

Object-Oriented
Design Using Java

Dale Skrien

00-M4377-FM.indd i00-M4377-FM.indd i 12/5/07 12:04:24 PM12/5/07 12:04:24 PM

OBJECT-ORIENTED DESIGN USING JAVA

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the

Americas, New York, NY 10020. Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights

reserved. No part of this publication may be reproduced or distributed in any form or by any means, or

stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies,

Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for

distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the

United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8

ISBN 978–0–07–297416–4

MHID 0–07–297416–8

Global Publisher: Raghothaman Srinivasan
Executive Editor: Michael Hackett
Director of Development: Kristine Tibbetts
Developmental Editor: Lora Kalb
Executive Marketing Manager: Michael Weitz
Senior Project Manager: Kay J. Brimeyer
Senior Production Supervisor: Laura Fuller
Associate Design Coordinator: Brenda A. Rolwes
Cover Design: Studio Montage, St. Louis, Missouri
(USE) Cover Image: © Comstock/PunchStock
Compositor: Newgen
Typeface: 10/12 Times Roman
Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Skrien, Dale John.

 Object-oriented design using Java / Dale Skrien. — 1st ed.

 p. cm.

 Includes index.

 ISBN 978–0–07–297416–4 — ISBN 0–07–297416–8 (hard copy : alk. paper) 1. Object-oriented

programming (Computer science) 2. Java (Computer program language) I. Title.

 QA76.64.S57123 2009

 005.1’17–dc22

 2007024087

www.mhhe.com

00-M4377-FM.indd ii00-M4377-FM.indd ii 12/5/07 12:04:25 PM12/5/07 12:04:25 PM

http://www.mhhe.com

Dedication

To Pam, Julia, and Jason

00-M4377-FM.indd iii00-M4377-FM.indd iii 12/5/07 12:04:25 PM12/5/07 12:04:25 PM

CHAPTER 1

Elegance in Object-Oriented Design
and Implementation 1

Section 1.0 Introduction 1

Section 1.1 Why Worry? 2

Section 1.2 Software Engineering 4

Section 1.3 Criteria for Elegant Software 5

Section 1.4 Road Map 7

This chapter lays the groundwork for the rest of the text.

It motivates the study of object-oriented design and gives

examples of software failures that could possibly have

been prevented if the software had been designed better.

It includes the properties that software should have in or-

der to be called “elegant.” It fi nishes with a summary of

the contents of the other chapters in the text.

CHAPTER 2

Fundamentals of Object
Orientation 9

Section 2.0 Introduction 9

Section 2.1 Object-Oriented Programming vs.

Non–Object-Oriented Programming 9

Overview of OO vs. Non-OO

Programming 9

Object-Oriented Languages 10

Advantages of OO programming 11

Section 2.2 Classes, Objects, Variables, and

Methods in Java 12

Section 2.3 Aside: Class Methods & Variables in

Java 14

Introduction to Class Variables and

Methods 14

Class Variables in Java and Their Uses 15

Class Methods in Java and Their Uses 15

Summary 16

Section 2.4 Brief Introduction to UML Class

Diagrams 16

Section 2.5 Implementation Inheritance 18

Specialization 18

The Object Superclass in Java 20

Another Use of Specialization 21

Generalization 22

Single Inheritance in Java 23

Section 2.6 Types, Subtypes, and Interface

Inheritance 24

Type 25

Polymorphism 26

The Value of Polymorphism 27

Section 2.7 Interfaces vs. Abstract Classes 30

Section 2.8 Dynamic Method Invocation 31

Section 2.9 Overloading vs. Overriding 35

Section 2.10 Controlling Access to Methods and

Data (Public, Private, Protected,

Package) 39

Section 2.11 Summary 41

This chapter reviews the basics of object-oriented pro-

gramming and the advantages that such programming

can provide to the programmer and software designer for

making the software more fl exible, extendable, reusable,

and scalable.

CHAPTER 3

Elegance and Implementation
Inheritance 45

Section 3.0 Introduction 45

Section 3.1 Four Perspectives on

Inheritance 46

Code Reuse Perspective 46

Is-A Perspective 46

Public Interface Perspective 46

Polymorphism Perspective 46

Section 3.2 Suffi ciency of Code Reuse 46

Contents

iv

00-M4377-FM.indd iv00-M4377-FM.indd iv 12/5/07 12:04:25 PM12/5/07 12:04:25 PM

Section 3.3 Suffi ciency of Code Reuse and the Is-A

Relationship 47

Section 3.4 Suffi ciency of Code Reuse, the Is-A

Relationship, and Public

Interfaces 53

Section 3.5 Has-A Relationships and UML

Associations 56

Section 3.6 Suffi ciency of Code Reuse, the Is-A

Relationship, Public Interfaces, and

Polymorphism 56

Section 3.7 Costs of Using Implementation

Inheritance 57

Section 3.8 Example: Person, Woman, and

Man 60

Section 3.9 Example: Drawing Polygons 61

Section 3.10 Example: Sorting 64

Section 3.11 Subclassing Arrays in Java 74

Section 3.12 Inheritance vs. Referencing

Revisited 75

Section 3.13 Summary 78

This chapter expands on the material in the preceding

chapter to discuss more thoroughly the role of inheritance

in object-oriented software design, including its advan-

tages and disadvantages, and to discuss alternatives to

inheritance.

CHAPTER 4

Elegance and Methods 82

Section 4.0 Introduction 82

Section 4.1 Coding Styles and Naming

Conventions 83

Section 4.2 Methods and Decomposition 85

Section 4.3 Cohesive Methods 87

Section 4.4 Well-Formed Objects and Class

Invariants 90

Section 4.5 Internal Documentation 91

Section 4.6 External Documentation 93

Section 4.7 Case Study: Overriding the Equals

Method in Java 98

Section 4.8 Case Study: Overriding the Clone

Method in Java 106

Section 4.9 Refactoring 110

Section 4.10 Code Optimization 120

Section 4.11 Summary and Further Reading 121

This chapter looks at issues concerning low-level code,

such as readability, modifi ability, and reusability. In this

chapter, we assume that the classes and their desired be-

haviors have already been mapped out, and only the im-

plementation of those behaviors remains to be done.

CHAPTER 5

Elegance and Classes 128

Section 5.0 Introduction 128

Section 5.1 Starting Out Finding Classes and Their

Relationships 128

Extract Nouns and Verbs 131

Use Concepts from the Application

Domain 132

Use CRC Cards 132

Class Protocols 135

The Big Picture 137

Section 5.2 Maximizing Cohesion 139

Section 5.3 Separation of Responsibility 140

Section 5.4 Duplication Avoidance 144

Section 5.5 Complete and Consistent

Protocols 147

Section 5.6 Mutability vs. Immutability

Revisited 151

Section 5.7 Designing for Change 154

Section 5.8 Law of Demeter 161

Section 5.8 Summary and Further Reading 165

This chapter looks at object-oriented software develop-

ment at a higher level. We discuss how to design classes

to solve particular problems. That is, we discuss general

principles to follow when deciding what classes to create,

what their behavior will be, and with what other objects

they will communicate.

CHAPTER 6

Simple Case Study of a
Money Class 173

Section 6.0 Introduction 173

Section 6.1 Naive Representations of

Money 173

Section 6.2 A USMoney Class 175

Section 6.3 Using Subclasses of Money to Represent

Different Currencies 177

 Contents v

00-M4377-FM.indd v00-M4377-FM.indd v 12/5/07 12:04:26 PM12/5/07 12:04:26 PM

vi Contents

Section 6.4 Using One Class of Money with a

Currency Attribute 179

Section 6.5 Mixed Currencies vs. Simple

Currencies 182

Section 6.6 Converting Between Currencies 184

Section 6.7 MoneyConverter Issues 185

Section 6.8 MixedMoney and SimpleMoney

Issues 187

Section 6.9 Mixed Money Only 188

Section 6.10 Alternate Implementation with Binary

Trees 189

Section 6.11 Summary 192

This chapter is a small case study. It introduces several

implementations of money, each a refi nement of the pre-

ceding one.

CHAPTER 7

Introduction to Design Patterns 196

Section 7.0 Introduction 196

Section 7.1 The Adapter Pattern 197

Section 7.2 The Singleton Pattern 201

Section 7.3 The Iterator Pattern 204

Section 7.4 The Command Pattern 210

Section 7.5 Factories 214

Section 7.6 Summary 217

This chapter introduces the reader to the topic of design

patterns. We present four simple patterns as samples.

The discussion of each pattern includes examples from

earlier chapters of the book where the pattern was used

but not explicitly stated. The succeeding chapters in the

text introduce more design patterns in the contexts of

their case studies.

CHAPTER 8

Figure-Drawing Application
Case Study 220

Section 8.0 Introduction 220

Section 8.1 The User Interface 221

Section 8.2 The Observer Pattern 223

Section 8.3 The Figure Hierarchy 230

Section 8.4 The Model-View-Controller

Architecture 234

Section 8.5 The Prototype Pattern 238

Section 8.6 The State Pattern 239

Section 8.7 The Composite Pattern 244

Section 8.8 The Memento Pattern 248

Section 8.9 Summary 254

This chapter gives a case study of a drawing application.

We start with a very simple application, and in each sec-

tion we add enhancements to it, which provides us with

a context in which to introduce more design patterns and

to use the design principles discussed earlier in the text.

The sections include the discussion of several alternative

designs and implementations of the application and their

advantages and disadvantages.

CHAPTER 9

Language Parser Case Study 258

Section 9.0 Introduction 258

Section 9.1 VSSJ: A Very Simple Subset of

Java 258

Section 9.2 Pretty Printing 259

Section 9.3 Scanning 260

Section 9.4 A Simple Pretty Printer 262

Section 9.5 Interpreter Pattern 265

Section 9.6 Design of the AST 267

Section 9.7 Method Finder 274

Section 9.8 Some Problems with These Elegant

Implementations 276

Section 9.9 The Visitor Pattern 279

Section 9.10 Visitors and Double-Dispatching 285

Section 9.11 Facade Pattern 286

Section 9.12 Parsers and Builders 287

Section 9.13 Tokens, Visitors, and Polymorphism

(Optional Section) 292

Section 9.14 Summary 299

This chapter gives a case study of code manipulators for a

subset of the Java language, which provides us with a con-

text in which to introduce more design patterns.

APPENDIX A

An Introduction to UML 303

Section A.0 Introduction 303

Section A.1 Class Diagrams 304

00-M4377-FM.indd vi00-M4377-FM.indd vi 12/5/07 12:04:26 PM12/5/07 12:04:26 PM

 Contents vii

Section A.2 Sequence Diagrams 307

Section A.3 State Machine Diagrams 310

Section A.4 Use Case Diagrams 313

Section A.5 Summary 316

This appendix explains how to understand and use the

four UML diagrams that appear in this text.

APPENDIX B

Coding Conventions and
Javadoc Comments 318

Section B.0 Introduction 318

Section B.1 Indentation and Spacing 318

Section B.2 Punctuation and Layout 319

Section B.3 Formatting a Loop 322

Section B.4 Incrementing Integer Variables 323

Section B.5 Working with Boolean Variables 324

Section B.6 Line and Block Comments 326

Section B.7 File Layout 326

Section B.8 Javadoc Syntax 328

Section B.9 Summary 331

This appendix covers some of the material in Sun’s cod-

ing conventions for Java. It covers Javadoc comments in

quite a bit of detail.

Index 333

00-M4377-FM.indd vii00-M4377-FM.indd vii 12/5/07 12:04:27 PM12/5/07 12:04:27 PM

Preface

BRIEF DESCRIPTION OF THE BOOK

This text is an introduction to object-oriented (OO) design for second-year or higher

undergraduate computer science students. It discusses software design and imple-

mentation in terms of “elegance,” which is defined in Chapter 1. It reviews the con-

cepts of object-oriented programming and then covers fundamental software design

techniques, coding style, refactoring, UML, and design patterns.

It uses many examples and one small and two moderate-size case studies to in-

troduce design principles and patterns. The principles and patterns are introduced at

the point where they are needed to solve a design problem. In this text, many exam-

ples and case studies start with an “obvious” solution to a problem, which evolves to

a more elegant solution through a discussion of the advantages and disadvantages of

that initial solution.

The book is not intended to be a complete, definitive “bible” regarding elegance

in coding and design. Instead, it is an introduction to many of the topics that need

to be addressed in order to achieve such elegance. References for further study are

provided in the text for students who wish to pursue the topics further.

All the discussion and examples in the text use Java 1.5, but the concepts and

principles presented are mostly of a general object-oriented nature and so apply to

design and implementation using other object-oriented languages.

The book includes extensive exercises. There are an average of 18 exercises per

chapter in each of Chapters 2 to 9. These exercises include simple tests of the stu-

dents’ understanding of the material in the chapters, but most of the exercises lead

in directions that could not be covered in the current text without straying too far

from the main subject and without making the text unwieldly large.

RATIONALE

The ACM/IEEE model curriculum (CC2001) states that “Introductory program-

ming courses often oversimplify the programming process to make it accessible to

beginning students, giving too little weight to design, analysis, and testing relative

to the conceptually simpler process of coding. Thus, the superficial impression stu-

dents take from their mastery of programming skills masks fundamental shortcom-

ings that will limit their ability to adapt to different kinds of problems and problem-

solving contexts in the future” [1].

This statement nicely summarizes the situation that I have encountered dur-

ing the last 20 years of teaching computer science, especially when my department

switched 10 years ago to using Java as the implementation language for the intro-

ductory course and many of the upper-level courses. After our students complete

viii

00-M4377-FM.indd viii00-M4377-FM.indd viii 12/5/07 12:04:27 PM12/5/07 12:04:27 PM

our CS1 and CS2 courses using Java, they know how to design and write code that

works, but I have been frustrated that they don’t know very much about design-

ing and writing readable, maintainable code. I have also been frustrated that the

students’ understanding of the OO features of Java (inheritance, interfaces, static

vs. instance variables and methods, dynamic method invocation) is very shallow.

For example, they can use inheritance or an interface if it is given to them, but they

cannot use inheritance or interfaces properly if they are asked to design their own

software.

Part of this frustration is self-directed in that our CS1 and CS2 courses, includ-

ing the times when I have taught those courses, have so much other materials to cover

that there hasn’t been time in the semester to address OO design and implementation

principles in a meaningful way. One of the problems is that OO design principles re-

ally show off their advantages in large applications but seem, to the students, to be

overkill in small applications, such as they see in our CS1 and CS2 courses. In up-

per-level courses involving large programming projects where OO design principles

would be a big aid, students have not been able to appreciate good designs because

they have had little prior experience with any large programs, good or bad.

As a professor I feel strongly that OO design, including the use of design pat-

terns, is a very important skill that our students need to develop. Furthermore, I want

to share with them my love of “elegant” designs. I want them to develop a sense of

aesthetics when it comes to software development, so that they can tell when code

“smells bad” (as Martin Fowler [2] puts it) and when it smells good. I want them to

develop this sense to the degree that “shivers of joy run up and down their spine” (as

I put it in class) when they see elegant code and also that they would feel “shudders of

revulsion” when they see inelegant code. Donald Knuth [3] said that computer pro-

gramming is an art as well as a science and involves creativity and beauty. I want

my students to attempt to produce objects of beauty, like artists do. When successful,

they should be sufficiently proud of their work that they want to sign it, as artists do.

This text was written to help teach the students to design and write beautiful

object-oriented software.

INTENDED AUDIENCE

The text was designed for undergraduate computer science students who have taken

an introductory programming course (CS1) and a data structures course (CS2), but

whose courses did not include extensive coverage of object-oriented design prin-

ciples and patterns. The text could be used as the main text in a sophomore-level

course forming a third course in an introductory sequence, or it could be used as

a supplementary text to the data structures course. Alternatively, it could be used

as the main text or a supplementary text in an upper-level undergraduate course on

object-oriented software design.

The text assumes the students have the following background:

� Programming experience as typically learned in a CS1 course
� Knowledge of elementary data structures as typically learned in a CS2 course

 Preface ix

00-M4377-FM.indd ix00-M4377-FM.indd ix 12/5/07 12:04:27 PM12/5/07 12:04:27 PM

x Preface

� Understanding of the fundamentals of Java, such as students would know if one

of their previous courses were taught using Java
� A small amount of familiarity with the following Java features:

� generics (from Java 1.5)
� throwing and catching exceptions
� inner classes
� the AWT or Swing packages (for Chapter 8)

If the student is unfamiliar with these topics, they could easily be introduced to

them at the appropriate time during the course. Java’s reflection capabilities and

Java threads are mentioned in the text and in some optional exercises, but no experi-

ence with these topics is required.

The text uses four UML diagrams (state, sequence, state machine, and use

case), but no previous experience with the UML is required because the text in-

troduces the appropriate parts of UML when it first uses them and covers the four

diagrams in more depth in Appendix A.

PEDAGOGICAL APPROACH

The book attempts to teach students object-oriented design and implementation

through the evolution of software solutions. As stated above, after having taken an

introductory sequence of courses, students know how to find solutions, but they

often don’t appreciate the differences between competing solutions. Therefore the

text attempts to build gradually on the students’ understanding of the programming

process by first presenting a problem and then discussing an “obvious,” but usually

inelegant, solution that students might initially create. The advantages and disad-

vantages of that solution are discussed and then a better design is presented. This

new design, in turn, has advantages and disadvantages to be discussed, which often

leads to even better designs. In this way, all the important software design principles

and patterns are introduced in the context of solving a particular problem in an el-

egant manner.

THE CONTENT

The book can roughly be divided into four parts.

The first part (Chapter 1) is very short and is, in fact, very much like an intro-

duction. It provides the motivation for the rest of the book and so is essential reading

if students are to appreciate the material in the later chapters.

The second part (Chapters 2–3) consists of a review of the fundamental con-

cepts of object-orientation, such as objects, classes, methods, inheritance, polymor-

phism, and dynamic method invocation. It continues with a detailed discussion of

the use and misuse of inheritance.

The third part (Chapters 4–6) introduces design and implementation elegance.

It begins with a discussion of low-level implementation issues, such as coding con-

ventions and idioms. This in turn is followed by a discussion of general design

principles. The book then works through one small-size case study (the design of a

Money class).

00-M4377-FM.indd x00-M4377-FM.indd x 12/5/07 12:04:27 PM12/5/07 12:04:27 PM

 Preface xi

The fourth part (Chapters 7–9) introduces design patterns. Chapter 7 introduces

the concept of a design pattern and discusses several of the simplest patterns. This

chapter is followed by two moderate-size case studies (a figure-drawing application

and a language parser). These chapters introduce new patterns and principles gradu-

ally as new features are addressed in the case studies.

In addition, there are two appendices in the book. Appendix A discusses in

some detail the four UML patterns used in this book (class, sequence, state ma-

chine, and use case). Appendix B covers many of the coding conventions for Java

provided by Sun Microsystems[4], especially Javadoc notation. Most of the coding

conventions, except possibly Javadoc, will probably be familiar to students but are

included here for completeness.

Here are more details regarding the contents of each chapter:

 1. Chapter 1 is a brief introduction to and overview of the text. In that chapter, “el-

egant” software is defined as software that is usable, complete, robust, efficient,

scalable, readable, reusable, simple, maintainable, and extensible. I attempted to

motivate the study of OOD so that students will appreciate the value of learning

the material in the book.

 2. Chapter 2 is a review of basic OO programming features. The purpose of the

chapter is to cover again those OO topics that students have seen before but are

possibly not completely comfortable using. Some motivation for those features

is provided so that students can begin to develop an appreciation of what OO

programming has to offer over non-OO programming.

 3. Because implementation inheritance is quite complicated and can be easily

misused, I felt that a significant amount of discussion of that topic was needed.

Rather than try to cram it all into Chapter 2, I broke that material into a separate

chapter. Therefore, Chapter 3 discusses when to use and when not to use imple-

mentation inheritance. It begins with a discussion of four possible justifications

for inheritance and gives examples showing that most of those justifications by

themselves are insufficient. It also discusses when to use delegation instead of

inheritance.

 4. Elegance is valuable not only at the design level, but also at the implementation

level. Therefore, I added Chapter 4, which discusses principles to follow when

implementing methods, including some coding conventions. It was added at

this point in the text so that it could be referred to in later chapters of the book,

as the need arose in the sample code and the case studies. I also wanted to start

this section of the book with material that students are already likely familiar

with. An extensive discussion of the equals and clone methods in Java is

included to show students that you need to implement methods very carefully if

your implementations are to obey the contracts expected of them.

 5. In Chapter 5, I begin the main discussion of OO design. Many fundamental OO

design principles are covered, including motivation for and examples of each.

 6. Because such design principles can only be appreciated in the context of a large

(or at least not small) example, I included such an example as a case study in

Chapter 6. I wanted to include an example that was interesting to the students

but also led to interesting design questions. I chose for the case study the design

of a Money class.

00-M4377-FM.indd xi00-M4377-FM.indd xi 12/5/07 12:04:28 PM12/5/07 12:04:28 PM

xii Preface

 7. Chapter 7 introduces the students to design patterns. It discusses several of the

simplest patterns to show the students what patterns are and how they can be of

help in developing elegant designs.

 8. Chapter 8 includes the moderately large case study of a drawing program. This

application is based on the HotDraw framework developed by Kent Beck and

Ralph Johnson [5], and to some work of John Vlissides [6]. A simple drawing

program is given initially, and then new features are gradually added. An el-

egant design of each of the features typically requires the introduction of a new

design pattern.

 9. In the final chapter, another case study is presented. This case study concerns a

parser for a simple subset of Java. Several more design patterns are introduced,

such as the Visitor pattern, as the chapter discusses uses of the abstract syntax

tree generated by the parser.

CHAPTER DEPENDENCIES

Chapter 1 should be read before all other chapters because it provides the context

for the material in the later chapters and defines design and code “elegance.”

Chapters 2 and 3 concern fundamental OO concepts such as objects, classes,

polymorphism, dynamic method invocation, and inheritance. All later chapters will

use the material in these chapters. If the student is already very comfortable with

those topics, these chapters can be skipped.

Chapters 4 and 5 are central to the textbook and should be read by all students,

although they may be familiar with much of the material in Chapter 4.

Chapter 6 is optional. The case study in this chapter uses the design principles

discussed in Chapters 4 and 5.

Chapter 7 introduces design patterns. If students are comfortable with the con-

cept, they could skip this chapter. However, it would be good for them to learn the

patterns introduced in this chapter. The motivation for design patterns comes from

the material presented in Chapters 4 and 5.

Chapters 8 and 9 are optional. They introduce new design patterns in the context

of two case studies. They depend on the material presented in Chapters 4, 5, and 7.

Appendices A and B are optional. When the book uses a UML diagram for the

first time, it includes a very brief explanation of the diagram and its icons.

HOW THE TEXT FITS IN THE ACM MODEL
CURRICULUM (CC2001)[1]

Two of the core knowledge units in the CC2001 curriculum are PL6 and SE1. These

units include the following topics:

PL6 Object-oriented design

 Encapsulation and information hiding

 Separation of behavior and implementation

 Classes and subclasses

 Inheritance (overriding, dynamic dispatch)

00-M4377-FM.indd xii00-M4377-FM.indd xii 12/5/07 12:04:28 PM12/5/07 12:04:28 PM

 Preface xiii

 Polymorphism (subtype polymorphism vs. inheritance)

 Class hierarchies

 Collection classes and iteration protocols

 Internal representations of objects and method tables

SE1 Fundamental design concepts and principles

 Design patterns

 Software architecture

 Structured design

 Object-oriented analysis and design

 Component-level design

 Design for reuse

This book covers virtually all the material in these knowledge units. The case stud-

ies in the text also cover the material in PF5, most of the material in HC2, and some

of the material in PL3 and PF3. It is also natural to include medium-size team-

developed design projects, which the CC2001 Task Force believes are essential, in

association with a course using this text.

SUMMARY OF THE DISTINGUISHING FEATURES

 1. Discusses design and implementation in terms of code “elegance.”

 2. Uses several small and two moderate-size case studies to introduce many de-

sign principles and patterns. The principles and patterns are introduced in those

case studies at the point where they are needed to solve a design problem.

 3. Starts many examples and case studies with an “obvious” solution to a problem,

which evolves to a more elegant solution through a discussion of the advantages

and disadvantages of the initial solution.

 4. Discusses the following topics:

 a. fundamental object-orientation concepts (class, object, inheritance, poly-

morphism, method)

 b. coding style and implementation issues, such as proper naming and docu-

mentation, including preconditions, postconditions, and invariants

 c. fundamental OO design principles, including virtually all the topics in the

PL6 and SE1 knowledge units of the CC2001 model curriculum.

 d. design patterns, most of which are introduced in the context of solving a

problem.

 5. Includes a lot of exercises at the ends of the chapters (about 144 in total for an

average of 18 per chapter) varying in difficulty from easy tests of the students’

knowledge of the chapter material to exercises that ask them to significantly

modify or enhance existing code.

SUPPLEMENTARY FEATURES

All the source code from the text will be readily available from a web site or from a

CD-ROM accompanying the text.

An instructor’s manual contains solutions for most of the exercises and de-

scriptions of some moderate-size projects that could be assigned in conjunction

00-M4377-FM.indd xiii00-M4377-FM.indd xiii 12/5/07 12:04:28 PM12/5/07 12:04:28 PM

xiv Preface

with the text. The manual also includes pedagogical suggestions for presenting the

material.

THANKS

The author wishes to thank and acknowledge the following students in the CSC

(ECE) 517 course taught by Ed Gehringer at North Carolina State University in the

Fall of 2005, who gave me permission to include in this text the examples, exercises,

and explanations that they created for that class:

 Chang Chih-Chieh Geoff

 Rojas Cristian Gonzalo

 Hodges Christopher John

 Giang Donna Ngoc Dung

 Mears Garrett Allan

 Frink John Moore

 Petty John T

 Edwards Kevin James

 Navoraphan Kanyamas

 Kediyal Prashant Chakradhar

 Hsiao Ping Lin

 Kampanakis Panagiotis Theodorou

 Kariath Riya Raju

The author also wishes to thank Ed Gehringer for his help, support, and encour-

agement and thank Colby College, for providing the financial support and computer

equipment to enable me to write the book. I also wish to thank Alan Apt, Rebecca

Olson, Kelly Lowery, and Emily Lupash at McGraw-Hill. Without their encourage-

ment and support, this book would never have been created. I would like to thank

all the reviewers who provided such excellent advice to improve the text. Last, but

most important, I wish to thank my wife, Pam, and my children, Julia and Jason, for

putting up with the long working hours I spent writing this text. Their patience and

encouragement have been invaluable.

REFERENCES

 1. Computing Curricula 2001, Computer Science Volume. 2001. [Cited March 28, 2007;

available from http://www.sigcse.org/cc2001/cs-introductory-courses.html.]
 2. Fowler, M., Refactoring, Improving the Design of Existing Code. Object Technology

Series. 1999. Addison-Wesley. Reading, MA.

 3. Knuth, D., Literate Programming. 1992. Chicago, IL: University of Chicago Press.

 4. Sun Microsystems, I. Code Conventions for the Java Programming Language. 1999.

[Cited March 28, 2007; available from http://java.sun.com/docs/codeconv/html/
CodeConvTOC.doc.html.]

 5. Beck, K. and R. Johnson, Patterns generate architectures. In European Conference on
Object-Oriented Programming (ECOOP’94). 1994. Bologna, Italy: Springer-Verlag.

 6. Vlissides, J., Tooled composite. C�� Report. September 1999.

00-M4377-FM.indd xiv00-M4377-FM.indd xiv 12/5/07 12:04:28 PM12/5/07 12:04:28 PM

http://www.sigcse.org/cc2001/cs-introductory-courses.html.]
http://java.sun.com/docs/codeconv/html/

 Elegance in Object-
Oriented Design and
Implementation

SECTION 1.0 INTRODUCTION

 If you are a college student using this book in a course, you have probably already

taken several computer science courses, including an introductory programming

course. If you have been conscientious, you have learned the fundamental program-

ming concepts in at least one programming language, you learned language con-

structs such as loops, assignments, and conditional statements, and you learned one

or more ways to program each of those constructs. Hopefully, you also learned that

computer science is not just programming and that, instead, programming is just a

tool of a computer scientist.

Unfortunately, due to the lack of time in which to cover so many important

topics in computer science, you might not have been taught the advantages and dis-

advantages of the different ways to write programs to solve the same problem. For

example, at a low level, there are many ways to implement a structure such as a loop

(e.g., you could use a for loop, a while loop, or recursion), some of which are bet-

ter than others. At a higher level, there are many ways to perform a task (e.g., merge

sort vs. selection sort), some considerably faster than others. At an even higher level,

there are many ways to divide a program into modules such as classes and methods,

some of which are better than others.

For an example of the last situation, consider the problem of writing a module

that is supposed to maintain a collection of people and the dogs they own. Should the

collection be a hash table or an array or some other kind of collection? Should the

collection contain Person objects or maybe Person-Dog pairs of objects? Should

a Dog object have an instance variable pointing to its owner? Should owners have an

instance variable that refers to a collection of the dogs they own? If so, what kind of

collection should it be? What other data should the Person object store? If the people

are U.S. citizens, do you need to store their social security numbers? Should you keep

the collection of people sorted for easier lookup? If a person’s only dog dies, should

that person be removed from the collection or left in as a person who owns no dogs?

1

1

01-M4377.indd 101-M4377.indd 1 12/5/07 12:04:44 PM12/5/07 12:04:44 PM

You might reasonably ask whether the answers to these questions really matter.

If two designs, one with few classes and methods and one with many, both solve a

problem, does it matter which one you use? Similarly, if all versions of a loop cor-

rectly do a computation, does it matter which one you use? If two algorithms both

work correctly, does it matter that one is faster, especially given the fantastic growth

in hardware processing speeds each year?

The answer is, “Yes, it really does matter.” In this chapter, we attempt to explain

why. We will give you a set of criteria to apply to the designs and implementations

of programs to help you learn to critique those programs. In later chapters of this

text, we will show you principles that refl ect the best practices of software engineers

so that you can learn from the masters what works well and what works poorly.

Over the course of reading this text, we will show you not just what works, but

also what makes some software “ugly” and other software “elegant” or “beauti-

ful.” That is, we want to help you develop a sense of aesthetics for designs and

code. Mathematicians judge proofs of theorems based on their elegance—that is,

two proofs may both be correct, but one may be more beautiful than the other—and

computer scientists should similarly be able to judge software designs. It is possi-

bly stretching the emotional aspects of these aesthetical judgments to say so, but it

would be nice if you could develop an aesthetic sense to the degree that really good

designs and code would send “shivers of joy up and down your spine” and bad de-

signs would instead give you “shudders of revulsion.”

SECTION 1.1 WHY WORRY?

A programmer who quickly throws together some code without considering design

criteria might justify his actions by saying that he knows what is going on in the

code and so there is no need to worry about a misinterpretation. Furthermore, he

might say, the code is never going to be used again or viewed by anyone else so why

devote time needlessly to design.

In the case of small “quick-and-dirty” programs written by one person and used

only once, such as short shell scripts, the programmer is correct. It is usually not

productive to spend a lot of time creating the most elegant possible version. All that

is important is that the code work correctly. However, you also need to be aware that

code that the programmer thought of as “throwaway” is often not thrown away. It

ends up copied and pasted into another program, or it becomes the core of a more

general, more complex program. In such cases, time devoted to make the design

elegant would be time productively spent.

Designing software that is intended for long-term, heavy use requires a con-

siderable investment of time and energy. For example, consider libraries of classes,

such as Java’s Swing package, which are used extensively by application developers.

It is not suffi cient that the library classes have no errors in them; it is also important

that the classes have a good design. A poor design for any one of these classes can

cause problems down the line for all of developers using the package. For example,

if a valuable or important feature was omitted, developers will have to write their

own code, possibly in a very awkward way, to accomplish what the library classes

should have provided.

2 Chapter 1 Elegance in Object-Oriented Design and Implementation

01-M4377.indd 201-M4377.indd 2 12/5/07 12:04:45 PM12/5/07 12:04:45 PM

 Chapter 1 Elegance in Object-Oriented Design and Implementation 3

For large systems, in which many programmers are involved, it is even more

important to spend a signifi cant amount of time on the analysis of the problem and

the design of the solution. In such cases, no one person can understand every part of

the program, and instead each programmer works on one small part of it. If the solu-

tion has not been well designed, a change (a bug fi x or an enhancement, for example)

by one programmer in one line of code could easily introduce bugs in the code writ-

ten by other programmers. The costs due to such bugs can range from very minor to

disastrous.

Consider just a couple of the problems that have occurred over the years, some

catastrophic, some fi nancially devastating, and others merely annoying, as described

in [1–3]:

 1. In I962, the Mariner I spacecraft lifted off for its voyage to Venus but was

destroyed by the people running the mission because, due to a bug in the

ground-based computer system, they incorrectly thought the booster rocket had

malfunctioned.

 2. Between 1985 and 1988, there were six cases of patients being given massive

overdoses of radiation from a Therac25 radiation therapy system. Part of the

blame is due to an error in the control software for the system.

 3. In 1990, a bug in some new software that had been installed by AT&T in

114 elec tronic switching systems caused a 9-hour nationwide blockage, affect-

ing an estimated 5 million calls. The bug was caused by the mistaken use of a

break statement inside a switch statement in a C program.

 4. In 1993, a bug in the SunSoft operating system I/O library held up a $20 mil-

lion sale. The problem was traced to a statement that read x == 2 instead of

x = 2 in a C program.

 5. A mail program either read mail or sent mail, depending on the arguments

passed to the mail function. It used a heuristic to parse the arguments to deter-

mine whether it was reading or sending. Unfortunately, the heuristic was not

precise enough, and so the program failed to send mail to any addressee with

the letter “f” as the second letter in their user name.

 6. For a more recent example, it was reported in the online Guardian newspaper

on January 16, 2003, that a software upgrade to improve security for cash ma-

chines had a fl aw that allowed anyone to withdraw any amount of cash they

liked using any password they wanted. About £850,000 were withdrawn before

the problem was corrected.

These problems are just the tip of the iceberg. According to a National Institute

of Standards report in 2002 [4], software bugs cost the U.S. economy $58 billion

annually. The report further states that software developers spend 80% of their de-

velopment time fi nding and fi xing defects.

One might argue that all these problems merely indicate a failure on the part of

the programmer to write error-free code. That is, one might argue that the problem

is just incorrect software. In a sense, that argument is correct, but avoiding such

failures is not that simple. When a program has thousands or millions of lines of

code, it is inevitable that there will be bugs in it. The real issue is how to minimize

the number of bugs that occur when the code is written in the fi rst place, how to

maximize the detection and removal of the bugs that do make it into the code, and

01-M4377.indd 301-M4377.indd 3 12/5/07 12:04:45 PM12/5/07 12:04:45 PM

4 Chapter 1 Elegance in Object-Oriented Design and Implementation

how to minimize the number of new bugs that are accidentally introduced whenever

the code is modifi ed. Furthermore, this minimization and maximization process is

not a one-time thing. Software continually changes due to patches introduced to fi x

bugs or due to enhancements added to the software. As shown in the cash machine

example above, any such change can introduce more bugs.

In other words, thorough testing to remove bugs is important in software de-

velopment, but it is just as important to design and write the software so that as few

bugs as possible are introduced in the fi rst place and so that it is easy to modify the

code later without introducing new bugs.

So why don’t software developers design and write software in a way that mini-

mizes bugs? The answer is that, try as they might, there are forces working against

them. Doing the job right takes time and money in the short term and the benefi ts

do not appear until later. At the same time, software projects are under more and

more pressure to be completed quickly and put into production before the window

of opportunity for sales closes. As a result, the initial software design is often inad-

equately specifi ed, and so a solid foundation has not been laid. In addition, after it

has gone into production, the pressure to quickly fi x the bugs and enhance the soft-

ware works against major redesigns of the software. As a result, a software system

tends to become a “big ball of mud,” that is, a “haphazardly structured, sprawling,

sloppy, duct-tape and bailing wire, spaghetti code jungle” [5]. The degradation over

time of software into such mud balls makes fi nding and fi xing bugs and adding en-

hancements harder and harder, costing more time and money and resulting in more

pressure to put off large-scale redesign, and so the vicious cycle continues.

In addition, there are other forces pushing software toward the same balls of

mud. Those forces are the lack of skill, knowledge, and experience of the software

developers regarding how to write high quality software. If the developers have no

experience with designing software systems of any size or complexity or if the de-

velopers are writing a business application but have no knowledge of that particular

business domain and its needs and requirements, then it is easy for the software to

become muddy. Even if developers understand a system completely, the mud in the

system will not go away if the developers don’t have the tools (skills or knowledge) to

clean it up.

What can be done to fi ght the tendency of software systems to turn into mud

balls? Addressing the pressures of cost and time are beyond the scope of this book.

Our focus concerns the skills, knowledge, and experience that developers need in

order to do high quality work. In this book, we will try to teach you some of the

things a software developer should know in order to be able to design high quality

software systems and to be able to redesign existing software systems in a way that

fi ght the forces toward mud.

SECTION 1.2 SOFTWARE ENGINEERING

To create high quality software, you fi rst need to know what it means for software

to have high quality. Unfortunately, such quality is not easily measured. The fi eld of

software engineering was created with the purpose of understanding and devising

01-M4377.indd 401-M4377.indd 4 12/5/07 12:04:45 PM12/5/07 12:04:45 PM

 Chapter 1 Elegance in Object-Oriented Design and Implementation 5

ways of measuring the quality and reliability of software. One of its tools has been

the application of engineering principles to software development [6].

Software engineering traditionally divides the software process into stages, in-

cluding specifi cation and analysis, design, implementation, and maintenance. These

stages can be handled sequentially (fi nishing one stage before moving on to the

next) or iteratively (returning to earlier stages when necessary to extend, complete,

or correct the previous work at that stage).

In the specifi cation and analysis stage, software engineers determine the pre-

cise behavior the fi nal software system is to have. That is, they attempt to determine

exhaustively what the system should do in all possible cases. This stage also in-

cludes determining what the user interface will be. It is performed in close coopera-

tion with the clients of the system and some users of the system.

In the design stage, the engineers determine the parts of the software system,

what each part is responsible for doing, and how the parts will interact. For example,

this stage includes determining the data structures that will be used and the kind of

data that will be stored in those structures.

In the implementation stage, programmers code the software system parts us-

ing an appropriate (or several appropriate) programming languages. In this stage,

testing is an essential component.

In the maintenance stage, which occurs after the product has shipped, program-

mers repair defects and update or enhance the software to extend its usefulness. In

this stage also, testing is of central importance.

In this text, we will focus mostly on the design and implementation phases.

Therefore, our examples will typically already have a specifi cation, and we will

start working with the design phase. That is, we will usually assume that we know

what the software is supposed to do and look like from the client’s perspective, in-

cluding the user interface. We will attempt to design the software to do what it is

supposed to do and to do it in a way that results in high quality code. We will also

discuss the implementation of the software once the design is complete.

SECTION 1.3 CRITERIA FOR ELEGANT SOFTWARE

What makes one software design better than another? One way to measure the qual-

ity of a design is to analyze the software with regard to the following properties:

 1. Usability—is it easy for the client to use?

 2. Completeness—does it satisfy all the client’s needs?

 3. Robustness—will it deal with unusual situations gracefully and avoid crashing?

 4. Effi ciency—will it perform the necessary computations in a reasonable amount

of time and using a reasonable amount of memory and other resources?

 5. Scalability—will it still perform correctly and effi ciently when the problems

grow in size by several orders of magnitude?

 6. Readability—is it easy for another programmer to read and understand the de-

sign and code?

 7. Reusability—can it be reused in another completely different setting?

 8. Simplicity—is the design and/or the implementation unnecessarily complex?

01-M4377.indd 501-M4377.indd 5 12/5/07 12:04:46 PM12/5/07 12:04:46 PM

6 Chapter 1 Elegance in Object-Oriented Design and Implementation

 9. Maintainability—can defects be found and fi xed easily without adding new

defects?

 10. Extensibility—can it easily be enhaced or restricted by adding new features or

removing old features without breaking code?

The fi rst four properties mostly relate to the functional requirements of the soft-

ware—that is, does it do what the requirements documents say it is supposed to do?

Software does not perform correctly if, for example, it crashes in unusual situations.

The properties addressed by the last six properties are the ones with which we

will mostly concern ourselves. They address the program style and how easily the

software can be changed to eliminate defects or to add new features. For example,

the software must be readable if the programmer is to easily fi nd the bugs. The

software must be maintainable if the fi x is to involve as few changes as possible. Re-

usability implies that the software can easily be adapted with minimal or no change

for use in another environment.

A few words should be said regarding the property of simplicity. The simplicity

of the design affects almost all the other properties. For example, the simpler it is,

the more easily the software can be read and understood by a developer. Simplicity

also works against the software becoming a big ball of mud in that it is often easier

to develop and modify simple software, thus saving on the cost and time of ini-

tial development as well as later modifi cation. Furthermore, the need for simplicity

works against any attempt by software developers to go overboard in their designs.

Other “ilities” could also be added to the list—such as testability, in that soft-

ware that is hard to test is likely to have errors—but we will consider the ones men-

tioned above as the core set of properties required for high quality software. In this

text, we will refer to software as elegant if it has these properties; that is, if it is us-

able, complete, robust, effi cient, scalable, readable, reusable, simple, maintainable,

and extensible. The defi nition of “elegant” given here is not traditional terminology

in software engineering, but it is used in this text to remind the reader that software

design is as much an art as a craft.

It is worth noting that we are not just referring to code when we talk about el-

egance. In Chapter 4, we will talk about well-written code, because that is important

for readable software, but the rest of the book will be devoted to the discussion of

high-quality software design.

How can software get these qualities that we lumped under the term “elegance”?

One cannot get quality software just by writing code and then testing it for errors.

It is almost impossible to add quality to sofware after it has been written; instead

quality must be built in from the start.

How do you know when your design is elegant? In this text, we will discuss,

from an object-oriented perspective, many design and implementation principles

and patterns that can aid in the development and appreciation of elegant software.

After enough practice using these principles and patterns, the reader can begin to

develop a “feeling” for quality software. That is, even though it is hard to precisely

defi ne such software, the reader will know it when they see it.

To help the reader develop an appreciation for the elegant ways of solving a

problem and the advantages they provide, we will often fi rst present an “obvious”

01-M4377.indd 601-M4377.indd 6 12/5/07 12:04:46 PM12/5/07 12:04:46 PM

 Chapter 1 Elegance in Object-Oriented Design and Implementation 7

solution to the problem, that is, a straightforward way to solve the problem and then

analyze what, if anything, is wrong with it. We will gradually modify it to remove

ugly parts and make it more elegant.

In summary, this book is an introduction to many of the topics that you need to

understand in order to start on the road to elegance in your own software develop-

ment. References are included that provide more details on each of the topics we

address to help you further develop your skills after you fi nish this text.

 SECTION 1.4 ROAD MAP

In the remaining chapters of this text, we discuss code elegance from a variety of

levels and from several case studies. Many of the chapters include one or more

“rules” or “guidelines” that summarize the discussions of ways to make the design

more elegant. You should strive to understand and appreciate these guidelines so

that they become a standard part of your practice as you develop software.

In Chapter 2, we review the basics of object-oriented programming and the

advantages that such programming can provide to the programmer and software

designer for making the software more fl exible, extendable, reusable, and scalable.

Students with strong backgrounds in object-oriented programming may need only

to skim this chapter.

In Chapter 3, we expand on the material in the preceding chapter to discuss

more thoroughly the role of inheritance in object-oriented (OO) software design, in-

cluding its advantages and disadvantages, and to discuss alternatives to inheritance.

In Chapter 4, we look at low-level code and ways to make it readable, maintain-

able, extensible, and reusable. In most of that chapter, we assume that the classes

and their desired general behaviors have already been mapped out and only the im-

plementation of those behaviors remains to be done.

In Chapter 5, we look at OO software development at a higher level. We discuss

how to design classes to solve particular problems. That is, we discuss general prin-

ciples to follow when deciding what classes to create, what their behavior will be,

and with what other objects they will communicate.

In Chapter 6, we give a small case study involving monetary currency. We will

start from an “obvious” solution and gradually enhance it to make it more elegant.

In Chapter 7, we introduce the reader to design patterns from [7]. These pat-

terns are solutions to recurring problems in software design. We present a few sim-

ple patterns as examples.

In Chapter 8, we give a case study of a drawing application. In the context of

developing this application, we introduce several more design patterns.

In Chapter 9, we give a case study of a pretty printer for a subset of Java, in

which we introduce more design patterns.

Appendix A gives an overview of four UML diagrams: Class, State, Sequence,

and Use Case. Those diagrams are explained in the text when they are fi rst intro-

duced, but Appendix A gives more details.

Appendix B discusses coding conventions, in particular, the Java coding con-

ventions and Javadoc notation provided by Sun Microsystems.

01-M4377.indd 701-M4377.indd 7 12/5/07 12:04:46 PM12/5/07 12:04:46 PM

8 Chapter 1 Elegance in Object-Oriented Design and Implementation

EXERCISES

 1. Read the article, “How to write unmaintainable

code,” by Roedy Green on the Web at http://mindprod
.com/jgloss/unmain.html . It provides a nice intro-

duction to some of the topics we will be discussing

in this text.

 2. For a list of disasters and other problems that can oc-

cur from improperly designed and coded software,

read the Risks Digest on the Web at http://catless
.ncl.ac.uk/Risks .

 3. a. Look up the meaning of “elegance” in The
Hacker’s Dictionary, which is also available on-

line as the Jargon Lexicon at URL http://catb.org/
~esr/jargon/.

 b. Take some software you have written in the past

and briefl y explain why your software is or is not

elegant according to that defi nition.

 4. To learn more on the subject of whether software de-

velopment is an art, craft, or science, read Donald

Knuth’s 1974 Turing Award lecture entitled, “Com-

puter programming as an art” [8].

 5. To see how much you already understand about soft-

ware elegance, fi nd two different implementations of

the same sorting algorithm and compare and analyze

them regarding the ten properties for high quality

software listed in Section 1.3.

 REFERENCES

 1. Neumann , P ., Computer-Related Risks. 1995 .

 Addison-Wesley. Reading, MA .

 2. Van der Linden , P ., Expert C Programming; Deep C
Secrets . 1994 . Prentice Hall. Upper Saddle River, NJ.

 3. Allison , R ., ATM Gives Out Free Cash and Lands
Family in Court. Web page , 2003 . [Cited January

16, 2003; available from http://www.guardian.
co.uk/uk_news/story/0,3604,875749,00.htm .]

 4. NIST , Software Errors Cost U.S. Economy
$59.5 Billion Annually . 2002. [Cited 2006, August;

available from http://www.nist.gov/public_affairs/
releases/n02-10.htm .]

 5. Foote , B. and J . Yoder , Big Ball of Mud. Web

article. [Cited March 28, 2007; available from

 http://www.laputan.org/mud/ .]
 6. IEEE , IEEE Standard Glossary of Software Engi-

neering Terminology . 1990 . IEEE. New York, NY .

 7. Gamma , E ., et al., Design Patterns, Elements of
Reusable Object-Oriented Software. Professional

Computing . 1995 . Addison-Wesley. Reading, MA.

 8. Knuth , D ., Computer programming as an art. Com-
munications of the ACM , 1974. 17(12): 667–673.

01-M4377.indd 801-M4377.indd 8 12/5/07 12:04:46 PM12/5/07 12:04:46 PM

http://mindprod
http://catless
http://catb.org/
http://www.guardian
http://www.nist.gov/public_affairs/
http://www.laputan.org/mud/

Fundamentals of
Object Orientation

SECTION 2.0 INTRODUCTION

In this chapter, we review the fundamental concepts of object-oriented (OO) pro-

gramming in order to understand how such programming is different from non-

object-oriented programming and the advantages of OO programming as applied to

elegant software design.

We assume the reader already has some familiarity with classes, objects, and

variables, and so we will review those object-oriented concepts briefly and review

how they are implemented in Java. We do not assume any familiarity with inheri-

tance and polymorphism, and so those concepts are covered more completely, both

in general terms and as specifically applied to Java. The discussion of inheritance

will include implementation inheritance as well as specification inheritance, the

second of which will lead to a discussion of “type.” We will also introduce you to

some of the uses of those concepts in producing high quality software.

Along the way, we will introduce you to the Unified Modeling Language (UML)

class diagrams, and we will discuss the difference between overloading and over-

riding. In addition, we will mention accessibility options (e.g., public and private) of

data, methods, and classes, as they apply to Java.

SECTION 2.1 OBJECT-ORIENTED PROGRAMMING
VS. NON–OBJECT-ORIENTED PROGRAMMING

Overview of OO vs. Non-OO Programming

In non–object-oriented programming, a program is usually process-oriented or

data-oriented. In such programs, there are typically data globally available and

procedures globally available. The main program, or its subprograms, are in con-

trol and manipulate the data. That is, each part of the program goes to the global

data, gets part of it, manipulates it, and then, if necessary, saves any changes to the

data. One can think of the main program, through its subprograms, as having all the

2

9

02-M4377.indd 902-M4377.indd 9 12/5/07 12:05:02 PM12/5/07 12:05:02 PM

10 Chapter 2 Fundamentals of Object Orientation

“intelligence” or behavior in the program and the data has no intelligence. In this

case, the main program and its subprograms are responsible for everything.

In OO programming, a program is partitioned into a set of communicating ob-

jects. Each object encapsulates all the behavior and knowledge relating to one con-

cept. In that way, one can think of an OO program as having distributed control in

that the “intelligence,” that is, the ability to do things, and the “knowledge” or data

need to do those things, is distributed among the objects. When an object needs

something from another object, it sends it a message to the other object, which then

performs some action and possibly returns a value to the caller. The first object

could even create the second object if no such object already exists. The second ob-

ject, in turn, may need to communicate with other objects to help it accomplish its

task. Therefore, to start up an OO program, you typically create a few objects and

start them communicating with each other. In particular, this situation occurs when

an object-oriented GUI (graphical user interface) is used as the human-computer in-

terface in an application. The windows, menus, and buttons are objects that need to

be created first, and then those objects just “sit there” waiting for the user to interact

with them, in which case they send messages to each other (and to other invisible

objects) to accomplish the desired task.

This view of OO programming, in which objects share the work and the re-

sponsibilities, should seem familiar in that it is the way humans typically interact

with each other. One person, such as the owner of a business, doesn’t do everything

herself. Instead, she assigns tasks to her employees, each of whom is responsible not

only for doing the assigned task, but for maintaining the data associated with that

task. For example, a secretary might be responsible for not only typing papers, but

also storing the papers in appropriate filing cabinets. Furthermore, if the data in the

files is confidential, the secretary might also have the task of guarding the files and

giving or denying access to the data. In the process of his work, a secretary may

also need to call on the help of other people in or out of the office.

Object-Oriented Languages

Programming languages support the OO style of programming if they have certain

features that make it easier for the programmers to create objects and have them

send messages to each other. We call a programming language object-oriented if

the language supports classes, objects, messages, inheritance, and (subtype) poly-

morphism. Java is an example of such a language. We will briefly review the sub-

jects of classes, objects, and messages in this section and the next two sections and

will discuss the last two features in the following sections of this chapter.

A class can be understood from a modeling perspective and a programming

language perspective. When designing a software application, classes model ab-

stract concepts that play an important role in the system with well-defined respon-

sibilities and relations with other classes. In an OO programming language, classes

can be viewed as templates for objects that describe a certain type of behavior or a

certain set of responsibilities and any associated data, just as a job description for

a secretary or police officer indicates the responsibilities of any person filling one

of those roles. Individual secretaries have their own data (e.g., files, desks, bosses)

02-M4377.indd 1002-M4377.indd 10 12/5/07 12:05:03 PM12/5/07 12:05:03 PM

 Chapter 2 Fundamentals of Object Orientation 11

to maintain, but they all have similar responsibilities for handling that data. In the

same way, all police officers in a given precinct will have similar responsibilities

but will have individual differences in the data involved in their work, for example,

their name, which section of the precinct they are to patrol, who their partners are,

and which patrol cars they will use.

In OO programming, an object is an instance of a class. An object is similar

to an individual secretary or police officer. An object’s associated class defines the

type of data the object maintains and its behavior or responsibilities toward that

data. But as with individual secretaries, individual objects have their own set of data

(their own state) to maintain.

The way objects communicate and get each other to perform some action is by

sending messages to each other. By sending a message to another object, the first

object causes the second object to execute some code. That code is actually a proce-

dure—which in object-oriented languages is called a method—associated with the

second object. Therefore, message-sending is actually a request (or command) from

one object to another object to execute one of its methods. Through this mechanism,

objects can be thought of as servers that provide a service to any client who asks (by

sending them messages).

For example, a Graphics object g (in the java.awt package) is an object designed

to do you the service of drawing shapes, among other things, in visual components

such as windows. For example, it can draw a rectangle for you in its associated com-

ponent at whatever coordinates and of whatever size you want. To get it to do so, you

just send it a message such as

g.drawRect(10, 10, 50, 100);

and g’s drawRect method will get executed, causing a rectangle with upper level

corner at coordinates (10,10) and with width 50 and height 100 to be drawn in the

component.

Advantages of OO Programming

One of the advantages of the OO approach over the non-OO approach defined above

is that, because the intelligence is distributed among objects, each of which main-

tain the data necessary to perform their tasks, it is easier to keep things in small

manageable units and to understand how the units affect each other. In contrast,

if every procedure is interacting with an arbitrary part of a global set of data, the

effect of one procedure on all the others and on the system as a whole is harder to

understand. Thus, the distributed nature of OO programming can increase the read-

ability of the code.

More importantly, a small change in the structure of the global data in a

non-OO program may force a change to all procedures that access that data. In con-

trast, a well-designed OO program has little global data and instead stores the data

in objects mostly for their local use. Hence, making a change to the way the data

is stored in one class of objects often means that the only part of the program that

needs to be changed is the code in that class. Similarly, if a programmer decides

that a particular object is working too inefficiently, the programmer can redesign

02-M4377.indd 1102-M4377.indd 11 12/5/07 12:05:03 PM12/5/07 12:05:03 PM

12 Chapter 2 Fundamentals of Object Orientation

the object’s behavior to be more efficient without affecting the rest of the system,

thus supporting the maintainability of the software.

Similarly, since each object has typically one small well-defined role and carries

the data it needs with it, it is usually easier to reuse these objects in other situations.

Thus, the use of OO programming techniques, if done well, increases the

modifiability, readability, reusability, and maintainability of the software. We will

be discussing these issues in more detail throughout the rest of this text.

SECTION 2.2 CLASSES, OBJECTS,
VARIABLES, AND METHODS IN JAVA

In this section, we will briefly review how classes, objects, and methods are imple-

mented in Java.

Ignoring for the moment the optional parts of a Java class definition, a class is

defined using the keyword class followed by a class name and braces surrounding

the declaration and implementation of the methods of the class and the declaration

of the variables storing the data of objects of the class. For example, the following

Java code defines a class Person that stores a name and birth date. It has two vari-

ables, a constructor, and two methods.

public class Person
{
 private String name;
 private Date birthdate;

 public Person(String name, Date birthdate)
 {
 this.name = name;
 this.birthdate = birthdate;
 }

 public String getName() {
 return name;
 }

 public Date getBirthdate()
 {
 return birthdate;
 }
}

The nonoptional parts of a method declaration include a return type, the method

name, the list of parameters in parentheses, and then the body of the method en-

closed in braces. A variable declaration includes the type of the variable, the name

of the variable, and an optional initial value. Note how this class actually uses two

other classes, namely String (in the java.lang package) and Date (in the java.util

package), for storing the data of this class.

02-M4377.indd 1202-M4377.indd 12 12/5/07 12:05:03 PM12/5/07 12:05:03 PM

 Chapter 2 Fundamentals of Object Orientation 13

A user of the Person class would typically construct a Person object using the

constructor, as in

Person firstPerson = new Person(“Adam”, new Date(0));

and then send the object a message, such as

String firstPersonName = firstPerson.getName();

As mentioned in the last section, the methods of a class correspond to messages that

objects can send to an object of this class. These methods correspond to the behav-

ior of objects of this class. They can also be thought of as the services that objects of

this class can provide for other objects.

In order to execute their methods properly, most objects need to store data. This

data is stored in instance variables (also called fields), which, in Java, are declared

in the body of the class declaration but outside of the body of any method or con-

structor. Instance variables differ from local variables, which are variables declared

in method or constructor bodies, in that local variables exist and store data only

during the execution of the body within which they were declared whereas instance

variables exist and store data during the whole life of the object. Therefore, instance

variables provide state information for the objects. For example, a Person object has

an instance variable called name that stores a reference to the String object contain-

ing the person’s name. This String forms part of the state of the Person object.

It should also be noted here that in Java, only variables of a primitive type actu-

ally store their data in the variable. For all variables of an object type, the variables

store a reference to the data. It is common to visualize the reference as a pointer

from the variable to the data (see Figure 2.1), although the reference can actually

be implemented through means other than direct pointers. Unless the difference

between data and a reference to that data is relevant to the discussion, we will often

use somewhat imprecise terminology and just say that the variable “stores” the ob-

ject data.

The public and private accessibility keywords in front of the methods,

variables, and class declaration restrict the objects that can access objects of the

Person class and send them messages. In short, public classes are accessible by any

other class, public methods can be invoked on an object by any other object, and

public variables of an object can be accessed (read and written) by any other ob-

ject. For example, if a class A has a public integer instance variable x and a public

FIGURE 2.1 The variable
x stores the primitive integer
value 3 whereas the variable
s stores a reference to the
String object “hello.”

String s

int x

3

“hello”

02-M4377.indd 1302-M4377.indd 13 12/5/07 12:05:04 PM12/5/07 12:05:04 PM

14 Chapter 2 Fundamentals of Object Orientation

method proc with no parameters and if another object’s method has a reference to

an object a of class A, then that method can contain the following code:

a.proc();
int y = a.x;
a.x = 4;

In contrast, if a method or an instance variable of a class is private, then it can be

invoked or accessed only within the class body itself. A more detailed discussion of

accessibility is given in the last section of this chapter.

Because two objects of the same class have the same set of methods and there-

fore can be sent the same set of messages, one might initially think that all objects of

that class behave identically, in which case there would be little reason ever to create

more than one object of a class. What distinguishes the behavior of two objects of the

same class is their state. That is, the two objects may behave differently because the

two objects’ instance variables may have different values. For example, if the user

creates two Person objects

Person firstMan = new Person(“Adam”, new Date(0));
Person firstWoman = new Person(“Eve”, new Date(1000000));

then both objects can respond to the getName message as in

String hisName = firstMan.getName();
String herName = firstWoman.getName();

but they will return different values. Because the result of a method call may vary de-

pending on the state of the object, these methods are also called instance methods.

SECTION 2.3 ASIDE: CLASS METHODS
AND VARIABLES IN JAVA

Introduction to Class Variables and Methods

As mentioned in the last section, methods contain the code that is executed when

objects are sent messages, and instance variables contain any data that the object

needs to maintain between method calls in order to execute the methods properly.

In view of this use of variables as a way of maintaining objects’ unique states and

the use of methods as a way of communicating between objects, it may come as a

surprise that Java also includes objectless variables and objectless methods, called

class variables and methods. In fact, by using these objectless features of Java, it

is possible to write a program that is almost completely non-OO. In the rest of this

section, we discuss such non-OO variables and methods in Java so that the reader

can more clearly understand when and when not to use them.

Footnote: Class methods can be thought of as messages that can be sent to the

class itself instead of to an object of the class and class variables can be thought of

as the “state” of the class itself.

02-M4377.indd 1402-M4377.indd 14 12/5/07 12:05:04 PM12/5/07 12:05:04 PM

 Chapter 2 Fundamentals of Object Orientation 15

Class Variables in Java and Their Uses

Both class variables and class methods are declared in Java using the key word

“static.” Class variables can be thought of as variables that are shared among all ob-

jects of a given class (and among objects outside of the class if the variable is made

public) and so such variables cannot have unique values for each object of the class.

The typical use of class variables is for defining constants. Such constants are

not only shared between all objects of the class, but are often made publicly available

to be shared among all objects and classes in a program. In Java, a constant is indi-

cated by the key word “final.” For example, a programmer could define the physical

constant c representing the speed of light in a vacuum in a class PhysicalConstants

by including in the body of that class a line such as the following:

public final static int C = 299792458;

Since it is declared public and static, this constant can be accessed by any object at

any time independently of any objects of class PhysicalConstants. A Java program

could refer to this constant by using the notation “PhysicalConstants.C” as in

double distance = PhysicalConstants.C * 40;

which computes the distance in meters that light travels in 40 seconds.

In addition to its use in defining constants, class variables can be used to allow

all instances (all objects) of a class to share a piece of data. For example, suppose all

objects of a class need to know how many objects of that class have been created.

One could give each object a copy of that data or to give each object a reference to

that data. But in either case, not only is space wasted because of the duplication, but

if the data is changed in one object, it becomes necessary to update in all objects

of that class, which can waste time and easily lead to errors if one object is acci-

dentally missed. A better solution is to make the count a static variable in the class

shared by all objects.

Class Methods in Java and Their Uses

Class methods can be thought of as methods that are not a form of message passing

to objects of that class and instead can be invoked independently of any objects of

the class. In general, class methods are useful when objects of that class are state-

less (i.e., have no instance variables) or when some of the methods do not use the

state of the objects and instead merely manipulate the data passed in as parameters.

For example, all the methods in the Math class are public class methods (they have

the “public” and “static” modifier in their declarations) and so can be accessed and

executed by any body of Java code without reference to Math objects. For example,

the sin method in the Math class can be executed as in

double y = Math.sin(x);

It is appropriate that these methods are class methods because they perform mathe-

matical operations on the arguments passed to those methods, and so a Math object

would play no significant role. [1, p. 152]

When designing a class and figuring out what methods it should have, it is not

always immediately obvious whether a method should be a class method or instance

02-M4377.indd 1502-M4377.indd 15 12/5/07 12:05:04 PM12/5/07 12:05:04 PM

16 Chapter 2 Fundamentals of Object Orientation

method. For example, suppose you were defining a Set class (different from the java.

util.Set interface), objects of which behave like (finite, unordered) mathematical sets

of integers. A natural operation to be performed on such a set is the intersection of it

with another Set. There are (at least) two ways such an operation can be declared in

your Set class:

� public Set intersect(Set otherSet)
� public static Set intersect(Set firstSet, Set
secondSet)

In the first case, the user would get the intersection by sending a Set s1 a message,

asking it to return the intersection of itself and a second set s2, through a method

call such as:

Set intersection = s1.intersect(s2);

In the second case, the user could find the intersection by calling the class method,

passing both sets as parameters:

Set intersection = Set.intersect(s1, s2);

Which version is better? One advantage of the second version is that it displays the

natural symmetry in the intersection operation, in which neither set plays a special

role. Also, the second version will not necessarily fail with a NullPointerExcep-

tion if s1 or s2 happened to be null. That is, the intersect(Set, Set) class

method in the second version could test the nullity of s1 and s2 and treat a null s1

or s2 as an empty set and so return an empty set. In contrast, the call in the first ver-

sion will throw an exception before the intersect(Set) instance method even

begins execution if s1 is null.

However, an advantage of the first version is that it is a natural way to proceed

from an OO perspective. That is, it is natural to think of asking a Set object to tell

you what it has in common with another set. Also, unless the intersect(Set) in-

stance method is declared “final,” it can be overridden by subclasses of Set, which,

although not obviously useful here, is a feature that future users may find very valu-

able. We’ll discuss the topic of overriding later in this chapter.

Summary

Methods can be class (static) methods when objects of that class have no state or do

not use their state in the body of that method. Variables can be class (static) vari-

ables when the piece of data they contain needs to be shared among objects of that

class (and possibly other classes).

SECTION 2.4 BRIEF INTRODUCTION
TO UML CLASS DIAGRAMS

It is not easy to keep in your mind all the important properties of classes and the

relationships between classes as the number of classes and relationships grow. To

aid in visualizing the design, a diagram can be very helpful. In this text, we will

use many such diagrams to show the properties of classes and the relationships be-

02-M4377.indd 1602-M4377.indd 16 12/5/07 12:05:05 PM12/5/07 12:05:05 PM

 Chapter 2 Fundamentals of Object Orientation 17

tween classes and objects, and how messages are passed between them. There is a

standard notation or language, called the Unified Modeling Language for such dia-

grams. There are 13 kinds of diagrams included in UML 2.0, among which are class

diagrams, state diagrams, and sequence diagrams, the three kinds of diagrams that

we will mainly use in this text. Wherever one of these diagrams is introduced for

the first time, we will include a very short introduction to the diagram. All the dia-

grams that we use in this text can be studied in more detail in Appendix A, which

also has references for even more details.

When you use UML, keep in mind that it is not a Java-only modeling language,

and so its notations do not always directly correspond to Java notation or syntax. For

example, a method named foo that takes an integer x as a parameter and returns a

String is written

String foo(int x)

in Java, but in UML it would be written

foo(x: int): String

A UML class diagram shows classes and interfaces and the relationships between

them. Such a diagram provides a static view of the classes and relationships rather

than a dynamic view of the interactions among objects of those classes. A class is

represented by a box divided into three sections. The top section gives the name of

the class. The middle section gives the attributes or properties held by objects of the

class. These properties are abstractions of the data or state of an object and so are

usually implemented using instance variables. The bottom section gives the opera-

tions of a class, which correspond in Java to methods and constructors.

For example, see Figure 2.2 for the class diagram for the Person class discussed

in Section 2.2. The diagram shows that this class has a “name” attribute that is a

String and a “birthDate” attribute of type Date. In Java, such attributes are typically

implemented by adding two instance variables to the Person class: a variable called

name of type String and a variable called birthDate of type Date. The diagram

also shows that this class has a constructor with two parameters, a method getName

with no parameters that returns a String and a getBirthDate method with no pa-

rameters that returns a Date.

Notice several other things about this diagram:

 1. The “�” symbol in front of the attributes indicate that the attributes are private.

Similarly, the “�” symbol in front of the operations indicate that they are public

operations.

FIGURE 2.2 The class diagram
for the Person class.

Person

-name:String
-birthDate:Date

+Person(name:String,birthDate:Date):Person
+getName():String
+getBirthDate():Date

02-M4377.indd 1702-M4377.indd 17 12/5/07 12:05:05 PM12/5/07 12:05:05 PM

18 Chapter 2 Fundamentals of Object Orientation

 2. The types of the attributes, parameters, and return types of the operations are

given after the names of the elements and are separated from them by colons.

 3. The implementation of these attributes and operations are not included in the box,

because a UML diagram is not usually concerned with such low-level details.

Any part of the details of a class except its name can be omitted from the diagram,

including all attributes and/or operations, the public and private modifiers of those

attributes and operations, and the parameters and/or return type of the operations.

In fact, to avoid clutter and confusion, it is strongly recommended that the diagram

leave out all details of the classes that are not relevant to the discussion. Therefore,

it is important to remember that a class with no operations shown, for example, does

not imply that the class has no operations. Rather, it implies that the operations were

not relevant.

SECTION 2.5 IMPLEMENTATION INHERITANCE

One of the most significant features of OO programming is “implementation inheri-

tance” or “subclassing,” which greatly increases the reusability of classes and also

minimizes the duplication of code. We will introduce implementation inheritance

through several simple examples that show some of the standard uses to which in-

heritance is put and that will hopefully lead you to appreciate the benefits it can

provide to a software designer. We will also devote all of the next chapter to the

discussion of the proper use and the pitfalls of inheritance.

Specialization

Consider an example of a programmer who has been assigned to create a drawing

program in which rectangles can grow, shrink, or move around on a panel under the

control of the user. In order to deal with the rectangles, it is useful to have a Rectangle

class that stores the relevant information about the rectangle, such as its size and posi-

tion. Being appropriately lazy, the programmer doesn’t automatically code a Rect-

angle class from scratch and instead spends a minute or two looking through existing

libraries to see whether there is already a Rectangle class to be used. Sure enough,

there are several Rectangle classes in the Java libraries, including java.awt.Rectangle,

java.awt.geom.Rectangle2D.Double, and java.awt.geom.Rectangle2D.Float.

After studying these three classes, our programmer determines that java.awt

.Rectangle is the closest one to satisfying his needs. However, he wants a class with a

getCenter() method and a setCenter(int x, int y) method and the Rect-

angle class doesn’t have such methods. How can the programmer get what he wants

with minimal effort?

If the source code for the existing Rectangle class is available, the programmer

could modify the class to suit his needs, including adding the new methods and

possibly deleting any methods that he will never use. Alternatively, the programmer

could copy the Rectangle class code and insert it into a new class EnhancedRect-

angle and then add the new code.

02-M4377.indd 1802-M4377.indd 18 12/5/07 12:05:05 PM12/5/07 12:05:05 PM

 Chapter 2 Fundamentals of Object Orientation 19

Code reuse is always a very appropriate action to take, but not in either of these

ways. Both of these approaches have inelegant aspects. The first approach could

cause problems with existing code that uses the original Rectangle class—there are

now two versions of Rectangle floating around to confuse users and possibly the

compiler. The second approach is better in that the new class will not affect exist-

ing code that uses the original Rectangle class, but there is major code duplication

in this case, which introduces unnecessary complexity (remember that one of the

properties of elegance is simplicity). For example, if the copied code is later found to

have bugs, the programmer is going to have to remember to fix the bugs in the copy

as well.

Furthermore, neither of these approaches works if only the compiled code, and

not the source code, for the Rectangle class is available. One solution in this case

is to have the programmer ignore the compiled code and define and implement his

own EnhancedRectangle class. This action, however, does nothing in terms of reuse

of existing code and so results in significant code duplication. In this case, we don’t

necessarily have exact duplication of method bodies, but we do have duplication of

semantics, which can be just as bad. Furthermore, the Rectangle class was (presum-

ably) thoroughly tested and the implementation of the new class could involve con-

siderable effort just to bring it to the error-free level of the existing class.

To avoid all these problems, implementation inheritance can be used. Java (and

other OO languages) allows the programmer to define one class as a subclass of an-

other class (which makes the second class a superclass of the first class). A subclass

inherits all the features (all the variables and methods, but not the constructors) of

the superclass, which means all those features are automatically included in the sub-

class and, if not declared private, are accessible in the subclass. The UML notation

for subclassing is shown in Figure 2.3. The arrow pointing from the subclass to the

superclass is called a generalization relationship in UML.

In Java, subclassing is expressed using the keyword “extends.” So our program-

mer could write

FIGURE 2.3
The UML notation
for subclass and
superclass.

public class EnhancedRectangle extends Rectangle
{
 public EnhancedRectangle(int x, int y, int w, int h) //constructor
 {
 super(x, y, w, h);
 }

 public Point getCenter()
 {
 return new Point((int) getCenterX(), (int) getCenterY());
 }

 public void setCenter(int x, int y)
 {
 setLocation(x – (int) getWidth()/2, y – (int) getHeight()/2);
 }
}

superclass

subclass

02-M4377.indd 1902-M4377.indd 19 12/5/07 12:05:06 PM12/5/07 12:05:06 PM

20 Chapter 2 Fundamentals of Object Orientation

This declaration makes EnhancedRectangle a subclass of Rectangle and makes

Rectangle a superclass of EnhancedRectangle. Because it is a subclass, the new En-

hancedRectangle class inherits all the methods and all the data in the Rectangle

class. Note that since constructors are not inherited, you need to create construc-

tors for new subclasses (or let the Java compiler create a no-argument construc-

tor for you, which it does if you don’t implement any constructors in your class).

The call to super(x, y, w, h) in the constructor above calls the superclass’ con-

structor to initialize all the Rectangle data. The getCenterX, getCenterY,

setLocation, getWidth, and getHeight methods that are used to implement

the two new methods are all inherited from the Rectangle class. See Figure 2.4 for

the UML diagram. (Note how, in this diagram, all instance variables and methods

of the Rectangle class were omitted except for the ones relevant to the discussion.)

Now the clients of the EnhancedRectangle class can use it as follows:

FIGURE 2.4 The relationship between
Rectangle and EnhancedRectangle.

+getCenter():Point
+setCenter(int x, int y):void

EnhancedRectangle

+getCenterX():int
+getCenterY():int
+getWidth():int
+getHeight():int
+setLocation(x:int, y:int):void

Rectangle

EnhancedRectangle rectangle = new EnhancedRectangle(1, 2, 50, 60);
rectangle.setLocation(10, 10); //inherited method
rectangle.setCenter(50, 60); //subclass method

Note that EnhancedRectangle objects behave as if all methods inherited from the

Rectangle class had been defined in their class.

In this way, subclassing provides a way to reuse the code and data of an exist-

ing class to create a new class that is identical except that it has more features (data

and/or behavior). This process of extending an existing class by adding new features

is called using inheritance for specialization.

The Object Superclass in Java

Before we continue, it is important to note that all Java classes that do not explicitly

extend another class implicitly extend the Object class. Therefore, all Java classes ex-

tend the Object class either directly or indirectly via one or more intermediate classes

in an inheritance chain. This means that your classes will automatically inherit the

methods in the Object class: clone, equals, finalize, getClass, hashcode,
notify, notifyAll, toString, and three versions of wait.

02-M4377.indd 2002-M4377.indd 20 12/5/07 12:05:06 PM12/5/07 12:05:06 PM

 Chapter 2 Fundamentals of Object Orientation 21

Another Use of Specialization

To see how implementation inheritance can be used to solve a slightly different prob-

lem involving specialization, consider another programmer working on a drawing

program using the Java Swing package. Suppose that the program allows the user to

draw ovals with white interiors and black borders and stores all drawn ovals in a col-

lection of Oval objects. The Ovals know their locations and size and how to draw

themselves:

public class Oval
{
 public int x, y, w, h;

 public Oval(int x, int y, int w, int h) { //constructor
 this.x = x; this.y = y; this.w = w; this.h = h;
 }

 public void draw(Graphics g) {
 g.drawOval(x, y, w, h);
 }

 public int getWidth() { return w; }

 public int getHeight() { return h; }

 public Point getTopLeftPoint() { return new Point(x,y); }

 //...other methods...
}

Suppose that the programmer has been asked to enhance the program to allow the

user to draw filled ovals in addition to regular ovals. See Figure 2.5 for a picture of

such ovals.

This programmer quickly realizes that she will need to create a FilledOval class

that can be stored in a collection similar to the collection of Ovals. There are at least

three ways she could proceed:

 1. She could ignore the Oval class and design her own FilledOval class that she

implements from scratch.

 2. She could realize that the Oval is exactly what she needs except that Ovals do

not have black interiors when drawn, and so she could copy and paste the Oval

class source code into a new FilledOval class and then make small changes to it

to change the way it draws itself.

 3. She could use implementation inheritance and creates a new FilledOval class

that is a subclass of Oval.

FIGURE 2.5 Two white ovals with black
borders and a filled oval.

02-M4377.indd 2102-M4377.indd 21 12/5/07 12:05:06 PM12/5/07 12:05:06 PM

22 Chapter 2 Fundamentals of Object Orientation

In the third case, the FilledOval inherits all the methods and data in the Oval class.

Unfortunately, the programmer doesn’t want the FilledOval to inherit all the be-

havior of Oval, since one of the methods of Oval, the draw(Graphics) method,

displays the Oval with a black border and white interior. She wants her class to have

a slightly different implementation of the same draw method. Luckily this change

can easily be implemented in OO languages like Java through overriding. A method

implemented in a subclass that has the same signature as a method implemented

in the superclass is said to override the superclass’ method. (The signature of a

method consists of the method name and the list of types of the parameters.) We can

override draw by including a new implementation of draw in the FilledOval class

as follows:

public class FilledOval extends Oval
{
 public FilledOval(int x, int y, int w, int h)
 {
 super(x, y, w, h);
 }

 public void draw(Graphics g)
 {
 g.fillOval(x, y, w, h);
 }
}

Whenever the draw message is sent to a FilledOval object, the implementation of

draw in the FilledOval class will be the one that is executed.

Do you notice also how much code reuse is going on in this example? The new

class reuses all of the code in the superclass so that only a new constructor and a

draw method need to be written.

Note also that, in this case, the programmer didn’t want to enhance the Oval

class by adding new attributes or behavior, but instead she wanted to modify it so

that it behaved slightly differently (it should display itself differently in the win-

dow). In summary, subclassing can be used to create a new class identical to an

existing class except with some modified behavior instead of (or as well as) some

additional behavior. This is another way that inheritance can be used for the pur-

pose of specialization.

Generalization

There are other common ways whereby subclassing can help clean up code. Let us

assume a business has a billing system that keeps track of all its current custom-

ers. Because the business sells both to human customers and business customers,

the designers of the billing system created two unrelated classes, BusinessCustomer

and HumanCustomer. Unfortunately, this design might not be very elegant because

both of these classes might have some similar data and some identical methods. For

example, they both might store a name and have a getName method for retrieving

that name.

02-M4377.indd 2202-M4377.indd 22 12/5/07 12:05:07 PM12/5/07 12:05:07 PM

 Chapter 2 Fundamentals of Object Orientation 23

One way to avoid code duplication is to introduce a new Customer class that is

a superclass of both the BusinessCustomer and HumanCustomer classes and then

move all common data and methods into the superclass. That is, we could remove

the name instance variable and the getName method from the BusinessCustomer

and HumanCustomer classes and add the variable and method to the Customer class.

Since BusinessCustomer and HumanCustomer classes are both subclasses of Cus-

tomer, they inherit the instance variable and method of the superclass. See Figure 2.6

for the UML diagram for this relationship.

In this example, that we would probably not want the user to create any Cus-

tomer objects, since that class has been created merely as a place to put common

features to avoid duplication. One way to prevent creation of Customer objects is

to declare the class “abstract.” To do so, you just need to include the keyword “ab-

stract” in front of the word “class” in the declaration, for example,

public abstract class Customer
{ ... }

In UML class diagrams, abstract classes are indicated by putting the names of the

classes in italics, as shown in Figure 2.6.

Now the user can proceed to create and use the two subclasses as if they both

contained a name variable and getName method:

HumanCustomer human = new HumanCustomer(...);
BusinessCustomer business = new BusinessCustomer(...);
String humanName = human.getName();
String businessName = business.getName();

In summary, subclassing and superclassing can be used to avoid code and data du-

plication among several classes by creating a superclass to those classes and moving

the duplicate code and data up into that superclass, which is commonly abstract.

This process is called using inheritance for generalization.

Single Inheritance in Java

In Java, a class can have only one superclass and so you can’t inherit some methods

from one class and some other methods from another class by subclassing. This

single inheritance feature of Java can interfere with your attempts at code reuse. For

FIGURE 2.6 The Customer
superclass with two subclasses.Customer

-name:String

+getName():String

BusinessCustomer HumanCustomer

02-M4377.indd 2302-M4377.indd 23 12/5/07 12:05:07 PM12/5/07 12:05:07 PM

24 Chapter 2 Fundamentals of Object Orientation

a very simplistic example, suppose you were given a project involving a Person class

with name and age attributes, an Antique class with an age attribute, and a Street

object with a name attribute. If you were told to maximize code reuse, you might

be tempted to create a AgedObject superclass of Person and Antique to hold the age

attribute, and you might wish to create a NamedObject superclass of Person and

Street to hold the name attribute (see Figure 2.7). Unfortunately, you can’t create

two superclasses of Person.

This restriction to a single superclass is a shortcoming of Java, but it serves

to keep the implementation of classes and inheritance simple and to simplify the

understanding of such code. For an example of the issues that need to be addressed

if multiple inheritance is allowed, consider a class C that inherits a foo() method

from a superclass A and inherits another foo() method from a superclass B. See

Figure 2.8.

Which of these methods will or should get executed when c.foo() is called

for an object c of class C? There are a variety of ways of handling this ambiguity;

the Java language designers handled it by eliminating multiple inheritance.

SECTION 2.6 TYPES, SUBTYPES,
AND INTERFACE INHERITANCE

Another of the most powerful concepts of object-oriented programming is subtype

polymorphism. In order to understand this concept, it is important to understand

first what is meant by a “type.”

FIGURE 2.7 A Person class
with two superclasses. AgedObject

Antique Person Street

+getAge() : int +getName()() : String

NamedObject

FIGURE 2.8 Class A inherits two
foo() methods.

+foo() +foo()

A

C

B

02-M4377.indd 2402-M4377.indd 24 12/5/07 12:05:07 PM12/5/07 12:05:07 PM

 Chapter 2 Fundamentals of Object Orientation 25

Type

A type can be thought of as a set of data values and the operations that can be

performed on them. For example, the “int” primitive type in Java can be thought

of as the set of all 32-bit integers (with values ranging from �2,147,483,648 to

2,147,483,647) together with the set of operations that can be performed on inte-

gers, including, for example, addition, subtraction, multiplication, and division. For

objects, types can be defined similarly, except the focus is more on the operations

than on the values. For the purposes of this text, an object type will consist of a set

of operations and a set of objects that can perform those operations.

There are two standard ways in Java to define new types. Any class C implicitly

forms a type C. The set of public methods of the class form the set of operations

for type C and the objects of class C or its subclasses form the set of objects of that

type. For example, the class Person discussed in Section 2.2 defines a type “Person”

with operations getName() and getBirthDate(). All objects of class Person or

its subclasses can perform these two operations, and these objects form the set of

objects of type Person.

The other way to define a type is to use Java interfaces. An interface can be

thought of as a named set of operations. All objects whose classes explicitly “imple-

ment” the interface form the set of objects of that type. For example, the following

interface defines a type Runnable:

public interface Runnable
{
 public void run();
}

The operations of type Runnable consist of just the run() method. The set of ob-

jects of type Runnable consists of all objects of all classes that implement Runnable.

For example, consider the following class SimpleRunner:

public class SimpleRunner implements Runnable
{
 public void run() { System.out.println(“I’m running.”); }
}

This class defines and implements a method run() of the form required by the

Runnable interface and the class explicitly declares that it “implements Runnable.”

Therefore, all objects of class SimpleRunner can be considered as objects of type

Runnable. In fact, since SimpleRunner is also a subclass of the Object class, objects

of class SimpleRunner have three types: SimpleRunner, Runnable, and Object.

A UML diagram showing the relationship between SimpleRunner, Runnable,

and Object is shown in Figure 2.9. Note that an interface is displayed in a UML

class diagram similarly to a class, with the differences being that the top part of the

box includes the designation «interface» and there are no attributes to an interface.

The arrow with the dashed line pointing from the SimpleRunner class to the inter-

face is called a realization relationship in UML and indicates that the class imple-

ments or “realizes” the interface.

02-M4377.indd 2502-M4377.indd 25 12/5/07 12:05:08 PM12/5/07 12:05:08 PM

26 Chapter 2 Fundamentals of Object Orientation

Note that objects of a subclass S of a class T are considered to be both of type S

and of type T. There is a special relationship between the type of a subclass and the

type of a superclass, in that a subclass of a class defines a subtype of the superclass’

type. That is, one type S is a subtype of another type T (which, in turn, is called a

supertype of S) if the set of objects of type S are a subset of the set of objects of

type T and the set of operations of S are a superset of the operations of T. Note

that, if type S is a subtype of type T, the set of operations of S must include all the

operations of T and can possibly have more. For example, the type SimpleRunner

is a subtype of Runnable since all objects of type SimpleRunner are also objects

of type Runnable and since SimpleRunner includes all operations in the Runnable

type. Similarly, SimpleRunner is a subtype of Object since it includes (inherits) all

operations in Object and its objects are a subset of the set of all Objects.

It should be noted that interfaces can also have subinterfaces that inherit from

them similar to the way inheritance works with classes. For example, consider the

following interface:

public interface Movable extends Runnable
{
 public void walk();
}

The Movable interface defines a new interface with two operations: its walk() op-

eration and the run() operation that it inherits.

As you might expect, a subinterface defines a subtype of the type defined by the

superinterface. In summary, if a class B is a subclass of class A or if B implements

an interface A or if B is a subinterface of interface A, then the type B is a subtype

of the type A.

Polymorphism

Object-oriented programming languages support these notions of types and sub-

types by allowing a variable of one type to store an object of a subtype. For ex-

ample, in the Java statement

Runnable r = new SimpleRunner();

the variable r of type Runnable refers to an object of actual class SimpleRunner.

The fact that an object of a subtype can be legally used wherever an object of a su-

FIGURE 2.9 The Runnable interface and
SimpleRunner class.

<< interface >>

+run():void

+run():void

Runnable

SimpleRunner

Object

02-M4377.indd 2602-M4377.indd 26 12/5/07 12:05:08 PM12/5/07 12:05:08 PM

 Chapter 2 Fundamentals of Object Orientation 27

pertype is expected is called subtype polymorphism. As mentioned above, subtype

polymorphism is one of the most important concepts in object orientation and is one

of the main things that makes OO languages so useful. The Java libraries use poly-

morphism extensively. In fact, the Java 1.5 API includes over 1000 interfaces. Be-

cause you cannot create objects of an interface type and must instead create objects

of a class that implements the interface, everywhere one of these Java interfaces is

used, polymorphism is also being used.

The Value of Polymorphism

Why is subtype polymorphism so important in object-oriented languages? We will

just give one example, but it will hopefully give you a feeling for the power and el-

egance that can be derived from the proper use of polymorphism.

When one discusses well-designed software, the concept of “plug-and-play”

often arises. The idea of plug-and-play is that an item can be “plugged” into a

system and immediately “played” without the need to do any extra work, such as

reconfiguring the system. This terminology is normally used in discussions of com-

puter hardware, such as plugging new cards into computer expansion slots and im-

mediately being able to use them. However, the concept can also apply to software.

In particular, if software is elegant, then one should be able to remove an object of

one class and easily replace it with, or “plug in,” an object of another “equivalent”

class either on the fly or with only minimal code changes.

Consider the example of collection classes, which act as storage containers for

other objects. For the purpose of discussion here, let us suppose you have used the

java.util.LinkedList class extensively as the collection class in a large software sys-

tem. Furthermore, suppose that after testing and using the system, it is found that,

in some parts of the system, the LinkedList is too slow because the operation of re-

trieving the nth item requires traversing the first n elements of the list. At that point,

it would be nice to replace some of the uses of the LinkedList class with a different

collection class such as the ArrayList class, which stores its objects in an array and

so has constant-time random access. The problem is that such a replacement might

require significant changes to the system.

In particular, if the software was not designed with such a replacement in mind,

then you would first need to find everywhere a variable of type LinkedList is declared

and/or initialized in the system and then decide whether it needs to be replaced with

the declaration and/or initialization of a variable of type ArrayList. However, such

declarations and initializations can be scattered throughout the package. Errors can

occur if all appropriate occurrences are not found and properly changed. (As you are

surely aware, it is not sufficient to do a global search and replace—see the exercises

for more on such an approach.)

Secondly, you might need to modify some of the method calls if you used meth-

ods unique to the LinkedList class, such as addFirst and addLast. You would

need to replace those method calls with some equivalent code using ArrayLists.

Not only is making these changes a lot of work, but this whole process might

need to be repeated again if it is later found that ArrayLists are also insufficient

and a third different collection class is needed. Those changes would be time-con-

suming and, once again, they might accidentally introduce new errors. Ideally, we

02-M4377.indd 2702-M4377.indd 27 12/5/07 12:05:08 PM12/5/07 12:05:08 PM

28 Chapter 2 Fundamentals of Object Orientation

would be able to change the collection classes used by the system by making only

one change to the system code.

To clean up the design once and for all so that future changes can be easily

made, the first step is to realize that both these classes, LinkedList and ArrayList,

implement the List interface. The next step is to see whether the methods in that

interface are sufficient for all the collection class needs in your software system. If

they are, then every place such a collection is used, one of those methods in the in-

terface should be called rather than a method unique to LinkedList or ArrayList.

The third step is to deal with the declarations and initializations of variables

of type LinkedList. To avoid having to change the declarations later, all collection

variables should be declared to be of type “objects-that-implement-all-the-methods-

in-our-List-interface” instead of declaring those variables to refer to objects of one

specific class such as LinkedList. That is, declare your variables to be of some kind

of the general type List that will allow such variables to refer to any object that

implements the List interface. Then you will no longer need to change the variable

declarations if you later change the design to use to a new collection class imple-

menting the List interface.

See Figure 2.10 for a UML diagram relating these classes and interface.

Your software system can now have statements such as

List list = new LinkedList();

and

List list = new ArrayList();

Furthermore, regardless of whether the list variable refers to a LinkedList or an

ArrayList, code such as

list.clear();

will execute the appropriate clear method, that is, the clear method of the ob-

ject referred to by list.

Let us summarize how we are making our system plug-and-play regarding col-

lection classes. By declaring our collection variables to be of type List then, if we need

later to change our variables to refer to an ArrayList instead of a LinkedList, we do

not need to change any method calls that use the variables nor do we need to change

the declarations of any of those variables. These are the benefits of polymorphism.

FIGURE 2.10 The List interface and two
classes that implement it.

<< interface >>

List

ArrayList LinkedList

02-M4377.indd 2802-M4377.indd 28 12/5/07 12:05:09 PM12/5/07 12:05:09 PM

 Chapter 2 Fundamentals of Object Orientation 29

To complete this example, we should fix one more problem. That problem con-

cerns not the declaration of our container variables, but their initialization. If we

want to change our code to use some ArrayLists instead of LinkedLists, then every-

where our code has statements of the form

List list = new LinkedList();

we need to decide whether to change them to

List list = new ArrayList();

How can we minimize the amount of work and so minimize the chance of intro-

ducing errors for such changes in the variable initializations? Furthermore, can we

make the code easier to modify in the future? The key to the solution is to local-

ize the code that needs to be changed. Instead of using constructors to create new

objects wherever our collection variables are initialized, as we do above, we could

use a “factory” method, which is a method that (somehow) creates or finds and re-

turns an object for you. This method may call a constructor to create a new ob-

ject or it may recycle objects it already has available (stored in an object pool or

“warehouse”). For example, your system might have a Manager class with a fac-

tory method createNewList that just creates and returns an object of the class

LinkedList or ArrayList:

public List createNewList()
{
 return new LinkedList();
}

At first, it may seem like there is little to be gained by replacing a call to the

LinkedList constructor with a call to the method createNewList that then turns

around and calls the LinkedList constructor. The gain comes from the fact that the

initialization statements for container variables can be replaced everywhere in your

code with

List list = manager.createNewList();

where manager is an available object of class Manager. Then, if your system needs

to be changed to use ArrayLists instead of LinkedLists, there is only one place in

the whole system where code needs to be changed: the createNewList method

of the Manager class. One way to proceed in that case would be to edit the method

to read

public Collection createNewList()
{
 return new ArrayList();
}

An alternative, as discussed in Chapter 7, is to create and use a new subclass of

Manager with a different implementation of createNewList.

In summary, interfaces and classes that implement those interfaces form a rich

environment for exploiting polymorphism. The fact that a variable declared to be of

02-M4377.indd 2902-M4377.indd 29 12/5/07 12:05:09 PM12/5/07 12:05:09 PM

30 Chapter 2 Fundamentals of Object Orientation

an interface type can refer to objects of a variety of actual classes (that are subtypes

of the interface type) enables you to write code that is much more flexible and re-

usable than would be the case if you had to fix the actual class of the values of the

variable.

As a final point, note that, in contrast to inheritance where there can be only

one superclass, classes can implement any number of Java interfaces. For example, a

class D can implement interfaces A and B and extend a class C. There are no prob-

lems created by having a class implement multiple interfaces since the problems

caused by multiple inheritance are due to inheriting one or more implementations of

a method. There are no such implementations to be inherited with interfaces.

SECTION 2.7 INTERFACES VS. ABSTRACT CLASSES

What is the difference between interfaces and abstract classes? When should you

use one and when the other? Before answering these questions, let us first review a

property of abstract classes.

When declaring an abstract class, it is permissible to leave some of the methods

in the class unimplemented. Such methods are indicated with the “abstract” key-

word. For example, the following class is an abstract class that has one implemented

method and one nonimplemented abstract method:

public abstract class AbstractClass
{
 public String toString() { return “An AbstractClass object”; }
 public abstract void visit(Object o);
}

Note that the declaration of the unimplemented method is similar to the declara-

tion of methods in an interface except for the addition of the “abstract” keyword.

In UML diagrams, abstract methods are indicated by putting the method name in

italics.

Now suppose you have an abstract class with all abstract (unimplemented) meth-

ods and no instance variables. For example, consider the following abstract class:

public abstract class TotallyAbstractClass
{
 public abstract void clear();
 public abstract void visit(Object o);
}

Compare that class to the following interface:

public interface TotalInterface
{
 public void clear();
 public void visit(Object o);
}

02-M4377.indd 3002-M4377.indd 30 12/5/07 12:05:09 PM12/5/07 12:05:09 PM

 Chapter 2 Fundamentals of Object Orientation 31

How do they differ? If you needed to include one of them in your design, which

should you choose?

Extending TotallyAbstractClass is virtually the same as implementing Total

Interface, except that a given class can extend at most one superclass in Java. There-

fore, one would rarely want to create an abstract class with all abstract methods

and no instance variables instead of creating an interface with the same methods.

Another way to think about this situation is that a programmer typically implements

an interface to permit subtype polymorphism. In contrast, a programmer extends a

class as a way both to permit subtype polymorphism and to inherit method imple-

mentations. If there are no implementations to inherit, then an interface is usually

the preferable form.

SECTION 2.8 DYNAMIC METHOD INVOCATION

We have seen that inheritance provides at least two significant advantages for soft-

ware designers. First of all, it provides a mechanism for code reuse. Secondly, if a

class B is a subclass of a class A, then B can also be considered a subtype of A, and

so subtype polymorphism can be used. In this section, we will discuss how such

subtype polymorphism together with a concept called dynamic method invocation,

gives designers and programmers even greater power and flexibility.

Consider the following code that uses the Customer example discussed earlier

in this chapter:

Customer customer = new HumanCustomer(...);
String name = customer.getName();

Because the HumanCustomer type is a subtype of the Customer type, the assignment

statement in the first line is legal. Furthermore, the HumanCustomer class inherits

the getName method from the Customer class and that method will be executed cor-

rectly in the second line to return the name of the customer.

