhead. Temporary 
objects are often so short-lived that their functionality is not exercised. 
In which case, it makes sense to postpone instantiation of any internal 
resources: there is no need to allocate a resource that will not be used. 
The next design exercise reuses feeLedger in a composition relationship 
that postpones instantiation. Note that internal construction, whether 
postponed or not, minimizes the need to define error response(s).

Example B.4.3 C++ Composition with Postponed Instantiation

class trafficStats
{    unsigned   idLocale;
     unsigned   volumeNS;
     unsigned   volumeEW;
     unsigned   numFines;
           //   suppress copying
     trafficStats(const trafficStats&);
     void operator=(const trafficStats&);
     feeLedger* fines;
   public:
     trafficStats(unsigned id = 10000)
     {    idLocale = id;
          volumeNS = volumeEW = numFines = 0;
          fines = nullptr;
     }
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     void count(bool NS)
     {    if (NS)    volumeNS++;
          else       volumeEW++;
     }
     
     unsigned getNSCarCount()  {  return volumeNS; }
     unsigned getEWCarCount()  {  return volumeEW; }
     unsigned getNumFines()    {  return numFines; }
     
     void addFine(int ticket)
     {    if (!fines)     fines = new feeLedger();
          fines->add(ticket);
          numFines++;
     }
     
     void reset()
     {    if (fines)      fines->clear();      
          volumeNS = volumeEW = 0;
     }

     float      getAvgFine()
     {    if (!fines)     return 0;
          return     fines->getMean();         
     }
     
     unsigned  getMedianFine()
     {    if (!fines)    return 0;
          return    fines->getMedian();        
     }
     
     ~trafficStats() {    if (fines) delete fines; }
};       

1. Class invariant for trafficStats:

• track traffic volume and fines associated with intersection

• copying suppressed

2. Interface invariant:

• Call by value not supported

• Assignment not supported
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3. Implementation invariant:

• Encapsulate a feeLedger object to record fines

• Return mean and median fine values by echoing feeLedger 
interface

• Postpone internal instantiation of feeLedger object

• Reset clears all counts but does not deallocate feeLedger object

In the trafficStats design, an internally constructed feeLedger 
delegate stores integer values (fines) and retrieves mean and median val-
ues. Efficiency was promoted via postponed instantiation because no 
feeLedger delegate was allocated if no fines were recorded. With its 
simple, limited use of delegates, trafficStats did not support replace-
ment. Delegates, and resources in general, may be acquired from the client 
via Dependency Injection to easily support replacement.

Example B.4.4 illustrates Dependency Injection. The class cyclic-
Data generates successive values from an encapsulated sequence, 
advancing, or retreating in the sequence according to state. Constructor 
Injection sets the primary sequence upon object construction; if the cli-
ent passes in a null sequence, the object is unusable. Property Injection 
permits sequence replacement only for stalled objects. If the client 
does not pass a valid sequence upon object instantiation, the object is 
unusable until a valid sequence is injected. The ability to request a fil-
tered value, skipping specified values, is supported via Method Injection. 
The sequence containing values to be skipped (filtered) is passed into 
getFilteredValue.

Example B.4.4 C# Dependency Injection

public class cyclicData
{    private    int[]     seq;
     private    uint      index;
     private    bool      advance = true;
     private    bool      stalled;
 
     public cyclicData(int[]  sequence)
     {   if (sequence == null)      stalled = true;
         seq = sequence;
     }
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     public bool replaceData(int[]  jit)
     {    if (stalled && jit != null)
          {   seq = jit;
              stalled = false;
              return true;
          }
         return false;
     }

     public int getNextValue()
     {    if (stalled)    return 0;
          uint cycle = seq.Length;
          if (advance)  index = (index + 1) % cycle;
          else          index = (index - 1) % cycle;
          return seq[index];   
     }
     
     private bool inSkip(int value, int[] skip)
     {    for (int k = 0; k < skip.Length; k++)
               if (value == skip[k]) return true;
          return false;
     }    
     
     public int getFilteredValue(int[] skip)
     {    if (skip == null || stalled)    return 0;
          int value = 0;
          bool inSeq = true;
          uint count = 0;
          while (inSeq && count < seq.Length)
          {    value = getNextValue();
               inSeq = inSkip(value, skip);
               count++;
          }
          if (inSeq)            return 0;
          return value;
     }

     public void setAdvance(bool y) { advance = y; }
}         

1. Class invariant for cyclicData:

• Encapsulated cyclic sequence must be injected via constructor

– Null sequence will yield unusable object (stalled)
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• Zero is not a legal value in any sequence – used as an error code

• State transition (forward or backward progression) under client 
control

• No restriction on sequence length

2. Interface invariant:

• Sequence of values to skip injected via property

• Error response to null sequence(s) and all values skipped is return 
of zero

3. Implementation invariant:

• stalled not reset once initialize in constructor => object unus-
able until a valid sequence is provided.

Composition designs reuse types internally, with or without the client’s 
knowledge. The wrapper classes in Examples B.4.1 and B.4.2 do not expose 
the wrapped type to the client. Likewise, Example B.4.3 reused feeLedger 
without the client’s knowledge and thus retained complete control over instan-
tiation and state. The final design exercise for Chapter 4 used Dependency 
Injection, exposing the resource (an integer array of forbidden values) to the 
client. All these designs followed the Dependency Inversion Principle – 
Abstractions should not depend on details – details (concrete implementations) 
should depend on abstractions. Clients need not track internal resources when 
hidden, as in the first three designs. Clients may replace resources that con-
form to a specified interface, as in the fourth design.

B.5 INHERITANCE
Chapter 5 analyzed inheritance designs and concluded, possibly surpris-
ingly, that code reuse and accessibility are not sufficient justifications for 
inheritance. Why? Composition also offers code reuse and can control 
accessibility. Inheritance is easy to define syntactically and thus may be 
overused. Type extensibility, substitutability, and client use of heteroge-
neous collections are unassailable reasons to employ inheritance.

The chapter’s first design exercise was to define an inheritance hierar-
chy of generators, where each generator yields individual values from an 
internal arithmetic sequence: an arithSeq object yields the next value 
from its arithmetic sequence when in ‘advance’ mode, the previous value 
when in ‘retreat, and the current value when ‘stuck’. The client may request 
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a value as well as alter mode, reset, and query the count of mode changes. 
Two descendants of arithSeq are:

1. oscillateA is-a arithSeq and so each oscillateA object 
operates like an arithSeq object, except that successive values 
returned from an oscillateA object oscillate between negative 
and positive values.

2. skipA is-a arithSeq and so each skipA object operates like an 
arithSeq object, except that values returned from a skipA object 
reflect the skipping of some number of values – this skip value should 
be constant but variable from object to object.

Inheritance designs should evaluate parental control and child accessibil-
ity. How much should parent classes keep hidden? Do parent classes define 
their data as: 1) protected; 2) private with no access for descendants; or, 3) 
private with protected (or public) accessors and mutators as needed? In 
Example B.5.1, descendant classes do not compute any values: oscil-
lateA may change the sign of the value computed by its parent; skipA 
skips some number of values computed by its parent. Consequently, data 
members for sequence generation may remain private in the parent class. 
Since the client may alter the state controlling the forward and back-
ward progression of the sequence, descendant classes should be able to 
see the Boolean controlling advance or retreat. The encapsulated arithme-
tic sequence varies from object to object so the arithSeq constructor 
should take in a1 and the distance value; descendant constructors should 
pass these values up to their parent constructor.

Example B.5.1 C# Inheritance

public class arithSeq
{    private    readonly int    a1;
     private    readonly uint   dst;
     private    uint            index;
     protected  uint            maxCount;
     protected  uint            count;
     protected  bool            advance = true;
     protected  bool            stuck;

   public arithSeq(int a, uint d, uint limit = 10000)
     {   a1 = a;  
         if (d == 0)     d = 10;
         dst = d;
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         if (limit < 100)          limit = 101;
         maxCount = limit;
     }

     public virtual int getNextValue()
     {    if (!stuck)            
          {    if (advance)    index++;
               else            index--;
          }

          count++;
          stuck = (count >= maxCount);     
          return a1 + (int)(index*dst);    
     }

     public void reset(uint newLimit = 0)      
     {   if (newLimit = = 0)  newLimit = 2*maxCount;
          maxCount = newLimit;
          stuck = false;  
          index = count = 0;
          advance = true;
     }
     public uint getQueryCount()   { return count; }
     public bool setAdvance(bool y)   
     { return advance = y; }   
}

public class oscillateA:  arithSeq
{    private    int  prev;
 
      public oscillateA(int a, uint d,  

  uint k = 1000):base(a,d,k) 
     { }

     public override int getNextValue()
     {    int value = base.getNextValue();
          if ( ((prev > 0) &&   (value < 0 )) ||
               ((prev < 0) &&   (value > 0 ))  )
               return value;
          return value = -value;    
     }         
}

public class skipA:  arithSeq
{    private readonly     uint  skip;
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      public skipA(int a, uint d,  
  uint k = 10000):base(a,d,k)

     {    skip = d/2 +2;  }
     public override int getNextValue()
     {    uint trueCount = count;
          int value = 0;
          for (int k = 0; k < skip;  k++)
               value = base.getNextValue();   
          count = ++trueCount;
          return value;   
     }         
}

1. Class invariant for arithSeq:

• NO inherent restriction on numeric values

• Values generated from a1 and distance as passed to constructor

– limit on number of values returned (until reset) – default 101

• Sequence progression (forward or backward) under client control

2. Interface invariant:

• reset() restarts sequence generation in forward progression

– Optionally may pass limit on number of values returned

3. Implementation invariant:

• stuck not permanent status => object may be reset and thus 
indefinitely usable

• NO const or static values for sequence

• NO internal random number generator

• getNextValue() virtual because child classes may alter value 
returned

• count is protected so that child classes may control variations

• remaining data members private because child classes

– do not change implicit arithmetic sequence

– do not alter state or most bookkeeping detail
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getNextValue() supports polymorphic behavior. However, since 
descendant classes do not change the underlying arithmetic sequence or 
any bookkeeping details, their contractual details are minimal. skipA 
discards some number of values computed by its parent: its implementa-
tion invariant must specify whether the skip value is passed to the con-
structor or is internally generated. A potential inconsistency is that the 
parent maintains the count of values generated but skipA may drive that 
count up while only yielding one value for the client. To prevent such an 
error, skipA records the parent count and updates its value only upon 
return.

1. Class invariant for skipA:

• see parent arithSeq contractual details

• sequence generation is altered by the intentional discarding of 
some values

2. Implementation invariant:

• see parent arithSeq contractual details

• number of values to skip is stable, set in the constructor and 
dependent on dst

• parental control of query count must be circumvented so that 
discarded values not included

Type extensibility is clearly supported in Example B.5.1. A new child 
class may be added without affecting existing class or breaking client code. 
The second design exercise in Chapter 5 was to modify the generator type 
definition so that, internally, values are filtered. When a generator object 
yields a value that is in a ‘forbidden’ set, that value is skipped. Dependency 
Injection is used to ‘inject’ the forbidden set into a generator object. Since 
the key virtual method getNextValue() takes no parameters, the for-
bidden set may not be acquired via Method Injection. Constructor or 
Property Injection may be used as illustrated below. Again, a problem 
arises from the parent counting the values generated. skipA2 may con-
sume multiple values in the quest to find one outside the forbidden set. 
Again, the child class may record the parent count and update its value 
only upon return. But there are other difficulties due to hidden data in 
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the parent class. What if the generator becomes stuck? It will return the 
same value, leading to an infinite loop if that value is in the forbidden set. 
stuck is private, and there is no getStuck() method. One solution is to 
call reset() as shown below.