Things are a little more complicated if the subclass overrides one or more of the

methods of the superclass. Consider the example of the FilledOval class discussed

earlier and look at the following code:

Oval oval = new FilledOval(1,2,10,20);
oval.draw(g); //for some Graphics object g

Recall that FilledOval inherits a draw method from Oval and also implements its

own version of draw. Which of those two implementations of draw will be executed

in the second line of this example? Due to the fact that oval is declared to be of type

Oval, you might be tempted to think that the Oval implementation of draw is ex-

ecuted. However, Java, like other object-oriented languages, uses dynamic method

invocation. Dynamic method invocation means that the Java runtime environment,

when asked to invoke a method on an object, looks at the actual class of the object

to find the method implementation to execute. For example, when asked to execute

oval.draw(g), the Java environment does not look in the declared class of oval

(namely, Oval) but instead looks in the actual class of the object referred to by oval

02-M4377.indd 3102-M4377.indd 31 12/5/07 12:05:09 PM12/5/07 12:05:09 PM

32 Chapter 2 Fundamentals of Object Orientation

(namely, FilledOval) for the draw method to execute. More generally, when a sub-

class overrides an inherited method then the overriding method implementation in the

subclass is always invoked when the method is called on an object of the subclass.

In fact, dynamic method invocation is used when classes implement interfaces

as well. For example, consider our List interface mentioned earlier and look at the

following code:

List list = new ArrayList();
list.clear();

The clear method that is invoked in the second line is determined dynamically

(at runtime) by the Java environment by looking at the actual class of the object

referred to by list. In this case, that object is of class ArrayList and so the imple-

mentation of clear in the ArrayList class is the one that is executed.

To better understand subtype polymorphism and dynamic method invocation,

let us look at another, more complicated, example. Consider an Automobile class

and the Sedan, Minivan, and SportsCar subclasses shown in Figure 2.11. You can

see from the figure that the Automobile class is abstract, as indicated by the use of

italics for its name. (It would be better for the Automobile class to be an interface, as

discussed in the preceding section, but for the sake of discussion regarding dynamic

method invocation, we will use an abstract class here.)

Because Sedan is a subtype of Automobile, it is perfectly legal in Java to have

a statement such as

Automobile auto = new Sedan(Color.black);

Although auto is expected to have a value of class Automobile, it can be assigned a

value of class Sedan because of subtype polymorphism.

Assuming the Minivan and SportsCar classes, like the Sedan class, have con-

structors that take a Color as an argument, the following code is legal:

Automobile[] fleet = new Automobile[3];
fleet[0] = new Sedan(Color.black);
fleet[1] = new Minivan(Color.blue);
fleet[2] = new SportsCar(Color.red);

FIGURE 2.11 The
Automobile class and its
subclasses.

+getCapacity():int

+getCapacity():int +getCapacity():int +getCapacity():int

Automobile

Sedan Minivan SportsCar

02-M4377.indd 3202-M4377.indd 32 12/5/07 12:05:10 PM12/5/07 12:05:10 PM

 Chapter 2 Fundamentals of Object Orientation 33

Note that the array is being assigned values from three separate classes, but, since

they are all subclasses of Automobile, the assignments are legal.

To see the advantages that dynamic method invocation provides, let us suppose

that our Automobile class’ getCapacity method (indicating the number of pas-

sengers it can hold) has a default behavior of returning 0. Note that each subclass’

getCapacity method overrides the inherited method to return the appropriate

capacity, say 7 for Minivans, 5 for Sedans, and 2 for SportsCars.

Now suppose that we want to determine the total capacity of all the automo-

biles in the array fleet. Here’s a naive way of doing so:

Aside: In this example, any features (methods or data) that an Sedan has but an

Automobile doesn’t have are still part of the object referred to by auto, but

those features are hidden in that they are not accessible directly through the

variable auto. For example, suppose that the Sedan class has a getStyle

method that is not in the Automobile class. In that case, the compiler will com-

plain if you attempt the following statement,

System.out.println(auto.getStyle()); //compiler error

even though auto refers to an Sedan object with a getStyle() method. To

access the hidden features of auto, you need to downcast the value of auto to

the subtype Sedan. Downcasting a value means indicating to the compiler that

the value is actually of a subtype of the declared or implied type. Downcasting

is done by including the name of the subtype in parentheses in front of the val-

ule. For example, you can write:

Sedan sedan = (Sedan) auto;
System.out.println(sedan.getStyle());

The first line tells the compiler that the object referred to by auto is actually a

Sedan rather than an Automobile and so can be assigned to the variable sedan

of type Sedan. More simply, but possibly less readably, you can combine these

two lines and write:

System.out.println(((Sedan) auto).getStyle());

It is important to realize that downcasting does not dynamically change an

object from one class to another. It merely indicates to the compiler that the

variable auto actually refers to an object of the subtype even though the vari-

able was declared to be of a supertype. If the variable did not refer to an ob-

ject of the subtype and an attempt was made to downcast, it would result in a

ClassCastException.

02-M4377.indd 3302-M4377.indd 33 12/5/07 12:05:10 PM12/5/07 12:05:10 PM

34 Chapter 2 Fundamentals of Object Orientation

Version 1

int totalCapacity = 0;
for(int i = 0; i < fleet.length; i++) {
 if(fleet[i] instanceof Sedan)
 totalCapacity += ((Sedan) fleet[i]).getCapacity();
 else if(fleet[i] instanceof Minivan)
 totalCapacity += ((Minivan) fleet[i]).getCapacity();
 else if(fleet[i] instanceof SportsCar)
 totalCapacity += ((SportsCar) fleet[i]).getCapacity();
 else
 totalCapacity += fleet[i].getCapacity();

Recall that c instanceof C is a boolean expression that is true if and only if c

refers to an object of class C or one of its subclasses. The naive approach in Version 1

works, but it is ugly and, due to dynamic method invocation, totally unnecessary. In

fact, all we need in order to compute the total capacity is the following code:

Version 2

int totalCapacity = 0;
for(int i = 0; i < fleet.length; i++)
 totalCapacity += fleet[i].getCapacity();

The runtime system dynamically (that is, during execution) looks at the actual
class of the object referred to by fleet[i] rather than the declared type of

fleet[i] and executes the getCapacity method in the actual class. As a result,

totalCapacity will end up with the value 14 (i.e., 5 + 7 + 2).

It is important to realize that if the three subclasses implement getCapacity

methods but the superclass does not mention such a method (e.g., if the Automo-

bile class had no getCapacity method or if there were no Automobile class

and so the three subclasses had Object as their immediate superclass), then over-

riding would not be occurring. Instead, the compiler will complain about Ver-

sion 2, saying that fleet[i] is of class Automobile but the Automobile class

has no getCapacity method. That is, there are two parts to the invocation of

fleet[i].getCapacity(). The first part occurs at compile time when the com-

piler sees that fleet[i] is declared to have type Automobile, at which point the

compiler determines which method is to be called by looking for a getCapacity

method in the Automobile class. The second part occurs at runtime, in that the imple-
mentation or body of the getCapacity method that is actually executed is selected

dynamically by looking at the actual class of the object referred to by fleet[i].

Hence, if there were no Automobile superclass or if the Automobile class did not

mention a getCapacity method, then the naive code in Version 1—after removing

the last else clause—would be the only way to get the capacities of the automobiles in

the array.

Do you see the beauty of Version 2? Not only is the code shorter and simpler,

but also if a new subclass of Automobile is later introduced, for example, an SUV,

and objects of that class were added to the array fleet, then the Version 1 pro-

02-M4377.indd 3402-M4377.indd 34 12/5/07 12:05:10 PM12/5/07 12:05:10 PM

 Chapter 2 Fundamentals of Object Orientation 35

grammer would have to modify the conditional statement to test one more case.

However, Version 2 can handle the objects of the new subclass without any changes.

There is a natural elegance to code like this that uses polymorphism to avoid con-

ditional statements that test whether a value is of a particular type. Using polymor-

phism to avoid such conditionals is considered to be one of the “OO” ways of doing

things.

SECTION 2.9 OVERLOADING VS. OVERRIDING

The difference between overloading method names and overriding methods is an

important one. In this section, we will attempt to clarify that difference and further

explore how dynamic method invocation works.

Two methods in the same class with the same name but different parameter

lists (more precisely, different lists of parameter types—the parameter names are

irrelevant) cause the method name to be overloaded. This means that the method

name is being used for two completely different methods in the same class. Note

that overloading occurs within one class and refers to two or more methods with the

same name but different signatures. Contrast this with overriding, which requires a

superclass and subclass and refers to two methods, one in each class, with exactly

the same signatures.

The three versions of wait in the Object class form one example of overload-

ing. The String class’ two substring methods provide another example. One of

the substring methods has one integer parameter and the other has two integer

parameters:

public String substring(int beginIndex)
public String substring(int beginIndex, int endIndex)

The first method returns the substring starting at the given index and continuing to

the end of the string. The second method returns the substring between the given

indices.

You should notice how the two substring methods perform almost identical

actions. It should go without saying that you should only overload a method name if

the methods with the same name do essentially the same thing, just as these sub-
string methods do.

It is a bit harder to understand which method actually gets called when the two

methods with the same name have parameters that involve subtypes.

Let us consider our Automobile class again. As discussed in Section 2.5, all

classes in Java are subclasses of the Object class and so inherit a method from the

Object class with the following header:

public boolean equals(Object obj) (1)

Suppose that you now add to the Automobile class a method with the following

header:

public boolean equals(Automobile auto) (2)

02-M4377.indd 3502-M4377.indd 35 12/5/07 12:05:11 PM12/5/07 12:05:11 PM

36 Chapter 2 Fundamentals of Object Orientation

See Figure 2.12 for a UML diagram of the Automobile and Object classes.

Note that the parameter of the second equals method is of a different type

than the parameter of the first (inherited) equals method. Because of the differ-

ence, the second method does not override the inherited equals method, and in-

stead the equals method name is now overloaded in the Automobile class. That is,

there are now two completely different methods in the Automobile class (one inher-

ited and one local) that happen to share a name and one of whose parameter types is

a subtype of the other’s parameter type. As a result, it can be confusing as to which

of these overloaded methods will be called when an object sends the equals mes-

sage to an Automobile object auto.

For example, consider the following code:

Object o = new Object();
Automobile auto = new Automobile();
Object autoObject = new Automobile();
auto.equals(o);
auto.equals(auto);
auto.equals(autoObject);

For each of the three calls to equals, can you tell which of the two equals meth-

ods in the Automobile class is invoked? Is it the first method (1) that was inherited

from the Object class and contains an Object as a parameter or the second method (2)

that contains an Automobile as a parameter?

In general, the method that is executed depends on the declared type of the ob-

ject being sent the message and the declared or inferred type of the arguments (not

the actual value of the arguments) passed to the method. As a first step, the compiler

determines the signature of the method that is to be called. For example, when the

compiler sees a method call such as auto.equals(o), it looks at the declared

type of auto (in this case, Automobile) and looks in that class or interface and its

superclasses or superinterfaces for all methods named equals. It then looks at the

parameter lists of those methods and finds the list whose types most closely match

the declared or inferred types of the arguments. The chosen signature is the one

with this parameter list. In our example, the argument o has declared type Object.

Therefore, the equals method with an Automobile as the parameter has too nar-

row a parameter type, and so the equals method with a parameter of type Object

is chosen. That is, the compiler chooses the signature “equals(Object o).”

FIGURE 2.12 The Automobile and
Object classes.

+equals(o:Object):boolean

+equals(o:Automobile):boolean

Object

Automobile

02-M4377.indd 3602-M4377.indd 36 12/5/07 12:05:11 PM12/5/07 12:05:11 PM

 Chapter 2 Fundamentals of Object Orientation 37

The second step occurs at runtime when the actual class of the object being sent

the message is searched for a method with the chosen signature. If that class doesn’t

contain such a method, the chain of superclasses is climbed until a method with the

desired signature is found. In our example, the method with the chosen signature is

found in the superclass Object and so that method is the one that is executed.

For another example, consider the call auto.equals(auto). The compiler

again looks in the Automobile class (since auto is declared to be of type Automo-

bile) and finds two equals methods in that class (one declared in Automobile and

one inherited from Object). In this case, the one with the parameter type that most

closely matches the type of the argument auto is the equals method (2), and so

the compiler chooses the signature equals(Automobile auto). At runtime,

the actual class of auto is searched for a method with the chosen signature, which

is method (2), and that method is executed.

When the compiler sees auto.equals(autoObject), it notes that au-
toObject is declared to be of type Object, and so it chooses the signature

“equals(Object o).” At runtime therefore, method (1) is executed.

Note that the actual class of the argument plays no role in determining which

method is executed. The declared or inferred types of the arguments are the only

part of them that plays a role.

To solidify these concepts, let us consider six other calls to equals using the

same variables o, auto, and autoObject:

o.equals(o);
o.equals(auto);
o.equals(autoObject);
autoObject.equals(o);
autoObject.equals(auto);
autoObject.equals(autoObject);

In all six cases, the compiler notes that o and autoObject are declared to be of

type Object, and so it looks in the Object class for all methods named equals. It

finds only one such method and so in every case, the signature “equals(Object o)” is

chosen. Therefore, method (1) is the one always executed.

In this example, there were no overriding methods. The situation is somewhat

different if we include a method in the Automobile class, with header

public boolean equals(Object o) (3)

that overrides the equals method inherited from the Object class. See Figure 2.13

for the UML diagram.

Note that the Automobile class still has exactly two equals methods, but both

of these methods are now implemented in the Automobile class rather than any be-

ing inherited.

Let us now reconsider the nine method calls discussed above:

Object o = new Object();
Automobile auto = new Automobile();
Object autoObject = new Automobile();

02-M4377.indd 3702-M4377.indd 37 12/5/07 12:05:11 PM12/5/07 12:05:11 PM

38 Chapter 2 Fundamentals of Object Orientation

auto.equals(o);
auto.equals(auto);
auto.equals(autoObject);
o.equals(o);
o.equals(auto);
o.equals(autoObject);
autoObject.equals(o);
autoObject.equals(auto);
autoObject.equals(autoObject);

In this case, the compiler is going to behave exactly as it did in the earlier case. That

is, in all nine cases the compiler will determine the signature of the equals method

to be called just as before. However, the method that actually gets executed now

changes because of dynamic method invocation. Recall that dynamic method invoca-

tion causes the Java environment to look at the actual class of the object being sent the

message to determine which of several overridden versions of a method to call.

In the case of auto.equals(o), the compiler determined that the sig-

nature of method to be called is equals(Object o). At runtime, the ac-

tual class of auto (namely Automobile) is searched for a method with the cho-

sen signature. Therefore, method (3) is executed. Similarly, method (3) will be

executed in the calls auto.equals(autoObject), autoObject.equals(o),
autoObject.equals(auto), and autoObject.equals(autoObject).
Method (1) is executed in the calls o.equals(o), o.equals(auto), and

o.equals(autoObject), and method (2) is executed only in the call auto.
equals(auto).

In summary, the compiler looks at the various overloaded versions of the method

to find an appropriate signature by looking at the declared type of the object being

sent the message and the declared types of the arguments to the method call. The

actual implementation of the method with that signature is chosen at runtime by dy-

namic method invocation using the actual value of the object being sent the message.

The actual classes of the arguments to the method call do not play a role.

Other languages differ from Java in this respect. Some languages, like CLOS,

an object-oriented extension to the Common Lisp language, are multimethod lan-

guages in which methods are not treated like messages sent to one particular object.

FIGURE 2.13 The new relationship
between Automobile and Object.

+equals(o:Object):boolean

+equals(o:Automobile):boolean
+equals(o:Object):boolean

Object

Automobile

02-M4377.indd 3802-M4377.indd 38 12/5/07 12:05:12 PM12/5/07 12:05:12 PM

 Chapter 2 Fundamentals of Object Orientation 39

Instead, all objects involved in the method call are passed to the method as argu-

ments, and at runtime the method body to be executed is determined by considering

the actual values of all of the arguments.[2, p. 98]

What is a programmer to do to create elegant code when overloaded method

names threaten to confuse everyone? One approach would be to avoid overloading

method names altogether, but that choice is too extreme. Overloading a method name

can result in much more readable code if the methods with the overloaded names are

performing similar actions. A better approach is to use overloading only in ways that

clearly indicate which method with the overloaded name is being referred to.

For examples of the kinds of overloading to avoid, consider the following four

code blocks.

 1. { foo(“hi”, “there”); }
 2. { Object o1 = “hi”; foo(o1, “there”); }
 3. { Object o2 = “there”; foo(“hi”, o2); }
 4. { Object o1 = “hi”; Object o2 = “there”; foo(o1, o2); }

At first glance, it appears that they all do the same thing. However, in certain situ-

ations, they will in fact do different things. Try to figure out how such a situation

could occur before reading further. Hint: It depends on overloading foo.

In fact, if the class containing the four code blocks has three foo methods with

signatures

 1. foo(Object, String)
 2. foo(String, Object)
 3. foo(Object, Object)

that do different things, then the four code blocks will also do different things. More

precisely, the last three code segments will call the three versions of foo in the

given order. The first code segment will cause a compiler error since the Java com-

piler cannot determine which of the three versions of foo most closely matches the

types of the arguments in the call to foo. To understand better what causes this

compiler error, see [3].

In summary, to avoid confusion due to overloading, avoid overloading a method

name with two versions that have the same number of parameters in the same order

but with the types of parameters in one version being subtypes of the corresponding

parameters in the second version. In particular, it is a good idea to try to ensure that

your methods with overloaded names have different numbers of parameters, which

makes it very easy to see which version will be executed.

SECTION 2.10 CONTROLLING ACCESS TO
METHODS AND DATA (PUBLIC, PRIVATE,
PROTECTED, PACKAGE)

When it is said that a subclass inherits all data and methods of its superclass, that

doesn’t mean that the subclass can directly access all that data or those methods.

Instance variables and methods can be labeled “private,” in which case the data

02-M4377.indd 3902-M4377.indd 39 12/5/07 12:05:12 PM12/5/07 12:05:12 PM

40 Chapter 2 Fundamentals of Object Orientation

or methods can only be accessed within that class itself. In particular, subclasses

cannot use a superclass’ private data or methods except indirectly by calling other

methods in the superclass that in turn call the private methods or use the private

data. Instance variables and methods can also be labeled “public,” which means

that any other object can access those variables and methods, not just objects of that

class and its subclasses.

There are two other categories of access that provide more restrictive access

than public but less restrictive access than private, which we will only briefly dis-

cuss here. If instance variables or methods of a class C are labeled “protected”, then

they can be accessed by any subclass or by any class in the same package as C. If no

access label (“public,” “private,” or “protected”) is used for an instance variable or

method, then it is said to have “package” access, which means that other classes in

C’s package can access it. In [4], the analogy is made that subclasses are like family

members and package members are like close friends. Hence, data and methods that

have package access are those data and methods that you would be willing to share

with your close friends, but not necessarily your family. Data and methods with

protected access are those that you would be willing to share with your family and

close friends. Of course, data and methods that have public access are shared with

the whole world.

When should you use protected or package access for data? A good rule of

thumb is “never,” basically because it exposes too much of the internal implemen-

tation of a class. For example, if nonconstant data is made nonprivate, then other

classes are aware of and can manipulate that data, which makes it much harder to

later modify the implementation of the class. Furthermore, if other classes can ar-

bitrarily modify that data, then it is hard to ensure that the objects’ data will always

have legal, well-formed values.

Just as importantly, the fact that other classes can access nonprivate fields and

methods means that those fields and methods must be treated as part of the perma-

nent external interface of the class, and so they cannot later be changed easily, since

changes to them potentially force changes to other classes that use this class. For

these reasons, it is a good rule of thumb to think of “protected” and “package” as a

form of “public.”

However, there are a few situations where it does make sense to allow protected

or package access to instance or class variables. If you think of a package as an

integrated component of classes that provide a specific functionality to users, then,

for efficiency reasons, it might make sense to allow the classes in the package to

have direct access to the data in other classes in the package. A drawback to such

use of package access is that a change in the implementation of one of the classes

in the package may require changes to other classes in the package, but at least the

changes are restricted to the package.

Similarly, although methods should usually be labeled public or private, there

are a few situations in which it makes sense to give methods protected or package

access. For example, suppose you have a class with private data and public “get-

ter” methods for access to some of that data. If you do not want to let users change

the value of that data, then you should omit any modifier methods from that class.

However, if you wish to make your class as generally reusable as possible, then you

02-M4377.indd 4002-M4377.indd 40 12/5/07 12:05:13 PM12/5/07 12:05:13 PM

 Chapter 2 Fundamentals of Object Orientation 41

need to anticipate the fact that subclasses of your class may want to modify that

data. But subclasses cannot change inherited data if the data are private and if there

are only public getter methods in the superclass. The solution is to add protected

modifier methods in your class. Then subclasses can call these protected methods

and so modify the data. Here is how it would work in the trivial case of a class used

to “wrap” an object around a social security number:

SECTION 2.11 SUMMARY

Here is a summary of the ideas introduced in this

chapter.

� An object-oriented program is one that is par-

titioned into a set of communicating objects,

each of which encapsulates all the behavior and

knowledge relating to one concept. The proper

use of OO programming techniques can in-

crease the modifiability, readability, reusability,

and maintainability of a program.
� An object-oriented programming language sup-

ports the OO style of programming by provid-

ing classes, objects, messages, inheritance, and

polymorphism.
� In Java, methods can be class or static methods

when objects of that class have no state or do not

use their state in the body of that method. Vari-

ables can be class or static variables when the

piece of data they contain needs to be shared

among objects of that class (and possibly other

classes).
� Implementation inheritance or subclassing is

a way for one class (the subclass) to use all the

methods and variables implemented in another

class (the superclass) as if the methods and

variables had been implemented directly in the

subclass. Inheritance is typically used either to

specialize the behavior of the superclass in the

subclass by adding new features or overriding

existing features or to generalize the behavior of

classes by moving common behavior to a com-

mon superclass.

public class SSNWrapper
{
 private int socialSecurityNumber;
 public SSNWrapper(int ssn) { socialSecurityNumber = ssn; }
 public int getSSN (){ return socialSecurityNumber; }
 protected void setSSN(int ssn) { socialSecurityNumber = ssn; }
}
public class SettableSSNWrapper extends SSNWrapper
{
 public SettableSSNWrapper(int ssn) { super(ssn); }
 public void setSSN(int ssn) { super.setSSN(ssn); }
}

Any users of SSNWrapper objects cannot modify the value of the social-
SecurityNumber variable unless those users are objects of subclasses of SSN-

Wrapper or in the same package as SSNWrapper. However, all users of Settable-

SSNWrapper can modify the value stored in the object.

For our purposes in this text, the public and private access categories will

suffice.

02-M4377.indd 4102-M4377.indd 41 12/5/07 12:05:13 PM12/5/07 12:05:13 PM

42 Chapter 2 Fundamentals of Object Orientation

� Some languages, such as C��, allow multiple

implementation inheritance, which means that a

class can have more than one superclass. Java, in

constract, is a single implementation inheritance

language in that it allows only one superclass for

each class.
� A type is a set of data values and the operations

that can be performed on them. Any class defines

a type, the objects of which are the data val-

ues associated with the type and the operations

of which are the public methods of the class.

Java interfaces also define types. All objects of

classes that implement the interface are data val-

ues of that type.
� Types can have subtypes. A subclass is a sub-

type of its superclass and a class is a subtype of

any interface that it implements. In this way, an

object of a class can actually be a data value of

many different types.
� Subtype polymorphism refers to the ability of

a variable of a given type to actually refer to an

object of any of its subtypes. If a method is in-

voked on such an object, the implementation of

that method specific to the subtype will be ex-

ecuted. This process is called dynamic method

invocation.
� In contrast to an overriding method, which is a

method in a subclass with the same signature

as a method in its superclass, an overloaded

method name refers to two or more methods in

the same class with the same name but different

signatures.
� Public methods and data can be accessed by

objects of other classes, private methods and

classes can be accessed only by objects of the

same class, protected methods and data can only

be accessed by objects of the same class or any

subclass or objects whose class is in the same

package, and package methods and data can

only be accessed by objects whose class is in the

same package.

EXERCISES

 1. Briefly describe how OO programming, as com-

pared to non-OO programming, makes it easier to

write elegant software, as discussed in Section 1.3 of

Chapter 1.

 2. In Section 2.2, a Person class is defined and then a

Person object is created by the following line of code:

Person firstPerson = new Person
("Adam", new Date(0));

 In what month and year and on what day is Adam’s

birth date? Hint: Look at the documentation of the

Date class in the java.util package.

 3. Give a specific example, other than the example of

constants, where it would make sense to have a class

variable (that is, a variable declared “static”). That is,

give an example where it would make sense for all ob-

jects of a class to share a variable.

 4. In Section 2.3, we mentioned that the Set class’ static

method intersect(Set s1, Set s2) can treat

a null s1 or s2 as an empty set and so return an

empty set. Assuming we really want a static method

for determining set intersections (rather than an in-

stance method), is this particular behavior with null

parameters a good design? Why or why not?

 5. Look in the Java APIs for the javax.swing

.JOptionPane class. It contains many class methods.

Why would the Java class designers choose to make

them class methods instead of instance methods?

 6. In the Rectangle example in Section 2.5, the pro-

grammer desired a class like Rectangle except with

getCenter and setCenter methods, and so the

programmer subclassed Rectangle. An alternative

solution to the programmer’s problem is to use the

Rectangle class and wherever a call to setCenter

or getCenter is desired, instead “inline” the call.

That is, instead of calls to getCenter and set-
Center, there could be code to get and set the cen-

ter manually. For example, instead of

Point center = r.getCenter();

 the programmer could write

Point center;
center.x = r.getCenterX();
center.y = r.getCenterY();

02-M4377.indd 4202-M4377.indd 42 12/5/07 12:05:14 PM12/5/07 12:05:14 PM

 Chapter 2 Fundamentals of Object Orientation 43

 which accomplishes the same objective. Then the

programmer wouldn’t have to subclass Rectangle.

Discuss whether this solution is preferable to the so-

lution involving subclassing.

 7. In Section 2.5 we mentioned that you can use im-

plementation inheritance to create a subclass that

specializes a superclass either by adding some new

behavior or by changing existing behavior. We can

also use implementation inheritance to remove some

existing behavior. Explain how it would be done

and discuss the elegance or inelegance of this use of

inheritance.

 8. In Section 2.5, we introduced HumanCustomer,

BusinessCustomer, and Customer classes, but no

complete implementations of such classes were

given. Implement all three classes. Assume that, in

addition to a name, the HumanCustomer class has

a spouse and a list of children as attributes with

getSpouse and getChildren methods and that

a BusinessCustomer has a size attribute giving the

number of employees and a getSize method. Don’t

forget to create appropriate constructors for all three

classes.

 9. In the Customer example of Section 2.5, the Cus-

tomer class was created to avoid code duplication in

the BusinessCustomer and HumanCustomer classes.

An alternative approach that also avoids such dupli-

cation is to combine the two classes into one Cus-

tomer class that includes all the instance variables

and methods of both classes. There would also be an

extra boolean variable isHuman that is true if the

Customer corresponds to a human and is false if the

customer is a business. Using the value of this extra

variable, you could decide how to respond to any re-

quest (i.e., any method call) regarding the customer.

What do you think of this implementation? Explain.

 10. In Section 2.5, we talked about using inheritance to

create a common superclass to two subclasses and

then move duplicated code into the superclass. Fol-

lowing this reasoning, one might be tempted to create

a common superclass of classes Pet, Person, Street,

City, and Country objects, if they all have a get-
Name method, to avoid duplication of code. If there

were such classes, would a superclass be appropriate

here? Briefly explain. If it is appropriate to have such

a superclass, what would you call the superclass and

should it be abstract? More generally, when is it inap-

propriate to create a common superclass of classes

with common behavior or attributes?

 11. In Section 2.5, we introduced a FilledOval class

whose draw method overrode the parent’s draw

method. However, the Oval’s instance variables are

public, which, as we later discussed, is not optimal.

Change those instance variables to private and reim-

plement any code that depended on the public acces-

sibility of those instance variables.

 12. In Section 2.6, we mentioned that, to replace a

LinkedList object in the package with an Array-

List object, it is not sufficient to do a global search

and replace. Give one reason why this approach is

insufficient.

 13. In Section 2.6, we said that “if software is elegant,

then one should be able to remove an object of one

class and easily replace it with, or ‘plug in,’ an object

of another ‘equivalent’ class either on the fly or with

only minimal code changes.” Explain what “equiva-

lent” and “minimal” mean based on the discussion in

Section 2.6.

 14. In Section 2.6, we talked about the problems of

changing the type of list in our application. In our

discussion, we assumed that once the type of list was

chosen, it remained fix for the duration of the execu-

tion of the application. However, what if we wanted

our application to be able to change the type of list

on the fly? That is, during execution, the user or the

program itself might decide that we need to start us-

ing ArrayLists instead of LinkedLists for all lists that

will be created in the future (we will allow existing

lists to remain as is). Tell how this would be imple-

mented (a) using a factory method and (b) without

using a factory method. Is the factory method ver-

sion more elegant? Explain.

 15. In Section 2.8, we gave the Automobile class’ get-
Capacity method a default behavior of returning 0

to help us explain how dynamic method invocation

and overriding works. However, this design is not

very elegant, and, in fact, the Automobile should be

an interface. Briefly explain why.

 16. Consider an Automobile class with the following

implementations of equals methods:

public boolean equals(Object o) {...}
//version A, inherited from Object

public boolean equals (Automobile o)
{...} //version B

 and a class Sedan that is a subclass of Automobile

with the following methods:

public boolean equals(Automobile o)
{...} //version C

public boolean equals(Sedan o)
{...} //version D

02-M4377.indd 4302-M4377.indd 43 12/5/07 12:05:14 PM12/5/07 12:05:14 PM

44 Chapter 2 Fundamentals of Object Orientation

 and a class Minivan that is a subclass of Automobile

with the following methods:

public boolean equals(Automobile o)
{...} //version E

public boolean equals(Minivan o)
{...} //version F

 Now suppose you have the following six variables:

 Object o = new Automobile();
Automobile auto = new Automobile();
Automobile sedanAuto = new Sedan

(Color.black);
Automobile minivanAuto = new Minivan

(Color.blue);
Sedan sedan = new Sedan(Color.grey);
Minivan minivan = new Minivan

(Color.pink);

 There are 36 ways each of these variables can be

paired off in a call to equals, where one of the

6 variables is being sent the equals message and

one of the 6 is the argument to equals. For each

such pair, indicate which of the equals methods

will be executed. For example, if there is a call

auto.equals(auto)

 then version B of equals will be called. Figure

out which equals method will be executed for the

other 35 combinations.

 17. In Section 2.9, we mentioned two substring

methods in the String class. Suppose it was your job

to implement these two methods. Describe how you

would go about avoiding code duplication in the bod-

ies of these two methods.

 18. In Section 2.10, we gave the example of a SSNWrap-

per class that allowed subclasses to modify the so-
cialSecurityNumber instance variable through

a protected modifier method. Wouldn’t it be a whole

lot easier to just make socialSecurityNumber

itself protected and so avoid the need for the pro-

tected setSSN method in the SSNWrapper class? In

that case, the code would look like this:

public class SSNWrapper
{

 protected int socialSecurityNumber;
 public SSNWrapper(int ssn)

{ socialSecurityNumber = ssn; }
 public int getSSN() { return

socialSecurityNumber; }
}
public class SettableSSNWrapper

extends SSNWrapper
{

 public SettableSSNWrapper(int ssn)
{ super(ssn); }

 public void setSSN(int ssn)
{ socialSecurityNumber = ssn; }

}

 By making this change, we’ve eliminated the need

for the protected method in the SSNWrapper class.

Is this version better or worse than the version in the

text? Explain.

 19. In the java.awt.event package, there is an Action-

Listener interface that many classes implement when

they want to be made aware of events that occur, such

as mouse clicks in buttons. Why is ActionListener

an interface instead of an abstract class? How would

making ActionListener an abstract class decrease the

usability of the class?

 20. For each of the following pairs of classes, tell which

class of the pair should be a subclass of which, if ei-

ther. Briefly explain why or why not.

 a. Car and Tire

 b. Car and Truck

 c. Card (with suit and value instance variables) and

Deck (of 52 cards)

REFERENCES

 1. Riel, A.J., Object-Oriented Design Heuristics.
1996. Reading, MA: Addison-Wesley.

 2. Bruce, K., Foundations of Object-Oriented Lan-
guages. 2002 Cambridge, MA: MIT Press.

 3. Gosling, J., B. Joy, G. Steele, and G. Bracha. Java
Language Specifi cation. 3rd ed. The Java Series.

2005. Upper Saddle River, NJ: Prentice Hall.

 4. Campione, M., K. Walrath, and A. Huml, The
Java Tutorial: A Short Course on the Basics,

3rd ed. The Java Series. 2000. Reading, MA:

Addison-Wesley.

02-M4377.indd 4402-M4377.indd 44 12/5/07 12:05:15 PM12/5/07 12:05:15 PM

45

3
Elegance and
Implementation
Inheritance

SECTION 3.0 INTRODUCTION

In the last chapter, we discussed all the features that make a language object-

oriented, but we discussed very few of the advantages and disadvantages of the vari-

ous possible competing OO designs of a solution to a problem. In particular, we didn’t

discuss all the trade-offs involved in designs using implementation inheritance. For

example, the Java compiler will let you declare your classes to be subclasses of vir-

tually any other class (as long as the inheritance hierarchical structure is a tree), but

that fact does not mean it is a good idea to do so. Because there are so many issues

to be addressed in this topic, we are devoting a full chapter to it. We will see that

the use of inheritance can greatly increase the elegance of the design or greatly

decrease it.

We will fi rst analyze four different justifi cations for using inheritance to see

whether they are valid individually or in combinations. From the discussion and the

examples presented there, we will also develop guidelines for using inheritance and

for deciding on other relationships or associations among classes, such as aggrega-

tion and message forwarding. We will also show some of the downsides or costs of

using inheritance.

We will then give three examples, one involving men and women, one involv-

ing a drawing program, and the third concerning sorting, that show how inheritance

can clean up the design and code. Because the sorting example uses inheritance

of array types, we include a short discussion of the special issues related to such

inheritance.

We end by revisiting of the issue of inheritance versus message forwarding.

In this chapter, whenever we mention “inheritance,” we mean implementa-

tion inheritance (subclasses in Java) rather than interface inheritance (interfaces in

Java).

03-M4377.indd 4503-M4377.indd 45 12/5/07 12:05:40 PM12/5/07 12:05:40 PM

46 Chapter 3 Elegance and Implementation Inheritance

SECTION 3.1 FOUR PERSPECTIVES
ON INHERITANCE

Suppose you are a team leader designing a software system and one member of your

team comes to you with a sample design that, among other things, has two classes A

and B associated with each other through inheritance. If you question your worker

about this design decision, she could come up with at least four reasons for includ-

ing this inheritance relationship between A and B.

Code Reuse Perspective

Your team member might say that class B has some code (data or methods) that is

identical to code in A and so, through inheritance, this duplicate code can be elimi-

nated and instead B can inherit the code from A.

Is-A Perspective

The team member might argue that every B object “is an” A object. That is, the set

of all objects of class B is a subset of the set of all objects of class A. Because the

sets of objects have a subset relationship, it is natural to make B a subclass of A.

Public Interface Perspective

The team member might point out that the public interface of B includes the public

interface of A. Therefore, it is appropriate that B should be a subclass of A.

Polymorphism Perspective

The team member might show you how it would be benefi cial to be able to use poly-

morphism to assign an object of class B to a variable declared to be of type A. This

benefi t justifi es the use of inheritance.

Let us look at all four perspectives in more detail.

SECTION 3.2 SUFFICIENCY OF CODE REUSE

One of the real benefi ts of inheritance, as we mentioned in the last chapter, is code

reuse. But is code reuse alone a suffi cient reason for using inheritance?

Let us look at an example. Suppose your design includes a Dog class and a

Person class, both of which have a name fi eld and a getName method. To avoid

duplicating that fi eld and method, you could remove the name fi eld and getName

method from the Person class and make the Person class a subclass of the Dog class.

See Figure 3.1 for a UML diagram showing this relationship.

Unfortunately, in Java, subclasses inherit everything in their superclasses. There-

fore, the Person class would also inherit the bark and getLastRabiesShotDate

methods, which are rather inappropriate for Person objects.

Alternatively, you could put the name fi eld and getName method in the

03-M4377.indd 4603-M4377.indd 46 12/5/07 12:05:41 PM12/5/07 12:05:41 PM

 Chapter 3 Elegance and Implementation Inheritance 47

Person class and then make the Dog class a subclass of Person. Clearly this solu-

tion is just as inappropriate; it makes little sense for the Dog class to inherit the

getEmployer and getPetDogs methods.

In situations such as these, you really want to reuse only some of the code. If a

subclass could selectively choose which code to inherit and which not to inherit, an

argument favoring the use of inheritance here would have more merit.

What is a better way to avoid the code duplication in the Dog and Person

classes? One way would be to create a NamedObject class with the name fi eld and

getName method and make Dog and Person both subclasses of NamedObject.

This approach is particularly feasible in programming languages with multiple

 inheritance, where such a superclass would be called a “mixin.” However, the fact

that there is no multiple inheritance in Java limits the use of mixins because you

might not want to “use up” the single inheritance on a mixin class.

What if all the methods in one class are duplicated exactly in another class?

Would it then be appropriate to use inheritance to make one a subclass of the other?

It would certainly be more appropriate, but even in this case, as we will see in Sec-

tion 3.4, there may be alternatives that are preferable.

In summary, being able to inherit code that would otherwise have to be dupli-

cated is a useful feature of object-oriented languages, and therefore one should al-

ways consider this feature when deciding whether to use inheritance. But code reuse

by itself rarely justifi es inheritance.

SECTION 3.3 SUFFICIENCY OF CODE REUSE
AND THE IS-A RELATIONSHIP

The problem with using inheritance for the Dog and Person class in the preced-

ing section is that dogs are not people and people are not dogs. That is, there is no

“is-a” relationship between the concepts that the classes model. Is the combination

of code reuse and the “is-a” relationship among the classes a suffi cient reason for

using subclassing?

-name:String

+getName():String
+bark():void
+getLastRabiesShotDate():Date

+getEmployer():Company
+getPetDogs():Dog[]

Dog

Person

FIGURE 3.1 A misuse of inheritance.

03-M4377.indd 4703-M4377.indd 47 12/5/07 12:05:41 PM12/5/07 12:05:41 PM

48 Chapter 3 Elegance and Implementation Inheritance

Let us consider another example. Suppose a software designer needs to model

geometric shapes, and so he creates a Square class and a Rectangle class. Should

 inheritance be used between these two classes? It is clearly the case that, from a

geometrical perspective, every square “is a” rectangle. Furthermore, there are cer-

tainly good opportunities for code reuse between them. For example, the imple-

mentations of methods involving moving or fi nding the area or perimeter of the

rectangles and squares are probably identical in both classes. Therefore, it seems

natural to make the Square class a subclass of the Rectangle class. But is this a good

decision?

Consider the following Java implementation of the Square and Rectangle classes

using inheritance. See Figure 3.2 for a UML diagram of these classes. Notice how

much code reuse we have here in that the Square class doesn’t need to implement

anything but a constructor.

public class Rectangle
{
 private int x, y, width, height;
 public Rectangle(int x, int y, int w, int h) {
 this.x = x; this.y = y; width = w; height = h;
 }
 public int getWidth() { return width; }
 public int getHeight() { return height; }
 public int getArea() { return width * height; }
 public int getPerimeter() { return 2 * (width + height); }
 public setTopLeft(int newx, int newy) { x = newx; y = newy; }
 public erase(Graphics g) { ... }
 public draw(Graphics g) { ... }
 public void setSize(int w, int h) { width = w; height = h; }
}

+getWidth():int
+getHeight():int
+getArea():int
+getPerimeter():int
+setTopLeft(W:int,h:int):void
+erase(g:Graphics):void
+draw(g:Graphics):void
+setSize(w:int,h:int):void

Rectangle

Square

FIGURE 3.2 The Square class is a
subclass of Rectangle.

03-M4377.indd 4803-M4377.indd 48 12/5/07 12:05:42 PM12/5/07 12:05:42 PM

 Chapter 3 Elegance and Implementation Inheritance 49

public class Square extends Rectangle
{
 public Square(int x, int y, int side) {
 super(x, y, side, side);
 }
}

However, as you may have noticed, there is a serious problem with this design. Be-

cause of the fact that subclasses inherit all methods of their superclasses, the Square

class now inherits a setSize method that has two parameters. A call to this method

can make the width and height of the Square unequal, a rather undesirable outcome.

A setSize method for Squares should just take one parameter.

What can we do about this situation? Before throwing away inheritance, let’s

try to patch the problem up by other means. One way to do so is to nullify the nega-

tive effects of the inherited setSize method by overriding it in the subclass. For

example, we might add the following method to the Square class:

public void setSize(int w, int h) { width = h; height = h; }

thereby allowing users to modify the size of the square but doing it in a way that

preserves its “squareness.”

Unfortunately, this solution is not a very good one either. To see why, suppose

that the user adds the following method to his drawing program:

public void stretch(Rectangle r, int dx, Graphics g)
{
 r.erase(g);
 r.setSize(r.getWidth() + dx, r.getHeight());
 r.draw(g);
}

When this method is executed, the user expects to see a rectangle being stretched

horizontally by the amount dx. But if, unbeknownst to the user, a Square object is

passed as the fi rst argument, then the user will be surprised or confused to see no

stretching. Code is not considered elegant if the user of that code is surprised or

confused by the behavior of that code.

Our problem here is that the subclass does not have behavior consistent with

the behavior of its superclass. Such consistent behavior is necessary for elegant

code.

A similar interface (that is, similar method signatures) is not suffi cient for an el-

egant subclass/superclass or class/interface relationship; consistent behavior is

also required. In particular, a class B should not inherit class A’s methods and

then nullify them or change their behavior to do something completely different.

Guideline

03-M4377.indd 4903-M4377.indd 49 12/5/07 12:05:42 PM12/5/07 12:05:42 PM

50 Chapter 3 Elegance and Implementation Inheritance

One consequence of this guideline is that the designer of an interface or a class

needs to specify clearly in any documentation the semantics of each method. If, in-

stead, an interface is defi ned containing a method foo, for example, but no documen-

tation for foo is provided, then any class implementing this interface can legitimately

give foo any semantics it wants, which can result in horribly confusing code.

This guideline can also be phrased in terms of astonishment.

For example, a client using a Square object as the value of r in the stretch

method above will almost surely be surprised by its behavior, indicating a problem

with the inheritance hierarchy.

What are the implications of following this guideline? The answer depends on

what we mean by a “surprise.” There are two defi nitions of that word that we could

provide. In the more restrictive case, a surprise is any difference in the behaviors

of objects of the two classes. If we use this defi nition, then, by the principle of least

astonishment, we are not allowed to change any of the inherited behavior in the sub-

class, which means overriding superclass methods is pretty much prohibited. There-

fore, subclasses can only add new behavior rather than modify existing behavior.

The new behavior is invisible when the subclass objects are being treated as if they

were of the type of the superclass. This restrictive version of the principle could bet-

ter be called the Principle of No Astonishment.
A less restrictive defi nition of surprise would be to say that a surprise is any

difference in the documented behavior of objects of the two classes. Consider the

FilledOval subclass of Oval defi ned in the previous chapter. If the client thinks he

has a reference to an Oval and instead has a reference to a FilledOval, is the cli-

ent going to be surprised when the FilledOval is drawn on the screen? The answer

depends on the documentation for the Oval class. If the documentation mentions

nothing about the color of the inside area of a drawn oval, then subclasses are free to

draw that interior any way they desire. Therefore, under this less restrictive defi ni-

tion of surprise, it is perfectly acceptable to have the FilledOval class be a subclass

of Oval and the principle of least astonishment will be satisfi ed.

This discussion is all very well and good, but it is still rather vague. How, more

precisely, can you tell if your subclass is behaving properly in relation to its super-

class’ behavior? That is, how can you more precisely determine whether your class

design satisfi es the principle of least astonishment? The Liskov Substitution prin-

ciple[1; 2, pp. 148 and 174–181; 3] gives a good answer.

If a client thinks he has a reference to an object of type A but actually has a

reference to an object of subtype B, there should be no surprises when he sends

messages to the object.

Guideline (The Principle
of Least Astonishment)

03-M4377.indd 5003-M4377.indd 50 12/5/07 12:05:43 PM12/5/07 12:05:43 PM

 Chapter 3 Elegance and Implementation Inheritance 51

Let us look back at our Square and Rectangle example with regard to the LSP.

The setSize method of the Rectangle class has the behavior of modifying the

width independently of the height. A setSize method of the Square class can-

not have that behavior and still preserve squareness, and therefore the Square class’

setSize method does not do everything that the Rectangle class’ setSize

method does. The conclusion is that Square should not be a subclass of Rectangle.

There is another aspect of the Square/Rectangle example that you may have

noticed. The original is-a relationship between geometric squares and rectangles as

viewed by mathematicians holds only because, in mathematics, all geometric shapes

are fi xed, or immutable. If a mathematician talks about stretching a rectangle, he is

really talking about creating a new rectangle rather than modifying the old one.

Therefore, if the Rectangle class and Square class were made immutable (a class

is immutable if objects of the class cannot have their state changed in a way that is

noticeable to outside objects), they would better model the mathematician’s idea of

rectangles and squares. In fact, if the classes were made immutable by removing the

setTopLeft and setSize methods, it would be perfectly acceptable to make the

Square class a subclass of the Rectangle class.

So what is the proper relationship between mutable rectangles and mutable

squares? Should Rectangle be a subclass of Square instead of the other way around?

A Rectangle, by defi nition, can have unequal width and height unlike a Square and

so it should not be a subclass of Square. Therefore, either these two classes should

be completely unrelated or they should be related in some way other than as sub-

class and superclass, such as having a third class as their common superclass. For

example, you could defi ne an abstract Rectangle class with three subclasses—Mu-

tableRectangle, MutableSquare, and ImmutableRectangle—and have Immuta-

bleSquare be a subclass of ImmutableRectangle. See Figure 3.3 for a UML diagram

of this relationship. Although it lacks symmetry in the way it handles the mutable

A class A that is identical to another class B except that it has extra restrictions

on its state should not be a subclass of B unless both classes are immutable.

Guideline

It is acceptable to make a class B a subclass of class A or to make B an imple-

menter of interface A only if, for every method in both A’s and B’s interfaces,

B’s method accepts as input all the values that A’s method accepts (and possibly

more) and does everything with those values that A’s method does (and possibly

more).

Liskov Substitution
Principle (LSP)

03-M4377.indd 5103-M4377.indd 51 12/5/07 12:05:43 PM12/5/07 12:05:43 PM

52 Chapter 3 Elegance and Implementation Inheritance

and immutable version of rectangles and squares, it uses inheritance in a way that

avoids inelegant surprises.

An alternative would be to make an immutable Rectangle class with an immu-

table Square subclass, and let each of them have a mutable subclass, such as shown

in Figure 3.4.

There is another important point to consider in this discussion. Before adopt-

ing any of the Rectangle/Square class structures, designers should ask themselves

whether they really need a Square class. What does it provide that the Rectangle

class doesn’t provide? They cannot claim that any memory is saved with the imple-

mentation of the ImmutableSquare class given above, since the ImmutableSquare

class inherits all four instance variables of the ImmutableRectangle class even

though it doesn’t need all of them. Furthermore, if the user needs to distinguish

square from nonsquare rectangles, a boolean isSquare() method could easily be

added to the Rectangle class that merely checks whether the width and height are

equal. Also, in the case of mutable squares and rectangles, a square can be thought

of as just a temporary state of a rectangle, and so it is not clear that a Square class is

really that valuable.

+getWidth():int
+getHeight():int

Rectangle

+setWidth(w:int):void
+setHeight(h:int):void

MutableRectangle

+setSize(s:int):void

MutableSquareImmutableRectangle

ImmutableSquare

FIGURE 3.3
A possible Rectangle
and Square class
relationship.

Square

+getWidth():int
+getHeight():int

Rectangle

+setSize(s:int):void

MutableSquare

+setSize(w:int,h:int):void

MutableRectangle

FIGURE 3.4 Another possible
Rectangle and Square class
relationship.

03-M4377.indd 5203-M4377.indd 52 12/5/07 12:05:44 PM12/5/07 12:05:44 PM

 Chapter 3 Elegance and Implementation Inheritance 53

SECTION 3.4 SUFFICIENCY OF CODE REUSE, THE
IS-A RELATIONSHIP, AND PUBLIC INTERFACES

As mentioned in the preceding section, the problem with the is-a relationship be-

tween the original Square and Rectangle classes was the fact that the Square

and Rectangle’s behaviors didn’t match. That is, a Square is not a Rectangle if a

Rectangle has the ability to modify its width separately from its height. Another

way of saying it is that the public methods of the Rectangle class were not all appro-

priate for the Square class. But what happens if we do have similar public interfaces

with similar behaviors between two of our classes in addition to code reuse and an

is-a relationship. Do we now have a suffi cient reason for using subclassing?

Consider a classical example often used to introduce people to the concept of

inheritance, namely the classes of Student and Person. Clearly a Student “is a” Per-

son (as long as the student is attending an elementary school, high school, or col-

lege, for example, and not dog obedience school). A Student, has all the properties

and behavior of a Person, such as name, address, date of birth, and, in addition, has

other attributes like the school in which he or she is currently enrolled, the number

of credits earned, the grade point average(GPA), the class schedule, etc. The meth-

ods they have in common clearly have common behavior and so there is a great op-

portunity for code reuse here.

Therefore, you could argue that the Student class should be a subclass of Per-

son. But should it? Let us suppose we include this inheritance in our design and

consider a large university that uses our design to store its records on each student.

Furthermore, suppose the university stores its records on employees in Employee

objects (where Employee is, by following the same line of reasoning, another sub-

class of Person). See Figure 3.5.

-name
-address

-grades -salary

Student Employee

Person

FIGURE 3.5 An inheritance hierarchy
among Person, Student, and Employee.

Consider removing from your design any classes that provide little or no unique

behavior.

Guideline

03-M4377.indd 5303-M4377.indd 53 12/5/07 12:05:44 PM12/5/07 12:05:44 PM

54 Chapter 3 Elegance and Implementation Inheritance

Now, suppose one of the students graduates and starts to work for the univer-

sity, and so becomes an employee. Or suppose the student becomes an employee of

the university while still a student there. What must the university do to update its

records in these cases?

In the case of a student graduating and becoming an employee, the university

could just replace the Student object with an Employee object. However, this approach

has two potential problems. If there are many references to the Student object in the

university’s records, those references need to be updated to refer to the new Employee

object. Also, there might be data that needs to be preserved in the Student object, for

example, the student’s transcript, that is not included in the Employee object.

Alternatively, the university could create two distinct objects to represent the

person: an active Employee object and an inactive Student object that might be ar-

chived. However, this approach is inelegant because it duplicates all the common

Person data in both objects, which can easily become unsynchronized, for example,

if the person’s state changes (e.g., if the person moves to a new address) and the uni-

versity accidentally updates the state of only one of the two objects.

The problems could be resolved easily if it were possible to change an object

dynamically to belong to a different class (and so change the Student object into an

Employee object). However, such a change is not possible in Java or many other OO

languages.

A better approach avoids inheritance altogether and looks at the student and the

employee as roles being played by the person. Such roles are typically temporary as-

pects of the person, in that the person is not always a student or employee. Because

of the temporary nature of the roles but the more permanent nature of the person,

inheritance is not an appropriate way to associate students, employees, and people.

A better design uses referencing, in which a Student object has an underlying

Person to whom it refers. In this case, we could have exactly one Person object for

each real person, which would be independent of all the roles currently played by

that person.

For example, the Person class might be defi ned as follows:

public class Person
{
 private String name;
 private String address;

 public String getAddress() { return address; }

 ...other methods and data...
}

Then, as new roles are played, objects representing those roles, such as Student

or Employee objects, can be created that include a reference to the Person playing

those roles.

For example, the Student class might be defi ned as follows:

public class Student
{
 private Person me;
 private AcademicRecord myRecord;

03-M4377.indd 5403-M4377.indd 54 12/5/07 12:05:45 PM12/5/07 12:05:45 PM

 Chapter 3 Elegance and Implementation Inheritance 55

 public String getAddress() { return me.getAddress(); }

 public float getGPA() {
 ...compute it from the academic record...
 }
 ...other methods and data...
}

Notice how any Person-specifi c behavior required of a Student is performed by for-

warding the request to the Person object. For example, if Student objects are asked

for their addresses, the Student objects, in turn, ask their underlying Person objects

for them. The Student object would handle student-specifi c tasks, such as comput-

ing GPAs and managing course schedules, and the underlying Person object would

handle all personal tasks.

Similarly, the Employee class might have a reference to the Person being em-

ployed. See Figure 3.6 for a diagram of these alternatives using the Student, Em-

ployee, and Person classes. (The arrows in the UML diagram on the right side of

Figure 3.6 are explained in the next section.)

By using such forwarding of responsibilities, it now becomes easy to keep track

of the changing role of a person. When a person initially becomes a student, both a

Student object and Person object are created and the Student object is given a refer-

ence to the Person object. When the student becomes an employee, a new Employee

object is created that refers to the same Person object. Note that it is perfectly accept-

able to have both Student and Employee objects referring to the same Person object.

When the person no longer plays one of the roles (e.g., if the student graduates or quits

her job at the university), that role object can be deleted or archived and the other roles

can remain active. In this way, the Person object can be considered to exist perma-

nently, but the person’s roles can come and go. Furthermore, there is no duplication

of data.

-name
-address

-grades -salary

Student Employee

Person

-name
-address

Person
-salary
-me:Person

Employee

-grades
-me:Person

Student

FIGURE 3.6
Inheritance (left) vs.
referencing (right).

If class B models a role played by class A, especially a temporary role, then B

should not be a subclass of A. Instead objects of class B should have references

to objects of class A.

Guideline

03-M4377.indd 5503-M4377.indd 55 12/5/07 12:05:45 PM12/5/07 12:05:45 PM

56 Chapter 3 Elegance and Implementation Inheritance

SECTION 3.5 HAS-A RELATIONSHIPS
AND UML ASSOCIATIONS

In the person/student/employee example in the preceding section, we decided that a

design using referencing was better than a design using inheritance.

To draw the “has-a” or reference relationship in a UML class diagram, as we

did in Figure 3.6 on the right, we need some additional features of UML. An as-
sociation is a structural relationship between classes. For example, if objects of one

class maintain a reference to objects of another class or if you need to navigate from

objects of one class to objects of another, you would represent the connection be-

tween the classes by an association, which is drawn in UML class diagrams as a line

between the class boxes.

Association lines can have many optional adornments, such as numbers at one

or both ends, indicating multiplicity (the number of objects on that end of the asso-

ciation). They also might have an arrow at one end to indicate one-way navigability

or one-way awareness. From objects of the class at the tail of the arrow, you can

easily “get to” objects of the class at the arrow head. Another way of describing

one-way navigability is that objects of the class on the tail of the arrow are aware

of objects of the class at the head of the arrow. A plain line with no arrows could

indicate two-way navigability, or it could indicate that the direction of navigability,

is not important and so was left out.

SECTION 3.6 SUFFICIENCY OF CODE REUSE,
THE IS-A RELATIONSHIP, PUBLIC INTERFACES,
AND POLYMORPHISM

What if we have a situation in which we have code reuse, an is-a relationship, simi-

lar public interfaces with similar behaviors between two of our classes, and we have

the need for polymorphism? Do we now have a suffi cient reason for using subclass-

ing? Probably so.

For example, suppose we wish to enhance the available graphical user interface

(GUI) components in the javax.swing package. In particular, suppose we wish to

add a 2-D slider with a knob that can be moved not just along a horizontal or verti-

cal axis like a JSlider, but anywhere in a box. For this purpose, we plan to create a

new 2DSlider class. See Figure 3.7 for an example.

Such a class will have many methods in common with other JComponents, and

so there are plenty of opportunities for code reuse. Furthermore, we want our new

slider to be considered just another JComponent that can be added to a GUI window

and so, in our view, a 2DSlider “is a” JComponent. In addition, we will want our

slider to have in its public interface all the methods in the JComponent class and

more, and so it is appropriate to have the 2DSlider type be a subtype of the JCom-

ponent type. Finally, as we said, we wish to be able to add 2DSlider objects to win-

dows just as we add other components, but Swing components such as JPanels have

add methods that take a Component (a superclass of JComponent) as a parameter.

FIGURE 3.7
A 2DSlider with a
knob that can be
dragged anywhere
within the box.

03-M4377.indd 5603-M4377.indd 56 12/5/07 12:05:46 PM12/5/07 12:05:46 PM

 Chapter 3 Elegance and Implementation Inheritance 57

Therefore, we need to use polymorphism to pass a 2DSlider object as the value of

a parameter of type Component. In this situation, it makes very good sense to use

inheritance and make the 2DSlider class a subclass of JComponent.

SECTION 3.7 COSTS OF USING
IMPLEMENTATION INHERITANCE

By now, you are hopefully realizing that (implementation) inheritance, as wonder-

ful as it possibly fi rst sounded, is actually quite limited in its usefulness. There are

even more costs to be considered when using inheritance, in addition to those we’ve

already addressed.

One problem with inheritance, especially a deep inheritance tree with many gen-

erations, is that the code for the methods of a class low in the tree is spread out among

all its ancestors higher in the tree, which makes it harder for the reader of the code

to follow the fl ow of execution. That is, suppose someone is reading code and sees

that a method foo is invoked on an object. If the object’s class does not implement

foo, then the reader needs to look to the object’s immediate superclass. If that class

does not implement foo, then a further search up the inheritance hierarchy needs to

be made. To complicate matters, foo may invoke another method bar on the same

object. There need be little relationship between the locations of foo and bar in the

inheritance tree, and so the reader again needs to start at the object’s class and search

up the inheritance tree, to fi nd the implementation of bar. Matters are even worse if

the reader is not sure of the object’s class and knows, for example, only that the object

could belong to any of the subclasses of a given class. In such cases, it is impossible to

fi gure out exactly which method body of which class gets executed at any given time.

Another problem with inheritance is that all subclasses are very tightly tied

with their superclasses. This coupling comes from the fact that, to guarantee certain

behavior in a subclass, that subclass needs to know signifi cant parts of the imple-

mentation of the methods of the superclasses.

For a simple example, consider the Rectangle class mentioned earlier and sup-

pose that you want to create a type of Rectangle, called a ChangeMeasuredRectan-

gle, that keeps track of the number of times the width of the Rectangle is changed.

In this case, inheritance seems very appropriate, and so the ChangeMeasuredRect-

angle class can be made a subclass of Rectangle. See Figure 3.8 for the UML class

diagram of these classes. Note that the subclass needs to override the setWidth

and setSize methods in the Rectangle class in order to keep track of the number

of changes made to the width, but all other inherited behavior can be left as is.

So what is the problem? Well, consider how we might implement the Change-

MeasuredRectangle class. Here is one such implementation:

public class ChangeMeasuredRectangle extends Rectangle
{
 private int widthChangeCounter = 0;
 public ChangeMeasuredRectangle(int w, int h) { super(w,h); }
 public int getNumWidthChanges() { return widthChangeCounter; }

03-M4377.indd 5703-M4377.indd 57 12/5/07 12:05:46 PM12/5/07 12:05:46 PM

58 Chapter 3 Elegance and Implementation Inheritance

 public void setWidth(int newWidth) {
 if(newWidth != getWidth()) {
 widthChangeCounter++;
 }
 super.setWidth(newWidth);
 }
 public void setSize(int newWidth, int newHeight) {
 if(newWidth != getWidth()) {
 widthChangeCounter++;
 }
 super.setSize(newWidth, newHeight);
 }
}

Note how the setWidth and setSize methods fi rst check to see whether the

width will change and, if so, increment the counter. Then they call the superclass’

setWidth and setSize methods, an elegant reuse of code.

Everything looks great, right? Well, unfortunately, this code may incorrectly

count the number of width changes! The correctness of it depends on the implemen-

tation of the Rectangle class. See if you can fi gure out what might be wrong before

reading ahead.

Suppose the Rectangle class is implemented as follows:

public class Rectangle
{
 private int width, height;

-x,y,width,height:int

+getWidth():int
+getHeight():int
+setWidth(w:int):void
+setHeight(h:int):void
+setSize(w:int,h:int):void

Rectangle

-widthChangeCounter:int

+getNumWidthChanges():int
+setWidth(w:int):void
+setSize(w:int,h:int):void

ChangeMeasuredRectangle

FIGURE 3.8 The Rectangle and
ChangeMeasuredRectangle classes.

03-M4377.indd 5803-M4377.indd 58 12/5/07 12:05:47 PM12/5/07 12:05:47 PM

 Chapter 3 Elegance and Implementation Inheritance 59

 public Rectangle(int w, int h) { width = w; height = h; }
 public int getWidth() { return width; }
 public int getHeight() { return height; }
 public void setWidth(int newWidth) { width = newWidth; }
 public void setHeight(int newHeight) { height = newHeight; }
 public void setSize(int w, int h) { setWidth(w); setHeight(h); }
}

This implementation also seems very elegant, including the use of setWidth and

setHeight to help implement setSize. However, because setWidth is called

within setSize in the Rectangle class, any change to the width of a Change-

MeasuredRectangle through a call to setSize will result in the counter being in-

cremented twice.

Here is what happens when setSize is invoked on a ChangeMeasured-

Rectangle. If the new width is different than the old width, then the counter is in-

cremented. Then the superclass’ setSize method is called. This method in turn

calls setWidth. But the ChangeMeasuredRectangles implementation of set-
Width is the one that is executed since our object is actually a ChangeMeasured

Rectangle. Therefore, the counter will be incremented again. To correct this prob-

lem, the overriding implementation of setSize should be removed from the

subclass.

In summary, the designer of the ChangeMeasuredRectangle class needed to

know the implementation of the setSize method in the Rectangle class in order to

implement properly the ChangeMeasuredRectangle class. In particular, he needed

to know whether the setSize method in the Rectangle class called the setWidth

method.

In conclusion, the implementation of a class must be exposed to designers of

subclasses if those subclasses are to be implemented correctly. This need for ex-

posure is unfortunate, especially because it is often the case that designers do

not have access to the implementation of all classes they would like to subclass

nor, even if they did have them, do they want to spend the time studying those

implementations.

To make matters even worse, suppose that, after the ChangeMeasuredRectangle

class has been implemented to work correctly with the Rectangle class, the author

of the Rectangle class decides to make it more effi cient by replacing the original

implementation of setSize with the following version:

public void setSize(int w, int h) { width = w; height = h; }

When this seemingly innocuous change is made, the ChangeMeasuredRect-

angle no longer correctly counts the number of times the width of the Rectangle

changes, and so it must be changed as well!

In other words, the implementation of a class has to be made far more visible

to its subclasses than is usually desirable, and any change to a superclass, even an

innocuous implementation change in a method to make it more effi cient, may cause

unforeseen changes in any of its subclasses.

03-M4377.indd 5903-M4377.indd 59 12/5/07 12:05:47 PM12/5/07 12:05:47 PM

60 Chapter 3 Elegance and Implementation Inheritance

SECTION 3.8 EXAMPLE:
PERSON, WOMAN, AND MAN

Up to now, we have discussed where inheritance can be used and the drawbacks to

using inheritance, but we have not given many examples that show how inheritance

can clean up designs and the implementation of those designs. In the next three sec-

tions, we will give such examples. In the fi rst example, we will clean up the code

for a class whose objects satisfy mixed constraints on the values of their instance

variables. [6, pp. 64–65]

Let us consider a Person class that was created as part of a program to study the

transmission of diseases. To understand how diseases are transmitted, it is important

to know the amount and kind of direct physical contact a person has had with other

people. This contact can come about in a variety of ways, including handshaking

and kissing. However, women also have forms of physical contact that men do not,

such as breast feeding and giving birth, both of which could cause the transmission

of diseases from the mother to the child. That is, women have different behaviors

that are relevant to the subject under study.

These differences between men and women could be dealt with in the Person

class by assuming men are exactly like women except that they never breast feed

their babies and that they never give birth to children, but this method of handling

the differences is awkward because the option of breastfeeding and giving birth

simply should not be available for males. Another approach is to use code that tests

for the sex of the person under study and only if she is female do you deal with

issues of breast feeding and childbirth. This approach, because of the need for such

conditional tests, makes the code more complex than it needs to be.

A cleaner solution is to have an abstract class Person with two subclasses: Man

and Woman (see Figure 3.9). The common behavior of the Man and Woman classes

would be inherited from the Person class, and the behavior unique to each subclass

would reside in that subclass. This use of inheritance cleans up the code so that ob-

jects have only appropriate behavior and fewer complicated conditionals.

Person

WomanMan

FIGURE 3.9 Two subclasses of Person.

If you have a class with behavior that applies to only some of the objects of the

class, then consider splitting the class into two classes associated by inheritance

either directly or through a common abstract class or interface.

Guideline

03-M4377.indd 6003-M4377.indd 60 12/5/07 12:05:47 PM12/5/07 12:05:47 PM

 Chapter 3 Elegance and Implementation Inheritance 61

SECTION 3.9 EXAMPLE: DRAWING POLYGONS

Consider a drawing program in which the user is able to draw polygons, possibly

including quadrilaterals (four-cornered fi gures), rectangles, squares, triangles, lines

(two-cornered fi gures), points (one-cornered fi gures), etc. Suppose that the drawing

program displays a window with two parts: a large drawing canvas and a toolbar

across the top of the window with tool buttons, one for each polygon. The user is

supposed to click on a toolbar tool button to select a polygon and then click in the

drawing canvas, at which time a copy of the selected polygon appears in the canvas

centered at the point of the click. See Figure 3.10 for a picture of such an application

that draws only triangles, squares, and rectangles of fi xed sizes.

We will discuss other aspects of this example in other sections and, in fact, will

devote all of Chapter 8 to it. But for right now, we will focus on the design of one

small part of this program, namely, the part that redraws all the polygons whenever

the canvas needs refreshing (e.g., if it was partially covered up and then uncovered

again). We will show how inheritance can help us create an elegant design.

In order for the application to be able to draw and redraw polygons, those poly-

gons and their positions must be stored in some collection or collections. Therefore,

let us assume that the canvas maintains a collection of polygons so that it can read-

ily redraw them when necessary.

Let us focus on the collection of polygons that the canvas has. Of what form

should the collection be and of what form should the polygons be? That is, what

classes and what relationships should we use to store polygons?

Design 1 (a poor design): A simple design is to have the drawing canvas store

two ordered collections, one containing Strings indicating the types of the poly-

gons that have been drawn, and the other containing Points indicating the centers

of the corresponding (fi xed-size) polygons. Let us use an ArrayList <String> called

polygonNames for the types of the drawn polygons and an ArrayList <Point>

called centerPoints for the locations of the corresponding polygon. Whenever

FIGURE 3.10 A simple
polygon-drawing application.

03-M4377.indd 6103-M4377.indd 61 12/5/07 12:05:48 PM12/5/07 12:05:48 PM

62 Chapter 3 Elegance and Implementation Inheritance

the polygons need to be redrawn, a paint method in the canvas is called. That

method can be implemented as follows:

public void paint(Graphics g)
{
 for(int i = 0; i < polygonNames.size(); i++) {
 String currentPolygon = polygonNames.get(i);
 Point currentCenter = centerPoints.get(i);
 if(currentPolygon.equals(“triangle”))
 ...draw a triangle centered at currentCenter...
 else if(currentPolygon.equals(“square”))
 ...draw a square centered at currentCenter...
 else if ...
}

If you’ve had a bit of experience with such tasks, or even if you haven’t, you probably

notice the inelegance of this code. Using two separate collections, one for the kind of

the polygon and one for the location of the polygon is inelegant because it can lead to

errors if the two collections become unsynchronized (e.g., if you delete an item from

one collection and forget to delete the corresponding item from the second collection).

Also, the paint method is inelegant in that it includes all the instructions for draw-

ing each of the shapes. A third drawback of this version is that if the drawing program

is later enhanced to draw pentagons and hexagons, for example, the implementation

of this paint method will need to be enlarged to include even more conditionals.

Design 2 (not much better): Combine the two ArrayLists into one “polygons”

list, each of whose items stores the necessary data for drawing one polygon. For ex-

ample, the items in the list could be PolygonData objects such as the following:

public class PolygonData
{
 private String name;
 private Point center;
 public PolygonData(String n, Point c)
 { name = n; center = c; }
 public String getName() { return name; }
 public Point getCenter() { return center; }
}

The paint method can now get all the data it needs to draw one polygon from one

PolygonData object:

public void paint(Graphics g)
{
 for(int i = 0; i < polygon.size(); i++) {
 String currentPolygon = polygons.get(i).getName();
 Point currentCenter = centerPoints.get(i).getCenter();
 if(currentPolygon.equals(“triangle”))
 ...draw a triangle centered at currentCenter...

03-M4377.indd 6203-M4377.indd 62 12/5/07 12:05:48 PM12/5/07 12:05:48 PM

 Chapter 3 Elegance and Implementation Inheritance 63

 else if(currentPolygon.equals(“square”))
 ...draw a square centered at currentCenter...
 else if ...
}

Although the data structure is now a little better in that the data for each polygon is

stored together in one object, the actual code in the paint method is in some ways

worse. Also, this change doesn’t deal with the other drawbacks to the fi rst design.

Design 3 (a better design): Instead of storing the type of polygon in a String in a

PolygonData object, let us store that information in the class type itself. That is, let

us create a separate class for each kind of polygon, all with a common superclass.

For example, we could defi ne an abstract Polygon class with “concrete” subclasses

of Square, Rectangle, and Triangle (“concrete” is not a Java key word; it is just a

useful adjective here to indicate a nonabstract class). See Figure 3.11.

In this design, the drawing canvas saves Square, Rectangle, and Triangle objects

in a list. Furthermore, let us give these shapes a little intelligence and make them re-

sponsible for knowing their locations and for drawing themselves. That is, let us sup-

pose that the Polygon class includes an abstract draw method that takes a Graphics

object as parameter and suppose that each concrete subclass implements that draw

method appropriately to draw its shape. It is certainly the case that this inheritance

hierarchy is appropriate from the “is-a” perspective, the subtyping perspective, and

the polymorphism perspective. If there are data and methods shared by all the con-

crete classes, then, by moving the common elements to the superclass, our design is

also appropriate from the perspective of code reuse and avoiding duplication.

Once these classes have been created, the paint method for the canvas can be

nicely simplifi ed to the following form (here we assume the polygons are stored in

an ArrayList<Polygon> named polygons):

public void paint(Graphics g)
{
 for(Polygon poly : polygons) {
 poly.draw(g);
 }
}

+draw(g:Graphics):void

+draw(g:Graphics):void +draw(g:Graphics):void +draw(g:Graphics):void

Polygon

Square Rectangle Triangle

FIGURE 3.11 The Polygon class and its subclasses.

03-M4377.indd 6303-M4377.indd 63 12/5/07 12:05:48 PM12/5/07 12:05:48 PM

64 Chapter 3 Elegance and Implementation Inheritance

Note that polymorphism and dynamic method lookup allow the desired implemen-

tation of the draw method to be executed each time.

There is a natural elegance to a code like this that uses polymorphism to avoid

conditional statements, especially conditionals that test whether a value is an in-

stance of a particular class. As mentioned in Chapter 2 when introducing dynamic

method invocation, this approach is considered to be one part of the “OO way” of

doing things.

+draw(g:Graphics):void

+draw(g:Graphics):void +draw(g:Graphics):void +draw(g:Graphics):void

Polygon
<<interface>>

Square Rectangle Triangle

FIGURE 3.12 Design 4.

Design 4 (a better design in a special case): Should anything be done differently

if there is no common code shared among the concrete subclasses of Polygon? That

is, suppose the Polygon class has only abstract methods and no instance variables.

In that case, the design allows no code reuse, and so it is no longer appropriate to use

inheritance from the code reuse perspective. As discussed at the end of Chapter 2,

an abstract class with only abstract methods should be replaced with an interface.

Therefore, the best design in the case where there is no code reuse is the one in

which Polygon is an interface instead of an abstract class. See Figure 3.12 for the

UML diagram for Design 4.

SECTION 3.10 EXAMPLE: SORTING

Let us now look at one more example where inheritance combined with interfaces

makes the code more generally useful and elegant. This example is one with which

you should already be familiar. It concerns the java.util.Arrays class and its various

sorting methods. Note that we are including this discussion of sorting not to intro-

Use inheritance, polymorphism, and dynamic method invocation to avoid ugly

conditionals.

Guideline

03-M4377.indd 6403-M4377.indd 64 12/5/07 12:05:49 PM12/5/07 12:05:49 PM

 Chapter 3 Elegance and Implementation Inheritance 65

duce you to a topic that you haven’t seen before, but rather to show you an example

of how to incrementally improve an existing design, a valuable skill to have in soft-

ware design, and how inheritance can help during that process.

We will start with the problem of creating methods for sorting arrays of vari-

ous kinds of objects, and we will present an initial inelegant solution. We will then

gradually modify it to introduce elegance in the design and will see how it naturally

leads to the methods in the Arrays class. Our improvements will mostly be the result

of following the guidelines of avoiding code duplication and using polymorphism to

avoid conditionals.

Note that we will ignore the generic types in the Java 1.5 Arrays methods to

simplify the discussion. An exercise will ask you to compare these solutions with

the solutions you get when you add generics.

Suppose you are asked to implement a class whose sole purpose is to sort arrays

of data in place (i.e., using modifi er methods that rearrange the data in the array).

For example, the class might look like this:

public class Sorter
{
 public static void sort(String[] A)
 { ...code for sorting String arrays... }
 public static void sort(Integer[] A)
 { ...code for sorting Integer arrays... }
 ...methods for sorting other kinds of arrays...
}

See Figure 3.13. We will assume that the arrays to be sorted contain objects, and so

arrays of primitive types of data, such as int or char, will not be considered. (You

are asked in an exercise to consider the case of arrays of primitive data.)

Note that there is a new feature in the UML diagram, consisting of a dashed

arrow labeled “uses.” This indicates a dependency of the Sorter class on the String[]

class and Integer[] class, in that the Sorter class’ sort methods use those types of

data.

This class seems quite useful and it seems like it might be easy to implement in

an elegant way, except for (at least) three things:

 1. How many sort methods should Sorter implement? If you don’t include a

sort method for a particular array type, then what will happen if someone

needs to sort an array of objects of that type? Or, suppose that after the im-

plementation of Sorter, you defi ne a new class C and want to sort an array of

+sort(A:String[]):void
+sort(A:Integer[]):void
...more sort algos...

Sorter
String[]

Integer[]

uses

uses

FIGURE 3.13 Our initial Sorter
class.

03-M4377.indd 6503-M4377.indd 65 12/5/07 12:05:49 PM12/5/07 12:05:49 PM

66 Chapter 3 Elegance and Implementation Inheritance

C objects? Our Sorter class cannot handle this case unless it includes a sort

method for arrays of type Object[], and, in that case, we have to ask what sort-

ing means for generic objects.

 2. The code in the bodies of each of the sort methods are almost identical to

each other. There is a large amount of code duplication here.

 3. What if we sometimes want to sort the arrays from smallest to largest and other

times from largest down to smallest? Also, what if we want to sort the array of

Strings ignoring the case (upper or lower) of the letters? What if we want to sort

using some other attribute of the Strings in the array, such as the length of the

Strings? To be most useful, our Sorter class should be able to handle a variety

of sorting options for each array type.

Suddenly the design of the Sorter class doesn’t seem quite so elegant. Let us

incrementally improve it.

Let’s fi rst consider how we can avoid duplicate code in each sort method. For

the purpose of discussion and for code simplicity, we will look at implementations

of the sort methods for Integers and Strings using the selection sort algorithm,

even though that algorithm is not usually the sorting algorithm of choice. Here are

two such implementations:

public static void sort(Integer[] data)
{
 for (int i = data.length-1; i >=1; i—) {
 // in each iteration through the loop
 // swap the largest value in data[0]..data[i] into position i
 int indexOfMax = 0;
 for (int j = 1; j <= i; j++) {
 if (data[j] > data[indexOfMax])
 indexOfMax = j;
}
// swap the largest value into position i
Integer temp = data[i];
data[i] = data[indexOfMax];
data[indexOfMax] = temp;
}
}
public static void sort(String[] data)
{
 for (int i = data.length-1; i >=1; i--) {
 // in each iteration through the loop
 // swap the largest value in data[0]..data[i] into position i
 int indexOfMax = 0;
 for (int j = 1; j <= i; j++) {
 if (data[j].compareTo(data[indexOfMax]) > 0)
 indexOfMax = j;
 }
// swap the largest value into position i

03-M4377.indd 6603-M4377.indd 66 12/5/07 12:05:50 PM12/5/07 12:05:50 PM

 Chapter 3 Elegance and Implementation Inheritance 67

String temp = data[i];
data[i] = data[indexOfMax];
data[indexOfMax] = temp;
}
}

Notice that the two methods are identical except in three places (shown in bold in

the code above):

 1. The two methods take a different type of array as their parameter.

 2. The fi rst method extracts the integer values from the objects and uses “>” to

compare the values, and the second method uses the String’s compareTo

method to compare the values.

 3. When swapping the data, the two methods use temporary variables of different

types (Integer in the fi rst method and String in the second method).

All the other sort methods in the Sorter class will be similar. How can we

avoid the duplication in the bodies of all these methods?

One way to avoid duplication is to create one generic selection sort method

that could sort all these kinds of arrays. In order to create such a method, it is impor-

tant to realize that the most signifi cant difference in the sort methods above is how

the objects in the arrays are compared to each other. Therefore, our fi rst step toward

removing the duplication will be to factor out that difference. To factor out the differ-

ent ways of comparing items, let us try creating a new object, a Comparator object,

to do the comparing of objects for us. Our fi rst attempt at creating a Comparator class

will have many methods for comparing the data, one for each type of data:

public class Comparator

{
 public int compare(String o1, String o2)
 {
 return s1.compareTo(s2);
 }
 public int compare(Integer o1, Integer o2)
 {
 int i1 = o1.intValue();
 int i2 = o2.intValue();
 return i1 - i2;
 }
 ...compare methods for the other types of data we wish to sort...
}

These methods all return a negative integer if o1 is “less than” o2, zero if o1

“equals” o2, and a positive integer if o1 is “greater than” o2. Notice all the method

name overloading that is going on in this class.

If we add a “comp” parameter of type Comparator to the sort method, then we

03-M4377.indd 6703-M4377.indd 67 12/5/07 12:05:50 PM12/5/07 12:05:50 PM

68 Chapter 3 Elegance and Implementation Inheritance

can modify the sort method for arrays of Strings as follows (the changes are high-

lighted in bold):

public static void sort(String[] data, Comparator comp)
{
 for (int i = data.length-1; i >=1; i--) {
 // in each iteration through the loop
 // swap the largest value in data[0]..data[i] into position i
 int indexOfMax = 0;
 for (int j = 1; j <= i; j++) {
 if (comp.compare(data[j], data[indexOfMax]) > 0)
 indexOfMax = j;
 }
 // swap the largest value into position i
 String temp = data[i];
 data[i] = data[indexOfMax];
 data[indexOfMax] = temp;
 }
}

We can use the same Comparator to modify the sort methods for the other types

of arrays. At the cost of complicating our design by the addition of another class,

we have made the String array, Integer, and other array sort methods look a little

more alike.

The remaining differences in the Integer array and String array sort methods

consist of the different types of the fi rst parameter and the different types of the

temp local variable used for swapping. To eliminate these differences, we will try

replacing those types with the Object type, which is a superclass of String and Inte-

ger and all other classes in Java. Notice how subtype polymorphism is enabling us

to make this change. That is, since an array of Strings is also an array of Objects, we

can use an array of Strings where an array of Objects was expected. The resulting

version of our sort routine looks like this:

public static void sort(Object[] data, Comparator comp)
{
 for (int i = data.length-1; i >=1; i--) {
 // each iteration through the loop
 // swaps the largest value in data[0]..data[i] into position i
 int indexOfMax = 0;
 for (int j = 1; j <= i; j++) {
 if (comp.compare(data[j], data[indexOfMax]) > 0)
 indexOfMax = j;
 }
 // swap the largest value into position i
 Object temp = data[i];
 data[i] = data[indexOfMax];

03-M4377.indd 6803-M4377.indd 68 12/5/07 12:05:50 PM12/5/07 12:05:50 PM

 Chapter 3 Elegance and Implementation Inheritance 69

 data[indexOfMax] = temp;
 }
}

We have now removed all duplication in the sort methods in the Sorter class. In fact,

using this method, we can completely eliminate all the original sort methods, since

this new sort method handles all kinds of data. See Figure 3.14 for our new design.

However, there is a problem. Try to spot it before reading ahead. (Hint: The

compiler will not accept the code above.)

The problem is that, in this new version of sort, the compiler can’t determine

which compare method of the Comparator class to call. The compiler sees only

that the two arguments to compare are of declared type Object, and so it looks

for a compare method that takes two Objects as parameters. However, our Com-

parator class has no such compare method, and so the compiler will generate an

error message. (Note that if Java used multimethods, this problem would be easily

solvable.)

To solve this problem, let us modify the Comparator so that it has a compare

method that takes two objects of class Object as parameters. Then this method is the

one that will always be called by the generic sort routine above, so we can elimi-

nate the other compare methods in the Comparator class and replace them with

one that is general enough to deal with all the cases:

public class Comparator
{
 public int compare(Object o1, Object o2)
 {
 if(o1 instanceof String && o2 instanceof String)
 return ((String) o1).compareTo((String) o2);
 else if(o1 instanceof Integer && o2 instanceof Integer)
 return (Integer) i1 - (Integer) i2;
 else

+sort(A:Object[],c:Comparator):void

+compare(a1:Integer,a2:Integer):int
+compare(a1:String,a2:String):int
...other compare methods...

Sorter uses

uses

Comparator

Object[]

String[] Integer[]

FIGURE 3.14 Our new Sorter class using our Comparator class.

03-M4377.indd 6903-M4377.indd 69 12/5/07 12:05:51 PM12/5/07 12:05:51 PM

70 Chapter 3 Elegance and Implementation Inheritance

 ...deal with all the other types of data...
 }
}

See Figure 3.15 for our new design.

Now we’ve done it! Or have we? The latest version of our generic sort routine

will correctly take any array of Strings or Integers and sort it based on the compari-

sons done by the generic Comparator, but is it really a signifi cant improvement?

A very inelegant aspect of our latest implementation is that we’ve cleaned up

the generic sort routine but at the expense of the Comparator. The Comparator’s

compare method is inelegant in that it has many conditionals based on the type of

an object. As we discussed earlier, the OO way of doing things is to use polymor-

phism instead of such conditionals. Furthermore, the Comparator still won’t handle

all desirable cases. For example, what if you wish to sort an array of C objects

where C is a new class created after the Comparator was written? The C type won’t

be in the Comparator’s list of types that are compared. Or, as we mentioned earlier,

what if you want to sort an array of Strings sometimes alphabetically using case,

sometimes ignoring case, and sometimes based on the length of the Strings? How

can the Comparator distinguish these cases?

The problem here is that one Comparator is trying to do too many things in

its generic compare method. Note that when we’re sorting Strings, we only need

to consider the comparison of Strings. Similarly, when we’re sorting Integers, we

only need to consider the comparison of Integers. So our fi nal modifi cation of the

code is to make Comparator an interface and create several classes that implement

+sort(A:Object[],c:Comparator):void

Object[]

Sorter

uses uses

String[] Integer[]

+compare(a1:Object,a2:Object):int

Comparator

{
 if(o1 instanceof String && o2 instanceof String)
 return ((String) o1).compareTo((String) o2);
 else if(o1 instanceof Integer && o2 instanceof Integer)
 return (Integer)i1 - (Integer) i2;
 else
 ...deal with all the other types of data...
}

FIGURE 3.15 Our Sorter class and new Comparator class.

03-M4377.indd 7003-M4377.indd 70 12/5/07 12:05:51 PM12/5/07 12:05:51 PM

 Chapter 3 Elegance and Implementation Inheritance 71

Comparator, one for each type of data. In fact, the Java library includes just such an

interface in the java.util package:

public interface Comparator
{
 public int compare(Object o1, Object o2);
 public boolean equals(Object o);
}

We can create concrete classes implementing the Comparator interface that com-

pare two objects of one particular type and throw an exception in all other cases.

For example, we could create the following classes:

public class StringComparator implements Comparator
{
 public int compare(Object o1, Object o2)
 {
 String s1 = (String) o1;
 String s2 = (String) o2;
 return s1.compareTo(s2);
 }
}
public class IntegerComparator implements Comparator
{
 public int compare(Object o1, Object o2)
 {
 return (Integer) o1 - (Integer) o2;
 }
}

Each of these two classes just compares one type of object and the compare meth-

ods throw an exception if the arguments are not of the right type. (Note also that

these classes do, in fact, implement the Comparator interface even though they

do not directly implement equals, because they inherit an implementation of

equals from the Object class.)

A client who wants to sort an array of Strings alphabetically might use our

Sorter’s sort method by passing the array and a StringComparator as parameters

to the sort method:

String[] data = ...initialize the data array...
Comparator comp = new StringComparator();
Sorter.sort(data, comp);

To sort an array of Strings ignoring the upper or lower case of the letters, the user

can do exactly the same thing except defi ne a different class implementing Com-

parator as follows:

public class StringIgnoreCaseComparator
{

03-M4377.indd 7103-M4377.indd 71 12/5/07 12:05:51 PM12/5/07 12:05:51 PM

72 Chapter 3 Elegance and Implementation Inheritance

 public int compare(Object o1, Object o2)
 {
 String s1 = (String) o1;
 String s2 = (String) o2;
 return s1.compareToIgnoreCase(s2);
 }
}

and then use it in exactly the same way:

String[] data = ...initialize the data array...
Comparator comp = new StringIgnoreCaseComparator();
Sorter.sort(data, comp);

Do you see how subtype polymorphism helps here? Since the Comparator param-

eter in the generic sort method can take as its value any object of any subtype

of Comparator, we can pass any kind of Comparator we want as the second argu-

ment to the sort method. If we pass in an array of Strings for the data, we can

pass in a StringComparator as the comparator. If we pass in an array of Integers

for the data, we can pass in an IntegerComparator as the comparator. Similarly for

the other types of data. If such arguments are passed to the sort routine, then the

polymorphic method-calling mechanism will ensure that the compare method of

the Comparator subtypes will be called by the sort routine and that the sort

method will correctly compare and sort the data.

Note: Here is a situation where documentation is important—the sort routine

documentation must clearly state that the Comparator passed as the second argu-

ment must be of the proper type to compare the objects in the array passed as the

fi rst argument or else an exception will be thrown.

Notice how nice and general this sort routine is (assuming, of course, that you

want to use selection sort to sort your array). To sort the same array in different

orders, just create different Comparators. This generic routine can sort any kind of

array of objects, even objects of a class that hasn’t yet been defi ned, as long as the

user defi nes an appropriate Comparator to go with the new class. See Figure 3.16 for

a UML class diagram showing the relationships among these classes. It should be

noted that the java.util.Arrays class implements a similar sort method.

+sort(A:Object[],c:Comparator):void

Sorteruses uses

IntegerComparator StringComparator

+compare(o1:Object,o2:Object):int

Comparator

<<interface>>

Object[]

Integer[] String[]

FIGURE 3.16 The Sorter and Comparator relationships.

03-M4377.indd 7203-M4377.indd 72 12/5/07 12:05:52 PM12/5/07 12:05:52 PM

 Chapter 3 Elegance and Implementation Inheritance 73

Here is the fi nal code for our Sorter example, including the StringCompara-

tor and IntegerComparator classes that implement the Comparator interface, and a

Main class with a main method that demonstrates how to use the Sorter and Com-

parator objects.

public interface Comparator
{
 public int compare(Object o1, Object o2);
 public boolean equals(Object o);
}
public class StringComparator implements Comparator
{
 public int compare(Object o1, Object o2)
 {
 String s1 = (String) o1;
 String s2 = (String) o2;
 return s1.compareTo(s2);
 }
}
public class IntegerComparator implements Comparator
{
 public int compare(Object o1, Object o2)
 {
 return (Integer) o1 - (Integer) o2;
 }
}
public class Sorter
{
 public static void sort(Object[] data, Comparator comp)
 {
 for (int i = data.length-1; i >=1; i--) {
 // in each iteration through the loop
 // swap the largest value in data[0]..data[i] into position i
 int indexOfMax = 0;
 for (int j = 1; j <=i; j++) {
 if (comp.compare(data[j], data[indexOfMax]) > 0)
 indexOfMax = j;
 }
 // swap the largest value into position i
 Object temp = data[i];
 data[i] = data[indexOfMax];
 data[indexOfMax] = temp;
 }
 }
}
public class Main

03-M4377.indd 7303-M4377.indd 73 12/5/07 12:05:52 PM12/5/07 12:05:52 PM

74 Chapter 3 Elegance and Implementation Inheritance

{
 public static void main(String[] args)
 {
 String[] B = {“John”, “Adams”, “Skrien”, “Smith”, “Jones”};
 Comparator stringComp = new StringComparator();
 Sorter.sort(B, stringComp);
 Integer[] C = {new Integer(3), new Integer(1),

 new Integer(4), new Integer(2)};
 Comparator integerComp = new IntegerComparator();
 Sorter.sort(C, integerComp);
 }
}

To reinforce the lessons learned here, let us review how we used polymorphism, as

well as other design techniques, to create a Sorter class that is much more elegant

than the original version.

� By factoring out the comparison operation to a separate Comparator object, we

were able to make the implementations of the various sorting methods in the

original Sorter class very similar to each other.
� By using polymorphism on the arrays and the objects within the arrays, we

were able to complete the generalization of the sorting algorithm, and, as a re-

sult, the Sorter class needed only one sort method.
� To clean up the Comparator class, we turned it into an interface that we imple-

mented with the various kinds of comparators.

Although we ended up with many more classes and interfaces than we had origi-

nally (namely, the Comparator interface and its implementations), the resulting de-

sign displays all the features of elegance discussed in Chapter 1.

SECTION 3.11 SUBCLASSING ARRAYS IN JAVA

In the preceding section, we stated that a generic sort routine should have a parameter

of type Object[] because then we could pass in any kind of array of objects that we

want. Let’s look at this argument a little more closely because there are subtle issues

regarding inheritance of array types in Java that everyone should be familiar with.

One of the java.util.Arrays sort method has header

public void sort(Object[] data, Comparator comp)

Consider the kind of arrays we can pass in as the fi rst argument. We could, for ex-

ample, pass in an array of type Object[] containing strings:

Object[] data = new Object[3]{“Larry”, “Curly”, “Moe”};
Sorter.sort(data, new StringComparator());

In this case, the data array is of type Object[], but the data in it are of type String, a

subtype of Object. This subtyping will not be a problem, and the sort routine will

work correctly.

03-M4377.indd 7403-M4377.indd 74 12/5/07 12:05:52 PM12/5/07 12:05:52 PM

 Chapter 3 Elegance and Implementation Inheritance 75

We could also pass in an array of type String[] containing strings:

String[] data = new String[3] {“Larry”, “Curly”, “Moe”};
Sorter.sort(data, new StringComparator());

This time, the data array is of type String[]. The compiler will accept this array as

a legal argument to the sort routine because, in Java, if A is a subclass of B, then

A[] is a subclass of B[]. Therefore, an array of type String[] is acceptable wherever

an array of type Object[] is expected.

But “Is it accepted by the compiler in Java?” and “Should it be accepted by

the compiler in Java?” are two different questions. Did the Java language designers

make a good language design decision here?

It is clearly advantageous to be able to pass an array of type String[] or Inte-

ger[] wherever an array of type Object[] is expected, or else our generic sort routine

would not be nearly as useful. However, there is also a design fl aw in allowing sub-

classing of arrays in this way. Consider the following code segment:

String[] stringData = new String[3] {“Larry”, “Curly”, “Moe”};
Object[] objectData = stringData;
objectData[0] = new Integer(3);

Before reading any further, try to guess what the compiler will say when it checks

the last statement of the code segment.

This code will be accepted by the compiler. The second line is legal accord-

ing to the compiler because stringData is of type String[], which is a subtype

of Object[]. The last line is legal according to the compiler because objectData

is of type Object[], and the compiler thinks it is perfectly acceptable to assign

any object to any slot of an array of type Object[]. But when we try to execute

these lines of code, the program crashes (more precisely, an ArrayStoreException

is thrown), since you cannot assign an Integer to a slot of an array of type String[],

which is what objectData refers to. Since it is always better to have errors re-

ported at compile time than run time, the Java subclass/superclass relationship

between array types is not ideal. Unfortunately, there is no easy solution to this

problem.

In summary, if A is a subclass of B, then there are both advantages and disad-

vantages to having a collection of objects of A considered as a collection of objects

of type B. For more discussion of this issue, see [4, pp. 80–83] or, for a discussion

using C++, see [5].

SECTION 3.12. INHERITANCE VS.
REFERENCING REVISITED

In preceding sections, you saw how referencing is preferable to inheritance in some

situations that at fi rst seemed like ideal ones for inheritance. We showed that some-

times it is better to have objects of class B contain references to objects of class A

and forward requests to those objects instead of making B a subclass of A. We will

see many more similar situations in later chapters of this text as we discuss compet-

03-M4377.indd 7503-M4377.indd 75 12/5/07 12:05:52 PM12/5/07 12:05:52 PM

76 Chapter 3 Elegance and Implementation Inheritance

ing designs. In those discussions, we will ask ourselves whether it is better to inherit

the responsibilities of another class or to retain a reference to an object of that other

class and forward appropriate messages to that object.

For example, if a clickable button in a dialog box needs to notify several other

objects when it is clicked, should the button do the notifying or should it maintain

a reference to some kind of “Notifi cationManager” object and assign notifi cation

responsibilities to that manager? That is, instead of keeping a list of all objects to

notify and notifying them itself, the button might assign the responsibility of main-

taining the list of objects that request notifi cation to the notifi cation manager, then

the button just needs to signal the notifi cation manager, that the button has been

clicked, and the manager handles all the notifi cations.

Let’s consider one more example. Suppose you want to have a Stack class with

only pure stack operations (push, pop, peek, isEmpty). There is the java.util

.Stack class that you can use, but it has many more operations than the pure stack

operations you desire. For example, in that Stack class you can insert or extract an

object at an arbitrary location in the Stack. One way to design your pure stack is to

subclass java.util.Stack and “void out” the other operations—that is, override them

with empty methods that do nothing or just return null. However, as discussed in

Section 3.3, it is not very elegant to do such restrictive subclassing.

A better solution might be to create from scratch your own Stack class with just

the given operations. However, this is somewhat akin to reinventing the wheel—

there are already nice storage classes, such as java.util.Stack, that handle all the

details for you; why not use them?

Therefore, an even better solution would be to create your own MyStack class

with just the desired operations but have it contain a java.util.Stack object and then

forward all requests to that object. See Figure 3.17.

Here is what MyStack might look like:

public class MyStack
{
 private java.util.Stack stack;
 public MyStack() { stack = new java.util.Stack(); }
 public void push(Object o) { stack.push(o); }
 public Object pop() { return stack.pop(); }
 public object peek() { return stack.peek(); }
 public boolean isEmpty() { return stack.empty(); }
}

Notice how the java.util.Stack object does all the work. The MyStack class can be

thought of as a class that merely cleans up the Stack’s interface to remove all the non-

+push(o:Object):void
+pop():Object
+peek():Object
+isEmpty():boolean

MyStack

java.util.Stack
1

1

FIGURE 3.17 Forwarding
requests to the java.util.Stack
class.

03-M4377.indd 7603-M4377.indd 76 12/5/07 12:05:53 PM12/5/07 12:05:53 PM

 Chapter 3 Elegance and Implementation Inheritance 77

stack operations that the java.util.Stack class contains. Such thinking should lead you

to realize that one can also generalize things a little further and create a PureStack

interface:

public interface PureStack
{
 public void push(Object o);
 public Object pop();
 public Object peek();
 public boolean isEmpty();
}

and then implement it with MyStack. The only change necessary to the MyStack

class is the addition of the phrase “implements PureStack” in the defi nition header

for the class. This approach allows users to concern themselves only with the

PureStack type and ignore whether or not there is a MyStack object involved.

Now that we have looked at several examples where inheritance works well and

several examples where referencing works well, let’s summarize the advantages and

disadvantages of each. That is, suppose we wish to design and implement a class B

that is very similar to an existing class A. Two of our choices are to (a) make B a

subclass of A or (b) pair B with an object of class A to which it assigns some respon-

sibilities. See Figure 3.18 for the differences between these two choices.

For each of the following categories, let us compare the two choices in terms of

fl exibility and features:

� Polymorphism: If B is a subclass of A, then subtype polymorphism is possible

and so an object of class B can be used anywhere an object of class A was ex-

pected, a defi nite advantage. In contrast, if B is composed with A, then this

subtype polymorphism does not apply to B. Therefore, inheritance wins in this

category.
� Interface: If B is a subclass of A, then B inherits all methods of A, and so the

interface of B must include all the methods in the interface of A, whether B

wants them all or not. Furthermore, it is usually not appropriate to “void out” or

nullify the methods of A that B doesn’t want. In contrast, if B is composed with

A, then the public interface of B need not be related at all to the public interface

of A, and so you have the fl exibility to design B exactly the way you want. Ref-

erencing wins here.
� Effi ciency: If B is a subclass, there is direct execution of any inherited meth-

ods. In contrast, if B forwards requests to A, then the methods of B must call

methods of A, which results in slightly higher overhead costs. Inheritance wins

Property

inheritance “is-a” generalization/
specialization

association“has-a” or “refers to”reference

Relationship Structural form UML

A

B

B

A

FIGURE 3.18
Two possible
relationships between
classes A and B.

03-M4377.indd 7703-M4377.indd 77 12/5/07 12:05:53 PM12/5/07 12:05:53 PM

78 Chapter 3 Elegance and Implementation Inheritance

here, but the effi ciency gain is almost surely negligible and so it is not much

of a win.
� Amount of Code: If B is a subclass of A, you need to implement in B only the

methods of B that aren’t already inherited from A. In contrast, if B forwards

requests to A, then you must implement all of B’s methods yourself. Although

many of these methods might merely call a corresponding method in A, there

is still more code to write and therefore more chance of errors. Inheritance

wins here.
� Dynamic changeability: If B is a subclass of A, then at runtime, there is no

way to change the behavior of the inherited methods. However, if B forwards

requests to A, then at runtime, B can change the object of class A or a subclass

of A to which it forwards requests and in this way reconfi gure itself.

So who is the overall winner? Of course, neither one is. There are times when you

want to use each one. Use referencing when you want the functionality but not the

interface. Use inheritance when you want the functionality and interface. In the

situations where it is not immediately obvious which approach is better, a natural

tendency for new programmers is to want to demonstrate their knowledge of inheri-

tance and so they consider it fi rst. However, inheritance is overrated for many of the

reasons given in this chapter, and so you should always consider referencing fi rst.

SECTION 3.13 SUMMARY

Here is a summary of the ideas and guidelines intro-

duced in this chapter.

� A similar interface (that is, similar method sig-

natures) is not suffi cient for an elegant subclass/

superclass or class/interface relationship; con-

sistent behavior is also required. In particular, a

class B should not inherit class A’s methods and

then nullify them or change their behavior to do

something completely different.
� The Principle of Least Astonishment: If a client

thinks he has a reference to an object of type A

but actually has a reference to an object of sub-

type B, there should be no surprises when he

sends messages to the object.
� Liskov Substitution Principle: It is acceptable to

make a class B a subclass of class A or to make

B an implementer of interface A only if, for ev-

ery method in both A’s and B’s interfaces, B’s

method accepts as input all the values that A’s

method accepts (and possibly more) and does

everything with those values that A’s method

does (and possibly more).

� A class B that is identical to another class A

except that it has extra restrictions on its state

should not be a subclass of A unless both classes

are immutable.
� Consider removing from your design any classes

that provide little or no unique behavior.
� If class B models a role played by class A, es-

pecially a temporary role, then B should not be

a subclass of A. Instead referencing should be

used.
� Inheritance between a superclass A and a sub-

class B is appropriate if it promotes code reuse,

each object of class B “is an” object of class A,

the public interface of class B includes the in-

terface of class A and the behavior of the meth-

ods in this interface in both classes is similar in

both classes, and there is a need for polymor-

phism to allow a variable of type A to refer to

an object of type B. Otherwise, inheritance is

probably inappropriate.
� Inheritance makes it hard to follow the fl ow of

execution through the code of a program, and it

makes it hard for the programmer to change one

03-M4377.indd 7803-M4377.indd 78 12/5/07 12:05:54 PM12/5/07 12:05:54 PM

 Chapter 3 Elegance and Implementation Inheritance 79

of the classes in the hierarchy without affecting

the others.
� If you have a class with behavior that applies to

only some of the objects of the class, then con-

sider splitting the class into two classes associ-

ated by inheritance either directly or through a

common abstract class or interface.

� Use inheritance, polymorphism, and dynamic

method invocation to avoid ugly conditionals.
� When designing a class B that will be very simi-

lar to an existing class A, use referencing if you

want the functionality of A but not the interface,

and use inheritance only when you want the

functionality and interface of A.

EXERCISES

 1. Determine the proper relationship between the fol-

lowing classes. That is, which ones should be sub-

classes of others and which should be composed of

others? You may add extra classes or interfaces (for

example, a common superclass or interface of two of

the classes) if you feel they will help clarify the rela-

tionship. Explain your reasoning.

 a. Boat, BoatHouse, House, HouseBoat, Garage,

Car

 b. USMoney (with dollars and cents attributes) and

Money (with an attribute indicating the kind of

currency as well as the amount)

 c. Class1 and Class2, where both classes have meth-

ods with headers “public Object get()” and “pub-

lic void put(Object o).” In Class1, the get and put

methods behave like a stack’s pop and push meth-

ods with LIFO behavior, and in Class2, the get

and put methods behave like a queue’s dequeue

and enqueue methods with FIFO behavior.

 2. A person might say that “Fluffy is a cat” and “A cat

is a mammal,” and therefore Fluffy should be a sub-

class of Cat and Cat should be a subclass of Mam-

mal, because we have two “is-a” relationships. What

is wrong with this reasoning?

 3. In determining whether a class B should be a sub-

class of A, we said that there should be no surprises

to the client who thinks she has an object of class A

when she really has an object of class B. However,

suppose B is any subclass of any class A and con-

sider the following code:

public String getClassNameOf(A a)
{
 return a.getClass().getName();
}

 The client will always be expecting to see “A” re-

turned regardless of the argument, but if an object of

class B is the value of the parameter a, then “B” will

be returned. Won’t that surprise the client? Does this

mean that no class should ever be a subclass of an-

other class because there will always be this surprise?

 4. Consider the following almost-identical classes A

and B:

public class A
{
 public int foo(int x)
 {
 if(x >= 0)
 return x*x;
 else
 throw new RuntimeException();
 }
}
public class B
{
 public int foo(int x) throws Exception
 {
 if(x >= 0)
 return x*x;
 else
 throw new Exception();
 }
}

 If we make B a subclass of A, then the compiler gen-

erates an error when we compile these two classes,

whereas if we make A a subclass of B, then the com-

piler compiles the classes without complaint. Explain

this compiler behavior in terms of the Liskov Substi-

tution Principle we stated in Section 3.3.

 5. In Section 3.3, we discussed the Rectangle and

Square classes in the case where they were both im-

mutable or both mutable. Discuss the elegance of the

following designs:

 a. Make a mutable Square class a subclass of an im-

mutable Rectangle class,

 b. Make an immutable Square class a subclass of a

mutable Rectangle class,

03-M4377.indd 7903-M4377.indd 79 12/5/07 12:05:54 PM12/5/07 12:05:54 PM

80 Chapter 3 Elegance and Implementation Inheritance

 c. Make a mutable Rectangle a subclass of a mu-

table Square class.

 6. In Section 3.3, we discussed an inheritance hier-

archy including an abstract Rectangle class with

three direct subclasses—MutableRectangle, Immu-

tableRectangle, and MutableSquare—and an Im-

mutableSquare class that is a subclass of Immutable

Rectangle. However, it seems like mutable squares

should somehow be more closely related to mutable

rectangles than the hierarchy shows. Can you rede-

sign the inheritance hierarchy in an elegant way so

that the mutable squares and mutable rectangles are

more closely related?

 7. In Section 3.3, we discussed an inheritance hier-

archy including an abstract Rectangle class that

had MutableRectangle and ImmutableRectangle

as two of its subclasses. Assume that the Mutable-

Rectangle class has a move(dx, dy) method that

shifts its position horizontally by dx and vertically

by dy. Suppose you are told by your boss to add a

FirstQuadrantRectangle class that is the same as Mu-

tableRectangle except that the x and y coordinates of

the top-left corner must always be positive. Redesign

the inheritance hierarchy in an elegant way so that

the FirstQuadrantRectangle class is included. Also,

discuss whether the new class is a useful addition to

the class hierarchy.

 8. Consider the last approach discussed in Section 3.4

for the Student and Person problem. In that approach,

a Student was not a subclass of Person, but instead

held a reference to a Person object. One disadvantage

of this solution is that there is now no type relation-

ship between Person and Student. For example, sup-

pose that you want to have a collection of Students

and non-Student Persons mixed together in an array.

More precisely, suppose you are working for a news-

paper and are storing in an array all the information

regarding subscribers to the paper and suppose that

you want to distinguish between student subscrib-

ers and nonstudent subscribers because students get

a reduced rate. What should the type of the array be?

It can’t be an array of Persons since Students aren’t

Persons. It can’t be an array of Students since Persons

aren’t Students. One option would be to make it an ar-

ray of Objects, but then you lose all the compile-time

type information of the objects in the array and so

have to do downcasting and type checking at runtime.

Come up with a better option.

 9. In Section 3.7, we implement a ChangeMeasured

Rectangle class that assumed that the Rectangle

class’ setSize method called the setWidth

method. As noted in that section, if the setSize

method is modifi ed so that it doesn’t call set-
Width, then the ChangeMeasuredRectangle class is

broken. Is it possible to implement the ChangeMea-

suredRectangle class so that it will correctly work

regardless of the implementation of the setSize

method in the Rectangle class? If so, give such an

implementation.

 10. In Section 3.9, the Polygon class and its subclasses

were given draw methods, which seemed to make

sense from an OO perspective. However, now con-

sider a geometer who wants to study and analyze

polygons from a mathematical point of view (e.g.,

to prove theorems about polygons), and she doesn’t

care at all about drawing them. Ideally, from the per-

spective of code reuse, it would be nice if she could

use the Polygon class we created. Unfortunately,

our Polygon class is tied to the Graphics class and a

draw(Graphics) method, and so carries this extra

baggage around that is irrelevant from the geometer’s

perspective. Suggest some solutions to this dilemma.

 11. In the Sorter class defi ned in Section 3.10, the sort

methods are declared “static,” and so they are class

methods. Is this a good design decision? Why or

why not?

 12. In the Sorter class defi ned in Section 3.10, the sort

methods took a Comparator as a parameter. Why not

make the Comparator an instance or class variable

of the Sorter class instead of passing one in as a pa-

rameter? Why not use a public variable from another

class that is of type Comparator?

 13. An alternative to using Comparators to determine

which elements of the array come before other ele-

ments is to use the compareTo method of the ele-

ments, as was done in the original version of the

sort method for arrays of Strings. This approach, in

fact, is taken in one of the sort methods in the java.

util.Arrays class. What are some of the advantages

and disadvantages of this approach?

 14. The StringComparator discussed in Section 3.10

throws an exception—more precisely a ClassCast-

Exception—if either of the two objects passed into

its compare method is not a String. Is there any

reasonable way for the StringComparator to avoid

throwing an Exception and instead always return an

integer? If so, what should the Comparator do with a

non-String argument?

 15. In the Sorter class defi ned in Section 3.10, it was

mentioned that the generic sort method won’t work

for arrays of primitive types. Come up with an el-

egant way of handling such arrays.

03-M4377.indd 8003-M4377.indd 80 12/5/07 12:05:55 PM12/5/07 12:05:55 PM

 Chapter 3 Elegance and Implementation Inheritance 81

 16. Does the use of generics—specifi cally, Compara-

tor<T>—simplify the fi nal sorting method that we

created in Section 3.10? If so, how?

 17. Write a StringLengthComparator that implements

the Comparator interface and allows users to sort

arrays of String by the length of the Strings (from

smallest to largest). Two Strings of the same length

should be neighbors in the sorted array but can be in

any order.

 18. Redo the previous exercise so that all Strings of the

same length are in alphabetical order. That is, the

primary sorting mechanism is by String length but

the secondary sorting mechanism is by alphabetical

order.

 19. One problem with the Sorter class in Section 3.10 is

that it uses selection sort, a rather ineffi cient sorting

algorithm. One should really rename the class as

SelectionSorter. Similarly, one could use a differ-

ent sorting algorithm, such as quick sort, and cre-

ate a QuickSorter class. Is there a way to avoid code

duplication between these two sorter classes? Read

and write a short report on how such duplication is

handled in [7]

 20. In Section 3.12, we raised the question as to whether

a button should handle all the notifi cations that it was

clicked or whether the button should have a notifi ca-

tion manager object and forward the notifi cations to

it to handle properly. Which approach is taken by the

javax.swing.JButton class?

 21. Consider the inheritance hierarchy in which a Person

class has a ParttimeEmployee subclass, which in turn

has a NewFulltimeEmployee subclass, which has a

TenuredFulltimeEmployee subclass. When asked to

justify this hierarchy the designer of it gave the fol-

lowing two reasons:

• Every employee is a person.

• The three categories of employees are identi-

cal except each subclass has more benefits than

its superclass. For example, parttime employees

have a few benefits, for example, salary, but new

fulltime employees get more, for example, health

insurance, and tenured fulltime employees get

even more, for example, stock options and dental

insurance.

 What do you think of this hierarchy? Evaluate it

based on the discussion in this chapter. Come up with

a better design for these categories of employees.

 22. Suppose a person needs to model the concept of bal-

loons and so, wishing to use inheritance to make

an elegant design, the person creates three classes,

a RubberObject class, an Infl atableBag class, and a

Balloon class that is a subclass of those two classes.

(For the purpose of this exercise, assume that Java,

like C��, allows multiple inheritance.) Can you see

any problems with this design?

 23. The java.util.Collection class has a method with the

following header:

public static List unmodifiableList(List
list)

 that returns an immutable copy of the list passed in

as a parameter. The immutable copy throws an Un-

supportedOperationException if you call any of the

modifi er methods in the List class. Discuss the el-

egance of this design.

REFERENCES

 1. Martin, R.C., The Liskov substitution principle.

C++ Report, March, 1996.

 2. Liskov, B., Program Development in Java:
Abstraction, Specifi cation, and Object-Oriented
Design. 2001. Reading, MA: Addison-Wesley.

 3. Wiki. Liskov Substitution Principle. Web page,

2003. [Cited March 28, 2007; available from http://
c2.com/cgi/wiki?LiskovSubstitutionPrinciple.]

 4. Bruce, K., Foundations of Object-Oriented Lan-
guages. 2002. Cambridge, MA: MIT Press.

 5. Cline, M., C++ FAQ Lite. Web page, 2003. [Cited

March 28, 2007; available from http://www
.parashift.com/c++-faq-lite/proper-inheritance
.html#faq-21.3.]

 6. Riel, A.J., Object-Oriented Design Heuristics.
1996. Reading, MA: Addison-Wesley.

 7. Nguyen, D. and S. Wong, “Design patterns for

sorting” is a paper in the SIGCSE BULLETIN 33:1,

March, 2001. Pages 263–267 Published by ACM

Press, New York, NY.

03-M4377.indd 8103-M4377.indd 81 12/5/07 12:05:55 PM12/5/07 12:05:55 PM

http://c2.com/cgi/wiki?LiskovSubstitutionPrinciple.]
http://c2.com/cgi/wiki?LiskovSubstitutionPrinciple.]
http://www

82

Elegance and Methods

SECTION 4.0 INTRODUCTION

It is useful to distinguish between the different perspectives or levels of software

design. Based on the ideas in [1], we will consider OO design on three levels:

 1. Conceptual

 2. Specification

 3. Implementation

At the highest level, the conceptual level, software components, such as objects

and their associated classes, have responsibilities, for example, geometric shapes

might have the responsibility to draw themselves and to compute their area, or stu-

dents might have responsibilities to get to class on time rather than expecting a par-

ent to prod them. At this level, the components are language-independent.

At the specification level, we are concerned with the precise interfaces and

associations between components. For example, a geometric Shape interface may

specify methods with headers public void draw(Graphics g) and public
double area().

At the implementation level, concrete classes that implement these interfaces

are of concern to us. Such classes have instance variables and code for their meth-

ods, for example, a Circle object might have x and y integer variables corresponding

to the coordinates of the center and a float variable r corresponding to the radius,

and the area method might have return 3.14*r*r; in its body.

Introductory programming classes are mostly taught at the implementation

level. In a data structures course, instructors usually talk about both the implemen-

tation and specification levels. In a software engineering class or a software design

class, the conceptual level is the usual focus of discussion. In the next three chapters,

we will talk about how to design elegant OO programs from all three perspectives.

This chapter focuses mostly on implementation and specification issues. More

precisely, this chapter discusses standard forms for methods and elegant imple-

mentations of methods, including standard coding conventions. As discussed in

Chapter 1, one important factor in determining the elegance of code is its readabil-

ity. In fact, Abelson and Sussman [3] said, “Programs must be written for people to

read, and only incidentally for machines to execute.” Source code should flow like a

good novel, with no unnecessary words, with delightful names, and with a message

4

04-M4377.indd 8204-M4377.indd 82 12/5/07 12:06:18 PM12/5/07 12:06:18 PM

 Chapter 4 Elegance and Methods 83

to communicate to the reader, so that the reader can put it down later with satisfac-

tion and a “well done.”

We will say little in this chapter about the interactions and relationships between

classes (e.g., through association or inheritance). Those issues will be presented in

Chapter 5, which focuses on specification and conceptual issues, and Chapter 6,

which provides a case study of a money class, in which we will have a chance to

apply many of the ideas discussed up to that point.

SECTION 4.1 CODING STYLES
AND NAMING CONVENTIONS

There are many coding styles for writing the bodies of classes and their methods us-

ing Java. Everyone has their own preferences, and those preferences can be based on

a logical analysis of the options or just an aesthetic sense of layout. However, there

are valid reasons for following certain agreed-upon stylistic conventions as much as

possible. For example, if programmers in a team each follow different conventions,

team members will have a harder time understanding each others’ code than if they

agreed to use a particular coding convention.

Sun Microsystems suggests certain conventions when writing Java programs.

For example, Sun suggests that you use at most 80 characters per line, because lon-

ger lines do not print properly on some printers nor are easily viewed in some en-

vironments. You can find all the conventions at http://java.sun.com/docs/
codeconv/. If you have no prior preferences and if you have not been given other

conventions to use, it is suggested that you follow these guidelines.

A review of many of Sun’s conventions, including a discussion of Javadoc con-

ventions, is included in Appendix B.

One of the most important coding conventions affecting readability and ele-

gance of code is the proper naming of your variables, classes, and methods. Unfor-

tunately, good names for variables, classes, and methods are not things that a devel-

opment environment can provide for you in the same way that it can reformat your

code. Instead good names are things that you much choose very carefully. There-

fore, we include a discussion of that naming here rather than in Appendix B.

Classes and interfaces should have names that reflect the role or intention of the

objects of those types. The name of a class is the reader’s first clue as to the actual

role the class plays in a design, and so it is worth spending time finding an appropri-

ate name for the class. Class names typically are nouns, such as Date or Computer-

Card. Interfaces often have names ending in “able” or “ible,” such as “Cloneable” or

“Iterable.”

Choose a standard coding style and follow that style throughout all your code.

Guideline

04-M4377.indd 8304-M4377.indd 83 12/5/07 12:06:19 PM12/5/07 12:06:19 PM

http://java.sun.com/docs/

84 Chapter 4 Elegance and Methods

Method names also need to be chosen carefully. The method name should in-

dicate the intent of the method, that is, what the method is supposed to accomplish.

The name should not indicate how the method accomplishes its goal but rather what
that goal is. A method that does not return a value (a method with return type “void”)

should have a name consisting of a verb or verb phrase, such as “print” or “setName.”

Clearly, vague names like “doIt” are inadequate. A method that returns a value should

have a name reflecting the value being returned, for example, “isVisible” or “size.”

Such a method could also have a verb phrase for a name, the convention being the word

“get” followed by the value being returned. For example, the size method could be

renamed getSize. See also [4–6] and the Intention Revealing Selector pattern.

Finally, variables need to be named appropriately to promote readability. Con-

sider a program that has a variable in it called “nT.” An argument in favor of such

a name is that it is short and so saves typing time and therefore helps shorten your

lines of code. However, the name is completely meaningless in terms of indicating

the role of the variable, and so the reader is forced to memorize that role. In contrast,

calling the variable “numberOfThreads” instead of “nT” increases dramatically the

ease with which your code can be understood.

It is also possible to go overboard in giving variables descriptive names, such as

“theNumberOfThreadsInTheCurrentApplicationRunningRightNow.” Keep in mind

that “clarity is often achieved through brevity.” [7, p. 3]

A boolean variable should have an appropriate name representing the event to

which it refers. It usually should not represent the negation of an event, for example,

don’t call your variable “notYetDone,” which could possibly result in the need for

expressions such as the double negative “! notYetDone.” Instead, it would be better

to call it “done” and use the expression “! done” wherever “notYetDone” would have

been used. Of course, you shouldn’t be using “done” either, since the word does not

contain enough information to aid the reader in understanding the role of the vari-

able. That is, it is not clear to the reader what activity is done or not done. For ex-

ample, if this variable is being used to indicate that a graphic image is done loading

and is now visible, a better name would be something as simple as “doneLoading.”

Using good names is even more important for constants, because they are often

used in a context far from where they are defined, and so the reader needs to spend

more time searching for the declaration of such a constant than they would with a

local variable.

Finally, not only is choosing the right names important, but also following con-

vention in the capitalization of the names is important. For example, readers used

to seeing class names begin with capital letters will be misled when they see a class

name starting with a lower case letter. Follow a consistent capitalization scheme,

such as starting your class and interface names with capital letters and starting your

variable and method names with small letters, as is used in this text.

Use intention-revealing names for all variables, methods, and classes so that

they accurately describe the role or intentions of the things they are naming.

Guideline

04-M4377.indd 8404-M4377.indd 84 12/5/07 12:06:20 PM12/5/07 12:06:20 PM

 Chapter 4 Elegance and Methods 85

SECTION 4.2 METHODS AND DECOMPOSITION

The public methods of a class provide the public behavior of the class that other classes

can call upon. But those methods and especially private auxiliary methods can also

be used to raise the level of abstraction at which code can be viewed. That is, the sepa-

ration of large segments of code into methods and the replacement of those sections

of code with method calls allows the programmer to think about the computational

process on a higher level. Programmers can treat methods as if they were built-in

higher-level features in the programming language, and so they can conceptualize

larger sections of code than they would otherwise be able to do. In this way, methods

improve the readability of the code. This process of breaking code into methods is

called functional decomposition, a process you should already be familiar with, but

which is worth reviewing.

The decomposition of code into well-designed methods not only improves the

readability of the code, it also promotes reusability. A well-designed method be-

comes another tool for the programmer to use whenever he or she needs code to

accomplish a particular objective.

When should a method be decomposed into other methods? One overly simplis-

tic rule of thumb suggests that if the method body can’t all fit on a computer screen at

the same time, it is probably too long and should forward some of the work to other

methods. (Although, interestingly enough, some studies have shown that method

bodies of up to 200 lines can have advantages over shorter bodies [8, p. 93].)

Decomposition should also be considered when there is duplicate code. That

is, if a program has two places where the same sequence of instructions is being

executed, it is almost always beneficial to move the duplicated code into a separate

method and then replace the code in each place with a method call.

For example, suppose you are developing a class of objects one of whose re-

sponsibilities is to parse an input string, such as a complicated mathematical expres-

sion. Part of the process of parsing involves checking that the input is valid. So the

class might have a method like this:

public void parse(String expression)
{
 ...do some parsing...
 if(! nextToken.equals("+")) {
 //error
 System.out.println("Expected +, but found " + nextToken);
 System.exit(1);
 }
 ...do some more parsing...
 if(! nextToken.equals("*")) {
 //error
 System.out.println("Expected *, but found " + nextToken);
 System.exit(1);
 }
 ...
}

04-M4377.indd 8504-M4377.indd 85 12/5/07 12:06:20 PM12/5/07 12:06:20 PM

86 Chapter 4 Elegance and Methods

It should be clear that it would be appropriate here to replace the body of the two con-

ditional statements with a method call. Here is one way of cleaning up that code:

public void parse(String expression)
{
 ...do some parsing...
 if(! nextToken.equals("+"))
 handleError("Expected '+', but found" + nextToken);
 ...do some more parsing...
 if(! nextToken.equals('*'))
 handleError("Expected '+', but found" + nextToken);
 ...
}

private void handleError(String message)
{
 System.out.println(message);
 System.exit(1);
}

Not only is the code in the new version of the parse method much cleaner and

more readable, but it is also much easier to change the error handling. For ex-

ample, if you decide later that your parser needs to throw an exception instead of

printing a message and quitting, you only need to change the code in one place,

namely inside the body of the handleError method. The exercises at the

end of the chapter ask you to clean up the code to reduce the duplication even

further.

Note that there is a special mechanism for removing duplicated code in con-

structors in Java called constructor chaining. This mechanism involves one con-

structor calling another one using the “this” construct. For example, consider the

following class with two constructors. It assumes a family always has a father and

mother and zero or more children.

public class Family
{

 public Family(Person father, Person mother, Person[] children)
 {
 ...code...
 }

 public Family(Person father, Person mother)
 {
 this(father, mother, new Person[0]);
 }

 ...other methods...
}

04-M4377.indd 8604-M4377.indd 86 12/5/07 12:06:21 PM12/5/07 12:06:21 PM

 Chapter 4 Elegance and Methods 87

The second constructor calls the first constructor and so is merely a convenience

constructor that allows the user to specify a family that does not (yet) have any chil-

dren without requiring the user to create an empty array.

In [4, pp. 21–22; 5, pp. 3–7; 9, pp. 271–275], this guideline is called Composed
Method. A method following this guideline is also said to have strong “functional

cohesion” [8, Sec. 5.3].

For example, the substring method in the String class is cohesive in that it

does one very simple, but very useful, task. It just returns a new string consisting

of the specified sequence of characters from the original string. If it also performed

We have already mentioned other forms of code duplication, such as duplicate

methods in two classes and how to avoid such duplication through inheritance. In

the next chapter, we will again visit duplication, especially as it relates to duplica-

tion of responsibility.

SECTION 4.3 COHESIVE METHODS

In the preceding section, we gave some reasons why methods should be created,

especially private auxiliary methods, but they don’t explain how to create useful

methods. That is, they don’t explain what should and should not be included in a

method. In this section, we will discuss some guidelines regarding the design and

role of all methods, whether public or private.

One important property of methods is that they should be as self-contained as

possible. For example, if a method uses instance variables or calls private methods

of its class, then the method is only useful in the context of that class. In contrast,

if the method can take all of its data through its parameters and invokes methods

only on those parameters, then the method could be moved into any class you wish,

which gives you much more flexibility in organizing your code.

Another important property of methods is that they do only one thing. When

you create or intend to create a method, ask yourself whether you can describe com-

pletely, in one sentence, what a method does without using the word “and.” If not,

you probably have a method that should be divided into two or more methods.

Use methods, especially private auxiliary methods, for decomposition to reduce

duplication of code and to raise the level of abstraction of the code.

Guideline

A method should do one thing only and do it well.

Guideline

04-M4377.indd 8704-M4377.indd 87 12/5/07 12:06:21 PM12/5/07 12:06:21 PM

88 Chapter 4 Elegance and Methods

another unrelated task such as printing that substring to the console, it would be far

less useful (and the name would be far less intention-revealing).

Here’s an example of a noncohesive method:

void doThisOrThat(boolean flag) {
 if(flag) {
 ...twenty lines of code to do this...
 }
 else {
 ...twenty lines of code to do that...
 }
}

This method is clearly trying to do two things and using the flag to determine which

of them to do. It would be better to have two separate auxiliary methods, such as

doThis and doThat, neither of which needs a flag. Once we have these methods,

then we can rewrite our method above to read:

void doThisOrThat(boolean flag) {
 if(flag)
 doThis();
 else
 doThat();
}

This code is now acceptable (except for the non-intention—revealing names “flag,”

“this,” and “that”) since the method is just acting as a dispatch center and so is do-

ing one thing only and doing it well.

There is one other point we can make about this doThisOrThat method.

Suppose we had rewritten our method halfway so that it called an auxiliary method

to hand the “do this” case but it handled the “do that” case itself. As a result, the

code would look like:

void doThisOrThat(boolean flag) {
 if(flag) {
 doThis();
 }
 else {
 ...twenty lines of code to do that...
 }
}

Is some ways, this code is even worse than the original code in which the method

handled both the “do this” and “do that” cases itself. The reason the new code is

worse is that, not only doesn’t it do one thing only, but it is now uncomfortably

unbalanced in that the doThis auxiliary method does not have a matching

doThat method. We can think of the doThisOrThat method as now working on

two different levels. It is acting as a high-level dispatch method calling other aux-

04-M4377.indd 8804-M4377.indd 88 12/5/07 12:06:21 PM12/5/07 12:06:21 PM

 Chapter 4 Elegance and Methods 89

iliary methods to do the work, but it is also acting at a lower-level in that it itself is

doing some of the work.

There is another implication to the statement that a method should do one thing

only. The implication is that a method should not both return a value and modify the

state of some object. Therefore, it follows that all modifier methods (that change the

state of one or more objects—such methods are also called commands or mutators)
should have “void” return type and that all functions (that return a value—such meth-

ods are also called queries) should not change any existing object’s state. That is, in

an ideal world, functions should have no side effects and modifier methods’ behaviors

should just cause side effects. Meyer [10] calls this guideline the Command-Query
Separation Principle.

Note, however, that there are standard methods in the Java library classes that

do not follow this guideline. For example, the pop method in the Stack class both

modifies the Stack and returns a value. Similarly, the next method in the java.

util.Iterator interface modifies the state of the Iterator and returns a value. Also,

modifier methods are sometimes designed to attempt a modification and then to

return a value indicating whether the attempted modification was successful. This is

a common programming form in many languages, including Java, such as in several

methods in the java.util.Collection interface. However, a Java programmer should

also consider an alternative course of action such as throwing an Exception if the

modifier method does not succeed. [11, p. 279; 12]

You may ask why you should be expected to follow this guideline when the de-

signers of the standard libraries, such as the Java libraries, didn’t do so. The reason

is that some methods, like pop, are now so standard that changing them to fit the

guideline or removing them because they don’t follow the guideline would actu-

ally reduce the readability of code (programmers would ask why pop wasn’t used).

Some other cases, such as the case where a modifier method returns a boolean value

indicating success or failure, are also somewhat of a standard, especially in lan-

guages that don’t have exception-throwing mechanisms. In any case, whether you or

others attain it or not, the guideline is worth striving for. Consider it a challenge to

see whether you can design your methods better than previous designers have done

with their methods.

All code in a method should execute at the same level.

Guideline

Functions (which return a value) should not modify any existing object’s state

in a way visible to other objects and modifier methods (which modify one or

more objects’ state) should have “void” as the return type.

Guideline

04-M4377.indd 8904-M4377.indd 89 12/5/07 12:06:22 PM12/5/07 12:06:22 PM

90 Chapter 4 Elegance and Methods

SECTION 4.4 WELL-FORMED OBJECTS
AND CLASS INVARIANTS

If the designers of classes and methods follow the guidelines in preceding sections,

then their functions will never affect or modify the state of any existing objects. How-

ever, modifier methods will do so. There is an important guideline for such methods

to observe if they are to do their jobs well.

To understand what we mean by this guideline, consider a MyLinkedList class

that has an instance variable head of type Node that refers to the first node of a

noncircularly linked list of nodes and another instance variable length of type

int that indicates the number of nodes. Consider what would happen if the value of

length was different than the actual number of nodes. Then the user would get

two different values for the length, depending on whether she checked the length

instance variable or iterated over the nodes and counted them. Clearly, we need the

two values to be the same if the class is to be usable. It is this kind of internal con-

sistency that we mean when we say a class is “well-formed.”

How do we state the requirements of consistency for a class? That is, how do we

know whether an object of that class is well-formed? A good way is to specify what

makes objects of a class well-formed is to list the class invariants. A class invariant
is a statement about the state of objects of the class between public method calls.

The statement of equality of the value of length and the number of Nodes in an

object of the MyLinkedList class is an example of a class invariant.

Note that there is another class invariant for our MyLinkedList class, assuming

the links are maintained by next pointers in each Node, namely the next instance

variable of the last node on the list must have null or some other special placeholder

object as its value. That is, it is required that the next variable not point back to an

earlier node in the list.

It is valuable to test a class’ invariants often, especially when debugging your

code. For example, it is useful to create a boolean method satisfiesInvariants

that tests some or all class invariants, returns true if the invariants are satisfied, and

then calls this method at the end of every modifier method. Java 1.4’s assert con-

struct comes in handy here. For example, at the end of every modifier method, you

could just add the statement

assert satisfiesInvariants() : <error message>

This statement invokes satisfiesInvariants. If it returns true, then noth-

ing happens and execution moves on to the next statement in the program. If it re-

turns false, then an AssertionException is thrown with the error message passed as an

argument to the AssertionException’s constructor. One feature of assert statements

Public methods should always keep objects in a well-formed state.

Guideline

04-M4377.indd 9004-M4377.indd 90 12/5/07 12:06:22 PM12/5/07 12:06:22 PM

 Chapter 4 Elegance and Methods 91

is that they can all be disabled at once by a command line switch when they are no

longer needed.

Notice that class invariants refer to the state of an object when it is not execut-

ing one of its public methods. That is, in the body of a public method, it is okay for

the object to temporarily break one or more of its invariants, but before the method

returns, the object should be back in a well-formed state. This means, in particular,

that all constructors for the class need to return a well-formed object.

One more point should be made regarding the MyLinkedList example. Is it a

good idea to have such a length instance variable, as we described above? After all,

you can compute the length of the list whenever you want by traversing it and count-

ing the number of nodes. What’s wrong with just computing the length in this way

every time it is needed? The advantage to computing it each time is that it reduces the

complexity of your class in that you have one fewer instance variables and one less

invariant to satisfy. The main disadvantage of computing the length each time is the

computation will take more time than just reading the value from a variable.

SECTION 4.5 INTERNAL DOCUMENTATION

A software package, no matter how well designed otherwise, is almost worthless if

documentation is not included. Consider the frustration of a software designer know-

ing that a library almost surely has the tools she needs but she can’t tell for sure because

the documentation of the library’s components is inadequate. Or consider the frustra-

tion of the person faced with the task of fixing a bug in a large section of code that

contains little or no comments explaining why it does things the way it does. Elegant

software avoids both of these situations by including appropriate documentation.

In this section and the following one, we will explain what we mean by “appro-

priate documentation.” In this section, we will consider internal documentation, and

in the next section, we will consider external documentation.

Internal documentation is the documentation for someone who is looking at

the source code. Such documentation should provide information not readily avail-

able from the code itself. It should summarize what is being done, why it is being

done, and why it is being done this particular way. For example, the documentation

might explain that a method has been implemented a particular way to allow easy

modification later, or because the method is most efficient this way, or because this

way is the simplest way. It should explain the trade-offs that were involved among

the various possible implementations.

Internal documentation should also clearly state any class or method invariants

that exist. A person modifying an existing method without being aware of those

invariants is almost surely going to write code that breaks them.

Be aware that, although it can increase the efficiency of your code, caching

values instead of computing them when they are needed can also increase the

complexity and number of invariants of your class.

Guideline

04-M4377.indd 9104-M4377.indd 91 12/5/07 12:06:23 PM12/5/07 12:06:23 PM

92 Chapter 4 Elegance and Methods

Internal documentation should not repeat what the code says. Instead, it should

summarize the intent or purpose of the code or gives a higher-level explanation.

One reason to include the intent in the documentation is so that future maintainers

of the code, when fixing errors in it, can understand what the method/variable/class

should have been doing.

Helpful internal documentation might also give an overview of the implementa-

tion. An internal method comment might explain the algorithm used by the method

if the algorithm was not already mentioned in the external documentation. For ex-

ample, a sort method’s internal documentation might say that the quicksort algo-

rithm was used:

public class sort(int[] A)
{
 /* sorts the array A using recursive quicksort */
 ...
}

Internal documentation mostly consists of comments in the source code, but the

code itself can be a useful part of the documentation if the code is well written. If

the programmer uses intention-revealing names of methods and variables and ap-

propriately combines them, there is often little need for further documentation.

Unfortunately, self-documenting code is an ideal that is rarely met, and so ad-

ditional comments are necessary. Such comments can be helpful in understanding

code, or they can hinder the understanding, especially if the comments are not also

updated when the code is updated.

Code needing a large number of comments usually indicates poor code. That

is, if you find yourself needing comments to explain the code, then the code should

probably be rewritten. In particular, if you write a lot of comments that summarize

sections of code in a method, the method may be doing too many things.

When should comments be added to the code? It is easy for a new programmer

to say that he doesn’t “do” comments until after he has written and debugged the

code, because otherwise he ends up wasting too much time writing comments for

code that is later deleted. Such a thought process, however, is counterproductive.

Always strive for “self-documenting code” that is so clear that no comments are

necessary.

Guideline

If your code is so complicated that it needs explaining with lots of internal or

external documentation, then the code should probably be rewritten.

Guideline

04-M4377.indd 9204-M4377.indd 92 12/5/07 12:06:23 PM12/5/07 12:06:23 PM

 Chapter 4 Elegance and Methods 93

Thinking about and documenting what a method is going to do and how it is going

to do it before implementing it leads to simpler and clearer software. In particular,

thinking about and documenting the method and class invariants before implement-

ing the class forces the programmer to consider all the implications of those invari-

ants and use them to maximum benefit.

What should you do if you are given code that someone else wrote that needs fixing

but that you cannot fix right away? In such a case, it is tempting to add internal

documentation indicating what is wrong and what needs to be done. You clearly

want to record this information somewhere and putting it near the code that needs

to be changed seems an appropriate place. However, such comments can easily be

overlooked and/or forgotten, except by code readers who wonder when, if ever, the

changes are going to be made. It is more appropriate in many respects to keep a

separate document with proposed changes in the design or the implementation.

Kernigan and Plauger [13] summarize nicely the role of documentation:

 1. If a program is incorrect, it matters little what the documentation says.

 2. If documentation does not agree with the code, it is not worth much.

 3. Consequently, code must largely document itself. If it cannot, rewrite the code

rather than increase the supplementary documentation. Good code needs fewer

comments than bad code does.

 4. Comments should provide additional information that is not readily obtainable

from the code itself. They should never parrot the code.

 5. Mnemonic variable names and labels, and a layout that emphasizes logical struc-

ture, help make a program self-documenting.

In this text, we have striven to write self-documenting code, and so little internal

documentation has been included. The user is encouraged to study how well this

code succeeds at being self-documenting and to learn from it, whether as an ex-

ample of good documentation or bad.

SECTION 4.6 EXTERNAL DOCUMENTATION

External documentation is for the users of the code who can’t look at or don’t care

about the source code itself. It describes the public classes, interfaces, methods,

fields, and packages and how to use them. External documentation might also in-

clude design documents such as UML diagrams indicating the relationships between

and the roles played by the classes. Such documentation, if done correctly, describes

all aspects of the behavior of each method on which the caller must rely.

It is important to understand that the only behavior of a method on which the

user should rely is the documented behavior. Reliance should be limited in this way

Write comments before or while writing the code, not after. “Build it in, don’t

add it on.”

Guideline

04-M4377.indd 9304-M4377.indd 93 12/5/07 12:06:24 PM12/5/07 12:06:24 PM

94 Chapter 4 Elegance and Methods

because, during maintenance of the system, a programmer might need to modify

the method. That programmer may feel free to change any undocumented behavior,

which then can cause serious problems with anyone relying on that behavior.

What should be included in the external documentation of a method? This doc-

umentation must include the full method signature and return type so that the user

knows the syntax to use in a method call, but much more is needed as well. For ex-

ample, consider the method in the java.lang.Math class with the following header:

public static double rint(double a)

Some reference books give you no more details than this header regarding how to

use this method or what this method does. For an experienced programmer who

already knows about rint, this information is sufficient to remind him or her of

the type of the argument and the return type. But for everyone else, the signature is

quite useless without further documentation. A more descriptive name would go a

long way toward clearing up any confusion, but, even with such a change, a textual

description of what the method returns and how it uses the parameter is essential for

proper usage.

To understand more specifically what should be included in external documen-

tation, let us step back and consider the creation of a new method. It comes about

when the designer of a system has a need for certain behavior in one of the classes in

the system and so decides that a method with that behavior must be included in the

design of the class. One of the important steps in such a design process is the devel-

opment of a precise specification of the behavior of the method before the method is

implemented. This specification is useful to the designer so that he or she can docu-

ment exactly the role the method will play in the system, but it is also useful later to

the person implementing the method in that it tells precisely what behavior needs to

be coded into it and to any users of the method so that they can determine whether

the method actually does what they want and, if so, how to call it.

If the designer’s specification is too vague and general, problems can occur dur-

ing the implementation phase. For example, consider the following documentation

for an nthRoot function:

public double nthRoot(double value, int n)
 returns the n-th root of the double value.

This documentation is clearly inadequate. It does not specify what happens in spe-

cial cases, such as when value is �1 and n is 2. If the designer wants the method

to behave in a certain way in those special cases, then she must include that be-

havior in the documentation to guide the implementer. Here is an example of more

complete documentation for the nthRoot method:

public double nthRoot(double value, int n)
 returns the n-th root of the double value.
 If n is even, the positive n-th root is returned.
 If n is odd, the n-th root will have the same sign as the

 value.
 If n < 0 or if n is odd and value < 0 then an

 IllegalArgumentException is thrown

04-M4377.indd 9404-M4377.indd 94 12/5/07 12:06:24 PM12/5/07 12:06:24 PM

 Chapter 4 Elegance and Methods 95

Another problem with external documentation can occur if the designer, instead of

being overly general and vague, is overly restrictive, specifying too many details. In

that case, he or she is forcing the implementer to code the method in a way that may

not be optimal. That is, if the designer specifies how a method computes a value in-

stead of just what value is computed, then the implementer has no choice regarding

how to implement the method, even if there is another more efficient way to do so.

For example, let us revisit the Set class discussed in Section 2.3 and in

Exercise 4 in Chapter 2. In particular, consider the following documentatiton for the

intersect method discussed in that exercise.

How do you determine when the external documentation for a method is just

right? To answer this question, it is valuable to think of it as a service an object of

that class will perform for others who request/demand it. In order for users of your

class to know what that service entails and therefore whether they want to use that

service, you need to specify clearly what the users need to do (e.g., the arguments

they need to provide) and what your object will do in return when it executes the

method. That is, think of the method in terms of a contract. If a user provides ap-

propriate arguments, then your method promises to perform a specific service. One

public static Set intersect(Set s1, Set s2)
 returns a Set with the common elements of s1 and s2 by first creating an

 empty Set to be filled with the common elements and then stepping through
the elements of s1 using an iterator and testing whether those elements are
also in s2 by calling s2.contains(e), where e is the next element of s1 to be
tested. If s2 contains e, then e is added to the Set that is returned.

This documentation is inappropriate for several reasons. It is inadequate in that it does

not specify what happens if s1 and/or s2 is null. As mentioned earlier, if the designer

expects certain behavior in special cases such as these, then she needs to include that

behavior in the documentation. Similarly, the documentation does not clearly specify

the side effects, if any, on s1 and s2. Presumably they are to be unmodified, but this

presumption should be made explicit somewhere in the documentation.

But just as importantly, this documentation is inappropriate in that it is overly

detailed regarding the implementation, unless that particular implementation is an

essential part of the method. The implementer may have an alternate way of deter-

mining the intersection—such as cloning s1 and then removing the elements that

are not also in s2—but he is not allowed to implement it that way because of the

documentation.

The external documentation for a method should be sufficiently specific to ex-

clude implementations that are unacceptable but sufficiently general to allow

all implementations that are acceptable.

Guideline

04-M4377.indd 9504-M4377.indd 95 12/5/07 12:06:25 PM12/5/07 12:06:25 PM

96 Chapter 4 Elegance and Methods

way to specify the contract and what “appropriate parameters” and “specific ser-

vice” mean is with preconditions and postconditions.

A precondition is a condition that must be true in order for a method to work.

A postcondition tells what the method guarantees will happen when it is executed.

If the caller (client) can guarantee that all preconditions are satisfied, the callee

(server) guarantees that the postconditions will be satisfied after the call. That is, the

method promises that it will do what the postconditions say if the client is careful to

ensure that the preconditions are satisfied.

Note that it is up to the client to make sure the preconditions are satisfied before

attempting the method call. If the client attempts to use the method without satis-

fying the preconditions, then all bets are off and the method can have unspecified

behavior, including crashing the program, running forever, or seemingly running

correctly but actually generating garbage.

For example, consider again the intersect function mentioned above. The

documentation gave the postcondition but did not specify any preconditions. As a

result, the user is led to believe that the method will produce a useful result for all

values of the two parameters, even null. Better external documentation would warn

the user that the two parameters must not be null:

Specify precisely all preconditions and postconditions for each of your meth-

ods in the external documentation. These conditions form the contract for your

method.

Guideline

public static Set intersect(Set s1, Set s2)
 Precondition: s1 and s2 are not null.
 Postcondition: returns a Set with the common elements of s1 and s2.

With this documentation, the user has been warned that the behavior of the method

is unspecified if s1 or s2 is null.

Although unspecified behavior is acceptable in the case where a precondition

fails, it is usually better for the clients of the method to know what will happen in all

cases. A well-designed method will usually do some well-defined, appropriate ac-

tion such as throw an exception if the preconditions are not satisfied and that behav-

ior will be stated as part of the contract. This information will help clients prepare

for situations where things go wrong.

Therefore, an example of even better documentation of the intersect method

is the following:

public static Set intersect(Set s1, Set s2)
 Precondition: none
 Postcondition: returns a Set with the common elements of s1 and s2

 if s1 and s2 are not null.
 If s1 or s2 is null, an IllegalArgumentException is thrown.

04-M4377.indd 9604-M4377.indd 96 12/5/07 12:06:25 PM12/5/07 12:06:25 PM

 Chapter 4 Elegance and Methods 97

By adding the exception-throwing behavior to the method, we have removed the

precondition, in that the method now promises to work for all possible inputs. In

this case, the postcondition describes two very different behaviors that can happen

(a value can be returned or an exception thrown), depending on the input values.

Let us reiterate the advantages of complete documentation. If a method specifies

a precondition and the user accidentally calls that method with illegal arguments,

the result may be that an incorrect value is returned. The user’s program may then

continue to execute with incorrect values, which makes it hard later to detect where

the error occurred or even that an error occurred.

The last version of the intersect method does not allow this to happen, in

that it throws an exception if illegal arguments are used, which notifies the user

immediately of the error. Furthermore, the exception mechanism allows the user to

catch the error and handle it robustly in a way appropriate to the user’s needs.

This guideline is one example of a practice called defensive programming. You

know errors are almost certainly going to occur and illegal input is going to be

given to methods, so make sure that your methods can defend against such input by

doing something explicit in a way that is helpful to the user of those methods.

There are situations where this guideline needs to be ignored. In particular,

the extra code needed to test for legal input and, if the test fails, throw an exception

may be quite expensive in terms of resources. For example, consider a method that

performs binary search on an integer array. A precondition to using binary search

is that the array is sorted. To eliminate that precondition, the binary search method

could first check the array to see if it is sorted and, if not, throw an exception. How-

ever, in that case the method’s efficiency is reduced from O(log n) to O(n), where n

is the array size.

We note here that, with the notion of precondition and postcondition, we can

now state a more precise version of the Liskov Substitution Principle discussed in

the preceding chapter concerning when it is acceptable for a class B to be a subclass

of a class A:

It is acceptable to make B a subclass of A only if for every public method with

identical signatures in both A and B, the preconditions for B’s method are no stron-

ger than the preconditions for A’s method and the postconditions for B’s method

are no weaker than the postconditions for A’s method.

As with internal documentation, one problem with writing external documentation

concerns keeping it synchronized with the code as the design evolves. As the code

is modified (e.g., errors are fixed, features are added), it is tempting, especially un-

der time pressure, to postpone updating the documentation, resulting in documen-

tation that no longer matches the code. One way to solve the problem of keeping

Try to make your methods do something appropriate in all cases so that there

are no preconditions.

Guideline

04-M4377.indd 9704-M4377.indd 97 12/5/07 12:06:26 PM12/5/07 12:06:26 PM

98 Chapter 4 Elegance and Methods

documentation in synchronization with source code is to generate external docu-

mentation from the source code or vice versa so that they are always synchronized.

Javadoc [14] is a tool and documentation technique designed for such document

generation. It specifies a syntax to be used for comments in the source code that are

then gathered by the Javadoc application and converted into external documenta-

tion. Javadoc was used to generate the Java API documentation [15]. Using Javadoc

will not, unfortunately guarantee that the external documentation will always be

synchronized with the source code. It only guarantees that the external documen-

tation is synchronized with the Javadoc-formatted comments in the code, not the

actual Java code.

For an example of Javadoc notation, the method header for the nthRoot

method discussed earlier is presented here using that notation:

/**
 * returns the n-th root of the double value.
 * If either n < 0 or n is even and value < 0,
 * then an IllegalArgumentException is thrown.
 *
 * @param value the double whose root is desired
 * @param n the integer indicating the root to be computed
 *
 * @return the n-th root of the value
 * If n is even, the positive n-th root is returned.
 * If n is odd, the negative n-th root is returned.
 *
 * @throws IllegalArgumentException
 * if either n < 0 or n is even and value < 0.
 */

For a more detailed discussion of Javadoc syntax, especially the meaning of the spe-

cial fields such as @param, @return, and @throws, see Appendix B.

SECTION 4.7 CASE STUDY: OVERRIDING
THE EQUALS METHOD IN JAVA

In this section, we will discuss the issue of implementing an equals method for a

class both because it is an issue you should address whenever you create or change

a class and because it will give us a chance to demonstrate the use of some of the

guidelines mentioned earlier in this chapter and in preceding chapters. We will

concern ourselves initially with the question as to whether equals can be imple-

mented elegantly. We will then consider the implications of overriding the equals

method. More discussion concerning whether you should override equals is in-

cluded in the next chapter.

Suppose you have created a new class and have decided to override the

equals(Object) method inherited from the Object class or another superclass.

04-M4377.indd 9804-M4377.indd 98 12/5/07 12:06:26 PM12/5/07 12:06:26 PM

 Chapter 4 Elegance and Methods 99

You can’t, of course, change the method arbitrarily and still expect to have an elegant

design. In particular, the Liskov Substitution Principle says that if a method behaves

in a certain way in a class, then users will expect an overriding method in a subclass

to behave similarly. Therefore, you need to understand the behavior of the inherited

method before you can properly implement the overriding method.

The Java API specifies the following equivalence relational properties for the

Object class’ equals method [2]:

� It is reflexive: for any nonnull reference value x, x.equals(x) should re-

turn true.
� It is symmetric: for any nonnull reference values x and y, x.equals(y) should

return true if and only if y.equals(x) returns true.
� It is transitive: for any nonnull reference values x, y, and z, if x.equals(y)

returns true and y.equals(z) returns true, then x.equals(z) should

return true.
� It is consistent: for any nonnull reference values x and y, multiple invocations

of x.equals(y) consistently return true or consistently return false, pro-

vided no information used in equals comparisons on the object is modified.
� For any nonnull reference value x, x.equals(null) should return false.

Notice that these properties specify postconditions and that there are no precon-

ditions. The equals method must return true or false for all possible arguments,

even null.

Because the equals method of the Object class implements an equivalence

relation, all overriding equals methods in subclasses are also expected to do

so (due to the Liskov Substitution Principle). Even if they weren’t required, these

equivalence relation properties are clearly desirable. For example, you obviously

want an object to be equal to itself. You also clearly want x.equals(y) to return

the same value as y.equals(x)—consider how horrible it would be if, whenever

you wanted to test two objects a and b for equality, you had to worry about whether

to call a.equals(b) or b.equals(a). In particular, in situations where you don’t

know the precise class of a or b (which is possible if they refer to objects that are of

unknown subtypes of the declared type of a and b), it would be impossible for you

to distinguish between the two calls to equals, and so you would be effectively

flipping a coin when choosing which call to make.

How is equals implemented in the Java library classes, especially the Object

class? The implementation of the equals method in the Object class tests object

identity. That is, a.equals(b) returns true if and only if a == b, which means

that a and b both refer to exactly the same object (another way to think of it is that

a and b contain references pointing to the same location in memory). Some stan-

dard Java classes, such as String and Point, override this method to test equality

in a different way. The String class overrides equals so that for Strings s and t,

s.equals(t) returns true if and only if s and t have the same sequence of char-

acters, regardless of whether s and t refer to exactly the same object. Similarly, in

the java.awt.Point class, two Points are considered equal if and only if they have the

same x and y coordinates. After a little reflection, you can convince yourself that all

these implementations satisfy the equivalence relation properties.

04-M4377.indd 9904-M4377.indd 99 12/5/07 12:06:26 PM12/5/07 12:06:26 PM

100 Chapter 4 Elegance and Methods

With this information in mind, let us now determine how to implement equals

in a class of our own so that it implements an equivalence relation. At first glance,

it may seem fairly straightforward, but in actuality it must be done quite carefully,

not just for the sake of elegance, but for the sake of correctness. To show you the

subtleties involved, we will override the inherited equals(Object) method for a

Triangle class and a ColoredTriangle subclass.

Here is the basic code for the Triangle and Colored Triangle classes:

public class Triangle {
 private Point p1, p2, p3; //the three corners

 public Triangle(Point p1, Point p2, Point p3) {
 if(p1 == null) p1 = new Point(0,0);
 if(p2 == null) p2 = new Point(0,0);
 if(p3 == null) p3 = new Point(0,0);
 this.p1 = p1; this.p2 = p2; this.p3 = p3;
 }

 ... other methods...
}

public class ColoredTriangle extends Triangle {
 private Color color;

 public ColoredTriangle (Color c, Point p1, Point p2, Point p3) {
 super(p1, p2, p3);
 if(c == null) c = Color.red;
 color = c;
 }

 ... other methods...
}

FIGURE 4.1
The Triangle and
ColoredTriangle
classes.

-p1:Point
-p2:Point
-p3:Point

-c:Color

Triangle

ColoredTriangle

See Figure 4.1 for a UML diagram of these classes.

Note that the constructors ensure that the fields p1, p2, p3, and color are all

nonnull. In particular, we will assume that the Triangle and ColoredTriangle classes

have the class invariant that the fields are always nonnull (and hence any modifier

methods must also ensure that those fields are never null). The case where the fields

are allowed to be null is assigned as an exercise.

We want to consider two Triangles t1 and t2 to be equal if they have the same

x and y coordinates at each corner. For simplicity, we will consider them to be equal

only if the first point t1.p1 matches t2.p1, the second points t1.p2 and t2.p2

match, and the third points match. We leave the case where the order of the corners

can be different as an exercise.

Note that the equals method we wish to override takes an Object as a param-

eter, not just a Triangle, and so a user of the equals method might legitimately pass

in a Rectangle, for example, as the argument to equals to test whether that Rectan-

gle is equal to a Triangle. Therefore, the first step for the Triangle’s equals method

is to test the class of the argument and return false if it is not a Triangle. So here’s a

simple implementation of Triangle’s equals method that includes this step:

04-M4377.indd 10004-M4377.indd 100 12/5/07 12:06:27 PM12/5/07 12:06:27 PM

 Chapter 4 Elegance and Methods 101

//version 1 — in Triangle class
public boolean equals(Object obj)
{
 if(! (obj instanceof Triangle)) return false;

 Triangle otherTriangle = (Triangle) obj;
 return (p1.equals(otherTriangle.p1) &&
 p2.equals(otherTriangle.p2) &&
 p3.equals(otherTriangle.p3));
}

Note how this method elegantly uses the equals method of its components.

Does this equals method implement an equivalence relation? It correctly han-

dles the case where obj is null, in that null is not an “instanceof” Triangle, and so

false is returned. Also, it is easy to see that our method has the property of reflexivity.

Let us see next whether symmetry holds. It is easy to see that it holds if the

argument is another Triangle, but what happens if the argument is a subclass of Tri-

angle, such as ColoredTriangle? The answer depends on the implementation of the

equals method in the ColoredTriangle class. Let us first assume that the Colored-

Triangle does not override the equals method inherited from Triangle.

Consider the following test code:

Triangle t = new Triangle(new Point(0,0), new Point(1,1), new Point(2,2));
ColoredTriangle ct = new ColoredTriangle(Color.red, new Point(0,0),

new Point(1,1), new Point(2,2));
System.out.println(t.equals(ct));
System.out.println(ct.equals(t));

Before you read any further, try to figure out what will be printed by the last two

lines of code.

This code will print “true” twice, and so the symmetry property holds in this

case. The reason symmetry works here is that, in the equals method, the Colored-

Triangle object is never treated as anything but a Triangle object, and so the fact that

they both have the same corner points means they will be equal. More precisely, a

ColoredTriangle object is an instance of Triangle, and so the instanceof test in

the Triangle’s equals method succeeds when obj is a ColoredTriangle. Also, the

ColoredTriangle class inherits the equals(Object) method from the Triangle

class and so ct.equals(t) similarly works properly.

Let us consider one more example of test code:

ColoredTriangle redTriangle = n ew ColoredTriangle(Color.red, new Point(0,0),
new Point(1,1), new Point(2,2));

ColoredTriangle blueTriangle = n ew ColoredTriangle(Color.blue, new Point(0,0),
new Point(1,1), new Point(2,2));

System.out.println(redTriangle.equals(blueTriangle));
System.out.println(blueTriangle.equals(redTriangle));

04-M4377.indd 10104-M4377.indd 101 12/5/07 12:06:27 PM12/5/07 12:06:27 PM

102 Chapter 4 Elegance and Methods

Symmetry again is preserved in this example in that the last two statements will both

print “true.”

Furthermore, the properties of transitivity and consistency are also preserved

by this implementation of equals, regardless of whether the parameters are Trian-

gles, ColoredTriangles, or other objects. Therefore, version 1 of the equals method

above correctly implements an equivalence relation and so can legitimately be used

in the Triangle class without violating the Liskov Substitution Principle.

However, there is one problematic aspect of this implementation of equals.

According to this method, red ColoredTriangles are equal to blue ColoredTriangles

if they have the same corners. Do we really want them to be equal? If we want to

insist that equal ColoredTriangles must have the same color, then we need to create

a new equals method for ColoredTriangle to override the one it inherits from Tri-

angle. Let us see what happens when we attempt to do so.

It seems reasonable to implement the ColoredTriangle’s equals method in a

way similar to the Triangle’s equals method:

//version 1 — in ColoredTriangle class
public boolean equals(Object obj)
{
 if(! (obj instanceof ColoredTriangle)) return false;

 ColoredTriangle otherColoredTriangle = (ColoredTriangle) obj;
 return super.equals(otherColoredTriangle) &&
 this.color.equals(otherColoredTriangle.color);
}

This code looks elegant, including such niceties as the reuse of the superclass’

equals method. Furthermore, if you now test red ColoredTriangles against blue

ColoredTriangles, you will find that they are not equal, as desired, and that symme-

try is again preserved in that case.

So are we done? Not quite. Try retesting the Triangle object against the

ColoredTriangle object that we considered in our first example:

Triangle t = new Triangle(new Point(0,0), new Point(1,1), new Point(2,2));
ColoredTriangle rct = n ew ColoredTriangle(Color.red, new Point(0,0),

new Point(1,1), new Point(2,2));
System.out.println(t.equals(rct));
System.out.println(rct.equals(t));

This code, when executed, will now print “true” and then “false.” In other words,

symmetry is no longer satisfied! Before we can fix it, we need to decide which is

the “right” answer. That is, should t and rct be equal or not? Before reading any

further, see whether you can figure out what went wrong and what you might do

about it.

To fix the symmetry, we could change the ColoredTriangle’s equals method

so that, if the argument is a Triangle rather than a ColoredTriangle, then the method

04-M4377.indd 10204-M4377.indd 102 12/5/07 12:06:27 PM12/5/07 12:06:27 PM

 Chapter 4 Elegance and Methods 103

just calls and returns the result of the superclass’ (Triangle’s) equals method, which

checks only the equality of the corners and ignores the color. Here is some such code:

//version 2 — in ColoredTriangle class
public boolean equals(Object obj) {
 if(obj instanceof ColoredTriangle) {
 ColoredTriangle otherColoredTriangle = (ColoredTriangle) obj;
 return super.equals(otherColoredTriangle) &&
 this.color.equals(otherColoredTriangle.color);
 }
 else if(obj instanceof Triangle) {
 return super.equals(obj);
 }
 else
 return false;
}

Using this version of the method, rct.equals(t) will return true, and so, since

t.equals(rct) also returns true, we have preserved symmetry. However, transi-

tivity is now violated. For example, let bct denote a blue ColoredTriangle with the

same corner points as the red ColoredTriangle and the Triangle. Then calls to rct.
equals(t) and t.equals(bct) will return both true. Therefore, by transitivity,

rct.equals(bct) must also return true, but it does not.

One way to get both symmetry and transitivity to hold is to have rct.
equals(t) and t.equals(rct) both return false. In order to get the Triangle’s

equals method to return false, it needs to distinguish between the Triangle class

and subclasses of Triangle, which its equals method does not currently do. The eas-

iest fix to this method is to test the class of the parameter obj using the getClass

method instead of using the instanceof operator. Here is the new equals method

for the Triangle class:

//version 2 — in the Triangle class
public boolean equals(Object obj)
{
 if(obj == null) return false;
 if(obj.getClass() != this.getClass()) return false;

 Triangle otherTriangle = (Triangle) obj;
 return (p1.equals(otherTriangle.p1) &&
 p2.equals(otherTriangle.p2) &&
 p3.equals(otherTriangle.p3));
}

In this implementation, if the argument obj is null or is not of the Triangle class,

the method immediately returns false. This method now correctly deals with all the

issues we discussed and is quite elegant. In particular, the method now implements

an equivalence relation.

04-M4377.indd 10304-M4377.indd 103 12/5/07 12:06:28 PM12/5/07 12:06:28 PM

104 Chapter 4 Elegance and Methods

We can also change the ColoredTriangle class’ equals method similarly into

the following form:

//version 3 – in ColoredTriangle class
public boolean equals(Object obj)
{
 if(obj == null) return false;
 if(obj.getClass() != this.getClass()) return false;
 if(! super.equals(obj)) return false;

 ColoredTriangle otherColoredTriangle = (ColoredTriangle) obj;
 return this.color.equals(otherColoredTriangle.color);
}

Once again, if the argument obj is null or is not a ColoredTriangle, the method

returns false. If the equals method has not returned false after the first two lines,

then we know that obj is a ColoredTriangle. Therefore, to finish the test of equal-

ity, we need to test that this and obj are equal as Triangles and that they have

the same color. The best way to test equality as Triangles is to call the superclass’

equals method, which tests the equality of any inherited properties of a class. If

the superclass’ equality test succeeds, then the remaining test, namely the equality

of the color of the two ColoredTriangles, is applied to determine the final result.

These latest versions (version 2 of equals in the Triangle class and version 3

of equals in the ColoredTriangle class) both implement equivalence relations. So,

are we done? Unfortunately, in the process of getting the equivalence relation prop-

erties to work, we introduced a new problem.

To see what this new problem is, suppose a user has three variables t1, t2, and t3

of type Triangle and the user knows that the objects referred to by all three variables

have the same corner points. However, suppose that the user does not know that t2 is

actually a ColoredTriangle. Consider now the following two function calls:

t1.equals(t3)
t2.equals(t3)

According to the Liskov Substitution Principle, the user should never be surprised

by the output of a method if a subclass object is substituted for a superclass object as

the object being sent the message. However, the two function calls above return dif-

ferent values (true in the first call and false in the second call). Therefore, our latest

equals methods still fail the Liskov Substitution Principle!

What is going on here? In the process of getting reflexivity, symmetry, and tran-

sitivity to work, we ended up giving the ColoredTriangle class’ equals method

significantly different behavior than its superclass’ equals method. But a subclass’

method should never different significantly from the overridden method in its su-

perclass or else that subclass should not legitimately be considered a subclass of its

superclass, as discussed in the last chapter.

This problem is not unique to the Triangle and ColoredTriangle classes. If

you have any two classes A and B where A has an equals method overriding the

Object class’ equals method and B is a subclass of A with an equals method

04-M4377.indd 10404-M4377.indd 104 12/5/07 12:06:28 PM12/5/07 12:06:28 PM

 Chapter 4 Elegance and Methods 105

overriding A’s equals method, then you will have the same problem of a violation

of the Liskov Substitution Principle. Therefore, we have two choices:

 1. Allow two classes in an inheritance chain to override the Object class’ equals

method, but accept the fact that the Liskov Substitution Principle will be

violated.

 2. In any inheritance chain, have at most one class that overrides the Object class’

equals method.

To see the implications of these choices, let us apply them to our Triangle and

ColoredTriangle classes. There are several things we can do, none of which is totally

satisfactory. The first approach is to eliminate one of the two overriding equals

methods. For example, we can eliminate the ColoredTriangle class’ equals

method, but then any tests for equality of ColoredTriangles will ignore the color and

will consider only the corners. Alternatively, we can eliminate the Triangle class’

equals method, but then two Triangle objects will be considered equal only if they

are the same object. Another approach is to remove the subclass/superclass relation-

ship between the ColoredTriangle and Triangle classes. To minimize code duplica-

tion, we could use composition, as discussed in the preceding chapter. That is, the

ColoredTriangle class could have a Triangle field, which maintains the corners of a

ColoredTriangle object. But by using this approach, we lose the ability to use subtype

polymorphism with the two classes. Finally, we could accept the fact that the Liskov

Substitution Principle is violated. The particular solution that should be adopted de-

pends on the context and how the classes will be used.

It is worth mentioning that, if we eliminate the ColoredTriangle’s equals

method or if we choose composition over inheritance, then we can actually use the

original (version 1) implementation of equals for the Triangle class.

It is also worth mentioning that whenever you implement the equals method in

a class, then you might also want to include an additional version of equals for con-

venience that takes an object of that class as its parameter. For example, in the Triangle

class, we might want add the following method that takes a Triangle as its parameter:

public boolean equals(Triangle otherTriangle) //in Triangle class
{
 return (p1.equals(otherTriangle.p1) &&
 p2.equals(otherTriangle.p2) &&
 p3.equals(otherTriangle.p3));
}

Note that this equals(Triangle) method does not override the inherited

equals(Object) method and instead it overloads equals. It is merely a con-

venience method that is helpful if you know that you are comparing two nonnull

objects from the same class, which is often the case. Furthermore, this method can

be used to simplify slightly the implementation of the equals(Object) method

in the Triangle class as follows:

04-M4377.indd 10504-M4377.indd 105 12/5/07 12:06:28 PM12/5/07 12:06:28 PM

106 Chapter 4 Elegance and Methods

public boolean equals(Object obj) //in Triangle class
{

 if(! (obj instanceof Triangle)) return false;

 return this.equals((Triangle) obj);
}

You might wonder how the Java library developers handled the implementation of

equals for the library classes. At least some of them, such as the equals meth-

ods for some Collection classes, were implemented so that objects of two different

classes can be equal. For example, the expression

new HashSet().equals(new TreeSet())

returns true. Therefore, this version of equals does not require class identity. In-

stead, the Java developers specified in the Set interface the required semantics of the

equals method for any class implementing this interface. In particular, they said

that two Sets are equal if they have the same size and if every member of one Set is

also a member of the other Set. This requirement prohibits any class implementing

the Set interface from implementing the equals method in any other way, and so

the Liskov Substitution Principle is satisfied.

As a final note, if you do decide to override the inherited equals(Object)

method from the Object class, you should also override the Object class’ hash-
Code method so that whenever two objects are equal, they also have the same hash

code value. This property is needed to ensure that objects of your class can properly

be used as keys in a hash table. See the references for more details.

SECTION 4.8 CASE STUDY: OVERRIDING
THE CLONE METHOD IN JAVA

Let us do one more cases study. In this case, we will consider the clone method

inherited from the Object class. This method’s intention is to create and return an

object that is a clone of the object on which the method is invoked. We will discuss

how you properly go about overriding it in your class. It has even more subtle issues

than equals.

Despite the fact that all classes inherit a clone method from the Object class,

objects are not actually clonable unless their class implements the Cloneable in-

terface. This interface is just an empty “flag” interface indicating that objects of

your class are allowed to be cloned. That is, if someone calls the clone method on

an object of a class that does not implement that interface, a CloneNotSupported-

Exception will be thrown. Furthermore, the clone method inherited from the Ob-

ject class is protected rather than public, which means not all objects have permis-

sion to invoke that method.

If you want to allow everyone to clone objects of your class, you need to state

that your class implements the Cloneable interface and you need to implement a

public clone method in your class with the following header:

04-M4377.indd 10604-M4377.indd 106 12/5/07 12:06:29 PM12/5/07 12:06:29 PM

 Chapter 4 Elegance and Methods 107

public Object clone()

You also need to determine how deep a clone you want to create. That is, if the

object to be cloned includes references to other objects in its instance variables (the

way the Triangle class refers to Point objects in its instance variables), you need to

decide whether those objects should be cloned as well. A shallow clone is one for

which only the object itself is copied and, as a result, the data referred to by the

object’s instance variables are shared among all copies. This is the default behavior

of the Object class’ clone method, which just makes a bit copy of the object being

cloned, and so all references in the object to other objects are copied but the other

objects themselves are not copied. A deep clone is one in which all objects referred

to by instance variables are also (deeply) cloned.

For example, in the case of the Triangle class discussed above, a deep clone is

a completely independent object. However, a shallow clone is tied to the original

object in that they share Point objects in their instance variables. In the latter case,

any change to the x or y value of a Point forming a corner of the clone or the original

will also cause a corresponding change in the other object.

To help you understand these issues better, let us write both deep and shallow

clone methods for the Triangle and ColoredTriangle classes discussed above.

Let us first write a shallow clone method for these classes to see how it needs

to be implemented. An obvious approach to implementing Triangle’s clone method

is to create a new Triangle and assign to its instance variables the same values as the

original:

//in the Triangle class—inelegant shallow clone implementation
public Object clone() {
 return new Triangle(p1, p2, p3);
}

This method works fine, unless a subclass of Triangle, such as ColoredTriangle,

doesn’t have its own clone method and instead inherits its superclass’ clone

method. In that case, if ct.clone() is invoked on a ColoredTriangle ct, the

result will not be an object of class ColoredTriangle, but instead will be an object of

class Triangle, which is not what was desired. As a result, if this implementation of

clone is used for the Triangle class, then all subclasses of Triangle, such as Col-

oredTriangle, will need to include their own implementations of clone to override

the Triangle’s clone method. Furthermore, the Triangle’s clone method cannot

be reused to help implement the subclass’ clone method since a call to super.
clone() will return a Triangle object instead of the desired subclass object. There-

fore, this implementation of clone for the Triangle class is less than elegant.

The Object class’ implementation of clone, as mentioned above, creates a

bit copy of the object being cloned and so always produces an object of the cor-

rect class. Therefore, the proper way to implement clone, whether for a shallow

or deep clone, is to start by calling super.clone(). Hopefully the ancestors of

your class have also followed the rule of either not implementing clone at all or

implementing it in a way that starts with a call to super.clone(). If so, the object

returned by super.clone() will be a new object of the correct class, all of whose

04-M4377.indd 10704-M4377.indd 107 12/5/07 12:06:29 PM12/5/07 12:06:29 PM

108 Chapter 4 Elegance and Methods

inherited attributes have already been set to the proper values. All that remains to

be done is to adjust, if necessary, the values of the attributes of the subclass that

are not inherited from its superclass. If we just want a shallow clone of the Triangle

class, the values assigned to the attributes of a Triangle object by the Object class’

clone method do not need to be changed. In that case, the proper implementation

of Triangle’s clone is just:

//in the Triangle class—correct shallow clone implementation
public Object clone() {
 try {
 return super.clone();
 } catch (CloneNotSupportedException e) {
 e.printStackTrace();
 return null;
 }
}

Note that the Object class’ clone method may throw a CloneNotSupported

Exception, which should be caught by the public clone method in your class unless

one of your class’ ancestors already caught this exception in its clone method. The

exception will never be thrown if your class implements the Cloneable interface,

and so, in that case, the body of the catch block can be rather arbitrary.

Now ColoredTriangle’s shallow clone method can be implemented a little

more simply:

//in the ColoredTriangle class—correct shallow clone implementation
public Object clone() {
 return super.clone();
}

or ColoredTriangle can just inherit the Triangle class’ clone method. The result is

the same in either case.

Let us now create deep clone methods for our Triangle and ColoredTriangle

classes. A logical and correct approach to implementing clone for the Triangle class

is as follows:

//in the Triangle class—correct deep clone implementation
public Object clone() {
 try {
 Triangle clone = (Triangle) super.clone();
 clone.p1 = (Point) p1.clone();
 clone.p2 = (Point) p2.clone();
 clone.p3 = (Point) p3.clone();
 return clone;
 } catch (CloneNotSupportedException e) {
 e.printStackTrace();

04-M4377.indd 10804-M4377.indd 108 12/5/07 12:06:29 PM12/5/07 12:06:29 PM

 Chapter 4 Elegance and Methods 109

 return null;
 }
}

Notice how we elegantly use the clone method of the Point class (which imple-

ments Cloneable) to copy the endpoints.

For the ColoredTriangle class, we can attempt to implement the deep clone

similarly:

//in the ColoredTriangle class—incorrect implementation
public Object clone() {
 try {
 ColoredTriangle clone = (ColoredTriangle) super.clone();
 clone.color = (Color) color.clone();
 return clone;
 } catch (CloneNotSupportedException e) {
 e.printStackTrace();
 return null;
 }
}

Notice how the superclass’ clone method handles deep cloning of the inherited

attributes, and so the color attribute, is the only thing left to be deep cloned in this

method. Unfortunately, this code doesn’t quite work. The Java compiler will com-

plain because the Color class does not implement Cloneable. What do we do now?

(It turns out that actually we do not need to clone Color objects because they are

immutable—for more details see the discussion of immutability in the next chapter—

but for the sake of discussion, let us pretend we want to clone the color fi eld of the

ColoredTriangle.) We have run into a general problem: How do you create a deep

clone of an object if the attributes of the object do not implement Cloneable? Let us

attempt to solve this problem in the case of the ColoredTriangle class by using the

Color class’ constructor:

//in the ColoredTriangle class—incorrect implementation
public Object clone() {
 try {
 ColoredTriangle clone = (ColoredTriangle) super.clone();
 clone.color = new Color(color.getColorSpace(),
 color.getColorComponents(color.getColorSpace(),
 null), color.getAlpha());
 return clone;
 } catch (CloneNotSupportedException e) {
 e.printStackTrace();
 return null;
 }
}

04-M4377.indd 10904-M4377.indd 109 12/5/07 12:06:30 PM12/5/07 12:06:30 PM

110 Chapter 4 Elegance and Methods

This code is inelegant but is actually quite typical of what you need to do when

you want to make a deep clone of a class whose attributes do not also implement

Cloneable.

However, the inelegance is the least of this method’s problems. More impor-

tantly, this method is not always going to produce an exact deep clone. Suppose you

created a subclass of Color:

public class NamedColor extends Color
{
 private String name;

 public NamedColor(String s, int rgb) {
 super(rgb);
 name = s;
 }

 public String getName() { return name; }
}

and now consider the following user code:

NamedColor mauve = new NamedColor("Mauve", 3456);
ColoredTriangle ct = new ColoredTriangle(mauve, new Point(0,0),

new Point(1,1), new Point(2,2));
ColoredTriangle clone = (ColoredTriangle) ct.clone();

The clone will be a legitimate ColoredTriangle object, but it will not be a deep clone

of the original object ct since the clone’s color is of class Color whereas ct’s color

is of class NamedColor. The lesson here is that it is hard to create a deep clone of an

object if the object’s attributes are not Cloneable. Furthermore, even if all instance

variables refer to Cloneable objects, those objects’ clone methods may produce

shallow clones of themselves, in which case, your clone method will not create a

true deep clone.

Because of these problems, there are alternatives to using the clone method

for copying objects. One alternative is to use reflection to find the exact class of an

object and call one of its constructors.

What have we learned in these two case studies? In the preceding section of

this chapter, we learned that an elegant equals method can be implemented in

your classes as long as you are aware of all the pitfalls. In contrast, creating an

elegant clone method depends not just on your understanding of the pitfalls, but

also on the proper behavior of the superclasses of your class and, in the case of a

deep clone, the behavior of the attributes of your class. That is, those classes must

also properly implement their clone methods or your clone method may fail to

produce the clone you want.

SECTION 4.9 REFACTORING

The preceding case studies were examples of attempts to make the code not just cor-

rect but also of high quality. But what if your code ends up being correct and of poor

quality? For example, you might have variables or methods with poor names or your

04-M4377.indd 11004-M4377.indd 110 12/5/07 12:06:30 PM12/5/07 12:06:30 PM

 Chapter 4 Elegance and Methods 111

code might be brittle (brittle code is code that is hard to modify without breaking it).

Code with those properties is said to “smell bad” [11]. Despite the bad smells, you

may, justifiably, be hesitant to change the code to get rid of the smells for fear of intro-

ducing bugs.

The situation of needing to change existing, working code arises far more often

than you might think. Even if you have working high quality (good smelling) code,

you may need to change it. For example, after you have written such code, there is

nothing to prevent your boss from coming to you and informing you that changes

need to be made right away because of new requirements desired by customers. As

they say, “Change happens. Deal with it.”

When you have to make changes to working code, your goal should be to end up

with code that is at least as well-designed, readable, and correct as the original code.

Unfortunately, whenever you introduce changes, you can easily introduce bugs or

new bad smells. For example, even if your code is well-designed so that changes are

easy to make without breaking it, you may find that, after making the modifications,

methods might no longer do what their names originally suggested or might do two

or more completely different things. You might also find that the inheritance hierar-

chy for a class no longer is appropriate. When you notice such situations appearing

in your code or design, then you should modify your code further to make it elegant

again. But how do you do so without introducing new bugs?

Luckily, there are techniques that have been developed for modifying work-

ing code in a systematic way that get rid of existing bad smells and minimize the

chance of introducing new bugs. These techniques are called refactoring. Martin

Fowler, in his classic book on refactoring, says that “refactoring is the process of

changing a software system in such a way that it does not alter the external be-

havior of the code yet improves its internal structure. It is a disciplined way to

clean up code that minimizes the chances of introducing bugs”[11, pp. xvi and

53–54].

Refactoring makes the most sense within a testing framework. The idea behind

it is to subdivide the process of changing the code into a sequence of small steps,

each of which does not break the code. That is, after each step in the process of

refactoring, the code should still be correct. As a result, you can (and should) be

able to run your test suite and get exactly the same results as you did before the step,

thus ensuring that you didn’t break your code when you made changes.

To give you an idea of how refactoring works, let us look at a code sample.

Suppose the following method is part of a hotel management package you wrote

for determining the bills for customers. Such a method might need to use in its cal-

culations the room rate, the number of days the customer stayed, the tax, and any

discount coupons.

public double getRoomCharge()
{
 return ...an expression that computes room charge...
}

Now let us suppose that the management decides that the whole bill, which in-

cludes meal and movie charges, should be computed instead of just the room charge.

04-M4377.indd 11104-M4377.indd 111 12/5/07 12:06:30 PM12/5/07 12:06:30 PM

112 Chapter 4 Elegance and Methods

As a result, you insert additional code to compute those new charges and get the

following:

public double getRoomCharge()
{
 //compute room charge, meal charge, and movie charge and return the sum

return ... an expression that computes the sum of the room charge
and meal charges and movie charges...;

}

Although this method may compute the correct result, it is also inelegant for two

reasons. First of all, the name of the method is no longer totally appropriate in that

the method now computes more than the room charge. Secondly, the method is

much too complicated and doing too much work, resulting in a long and hard-to-read

body. A clue that the body is too complicated is the need for a comment explaining

what it is computing. Therefore, we will refactor the method to give it a new name

and refactor it to clean up the body. After we have finished, we will review the code

to see whether any more refactorings need to be done.

How do we give a method a new name and clean up the body of a method in

a systematic way so that we don’t break working code? There are two refactoring

patterns, the “Rename Method” and “Introduce Explaining Variable” patterns [11,

pp. 124–127 and 273–274] that have been designed to handle exactly this situation.

The Rename Method refactoring explains how to systematically change the

name of the method in both the declaration of that method and in every applied oc-

currence of the method. In the following box, we explain how the Rename Method

refactoring works.

The Rename Method refactoring is used to change the name of the method to

something intention-revealing. The process of renaming a method might ap-

pear trivial at first glance in that all it involves is changing the method name

and using the new name wherever the method is called. To find all the places

that the method is called, you could just change the name of the method and

then look for all the errors when you try to compile it. However, this approach

is not the way refactoring is done. When refactoring, each step should leave the

coding working correctly so that you can run your test suite to ensure no bugs

were introduced during that step.

To change the name of a method, the Rename Method refactoring suggests

the following steps:

 1. Create a new method with the new name.

 2. Copy the body of the old method into the new method.

 3. Change the body of the old method to call the new method.

The Rename Method Refactoring

04-M4377.indd 11204-M4377.indd 112 12/5/07 12:06:30 PM12/5/07 12:06:30 PM

 Chapter 4 Elegance and Methods 113

 4. For each reference to the old method, change it to refer to the new

method.

 5. Eliminate the old method.

Note that none of these steps individually should break the code.

There are also other issues that need to be addressed when renaming meth-

ods. For example, if the original method overrides a superclass’ method, then

the programmer needs to decide whether the superclass’ method name should

also be changed so that the renamed method continues to override the inher-

ited method. Also, if the original method name was part of an interface, the

interface may need to be changed, which can lead to changes to other classes

implementing the interface. If the interface cannot or should not be changed,

then the original method needs to remain along with the new method, al-

though, to avoid code duplication, the original method can just call the new

method.

For example, consider a class that implements the ActionListener inter-

face:

public class ButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 ...get the point where event occurred...
 ...create a Rectangle object centered at the point...
 ...draw the Rectangle in a window...
 }
}

You may not like the name of the actionPerformed method, and you might

want to change it to something more intention-revealing like drawRectangle-
AtEvent. But if you blindly use the Rename Method refactoring to do so, the

compiler will complain that your class no longer implements the ActionListener

interface. A better way to refactor the code is use the Extract Method refactor-

ing to extract the body of the actionPerformed method and then have the

actionPerformed method call the extracted method. Here is what the code

looks like after such changes:

public class ButtonListener implements ActionListener
 {
 public void actionPerformed(ActionEvent e) {
 drawRectangleAtEvent(e);
 }
 private void drawRectangleAtEvent(ActionEvent e) {
 ...get the point where event occurred...
 ...create a Rectangle object centered at the point...
 ...draw the Rectangle in a window...
 }
}

04-M4377.indd 11304-M4377.indd 113 12/5/07 12:06:31 PM12/5/07 12:06:31 PM

114 Chapter 4 Elegance and Methods

Let us apply the Rename Method refactoring to our example to rename the method

from getRoomCharge to getTotalBill. We first add a new method with the

new name:

public double getTotalBill() { return 0; /* default value */ }

public double getRoomCharge()
{
 return ... an expression that computes the sum of the room

charge and meal charges and movie charges...;
}

After testing that this change didn’t break the code, we copy the body of get-
 RoomCharge into getTotalBill:

public double getTotalBill()
{
 return ... an expression that computes the sum of the room

charge and meal charges and movie charges...;
}

public double getRoomCharge()
{
 return ... an expression that computes the sum of the room

charge and meal charges and movie charges...;
}

After testing again, we change the old method to call the new method:

public double getTotalBill()
{
 return ... an expression that computes the sum of the room

charge and meal charges and movie charges...;
}

public double getRoomCharge()
{
 return getTotalBill();
}

After further testing, we change all the references in the code base to call the new

method (not shown here) and test. We then eliminate the old method and end up

with just our new method:

public double getTotalBill()
{
 return ... an expression that computes the sum of the room

charge and meal charges and movie charges...;
}

04-M4377.indd 11404-M4377.indd 114 12/5/07 12:06:31 PM12/5/07 12:06:31 PM

 Chapter 4 Elegance and Methods 115

Next we can apply the Introduce Explaining Variable refactoring to further clean

up the code. This refactoring takes an expression or part of an expression and re-

places it with a variable with an appropriate name. The details of it are in the

following box.

In our example, we will introduce three explaining variables, one for each of

the three parts of the expression. We will call the three variables roomCharge,

mealCharge, and movieCharge.

We first declare and initialize the local variable roomCharge:

We end up with the following code:

The Introduce Explaining Variable refactoring involves replacing parts of an ex-

pression with new variables with intention-revealing names. Its intent is to break

down a complicated expression into something more understandable. The steps

are quite simple:

 1. Declare a new local variable initialized to one part of the expression you

want replaced.

 2. In the complicated expression, replace that part with the new local variable.

 3. Repeat this process for the other parts of the expression.

The Introduce Explaining
Variable Refactoring

public double getTotalBill()
{
 double roomCharge = ...part of expression that computes room charge...;
 return ... an expression that computes the sum of the room charge and meal

charges and movie charges...;
}

After testing, we replace the part of the expression corresponding to room charge

with the roomCharge variable:

public double getTotalBill()
{
 double roomCharge = ...part of expression that computes room charge...;
 return roomCharge + ... an expression that computes the sum of the meal

charges and movie charges...;
}

04-M4377.indd 11504-M4377.indd 115 12/5/07 12:06:31 PM12/5/07 12:06:31 PM

116 Chapter 4 Elegance and Methods

Then we test again before we do the same for the other two new variables, to get the

final form:

public double getTotalBill()
{
 double roomCharge = ...part of expression that computes room charge...;
 double mealCharge = ...part of expression that computes meal charge...;
 double movieCharge = ...part of expression that computes the movie charge...;
 return roomCharge + mealCharge + movieCharge;
}

Our code looks much better. Each expression is much more understandable, as is the

final sum that is returned.

If each expression is still somewhat long and complicated and especially if that

expression needs to be used again elsewhere, then it would make sense to continue

refactoring. For example, we could use the Replace Temp with Query refactor-

ing[11, pp. 120–123] . This refactoring extracts the expression assigned to a local

variable and puts it into a new method. It then replaces every occurrence of the

variable with a call to that method. The details of this refactoring are in the fol-

lowing box.

Let us use this refactoring for each of our three local variables. Initially, we will

consider roomCharge. After declaring it final and compiling to ensure it is only

assigned to once, we copy the right-hand side of the assignment and put it into a new

method:

public double getTotalBill()
{
 final double roomCharge = ...expression that computes room charge...;
 double mealCharge = ...expression that computes meal charge...;
 double movieCharge = ...expression that computes movie charge...;
 return roomCharge + mealCharge + movieCharge;
}

public double getRoomCharge()
{
 return ...expression that computes room charge...;
}

After testing, we replace the right-hand side of the assignment with a call to the new

method:

public double getTotalBill()
{
 final double roomCharge = getRoomCharge();
 double mealCharge = ...expression that computes meal charge...;

04-M4377.indd 11604-M4377.indd 116 12/5/07 12:06:32 PM12/5/07 12:06:32 PM

 Chapter 4 Elegance and Methods 117

The Replace Temp with Query refactoring involves extracting an expression

that was assigned to a local variable and putting that expression into a method.

It then replaces every use of the local variable with a method call. Its intent is

to simplify the method body by eliminating a local variable and to make the

expression available outside the method body. Here are the steps:

 1. Find a local variable that is assigned to only once.

 2. Declare the local variable as final and recompile (to ensure it really is as-

signed to only once).

 3. Copy the expression on the right-hand side of the assignment and put it into

the body of a new method.

 4. Replace the right-hand side of the assignment with a call to the new method.

 5. Replace every use of the local variable with a call to the new method.

 6. Remove the assignment statement and the declaration of the local variable.

There are some special situations that will need to be dealt with before this refac-

toring can be done. For example, the local variable that you want to replace may

be assigned to more than once. In that case, try converting it “into” several local

variables, each assigned to only once, using the Split Temporary Variable refac-

toring[11, pp. 128–130].

Also, if the expression has side effects, use Separate Query from Modifier

refactoring to remove the side effects. (This refactoring should be done even if

you do not intend to use the Replace Temp with Query refactoring, since an ex-

pression with side effects has a very bad smell.)

Another problem might be that there are other local variables that are used

in the expression. In that case, the new method won’t compile because those lo-

cal variables are not declared in the new method. One solution is to pass these

variables into the new method as parameters.

You may wonder about the performance hit of this refactoring, because,

instead of computing the expression once and storing it in a local variable, you

are recomputing it every time it is needed. If performance is a problem, the lo-

cal variable can be put back, but most likely your performance problem is due

to some other part of your code.

The Replace Temp with
Query Refactoring

 double movieCharge = ...expression that computes movie charge...;
 return roomCharge + mealCharge + movieCharge;
}

public double getRoomCharge()
{
 return ...expression that computes room charge...;
}

04-M4377.indd 11704-M4377.indd 117 12/5/07 12:06:32 PM12/5/07 12:06:32 PM

118 Chapter 4 Elegance and Methods

We then test again and next replace every use of roomCharge with a call to the

new method:

public double getTotalBill()
{
 final double roomCharge = getRoomCharge();
 double mealCharge = ...expression that computes meal charge...;
 double movieCharge = ...expression that computes movie charge...;
 return getRoomCharge() + mealCharge + movieCharge;
}

public double getRoomCharge()
{
 return ...expression that computes room charge...;
}

After testing, we eliminate the declaration of and assignment to roomCharge.

public double getTotalBill()
{
 double mealCharge = ...expression that computes meal charge...;
 double movieCharge = ...expression that computes movie charge...;
 return getRoomCharge() + mealCharge + movieCharge;
}

public double getRoomCharge()
{
 return ...expression that computes room charge...;
}

After more testing, we do the same refactoring for the mealCharge and movie-
Charge local variables. We end up with the following code:

public double getTotalBill()
{
 return getRoomCharge() + getMealCharge() + getMovieCharge();
}

public double getRoomCharge()
{
 return ...expression that computes room charge...;
}

public double getMealCharge()
{
 return ...expression that computes meal charge...;
}

04-M4377.indd 11804-M4377.indd 118 12/5/07 12:06:32 PM12/5/07 12:06:32 PM

 Chapter 4 Elegance and Methods 119

public double getMovieCharge()
{
 return ...expression that computes movie charge...;
}

Look at how much more elegant our code is. Each of our methods is shorter and

much clearer, because they are each doing one thing only and doing it well. Note

also that, by using intention-revealing names for the methods and variables, the

comments that were necessary in the original code sample are no longer necessary.

It is a good idea to get used to doing refactoring and testing continuously dur-

ing code writing, whether that coding consists of adding functionality or just fixing

errors. In particular, when you are adding new features to existing code, you should

alternate between refactoring code (and testing) and adding new code (and testing).

As you may have noticed, refactoring can be a time-consuming process, espe-

cially when you are new at it, because of the need to break the refactoring into steps

and test after each change. For this reason, software developers are sometimes reluc-

tant to do refactoring when writing code. It is tempting to either leave the code with

the bad smells or else attempt refactoring using short cuts that might result in new

defects. Therefore, we are happy that some major advances in automating refactor-

ing have occurred in recent years that simplify the process of refactoring. In particu-

lar, virtually all modern development environments (such as Eclipse and NetBeans)

now include tools to do some of the most-used refactorings for you. You only need to

specify the section of code to be refactored and the particular refactoring technique

to apply to it, and the tool does the actual refactoring for you. In other words, the tool

allows you to do a refactoring in just one step instead of many. For example, you can

select a variable declaration in your code, choose the Rename Variable refactoring

tool, specify a new name, and then the tool will change the declaration and all oc-

currences of the variable to the new name. However, not all refactoring patterns have

been automated. Also, this automation does not eliminate the need for testing. The

difference is that, with automated refactoring, you only need to test after each refac-

toring instead of after each step within each refactoring process.