Example B.5.2 C# Inheritance with Dependency Injection

public class skipA2: arithSeq
{    private int[]   discard;
     
     // Constructor Injection of forbidden set
      public skipA2(int a, uint d,  

  uint k = 1000, int[] f = null) :base(a,d,k)
     {    discard = f;    }
     

     // Property Injection of forbidden set
     public void setDiscard(int[] f) { discard = f; }
     
     private bool notMember(int value)
     {    for (int k=0; k < discard.Length; k++)
            if (value = = discard[k])  return false;
          return true;
     }
     

     public override int getNextValue()
     {    uint trueCount = count;
          int value = base.getNextValue();
          bool done = (notMember(value)); 
     

          while (!done)
          {    if (stuck)     reset();
               value = base.getNextValue();
               done = (notMember(value));
          }
          count = ++trueCount;
          return value;    
     }         
}
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Inheritance designs rest on a stable interface, supporting client 
familiarity with type. The designs illustrated here adhere to the Liskov 
Substitutability Principle (LSP) – a child object can stand in (substitute) 
for a parent object. Thus, the client has access to a variety of subtypes, and 
their variant behavior as supported by virtual methods. Key benefits of 
good inheritance design are the use of heterogeneous collections, stability 
of interface, and type extensibility.
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Appendix C: Comparative 
Design Exercises

Design Choices and OOD Principles for Chapters:

6) Is-a vs Has-a    Composite Principle and Open Closed 
Principle

7) Design Longevity   Don’t Repeat Yourself

8) Operator overloading  Program to Interface Not Implementation

C.1 COMPOSITION VERSUS INHERITANCE
Chapter 6 contrasted code reuse via composition versus inheritance. The 
first exercise starts with an existing type definition for which there is little 
difference between code reuse via composition or inheritance. Subsequent 
designs illustrate significant impact of relationship choice on the consis-
tency, efficiency, and flexibility of code reuse.

Class design was highlighted in Chapters 1–3. Recall the feeLedger 
class from Example B.2.1 that stored data and tracked minimum, maxi-
mum, median, and mean values. Consider defining a new type that stores 
only filtered data values. Should feeLedger be reused via composition 
or inheritance? That is, should the filtering process be added in a wrapper 
or a child class? The two approaches are compared below.

A composition design wraps feeLedger and adds a filter to store only 
values that fall within a specified range. Reuse of both the feeLedger 
class and the inRange class (from Example B.1.1) reduces development 
overhead: an incoming value is tested to see if it is a valid fee (within 
range); otherwise, it is not pass onto the encapsulated feeLedger 
object. Example C.1.1 shows a composition design for filterLedger. 
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Example C.1.2 shows an inheritance design. Since the inRange delegate 
is optional, it is allocated on the heap in setFilter(). Although the cli-
ent is unaware of implementation details, the client must request a filter 
and pass in appropriate bounds.

If filtering is not activated, there is no need to construct a delegate: 
instantiation should be postponed to avoid unwarranted overhead. 
Thus, existence checks must be included in all methods that may use the 
inRange delegate. setFilter() is not a true example of Property 
(Setter) injection because the client does not inject an inRange object. 
inRange reuse is internalized and hidden from the client. inRange 
could be replaced by outRange without any client knowledge. Given 
the dependency of filterLedger on feeLedger, a feeLedger 
subobject is instantiated upon construction of a filterLedger 
object.

Example C.1.1 C# Reuse via Composition

// filterLedger wraps feeLedger;  
// conditionally, uses inRange
public class filterLedger
// zero initialized 
{    private    inRange    tracker;   
     private    feeLedger  book;      

     public filterLedger(unsigned alloc = 100) 
     {    book = new feeLedger(alloc);  }
     
     public void  setFilter(int x, int y)
     {    tracker = new inRange(x,y);         }
     public void add(uint x)
      {    if (tracker != null &&  

          !tracker.valid((int) x)) return;
          book.add(x);
     }

     public void     clear()    {  book.clear(); }
      public uint     getMin()    

{  return book.getMin(); }
      public uint     getMax()    

{  return book.getMax(); }

BK-TandF-DINGLE_9780367820817-200297-Appendix C.indd   276 25/11/20   3:52 PM



Appendix C: Comparative Design Exercises   ◾   277

      public double   getMean()   
{  return book.getMean();}   

}

For both composition and inheritance designs, the class invariant 
should describe the option of filtering fees. The implementation invari-
ant must explain the choice of an inRange object to internally check the 
validity of a fee – the client need not know about the inRange delegate 
so this detail is not published in the class or interface invariants. The inter-
face invariant reminds the client that reset() restores the feeLedger 
object to its initial state, discarding all stored values.

Example C.1.2 C# Reuse via Inheritance

// child class filterInheritLedger  
// conditionally, uses inRange
public class filterInheritLedger: feeLedger
// zero initialized 
{    private    inRange    tracker;   
      public filterInheritLedger(uint alloc = 100) 

       :base(alloc) {}
     
     public void  setFilter(int x, int y)
     {    tracker = new inRange(x,y);          }
     
     public void add(uint x)
      {     if (tracker != null &&  

     !tracker.valid((int) x)) return;
          base.add(x);
     }

     public void clear()  
     {    tracker = null;
          base.clear();  
     }    
}

Examples C.1.1 and C.1.2 illustrate that reuse via inheritance versus com-
position yields little difference. There is no need to postpone instantiation, 
vary cardinality, or replace the feeLedger component, so composition 
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is not strongly warranted. None of the feeLedger functionality (get-
Min(), getMax(), getMean()) is dynamically bound so inheritance is also 
not strongly warranted. Comparable C++ implementations of both designs 
would yield little difference, other than the definition of copy semantics for 
the optional inRange delegate which would be held on the heap.

The next exercise was to design two classes, factor and twoFactor. 
The factor class provides functionality to check divisibility of an input 
value by one encapsulated factor and maintain a count of successful que-
ries. The twoFactor class provides functionality to check divisibility of 
an input value by two factors and maintain a count of successful queries. 
The type definition of twoFactor should reuse factor. Should reuse be 
achieved through inheritance or composition?

Example C.1.3 Reuse via Inheritance

/* factor:
     encapsulates one non-zero value, j
      divide(z)determines if z is  

  evenly divisible by j
      counts the number values received  

  that are evenly divisible by j
twoFactor:
      supports all the public capabilities  

  of a factor object
     tracks two non-zero values, j and k
      divide(z) determines if z is evenly  

  divisible by j and k
      e.g., if j=2 and k=5, then 30 is evenly  

  divisible by j and k but 21 is not */

public class factor
{      private int  j;
       private uint count;

       public factor(int j)
       {      if (j == 0)  j = 2;
              this.j = j;
       }

       public bool divide(int  z)
       {      if (z % j == 0)    return false;
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              count++;
              return true;
       }
       
       public uint Count   {  get;  }
       public void reset() {  count = 0;     }
}

public class twoFactorInherit: factor
{      private int  k;

        public twoFactorInherit 
       (int j, int k): base(j)

       {      if (k == 0)  k = 1;
              this.k = k;
       }

       public bool divide(int  z)
       {      if (z % k == 0)     return false;
              return base.divide(z);   
       }
}

Example C.1.3 shows reuse via inheritance but the parent component 
tracks divisibility for only one factor, j, so twoFactorInherit uses an 
additional int to track the divisibility of k. The child class requires its own 
count because the parent queries do not accurately reflect divisibility by both 
j and k. Example C.1.4 revises twoFactorInherit. Using both compo-
sition and inheritance, twoFactorMixed replaces the int data member 
with a factor data member, expanding reuse of the factor class. The 
code is cleaner than that of Example C.1.3, though it is a mixed design. Why 
use inheritance at all? twoFactorComposed reuses the factor class 
using only composition: one factor for j, a second factor for k.

Example C.1.4 Reuse via Composition

public class twoFactorMixed: factor
{      private factor            k;

        public twoFactorMixed 
       (int j, int k): base(j)

       {      this.k = new factor(k);    }
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       public bool divide(int  z)
       {      if ( base.divide(z) && k.divide(z))
              {      count++;
                     return true;        
              }
              return false;
       }
       
       public uint Count   { get; }

       public void reset()
       {      count = 0;
              base.reset();
              k.reset();
       }
}

public class twoFactorComposed
{      private factor      j;
       private factor      k;
       private uint        count;

       public twoFactorComposed(int j, int k)
       {      this.j = new factor(j);
              this.k = new factor(k);
       }

       public bool divide(int  z)
       {      if ( j.divide(z) && k.divide(z))
              {      count++;
                     return true;        
              }
              return false;
       }
       
       public uint Count   { get; }

       public void reset()
       {      count = 0;
              j.reset();
              k.reset();
       }
}
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What if one wants to track queries that are divisible by three factors? 
Would it be reasonable to reuse either class in Example C.1.4 and add 
another factor data member? Incremental expansion of a type defini-
tion is not maintainable. If cardinality seems likely to expand, then use an 
expandable container. An array of factors generalizes design, streamlining 
support for multiple factors. The client can specify the required factors via 
the constructor. Example C.1.5 illustrates this design.

Example C.1.5 Streamlined Reuse via Composition

public class manyFactorC
{      private readonly factor[]  array;
       private uint               numFactors;
       private uint               count;

       public manyFactorC(int[] divisors)
       {      numFactors = (uint) divisors.length;
              array = new factor[numFactors];
              for (int k = 0; k < numFactors; k++)
                 array[k] = new factor(divisors[k]);
       }

       public bool divideByAll(int  z)
       {      bool divisible = true;
              uint index = 0;
               while (divisible && index < 

numFactors)
               {       divisible = array[index].

divide(z);
                     index++;
              }
              if (divisible) count++;
              return divisible;
       }
       
       public uint Count   { get; }

       public void reset()
       {      count = 0;
              for (int k = 0; k < numFactors; k++)
                     array[k].reset();
       }
}
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The third exercise in Chapter 6 is to design an amorph inheritance 
hierarchy to model variant behavior. All amorph objects move across a 
grid (x, y). Initially, all objects start with the same brightness and size. 
Each descendant varies a different, inherited feature. dimmer varies its 
brightness but only if it has moved; swatch changes its color but only if 
it has not moved more than some number of times; nimble can change 
its size but only relative to the number of times it has moved. We present 
two solutions, both define a stable interface and use polymorphism (and 
thus, inheritance).

Example C.1.6 Inheritance with Polymorphic change()

public enum Color { blue, green, yellow, red,  
                    magenta, purple }

public class amorph  
{      private      uint   x;
       private      uint   y;
       protected    float  bright = 10;
       protected    Color  c = Color.blue;
       protected    uint   size = 10;
       protected    uint   numMoves;

       public amorph(uint x, uint y, Color c)
        {       this.x = x;  this.y = y;    

this.c = c;   }

       public void move(uint x, uint y)
       {      numMoves++;
              this.x = x;  this.y = y;
       }

       public virtual bool change(int v) 
        // default behavior is NOP 

{      return false; }     
}

public class dimmer: amorph
{       public dimmer(uint x, uint y, Color c):  

  base(x,y,c) {}
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       public override bool change(int update)
        {      if (numMoves == 0)     return false;
              bright += update % 10;
              return true;
       }                   
}

public class swatch: amorph
{      private      uint   limitMoves;

        public swatch(uint x, uint y, Color c):  
  base(x,y,c)

       {      limitMoves = x*y;    }

       public override bool change(int update)
       {       if (numMoves >= limitMoves)  

  return false;
              c = (Color) update;
              return true; 
       }                   
}

public class nimble: amorph
{       public nimble(uint x, uint y,   Color c):  

  base(x,y,c) {}

       public override bool change(int update)
       {   if (numMoves < update)   return false;
           size += (uint)(numMoves + update) % size;
           return true;
       }                    
}

Example C.1.6 uses a straight-forward inheritance design with a poly-
morphic method change() that serves to ‘catch all’ variant behavior. 
change() ensures that the interface of amorph is stable. Example C.1.7 
sketches a different approach using the Template Method. The primary 
method change() is statically bound and not overridden by descen-
dant classes. Instead, each descendant defines the protected method  
modify() that is abstract in the base class. change() implements com-
mon pre-processing and then triggers the variant behavior by invoking the 
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dynamically bound modify(). The Template Method inverts control: the 
parent calls the child.

Example C.1.7 Template Method for Stable Interface

public class amorph
{      private      uint   x;
       private      uint   y;
       protected    float  bright = 10;
       protected    Color  c = Color.blue;
       protected    uint   size = 10;
       protected    uint   numMoves;    

       protected virtual bool modify(int v)
        // default behavior is NOP 

{      return false; }     

       public amorph(uint x, uint y, Color c)
       {       this.x = x;  this.y = y;   

this.c = c;   }

       public void move(uint x, uint y)
       {       numMoves++;  this.x = x;   

this.y = y;   }

       public bool change(int update)
       {      // common pre-process
              return modify(update);
       }
}

public class dimmer: amorph
{       public dimmer(uint x, uint y, Color c):  

  base(x,y,c){}

       protected override bool modify(int update)
       {      if (numMoves == 0)  return false;
              bright += update % 10;
              return true;
       }                   
}
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public class swatch: amorph
{      private      uint   limitMoves;

        public swatch(uint x, uint y, Color c):  
  base(x,y,c)

       {      limitMoves = x*y;    }

       protected override bool modify(int update)
       {       if (numMoves >= limitMoves)  

  return false;
              c = (Color) update;
              return true;
       }                   
}

public class nimble: amorph
{       public nimble(uint x, uint y, Color c):  

  base(x,y,c) {}

       protected override bool modify(int update)
       {       if (numMoves < update)  

  return false;
               size += (uint)(numMoves + update)  

                         % size;
              return true;
       }                   
}

The final exercise in Chapter 6 directed the reuse of the amorph inheri-
tance hierarchy to define shapeShifter: a type that can be switch from 
one amorph subtype to another. This exercise prepares the reader for the 
disassembler example of Chapter 7 – where the client (the engineer writ-
ing disassembler code) changes subtypes with each failed guess. The type 
shapeShifter likewise supports subtype change but internalizes changing 
subtypes via a polymorphic delegate. Example C.1.8 displays this composition 
design – variant behavior rests on the delegate amorph inheritance hierarchy.

Example C.1.8 Replaceable Polymorphic Delegate for  
Varying Behavior

public class shapeShifter
{      private amorph      myDelegate;   
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       public shapeShifter(uint x, uint y, Color c)
       {      myDelegate = new nimble(x, y, c); }

       public bool move(uint x, uint y)
       {      if (myDelegate == null) return false;
              myDelegate.move(x,y);
              return true;  
       }

       public bool change(int update)
       {      if (myDelegate == null) return false;
              return myDelegate.change(update); 
       }

       public bool morph(amorph newSkin)
       {      if (newSkin == null) return false;              
              myDelegate = newSkin;            
              return true;
       }
}

The sample exercises in this first section of Appendix C contrast the use 
of composition to inheritance. The first two exercises, Examples C.1.1–C.1.5, 
display the advantages of composition: postponed instantiation, dependency 
injection, transfer of ownership, replacement, and selective suppression and/
or echoing of interface. These designs sustain internal control of delegates, 
adhering to the Composite Principle: prefer composition over inheritance.

The third exercise, Examples C.1.6–C.1.7, displayed the primary motive 
to employ inheritance: polymorphic behavior as triggered through a sta-
ble, parent interface. The last exercise, Example C.1.8 illustrated the use 
of composition alongside inheritance via polymorphic delegates. All three 
examples show the benefits of substitutability, support for heterogeneous 
collections, and maintainability due to type extensibility, demonstrate the 
relevance of the Open Closed Principle (OCP): a class should be open for 
extension but closed to modification.

These examples illustrate that different designs are valid and reasonable 
and that different priorities encourage the choice of one over the other. 
Code is reused either way. Accessibility constraints may be circumvented 
so protected data members and functionality need not dictate design 
choices. Ultimately, the class designer must determine the desired effects 
of design choices as well as the intended use and longevity.
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C.2 DESIGN LONGEVITY
Chapter 7 exercises focused on design longevity. The first exercise was to 
construct a hierarchy of maps, where each map object encapsulates a 2D 
map, restricting data values, and supporting the following functionality:

1. populate an encapsulated 2D array of integers, with special border 
values

2. conditionally overwrite the value in row x, column y

3. ‘freeze’ a map location; frozen locations may not be overwritten

4. for a specified row, return the minimum or maximum value to client

5. for a specified column, return the minimum or maximum value to 
client

An abstract class requires inheritance to complete a type definition. A 
base class establishes a common interface to be supported by all descen-
dants, and may or may not initialize protected data used by descendants. 
Virtual methods signify what public behavior is expected to be redefined 
by descendants. The abstract base class in Example C.2.1 relies on descen-
dant classes to determine data validity and thus does not overwrite C#’s 
zero initialization. Each map subtype determines its own restrictions on 
data values. Descendant classes are:

1. modMap is-a map that encapsulates a 2-digit ‘mod’ value m, used to 
ensure that all values in the map are evenly divisible by m. modMap 
objects will not freeze any values in a row or column whose indices 
are evenly divisible by m.

2. uniqueMap is-a map that holds no duplicates and will not freeze 
values.

Examples C.2.1 and C.2.2 illustrate: 1) dynamic binding reliant on the base 
class interface; 2) internal dynamic binding within the Template Method 
pattern; 3) exported (client) responsibility for type specialization; 4) support 
of client type extraction via type identification in the base class. The first two 
options rest on a stable public interface and are maintainable designs as long 
as the base class interface is sufficient. The last two options arise from the 
extension of an inherited public interface. When public methods are either 
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missing from the base class interface or are not accessible via a base class 
handle, the client must perform type checking ‘manually’. The given sample 
code suggests that contractual documentation notify clients that invalid row 
or column indices will cause thrown exceptions.

The Template Method pattern rests on a base class public non-virtual 
(template) method that provides variant behavior through internal calls 
to protected methods. The template method determines the basic steps 
for fulfilling the required functionality. Tagged as a (protected) virtual 
method, each step may be abstract or defined with default behavior in 
the base class. Descendant classes may customize the implementation of 
each step. Example C.2.2 defines the non-virtual method populate() 
which calls protected, virtual method isValid(). When a client calls 
populate(), through a base or derived handle, the implicit parameter, 
the this pointer, yields type information (map, modMap, or unique-
Map). The internal call to protected virtual method isValid() yields the 
variant descendant behavior.

This design, like the previous one, rests on a stable interface. Descendants 
must work within the confines of the base class template method. For 
example, isValid()provides variant filtering but is only indirectly acces-
sible through populate(). Descendant classes may alter the behavior of 
the protected steps but cannot change the order of their execution. The 
implementation invariant should specify the initial or core functionality 
provided by the base class and any protected data needed by descendants. 
Contractual details should include constraints or state changes associated 
with protected virtual methods. The Template Method design pattern is 
said to portray the Hollywood principle – don’t call us, we’ll call you.

Example C.2.1 Descendants Customize Data Validity

public abstract class map
{      protected    int[,]        array;
       protected    bool[,]       frozen;

       private static Random rand = new Random();
       public map(uint x = 100, uint y = 100)
       {      if (x < 10)  x = 100;
              if (y < 10)  y = 100;
              array = new int[x,y];
              frozen = new bool[x,y];
       }

BK-TandF-DINGLE_9780367820817-200297-Appendix C.indd   288 25/11/20   3:52 PM



Appendix C: Comparative Design Exercises   ◾   289

       protected abstract bool isValid(int v);
       protected abstract void setBorders();

       protected void setBorders(int value)
       {      int row = array.GetLength(0); 
              int column = array.GetLength(1);
              for (int r = 0; r < row; r++)
              {      array[r,0] = value;
                     array[r,column-1] = value;
              }      
              for (int c = 1; c < column-1; c++)
              {      array[0,c] = value;
                     array[row-1,c] = value;
              }
       }

       public virtual bool freeze(uint r, uint c)
       {      return frozen[r,c] = true; }

       public void populate() // Template Method
       {      int row = array.GetLength(0); 
              int column = array.GetLength(1);
              for (int r = 1; r < row-1; r++)
                      for (int c = 1;  

c < column-1; c++)
                     {      int value = 0;
                            bool unverified = true;
                            while (unverified)
                            {    rand.Next(value);
                                  unverified = 

!isValid(value);
                            }
                            array[r, c] = value;
                     }
              setBorders();
       }

        public bool replace(uint row,  
uint col, int value)

       {    if (!isValid(value) || frozen[row,col])
                     return false;
              array[row, col] = value;
              return true; 
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       }

       public int getMinCol(uint column)
       {      int min = array[0,column];
              int row = array.GetLength(0);
              for (int r = 1; r < row; r++)
                     if (min > array[r,column]) 
                           min = array[r,column];        
              return min;
       }

       public int getMaxRow(uint row)
       {      int max = array[row,0];
              int column = array.GetLength(1);
              for (int c = 1; c < column; c++)
                     if (max < array[row,c])     
                           max = array[row,c];       
              return max;
       }
        //  getMaxCol and getMinRow similar  

//  to above methods
}

public class modMap: map
{      protected uint      m;     

       public modMap(uint x, uint y): base(x,y)
       {      m = x*y;
              populate(); 
       }

       protected override bool isValid(int value)
       {      return value % m == 0;     }

       protected override void setBorders()
       {      setBorders((int) m);       }

       public override bool freeze(uint r, uint c)
       {       if ( r % m == 0 ||  

       r > array.GetLength(0))
              return false;
               if ( c % m == 0 ||  

       c > array.GetLength(1))
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              return false;
              return frozen[r,c] = true;
       }
}

public class uniqueMap: map
{      protected override bool isValid(int v)
       {      bool duplicate = false;
              int row = array.GetLength(0);
              int column = array.GetLength(1);
              for (int j = 0; j < row; j++)
                   for (int k = 0; k < column; k++)
                           if (v == array[j,k]) 

return false;
              return true;                       
       }

       public uniqueMap(uint x, uint y): base(x,y)
       {      populate();  }

       public override bool freeze(uint r, uint c)
       {      return false;    }
       
       protected override void setBorders()
       {      setBorders(-1);  }
}

Example C.2.1 illustrates an effective inheritance design: the base class 
defines public virtual methods for core functionality with the expectation 
that descendant classes will augment or replace inherited functionality. 
Dynamic binding ensures that clients may access variant behavior of sub-
types via base class handles. The implementation invariant should specify 
the initial or core functionality provided by the base class method and any 
protected data or functionality needed by descendants.