Many of the guidelines we’ve introduced in this chapter or earlier chapters di-

rectly relate to the refactorings listed in [11]. Here are examples:

� If you find yourself needing comments to summarize sections of code in a

method, the method may be too long and doing too many things. You should con-

sider making each section a separate method using the “Extract Method” refac-

toring [11, p. 110].
� If you find a method that has been poorly named or whose role has changed

so that its name is no longer intention-revealing, it is important at that point to

change the name using the “Rename Method” refactoring [11, p. 273].
� If a section of code is repeated more than once, you should make the dupli-

cated section into its own method using the “Extract Method” refactoring [11,

p. 110].
� If a method is both a modifier with observable modifications and a function,

use the “Separate Query from Modifier” refactoring [11, p. 279; 12].

04-M4377.indd 11904-M4377.indd 119 12/5/07 12:06:33 PM12/5/07 12:06:33 PM

120 Chapter 4 Elegance and Methods

� If you find a class that has a public instance variable, use the “Encapsulate Field”

refactoring [11, p. 206].
� If you have magic numbers in your code, use the “Replace Magic Number with

Symbolic Constant” refactoring [11, p. 204].
� If a method does one of two very different things based on a parameter, create

separate methods for each parameter value using the “Replace Parameter with

Explicit Methods” refactoring [11, p. 285].
� If you find that one of your public methods is really just a utility or auxiliary

method that is used only by other methods in the class, make it private using the

“Hide Method” refactoring [11, p. 303].
� If you find that two classes have common methods, use the “Pull Up Method”

refactoring [11, p. 322] to move the method to a common superclass.

In later chapters of this text, you will find references to more refactorings, espe-

cially when we consider case studies in which we will iteratively enhance the code.

SECTION 4.10 CODE OPTIMIZATION

One final aspect of elegant code that needs to be mentioned in this chapter is efficiency.

Well-written code performs its tasks using a reasonable amount of resources such as

time and memory. Unfortunately, making complex changes to the code to optimize it

is very hard on the readability of the code. How can you maximize the readability of

the code and at the same time get the performance that you need?

A good programmer will write code that is readable and only later worry about

optimization. Donald Knuth [16] found that “less than 4 percent of a program gener-

ally accounts for more than half of its running time.” Therefore, you should first find

out which code consists of that 4 percent, for example, by using code profiling, and

then optimize only it.

Programmers make a common mistake when they try to optimize their code

too early, for example, before the code has been written and thoroughly tested. Hand

optimization may not be necessary because good compilers will do many optimi-

zations for you. In fact, your hand optimizations may not only make the code less

readable, but they may also make it harder for the compiler to do its optimizations.

That said, you should not leave all aspects of efficiency until after the code is

written. The best optimizer is between your ears. Only you, and not the compiler,

can choose the appropriate data structures and algorithms so that your code will

execute efficiently. For example, you should always do simple time and/or space

complexity analyses of your algorithms. If you need to write a sorting routine, im-

plement an O(n log n) algorithm instead of an O(n2) one, unless you know it will

never be used on large collections.

Balance optimization needs with readability needs.

Guideline

04-M4377.indd 12004-M4377.indd 120 12/5/07 12:06:33 PM12/5/07 12:06:33 PM

 Chapter 4 Elegance and Methods 121

Here is a summary of the ideas and guidelines intro-

duced in this chapter.

� Choose a standard coding style and follow that

style throughout all your code.
� Use intention-revealing names for all variables,

methods, and classes so that they accurately de-

scribe the role or intentions of the things they are

naming.
� Use methods, especially private auxiliary meth-

ods, for decomposition to reduce duplication of

code and to raise the level of abstraction of the

code.
� A method should do one thing only and do

it well.
� All code in a method should execute at the same

level.
� Functions (which return a value) should not mod-

ify any existing object’s state in a way visible

to other objects, and modifier methods (which

modify one or more objects’ state) should have

“void” as the return type.
� Public methods should always keep objects in a

well-formed state.
� Be aware that, although it can increase the

efficiency of your code, caching values instead

of computing them when they are needed can

also increase the complexity and number of in-

variants of your classes.
� Always strive for “self-documenting code” that

is so clear that no comments are necessary.

� If your code is so complicated that it needs ex-

plaining with lots of internal or external docu-

mentation, then the code should probably be

rewritten.
� Write comments before or during writing the

code, not after. “Build it in, don’t add it on.”
� The external documentation for a method should

be sufficiently specific to exclude implemen-

tations that are unacceptable but sufficiently

general to allow all implementations that are

acceptable.
� Specify precisely all preconditions and postcon-

ditions for each of your methods in the external

documentation. These conditions form the con-

tract for your method.
� Try to make your methods do something ap-

propriate in all cases so that there are no

preconditions.
� Balance optimization needs with readability

needs.

More detailed discussions of many of the topics in

this chapter can be found in [4–6; 17, Appendix C;

18, Chapter 6].

Further references to documentation can be

found in [6; 8, Chapter 19; 18, pp. 248–254; 19,

item 28].

A more detailed discussion of testing and opti-

mization techniques can be found in [9, Chapters 1–3

and 13].

EXERCISES

 1. Back in Section 2.5, we created a class Enhanced-

Rectangle that extends Rectangle. Give a better name

for the EnhancedRectangle class and explain why it is

better.

 2. In Section 4.2, we used a parser as an example of

how to extract code and put it into a new auxiliary

method to remove code duplication. Study that ex-

ample and suggest a way to remove even more code

duplication than was done there.

 3. Suggest new methods to replace pop() in the Stack

class and next() in the Iterator interface so that

the new methods follow the functions and modifiers

rule given in Section 4.3, which states that every

method should either be a void modifier method or

a function method that does not modify the state of

any objects.

 4. Consider an object that maintains an array of integers

whose values change over time. Suppose the object

keeps track of the number of times it is asked to search

the array for specific values. If the number of searches

exceeds a threshold, then the object sorts the array to

speed up future searches. In such an object, a call to

SECTION 4.11 SUMMARY AND FURTHER READING

04-M4377.indd 12104-M4377.indd 121 12/5/07 12:06:33 PM12/5/07 12:06:33 PM

122 Chapter 4 Elegance and Methods

a search method, which should be a function that just

returns a value, causes side effects in that the num-

ber of searches is incremented and the array is pos-

sibly sorted. Therefore, this object’s search method

appears to be breaking the guideline in Section 4.3

that says that functions should not have side effects.

Does this fact mean that the object should cease and

desist in counting the searches and in sorting? Briefly

explain.

 5. Tell what is inelegant about the following implemen-

tation of a class. Hint: It relates to class invariants.

/* Objects of this class are labels
with red backgrounds.*/

public class RedLabel extends JLabel
{
 public RedLabel() { }

 public void initialize()
 {
 setBackground(Color.red);
 }
}

 6. Consider the following method and its Javadoc-for-

matted header:

/**
 * Copies the values of array A into
 * array B in the same order.
 * The old values in B are lost.
 * The array B must have the same
 * length as array A.
 *
 * @param A the integer array to be
 * copied
 * @param B the integer array into
 * which the values will be copied
 */
 public void copyArray(int[] A, int[] B)
 { ... }

 a. What are the preconditions for this method?

 b. Is there any ambiguity in its behavior?

 c. What are the postconditions?

 7. Suppose a class has an invariant condition that must

be true for any objects of that class to be well-formed.

You have at least two options regarding checking the

invariant:

 a. You could check the invariant in each modifier

method just before it returns and throw an excep-

tion if the invariant fails.

 b. You could document the invariant but not include

any code that checks the invariant.

 Each option is better in certain situations. Give at

least one such situation where the first option is bet-

ter and one where the second option is better.

 8. Suppose you create a doubly linked list DLL that has

three instance variables: head, tail, length. The data

is stored in Node objects with next and prev point-

ers. For each implementation below, give all the

class invariants that must be satisfied for a DLL to be

well-formed.

 a. Implementation 1: The head and tail pointers point

to null if the list is empty.

 b. Implementation 2: The head and tail pointers al-

ways point to special dummy Nodes that are just

placeholders.

 9. Suppose you are implementing a method to com-

pute a formula that involves dividing a quantity

by a variable x. You realize that if x is 0, then an

ArithmeticException will be thrown. How should

you handle this exceptional situation? Here are some

alternatives:

 a. Ignore the problem and let your method throw an

ArithmeticException.

 b. Test for x �� 0 before doing the computation and,

if found, print an error message and return 0.

 c. Surround the computation with a try/catch block

and print an error message in the catch block be-

fore returning 0.

 Compare these alternatives. Is there a fourth alterna-

tive that is better than these three?

 10. In Section 4.7, our final version of the equals
(Object) method for the Triangle class included

the line

if(obj == null) return false;

 Why was that line included in the method? What

is wrong with letting the equals method throw a

NullPointerException instead?

 11. In Section 4.7, we settled on the following imple-

mentation of the equals(Object)method for the

Triangle class:

public boolean equals(Object obj)
{
 if(obj == null) return false;
 if(obj.getClass() != this.getClass())

 return false;

 Triangle otherTriangle = (Triangle)
 obj;

 return (p1.equals(otherTriangle.p1) &&
 p2.equals(otherTriangle.p2) &&
 p3.equals(otherTriangle.p3));
}

04-M4377.indd 12204-M4377.indd 122 12/5/07 12:06:34 PM12/5/07 12:06:34 PM

 Chapter 4 Elegance and Methods 123

 Some experts suggest that we add one more test at

the beginning of this method:

if(this == obj) return true;

 Why would they suggest this additional test? Com-

ment on the advantages and disadvantages of add-

 ing it.

 12. In Section 4.7, we settled on the following imple-

mentation of the equals(Object) method for the

Triangle class:

 public boolean equals(Object obj)
{
 if(obj == null) return false;
 if(obj.getClass() != this.getClass())

 return false;

 Triangle otherTriangle = (Triangle)
 obj;

 return (p1.equals(otherTriangle.p1) &&
 p2.equals(otherTriangle.p2) &&
 p3.equals(otherTriangle.p3));
}

 What, if anything is wrong with replacing the line

if(obj.getClass() != this.getClass())
 return false;

 with the line

if(obj.getClass() != Triangle.class)
 return false;

 Explain your answer. Hint: Look at the imple-

mentation of the ColoredTriangle class’ equals
(Object)method.

 13. The final version (version 3) of the equals method

for the ColoredTriangle class in Section 4.7 can actu-

ally be simplified a little, because of the final form of

the equals method in its Triangle superclass. Do

the simplification.

 14. Consider the following situation:

 a. A class A has Object as its superclass and a class

B has class A as its superclass.

 b. Class A has a no argument constructor.

 c. Class B has an integer field x and a constructor

with an integer argument for initializing x.

 d. A does not override the equals method inher-

ited from Object.

 e. Class B overrides equals so that two objects of

class B are considered equal if their field x has

the same value in both objects:

 public boolean equals(Object obj) //in
class B
{
 if(obj == null) return false;
 if(obj.getClass() != this.getClass())

 return false;
 if(! super.equals(obj)) return false;
 B b = (B) obj;
 return this.x == b.x;
}

 f. We test these classes with the following code:

 B b1 = new B(1);
 B b2 = new B(1);
 System.out.println(b1.equals(b2));

 and “false” gets printed.

 The reason for overriding equals in class B was

to allow two objects of class B to be equal if their

fields x had the same value, but the test code shows

that something is wrong. What is wrong? What is

the fix?

 15. In the Triangle and ColoredTriangle code in Sec-

tion 4.7, we assumed that the fields always had non-

null values. If we eliminate that assumption—that is,

if we allow the fields to have the value null—then we

need to modify the code in both class’ equals meth-

ods, or else they might throw NullPointerExceptions.

Fix both equals methods so that they never throw

an exception, even if one or more fields are null.

 16. In the Triangle (and ColoredTriangle) code in Sec-

tion 4.7, we say two Triangles t1 and t2 are equal

only if they have equal values in their corresponding

instance variables. But shouldn’t two Triangles be

considered equal as long as they have the same three

corner point values regardless of which instance vari-

able stores which value? For example, what if, for

Triangles t1 and t2, it were the case that t1.p1 ==
t2.p1, t1.p2 == t2.p3, and t1.p3 == t2.p2?

Shouldn’t the Triangles be considered equal in that

case as well?

 a. Explain why or why not. Does it make a differ-

ence if our objects are four-sided figures instead

of three-sided?

 b. Fix the Triangle class’ equals method so that

two Triangles are equal if they have the same three

corner point values regardless of which instance

variable stores which value.

 17. Read the literature to determine a good way to

override the Object class’ hashCode method

for any class and create a good implementation

of that method for the Triangle class discussed in

04-M4377.indd 12304-M4377.indd 123 12/5/07 12:17:10 PM12/5/07 12:17:10 PM

124 Chapter 4 Elegance and Methods

Section 4.5. Assume that the Triangle class overrides

the inherited equals method, as discussed in that

section.

 18. An alternative to cloning using constructors or calls

to super.clone() is to serialize and then deserial-

ize the object you wish to clone. The deserialization

process will create a new copy of the object. Inves-

tigate Java’s serialization features and implement a

clone() method for the Triangle class that uses se-

rialization to create the new copy.

 19. An alternative to cloning is a “copy constructor.”

This constructor takes an object of the same class

as an argument and creates and returns a new copy

of that object. For example, consider the following

shallow copy constructor for the Triangle class from

Section 4.7:

public Triangle(Triangle t) {
 this.p1 = t.p1;
 this.p2 = t.p2;
 this.p3 = t.p3;
}

 Create a similar copy constructor for the Colored-

Triangle class. What happens if you call the Triangle

class’ copy constructor with a ColoredTriangle object

as the parameter? What should happen?

 20. Create a class A that has an ArrayList of java.awt

.Rectangle objects as an instance variable. Make the

class implement Cloneable by adding a clone()

method that produces a deep copy.

 21. Consider the following code:

String[] s = {"a", "b", "c"};
String[] sClone = s.clone();
s[0] = "d";
System.out.println(sClone[0]);

 What is printed? Why?

 22. Give an example of a situation where

 a. A shallow clone is preferable to a deep clone.

 b. A deep clone is preferable to a shallow clone.

 c. You do not want an object to be cloned.

 23. In Section 3.10 of the preceding chapter, we used

some refactorings to clean up the sorting code, but we

never mentioned those refactorings by name. Which

refactorings did we use?

 24. In Section 4.9, we refactored the getTotalBill

method by moving the calculations of the room

charge, meal charge, and movie charge into three

separate methods. An alternative that reduces the

number of auxiliary methods and possible code du-

plication within those methods would be to rewrite

the getTotalBill method as follows:

public double getTotalBill() {
 return chargeFor(ROOM) +

chargeFor(MEALS) + chargeFor(MOVIES);
}
 private double chargeFor(int type) {
 if(type == ROOM) ... compute room

 charges ...
 else if(type == MEALS) ... compute

 meal charges ...
 else if(type == MOVIES) ... compute

 movie charges ...
}

 Is this refactoring better or worse than the one pre-

sented in Section 4.9? Explain.

 25. Suppose you need functions to convert temperatures

between the Fahrenheit and Celsius scales. Here are

three ways to do it.

 a. Create two functions: f2c and c2f that each take

a temperature as a double and return a double in-

dicating the converted temperature.

 b. Do as in part (a) except name the functions

FahrenheitToCelsius and CelsiusTo-
Fahrenheit.

 c. Create just one convertTemperature(dou-
ble temperature, int fromScale, in
toScale) function that takes three parameters:

the temperature to be converted, the scale used by

that temperature, and the scale to be used for the

converted temperature .

 Which of those three approaches is most elegant?

Explain.

 Suppose you are asked to include the Kelvin tem-

perature scale as a third alternative, and so you need

to write code that converts from any one of the three

scales to any other of the three scales. Find the most

elegant approach.

 26. (For students familiar with the Swing and AWT pack-

ages) Use a series of refactoring techniques to make

the following code more elegant. Do it step-by-step

giving the new code after each refactoring. You are

welcome to use the refactoring tools in your develop-

ment environment if you wish.

import javax.swing.*;
import java.awt.*;

 public class ExerciseRefactoring
{
 public static void main(String[] args)
 {
 MessageBox box = new MessageBox();

04-M4377.indd 12404-M4377.indd 124 12/5/07 12:06:35 PM12/5/07 12:06:35 PM

 Chapter 4 Elegance and Methods 125

 box.createBox();
 }
}

class MessageBox
{
 public void createBox()
 {
 //create dialog box
 JFrame frame = new JFrame("A

 message for you");
 Container contentPane = frame.

 getContentPane();

 //add a row, include message in
//this panel with a JLabel

 JPanel row2Panel = new JPanel();
 row2Panel.setLayout(new

 FlowLayout());
 JLabel message = new JLabel("Hi

 there");
 row2Panel.add(message);
 contentPane.add(row2Panel);

 frame.pack();
 frame.setVisible(true);
 }
}

 27. Suppose a class has an instance variable whose name,

due to refactorings, is no longer intention-revealing.

In that case, the name should be changed. Give sev-

eral reasons why it is not sufficient to search the class

globally for occurrences of the name and change

those occurrences to the new name. Does it make a

difference whether the variable is public, private, pro-

tected, or package? What’s wrong with just changing

the name of the variable where it is declared and then

letting the compiler find the other changes that need

to be made?

 28. Suppose a Person object knows the birthday of the

person it represents and can tell you that birthday.

Consider the method

int processPerson(Person p)

 that computes and returns the age of the Person p

by finding the difference between the current date

and that person’s birthday. If that action is all that the

processPerson method does, then find a better

signature for the method and explain why the new sig-

nature is better.

 29. Suppose a Person object knows the height of the per-

son it represents and can tell you the height through a

getHeight method that returns the height in inches

as an integer. Consider the method

 int getAverageHeight(Person p1,
 Person p2, Person p3)
{

int result = 0;
int p1Height = p1.getHeight();
int p2Height = p2.getHeight();
int p3Height = p3.getHeight();
 result = (p1Height + p2Height

+ p3Height) / 3;
return result;

}

 that computes and returns the average height of the

three Persons. Why isn’t this method very elegant?

Suggest changes to the design and implementation of

this method to make it much more elegant. Give the

Javadoc header and the declaration (but not imple-

mentation) of your new method.

 30. Suppose you need to determine whether two Array

Lists are equal except you don’t care whether the or-

ders of the elements in the two lists are the same.

Here is one method that purportedly solves this

problem:

 public boolean specialArrayListEquals
 (ArrayList a1, ArrayList a2){
 boolean result = true;
 a1 = new ArrayList(a1); //clone a1
 a2 = new ArrayList(a2); //clone a2
 if(a1.size() == a2.size()){
 for(int i = 0; ((i < a1.size()) &&

(result == true)); i++){
 Object o = a1.get(i);
 result = a2.contains(o);
 if(result){
 a1.remove(o);
 a2.remove(o);
 }
 }
 }
 return result;
}

 Debug this code, list everything you can think of that

makes this code inelegant, and then come up with

an elegant solution to the problem. Can you come up

with an even more elegant solution if you know that

there are no duplicate elements (i.e., no two equal el-

ements) in each ArrayList?

 31. Rewrite the following class using all the issues

discussed in this chapter to make it as elegant as

possible.

04-M4377.indd 12504-M4377.indd 125 12/5/07 12:06:36 PM12/5/07 12:06:36 PM

126 Chapter 4 Elegance and Methods

public class smelly {
 public static void main(String[]

 args){
 int[] x = new int[5];
 int kkk;
 for(kkk = 5; kkk > 0; kkk—)
 x[kkk-1] = kkk;
 stinky(x, 0);
 }
 public static void stinky(int[] y,

 int c){
 int[] z = new int[5];
 int ww;
 if(c == 4) {
 ww = 0;
 while(ww < 5) {
 System.out.print(y[ww] + " ");
 ww++;
 }
 }
 if(c == 4)
 System.out.println();
 if(c != 4) {
 for(ww = 1; ww <= 5; ww = ww+(z.

 length-4)) {
 z[ww-1] = y[ww-1];
 }
 for(ww = c; ww < 5; ww++) {
 int f = z[ww];
 z[ww] = z[c];
 z[c] = f;
 stinky(z,c+1);
}}}}

 32. (For students familiar with XML) Suppose a class A’s

purpose in life is to convert an object of another class

B into textual form for storage to a file. Suppose there

are three parts to objects of class B that we will call

var, const, and virtual. Class A will convert

these parts into Strings and enclose them in tags of

the form <tag kind="var"> and </tag> where

the kind indicates the type of part, which for our

purposes we will suppose are var, const, and virtual.

These parts might also be nested. A well-designed

class A will have a method to convert each kind of

part of B into a String, and then it will append those

strings to finish the conversion. Each method might

look like the following:

public String convertVar() {
 String result = "<tag kind=\"var\">";
 //...convert rest of var part of B...
 result += "</tag>";
 return result;
}
public String convertConst() {
 String result = "<tag kind=\"const\">";
 //...convert rest of const part of B...
 result += "</tag>";
 return result;
}
public String convertVirtual() {
 String result = "<tag

kind=\"virtual\">";
 //...convert rest of virtual part of

B...
 result += "</tag>";
 return result;
}

 a. What is a better name for class A?

 b. There is duplicated code in these three methods

in the way they add the starting and ending tags.

Refactor these methods to eliminate the duplica-

tion and clean up the code.

REFERENCES

 1. Fowler, M. and K. Scott, UML Distilled, 1st ed.

Object Technology Series. 1997. Reading, MA:

Addison-Wesley.

 2. Sun Microsystems, I. Java 2 Platform, Standard
Edition, v 1.4.2, API Specification. 2003. [Cited

April 8, 2007; available from http://java.sun
.com/j2se/ 1.4.2/docs/api/.]

 3. Abelson, H. and G. Sussman, Structure and Inter-
pretation of Computer Programs, 2nd ed. 1996.

Cambridge, MA: MIT Press.

 4. Beck, K., Smalltalk Best Practice Patterns. 1997.

Upper Saddle River, NJ: Prentice Hall.

 5. Langr, J., Essential Java Style: Patterns for Imple-
mentation. 2000. Prentice Hall.

04-M4377.indd 12604-M4377.indd 126 12/5/07 12:06:37 PM12/5/07 12:06:37 PM

http://java.sun

 Chapter 4 Elegance and Methods 127

 6. Langr, J. Enlightened Java Style. Web page 2002.

[Cited April 18, 2007; available from http://www.
sdmagazine.com/documents/s�4077/sdm0203c/
0203c.htm.]

 7. Kernigan, B.W. and R. Pike, The Practice of Pro-
gramming. Professional Computing Series. 1999.

Reading, MA: Addison-Wesley.

 8. McConnell, S., Code Complete, A Practical Hand-
book of Software Construction. 1993. Redmond,

WA: Microsoft Press.

 9. Larman, C. and R. Guthrie, Java 2 Performance
and Idiom Guide. 2000. Upper Saddle River, NJ:

Prentice Hall.

 10. Meyer, B., Object-Oriented Software Construction.

2nd ed. 1997. Upper Saddle River, NJ: Prentice-Hall.

 11. Fowler, M., Refactoring, Improving the Design of
Existing Code. Object Technology Series. 1999.

Reading, MA: Addison-Wesley.

 12. Henney, K., A tale of two patterns. Java Report,
2000. 5(12) 84–88.

 13. Kernigan, B.W. and P.J. Plauger, The Elements of
Programming Style. 1978. New York: McGraw-Hill.

 14. Sun Microsystems, I. Javadoc. 2006. [Cited April 8,

2007; available from http://java.sun.com/j2se/
javadoc/.]

 15. Sun Microsystems, I. Java 2 Platform, Standard
Edition, v 1.5.0, API Specification. 2004. [Cited

April 8, 2007; available from http://java.sun.com/
j2se/1.5.0/docs/api/.]

 16. Knuth, D., An empirical study of FORTRAN

programs. Software Practice and Experience, 1971.

1(2): p. 105–133.

 17. Eckel, B., Thinking in Java. 1998. Upper Saddle

River, NJ: Prentice Hall.

 18. Hunt, A. and D. Thomas, The Pragmatic Program-
mer, from Journeyman to Master. 2000. Reading,

MA: Addison-Wesley.

 19. Bloch, J., Effective Java Programming Language
Guide. The Java Series. 2001. Reading, MA:

Addison-Wesley.

04-M4377.indd 12704-M4377.indd 127 12/5/07 12:06:37 PM12/5/07 12:06:37 PM

http://www
http://java.sun.com/j2se/
http://java.sun.com/

128

Elegance and Classes

SECTION 5.0 INTRODUCTION

In previous chapters, we have discussed some foundational topics necessary for

developing a good object-oriented design of a software system. In particular, we

discussed the features of object-oriented languages and some of the advantages over

other types of languages that they provide to a designer and programmer. We also

discussed low-level implementation issues regarding these features.

In this chapter, we will discuss how and when to use these features and we will

introduce other guidelines to help design and build elegant systems “from scratch.”

We will compare various possible competing designs of systems in terms of the

classes involved, their responsibilities, their relationships with their collaborators,

and their implementations.

SECTION 5.1 STARTING OUT FINDING
CLASSES AND THEIR RELATIONSHIPS

In [1], the authors state, “The hard part about object-oriented design is decomposing

a system into objects.” In this section, we will discuss some techniques to help you

get started with such a decomposition.

Let us suppose that we are asked by a customer to create a new application. As we

briefl y discussed in Chapter 1, we should not start by writing code. Instead, we need

start at a higher level. Here is a simplifi ed outline of the steps that should be taken:

 1. We need to develop a precise specifi cation of the software system.

 2. We need to determine what classes to create and what will be the responsibili-

ties or behaviors of objects of those classes and of the other objects with which

they collaborate.

 3. We need to specify these behaviors more precisely by designing the protocol,
or public interfaces, of the classes in the design.

 4. Finally, we can code the classes and the methods that implement their protocols.

We will discuss these concepts and some of the issues they raise by consider-

ing a very simple project. Let us suppose that our goal is to develop a program for a

customer that allows us to gather statistics on the frequency of occurrence of words

5

05-M4377.indd 12805-M4377.indd 128 12/5/07 12:07:38 PM12/5/07 12:07:38 PM

 Chapter 5 Elegance and Classes 129

in text fi les. More precisely, let us suppose that the project was initially presented to

us by the customer in the form of the following statements:

When the Java program starts, it analyzes the specified
text file. It constructs a summary report regarding each
word that occurs in the file and the number of times that
word occurs, sorted from most frequently occurring word to
least frequently occurring.

Students with one or two semesters of Java programmming should quite easily be

able develop a Java program with the specifi ed behavior, but there is a good possi-

bility that the program could be rejected by the customer as inadequate. Do you see

the problem? The description of the desired program is far too vague. Before mov-

ing to steps 2–4 of the outline above, the customer needs to be queried for further

clarifi cation to avoid wasting time writing code that is not what the customer really

wants. In other words, before the design can begin, a precise specifi cation needs to

be created.

Let us see what is wrong with the specifi cation for our word frequency pro-

gram. You should be able to easily come up with a half dozen unanswered questions

about the program. Here are some such questions:

 1. What is the user interface for this program? In particular, how does the pro-

gram know what text fi le to analyze? For example, does the program display a

dialog box, does it ask the user to type a fi le name on a command line, or does it

expect the user to supply the name as a command-line argument when starting

up the program?

 2. What should happen if the user specifi es the name of a fi le that is nonexistent?

 3. What should the format of the summary be? Can it be specifi ed by the user?

 4. When counting occurrences of words, does capitalization matter? Can the user

specify how to treat capitalization?

 5. Can the same execution run of the program be used to analyze several text fi les,

or do you need to rerun the program whenever you want to analyze another fi le?

 6. What is meant by a “word”? What distinguishes a word from an arbitrary

sequence of characters? Are we counting only words that appear in a diction-

ary? If so, which dictionary?

 7. When counting occurrences of words, do we distinguish between singular and

plural forms of the same word, such as “shell” versus “shells”? How about

“mouse” versus “mice”?

 8. When reporting the results, what order should be used for two words that have

the same frequency of occurrence?

 9. Is the effi ciency of the program regarding space or time an important concern?

 10. Is the program going to be enhanced later to deal with input other than text fi les

and with other forms of summary reports?

One of the techniques that are useful for clarifying the vague parts of a speci-

fi cation is to create, with the help of the customer, “use cases” or “user stories.”

A use case is a sequence of steps indicating how the program is to behave in a

05-M4377.indd 12905-M4377.indd 129 12/5/07 12:07:39 PM12/5/07 12:07:39 PM

130 Chapter 5 Elegance and Classes

certain situation to achieve a particular goal. To develop a complete specifi cation,

there should be a use case for each of the various ways the system is expected to be-

have for each goal. Because our project is so simple, there won’t be many use cases.

In fact, for our project, only one use case is needed.

Let us suppose that the customer decided that the use case should have the fol-

lowing steps:

 1. The user starts up the program by typing the following command on the

command line of a console window: “java,” followed by the name of the pro-

gram, followed by the full path name of the text fi le. For example, the com-

mand might be

 java WordCounter /users/smith/Hamlet.txt

 2. The program checks that the fi le exists. If not, it reports an error message and

exits.

 3. The program traverses the fi le, treating each byte as a character and treating

each sequence of characters not containing any delimiters as a word. The de-

limiter characters are Java’s default whitespace characters.

 4. The program keeps track of the number of occurrences of each word. Two

words are considered equal if and only if they contain exactly the same se-

quence of characters.

 5. The program prints to the console window a list of all the words and their fre-

quencies, with words with the highest frequency fi rst and with one word and

frequency (separated by a tab) per line.

 6. The program quits.

Notice that the use case actually has two variations, one of them successful and

one unsuccessful. These variations defi ne different scenarios of the use case. The

successful scenario is the one where the word frequencies get computed and dis-

played. The unsuccessful scenario is where the program detects that there is no fi le

with the given name and reports an error message.

The different use cases for a software system can be displayed in a UML use

case diagram. Our application is so simple that such a diagram is not all that help-

ful, but for more complex software systems, it can provide a very helpful overview

of the goals and uses of the system. See Figure 5.1 for a use case diagram for our

word frequency counter application. In such a diagram, each circle corresponds to

another use case. The stick fi gure corresponds to an actor, which is a role that a user

User

count the words in a text file

FIGURE 5.1 A use case
diagram for our word frequency
counter application.

05-M4377.indd 13005-M4377.indd 130 12/7/07 10:26:03 AM12/7/07 10:26:03 AM

 Chapter 5 Elegance and Classes 131

of the system can play. In our case, there is only one such role, namely the role of

the user typing in the command on the command line to run the program. See Ap-

pendix A for more information regarding UML use case diagrams.

Note that the steps in the use case provide answers to the fi rst seven of the un-

answered questions above, but it doesn’t give us all the information we need. To fi n-

ish our specifi cation so that we can proceed to the next steps in the software design

process, let us answer the remaining questions somewhat arbitrarily:

� If two words have the same frequency, they should be reported in alphabetical

order using the ASCII ordering.
� The effi ciency of the program is important enough that only one read-through

of the text fi le is permitted by the program. Furthermore, the program is not al-

lowed to copy the whole text fi le into memory, since it might use up too much

memory.
� The program is going to be enhanced later to deal with other inputs and outputs

of an as-yet-unknown form.

Now that we have a more precise specifi cation of the project, we can begin to

think about the design. In particular, we need to determine what objects and classes

will be used in our design.

There are many possible candidates for classes, there are many ways to divide

the work among them, and there are many ways to have the classes interact. For

example, the number of classes in a design could be one or it could be in the hun-

dreds. The responsibilities could all be in one class with the other classes being just

behaviorless data holders, or a design could divide the responsibilities evenly among

the participating classes of objects. The collaborations between the objects could be

extensive, with every object communicating directly with every other object, or the

collaborations could be minimal, with each object communicating with as few other

objects as possible. With virtually unlimited choices, how should you proceed?

Before reading any further, it is valuable to attempt to come up with your own

design to compare to the forthcoming design. You may even come up with a better

design than we do.

Extract Nouns and Verbs

An initial but overly simplistic way to obtain candidate classes for a design is to

study the project specifi cation and extract all the nouns. Each noun can correspond

to a potential object or class. Similarly, by extracting the verbs, we can get potential

actions or behaviors of the objects.

Here are some of the nouns used in our specifi cation:

program, user, fi le, word, number, times, report, pathname, capitalization,

characters, line, window, name, character

Some of those nouns seem to correspond to useful classes, such as a Program

class that could be in charge of the whole process (although a better name could also

be chosen for such a class) and File and Report classes. But it is not clear whether

the rest of the nouns would correspond to meaningful classes in our design. For

05-M4377.indd 13105-M4377.indd 131 12/5/07 12:07:40 PM12/5/07 12:07:40 PM

132 Chapter 5 Elegance and Classes

example, do we need a User class? Do we need a Word class, or will the String class

suffi ce for representing words?

Let’s also look at some of the verbs in the specifi cation:

starts, analyzes, constructs, returns, occurred

Again, it is clear that some of those words do correspond to useful actions that we

will want our objects to perform, such as “construct” and “analyze,” but most of the

verbs are not at all helpful in determining what behaviors our objects should have.

Use Concepts from the Application Domain

One problem with the noun and verb technique is that it relies too much on the

particular words used in the specifi cation. In addition to the candidates that that

technique provides, it is valuable to look at the problem domain for additional can-

didates. For example, if you are designing a Monopoly game, the problem domain

is board games. Natural candidates for classes in this domain include Player, Piece,

and Board, and candidates for actions include moving a piece. If you are designing

an application for drawing pictures, natural candidates for classes include Picture,

Tool, Paint, and Color, and candidates for actions include drawing and erasing.

Use CRC Cards

One excellent approach for deciding on the classes, their behaviors, and their re-

sponsibilities is to use CRC cards. A CRC card is just a note card (4� � 6� or maybe

5� � 7�) that corresponds to one class in the design. CRC stands for “class, respon-

sibilities, and collaborators” in that the card is divided into three sections, one for

the class name, one for the class’ responsibilities, and one for the class’ collabora-

tors. One of the advantages of using actual paper cards is that their small size forces

you to summarize the responsibilities of each class in a few words and so helps the

design team avoid getting bogged down in low-level details too soon. Another ad-

vantage of using paper cards (in contrast to cards on a computer screen) is that they

can be easily moved around, regrouped, and carried by members of the design team

during role playing or during design activities.

A good way to use such cards is through role playing. When doing role playing,

blank cards are handed out to members of the design team, one card per person. Then

the people act out a use case for the project. As the team members play their roles,

they may realize that a new class may need to be created, in which case one of the

members with a blank card writes the name of that new class on his/her card. From

that point on, that person plays the role of an object of that class. Each time some

new action needs to be performed, the team decides which class has the responsibil-

ity for performing that task, and the team member holding the card for that class

writes the responsibility down on the card. The team member also writes down the

other classes that the class needs to collaborate with in order to accomplish the job.

Such role playing should be performed for the main use cases of the application.

Role playing can also be augmented in many ways. For example, it is sometimes

helpful to use an actual physical object to pass around to indicate whose method is

currently being executed in the thread under discussion.

05-M4377.indd 13205-M4377.indd 132 12/5/07 12:07:40 PM12/5/07 12:07:40 PM

 Chapter 5 Elegance and Classes 133

Let’s use CRC cards to help us with the design of the word frequency counter

project. Along the way, you’ll notice that we go back and forth between the cards as

we refi ne our design.

The core of the program is the analysis of the text fi le. A class has to be respon-

sible for that analysis, and so let us start by creating a “WordFrequencyAnalyzer”

class and give it that responsibility. See Figure 5.2 for our fi rst CRC card. Let us

suppose that a WordFrequencyAnalyzer object will be given a File from which it

will get the words to analyze, and so the WordFrequencyAnalyzer object will col-

laborate with a File object. We have added its basic responsibility and its collabora-

tor to the card in Figure 5.2.

Do we now need to create a CRC card for the File class? Technically, we should

do so and we should list the responsibilities and collaborators of that class. However,

to simplify our presentation and because the standard File class in the java.io library

meets our needs, we won’t create a CRC card for it at this time.

Once the WordFrequencyAnalyzer has fi nished its analysis, the results need to

be printed. The WordFrequencyAnalyzer could be responsible for this action, but

it seems more elegant to give a different object that responsibility. This decision

then leads to the question as to how the WordFrequencyAnalyzer is going to store

and make available the results of its analysis. Because storing or maintaining in-

formation is a responsibility that seems just as important as manipulating informa-

tion, let us create a new WordFrequencyCollection class that stores the results of the

analysis. We now have a second CRC card to create. See Figure 5.3. Once we add

WordFrequencyAnalyzer

analyze the text file File

class

responsibilities

collaborators

FIGURE 5.2
A CRC card for the
WordFrequencyAnalyzer
class.

WordFrequencyCollection

store and edit data regarding
 words and their frequencies

make data available

FIGURE 5.3 The
WordFrequencyCollection CRC card.

05-M4377.indd 13305-M4377.indd 133 12/5/07 12:07:41 PM12/5/07 12:07:41 PM

134 Chapter 5 Elegance and Classes

this new class, we need to go back to the CRC card for WordFrequencyAnalyzer

and add new responsibilities and a new collaborator. The new collaborator is the

WordFrequencyCollection class, and the new responsibilities include creating, add-

ing data to, and then making available the WordFrequencyCollection that contains

the results of the analysis of the text fi le.

We will make the WordFrequencyCollection class responsible for making all

its data available for clients, but we will leave formatting and print that data to other

classes.

We now have a rough, very high-level design of our system. The program will

create a WordFrequencyAnalyzer object, pass it the fi le to analyze, tell it to analyze

the fi le, and fi nally tell it to return the resulting WordFrequencyCollection object.

Then the program will get the data from this object and print it to the console.

Let us now refi ne our design a little. First of all, where does the WordFrequency-

Analyzer get the File to analyze? Our top level design says it comes from the program.

Therefore, let us add a new CRC card for a class containing the main program. Let us

call that class the WordCounter class. See Figure 5.4 for its CRC card. It has responsi-

bilities for checking for a nonexistent fi le, creating the File and WordFrequencyAna-

lyzer, and asking the analyzer to analyze the fi le. It is also responsible for getting and

printing the result. That result is stored in a WordFrequencyCollection object.

Next, let us refi ne the method by which the WordFrequencyAnalyzer analyzes

the text fi le. This object needs fi rst to create an empty WordFrequencyCollection ob-

ject. It then needs to repeatedly get the next word from the fi le and process it. But how

can it do that job? The File object corresponding to the text fi le has no methods for

extracting words from the fi le. A FileReader object from the java.io library might be

useful here, except that it reads only a character at a time and we want it to read a word

at a time. It turns out that the java.util.Scanner class has just the abilities we need.

Therefore, we will add it as a collaborator in the WordFrequencyAnalyzer’s CRC

card. The fi nal copies of our three CRC cards are as they appear in Figures 5.2–5.4

except that the WordFrequencyAnalyzer’s card has two more collaborators: Word-

FrequencyCollection and Scanner.

We now have a suffi ciently refi ned design to be able to proceed to the next step.

However, we would fi rst like to point out that there are many possible variations on

report an error if there is no
 file with a given name

create a File and a
 WordFrequencyAnalyzer

initiate the analysis

get and print the result

WordCounter

File

WordFrequency-
Analyzer

WordFrequency-
Collection

FIGURE 5.4 The WordCounter
CRC card.

05-M4377.indd 13405-M4377.indd 134 12/5/07 12:07:41 PM12/5/07 12:07:41 PM

 Chapter 5 Elegance and Classes 135

this design. For example, the WordCounter could create the Scanner and pass that

object to the WordFrequencyAnalyzer instead of a File object. Which is better? This

question is an exercise at the end of the chapter.

We would also like to point out that in a larger project, further low-level details

of the design and issues related to the other use cases of the system would need to be

considered in order to develop a more complete design before moving on to the next

step of the process. Since our design is so simple and since we are just introducing

these topics rather than attempting to cover them exhaustively, we will move on now.

Class Protocols

Now that we have potential classes and their responsibilities and collaborators, we

will proceed to construct the protocols, or public interfaces, of all the classes in our

design. As a fi rst step, we will convert each CRC card to a class and each responsi-

bility to a method. However, keep in mind that, in general, not all responsibilities

of a class will ultimately correspond to methods of that class. Similarly, not every

CRC card will ultimately end up being implemented as a class nor will all classes

in the fi nal implementation necessarily come from the initial set of CRC cards. For

example, we never created a card for the String class, although we will certainly use

that class. Also, a card could correspond to a Java interface, and we might need to

create one or more concrete classes that implement that interface.

Here is our fi rst attempt at the classes and protocols, obtained by turning each

responsibility into a method and adding constructors:

public class WordCounter
{
 public WordCounter(); //constructor
 public void checkFileExistence(String filename);
 public File createFile();
 public WordFrequencyAnalyzer createAnalyzer();
 public void initiateAnalysis();
 public getAndPrintResult();
}

public class WordFrequencyAnalyzer
{
 public WordFrequencyAnalyzer(); //constructor
 public void analyzeText(File file);
 public WordFrequencyCollection getResults();
}

public class WordFrequencyCollection
{
 public WordFrequencyCollection(); //constructor
 public void editCollection();
 public String toString();
}

Note that, in the process of constructing these protocols for the classes on our CRC

cards, we kept in mind the issues discussed in the last chapter regarding methods and

05-M4377.indd 13505-M4377.indd 135 12/5/07 12:07:42 PM12/5/07 12:07:42 PM

136 Chapter 5 Elegance and Classes

method signatures. That is, we attempted to use intention-revealing method names,

and we used verb phrases for names of modifi er methods.

At this point, it is valuable to step back and decide whether these protocols are

appropriate. The methods in the second class seems appropriate, but not the meth-

ods in the WordCounter class or the WordFrequencyCollection class. Let us inspect

these classes in more detail.

Almost all the responsibilities of the WordCounter class are just steps of the main

method that the user would call to do the analysis. They could be implemented as pri-

vate methods in the WordCounter class, but they do not belong in the public interface.

Therefore, a more appropriate protocol for the WordCounter class is the following:

public class WordCounter
{
 public static void main(String[] args);
}

Regarding the WordFrequencyCollection class, what does the editCollection

method do? It is quite meaningless. The responsibility of “managing the collection”

is too vague and should be refi ned down to several methods. The only one we really

need for our application is a method for adding new words to the collection. So we

will add that method to our protocol:

public class WordFrequencyCollection
{
 public WordFrequencyCollection(); //constructor
 public void add(String word);
 public String toString();
}

The WordFrequencyCollection class is also responsible for making the results avail-

able. The protocol above does so through the toString method. However, such an

approach is not very helpful to clients. According to Java conventions, the toString

method is supposed to create a humanly readable form of the state of the object, not

to make available data from the class to users of the class. Consider, for example, a

user who only wants to know how many different words appear in the fi le, regard-

less of their frequency. Under the current design, that user would need to search and

parse the output of the toString method to fi nd that information. How can we bet-

ter make the data in the collection available?

There are a variety of approaches that could be taken. For example, the collec-

tion could have an iterator method that returns an Iterator over the words in the

collection. Also, there could be a method that, for each word, returns the frequency

of occurrence of that word. Following this approach, we get a much better protocol

for the WordFrequencyCollection class:

public class WordFrequencyCollection implements Iterable<String>
{
 public WordFrequencyCollection(); //constructor
 public void add(String word);

05-M4377.indd 13605-M4377.indd 136 12/5/07 12:07:42 PM12/5/07 12:07:42 PM

 Chapter 5 Elegance and Classes 137

 public Iterator<String> iterator();
 public int getFrequency(String word);
}

With these protocols in place, we have reached the point where we can begin im-

plementing these classes. For example, here is one possible implementation of the

main method of the WordCounter class:

public class WordCounter
{
 public static void main(String[] args)
 {
 //create the file
 File file = new File(args[0]);
 //test to see whether the file exists and can be read
 try {
 new FileReader(file);
 } catch (FileNotFoundException e) {
 System.out.println("error: file cannot be read");
 System.exit(0);
 }
 //analyze the file
 WordFrequencyAnalyzer analyzer =
 new WordFrequencyAnalyzer();
 analyzer.analyzeText(file);
 //get and display the results
 WordFrequencyCollection collection = analyzer.getResults();
 for(String word : collection) {
 System.out.println(word + ":" + collection.getFrequency(word));
 }
 }
}

There is still some low-level design left to work out before implementing the re-

maining classes, such as determining how the WordFrequencyCollection stores its

data. We leave the remaining design and implementation as an exercise.

The class diagram containing these three classes is shown in Figure 5.5.

The Big Picture

Let us review the process we followed with our program. The fi rst step was to get

a precise specifi cation of the problem. Use cases were helpful in this step. The next

step was to determine what classes and their responsibilities and collaborators are

needed to accomplish our task. CRC cards were helpful in this step. The third step

consisted of determining the precise protocol or public interface of the classes in

our design. The fi nal step was implementing the classes.

05-M4377.indd 13705-M4377.indd 137 12/5/07 12:07:42 PM12/5/07 12:07:42 PM

138 Chapter 5 Elegance and Classes

The word frequency counter example should give you the basic idea of how

to execute each of these steps of the design process and the tools that you might

want to use along the way. You may choose to use a different approach for design-

ing and implementing a program, but the general lessons learned here and the tools

introduced, such as CRC cards and use cases, should be valuable regardless of your

approach.

One of the lessons to be learned from this discussion can be summarized very

generally:

+analyzeText(file:File):void
+getResults():WordFrequencyCollection

WordFrequencyAnalyzer

+main(args:String[]:void

WordCounter

+add(word:String):void
+iterator():Iterator
+getFrequency(word:String):int

WordFrequencyCollection

uses

uses
uses

FIGURE 5.5 The word frequency analyzer classes.

When working in the early high-level design phase, keep the discussion at a

high level. In particular, avoid wasting time on implementation details and low-

level data representations at the initial stages.

Guideline

How well have we stayed at a high level in the initial stages of the design of the

word frequency counter program? We could have done better at avoiding references

to low-level value classes. For example, we could have referred to the words of the

text fi le as objects of a “Word” class instead of as Strings. One advantage of storing

our words in such an object instead of in a String is that other behavior can be added

to it and other information than the sequence of characters can be stored in it, such

as the line and column number of the start of the word in the original text fi le. This

extra behavior and information might make the Word class more generally useful.

For example, knowing the line and column number of a word would be useful in an

enhanced version of our program that highlights the occurrence of words in a win-

dow displaying the contents of the text fi le.

Similarly, we could have represented the text fi le by a TextFile object instead of

automatically using the java.io.File class, and we could have created a FileScanner

class for extracting the words from the fi le instead of automatically using the java

.util.Scanner class.

05-M4377.indd 13805-M4377.indd 138 12/5/07 12:07:42 PM12/5/07 12:07:42 PM

 Chapter 5 Elegance and Classes 139

Another way of stating the guideline is, in the initial design phase, you should

avoid trying to map your classes to existing Java library classes and instead design

the “ideal” classes for your program. Then, as you refi ne the design, you can use the

Java library classes as necessary to implement your ideal classes.

SECTION 5.2 MAXIMIZING COHESION

As you have hopefully seen in the preceding discussion, an extremely important part

of the design process is determining which class should be responsible for which

behavior. When making such determinations, it is useful to recall one of the guide-

lines from Chapter 4. In that chapter, we said that methods should do one thing only

and do it well. As you shall see, one of the fundamental design principles presented

in this chapter is that classes should behave the same way.

Every class should be responsible for doing one thing only and doing it well.

Guideline

This rule does not mean that each class should have exactly one method. Instead,

it says that a class should model one concept, and all the methods in the class should

be related to and appropriate for that concept. That is, all the responsibilities of the

class should focus on the concept being modeled by the class. One advantage of fol-

lowing this guideline is that a class’ behavior and its role in a software system is much

clearer to everyone. Furthermore, the class is more reusable if it isn’t encumbered

with responsibilities and data irrelevant to its main purpose for being.

For example, a class that does one thing quite well is the String class. All the

methods and data of that class refer to one and only one concept, namely a sequence

of characters. The methods of that class provide useful tools for manipulating that

sequence.

A simple example of an ill-formed class would be one that is responsible for

storing all the information relating to a person (e.g., name, address, age) and all the

information relating to that person’s current car (e.g., the brand, model, color, age).

Instead, the person data and car data should be stored in separate objects, which, if

necessary, have references to each other. These two classes are much more reusable

than the original class.

Another ill-formed class is a “god” class that controls all other objects in a large

program (see Figure 5.6). Such a class acts like a master class with all the responsi-

bilities in the program, and all other classes are treated like slave classes or just data

holders. As discussed in Chapter 2, this approach is counter to the OO paradigm. In

OO programming, there should be decentralized control, with the responsibilities

for various actions spread out among the cooperating classes.

Another term that can be used for describing the focused nature of a class is

“cohesion.” When we say we want each class to “do one thing only,” we mean that

05-M4377.indd 13905-M4377.indd 139 12/5/07 12:07:43 PM12/5/07 12:07:43 PM

140 Chapter 5 Elegance and Classes

we want each class to have high cohesion in that all the class’ behaviors and respon-

sibilities are tightly related. The design principle of maximizing cohesion is one of

the patterns of GRASP (general responsibility assignment software patterns) docu-

mented in [2].

One simple measure of the cohesiveness of a class is how easy it is to describe

the purpose of the class in a simple sentence without using the word “and.” If you

cannot do so, then the class is probably less cohesive than it should be.

SECTION 5.3 SEPARATION OF RESPONSIBILITY

Another way of saying that a class should do one thing only is that different kinds

of responsibilities should be delegated to different classes. Unfortunately, it is not

always easy to decide how the responsibilities should be spread out among classes

that do one thing only and do it well. Consider the following examples.

 1. When an array of objects needs to be sorted, the objects need to be compared

to each other. Should the objects know how to compare themselves to other

objects with a method similar to the compareTo method in the Comparable

interface, or should a separate object, such as the Comparator discussed in Sec-

tion 3.10, be responsible for doing the comparing? There is no one right answer

to this question, which is why the Java API includes both options. For example,

the Arrays class in the java.util package includes two methods that sort arrays

of objects. One method uses the compareTo method of each object, and the

other uses a Comparator to do the comparing.

 2. A graph is a set of nodes each of which is connected by edges to an arbitrary

number of other nodes. See Figure 5.7 for a picture of a graph. A graph could be

modeled by a Graph class that has a collection of Node objects and each Node

object has a collection of references to the other Nodes to which it is connected.

Users of graphs often visit the nodes by traversing the edges—for example, to

...all the programs’s responsibilities...

GOD

someData:SomeType1

Data1

someData:SomeType2

Data2

someData:SomeTypeN

DataN

FIGURE 5.6 A god class and its data classes.

05-M4377.indd 14005-M4377.indd 140 12/5/07 12:07:43 PM12/5/07 12:07:43 PM

 Chapter 5 Elegance and Classes 141

fi nd a path from one node to another. In such cases, the users need to keep track

of which nodes in the graph have already been visited so that they don’t visit

them again. To keep track of the already-visited nodes, there are several ap-

proaches that could be taken:

 a. There could be a public setVisited method in each Node that the user

can call to set the Node as visited and a getVisited method that the user

can call to see whether the Node has been visited.

 b. The Graph object could have a public setVisited(Node n) method that

sets the Node as visited and a getVisited(Node n) method that returns

true or false indicating whether the Node has been visited.

 c. An object other than the Nodes and Graph objects could keep track of the

visited Nodes.

 One major problem with the fi rst two approaches is that they do not allow two

concurrent traversals of a graph. That is, if one traverser visits certain nodes fi rst,

then the other traverser may likely miss those nodes since they have already been

marked as visited. Even if traversals are done sequentially, things can go awry if

the fi rst traverser, when fi nished, forgets to reset all the Nodes to unvisited before

the second traverser begins. The third option is best. The object keeping track

of the visited nodes could be the traverser or some other object employed by the

traverser.

 3. Consider the drawing program mentioned in Section 3.9. Suppose that the user

of the program can select (i.e., highlight) any number of the shapes by clicking

on them. Who should be responsible for keeping track of which shapes are cur-

rently selected? Again, there are several options, including:

 a. The shapes themselves keep track of whether they are selected.

 b. The view displaying the shapes keep track of the selected shapes.

 c. Some other object keep track of the selected shapes.

 The fi rst approach seems most appropriate from an OO perspective; after all,

shouldn’t the shapes be responsible for their own behavior and state? However,

consider what happens when the program needs to delete the currently selected

shapes. In that case, the only way to fi nd the selected ones is for some object

(e.g., the view) to traverse the collection of all the shapes and ask them individu-

ally whether they are selected, and, if so, delete them. This can be ineffi cient if

there are a large number of shapes and only a few of them have been selected.

In the case of the second and third options, should the shapes themselves also

know whether they are selected? This problem has no obvious best solution—the

programmer should choose the solution that is most appropriate based on the

context.

From these examples, you may have realized the point we are driving at:

FIGURE 5.7
A graph with fi ve
nodes and fi ve edges.

Different kinds of responsibilities should be separated among different objects.

Guideline

05-M4377.indd 14105-M4377.indd 141 12/5/07 12:07:44 PM12/5/07 12:07:44 PM

142 Chapter 5 Elegance and Classes

How can you tell whether you have given a class too many responsibilities?

There is no easy answer, although it is helpful to think of the three categories of

responsibilities [3] that a class can have: knowing, doing, and controlling or de-

ciding. A class that is only a data holder can be thought of as having “know-

ing” responsibilities; it is a class that knows some information and provides

some kind of access to it. A class that manipulates data that it knows or that is

passed to it or gathered from other objects has “doing” responsibilities. A class

that controls the action of various other objects, deciding which object is to do

what and when, has “controlling” responsibilities. Very broadly, one should

consider separating knowing, doing, and controlling behaviors into different

classes.

There is another general rule that can help you decide which class gets

which responsibilities. In the third example at the beginning of this section, we

suggested that, if only the shapes know they are selected and if we want to de-

lete the selected shapes, then some object needs to fi nd the selected shapes and

delete them. What object should do that job of fi nding and deleting? The natu-

ral choice is the object that maintains the collection of shapes. That object has

the necessary data to perform the desired tasks, and so it should be the one to

do so. This principle is called the Expert pattern, another instance of the use of

GRASP [2].

The object that contains the necessary data to perform a task should be the ob-

ject that performs the task.

Guideline (Expert pattern)

The String class follows this pattern. A String object contains a fi xed fi nite

sequence of characters and can do most of the tasks you might want done with that

sequence. For example, it can give you the substring starting at a given index, and

it can tell you where a given character occurs in the sequence and whether its se-

quence comes before or after another String’s sequence alphabetically.

For another example, consider a CarDealer object that stores, among other

things, a collection of Car objects corresponding to the cars currently in stock. Sup-

pose you want to know if there are any blue minivans in stock. You (the user) can do

the work yourself by asking the CarDealer for a list of all cars and then traversing

the list looking for a blue minivan. Or you can ask the CarDealer object if it has any

blue minivans in stock. The latter option is clearly preferable. The CarDealer is the

object with the necessary data to perform the task, and so it should be the one that

does so.

In summary, the Expert pattern is being violated whenever a class A has a

method that gets several pieces of data from an object of class B, manipulates those

pieces, and then possibly returns a result. The object of class B has all the necessary

data, and so that object should be performing the manipulation rather than the A

05-M4377.indd 14205-M4377.indd 142 12/5/07 12:07:44 PM12/5/07 12:07:44 PM

 Chapter 5 Elegance and Classes 143

object. That is, the method in class A should probably be a method in class B. The

Move Method refactoring [4] would be very useful here.

Others have rephrased the Expert pattern in alternate forms. For example,

Owen Astrachan presents it as a fundamental law of OO design [5]: “Ask not what

you can do to an object, ask what an object can do to itself.” The Expert pattern can

also be rephrased in the form of a question, “What is it I’m doing with this data, and

why doesn’t the class do it for me?”[6].

One hint that your objects may not be doing their jobs properly is the existence

of a lot of calls to accessor methods (getX methods). If there are many such calls,

then you should ask yourself what the other objects are doing with the data they get

when they call one of those methods? Shouldn’t your object with the getX methods

be doing that job for them?

Notice how this issue relates to our earlier concept of a well-designed class

doing one thing only and doing it well. An object that does its job well not only re-

trieves data for you, but also it manipulates that data for you, if appropriate, instead

of expecting you to do all the manipulations yourself.

The word “appropriate” was used in the preceding paragraph because there is

usually a tension between the principle of doing one thing only and doing it well

and the Expert pattern. For example, consider an application that is the front end of

a database. The application gets some data from the database and then displays it in

a window. The Expert pattern suggests that the database be responsible for display-

ing its own data. However, a database object should also have high cohesion, which

suggests it should not be responsible for two completely different activities, namely,

managing the data stored in it and displaying that data in a GUI.

Now that we have some design guidelines under our belts, let us go back to the

design of our word frequency counter application in Section 5.1 and consider how

well that design follows these guidelines. Do the classes in that design do one thing

only and do it well? Do they follow the Expert pattern? Do they separate responsi-

bilities appropriately? We cannot answer these questions fully without looking at

the complete implementation of the classes, but we can make some remarks based

on the class’ protocols.

The WordFrequencyCollection class is very cohesive. It is responsible for

maintaining a collection of data, and it does nothing else. The iterator and

getFrequency methods are appropriate ways for it to return the information it

has gathered. If it were to print the data, as well, then it would be doing some-

thing it shouldn’t. Instead it appropriately lets others deal with the printing. Further-

more, it protects the data from damage by only exposing it via the iterator and

getFrequency methods.

The WordFrequencyAnalyzer is also cohesive. It is responsible only for analyz-

ing a fi le and returning the results. If its getResults method returns the original

copy of the collection, then one could argue that it doesn’t protect its data as strongly

as possible, in that another object could manipulate that collection unbeknownst to

the analyzer, but that fl aw is implementation dependent. One could also argue that

the class doesn’t do its thing very well because of the division of its work into the

two analyzeText and getResults methods. These two methods are inevitably

called one right after the other, so one could argue that they should be combined

05-M4377.indd 14305-M4377.indd 143 12/5/07 12:07:44 PM12/5/07 12:07:44 PM

144 Chapter 5 Elegance and Classes

into one method that analyzes the text and returns the result. There is some merit to

that argument.

The WordCounter program is cohesive in that it has one method and so does

only one thing. Namely, it provides a simple interface to the user who wants to just

pass in a fi lename and get the results back. The use of a simple interface for a com-

mon task is an example of the Facade pattern, which we will study in more detail

in Chapter 9.

Finally, one could argue that all of these classes lack some desirable methods,

but that argument is not related to the cohesiveness of the class or whether it prop-

erly separates responsibilities. We will address that argument in a later section of

this chapter.

SECTION 5.4 DUPLICATION AVOIDANCE

In the preceding section, we talked about separating the responsibilities among

classes and, in particular, making sure that no class has too many different kinds of

responsibilities. But there is another question about responsibilities that we haven’t

yet addressed: Is there anything wrong with two different classes having the same

responsibility? Must there be one and only one class given each responsibility? The

answer is easy to guess.

Avoid duplication.

Guideline

This guideline is also known as the DRY principle: “Don’t repeat yourself.” It

actually says much more than “don’t duplicate the responsibilities among classes.”

Duplication can occur in many forms, some of which have been addressed in earlier

chapters. For example, there might be duplicate copies of the same information,

there might be duplicated code within a method or between two methods, there

might be duplicate methods in two different classes. In addition, there might be

duplication of processes, that is, unnecessary duplicate execution of a piece of code.

All of these forms of duplication result in designs and code with bad smells.

What’s actually wrong with duplication? In summary, code with duplication is

less readable and less maintainable than code with no duplication.

To give you a better feeling for the problems that can occur from duplication,

let us consider data duplication. Why should duplicate copies of the same data be

avoided? If several classes need to know the same information—for example, if

there are several school administration objects that need to access the same student

records—doesn’t it make sense to give them all copies of that information? In some

cases it does make sense if the information never changes (i.e., it is immutable). In

that case, duplicate copies are okay, although they can waste space, especially if

05-M4377.indd 14405-M4377.indd 144 12/5/07 12:07:45 PM12/5/07 12:07:45 PM

 Chapter 5 Elegance and Classes 145

they are large. However, if the information that is duplicated is modifi able, then it

is very easy for the copies to become unsynchronized; that is, one copy might be

updated while, for some reason, maybe accidentally, one or more of the other copies

are not.

Instead of duplicating the data, how about keeping only one copy of the data

but allowing duplicate points of access to that data? Is that also bad? For example,

suppose you have an object of class Company that is responsible for maintaining a

collection of Employee objects. Suppose the Company class implements its collec-

tion with an ArrayList<Employee>. Other objects may need to use the Employee

objects and so the Company might have a getEmployees method that returns the

ArrayList of Employee objects. As a result, two objects may have access to the same

ArrayList. Is that bad?

The problem is that the other objects may maliciously or unintentionally render

the collection invalid by removing Employees who should be there or by adding new

Employee objects to the ArrayList or even adding null. In this case, the Company

is not properly maintaining the data against intentional or unintentional corruption

by others.

What should the Company do instead of handing over its collection to anyone

who asks? There are several options:

 1. Replace the getEmployees method with an iterator method that re-

turns an Iterator over the ArrayList. Iterators are discussed in more detail in

Chapter 7.

 2. Have the getEmployees method return an ArrayList of the Employees, but

make it a new ArrayList that is a shallow clone of the Company’s ArrayList.

 3. Assuming that other objects rarely need to see all the Employee objects, have

a getter method that fi nds and returns an employee specifi ed by particular

criteria.

 4. Have the Company class follow the Expert pattern and do all the manipulation

of Employee objects for the other objects so that the Employees are always hid-

den. That is, do not give other objects direct access to Employee objects, and

instead force those other objects to ask the Company to access the Employee

objects for them.

The issue here relates to how much you trust your collaborators. A class’ default

behavior should trust no one. In particular, if the Company doesn’t trust other ob-

jects, then it should never let them see the actual ArrayList itself, but only the data

in the ArrayList.

Only one class should be responsible for knowing and maintaining a set of data,

even if that data is used by many other classes.

Guideline

05-M4377.indd 14505-M4377.indd 145 12/5/07 12:07:45 PM12/5/07 12:07:45 PM

146 Chapter 5 Elegance and Classes

A corollary to this guideline is that you should always keep data in only one

place.

In a good design, one class is chosen as being the “gatekeeper” for the data, that

is, the one responsible for maintaining the primary source of data. Other objects

must ask the gatekeeper for a reference to that data when they need access to it.

The other objects can then temporarily use or even modify the data passed to them,

if appropriate. But they should not, in general, have a permanent reference to the

primary source of the data nor should they create or maintain their own copy of it

except on a temporary basis.

Also, just as methods should always keep objects in a well-formed state, so

must the gatekeeper always keep its data is in a well-formed state, which requires it

be the sole object with access to the information.

That said, consider the situation in which you have a gatekeeper of a massive

collection of objects. If the collection changes infrequently but there are frequent

requests for the size of the collection, then it makes little sense to traverse the col-

lection counting the number of objects every time its size needs to be known. In-

stead, for effi ciency, it makes sense to have a separate variable holding the size of

the collection that is updated when the collection changes and can then be returned

when a request is made for the collection’s size. But doesn’t this situation violate

the guideline against duplication? That is, the collection itself contains the infor-

mation concerning its size (although you have to traverse the collection to get that

information), and the extra variable also contains information about the collection’s

size, thus duplicating that information. In fact, this is not a serious violation of the

guideline against duplication. The key idea of the guideline is that there should be

one primary source of the information. Other secondary sources, such as the size

variable, can exist, as long as it is acknowledged that the primary source is where

the actual data resides.

What about the other forms of duplication we mentioned above, such as code

duplication within a method or method duplication? Like data duplication, the prob-

lem with code duplication is the copies can become “out of sync” when one copy

is updated but not the others. Many of these forms of duplication of code can be

handled by refactoring. For example, if you have a method with duplicate sections

of code, refactor it by extracting the duplicated section into a new auxiliary method.

If you have two classes with duplicate methods, then move the duplicated method

up into the superclass. Removing code duplication more generally, however, is not

so easy because sometimes it can be subtly hidden.

In addition, as mentioned in Section 4.6, there is another form of duplication

that can cause problems, namely, the duplication between the actual software itself

and the documentation (internal or external) of that software. External and inter-

nal documentation must precisely refl ect the design and the implementation of the

software because, if they become out of sync, then the documentation becomes mis-

leading, which can be worse than no documentation at all. If you could generate the

documentation from the source code or generate the source code from the docu-

mentation automatically, then duplication problems are avoided, but such generation

is not easy to do. Javadoc tools will convert one form of documentation to another,

but they do not help keep the code and documentation in sync.

05-M4377.indd 14605-M4377.indd 146 12/5/07 12:07:46 PM12/5/07 12:07:46 PM

 Chapter 5 Elegance and Classes 147

Duplication of processes should be also avoided for effi ciency reasons. An

example of where such duplication might occur is the checking of preconditions,

as discussed in Section 4.5. If a method has preconditions that must hold for it to

work properly, who should check those preconditions? Should the caller of the

method check, or should the method itself do the checking when it fi rst starts ex-

ecuting? It would be wasteful of resources if they both checked. That is, the du-

plication of the process of checking the preconditions should be avoided. It is in-

teresting, however, to note that the practice of defensive programming can lead to

such duplication. A good defensive programmer, like a defensive driver, always

assumes that others will do something wrong and so is prepared. Such prepara-

tion naturally includes checking preconditions. But if the calling program and

the callee are both coded defensively, this precondition check may in fact be

duplicated.

Finally, in addition to everything we have said so far about duplication of data,

code, documentation, and processes, you should keep in mind that the appearance

of any form of duplication in your software might be a symptom of a bigger prob-

lem in your design or implementation. If you see a lot of duplication, you should

probably rethink the roles, responsibilities, and relationships among the classes and

components involved to see whether a better design can be found that eliminates the

duplication.

Is there any duplication in our word frequency counter classes? The Word-

FrequencyCollection class is the gatekeeper for the word frequency data. It only

returns the data via iterator and getFrequency methods and so trusts no

one, as is appropriate. The WordFrequencyAnalyzer class creates the WordFre-

quencyCollection, fi lls it with words, and then returns the collection to anyone who

asks for it. As a result, others could modify the collection. Does that mean that

the analyzer is failing in its task of gatekeeping the collection? In fact, the analyz-

er’s responsibility is to create and fi ll the collection using words from a fi le, not

to manage the collection after that point. So, in that sense, it is not failing at its

task. There is, in fact, little duplication between the three classes, although, depend-

ing on the implementation, there may be some duplication within any one of the

classes.

SECTION 5.5 COMPLETE AND
CONSISTENT PROTOCOLS

Up to this point in this chapter, our discussions have centered on determining the

purpose of each class. That is, what concept should each class represent or what

role should a class play? The preceding sections argued that each class should play

one and only one role in order to maximize cohesion and separate responsibilities.

Furthermore, they argued that each responsibility should be assigned to exactly

one class.

But once we have decided on the role of a class, then we still need to decide

what behaviors and attributes the class should have with regard to that role. Do we

include just the minimal necessary behavior? Or, while we are at it, should we add

05-M4377.indd 14705-M4377.indd 147 12/5/07 12:07:46 PM12/5/07 12:07:46 PM

148 Chapter 5 Elegance and Classes

more behavior to the class in the hope of making it more reusable? What methods

should we include to implement this behavior?

The answers to these questions vary from class to class. Some classes are very

application specifi c. In particular, a class with just the main method that executes

when an application starts running is not a class that will be reusable for other ap-

plications, and so it makes little sense to spend a lot of energy designing that class

for reusability. However, considerable attention and energy should be devoted to

the design of other classes, especially classes that will become part of a library on

which many other applications will depend. For the rest of this section, we will as-

sume we are talking about such classes, and so we will consider their design very

carefully.

Give classes a complete interface.

Guideline

By “complete,” we mean that the class should have the full set of appropri-

ate behavior so that it can perform any reasonable action related to the role that

it plays. If, for example, we have a GUI component and it has a setSelected

method that highlights the component, then it should have a setUnselected

method to remove the highlighting. Even better would be to have one method

setSelected(boolean b) that highlights the component if b is true and un-

highlights it if b is false. For completeness, such a component should also have an

isSelected boolean function that tells you whether the component is currently

highlighted.

How full should the set of behaviors be? That is, how many public meth-

ods should be included? One extreme is to create the minimum number of es-

sential methods. By “essential” methods, we mean methods that any class that

does one thing well must have. Such methods’ implementations typically are in-

timately tied to the representation of the data stored in the class. Informally, we

can think of an essential method as one that cannot be implemented by calling

other methods of the class. All nonessential methods we call convenience meth-

ods. At the other extreme from a class with only essential methods is a class

that has a large number of convenience methods in addition to the essential

methods.

For example, consider a rotatable Rectangle class with a rotate(double
degrees) method. Suppose that a signifi cant number of the rotations that are ex-

pected to be performed are actually 90-degree counterclockwise rotations. Then a

rotateLeft method could be included in the Rectangle class for convenience.

The rotateLeft method is not essential, in that it can be implemented by a call to

rotate(90). An alternative is to leave the rotateLeft method out of the Rect-

angle class, and let subclasses defi ne that method if necessary. As a third alterna-

tive, you could create a RectangleUtilities class that is not a subclass of Rectangle

05-M4377.indd 14805-M4377.indd 148 12/5/07 12:07:46 PM12/5/07 12:07:46 PM

 Chapter 5 Elegance and Classes 149

and that has a number of static utility methods that take a Rectangle as one param-

eter and do things to it, such as rotate it by 90 degrees.

A designer needs to be careful not to overwhelm the users by adding too many

methods to a class in an attempt to ensure completeness. In other words, don’t try

to anticipate all possible uses to which your class will be put. It is better to include

a core set of essential methods, and a few convenience methods, and let the users

construct their own convenience methods or extend the class through subclassing

if they need a larger range of methods. The key is to make sure that the core set

is suffi ciently large so that users can create any convenience methods they deem

worthwhile.

If you do add convenience methods to your class, should you implement them

by calls to other methods or by directly accessing the data stored in the class? The

advantage of the direct access is that you might be able to make the convenience

methods more effi cient. However, there are also advantages to implementing con-

venience methods through calls to the essential methods. For example, consider the

java.util.AbstractCollection class, which was created to make it easy for program-

mers to implement the Collection interface. The AbstractCollection class imple-

ments all the methods in that interface except the iterator and size methods.

The implemented methods in AbstractCollection get information about the data in

the collection through calls to size and iterator. Therefore, a programmer who

wishes to create a class that implements the Collection interface need only create a

concrete subclass of AbstractCollection and, in that subclass, implement the it-
erator and size methods. To create a modifi able Collection, the programmer

will also need to override the add method and implement the remove method

in the Iterator returned by the iterator method. In summary, by implementing

all the convenience methods in terms of the essential methods (iterator, size,

add, and the Iterator’s remove), the AbstractCollection class saves programmers a

signifi cant amount of work.

There is one more issue that needs to be addressed regarding a well-formed,

reusable class.

A well-formed class has a consistent interface.

Guideline

By “consistent,” we mean that the methods that do similar things should be laid out

similarly. For example, suppose a class maintains and manipulates an indexed col-

lection of people, and the class has a method that allow the user to set the ith person’s

name and another that allows the user to set the ith person’s age. In that case, the two

methods should have similar names and they should have similar arguments in the

same order. That is, the method signatures should be something like setAge(int
age, int index) and setName(String name, int index). It would be very

confusing to the user and hard to remember if, for example, the fi rst method used the

index as the fi rst parameter and the second used the index as the second parameter.

05-M4377.indd 14905-M4377.indd 149 12/5/07 12:07:46 PM12/5/07 12:07:46 PM

Overriding toString, hashCode,
clone, and equals

When designing a complete set of methods for a

new class, one decision the designer must make is

whether to override the toString, hashCode,

clone, and equals method implementations in-

herited from the Object class. In Sections 4.7 and

4.8, we addressed how to implement the equals

and clone methods if you decide to override the

inherited versions, but we had little discussion

regarding when to override them. Here are some

guidelines.

Consider a class that is mutable. In choosing

the implementation of equals, you need to ask

yourself whether you want to require that two ob-

jects that are equal remain equal for the duration

of the program, even if the state of one of the ob-

jects changes. If so, then object identity (the inher-

ited version of equals) is probably the one that

makes the most sense. Or do you want them to be

considered equal only when their transient states

happen to match? In that case, you need to over-

ride the inherited equals method.

In contrast, consider a class in which its ob-

jects are immutable. In that case, you typically

want to consider two objects to be equal if their

(fi xed) states are the same, in which case you

would want to override equals to test equality of

state rather than object identity.

However, when you are deciding whether to

override equals, you need to consider the guide-

line discussed in the preceding chapter that states

that, if you don’t want to violate the Liskov Sub-

stitution Principle, then, in any inheritance chain,

there should be at most one class that overrides

the Object class’ equals method. Therefore, if

one of your class’ superclasses already overrides

equals, then your class should not do so.

The hashCode method should be overrid-

den whenever the equals method is overridden,

to avoid problems when the objects are used as the

keys in hash tables. In particular, it is important

that for all objects a and b, if a.equals(b) is

true then a.hashCode() == b.hashCode(). A

good discussion of this issue can be found in [7].

An overriding toString method of your

class should almost always be added. The purpose

of the toString method is to display the state

of the object as text in a humanly readable form.

The default implementation of toString in the

Object class displays the name of the class of the

object followed by “@” and the object’s hash code

value, which is not the kind of information you

normally want.

When should you override the inherited

clone method? If your class is immutable, then it

makes no sense to use clone at all. (Why would

you ever need a copy?) In contrast, if your class is

mutable, it might make sense to override clone if

you want to let others create copies of your object.

Keep in mind, as discussed in Section 4.8, clon-

ing has to be done very carefully (for example, do

you want a deep or shallow clone?). Also there are

other alternatives that you should seriously con-

sider instead of cloning that provide the same ser-

vice. For example, you could provide a copy con-

structor for your class. That is, for a Triangle class,

provide a constructor of the form

public Triangle(Triangle t)

that constructs a new Triangle that is in the same

state as the Triangle passed as a parameter. This

constructor has effectively created a clone for you.

Another alternative is to provide a factory method

similar to the factory method discussed at the end

of Section 2.6. Such a method for the Triangle

class might look like

public static Triangle
 createInstance(Triangle t)

This method could even be in a separate factory

class that also creates instances of other classes.

But keep in mind that, regardless of whether

you override clone, use a copy constructor or

use a factory method , the issues discussed in

Section 4.8 must be addressed, especially if you

want a deep clone.

05-M4377.indd 15005-M4377.indd 150 12/5/07 12:07:47 PM12/5/07 12:07:47 PM

 Chapter 5 Elegance and Classes 151

An example of inconsistent behavior-in this case not within a class but among

several classes—is the way the size of a Java Collection is determined. To fi nd the

size of an array A, you use the public instance variable A.length. To fi nd the

size of an ArrayList v, you use v.size(). To fi nd the size (number of characters)

of a String s, you use s.length(). Avoid this kind of inconsistency as much as

possible.

To fi nish this section, let us see how well our three word frequency counter

classes conform to the guidelines in this section. The WordCounter class is an ex-

ample of a class that is application-specifi c, and so giving it a complete and consis-

tent interface is not very appropriate. The WordFrequencyAnalyzer makes one com-

putation and returns the result, and so there is little else that is needed. We could

extend its behavior to make it a little more complete by having it reuse the same

WordFrequencyCollection in every analysis and adding a clear or reset method

that clears the WordFrequencyCollection. Separating the resetting from the analyz-

ing puts an extra burden on the users in that they need to remember to call clear

if they want to start over with new text. But it also gives them the fl exibility of

being able to accumulate the word frequencies from more than one fi le. The Word-

FrequencyCollection is the worst offender of this section’s guidelines. For example,

it has an add method but not a remove method. To be reusable, it should, in fact,

implement most or all of the methods in the java.util.Collection interface.

SECTION 5.6 MUTABILITY VS.
IMMUTABILITY REVISITED

In the preceding section, we talked about the need for symmetry in our class’ pub-

lic interface. In particular, if there is a getX method, you should consider add-

ing a matching setX method. This makes sense for mutable classes, but not for

immutable ones. Therefore, as the design of a project is being refi ned, one of the

issues that needs to be addressed is whether various classes should be made mutable

or immutable. The Java libraries include both kinds of classes. For example, the

java.util.Date and java.awt.Point classes are mutable, but the String is class immuta-

ble. How do you decide which path to take for each of your classes? In this section,

we will address that question.

One of the reasons the Java API designers made the String class immutable is to

allow the sharing of Strings. Every place the String "hello", for example, is needed

in a program, exactly the same String object can be used, which can save a consider-

able amount of memory. (To handle the case where the user wants to modify a string,

the Java designers created the StringBuffer class, whose objects are mutable.)

One can think of immutable objects as ones with guaranteed behavior. You

never need to worry about whether they follow particular invariants, nor do you ever

need to recheck their state once they have been created. In particular, an immutable

object will always give the same result from repeated calls to one of its functions, if

those functions don’t access external data.

One of the disadvantages of immutability is that there can be no modifi er meth-

ods, which means that if you want change the state of an object, you need to create a

whole new object, even if you will never use the original object again. For example,

05-M4377.indd 15105-M4377.indd 151 12/5/07 12:07:48 PM12/5/07 12:07:48 PM

152 Chapter 5 Elegance and Classes

if you have a very long string s and you want an extra letter "a" at the front, you

have to create a StringBuffer object to use or else write code such as

s = "a" + s;

which will create a new string from "a" and s instead of modifying or reusing the

old string referred to by s.

What classes in your design should be immutable? The general answer is “as

many classes as possible” because the advantages to immutability far outweigh the

disadvantages. In particular, objects at the lowest level, that is, representing data,

that are just “value objects” should be immutable. The class wrappers for the primi-

tives types (Integer, Float, etc.) are examples of such immutable classes.

Once you’ve decided that one of your classes A should be immutable, how do

you go about making sure it is so? The three most important things to do are to:

 1. Make all instance variables of A private (which should be done in virtually all

classes anyway for reasons mentioned earlier).

 2. Exclude any modifi er methods from A.

 3. Prevent the overriding of methods by subclasses of A by making A fi nal or by

making all of A’s methods fi nal.

To guarantee immutability, there are some more subtle problems to consider as

well, some of which are discussed in the exercises, the rest of which are beyond the

scope of this book. A more detailed analysis of the issues surrounding immutability

can be found in [7].

What if you need the use of a class that is identical to a mutable class except

you need your class to be immutable? For example, suppose you need an immutable

version of the java.awt.Point class. One approach would be to ignore that Point class

and write your own independent FixedPoint class from scratch, since such a class is

so simple.

A second approach would be to make FixedPoint a subclass of Point that over-

rides the modifi er methods (move, translate, and setLocation) so that they

either do nothing or throw an exception. See Figure 5.8. Note that the Collections

+move(x:int,y:int):void
+translate(dx:int,dy:int):void
+setLocation(x:int,y:int):void

FixedPoint
public void move(int x,int y){
 throw new
 UnsupportedOperationException();
}

+x:int
+y:int

+move(x:int,y:int):void
+translate(dx:int,dy:int):void
+setLocation(x:int,y:int):void

java.awt.Point

FIGURE 5.8 FixedPoint class implemented as a subclass of java.awt.Point.

05-M4377.indd 15205-M4377.indd 152 12/5/07 12:07:48 PM12/5/07 12:07:48 PM

 Chapter 5 Elegance and Classes 153

class in the java.util package takes this approach in that it has six methods named

unmodifiableX, where X is Collection, List, Map, Set, SortedMap, or SortedSet.

These methods take an object of class X that is modifi able and return a new read-

only (immutable) view of X. In the new collection, any call to a modifi er method re-

sults in an UnsupportedOperationException being thrown. This approach

unfortunately will not work for us. Our FixedPoint class will not be immutable even

if move, setLocation, and translate are overridden because the Point class

has public instance variables x and y, which are accessible and modifi able from any-

where. Subclasses of Point cannot hide these inherited public instance variables.

A third approach is to use delegation instead of inheritance. See Figure 5.9.

That is, create a new “wrapper” class with a read-only interface that contains a

Point object in which it stores its data. Consider the following example:

public double getX(){
 return pt.getX();
}

+ptPoint

+getX():double
+getY():double

FixedPoint

+x:int
+y:int

java.awt.Point

FIGURE 5.9 FixedPoint implemented
using delegation to java.awt.Point.

public class FixedPoint //attempting immutability using delegation
{
 private Point pt;

 public FixedPoint(Point p) //constructor
 { this.pt = p; }

 public FixedPoint(int x, int y) //constructor
 { this.pt = new Point(x, y); }

 public double getX() { return pt.getX(); }

 public double getY() { return pt.getY(); }

 public Point getLocation() { return pt; }
}

Notice that there are no modifi er methods, and so the interface is much cleaner than

if you were to subclass Point. Unfortunately, we are not out of the woods yet. This

FixedPoint class, at fi rst glance, might look like an immutable class, but there are

two problems. The fi rst one is that the getLocation method returns the Point be-

ing wrapped, which leaves it exposed to modifi cation by the user. That is, the user

could write code like the following, which modifi es the FixedPoint:

FixedPoint fp = new FixedPoint(3, 4);
System.out.println(fp.getX()); //prints 3

05-M4377.indd 15305-M4377.indd 153 12/5/07 12:07:48 PM12/5/07 12:07:48 PM

154 Chapter 5 Elegance and Classes

Point loc = fp.getLocation();
loc.x = 5;
System.out.println(fp.getX()); //prints 5

One way to fi x that problem is to reimplement the FixedPoint’s getLocation()

method as follows:

public Point getLocation()
{
 return pt.getLocation();
}

(Why does this version fi x the problem? Hint: read the documentation for the

getLocation method in the java.awt.Point class.)

But even with that fi x, there is another subtler problem with our class that makes

it mutable. Here is some user code that shows this problem:

Point p = new Point(3, 4);
FixedPoint fp = new FixedPoint(p);
System.out.println(fp.getX()); //prints 3
p.x = 5;
System.out.println(fp.getX()); //prints 5

The problem is that the internal point has external references to it and so can be modi-

fi ed. To avoid this problem, the FixedPoint class needs either to get rid of the con-

structor that takes a Point as an argument or to make a “defensive copy” of the Point

passed in as the argument and then use this hidden copy. Here is code that will work:

public final class FixedPoint //corrected version
{
 private Point pt;

 public FixedPoint(Point p)
 { this.pt = new Point(p); } //copy constructor

 public FixedPoint(int x, int y)
 { this.pt = new Point(x, y); }

 public double getX() { return pt.getX(); }

 public double getY() { return pt.getY(); }

 public Point getLocation() { return pt.getLocation(); }
}

With this implementation, the pt instance variable refers to a Point object to which

there is no outside reference and to which there is no way to get an outside refer-

ence, even with subclassing. So the FixedPoint class really is immutable.

SECTION 5.7 DESIGNING FOR CHANGE

Much of our discussion in this chapter and earlier chapters has had to do with re-

usability and readability of software. For example, we want intention-revealing

names so that our code will be readable. We want our classes to have cohesion and

05-M4377.indd 15405-M4377.indd 154 12/5/07 12:07:48 PM12/5/07 12:07:48 PM

 Chapter 5 Elegance and Classes 155

a complete and consistent interface so that they can be easily reused. However, there

are other, just as important issues to consider when designing classes. These are the

issues of maintainability, modifi ability, and extendibility.

There are many reasons why modifi cations to existing classes may be neces-

sary, including fi xing bugs, making optimizations, and adding new behavior. The

hard part of making such modifi cations is doing it in a way that does not introduce

new bugs or make the code “brittle”. In fact, the technique of refactoring, discussed

in the preceding chapter, was developed for just the purpose of changing code with-

out adding bugs.

Well-written code is designed with the possibility of future change in mind.

This statement has also been phrased as [8]: “Change happens. Deal with it.” An-

other way to say it is [9]: “To prosper, an interface must be well suited for its task—

simple, general, regular, predictable, robust—and it must adapt gracefully as its user

and its implementation change.” In other words, to have a maintainable, modifi able,

and extendible system, you need to accept the fact that changes will need to be made

to it and prepare for them.

Design your classes and interfaces so that they can handle change.

Guideline

The rule above is easier stated than followed. How can you design for change

when change can come in so many forms? In fact, you can’t anticipate all the forms

of change, but there are general guidelines that you can follow as you design your

code that will greatly improve the ability of your classes to handle change when it

does happen. One such guideline is known as the Open-Closed Principle [10].

One way to state the Open-Closed Principle is: “Software entities (classes, mod-

ules, functions, etc.) should be open for extension, but closed for modifi cation”[11].

That is, you should design your classes and modules so that they are easy to extend

if new behavior is needed, but design them in a way so that existing classes never

need to be modifi ed. That is, design them so that they are easy to extend by adding

new classes, extending existing classes, and reusing existing classes, but without

modifying existing classes. Note that “extension” here does not just mean Java in-

heritance. Rather we are referring more generally to extending a system by adding

new features or new behavior.

The benefi t of following this principle should be clear. When software needs

to be changed, as it always does, one approach is to change the existing classes. For

example, you can change your software by adding new methods or changing exist-

ing methods of your classes. Unfortunately, this approach will likely require you

to change other classes as well that depend on the changed classes, which in turn

may require you to change classes that depend on these classes, and so on. Not only

are all these cascading changes time consuming, but they are likely to introduce

new errors in the code. Clearly it is advantageous to minimize the modifi cation of

existing, working code and instead to extend that code by adding new classes that

incorporate the changes, leaving the old classes alone.

05-M4377.indd 15505-M4377.indd 155 12/5/07 12:07:49 PM12/5/07 12:07:49 PM

156 Chapter 5 Elegance and Classes

One situation for which it is particularly important that you follow the Open-

Closed Principle is when you are writing code for libraries. The users of such librar-

ies often do not have access to the source code for the classes in the libraries, and so

they cannot modify the code even if they want to. But even if they have access to the

source code, changes to that code are likely to introduce new bugs and break other

code. Think about the mess they would be in if, for example, programmers rewrote

the Swing classes every time they needed new behavior from them instead of sub-

classing them or combining them in new ways! In contrast to libraries, code that is

specifi c to one application is more likely not to be reused or extended, and so you

have to decide whether it is worth the time and energy to follow the Open-Closed

Principle.

How do you design classes so that the Open-Closed Principle holds? Let us

start with some examples.

Suppose you were told to write a program to manage the purchase/maintenance/

disposal of a company’s fl eet of vehicles, which happen to all be Ford minivans. Can

you assume that in the future the vehicles will always be Ford minivans? Not if

you want the software to be closed to future modifi cation. Can you assume that the

vehicles will always be purchased from Ford? Not if you want your software to be

closed. In particular, if you have a Vehicle class with an instance variable dealer,

the type of dealer should not be FordDealer that stores information about the Ford

dealer from whom the company purchased the vehicle. Instead, the instance vari-

able should be of type Dealer, which could represent all kinds of dealers.

For another example, consider an electrical outlet in your home that currently

(pun intended) provides power to an electric clock you purchased from Acme 10 years

ago. There are at least three ways to view the outlet, with analogies in OO design:

 1. If we think of the outlet only as a Acme clock outlet (that is, if we reserve that

outlet only for clocks of the brand of the current clock), then, if Acme stops

making clocks, the outlet becomes useless when your clock breaks. In this view,

the outlet is analogous to a AcmeClock variable that can refer to (plug in) only

clocks of type AcmeClock.

 2. If we think of the outlet as a “electric clock” outlet, then, when our current

clock breaks or becomes obsolete, we can buy a new electric clock of any brand

or style and plug it into the outlet. In this view, the outlet is analogous to a vari-

able of the type of an abstract ElectricClock class that can refer to objects of

any subclass (brand) of ElectricClock. This view of the outlet is much more

useful that the fi rst view, but it is still restrictive in that only electric clocks are

allowed to use the outlet.

 3. However, if we think of the outlet as an “electric appliance” outlet, then, we can

plug any appliance, not just a clock, into the outlet. The appliances need have

Follow the Open-Closed Principle when designing software. That is, design

software to be open for extension but closed for modifi cation.

Guideline

05-M4377.indd 15605-M4377.indd 156 12/5/07 12:07:49 PM12/5/07 12:07:49 PM

 Chapter 5 Elegance and Classes 157

no relationship with each other other than the fact that they have a plug that fi ts

the outlet (the electrical interface). This view corresponds to having an Electri-

cAppliance interface and a variable of type Electric Appliance that can contain

any object of any class that implements the Electric Appliance interface.

It is clear that the third view provides much more fl exibility to the users of your

classes by making it easier to change the value of the variable when necessary. The

idea is to defi ne your variables and values to have the widest possible type rather

than the narrowest type. The widest possible type in Java is an interface that can be

implemented by any number of classes.

For another simple Java example, consider a library with the following method

that returns true if the given object is in the given linked list:

public static boolean contains(Object o, LinkedList L)
{
 for(Object l : L)
 if(l.equals(o))
 return true;
 return false;
}

This method might be useful for someone with a LinkedList to search, but it is not

useful if that person stores her data in some other structure. Can we improve this

method to make it more generally useful? If you look carefully at the implementa-

tion, you will see that the only behavior of the LinkedList class that is being used is

its iterator method. Therefore, the contains method will still work correctly

and be much more generally useful if we replace “LinkedList” with “Collection”

as the type of parameter L. Then any class that implements the Collection interface

can be searched by this method. But we shouldn’t stop there. We can make it even

more generally useful by widening the parameter type further. A wider type than

Collection is Iterable, the interface implemented by all classes with an iterator

method. In summary, by converting the signature of the method to

contains(Object o, Iterable L)

we still have a correct method, but we have made it as generally useful as possible.

Code to interfaces, not classes. That is, wherever possible write your code so

that objects are referred to by the interfaces they implement instead of by the

concrete class to which they belong.

Guideline

One way to view coding to interfaces or, more generally, designing your classes

to handle change is to think of it as a way of making it easy to back out of any

design or implementation decisions that you previously made. For example, if you

hard wire your code to refer to a TreeSet, then it is hard to back out of that design

and instead use another container such as a HashSet. In contrast, if you had written

05-M4377.indd 15705-M4377.indd 157 12/5/07 12:07:49 PM12/5/07 12:07:49 PM

158 Chapter 5 Elegance and Classes

your code so that the TreeSet was stored in a variable of type Set (an interface) and

only the interface’s methods were used, then it would be easy to replace the TreeSet

with a HashSet and little or no other code would need to be modifi ed.

Note that much of our discussion in this section can be thought of in terms of

minimizing the interconnections between parts of the program. For example, by

coding to interfaces instead of to a concrete class, you reduce the interdependence

among the concrete classes. The concept of reducing such connections goes by the

name of “minimizing coupling.” Other equivalent terminology for this concept is

“keeping classes orthogonal” and “minimizing the interdependence among classes.”

The principle of minimizing coupling is another example of using GRASP [2].

We can also consider interdependence on a larger scale, such as among groups

of classes, than just between two classes. For example, suppose we decide that we

need to replace a group of classes that work together to accomplish a task with an-

other group of classes that accomplish the same task. More specifi cally, let’s as-

sume our application uses 20 classes, and a group of 5 of them need to be replaced

with a group of 4 new classes. Suppose further that each of the 20 classes uses ev-

ery other class. In this case, the UML class diagram for those 20 classes will con-

tain 380 associations and will look like a complete graph with 20 vertices. In this

case, every class will have to be modifi ed to accommodate the replacement of the

fi ve classes. However, if the classes had been designed so that each class is mini-

mally coupled with the other classes, then the group of 5 cooperating classes may

have lots of associations among themselves, but the 15 classes outside the group

of 5 would most likely have only a few connections to the group of 5, making it

much easier to replace those 5 classes. In other words, to accommodate change, it

is advantageous for a UML class diagram to look more like a tree than a complete

graph.

What else can you do to your software design so that the Open-Closed Prin-

ciple holds? Two techniques that can help, if used properly, are encapsulation and

information hiding.

Encapsulation [1] means grouping together related items and putting a wall

around them or protecting them from access by others. Although encapsulation can

be done in most any programming language, object-oriented languages like Java

provide a natural mechanism, called a class, for encapsulating data and the methods

that operate on that data. Java also provides a package mechanism for encapsulating

groups of classes.

How can the encapsulated items be protected? One technique that is helpful is

information hiding, which means keeping information hidden from others. In par-

ticular, it is helpful to keep the implementation of a class or group of classes hidden

as much as possible from the users of the class or classes. If information in a class is

exposed, then clients are likely to use it, resulting in tighter coupling between that

class and the clients’ classes. One way to hide information has been mentioned be-

fore: keep all its instance variables private. This privacy is necessary if in the future

we want to be able to change the implementation of a class without requiring other

classes to also change. But there is another reason to keep instance variables private

even if the implementation of the class will never change. We will explore that rea-

son through an example.

05-M4377.indd 15805-M4377.indd 158 12/5/07 12:07:50 PM12/5/07 12:07:50 PM

 Chapter 5 Elegance and Classes 159

Let us suppose you have a software system using a Point class with public in-

teger instance variables x and y. Let us also suppose that in the next enhancement

of the system, you need to display in a window the current values of x and y of

a Point p and you need to keep the values in the display updated so that when-

ever x or y change, the value in the display changes accordingly. How can you en-

sure that the displayed value of x and y will always be updated when a change is

made to p? Because of the public accessibility of x and y, any other object that is

aware of p can arbitrarily change the value of x or y without notifying anyone.

For example, in Figure 5.10 a User and a Window both have access to a Point p,

but they are unaware of each other. When the User’s doSomething method

is executed, the value of p.x changes, but the Window may be unaware of that

change.

One solution to this dilemma is to have the display window repeatedly poll p

to see whether x or y have changed. Alternatively, we could restrict the knowledge

of the existence of p to only a few other classes who know that they need to notify

the window when they change the value of p’s x or y variables. However, both these

solutions are suboptimal in terms of the ineffi ciencies they impose on the system

and the brittleness of the code. This problem stems from the public accessibility of

the Point’s instance variables x and y.

In contrast, suppose that the Point class had instead been implemented with

private instance variables x and y and public getter and setter methods for them.