The map hierarchy design appears stable. Type extensions though are 
uncontrolled and are not guaranteed to be fully utilized through the base 
class interface. Consider the addition of subtype primeCutMap that 
stores only non-primes numbers, bounds the number of possible replace-
ments, and freezes no more than half the values in the array. Two of 
these three design variants are accommodated by the ability to override 
isValid()and freeze(). However, replace() is statically bound.
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Consider also the addition of subtype thawMap that has no restrictions 
on the data values stored and supports the unfreezing of frozen values. The 
definition and use of these new subtypes are sketched in Example C.2.2. 
Recall that the compiler uses the handle type to verify that an invoked 
method is defined publicly in that class. The vtab used for resolving a 
dynamic call is identified through the this pointer at run-time. Hence, 
if a heterogeneous collection is typed to the map class, the compiler looks 
at the map interface for thaw() and generates a compile-time error  
upon not finding it. Neither the redefined replace() nor the extended  
method thaw() are accessible via heterogeneous collections, requiring 
the client to extract type.

Example C.2.2 Descendant Types Not Fully  
Supported by Base Interface

public class primeCutMap: map
{      protected    uint   numReplace;
       protected    uint   limitReplace;

       public primeCutMap(uint x, uint y): base(x,y)
       {      populate();
              limitReplace = (uint) array[0,0]; 
       }
       
       protected override void setBorders()
       {      setBorders(1);      }

       protected override bool isValid(int value)
       {     return value.IsPrime();     }

       public override bool freeze(uint r, uint c)
       {      uint count = 0;
              int row = array.GetLength(0);
              int column = array.GetLength(1);
              for (int j = 0; j < row; j++)
                   for (int k = 0; k < column; k++)
                        if (frozen[j,k]) count++;
               if (count > row*column/2)  

     return false;
              return frozen[r,c] = true;
       }
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        public new bool replace(uint row, uint col, 
int value)

       {      numReplace++;
               if (numReplace > limitReplace) 

       return false;
              return base.replace(row, col, value);
       }
}

public class thawMap: map
{      public thawMap(uint x, uint y): base(x,y)
       {      populate();  }

       protected override void setBorders()
       {      return;      }

       protected override bool isValid(int v)
       {      return true; }

       public void thaw(uint r, uint c)
       {      frozen[r,c] = false;       }
}

Example C.2.2 displays the effects of an inadequate interface: the cli-
ent must check type. Extension of a parent class may be considered ‘pure 
inheritance’ since the parent class type has not been undermined. A client 
may use any of the types directly, triggering behavior as associated with 
each subtype definition. However, consistent usage via a heterogeneous 
collection is undermined. No client can access the extended interface of a 
derived class directly through a base class handle. The client must extract 
type from base class handle at run-time and then invoke the desired 
(extended) functionality. This design is NOT maintainable or extensible 
since the addition of any new type to the class hierarchy requires the client 
to modify code that uses type extraction.

Design inadequacies may arise from insufficient consistency, specifi-
cally binding, and complementary functionality. Since the abstract map 
class expected descendant classes to customize the extent of data alteration 
(freeze()) then the associated action of data alteration (replace()) 
should have also been virtual. Similarly, if dynamic change in a particular 
direction or form is supported, then the class designer should consider 
complementary (or rollback) functionality. In Example C.2.1, given the 
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ability to freeze data, at arbitrary times, provision of the complementary 
ability to unfreeze would have yielded a more complete design.

The last design exercise was to reuse two defined types of markers, each 
of which moves across a two-dimensional grid. An inchworm crawls 
along a vertical or horizontal line, marking all cells in its path. A leap-
Frog jumps from one cell to another along a diagonal, marking only the 
destination cell. To define a leapWorm class that crawls along a diagonal, 
reusing these existing types, viable design options are: 1) multiple inheri-
tance (C++); 2) single inheritance from one parent alongside composition 
(the second parent is subordinated to a data member); and 3) double com-
position with both parents subordinated to data members.

As noted in Chapter 7, redundancy occurs when reused types have 
overlapping data, a difficulty not easily resolved by the compiler. Both 
inchworm and leapFrog move across a grid, marking cells. Each 
type uses a grid and supports movement. Overlapping data and func-
tionality is clear. Our first design defines both inchworm and leap-
Frog as descendants of a gridMarker class, with leapWorm then 
inheriting directly from both inchWorm and leapFrog, reflecting 
diamond inheritance. Wasted space and initialization overhead would 
be ill effects because child classes use only the leapFrog grid. Virtual 
inheritance instructs the compiler to suppress redundant base class 
components. Data inconsistency does not arise because only the leap-
Frog maze in used for movement.

A client may invoke any public inchWorm or leapFrog functionality 
through a leapWorm object in Example C.2.3. To resolve ambiguity due 
to inheritance of the same method from both parents, leapWorm must 
override move(k).

Example C.2.3 Multiple Inheritance => resolve ambiguity

class gridMarker
{   protected:      
       Maze         m;
       unsigned     x;
       unsigned     y;
       unsigned     numMoves;
public: 
        gridMarker(unsigned a = 100, unsigned  

  b = 100): m(a,b)
       {      x = y = numMoves = 0;      }
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       virtual bool move(unsigned k) = 0;
};

class inchworm: public virtual gridMarker
{   protected:      
       unsigned     direction;       // N, E, S, W
       bool         awake;

       bool updateGrid(unsigned k)
       {     bool inMaze = true;
             switch (direction = = 1)
             {  case 1:  inMaze = m.markCol(x, x-k);
                        if (inMaze) x-=k;
                        break;
                case 2: inMaze = m.markRow(y, y-k);
                        if (inMaze) y-=k;
                        break;
                case 3: inMaze = m.markCol(x, x+k);
                        if (inMaze) x+=k;
                        break;
               default: inMaze = m.markRow(y, y+k);
                        if (inMaze) y+=k;        }
              }
              return awake = inMaze;            
       }
  public: 
        inchWorm(int a = 100, int b = 100):  

  gridMarker(a,b)
       {      awake = true;
              direction = 1;
       }

       virtual bool move(unsigned k)
       {      if (!awake)         return false;
              numMoves++;
              updateGrid(k);
       }
       
       virtual void changeDirection(unsigned t)
       {      direction = (t % 4) + 1;   }

       virtual void reset()
       {      m.clear();
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              awake = true;
              direction = 1;
              x = y = numMoves = 0;
       }
};

class leapFrog: public virtual gridMarker
{   protected:      
       unsigned     diagonal;     // SW, NE, NW, SE
       bool         alive;

       bool updateGrid(unsigned k)
       {   bool inMaze = true;
           switch (diagonal = = 1)
           {  case 1:  inMaze = m.markCell(x-k,y-k);
                       if (inMaze) { x-=k; y-=k; }
                       break;
              case 2:  m.markCell(x+k,y+k);
                       if (inMaze) { x+=k; y+=k; }
                       break;
              case 3:  m.markCell(x-k,y+k);
                       if (inMaze) { x-=k; y+=k; }
                       break;
              default: m.markCell(x+k,y-k);
                       if (inMaze) { x+=k; y-=k; }
            }
            return alive = inMaze;             
       }
public: 
        leapFrog (int a = 0, int b = 0):  

  gridMarker(a, b)
       {      alive = true;
              diagonal = 2;
       }

       virtual bool move(unsigned k)
       {      if (!alive)          return false;
              numMoves++;
              updateGrid(k);
       }

       virtual void reset()
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       {  // NOP: frog leaping out of bounds  
// cannot be reset     }

              

       virtual void changeDirection(unsigned t)
       {      diagonal = (t % 4) + 1;     }
};

// child class must override overlapping  
// move(k) method
class leapWorm: public inchWorm, public leapFrog
{   …
    public: 
        leapWorm(int a, int b):  

inchWorm(a, b), leapFrog(a, b)
       {      …     }
       bool move(unsigned k)
       {      if (!leapFrog::alive) return false;
              leapfrog::numMoves++;
              bool inMaze = true;
              unsigned numCells = 1;
              while (inMaze && numCells < k)
                inMaze = leapfrog::move(numCells++);
              return alive = inMaze;
       }

       virtual void reset()
       {      m.clear();
              alive = true;
              diagonal = 1;
              x = y = numMoves = 0;
       }
              
       virtual void changeDirection(unsigned t)
       {      diagonal = (t % 4) + 1;     }
};

The sample exercises in this section of Appendix C highlight impedi-
ments to and support for sustainable design. The first exercise defines an 
inheritance hierarchy with and interface presumed to be stable. Subsequent 
exercises illustrate that this interface is insufficient, forcing client type 
checking. Type extraction (for dynamic binding and interface extension) 
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yields unmaintainable code. Clients and/or class designers must add 
compensatory code, replicating type checking that the compiler should 
provide.

The last exercise motivates a multiple inheritance design and a feasible 
C++ solution is provided. A comparable C# solution must use composi-
tion to mimic at least one parent. With or without composition, the class 
designer must resolve overlapping interfaces.

DRY (Don’t Repeat Yourself) is the OOD principle associated with 
Chapter 8. Through either inheritance or composition, type (class) definitions 
may be reused, effectively reducing development time and effort. Design lon-
gevity is most easily supported through stable interfaces. The use of abstract 
classes and interfaces support the design of sustainable code.

C.3 OPERATOR OVERLOADING
The design exercise from Chapter 8 was to transform the C# amplify 
class, defined in Example 8.7, to a C++ implementation. Since C++ more 
extensively supports operator overloading, this redesign is not trivial. 
Potentially, many more operators may be overloaded. Additionally, the 
manner of overloading varies in C++. In particular, all forms of assign-
ment must be explicitly overloaded. Implementation of pre and post incre-
ment (decrement) also differs.

Example C.3.1 Operators for C++ Class

class amplify   
{    unsigned   scale;
     bool       on = true;
   public: 
      amplify(unsigned amp = 1)   

{ scale = amp % 100;  }
     
     bool isOn() const     { return on;         }
     bool toggleOn() const { return  on = !on; }
     
     double increase(double x)
     {    if (!on)   return 0.0;
          return     x + (x*scale/100);
     }    
     
     amplify operator+(amplify b)            
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     {    amplify    local(this->scale + b.scale); 
          return local;
     }
       
     amplify operator+(unsigned b)         
     {    amplify    local(this->scale + b); 
          return local;
     }
     
     amplify& operator+=(amplify b)    
     {    scale += b.scale;
          return *this;   
     }
     
     amplify& operator+=(unsigned b)   
     {    scale += b;
          return *this;    
     }

     // pre ++ 
     amplify operator++()
     {    scale = (scale + 1) % 100;
          return *this;
     }

     // post ++ 
     amplify operator++(int throwAway)
     {   amplify local(this->scale);
         scale = (scale + 1) % 100;
         return local;
     }

     bool operator==(amplify b)       
     {    return this->scale == b.scale; }

     bool operator!=(amplify b)       
     {    return this->scale != b.scale; }

     bool operator<(amplify b)        
     {    return this->scale < b.scale; }

     bool operator>( amplify b)       
     {    return this->scale > b.scale; }
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     bool operator<=(amplify b)       
     {    return this->scale <= b.scale; }

     bool operator>=( amplify b)      
     {    return this->scale >= b.scale; } 
};
// GLOBAL function in. cpp file
amplify operator+(unsigned a, amplify b)           
{     return b + a;  }

Operator overloading elevates abstraction and improves readability. 
Pragmatically, operator overloading supports instantiation of user-defined 
types in generic algorithms (and containers). Since clients expect con-
sistency, class designers should overload all operators associated with a 
particular action. In either C# or C++, overloading addition may be a chal-
lenging design endeavor. C# enforces paired overloading of comparison 
operators.