Although this class seems identical to the version of Point with public instance vari-

ables, it, in fact, allows a cleaner solution to the problem through the appropriate

subclassing of Point. For example, we could defi ne a new subclass of Point called

Notifi erPoint that overrides the setX and setY methods of Point. In this subclass,

the overriding methods would, in addition to changing the value of x and y, notify

the window (or anyone else that wishes to be notifi ed) that a change has been made

and give the window the new values. If p is of class Notifi erPoint, then the window

need not repeatedly poll to fi nd the value of p’s x and y and, furthermore, we need

not restrict access to p to objects that are aware of the need to notify the window of

any change. If any object wishes to change p’s values, that object merely uses one

of p’s setter methods and the window will automatically be notifi ed of the change.

Therefore, the version of point with getter and setter methods is more open for

+x:int
+y:int

Point

{p.x=3;}
Window

Useruses

+doSomething(p:Point):void

FIGURE 5.10 The Window may
have no way of knowing the user
changed the value of p.x.

05-M4377.indd 15905-M4377.indd 159 12/5/07 12:07:50 PM12/5/07 12:07:50 PM

160 Chapter 5 Elegance and Classes

extension. See Figure 5.11. (By the way, this idea of notifying interested parties when

something happens is called the Observer pattern and is discussed in Chapter 8.)

In summary, private instance variables and, if necessary, public getter and set-

ter methods are almost always preferable to public instance variables.

What else can you do in terms of information hiding besides making instance

variables private? You can also make auxiliary methods private (in other words,

keep the public protocol of the class small and clean). In addition, widening the

return type of the public methods as much as possible will help hide implementa-

tion details. For example, consider a class that stores data in a HashSet and suppose

there is a getter method for the HashSet. The getter method could be declared as

public HashSet getHashSet(). This is the narrow version. It gives away

the fact that the data is stored in a HashSet (or subclass of HashSet). If the getter

method is declared as public Set getSet(), then, even if the same HashSet is

returned, the actual class of object being returned is hidden.

How much of a class’ implementation do you encapsulate and hide? The gen-

eral rule is to encapsulate and hide as much as possible. It is far easier to expose

something later if it no longer needs to be hidden than it is to hide something that

was previously exposed. Hiding an item that has been exposed may require global

changes to the system.

In summary, one of the most important things you can do to make your code

elegant is to design them to handle change. The Open-Closed Principle states more

specifi cally what you should strive for. Coding to interfaces, minimizing coupling,

and using encapsulation and information hiding are guidelines to help you reach

this goal.

How well are our three word frequency counter classes from Figure 5.5 designed

for change? One could argue that there are only three classes and that this is a very

small program, so it is not worth worrying about it. But, for the sake of discussion,

let us evaluate it anyway. If all methods except the ones shown in Figure 5.5 and

all instance variables of the classes are kept private, then the three classes properly

hide their implementation details. Is there a way we can further reduce the coupling

to facilitate future changes in the design or code? If you review the design and code,

you will notice that there are no interfaces used. We could make the WordFrequency-

Analyzer more generally useful by changing analyzeText so that it takes a more

notifies

WindowPoint

�x:int
�y:int

+setX(newx:int):void
+sety(newy:int):void

+setX(newx:int):void
+sety(newy:int):void

{
 super.setX(newx);
 ...notifywindow...
}

NotifierPoint

FIGURE 5.11 The
Notifi erPoint notifi es the
Window of the change in x.

05-M4377.indd 16005-M4377.indd 160 12/5/07 12:07:51 PM12/5/07 12:07:51 PM

 Chapter 5 Elegance and Classes 161

general kind of input than a File. For example, it could take an Iterator<String>

or a Readable object as its parameter. In addition, note that the analyzer returns a

WordFrequencyCollection in the getResults method. But does the return type

need to be WordFrequencyCollection? That is, does any user of the analyzer need to

know that the particular class of the object returned is WordFrequencyCollection?

If the only methods of that collection that the user invokes are its iterator and

getFrequency methods, then the return type of getResults could be an inter-

face whose protocol includes those methods.

SECTION 5.8 LAW OF DEMETER

There is one fi nal topic we want to address in this chapter. It relates to the expert

pattern and the coupling between classes. It can also infl uence greatly how well

your software can handle change. This topic is the Law of Demeter.

To understand the Law of Demeter, consider a general in an army that is setting

up a base of operations in the fi eld. One of the many jobs that need to be performed

is the digging of foxholes. Here is one way that task could be accomplished. The

general could get one of his colonels and tell him to get a major. The general would

then tell the major to get a captain. The general would then tell the captain to get

a sergeant. The general would then tell the sergeant to get a private. The general

would then tell the private to dig some foxholes.

This approach is quite ridiculous, isn’t it? And yet we might easily see the

equivalent of that approach in code:

general.getColonel(c).getMajor(m).getCaptain(c).getSergeant(s)
.getPrivate(p).digFoxhole();

Just as it is not appropriate for the general to go through all those steps for getting

a foxhole dug, it is inappropriate for code to go down such a message chain to get a

task done.

Consider a more realistic but similar chain that might appear in an ATM applica-

tion, where the program reads from the ATM card the bank name b, the branch num-

ber r, the customer name c, the account number a, and then attempts, starting with

some associated CentralControl object, to get the customer’s balance in that account:

Balance balance = centralControl.getBank(b).getBranch(r)
 .getCustomer(c).getAccount(a).getBalance();

where b is the bank name, r is the branch name, c is the customer name, and a is

the account number. Do you see the problems with such code? One problem is that

you have now strongly coupled the ATM application, CentralControl, Bank, Branch,

Customer, Account, and Balance classes. Any changes to the structure of any of the

latter classes could affect the code in all the former classes. Just as important, such

getter methods give the user access to the Bank, Branch, Customer, Account, and

Balance objects and so the user could manipulate them (that is, invoke methods on

them) in ways that are not intended for anyone other than a privileged set of objects.

This design has a bad smell called inappropriate intimacy.

What are better ways to handle these situations? Let us go back to the general in

the army and consider what such a general would really do. Most likely he wouldn’t

05-M4377.indd 16105-M4377.indd 161 12/5/07 12:07:51 PM12/5/07 12:07:51 PM

162 Chapter 5 Elegance and Classes

even concern himself with details such as digging foxholes. But if he did, he would

certainly call in one of his offi cers and tell him, “I don’t care how it is done, but get

someone to dig foxholes.”

Similarly, one possible way to handle the request for an account balance would

be to do something like the following:

Balance balance = centralControl.getBalance(b, r, c, a);

In this version, it is up to the CentralControl class to delegate or forward the respon-

sibilities to other classes as necessary to get the desired balance. For example, the

CentralControl could fi nd the Bank with the name b and pass it the values of r, c,

and a and ask it for the balance. The Bank could continue similarly. As a result, the

classes are less strongly coupled in that the main application doesn’t need to worry

about the existence of Customer or Account objects and can leave those details to

CentralControl or other classes with which the CentralControl communicates.

The distinction between the two ATM approaches can be seen in the UML se-

quence diagrams in Figures 5.12 and 5.13.

:ATM :CentralControl

.getBank

bank:Bank branch:Branch customer:Customer account:Account

.getBranch

.getCustomer

.getAccount

.getBalance

balance

account

customer

branch

bank

FIGURE 5.12 The UML sequence diagram for the fi rst approach at getting the balance.

05-M4377.indd 16205-M4377.indd 162 12/5/07 12:07:52 PM12/5/07 12:07:52 PM

 Chapter 5 Elegance and Classes 163

A UML sequence diagram is a diagram that shows message passing along

a timeline so that you can see the order in which the messages are passed. Each

rectangle at the top of the diagram corresponds to an object. Each object has a

name and a class, separated by a colon. If the name or the class is not important,

it can be omitted. The vertical axis corresponds to time, with time increasing as

you go down. The thin white strip below each object indicates when the object is

actively executing a method (i.e., when it has an activation record on the stack).

The solid arrows between the timelines indicate the sending of a message and the

dashed arrows indicate the return from the method call, with an optional label in-

dicating the return value. The black dot with an arrow from it indicates a method

call whose source is irrelevant. For more information about sequence diagrams, see

Appendix A.

The method chaining seen in these examples are violations of the Law of De-
meter [12], which states that, inside a method body, an object should send messages

only to the following categories of objects:

 1. This object itself

 2. This object’s instance variables

 3. The method’s parameters

 4. Any object the method creates

 5. Any object returned by a call to one of this object’s methods

 6. The objects in any collection that falls into these categories

Conspicuously absent are objects that are returned by messages sent to other

objects. This law can also be stated as “Talk only to your immediate neighbors” or

“Don’t talk to strangers” [13].

.getBalance(b,r,c,a)

.getBalance(r,c,a)

.getBalance(c,a)

.getBalance(a)

.getBalance()

balance

balance

balance

balance

balance

:ATM :CentralControl b:Bank r:Branch c:Customer a:Account

FIGURE 5.13 The UML sequence diagram for the second approach at getting the balance.

05-M4377.indd 16305-M4377.indd 163 12/5/07 12:07:52 PM12/5/07 12:07:52 PM

164 Chapter 5 Elegance and Classes

Here are some more examples where this issue arises:

 1. General contractors, when building a house or larger structure, often employ

subcontractors. The subcontractors may in turn get other subcontractors to help

them. The general contractor doesn’t care about that second level of subcon-

tractors. That is, the general contractor expects the fi rst level of subcontractors

to do the jobs for which they are contracted, and the general contractor doesn’t

care who they employ or how they get it done.

 2. In the third example in Section 5.5, we discussed a canvas that displays a col-

lection of shapes, some of which are selected (highlighted). Suppose the shapes

know whether or not they are highlighted. If you need to know which shapes

are highlighted, you can ask the panel for the collection and then iterate through

it, gathering the highlighted ones yourself. However, this approach violates the

Law of Demeter. A better approach is to ask the panel to give you the subcol-

lection consisting of the highlighted shapes.

 3. Similar to the ATM example above, suppose you are accessing a bank’s data-

base, and you need to fi nd the customer with a given name. You could (a) ask

the database for a collection of all the customers and then step through the

collection looking for the one with the given name, (b) ask the database for a

collection of all the customers and then ask the collection to fi nd the desired

customer for you, or (c) give the database the name and ask it to do the search-

ing to fi nd the customer for you. Clearly, version (c) is the preferable one from

the perspective of the Law of Demeter.

What should you do if you encounter code that breaks Demeter’s Law through

long message chaining, and you want to refactor it to conform to the letter of the law?

There are a variety of refactorings that might apply, including Hide Delegate, Extract

Method, and Move Method[4]. The important thing is that you need to rethink your

design to see why there is such a chain and how it might be avoided.

Obey the Law of Demeter.

Guideline

It is important also to mention here that the Law of Demeter should really have

been called a “guideline” instead of a “law.” It is not an absolute that must always be

followed. Otherwise, it would place a tremendous burden on your neighbors in that

all requests of their neighbors must be handled through them. Given that you don’t

always know what kinds of requests will be made (remember that “change hap-

pens”), it is hard to anticipate all future requests.

Do our word frequency counter classes obey the Law of Demeter? In fact,

the implementation of the main method of the WordCounter class breaks the law.

Can you spot where? The method gets the collection from the analyzer and then

it invokes the collection’s iterator and getFrequency methods (can you

see where iterator was called?). Luckily for us, this is a misdemeanor rather

than a felony. It would be possible to eliminate the crime, for example, by adding a

05-M4377.indd 16405-M4377.indd 164 12/5/07 12:07:52 PM12/5/07 12:07:52 PM

 Chapter 5 Elegance and Classes 165

displayResults method to the analyzer class that calls the collection’s it-
erator and getFrequency methods and prints the results, but it is debatable

whether the code would be made that much better by this change.

SECTION 5.9 SUMMARY AND FURTHER READING

Here is a list of the guidelines discussed in this

chapter:

� When working in the early high-level design

phase, keep the discussion at a high level. In par-

ticular, avoid wasting time on implementation

details and low-level data representations at the

initial stages.
� Every class should be responsible for doing one

thing only and doing it well.
� Different kinds of responsibilities should be sep-

arated among different objects.
� (Expert pattern) The object that contains the

necessary data to perform a task should be the

object that performs the task.
� Only one class should be responsible for know-

ing and maintaining a set of data, even if that

data is used by many other classes.
� Give classes a complete interface.
� Give classes a consistent interface.
� Design your classes and interfaces so that they

can handle change.

� Follow the Open-Closed Principle when design-

ing software. That is, design software to be open

for extension but closed for modification.
� Code to interfaces, not classes. That is, wher-

ever possible write your code so that objects

are referred to by the interfaces they implement

instead of by the concrete class to which they

belong.
� Obey the Law of Demeter.

For more detailed discussions of these topics,

consider the following references. Many of the top-

ics in Section 5.1 can be found in [3]. The Bertrand

Meyer text [10] is a classic that contains huge amounts

of useful material on creating an elegant design. An-

other good explanation and example of the Law of

Demeter can be found in [14]. The text [6] contains

many good heuristics, similar to many of the guide-

lines in this text, to help you come up with an elegant

design. The text [7] has similar guidelines but for

lower-level implementations in Java rather than high-

level design.

EXERCISES

 1. Finish the design and implementation of the word

frequency counting program in Section 5.1. It should

gracefully handle all errors, including such errors as

a missing command-line argument and nonexistent

fi les.

 2. In the design of the word frequency counting pro-

gram in Section 5.1, the main method created a File,

which it passed to the WordFrequency Analyzer. An

alternative would be to pass the path name to the

WordFrequencyAnalyzer constructor and have the

analyzer create and deal internally with the File.

What are any advantages or disadvantages to this al-

ternate design?

 3. In the design of the word frequency counting pro-

gram in Section 5.1, the WordFrequency Analyzer has

a void method that analyzes the fi les and a separate

function that returns the results of the analysis. An

alternative would be to combine these two behaviors

into one method that would analyze the text fi le and

return the resulting WordFrequencyCollection. What

are any advantages or disadvantages to this alternate

design?

 4. In the design of the word frequency counting pro-

gram in Section 5.1, the WordFrequencyAnalyzer is

passed a File that it then analyzes by way of a Scanner

that it creates. An alternative would be for the main

05-M4377.indd 16505-M4377.indd 165 12/5/07 12:07:53 PM12/5/07 12:07:53 PM

166 Chapter 5 Elegance and Classes

program in the WordCounter class to create the Scan-

ner and then pass the Scanner to the WordFrequency-

Analyzer. What are any advantages or disadvantages

of this alternate design?

 5. In the design of the word frequency counting program

in Section 5.1, a WordFrequencyCollection class

was included. However, you may have noticed that a

HashMap<String, Integer> that stores the words from

the fi le as the keys and the numbers of occurrences

as the corresponding values has all the functional-

ity desired of the WordFrequencyCollection class.

Therefore, one could eliminate the WordFrequency

Collection class and just use this HashMap class in

the design. What are any advantages or disadvantages

of this alternate design?

 6. In the design of the word frequency counting pro-

gram in Section 5.1, the WordCounter program has

one static main method in which everything hap-

pens. An alternative would be to move all the code

from the current main method into a nonstatic

displayInfo method (with the fi le name as a pa-

rameter) and have a new main method that just cre-

ates a WordCounter object and asks it to execute its

displayInfo method. What are any advantages or

disadvantages of this alternate design?

 7. In Section 5.2, we mentioned that you should rethink

your design if you have a class that maintains no data

and just manipulates data passed to it from other

classes. The Math class in the java.lang package is

such a class. Have the Math class creators designed a

poor class?

 8. In Section 5.3, we gave the example of a draw-

ing program and asked who should be responsible

for keeping track of which shapes are currently se-

lected. One possibility not mentioned there is the

case where the shapes keep track of whether they are

selected and, in addition, the view also keeps track

of which shapes are selected. This design has the ad-

vantage that shapes know whether they are selected,

which seems appropriate, but the view does as well,

which simplifi es manipulation (such as dragging or

deletion) of all selected shapes. Give a disadvantage

of this approach.

 9. In Section 5.3, we used the example of a CarDealer

object to get across the point that the object with

the data should be the one to manipulate the data

for you. In this example, we wanted the CarDealer

object to fi lter the data for us. That is, a CarDealer

object with only a getAllCars() method is less

useful to customers than a CarDealer object with

methods that fi lter the cars according to various

criteria specifi ed by the customer, such as getAll
CarsOfType(CarType) or getAllCarsOfCol
or(Color). However, there are many fi ltering crite-

ria that might be applied besides type and color, such

as the year, make, model, mileage. Also, the user

might want to use the criteria in various combina-

tions, such as “all those blue minivans manufactured

by Ford or Chevrolet in the years 2001–2004 with at

most 10,000 miles on them”. How can a CarDealer

object handle all possible combinations and types of

fi ltering without have a separate method to deal with

each one?

 10. In Section 5.3, we said that a class that stores data for

you should also manipulate it for you, as appropri-

ate. One might conclude from this statement that a

HashSet, for example, should not just store data, but

should manipulate the data for you somehow. For ex-

ample, consider a HashSet containing a collection of

Person objects. The client of such a class might fi nd

it necessary to extract just the names of the people

and put them in a new HashSet. Ideally, the Hash-

Set class would have a method to do this extraction

for you. However, there are an unlimited number of

ways that the Person objects might be manipulated,

and so you cannot fi ll the HashSet class with meth-

ods covering all possible cases.

 a. Suppose you were asked to enhance the HashSet

class. Suggest one new method for that class that

could be used to manipulate the data in a variety

of ways.

 b. Why wasn’t such a method ever added to the

HashSet class?

 11. Suppose you were told to implement a class whose

objects need to store 10–20 pieces of data and the

data is of several kinds. Some people might argue

that you should store each piece of data in a separate

instance variable in your object. Others might argue

that it is ludicrous to have one instance variable for

each piece of data, and so it would be better to store

the data all in one instance variable, such as an ar-

ray data of type Object[]. For example, a Person

object could store the person’s fi rst name in location

data[0], the last name in data[1], the address in

data[2], the age in data[3], etc. Give your opinion

on these two approaches. Discuss the approach you

would use.

 12. In Section 5.4, we mention that a vehicle management

program should store information on the car dealers

in a variable of type Dealer, rather than FordDealer,

even if all cars are Fords. How should Dealer and

FordDealer be related? For example, should Dealer be

05-M4377.indd 16605-M4377.indd 166 12/5/07 12:07:53 PM12/5/07 12:07:53 PM

 Chapter 5 Elegance and Classes 167

an interface and FordDealer a class that implements

the interface? Should Dealer be an abstract class and

FordDealer a subclass? Is there a third alternative that

might be better? Briefl y explain.

 13. A class designer is designing a Person class that he

wants to be as popular and as reusable as the String

class, and so he is attempting to maximize the reus-

ability through the addition of as many methods as

he can think of. Some of the methods he has added

are listed below.

• Person(int age, String name,
//String address) //constructor

• String getName()
• void setName(String name)
• String toString() //returns the
//name of the person

• int getSSN() //returns the
//person’s Social Security Number

• String getSSNAsString()
//returns the SSN as a String

• Person[] siblings() //returns
//an array of the siblings of the
//person

• Race getRace()
• Person getBoss() //returns the
//person who is employing this
//person

• boolean isDogOwner()
• boolean isUSCitizen()
• String getAddress()
• int numberOfCarsOwned()
• int getAge()
• int setAge()

 a. For each method, indicate whether (a) it is a

core (essential) method that should be included,

(b) it is an inessential but convenient method and

so should be included, or (c) it should not be in-

cluded. Briefl y explain your reasoning.

 b. Rewrite the signatures and return types of any of

the methods if you think they can be improved.

Explain each of your changes.

 c. Give the signature and return type of any miss-

ing methods that should be included in the Person

class and explain why.

 14. Suppose you are writing a method getChildren()

in a Person class that returns an array of Persons.

Then, among other things, you need to deal with the

case where the person on whom the method is in-

voked has no children. What should your method re-

turn in that case? An obvious thing to return is null.

Comment on this approach .

 15. Suppose you have a class one of whose instance

methods does not access (either read or write di-

rectly or indirectly) any of the class’ instance vari-

ables. Comment on the design of this class.

 16. We like to preach that all applications should have

their main method in a class by itself, named for

the kind of application it is. For example, if your

application simulates rockets, you might call the

class with the main method “RocketSimulationApp.”

Give a reason for putting the main method in its own

class.

 17. Suppose you have an IntegerList class that is an or-

dered mutable collection of (not-necessarily-unique)

integers. Suppose it has only the following methods:

void cons(int x) //adds x to the front
 //of this list
int first() //returns the first integer
 //in this list
int second() //returns the second
 //integer in this list
int third() //returns the third integer
 //in this list
int nth(int n) //returns the n-th
 //integer in this list
IntegerList rest() //returns a new list
 //identical to this list
 //except that the first integer of
 //this list is omitted
int size() //returns the length of the
 //list (number of elements)

 Assume that first, second, third, and nth,

respectively, throw an Exception if there is no fi rst,

second, third, or n-th integer, respectively, in the

list.

 a. Show that second, third, nth, and size are

convenience methods by implementing them us-

ing the other methods of the class.

 b. Is it appropriate to have the second, third,

and nth methods? That is, do they really add

enough convenience to be included in the Inte-

gerList class? Briefl y explain.

 18. Suppose you have an IntegerSet class that represents

an unordered mutable collection of integers without

duplication (i.e., the same integer does not appear

twice in the set). Suppose it has only the following

methods:

void add(int x) //adds x to this set
 //if it is not already there
void remove(int x) //deletes x from
 //this set if it is in the set

05-M4377.indd 16705-M4377.indd 167 12/5/07 12:07:54 PM12/5/07 12:07:54 PM

168 Chapter 5 Elegance and Classes

int size() //returns the number of
 //integers in the set
boolean contains(int x) //returns true
 //if x is in this set

 Assume that add does nothing if x is already in the

set. Similarly, assume remove does nothing if x is

not in the set.

 a. Show that contains is not necessary (although

convenient) by showing that it can be implemented

using the other methods in the class.

 b. Using just these methods of IntegerSet, is it possi-

ble to write a loop that will print all the elements

of this set? If so, do it. If not, say why not.

 19. Suppose you are designing an IntegerSet class that

represents an unordered collection of integers with-

out duplication (i.e., the same integer does not appear

twice in the set). Some methods you might wish to

include are the following:

• int[] toArray() //returns an array
//containing the integers in this
//set

• boolean contains(int x) //returns
//true if x is in this set

• boolean containsAll(IntegerSet
otherSet) //returns true if this
//set contains all the integers in
//the other set

• int size() //returns the number of
//integers in this set

• boolean isEmpty() //returns true
//if this set has no integers in it

• boolean equals(Object obj) //
//returns true if obj is a Set
//containing exactly the same
//integers as this Set

 a. For each of these methods, determine whether

it is essential. That is, determine whether it must

be included in the IntegerSet class or whether it

is a method that can be implemented by the user

through the use of the other methods in the list

above.

 b. Find a minimal set of essential methods.

 c. Should all six of these methods be included in the

IntegerSet class even if they are not all essential

methods? Why?

 d. Suggest other methods that should be added to

the IntegerSet class to make it a do-one-thing-

only-and-do-it-well class. Explain.

 20. As mentioned in Section 5.5, a well-designed class

A will have a toString() method that provides a

readable representation of objects of class A. It is nice

when class A can also provide a kind of “inverse”

constructor that takes such a String as a parameter

and creates and returns an object of class A initialized

with the data as it was displayed in the String. For ex-

ample, the java.util.Date class’ toString() method

returns a string of the form “Fri Jul 01 12:00:00 EST

2002.” It also provides a constructor (now deprecated)

that takes such a string as a parameter and returns a

new Date object initialized with the values given in

that string. For this exercise, take the FixedPoint class

given at the end of Section 5.6 and add a readable

toString() method and a constructor that takes

a string of the form returned by the toString()

method and constructs a new FixedPoint object ini-

tialized with the values given in the string.

 21. Let us suppose you are unhappy with the limitations

of the java.awt.Rectangle class, and so you subclass

it to get an EnhancedRectangle class. Suppose that

one of the things that the new class has is a method

showCoordinates() that creates and brings up a

dialog box displaying the top, left, bottom, right co-

ordinates of the rectangle. What do you think of this

enhanced class? Is it a good design?

 22. In Section 5.7, we mentioned that String objects are

immutable. But what if you have a String s � “hello”

and you execute the statement

s.replace('e', 'a');

 Doesn’t that change “hello” to “hallo” and so mutate

the string? Explain this supposed contradiction.

 23. In Section 5.6, we mentioned that subclasses of the

Java.awt.Point class cannot hide the inherited public

instance variables x and y. But are we really correct?

Consider the following classes:

public class A { public int x = 3; }
public class B extends A {
private int x = 4; }

 Also consider what happens when you try to access

the public x inherited by B from A:

B b = new B();
System.out.println(b.x);

 The Java compiler will give an error message when

you try to compile those two lines, claiming that x is

private in B. So in this case, it appears that the private

instance variable x of B does in fact hide the public

instance variable x that B inherits from A. Doesn’t

this example show that you can hide the inherited

public instance variables of a superclass? Explain.

05-M4377.indd 16805-M4377.indd 168 12/5/07 12:07:54 PM12/5/07 12:07:54 PM

 Chapter 5 Elegance and Classes 169

 24. If a class is immutable, why is it important that no

subclasses of it be allowed to override any of its

methods?

 25. The java.math.BigInteger class documentation says

that it represents “Immutable arbitrary-precision in-

tegers.” But the class is not fi nal nor are its methods

fi nal, contradicting the discussion in Section 5.6 re-

garding how to make a class immutable. What’s going

on here?

 26. The java.util.Date class represents low-level data

corresponding to a specifi c instance in time.

 a. By the discussion in Section 5.6, it ought to be

immutable. However, the class was designed as a

mutable class. Come up with some guesses as to

why the Java designers made Date mutable. Was

it a good design choice? Discuss.

 b. Create an elegant FixedDate class that has similar

behavior to the Date class except that it is immu-

table. Ignore the deprecated methods in the Date

class.

 27. As discussed in Section 5.6, the main disadvantage of

immutable classes is that a whole new copy needs to

be made whenever you want to create an object that is

slightly different from the original, even if you don’t

need the original any more. This can lead to a signifi -

cant amount of copying if you are incrementally con-

structing a large immutable object. For example, if

you are constructing a large string in a loop by repeat-

edly appending another character using the statement

“s += c” where s is the string and c is the character,

you end up creating a large number of intermediate

strings, all of which eventually need to be garbage

collected. Suggest a better way of constructing such a

large string.

 28. Suppose you have Person objects and Location ob-

jects, and you need to keep track of the place of birth

of each Person. There are at least three ways to orga-

nize this information:

 a. Each Person object has an instance variable of

type Location that stores the place of birth.

 b. Each Location keeps a collection of references to

Person objects corresponding to the people born

at that location.

 c. A third object keeps a table of Person objects and

their place-of-birth Location objects.

 Discuss the advantages and disadvantages of each of

these three designs.

 29. Suppose the Department of Motor Vehicles (DMV)

hired a software fi rm to design and build a vehicle reg-

istration system, and suppose that the designers ini-

tially developed a MotorVehicle class and a Vehicle-

Owner class. Among other methods in the design, the

MotorVehicle objects have a method getOwner()

that returns a Vehicle Owner, and the VehicleOwner

objects have a get Vehicles Owned() method that

returns a collection of MotorVehicles. Furthermore,

since both corporations and individuals can be vehi-

cle owners and since the designers decided they want

to distinguish between them, they created a Corpo-

ration subclass of VehicleOwner. Furthermore, they

added a get Employer() method to the Vehicle-

Owner class that returns a Corporation object (the

employer of the vehicle owner). See Figure 5.14 for a

diagram of these relationships.

 The designers felt this design was suffi cient to

handle all situations. For example,

• The employer of a corporation can be itself (i.e.,

in the design, a corporation that owns a car can

be thought of as being an employee of itself).

• A self-employed person will be his or her own

employer, like corporations, assuming that per-

son has incorporated himself or herself.

FIGURE 5.14 The
relationship between
vehicles and their owners.VehicleOwner

vehicle owner

1..*

+getVehiclesOwned():Collection
+getEmployer():Corporation

MotorVehicle

+getOwner():VehicleOwner

Corporation

05-M4377.indd 16905-M4377.indd 169 12/5/07 12:07:55 PM12/5/07 12:07:55 PM

170 Chapter 5 Elegance and Classes

• An unemployed owner could return null when

asked for its employer.

• An unowned (e.g., abandoned) car could return

null when asked for its owner.

• A person who doesn’t own any cars could return

an empty collection when asked for the vehicles

he or she owns.

• You can easily distinguish between the two types

of owners either by looking at their employers as

follows:

if(owner.getEmployer() == owner)
 ...owner is a corporation...
else
 ...owner is a person...

 or by testing the class of the owner as follows:

if(owner instanceof Corporation)
 ...owner is a corporation...
else
 ...owner is a person...

 Analyze this design, listing all its faults, and then

come up with an elegant alternate design.

 30. To implement a Rectangle class which stores its po-

sition and size, you could use four integer instance

variables x, y, width, height or you could use four

Point instance variables that store the coordinates of

the four corners of the rectangle.

 a. Which of these two implementations is better and

why?

 b. Suppose the Rectangle has a method that allows

it to be rotated by an arbitrary angle. In that case,

the fi rst implementation is insuffi cient, but what

about the second implementation? Is it a reason-

able implementation in this case?

 c. Come up with a third better implementation in

the case where the Rectangle can be rotated.

 31. Consider the problem of designing grade book soft-

ware for instructors to use to keep track of student

grades on class assignments. Assume that the design

includes four classes: a GradeBook class, a Student

class, an Assignment class, and a Grade class. Tell

how these classes should be related and what attri-

butes and methods they should have.

 32. Design a simple program for playing a poker game.

 a. If you have never played poker, there are many

Web sites devoted to poker that describe how to

play the game and the many variations on basic

poker.

 b. Design your classes for one game of poker, but

make it open to extension to other poker games

and, more generally, other kinds of card games.

 c. Include an explanation of why you designed your

classes the way you did.

 d. Include in your design your approach to compar-

ing poker hands to see who is the winner.

 e. You don’t need to construct a GUI. In fact, you

should design your code to make it easy for some-

one else to create various GUIs for your game,

including console I/O and windows with buttons

for clicking. In other words, you are to design the

model for the poker game, not the view or control-

ler. Your classes should do all the work relating to

the game so that a view and controller would only

need to call methods in your model.

 f. Give suffi cient details that one of your fellow

students could easily implement the classes from

your description.

 g. Implement your poker game.

 33. Often you have a Collection class and you want to

remove or “fi lter” out some of the elements. For ex-

ample, you might have a set of Integer objects, and

you want to fi lter out all the odd integers, leaving

only the even ones.

 a. Design a way of fi ltering Collection classes. Your

design should not require modifi cation of the

source code of existing Collection classes or inter-

faces. Your design should be as fl exible and gener-

ally useful as possible. You should include an ex-

planation of why you designed it the way you did.

 b. Implement your design.

 34. Suppose that you are using Java 1.4 or earlier and

so there are no generics. In that case, if you want

a list of strings, you might want to implement your

own StringList class, as shown below. This class

is elegant in that it allows you to work with lists of

Strings, but it avoids all the downcasting that would

be necessary if you were to use a general List class.

What is inelegant about this implementation of the

StringList class? There are several bad smells of

varying importance.

public class StringList {
private LinkedList v = new

LinkedList();
private Iterator iterator = new

StringListIterator();

//add a new string at the end
public void add(String s) { v.add(s); }

//get the i-th string
public String get(int i){ return

(String) v.get(i); }

//remove and return the i-th string

05-M4377.indd 17005-M4377.indd 170 12/5/07 12:07:55 PM12/5/07 12:07:55 PM

 Chapter 5 Elegance and Classes 171

public String remove(int i){ return
 (String)v.remove(i); }

//return the number of strings in
 //the list
public int size(){ return v.size(); }

//return an iterator over the list
public Iterator iterator() {
 return iterator; }

//inner class
class StringListIterator implements
 Iterator {
 int count = size();

 public boolean hasNext() { return
 count > 0; }
 public Object next() {
 if (count == 0)
 throw new
 NoSuchElementException
 ("StringList");
 return v.get(--count);
 }

 public void remove() {
 throw new
 UnsupportedOperationException();
 }
 }
}

 35. Suppose you have created your own LinkedList class

(not the java.util.LinkedList class) implemented with

Nodes, each with data and next-node pointers. Fur-

thermore, suppose you are stepping through such a

list extracting the data from each node. As you step

through the list, who should be responsible for keep-

ing track of where you are in the list? There are sev-

eral possibilities:

 a. You (the user of the list) keep a reference to the

current node, and you repeatedly follow the cur-

rent node’s next pointer to move on to the next

node.

 b The LinkedList object itself keeps a reference to

the current node. You can ask the list for the data

in the current node, and you can ask the list to

move on to the next node, which causes the list to

update its reference to point to the next node.

 c. A third object keeps track of where you are in the

list. You ask that third object to fi nd and return to

you the data in the current node. You can also ask

the third object to move on to the next node.

 Discuss these choices from the perspective of design

elegance.

REFERENCES

 1. Gamma, E., R. Hehn, R. Johnson, and J. Vlissides,

Design Patterns, Elements of Reusable Object-
Oriented Software. Professional Computing. 1995.

Reading, MA: Addison-Wesley.

 2. Larman, C., Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design. 1998. Upper Saddle River, NJ: Prentice

Hall.

 3. Wirfs-Brock, R. and A. McKean, Object Design:
Roles, Responsibilities, and Collaborations. 2003.

Reading, MA: Addison-Wesley.

 4. Fowler, M., Refactoring, Improving the Design of
Existing Code. Object Technology Series. 1999.

Reading, MA: Addison-Wesley.

 5. Astrachan, O., G. Berry, L. Cox, and G. Mitchener

Design Patterns: An Essential Component of CS
Curricula. in SIGCSE Technical Symposium on

Computer Science Education. 1998. New York:

ACM Press.

 6. Riel, A.J., Object-Oriented Design Heuristics.
1996. Reading, MA: Addison-Wesley.

 7. Bloch, J., Effective Java Programming Language
Guide. The Java Series. 2001. Reading, MA:

Addison-Wesley.

 8. Shalloway, A. and J.R. Trott, Design Patterns Ex-
plained. Software Patterns Series. 2002. Reading,

MA: Addison-Wesley.

 9. Kernigan, B.W. and R. Pike, The Practice of Pro-
gramming. Professional Computing Series. 1999.

Reading, MA: Addison-Wesley.

 10. Meyer, B., Object-Oriented Software Construction.

2nd ed. 1997. Upper Saddle River, NJ: Prentice-Hall.

 11. Martin, R.C., The Open Closed Principle. C��

Report, 1996.

05-M4377.indd 17105-M4377.indd 171 12/5/07 12:07:56 PM12/5/07 12:07:56 PM

172 Chapter 5 Elegance and Classes

 12. Lieberherr, K. and I. Holland, Assuring good style

for object-oriented programs. IEEE Software, 1989.

pp. 38–48.

 13. Lieberherr, K. Law of Demeter. 1998. [Cited April 8,

2007; available from http://www.ccs.neu.edu/home/
lieber/LoD.html.]

 14. Bock, D. The Paperboy, the Wallet, and the Law of
Demeter. Web page. [Cited April 8, 2007; available

from http://www.ccs.neu.edu/research/demeter/
demeter-method/LawOfDemeter/paper-boy/
demeter.pdf.]

05-M4377.indd 17205-M4377.indd 172 12/5/07 12:07:57 PM12/5/07 12:07:57 PM

http://www.ccs.neu.edu/home/
http://www.ccs.neu.edu/research/demeter/

Simple Case Study
of a Money Class

SECTION 6.0 INTRODUCTION

Software written for businesses will, of necessity, deal with money. A well-designed

OO software package will represent money in some well-thought-out form appropri-

ate to the application domain. In this chapter, we will attempt to design and imple-

ment a class representing the idea of money in a form that is as general and reusable

as possible. This design process will provide us with a good opportunity in which to

show the evolution of a design toward elegance. We will start with naive representa-

tions of money and will incrementally develop a series of new designs and implemen-

tations, each a little better in one or more respects than the preceding design and im-

plementation. Along the way, we will use many of the design issues we’ve discussed

in previous chapters.

Much of the material in this chapter is based on the discussions of money in

[1–3], except that those sources use money as a context for introducing test-driven

design techniques. We will instead focus on using the design principles in the pre-

ceding chapters in an attempt to come up with elegant designs.

When designing classes such as these, it is important to keep in mind the trade-

offs involved. As we stated, we will attempt here to design a general-purpose Money

class. However, individual applications may need special representations of money.

For example, to avoid the ineffi ciencies of using objects and because they may use

money in such a simple way, some designers may prefer just to use integers to store

quantities of money. Others may need variations on the classes we will design here

and so cannot use them as they are. However, regardless of whether our design is

useful in any particular application, the design guidelines and ideas discussed in

this chapter are worth devoting time to understand.

SECTION 6.1 NAIVE REPRESENTATIONS
OF MONEY

Instead of using the design guidelines as discussed in the last chapter to develop a

good representation of money, let us fi rst blindly try some of the simplest things that

might come to mind, such as representing money using primitive values instead of

6

173

06-M4377.indd 17306-M4377.indd 173 12/5/07 12:08:32 PM12/5/07 12:08:32 PM

174 Chapter 6 Simple Case Study of a Money Class

objects, to see what can go wrong. Then we will back up and look at the issue prop-

erly. To keep things simple, we will start with U.S. money (dollars and cents) and

generalize to other currencies later.

Representation 1: U.S. money is represented by two integers: dollars are repre-

sented by one integer and cents by another. The latter integer value is in the range

0 to 99.

If you have absorbed the material in the preceding chapters, then it should not

take much thought to realize that this representation is very unappealing. Let us list

some of its more obvious fl aws:

 1. U.S. money is a single concept, but the user must keep track of two separate

variables to work with money.

 2. Whenever arithmetic is done with money (e.g., adding two amounts together),

the cents and dollar values will need to be adjusted to keep the cents within the

range of 0 to 99.

 3. When comparing two quantities of money, you need to compare two values in-

stead of just one.

 4. If you are to allow negative quantities of money (to represent debt or negative

balances in accounts), then you can easily become confused as to how to deal

with positive dollars and negative cents or vice versa.

Therefore, let us immediately move on to another representation that is still

naive but that addresses many of these issues.

Representation 2: Dollars and cents are represented by one fl oating point num-

ber, such as a Java double. For example, the number 3.14 represents $3.14.

Floating point numbers have the advantage that you can represent far larger

numbers and you can represent fractional parts of dollars conveniently. Furthermore,

since the quantity of money is represented by a single number, the awkward calcula-

tions needed by Representation 1 to properly handle dollars and cents is avoided.

However, there are several issues regarding fl oating point values that can in-

crease the complexity of the design. For example, do we really want to allow frac-

tional cents, such as is represented by $3.141? More importantly, the round-off error

caused by fl oating point approximations can raise signifi cant problems (these prob-

lems are a central concern of the fi eld of numerical analysis). For a simple example,

note that a number of type double in Java has approximately 15 signifi cant digits of

accuracy, and so can quite accurately represent dollars and cents up to $10 trillion

(the order of magnitude of the U.S. national debt). However, if you take two almost

equal numbers of that magnitude and subtract them to get a number of much smaller

magnitude, the number of signifi cant digits of accuracy in the result is reduced. If

that number is then used in other computations, you can easily introduce meaning-

less digits without realizing it.

For these reasons, let us try another representation that avoids fl oating point

calculations.

Representation 3: Dollars and cents are represented by one long integer, whose

value is in units of cents. For example, the long integer 314 represents 314 cents or

$3.14.

06-M4377.indd 17406-M4377.indd 174 12/5/07 12:08:33 PM12/5/07 12:08:33 PM

 Chapter 6 Simple Case Study of a Money Class 175

This representation is advantageous in that (a) money is still represented by a

single value and (b) it allows very large monetary values but avoids most of the prob-

lems of round-off error that occur with fl oating point numbers. Unfortunately, there

are still several issues that can cause problems. For example, now that we are back to

using integers, there are problems of integer division and the truncation of the result.

If you divide $1 by 3, you will get 33 cents. When you multiply the result by 3, you get

99 cents. That is, a penny was lost from the original dollar when fi rst divided by 3 and

then multiplied by 3, a very undesirable outcome for those who need to keep track of

every cent.

All of these primitive representations have one more problem: When we later

introduce other currencies, how do we distinguish between U.S. dollars and those

other currencies, such as British pounds, for example? We would also like to be able

to consider mixed bags of money of arbitrary currencies, compare their values, and

convert money from one currency to another. Implementing money using primitives

leaves too much of this work on the client.

In summary, primitive values can be used to represent a quantity of money, but

only in very limited situations.

SECTION 6.2 A USMONEY CLASS

Now that we have dealt with several possible primitive representations, let us start

over and design a representation of money using the principles in the preceding

chapter. In particular, let us design a USMoney class.

Let us think about what would be written on a CRC card for USMoney. In par-

ticular, what are the responsibilities of such a USMoney class? Without too much

thought, you should be able to come up with several things. For example, the class

should be able to tell us its worth and display its worth as a String in a standard for-

mat, such as “$3.14.”

In addition to this “getter” behavior, should there be “setter” behavior? For

example, should there be a setValue method that changes the amount of money

represented by the object? To answer this question, think back to the discussion in

Section 5.6 about mutability versus immutability. A class representing a value should

ideally be immutable. Therefore, we will make USMoney immutable and avoid any

mutator methods.

After very little more refl ection on what is done with money, the following re-

sponsibilities should come to mind. USMoney objects should be able to:

� Represent positive or negative quantities of dollars and cents.
� Give you the number of dollars and cents that it represents.
� Draw itself as a string in a desired format, such as “$3.14” or “3.14USD.”
� Determine whether it represents a quantity that is equal to, greater than, or less

than the quantity represented by another USMoney object.
� Add or subtract itself to or from another USMoney object.
� Multiply or divide itself by a given positive or negative number.
� Negate the amount it represents.

06-M4377.indd 17506-M4377.indd 175 12/5/07 12:08:33 PM12/5/07 12:08:33 PM

176 Chapter 6 Simple Case Study of a Money Class

Let’s look at these behaviors in terms of specifying the public interface of the

USMoney class. Here are method headers corresponding to the behaviors above:

public long getAmount()
public String toString()
public int compareTo(USMoney o)
public boolean equals(Object o)
public int hashCode()
public USMoney plus(USMoney)
public USMoney minus(USMoney)
public USMoney times(double factor)
public USMoney dividedBy(double denominator)
public USMoney negate()

Each of these method headers deserve some discussion.

The getAmount method returns the amount of money in cents. It can be posi-

tive or negative. Other getter methods are also possible. The toString method

displays the money amount in a standard format, such as “$3.14” or “3.14USD.”

The compareTo method should look familiar. It is the method header from the

Comparable<USMoney> interface. Therefore, we will have USMoney implement

that interface.

Since USMoney objects are value objects, the USMoney class should override

the inherited equals method to test whether two USMoney objects have the same

amount of dollars and cents rather than testing whether they refer to the same object.

This equality test makes sense in the same way that a $5 bill should be considered

“equal to” fi ve $1 bills or 500 pennies. Furthermore, since the inherited equals

method is being overridden, the inherited hashCode method should also be over-

ridden, as discussed in Section 5.5.

The arithmetic methods deserve special attention. Note that they are listed above

as functions that return a value instead of void (that is, modifi er) methods that modify

this object. Since USMoney objects are immutable, the arithmetic operations do not

change the current object, and instead they return a new USMoney object with the

new amount of dollars and cents.

Note that the times and dividedBy methods use fl oating point calculations

and, as a result, have round-off issues to deal with. Exercise 1(j) suggests one way of

dealing with this problem.

Finally, we should consider what constructors should be included in our class.

A constructor taking two integers, one for dollars and one for cents, makes sense,

as does a constructor that takes one long integer containing the amount of money in

cents. Other convenience constructors could be added as well, but we will include

only these two for now.

We now have a complete public interface for our class, including all construc-

tors and all methods unique to USMoney or that override inherited methods.

public class USMoney implements Comparable<USMoney>
{
 public USMoney(int dollars, int cents)

06-M4377.indd 17606-M4377.indd 176 12/5/07 12:08:34 PM12/5/07 12:08:34 PM

 Chapter 6 Simple Case Study of a Money Class 177

 public USMoney(long cents)
 public long getAmount()
 public String toString()
 public int compareTo(USMoney o)
 public boolean equals(Object o)
 public int hashCode()
 public USMoney plus(USMoney m)
 public USMoney minus(USMoney m)
 public USMoney times(double factor)
 public USMoney dividedBy(double divisor)
 public USMoney negate()
}

This class can easily be implemented using a long instance variable to store the

amount of money. The details are left as an exercise.

Let us fi nish our discussion of the design of USMoney by reviewing some of the

benefi ts of using this class instead of one or two primitive values to represent money.

One benefi t is encapsulation. Users of USMoney need not concern themselves about

how positive and negative money are represented. Nor do they need to do any of the

calculations when combining two quantities of money—instead the USMoney class

does the calculations for you (the Expert pattern again). In addition, there is a ben-

efi t that we haven’t yet mentioned. Namely, if you use objects to represent money,

the Java compiler can detect logical errors in your program that might slip through

if you use a primitive representation of money. For example, suppose the user ac-

cidentally adds a fl oating point value representing money to a fl oating point value

representing current rainfall in inches. In that case, the result is quite meaningless

but the logical error is not detected by the compiler. However, if the user tried to

add a fl oating point value to a USMoney object, the compiler would detect the error.

That is, only USMoney objects are allowed to be added to a USMoney object, which

is what we desire.

SECTION 6.3 USING SUBCLASSES OF MONEY
TO REPRESENT DIFFERENT CURRENCIES

Now let us extend our design so that it can handle different currencies. For example,

we want to deal with Euros and Yen in addition to dollars.

One natural way to handle different currencies is to represent each of them with

different classes.

What will those classes have in common and how will they interact with each

other? That is, think again of what you would put on the CRC cards for these money

classes. In particular, consider the responsibilities that we gave the USMoney class

in Section 6.2. Shouldn’t all money classes have the same responsibilities? In fact,

let us consider the public interface of the USMoney class and see what needs to

change now that we have more than one such class.

06-M4377.indd 17706-M4377.indd 177 12/5/07 12:08:34 PM12/5/07 12:08:34 PM

178 Chapter 6 Simple Case Study of a Money Class

To allow mixed arithmetic using these money classes, it turns out that the only

change we need to make to the USMoney interface is that all the methods will need

to use a type other than USMoney for the parameters and return type. To allow

any type of money to be passed as the parameter, we need a common superclass or

interface Money for all our classes. In fact, we need only take the public interface

given for USMoney in Section 6.2 and replace USMoney with Money everywhere

to get the interface of the new Money superclass. Because we will want to move

duplicated code up into the superclass, we will make Money an abstract class rather

than a Java interface.

public abstract class Money implements Comparable<Money>
{
 public long getAmount()
 public String toString()
 public int compareTo(Money m)
 public boolean equals(Object o)
 public int hashCode()
 public Money plus(Money)
 public Money minus(Money)
 public Money times(double factor)
 public Money dividedBy(double divisor)
 public Money negate()
}

See Figure 6.1 for a class diagram of Money and some of its subclasses.

Let us now consider the implementations of these methods. How many of them

can be implemented in the Money class and how many of them need to be abstract

in the Money class with their implementation left to the subclasses? If the Money

class, instead of its subclasses, holds an instance variable representing the amount

of money, then the getAmount, times, dividedBy, and negate methods can

be implemented in the Money class. Also, the toString method is going to be

implemented almost identically in all the subclasses of Money except for the display

of the currency.

Furthermore, consider the implementation of the compareTo, plus, and

minus methods. We want these methods to work for all kinds of Money. We will

USMoneyEuroMoney JapaneseMoney

Money

FIGURE 6.1 The Money class
and some subclasses.

06-M4377.indd 17806-M4377.indd 178 12/5/07 12:08:34 PM12/5/07 12:08:34 PM

 Chapter 6 Simple Case Study of a Money Class 179

worry about the details of combining money of different currencies later, but you

are probably getting the feeling that implementations of these methods in the sub-

classes would all be very similar and that most or all of the code could therefore be

moved to the superclass Money.

In fact, by now you may be wondering whether there are enough differences

among the classes to justify using separate classes for each currency. Their behav-

iors do not appear to vary from each other in any truly signifi cant way.

Another reason to wonder whether using subclasses is the right way to go con-

cerns the number of subclasses that must be dealt with if we wish to allow all of the

world’s currencies to be represented. There are over 170 different currencies cur-

rently in use. Do we really want a separate subclass of Money for each of them?

SECTION 6.4 USING ONE CLASS OF
MONEY WITH A CURRENCY ATTRIBUTE

To deal with the problem of an explosion of subclasses, we turn to other techniques

than inheritance. Since the subclasses all behave identically except with regard to

their currency, it makes sense to get rid of the subclasses and instead add to the

Money class another instance variable that represents the currency of the money.

Money corresponding to different quantities of euros or yen or dollars will differ

only in the values of the amount and currency instance variables.

How do we implement the currency instance variable? That is, what type

should it be? One possibility is to make it a String. For consistency and uniformity,

it would make sense to use the three-character ISO 4217 standard code for world

currencies [4]. For example, U.S. dollars would be represented by the string “USD”

and British pounds would be represented by “GBP.”

Here is what Money might look like in this case. We have included the imple-

mentations of a constructor and the toString method.

public class Money
{
 private long amount;
 private String currency;

 public Money(long amount, String currency) {
 this.amount = amount;
 this.currency = currency;
 }
 public String toString() {
 return amount/100 + "." + amount%100 + currency;
 }
 //implementations not shown
 public long getAmount() { ... }
 public String getCurrency() { ... }
 public int compareTo(Money m) { ... }
 public boolean equals(Object o) { ... }

06-M4377.indd 17906-M4377.indd 179 12/5/07 12:08:34 PM12/5/07 12:08:34 PM

180 Chapter 6 Simple Case Study of a Money Class

 public int hashCode() { ... }
 public Money plus(Money) { ... }
 public Money minus(Money) { ... }
 public Money times(double factor) { ... }
 public Money dividedBy(double divisor) { ... }
 public Money negate() { ... }
}

Before we attempt to go any further, you should see a problem with the implemen-

tation of the toString method, namely, that it assumes all currencies display a

decimal point to the left of the rightmost two digits, indicating that the minor cur-

rency unit is 1/100 of the major currency unit. Unfortunately, that is not the case.

For example, the currencies for Iraq and Jordan use three digits to the right of the

decimal point and the Japanese use no decimal point when writing amounts of Yen.

In other words, the toString method needs to have more information on the dis-

play format for each currency, including the number of fractional digits used.

It would be a terrible design to implement the toString method of the Money

class with a large if-then-else statement for distinguishing between the layouts of

170 different currencies. To solve this problem more elegantly, we need to ask our-

selves which object should be responsible for knowing such information as the num-

ber of fractional digits of each currency. The information is currency related, and

therefore the information should be held by the currency. In other words, the solution

is to use a Currency class, each instance of which represents a different currency that

knows the necessary information for that currency, including the ISO code, the num-

ber of fraction digits, and another other currency-specifi c information. In the java.util

package there is such a Currency class, with exactly the desired behavior, including a

getCurrencyCode method that returns the three-character code for the currency

it represents, a getSymbol method that the symbol for the currency (such as the “$”

symbol for U.S. dollars) and a getDefaultFractionalDigits method that tells

you where to place the decimal point.

See Figure 6.2 for a class diagram of our new design.

By using this Currency class, we can now easily display the money using the

currency symbol or the currency’s ISO 4217 code. For example, here is an imple-

mentation of a method that displays the money using the currency code and a deci-

mal point:

public String toString()
{
 String sign = (amount < 0 ? "-" : "");

Money

java.util.Currency–currency:Currency
–amount:long

FIGURE 6.2 The Money class and
Currency class.

06-M4377.indd 18006-M4377.indd 180 12/5/07 12:08:35 PM12/5/07 12:08:35 PM

 Chapter 6 Simple Case Study of a Money Class 181

 Long absAmount = (amount < 0 ? -amount : amount);
 String code = currency.getCurrencyCode();
 int fractDigits = currency.getDefaultFractionalDigits();
 int unit = tenToPower(fractDigits);
 if(fractDigits > 0)
 return sign + absAmount/unit + "."
 + fill(fractDigits, absAmount % unit) + code;
 else
 return sign + absAmount + code;
}

where tenToPower and fill are auxiliary methods. Note that there is no con-

ditional expression necessary for determining which currency symbol to display;

instead, a Currency object gives the symbol to us.

Therefore, let us reimplement Money as follows:

public class Money
{
 private long amount;
 private Currency currency;
 public Money(long amount, Currency currency) {
 this.amount = amount;
 this.currency = currency;
 }

 public long getAmount() { return amount; }

 public Currency getCurrency() { return currency; }

 public String toString() { ...above... }
 public int CompareTo(Money o) { ... }
 public boolean equals(Object o) { ... }
 public int hashCode() { ... }
 public Money plus(Money) { ... }
 public Money minus(Money) { ... }
 public Money times(double factor) { ... }
 public Money dividedBy(double divisor) { ... }
 public Money negate() { ... }
}

The implementations of the rest of the methods are left as an exercise.

SECTION 6.5 MIXED CURRENCIES
VS. SIMPLE CURRENCIES

The Money class in the last section is fi ne as long as your money is always in one

currency. However, what if some of your money is in US dollars, some is in euros,

and some is in Japanese yen? How should we design and implement classes to repre-

sent an amount of money in several currencies?

06-M4377.indd 18106-M4377.indd 181 12/5/07 12:08:35 PM12/5/07 12:08:35 PM

182 Chapter 6 Simple Case Study of a Money Class

An obvious answer is to create a new MixedMoney class. An object of this

class can be thought of as a “wallet” that contains bills and coins in any number of

different currencies.

Let us look at this new class from the perspective of responsibilities. What

should the MixedMoney class’ behavior be? Clearly, it should be able to do most of

the things that Money can do and, in addition, do some things unique to itself. For

example, it should be able to

� Give you the amount of money of any given currency in the wallet.
� Give you a list of the Currencies with nonzero amounts in the wallet.
� Display the amounts of money of each currency in a string.
� Arithmetically combine itself with other Money or MixedMoney objects.
� Compare itself to other Money or MixedMoney objects.

Note that we will make MixedMoney immutable, just like Money.

Now, what is the relationship between Money and MixedMoney? If we use two

different classes for simple money and mixed money, then we need to allow them

to be combined easily. For example, we should be able to add a Money object to a

MixedMoney object to get a new MixedMoney or Money object. We don’t want to

have lots of conditional statements testing whether a given object is of class Money

or MixedMoney. Therefore, a natural design is to give the two classes a common

superclass or interface. Because the two kinds of money are so different, let us use

an interface this time instead of a superclass. Also, we will rename the old Money

class to SimpleMoney and will use Money as the name of the new interface that

both SimpleMoney and MixedMoney implement. See Figure 6.3 for the UML class

diagram.

Here is such a Money interface:

public interface Money extends Comparable<Money>
{
 public int compareTo(Money o);
 public Money plus(Money money);
 public Money minus(Money money);
 public Money times(double factor);
 public Money dividedBy(double divisor);
 public Money negate();
}

MixedMoney SimpleMoney

Currency
uses<<interface>>

Money

FIGURE 6.3 The relationship
between Money, MixedMoney, and
SimpleMoney.

06-M4377.indd 18206-M4377.indd 182 12/5/07 12:08:35 PM12/5/07 12:08:35 PM

 Chapter 6 Simple Case Study of a Money Class 183

Note that our SimpleMoney class has methods unique to it (i.e., not mentioned in

the Money interface), such as getAmount and getCurrency. Similarly, there

are other things MixedMoney can uniquely do, as mentioned above, such as give

you a list of the currencies of money it contains and give you the amount of money it

contains of any specifi ed currency.

Finally, the MixedMoney class needs one or more constructors. For now, let us

just use a default constructor that creates a MixedMoney object corresponding to no

money of any currency. To get mixtures of several currencies, we can use the plus

method with SimpleMoney objects as the argument. Now our MixedMoney class

can be specifi ed as follows:

public class MixedMoney implements Money
{
 public MixedMoney() { ... }
 public String toString() { ... }
 public boolean equals(Object o) { ... }
 public int hashCode() { ... }
 public int compareTo(Money o) { ... }
 public Money plus(Money) { ... }
 public Money minus(Money) { ... }
 public Money times(double factor) { ... }
 public Money dividedBy(double divisor) { ... }
 public Money negate() { ... }
 public Collection getCurrencies() { ... }
 public long getAmount(Currency currency) { ... }
}

The implementation of these methods is left as an exercise.

SECTION 6.6 CONVERTING
BETWEEN CURRENCIES

If you attempted to implement the MixedMoney class as suggested at the end of

the last section, then you probably grappled with the semantics of the equals and

compareTo methods. What does it mean for one MixedMoney object to be greater

or less than another? The compareTo method in the Comparable interface is sup-

posed to use a “natural ordering” of the objects being compared. What is that natu-

ral ordering? For example, what is the natural ordering between money consisting

of U.S. $1 and money consisting of ¥100?

One could defi ne two MixedMoney objects to be equal if and only if they have

exactly the same amount of each of the same currencies. That is, a MixedMoney

object consisting of U.S. $1 and SF 2 is not equal to any other MixedMoney objects

except ones with exactly one dollar and two francs. Alternatively, one could con-

sider two MixedMoney objects to be equal if they have the same total value in U.S.

06-M4377.indd 18306-M4377.indd 183 12/5/07 12:08:36 PM12/5/07 12:08:36 PM

184 Chapter 6 Simple Case Study of a Money Class

dollars, for example, at the current exchange rate. A business would likely use the

latter defi nition of equality and so we will use it also. Similarly, we will consider the

natural ordering of MixedMoney objects to be the ordering of their total value after

conversion to one common currency.

Note that we have now introduced a new concern, namely conversion between

currencies. It is time to think in terms of CRC cards again. Who should have the

responsibility for doing conversions? Who should be responsible for storing and

maintaining the appropriate rates of conversion? Should the SimpleMoney class

or MixedMoney class do it or neither? One complicating factor is the fact that ex-

change rates vary over time, and so a table of exchange rates composed of constants

cannot be used.

After a moment of refl ection, it should be clear that an elegant solution is to

create a new class of object whose sole responsibility is to deal with conversions of

currencies, including the maintenance of conversion rates. We will therefore add a

new MoneyConverter class to our design. Here is the initial interface of this class:

MixedMoney SimpleMoney

Currency
uses uses

uses

<<interface>>
Money MoneyConverter

FIGURE 6.4 The Money
classes with Currency and
MoneyConverter.

public class MoneyConverter
{
 //returns the conversion rate between the two currencies
 public double getRate(Currency from, Currency to)
 //sets the conversion rate to the new rate for the two currencies
 public void setRate(Currency from, Currency to, double rate)
 //returns a Money object with value equal to the given money with
 //in the given currency
 public Money convertTo(Money money, Currency to)
}

For the purpose of this chapter, we will assume that there is also a constructor that

creates a MoneyConverter object that is initialized with all the current rates of ex-

change at the time it was created (the details regarding how such an object is con-

structed so that it has the current rates of exchange are ignored here). Those rates

can be changed with the setRate method.

Our new design can be seen in Figure 6.4.

06-M4377.indd 18406-M4377.indd 184 12/5/07 12:08:36 PM12/5/07 12:08:36 PM

 Chapter 6 Simple Case Study of a Money Class 185

//in the MoneyConverter class
public Money convertTo(Money money, Currency to)
{
 if(money instanceof SimpleMoney) {
 SimpleMoney simpleMoney = (SimpleMoney) money;
 long newAmount = simpleMoney.getAmount() *
 getRate(simpleMoney.getCurrency(), to);
 return new SimpleMoney(newAmount, to);
 }
 else {
 MixedMoney mixedMoney = (MixedMoney) money;
 long totalAmount = 0;
 for (Currency currency: mixedMoney.getCurrencies()) {
 long currentAmount = mixedMoney.getAmount(currency);
 totalAmount += (long) (getRate(currency,to) * currentAmount);
 }
 return new SimpleMoney(totalAmount, to);
 }
}

This implementation violates a couple of our principles in the preceding chapters

because (a) it uses “instanceof” to create two cases for handling the two kinds of

money, and (b) it requires the MoneyConverter to extract the data from a Money

object and then manipulate it, violating the Expert pattern.

From the perspective of elegance of design, it makes more sense for a Money

object to get rates from a MoneyConverter and use it to determine its total value

in a given currency than for the MoneyConverter object to get the Currencies and

amounts from a Money object and then convert and combine them. Therefore, it

seems clear that Money objects should have a new public method

Money convertTo(Currency currency, MoneyConverter converter)

SECTION 6.7 MONEYCONVERTER ISSUES

Something about the design of the MoneyConverter class may have bothered you,

since there is one unpleasant smell in the design of that class. To see more clearly

what the problem is, consider how we would implement the MoneyConverter’s

convertTo method. Recall that this method takes a Money object and a Cur-

rency object as parameters. It returns a new Money object containing an amount

of the given Currency that is equal in value to the Money object that was passed as

the fi rst parameter. If that parameter is a SimpleMoney object, then the amount of

money of the new currency can easily be computed by multiplying the amount in

the SimpleMoney object by the appropriate conversion rate. If the fi rst parameter

is a MixedMoney object, then the amount of the new currency can also be com-

puted quite easily by extracting the currencies and amounts from the given Money

object, multiply them by the appropriate rates of exchange, and create a new Simple-

Money object with the total amount of money of the desired currency. Here is such

an implementation:

06-M4377.indd 18506-M4377.indd 185 12/5/07 12:08:36 PM12/5/07 12:08:36 PM

186 Chapter 6 Simple Case Study of a Money Class

that returns a new Money object whose amount of the given currency is equal to the

total value of this Money object (using the rates supplied by the given converter).

Once this method has been added to the Money interface and subclasses, then the

convertTo method in the MoneyConverter class can simply delegate the work to

the Money object as follows:

//in the MoneyConverter class
public Money convertTo(Money money, Currency to)
{
 return money.convertTo(to, this);
}

Note that the Money subclasses can each implement their convertTo methods as

they see fi t, based on how they maintain their internal state. This one change elimi-

nates both of the smells from the implementation of the MoneyConverter’s con-
vertTo method.

Once we have made this change, something else becomes a little clearer about

our design. Namely, does the MoneyConverter class need a convertTo method? A

Money object can convert itself, and so the MoneyConverter’s convertTo method

is now superfl uous. If we eliminate that method, then the MoneyConverter’s interface

becomes more balanced (with just getRate and setRate methods). Furthermore,

the MoneyConverter class is now only concerned with currency rates and doesn’t re-

fer to Money at all, and so we can change its name to something more appropriate,

such as “CurrencyConverter.” See Figure 6.5 for a diagram of the new design.

How has this change affected the coupling of the classes? With the origi-

nal MoneyConverter class, the Money classes needed no knowledge of Money-

Converters since they just stored money and left the conversion to others. With the

new CurrencyConverter class and with the addition of the convertTo method in

the Money classes, the situation has been reversed. That is, the CurrencyConverter

MixedMoney SimpleMoney

Currency
uses uses

uses

<<interface>>
Money

CurrencyConverter

+setRate(f:Currency,t:Currency,rate:double):void
+getRate(f:Currency,t:Currency):double

FIGURE 6.5 Money, Currency, and CurrencyConverter.

06-M4377.indd 18606-M4377.indd 186 12/5/07 12:08:36 PM12/5/07 12:08:36 PM

 Chapter 6 Simple Case Study of a Money Class 187

class needs no knowledge of Money classes, but the Money classes now need to

know about CurrencyConverters. As with almost all design decisions, there are

trade-offs like these that must be weighed and, depending on the application, differ-

ent designs might be chosen.

SECTION 6.8. MIXEDMONEY
AND SIMPLEMONEY ISSUES

Now let us consider the implementation of the MixedMoney and SimpleMoney

classes. How are their internal states to be maintained? For example, how is the

MixedMoney object to store all the data corresponding to the mixed currencies and

the corresponding amounts?

One way to implement the MixedMoney class is to have it store a collection

of SimpleMoney objects, each corresponding to a different currency. Alternatively,

one could implement the MixedMoney class so that it stores the amounts and cur-

rencies in a HashMap that uses the currency as a key and either a SimpleMoney ob-

ject or just a long integer as the value corresponding to that currency. For example,

a MixedMoney object corresponding to U.S. $5 and £7 could have a HashMap with

two key/value pairs: one pair being the Currency object for U.S. money and the long

number 5 and and the other pair being the Currency object for British pounds and

the long number 7.

If you attempt to implement MixedMoney in either of these ways, you will see

that many of the methods in the SimpleMoney and MixedMoney classes are imple-

mented identically. Therefore, it makes sense to change Money from a Java interface

to an abstract class and move those duplicated implementations up into the Money

superclass. So far, so good.

Unfortunately, as you attempt to implement the plus method using either ap-

proach, you will fi nd yourself writing ugly conditionals on the type of Money ob-

jects with which you are dealing. In particular, when you are adding Money to a

MixedMoney object, you need to have a conditional since the way a SimpleMoney

object is added to a MixedMoney object is different than the way a MixedMoney

object is added to a MixedMoney object. These conditionals are not so good.

There is another problem with our design from the user’s perspective. Think of

how a user would create an object representing U.S. $5 and SF 3 using these classes

and interfaces. Here is one way:

Money dollars = new SimpleMoney(5, Currency.getInstance("USD"));
Money francs = new SimpleMoney(3, Currency.getInstance("CHF"));
Money total = dollars.plus(francs);

In an ideal world, the user should just be able to deal with objects implementing the

Money interface without worrying about the actual class of the objects.

In other words, regardless of which of the two implementations of Simple-

Money and MixedMoney discussed here that you use, there will be ugly condition-

als in the code. Also, the user is forced to treat SimpleMoney and MixedMoney

06-M4377.indd 18706-M4377.indd 187 12/5/07 12:08:37 PM12/5/07 12:08:37 PM

188 Chapter 6 Simple Case Study of a Money Class

objects differently instead of uniformly as Money objects. Can we come up with a

design without these problems?

SECTION 6.9 MIXED MONEY ONLY

One way to avoid conditionals and to avoid forcing the user to be aware of all the

classes implementing Money is to simplify things in terms of the number of classes

involved.

In particular, one way is to use only mixed money objects! In that case, we

could eliminate the Money interface and the SimpleMoney class, and we could have

just one Money class that plays the role that MixedMoney played in our earlier ver-

sions. In this design, money of one currency, which used to be represented by a

SimpleMoney object, can be represented by a Money object that refers to just one

kind of currency.

This new Money class can be implemented in the same ways that we suggested

implementing MixedMoney, such as using a HashMap whose key is a Currency and

whose value is a long indicating the amount of money of that currency. You will be

asked to implement the Money class in this way in the exercises. If you implement

this class, you will notice that it will not have conditionals based on the type of

money since there is now only one type.

We will still use the Currency class and the CurrencyConverter class, and so

our diagram (see Figure 6.6) will consist of only three classes.

In summary, our Money classes have evolved signifi cantly. We started with a

single USMoney class and ended in this section with a Money class that acts more

like the wallet of an international traveler that contains different amounts of differ-

ent currencies. Along the way, we decided to use the java.util.Currency class and a

CurrencyConverter class in our design.

Have we achieved our goal of an elegant design of a Money class? Has our de-

sign evolved to perfection? Of course not. There are always trade-offs. For example,

by eliminating SimpleMoney, we removed undesirable conditionals from our code,

but we also omitted some desirable properties of Money as well. Namely, when our

design included the SimpleMoney class, the user could ask it for its currency and

amount. Our new Money object does not necessarily represent just one currency, so

to see whether the Money object is simple, you must get all the currencies included

in the object and then determine whether at most one of the amounts associated

with those currencies is nonzero.

Money

Currency

CurrencyConverter
uses

uses uses

FIGURE 6.6 The (Mixed-)Money
class and related classes.

06-M4377.indd 18806-M4377.indd 188 12/5/07 12:08:37 PM12/5/07 12:08:37 PM

 Chapter 6 Simple Case Study of a Money Class 189

SECTION 6.10 ALTERNATE IMPLEMENTATION
WITH BINARY TREES

The design and implementation discussed in the preceding section is an improve-

ment over the earlier versions, but there is still something inelegant about represent-

ing simple money such as 5 dollars by an object designed to represent mixed curren-

cies of money that just happens to contain only money of one currency. Is it possible

to bring back SimpleMoney and MixedMoney classes and the Money interface in

a way that avoids ugly conditionals and complex code and avoids making the user

aware of these classes?

In fact, there are ways of doing so. A clever way (see [1]) is to design each

MixedMoney object to act as a sum of two other Money objects. In this design, the

data is stored in a binary tree whose internal nodes are MixedMoney objects and

whose leaves are SimpleMoney objects. The internal nodes hold no data except for

the references to their two children. We will explore this design and its implementa-

tion in this section.

Therefore, let use go back to our design using a Money interface and the classes

SimpleMoney and MixedMoney and consider the following implementation of the

MixedMoney class:

public class MixedMoney extends Money
{
 private Money left;
 private Money right;

 public MixedMoney(Money left, Money right)
 {
 this.left = left;
 this.right = right;
 }

 public Collection getCurrencies()
 {
 Collection wholeSet = left.getCurrencies();
 wholeSet.addAll(right.getCurrencies());
 return wholeSet;
 }

 public long getAmount(Currency currency)
 {
 return left.getAmount(currency) + right.getAmount(currency);
 }

 public Money plus(Money other)
 {
 return new MixedMoney(this, other);
 }

 public Money times (double factor)

06-M4377.indd 18906-M4377.indd 189 12/5/07 12:08:37 PM12/5/07 12:08:37 PM

190 Chapter 6 Simple Case Study of a Money Class

Note the elegance of this code, including how simple the implementations are when

recursion is used to traverse the binary tree!

Our SimpleMoney class can be implemented as discussed earlier in this

chapter:

public class SimpleMoney extends Money
{
 private long amount = 0;
 private Currency currency;

 public SimpleMoney(long amount, Currency currency)
 {
 this.amount = amount;
 this.currency = currency;
 }

 public Collection getCurrencies()
 {
 HashSet currencies = new HashSet();
 currencies.add(currency);
 return currencies;
 }

 public long getAmount(Currency currency)
 {
 if(this.currency.equals(currency))
 return amount;
 else
 return 0;
 }

 public Money plus(Money other)
 {
 return new MixedMoney(this, other);
 }

 public Money times(double factor) {
 return new SimpleMoney((long) (amount*factor), currency);
 }

 {
 return new MixedMoney(left.times(factor), right.times(factor));
 }

 public Money convertTo(Currency to, MoneyConverter moneyConverter)
 {
 long amount = left.convertTo(to, moneyConverter).getAmount(to);
 amount += right.convertTo(to, moneyConverter).getAmount(to);
 return new SimpleMoney(amount, to);
 }
}

06-M4377.indd 19006-M4377.indd 190 12/5/07 12:08:38 PM12/5/07 12:08:38 PM

 Chapter 6 Simple Case Study of a Money Class 191

 public Money convertTo(Currency to, MoneyConverter
 moneyConverter)
 {
 double rate = moneyConverter.rate(currency, to);
 return new SimpleMoney((int)(amount*rate), to);
 }
}

By the way, note that the plus method’s implementation is identical in both classes,

and so the Money interface can be changed to an abstract superclass and the plus

method can be moved up to that class. In fact, several other public methods common to

MixedMoney and SimpleMoney can also be implemented in the Money superclass.

We now have a nice elegant design and implementation of these classes. Fur-

thermore, the users need never directly concern themselves with MixedMoney ob-

jects. For example, the user can create and manipulate some money as follows:

Money dollars = new SimpleMoney(5, Currency.getInstance("USD"));
Money francs = new SimpleMoney(3, Currency.getInstance("CHF"));
Money total = dollars.plus(francs);

The fact that we have been able to hide the existence of the MixedMoney class from

the user raises the question as to whether we should similarly attempt to hide the

SimpleMoney class as well. Coupling can be reduced if the user can avoid using the

two subclasses of Money and instead use only Money. But if we do so, how can the

user create some money to start with?

The answer is for the user to avoid the use of constructors for SimpleMoney

and MixedMoney objects and instead use a “factory” method that generates Money

objects for the user. That is, we can add a new method to the Money class:

public static Money getMoney(long amount, String currency)
{
 return new SimpleMoney(amount, currency.getInstance(currency));
}

that allows the user to create money very simply. If this method is available, then

the user code above can be replaced with the following code:

Money dollars = Money.getMoney(5, "USD");
Money francs = Money.getMoney(7, "CHF");
Money total = dollars.plus(francs);

and all mention of subclasses of Money are eliminated.

Is the design in this section better than the design in the preceding section

(using only MixedMoney objects storing the monetary amounts and currencies

in a collection such as a HashMap)? It is not clear. From the user’s perspective,

they are identical except that in the fi rst design the user would use a constructor to

create a Money object and in the second design the user would use a factory (although

a similar factory method could also be added to the fi rst design). In terms of imple-

mentation, the second design might be slower if the tree gets large. Furthermore, it

06-M4377.indd 19106-M4377.indd 191 12/5/07 12:08:38 PM12/5/07 12:08:38 PM

192 Chapter 6 Simple Case Study of a Money Class

EXERCISES

 1. These problems concern the USMoney class dis-

cussed in Section 6.2.

 a. A default (no-argument) constructor was not

included for the USMoney class. Should there

be such a constructor? If so, how much money

should it represent? Explain.

 b. Because USMoney is immutable, the USMoney

object representing $1 could theoretically be

reused everywhere exactly $1 is needed. Describe

a way that the USMoney class could be designed

so that only one object is ever created that repre-

sents $1.

 c. Should there be additional variations on the

getAmount method that return the amount in

some form other than the number of cents re-

turned as a long value? Discuss the alternatives

and their advantages and disadvantages.

 d. Do we really need a getAmount method at all?

What would it be used for?

 e. Why do we add and subtract USMoney objects,

but we multiply and divide by plain doubles? Why

not multiply and divide by USMoney objects, like

we did for addition and subtraction?

 f. Add method headers that follow Javadoc conven-

tions and completely describe the behavior of

each of the methods in the USMoney interface.

 g. Show that the minus, dividedBy, and negate

methods are just convenience methods by imple-

menting them very simply using the plus and

times methods.

 h. Implement the USMoney class using one long

instance variable to store the amount of money

in cents. Don’t forget to override the inherited

equals and hashCode methods.

 i. Implement the USMoney class so that arbitrarily

large amounts of money can be stored in a US-

Money object. You are welcome to make minor

changes to the method and constructor headers.

 j. It was mentioned in earlier chapters that a class’

interface should have symmetry. In particu-

lar, each method should have a complementary

method to make the class elegant. Since the

USMoney class is immutable, the getAmount

method of course will not have a complementary

setAmount method. The plus and minus

methods nicely complement each other, as do

SECTION 6.11 SUMMARY

In this chapter, we considered the design and imple-

mentation of a Money class. Using the design prin-

ciples and guidelines from earlier chapters, we con-

sidered the good and bad points of a design before

moving on to a new, supposedly better, design.

We started with a discussion of the problems

with using primitive values. We then designed a US-

Money class. Next, we considered how to generalize

the situation to allow money of other currencies, and

we decided that the more elegant approach was to

relegate any differences to a Currency object rather

than creating many subclasses of Money. Then we

had to address the issue of money of mixed curren-

cies, which we did by creating SimpleMoney and

MixedMoney classes. This discussion also led to

the creation of a CurrencyConverter class to handle

conversion rates. Finally, to simplify the design and

implementation, we considered two alternatives.

One way was to just use mixed money and eliminate

the SimpleMoney class. The other way was to imple-

ment MixedMoney as the internal node to a binary

tree with SimpleMoney as the leaves.

Which is the optimal one? There is no one de-

sign and implementation that is best for all applica-

tions, but the consideration of the design issues dis-

cussed in the previous chapters can result in a design

and implementation that has a better chance of have

a long useful life.

is possible for two leaves of a tree to have identical currencies, and so a complete tra-

versal of the tree is necessary just to fi nd out how many U.S. dollars there are in it. To

make the binary tree version more effi cient, there should probably be added a private

method that simplifi es the tree by combining nodes with like currencies. The deci-

sion as to the implementation to use will vary from situation to situation.

06-M4377.indd 19206-M4377.indd 192 12/5/07 12:08:38 PM12/5/07 12:08:38 PM

 Chapter 6 Simple Case Study of a Money Class 193

the times and dividedBy methods. But what

about other methods?

 (a) Consider the negate and compareTo

methods. Shouldn’t they have complementary

methods to make the class even more elegant?

Explain.

 (b) There is no complement to the toString

method. For symmetry to this method, which

converts a USMoney object into String object,

it would be nice to have a method that converts

a String into a USMoney object. One such

method could be a fromString method that

takes a String as its parameter. This method

could be a static method in the USMoney

class (why static?). Or, instead, we could cre-

ate a new constructor that takes a String as its

parameter and creates the corresponding US-

Money object. Either way you do it, the string

needs to be parsed to create an object with the

appropriate value. For example, if the user

wrote

 USMoney money = USMoney
 .fromString("500");

 then the variable money could refer to an

object corresponding to $5. Note that this

method will somehow need to handle Strings

that have improper format. We could throw

an IllegalMoneyFormatException, a new class

of exceptions that we create. Implement the

fromString method as part of the imple-

mentation of the USMoney class described

in part (h) above and have it throw an Illegal-

MoneyFormatException if the input string is

improperly formatted. You will need to create

this new exception class yourself.

 k. The times and dividedBy methods result in

round-off errors, since they involve fl oating point

calculations. To avoid this problem, we could re-

quire the factor and divisor to be integers, but even

then the dividedBy method could have round-

off errors. One way to avoid this problem is to

return an array of USMoneys. That is, the return

type of dividedBy would be USMoney[]. This

approach is discussed in [1]. It corrects for the

problem of lost cents when you divide an amount

of money by an integer. If we use dividedBy to

divide an amount of money by n, then the size of

the array returned by dividedBy is n and each

object in that array contains 1/nth of the original

amount of money, except that the fi rst few objects

in the array have one more cent so that the total

sum of the objects in the array adds up to the

original amount. For example, if you divide $1 by

3, the dividedBy method will return an array of

three USMoney objects, the fi rst one correspond-

ing to 34 cents and the last two corresponding to

33 cents. For this exercise, implement these new

times and dividedBy methods, assuming that

the value of a USMoney object in cents is stored

in a long instance variable:

 (a) USMoney times(int factor)
 (b) USMoney[] dividedBy(int divisor)
 2. These problems concern the Money classes discussed

at the end of Section 6.4.

 a. Finish the implementation of the Money class

given at the end of Section 6.4.

 b. The getCurrency method of the Money class

returns a reference to the same Currency object

that is used by the Money object. Doesn’t this

method expose the innards of the Money object?

Shouldn’t the getCurrency method instead re-

turn a clone of the Currency object referred to by

the Money’s currency fi eld?

 c. The java.util.Currency class gives you the symbol

and the number of fractional digits for each world

currency. From that information you can display

an amount of money in either of two forms. In

one form, the amount is preceded by the currency

symbol and includes a decimal point in the ap-

propriate place, such as “$3.14” for U.S. currency.

In the other form, the amount is followed by the

three-letter currency code, such as “3.14 USD.”

However, what if a country likes to display its cur-

rency in some third form, such as using a comma

instead of a period or putting the symbol at the

end? In that case, our Money class would not dis-

play the money appropriately. Explain an elegant

way to handle such currency-specifi c differences.

 3. These problems concern the Money classes discussed

in Section 6.5.

 a. We did not include the toString, equals,

and hashCode methods in the Money interface.

Why not? We will want all of our subclasses to

implement those methods, and so shouldn’t they

be included in the interface?

 b. As we mentioned at the beginning of the sec-

tion, a Money object representing a mixed bag

of currencies can be thought of as a “wallet” for

an international traveler. However, with a wallet,

the amount of money of each currency in it will

vary over time. When viewed this way, it seems

06-M4377.indd 19306-M4377.indd 193 12/5/07 12:08:39 PM12/5/07 12:08:39 PM

194 Chapter 6 Simple Case Study of a Money Class

that Money should be a mutable container object

rather than an immutable value object. After all,

every time you add or remove money from your

wallet, you don’t create a whole new wallet with

the new amount of money. Discuss whether it is

better to have Money be immutable or mutable.

 4. These problems concern the Money and MoneyCon-

verter classes discussed in Section 6.6.

 a. Although we said that the convertTo method

in the MoneyConverter class should return a Sim-

pleMoney object, we declared the return type to

be Money instead of SimpleMoney. Why did we

do that?

 b. We decided that two Money objects should be

equal if they have the same value after being con-

verted to one common currency, such as U.S. dol-

lars. However, the conversion rate between curren-

cies varies over time and so any two Money objects

may be equal at one point in time but not equal at

a later point in time. Discuss the ramifi cations of

this fact with regard to the implementation of the

hashCode method in the Money classes. Recall

from Chapter 4 that if two objects are equal, then

they must have the same hash code value.

 5. In Section 6.7, we added a new method to the Money

interface

Money convertTo(Currency to,
 CurrencyConverter converter)

 Implement this method in the Money class using the

interface given at the end of Section 6.4.

 6. These problems concern implementations of the

MixedMoney class discussed in Sections 6.5–6.8.

Use the MixedMoney interface given at the end

of Section 6.5 but also include the method with

header Money convertTo(Currency to, Cur-
rencyConverter converter) discussed in

Section 6.7.

 a. Implement the MixedMoney class so that it stores

the money in an ArrayList of SimpleMoney

objects. Implement it so that there is only one

SimpleMoney object in the list of any given cur-

rency. That is, combine SimpleMoney objects of

the same currency in the list into a single Simple-

Money object.

 b. Implement the MixedMoney class as in the pre-

ceding problem except do not combine Simple-

Money objects of the same currency in the list

into a single SimpleMoney object.

 c. Implement the MixedMoney class so that it stores

the money in a HashMap whose key is a Cur-

rency and whose corresponding value is a Simple-

Money object of that currency. In implementing

the arithmetic operations, delete any key/value

pairs whose amount has been reduced to 0.

 d. Implement the MixedMoney class so that it stores

the money in a HashMap whose key is a Currency

and whose corresponding value is a long integer

indicating the amount of money of that currency.

In implementing the arithmetic operations, delete

any key/value pairs whose amount has been re-

duced to 0.

 e. Compare the implementations of MixedMoney in

the preceding four problems. Which is the most

elegant? Why?

 7. These exercises refer to the Money interface and

subclasses in Section 6.8.

 a. Change the Money interface into an abstract class

and then implement the following methods in the

Money class without referring to either the Sim-

pleMoney or MixedMoney subclasses: equals,

dividedBy, minus, and negate.

 b. Even though the methods listed here can be im-

plemented in the Money superclass because the

same code will work for both classes, why might

the developer choose instead to implement them

separately in the SimpleMoney and MixedMoney

subclasses?

 8. Implement the Money class discussed in Section 6.9

by eliminating the Money interface and the Simple-

Money class and renaming MixedMoney as Money.

 9. These problems concern the Money class discussed

in Section 6.10.

 a. One of the potential drawbacks of the implemen-

tation of Money using binary trees is that the tree

grows in size every time you perform a plus op-

eration. This means that you may end up with a

tree with 50 leaf nodes, all potentially referring

to money of the same currency. Therefore, add

and implement a new method in the Money class:

private Money simplify()

 that returns a new Money object with the same

amount of money of each currency as this Money

object, but with all leaves of the same currency

combined into one leaf.

 b. The simplify method in the preceding exercise

was designated a private method. Why? When

should this method be called?

06-M4377.indd 19406-M4377.indd 194 12/5/07 12:08:39 PM12/5/07 12:08:39 PM

 Chapter 6 Simple Case Study of a Money Class 195

REFERENCES

 1. Beck, K., Test-Driven Development by Example.

2003. Reading, MA: Addison-Wesley.

 2. Fowler, M. Analysis Pattern: Quantity. 2004.

[Cited April 8, 2007; available from http://www
.martinfowler.com/ap2/quantity.html.]

 3. Unknown. JUnit Test Infected: Programmers Love
Writing Tests. 2004 [Cited April 8, 2007; available

from http://junit.sourceforge.net/doc/testinfected/
testing.htm.]

 4. ISO. ISO 4217 Currency Names and Code
Elements. [Cited April 8, 2007; available from

http://www.iso.org/iso/en/prods-services/popstds/
currencycodeslist.html.]

06-M4377.indd 19506-M4377.indd 195 12/5/07 12:08:40 PM12/5/07 12:08:40 PM

http://www
http://junit.sourceforge.net/doc/testinfected/
http://www.iso.org/iso/en/prods-services/popstds/

Introduction to
Design Patterns

SECTION 7.0 INTRODUCTION

In Chapter 5, we discussed the advantages and disadvantages of the various possible

software designs, and we developed some guidelines and rules to follow that will

help you develop good designs. Many of these guidelines and rules evolved over

the years. Practitioners would notice that certain things would work well and others

would work poorly. They saved, in the form of a set of rules, those practices that

worked well. Sometimes these rules were discovered the hard way when designs

that seemed good in the initial phase ended up being very ugly, brittle, or totally

unworkable when attempts were later made to modify the designs.

In this chapter, we introduce more tools to help you create good software

designs. These tools, which can be thought of as some of the software industry’s

best practices for developing elegant code, are called design patterns. As stated in

[1], design patterns are “simple and elegant solutions to specifi c problems in ob-

ject-oriented software design. Design patterns capture solutions that have developed

and evolved over time.” Kent Beck in [2] says that “patterns are a literary form

for capturing and transmitting common practice. Each pattern records a recur-

ring problem, how to construct a solution for the problem, and why the solution is

appropriate.”

The cataloging and organization of these patterns has been going on since the

early 1990s. The most famous book on the subject is Design Patterns [1], which

introduces 23 design patterns, including examples in Smalltalk and/or C��. Since

then, many books have appeared on the subject, including some that discuss the

same patterns but use examples in Java.

Why bother learning these design patterns? John Vlissides, one of the four au-

thors of [1], lists four main benefi ts in his later book [3]:

 1. They capture expertise and make it accessible to nonexperts.

 2. Their names collectively form a vocabulary that helps developers communicate

better.

 3. They help people understand a system more quickly when it is documented with

the patterns it uses.

7

196

07-M4377.indd 19607-M4377.indd 196 12/5/07 12:08:58 PM12/5/07 12:08:58 PM

 Chapter 7 Introduction to Design Patterns 197

 4. They facilitate restructuring a system whether or not it was designed with pat-

terns in mind.

We would like particularly to stress the second and third benefi ts. If designers on a

team can say things like, “Let’s use the Decorator pattern here to handle all the op-

tions,” they can raise the discussion to a higher level of abstraction. As a result, they

are able to deal with a larger piece of the whole design and can avoid getting bogged

down in low-level details.

Design patterns are usually presented and discussed at the conceptual level (as

defi ned in Section 4.0 of this text), but we will also include in this chapter some

sample implementations to give examples of patterns in practice.

In this chapter, we will introduce a few of the simplest design patterns so that

you can get a feeling for what design patterns are. More patterns will be introduced

in the context of the case studies in the following two chapters. In all these chapters,

we will introduce the design pattern by way of a motivational example. Then, inside

a box, we will present the design pattern in more general terms, including a discus-

sion of when to use a pattern and the trade-offs involved in doing so.

Keep in mind that our intent in this book is just to introduce design patterns. The

Design Patterns book, other patterns books, and Web pages devoted to design pat-

terns lay out the patterns more formally than we will, including detailed analysis of

the applicability, structure, participants, collaborations, and consequences of using

the patterns, as well as motivation, implementation issues, and sample code. We refer

you to those other sources to understand the fi ner points of each of the patterns.

SECTION 7.1 THE ADAPTER PATTERN

One of the simplest, but very useful, patterns is the Adapter pattern [1]. Let us see

how this pattern naturally appears when software engineers are designing with

change in mind, as discussed in Section 5.7. Let us review the material in that sec-

tion but use a different example.

Suppose you are working in a company on a team that built a front end (for

example, a Web interface) for one of your company’s main applications. The back

end of the application contains all the data (maybe in a database) and tools for ma-

nipulating that data. Suppose that one of the data structures managed by the back

end is a collection of Person objects containing customer information. Assume that

your front end needs to access these Person objects regularly so your code includes

lots of statements such as

Person customer = backend.getPerson(name);
Address customerAddress = customer.getAddress();

that gets a person with a given name and then gets the address of that person (in the

form of an Address object) from the Person object.

Now suppose your company is purchased by Acme Corporation, and the new

owners like your front end so much that they want to replace the current front end

07-M4377.indd 19707-M4377.indd 197 12/5/07 12:08:58 PM12/5/07 12:08:58 PM

198 Chapter 7 Introduction to Design Patterns

of their database with your front end. Unfortunately, the Acme back end almost

surely has a different interface than the back end for which your front end was de-

signed. For a simple example, suppose the Acme back end does not use the exact

same Person class as your front end but instead it uses a Customer class that stores

different information about the person and has different methods for extracting that

information.

What are you to do to get your front end working with the existing Acme back

end? The problem that you now have is due to incompatible interfaces. Your front

end assumes, among other things, that the back end has a getPerson method

that returns a Person object and that the Person object has a getAddress method

that returns an Address object. However, the new back end has a getCustomer

method that returns a Customer object that does not store information in the same

form. Therefore, the two ends cannot communicate with each other.

Obviously, some code in the existing front end or new back end needs to be

changed. One way to fi x the problem is to modify the front end so that it uses the

interface of the new back end. In particular, you could modify it so that it always

uses Customers instead of Persons. Another way to fi x the problem would be to take

the Acme back end and modify its code to use the interface expected by the front

end. A third way would be to assign some of the changes to the front end and some

to the back end.

However, both the front end and back end are hopefully well-written and have

been extensively debugged. Regardless of whether you are talking about the front

or back end, you are asking for new bugs every time you change existing working

code. How can you get your front end and new back end to communicate with mini-

mum changes to the existing code?

An elegant way is to provide a new class to act as an “adapter” to adapt one

interface to another interface. Objects of this class sit between the front end and

back end. In our case, the front end will communicate with the adapter class instead

of the Acme back end. The adapter will provide the interface that the front end ex-

pects, but it will actually get the data from the Acme back end and transform it into

the data that the front end expects.

To show an example of how such an adapter class would work with our front

end and Acme’s back end, we need to be a little more precise regarding the classes

and interfaces involved. Let’s assume that the front end is connected to the back end

through a reference backend to an object implementing a BackEnd interface. That

interface includes methods such as getPerson. Also assume that the Acme back

end is in the form of an AcmeBackEnd object that does not implement the BackEnd

interface. Instead it has its own interface, including methods such as getCustomer.

To connect the front end and new back end, we create a AcmeBackEndAdapter class

that implements the BackEnd interface, so that the FrontEnd can communicate with

it, but it forwards the actual work to an AcmeBackEnd.

public class AcmeBackEndAdapter implements BackEnd
{
 private AcmeBackEnd backend; //the backend doing the real work

 public AcmeBackEndAdapter(AcmeBackEnd acmeBackEnd)

07-M4377.indd 19807-M4377.indd 198 12/5/07 12:08:59 PM12/5/07 12:08:59 PM

 Chapter 7 Introduction to Design Patterns 199

To use this adapter class, there needs to be only one change made to the existing front

end and no changes to the new back end. The one change to the front end is that, in-

stead of assigning to the backend instance variable a reference to the original back

end, it now assigns to that variable a reference to an AcmeBackEndAdapter.

The use of an adapter class, as in this example, to adapt an existing class to a

different interface is what is called the Adapter pattern.

Figure 7.1 gives a UML diagram of our new design.

Another simple example of the Adapter pattern, this time in a nonsoftware con-

text, concerns electrical outlets. In the United States, most appliances have two fl at

prongs and an optional third round prong that fi t into standard American electrical

outlets. However, in other countries, the outlets are designed for appliances with two

or three round prongs or fl at prongs oriented in different directions or in different

FrontEnd

–backend:BackEnd

+getPerson(name:String):Person

<<interface>>

BackEnd

–acmeBackEnd:AcmeBackEnd

+getPerson(name:String):Person

public Person getPerson(String name)
{
Customer customer= acmeBackEnd.getCustomer(name);
Person person=...transform customer to a person...,
return person;
}

AcmeBackEndAdapter

+getCustomer(name:String):Customer

AcmeBackEnd

FIGURE 7.1 The FrontEnd and BackEnd adapter.

 {
 this.backend = acmeBackEnd;
 }

 public Person getPerson(String name)
 {
 Customer customer = backEnd.getCustomer(name);
 Person person = ...transform a Customer to a Person...;
 return person;
 }
 //...other methods in BackEnd interface...
}

07-M4377.indd 19907-M4377.indd 199 12/5/07 12:08:59 PM12/5/07 12:08:59 PM

200 Chapter 7 Introduction to Design Patterns

The Adapter pattern is useful when you have one client class that wants to use

another class but that other class has the wrong interface. In that case, the so-

lution provided by the Adapter pattern is to introduce an Adaptor class that

connects the client class with the other class. The Adapter class is also called a

wrapper class since it can be thought of as wrapping around the other class and

so presenting a different interface to other classes.

The participants in the Adapter pattern are:

 1. The Client, an existing class that uses a particular interface

 2. The Target, the interface used by the Client

 3. The Adaptee, a class that the Client would like to use except that it has a

different interface than Target

 4. The Adapter, the class that implements the Target interface using the

Adaptee

See Figure 7.2 for a UML class diagram showing the relationships among

the Adapter participants.

In our example, the front end plays the role of the Client, the BackEnd in-

terface plays the role of the Target, the AcmeBackEnd is the Adaptee, and the

AcmeBackEndAdapter is the Adapter class.

Another example of where the Adapter pattern might come in handy is

an object-oriented business system that needs to use a legacy non–object-

oriented database. A clean way to handle this situation is to isolate the non–object-

oriented part behind a wrapper class. Only the wrapper class will communi-

cate with the non–object-oriented database, and all other parts of the system

The Adapter Pattern

FIGURE 7.2 The Adapter pattern.