Incorporating operator overloading in a class design stresses the impor-
tance of a type interface and hence the associated principle Program 
to Interface Not Implementation (PINI). Adherence to this principle 
promotes low coupling because the client is not tied to implementation 
details. Implementation may then change without impacting the client. 
PINI is particularly relevant to operator overloading because the defined 
type (class) may be treated like a primitive.
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Glossary

Abstract class: is a class definition that is not fully implemented; one or 
more class methods are undefined with the result that no objects 
can be instantiated from the class.

Abstract Data Type (ADT): is a type definition separated into an 
interface and an implementation. For example, a stack is an 
ADT that provides a LIFO (last-in first-out) ordering of data; 
implementation details of the stack container are not relevant to  
its use.

Abstraction: is the separation of conceptual information from implemen-
tation details. For example, a variable name is an abstraction of a 
memory location, a class interface is an abstraction of its function-
ality, and a flowchart is an abstraction of control flow.

Accessor: is a class method that accesses encapsulated (hidden) data inter-
nal to the class. Such methods typically return data by value.

Ad hoc polymorphism: refers to function overloading: two or more 
functions use the same name but can be distinguished by 
their function signatures (number, order and type of passed 
parameters).

Aggregation: is a form of object composition where the composing object 
usually contains multiple subobjects but may not necessarily own 
these subobjects (which do not typically provide functionality to 
the composing object).

Aliasing: occurs when two or more handles (variables) reference the same 
memory location. Call by reference, for example, sets up an alias 
between formal and the actual parameters. Aliasing may be used 
for efficiency since it allows data to be shared, and thus avoids 
copying. However, aliases must be tracked carefully for data 
integrity.
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Ambiguity: denotes a lack of precision that confounds analysis. Compilers 
cannot handle ambiguity. For example, in a multiple inheritance 
relationship, when two parent classes define the same named 
function, it is unclear which method is invoked through a child 
class object. The compiler cannot resolve such an ambiguous call, 
so the class designer must resolve the ambiguity by redefining the 
method (which can simply redirect the call).

Assembly language: is a computer language tied to the processor on which 
it runs and is one step up from machine level code. An assem-
bler translates assembly language code into an executable form 
(machine code).

Association: is the manner in which two or more variables are related, 
which may be flexible or fixed. For example, a derived class object 
has a permanent, fixed association with its parent component.

Base class: is the topmost (or original ancestor) in a class hierarchy. In 
a single inheritance relationship, the parent class could also be 
referred to as the base class. This older term is more often associ-
ated with C++ than C# or Java.

Caching: is the storage of frequently accessed data so that it can be retrieved 
quickly. Modern processors have on-chip caches. Programmers 
may design their own caches, in order to avoid the overhead of 
memory access, but should do so with care due to the difficulty of 
ensuring data integrity with two or more copies of the same piece 
of data.

Call by Value: is a parameter passing mode that is considered secure but 
inefficient. Local memory is allocated and initialized for values 
passed in and/or out. Thus, local modification of data should not 
affect external data values. References and pointers undermine 
the security of call by value.

Call by Reference: is a parameter passing mode that is considered effi-
cient but insecure. No local memory is allocated for values passed 
in and/or out. Instead, formal parameters are aliased with actual 
argument, thereby avoiding the overhead of data allocation and 
initialization. Local modification of data does affect external val-
ues since memory is shared.

Cardinality: is a measure of the number of items in a set, and, in OOD, 
reflects the number of subobjects defined in a relationship. For 
example, containers have a varying cardinality of subobjects, 
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ranging from zero for an empty container to unbounded for a 
resizable container.

Child class: is the immediately derived or descendant class in an inheri-
tance relationship, and, as such inherits all the parent data and 
functionality but may access only that data and functionality that 
is public or protected.

Class construct: is used to define a type by specifying data fields (mem-
bers) and member functions (methods). Essentially an ADT with 
encapsulation, the class construct distinguishes between public 
(external) and private (internal) accessibility to defined member 
data and functions.

Class invariant: is a documented summary of the properties, character-
istics and functionality of a class – contains unique, unsorted 
elements with full support of copying. Under Programming by 
Contract, the class invariant specifies design details of interest to 
both the client and the class designer.

Clean slate: is a colloquial term that refers to software design that starts 
from scratch. That is, the software designer need not reuse, sup-
port, or integrate any existing code.

Code bloat: is the generation of excessively large amounts of code, often 
unnecessarily. Causes of code bloat include inappropriate optimi-
zations (such as function inlining and loop unrolling), poor soft-
ware design, and redundant instantiation of templates.

Code complexity: is a term used to describe how easy or difficult 
software is to read, understand, and maintain. Also known 
as software complexity, code complexity is not a performance 
measure.

Code reuse: is the use of existing software to build new software. Software 
libraries are well-known examples of code reuse: the utilities pro-
vided by libraries, such as I/O and pseudo-random number gen-
erators, are used over and over again by many different software 
systems. Code reuse may be more formally known as software 
reuse.

Cohesion: is a software engineering measure of functional or type integ-
rity within a design. Cohesion describes how well a software entity 
(function, class, component) hangs or sticks together. The more 
cohesive an entity is, the less dependent it is on external entities, 
and, thus, the more maintainable.
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Compaction: is the shifting of allocated memory to one portion of the 
heap, in order to reduce fragmentation and, thus, improve soft-
ware performance. Like the reclamation phase of garbage collec-
tion, compaction is pure overhead.

Compiler: is the software that translates source code written by a software 
developer into assembly or machine code. Resolution by the com-
piler is typically called static (static typing, static binding) because 
it does not change at run-time.

Composite Principle: refers to practitioners’ preference for composition 
over inheritance.

Composition: is the structure of a complex data type as defined by the 
composite of several data fields (members), where each data 
member is an essential element and provides some functionality. 
Composition models the has-a relation.

Concrete class: is a class definition that is fully implemented; all class meth-
ods are defined so that objects can be instantiated from the class.

Constant: is an identifier that does not need memory allocated because its 
value does not change. The compiler substitutes the constant value 
wherever this identifier occurs.

Constructor: is a special class method that is called by the compiler when 
an object is instantiated, removing the need for an initialize() 
routine. Constructors should set the object in a valid, initial state. 
Constructors return no value and have the same name as the class.

Constructor Injection: is a form of Dependency Injection used when a life-
time association is more likely since the resource is passed into the 
constructor. Error response is limited to using a default or throwing 
an exception because constructors cannot return error codes.

Container: is a data structure whose primary responsibility is to hold or 
contain data. Common containers include stacks, queues, and 
sets.

Containment: is a conceptual model of the holds-a relation. An object 
contains or holds one or more subobjects. The subobjects do not 
provide functionality and are not typically owned by the container.

Contraction: refers to an inheritance design that reduces (contracts) the 
inherited parent interface by suppressing (or NOPing) one or 
more inherited public functions.

Copy Constructor: is the constructor that initializes a newly allocated 
object by copying the state (value of all data members) of a passed 
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object. If not defined by the class designer, the C++ compiler 
generates a copy constructor that performs a bitwise copy on all  
fields – a design landmine if a C++ class allocates heap memory 
internally. C# does not provide a copy constructor.

Copy & Paste programming: is a programming technique whereby func-
tionality or structure is replicated by copying code from one por-
tion of the software system to another. Highly susceptible to error, 
copy & paste programming should be avoided as it undermines 
software maintainability.

Coupling: is a software engineering measure of the degree of dependency 
between two software entities. Low coupling implies little depen-
dency on external entities.

CPU: is the abbreviation for central processing unit, the computational 
core of a computer.

Data corruption: occurs when two or more handles (variables) unknow-
ingly reference the same memory location. One handle can thus 
change the value of the memory location unbeknownst to the 
other handle.

Deep copy: refers to the allocation and initialization of separate mem-
ory when copying data. Safe but expensive, deep copies may be 
avoided by using aliasing. C++11 move semantics provide a safe 
and efficient alternative to deep copying by transferring owner-
ship of memory from expiring temporaries.

Default constructor: refers to the constructor provided, by default, by 
the compiler when the class designer does not provide one. The 
default constructor takes no arguments. Hence, the term is often 
confused with no-argument constructor.

Defensive programming: is a style of programming in which no assump-
tions are made about correct usage of the software. Hence, the 
software tests many conditions, such as illegal input, or use excep-
tion handling in order to prevent errors.

Deferred methods: also known as abstract methods: methods declared in 
an abstract class interface but not defined. Definition (implemen-
tation) is deferred to derived classes.

Delegate: is an object that serves to provide functionality or services. 
Typically, a delegate is a data member composed within another 
object. If so encapsulated, delegates may be easily replaced or 
modified.
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Dependency Injection: exposes internalized data members; clients ‘inject’ 
(pass) a dependency (resource) into a class via Constructor, 
Property, or Method injection. The class retains control because 
passed dependencies need not be accepted. DI supports testing 
and maintainability.

Dependency Inversion Principle: states that high-level abstractions 
should not depend on low-level abstractions. For example, a class 
definition should not depend on an encapsulated filename. High-
level abstractions are stable; low-level are not.

Derived class: is a descendant or child class in an inheritance relationship. 
This older term is used with the term ‘base’.

Design Patterns: are established solutions to reoccurring prob-
lems. A design pattern is general and reusable with expected 
costs and benefits. For example, several creational patterns 
address the need for virtual construction in a statically typed 
language.

Destructor: is a special class method in C++ that is called by the compiler 
when an object goes out of scope. It should be designed to release 
any resources (such as heap memory) held by the object but may 
also be used to update bookkeeping details. Destructors return no 
value and have the same name as the class, preceded by the special 
‘∼’ symbol.

Diamond Inheritance: occurs in multiple inheritance when a child inher-
its from two parents that share a common grandparent, thereby 
causing redundant (two) copies of the grandparent component 
(one through each parent).

Disassembler: is a software tool that examines the executable (object code) 
of another program and, extracts a representation similar to the 
original assembly language code.

Dual perspective: describes two different views of the class construct: the 
client who uses the external, published interface; the class designer 
who defines the interface and implements the type, maintaining 
internal control of state.

Dynamic binding: refers to the run-time resolution of a function call. 
The compiler translates a dynamically bound function invo-
cation to an indirect JUMP statement. Function resolution is 
postponed until run-time by using a virtual function table. 
Dynamic binding supports polymorphism and heterogeneous 
collections.
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Encapsulation: is a key characteristic of OOD: the data members and 
associated functionality of a type are bundled together (encapsu-
lated) in a class definition, thus promoting high cohesion.

Exception: is a hardware or software error that disrupts the execution of 
software. Exceptions can be named and ‘caught’ so that run-time 
errors are avoided.

Exception Handling: is a systematic response to exceptions. Errors so 
raised are processed and, if possible, normal execution resumes. 
Exception handlers are (small) pieces of code that execute when 
associated exceptions are raised.

Explicit allocation: is the direct allocation (acquisition) of heap-allocated 
memory via a run-time call, for example use of the new operator 
in C++/C#/Java.