Client
<<interface>>

Target

+request():void

Adaptee

+otherRequest():void

Adapter

+request():void

request() calls adaptee.otherRequest()
to help it perform the desired action

07-M4377.indd 20007-M4377.indd 200 12/5/07 12:08:59 PM12/5/07 12:08:59 PM

 Chapter 7 Introduction to Design Patterns 201

positions relative to each other. In those countries, the electrical interface does not

match the interface for American appliances. So how can you use American ap-

pliances abroad? The solution is to purchase adapter plugs, with slots on one side

into which American appliances fi t and prongs on the other side that fi t into the

other country’s outlets. Or to use the Acme clock example, in Section 5.7, the way to

plug a general appliance into an outlet designed to accommodate only Acme electric

clocks is to purchase or construct an adapter that plugs into the Acme clock outlet

and that has slots into which general electrical appliances prongs fi t.

SECTION 7.2 THE SINGLETON PATTERN

Consider a computer whose GUI is controlled by a WindowManager object. That

object is responsible for displaying windows, dialogs, and icons when they are cre-

ated or when they become exposed again after being covered by other GUI ele-

ments. Now consider what would happen if two such WindowManager objects were

accidentally created. They would be stepping on each others toes, possibly display-

ing two copies of windows or icons or fi ghting to display a window. The screen

would surely become unstable and unusable.

Similarly, consider a PrinterController object that controls all access to a set

of resources such as printers. You do not want clients creating two or more Printer-

Controllers for the same set of printers, and so you need to restrict the number of

PrinterController objects that can be created.

There is a similarity in both these examples in that we want to limit the number

of objects of a class that are created to just one, but we want that one instance to be

available to clients globally. How do you guarantee that there will be only one and

make it accessible globally? The Singleton pattern [1] is a way of solving this prob-

lem elegantly.

To understand the Singleton pattern, let us start with a Singleton class of which

we want to ensure that there will never be two or more instances created. To ensure

such a thing, you clearly need somehow to hide the constructors for that class, such

can blissfully assume the object-oriented wrapper class is actually an object-

oriented database,

The main advantage of the Adapter pattern is that it allows the Client to

use the Adaptee with minimal modifi cations to either class. The only new code

that is needed appears in the Adapter class.

A disadvantage of using the Adapter pattern is that you have introduced yet

another class into the design and therefore made it slightly more complex. Fur-

thermore, there is now one more level of indirection in getting data to the front

end from the back end; namely, the front end needs to ask the adapter class for

the data, which then asks the actual back end for some data and converts that

data into the form desired by the front end. But these disadvantages are usually

far outweighed by the advantage of using an Adapter.

07-M4377.indd 20107-M4377.indd 201 12/5/07 12:09:00 PM12/5/07 12:09:00 PM

202 Chapter 7 Introduction to Design Patterns

as making them private, so that clients cannot create new objects. As a consequence

of this privatization, the class itself will need to create the instance. There are two

or three standard ways that this creation can be implemented.

In the fi rst approach, the object is created when the class is loaded, in which

case the class could look something like this:

public class Singleton
{
 public static final Singleton instance = new Singleton();

 private Singleton() { }

 //...any other methods...
}

The key idea here is making the constructor private and creating one instance of the

class, which is referenced by a public static variable, making it globally available.

Any client could access the Singleton by the following code:

Singleton s = Singleton.instance;
...code that uses s...

An alternative approach would be to make the one instance a private static variable

and provide a static method to get the instance. In that case, your class could look

like this:

public class Singleton
{
 private static Singleton instance = new Singleton();

 private Singleton() { }

 public static Singleton instance() { return instance; }

 ...any other methods...
}

In this case, the user would access the instance by using the following code:

Singleton s = Singleton.instance();
...code that uses s...

You may wonder what advantage the second approach has over the fi rst one. With

these two particular implementations of Singleton, there is no advantage. However,

the second approach is better in that it allows you to modify the implementation de-

tails of the Singleton class in a variety of ways without having to modify existing cli-

ent code. For example, suppose the Singleton object takes a long time to create and

you don’t want a long delay during the start up of your application. Or suppose the

object uses a lot of memory, and so you don’t want to create it at all unless it is needed.

In these cases, we could take a third approach called lazy instantiation. To implement

this alternative, you only need make a minor change to the previous version:

07-M4377.indd 20207-M4377.indd 202 12/5/07 12:09:00 PM12/5/07 12:09:00 PM

 Chapter 7 Introduction to Design Patterns 203

public class Singleton
{
 private static Singleton instance = null;

 private Singleton() { }

 public static synchronized Singleton instance()
 {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
 }
 ...any other methods...
}

As you can see, this approach avoids creating the one instance until the fi rst time

instance is called.

Although we have not discussed threads in this text, it should be noted that a

“synchronized” modifi er must be added to the getInstance declaration to pre-

vent the Singleton’s getInstance method from being executed by more than one

thread at the same time. If two threads could execute the getInstance method

simultaneously, there is the possibility that each thread would think that the instance

is null and so create two instances.

An alternative way to accomplish the same result as the Singleton pattern is

to make all the methods and attributes of the class static. In that way, there is re-

The Singleton pattern is a technique for ensuring that there is only one instance

of a class and making that instance globally available.

This pattern is implemented by hiding the constructors for the class (i.e.,

making them nonpublic) and having the class itself provide you with the single

instance through a static method. See Figure 7.3 for a UML diagram of this

pattern.

The advantage of this approach over other approaches, such as making all

methods and attributes static, is that it can easily be modifi ed if you want a fi xed

number of instances greater than one or if you want to be able to create a subclass

with a Singleton object.

The Singleton Pattern

Singleton

+instance():Singleton

+operation():void

returns a unique instance

FIGURE 7.3 The Singleton pattern.

07-M4377.indd 20307-M4377.indd 203 12/5/07 12:09:00 PM12/5/07 12:09:00 PM

204 Chapter 7 Introduction to Design Patterns

ally only one “object” to deal with, namely the class itself. Furthermore, since any

instance of the class is irrelevant and possibly confusing to the user, the constructor

could be made private.

The disadvantages of this alternative approach are twofold. First, it sometimes

happens that you do not want just one instance of the class and instead want some

other fi xed number of instances. You cannot easily do so with the static method and

static attribute approach. Second, it is much harder to subclass the Singleton class

and use a single instance of that subclass instead of the Singleton class. These two

issues are discussed further in the exercises.

Before leaving the subject of Singletons, it should be mentioned here that, in the

case of Java, there are subtle issues that can cause the failure of the Singleton pat-

tern. One such issue concerns Java’s dynamic class unloading. When the Java run-

time environment does garbage collection, it may check to see whether any classes

(not just objects) that have been loaded into memory are currently reachable from

objects in the program. If not, then the runtime environment unloads the class to

save memory. In that case, if the class is later accessed, it is reloaded. Now, if the

Singleton class is unloaded and reloaded in this way, the single instance before the

unloading will not be identical to the single instance after the unloading and reload-

ing. Depending on the role of the Singleton instance and the data it was maintain-

ing, the creation and resulting initialization of a new Singleton instance can create

subtle errors. More details can be found in [4].

Another subtle issue regarding Singletons in Java concerns object serializa-

tion in which a copy of an object or a collection of objects are stored (“serialized”)

in persistent memory (such as on disk) and later deserialized or reloaded. If the

Singleton instance is serialized in this way and then deserialized, the deserialized

Singleton may not be identical to the original Singleton, which can cause identity

problems. For more details, see [5].

We need to mention here one fi nal caution regarding the Singleton pattern. You

might be tempted to decide to use the Singleton pattern for most of the objects in a

software system so that those objects will be easily available everywhere in the sys-

tem. After all, you don’t need to worry about maintaining references to the Singleton

object or pass it around as a parameter if you can always get a reference to it any-

where in your code by invoking Singleton.instance(). However, this tempta-

tion should be avoided since what you are really doing in that case is declaring those

objects to be global, which is not good object-oriented design. As we discussed in

earlier chapters, an object’s scope should be as narrow as possible. The Singleton pat-

tern’s purpose is not to make objects globally available. The pattern should be used

only in situations where the number of instances of a class must be limited. Further-

more, even in that case, the scope of those instances should be as narrow as possible,

for example, by restricting access to the Singleton to the package in which it resides.

SECTION 7.3 ITERATOR PATTERN

There is a design pattern that you have surely seen in your data structures course

and that has appeared in the preceding three chapters in this text, although it was

never explicitly discussed as a pattern at that time, namely, the Iterator pattern [1].

07-M4377.indd 20407-M4377.indd 204 12/5/07 12:09:00 PM12/5/07 12:09:00 PM

 Chapter 7 Introduction to Design Patterns 205

In this section, we will review that pattern in the general context of iterating over

any collection.

One of the most common activities involving a collection of objects is itera-

tion, or stepping through the items in the collection. For example, you might iterate

through the collection to search for a particular value, you might iterate to print the

values of all the elements in the collection, or you might iterate to move the ele-

ments into a different collection, possibly fi ltering out some of the elements.

If you are using an array A as your collection, you might use a for loop for

iteration:

for (int i = 0; i < A.length; i++) {
 Object data = A[i];
 ...do something with data...
}

If you are using a ordered collection with constant-time random access, such as an

ArrayList v, you might use a similar loop:

for (int i = 0; i < v.size(); i++) {
 Object data = v.get(i);
 ...do something with data...
}

If you are using a home-grown linked list of nodes with data and next pointers,

your code might look like this:

while(n != null) {
 Object data = n.data;
 ...do something with data...
 n = n.next;
}

In every case, we might be doing the same thing with the data, but we are using

slightly different control structures to iterate over the data because of the differ-

ences in the structures themselves.

But what if, after all your code is written, you decide to use a different collec-

tion, for example, you decide to swap out an ArrayList and replace it with a HashSet?

It would be nice if you could avoid the hassle of modifying every iteration over the

collection to use a new loop construct. A second problem, that is just as important,

is that a client using the collection who only wants to traverse it shouldn’t have to

worry about the details of the implementation of the collection. That is, suppose you

have a method that returns a Collection. The user of your method doesn’t know what

kind of Collection (i.e., what kind of class implementing the Collection interface)

is returned. Without a common iteration technique that works across all Collection

classes, the user would need to determine the actual class returned by your method

in order to write a loop for iterating over the items in that collection.

To fi x these problems, two standard, cross-collection approaches for iterating

have been created. The fi rst approach is to use the for-each loop construct in

Java 1.5. This construct allows you to step through any array or Collection class in

07-M4377.indd 20507-M4377.indd 205 12/5/07 12:09:01 PM12/5/07 12:09:01 PM

206 Chapter 7 Introduction to Design Patterns

a uniform fashion. For example, let c be any Collection of objects or an array of

objects. Then to step through the elements of c, you can write:

for(Object data : c) {
 ...do something with data...
}

You can read this loop as “for each Object data in c, do something with the data.” If

your client uses this construct when traversing the Collection, then the actual class

of c doesn’t matter.

The second cross-collection approach to iteration is useful in those cases where

you want more direct control over the traversal process. In these situations, you can

use an “iterator” over each Collection, as described by the Iterator pattern.

The Iterator pattern says that all collections should create Iterator objects as-

sociated with the collection to help you iterate over the elements in that collection.

The Collection classes in the java.util package use an Iterator interface for just this

purpose. The Iterator interface in the java.util package has three methods:

public boolean hasNext(); //returns true if the collection has more
 //elements to be visited
public Object next(); //returns the next element in the collection
public void remove(); //optional method–removes from the collection
 //the last element returned by the iterator

To traverse any collection, regardless of the actual class of the collection, you can

use a control structure with the following form:

Iterator it = ...;
while (it.hasNext()) {
 Object data = it.next();
 ...do something with data...
}

Or if you prefer a for-loop format, you could write the traversal in the follow-

ing form:

for(Iterator it = ...; it.hasNext();) {
 Object data = it.next();
 ...do something with data...
}

To repeat, the idea is that you can use such a control structure for iterating over any

kind of collection, and so you don’t need know or worry about the particular kind of

collection you are dealing with.

Where does the Iterator for a collection come from? The Collection classes in

the java.util package have an iterator method that returns a new Iterator object.

So if you have a collection c, then your iteration control structure would look like:

07-M4377.indd 20607-M4377.indd 206 12/5/07 12:09:01 PM12/5/07 12:09:01 PM

 Chapter 7 Introduction to Design Patterns 207

Iterator it = c.iterator();
while (it.hasNext()) {
 Object data = it.next();
 ...do something with data...
}

Besides the advantage of the uniformity of this control structure among various

data structures, there is another reason to use an Iterator to traverse a collection, as

mentioned in the second example of Section 5.3. Namely, it separates into different

objects the responsibility of iteration over a collection from the other responsibili-

ties of a collection, such as storing and retrieving the data.

It should be pointed out that the for-each construct in Java is not indepen-

dent of the iterator method in the Collection classes. The for-each construct

is, in fact, just a convenient shorthand notation for the for loop using Iterators de-

scribed above. In particular, if you create your own class that maintains a collection

of objects but your class does not implement the Iterator interface, then you cannot

use the for-each construct to traverse the objects in your class.

A variation on iterators is to use them to iterate over “virtual” collections. For

example, suppose you want to step through arbitrarily many prime numbers. Be-

cause there are infi nitely many primes, it is impossible to create a collection with all

such numbers and then iterate over that collection. Instead, you can create a virtual
collection of primes that represents all primes but only computes them when they

are fi rst needed, using lazy evaluation. Here is the interface to one such class:

public class SetOfPrimes
{
 //constructor
 public SetOfPrimes() { ... }

 //returns the i-th prime
 public BigInteger get(BigInteger i) { ... }

 //returns an iterator over the primes. The n-th call to
 //the iterator’s next() method returns a BigInteger value

 //containing the n-th largest prime.
 public Iterator<BigInteger> iterator() { ... }
}

To avoid having to recalculate the primes every time an iteration is asked for, the

class could store the already-calculated primes in an internal collection. In the exer-

cises, you are asked to implement this class.

Another variation on the Iterator pattern to use internal iterators instead of ex-

ternal iterators, as described in the next section.

It should be noted that, although arrays can be traversed using the for-each

loop, Java arrays do not have an iterator method. If you need such an iterator, you

can create it indirectly by invoking the static asList method in the Arrays class to

create a List from the array and then invoking the iterator method of that list. For

07-M4377.indd 20707-M4377.indd 207 12/5/07 12:09:01 PM12/5/07 12:09:01 PM

208 Chapter 7 Introduction to Design Patterns

The Iterator pattern provides a uniform way to access sequentially the elements

in a collection regardless of the structure of the collection. That is, it allows

access to the collection’s elements without exposing the representation of the

collection. A client who is using a collection class need only know that the class

implements the Collection interface.

The participants in this pattern (see Figure 7.4) are:

 1. Client, which has access to a Collection it would like to traverse.

 2. Collection, which is an interface that includes an iterator method.

 3. ConcreteCollection, a class that implements the Collection interface.

 4. ConcreteIterator, a class that implements the Iterator interface and is cre-

ated and returned by the ConcreteCollection class’ iterator method.

This class keeps track of which elements in the ConcreteCollection that it

has already traversed and determines the next element in the traversal.

The UML sequence diagram in Figure 7.5 shows the sequence of events that

are used to traverse a collection using the Iterator pattern. The client fi rst invokes

the collection’s iterator method, which creates an iterator object that imple-

ments the Iterator interface. The iterator method returns the iterator object to

the client. The client then uses the iterator to traverse the collection’s elements by

repeatedly calling its next method as long as the iterator’s hasNext method

returns true.

The advantages of the Iterator pattern are several:

 1. It allows the client to traverse a collection without needing to know the un-

derlying structure of the collection.

The Iterator Pattern

Concretelterator

Client

creates

ConcreteCollection

+iterator():Iterator

<<interface>>
Collection

+iterator():Iterator

<<interface>>
lterator

+hasNext():boolean
+next():Object

FIGURE 7.4 The Iterator pattern.

07-M4377.indd 20807-M4377.indd 208 12/5/07 12:09:02 PM12/5/07 12:09:02 PM

 Chapter 7 Introduction to Design Patterns 209

example, if A is an array of objects, then, to get an iterator over A, you can use the

following code:

Iterator it = Arrays.asList(A).iterator();

By the way, in the java.util package, there is an older Enumeration interface that has

the same functionality as the java.util.Iterator interface except for the remove()

method, but it uses longer method names. You are encouraged to use the Iterator in-

terface instead of the Enumeration interface because of its clarity and consistency.

One fi nal note: The Iterator pattern seems simple, but, like the Singleton pattern,

there are subtle issues that can cause problems. For example, what if the collection

structure is modifi ed during the iteration process, for example, by another thread that

inserts or deletes an object in the collection? If the iterator is not carefully designed,

 2. It separates the concerns of maintaining a collection from the concerns of

traversing a collection.

 3. It allows several traversals of the collection at the same time (as when two

or more clients ask for iterators over the same collection).

 4. It allows different forms of traversal of the same collection. For example, a

binary tree collection could have both a preorder and a postorder iterator.

FIGURE 7.5 The sequence of operations in the Iterator pattern.

client:

:iterator

loop()

:Collection

.iterator()

iterator

<<create>>

.next()

next

...process next...

[while iterator.
hasNext()]

07-M4377.indd 20907-M4377.indd 209 12/5/07 12:09:02 PM12/5/07 12:09:02 PM

210 Chapter 7 Introduction to Design Patterns

the program could halt with an error or the iterator could merrily go on its way but

miss or double-count some elements in the collection. One solution to this problem is

for the iterator to create a copy or a snapshot of the collection when the iterator is fi rst

created. Then the iterator steps through the snapshot instead of the actual collection.

Another possibility is that the iterator could throw an exception if any changes are

made before it completes visiting all the objects in the collection. To implement this

approach, the collection could have a version stamp that the iterator checks in each

call to next() and the iterator throws an exception if the version stamp has changed

since the iterator was created. A third possibility is that the collection could maintain

a link to all iterators it has created and notify them if a client modifi es the collection

in any way, at which point the iterators could deal with it appropriately.

SECTION 7.4 THE COMMAND PATTERN

The iterators we discussed in the last section are certainly an improvement over us-

ing different kinds of loops for different kinds of collections. However, with these

iterators, we are still getting the data from the collection and then doing something

with that data, rather than having the collection do the operation on the data for us.

This way of processing the data in the collection is directly contrary to the guide-

lines of the Expert pattern. We should be able to do better. For instance, a lot of

code that use an iterator use it in a loop almost identical to the ones shown in the

preceding section. Therefore, can’t we factor out the common parts of the loop,

leaving those common parts up to the collection and leaving only the unique parts

to the client?

One way to do such refactoring is to use an internal iterator instead of an ex-
ternal iterator—the kind we discussed above. As previously discussed, iterators are

called external since they produce an iterator object external to the collection that the

user can use to loop through the data and manipulate it. In contrast, an internal itera-

tor is one that the client never sees. It visits all the data in the collection in an internal

(hidden) loop, and all the client needs to do is to tell it what action to perform on each

piece of data when it visits that piece. In other words, when using an internal iterator,

all the client has to do is to command the collection to “do something” to each of its

elements. Note that the client is responsible only for specifying precisely what the

command to “do something” means, and the collection is responsible for iterating (in-

ternally) over its elements and executing the command on each element.

Unfortunately, the java.util.Collection interface and implementing classes do

not directly support internal iterators. Therefore, for the sake of an example, let us

create our own ExtendedCollection interface that handles them. The new interface

will add a map method to the Collection interface:

public interface ExtendedCollection extends java.util.Collection
{
 public void map(Command c);
}

07-M4377.indd 21007-M4377.indd 210 12/5/07 12:09:02 PM12/5/07 12:09:02 PM

 Chapter 7 Introduction to Design Patterns 211

The map method is the internal iterator method and is responsible for applying

the given command to each of the elements in the collection. But what is a “Com-

mand”? What we really want to pass as a parameter to the map method is another

method containing the code we want executed on each element of the collection.

But how do you pass a method as a parameter? Only objects and primitive data can

be so passed.

A natural solution is to put the method in an object and then pass that object as

the parameter to map. This solution is one of the simplest forms of the Command

pattern [1]. In this simple form, a client needs to pass some executable code as a pa-

rameter to a method so that the method can execute that code. Because code cannot

be passed directly, the code is wrapped in an object and the object is passed as the

parameter. The code the client wants executed is included in an execute method

of the object.

In our case, the Command is an interface:

public interface Command
{
 public void execute(Object data);
}

Any object that implements this interface can be passed to the map method in our

ExtendedCollection interface. Once such a Command object is passed to map, the

map method is responsible for calling the object’s execute method once for each

element of the collection.

Let us now construct an example of a class that implements the Extended-

Collection interface so that we can see how internal iteration works in a complete

program.

public class ExtendedArrayList extends ArrayList
 implements ExtendedCollection
{
 public void map(Command c)
 {
 for(Object data: this) {
 c.execute(data);
 }
 }
}

Notice that the Command’s execute method is called on each element of the col-

lection. Here is how a client might use an internal iterator to print all the values in

an ExtendedArrayList:

//create a collection
ExtendedArrayList collection = new ExtendedArrayList();
//add elements to the collection
collection.add(“Hello”);
collection.add(“Bye”);

07-M4377.indd 21107-M4377.indd 211 12/5/07 12:09:02 PM12/5/07 12:09:02 PM

212 Chapter 7 Introduction to Design Patterns

The Command pattern is useful when you want to encapsulate executable code as

an object. This encapsulation is handled by wrapping the action in a Command

object, which gets passed to the object that will invoke the action. To invoke the

action, the object just needs to call the execute method of the Command.

See Figure 7.6 for a UML class diagram of this pattern.

The participants in the pattern are the following:

 1. Command, which is an interface with an execute method

 2. ConcreteCommand, a class that implements the Command interface and

forms the encapsulation of an action

 3. Invoker, a class that invokes the execute method of a Command

 4. Client, who creates a ConcreteCommand object and passes it to an Invoker

object

In this pattern, the Client creates the ConcreteCommand object and passes

it to an Invoker object. The Invoker later (at an appropriate time) invokes the

execute method of the ConcreteCommand.

One of the main advantages of the Command pattern is that it separates in a

Command object the knowledge of what needs to be done (the action) from the

object that invokes that code. The object invoking the execute method (the

Invoker) need never know what action gets performed by that method. Simi-

larly, the Command object need never know what object will be the Invoker. In

this way, coupling is reduced.

Another advantage of the Command pattern is that the Invoker can be passed

different Commands at different times and so in that way change dynamically

the behavior of the invoker.

You can also collect and save actions for later execution. For example, you

could add several Commands to a list of Commands. For a simple example of

a situation where such a list would be useful, consider an application with an

Undo menu item. Whenever an undoable action is performed, the opposite ac-

The Command Pattern

Invoker

Client ConcreteCommand

<<interface>>
Command

+execute():void

creates

FIGURE 7.6 The Command pattern.

07-M4377.indd 21207-M4377.indd 212 12/5/07 12:09:03 PM12/5/07 12:09:03 PM

 Chapter 7 Introduction to Design Patterns 213

tion can be encapsulated in a Command object and pushed on a stack. Then,

when the user selects the Undo menu item, the top Command on the stack is

popped and its action is performed, thereby undoing the last action.

Another option with the Command pattern is to create a MacroCommand,

which is a Command that maintains a list of other Commands. When the Mac-

roCommand’s execute method is invoked, it invokes the execute methods

of all the contained Commands.

//print out the elements of the collection
collection.map(new Command() {
 public void execute(Object data) {
 System.out.println(data);
 }
 });

Notice that the client does not have to deal with iterators. All the client has to do is

tell the collection to map a particular Command to all of its elements.

Let us summarize the various approaches we’ve taken to visiting all the ele-

ments of a collection.

� Some collections, such as ordered lists or arrays, can have their elements visited

using loops that get each element directly from the collection. This approach

is useful if you want to visit the elements in an order different from the usual

order supplied by an iterator.
� If the client doesn’t care about the order in which the elements are visited or

is satisfi ed with the default order used by iterators, then external iterators are

preferable to other type-specifi c traversal methods since iterators reduce the

coupling in the code.
� If a client only wants to execute some specifi c code on each of the elements of

the collection, then an internal iterator, if available, is usually easier to use than

an external iterator.

There is also a fourth way to visit all the elements of a collection that we haven’t

yet mentioned that is better, from the client’s perspective, than all three of these

approaches. If the collection’s elements are often visited to perform a very specifi c

task, then the collection’s interface can be extended to include a method that per-

forms that specifi c task for the user, in which case the client only needs to invoke

that method. For example, a client often needs to know the size of a collection. If

there were no more convenient way to get its size, the client might have to traverse

the collection to compute it. But, anticipating this need, the Collection interface

includes a size method, and so the client needs only to invoke that method to com-

pute the size. Similarly, a collection often needs to be searched, and so, to avoid

having to traverse the collection to fi nd the desired item, the Collection interface

includes a contains method that does the traversal for you.

07-M4377.indd 21307-M4377.indd 213 12/5/07 12:09:03 PM12/5/07 12:09:03 PM

214 Chapter 7 Introduction to Design Patterns

SECTION 7.5 FACTORIES

The fi nal topic in this chapter concerns creating objects and elegant ways of do-

ing so.

Let us return to the case study of the polygon-drawing application we fi rst men-

tioned in Section 3.9. In that section, we said that when the user clicks in the canvas,

a polygon corresponding to the currently selected tool is drawn. Let us consider

the code for the MouseListener that listens for mouse clicks in the canvas. We’ll

assume that this listener has access to a currentTool variable that stores the

currently selected Tool. Because the polygon to be created depends on the value of

currentTool, the MouseListener cannot just create one fi xed type of polygon.

A natural way to create the proper kind of polygon is to use a conditional in the

mouseClicked method as follows:

public void mouseClicked(MouseEvent e)
{
 if(...currentTool is a triangle tool...)
 ...add a triangle to the canvas where the click occurred...
 else if(...currentTool is a rectangle tool...)
 ...add a rectangle to the canvas where the click occurred...
 else if ...
}

However, this code clearly has bad smells. A better way, that would avoid the condi-

tional, would be to design the currently selected Tool to act as a factory that would

create for you a new polygon of the shape corresponding to that tool. That is, we

could add a method to the Tool class with the following header

public Polygon createPolygon(Point center)

that creates a new Polygon of the appropriate type with the given center point. Then

the mouseClicked method can look like this:

public void mouseClicked(MouseEvent e)
{
 ...get centerPoint...
 Polygon p = currentTool.createPolygon(centerPoint);
 ...add p to the canvas...
}

and no conditionals are necessary. The createPolygon method is a factory

method that creates objects for use by others, such as the MouseListener.

But how is the createPolygon method implemented in the Tool class? If

there is a conditional in that method, then we have succeeded, in our redesign, only in

moving the conditional to a new location and so have not removed the bad smell. An

elegant way to solve this problem is to make the createPolygon method abstract

in the Tool class since the Tool class doesn’t know which kind of polygon to create.

Instead, create subclasses of Tool (e.g., SquareTool, TriangleTool, RectangleTool) that

07-M4377.indd 21407-M4377.indd 214 12/5/07 12:09:04 PM12/5/07 12:09:04 PM

 Chapter 7 Introduction to Design Patterns 215

implement createPolygon differently so that the appropriate kind of object is cre-

ated. See Figure 7.7 for a UML diagram of this situation.

This design is called the Factory Method pattern. In this pattern, a class (e.g.,

our Tool class) needs to create objects (e.g., Polygons) but it doesn’t know which

class of object to create. The solution is to add to the design of the class an abstract

factory method for creating the objects, but leave the implementation of the factory

method to subclasses, each of which creates a different type of object.

For another example of the Factory Method pattern, consider the java.util

.Collection interface and java.util.AbstractCollection class. The AbstractCollection

is a superclass of all classes in the java.util package that implement the Collection in-

terface because it implements almost all methods in the Collection interface, thereby

making it easier to implement the Collection classes. Now, in its implementation of

those methods, the AbstractCollection class often creates Iterators to step through

the elements of the collection. But the AbstractCollection class does not know ex-

actly which subclass of Iterator to create because, for each subclass of Abstract-

Collection, a different Iterator is needed. The solution, according to the Factory

Method pattern, is to create an iterator factory method in the AbstractCollection

class and have the AbstractCollection’s methods use that factory method whenever

they need an Iterator, but have the implementation of the iterator method left up

to the subclasses of AbstractCollection.

There are several variations on the Factory Method pattern. For example, the

factory method could take parameters and, based on them, create several different

kinds of products. That is, one concrete factory method need not just generate one

kind of product. In a second variation, the factory method in the superclass is not

abstract. Instead it provides a default implementation of the factory method, creat-

ing a default kind of product. In this situation, the subclasses need only override the

FIGURE 7.7 The Tool and Polygon hierarchies.

SquareTool

+createPolygon():Polygon

RectangleTool

+createPolygon():Polygon

TriangleTool

+createPolygon():Polygon

Tool

+createPolygon():Polygon
Polygon

Square

Rectangle

Triangle

creates

creates

creates

07-M4377.indd 21507-M4377.indd 215 12/5/07 12:09:04 PM12/5/07 12:09:04 PM

216 Chapter 7 Introduction to Design Patterns

The Factory Method pattern is useful in situations where a class (a “Factory”)

that needs to create other objects does not know which class of object to cre-

ate and so leaves the actual creation up to its subclasses. The pattern is imple-

mented by using a “factory” method for the creation of the objects rather than

creating those objects by calling their constructors. The subclasses of the Fac-

tory can then override the factory method to create different types of objects.

The participants in this pattern are the following:

 1. Factory, the abstract class that needs to create and use Products, but the

particular type of Product needed varies with each subclass of Factory

 2. ConcreteFactory, a subclass of Factory that needs to creates Concrete-

Products

 3. Product, the interface for the products needed by the Factory

 4. ConcreteProduct, which implements the Product interface and is created

by the ConcreteFactory

See Figure 7.8 for a class diagram of these participants.

One of the advantages of using a factory method to create an object over

direct object creation using a constructor is that it reduces coupling between the

creator (the Factory) and the class being created (the Product). The abstract Fac-

tory class need know nothing about the specifi c subclasses of Product that are

being created by the create method.

The Factory Method pattern is a technique in which an abstract class pro-

vides a “hook” for subclasses. That is, the abstract class provides a framework

that uses some methods (such as the create method) to perform a task but

leaves the implementation of those methods to subclasses. These methods are

hooks upon which the subclasses can hang their specifi c behavior within the

framework.

The Factory Method Pattern

FIGURE 7.8 The Factory Method pattern.

{return new ConcreteProduct();}

{...; product=create();...}

Factory

+create():Product
+operation():void

ConcreteFactory

+create():Product

<<interface>>

Product

ConcreteProduct

uses

creates

07-M4377.indd 21607-M4377.indd 216 12/5/07 12:09:04 PM12/5/07 12:09:04 PM

 Chapter 7 Introduction to Design Patterns 217

factory method when they want a different kind of product. In a third variation, the

factory method does not always call a constructor to create a new product. For ex-

ample, the factory method might repeatedly return the same product, similar to the

way the instance method in the Singleton pattern always returns the same object,

or it might return one of the objects in a pool of objects that it maintains.

It should also be noted that there are many uses of factories in software de-

sign other than as described in the Factory Method pattern. For example, the javax.

swing.BorderFactory class is aptly named because it is a class with a collection of

public static factory methods, each of which creates and returns a different kind of

Border. There is also another factory design pattern called the Abstract Factory pat-

tern, which is addressed in the exercises.

SECTION 7.6 SUMMARY

In previous chapters, we introduced you to elegance

in method implementation, elegance in class design,

and finally elegance in interactions among classes.

In this chapter, we introduced you to design pat-

terns, which are designs that solve problems of class

interaction in ways that have proven useful to practi-

tioners in the software industry. Five of the simplest

such patterns were presented. In those presentations,

we motivated the pattern with an example, showed

how the pattern helped the example’s design, and

then explained the pattern in more detail. These pat-

terns are explained in even greater detail in the clas-

sic design pattern book [1].

EXERCISES

 1. In the Java libraries, there are several classes with

“Adapter” in their names, such as MouseAdapter and

WindowAdapter. Are these classes playing the role

of adapter classes in the Adapter pattern? Explain.

 2. Prior to Java 1.5, if you needed a list of Strings, there

were at least two approaches you could take. The fi rst

approach was to create an object, such as an Array-

List, that implemented the List interface and then

populate it with Strings. However, whenever you

fetched a String from the list, you needed to typecast

the object returned by the list since the ArrayList’s

get method had a return type of Object. Further-

more, it was hard to ensure that no one accidentally

added a non-String object to the list. Therefore, an al-

ternative approach was to use the Adapter pattern and

create a new StringList class that behaved just like a

List except that its add methods took a String as its

parameter and its get method had a return type of

String. To store the Strings, the StringList class would

reference an ArrayList or other List object. With the

arrival of Java 1.5, a third, easier approach is possible.

Explain that third approach.

 3. Suppose you need a SimpleDate class that stores just a

day, month, and year. Its getDate method returns a

string with that date in the format (month day, year) or

the format (day month year), depending on its param-

eter. Create an interface for SimpleDate and then cre-

ate a class that implements it. Use the Adapter pattern

with the Calendar class.

 4. As mentioned in this chapter, a variation on the Sin-

gleton pattern is when an application needs a fi xed

number of instances of a class where the number of

instances is greater than one.

 a. Come up with a situation where such a variation

would be useful.

 b. Outline the design and implementation of this

situation.

 5. Investigate how one would go about subclassing a

Singleton class so that a unique instance of the sub-

class is used instead of an instance of the Singleton

class. There are several possible interfaces and im-

plementations that can be used.

 6. When we discussed the Singleton pattern, we men-

tioned that lazy evaluation is sometimes useful for

07-M4377.indd 21707-M4377.indd 217 12/5/07 12:09:05 PM12/5/07 12:09:05 PM

218 Chapter 7 Introduction to Design Patterns

putting off the creation of an object until it is needed.

The same lazy evaluation process is also useful dur-

ing initialization of other kinds of objects. That is,

instead of initializing all its instance variables of an

object during construction, some of them can be ini-

tialized to null or some other invalid default value

until they are fi rst needed at which point they can be

properly initialized.

 a. What are the advantages of lazy initialization?

 b. What are the disadvantages of lazy initialization?

 c. Why would you not want to make publicly avail-

able instance variables that are initialized lazily?

 7. An alternative design of the Iterator pattern is to

require that, instead of an iterator method, all

collections have a get method with the following

interface:

public Object get(int i); //returns
 the i-th element

 Then all collections C can be traversed with the same

control structure:

for (int i = 0; i < C.size(); i++) {
 Object data = C.get(i);
 ...do something with data...
}

 and so we have the advantage of iterators without hav-

ing to create separate Iterator objects. What is wrong

with this design?

 8. Assume that the java.util.LinkedList class didn’t have

iterator or elements methods. Using the other

methods of that class, create and implement a sub-

class called IteratibleLinkedList that has an itera-
tor method. Try to make this method as effi cient as

possible.

 9. Instead of a collection creating an Iterator object with

which you communicate to do your iterating, the col-

lection could create a “state” object that just stores

the current state of the iteration. The user would hold

onto the state object, but would never manipulate it

(or even know its contents), passing it back to the

collection whenever the user wants the next item or

wants to advance to the next element, at which point

the collection uses the state object to determine the

next item and also update the state object to refl ect

the new state. Here’s what the user’s code would look

like in this case, if the user was trying to iterate over

a collection c. The user would fi rst ask the collec-

tion for an initial state object. Then, whenever the

user wants to move to the next element or determine

whether there is a next element, she would pass the

state object back to the collection to tell the collec-

tion where she is in the iteration process. The user

code might look like this:

IterationState state = c.get
 InitialIterationState();
while(! c.isDoneIterating(state))

{
Object data = c.getCurrentItem

(state);
 ...do something with data...
 c.advanceTheIteration(state);
}

 In this way, lots of users or threads could get their

own state objects and use them to iterate through

the collection concurrently. For this exercise, you

are to create a new subclass of ArrayList called

ArrayListWithIterationState that has getInitial-
IterationState(), isDoneIterating(State),
getCurrentItem(State), and advanceThe-
Iteration(State) methods so that the loop

above will correctly step through the items in an ob-

ject c of class ArrayListWithIterationState.

 10. Implement the SetOfPrimes class defi ned in Sec-

tion 7.3. The class should have a collection of BigIn-

tegers in which the already-calculated primes are

stored.

 11. There is an alternative to creating a Command inter-

face and then creating classes that implement that in-

terface when you wish to use the Command pattern

in Java. The alternative is to use the java.lang.refl ect

.Method class, each instance of which corresponds to

a method in a class. If this approach is used, then the

ExtendedCollection interface can be redefi ned to in-

clude the following declaration:

public void map(Method m)

 a. Reimplement the ExtendedArrayList class from

Section 7.4 so that it uses the new defi nition of

ExtendedCollection using Method objects instead

of Command objects.

 b. What are disadvantages of using Methods in-

stead of Commands in the ExtendedCollection

interface?

 12. Often Commands are compared to function closures

(a feature available in some languages such as Lisp

and Scheme).

 a. Read about function closures, if you are not al-

ready familiar with them.

07-M4377.indd 21807-M4377.indd 218 12/5/07 12:09:05 PM12/5/07 12:09:05 PM

 Chapter 7 Introduction to Design Patterns 219

 b. Describe the differences and similarities between

Commands, as described in Section 7.4, and

closures.

 13. Any method that creates a new object and returns that

object can be thought of as a “factory” method. How-

ever, the use of such a method does not necessarily

mean that the Factory Method pattern is appropriate.

 a. Give an example of a situation where such a fac-

tory method is useful outside of the Factory

Method pattern.

 b. Write a brief summary of other factory patterns,

such as the Abstract Factory pattern [1], and explain

how they differ from the Factory Method pattern.

 14. Come up with a non–software-related example of the

following design patterns:

 a. Adapter

 b. Singleton

 c. Iterator

 d. Command

 e. Factory Method

REFERENCES

 1. Gamma, E., R. Helm, R. Johnson, and J.Vlissides,

Design Patterns, Elements of Reusable Object-
Oriented Software. Professional Computing. 1995.

Reading, MA: Addison-Wesley.

 2. Beck, K., Smalltalk Best Practice Patterns. 1997.

Upper Saddle River, NJ: Prentice Hall.

 3. Vlissides, J., Pattern Hatching, Design Patterns
Applied. Software Patterns Series. 1998. Reading,

MA: Addison-Wesley.

 4. Warren, N. and P. Bishop, Java in Practice: Design
Styles and Idioms for Effective Java. 1999. Read-

ing, MA: Addison-Wesley.

 5. Bloch, J., Effective Java Programming Language
Guide. The Java Series. 2001. Reading, MA:

Addison-Wesley.

07-M4377.indd 21907-M4377.indd 219 12/5/07 12:09:06 PM12/5/07 12:09:06 PM

Figure-Drawing
Application Case Study

SECTION 8.0 INTRODUCTION

In the previous chapters, we discussed design principles and patterns for mak-

ing our code more elegant. In this chapter, we will use many of those principles

and patterns and will introduce more patterns in the context of a drawing applica-

tion. This application is based on HotDraw [1], a framework originally devel-

oped by Kent Beck and Ward Cunningham. The application discussed here is

also based on the work of John Vlissides [2] and can be thought of as a much-sim-

plifi ed version of those works. Our approach is along the lines of the approach

in [3] except that we will be implementing the application using the Java Swing

package.

Aspects of this application already appeared previously in this text in Sec-

tion 3.9 and briefl y in Section 7.5. In this chapter, we will not assume that you have

read those sections and will cover that material again from a slightly different angle

here as it arises in the development of the application. We are doing so to keep this

chapter somewhat independent of earlier chapters and also to reinforce the ideas and

concepts covered in those earlier sections.

As you read the chapter, keep in mind that we will not just give you the “cor-

rect” answer to problems we encounter. Rather, we will usually consider several

alternatives whenever we encounter a problem and will discuss some advantages

and disadvantages of each before ultimately deciding on the path to take. Further-

more, sometimes we will head down a path that we later decide is not the best one.

As a result, we will be doing some backtracking. To help you avoid getting con-

fused or lost, we are providing guideposts along the way. In particular, at the end

of most sections of this chapter, we provide working code for our application con-

taining the latest version of the enhancements discussed in that and earlier sections.

That working code should always be considered the starting point for the next sec-

tion. Note that the code in the book has few, if any, comments or Javadoc headers.

However, the code is also available electronically, and the electronic copy has proper

documentation.

Before we begin, we should note that, in Chapter 5, we discussed the impor-

tance of using CRC cards, UML use case diagrams, and related tools when fi rst

8

220

08-M4377.indd 22008-M4377.indd 220 12/5/07 12:09:18 PM12/5/07 12:09:18 PM

 Chapter 8 Figure-Drawing Application Case Study 221

designing a new application. However, we will not use them here. The reason is that

we will be developing our application in incremental steps. In particular, the objects

we will use will be added incrementally instead of all at once. Furthermore, our

incremental software development process will consist of repeatedly fi nding some-

thing that works and then making it more elegant. At each step, we will not consider

what the following step will be. One of the goals of this chapter is to see how well

this development process succeeds.

SECTION 8.1 THE USER INTERFACE

As fi rst introduced in Section 3.9, our application will consist of a window with two

components: a toolbar and a drawing canvas. The toolbar, at the top of the window,

will contain tools corresponding to various fi gures, in our case, rectangles, squares,

and ellipses. The rest of the window will be a drawing canvas in which the fi gures

can be drawn. See Figure 8.1 for a picture of the initial GUI.

At any given time, one of the tools will be selected. When the user clicks on the

drawing canvas, a new fi gure of a fi xed size will appear centered at the click. The

shape of the fi gure will correspond to the selected tool. We will implement the tools

in the toolbar with JButtons.

FIGURE 8.1
The initial drawing
application GUI.

08-M4377.indd 22108-M4377.indd 221 12/5/07 12:09:18 PM12/5/07 12:09:18 PM

222 Chapter 8 Figure-Drawing Application Case Study

Here is Java source code for displaying the window shown in Figure 8.1 with a

drawing canvas and a toolbar with three tools. A main method has been added to

show you how to create and display the window. Note that this code is in a package

called drawer0. Later versions of the application will appear in packages drawer1,

drawer2, etc.

package drawer0;

import javax.swing.*;
import java.awt.*;

public class DrawingFrame extends JFrame
{
 public DrawingFrame() {
 super(“Drawing Application”);
 setDefaultCloseOperation(EXIT _ ON _ CLOSE);

 JComponent drawingCanvas = createDrawingCanvas();
 add(drawingCanvas, BorderLayout.CENTER);

 JToolBar toolbar = createToolbar();
 add(toolbar, BorderLayout.NORTH);
 }

 private JComponent createDrawingCanvas()
 {
 JComponent drawingCanvas = new JPanel();
 drawingCanvas.setPreferredSize(new Dimension(400, 300));
 drawingCanvas.setBackground(Color.white);
 drawingCanvas.setBorder(BorderFactory.createEtchedBorder());
 return drawingCanvas;
 }

 private JToolBar createToolbar() {
 JToolBar toolbar = new JToolBar();
 JButton ellipseButton = new JButton(“Ellipse”);
 toolbar.add(ellipseButton);
 JButton squareButton = new JButton(“Square”);
 toolbar.add(squareButton);
 JButton RectButton = new JButton(“Rect”);
 toolbar.add(RectButton);
 return toolbar;
 }

 public static void main(String[] args) {
 DrawingFrame drawFrame = new DrawingFrame();
 drawFrame.pack();
 drawFrame.setVisible(true);
 }
}

This code is available from the book’s web site.

08-M4377.indd 22208-M4377.indd 222 12/5/07 12:09:18 PM12/5/07 12:09:18 PM

 Chapter 8 Figure-Drawing Application Case Study 223

SECTION 8.2 THE OBSERVER PATTERN

If you try running the code given above, you will notice that most user input, such

as clicking in a tool or on the canvas, is completely ignored. To handle such input,

we need to enhance the code in several ways.

There are two fundamental user-generated events we need to handle: a click on a

tool in the toolbar and a click in the drawing canvas. We need to decide which objects

are going to deal with those events and how they are going to deal with them.

For clicking in the drawing canvas, we could have the canvas itself handle the

events. In many ways, this approach makes sense since, after all, it is the canvas that

is being clicked in. However, it is better to follow the principle of separation of re-

sponsibilities. That is, the canvas should be responsible just for displaying the fi gures,

and some other object should be responsible for handling user input for the canvas.

Let us call this second object the CanvasEditor. The CanvasEditor has one responsi-

bility, namely, causing the appropriate shape to be drawn at the appropriate location

in the canvas when the user clicks in the canvas. To design the CanvasEditor, we have

to decide how the CanvasEditor knows where and when a click occurs in the canvas

and how the CanvasEditor knows what shape is to be drawn in the canvas. Let us con-

sider the second issue fi rst.

In order to determine the appropriate fi gure to draw when the user clicks on

the canvas, the CanvasEditor needs to know which tool button is currently selected,

in other words, which tool button was last clicked. How can the CanvasEditor get

that necessary information? It could have references to all three buttons, and, when

a click occurs in the canvas, the CanvasEditor could poll them asking them when

they were last clicked. See Figure 8.2 (a) for a class diagram. In this diagram, the

three tool buttons are represented by a ToolButton class. Figure 8.2 (b) contains a

sequence diagram of this design.

The design for our application displayed in these diagrams is not optimal. One

problem is that the buttons need to keep track of their last click time. Furthermore,

the CanvasEditor has to poll all of them each time it needs to know the selected one,

which is more work than necessary.

Instead, consider a different approach in which all the buttons have references

to each other and, whenever a button is clicked, it informs its fellow buttons that it is

the most recently clicked. As a result, the CanvasEditor need only ask any one but-

ton which one was most recently clicked. However, this solution is actually worse in

that all the buttons now need to keep track not only of each other but also the most

recently clicked one. There is far too much message passing and information dupli-

cation going on here.

ToolButton3

+getLastClickTime():int
CanvasEditor

FIGURE 8.2 (a) Class diagram
of CanvasEditor and ToolButtons.

08-M4377.indd 22308-M4377.indd 223 12/5/07 12:09:19 PM12/5/07 12:09:19 PM

224 Chapter 8 Figure-Drawing Application Case Study

Therefore, consider a third approach. Rather than the CanvasEditor polling the

buttons when it needs to know which one was last clicked, it would be better for the

buttons to have a reference to the CanvasEditor and directly notify it when they are

clicked. The CanvasEditor then saves this information, and so always knows which

button was most recently clicked. This makes much more sense in that the Canvas-

Editor is the one that needs the information, and so it should be the one respon-

sible for maintaining the knowledge. See Figure 8.3 for a class diagram for this ap-

proach. When a button is clicked, it will call the wasJustClicked method of the

CanvasEditor, passing itself as the parameter. The CanvasEditor then saves that but-

ton in the lastClickedButton attribute.

This third approach is better than the other two, but not quite as elegant as it could

be. In the third version of our design, the buttons have references to the CanvasEditor,

whereas in the other two approaches, the editor has references to the buttons. In every

case, we have coupled the buttons and the editor together. Is there a way to reduce the

coupling so that the CanvasEditor and/or the buttons are separately reusable in other

contexts and yet still have the necessary communication between them?

Our solution is to use the Observer pattern [4]. In this design pattern, there are

observers and there are subjects to be observed. The subjects are also called pub-
lishers or broadcasters, and the observers are also called subscribers or listeners.
The publishers maintain a list of subscribers and, whenever there is something to

publish, they notify all the subscribers. (Therefore, before an object can be a sub-

scriber, it needs to ask the publisher to add it to the publisher’s subscription list.) In

this pattern, a publisher can have any number of subscribers.

:CanvasEditor

.getLastClickTime()

time

time

time

.getLastClickTime()

.getLastClickTime()

squareButton:ToolButton ellipseButton:ToolButtonrectButton:ToolButton

FIGURE 8.2 (b) Sequence diagram of CanvasEditor and ToolButtons.

CanvasEditor

3
–lastClickedButton:ToolButton

+wasJustClicked(button:ToolButton):void

ToolButton

FIGURE 8.3
The class diagram for the
third approach.

08-M4377.indd 22408-M4377.indd 224 12/5/07 12:09:19 PM12/5/07 12:09:19 PM

 Chapter 8 Figure-Drawing Application Case Study 225

In our third approach, we were imitating the observer pattern in that the but-

tons play the role of publishers and the CanvasEditor plays the role of a subscriber.

Whenever a button is clicked, the button notifi es all subscribers—the Canvas-

Editor—of that event. But in that design, the CanvasEditor and the buttons are

tightly coupled. To uncouple them, let us fi rst look at how mouse clicks are handled

in Java. In Java 1.1 or later, mouse-click event handling with Buttons is done through

ActionListeners. Here is the defi nition of the ActionListener interface:

public interface ActionListener extends EventListener
{
 public void actionPerformed(ActionEvent e);
}

Note that the ActionListener interface has just one method (the EventListener super-

interface has no methods). A listener that wants to subscribe to mouse-click events

that occur in a button needs to implement this interface and must register with the

button through the button’s addActionListener method. Then, when the user

clicks in the button, the button’s default behavior is to generate an ActionEvent ob-

ject that contains the details of the mouse click (such as a reference to the button it-

self, the timestamp of the click, and whether any modifi er keys were down) and then

call the actionPerformed method of all listeners, passing them the ActionEvent

as the argument. Note that each of the listeners to the buttons, in the body of their

actionPerformed methods, can do whatever they wish.

How does this ActionListener interface help reduce coupling? The key point is

that the buttons, which are the publishers, no longer need to know exactly what kind

of subscribers or listeners they have. All they care about is that all the listeners imple-

ment the ActionListener interface; that is, the buttons care only that the listeners have

an actionPerformed method that the buttons can call when they are clicked in.

We are therefore uncoupling the buttons from knowing the actual class of their lis-

teners, and so we are allowing many kinds of objects (any kind that implement the

ActionListener interface) to listen to the buttons.

In our fourth approach, we will use the Observer pattern as implemented in

Java by the ActionListener interface. See Figure 8.4 for the class diagram of our new

3
ToolButton

CanvasEditor

–selectedButton:ToolButton

+actionPerformed(ae:ActionEvent):void

<<interface>>

ActionListener

+actionPerformed(ae:ActionEvent):void

FIGURE 8.4 Using the Observer pattern through ActionListeners.

08-M4377.indd 22508-M4377.indd 225 12/5/07 12:09:20 PM12/5/07 12:09:20 PM

226 Chapter 8 Figure-Drawing Application Case Study

design as it relates to our CanvasEditor and ToolButtons. In this case, the Canvas-

Editor implements the ActionListener interface and the tool buttons, when clicked,

call the actionPerformed method of the CanvasEditor. Furthermore, in its

selectedButton attribute, the CanvasEditor can save a reference to the button

that sent the actionPerformed message.

We end up with the following code for the CanvasEditor:

import javax.swing.*;
import java.awt.event.*;

public class CanvasEditor implements ActionListener
{
 private JButton selectedButton;

 public CanvasEditor(JButton initialSelectedButton)
 {
 this.selectedButton = initialSelectedButton;
 }

 public void actionPerformed(ActionEvent e)
 {
 selectedButton = (JButton) e.getSource();
 }
}

Note that, because we were able to uncouple the CanvasEditor from the ToolBut-

tons, we are able to use the standard Swing JButton class for our toolbar buttons,

and so we don’t need to create a special ToolButton class.

To fi nish our implementation of the Observer pattern in the case of the Canvas-

Editor and the buttons, we only need to modify the createToolbar method of the

DrawingFrame so that it registers the CanvasEditor subscriber with the three button

publishers. The modifi cation involves adding the following code to that method:

CanvasEditor CanvasEditor = new CanvasEditor(ellipseButton);
ellipseButton.addActionListener(CanvasEditor);
squareButton.addActionListener(CanvasEditor);
rectButton.addActionListener(CanvasEditor);

If you were to execute the code with these enhancements, you wouldn’t see any visibly

different behavior, but, behind the scenes, the CanvasEditor would change the value

of its selectedButton instance variable whenever a different button is clicked.

At this point, we have dealt with handling clicks in tools in the toolbar. The

other fundamental events we said at the beginning of this section that we need to

handle are clicks in the drawing canvas. Therefore, let us continue with our design

plans and let the CanvasEditor deal with these mouse clicks. Interestingly enough,

we will see the Observer pattern appear a second time.

When the user clicks in the canvas, the CanvasEditor needs to draw the current

fi gure (based on the button currently selected) centered at the click. Just as in the

case of a click in one of the buttons, the CanvasEditor needs to be notifi ed by the

canvas when a click occurs in the canvas. Therefore, it makes sense that the com-

08-M4377.indd 22608-M4377.indd 226 12/5/07 12:09:20 PM12/5/07 12:09:20 PM

 Chapter 8 Figure-Drawing Application Case Study 227

munication between the canvas and the CanvasEditor should again be done using

the Observer pattern. In this case, the CanvasEditor needs to be a listener to the

canvas so that it is notifi ed when a mouse click occurs in the canvas.

In Java, we can make the CanvasEditor a listener to clicks in the canvas by

making the CanvasEditor implement the MouseListener interface and by registering

it with the canvas through the canvas’ addMouseListener method. (Clicking a

JButton generates an ActionEvent whereas clicking a canvas—actually a JPanel—

generates a MouseEvent.) The MouseListener interface is defi ned as follows:

public interface MouseListener extends EventListener
{
 public void mouseClicked(MouseEvent e);
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
}

We don’t care about any events except mouse clicks so our CanvasEditor will imple-

ment the last four methods by just giving them empty bodies. We will, however, add

code to the mouseClicked method in the CanvasEditor class to draw the desired

fi gure in the canvas. Once we make these changes, our code for the CanvasEditor

looks like the following:

public class CanvasEditor implements ActionListener, MouseListener
{
 private JButton currentButton;

 public CanvasEditor(JButton initialButton)
 {
 this.currentButton = initialButton;
 }

 public void actionPerformed(ActionEvent e)
 { //handle clicks in the buttons
 currentButton = (JButton) e.getSource();
 }

 public void mouseClicked(MouseEvent e)
 { //handle clicks in the canvas
 //get the location of the click and get the canvas
 int x = e.getX();
 int y = e.getY();
 JPanel canvas = (JPanel) e.getSource();
 //draw the correct figure
 if (currentButton.getText().equals(“Ellipse”))
 canvas.getGraphics().drawOval(x - 30, y - 20, 60, 40);
 else if (currentButton.getText().equals(“Rect”))
 canvas.getGraphics().drawRect(x - 30, y - 20, 60, 40);

08-M4377.indd 22708-M4377.indd 227 12/5/07 12:09:20 PM12/5/07 12:09:20 PM

228 Chapter 8 Figure-Drawing Application Case Study

The Observer pattern is a technique for allowing an object, when it changes state,

to notify other dependent objects so that they can appropriately update their

state.

The object doing the notifying is often called a subject or publisher and

the dependent objects are called observers or subscribers. When the publisher

changes state, it broadcasts that information to its subscribers.

The participants in the pattern (see Figure 8.5) are the following:

 1. Subject, which is the publisher that notifi es the subscribers when its state

changes

 2. Observer, which is the interface of all subscribers

 3. ConcreteObserver, which is a subscriber that implements the Observer in-

terface and is notifi ed when the Subject changes state

When the Subject’s state has changed, it invokes its notify method, which in

turn calls the update method of all the registered Observers. The update

methods use the information passed in as a parameter to help them determine

what needs updating in the Observers.

Two of the benefi ts of using the Observer pattern are (a) a publisher can

have an arbitrary number of subscribers that can change at any time and (b) the

publisher and subscribers are not tightly coupled. The second benefi t is a conse-

quence of the fact that the Subject knows only that its subscribers are Observers,

and so doesn’t need to know the actual class of the subscribers.

There are several variations in this pattern. For example, instead of the Sub-

ject calling its notify method after its state changed, the client that caused the

change in the Subject might be responsible for invoking the Subject’s notify

The Observer Pattern

FIGURE 8.5 The Observer pattern.

*

for all Observerso{

 o.update(f)

}

Subject

+add(o:Observer):void

+remove(o:Observer):void

+notify():void

Observer

+update(f:Info):void

<<inteface>>

ConcreteObserver

+update(f:Info):void

get data for updating from Info f

08-M4377.indd 22808-M4377.indd 228 12/5/07 12:09:20 PM12/5/07 12:09:20 PM

 Chapter 8 Figure-Drawing Application Case Study 229

 else //if(currentButton.getText().equals(“Square”))
 canvas.getGraphics().drawRect(x - 25, y - 25, 50, 50);
 }

 //ignore mouse press, release, enter, and exit events
 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
}

Notice that we again reap the benefi ts of low coupling through the use of the Ob-

server pattern. The canvas does not need to know about CanvasEditors and only

needs to know about MouseListeners. As a result, we do not need to subclass JPanel

to create our canvas and instead can use a JPanel object for our canvas directly.

All the code up to this point can be found in the drawer1 package. If you com-

pile and run the code in that package, you will see a working drawing application

that draws the appropriate shape in the appropriate place.

See Figure 8.6 for a class diagram showing the relationships between the draw-

ing canvas, the CanvasEditor, and the buttons.

Note that, in the drawer1 package, the main method of the DrawingFrame class

has been moved to a separate Main class. The movement of the main method to its

own class has the following benefi ts:

 1. It makes it easier for the readers of the source code to fi nd the starting point of

the application.

method. The advantage of the fi rst approach is that the clients do not have to

remember to call notify. The advantage of the second approach can be seen

when the client causes many consecutive state changes in the Subject. It is inef-

fi cient to have each of those changes cause the notify method to be invoked,

which is what would happen if the Subject called notify after any state change.

In contrast, the client can wait until all changes have been made and then invoke

the Subject’s notify method, thereby avoiding the ineffi ciency.

The amount of information passed as a parameter in a call to update can

vary signifi cantly in this pattern. At one extreme, the Observer already has a

reference to the Subject, and that Subject is the only object being observed by

the Observer. In that case, no information need be passed in the update method,

and instead the Observer can poll the Subject for the information. This is the

pull model. At the other extreme is the push model, in which all possibly useful

information is passed as a parameter to update, whether the Observer needs

that information or not.

It should be noted that this pattern is used extensively in the Java libraries

in the form of various kinds of Listeners. There is also an Observer class and

Observable interface in the java.util package to aid you in implementing the Ob-

server pattern in other contexts.

08-M4377.indd 22908-M4377.indd 229 12/5/07 12:09:21 PM12/5/07 12:09:21 PM

230 Chapter 8 Figure-Drawing Application Case Study

 2. It separates the responsibilities of creating the initial objects and starting them

communicating from the responsibilities of the individual objects during the

execution of the program.

 3. It frees up the other classes to have main methods for unit tests, for example.

SECTION 8.3 THE FIGURE HIERARCHY

Hopefully, you noticed at least one ugly feature of the code in the preceding sec-

tion. (If you haven’t, look again for ugliness in the code in package drawer1 before

continuing.) One such feature is the conditional statement in the mouseClicked

method in the CanvasEditor class. If you have learned all the material covered in

previous chapters of this text, you should fi nd yourself asking whether we should

use polymorphism here instead of a conditional. In addition, you might have noticed

that there are some less-than-optimal aspects of the behavior of the package from

the user’s perspective. For example, the drawing in the canvas is neither preserved

nor manipulatable. That is, if the user drags another window across our drawing

window, our drawing will be erased for good. Also, the user is unable to move or

resize a fi gure after it has been drawn on the canvas. Let us tackle the conditional

fi rst, which will eventually aid in solving the other problems.

When you have a conditional statement based on the currently selected button,

how do you replace it with polymorphism? One natural solution is to create Ellipse-

Button, RectButton, and SquareButton subclasses of JButton, each with their own

implementation of a drawFigure method, so that the if statement in the mouse-
Clicked method of the CanvasEditor can be replaced with the simple statement:

currentButton.drawFigure(canvas, x, y);

In this approach, each button knows how to draw its associated fi gure. In order for

this approach to work, we would need some kind of FigureButton abstract superclass

<<interface>>

MouseListener

<<interface>>

ActionListener

CanvasEditor

–selectedButton:ToolButton

JComponent JButton

+mouseClicked(m:MouseEvent):void

+mousePressed(m:MouseEvent):void

+mouseReleased(m:MouerEvent):void

+mouseEntered(m:MouseEvent):void

+mouseExited(m:MouseEvent):void

+actionPerformed(ae:ActionEvent):void

drawingCanvae toolButton 3

FIGURE 8.6 The CanvasEditor listens to both the buttons and canvas. Note that the tool buttons are implemented
as JButtons and the drawingCanvas is implemented as a JComponent.

08-M4377.indd 23008-M4377.indd 230 12/5/07 12:09:21 PM12/5/07 12:09:21 PM

 Chapter 8 Figure-Drawing Application Case Study 231

(or interface) of our three Button classes that contains an abstract drawFigure

method, and we would need the CanvasEditor’s currentButton instance variable

to be of type FigureButton. We will not implement this approach because it is mov-

ing in the wrong direction for a variety of reasons, one of which is that the buttons

shouldn’t be responsible for drawing. We will see additional reasons shortly.

A better way to design the program is to have an abstract Figure class with

Rect, Ellipse, and Square subclasses that know how to center and draw themselves

(using a given Graphics object) and have the CanvasEditor keep a reference to the

currently selected fi gure object rather than the currently selected button. Then the

body of the CanvasEditor’s mouseClicked method can be implemented with just

three lines:

public void mouseClicked(MouseEvent e)
{
 JPanel canvas = (JPanel) e.getSource();
 currentFigure.setCenter(e.getX(), e.getY());
 currentFigure.draw(canvas.getGraphics());
}

Here are what the Figure class and its subclasses would look like with such a

design:

package drawer2.figure;
import java.awt.*;

public abstract class Figure
{
 private int centerX, centerY; //the center coordinates
 private int width;
 private int height;

 public Figure(int centerX, int centerY, int w, int h)
 {
 this.centerX = centerX; this.centerY = centerY;
 this.width = w; this.height = h;
 }

 public int getWidth() { return width; }

 public int getHeight() { return height; }

 public void setCenter(int centerX, int centerY)
 {
 this.centerX = centerX; this.centerY = centerY;
 }

 public int getCenterX() { return centerX; }

 public int getCenterY() { return centerY; }

 public abstract void draw(Graphics g);
}

08-M4377.indd 23108-M4377.indd 231 12/5/07 12:09:21 PM12/5/07 12:09:21 PM

232 Chapter 8 Figure-Drawing Application Case Study

We’ll be adding more methods to these classes later. Also, in the exercises you will

be asked to add more Figure subclasses.

Notice that all fi gures inherit a width and a height. You should think of these

values as the width and height of the smallest rectangle that encloses the fi gure. No-

tice also that we’ve made the Square a subclass of Rect. Why is that design decision

an appropriate one at this point?

There is, however, one slight problem with using Figures in our design—

namely, the CanvasEditor’s actionPerformed method now gets more com-

plicated. How is the CanvasEditor going to determine the currently selected fi g-

ure from the button that was clicked in the toolbar? One way would be to use a

conditional:

public class Ellipse extends Figure
{
 public Ellipse(int centerX, int centerY, int w, int h)
 {
 super(centerX, centerY, w, h);
 }

 public void draw(Graphics g)
 {
 int width = getWidth();
 int height = getHeight();
 g.drawOval(getCenterX() - width/2, getCenterY() - height/2, width, height);
 }
}

public class Rect extends Figure
{
 public Rect(int centerX, int centerY, int w, int h)
 {
 super(centerX, centerY, w, h);
 }

 public void draw(Graphics g)
 {
 int width = getWidth();
 int height = getHeight();
 g.drawRect(getCenterX() - width/2, getCenterY() - height/2, width, height);
 }
}

public class Square extends Rect
{
 public Square(int centerX, int centerY, int w)
 {
 super(centerX, centerY, w, w);
 }
}

08-M4377.indd 23208-M4377.indd 232 12/5/07 12:09:22 PM12/5/07 12:09:22 PM

 Chapter 8 Figure-Drawing Application Case Study 233

public void actionPerformed(ActionEvent e)
{
 JButton currentButton = (JButton) e.getSource();
 if (currentButton.getText().equals(“Ellipse”))
 currentFigure = new Ellipse(0, 0, 60, 40);
 else if (currentButton.getText().equals(“Rect”))
 currentFigure = new Rect(0, 0, 60, 40);
 else //if(currentButton.getText().equals(“Square”))
 currentFigure = new Square(0, 0, 50);
 }

Unfortunately, this approach just moves the conditional from the mouseClicked

method to the actionPerformed method. A slightly cleaner and faster way

to get the fi gure associated with the clicked button is to use a hash table with

keys consisting of the names of the buttons and values consisting of the associ-

ated fi gure. Or one could use refl ection to create a new fi gure whose class is con-

structed using the name of the button. This latter option is further pursued in the

exercises.

However, we will follow a different approach that also clears up another ques-

tionable aspect of our code. You may have noticed and questioned the earlier deci-

sion to let the CanvasEditor listen both to the canvas and to all the buttons, thereby

requiring it to do two things instead of just one thing well. It would be better for the

CanvasEditor to deal just with clicks in the canvas, let some other object or objects

listen to the buttons, and then notify the CanvasEditor of any changes. In particular,

why not have a separate listener for each button? In the createToolbar method

of the DrawingFrame, we can replace

ellipseButton.addActionListener(canvasEditor);

with the only slightly more complicated code

ellipseButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 canvasEditor.setCurrentFigure(new Ellipse(0, 0, 60, 40));
 }
});

Similarly, the action listeners for the other buttons will tell the canvas editor to set

the current fi gure appropriately. To implement this change, we also need to add a

setCurrentFigure method to the CanvasEditor class.

The resulting relationship between the buttons, listeners, and editor can be seen

in Figure 8.7. In summary, each tool button (JButton) has an associated anonymous

(unnamed) ActionListener. When a tool button is clicked, it notifi es the associated

ActionListener, which in turn tells the CanvasEditor to set its current fi gure to the

appropriate fi gure.

All of the code for this new version is in the package drawer2.

08-M4377.indd 23308-M4377.indd 233 12/5/07 12:09:22 PM12/5/07 12:09:22 PM

234 Chapter 8 Figure-Drawing Application Case Study

SECTION 8.4 THE MODEL-VIEW-
CONTROLLER ARCHITECTURE

Now let’s tackle the problem mentioned in the preceding section concerning the pres-

ervation and manipulability of the fi gures in the drawing. In order to be able to redraw

the fi gures when necessary, their properties need to be stored for retrieval on demand.

One approach would be to save the image on the canvas as an Image object and just

redraw the image when necessary. However, this approach doesn’t let you select and

manipulate (e.g., drag or delete) the fi gures in the canvas. Clearly, a more appropriate

action is to preserve the actual fi gures themselves or at least the data necessary to

reconstruct the fi gures.

To implement this approach, we need to give some object the responsibility of

storing the data regarding the fi gures that have been drawn on the canvas. Who should

store it? Cleary, the canvas is responsible for drawing the fi gures so it makes sense to

give the canvas a list of fi gures to draw. Although this decision is a logical one, we can

actually do better in terms of separation of responsibilities.

To see how to improve our design, it is worth stepping back briefl y to discuss

the design of our application at a higher level. Three of the main components in our

application up to this point are (a) the drawing itself, consisting of the collection of

fi gures currently displayed in the canvas, (b) the canvas, on which the fi gures are

drawn, and (c) the canvas editor, which deals with user input. These three objects

can be called the model, the view, and the controller, respectively, in the Model-
View-Controller architecture or MVC. A key benefi t of using this software architec-

ture is the separation of responsibilities. The model contains the data and is not con-

cerned with how it is displayed or with interactions with the user. It can informally

be viewed as a database in which data can be added, deleted, modifi ed, or retrieved.

Separate from the model is the view, which displays some or all of the model data.

Finally, we have the controller, which handles interactions with the user.

Square

Rect Ellipse

Figure

CanvasEditor anonymous

ActionListener

JButton

toolbutton

<<interface>>

currentFigure uses

3

FIGURE 8.7 Part of the drawer2 package.

08-M4377.indd 23408-M4377.indd 234 12/5/07 12:09:22 PM12/5/07 12:09:22 PM

 Chapter 8 Figure-Drawing Application Case Study 235

One advantage of such a separation of responsibilities is that, by using the

MVC, we can easily implement several views displaying the same data in differ-

ent forms (e.g., a pie chart and table could be two views of the same spreadsheet

information), and we can easily add several controllers for handling different kinds

of interactions with the user. In the simplest form of the MVC architecture, the

model, view, and controller interact with each other via the Observer pattern. That

is, the view registers with the model so that whenever the model changes, it notifi es

the view so the view can update the display to refl ect the changed model. Similarly,

the model registers with the controller so that when user action occurs, the model

can update its data appropriately. See Figure 8.8 for a very generic MVC UML

diagram.

For our application, we will consider a variation on the generic MVC architec-

ture that similarly separates the responsibilities among three classes—the model

(drawing), view (canvas), and controller (editor)—but that varies slightly the inter-

connections between the classes:

 1. Since the view needs to display the data, the view will maintain a reference to

the model. Therefore, our view will consist of a new DrawingCanvas subclass

of JPanel that has an instance variable corresponding to the drawing and that

has a paintComponent method for drawing the fi gures stored in that model.

 2. Since the controller needs to interpret user actions on the view, the controller

will be a MouseListener for the canvas, and so the canvas will maintain a link

to the controller through the canvas’ list of listeners.

 3. The controller needs to tell the model to change its data based on user actions.

For ease of implementation, we will not add a direct reference from the control-

ler to the drawing. Instead, the controller will access the model in a two-step

process by fi rst getting the canvas from the MouseEvent object and then by tell-

ing the canvas to modify the drawing.

Note that in our approach, the view holds the only reference to the model, which

holds the drawing to be displayed. The controller communicates only with the

view and tells it to update its drawing based on user actions. That is, when a

mouse click occurs in the canvas, the canvas notifi es the editor of that event (since

the editor is a MouseListener registered with the canvas), and the editor turns around

and tells the canvas to add another fi gure to the drawing. See Figure 8.9 for the

UML class diagram of our new design. Notice that we have added a Drawing class

that stores the fi gures. We added this class because we want to have an object that

View

Model

Controller

notifiesnotifies

FIGURE 8.8 A very generic MVC
architecture.

08-M4377.indd 23508-M4377.indd 235 12/5/07 12:09:22 PM12/5/07 12:09:22 PM

236 Chapter 8 Figure-Drawing Application Case Study

directly corresponds to the model and that hides the details of how it stores the

fi gures.

Here is the new code for the CanvasEditor class:

public class CanvasEditor implements MouseListener
{
 private Figure currentFigure;

 public CanvasEditor(Figure initialFigure)
 {
 this.currentFigure = initialFigure;
 }

 public void setCurrentFigure(Figure newFigure)
 {
 currentFigure = newFigure;
 }

 public void mouseClicked(MouseEvent e)
 {
 Figure newFigure =
 ...a new figure based on the currentFigure and
 centered at the mouse click...;
 ((DrawingCanvas) e.getSource()).addFigure(newFigure);
 }

 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
}

Here is one way of implementing the new DrawingCanvas class to handle the design

changes:

Figure

CanvasEditor

Drawing DrawingCanvas

Square

RectEllipse

FIGURE 8.9 The MVC architecture in the drawer3 package.

08-M4377.indd 23608-M4377.indd 236 12/5/07 12:09:23 PM12/5/07 12:09:23 PM

 Chapter 8 Figure-Drawing Application Case Study 237

public class DrawingCanvas extends JPanel
{
 private Drawing drawing;

 public DrawingCanvas()
 {
 this.drawing = new Drawing();
 setBackground(Color.white);
 setPreferredSize(new Dimension(400, 300));
 setBorder(BorderFactory.createEtchedBorder());
 }

 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 for (Figure figure : drawing) {
 figure.draw(g);
 }
 }

 public void addFigure(Figure newFigure)
 {
 drawing.addFigure(newFigure);
 repaint();
 }
}

Notice the use of polymorphism in asking all the fi gures to draw themselves in the

paintComponent method. The use of an internal iterator in the Drawing class to

draw the fi gures instead of this external iteration is explored in the exercises.

Let us look at the implementation of the Drawing class now. From what we have

seen above, we know that it needs to have at least the following responsibilities:

 1. Allow the creation of a new empty Drawing.

 2. Store the collection of the currently drawn fi gures.

 3. Allow the user to iterate through the collection of fi gures.

 4. Allow the user to add a new fi gure to the collection.

Later on we will add more methods to this class. Here is one implementation of the

Drawing class:

public class Drawing implements Iterable<Figure>
{
 private List<Figure> figures; //collection of Figures

 public Drawing()
 {
 figures = new ArrayList<Figure>();
 }

 //precondition: newFigure is non-null and is not already in
 //this Drawing

08-M4377.indd 23708-M4377.indd 237 12/5/07 12:09:23 PM12/5/07 12:09:23 PM

238 Chapter 8 Figure-Drawing Application Case Study

 public void addFigure(Figure newFigure)
 {
 figures.add(newFigure);
 }

 public Iterator<Figure> iterator()

 {
 return figures.iterator();
 }
}

Notice the precondition to the addFigure method. Alternative approaches would

be to allow duplicate fi gures in the Drawing or to check whether the new fi gure is

already in the Drawing and, if so, do nothing. These alternatives are pursued in an

exercise.

SECTION 8.5 THE PROTOTYPE PATTERN

To fi nish up the drawer3 package, we need to make one more important change.

That change is in the implementation of the mouseClicked method of the Can-

vasEditor. As shown above, that method has the following form:

public void mouseClicked(MouseEvent e)
{
 Figure newFigure = ...new figure based on the currentFigure
 and centered at the mouse click...;
 ((DrawingCanvas) e.getSource()).addFigure(newFigure);
}

How do we construct the newFigure object? We can’t use the currentFigure

itself. (Why not?) It is hard to use a constructor to create the newFigure object

since the actual object referred to by currentFigure can be from a variety of

subclasses of Figure. We could have a conditional statement of the form:

if(currentFigure instanceof Ellipse)
 newFigure = new Ellipse(...);
else if(currentFigure instanceof Rect)
 newFigure = new Rect(...);
else
 newFigure = new Square(...);

but we all know by now that such statements do not make elegant code. We could

use a factory to create the newFigure object, as discussed in the previous chap-

ter. But then the factory would have to fi gure out the class of the object to create,

and so we would just be moving the problem to a different class rather than elimi-

nating it. We could also use refl ection to create a new object of the same class as

currentFigure.

08-M4377.indd 23808-M4377.indd 238 12/5/07 12:09:23 PM12/5/07 12:09:23 PM

 Chapter 8 Figure-Drawing Application Case Study 239

There is a better way: use the Prototype design pattern [4]. One of the problems

the Prototype pattern addresses concerns the need to create an instance of a class,

but the particular class is not known until runtime. The pattern’s solution is to use a

prototypical instance and create the new object by cloning that prototype.

This pattern fi ts our situation perfectly. In our application, the Figure referred

to by currentFigure can act as the prototype, and we can create new copies of

it by cloning it. Furthermore, because our fi gures are so simple, we don’t need to

worry about most of the subtle problems with cloning mentioned in Section 4.8. We

can clone the fi gures by just calling the inherited Object class’ clone() method,

and so we need only declare our Figure class as implementing the Cloneable inter-

face and then add the following method to it:

public Object clone()
{
 try {
 return super.clone();
 } catch (CloneNotSupportedException e) {
 assert false; //this code block should never execute
 return null;
 }
}

Once this change has been made to the Figure class, the mouseClicked method

of the CanvasEditor can be implemented as follows:

public void mouseClicked(MouseEvent e)
{
 Figure newFigure = (Figure) currentFigure.clone();
 newFigure.setCenter(e.getX(), e.getY());
 ((DrawingCanvas) e.getSource()).addFigure(newFigure);
}

The complete source code for the drawing application up to this point can be found in

the package drawer3. If you compile the code in that package and run it, you should

notice that the drawing gets redisplayed when the window is covered and then uncov-

ered, as desired.

SECTION 8.6 THE STATE PATTERN

Now let us enhance the package further to allow manipulation of the fi gures drawn

on the canvas. In particular, let us allow selection of one or more fi gures and drag-

ging of the selected fi gures. As part of this process, we will need somehow to high-

light the currently selected fi gures in the canvas.

To accommodate the new behavior, we will add a new tool to the toolbar—a

selection tool. When the selection tool is chosen and

 1. The user clicks the mouse button inside an unselected fi gure, then that fi gure

becomes the only selected fi gure.

08-M4377.indd 23908-M4377.indd 239 12/5/07 12:09:23 PM12/5/07 12:09:23 PM

240 Chapter 8 Figure-Drawing Application Case Study

The Prototype pattern is useful in situations where your system needs to create

a new object, but it does not know until runtime the class of the object it needs

to create. In the Prototype pattern, a prototypical instance of the class is main-

tained, and, when a new object of that class is needed, the prototypical instance

is cloned.

The participants in the pattern are the following (see Figure 8.10):

 1. Client, which calls the clone method of the prototype to create a new

instance

 2. Prototype, which is an interface or abstract superclass for the classes for

which instances will be cloned

 3. ConcretePrototype, which is a class that implements the Prototype interface

In our drawing application, the Client is the CanvasEditor, the Prototype is

the Figure abstract class, and the ConcretePrototypes are the Rect, Square, and

Ellipse classes.

The benefi ts of using the Prototype pattern include the fact that you don’t

need to create a set of factory classes in order to create objects of different

classes, as is done in the Factory Method pattern.

You also do not need to know ahead of time all the kinds of objects that

will be created. As long as a prototypical instance can be accessed, new cop-

ies of that object can be created, even if the class of that prototype is unknown

at compile time. For example, the prototype might be a composite object built

from several other objects at runtime.

The main disadvantage of the Prototype pattern concerns the fact that the

prototypical instance must be clonable. If the instance belongs to a class that

does not implement Cloneable, then this pattern is hard to use. Implementing a

clone method can also be diffi cult, as noted in Section 4.8.

Another minor disadvantage is that the newly created object will have the

same state as the prototype, which is not always the desired state. Therefore,

after cloning, you may need to initialize the new object to a different state.

The Prototype Pattern

Client Prototype

+clone():Prototype+operation():void

+clone():Prototype

ConcretePrototype

prototype

...prototype.clone()...

FIGURE 8.10 The Prototype pattern.

08-M4377.indd 24008-M4377.indd 240 12/5/07 12:09:23 PM12/5/07 12:09:23 PM

 Chapter 8 Figure-Drawing Application Case Study 241

 2. The user clicks the mouse button inside a selected fi gure, nothing changes.

 3. The user clicks the mouse button outside of all the fi gures, all fi gures become

unselected.

 4. The user presses the mouse inside an unselected fi gure and drags, then that fi g-

ure becomes the only selected fi gure and is dragged along with the mouse.

 5. The user presses the mouse inside a selected fi gure and drags, then that fi gure

and all other currently selected fi gures are dragged with the mouse.

 6. The user presses the mouse outside all fi gures and drags the mouse, a selection

area is outlined and all the fi gures intersecting the selection area become the

selected fi gures.

See Figure 8.11 for a UML state diagram of the states of the canvas when the

selection tool is chosen. Note that a mouse click corresponds to a mouse press fol-

lowed immediately by a mouse release.

A UML state diagram displays the set of states of an object and the transi-

tions between them. The rounded rectangles denote states, and the arrows between

the states indicate how the object changes states. The arrows are usually labeled

with the event that provokes the state change. Optionally, the event can be followed

by a slash “/” and an action that is performed when the object changes state. The

black circle points to the initial or starting state. In our diagram in Figure 8.11,

the canvas starts in the state labeled mouse button not pressed. When the mouse

button is pressed, the canvas transitions to another state and, in the process, se-

lects, unselects, and/or drags some fi gures. For example, if, from the start state,

the mouse button is pressed in an unselected fi gure, then all fi gures are unselected

except for the fi gure in which the mouse press occurred, which is selected. At

this point, the canvas is in the state labeled pressed in a fi gure. If the mouse but-

ton is now released without dragging, the canvas transitions back to the start

state.

The set of behaviors listed above when the selection tool is chosen is the conven-

tional one for drawing applications, which is why we have included it here. However,

it should be pointed out that it would be more elegant to separate the responsibilities

of selecting from the responsibilities of dragging, which would mean separate selec-

tion and dragging tools. Unfortunately, if we are to avoid confusing the user who is

used to other drawing applications, we need to follow this convention.

To accommodate these enhancements, our old design will need to change con-

siderably (again). Until now, the CanvasEditor has created new fi gures with mouse

clicks and ignored mouse presses, mouse drags, and mouse releases. (In particular,

the CanvasEditor does not implement the MouseMotionListener interface and so

cannot deal with mouse drags at all.) However, if the new selection tool is chosen,

One variation on the Prototype pattern is to keep all prototypical instances

in a registry maintained by a prototype manager. In this case, the client might

ask the manager for the appropriate prototypical instance before cloning it. The

client might even be able to browse through the set of prototypes.

08-M4377.indd 24108-M4377.indd 241 12/5/07 12:09:24 PM12/5/07 12:09:24 PM

242 Chapter 8 Figure-Drawing Application Case Study

the editor will need to have a whole new set of behaviors for dealing with these

mouse events.

How can the editor exhibit such different behaviors depending on the choice

of tool and still be simple and elegant? One solution would be to have the Canvas-

Editor implement the MouseMotionListener interface and then add conditionals in

the mouseClicked, mousePressed, mouseDragged, and mouseReleased

methods that test for the currently selected tool and then have different actions based

on which tool is selected. However, that solution is not optimal. (Why?)

Alternatively, the fact that we want the editor to exhibit different behavior at

different times suggests that different classes (which have different behaviors) be

used for the editor. That is, when one tool is selected, we would like the editor to

belong to one class (e.g., the current CanvasEditor class) and so have one set of

behaviors, and, when a different tool is selected, we would like the editor to belong

to a different class and so have a different set of behaviors. Unfortunately, we can’t

change the class of the editor (nor any other existing object) dynamically in Java,

and nor is it necessarily the best design decision even if we could do so.

There is a second related problem we need to address here. In the drawer3

package, the CanvasEditor held a currentFigure reference as an aid in adding

mouse button not pressed

release / remove selection rect

start drag / show selection rect

drag / draw rect & select intersecting figures

release

release

release

start drag

press outside all figures / unselect all figures

pressed in a figure

moving selected figures

drag / move selected figures

press in a selected figure

press in an unselected figure / select only that figure

pressed out side figures

showing selection rect

FIGURE 8.11 The UML state diagram when the selection tool is chosen.

08-M4377.indd 24208-M4377.indd 242 12/5/07 12:09:24 PM12/5/07 12:09:24 PM

 Chapter 8 Figure-Drawing Application Case Study 243

new fi gures to the canvas. In our new version of the application, the idea of a “cur-

rent fi gure” makes no sense when the selection tool is chosen. What should we do

with the currentFigure instance variable in the case of the selection tool being

chosen? Should we just ignore it? Alternatively, could we use the current fi gure to

distinguish between all the tools? For example, we could set the value of cur-
rentFigure to null or set it to a new subclass of Figure to represent the fact that

the selection tool was chosen so that the editor can check the currentFigure

and determine from it which kind of tool is currently selected. Hopefully, you feel

very uncomfortable with such a design. The problem we are having here stems from

the fact that our old design assumes that we are always selecting a creation tool, and

so the editor only needs to know which fi gure to create. But now we have another

kind of tool, a selection tool, and so a currentFigure instance variable is no

longer appropriate.

We can solve both these problems at the same time in a rather elegant way.

The fi rst step is to have the editor store a reference to the currently selected

tool rather than the currently selected fi gure. Does this mean we go back to our

drawer1 package where the editor kept track of the currently selected button? No,

the buttons are just part of the GUI and so shouldn’t have tool-like behavior. In-

stead, associated with each button should be a Tool object. In this design, there

will be the SelectionTool and a CreationTool, both of them subclasses of an abstract

Tool class. We will also create three CreationTool objects, each with a reference

to the particular fi gure (Rect, Ellipse, or Square) it is to create. That is, the Can-

vasEditor will have a currentTool reference to a Tool, which will be either a

SelectionTool object or one of the three CreationTool objects. The behavior of the

CanvasEditor will depend on which of those tools the currentTool currently

refers to.

The second step is to use the State pattern [4]. This pattern is a way of dealing

elegantly with an object that needs different behavior depending on its state. In the

State pattern, the object needing different behavior will maintain a reference to an-

other object representing its current state. All behavior of the fi rst object that might

vary is delegated to the state object.

We can understand the State pattern better by studying how it can aid in

our particular problem. In our case, the CanvasEditor needs different behav-

ior depending on the state of its currentTool instance variable. Therefore,

the State pattern tells us that the editor should delegate all varying behavior

to the state object, namely the Tool referenced by currentTool. This means

that the mouseClicked method and the other mouse event-handling methods

of the CanvasEditor should just call a method in the current Tool to perform the

actual work. The refactoring of the mouseClicked method can be done most

simply by making the Tools into mouse listeners and having the mouseClicked

method of the editor call the mouseClicked method of the current tool, as

follows:

public void mouseClicked(MouseEvent e) { //in the CanvasEditor
 currentTool.mouseClicked(e);
}

08-M4377.indd 24308-M4377.indd 243 12/5/07 12:09:24 PM12/5/07 12:09:24 PM

244 Chapter 8 Figure-Drawing Application Case Study

As part of this refactoring, the body of the old version of the editor’s mouseClicked

method is moved to the body of the mouseClicked method of the Tool. Similar

delegation is done for the other mouse event methods.

After doing this refactoring, when a mouse event occurs in the canvas, the can-

vas broadcasts that event to its subscribers (the CanvasEditor). The CanvasEditor

then delegates the job of dealing with the event to the current Tool. As a result, the

CanvasEditor’s behavior (i.e., how it responds to mouse events) varies, depending

on its state (the current value of its currentTool instance variable), exactly as we

desired.

This new design is included in the package drawer4. The details of how the

selection tool selects and drags the selected fi gures are quite straightforward and

are included in the drawer4 package, but are not discussed here. In this package, the

fi gures are responsible for knowing whether they are selected and for drawing them-

selves with a highlighted bounding rectangle when they are selected. Also, to sim-

plify the code further, the fi gures no longer maintain their size and position in four

separate integer instance variables and instead store that information in a bound-
ingRect instance variable of type Rectangle.

A UML class diagram of this package is shown in Figure 8.12. Note that the

CanvasEditor has an associated state consisting of a Tool. The Tool class has Cre-

ationTool and SelectionTool subclasses, each with different behaviors when mouse

events occur. The CreationTool maintains a reference to a Figure, and, when the user

clicks in the canvas, it creates an instance of that Figure and asks the canvas to add

it to the drawing. The SelectionTool accesses the DrawingCanvas to fi nd out which

fi gures were clicked in and so which fi gures are to be selected and/or dragged.

SECTION 8.7 THE COMPOSITE PATTERN

The next enhancement we will make to our drawing application is to allow the user

to group fi gures together to make a composite fi gure. For example, the user should

be able to build a snowman from three ellipses and then group the three ellipses

together to form a composite fi gure. This group, from the user’s perspective, should

Square CreationTool SelectionTool

CanvasEditorDrawingCanvasFigure *

Rect
Tool

Ellipse

Drawing

uses
notifies

state

FIGURE 8.12 The drawer4 package.

08-M4377.indd 24408-M4377.indd 244 12/5/07 12:09:25 PM12/5/07 12:09:25 PM

 Chapter 8 Figure-Drawing Application Case Study 245

The State pattern is useful when you have an object that needs to behave differ-

ently depending on its internal state. In this pattern, the object has a reference

to a State object and delegates its varying behavior to that object.

The participants in the pattern are the following (see Figure 8.13):

 1. Context, which is the object of interest to clients. Its state is determined by

the particular State object to which it refers.

 2. State, which is an abstract class or interface that defi nes the interface for

the objects that represent the state of the Context.

 3. ConcreteState subclasses, which implement the State interface and provide

different behaviors.

When a client invokes the request method of a Context object, the request is

passed to the state through a call to its handleRequest method. Different

subclasses of State will handle the request differently. As a result, it will appear

to the client as if the Context object changed class.

Any of the clients, the Context, or the State subclasses can be responsible

for changing the state of the Context and determining under what circumstances

the state will change.

One of the benefi ts of using the State pattern is the fact that the Context ob-

ject will not need to have a conditional in its request method that tests the cur-

rent state of the Context to see which behavior to exhibit. Instead the differing

behaviors are delegated to different subclasses of State.

Another benefi t is that it separates the responsibilities of the objects into

cohesive groups. A ConcreteState subclass will have all the behavior appropri-

ate for one state of the Context.

In addition, a Context object’s behavior can be extended, through the cre-

ation of new subclasses of State, to include forms of behavior not anticipated in

the original design.

The State Pattern

+handleRequest():void

ConcreteState1

+handleRequest():void +handleRequest():void

state.handleRequest()

State
+stateContext

+request():void

ConcreteState2

FIGURE 8.13 The State pattern.

08-M4377.indd 24508-M4377.indd 245 12/5/07 12:09:25 PM12/5/07 12:09:25 PM

246 Chapter 8 Figure-Drawing Application Case Study

behave exactly the same as a “primitive” fi gure (i.e., a square, ellipse, or rectangle)

in that it should be selectable and draggable.

To create a composite fi gure, the user will need to select one or more fi gures in

the canvas and then choose the “Group” menu item in the “Edit” menu in the menu

bar. At this point, the selected fi gures are removed from the canvas and replaced

with one group fi gure which, when drawn, looks like the drawing of the selected fi g-

ures but is otherwise identical to a primitive fi gure. In particular, when selected, the

group will have one bounding rectangle displayed for the whole group rather than

having individual rectangles displayed for each component fi gure of the group. Fur-

thermore, group fi gures can be selected and grouped into even larger group fi gures.

Finally, we will enhance the application with an “Ungroup” menu item that reverses

the process for all selected group fi gures.

How can we implement these group fi gures in an elegant way? Recall that the

Drawing object stores all its fi gures in a ArrayList<Figure> named figures. Each

group could similarly be represented by an ArrayList of all the fi gures making up

the group, and that ArrayList could be stored as one of the elements of figures.

That is, to implement the “Group” menu item action, we can just remove all the

selected fi gures from figures, put those selected fi gures into a new ArrayList,

and add that ArrayList to figures. We would need to change fi gures to be of type

ArrayList<Object> instead of ArrayList<Figure>, but that change is easy to make.

This implementation seems simple and clean until one looks at the resulting

code in the Drawing class. In the package4 version of our application, the class’

methods assume that only Figure objects, and not other ArrayLists, are in the fig-
ures ArrayList. Therefore, all Drawing methods would now have to be rewritten

to contain a conditional statement of the form:

if(figures.get(i) instanceof ArrayList)
 //...do the desired processing on the group...
else
 //...do the desired processing on the figure...

Such code is very inelegant. Furthermore, since we want to allow a group fi gure to

contain other group fi gures, the code would need to be even messier. The Drawing

shouldn’t have to concern itself with differences between grouped fi gures and un-

grouped fi gures. It should ideally be able to treat them all identically.

To get the desired behavior, we use the Composite pattern [4]. In this pattern,

individual objects and collections of objects are treated uniformly. In our drawing

application, Ellipses, Rects, and Square can be treated uniformly by referring to

them as Figures. Therefore, to treat groups of Figures the same way, we need to

be able to treat such a group as just another Figure. To do so, we will create a new

GroupFigure subclass of Figure that will be composed of a collection of other Fig-

ures. See Figure 8.14 for the UML diagram.

Once these classes have been implemented, the Drawing can treat groups the

same way as primitive fi gures by treating them all as just Figures. It need not worry

about whether any particular fi gure is primitive or a group. Furthermore, since a

GroupFigure is just a collection of Figures, those Figures can include other Group-

Figures, and so we can form tree-like structures of GroupFigures within Group-

08-M4377.indd 24608-M4377.indd 246 12/5/07 12:09:25 PM12/5/07 12:09:25 PM

 Chapter 8 Figure-Drawing Application Case Study 247

Figures, with the primitive Figures forming the leaves of the tree. See Figure 8.15

for an example.

Let us now consider how we might implement such a GroupFigure class. By

making the GroupFigure a subclass of Figure, it inherits all of the Figure class’

behavior. If you study that behavior, you will see that the GroupFigure class can

inherit almost all of it without modifi cation. In fact, it only needs a constructor and

overriding implementations of fi ve methods:

 1. drawShape

 2. setSize

 3. move

 4. moveTo

 5. getComposedFigures

The constructor takes a collection of fi gures (its “children”) as its parameter. The

GroupFigure’s drawShape method just calls drawShape on all of its children.

The setSize method adjusts the width and height of all children fi gures as well as

the group fi gure. Similarly, the move and MoveTo methods call move and moveTo

on all of the children. The getComposedFigures method is a new method in

the GroupFigure subclass that is used to ungroup the fi gures. To avoid having to test

whether a fi gure is a GroupFigure, we will add a getComposedFigures method

to the Figure class as well, so that all Figure subclasses have such a method. In the

case of a primitive (non-group) fi gure, the getComposedFigures method returns

a list containing only the fi gure itself.

Square

RectEllipseGroupFigure

*
Figure

FIGURE 8.14 The subclasses of
Figure in the drawer5 package.

FIGURE 8.15 A tree of primitive
Figures and GroupFigures.

group

group

group

Square

Ellipse

Rect

Square

Rect

08-M4377.indd 24708-M4377.indd 247 12/5/07 12:09:26 PM12/5/07 12:09:26 PM

248 Chapter 8 Figure-Drawing Application Case Study

The “Group” menu item’s behavior is implemented by an ActionListener that

calls a new groupSelectedFigures method in the DrawingCanvas. This new

method simply removes all selected fi gures from the drawing and adds to the draw-

ing a new GroupFigure object composed of the fi gures that were removed. The

“Ungroup” button has the reverse behavior and calls a new ungroupSelected-
Figures method in the DrawingCanvas class.

The almost-complete code for the drawing application up to this point can be

found in the drawer5 package. The only code not included is the code for the set-
Size and moveTo methods in the GroupFigure class, which have been left to the

reader as an exercise (see Exercise 22 below). A UML class diagram for the package

can be found in Figure 8.16.