Explicit deallocation: is the direct deallocation (release) of heap-allocated 
memory via a run-time call, for example use of the delete operator 
in C++.

Extension: is a pure form of inheritance where the child class preserves 
inherited functionality but also extends the functionality pro-
vided by the parent.

Friend: is a C++ construct that permits a class designer to selectively open 
up the class to external functions and classes. Any function or 
class declared a friend in classX has access to all the data and func-
tionality of classX, even that declared private or protected. The 
friend construct is not symmetric, transitive or inherited.

Function signature: is defined by the function name and the number, 
type, and order of parameters.

Functional decomposition: also known as structured decomposition, 
breaking major tasks into lower level functions thus promoting 
readability and code reuse.

Garbage Collection: is the automatic reclamation of heap memory no 
longer in use (garbage) that removes responsibility for memory 
deallocation from the programmer but is an imperfect process. 
Executing software must pause for the garbage collector to run. 
Garbage collection is not controlled by the programmer and may, 
in fact, not ever be invoked for small or short-lived applications 
that use little heap memory.

Generic: functions and types definitions use a type placeholder rather 
than a specific type. For example, a generic swap routine swaps 
values of any type since the actions are the same regardless of type. 
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Generic containers, such as stacks and queues, are also common. 
When needed, the generic definition is instantiated with a type.

Handle: is a the means of accessing data stored in memory. A variable is 
a handle.

Hard coding: is a discouraged practice that uses literals (such as ‘3.14’) 
rather than constants (such as const float pi = 3.14). Hard  
coding is not maintainable: if a value changes, all occurrences 
of that literals must be updated. In contrast, constant variables 
promote maintainability: if a value changes, (say, const int 
limit = 314159), the programmer need only update one state-
ment – the constant variable.

Has-a: is also known as composition. A class has-a data member that pro-
vides essential functionality to the composing object. This relation 
is often preferred to inheritance because it affords more flexibility 
relative to cardinality, association, and ownership.

Heap: has multiple meanings: 1) data structure; 2) portion of memory in 
a program.
1) The heap data structure is a tree represented by an array, where 

A[1] represents the root node, A[2] represents the left child of 
the root, A[3] represents the right child of the root, …. For 
array element A[i], the left child is A[2*i], the right child is 
A[2*i + 1], and the parent is A[i/2]. Priority queues are often 
implemented via the heap data structure.

2) The (run-time) heap is a portion of program memory that 
is used for the dynamic allocation of memory. Heap mem-
ory provides much f lexibility but incurs run-time over-
head and can result in performance degradation if poorly 
managed.

Heap Fragmentation: occurs when free memory is scattered across the 
run-time heap and is available only in small blocks, causing 
the allocator to work harder to satisfy memory requests (thus 
degrading performance). Additionally, a memory request may 
fail if there is enough memory available but not in large enough 
blocks.

Heterogeneous collection: holds polymorphic objects – each object can 
be of any type in a class hierarchy.

Holds-a: is also known as containment, a class holds one or more data 
members but does not derive any utility from these subobjects 
thus implying a lack of type dependency.
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Identifier: is a (user-defined) name that refers to a constant, variable, 
function, etc.

Implementation: of a class is the code that provides functionality and 
embodies the design decisions made with respect to internal 
structure and support for a defined type.

Implementation invariant: records design decisions, intent, and assump-
tions relevant to the implementation of the defined class, and is 
essential for maintenance.

Implicit Allocation: is the indirect allocation (acquisition) of memory, 
without explicit calls to the allocator. Either the compiler allo-
cates memory, via stack frames, or memory is automatically 
allocated at run-time (as in dynamically typed languages like 
Python).

Implicit Deallocation: relies on garbage collection to reclaim heap-allo-
cated memory. Programmers do not explicitly deallocate memory.

Indirection: refers to the ability to access memory indirectly, via a pointer 
variable, or to invoke a function indirectly, via a delegate or func-
tion pointer.

Information hiding: is an ideal in software design that implementation 
details are hidden so that the client does not become dependent 
on arbitrary implementation characteristics. Information hiding 
is difficult to realize because compilers need type information 
(size) in order to lay out objects correctly or appropriately request 
memory.

Inheritance: is a key OO relationship where a child class is defined in 
terms of its parent class, ‘inheriting’ data and functionality. 
Inheritance supports the is-a relationship a child object can 
serve as a parent object. Structurally, inheritance can be mim-
icked with composition but inheritance designs are essential for 
polymorphism.

Inlining: is a compiler optimization technique that replaces a function 
call with the body of the function to avoid the overhead of func-
tion call and return. Inlining can improve performance but can 
also lead to code bloat, ironically, decreased performance.

Instantiation: refers to the allocation and initialization of an object via a 
constructor call.

Interface: is the set of functions defined for a class (or component, or mod-
ule) that may be delineated by accessibility: public (client); pro-
tected (descendants); private (internal).
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Interface invariant: is a set of state conditions or constraints that must 
be met to support client expectations. The interface invariant is a 
contractual specification for the client.

Is-a: is an inheritance relationship where the derived class maintains the 
interface and functionality of the base class so the derived object 
is-a base object. Substitutability is possible when the is-a relation-
ship is supported.

Legacy code: is existing software that continues to be used, despite newer 
technology or improved methodologies. Often such systems func-
tion for convenience of established users’ needs. Typically, replace-
ment cost is considered prohibitive.

Lifetime: is the length of time that a variable (piece of data) remains allo-
cated. Note that allocation does not imply utility or access.

Liskov Substitution Principle: is the OOD principle that verifies the 
interoperability of (sub)types defined in a class hierarchy. The 
substitution of any derived class object in place of a base object 
supports heterogeneous collections.

Literal: is considered ‘hard-coding’ and thus not maintainable, for  
example ‘7’, ‘Hello’. Literals are not associated with memory, and 
thus cannot be modified,. For maintainability, constants should 
be used instead of literals.

Method Injection: is a form of Dependency Injection used when the util-
ity of a resource is confined and is passed only into the method 
that uses it. Typically, the class does not retain any responsibility 
for the resource.

Mutator: is a class method that alters the value of one or more data mem-
bers of an object. A mutator need not induce a state change. For 
example, popping an item off a stack may not change the state of 
the stack, unless a non-empty stack becomes empty.

No-argument constructor: refers to a constructor that takes no arguments. 
Ideally, this term should be distinguished from the default con-
structor which is the (no-argument) constructor provided by the 
compiler when the class designer fails to define any constructors.

Node class: is an intermediate class in a class hierarchy that inherits form 
(and possibly some functionality) and anticipates extension. A 
node class itself may be partially abstract.

NOP: stands for No OPeration and is an operation code (opcode) that 
indicates that no operation should be undertaken.
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Object-oriented design (OOD): refers to software design that rests on the 
definition and use of objects, as well as the specification of appro-
priate relationships between objects.

Object-oriented programming language (OOPL): support OOD by pro-
viding the class construct and built-in constructs for inheritance 
and polymorphism. A software developer can thus easily define 
inheritance and dynamic binding, without using arcane con-
structs such as function pointers.

Open Closed Principle: specifies that a class should be open for exten-
sion but closed for modification, and is a key design principle 
of OOD.

Operating system: is the software, typically pre-loaded onto desktop com-
puters, that handles basic tasks such as IO (input from keyboard, 
output to screen or file), scheduling processes, organizing files and 
directories, and executing applications.

Operator overloading: is the definition of class methods that can be 
invoked through a symbol, such as ‘+’. C++ fully supports opera-
tor overloading. Java does not support any operator overloading. 
C# selectively supports operator overloading.

Orthogonal: refers to entities that do not overlap so they can be treated 
separately. In a multiple inheritance relationship, if two parent 
classes are orthogonal, their interfaces have no common functions 
and thus do not confound design with ambiguity.

Overloaded: functions are functions which share a name but which are 
distinguished by different parameter lists. Constructors are com-
monly overloaded in class definitions.

Overridden: methods occur in class hierarchies when a derived class 
redefines the implementation of an inherited method. Overridden 
methods must have the exact same function signature as the 
method inherited from the parent (or base) class.

Ownership: refers to the handle (variable/object) responsible for a piece 
of data (another object). Ownership should be tracked in order 
to avoid memory leaks and data corruption due to unwarranted 
aliasing.

Parametric polymorphism: is another name for templated or generic  
code – code written with a type placeholder. When explicitly 
instantiated, a type is supplied and the compiler generates a copy 
of that class or function with the parameter type filled in.
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Parent class: establishes the interface to be used by descendant via inheri-
tance. There is no conceptual limit on the number of child classes 
that can derive from a parent class.

Pointer: is a variable that holds an address. Available in C/C++ but not C#, 
the pointer construct provides the programmer with the power of 
indirection and explicit aliasing.

Polymorphism: is the dynamic binding of method calls within the scope 
of a class hierarchy. All calls are dynamically bound in Java. In 
C++ and C#, a base class must specify a method as ‘virtual’ in 
order for it to be dynamically bound. A derived class may override 
an inherited virtual function, providing variant behavior. Virtual 
function invocations are resolved at run-time, so, a single (poly-
morphic) call may yield many (different) results.

Portability: is a measure of how easy is it to move (port) code from one 
platform to another.

Postconditions: are conditions that hold after a function finishes execu-
tion. By evaluating postconditions, a client can track state and 
thus ensure the legality of subsequent calls.

Preconditions: are conditions that should be met before a function exe-
cutes. By satisfying stated preconditions, a client ensures correct 
execution of a function.

Principle of Least Knowledge: is a design guideline that promotes low 
coupling by stating that one object should know as little as pos-
sible of another.

Priority Queue: is a queue that provides the same interface as a standard 
queue but internally orders items by priority, not in FIFO order. If 
data is low priority, then when queued in a priority queue, it may 
be stored indefinitely, that is, starve.

Private: confirms the encapsulated nature of class data members and 
methods. Any method or data member declared to have private 
accessibility cannot be accessed by either the client or descen-
dant classes.

Profiler: is a software tool that runs code and analyzes execution, tracking 
memory usage and function coverage. Profilers can evaluate heap 
fragmentation, identify memory leaks and assess the frequency of 
function calls.

Program counter: holds the address of the currently executing instruc-
tion (in a special register) which is pushed onto the run-time stack 
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when a function invoked so that, when the function terminates, 
control returns to the caller.

Property Injection: is a form of Dependency Injection as known as Setter 
Injection because the resource is passed into a set method that 
serves only to accept the dependency. Replacement and postponed 
instantiation can thereby be supported.

Protected: accessibility allows access for descendants. Any method or data 
member declared to have protected cannot be externally accessed 
by the client: private to the outside, public to descendants.

Public: denotes opens access to all. Any client or class may access public 
data and methods. Public data members violate encapsulation and 
are thus discouraged.

Pure virtual: refers to a C++ method declared but not defined. Also 
known as deferred or abstract methods, pure virtual functions 
make a class abstract. Inheritance is required: descendant classes 
must provide implementation details.

Queue: is a standard container that stores data in a FIFO (first-in, first-
out) order. Enqueueing adds to the back of the queue; dequeueing 
removes from the front of the queue.

Raw pointer: refers to the C/C++ pointer construct which serves as an 
address holder, and, unlike smart pointers, does not implicitly 
ensure resource deallocation.

Readability: refers to the ease of reading and understanding code, and 
thus reflects maintainability. Code construction guidelines sug-
gest techniques such as functional decomposition, encapsulation, 
and self-documenting code to promote readability.

Redundancy: occurs when a child inherits from two parents that share 
a common grandparent. The child class object thus receives two 
copies of the grandparent components. C# and Java do not support 
multiple inheritance and thus do not encounter this problem. C++ 
designs may avoid such redundancy through virtual inheritance.

Reference: is a variable that holds the address of data in memory. Multiple 
references can address the same memory, thereby establishing 
aliases and supporting sharing. Poorly tracked aliases (references) 
may lead to data corruption.

Reference Counting: associates a reference count with each allocated 
memory block. Every reference to a block increases its reference 
count. Each time a reference is reassigned, or goes out of scope, 
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the count is decremented. A count of zero indicates that there is 
no access and so the memory block may be reclaimed.

Requirements: are specifications that define the essential functionality of 
a software system and may include non-functional characteristics 
(such as performance).

Responsibility Driven Design: is a principle that stresses clear identifica-
tion of class functionality and dependencies.

Root set: is the set of variables in scope when program execution is paused 
so that the garbage collector may run. A trace emanating from the 
root set identifies all active variables so that the garbage collector 
will not reclaim memory still in use.

Scalability: is a measure of how well software performs under increased 
load conditions.

Self-documenting code: is the deliberate selection of identifier names 
that describe use and intent. Variable names such as min and max 
clearly imply intent as do functions calls like Fibonacci(n).

Shallow copy: establishes an alias (a secondary reference) to a piece of data 
in order to avoid the overhead of allocation and initialization of a 
true copy. Efficient but vulnerable, shallow copies may lead to data 
corruption.

Side Effect: is an unintended or secondary effect of a direct action, such 
as a function call that alters persistent data without the caller’s 
knowledge.

Single Responsibility Principle: is the design principle that prioritizes the 
isolation of primary functionality in as class design without inclu-
sion of secondary functionality.

Smart pointer: is a wrapped pointer that serves to guard against memory 
leaks in C++. When a smart pointer goes out of scope, its destruc-
tor is invoked so that any heap memory referenced by the smart 
pointer is appropriately deallocated. C++11 provides three types 
of smart pointers: unique, shared, and weak.

Software complexity: assesses software’s structure, readability, and 
maintainability. How intricate, layered, complex is the software? 
Common measures of software complexity include control flow, 
coupling, branching, data, data access, and cyclomatic complexity 
(the number of independent paths through the software).

Software Engineering (SE): applies engineering principles to developing 
and managing software systems; includes requirements analysis, 
design, implementation, testing, maintenance, and reengineering.
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Software Evolution: is a modern term referring to adaptive software 
maintenance, the upgrading of existing software in order to pro-
vide more functionality, improved performance, etc.

Software Maintenance: is the modification or upgrading of software. 
When viewed as corrective, maintenance implies fixing defects or 
improving performance. Yet, support of an expanding software 
system includes functional enhancements, refinements of UIs, 
platform extensions, etc.

Source code: is a set of executable instructions, usually written in a high-
level language.

Specialization: is a form of inheritance where the derived class modifies 
or extends the parent functionality in a manner that specializes 
the behavior according to subtype.

Specification: is a form of inheritance where the derived class provides 
implementation that is missing in the abstract parent class.

Stack: has multiple meanings: 1) data structure; 2) portion of memory in 
a program.
1) The stack data structure is a common container that stores data 

in a LIFO (last-in, first-out) order. Its classic interface supports 
pushing (storing) and popping (retrieving) items.

2) The run-time stack is a portion of program memory that 
holds data currently in scope. Each function call causes 
an activation record (stack frame) to be pushed onto the 
run-time stack. Upon function exit, the activation record 
(or stack frame) is popped off the run-time stack. Hence, 
recursive calls effectively hide the provision of local data 
with each call and unbounded recursion leads to stack 
overf low.

Stack frame: is also known as an activation record: a layout of the data 
needed to process a function call and thus includes the program 
counter as well as space for local variables.

Starvation: is a possible side-effect of using a priority queue: a low-priority 
item may be stuck in the back of the queue as higher-priority items 
are enqueued ahead of it. Use of an internal aging mechanism may 
be used to avoid starvation.

Static Binding: refers to the resolution of function calls by the com-
piler whereby a function invocation is translated into a direct 
JUMP (to the function address). Static binding is efficient 
but not f lexible. There is no overhead incurred at run-time to 
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process the call but the address in the direct JUMP statement 
cannot change.

Static method: refers to functions declared and defined within class scope 
but not accessible via an instantiated object. Invocation is through 
the (scope of) the class name.

Static variable: refers to data members declared and defined within class 
scope not accessible via an instantiated object. When a class defi-
nition is loaded, one instance of the static variable is allocated. 
Every object instantiated from the class definition thus shares this 
one copy.

STL (Standard Template Library): for C++, provides generic versions of 
standard data structures, such as stacks and vectors, as well as 
standard algorithms.

Structured programming: promotes functional decomposition and use 
of control structures, and thus is often heralded as the emergence 
of software design, or as a constructive response to overuse of 
GOTO.

Substitutability: reflects the is-a relationship: a derived object can substi-
tute for a base class object.

Subtype Polymorphism: rests on inheritance and dynamic binding. A 
derived class can override (redefine) an inherited virtual function 
so that, at run-time, either the base or a derived class method is 
invoked, dependent on the (sub)type of object through which the 
method is invoked.

Syntactic Sugar: is a derogatory term that implies that a language con-
struct does not provide significant additional design support but 
merely sweetens the code.

Templates: are the generic type and generic function support in C++. A 
type placeholder is used in a template class or function definition. 
The compiler fills in the type when the programmer instantiated a 
template with a specified type.

this pointer: is the address of the object through which a class method 
is invoked; the compiler patches in this address as an implicit 
parameter of the call. Class methods can then reference data mem-
bers associated with one specific object so data access is facilitated 
while data integrity is preserved. Static class methods are called 
through the class name and thus do not have a this pointer as an 
implicit parameter.

BK-TandF-DINGLE_9780367820817-200297-Glossary.indd   316 26/11/20   5:19 PM



Glossary   ◾   317

Type extension: is considered a pure form of inheritance: the definition of 
a new descendant extends the type definitions provided in a class 
hierarchy.

Variable: is a data identifier associated with memory; the value held in a 
variable may change (vary).

Virtual function: is a function tagged as virtual in its class definition, or 
overridden in a descendant class, so that it can or will be dynami-
cally bound.

Virtual function table (vtab): is a table of function pointers associated 
with a class. Each entry contains the address of the correspond-
ing (virtual) class method. When a function is defined, its address 
is placed in the table. The vtab entry of an undefined (abstract) 
method is zero.

Virtual Inheritance: is a tagged definition of inheritance in C++ that 
attempts to resolve redundancy possible with multiple inheritance.

Wrapper: is a class that wraps up, or encapsulate, an existing class. 
Wrappers typically facilitate code reuse by adjusting interfaces 
while retaining existing functionality.
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NOTE: Locators in italics represent figures and bold indicate tables in the text.

A

Abstract classes, 101, 143–144, 149, 
184–185

definitions, 144–146, 202, 287
design effect, 147
design intent, 146–147

Abstract data type (ADT), 5
Abstraction, 3–4, 6, 115, 250

and code readability, 228
flexibility, 107
of I/O streams, 107
maintainability, 182
of memory, 29–31, 76
and readability, 230

AbstractLocation, 183, 186, 187
interface, 183
virtual function table (vtab), 188

Accessors, 5, 6, 12–14, 28, 124, 162
function, 16
method, 249
and mutators, 12–14

Aggregation, 90
Aliases, 60
Aliasing, 13, 14, 46, 62, 64–67, 69–71

C# cloning to avoid, 71–73
Ambiguity, 198, 199, 207, 294
Arrays, 243–245

allocation, 37–40
C# vs C++, 37–38

Assembly language, 182
Association, 4, 89, 165, 165–166, 172, 200, 

261–262
AssumeOwnership(), 43

AssumeThenTransfer(), 43
auto _ ptr, 81

B

Base class, 122, 125–127, 148–149, 194, 207
Boundary values, 248
BST (Binary Search Tree), 111
Budd [Bud02], 147

C

C#, 4
class design, 44
classes, 15, 263
class with composition for code reuse, 

261–262
client code, 138–139
cloning to avoid aliasing, 71–73
composite class hierarchies, 204–205
constructor injection, 108–109
delegate class, 105–106
dependency injection, 266–268
double composition, 201–202
echoed interface forced, 102–103
finalizers, 15–16
interface, 101–102
internal replacement, 97
Java allocation, 35
memory, 15
method injection, 112
modification of encapsulated data 

member, 94–95
object declarations, 59, 61
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object instantiation, 11–12
operator overloading in, 220,  

220–223, 223
reuse via inheritance, 277
suppressed inheritance, 154
variant generators, 167–168
virtual functions tagged, 136–138

C++, 4
accessibility and binding, 158–159
accessors, 12
aliasing undermines encapsulation, 13
array allocation, 39–40, 245
array declaration, 39
array of C++ objects, 39
array of pointers, 243–244
auto _ ptr, 76
callback using polymorphic delegate, 169
class, operators for, 298–300
class design, 44, 45
class with heap memory, 251–253
client code, 132–133
compiler, 15
copy constructor, 66
deep copying, 254–256
design guidelines, 16
design guidelines stress, 37
destructors, 20
disassembler, 182
dynamic _ cast, 189
echoed interface, 100
explicit deallocation, 47
generic functions, 126–127
heap objects, 35
index operator, 224
internal construction of polymorphic 

delegate, 171–172
(Heap) memory at run-time, 32
memory leak, 51, 63
memory management, 41, 92
monolithic class for icon movement, 

120–121
move semantics, 69
mutators, 20
object definition, 35
object Instantiation, 10–11
operators overloaded in, 212, 223

indexing support, 223–224
I/O via stream operators, 224–226

transparent access, 227–228
type conversion, 226–227

overloaded assignment operator, 66
overloading addition in, 213–220
pointers, 36
postponed instantiation, 98–99
redesign using STL vector, 260
references, 238–241
smart pointer, 76–78
static _ cast, 189
subordinated parent, 199–201
suppressed copying, 67
type reclamation, 192–193
unseen leaks, 44
variable number of subObjects, 96
virtual inheritance, 198
virtual keyword tags functions, 135
wrapped pointers in, 78