Note that the only difference between the drawer5 diagram in Figure 8.16 and

the drawer4 diagram in Figure 8.12 is the addition of a new GroupFigure subclass

of Figure.

SECTION 8.8 THE MEMENTO PATTERN

A standard feature of a drawing application that our application is still missing is

the ability to undo and redo the last action. A well-constructed application will have

“Undo” and “Redo” menu items that, when selected, execute arbitrarily many Undo

and Redo commands. To implement undoability, we somehow need to be able to re-

store the canvas to a previous state. The most straightforward way to implement re-

storability is to store all previous states of the canvas in an “undo” stack. We will take

this approach to adding undoability and redoability.

Our application will have the invariant that the state at the top of the undo

stack always corresponds to the current state of the canvas. Each time an action is

performed that changes the state of the canvas, a copy of the new state is pushed on

the undo stack. Each time the undo command is executed, the stack is popped and the

canvas is restored to the state stored in the stack’s top item. What do we do with the

state popped off the stack? We push it onto a “redo” stack. Then when the redo com-

mand is executed, the redo stack is popped, the popped state is pushed on the undo

stack, and the canvas is restored to that state.

Square CreationTool SelectionTool

CanvasEditorDrawingCanvasFigure* *

Rect
Tool

EllipseGroupFigure

Drawing

uses

notifies

state

FIGURE 8.16 The drawer5 package.

08-M4377.indd 24808-M4377.indd 248 12/5/07 12:09:26 PM12/5/07 12:09:26 PM

 Chapter 8 Figure-Drawing Application Case Study 249

The Composite pattern is useful when you want to treat individual objects and

collections of objects uniformly. It helps you compose objects into a tree-like

structure.

In this pattern, there are one or more “Leaf” classes, representing individual

objects, and there is a “Composite” class, representing collections of objects.

The Composite class and the Leaf classes are subclasses of the same abstract

“Component” class or interface. If a client refers to these two kinds of compo-

nents only as elements of type Component, then that client need never know

whether the components are actually composites or leaves, and so the client can

treat them all identically. Similarly, a Composite object may contain Leaf objects

or other Composite objects. To treat them all uniformly, it refers to them only as

Component objects. See Figure 8.17 for the UML class diagram of the Compos-

ite pattern.

The participants in the pattern are the following:

 1. Client, who is able to treat composite objects and single objects uniformly

through the Component interface

 2. Component, which is an abstract class or interface that defi nes the inter-

face for the individual objects and composite objects

 3. Leaf, which is a single or noncomposite subclass of Component

 4. Composite, which is a subclass of Component storing a collection of

Components

One of the issues that needs to be addressed when the Composite pattern is

used is what methods should be included in the Component interface. In partic-

ular, should it include the operation getChildren to allow other Components

or the Client to traverse the tree of Components?

The Composite Pattern

Component

+operation():void

Composite

+operation():void+operation():void

for each child c{

c.operation():
}

Client

Leaf

*

FIGURE 8.17 The Composite pattern.

Continued

08-M4377.indd 24908-M4377.indd 249 12/5/07 12:09:26 PM12/5/07 12:09:26 PM

250 Chapter 8 Figure-Drawing Application Case Study

Who is going to manage the undo and redo stacks and the storing and restoring

of the state? A natural choice is to have the DrawingCanvas do all of it since it is the

object whose state needs to be stored and restored (what pattern are we using here?).

But making the DrawingCanvas handle all the details of storing, unstoring, and re-

storing states is giving it too many responsibilities. It should be concerned only with

displaying the Display object to which it refers. However, to have any other object

take care of storing backup states would seemingly require exposure of the internal

implementation of the DrawingCanvas. After all, how can another object store and

restore the state of the DrawingCanvas without knowing how the DrawingCanvas is

implemented?

The Memento pattern [4] solves this problem. This pattern says that we

should create “memento” objects that encapsulate a snapshot of the internal state

of the DrawingCanvas, and we should create a “caretaker” who is responsible

for the safekeeping of the mementos. The DrawingCanvas should create the me-

mentos and should be able to restore itself to the state contained in any memento.

The mementos’ contents should be hidden from everyone else (including the

caretaker).

In our case, we will create a new inner class called DrawingCanvas.State that

will act as the memento, and we will create a UndoRedoManager class that will act

as the caretaker. We will implement the UndoRedoHandler so that it has a reference

to the DrawingCanvas. Whenever it is instructed to save a new state on the undo

stack, it asks the DrawingCanvas for a new memento, which it then pushes on the

stack. Whenever it is told to undo the last change, it

 1. Pops the top memento off the undo stack and pushes it onto the redo stack.

 2. Gives a reference to the memento now on top of the undo stack to the Drawing-

Canvas, and tells the canvas to restore itself to that memento.

Here is the code for the UndoRedoHandler:

It makes sense for the Composite class to have a getChildren method,

but, if this method does not also appear in the Component interface, then the

Client cannot call that method on a Component without fi rst checking whether

the Component is actually a Composite and then typecasting the Component

into a Composite. In contrast, if the getChildren method does appear in the

Component interface, then it needs to have some appropriate behavior in the

Leaf subclass, which has no children. Regardless of the implementation of this

method in the Leaf class, just the existence of it is misleading. Therefore, nei-

ther option is completely satisfactory from the perspective of elegance.

There are also the issues of whether to include a getParent or get-
Parents (if components are shared) method in the Component interface and

whether Component should be an abstract class with default implementations of

some or all of the methods. These issues must be addressed on a case by case

basis.

08-M4377.indd 25008-M4377.indd 250 12/5/07 12:09:27 PM12/5/07 12:09:27 PM

 Chapter 8 Figure-Drawing Application Case Study 251

public class UndoRedoHandler
{
 private Stack<DrawingCanvas.State> undoStack, redoStack;
 private DrawingCanvas canvas;

 public UndoRedoHandler(DrawingCanvas canvas) {
 undoStack = new Stack<DrawingCanvas.State>();
 redoStack = new Stack<DrawingCanvas.State>();
 this.canvas = canvas;
 //store the initial state of the canvas on the undo stack
 undoStack.push(canvas.createMemento());
 }

 //save the current state of the DrawingCanvas
 public void saveState()
 {
 DrawingCanvas.State canvasState = canvas.createMemento();
 undoStack.push(canvasState);
 redoStack.clear();
 }

 public void undo()
 {
 if(undoStack.size() == 1)
 return; //only the current state is on the stack

 DrawingCanvas.State canvasState = undoStack.pop();
 redoStack.push(canvasState);
 canvas.restoreState(undoStack.peek());
 }

 public void redo()
 {
 if(redoStack.isEmpty()) return;

 DrawingCanvas.State canvasState = redoStack.pop();
 undoStack.push(canvasState);
 canvas.restoreState(canvasState);
 }
}

The Undo and Redo menu items in our application have listeners that tell the Un-

doRedoHandler to invoke undo or redo. Various objects tell the handler that the

canvas is in a new state that needs to be saved. These objects include the tools in the

toolbar and the Group and Ungroup menu items.

Note that we need to add only two new methods in the DrawingCanvas class.

These methods are restoreState(DrawingCanvas.State) that takes a state

as parameter and createMemento that creates and returns a new state object.

Therefore, we have maintained low coupling and high cohesion in this design. That

is, the DrawingCanvas need not be concerned with what is done with the mementos

after it creates one and is only concerned with restoring its state to that in such a

08-M4377.indd 25108-M4377.indd 251 12/5/07 12:09:27 PM12/5/07 12:09:27 PM

252 Chapter 8 Figure-Drawing Application Case Study

memento when asked to do so. Other objects are involved in storing and manipulat-

ing the mementos, but they have no knowledge of the internals of the mementos and

how the canvas uses them to restore its state.

The last details to consider are how the states are implemented and how the

canvas uses a state object to restore itself. Since the DrawingCanvas state is inti-

mately involved with the implementation of DrawingCanvas, a natural design is to

have the state be an internal class to the DrawingCanvas, thereby allowing it access

to all the private instance variables of the canvas. The DrawingCanvas’ create-
Memento method calls the constructor of DrawingCanvas.State, which copies the

canvas’ Drawing (by cloning it) and stores that copy in an instance variable of the

State. When the canvas is asked to restore its state to that in a State object, it turns

around and asks the State object to restore the drawing to the one the state saved.

The State object does so by copying the Drawing it saved to the drawing attribute of

the DrawingCanvas. The UML sequence diagram in Figure 8.18 shows the process

of restoring a state.

In Figure 8.18, the ActionListener for the Undo menu item signals the UndoRedo-

Handler to undo. The UndoRedoHandler then extracts the State to be restored from

its undo stack and signals the DrawingCanvas to restore its state to that State. Since

the internals of the State object are private, the DrawingCanvas cannot access them,

but it can ask the State object to restore the canvas’ state for it.

Here is the new code for the DrawingCanvas class.

public class DrawingCanvas extends JPanel
{
 private Drawing drawing;

 public State createMemento()
 {
 return new State();
 }

:ActionListener

.actionPerformed()

.undo() .restoreState
(state)

.restore()

:UndoRedoHandler :DrawingCanvas state:DrawingCanvas.State

FIGURE 8.18 The sequence diagram showing how the undo operation is performed.

08-M4377.indd 25208-M4377.indd 252 12/5/07 12:09:27 PM12/5/07 12:09:27 PM

 Chapter 8 Figure-Drawing Application Case Study 253

The Memento pattern is useful when you need to

save a snapshot of an object’s internal state for

later restoration and you want to avoid exposing

the object’s internal state.

In this pattern, there is an Originator whose

internal state is to be stored, a Memento, which

encapsulates a snapshot of the internal state of the

Originator, and a Caretaker, who is responsible for

the safekeeping of the Mementos. The Originator

is responsible for creating the Mementos and re-

storing its state to that contained in a Memento.

The Memento hides its contents so that no object

other than the Originator can inspect it. The Care-

taker never cares about the contents of the Me-

mento. In many ways, the Caretaker is like a bank

with safe deposit boxes, in that the bank is respon-

sible for the safekeeping of the boxes, but is never

concerned with the contents of those boxes.

The participants in the pattern (see Fig-

ure 8.19) are the following:

 1. Originator, whose internal state needs to be

saved in snapshots. It is responsible for cre-

ating the Mementos and restoring its state to

that of a Memento.

 2. Memento, which stores a snapshot of the

Originator’s state. It hides the state’s imple-

mentation details.

 3. CareTaker, which is responsible for safekeep-

ing the Mementos.

One of the nice features of the Memento pat-

tern is the way it separates responsibilities among

the classes. One class stores the snapshot, another

class safekeeps the mementos, and the third class

creates mementos and restores itself to the state in

a memento.

One possible disadvantage of this pattern is

that the Mementos might be expensive to create

and keep since the system might need a lot of re-

sources to create the Mementos and the Caretaker

might need a lot of memory to store them. There-

fore, one option is to store in a Memento only

part of Originator’s state or just the change in its

state.

The Memento Pattern

Originator

+createMemento():Memento
+restore(m:Memento):void

Memento Caretakeruses *

FIGURE 8.19
The Memento pattern.

 public void restoreState(State canvasState)
 {
 canvasState.restore();
 repaint();
 }

 public class State
 {
 private Drawing drawing;

 public State()
 {
 drawing = (Drawing) DrawingCanvas.this.drawing.clone();
 }

08-M4377.indd 25308-M4377.indd 253 12/5/07 12:09:28 PM12/5/07 12:09:28 PM

254 Chapter 8 Figure-Drawing Application Case Study

 public void restore()
 {
 DrawingCanvas.this.drawing = (Drawing) drawing.clone();
 }
 }
 ...other instance variables and methods...
}

Notice the cloning of the drawing that the State’s constructor performs. It is ap-

parent that a deep clone is needed here. That is, we must clone all the fi gures inside

the drawing since each object stores its current position, which can be different in

different states. Therefore, the Drawing class’ clone method invokes the (deep)

clone method of the List of fi gures that it references. The List’s clone method in

turn invokes the clone method of each of the Figures in the list. The GroupFigure’s

clone method similarly deep clones the List of its children.

The complete code for the application with this new feature can be found in the

package drawer6.

SECTION 8.9 SUMMARY

In this chapter, we have incrementally developed a

drawing application. In each evolution of the appli-

cation, a new feature was added. Various alternative

designs and implementations for each new feature

were compared for elegance. Along the way, new de-

sign patterns were discussed and used. Through the

use of the design patterns and, more generally, good

design principles, it was quite easy to add the new

features to the application without having to do major

refactoring or redesign.

There are many more features that could be

added to this package, and there are other designs

for the existing features that are viable alternatives.

Some of these features and alternatives are explored

in the exercises.

EXERCISES

 1. When you are trying to reach an executive in a com-

pany, you have at least three choices:

 a. Call and be put on hold until the executive is

free.

 b. Keep calling back every few minutes until the ex-

ecutive is free.

 c. Leave a message asking the executive to call you

back when she is free.

 Which one of these choices corresponds most closely

to the Observer pattern?

 2. The Observer pattern is used in the design of the

JButton class, which has a method addAction-
Listener to let listeners register with the button so

that they can be notifi ed when the button is clicked.

When such a click occurs, the JButton notifi es

all listeners by calling their actionPerformed

methods. How are these two actions implemented?

That is, what is in the body of the addAction-
Listener method, and how does the JButton go

about notifying the listeners? To get a feeling for how

this is done, create your own Publisher class with

an addSubscriber method and a broadcast

method and create a Subscriber class with a some-
thingHappened method. The Publisher’s broad-
cast method should call all the something-
Happened methods of the Subscribers.

 3. Does the ActionListener interface use the push model

or the pull model of communication? (See Sec-

tion 8.2 for a discussion of the two models.) Briefl y

explain.

 4. As mentioned in Section 8.2, Java provides an Ob-

servable class and an Observer interface to aid in us-

08-M4377.indd 25408-M4377.indd 254 12/5/07 12:09:28 PM12/5/07 12:09:28 PM

 Chapter 8 Figure-Drawing Application Case Study 255

ing the Observer pattern. To use these classes, you

would typically subclass Observable to get a class

with the specifi c observable behavior you want and

all observers would implement the Observer inter-

face. Study the features of the Observable class. Is it

good design to subclass Observable when you need to

use the Observer pattern? Why or why not? Give an

alternate design using Observer and Observable to

get the same behavior. Hint: See the java.beans.Prop-

ertyChangeSupport class.

 5. Refactor the code in the CanvasEditor class of pack-

age drawer1 so that it uses the java.awt.event.Mouse-

Adapter class to eliminate the methods with empty

bodies. Then briefl y discuss whether the new version

is better than the old version.

 6. In Section 8.3, it is mentioned that you can use refl ec-

tion to get a new object of one of the subclasses of Fig-

ure from the name of that subclass (given as a String).

However, in package drawer2, we didn’t use refl ec-

tion. Instead, in the DrawingFrame’s constructor, we

created three almost-identical ActionListeners, one

to listen to each button. If the button is clicked, its

listener tells the CanvasEditor to set the current fi g-

ure to the fi gure corresponding to that button. In this

exercise, you are to use refl ection to avoid the dupli-

cation in these three ActionListeners. That is, replace

the three listeners with one listener that listens to all

three buttons. When a button is clicked, the listener

gets the name of the button and uses refl ection to cre-

ate a fi gure of the class with that name. It then tells

the CanvasEditor to set its current fi gure to that newly

created fi gure.

 7. As stated in Section 8.4, in the MVC pattern, the

model, view, and controller usually interact via the

Observer pattern. That is, the view registers with

the model so that whenever the model changes, it no-

tifi es the view so that the view can update the display

to refl ect the changed model. Similarly, the model

registers with the controller so that when user action

occurs, the model can update its data appropriately. In

the drawer3 package, we didn’t use the Observer pat-

tern at all when connecting the model and the control-

ler and when connecting the model and the view. Re-

implement the drawer3 package so that the Observer

pattern is used between the model and the view. Is the

new design more elegant?

 8. In the drawer3 package, the DrawingCanvas’ paint-
Component method uses an iterator to loop through

the fi gures to draw each of them. An alternative to us-

ing such an external iterator is to use an internal itera-

tor. Implement such an internal iterator by adding to

the Drawing class a draw(Graphics) method, in

which the drawing itself loops through the fi gures,

calling each of their draw methods. Then modify the

DrawingCanvas class so that the paintComponent

method in the DrawingCanvas class calls super
.paint(g) and then calls drawing.draw(g).

 9. In drawer3, we include the following line of code in

the mouseClicked method of the CanvasEditor

class:

((DrawingCanvas) e.getSource())
 .addFigure(newFigure);

 Doesn’t this code break the Law of Demeter in that

we ask the MouseEvent e for an object and then ask

that object to do something? Briefl y explain your an-

swer and what, if anything, should be done about it.

 10. At the end of Section 8.4, we mentioned two alterna-

tives to the precondition to the addFigure method

of the Display class.

 a. Implement the two alternatives.

 b. Discuss the advantages and disadvantages of the

three approaches.

 11. In the drawing3 and later packages, we defi ned a

Drawing class. However, that class does nothing that

an ArrayList<Figure> can’t already do. Why did we

introduce the class? What design pattern are we using

here?

 12. One problem with our drawing3 package is that the

currently selected button is not clearly indicated in

the GUI. Enhance the application to put a red border

around the currently selected button. Try to do this by

adding new code rather than changing existing code.

 13. In the drawer4 package, we used the State pattern to

change the behavior of the CanvasEditor based on its

state instead of creating subclasses of CanvasEditor

with different behaviors. We can look at the Figure

heirarchy similarly. In the design of the drawer4

package, each of the subclasses of Figure are iden-

tical except for their behavior when asked to draw

themselves. Use the State pattern to eliminate the

need for subclasses of Figure, and instead change the

behavior of each Figure based on its state. Then cri-

tique your design compared to the design of package

drawer4.

 14. In the Figure’s getBoundingRect method in the

drawer4 package, we return a new Rectangle object

instead of the value of the boundingRect instance

variable. Why not just return boundingRect?

 15. In the drawer4 package, there is a Tool abstract class

with no methods or fi elds that extends MouseInput-

Adapter. Why include such a class in our design?

08-M4377.indd 25508-M4377.indd 255 12/5/07 12:09:29 PM12/5/07 12:09:29 PM

256 Chapter 8 Figure-Drawing Application Case Study

 16. In the discussion in Section 8.6, we refactored the

design of the drawing application using the State pat-

tern to avoid conditionals in the mouseClicked

method in the CanvasEditor. In Section 7.5, we used

the Factory Method pattern to get a slightly different

solution to an almost identical problem. Compare the

two solutions, describing any advantages and disad-

vantages of each.

 17. In the code in the drawer5 package, the fi gures are

stored in an ArrayList<Figure>, which is an ordered

collection. Why maintain an order to the fi gures?

 18. Add a new “Filled Rect” button to the drawer5 pack-

age that, when clicked, allows fi lled rectangles to be

drawn on the canvas. Keep track of exactly how many

(a) new fi les need to be created, (b) existing fi les need

to be modifi ed, and (c) places existing fi les need to be

modifi ed.

 19. Add a new “Delete” menu item to Edit menu in the

drawer5 package that, when clicked, removes the se-

lected fi gures from the drawing. Keep track of exactly

how many (a) new fi les need to be created, (b) existing

fi les need to be modifi ed, and (c) places existing fi les

need to be modifi ed.

 20. Add a new “Rotate right” menu item to the Edit menu

in the drawer5 package. This menu item causes all

selected fi gures to be rotated clockwise 90 degrees

around their center point. The center point of a group

fi gure is the center of the fi gure’s bounding rect. If you

rotate a fi gure right four times, it should be restored

to its original position and orientation. Keep track of

exactly how many (a) new fi les need to be created,

(b) existing fi les need to be modifi ed, and (c) places

existing fi les need to be modifi ed.

 21. The DrawingFrame has many almost-identical calls

to addActionListener to the tool buttons. Refac-

tor this class so that the duplication is eliminated by

creating one ActionListener that has a hash table that

associates each button with its tool and by having this

listener listen to all buttons in the toolbar.

 22. As described in Section 8.7, the drawer5 package is

incomplete in that the GroupFigure class needs to

override the setSize and moveTo methods of the

Figure class so that all children fi gures are similarly

moved or stretched along with the GroupFigure. Im-

plement these two overriding methods.

 23. In the drawer5 package, the GroupFigure class is

implemented so that when the GroupFigure is moved,

all fi gures in the group are moved, and so they main-

tain their position relative to the drawing canvas. Re-

implement the GroupFigure class so that each fi gure

in the group maintains its position relative to the po-

sition of the GroupFigure. That is, the x and y posi-

tion of a fi gure in a group is not its absolute position in

the drawing canvas and instead indicate offsets from

the position of the bounding rectangle of the group

fi gure.

 24. In the drawer5 package, we added a new get-
ComposedFigures method to the Figure class. In

the case of a nongroup Figure, the method just returns

a list containing the Figure itself. Can you fi nd any-

thing inelegant about this design?

 25. In Section 7.4, the Command pattern is discussed.

Describe where the Composite pattern appears (with-

out the name) in that section.

 26. Reimplement the UndoRedoHandler in drawer6 so

that it uses one doubly linked list of States instead of

two stacks of States. The handler maintains a refer-

ence to the current State in the list, which matches the

state of the canvas. An undo action moves the refer-

ence to the previous state in the list and a redo action

moves the reference to the next state. A save-state

action causes every state after the current state to be

deleted and replaced with a new state, which becomes

the current state.

 27. Refactor drawer6 so that the UndoRedoHandler can

be reused in settings other than with DrawingCan-

vases. That is, generalize the UndoRedoHandler so

that it doesn’t refer to DrawingCanvas and the Draw-

ingCanvas.State classes.

 28. Reimplement the UndoRedoHandler in drawer6 so

that it stores only incremental changes in state in-

stead of a complete snapshot of the state in each me-

mento. Note that in this case the memento will not

store a state, but rather a change in state. Therefore,

it might be appropriate to make each memento con-

tain a command or an action that can be executed to

cause the desired change.

 29. One shortcoming of the drawer6 package is that a

new state may be saved on the undo stack that is iden-

tical to the state immediately below it (e.g., if the user

selects the same fi gures that are already selected or

if the user drags a fi gure in a circle back to its start-

ing place). Rewrite the package so that no new state

is saved if the new state is equal to the previous state.

To implement this feature, you will need to test the

equality of two states, which, in turn, will require

testing the equality of the drawings, and so the fi gures

within the drawings. Therefore, equals methods

will need to be added to many classes.

 30. Enhance the drawer6 package in the following ways:

 a. Add “Delete,” “Cut,” “Copy,” and “Paste” menu

items to the Edit menu in the drawer6 package.

08-M4377.indd 25608-M4377.indd 256 12/5/07 12:09:29 PM12/5/07 12:09:29 PM

 Chapter 8 Figure-Drawing Application Case Study 257

The Delete menu item removes the selected fi g-

ures from the canvas. The Copy menu item cre-

ates copies of the currently selected fi gures and

puts them in a clipboard for later pasting. Cut is

just like Copy except it deletes the currently se-

lected fi gures after copying them. The Paste menu

item should take the fi gures in the clipboard and

paste them down and to the right a few pixels

from where the original fi gures were at the time

they were copied. Ideally you will use the system

clipboard so that copied fi gures can also be pasted

into other applications if they support such past-

ing. To get the system clipboard using Java, have

your DrawingCanvas class call

getToolkit().getSystemClipboard()

 b. Implement resizing. To do so, add a new “Resize”

tool. When the user selects the resize tool and

drags one of the corner (light green) boxes on a

selected fi gure, that fi gure is stretched with the

dragging. The corner of the selected fi gure oppo-

site to the dragged corner remains fi xed.

 c. Add context menus. That is, when the user right-

clicks on a fi gure using the selection tool, that

fi gure is selected and a popup menu appears with

appropriate options for the type of fi gure selected.

For this exercise, the popup menu should just have

a “Delete” menu item unless the selected fi gure is

a GroupFigure, in which case there should also be

an “Ungroup” menu item.

 31. Other objects can traverse an ArrayList<Figure> by

invoking the list’s iterator method, which returns

an Iterator. Such an Iterator is used quite a few times

in the Drawing class and in the GroupFigure class in

the drawer6 package. Clean up this code by provid-

ing an internal iterator. That is, do the following:

 a. Create a FigureCommand interface with one

method: public void execute(Figure f).
 b. Create a FigureList class with a map(Figure

Command c) method that calls c.execute(f)

for all fi gures f in the list. This map method is an

internal iterator.

 c. Change the type of the children fi eld of the

GroupFigure class to FigureList, and similarly

change the type of the figures fi eld of the Draw-

ing class to FigureList.

 d. Then replace as many of the external iterator loops

in all drawer6 classes as you can with a call to the

internal iterator of the FigureList class.

 32. Look at the API for the java.awt.Component and

java.awt.Container classes, and decide which, if any,

design patterns were used in developing them.

REFERENCES

 1. Beck, K. and R. Johnson. Patterns generate archi-
tectures. In European Conference on Object-
Oriented Programming (ECOOP’94). 1994.

Bologna, Italy: Springer-Verlag.

 2. Vlissides, J., Tooled composite. C�� Report, 1999.

11(8): 43–47.

 3. Johnson, R., Documenting Frameworks Using Pat-
terns. Proceedings OOPSLA ’92, 1992. NewYork:

ACM Press, pp. 63–76.

 4. Gamma, E., R.Helm, R.Johnson, and J.Vlissides,

Design Patterns, Elements of Reusable Object-
Oriented Software. Professional Computing. 1995.

Reading, MA: Addison-Wesley.

08-M4377.indd 25708-M4377.indd 257 12/5/07 12:09:30 PM12/5/07 12:09:30 PM

258

Language Parser
Case Study

SECTION 9.0 INTRODUCTION

If you have written Java programs using a modern IDE (integrated development

environment) such as Eclipse or NetBeans, you probably appreciate all the tools

it provides to make life easier for you as you write and debug your code. One of

the helpful tools such environments provide is autoformatting, which does things

like automatically indenting lines of code properly or reformatting poorly format-

ted code. Another tool modern IDEs provide is refactoring support. For example,

they allow you to rename methods, and the IDE automatically updates all calls to

the renamed methods. Yet another tool provided by such environments is automatic

checking of your code for errors such as missing semicolons or misspelled words. If

such errors are found, they are immediately highlighted.

Such tools can be written completely independently of each other, each taking

the user’s source code and doing something different with it. However, although

there might be some advantages to such independence, this approach is sure to lead

to a large amount of code duplication because there are so many similar things

these tools all need to do to the code before they can perform their jobs. How can

we avoid such duplication?

In this chapter, we will answer this question by creating some tools for manipu-

lating programs written in a very simple subset of Java and showing you how code

duplication can be avoided. In the process, we will encounter more design principles

and patterns.

SECTION 9.1 VSSJ: A VERY SIMPLE
SUBSET OF JAVA

To allow us to focus on design principles without having to spend a lot of time on

the intricacies of a fully modern programming language such as Java, we will use

a very small subset of Java as the programming language to study in this chapter.

We won’t execute programs in this language, but instead will look at issues such as

formatting programs or searching for particular structures in the programs.

9

09-M4377.indd 25809-M4377.indd 258 12/5/07 12:10:49 PM12/5/07 12:10:49 PM

 Chapter 9 Language Parser Case Study 259

Our language VSSJ (Very Simple Subset of Java) consists of three kinds of dec-

larations, four kinds of statements, and integer literals. These features are combined

according to certain rules to form a legal program.

The three VSSJ declarations are:

 1. A variable declaration, consisting of two symbols followed by a semicolon—

the fi rst symbol represents the variable’s type and the second symbol represents

the variable’s name. A symbol consists of a letter a–z or A–Z followed by zero

or more letters or digits.

 2. A method declaration, which starts with two symbols—the fi rst indicating the

return type and the second being the method name—followed by an empty set

of parentheses (no parameters are allowed in VSSJ), and ends with a body con-

sisting of a block of statements, which is a set of braces “{” and “}” surrounding

zero or more statements.

 3. A class declaration, which starts with the word “class” followed by a symbol

indicating the name of the class. Last, there is a class body consisting of a set of

braces “{” and “}” surrounding zero or more method, variable, or class declara-

tions. Note that a class body can include other class declarations (called inner

classes in Java).

The four VSSJ statements are:

 1. An empty statement, consisting of just a semicolon “;”

 2. An assignment statement, consisting of a symbol followed by an equal sign (�),

then an integer literal, and fi nally a semicolon

 3. A while statement, consisting of the word “while” followed by a set of paren-

theses surrounding a symbol, and then a block of statements

 4. A method call statement, consisting of a symbol, an empty pair of parentheses,

and a semicolon

A legal VSSJ program consists of a class declaration. Inside a VSSJ program, you

can have white space (any combination of space, tab, new line, and return characters)

anywhere, except within a symbol, since such white space indicates the beginning or

ending of a symbol. An example of a VSSJ program, that includes all kinds of decla-

rations and statements, is given in Figure 9.1.

As we said above, we will not be executing these programs, and so you shouldn’t

worry about what the program will do when executed. Furthermore, we won’t, at the

moment, concern ourselves with other Java necessities, such as declaring variables

before using them or whether their types match their usage.

SECTION 9.2 PRETTY PRINTING

As stated in the introductory section of this chapter, our goal is to learn more about

design and design patterns through the study of tools for a programming develop-

ment environment. Let us start with a fairly simple but useful tool: Given a program

in VSSJ with an arbitrary layout, the tool reformats the program with proper indent-

ing following the usual Java conventions.

09-M4377.indd 25909-M4377.indd 259 12/5/07 12:10:50 PM12/5/07 12:10:50 PM

260 Chapter 9 Language Parser Case Study

To develop this tool, we will create a PrettyPrinter class with a public method

with the following header:

public String prettyPrint(String program)

This method will return a program identical to the program that was given to it as

its argument except that white space will be added or removed in order to properly

format the program as in Figure 9.1. In particular, if the input to the prettyPrint

method were the string

class A { —a class declaration

 int x; —a variable declaration

 void foo() { —a method declaration

 ; —an empty statement

 x = 3; —an assignment statement

 while(x) { —a while statement

 foo(); —a method call

 }
 }
 class B { —an inner class

 int y;
 void bar() {}
 }
}

FIGURE 9.1 A sample VSSJ
program.

"class A{int x;void foo(){;x=3;while(x){foo();}}class B{int y;void bar(){}}}"

then the output would be exactly the program in Figure 9.1.

Before continuing reading, spend a little time thinking about how you would

implement the prettyPrint method.

The fi rst thing you may have realized is that the program (the input parameter

to the prettyPrint method) is just a String, and so it needs to be stepped through

one character at a time. Your prettyPrint method will need to look for the spe-

cial words “class” and “while,” symbols such as “foo” and “void,” and special char-

acters such as parentheses, braces, and semicolons. It will add these words, symbols,

and characters to the output string, and, as it does so, it will add or remove white

space. In the process of doing so, it will need to keep track of indentation levels. A

method that accomplishes all this work sounds pretty complicated. The problem

here, of course, is that one method is trying to do too much. The solution to all this

complexity is to spread the responsibilities among different methods and objects.

SECTION 9.3 SCANNING

Notice that some of the basic meaningful units of the VSSJ program, called tokens,
consist of single characters such as semicolons, parentheses, and braces, but other

tokens are multiple-character ones, such as “class,” “while,” and words indicating

variable and method names and types. During pretty printing, these tokens need to

be extracted from the program. Should the PrettyPrinter’s prettyPrint method

09-M4377.indd 26009-M4377.indd 260 12/5/07 12:10:50 PM12/5/07 12:10:50 PM

 Chapter 9 Language Parser Case Study 261

do this extraction? The design principle that says that “objects and methods should

do one thing only and do it well” would suggest that a separate object should take

the program string and convert it into a list of tokens. Such an object is typically

called a scanner or lexer (for “lexical analyzer”). A Scanner object would be given

the program string to scan. It would repeatedly determine which characters form

the next token. More precisely, a Scanner class typically has a public method with

the following header:

public Token getNextToken()

A PrettyPrinter would use a Scanner by repeatedly calling this method to ask it for

the next token. A Scanner is a form of factory in that the PrettyPrinter asks it to cre-

ate new “Token” objects for the PrettyPrinter instead of expecting the PrettyPrinter

to create the objects itself.

Note that the return type of the getNextToken() method is Token. The

getNextToken() method could just return a String consisting of the characters

that make up the token, but it is useful to have a Token object that contains the string

of characters that made up the token. A Token typically also stores information indi-

cating the “type” or “kind” of token it is—for example, whether the token refers to a

symbol, a key word such as “class” or “while,” or an integer literal. Finally, it is use-

ful—for error messages, for example—to have a Token contain the index or location

of its string of characters in the program. Here is such a Token class:

public class Token
{
 //constants - the kinds of tokens
 public static final int EOF = 0;
 public static final int ERROR = 1;
 public static final int INTLITERAL = 2;
 public static final int SYMBOL = 3;
 public static final int CLASS = 4;
 public static final int LEFTBRACE = 5;
 public static final int RIGHTBRACE = 6;
 public static final int LEFTPAREN = 7;
 public static final int RIGHTPAREN = 8;
 public static final int SEMICOLON = 9;
 public static final int WHILE = 10;
 public static final int EQUALS = 11;

 //instance variables
 private int kind; //the kind of token
 private int position; //starting position of token in the input
 private String spelling; //the characters in this token

 public Token(int k, String s, int p) //constructor
 {
 kind = k;
 spelling = s;
 position = p;
 }

09-M4377.indd 26109-M4377.indd 261 12/5/07 12:10:50 PM12/5/07 12:10:50 PM

262 Chapter 9 Language Parser Case Study

 public String getSpelling()
 {
 return spelling;
 }

 public int getKind()
 {
 return kind;
 }

 public int getPosition()
 {
 return position;
 }

 public String toString()
 {
 return spelling + " " + kind + " " + position;
 }
}

How does the Scanner determine which token to build next? It repeatedly gets the

next available character from the input string and adds it to the spelling of the token

being built until it reaches the end of that token. We will not go into the details of

how the Scanner works at this time. You can fi nd the source code in the ast1 pack-

age. In this package, we have also included a Main class to demonstrate how the

user might use these classes.

One important thing to note is that the Scanner always returns a nonnull Token

when the getNextToken method is invoked. Eventually, it will return a Token

of kind Token.ERROR or Token.EOF (indicating the end of the program), at which

point the PrettyPrinter should fi nish up the formatting process.

SECTION 9.4 A SIMPLE PRETTY PRINTER

Now let us implement the prettyPrint method. It is quite easy to implement a

loop that repeatedly asks the Scanner for the next token and then adds that token

and appropriate white space to the formatted output string. It is easy to tell where

space characters are needed and, by looking at Figure 9.1, you can see that new lines

need to be added only after semicolons, right braces, and left braces, unless the next

token is a right brace. The only stickler concerns proper indentation of lines of code.

This issue, however, can be addressed by the use of a variable that keeps track of the

indentation level at each point in the pretty printing process and by the use of both

the current token and next token to determine the white space to be used between

those tokens in the formatted version. See Figure 9.2 for a complete implementation

of such a method.

How elegant is this implementation of prettyPrint? It nicely uses a Scanner

to separate the responsibility of creating tokens from using tokens. It also seems to

handle all the special cases very nicely with the conditionals.

09-M4377.indd 26209-M4377.indd 262 12/5/07 12:10:51 PM12/5/07 12:10:51 PM

/**
 * constructs a string of tab characters of the given number
 * @param numTabs the number of tabs to be included
 * @return the string of tabs that was constructed
 */
private String indent(int numTabs)
{
 String indentString = "";
 for (int i = 0; i < numTabs; i++)
 indentString += "\t";
 return indentString;
}

/**
 * constructs a new copy of the program with proper formatting
 * according to Java conventions.
 * It keeps track of the "indent level" and uses the current token
 * and next token to determine the formatting to be used between
 * those tokens.
 * @param program the program string to be reformatted
 * @return the string containing the properly formatted version
 * of the program
 */
public String prettyPrint(String program)
{

 Scanner scanner = new Scanner(program);
 String result = "";
 int indentLevel = 0;

 //get the first 2 tokens
 Token currentToken = scanner.getNextToken();
 int currentTokenKind = currentToken.getKind();
 Token nextToken = scanner.getNextToken();
 Int nextTokenKind = nextToken.getKind();

 //repeatedly add the current token and the
 //appropriate white space to precede the next token
 while (currentTokenKind != Token,EOF &&
 currentTokenKind != Token.ERROR) {

 //add current token
 result += currentToken.getSpelling();

 //add spaces, indent, & newlines before the next token
 if (currentTokenkind == Token.CLASS ||
 CurrentTokenKind == Token.EQUALS) {
 result += " ";
 }
 else if (currentTokenKind == Token.SYMBOL) {
 if (nextTokenKind != Token.LEFTPAREN &&
 nextTokenKind != Token.RIGHTPAREN &&
 nextTokenKind != Token.SEMICOLON)
 result += " ";

FIGURE 9.2 A prettyPrint implementation. Continued

263

09-M4377.indd 26309-M4377.indd 263 12/5/07 12:10:51 PM12/5/07 12:10:51 PM

264 Chapter 9 Language Parser Case Study

However, what if you now want/need to modify this code so that there are blank

lines between declarations? That is, suppose that Figure 9.1 should be replaced with

Figure 9.3 as the new model of correct formatting.

Before reading further, take the prettyPrint code in Figure 9.2 and try to

modify it so that it inserts the blank lines between declarations.

You should quickly see a problem, namely, knowing the indentation level and

knowing the current token and next token are not suffi cient to determine whether a

blank line should be included between the tokens. In particular, consider the follow-

ing program:

class A {
 void foo() {
 while(x) {}
 bar();
 }
 int x;
}

 }
 else if (currentTokenKind == Token.RIGHTPAREN) {
 if (nextTokenKind != Token.SEMICOLON)
 result += " ";
 }
 else if (currentTokenKind == Token.SEMICOLON ||
 currentTokenKind == Token.RIGHTBRACE) {
 result += "\n";
 if (nextTokenKind == Token.RIGHTBRACE)
 indentLevel--;
 result += indent(indentLevel);
 }
 else if (currentTokenKind == Token.LEFTBRACE) {
 if (nextTokenKind == Token.RIGHTBRACE)
 result += " ";
 else {
 indentLevel++;
 result += "\n" + indent(indentLevel);
 }
 }
 //update the currentToken and nextToken
 //for the next time through the loop
 currentToken = nextToken;
 currentTokenKind = nextTokenKind;
 nextToken = scanner.getNextToken();
 nextTokenKind = nextToken.getKind() ;
 }
 return result;
}

FIGURE 9.2 Continued

09-M4377.indd 26409-M4377.indd 264 12/5/07 12:10:51 PM12/5/07 12:10:51 PM

 Chapter 9 Language Parser Case Study 265

According to our formatting conventions, we do not want a blank line between

lines 3 and 4 (between the while loop and the call to bar), but we do want a blank

line between lines 5 and 6 (between the declaration of foo and the declaration of

x). However, in both cases, the prettyPrint method, as implemented in Fig-

ure 9.2, sees only a right brace followed by a symbol, and so there is no way to

determine, based on just those two tokens, whether to insert a blank line between

them. To solve the problem, we need more contextual information than just the cur-

rent token and next token.

At the cost of making the prettyPrint method a little more complex, we

could fi x it so that it uses contextual information to correctly insert blank lines

where appropriate (See Exercise 3 at the end of the Chapter). Furthermore, this in-

creased complexity could be ignored if nothing else were ever to be done with the

PrettyPrinter. However, as we said earlier, one of the central tenets of software to-

day is “change happens.” Someone always wants more features or wants the current

features to be made more sophisticated. For example, someone might want your

PrettyPrinter to print an error message if the program does not have legal syntax,

such as a missing semicolon or misspelled key words. Another user might want your

PrettyPrinter to highlight key words.

Your code must be able to adapt to changes and must be robust and fl exible so that

it will not break when such changes are attempted. One way to get the desired robust-

ness and fl exibility is to use another design pattern, called the Interpreter pattern.

SECTION 9.5 INTERPRETER PATTERN

VSSJ is a language with grammar rules and so one of the best ways to construct

manipulators of “sentences” (programs) in that language is by way of the Interpreter

pattern [1]. In the Interpreter pattern, a VSSJ program is converted, through the

use of the grammar of the VSSJ language, into a data structure representing the

class A {
 int x;

 void foo() {
 ;
 x = 3;
 while(x) {
 foo();
 }
 }

 class B {
 int y;

 void bar() {}
 }
}

FIGURE 9.3 A sample VSSJ program with blank lines
between declarations.

09-M4377.indd 26509-M4377.indd 265 12/5/07 12:10:51 PM12/5/07 12:10:51 PM

266 Chapter 9 Language Parser Case Study

program. The user can then take appropriate actions on that structure (e.g., pretty

printing). The data structure we will use here is an abstract syntax tree (AST), a

structure typically generated by compilers when they are processing source code.

Each leaf node of this tree corresponds to a value (e.g., a constant or a symbol), and

the internal nodes correspond to more complicated structures, such as declarations

or statements, with subtrees of internal nodes corresponding to substructures within

those structures. For example, an AST is given in Figure 9.4, corresponding to the

following VSSJ program:

class A {
 int x;
 void foo() {
 x = 3;
 }
}

With the help of the Interpreter pattern, we will break down our process of pretty

printing into the following phases:

 1. Convert the program string into a list of Tokens as before (done by a Scanner

object).

 2. Build the AST from the list of Tokens (done by a Parser object).

 3. Manipulate the AST to produce a new string (done by a PrettyPrinter object).

See Figure 9.5 for a diagram of how these phases are related.

Besides the nice separation of responsibilities demonstrated by this design, an-

other advantage of following this route is that we can reuse the AST for other actions

that the user may also want to perform on the program. For example, suppose the user

wants only to search a VSSJ program for methods named foo. The AST is a very

class

symbol
x

int literal
3

symbol
A

symbol
int

assign

method dec

symbol
x

symbol
void

var dec

symbol
foo

block

FIGURE 9.4
A sample AST.

program tokens ASTScanner Parser PrettyPrinter

FIGURE 9.5 The phases of manipulating a program. The rounded items are the data
and the rectangular items are the manipulators.

09-M4377.indd 26609-M4377.indd 266 12/5/07 12:10:52 PM12/5/07 12:10:52 PM

 Chapter 9 Language Parser Case Study 267

helpful data structure for conducting such a search. We’ll look at this search process

in more detail in a later section. We can easily imagine other uses of the AST as well.

Because the AST is so central to source code manipulation processes, we need

to design it carefully—in particular, we need to design carefully the classes that

make up the nodes of the tree. After we have designed the AST, we will consider the

manipulations of this tree. Finally, we will design and implement a Parser that will

construct such an AST from a list of tokens.

SECTION 9.6 DESIGN OF THE AST

When designing an AST, it is helpful to consider how it will be manipulated, for

example, by a PrettyPrinter. Based on Figure 9.5, we would expect the new Pretty-

Printer to have a method with the following header:

public String prettyPrint(Node root)

that takes the root node of the tree (instead of a String) as its parameter and returns

a String containing the reformatted program represented by the tree. Or, to add a

little more generality, the following header could be used:

public String prettyPrint(Node root, String indent)

The indent would be a string of white space, and this method would pretty print the

program, adding the given indentation string at the front of every line.

During the printing process, the method needs somehow to traverse the tree and

visit each node. When visiting each node, it prints the source code corresponding to

the subtree rooted at that node. Therefore, during the visit to a node, the Pretty Printer

might need to print something and then recursively visit the children to print the

source to which they correspond, possibly doing more printing between the visits to

the children, and fi nally return a String. For example, for a node representing a class

declaration, the PrettyPrinter could print the word class, the name of the class, a

left brace, and then recursively visit all the node’s children declarations to pretty print

them before fi nally printing the closing right brace.

First attempt

Let us fi rst attempt to implement our AST with a general tree and see how elegant

our AST and PrettyPrinter turn out to be. Consider a tree where each internal node

corresponds to a program structure and each leaf node corresponds to a value or

symbol. Since different structures within the program have different numbers and

types of substructures (for example, a while statement has more tokens than an

assignment statement), we will assume that all internal nodes can have arbitrarily

many children nodes.

Every node will need to store some information indicating the structure it rep-

resents and references to any children nodes. For example, a node corresponding to

a class declaration could store the string “class,” a child containing the name of the

class, and zero or more children corresponding to the declarations in the class. A

node corresponding to an assignment statement could store the string “assignment,”

09-M4377.indd 26709-M4377.indd 267 12/5/07 12:10:52 PM12/5/07 12:10:52 PM

268 Chapter 9 Language Parser Case Study

a child indicating the variable and another child indicating the value. The tree in

Figure 9.4 is an example of such a tree.

In our implementation of this design, let us make the nodes immutable and so

provide getter methods but not setter methods. Here is some of the code for one such

implementation scheme:

public class Node
{
 private String kind;
 private List<Node> children;

 public Node(String k, List<Node>) {...} //constructor
 public String getKind() {...}
 public Node getChild(int index) {...}
 public int getNumberOfChildren () {...}
}
public class Leaf extends Node
{
 private String value;

 public Leaf(String k, String v) {...} //constructor
 public String getValue() { return value; }
}

public class PrettyPrinter
{
 public String prettyPrint(Node root, String indent)
 {
 if(root instanceof Leaf)
 return indent + ((Leaf) root).getValue();
 else if(root.getKind().equals("assign")) {
 return indent + ((Leaf) root.getChild(0)).getValue() +
 " = " + ((Leaf) root.getChild(1)).getValue() + ";";
 }
 else if(root.getKind().equals("var dec")) {
 return ident + ((Leaf) root.getChild(0)).getValue() +
 ((Leaf) root.getChild(1)).getValue() + ";";
 }
 else if(root.getKind().equals("class")) {
 String result = indent + "class ";
 result += ((Leaf) root.getChild(0)).getValue() + " { ";
 for(int i = 1; i < root.getNumberOfChildren(); i++) {
 result += prettyPrint(root.getChild(i), indent + "\t");
 }
 return result;
 }
 else ...
 }
}

09-M4377.indd 26809-M4377.indd 268 12/5/07 12:10:52 PM12/5/07 12:10:52 PM

 Chapter 9 Language Parser Case Study 269

public class Main { //test code
 public static void main(String[] args) {
 Node root;
 ...construct the tree using a Scanner and Parser...
 PrettyPrinter printer = new PrettyPrinter();
 System.out.println(printer.prettyPrint(root));
 }
}

This code is clearly ugly. The children of each node are used for different purposes,

depending on the kind of node. As a result, the code is not very readable without

comments describing the role of each child. Also the code has too many condition-

als based on the kind of node.

One could modify the Node class so there is more than one fi eld in a Node be-

sides a string and the list of children, but for some uses of the Node class, any extra

fi elds are unneeded, and so this modifi cation is no more elegant.

Second attempt

A better design declares a new class of node for each type of construct. For ex-

ample, a ClassDeclaration node would represent a class declaration, an AssignState-

ment node would represent assignment statements, and an IntLiteral node would

represent integer literals. The ClassDeclaration node would have two fi elds: a name

fi eld and a fi eld corresponding to the list of declarations within the class declara-

tion. The AssignStatement node would have two fi elds: a string naming the variable

being assigned to and an IntLiteral node containing the value being assigned. An

IntLiteralNode would have one fi eld: a string containing the integer value repre-

sented by the node. All node classes would be subclasses of an abstract Node class

or a Node interface. If we make this change but no others, then our PrettyPrinter’s

prettyPrint method would look like this:

public String prettyPrint(Node root, String indent)
 {
 if(root instanceof IntLiteral)
 return indent + ((IntLiteral) root).getValue();
 else if(root instanceof AssignStatement) {
 return indent + ((AssignStatement) root.getVariable() +
 " = " +
 ((AssignStatement) root.getValue()).getValue() +
 ";";
 }
 else if(root instanceof ClassDeclaration) {
 String result = indent + "class " +
 ((ClassDeclaration) root).getName() + " { ";
 List<Node> children =
 ((ClassDeclaration) root).getDeclarations();
 for(int i = 0; i < children.size(); i++) {
 result += prettyPrint(root.getChild(i), indent + "\t");
 }

09-M4377.indd 26909-M4377.indd 269 12/5/07 12:10:52 PM12/5/07 12:10:52 PM

270 Chapter 9 Language Parser Case Study

 return result;
 }
 else ...
}

Clearly this version is not much cleaner than the previous version. In particular,

there is still a huge, ugly set of conditionals.

Third attempt

Hopefully by now, you see a more elegant design for this code. Let us recall two of

the design rules mentioned in earlier chapters:

 1. Ask not what you can do to an object; ask what an object can do for you.

 2. Use polymorphism instead of conditionals.

Therefore, instead of the PrettyPrinter having to pretty print each node, nodes

should know how to pretty print themselves. In other words, each node should have

a method

public String prettyPrint(String indent)

that returns the pretty printed version of the code represented by the subtree rooted

at that node, with every line indented by the given amount. Because each method is

specifi c to the type of node, the conditional tests can be eliminated.

With these changes, the PrettyPrinter’s prettyPrint method merely calls

the prettyPrint method on the root of the AST and returns the result:

public String prettyPrint(Node root, String indent)
{
 return root.prettyPrint(indent);
}

In fact, one could go a step further. In this design, the PrettyPrinter object has only

one method and that method does nothing but invoke the root’s prettyPrint

method. Therefore, one could argue that there is no real need for a PrettyPrinter

object anymore. Our main method need only contain the following code:

ClassDeclaration root = ...generate the tree from the program...;
String result = root.prettyPrint("");
System.out.println(result);

However, we will continue to include the PrettyPrinter object for the sake of consis-

tency with later versions of our design.

Note that we do not have any common behavior (or data) that can be imple-

mented in the Node superclass, and so we are using a Node interface instead of

abstract class. Here is a complete set of node classes and interfaces:

public interface Node {
 public String prettyPrint(String indent);
}

09-M4377.indd 27009-M4377.indd 270 12/5/07 12:10:53 PM12/5/07 12:10:53 PM

 Chapter 9 Language Parser Case Study 271

class AssignStatement implements Node { ... }
class Block implements Node { ... }
class ClassDeclaration implements Node { ... }
class EmptyStatement implements Node { ... }
class IntLiteral implements Node { ... }
class MethodCall implements Node { ... }
class MethodDeclaration implements Node { ... }
class VarDeclaration implements Node { ... }
class WhileStatement implements Node { ... }

See Figure 9.6 for the UML class diagram relating these classes and interfaces. The

complete code for these classes can be found in the ast2 package.

Let us look at the implementations of the prettyPrint methods in some of

the node classes to show you how straightforward they are.

AssignStatement:

public String prettyPrint(String indent)
{
 return indent + getVariable() + " = " +
 getValue().prettyPrint("") + ";";
}

IntLiteral:

public String prettyPrint(String indent)
{
 return indent + getValue();
}

Node

+prettyPrint(indent:String):String

<<interface>>

AssignStatement EmptyStatement

Block IntLiteral

ClassDecIarations MethodCell

VarDeclarationMethodDeclaration

WhileStatement

FIGURE 9.6 The class diagram for the
nodes of our AST.

09-M4377.indd 27109-M4377.indd 271 12/5/07 12:10:53 PM12/5/07 12:10:53 PM

272 Chapter 9 Language Parser Case Study

The Interpreter pattern is useful when sentences in a language need to be inter-

preted. The language to be interpreted can be a programming language (such

as Java or VSSJ), a language of expressions (such as regular, boolean, or arith-

metic expressions), or a language for storing structured data (such as XML).

Each language has its own set of grammatical rules for constructing sentences

in the language. For example, a sentence in a programming language usually

refers to a program or separately compilable unit. In the languages of expres-

sions and structured data, any legal expression or data structure would be a

sentence.

The act of “interpreting” a sentence should be viewed very generally. It

can involve any number of actions or manipulations of the sentence, including,

for example, executing the sentence (in the case of a programming language),

evaluating the sentence (in the case of a language of expressions), or translat-

ing the sentence by converting it into another form. Also, an expression might

be interpreted in a way that produces an equivalent but simplifi ed expression.

A sentence in a programming language might be interpreted in a way that cre-

ates an equivalent sentence in another language, such as machine language (the

traditional role of a compiler).

In the Interpreter pattern, the grammatical rules of the language are used to

construct an AST for a sentence in the language and then the AST is interpreted.

More precisely, the grammatical rules are used to construct classes of nodes for

the AST. The leaves of the tree correspond to tokens in the sentence, and the in-

ternal nodes correspond to grammatical structures in the language such as dec-

larations, expressions, loops, or conditional statements. There is typically one

class for each different grammatical structure. All the classes are subclasses of

an abstract Node class or interface with an abstract interpret method. Each

The Interpreter Pattern

Leaf

ContextClient

InternalNode

<<interface>>
Node

+interpret(c:Context):Object

*

FIGURE 9.7 The classes involved in the
Interpreter pattern.

09-M4377.indd 27209-M4377.indd 272 12/5/07 12:10:53 PM12/5/07 12:10:53 PM

 Chapter 9 Language Parser Case Study 273

subclass implements interpret differently, depending on the grammatical

structure the class represents. Each interpret method recursively calls the

interpret methods of its children nodes, as necessary, to fulfi ll its task.

The participants in the Interpreter pattern are the client, the context, and

the AST node classes. See Figure 9.7. The context is global information pro-

vided by the client. The client passes the context to the nodes when the cli-

ent calls the Node class’ interpret method. The interpret method can

modify the context or return a value.

In our pretty printer design, the prettyPrint method plays the role of

the interpret method and the indentation level plays the role of the context.

In this case, the act of interpretation involves creating a new program identical

to the original program except for the formatting.

By the way, the bottom part of Figure 9.7 (the Node class and subclasses)

should appear familiar. If you read the preceding chapter of this text, then you

should recognize the Composite pattern here. The Interpreter pattern uses the

Composite pattern for structuring the AST.

ClassDeclaration:

public String prettyPrint(String indent)
 {
 String result = indent + "class " + getName() + " {\n";
 for (Iterator it = getDeclarations().iterator();
 it.hasNext();) {
 Node node = (Node) it.next();
 result += node.prettyPrint(indent + " ") + "\n";
 if (it.hasNext())
 result += "\n"; //add blank line between declarations
 }
 result += indent + "}";
 return result;
 }

MethodDeclaration:

public String prettyPrint(String indent)
 {
 String result = indent + getType() + " " + getName() +
 "() ";
 result += getBody().prettyPrint(indent);
 return result;
 }

Isn’t this design much more elegant than the previous design attempts? Each node is

smarter, does more work, and has more responsibility, resulting in methods that are

shorter, clearer, and do one thing only and do it well.

09-M4377.indd 27309-M4377.indd 273 12/5/07 12:10:54 PM12/5/07 12:10:54 PM

274 Chapter 9 Language Parser Case Study

SECTION 9.7 METHOD FINDER

Now that we have handled pretty printing, let us see how we can reuse the AST for

other purposes. Consider the very simple-looking problem: Given a program in VSSJ,

does there exist a particular class in the program containing a particular method?

More precisely, given a class name, a method name, and a program, does there exist a

method of the given name in the class of the given name in the program?

To solve this problem, we will attempt to create a MethodFinder class with a

public method with the following header:

/**
 * determines whether the given code contains a method by the
 * given name in a class with the given name.
 * If the class is an inner class, then its full name including the
 * outer class names separated by periods is used.
 * For example, if class A contains class B which contains class C,
 * then the innermost class is referred to by "A.B.C".
 * @param methodName the name of the method we are searching for
 * @param className the full name of the class containing the
 * desired method
 * @param program the VSSJ program we are searching for the given
 * method
 * @return true if a method with the desired name is found in the
 * desired class.
 */
public boolean findMethod(String methodName, String className,
 String program)

Note, as the header says, that for inner classes, we prepend the inner class’ name

with the name of the enclosing class using a period as a separator. This notation ap-

plies to classes nested arbitrarily deep.

For example, using the program in Figure 9.1, there is a method in class A named

foo, and so findMethod("foo", "A", ...program...) would return true.

Similarly, there is a method named bar in a class B that is an inner class of a class A,

and so findMethod("bar", "A.B", ...program...) would return true. Any

other calls to findMethod using the program in Figure 9.1 would return false.

Before continuing reading, spend a little time thinking about how you would

implement the method findMethod both without creating the AST and with

creating the AST.

You hopefully see how messy it would be to implement findMethod by in-

specting just the tokens of the program instead of using the AST, as we did in our

original version of the PrettyPrinter. However, using the AST, we can implement

our method fi nder similarly to our pretty printer. That is, we can use a Parser and

Scanner to create an AST from the program and then let the MethodFinder traverse

the tree looking for the desired method. Moreover, as with the PrettyPrinter, it is

09-M4377.indd 27409-M4377.indd 274 12/5/07 12:10:54 PM12/5/07 12:10:54 PM

 Chapter 9 Language Parser Case Study 275

appropriate to let each node class be responsible for fi nding whether its subtree con-

tains the desired method, and so we will give each node a method of the form:

public boolean findMethod(String methodName,
 String desiredClassName,
 String currentClassName)

that returns true if the subtree contains the method with the desired name in the

class with the desired name. Note that we added an extra parameter current-
ClassName to keep track of the outer class names, as the tree is traversed

downward.

As a result of these changes, the MethodFinder’s findMethod method can

now be modifi ed to take the AST as a parameter instead of the original program:

public boolean findMethod(String methodName, String className,
 Node root)
{
 return root.findMethod(methodName, className, "");
}

Notice, as in the case of the PrettyPrinter, the MethodFinder class now has only one

method and that method has just one line of code, rendering the MethodFinder class

itself somewhat superfl uous. However, the class will be useful in later versions of

our package.

The interesting thing about these findMethod methods in the node classes

is that all but two of them just return false. The two remaining methods are in the

ClassDeclaration and MethodDeclaration nodes, as you may have suspected. The

implementations of these two methods are very simple:

//in class ClassDeclaration
public boolean findMethod(String methodName,
 String desiredClassName,
 String currentClassName)
{
 String newCurrentClassName = (currentClassName.equals("") ?
 getName() : currentClassName+"."+getName());
 for (Node node : getDeclarations()) {
 if (node.findMethod(methodName, desiredClassName,
 newCurrentClassName))
 return true;
 }
 return false;
}
//in class MethodDeclaration
public boolean findMethod(String methodName,
 String desiredClassName,
 String currentClassName)

09-M4377.indd 27509-M4377.indd 275 12/5/07 12:10:54 PM12/5/07 12:10:54 PM

276 Chapter 9 Language Parser Case Study

{
 return desiredClassName.equals(currentClassName) &&
 getName().equals(methodName);
}

The complete code for the findMethod methods in all node classes is given in the

package ast3.

SECTION 9.8 SOME PROBLEMS WITH
THESE ELEGANT IMPLEMENTATIONS

Everything looks nice and elegant, doesn’t it? In package ast3, we have node objects

sharing the responsibilities of pretty printing and method fi nding as appropriate so

that each object’s methods are nice and clean. Furthermore, as you hopefully see

by now, the AST can be used to answer many more questions about the original

program than just pretty printing and method fi nding, many of which can be imple-

mented by adding new, simple methods in each node class.

Unfortunately, there still are a couple of problems with this design and imple-

mentation. The fi rst problem is that the pretty printing and method fi nding code is

spread all over among all the node classes. That is, in our code in the ast3 package,

the PrettyPrinter object is not responsible for all pretty printing and the Method-

Finder object is not responsible for all the searching for the desired method. Instead,

the code for each of these jobs is spread all over the place, and each node has the

responsibility of handling these jobs for itself and its children. It would be more

elegant if all the code for each of the jobs were conveniently organized together.

There is another related problem. What if we later want to add code to solve

another problem that involves traversing the tree? For example, we might want to

display the tree graphically using rectangles for nodes and lines for connecting

nodes to children. This job, if implemented in a manner similar to pretty printing

and method fi nding, would require us to modify each class of nodes by adding new

display methods to them. But what if we were only given the compiled node

classes in a library so that we couldn’t modify them? In that situation, we would

have to take some less elegant approach such as subclassing all of the node classes.

If we later wanted to add another job that requires AST traversal, we would need to

subclass our nodes yet again.

There’s a pattern here. We want to be able to visit each node of the AST to do

something specifi c based on the type of node. To implement these visits, we have

added a new method to each of the node classes so that we can use polymorphism

to handle dispatching the correct method on each node. See Table 9.1 for a listing of

the method implementations for the three jobs we have discussed so far on the AST

nodes.

The way the code is organized now is that the methods in each row are imple-

mented together in one class (in one fi le). But from a coder’s perspective, it would

be nice to have the code organized so that all methods in one column are together

in the same class, for example, in a PrettyPrinter, MethodFinder, or Displayer class.

Furthermore, we want to be able later to add new visitors that visit each node and

do something specifi c based on the class of each node. Adding such a visitor cor-

09-M4377.indd 27609-M4377.indd 276 12/5/07 12:10:54 PM12/5/07 12:10:54 PM

 Chapter 9 Language Parser Case Study 277

responds to adding another column to this table. It would be nice to be able to add

this visitor without having to modify every node. But we also want to be able to use

polymorphism to avoid ugly tests that use the instanceof operator, so we can’t

remove all intelligence from the nodes. Each of them will still need to know what is

to be done when it is visited.

Let us consider how we might redesign our classes to move all the pretty-
Print methods into the same class. First consider the AssignStatement node. We

will leave the prettyPrint method in that node for the sake of polymorphism,

but we will move the body of that method into a new method called prettyPrint-
AssignStatement in the PrettyPrinter class. Then the AssignStatement’s class’

prettyPrint method need only call that method in the PrettyPrinter class, and so

the AssignStatement method looks something like this:

 //in AssignStatement class
 public String prettyPrint(String indent)
 {
 return printer.prettyPrintAssignStatement(this, indent);
 }

The modifi ed code has been highlighted with bold text. Note that we have to pass

the node itself as the fi rst parameter to the PrettyPrinter’s prettyPrintAssign-
Statement method since the PrettyPrinter needs some way to access the Assign-

Statement’s attributes.

The PrettyPrinter class now has a new method containing the body of the old

AssignStatement’s prettyPrint method:

public int prettyPrintAssignStatement(AssignStatement node,
 String indent)
{
 return indent + node.getVariable() + " = " +
 node.getValue().prettyPrint("") + ";";
}

TABLE 9.1 The organization of methods for our three jobs.

 PrettyPrinter MethodFinder Displayer

AssignStatement prettyPrint fi ndMethod display

Block prettyPrint fi ndMethod display

ClassDeclaration prettyPrint fi ndMethod display

EmptyStatement prettyPrint fi ndMethod display

IntLiteral prettyPrint fi ndMethod display

MethodCall prettyPrint fi ndMethod display

MethodDeclaration prettyPrint fi ndMethod display

VarDeclaration prettyPrint fi ndMethod display

WhileStatement prettyPrint fi ndMethod display

09-M4377.indd 27709-M4377.indd 277 12/5/07 12:10:55 PM12/5/07 12:10:55 PM

278 Chapter 9 Language Parser Case Study

We can do the same refactoring to all the other nodes. Once this refactoring is com-

pleted, the important code for evaluating the AST has been grouped together in one

PrettyPrinter class, and all the prettyPrint methods in the node classes are used

just to call polymorphically the correct method in the PrettyPrinter class.

There is one remaining detail before the new code will compile: There is a

reference in the new version of the AssignStatement’s prettyPrint method

to a printer, but this variable is undeclared. How do we fi x this problem? The

AssignStatement needs to have a reference to the PrettyPrinter object so that it can

invoke the PrettyPrinter’s prettyPrintAssignStatement method. The easi-

est way to handle this situation is to pass the PrettyPrinter as another parameter to

the prettyPrint method in the AssignStatement class.

 //in AssignStatement class
 public String prettyPrint(PrettyPrinter printer, String indent)
 {
 return printer.prettyPrintAssignStatement(this, indent);
 }

This requires us to make a small change to the PrettyPrinter’s method as well:

public String prettyPrintAssignStatement(AssignStatement node,
 String indent)
{
 return indent + node.getVariable() + " = " +
 node.getValue().prettyPrint(this, "") + ";";
}

In summary, in the prettyPrintAssignStatement method, the PrettyPrinter

is asking the child of the node to pretty print itself, using this object (the Pretty-

Printer) and the empty string as parameters. In passing itself as the fi rst argument, it

is telling the child node where to go to fi nd the code that is used to form the body of

its prettyPrint method.

In the main method that gets things started, our code would appear as

follows:

PrettyPrinter printer = ...create an PrettyPrinter...;
ClassDeclaration root = ...create an AST using a Parser...;
String result = root.prettyPrint(printer, " ");

We can also do exactly the same refactoring for method searching using the

MethodFinder class and for displaying the tree using the Displayer class. After these

changes, each node will still have findMethod and display methods, but those

methods will just call the appropriate methods in the MethodFinder and Displayer

classes, respectively. So each node XXX will have the following findMethod

method:

09-M4377.indd 27809-M4377.indd 278 12/5/07 12:10:55 PM12/5/07 12:10:55 PM

 Chapter 9 Language Parser Case Study 279

public boolean findMethod(MethodFinder finder, String methodName,
 String desiredClassName, String currentClassName)
{
 return finder.findMethodXXX(this, methodName,
 desiredClassName, currentClassName)
}

and a similar display method. Once again, the important code is now all nicely

organized into the MethodFinder and Displayer classes, just as it was done in the

PrettyPrinter class.

We are not going to give you the full code for this design because, although it is

getting closer to elegance, there are still three problems:

 1. We now have three short prettyPrint, findMethod, and display meth-

ods in all the node classes. They are so similar, one would think that there must

be a better way of handling this situation.

 2. If we want to compute something new, for example, check the validity of

the program in terms of variable declarations before use, we need to create a

Validator class where all the real computation is done, but we also need to add

short validate methods to each of the node classes to call the Validator’s

methods. So now we are adding twice as many methods as before!

 3. We haven’t solved the problem of what to do if the node classes come precom-

piled so you can’t just add new methods without subclassing all the node classes.

SECTION 9.9 THE VISITOR PATTERN

To solve these problems, we will use the Visitor pattern [1]. Think of the Pretty-

Printer, MethodFinder, and Displayer as “visitors” to the nodes. We can nicely

simplify all their visits by replacing the prettyPrint, findMethod, and

display methods in the node classes with just one accept method. That

accept method will be reused by each of the three (and all future) visitors. In each

node class XXX, the accept method will look like this:

public Object accept(Visitor v, Object obj)
{
 return v.visitXXX (this, obj);
}

Note that we changed the return type to Object to generalize things and we included

a second parameter obj of type Object for any extra information that needs to be

passed along (such as the indentation level in the case of the PrettyPrinter).

Next, in all the visitor classes (PrettyPrinter, MethodFinder, and Displayer),

we will name all the methods visitXXX instead of prettyPrintXXX, find-
MethodXXX or displayXXX.

After these changes are made, we end up with the following code. In each node

class, we have one generic accept method, mentioned above, that all visitors will

09-M4377.indd 27909-M4377.indd 279 12/5/07 12:10:55 PM12/5/07 12:10:55 PM

280 Chapter 9 Language Parser Case Study

call. In each visitor class, we have a full set of visitXXX methods, one for each

node class XXX. For example, in the PrettyPrinter class, we would have the follow-

ing method (and eight more methods like it):

public Object visitAssignStatement(AssignStatement node,
 Object obj)
{
 //obj is a string of whitespace giving the indentation
 return obj + node.getVariable() + " = " +
 node.getValue().accept(this, "") + ";";
}

To help start things off elegantly when the user wants to pretty print a program, the

PrettyPrinter class would have the following public method:

public String prettyPrint(ClassDeclaration root)
{
 return (String) root.accept(this, "");
}

and so the user’s main method could look like this:

PrettyPrinter printer = ...;
ClassDeclaration root = ...;
String result = printer.prettyPrint(root);

To do validating using a Validator visitor, we don’t need to add anything new to

the node classes. Instead, in the Validator class we would just have a collection of

visitXXX methods.

As the primary interface with the user, the Validator class could have the fol-

lowing public method:

public boolean validate(ClassDeclaration root)
{
 return (Boolean) root.accept(this, null);
}

and the user’s main method could look like this:

Validator validator = ...;
ClassDeclaration root = ...;
boolean result = validator.validate(root);

Notice how the Visitor pattern takes care of all three problems:

 1. The node classes are no longer full of short methods, one for each activity. There

is just one accept method in each node class that is used by all visitors.

 2. Any new visitor we want to add later just needs to implement the appropriate

visitXXX methods to do the real work, and we don’t need to change any ex-

isting node fi les. All the new code is stored in one place, namely the new visitor

class.

09-M4377.indd 28009-M4377.indd 280 12/5/07 12:10:56 PM12/5/07 12:10:56 PM

 Chapter 9 Language Parser Case Study 281

 3. Since we are not modifying the node classes when adding new visitors, it doesn’t

matter whether we are working with compiled versions of the node classes, as

long as the compiled versions have the appropriate accept methods in them.

There is one last detail to consider, namely the accept method’s visitor param-

eter that is declared of type Visitor. We haven’t yet explained what the Visitor type

is, but the defi nition of Visitor should hopefully be clear by now. The Visitor is an

interface, and all Visitor classes, such as PrettyPrinter, MethodFinder, etc., imple-

ment this interface. Here’s the complete code for the Visitor interface:

TABLE 9.2 The organization of methods using Visitors.

 PrettyPrinter MethodFinder Displayer

AssignStatement visitAssignStatement visitAssignStatement visitAssignStatement

Block visitBlock visitBlock visitBlock

ClassDeclaration visitClassDeclaration visitClassDeclaration visitClassDeclaration

EmptyStatement visitEmptyStatement visitEmptyStatement visitEmptyStatement

IntLiteral visitIntLiteral visitIntLiteral visitIntLiteral

MethodCall visitMethodCall visitMethodCall visitMethodCall

MethodDeclaration visitMethodDeclaration visitMethodDeclaration visitMethodDeclaration

VarDeclaration visitVarDeclaration visitVarDeclaration visitVarDeclaration

WhileStatement visitWhileStatement visitWhileStatement visitWhileStatement

public interface Visitor
{
 Object visitAssignStatement(AssignStatement node, Object obj);
 Object visitBlock(Block node, Object obj);
 Object visitClassDeclaration(ClassDeclaration node, Object obj);
 Object visitEmptyStatement(EmptyStatement node, Object obj);
 Object visitIntLiteral(IntLiteral node, Object obj);
 Object visitMethodCall(MethodCall node, Object obj);
 Object visitVarDeclaration(VarDeclaration node, Object obj);
 Object visitWhileStatement(WhileStatement node, Object obj);
 Object visitMethodDeclaration(MethodDeclaration node,
 Object obj);
}

The complete code for our ast3 package after being refactored using Visitors can be

found in package ast4.

Let us now update Table 9.1 to handle the node classes and the new Visitor

classes (see Table 9.2). Each cell in the table corresponds to a visitXXX method

on each node by each visitor.

Note that, with the introduction of the Visitor pattern, we now have the methods

in each column grouped into one class, as we had desired, but we still get the ben-

efi t of polymorphism through the invocation of the accept methods in each node

09-M4377.indd 28109-M4377.indd 281 12/5/07 12:10:56 PM12/5/07 12:10:56 PM

The Visitor pattern is useful for situations in which you have a data structure

and you want to defi ne new operations on the elements of the data structure, but

you don’t want to (or may not be allowed to) modify the classes of the elements.

More precisely, it is useful in situations where (a) you have elements of many

different classes in your structure and the operation to be added will vary in its

actions depending on the classes, (b) you want to or need to avoid “polluting”

the classes with new methods corresponding to the new operation, and (c) the

classes defi ning the structure rarely change but the desired operations on the

elements of the structure change.

For our pretty printing example, the AST corresponds to the data structure

in the Visitor pattern. The operations we want to perform on the AST nodes

are pretty printing, method fi nding, displaying, and others. We want to avoid

adding new methods, such as prettyPrint, findMethod, and display

to each of the Node subclasses every time we want to perform a new operation

on the AST structure.

The Visitor pattern solves this problem using Visitor classes, each of which

encapsulates an operation on all the elements of the data structure. That is, sup-

pose the elements of the data structure belong to classes A and B, both of which

implement an interface I. Then defi ne a new Visitor interface as follows:

public interface Visitor
{
 Object visitA(A a, Object o);
 Object visitB(B b, Object o);
}

In these methods, the second parameter provides optional extra information

needed to perform the desired action on A or B. The return type of the visitA

and visitB methods is Object so that, optionally, a value can be returned by

the visitA and visitB methods.

Now add one new method to interface I and the classes A and B:

In interface I, add the abstract method with header

Object accept(Visitor v, Object o);

In class A, add the method

public Object accept(Visitor v, Object o)
{ return v.visitA(this, o); }

In class B, add the method

public Object accept(Visitor v, Object o)
{ return v.visitB(this, o); }

The addition of these methods will be the only change that needs to be made to

these classes, regardless of the number of actions you later want to perform on

the data structure.

The Visitor Pattern

282

09-M4377.indd 28209-M4377.indd 282 12/5/07 12:10:56 PM12/5/07 12:10:56 PM

Every time you want to perform a new action on the elements of the data

structure, you need to create a new class that implements the Visitor interface.

The visitA and visitB methods, in your new class should perform the de-

sired action on elements of type A and B, respectively.

Figure 9.8 shows a UML diagram of the Visitor pattern. In this diagram,

we show two visitors, Visitor1 and Visitor2.

The participants are all shown in Figure 9.8. The client obtains a visitor

(e.g., Visitor1 or Visitor2) for performing an operation on the data structure.

Then the data structure is traversed, and the accept method is invoked on

each of its elements, with the Visitor passed in as an argument. There are at

least three ways the data structure can be traversed:

 1. The data structure can use an Iterator to access all its elements and call

their accept methods.

 2. Each element’s accept methods could recursively call the accept meth-

ods of their neighbors.

 3. The visitor could do the traversing, in that each of its visit methods could

call the accept methods of other elements.

Our pretty printer example used the third method. The visitor, when visiting a

node, called the accept methods of the children of that node.

<<interface>>

Visitor

+visitA(a:A,o:Object):Object

+visitB(b:B,o:Object):Object

Visitor1

+visitA(a:A,o:Object):Object

+visitB(b:B,o:Object):Object

Visitor2

+visitA(a:A,o:Object):Object

+visitB(b:B,o:Object):Object

<<interface>>

+accept(v:Visitor,o:

 Object):Object

A

+accept(v:Visitor,o:Object):Object

B

+accept(v:Visitor,o:Object):Object

I

Client

DataStructure

FIGURE 9.8 The Visitor pattern.

Continued 283

09-M4377.indd 28309-M4377.indd 283 12/5/07 12:10:57 PM12/5/07 12:10:57 PM

284 Chapter 9 Language Parser Case Study

Note that the Visitor pattern is useful in other cases than traversing trees to

visit their nodes. For example, a collection such as an ArrayList might contain

elements from a variety of classes. Many different visitors could be created to

traverse the list and visit each element. Such visitors could include ones that

search for particular elements in the list or ones that modify different elements

in the list in particular ways.

It is helpful to view the Visitor pattern through a sequence diagram (see Fig-

ure 9.9). It shows how the accept method of an element (a or b) is invoked and

that method in turn calls the visitA or visitB method of the Visitor (v).

:DataStructure

.accept(v,o)

.visitA(a,o)

.visitB(b,o)

.accept(v,o)

a:A b:B v.Visitor1

FIGURE 9.9 The Visitor pattern sequence diagram.

class. Also, if we now add new visitors (corresponding to adding new columns to

Table 9.2), we do not need to modify the node classes.

You should be aware that there are some downsides to using the Visitor pat-

tern. As we mentioned earlier, the visitXXX methods are no longer in the node

classes, and so the methods cannot access the private attributes or methods of the

node classes. As a result, we had to add public getter methods for all node attributes.

In essence, the Visitor is getting the data from a node and then manipulating that

data, a violation of the Expert pattern.

Also there is a downside to grouping the visitXXX methods by columns as in

Table 9.2. If later we decide to add more rows to the table, for example, if we add a

new node class for a new grammatical structure in our VSSJ language, we have to

add new visit methods to the Visitor interface and to all the classes implementing

the interface. Therefore, the Visitor pattern is best if you have a fi xed set of node

classes that you wish to visit and a variable number of visitors. If, conversely, you

have a fi xed number of visitors and a variable number of nodes, it is probably better

not to use the Visitor pattern.

09-M4377.indd 28409-M4377.indd 284 12/5/07 12:10:57 PM12/5/07 12:10:57 PM

 Chapter 9 Language Parser Case Study 285

SECTION 9.10 VISITORS AND
DOUBLE-DISPATCHING

To better understand what is really going on with the Visitor pattern, it is worth

spending some time understanding “single dispatch” and “multiple dispatch” lan-

guages. For the purposes of this section, let us pretend that there are no second pa-

rameters of type Object in the visitXXX methods in Table 9.2 and that the names

of all the methods are just visit. Then every entry in Table 9.2 is invoked by a call

to v.visit(n) where v is a visitor and n is a node.

In an ideal world, an invocation v.visit(n) would act polymorphically based

on the actual type (as compared to the declared type) of both the visitor v and the

node n. That is, when we call v.visit(n), the visit implementation we would

like to be executed is the one in Table 9.2 that is in the row corresponding to the

actual type of n and in the column corresponding to the actual type of v.

Unfortunately, Java is a single dispatch language. That is, a call in Java of the

form v.visit(n) will behave polymorphically based on the actual class of the

visitor v but not on the node n. This behavior, as we discussed in Chapter 3, is due

to the fact that the compiler chooses which of the overloaded versions of visit

to execute based on the declared type of the parameter, not the actual value of the

parameter.

Some other languages have the desired kind of behavior. That is, they have

multiple dispatch or multimethods, which means that the method implementation

to be executed is chosen at runtime based on the object being sent the message and

the actual values of the parameters, not just the declared types of the parameters, as

in Java. Common Lisp, for example, has an object-oriented extension called CLOS

with multimethods. If we were using CLOS to implement our pretty printer, then

each of the visit methods in Table 9.2 could be declared as follows, using Lisp

syntax:

(defmethod visit((v PrettyPrinter) (n AssignStatement)) ...)
(defmethod visit((v PrettyPrinter) (n EmptyStatement)) ...)
(defmethod visit((v PrettyPrinter) (n MethodCall)) ...)
...

or

(defmethod visit((v MethodFinder) (n AssignStatement)) ...)
(defmethod visit((v MethodFinder) (n EmptyStatement)) ...)
(defmethod visit((v MethodFinder) (n MethodCall)) ...)
...

When a call of the form (visit a b) is made, the Lisp environment dynamically

looks at the actual type of a and b and chooses the appropriate implementation of

visit to execute.

Note that in CLOS, a call of visit is written (visit v n), and so the visitor

v is not accorded a special syntactical position in the method call (e.g., in front of

the method name, as is done in Java). That is, v is just treated as another parameter

09-M4377.indd 28509-M4377.indd 285 12/5/07 12:10:57 PM12/5/07 12:10:57 PM

286 Chapter 9 Language Parser Case Study

instead of being treated as the owner of the method. The reason for this treatment

is that both parameters play symmetrically identical roles in determining which

implementation of visit is executed. In other words, the visit method that takes

a PrettyPrinter and AssignStatement as its parameters can be thought of as jointly

owned by both the PrettyPrinter and AssignStatement classes.

Since, as we stated above, Java is a single dispatch language, we have to do

something slightly more complicated to get the desired behavior of double dispatch.

In order to get Java to act polymorphically on both v and n, we have to make both n

and v receivers of messages. That is, we fi rst make a call n.accept(v), which in

turn makes a call v.visit(n).
It should be noted that there is a way to use Java’s refl ection capabilities to im-

plement the visit methods to act polymorphically on all the parameters as well as

on the object being sent the message and so get Java to act more like a multimethod

language. In such an implementation, the visitor has a generic visit method that

uses refl ection to fi nd the actual class of the parameters and then uses that informa-

tion to fi nd the specifi c implementation of visit to execute. For more details, see

[2]. In the exercises, you are asked to explore this idea further.

SECTION 9.11 FACADE PATTERN

Let us now stop for a moment and refl ect on what we have accomplished and think

about whether and how we can further improve on everything we’ve done so far in

this chapter. In particular, let us look for more patterns in the work we’ve done that

we might use again in the future.

Our current setup consists of a nice collection of classes for processing and ma-

nipulating a VSSJ program. We can parse the program to get an AST, and we can

construct any kind of visitor we want to manipulate the AST. Furthermore, we have

implemented two such visitors, the PrettyPrinter and the MethodFinder. These are

powerful tools.

However, look at the main method in the Main class in packages ast2 through

ast4. To use all our powerful tools, a client must create a Parser, understand about

ASTs and all the node classes, create Visitors, and combine them in appropriate

ways. What if our clients don’t care about and don’t want to learn about all the de-

tails regarding visitors and parsers? Suppose they don’t intend to create new Visitor

classes and instead just want a fi xed set of operations that they can perform on a

VSSJ program, including, for example, pretty printing and searching for methods

with a given name? In such a case, it is inappropriate to require the user to manipu-

late all of our classes and understand all of the tools.

In a situation such as this one, it is better to provide a new class, say a Program-

Tool class, that handles all the details of working with the parser, AST, visitors, etc.,

and provides a cleaner interface for what the clients want. All the other powerful

classes that we have created can still be made publicly available to the clients if they

wish to use them, but, if we provide a ProgramTool class that hides the details in the

most commonly used situations, then our clients might only need to deal with one

ProgramTool object and ask it to do the various jobs. Such a class could easily be

implemented as follows:

09-M4377.indd 28609-M4377.indd 286 12/5/07 12:10:58 PM12/5/07 12:10:58 PM

 Chapter 9 Language Parser Case Study 287

public class ProgramTool
{
 public String prettyPrint(String program)
 {
 Node root = new Parser().parse(program);
 return new PrettyPrinter().prettyPrint(root,"");
 }
 public boolean findMethod(String methodName,
 String className,
 String program)
 {
 Node root = new Parser().parse(program);
 return new MethodFinder().findMethod(methodName, className,
 root);
 }
 ...other similar visitor actions...
}

These methods handle all the details regarding visitors and ASTs for the client. All

the client needs to write is the following code:

//client code in the main method

ProgramTool tool = new ProgramTool();
String code = "class A { void main() { print(); } }";
String reformattedCode = tool.prettyPrint(code);
boolean found = tool.findMethod("foo", "A", code);

This idea of creating a class or a small set of classes to hide the details of the most

common uses of a set of powerful tools is called the Facade pattern [1].

The ProgramTool appears in the ast5 package, along with the modifi cations we

will make in the next section.

SECTION 9.12 PARSERS AND BUILDERS

Up to this point, we have ignored the construction of the AST from the original pro-

gram. Now it is time to back up and study this tree-generation process.

In our packages ast2, ast3, and ast4, we have used a Parser object to build the

tree from the program (a string). That is, the Parser’s public parse(String)

method creates and returns the AST corresponding to the program passed in as the

argument.

This parse(String) method uses “recursive-descent” to build the tree. In

this approach, a tree is constructed by the Parser using a collection of methods that

each build a subtree of the tree. That is, each such method creates one kind of node

and calls other methods in the collection using recursion to build each subtree of

that node.

A recursive-descent parser relies on the fact that there is a structure or “gram-

mar” that defi nes legal programs. In our case, the grammar for legal VSSJ programs

09-M4377.indd 28709-M4377.indd 287 12/5/07 12:10:58 PM12/5/07 12:10:58 PM

288 Chapter 9 Language Parser Case Study

The Facade pattern is intended to shield clients from the complexities of a sys-

tem while still allowing them access to the full functionality of the system.

Suppose you have a system composed of many classes with many inter-

faces. The system may be very powerful and so provide a lot of services to

the client. These features make the system very appealing. However, if clients

have simple needs but have to learn how to combine all the classes in complex

ways just to handle those needs, then the system isn’t as elegant as it should be.

Furthermore, as systems evolve, they generally add more classes and interfaces.

This evolution can add power and fl exibility to the system but can make the

situation even worse for the client.

The solution is to create a simple public interface to the system to handle

the more common tasks and shield the clients from the details. This public in-

terface is called the Facade. The system’s many classes and interfaces can still

be made publicly available for those clients who need to customize their tasks.

There are other benefi ts to this approach besides making handling the com-

mon tasks easier. It also weakens the coupling between the system and the cli-

ents, in that many clients will use only the Facade, allowing the system design

to change without forcing the client’s code to change. Furthermore, the Facade

pattern can be used within such a system. That is, it can be used between layers

of the system, further decoupling the classes in the system by having the classes

in the higher layers of the system access the classes in the lower layers through

their Facade.

See Figure 9.10 for a UML class diagram showing the participants in the

Facade pattern and their associations.

When clients want to access the system to perform common actions, they

can ask the Facade to perform the actions and the Facade will, in turn, handle all

the details of asking the elements of the system to perform the task. If the sys-

Facade Pattern

Client1

U

V Z

Y W

X
Client2

System

Client3

Facade

FIGURE 9.10 The Facade pattern.

09-M4377.indd 28809-M4377.indd 288 12/5/07 12:10:58 PM12/5/07 12:10:58 PM

 Chapter 9 Language Parser Case Study 289

was already defi ned somewhat precisely when it was introduced in Section 9.1. Here

are the grammar rules again:

 1. A program consists of a class declaration.

 2. A class declaration consists of the word “class” followed by a symbol giving the

name of the class, followed by the class body, which consists of zero or more

method, variable, or class declarations surrounded by left and right braces.

 3. A variable declaration consists of a symbol followed by another symbol, and

then by a semicolon.

 4. A method declaration consists of two symbols followed by left and right paren-

theses and then a block of statements.

 5. A block of statements consists of zero or more statements surrounded by left

and right braces.

 6. A statement consists of one of the following:

 a. An empty statement consisting of just a semicolon

 b. An assignment statement, consisting of a symbol followed by an equal sign,

then an integer literal, and fi nally a semicolon

 c. A while statement, consisting of the word “while” followed by parentheses

containing a symbol, and then a block of statements

 d. A method call statement, consisting of a symbol, an empty pair of parenthe-

ses, and a semicolon

 7. An integer literal consists of one or more digits 0–9 optionally preceded by a

“�” or “�” sign.

 8. A symbol consists of a letter a–z or A–Z followed by zero or more letters or dig-

its 0–9. No white space (space, tab, and newline characters) is allowed within a

symbol.

 9. There may be white space between the parts of each rule to avoid confusion (e.g.,

to separate two consecutive symbols) or to make the program more readable.

By following these grammatical rules, you can create a new program or determine

the structure of an existing program. For example, the program

class A { int x; void foo(){;}}

tem’s classes are made publicly accessible, then clients can also directly access

the classes in the system in the cases when they have more specialized needs.

An example of the Facade in the Java Swing package is the JTable class.

It is part of a system that also includes JTableHeader, TableModel, TableCell-

Renderer, TableCellEditor, TableColumnModel, TableColumn, TableModel-

Listener, and ListSelectionListener classes. Those clients who want to create

specialized JTables need to access most of these classes. However, those clients

who want a simple table need not work with any of those classes except for the

JTable class itself. They can, for example, call the JTable constructor passing in

a two-dimensional array of data and an array of column header names, and the

constructor will handle all the details regarding the rest of the system classes.

09-M4377.indd 28909-M4377.indd 289 12/5/07 12:10:59 PM12/5/07 12:10:59 PM

290 Chapter 9 Language Parser Case Study

can be broken down into a class declaration whose body contains one variable dec-

laration and one method declaration. The method declaration’s body consists of one

empty statement.

Our parser uses this grammar to structure its recursive calls. Each part of a

VSSJ program has a Parser method associated with it that generates an AST repre-

senting that part of the program. For example, the parseDeclaration method

creates and returns an AST representing a class, method, or variable declaration, the

parseStatement method creates and returns an AST representing a statement,

the parseBlock method creates and returns an AST representing a block of state-

ments, and so on. These methods call each other recursively as necessary to con-

struct the tree. For example, the parseBlock method calls the parseState-
ment method to create the node’s children. Similarly, if the parseStatement

method is parsing a while statement, it calls parseBlock to create the subtree

corresponding to the body of the while statement.

Such a recursive-descent parser is not necessarily the fastest way to build an

AST, but it is one of the clearest ways to understand what is going on in each step

and so, in that sense, it is quite elegant. Before continuing, you are strongly encour-

aged to study the Parser class in the ast4 package to understand how it works.

If you have looked at the Parser class implementation, you should have noticed

two aspects of it that go against the design principles for elegant code:

 1. The Parser is actually doing two things instead of one. It is both determining

(i.e., parsing) the structure of the program and it is building the AST.

 2. There are a signifi cant number of conditional statements. We normally like to

replace such conditionals, especially if they involve testing based on the type of

an object, with polymorphism.

What can we do about these two problems?

Considering the fi rst problem, suppose that the user wants merely to determine

whether the program’s structure is legal. In that case, the tree returned by the Parser

in the ast4 package is not needed, and so it would be nice if we could avoid the

construction process.

The solution, of course, is to separate out the parsing of the program from the

construction of the AST. There should be a separate Builder class that does the con-

struction. Whenever the parser reaches a point where, in the old version (in the ast4

package), it constructed a new node, it should instead ask the Builder to construct

and return the new node for the parser. Then, we can substitute different builders

to be used with our parser depending on our needs. If we want the AST to be con-

structed, we use a builder that actually constructs the nodes in the same way the old

parser did. But if we just want to test the legality of the program, then nothing needs

to be built, and so we can use an “empty” builder that returns null when asked to

build a node. Furthermore, if we just want to count the number of nodes that would

be created if we were to build the AST, we could use a builder that is identical to the

empty builder except it keeps a count of the number of nodes it was asked to build.

This idea of separating the actual construction of a complex object from the direct-

ing of that construction is called the Builder pattern [1].

09-M4377.indd 29009-M4377.indd 290 12/5/07 12:10:59 PM12/5/07 12:10:59 PM

 Chapter 9 Language Parser Case Study 291

The Builder pattern is a creational pattern in which the algorithm responsible

for creating a complex object is separated from the actual creation of the object.

That is, there is a separation of responsibilities in that one participant, a Direc-

tor, decides the steps involved in the creation of the complex object but another

participant, the Builder, actually does the construction.

The Director need not be aware of how or what the Builder is actually

constructing. The Director knows only that the Builder has a specifi c interface.

Such a separation allows the same Director to use several Builders and so con-

struct several different representations of the complex object.

The participants in the Builder pattern are the Director, the Builder inter-

face, a concrete Builder class that implements the interface, and the Product,

which is the complex object being constructed. The client fi rst constructs a Di-

rector and concrete Builder. The client then instructs the Director to construct

the Product using the provided Builder. The Director repeatedly decides what

part of the Product is to be built next and directs the Builder to construct that

part and add it to the Product. When the construction is fi nished, the client asks

the Builder for the completed Product.

In the case of our PrettyPrinter, the Parser plays the role of Director. It

parses the original VSSJ program and determines which part of the AST, the

Product, is to be constructed next. But the Parser does not do the actual con-

struction. Instead it asks the ASTBuilder to construct the nodes and add them

to the AST.

See Figure 9.11 for a class diagram of the Builder pattern. In the diagram,

there are two concrete Builders, each of which produces a different representa-

tion of the fi nal product.

The Builder Pattern

Director

ConcreteBuilder1 ConcreteBuilder2

Product2Product1

+construct():
+buildPartA():void

+buildPartB():void

+buildPartC():void

<<interface>>

Builder

FIGURE 9.11 The Builder pattern.

09-M4377.indd 29109-M4377.indd 291 12/5/07 12:10:59 PM12/5/07 12:10:59 PM

292 Chapter 9 Language Parser Case Study

A natural way to design Builder classes is to create an “default” Builder class

whose methods all return null. This class can then be subclassed whenever the user

wants to actually construct part or all of the AST. In this way, the user needs to

override only those methods of interest.

The complete code for the DefaultBuilder class and an ASTBuilder subclass,

as well as the modifi ed Parser class that uses a Builder and a ProgramTool class as

discussed in the preceding section, are available in package ast5.

SECTION 9.13 TOKENS, VISITORS, AND
POLYMORPHISM (OPTIONAL SECTION)

What about the second aspect of the parser, as mentioned in the preceding section,

that smelled a little badly? Namely, what about all the conditionals in the Parser’s

methods? Is there anything we can do about that? In particular, can we replace these

conditionals with polymorphism? The answer to the last question is “yes,” and it can

be done in a very interesting way using visitors, based on the ideas of Dung “Zung”

Nguyen at Rice University.

To convert the Parser’s methods from using conditionals to using polymor-

phism, we need to determine what classes will be used to drive the polymorphism.

If you study the Parser’s methods, you will note that the conditionals are based on

the kind of tokens referred to by the currentToken instance variable. There-

fore, the fi rst step of the conversion is to make the Token class abstract, remove the

“kind” instance variable, and instead create subclasses of the Token class, one for

each kind. Then the parsing methods that test the kind of the token can be refactored

to test the class of the token. For example, if we create appropriate Token subclasses

(see the ast6.token package), then the parseDeclaration method in the Parser

class can be refactored from the following old version:

private Node parseDeclaration()
{
 if (currentToken.getKind() != Token.SYMBOL &&
 currentToken.getKind() != Token.CLASS) {
 error(...);
 }
 String type = currentToken.getSpelling();
 advance();
 String name = currentToken.getSpelling();
 matchAndAdvance(Token.SYMBOL);
 if(currentToken.getKind() == Token.SEMICOLON) {
 advance();
 return builder.buildVarDeclaration(type, name);
 }
 else if(currentToken.getKind() == Token.LEFTPAREN) {
 advance();
 matchAndAdvance(Token.RIGHTPAREN);

09-M4377.indd 29209-M4377.indd 292 12/5/07 12:11:00 PM12/5/07 12:11:00 PM

 Chapter 9 Language Parser Case Study 293

 Block body = parseBlock();
 return builder.buildMethodDeclaration(type, name, body);
 }
 else if(currentToken.getKind() == Token.LEFTBRACE) {
 advance();
 List<Node> children = new ArrayList<Node>();
 while(currentToken.getKind() != Token.RIGHTBRACE) {
 children.add(parseDeclaration());
 }
 advance();
 return builder.buildClassDeclaration(name, children);
 }
 else {
 error(...);
 }
}

to the following new version (the changes are highlighted in bold):

private Node parseDeclaration()
{
 if (! (currentToken instanceof SymbolToken) &&
 ! (currentToken instanceof ClassToken) {
 error(...);
 }
 String type = currentToken.getSpelling();
 advance();
 String name = currentToken.getSpelling();
 matchAndAdvance(SymbolToken.class);
 if(currentToken instanceof SemicolonToken) {
 advance();
 return builder.buildVarDeclaration(type, name);
 }
 else if(currentToken instanceof LeftParenToken) {
 advance();
 matchAndAdvance(RightParenToken.class);
 Block body = parseBlock();
 return builder.buildMethodDeclaration(type, name, body);
 }
 else if(currentToken instanceof LeftBraceToken) {
 advance();
 List<Node> children = new ArrayList<Node>();
 while(currentToken instanceof RightBraceToken) {
 children.add(parseDeclaration());
 }
 advance();
 return builder.buildClassDeclaration(name, children);
 }

09-M4377.indd 29309-M4377.indd 293 12/5/07 12:11:00 PM12/5/07 12:11:00 PM

294 Chapter 9 Language Parser Case Study

 else {
 error(...);
 }
}

Note that we have had to modify the matchAndAdvance method to use the sub-

classes of Token.