C++11, 73, 228, 237
auto _ ptr, 77
move semantics, 75
smart pointers, 77

shared _ ptr, 77, 80
unique _ ptr, 77–79
weak ptr, 77, 84

C++17, 251
Caching, 30, 31
Call by reference, 46, 232
Call by Value, 62, 65, 67, 90
Cardinality, 4, 89, 91, 92
Child class, 173
Class construct, see contractual design 

and class construct
Class control, 95
Class design, 44–46, 83, 154
Class (type) functionality, 5–6
Class hierarchies cross-products, 202–206
Class invariants, 20, 23, 253
Clean slate, 147, 149
Clone(), 71, 183, 183, 186
Code bloat, 127, 129
Code complexity, 14
Code reuse, 4, 261–262
Cohesion, 26, 122, 173
Common invariants for container, 21
Compaction, 51
Compiler, 9, 67, 76
Composite principle, 174, 286
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Composition, 166, 175; see also inheritance
composition (has-a), 92–94

echoing an interface, 99–101
modification, 94–95
postponed instantiation, 98–99
replacement, 95–98

containment (holds-a), 90–92
dependency injection, 106–107

constructor injection, 107–109
dependency injection costs and 

benefits, 112–114
method injection, 111–112
property injection, 109–111

interfaces for design consistency, 
101–103

wrappers and delegates, 103–106
Constants, 83, 153–154
Constructors, 5, 9–12, 125

injection, 107–109
property injection, 272

Containment (holds-a), 90–92
Contractual design

contractual expectations, 25–26
design as contract, 16

error handling, 17–18
invariants, 20–21
published assumptions, 18–20

encapsulation, 3–4
explicit design and constraints, 4–5

accessors, 12–14
class (type) functionality, 5–9
constructors, 9–12
destructors, 15–16
mutators, 12–14
utility and public methods, 14–15

programming by contract example, 
21–25

Controlled wrapper, 83
Copy constructor, 62, 65
Copying, 62, 83

C++ copying of internal heap memory, 
63–69

deep, 63–64
semantics, 92
shallow versus deep, 62–63, 63, 83

Copy suppression, 65
Coupling, 26, 173
CPU, 30

CyclicSeq, 215, 227
CyclicSeq class, 21–22, 25, 39

implementation invariant for, 24
sample class invariant, 23
sample interface invariant, 24

D

Data corruption, 51, 59–62, 70
Data integrity

copying, 62
C++ copying of internal heap 

memory, 63–69
shallow versus deep copying, 62–63

data corruption, 59–62
handle, 76–78
move semantics, 73–76
OO design principle, 82
unseen aliasing, 69–71

C# cloning to avoid aliasing, 71–73
Data reclamation, 181
Deallocation, 48, 50
Decomposition, 106
DeepCopy(), 71
Deep copying, 63, 69, 74
Default constructor, 10
Defensive programming, 17–18
Deferred methods, 146–147
Delegate, 103, 104
delete operator, 42, 64
Dependency injection, 106–107, 109, 117, 

155, 206, 261
class design, 108
constructor injection, 107–109
costs and benefits, 112–114
criticism of, 114
method injection, 111–112
property injection, 109–111

Dependency inversion, 115, 268
Derived class, 122
Descendants customize data validity, 

288–291
Design exercises, 116–117

C++ class memory management, 
250–254

composition, 261–268
composition vs inheritance, 275–286
contractual class design, 247–250
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copying, 254–260
design longevity, 287–298
inheritance, 268–274
inheritance with polymorphic 

change(), 282–284
operator overloading, 298–300
ownership, 250–254
streamlined reuse via composition, 

281–282
Design inadequacies, 293–294
Design longevity

class hierarchies cross-products, 
202–206

design exercises, 287–298
disassembler example, 182–187

virtual function table, 187–188
multiple inheritance and simulation, 

196–198
design difficulties, 198–199
simulation without inheritance, 

200–202
single inheritance with 

composition, 199–200
OO design principle, 206
problematic type extension, 193–196
software evolution, 181–182
type extraction, 188–193

Design patterns, 4, 139, 174
Design principles, 114–115
Destructor (C++), 5, 6, 15–16
Diamond inheritance, 198–199, 294
Disassembler, 182–187

design, 183
type hierarchy, 184
virtual function table, 187–188

DRY (Don’t Repeat Yourself), 206, 298
Dual perspective, 25
Dynamically bound function, 128
Dynamic binding, 160

keywords for, 134–139
dynamic _ cast, 189
Dynamic memory, 31

E

Echoing interface, 99–101
Encapsulation, 3–4, 6, 25
Error code, 17–18

Error handling, 17–18
Exception, 17, 220
Explicit allocation, 42
Explicit deallocation, 42, 47
Extensible code, 4
Extension, 148–149
Externalization, 114

F

Façade [Gam95], 104
Finalizer method, 15
Fixed-sized array allocation, 243
Fragmented heap, 34
friend, 225
Function

in class construct, 5
signature, 125, 130

Functional decomposition, 14, 20, 28, 173
Functional independence, 5
Function call, 83

resolution, 127

G

Garbage collection, 47–50
Generic code, 126
Generic polymorphism, 130

H

Handle, 76–78, 103
Heap-allocated memory, 36, 92
Heap allocation, 238

at run-time, 33
Heap compaction, 51
Heap deallocation, 34, 238
Heap fragmentation, 42, 51
Heap memory, 31–34, 73, 95

ownership of heap, 40
persistent data, 40

Heap objects, 240–241
Heterogeneous collections, 125, 139–141

I

Icon, 119
Icon class
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in C#, 8–9
C++ code for, 6–7
private data, 8

Implementation invariants, 24, 254
Implicit deallocation, see garbage 

collection
Indirection, 76, 127, 138, 231
Information hiding, 4
Inheritance

abstract classes, 143–147
automate type checking,  

119–124
class design, 164–166
code reuse, 160–164
composition, with and without, 

166–172
constrained inheritance, 153

composition, 153–155
inconsistent access, 158–160
memory leaks, 155–158

design exercises, 268–286
dynamic binding, 130–134

keywords, 134–139
whoami() type identification, 134

heterogeneous collections, 139–141
inheritance designs, 147–149
LSP (Liskov Substitutability Principle), 

149
OO design principles, 149, 174
polymorphism, 124–125

costs and benefits of polymorphism, 
129–130

function inlining, 128–129
generics, 126–127
overloading, 125–126
subtype polymorphism,  

127–128
software maintainability, 172–174
virtual function table, 142–143

Initialization, 9
Inlining, 128
Instantiation, 171, 175
Interface invariant, 253
Interfaces

for design consistency,  
101–103

invariant, 24
I/O, 83, 107, 129

J

Java, 4
operator overloading, 229
zero, 231

L

Law of Demeter, 260
Legacy code, 4
Liskov Substitutability Principle (LSP), 

149, 274
Lvalue, 76

M

Manual tracking, 122
Mark-and-sweep algorithms, 51
Memory, 29–30

abstraction of, 29–31, 76
allocation, 32
blocks, 30
C#, 15
heap, 31–34
layout, 132
leak, 44, 51, 70, 156–157
management, 51, 52, 92

Memory reclamation, 46–47
C++ explicit deallocation, 47
control of, 30
garbage collection, 47–50
reference counting, 50–52

Method injection, 111–112, 272
Modification, composition, 94–95
Move semantics, 69, 73–76
Multiple inheritance, 196–198, 207

design difficulties, 198–199
simulation without inheritance, 200–202
single inheritance with composition, 

199–200
Mutators, 6, 12–14, 20

N

new operator, 63
No-argument constructor, 10, 90
No OPeration (NOP), 158, 160, 185
nullptr, 236
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O

Object definition (allocation), 9, 35
Object-oriented design (OOD), 3, 55–56

data integrity, 82
design longevity, 206
encapsulates data, 4
inheritence, 149
principles, 4, 55–56
responsibility driven design  

principle, 56
this POINTER, 241
type definitions, 4

Object-oriented programming language 
(OOPL), 125–130

Object-oriented relationships, 89–90
Open closed principle (OCP), 174, 286
Orthogonal parent classes, 207
OutOfMemory exception, 34
Overloaded functions, 126
Overload operators, 208

client expectations, 220
design exercises, 298–300
OO design principle, 228
operator overloading in C#,  

220–223
operators overloaded in C++, 223

indexing support, 223–224
I/O via stream operators, 224–226
transparent access, 227–228
type conversion, 226–227

operators represent functions,  
211–213

overloading addition in C++,  
213–220

types, 212
Overridden, 187
Ownership, 4
Ownership of heap objects, 34–37

array allocation, 37–40
persistent data, 40–44

P

Parametric polymorphism, 126, 127
Parent class, 124, 148, 166
Pass-by-value, 62
Performance degradation, 51

Performance improvements, 181
Persistent data, 40–44
PINI (Program to Interface  

Not Implementation)  
principle, 228

Pointer, 32
arrays, 243–245
class definition, 241–242
definition, 231–233
dereferencing, 233–235
inappropriate use, 235–236
‘*’ in front of, 233
initialize, 233
references, 238–241
this pointer, 169, 241–242
transient versus persistent memory, 

236–238
use, 233

Polymorphic delegate, 205
Polymorphism, 174, 188

costs and benefits, 129
types, 130

Portability, 129
Postconditions, 18, 18, 19, 19
Postponed instantiation, 98–99
Preconditions, 18, 18, 19, 19
Principle of least knowledge  

(PLK), 82, 260
Priority queue, 5, 56, 127
Private utility, 5, 6, 14–15

resize, 14
Problematic type extension, 193–196
Profilers, 51
Program counter, 128
Program heap, 31
Program memory, difficulties with, 51
Programming by Contract, 16, 18, 18

class invariants, 18, 18
implementation invariants, 18, 18
interface invariants, 18, 18
postconditions, 18, 18
preconditions, 18, 18

Programming by contract example, 21–25
Program to Interface Not Implementation 

(PINI), 300
Property injection, 109–111
Public interface, 5, 6
Pure virtual, 144
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Q

Queue, 5, 56, 127, 148

R

Raw pointer, 47, 77, 78, 82, 158
Readability, 16, 106
Real-time applications, 49
Redundancy, 127, 198, 207
Refactoring, 160
References, 32, 238–241

counting, 50–52
Registers, 30
Replaceable polymorphic  

delegate, 285
Replacement, 95–98
Responsibility driven design (RDD),  

56, 254
Reuse via inheritance vs composition, 

162–164
Root set, 49
Run-time, 31

environment, 30
stack, 31

S

Scalability, 82, 206
Seams, 106
Secondary store, 30
Self-documenting code, 26,  

136, 250
Shallow copying, 63, 69, 74, 83
shared _ ptr, 77, 80
Side effects, 129
Single inheritance with  

composition, 199
Single responsibility  

principle, 250
sizeof operator, 32
Smart pointers, 46, 76–82
Software complexity, 104, 208
Software evolution, 181
Software maintainability, 149, 175
Software maintenance, 20, 181
Source code, 4
Specialization, 5, 147–148

Specification, 148
Stack allocation, 31, 34
Stack frame, 31
Starvation, 148
State, 4
Static allocation, 31
Static binding, 128, 134
static _ cast, 192
Static function, 129
Static method, 155
Static resolution, 129
Static variable, 129, 155
STL (Standard Template  

Library), 76
STL vector, 84
Storage versus computation, 52–55
Structural relationships, 90
Subobject allocation, 98
Substitutability, 125, 149, 164
Subtype, 160
Subtype polymorphism, 127, 130
Sweep algorithm, 48–49
System.gc(), 47

T

Template method, 169, 288
Temporaries, 42, 83
Testing type, 192
this pointer, 169, 241–242
Transferring ownership, 42, 74
Type extension, 122
Type extraction, 190–191
Type reclamation, 226

U

unique _ ptr, 77–79
Unseen aliasing, 69–71

C# cloning, 71–73

V

Variables, 14, 32, 40, 177, 182
Virtual dynamically bound, 127
Virtual function table, 142,  

142–143
Virtual inheritance, 198, 199
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Virtual memory, 30
Virtual method, 127
Vtab, see virtual function table

W

weak _ ptr, 77, 84
whoami(), 134, 192, 194

Wrappers, 76, 103–104
and delegates, 103–106

Wrapping, 160

Z

Zero initialized, 17, 34, 35, 44, 49, 59, 253, 
268, 287
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