As the next step, we would like to move the bodies of each case in the condi-

tional statement above into an execute method in the appropriate Token subclass.

In other words, we would like to defi ne the following methods:

In the abstract Token class:

public Object execute()
{
 return error(...some message...); //default behavior
}

In the SemicolonToken class:

public Object execute()
{
 advance();
 return builder.buildVarDeclaration(type, name);
}

In LeftParenToken class:

public Object execute()
{
 advance();
 matchAndAdvance(RightParenToken.class);
 Block body = parseBlock();
 return builder.buildMethodDeclaration(type, name, body);
}

In LeftBraceToken class:

public Object execute()
{
 advance();
 List<Node> children = new ArrayList<Node>();
 while(currentToken instanceof RightBraceToken) {
 children.add(parseDeclaration());
 }
 advance();
 return builder.buildClassDeclaration(name, children);
}

If we were able to create such methods, we could then rewrite parseDeclara-
tion() much more elegantly with only one conditional, which is used for error

checking:

09-M4377.indd 29409-M4377.indd 294 12/5/07 12:11:00 PM12/5/07 12:11:00 PM

 Chapter 9 Language Parser Case Study 295

public Node parseDeclaration()
{
 if (! (currentToken instanceof SymbolToken) &&
 ! (currentToken instanceof ClassToken) {
 error(...);
 }
 String type = currentToken.getSpelling();
 advance();
 String name = currentToken.getSpelling();
 matchAndAdvance(SymbolToken.class);
 return currentToken.execute();
}

Unfortunately, this refactoring won’t work for two reasons. First, many of the

method calls, such as advance(); are calls to private methods in the Parser class,

and such calls cannot occur in methods in the Token subclasses. We could pass

the Parser as a parameter and change the accessibility (from private to public) of

some of the Parser’s methods in order for them to be called in the Token subclasses’

execute methods, but we have a better way, as you shall see.

The second problem we need to solve can be seen when we attempt to refac-

tor similarly the parseStatement method in the Parser class to get rid of the

conditionals. The problem is that the parseStatement method requires different

execute methods for the Token subclasses than the parseDeclaration method

requires. For example, in order to refactor the parseDeclaration method as we

did above, we needed to add an execute method to the SemicolonToken class with

the following body:

{
 advance();
 return builder.buildVarDeclaration(type, name);
}

But to refactor similarly the parseStatement method, we would need to add an

execute method to the SemicolonToken class with the following body:

{
 advance();
 return builder.buildEmptyStatement();
}

Unfortunately, you cannot have an execute method in one class with two separate

bodies.

One way to handle this problem is to create several different execute meth-

ods in each Token subclass, such as executeDeclaration and execute-
Statement. But we can do even better than this approach.

Let us create a table (see Table 9.3), where each row corresponds to a Token

subclass and each column to a parseXXX method and whose entries are the new

09-M4377.indd 29509-M4377.indd 295 12/5/07 12:11:00 PM12/5/07 12:11:00 PM

296 Chapter 9 Language Parser Case Study

executeXXX methods that need to be added to the Token subclass corresponding

to the row.

Doesn’t this table look familiar? It has the same structure as Table 9.1 and

so we can apply the same analysis here that we did when analyzing that table.

Namely, if we think of each column (i.e., each parseXXX method) as a visitor,

then we can use the Visitor pattern! That is, we can refactor our code by group-

ing all the executeDeclaration methods in the second column of Table 9.3

into a ParseDeclarationVisitor class. We can similarly group all the execute-
Statement methods in the third column into a ParseStatementVisitor class, etc.

Instead of all the executeXXX methods, each Token subclass will need only an

accept(TokenVisitor, Object) method, where TokenVisitor is the interface

implemented by the ParseDeclarationVisitor and ParseStatementVisitor. For exam-

ple, the LeftParenToken will need only one constructor and one accept method,

and so here is the complete class implementation:

public class LeftParenToken extends Token
{
 public LeftParenToken(String s, int p) { super(s, p); }

 public Object accept(TokenVisitor v, Object obj)
 {
 return v.visitLeftParenToken(this, obj);
 }
}

Once these visitor classes have been created, then the parseDeclaration

method can be rewritten as follows:

private Node parseDeclaration()
{
 ParseDeclarationVisitor v = ...; //initialize v
 if (! (currentToken instanceof SymbolToken) &&
 ! (currentToken instanceof ClassToken) {
 error(...);
 }
 String type = currentToken.getSpelling();
 advance();
 String name = currentToken.getSpelling();

TABLE 9.3 The new methods needed for each Token subclass.

 parseDeclaration parseStatement ...

LeftParenToken executeDeclaration executeStatement ...

LeftBraceToken executeDeclaration executeStatement ...

SemicolonToken executeDeclaration executeStatement ...

...

09-M4377.indd 29609-M4377.indd 296 12/5/07 12:11:00 PM12/5/07 12:11:00 PM

 Chapter 9 Language Parser Case Study 297

 matchAndAdvance(SymbolToken.class);
 return currentToken.accept(v, null);
}

where v is a ParseDeclarationVisitor, whose visitXXX methods correspond to the

executeDeclaration methods in the second column of Table 9.3. Here is an

outline of the code for the ParseDeclarationVisitor class:

public class ParseDeclarationVisitor
 implements TokenVisitor
{
 public Object visitSemicolonToken(SemicolonToken token,
 Object obj)
 {
 advance();
 return builder.buildVarDeclaration(type, name);
 }

 public Object visitLeftParenToken(LeftParenToken token,
 Object obj)
 {
 advance();
 matchAndAdvance(RightParenToken.class);
 Block body = parseBlock();
 return builder.buildMethodDeclaration(type, name, body);
 }

 public Object visitLeftBraceToken(LeftBraceToken token,
 Object obj)
 {
 advance();
 List<Node> children = new ArrayList<Node>();
 while(currentToken instanceof RightBraceToken) {
 children.add(parseDeclaration());
 }
 advance();
 return builder.buildClassDeclaration(name, children);
 }

 //all remaining visit methods are of the following form:
 public Object visitXXXToken(XXXToken token, Object obj)
 {
 return visitToken(token, obj);
 }
 public Object visitToken(Token token, Object obj)
 {
 error(...error message...);
 return null;
 }
}

09-M4377.indd 29709-M4377.indd 297 12/5/07 12:11:01 PM12/5/07 12:11:01 PM

298 Chapter 9 Language Parser Case Study

We are almost fi nished with our refactoring, but not quite. In particular, the code

above for the ParseDeclarationVisitor will not compile because of the calls to

private methods in the Parser class (we also need to fi nish implementing the error

message in the visitToken method).

An easy way to make the code compilable is to use anonymous inner classes

that extend a DefaultTokenVisitor class whose visitXXX methods just call the

visitToken default method, which returns null. The anonymous inner classes

need only override the visitXXX methods of importance and override the de-

fault visitToken method if necessary. Furthermore, because we are using inner

classes, we don’t need to worry about the accessibility of the Parser’s private meth-

ods, since they are accessible to inner classes.

Here’s what the Parser’s parseDeclaration method looks like with such an

anonymous inner visitor (the visitor code is highlighted in bold):

private Node parseDeclaration()
{
 DefaultTokenVisitor visitor = new DefaultTokenVisitor()
 {
 public Object visitToken(Token t, Object o)
 {
 error("The wrong kind of token (" + currentToken + ") " +
 "was found at position" + currentToken.getPosition());
 return null;
 }

 public Object visitSemicolonToken(SemicolonToken t, Object o)
 {
 String[] args = (String[]) o;
 advance();
 return builder.buildVarDeclaration(args[0], args[1]);
 }

 public Object visitLeftParenToken(LeftParenToken t, Object o)
 {
 String[] args = (String[]) o;
 advance();
 matchAndAdvance(RightParenToken.class);
 Block body = parseBlock();
 return builder.buildMethodDeclaration(
 args[0], args[1], body);
 }

 public Object visitLeftBraceToken(LeftBraceToken t, Object o)
 {
 String[] args = (String[]) o;
 advance();
 List<Node> children = new ArrayList<Node>();
 while (!(currentToken instanceof RightBraceToken)) {
 children.add(parseDeclaration());
 }

09-M4377.indd 29809-M4377.indd 298 12/5/07 12:11:01 PM12/5/07 12:11:01 PM

 Chapter 9 Language Parser Case Study 299

In this method, the anonymous subclass of DefaultTokenVisitor overrides the

visitToken, visitLeftParenToken, visitLeftBraceToken, and vis-
itSemicolonToken methods in the DefaultTokenVisitor superclass. All other

visitXXX methods in the anonymous subclass are inherited from the Default-

TokenVisitor, and so those other methods just call the default method visit Token,

which calls an error routine. Note that, because this visitor is an inner class, its

methods can call the Parser’s private methods like error.

Whether practical or not, this design is a good example of how the Visitor pat-

tern can be used to replace conditionals with polymorphism.

The complete code for these classes can be found in the package ast6.

 advance();
 return builder.buildClassDeclaration(args[1], children);
 }
 };
 if (! (currentToken instanceof SymbolToken)
 && ! (currentToken instanceof ClassToken)) {
 error("The wrong kind of token (" + currentToken +
 ") was found at position " + currentToken.getPosition());
 }
 String type = currentToken.getSpelling();
 advance();
 String name = currentToken.getSpelling();
 matchAndAdvance(SymbolToken.class);
 return (Node) currentToken.accept(visitor,
 new String[]{type, name});
}

SECTION 9.14 SUMMARY

We have now completed the design and implementa-

tion of classes for manipulating VSSJ programs. The

classes we used enabled us to minimize coupling

and isolate the parts that change, and they made it

easy for us to add enhancements to the code. In the

exercises, you will have the opportunity to add fur-

ther enhancements to the package to see for yourself

whether we were successful in our endeavors.

EXERCISES

 1. Suppose an abstract class A has subclasses B and

C and consider the following method in another

class D:

 public int classify(A a1, A a2) {
 if(a1 instanceof B && a2
 instanceof B)
 return 1;
 else if(a1 instanceof B &&
 a2 instanceof C)
 return 5;

 else if(a1 instanceof C &&
 a2 instanceof B)
 return 13;
 else if(a1 instanceof C &&
 a2 instanceof C)
 return 29;
 }

 Refactor this design using dynamic method invoca-

tion to eliminate as many conditionals as possible

and as many uses of instanceof as possible. You

09-M4377.indd 29909-M4377.indd 299 12/5/07 12:11:01 PM12/5/07 12:11:01 PM

300 Chapter 9 Language Parser Case Study

are welcome to add new methods to any class if you

wish. Try to do it without introducing any Collection

classes.

 2. Note that the Token class in packages ast1 through

ast5 have getter methods but no setter methods. Is

this the best design for the class? Explain.

 3. Modify the prettyPrinter method in Figure 9.2

so that it properly adds blank lines between declara-

tions. Do it in a way that doesn’t require the use of a

Parser or an AST.

 4. One feature missing from our VSSJ language is

comments.

 a. Extend the language to allow comments. Come up

with your own syntax. You should be able to insert

comments anywhere in the code between tokens.

Then fi x the Scanner to ignore the comments.

 b. Modify the classes in the ast2 package so that the

PrettyPrinter pretty prints the comments as well

as the code.

 5. Implement another Visitor class for VSSJ programs.

Here are some possibilities:

 a. A VariableValidator visitor that checks to see

whether all variables used in the program have

been declared somewhere in the program.

 b. A MethodValidator visitor that checks to see

whether all methods called in the program have

been declared somewhere in the program.

 c. A VariableFinder visitor that searches the pro-

gram for a variable of the given name.

 d. A MethodTypeChecker visitor that checks to see

whether the return types of all methods are void,

int, or boolean.

 e. A Renamer visitor that searches for a variable or

method with a given name and replaces it with a

new name. It should also replace all applied oc-

currences of the variable or calls of the method.

 f. A VariableCounter visitor that determines the

total number of variable declarations in the

program.

 6. The name findMethod is somewhat inappropriate

for the MethodFinder’s public method, because func-

tions that return values should have names indicating

the value returned. Since findMethod returns a

boolean value, a better name would be contains-
Method. If a method is named findMethod, then

it should return a method (that is, a MethodDeclara-

tion node) or null.

 a. What changes would need to be made to Method-

Finder in the ast3 package so that findMethod

returns a MethodDeclarationNode instead of

a boolean value, and how can you use this new

findMethod to implement a boolean con-
tainsMethod in the MethodFinder class?

 b. Implement these changes.

 7. The design used in Section 9.12 in which a default

builder is subclassed to create new builders imitates

the design of some of the classes in the Java Swing

or AWT package. Find some of the classes in those

packages that the default builder imitates, and ex-

plain how they are similar to the default builder.

 8. If we subclass DefaultBuilder to get various build-

ers, then variables that need to refer to any of these

builders must be declared to have type Default-

Builder, which is an awkward name. Come up with

a better naming scheme. For example, should De-

faultBuilder just be renamed “Builder”? Why or

why not?

 9. The ProgramTool class is somewhat limited in what

it can do.

 a. One useful method that should be in the Pro-

gramTool class is a method that just builds and

returns the AST for the user without applying any

visitors to it. Implement such a method. (Hint: It

should only need a couple of lines of code.)

 b. Name some methods besides prettyPrint,

findMethod, and the method in part (a) that

should be included in a useful ProgramTool class,

and explain why they should be included.

 c. If possible, implement one of the methods you

named in part (b) by creating a new visitor if

necessary.

 10. Rewrite the Token class in package ast5 so that, in-

stead of using integer constants to represent the types

of tokens, it uses an enumerated type.

 11. Rewrite the Scanner class in package ast5 so that it has

an instance variable of type java.io.StreamTokenizer.

The Scanner should use the StreamTokenizer to break

down the expression into token substrings, which it

then uses to form the Tokens to be returned by the

getNextToken() method. Simplify the Scanner

class as much as possible (i.e., try to utilize Stream-

Tokenizer to do as much of the work as possible).

 12. In both the Facade and the Adapter patterns, there

are behind-the-scene classes that are doing most of

the work. How is the Facade pattern, as described in

Section 9.11, different from the Adapter pattern?

 13. Create a subclass of DefaultBuilder that always re-

turns null except when it is asked to build a Class-

Declaration node, in which case, it still returns null,

but it also keeps track of the number of times it was

asked to create such a node. It should also have a

method with the following header:

09-M4377.indd 30009-M4377.indd 300 12/5/07 12:11:02 PM12/5/07 12:11:02 PM

 Chapter 9 Language Parser Case Study 301

public int numberOfClassDeclarations()

 that returns the number of class declarations the

builder counted during the parsing of a program

and a method with header

 public void reset()

 that resets to 0 the number of class declarations the

builder found.

 14. Construct a TreePrinter class for the ast3 package

that lays out the structure of the tree using text in the

console window. Each node should have a method of

the form

public void treePrint(String indent)

 that print the subtree rooted at this node indented by

the given amount. The treePrint method should

print the String returned by the node’s toString()

method (that you’ll need to write), which should in-

clude the name of the class of the node (e.g., IntLiteral)

and any other instance information that distinguishes

it (e.g., the integer value stored in the IntLiteral node).

Then it should recursively call treePrint on each

of its children, using a larger indentation, for exam-

ple, four more spaces than its indentation.

 15. Construct a TreePrinter for the ast4 package, similar

to the preceding exercise, but using a Visitor.

 16. Consider what would happen if we refactored the

code in package ast4 by renaming all the methods

in the Visitor interface (and in all classes that imple-

ment this interface) so that they all were just “visit”

instead of “visitClassDeclaration,” “visitWhileState-

ment,” etc. Would the ast4 package still compile and

run correctly? Answer this question either (a) by rea-

soning about method overloading or (b) by rewriting

the Visitor interface and the classes that implement

the interface, trying to run the resulting code and ex-

plaining what happened and why.

 17. Using the ideas in [2], rewrite the ast4 package so

that the Visitors use refl ection to choose which visit

method to call. Here are some hints:

 a. Delete the Visitor interface, get rid of the phrase

“implements Visitor” in the PrettyPrinter

and MethodFinder classes, and get rid of the

accept(Visitor, Object) method in all the

node classes. We don’t need them anymore.

 b. In the PrettyPrinter class, add the following new

methods

public Object visit(Object node,
 Object obj) {
 // Class.getName() returns package
 // information as well,

 // so strip off the package
 String methodName =
 node.getClass().getName();
 methodName = "visit" + methodName.
 substring(methodName.
 lastIndexOf('.') + 1);
 try {
 // Get the method visitXXX
 Method m = getClass().
 getMethod(methodName,
 new Class[]{node.getClass(),
 Object.class});
 // Try to invoke visitXXX
 return m.invoke(this,
 new Object[]{node, obj});
 } catch (NoSuchMethodException e) {
 return defaultVisit(node, obj);
 } catch (IllegalAccessException e) {
 return defaultVisit(node, obj);
 } catch (InvocationTargetException
 e) {
 return defaultVisit(node, obj);
 }
}
public Object defaultVisit(Object
 node, Object obj) {
 return "";
}

 c. In each of the PrettyPrinter’s visitXXX methods,

replace occurrences of node.accept(this,
obj) with visit(node, obj).

 d. Make similar changes to the MethodFinder

class.

 18. The ast6 package differs from the ast5 package in

that TokenVisitors were added in order to replace

conditionals with polymorphism in the parseXXX

methods. However, the Parser in the ast6 package still

has some conditional statements, in particular, in the

visitSymbolToken method in the TokenVisitor

inner class in the parseStatement method.

 a. Outline how we could use polymorphism to re-

place that conditional statement.

 b. Implement this change.

 19. In this project, you are asked to develop an expres-

sion evaluator that imitates the ast5 package in

its design. The project is broken down into several

steps. Ultimately, your goal is to create an Evaluator

class with an evaluate method with the following

method header

public int evaluate(String expression,
 Environment environment)

09-M4377.indd 30109-M4377.indd 301 12/5/07 12:11:02 PM12/5/07 12:11:02 PM

302 Chapter 9 Language Parser Case Study

 that returns the value of the integer infi x expression in

the parameter, using the environment to get the value

of any variables in the expression. For example, the

method call

evaluate("x+4*5", env);

 will return the integer 23 if the environment env

indicates that x has the value of 3. The Environ-

ment object can be thought of as a table of variables

and their values. You can design the Environment

class however you want, but it should include int
get(String var) and void set(String var,

int value) methods.

 The grammar for expressions consists of the follow-

ing rules:

 • An expression is an additive expression.

 • An additive expression is one or more multiplica-

tive expressions separated by “�” or “�”.

 • A multiplicative expression is one or more pri-

mary expressions separated by “*” or “/”.

 • A primary expression is either (i) an integer

literal, (ii) a variable, or (c) an expression sur-

rounded by parentheses.

 • An integer literal is one or more digits optionally

preceded by a “�” or “�”.

 • A variable consists of one or more letters a–z

or A–Z.

 Here are the steps necessary to construct the desired

Evaluator class using a design similar to the design

of the ast5 package.

 a. Implement the Environment class.

 b. Implement a Scanner similar to the ast5.Scanner

class that converts an expression string into con-

secutive tokens.

 c. Create the node classes for an AST that repre-

sents legal expressions.

 d. Create a Visitor interface and add accept meth-

ods to all the node classes.

 e. Write a Parser similar to the ast5.Parser class

that parses an expression string and constructs an

AST. It should detect all illegal input and print an

error message if such input is found.

 f. Write the Evaluator visitor.

 20. Enhance the preceding problem in any of the follow-

ing ways:

 a. Implement a VariableChecker visitor that has a

method with header

public boolean check(AST root,
 Environment environment)

 that returns true if all variables in the AST rooted

at the given node have valid values in the given

environment.

 b. Implement a ConstantFolder visitor that has a

method with header

 public AST fold(AST root)

 that returns an new AST that is equal to the given

AST except that all subtrees representing constant

expressions have been replaced with the value

of that expression. For example, if the original

AST represents the expression x + y*(3+4) -
16/(2+2), then the fold method will return an

AST representing the expression x + y*7 - 4.

 c. Implement a PrettyPrinter visitor that has a

method with header

public String prettyPrint(AST root)

 that prints out the expression represented by

the AST in infi x notation with no unnecessary

parentheses.

 d. Implement a Prefi xPrinter visitor that has a

method with header

public String prefixPrint(AST root)

 that prints out the expression represented by the

AST in prefi x notation. Each prefi x expression

should be surrounded by parentheses. For exam-

ple, 2 + x should appear as (+ 2 x). Print a

space between the operators and operands.

REFERENCES

 1. Gamma, E., R. Helm, R. Johnson, and J. Vlissides,

Design Patterns, Elements of Reusable Object-
Oriented Software. Professional Computing. 1995.

Reading, MA: Addison-Wesley.

 2. Blosser, J. Java Tip 98: Refl ect on the Visitor
design pattern. Implement visitors in Java, using

refl ection. [Web page.] 2000. [Cited April 8, 2007;

available from http://www.javaworld.com/javatips/

jw-javatip98.html.]

09-M4377.indd 30209-M4377.indd 302 12/5/07 12:11:03 PM12/5/07 12:11:03 PM

http://www.javaworld.com/javatips/

SECTION A.0 INTRODUCTION

The Unifi ed Modeling Language (UML) is “a standard language for writing soft-

ware blueprints. The UML may be used to visualize, specify, construct, and docu-

ment the artifacts of a software-intensive system” [1]. In other words, just as archi-

tects create blueprints to be used by the construction company to build a building,

software architects create UML diagrams to help software developers build the

software. If software developers understand the vocabulary of UML (the diagrams’

pictorial elements and their meanings), then they can much more easily understand

a system and explain the design of that system to others through the use of UML

diagrams in addition to textual descriptions.

UML was developed by Grady Booch, Jim Rumbaugh, and Ivar Jacobson, with

much feedback from the software development community, in the mid-1990s as a

way of merging the many competing modeling notations that were in use by the

software industry at the time. In 1997, UML 1.0 was submitted to the Object Man-

agement Group, a nonprofi t consortium involved in maintaining specifi cations for

use by the computer industry. UML 1.0 was revised to UML 1.1 and adopted later

that year. The current standard is UML 2.0, and is now an ISO standard. Because

this standard is so new, many older references, such as [2], do not use UML notation

and instead use one of the earlier notations.

UML 2.0 provides thirteen different diagrams for use in software modeling. In

this appendix, we will discuss only four of those diagrams: class, state, sequence,

and use case diagrams. These are the diagrams we have found most useful when

teaching object-oriented design and are the only ones that appear in this text.

It should be noted that UML is a programming language-independent notation,

and so UML does not map exactly to the way objects and classes are defi ned and

implemented in Java. However, many of the differences are just terminology dif-

ferences, and so students with a background in Java should have few problems with

understanding the UML concepts and applying them to Java programming.

It should also be noted that, in UML diagrams, many of the features are op-

tional. The UML language was designed not only to give the creators of UML dia-

grams a large number of options so that they are able to express all the important as-

pects of the system the diagram is modeling, but also to give them the fl exibility to

suppress those parts of the diagram that are not relevant to the aspect being modeled

in order to avoid cluttering the diagram with irrelevant details. Therefore, the omis-

sion of a particular feature does not mean that the feature is absent; it may mean that

303

An Introduction to UML

AppendixAppendix A

10-M4377-APA.indd 30310-M4377-APA.indd 303 12/5/07 12:11:36 PM12/5/07 12:11:36 PM

304 Appendix A An Introduction to UML

the feature was suppressed. We will not exhaustively cover all the features of the

four UML diagrams presented here. Instead, we will focus on the standard options,

especially those options we have used in this text.

SECTION A.1 CLASS DIAGRAMS

To model classes, including their attributes, operations, and their relationships and

associations with other classes, UML provides a class diagram. A class diagram is

a static view of the system in that it does not show the dynamic nature of the com-

munications between the objects of the classes in the diagram.

The main elements of a class diagram are boxes, which are the icons used to

represent classes and interfaces. Each such box is divided into horizontal parts. The

top part contains the name of the class.

The middle section contains the attributes of the class. An attribute refers to

something that an object of that class knows or can provide all the time. Attributes

are usually implemented as fi elds of the class, but they need not be. They could be

values that the class can compute from its instance variables or values that the class

can get from other objects of which it is composed. For example, an object might

always know the current time and be able to return it to you whenever you ask, in

which case, it would be appropriate to list the current time as an attribute of that

class of objects. However, the object would most likely not have that time stored in

one of its instance variables because it would need to continually update that fi eld,

which is quite wasteful of computer resources if its value is needed only occasion-

ally. Instead, the object would likely compute the current time, for example, through

consultation with objects of other classes, at the moment when you ask for it.

The third section contains the operations or behaviors of the class. An opera-
tion refers to something objects of the class can do. It is usually implemented as a

method of the class.

See Figure A.1 for an example of a Thoroughbred class that models thoroughbred

horses. It has three attributes displayed: mother, father, and birth year. The diagram

also shows three operations: getCurrentAge, getFather, and getMother.

There may be other suppressed attributes and operations not shown in the diagram.

-father:Thoroughbred
-mother:Thoroughbred
-birthyear:int

+getFather():Thoroughbred
+getMother():Thoroughbred
+getCurrentAge(currentYear:Date):int

Thoroughbred

FIGURE A.1 A class diagram for a
Thoroughbred class.

10-M4377-APA.indd 30410-M4377-APA.indd 304 12/5/07 12:11:37 PM12/5/07 12:11:37 PM

 Appendix A An Introduction to UML 305

Each attribute can have a name, a type, and a level of visibility. The type and

visibility are optional. The type follows the name and is separated from the name by

a colon. The visibility is indicated by a preceding “�”, “#”, “�”, or “�”, indicating,

respectively, private, protected, package, or public visibility. In Figure A.1, all the

attributes have private visibility, as indicated by the leading minus sign “�”. You

can also specify that an attribute is a static or class attribute by underlining it.

Each operation can similarly be optionally displayed with a level of visibility,

parameters with names and types, and a return type.

An abstract class or abstract method is indicated by using italics for the name.

See the Horse class in Figure A.2 for an example. An interface is indicated by adding

the phrase «interface» (called a stereotype) above the name. See the OwnedObject

interface in Figure A.2. An interface can also be represented graphically by a hollow

circle.

It is worth mentioning that the icon representing a class can have other optional

parts, such as a fourth section at the bottom containing a list of the responsibilities

of the class. This section is particularly useful when transitioning from CRC cards

to class diagrams in that the responsibilities listed on the CRC cards can be added

to this fourth section in the class box in the UML diagram before creating the attri-

butes and operations that carry out these responsibilities. This fourth section is not

shown in any of the fi gures in this appendix.

Class diagrams can also show relationships between classes. A class that is a

subclass of another class is connected to it by an arrow with a solid line for its shaft

and with a triangular hollow arrowhead. The arrow points from the subclass to the

superclass. In UML, such a relationship is called a generalization. For example, in

Figure A.2. the Thoroughbred and QuarterHorse classes are shown to be subclasses

of the Horse abstract class. A similar arrow except using a dashed line for the arrow

shaft indicates implementation of an interface. In UML, such a relationship is called

a realization. For example, in Figure A.2, the Horse class implements or realizes the

OwnedObject interface.

An association between two classes means that there is a structural relationship

between them. Associations are represented by solid lines. An association has many

* owner<<interface>>

Owned Object

+getOwner():Person

Person

uses
Date Thoroughbred QuarterHorse

Horse

+getName():String

–name:String

FIGURE A.2 A class diagram
regarding horses.

10-M4377-APA.indd 30510-M4377-APA.indd 305 12/5/07 12:11:37 PM12/5/07 12:11:37 PM

306 Appendix A An Introduction to UML

optional parts. It can be labeled, as can each of its ends, to indicate the role of each

class in the association. For example, in Figure A.2, there is an association between

OwnedObject and Person in which the Person plays the role of owner. Arrows on

either or both ends of an association line indicate navigability. Also, each end of the

association line can have a multiplicity value displayed. Navigability and multiplic-

ity are explained in more detail below. An association might also connect a class

with itself, using a loop. Such an association indicates the connection of an object of

the class with other objects of the same class.

An association with an arrow at one end indicates one-way navigability. The

arrow means that from one class you can easily access the second associated class

to which the association points, but from the second class, you cannot necessarily

easily access the fi rst class. Another way to think about it is that the fi rst class is

aware of the second class, but the second class object is not necessarily directly

aware of the fi rst class. An association with no arrows usually indicates a two-way

association, which is what is intended in Figure A.2, but it could also just mean that

the navigability is not important and so was left off.

It should be noted that an attribute of a class is very much the same thing as an

association of the class with the class type of the attribute. That is, to indicate that

a class has a property called name of type String, one could display that property

as an attribute, as in the Horse class in Figure A.2. Alternatively, one could create

a one-way association from the Horse class to the String class with the role of the

String class being “name.” The attribute approach is better for primitive data types

whereas the association approach is often better if the property’s class plays a major

role in the design, in which case it is valuable to have a class box for that type.

Another connection besides associations between classes that can be displayed

in class diagrams is the dependency relationship, indicated by a dashed line (with op-

tional arrows at the ends and with optional labels). One class depends on another if

changes to the second class might require changes to the fi rst class. An association

from one class to another automatically indicates a dependency, and so no dashed

line is needed between classes if there is already an association between them.

However, for a transient relationship, that is, for a class that does not maintain any

long-term connection to another class but does use that class occasionally, we should

draw a dashed line from the fi rst class to the second. For example, in Figure A.2, the

Thoroughbred class uses the Date class whenever its getCurrentAge method is

invoked, and so the dependency is labeled uses.
The multiplicity of one end of an association means the number of objects of that

class associated with the other class. A multiplicity is specifi ed by a nonnegative in-

teger or by a range of integers. A multiplicity specifi ed by “0..1” means that there is

0 or 1 objects on that end of the association. For example, each person in the world

has either a social security number or no such number (especially if they are not U.S.

citizens) and so a multiplicity of 0..1 could be used in an association between a Person

class and a SocialSecurityNumber class in a class diagram. A multiplicity specifi ed

by “1..*” means one or more, and a multiplicity specifi ed by “0..*” or just “*” means

zero or more. A “*” is used as the multiplicity on the OwnedObject end of the as-

sociation with class Person in Figure A.2 to indicate that a Person could own zero or

more objects.

10-M4377-APA.indd 30610-M4377-APA.indd 306 12/5/07 12:11:38 PM12/5/07 12:11:38 PM

 Appendix A An Introduction to UML 307

If one end of an association has multiplicity greater than 1, then the objects of

the class referred to at that end of the association are probably stored in a collection,

such as a set or ordered list. One could also include that collection class itself in the

UML diagram, but such a class is usually left out and is implicitly assumed to be

there due to the multiplicity of the association.

An aggregation is a special kind of association indicated by a hollow diamond

on one end of the icon. It indicates a “whole/part” relationship, in that the class to

which the arrow points is considered a “part” of the class at the diamond end of

the association. A composition is an aggregation indicating strong ownership of the

parts. In a composition, the parts live and die with the owner because they have no

role in the software system independent of the owner. See Figure A.3 for examples

of aggregation and composition. A College has an aggregation of Building objects,

which represent the buildings making up the campus. The College also has a collec-

tion of Courses. If the college were to fold, the buildings would still exist (assuming

the college wasn’t physically destroyed) and could be used for other things, but a

Course object has no use outside of the College at which it is being offered. If the

college were to cease to exist as a business entity, the course object would no longer

be useful and so it would also cease to exist.

Another common element of a class diagram is a note, which is represented

by a box with a dog-eared corner and that is connected to other icons by a dashed

line. It can have arbitrary content (text and graphics) and is similar to comments

in programming languages. It might contain comments about the role of a class or

constraints that all objects of that class must satisfy. If the contents are a constraint,

the contents are surrounded by braces. In Figure A.3, we see a constraint attached

to the Course class.

SECTION A.2. SEQUENCE DIAGRAMS

In contrast to class diagrams, which show the static structure of a software compo-

nent, a sequence diagram is used to show the dynamic communications between

objects during execution of a task. It shows the temporal order in which messages

are sent between the objects to accomplish that task.

In Figure A.4, you see a sequence diagram for a drawing program. The diagram

shows the steps involved in highlighting a fi gure in the drawing when it is clicked.

In a sequence diagram, there is a row of boxes across the top. Each box usu-

ally corresponds to an object, although it is possible to have the boxes model other

{must take place in a Building}
*

*
College Course

Building

FIGURE A.3 The relationship
between Colleges, Courses, and
Buildings.

10-M4377-APA.indd 30710-M4377-APA.indd 307 12/5/07 12:11:38 PM12/5/07 12:11:38 PM

308 Appendix A An Introduction to UML

things, such as classes. If the box represents an object (as is the case in all our ex-

amples), then inside the box you can optionally state the type of the object preceded

by the colon. You can also precede the colon and type by a name for the object,

as was done in the third box in Figure A.4. Below each box there is a dashed line

called the lifeline of the object. You should think of the vertical axis in the diagram

as corresponding to time, with time increasing as you move down.

A sequence diagram shows method calls using horizontal arrows from the caller

to the callee, labeled with the method name and optionally including its parameters,

their types, and the return type. For example, in Figure A.4, the MouseListener calls

the Drawing’s getFigureAt method. When an object is executing a method (i.e.,

when it has an activation frame on the stack), you can optionally display a white bar,

called an activation bar, down the object’s lifeline. In Figure A.4, activation bars

are drawn for all method calls. The diagram can also optionally show the return

from a method call with a dashed arrow and an optional label. In Figure A.4, the

getFigureAt method call’s return is shown labeled with the name of the object

that was returned. A common practice, as we have done in Figure A.4, is to leave off

the return arrow when a void method has been called since it clutters up the diagram

while providing little information of importance. A black circle with an arrow com-

ing from it indicates a found message whose source is unknown or irrelevant.

You should now be able to understand the task that Figure A.4 is displaying.

An unknown source calls the mouseClicked method of a MouseListener, passing

in the point where the click occurred as the argument. The MouseListener in turn

calls the getFigureAt method of a Drawing, which returns a Figure. The Mouse-

.mouseClicked(point)

.getFigureAt(point)

.highlight(graphics)

aFigure

.setColor(red)

.drawRect(x,y,w,h)

.drawString(s)

:MouseListener :Drawing aFiqure:Figure :Graphics

FIGURE A.4 A sample sequence diagram.

10-M4377-APA.indd 30810-M4377-APA.indd 308 12/5/07 12:11:38 PM12/5/07 12:11:38 PM

 Appendix A An Introduction to UML 309

Listener then calls the highlight method of the Figure, passing in a Graphics ob-

ject as argument. In response, the Figure calls three methods of the Graphics object

to draw the Figure in red.

This diagram is very straightforward, with no conditionals or loops. How do

you draw sequence diagrams with these control structures? Probably the best way is

to draw a separate sequence diagram for each case. That is, if the message fl ow can

take two different paths depending on a condition, then draw two separate sequence

diagrams, one for each possibility.

If you insist on including loops, conditionals, and other control structures in a

sequence diagram, then you can use interaction frames, which are rectangles that

surround parts of the diagram and that are labeled with the type of control struc-

tures they represent. In Figure A.5, you see two such frames. This diagram shows

the process involved in highlighting all the fi gures inside a given rectangle. The

MouseListener is sent the rectDragged message. The MouseListener then tells

the drawing to highlight all fi gures in the rectangle by calling the Drawing’s high-
lightFiguresIn method, passing the rectangle as the argument. That method

loops through all Figures in the Drawing, and, if the Figure intersects the rectangle,

the Figure is asked to highlight itself. The phrases in square brackets are called

guards, which are boolean conditions that must be true if the action inside the inter-

action frame is to continue.

There are many other special features that can be included in a sequence dia-

gram. For example,

 1. You can distinguish between synchronous and asynchronous messages. Syn-

chronous messages are shown with solid arrow heads while asynchronous mes-

sages are shown with stick arrow heads.

:MouseListener :Drawing :Figure

.mouseClicked(point)

.highlightFiguresIn(rect)

[for all Figures in the Drawing]

.highlight(g)

loop()

opt

[Figure intersects rect]

FIGURE A.5 A sequence diagram with two interaction frames.

10-M4377-APA.indd 30910-M4377-APA.indd 309 12/5/07 12:11:39 PM12/5/07 12:11:39 PM

310 Appendix A An Introduction to UML

 2. You can show an object sending itself a message with an arrow going out from

the object, turning downward, and then pointing back to the same object.

 3. You can show object creation by drawing an arrow appropriately labeled (for

example, with a «create» label) to an object’s box. In this case, the box will ap-

pear lower in the diagram than the boxes corresponding to objects already in

existence when the action begins.

 4. You can show object destruction by a big X at the end of the object’s lifeline.

Other objects can destroy an object, in which case an arrow points from the

other object to the X. An X is also useful for indicating that an object is no lon-

ger usable and so is ready for garbage collection.

The last three features are all shown in the sequence diagram in Figure A.6.

SECTION A.3 STATE MACHINE DIAGRAMS

The behavior of an object at a particular point in time very often depends on the state

of the object, that is, the values of its variables, at that time. For a trivial example,

consider an object with a boolean instance variable. When asked to perform an op-

eration, the object might do one thing if that variable is true and do something else if

it is false. If an object has many different states and performs many different actions

depending on those states, then, to ensure the object is behaving properly, it is critical

to have a complete picture of all states, the actions in each state, and the transitions

between the states of the object. UML state diagrams provide such a picture.

For an example of a UML state diagram, we will consider a Java compiler.

The input to the compiler is a text fi le, which can be thought of as a long string of

characters. The compiler reads those characters one at a time and, from them, deter-

mines the structure of the program. One small part of this process of reading in the

characters involves ignoring “white space” characters (which, for this discussion,

:Thing1

.Thing2()

.destroy()

.foo()

<<create>>
:Thing2

FIGURE A.6 Creation, destruction, and
loops in sequence diagrams.

10-M4377-APA.indd 31010-M4377-APA.indd 310 12/5/07 12:11:39 PM12/5/07 12:11:39 PM

 Appendix A An Introduction to UML 311

we will assume are the space, tab, and end-of-line characters) and characters inside

a comment.

Let us focus just on this process of white space and comment elimination. Sup-

pose that the compiler delegates to a WhiteSpaceAndCommentEliminator the job

of advancing over white space characters and characters in comments. That is, this

object’s job is to read input characters until all white space and comment characters

have been read, at which point it returns control to the compiler to read and process

non–white space and noncomment characters. Think about how the WhiteSpace-

AndCommentEliminator, as it reads in characters, determines whether the next char-

acter is white space or part of a comment. The WhiteSpaceAndCommentEliminator

can check for white space by just testing the next character against ' ', '\t', '\n',
and '\r'. But how does it determine whether the next character is part of a comment?

For example, when it sees a '/' for the fi rst time, it doesn’t yet know whether that

character represents a division operator, part of the /= operator, or the beginning of

a line or block comment. To make this determination, the WhiteSpaceAndComment

 Eliminator needs to make a note of the fact that it saw a '/' and then move on to

the next character. If the character following the '/' is another '/' or a '*', then

the WhiteSpaceAndCommentEliminator knows that it is now reading a comment

and can advance to the end of the comment without processing or saving any char-

acters. If the character following the fi rst '/' is anything other than '/' or '*', then

the WhiteSpaceAndCommentEliminator knows that the '/' represents the division

operator or part of the /= operator and so it stops advancing over characters.

In summary, as the WhiteSpaceAndCommentEliminator reads in characters,

it needs to keep track of several things, including whether the current character is

white space, whether the previous character it read was a '/', whether it is currently

reading characters in a comment, whether it has reached the end of comment, etc.

These all correspond to different states of the WhiteSpaceAndCommentEliminator.

In each of these states, the WhiteSpaceAndCommentEliminator behaves differently

with regard to the next character read in.

To help us visualize all the states of this object and how it changes state, we

will use a UML state diagram. See Figure A.7. A state diagram displays states using

rounded rectangles, each of which has a name in its upper half. There is also a black

circle called the initial pseudostate, which isn’t really a state and instead just points

to the initial state. In Figure A.7, the Start state is the initial state. Arrows pointing

from one state to another state indicate transitions or changes in the state of the

object. Each transition is labeled with a trigger event, a slash (“/”), and an activity.

All parts of the transition labels are optional in state diagrams. If the object is in

one state and the trigger event for one of its transitions occurs, then that transition’s

activity is performed and the object changes into the new state indicated by the

transition. For example, in Figure A.7, if the WhiteSpaceAndCommentEliminator is

in the Start state and the next character is '/', then the WhiteSpaceAndComment-

Eliminator advances past that character and changes to the saw'/' state. If the char-

acter after the '/' is another '/', then the object advances to the line comment

state and stays there until it reads an end-of-line(eoln)character. If instead the next

character after the '/' is a '*', then the object advances to the blockcomment

state and stays there until it sees another '*' followed by a '/', which indicates the

end of the block comment. Study the diagram to make sure you understand it. Note

10-M4377-APA.indd 31110-M4377-APA.indd 311 12/5/07 12:11:39 PM12/5/07 12:11:39 PM

312 Appendix A An Introduction to UML

that, after advancing past white space or a comment, the WhiteSpaceAndComment-

Eliminator goes back to the Start state and starts over. That behavior is necessary

since there might be several successive comments or white space characters before

any other characters in the Java source code.

An object may transition to a fi nal state, indicated by a black circle with a white

circle around it, which indicates there are no more transitions. In Figure A.7, the

WhiteSpaceAndCommentEliminator is fi nished when the next character is not

white space nor part of a comment.

Note in our diagram that all transitions except the two transitions leading to

the fi nal state have activities consisting of advancing to the next character. The two

transitions to the fi nal state do not advance over the next character because the next

character is part of a word or symbol of interest to the compiler. Note that if the

object is in the saw '/' state but the next character is not '/' or '*', then the '/'

was the division operator or part of the /= operator and so we don’t want to advance.

In fact, we want to back up one character to make the '/' into the next character, so

that the '/' can be used by the compiler. In Figure A.7, this activity of backing up is

labeled as pushback '/'.
One advantage of using state diagrams is that it helps you to avoid missed or

unexpected situations. That is, with a state diagram, it is relatively easy to ensure

that all possible trigger events for all possible states have been accounted for. For

example, in Figure A.7, you can easily check that, in every state, we have included

transitions for all possible characters.

next char=eoln/advance

next char!=eoln/advance

next char='/'/advance

next char='/'/advance

linecomment

blockcomment

saw'*'

saw'/'

next char=anything else

next char='/'/advance

next char ='!'/advance*

next char='*'/advance

end of white space

next char='*'/advance

next char='*'/advance

Start

next char=' ','\t','\r','\n’/advance
next char='/'or'*'/pushback '/'

FIGURE A.7 A state diagram for advancing past white space and comments in Java.

10-M4377-APA.indd 31210-M4377-APA.indd 312 12/5/07 12:11:40 PM12/5/07 12:11:40 PM

 Appendix A An Introduction to UML 313

UML state diagrams can contain many other features not included in Figure A.7.

For example, when an object is in a state, it usually does nothing but sit and wait for

a trigger event to occur. However, there is a special kind of state, called an activity
state, in which the object performs some activity, called a do-activity, while it is in

that state. To indicate that a state is an activity state in the state diagram, you include

in the bottom half of the state’s rounded rectangle the phrase “do/” followed by the

activity that is to be done while in that state. The do-activity may fi nish before any

state transitions occur, after which the activity state behaves like a normal waiting

state. If a transition out of the activity state occurs before the do-activity is fi nished,

then the do-activity is interrupted.

Also, as was mentioned earlier, a transition’s trigger event is optional, and so it is

possible that there is no trigger event listed as part of a transition’s label. For normal

waiting states, the object will immediately transition from that state to the new state.

For activity states, such a transition is taken as soon as the do-activity fi nishes.

For a simple example of activity states and transitions without triggers, see Fig-

ure A.8, which shows some of the states that a telephone may be in. When a caller

is placed on hold, the call goes into the “On hold with music” state, at which time

soothing music is played for 10 seconds. After those 10 seconds, the do-activity of

the state is completed, after which the state behaves like a normal nonactivity state.

If the caller pushes the # key when the call is in the “On hold with music” state, the

call transitions to the “Canceled” state and then transitions immediately to the “Dial

tone” state. If the # key is pushed before the 10 seconds of soothing music has com-

pleted, the do-activity is interrupted and the music stops immediately.

SECTION A.4 USE CASE DIAGRAMS

During the requirements gathering phase of software development, before any

software has been written, one of the things the developers need to decide is the

functionality of the system from the user’s perspective. The developers need to ask

On hold with music

do/play soothing music for 10 seconds

Canceled Conversing

Dial tone

put on hold

key pushed taken off hold

hang up

FIGURE A.8 A state diagram
with an activity state and a
triggerless transition.

10-M4377-APA.indd 31310-M4377-APA.indd 313 12/5/07 12:11:40 PM12/5/07 12:11:40 PM

314 Appendix A An Introduction to UML

themselves questions like the following: Who are the users? What should the system

be able to do for its users? How is the system going to interact with a user to ac-

complish these goals? Ideally, a complete list of all the uses to which the system will

be put should be created in the requirements phase of development. Use cases and

UML use case diagrams are helpful in this stage of software development.

To give you a feeling for how use cases and use case diagrams work, we will

create some for a software application for managing digital music fi les, similar to

Apple’s iTunes software. Think about the functionality such an application should

have. Here are some things it might do:

� Download an mp3 music fi le, and store it in the application’s library.
� Capture streaming music, and store it in the application’s library.
� Manage the application’s library (e.g., delete songs or organize them in play

lists).
� Burn a list of the songs in the library onto a CD.
� Load a list of the songs in the library onto an iPod or mp3 player.
� Convert a song from mp3 format to AAC format and vice versa.

This is not an exhaustive list, but it is suffi cient to understand the role of use cases

and use case diagrams.

A use case explains the functionality of a software system through a series of

steps the user takes as he or she interacts with the system to accomplish a goal. For

example, consider how the music application would accomplish the goal of burning a

list of songs onto a CD. We can describe it as a series of steps, such as the following:

 1. User creates a new empty list.

 2. User browses the library and adds songs to the list.

 3. User tells the application to burn the list to a CD.

These steps form a use case. They could be further subdivided to give a more de-

tailed picture of the use case, but it is often best to leave out low-level details, in-

cluding user interface details, until they are needed.

There can be variations in each use case. For example, what if the user, after

telling the music application to burn the CD, wants to cancel the burn before it is

done? Or what if all the songs in the list don’t fi t on one CD? What if, after telling

the application to burn the list to a CD, the user realizes she doesn’t have a blank

CD to be burned? These variations, as well as the main sequence of steps, forms

scenarios, which can be defi ned as sequences of steps in a use case describing one

branch of the possible variations. For example, here’s one scenario for the use case

we’ve been discussing:

 1. The user creates a new empty list.

 2. The user adds some songs to the list.

 3. The user tells the system to burn the list to a CD.

 4. The system responds that the songs won’t fi t on a CD and asks how to proceed

 5. The user cancels the burn request.

One could say that a use case is just a collection of scenarios with a common user

goal [3].

10-M4377-APA.indd 31410-M4377-APA.indd 314 12/5/07 12:11:40 PM12/5/07 12:11:40 PM

 Appendix A An Introduction to UML 315

Once all the use cases and variations have been described, then the developers

have a good idea of the functionality of the system. It is at this point that UML use

case diagrams come in handy. Such a diagram is an overview of all the use cases

and how they are related, and so gives the big picture of the functionality of the

system. In Figure A.9, there is a use case diagram for the digital music application

discussed above.

In this diagram, there is a stick fi gure representing an actor. Actors are the dif-

ferent roles that users play when they interact with the system. An actor usually rep-

resents a person but can represent other things, such as another software system. Use

case diagrams for more complex systems typically have more than one actor. For ex-

ample, a vending machine application might have three actors representing custom-

ers, repair personnel, and vendors who refi ll the machine.

In the use case diagram, the use cases are displayed as ovals. The actors are con-

nected by lines to the use cases that they carry out. Note that none of the details of the

use cases are included in the diagram and instead need to be stored separately. Note

also that the use cases are placed in a rectangle but the actors are not. This rectangle is

a visual reminder of the system boundaries and that the actors are outside the system.

Some use cases in a system might be related to each other. For example, there

are similar steps in burning a list of songs to a CD and in loading a list of songs to

an iPod. In both cases, the user fi rst creates an empty list and then adds songs from

Convert music file to new format

Burn a list of songs to CD

Load a list of songs to iPod

Download music file & save to library

Organize the library

Capture streaming music & save to library

User

FIGURE A.9 A use case diagram for the music application.

10-M4377-APA.indd 31510-M4377-APA.indd 315 12/5/07 12:11:41 PM12/5/07 12:11:41 PM

316 Appendix A An Introduction to UML

the library to the list. To avoid duplication in use cases, it is usually better to create

a new use case representing the duplicated activity and then let the other use cases

include this new use case as one of their steps. Such inclusion is indicated in use

case diagrams, as in Figure A.10, by means of a dashed arrow labeled «include»

connecting a use case with an included use case.

A use case diagram, because it displays all use cases, is a helpful aid for ensur-

ing that you have covered all the functionality of the system. In our digital music

organizer, we would surely want more use cases, such as a use case for playing a

song in the library.

But keep in mind, that the most valuable contribution of use cases to the soft-

ware development process is the textual description of each use case, not the overall

use case diagram [3]. It is through the descriptions that you are able to form a clear

understanding of the goals of the system you are developing.

Convert music file to new format

load a list of songs to iPod

<<include>>

<<include>>

<<include>>
Burn a list of songs to CD

Download music file & save to library

Organize the library

edit song list

Capture streaming music & save to library

User

FIGURE A.10. A use case diagram with included use cases.

SECTION A.5 SUMMARY

We have provided an overview of the four UML di-

agrams used in this text: class, sequence, state, and

use case diagrams. For more details regarding those

diagrams and to learn about other UML diagrams,

you are referred to Martin Fowler’s book [3], which

is a convenient reference manual for UML 2.0, giv-

ing short and concise descriptions of each of the dia-

grams. If you are interested in all the gritty details of

UML 2.0, then you should read either the UML refer-

ence manual [4] or the user guide [1]. You can also

fi nd much information online at Web sites such as

www.uml.org and www.uml-forum.com.

10-M4377-APA.indd 31610-M4377-APA.indd 316 12/5/07 12:11:41 PM12/5/07 12:11:41 PM

http://www.uml.org
http://www.uml-forum.com

 Appendix A An Introduction to UML 317

EXERCISES

 1. Why is it often important to include a dependency

relationship in a UML diagram? That is, who cares

about such relationships?

 2. In Figure A.2, the Thoroughbred class could have

been drawn with an association from that class back

to itself. Why?

 3. In Section A.3, we said that the space, tab, and end-

of-line characters are white space characters. What

other characters are also white space characters for

Java?

 4. Implement the WhiteSpaceAndCommentEliminator

discussed in Section A.3. It should have one public

method

public void advanceOverWhiteSpace-
 AndComments(PushbackInputStream
 input)

 that reads the input, one character at a time, until all

consecutive white space characters and characters in

comments have been read—that is, until a non–white

space or noncomment character is the next character

in the input stream.

REFERENCES

 1. Booch, G., J. Rumbaugh, and I. Jacobsen, The
Unifi ed Modeling Language User Guide, 2nd

ed. Object Technology. 2005. Reading MA:

Addison-Wesley.

 2. Gamma, E., Design Patterns, Elements of Reusable
Object-Oriented Software. Professional Comput-

ing. 1995. Reading, MA: Addison-Wesley.

 3. Fowler, M., UML Distilled, 3rd ed. Object Technol-

ogy (ed). 2004. Reading, MA: Addison-Wesley.

 4. Rumbaugh, J., I. Jacobsen, and G. Booch, The Uni-
fi ed Modeling Language Reference Manual, 2nd

ed. Object Technology (ed). 2004. Reading, MA:

Addison-Wesley.

10-M4377-APA.indd 31710-M4377-APA.indd 317 12/5/07 12:11:41 PM12/5/07 12:11:41 PM

SECTION B.0 INTRODUCTION

Software developers are, of course, free to layout their source code fi les any way

they wish, including the order of the methods, fi elds, and constructors, as well as the

layout of the comments in the source code. However, it is benefi cial, as mentioned in

Chapter 4, for everyone on a project to follow some convention to make reading the

source fi les easier for everyone on the team.

Sun Microsystems has developed some standard conventions for Java source

code layout and, unless you have specifi c reasons to do otherwise, it is recommended

that you follow these conventions. One advantage of doing so is that it enables you

to use the Javadoc tool.

In this appendix, we will present a sampling of the many style guidelines that ap-

pear in Sun Microsystem’s coding conventions [1] and in the many Java trade books.

You have likely learned most or all of these guidelines in your programming

classes. Furthermore, many modern development environments will reformat your

source fi les for you, making it easier for you to properly lay out the fi les. However,

the material is included here as a refresher and as a reminder of the importance of

some of these guidelines in terms of making your code readable.

We will also cover Javadoc notation in somewhat more detail so that you can

properly write source code using that notation.

It should be noted that this text follows most, but not all, of the Java conven-

tions. The author, like most people, has his own idiosyncrasies and his own prefer-

ences, which he has used here.

SECTION B.1 INDENTATION AND SPACING

For a simple example of how following conventions can improve readability, consider

the conventions regarding spacing and indenting. As simple an action as lining up

data can greatly improve readability. For example, a two-dimensional array A can be

initialized with a fi xed set of Strings as follows:

318

B AppendixAppendix

Coding Conventions
and Javadoc Comments

String[][] A = {{"Maurice","Wilkes"}, {"Richard","Hamming"}, {"Marvin", "Minsky"},
 {"John","McCarthy"}, {"Ole-Johan","Dahl"}, {"Kristen","Nygaard"}};

11-M4377-APB.indd 31811-M4377-APB.indd 318 12/5/07 12:11:57 PM12/5/07 12:11:57 PM

 Appendix B Coding Conventions and Javadoc Comments 319

However, the following spacing and indentation scheme makes the code more

readable.

 String[][] A = {{ "Maurice" , "Wilkes" },
 { "Richard" , "Hamming" },
 { "Marvin" , "Minsky" },
 { "John" , "McCarthy" },
 { "Ole-Johan", "Dahl" },
 { "Kristen" , "Nygaard" }};

Improper spacing within a line can also reduce the readability of the code. For ex-

ample [2, Chap. 18], consider the arithmetic expression

2+3 * 4+5

Although it looks like you are performing two additions to get 5 and 9 followed by

the multiplication of 5 * 9 to get 45, in fact you are computing 2 � 12 � 5.

Indentation can similarly provide signifi cant help in making code readable and

cause signifi cant problems when done improperly. In particular, if the writer of code

does not indent the body of a method or a loop or doesn’t line up sequential state-

ments, the code becomes horribly unreadable. Also, anyone who has ever written

a statement like the following and then wondered why only the fi rst statement gets

executed in the body of the loop is a victim of misleading indentation:

while (foo())
 statementOne();
 statementTwo();
 statementThree();

Use proper indentation and spacing to improve readability.

Guideline

SECTION B.2 PUNCTUATION AND LAYOUT

In the preceding section, you saw how the expression 2+3 * 4+5 is misleading

because of the spacing. One way that this problem could have been avoided is by in-

cluding parentheses, such as 2+(3 * 4)+5 to indicate the order of operations. Such

parentheses are necessary if you want the operations performed in an order other

than their standard precedence order, but it is valuable to use parentheses even in

cases where it is unnecessary, as in the expression above, because of the clarity it

adds to the expression.

For another example, no parentheses or spaces are needed in the expression

x*4-5/2.67/788 but parentheses and spacing, such as (x*4) – (5/2.67)/788,

can improve its readability.

11-M4377-APB.indd 31911-M4377-APB.indd 319 12/5/07 12:11:58 PM12/5/07 12:11:58 PM

320 Appendix B Coding Conventions and Javadoc Comments

In the preceding section, we saw how misleading the following expression is:

while (foo())
 statementOne();
 statementTwo();
 statementThree();

One way to avoid this problem is to include braces around the body of every block,

regardless of whether they are required. If such braces were included above, as in

while (foo()) {
 statementOne();
}
 statementTwo();
 statementThree();

then there would be little confusion as to which statements are in the loop.

Problems with readability come in other forms as well. For example, when a

line of code needs to be wrapped because the line is too long, there are readable

and unreadable ways of wrapping it. In particular, if your lines are required to be at

most 80 characters long (one of the Java conventions), don’t automatically break the

line at the 80th character. Instead, break it where it makes the most sense for read-

ability. For example, the line

throw new NumberFormatException("The number " + inputLong +
 " won’t" + " fit in the first " + numBits + " bits.");

For another example, consider a method declaration with too many parameters

to fi t on one line. It is best to break between parameters and indent the continuation

line to line up with the parameters on the fi rst line, if possible. For example, a good

layout would be

public void doSomethingToFourStrings(String first, String second,
String third, String fourth)

A loop that has a conditional that won’t fi t on one line should break at a place

in the conditional that is at as high a level as possible (that is, avoid breaking inside

deeply nested parentheses) and should be indented in a way that distinguishes it

from the body of the loop. For example, a good break and indentation would be the

following:

while(longBooleanExpression1 && longBooleanExpression2 &&
 longBooleanExpression3) {
 foo(x);
}

Notice how the continuation of the conditional lines up with the conditionals above

it instead of with the statement in the body of the loop, which helps the reader dis-

tinguish between the parts.

11-M4377-APB.indd 32011-M4377-APB.indd 320 12/5/07 12:11:58 PM12/5/07 12:11:58 PM

 Appendix B Coding Conventions and Javadoc Comments 321

In addition to lines that are longer than 80 characters and so need to be broken,

there are also lines that are shorter than 80 characters but still should be broken. For

example, it is perfectly legal to have two or more statements on the same line, and so

you might see a line of code like the following:

x++; System.out.println(x+y); y++;

This may save lines on the screen, allowing you to view more code at once, but it is

not good style. Each statement should be on its own line.

Furthermore, each declaration should also be on its own line. It is perfectly

legal to have

JFrame oldFrame, newFrame;

but it is better to write it as

JFrame oldFrame;
JFrame newFrame;

Not only is it more readable, but you also now have room at the end of the line for

comments explaining the role of each of the variables.

Blank lines should also be used frequently to make the code more readable. In

particular, there should be blank lines separating class, interface, and method decla-

rations. There should also be blank lines within method bodies separating blocks of

code that perform different functions, such as blank lines between the declarations

at the beginning of a block and the statements in the rest of the block.

Use punctuation such as parentheses, braces, and lines to your advantage to

make your code more readable, even in situations where they are not needed.

Guideline

SECTION B.3 FORMATTING A LOOP

Java language constructs such as loops can be written in many formats, but not all

of them are equally readable.

Consider a loop that steps through an array A and prints all the values. Such a

loop can have many forms, including the following six forms. Study them to deter-

mine whether they all do the same thing. (Hint: The answer is no.)

� for(int a: A) {
 System.out.println(a);
 }

11-M4377-APB.indd 32111-M4377-APB.indd 321 12/5/07 12:11:59 PM12/5/07 12:11:59 PM

322 Appendix B Coding Conventions and Javadoc Comments

� for(int i = 0; i < A.length; i++) {
 System.out.println(A[i]);
 }
� for(int i = 5; i - 5 < A.length; i++) {
 System.out.println(A[i-5]);
 }
� for(int i = 0; i <= A.length - 1; i++) {
 System.out.println(A[i]);
 }
� int i = 0;
 while(i < A.length) {
 System.out.println(A[i]);
 i++;
 }
� int i;
 for(i = 0; i < A.length; i++) {
 System.out.println(A[i]);
 }

In fact, there is a subtle difference between the fi rst four forms and the last two. The

difference is that, in the last two forms, the variable i has been declared outside the

loop and so its scope (that is, where it can be used) extends beyond the loop body to

the end of the enclosing body of code (for example, the end of an outer loop or the

end of the method that contains this code). The programmer may or may not have

intended to use i after exiting the loop. If not, then one of the fi rst four forms is

preferable because, in those cases, the compiler will catch any accidental use of i

after exiting the loop.

The main point we are trying to make here is that it takes the reader valuable

time to convince himself or herself that these loops are or are not equivalent. This

time can be better spent on other things.

So which of the forms should you use? It is somewhat a matter of preference.

The fi rst one is the standard form since Javal.5 and is, in our opinion, the most read-

able of them. That is, it takes the least amount of mental effort to convince ourselves

that the statement actually accomplishes its objective. The fi fth example is nonstan-

dard because while loops are generally used when you do not know ahead of time

how many times the loop body will be executed. A for loop is preferable in cases

where you know the number of times the loop body will be executed, as is the case

when stepping completely through an array.

If a variable is supposed to be used only in the body of a loop, declare it in the

body. More generally, give a variable the narrowest scope you can.

Guideline

11-M4377-APB.indd 32211-M4377-APB.indd 322 12/5/07 12:11:59 PM12/5/07 12:11:59 PM

 Appendix B Coding Conventions and Javadoc Comments 323

SECTION B.4 INCREMENTING
INTEGER VARIABLES

Consider again the second of the loops in the preceding section. There are many

ways to increment i inside that loop. Here are some examples. Do they all do the

same thing? (Hint: The answer is no.)

� for(int i = 0; i < A.length; i++) {
 System.out.println(A[i]);
 }
� for(int i = 0; i < A.length;) {
 System.out.println(A[i]);
 i++;
 }
� for(int i = 0; i < A.length; ++i) {
 System.out.println(A[i]);
 }
� for(int i = 0; i < A.length; i = i + 1) {
 System.out.println(A[i]);
 }
� for(int i = 0; i < A.length; i += 1) {
 System.out.println(A[i]);
 }
� for(int i = 0; i < A.length;) {
 System.out.println(A[i++]);
 }
� for(int i = 0; i < A.length;) {
 System.out.println(A[++i]);
 }

The fi rst six of these examples are equivalent, although some are easier to read than

others. The last example is not equivalent in that it crashes with an ArrayIndex-

OutOfBoundsException (can you see why?). The fi rst version is the form we prefer.

Once again, the whole point of following standard coding conventions is to make

your code easier to read. If i++ is a standard convention for updating the index

when stepping through an array A and if you write i=i+1, then the reader will have

to waste a small amount of mental effort convincing herself or himself that this loop

really does step through the whole array.

In the examples above, it is important to realize that the phrase i++ (as well

as ++i) is both an assignment statement and an arithmetic expression. That is, it

Use the “��” operator as an assignment operator only. More generally, avoid

embedding any assignment statements in expressions.

Guideline

11-M4377-APB.indd 32311-M4377-APB.indd 323 12/5/07 12:11:59 PM12/5/07 12:11:59 PM

324 Appendix B Coding Conventions and Javadoc Comments

increments the value of i and also can be used in expressions to represent the value

of i, as was done in the last two examples above. Such double use, if done indiscrimi-

nately, can result in legal but horribly unreadable code. Consider the following legal

code:

int x = 1;
x += x++;
System.out.println(x);

Can you tell us what value is printed without actually running the code? (The an-

swer is “2.” Can you see why?)

For the same reason, you should also avoid multiple assignments in the same

statement, such as

x = y = 3;

It is harder to read than

x = 3;
y = 3;

SECTION B.5 WORKING WITH
BOOLEAN VARIABLES

Let’s now take a look at boolean expressions and consider ways of making them more

readable. A simple example is the following statement where b is a boolean variable:

if (b == true)
 return true;
else
 return false;

This statement is far too verbose. An equivalent and much more readable state-

ment is:

return b;

This statement can be made even more readable by using an intention-revealing

name for the variable.

It is also valuable to make complex boolean expressions as simple as possible

using DeMorgan’s laws and other Boolean algebra laws. For example, assume that

foo() and bar() are methods that return a boolean value and that a, b, c, and d

are boolean variables and consider the following expressions:

� true || foo()
� false && bar()
� a && !b || !d && c
� !(b || !(c && d))

11-M4377-APB.indd 32411-M4377-APB.indd 324 12/5/07 12:12:00 PM12/5/07 12:12:00 PM

 Appendix B Coding Conventions and Javadoc Comments 325

The fi rst expression can be simplifi ed to true and the second to false due to Java’s

short-circuit evaluation of boolean expressions. The third expression above is crying

out for parentheses, such as (a && !b) || (!d && c) to make it easier to read.

The fourth expression could be simplifi ed by an application of DeMorgan’s laws as

follows:

!(b || !(c && d)) ⇔ !b && (c && d)

Such simplifi cations usually make the code much more readable.

Another situation in which boolean variables are used in a confusing way

involves conditional expressions in multiway branch statements. For example, con-

sider the following code used to test for all possible values of two boolean variables

a and b:

if(a && b)
 return 1;
else if(a && !b)
 return 2;
else if(!a && b)
 return 3;
else if(!a && !b)
 return 4;
else
 return 5;

After briefl y studying this code, you should realize that the last else clause will

never get executed because the preceding four cases cover all possibilities. There-

fore, the last else clause should be removed. But an additional change should be

made as well. If the fi rst three conditionals all fail, then the fourth conditional must

succeed and so there is no need to test for it. However, it is good to include a comment

reminding you of the conditions under which the fourth case happens. Therefore, a

good way to write the if statement above is:

if(a && b)
 return 1;
else if(a && !b)
 return 2;
else if(!a && b)
 return 3;
else //if(!a && !b)
 return 4;

Simplify boolean expressions to make the conditions clearer.

Guideline

11-M4377-APB.indd 32511-M4377-APB.indd 325 12/5/07 12:12:00 PM12/5/07 12:12:00 PM

326 Appendix B Coding Conventions and Javadoc Comments

SECTION B.6 LINE AND BLOCK COMMENTS

There are a few guidelines you should follow in the way you use line comments

(starting with “//”) and block comments (surrounded by “/*” and “*/”).

Block comments should be used instead of line comments if you have several

consecutive lines of comments. Also, block comments should have asterisks lined

up on every line on the left side as a visual clue to the reader that every line is part

of the comment.

In particular, when commenting out a section of code, you should not just add

a “/*” before the section and “*/” after the section. For commenting out a section

of code, it is recommended that you add “//” in front of every line. This use of line

comments is a good clue that the code has been temporarily removed.

Luckily modern development environments help out by adding special styles to

commented code, such as a different color or italics. Such environments also make

it easy to add and remove “//” in front of every line of a section of code.

SECTION B.7 FILE LAYOUT

Sun’s layout conventions for Java source fi les suggest that you include the following

components in the order given:

 1. A block comment including the name of the fi le, the date, and any copyright

information.

 2. An optional package declaration and include statements.

 3. The public class or interface declaration.

 4. Any nonpublic class or interface declarations.

Within each class declaration, the class components (comments, fi elds, constructors,

and methods) should be laid out in the following order:

 1. A comment block containing class implementation details. These comments

include any information that is not appropriate for doc comments, such as class

invariants that are implementation specifi c.

 2. Static fi elds, ordered in decreasing accessibility (public fi elds fi rst, then pro-

tected, package, and private).

 3. Instance fi elds, ordered similarly.

 4. Constructors.

 5. Methods, ordered by functionality.

Figure B.1 gives an example of a source fi le laid out according to these guidelines. It

is complete except for doc comments, which will be added later. It assumes there is

a Horse class with getFather, getMother, getName, and isMale methods.

SECTION B.8 JAVADOC SYNTAX

In this section, we will discuss Sun’s coding conventions regarding Javadoc.

Javadoc is a tool for generating documentation that uses specially formatted

documentation comments or “doc comments” in the source code. When the Java-

11-M4377-APB.indd 32611-M4377-APB.indd 326 12/5/07 12:12:00 PM12/5/07 12:12:00 PM

 Appendix B Coding Conventions and Javadoc Comments 327

doc tool is run, it fi nds the doc comments in the source fi les and constructs HTML

pages containing the documentation in the doc comments. The HTML pages form

an API (application programming interface) for the classes. For an example of the

kind of HTML pages generated, see the API for the Java 1.5 libraries at http://
java.sun.com/j2se/1.5.0/docs/api/.

Doc comment general format

There should be a doc comment immediately preceding each class or interface dec-

laration, fi eld declaration, constructor, and method declaration in a Java source fi le.

/*
 * RapFamily.java
 * Jan. 1, 2000
 */

package horses;

import java.util.*;

public class RapFamily
{
/*
 * This class leaves it to the users to ensure the
following
 * class invariants hold:
 * (a) sire is a stallion,
 * (b) sire’s male lineage goes back to Rap
 * (c) null is never added to the list of children
 * (d) all Horses in the list of children actually have
sire as their father.
 */

 public static final String ANCESTOR _ NAME = “Rap”;

 private final Horse sire;

 private ArrayList<Horse> children;

 public RapFamily(Horse sire) {
 this.sire = sire;
 this.children = new ArrayList<Horse>();
 }

 public void addChild(Horse foal) {
 children.add(foal);
 }

 public List<Horse> getChildren() {
 return new ArrayList<Horse>(children); }
}

FIGURE B.1 A Java source fi le following Sun’s conventions except it is missing doc
comments.

11-M4377-APB.indd 32711-M4377-APB.indd 327 12/5/07 12:12:00 PM12/5/07 12:12:00 PM

http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/

328 Appendix B Coding Conventions and Javadoc Comments

We will fi rst explain the general format of doc comments, and then we will give

more specifi c information concerning doc comments associated with each of these

types of declarations.

All doc comments begin with the delimiter “/**” and end with the delimiter

“*/” and so look similar to Java block comments except for the double asterisk in the

beginning delimiter.

The fi rst sentence or phrase of each doc comment is included in the summary

table in the HTML pages generated and so should always be a concise but complete

summary of the role of the class, interface, fi eld, constructor, or method or what it

models.

All the information in a doc comment is included in the HTML fi les generated

by Javadoc. To help Javadoc lay out the HTML fi les, you are allowed to add some

HTML tags in your doc comment. For example, you can add underline <u> or italic

<i> tags to format sequences of characters. You can add paragraph <p> tags be-

tween paragraphs in a doc comment. You are encouraged to use code <code> tags

for Java keywords and for names of packages, classes, interfaces, fi elds, methods,

and arguments. You should also use the <code> tag for sample code inside doc

comments. Links to other pages and pictures can also be included.

Doc comments also can include special Javadoc tags, all of which begin with

“@” such as @param and @return. These tags are provided to help Javadoc prop-

erly lay out the information in the HTML fi le. The use of the most common doc tags

is explained below.

Doc comments for classes and interfaces

The doc comment that immediately precedes a class or interface declaration should

have the following elements:

 1. A concise and complete phrase or statement describing what the class or inter-

face models.

 2. More details and any other information that the user of the class should know

about it in order to use it correctly.

 3. Author information preceded by the @author tag.

 4. Version information preceded by the @version tag.

Doc comments for fi elds

The doc comment preceding each fi eld should have the following elements:

 1. A concise and complete phrase or statement describing the role of the fi eld and

what it models.

 2. The value of the fi eld if it is a public constant of a primitive type or String.

Otherwise, include the range of possible valid values of the fi eld if it is not

otherwise clear.

 3. For nonprimitive fi elds, a statement saying whether null is a valid value and, if

so, what that value represents.

11-M4377-APB.indd 32811-M4377-APB.indd 328 12/5/07 12:12:01 PM12/5/07 12:12:01 PM

 Appendix B Coding Conventions and Javadoc Comments 329

Doc comments for constructors and methods

The doc comment preceding each method or constructor should have the following

elements:

 1. A concise and complete verb phrase or statement describing the intended be-

havior of the method or constructor.

 2. The behavior of the method or constructor in special circumstances, for ex-

ample, when it will throw exceptions.

 3. The range of valid values for the arguments and the range of valid values re-

turned by methods with a nonvoid return type.

 4. For each parameter, a line starting with the @param tag followed by the name

of the parameter and then by a description of the parameter. The description

should start with the type of the parameter (except words such as “a,” “an,”

“the” are allowed in front of the type).

 5. For each method with a nonvoid return type, a line starting the @return tag

followed by a description of the value being returned.

 6. For each checked exception and for each likely unchecked exception (other than

NullPointerException), a line starting with the @throws tag followed by the

type of exception thrown and an explanation of what causes the exception to be

thrown.

The set of lines with the @param tags should be preceded by a blank line. The

descriptions should be listed in the order of the parameters in the method or construc-

tor signature. These descriptions should be included even if the name of the parameter

gives all the information you need, making the description redundant. Similarly, the

line with the @return tag should be included even if the description is redundant.

Figure B.2 shows the same source fi le as in Figure B.1 above except with doc

comments added.

/*
 * RapFamily.java
 * Jan. 1, 2000
*/

package horses;

import java.util.*;

/**
 * Represents one male stallion in the lineage of Rap and all
 * that stallion’s offspring.
 * If you follow the chain of male ancestors from the sire,
 * you will eventually reach the famous stallion Rap.
 */
public class RapFamily
{
 /*
 * This class leaves it to the users to ensure the following
 * class invariants hold:

FIGURE B.2 A Java source fi le following Sun’s conventions including doc comments. Continued

11-M4377-APB.indd 32911-M4377-APB.indd 329 12/5/07 12:12:01 PM12/5/07 12:12:01 PM

 * (a) sire is a stallion,
 * (b) sire’s male lineage goes back to Rap
 * (c) null is never added to the list of children
 * (d) all Horses in the list of children actually have sire as their father.
 */

 /** the family name "Rap" */
 public static final String ANCESTOR _ NAME = "Rap";

 /**
 * the father for this family.
 * The sire must be a Horse who is male and whose
 * lineage goes back to Rap.
 */
 public final Horse sire;

 /**
 * the collection of offspring of the sire
 * It should never be null, although it could be empty.
 */
 private ArrayList<Horse> children;

 /**
 * constructs a new RapFamily for the given stallion.
 * The user is responsible for ensuring that sire != null
 * and that sire is actually a stallion that is a descendent of
Rap.
 **
 * @param sire the Horse whose offspring will be stored in this RapFamily
 */
 public RapFamily(Horse sire) {
 this.sire = sire;
 this.children = new ArrayList<Horse>();
 }

 /**
 * adds a new foal to the collection of children of this sire.
 * The user is responsible for ensuring that foal != null and
 * foal.getFather() == sire.
 *
 * @param foal the Horse being added to the set of children of
sire.
 **/
 public void addChild(Horse foal) { children.add(foal); }

 /**
 * creates and returns a new ArrayList<Horse> containing the
 * children of sire.
 * If there are no children, it returns an empty list.
 *
 * @return a new List<Horse> with all the children of sire.
 */
 public List<Horse> getChildren() {
 return new ArrayList<Horse>(children);
 }
}

FIGURE B.2 Continued

11-M4377-APB.indd 33011-M4377-APB.indd 330 12/5/07 12:12:01 PM12/5/07 12:12:01 PM

 Appendix B Coding Conventions and Javadoc Comments 331

SECTION B.9 SUMMARY

In this chapter, we reviewed some of the coding con-

ventions from Sun microsystem, including how to

write Javadoc comments.

To learn more about Sun’s coding conventions,

see the online documentation at http://java.sun.com/

docs/codeconv/html/CodeConvTOC.doc.html.
To learn more about Javadoc, see http://java.sun
.com/j2se/javadoc/ and especially http://java.sun
.com/j2se/javadoc/writingdoccomments/.

EXERCISES

 1. When talking about indenting and tabbing code, we

used an example of a two-dimensional array con-

taining the fi rst names and last names of six people:

Maurice Wilkes, Richard Hamming, Marvin Min-

sky, John McCarthy, Ole-Johan Dahl, and Kristen

Nygaard. Find out what these computer scientists

have in common.

 2. Consider the following legal Java statements. In

each case, fi rst guess and then compute the value of

x that is printed. Then justify the correct answer by

referring to the Java Language Specs. If you guessed

incorrectly, explain where your reasoning went

wrong. Do (a)–(e) all yield the same answer? Should

they?

 a. int x = 3; x += x++ + x++ + ++x;
System.out.println(x);

 b. int x = 3; x += 2 * x++ + ++x; System
.out.println(x);

 c. int x = 3; x = (x=x+1)+(x=x+1)+(x=x+1) +
x; System.out.println(x);

 d. int x = 3; x = x + (x=x+1)+(x=x+1)+
(x=x+1); System.out.println(x);

 e. int x = 3; int y = 5; x = y+++x; System
.out.println(x);

 3. The following code is perfectly legal but inelegant.

Why is it inelegant?

if (x < 3)
 System.out.println("yes");
else if (x > 3)
 System.out.println("no");
else if (x == 3)
 System.out.println("equal");
else
 System.out.println("other");

 4. Suppose that f() is a boolean function and g() is a

void method in a class A, and suppose that the body

of g includes the following code:

if (f() && false)
 System.out.println("yes");
else
 System.out.println("no");

 Can this statement be simplifi ed? If so, to what?

Explain.

 5. If you know that an array A of integers has a length

of 10, then is there any advantage to either of the fol-

lowing forms for looping through A and printing the

values? Explain.

for (int i = 0; i < A.length; i++)
 System.out.println(A[i]);
for (int i = 0; i < 10; i++) System.out.
 println(A[i]);

 6. Consider a program that needs to store 32 zeros and

ones in a variable x and occasionally needs to fl ip

all 32 bits (that is, replacing the zeros with ones and

vice versa).

 a. If x is an integer array of 32 zeros and ones, what

is a better way of fl ipping the bits than using

the statement if(x[i] == 0) then x[i] =
1 else x[i] = 0?

 b. If x is a (32-bit) integer variable using twos com-

plement notation and if the 32 zeros and ones are

stored as the 32 bits in x, what is an easy way to

fl ip all 32 bits?

 7. What is inelegant about the following two lines of

code? Assume that v is a Vector that was declared

and initialized earlier.

Object[] A = new Object[10];
A = v.toArray();

 8. Simplify the following boolean expressions. Assume

a, b, and c are boolean variables and f() and g()

are boolean-valued functions with no side effects.

 a. !(a || !b || c)

11-M4377-APB.indd 33111-M4377-APB.indd 331 12/5/07 12:12:01 PM12/5/07 12:12:01 PM

http://java.sun.com/
http://java.sun
http://java.sun

332 Appendix B Coding Conventions and Javadoc Comments

 b. !(false || f())
 c. (f() && g()) || c || !c
 Do any of your answers change if f() and g() have

side effects? Explain.

 9. Which of the following phrases might be legal state-

ments, which might be legal expressions, and which

are illegal? If phrase might be legal, what types must

each of the variables be for it to be legal?

 a. (x = y) = z
 b. (x = y) == z
 c. (x == y) = z
 d. (x == y) == z
 e. x = (y = z)
 f. x = (y == z)
 g. x == (y = z)
 h. x == (y == z)
 10. Come up with three coding style guidelines not men-

tioned in this appendix that you feel are very impor-

tant for readable code.

 11. Sometimes when you are reading code, you come

across a method whose body consists of exactly one

method call, for example,

public void foo(...) { bar(...); }

 Why isn’t the call to bar inlined? That is, why not

replace the call to bar in foo with the code in the

body of bar? It would seem to be more effi cient to

inline bar, in that you avoid another method call.

What is there to gain by foo calling bar?

 12. The RapFamily class example used in this appendix

when explaining layout and Javadoc conventions is

less useful than it could be because it is applicable

only to descendents of the great horse Rap. Rewrite

the class so that it is more generally useful for other

horse family trees.

REFERENCES

 1. Sun Microsystems, Inc., Code Conventions for the
Java Programming Language. Web page, 1999.

[Cited April 23, 2007; available from http://java
.sun.com/docs/codeconv/]

 2. McConnell, S., Code Complete, A Practical Hand-
book of Software Construction. 1993. Redmond,

WA: Microsoft Press.

11-M4377-APB.indd 33211-M4377-APB.indd 332 12/5/07 12:12:02 PM12/5/07 12:12:02 PM

http://java

333

Index

A
Abstract (keyword), 23, 30

Abstract classes, interfaces

compared to, 30–31

Abstract Factory pattern, 217

Abstract syntax tree (AST),

266–273, 266f, 271f
Accessibility, 13–14, 39–41

Accessor method, 143

Activation bar, 308

Activity state, 313, 313f
Actor, in UML use case diagram,

130–131, 130f, 315

Adapter class, 198–201

Adapter pattern, 197–201, 199f,
200f

Aggregation, in UML class

diagram, 307

Arithmetic methods, 176

Arrays

sorting, 64–74, 65f, 69f, 70f,
72f, 140

subclassing in Java, 74–75

asList method, 207, 209

Assert statements, 90–91

Assignment statement, 324

Association, in UML class diagram,

56, 305–307

Astrachan, Owen, 143

Attribute, class diagram, 304, 305

B
Bad smell, 111, 161

Beck, Kent, 196, 220

Blank lines, use of, 321

Block comments, 326

Booch, Grady, 303

Boolean variables

coding conventions, 324–326

naming, 84

Braces, coding conventions for

use of, 320

Brittle code, 111

Broadcasters, in Observer pattern,

224

Bugs, software

cost to U.S. economy, 3

historic examples, 3

introduction of during changes,

3–4

Builder pattern, 290–292, 291f

C
Capitalization, 84

Caretaker, in Memento pattern, 253

Class

abstract, 23, 30–31

adapter, 198–201

associations between, 56

candidate, obtaining

by extracting nouns, 131–132

CRC card use, 132–135, 133f,
134f

cohesiveness, 139–140

collection, 27–28, 205–208

consistent behavior, importance

of, 49–50

declaration, 259

description, 10–11

design guidelines

change, designing to handle,

155

class data, 145

class responsibilities, limiting,

139

class responsibilities, separat-

ing among objects, 141

coding to interfaces, 157

complete interface for

classes, 148

consistent interface for

classes, 149

data duplicate copies,

avoiding, 146

duplication avoidance, 141

Law of Demeter, 164

object task performance, 141

Open-Closed Principle, 156

designing for change, 154–161

doc comments for, 328–329

dynamic unloading, 204

encapsulation, 158

extending, 19–20

gatekeeper, 146

god, 139, 140f
ill-formed, 139

immutable, 51–52, 52f, 151–154

information hiding, 158–160

inner, 259

interface, complete and

consistent, 147–151

Java defi nition, 12–13

Money class (case study), 173–193

mutable versus immutable,

151–154

naming, 83

protocols (public interfaces),

constructing, 135–137

public and private, 13–14

responsibilities, 132–147

splitting, 60, 60f
subclass, 19–20

superclass, 19–20

trust, 145

wrapper, 153, 200–201

Class (keyword), 12

Class diagram, UML

abstract class/method, 23, 23f, 305

arrows in, 305–306

elements, 304f, 305f
attributes, 304, 305

class name, 304

note, 305

operations, 304, 305

responsibilities, 305

has-a (reference) relationship,

55f, 56

interface, representation of, 25,

26f, 305

Page references followed by f denote fi gures.

12-M4377-IX.indd 33312-M4377-IX.indd 333 12/5/07 12:12:21 PM12/5/07 12:12:21 PM

334 Index

Class diagram, UML (continued)

overview, 16–18, 17f
relationships between classes,

305–307, 307f
aggregation, 307

association, 305–307

composition, 307

dependency, 306

generalization, 305

multiplicity, 306–307

navigability, 306

realization, 305

Class invariants, 90–91

Class methods, 14, 15–16

Class variables, 14–15

Clone

deep, 107, 108–110

shallow, 107, 108

clone method, 106–110,

150, 254

CLOS, 285

Code duplication, 146

Code optimization, 120

Coding conventions, 318–331

boolean variable, 324–326

fi le layout, 326–327

formatting a loop, 322–323

incrementing integer values,

323–324

indentation and spacing, 318–319

Javadoc syntax, 328–331

doc comment for classes and

interfaces, 328–329

doc comment for constructors

and methods, 329

doc comment for fi elds, 329

doc comment general

format, 328

example of use, 330f–331f
tags, 328

line and block comments, 326

punctuation and layout, 319–

322

Coding style, 83

Cohesion, class, 139–140

Collaborators, CRC cards and,

132–135

Collection class, 27–28, 205–208

Collection, iterating, 205–210

Command, 89

Command pattern, 210–213, 212f

Command-Query Separation

Principle, 89

Comment

block, 326

built-in rather than add-on, 93

doc comment

for classes and interfaces,

328–329

for constructors and methods,

329

for fi elds, 329

general format, 328

Javadoc syntax, 328–331

line, 326

Common Lisp, 285

Comparator, 140

Composite pattern, 244, 246–248,

249–250, 249f
Composition, in UML class dia-

gram, 307

Conditional statements, using poly-

morphism to avoid, 35, 64

Consistent (relational property),

99

Consistent behavior, importance of,

49–50

Constants

defi ned by class variables, 15

naming, 84

Constructor

chaining, 86–87

doc comment, 329

hiding, 201–202, 203

no-argument, 20

non-inheritance of, 20

private, 202, 204

Convenience methods, 148–149

Conventions. See Coding

conventions

Coupling, minimizing, 158

CRC cards

defi ned, 132

role playing with, 132

use for selecting candidate

classes, 132–135, 133f, 134f
Cunningham, Ward, 220

D
Decomposition, 85–87

Defensive programming, 97, 147

Delegation, 153

DeMorgan’s laws, 325

Dependency, UML class diagram

relationship, 306

Design. See also Program design

elegance in, 1–7

levels, 82

Design guidelines

assignment statements, 324

avoiding conditionals, 64

boolean expression simplifi ca-

tions, 326

caching values, effect of, 91

change, designing to handle, 155

class data, 145

class responsibilities, limiting,

139

class responsibilities, separating

among objects, 141

code complication, 92

coding style, 83

coding to interfaces, 157

cohesive methods, 87

comments, writing, 93

complete interface for classes, 148

consistent behavior, 49

consistent interface for

classes, 149

data duplicate copies,

avoiding, 146

decomposition, method use

for, 87

defensive programming, 97

duplication avoidance, 141

external documentation, 95

high-level phase, 138

immutable classes, 51

indentation and spacing, 319

Law of Demeter, 164

Liskov substitution principle

(LSP), 51

loop formatting, 323

method conditions, specifying,

96

method execution level, 89

modifi er methods, 89

naming, intention-revealing, 84

object state in public methods, 90

object state modifi cation by

functions, 89

object task performance, 141

Open-Closed Principle, 156

12-M4377-IX.indd 33412-M4377-IX.indd 334 12/5/07 12:12:22 PM12/5/07 12:12:22 PM

 Index 335

optimization, balancing

readability with, 120

principle of least astonishment,

50

punctuation, 322

referencing, 55

removing non-unique classes, 53

self-documenting code, 92

splitting classes, 60

Design pattern, 196–217

Abstract Factory pattern, 217

Adapter pattern, 197–201,

199f, 200f
benefi ts of, 196–197

Builder pattern, 290–292, 291f
Command pattern, 210–213, 212f
Composite pattern, 244, 246–248,

249–250, 249f
defi ned, 196

Expert pattern, 142–143

Facade pattern, 144, 286–287,

288–289, 288f
Factory Method pattern,

214–217, 216f
Interpreter pattern, 265–267,

272–273, 272f
Iterator pattern, 204–210,

208f, 209f
Memento pattern, 248, 250–254,

253f
Observer pattern, 223–230, 225f,

228f
Prototype pattern, 238–239,

240–241, 240f
Singleton pattern, 201–204, 203f
State pattern, 239, 241–244,

245, 245f
Visitor pattern, 279–284,

283f, 284f
Do-activity, 313

Doc comment

for classes and interfaces,

328–329

for constructors and methods,

329

for fi elds, 329

general format, 328

Documentation

converting form of, 147

external, 93–98

internal, 91–93

role of, 93

self-documenting code, 92

Double-dispatching, 285–286

Downcasting a value, 33

DRY (don’t repeat yourself)

principle, 144

Duplicate code

reducing with decomposition, 85

removing with constructor

chaining, 86–87

Duplication

avoiding, 144–147

DRY (don’t repeat yourself)

principle, 144

Dynamic method invocation, 31–35

E
Eclipse, 258

Elegance

criteria for software, 5–7

in object-oriented design and

implementation, 1–7

Encapsulate Field refactoring, 120

Encapsulation, 158, 177

Enumeration interface, 209

equals method, 98–106

implementing hashCode method

with, 176

overriding, 150, 176

Equivalence relational properties,

method, 99

Essential methods, 148–149

execute method, 211, 212

Expert pattern and, 142–143

Extends (keyword), 19

External documentation, 93–98

Extract Method refactoring,

113, 119

F
Facade pattern, 144, 286–287,

288–289, 288f
Factory method, 29, 192

Factory Method pattern, 214–217,

216f
Field, doc comment, 329

Figure-drawing application case

study, 220–254

Composite pattern, 244, 246–248,

249–250, 249f
fi gure hierarchy, 230–234, 234f

Memento pattern, 248, 250–254,

253f
model-view-controller architec-

ture, 234–238, 235f, 236f
Observer pattern, 223–230, 225f,

228f
Prototype pattern, 238–239,

240–241, 240f
State pattern, 239, 241–244, 245,

245f
user interface, 221–222, 221f

File layout, coding conventions for,

326–327

Final (keyword), 15

for loop, 206, 207

for-each loop, 205, 207

Forwarding requests, 76, 76f
Found message, in UML sequence

diagram representation, 308

Fowler, Martin, 111

Functional decomposition, 85–87

Functions, state modifi cation by,

89

G
Gatekeeper, class, 146

Generalization

UML class diagram relationship,

19, 305

using inheritance for, 22–23

God class, 139, 140f
Graph, 140–141, 141f
Graphical user interface (GUI)

enhancing components, 56–57

object-oriented, 10

GRASP (general responsibility as-

signment software patterns)

Expert pattern and, 142

maximizing cohesion, 140

minimizing coupling, 158

Guards, in UML sequence diagram,

309

Guidelines. See Design guidelines

H
Has-a relationship, 56

hashCode method

implementing equals method

with, 176

overriding, 150, 176

Hide Method refactoring, 120

12-M4377-IX.indd 33512-M4377-IX.indd 335 12/5/07 12:12:22 PM12/5/07 12:12:22 PM

336 Index

I
IDE (integrated development

environment), 258

Immutable class, 51–52, 52f,
151–154

Implementation inheritance

code reuse, 46–47

costs of using, 57–59

elegance and, 45–78

examples of use

drawing polygons, 61–64, 61f,
63f, 64f

person, woman, and man, 60f
sorting, 64–74, 65f, 69f, 70f,

72f
guidelines

avoiding conditionals, 64

consistent behavior, 49

immutable classes, 51

Liskov substitution principle

(LSP), 51

principle of least

astonishment, 50

referencing, 55

removing non-unique

classes, 53

splitting classes, 60

is-a relationship and, 46, 47–52

public interfaces and, 53–55

referencing compared, 54–55, 55f,
75–78, 77f

subclasses and superclasses,

19–20

subclassing arrays in Java,

74–75

use for generalization, 22–23

use for specialization, 18–22

Inappropriate intimacy, 161

Indentation, coding conventions

for, 318–319

Information hiding, 158–160

Inheritance

cost of using, 57–59

elegance and, 45–78

implementation, 18–24

Object class, 20

single inheritance in Java,

23–24, 24

subclasses and superclasses,

19–24

use for generalization, 22–23

use for specialization, 18–22

interfaces and, 24–30

of Object class, 20

overriding, 22

referencing compared, 55f,
75–78, 77f

single inheritance feature of Java,

23–24, 24f
Initial pseudostate, in state

diagram, 311

Instance

lazy instantiation, 202–203

methods, 14, 15–16

variables, 13–14

private, 158–160

public and private, 39–40

Integer variables, incrementing,

323–324

Interaction frames, in UML se-

quence diagram, 309, 309f
Interface

abstract classes compared, 30–31

coding to, 157–158

complete, 148–149

consistent, 149, 151

description, 25

doc comments for, 328–329

in class diagram, 305

inheritance and, 24–30

multiple, implementation of, 30

naming, 83

public, 53–55

Internal documentation, 91–93

interpret method, 272–273

Interpreter pattern, 265–267,

272–273, 272f
Intimacy, inappropriate, 161

Introduce Explaining Variable

refactoring, 115–116

Is-a relationship, 46, 47–52

iterator method, 206–208, 215

Iterator pattern, 204–210, 208f, 209f

J
Jacobson, Ivar, 303

Java.commerce.util package, 175,

177–178

Javadoc, 83, 98

Javadoc syntax, 328–331

doc comment for classes and

interfaces, 328–329

doc comment for constructors and

methods, 329

doc comment for fi elds, 329

doc comment general format, 328

example of use, 330f–331f
tags, 328

JButtons, 221, 227, 230, 233

JPanel, 227, 229, 235

JTable, 289

K
Knuth, Donald, 120

L
Language parser case study,

258–299

abstract syntax tree (AST),

266–273, 266f, 271f
Builder pattern, 290–292, 291f
double-dispatching, 285–286

Facade pattern, 286–287,

288–289, 288f
Interpreter pattern, 265–267,

272–273, 272f
method fi nder, 274–276

parsers, 287, 289–290, 292–299

polymorphism, 292–299

prettyPrint method implementa-

tion, 262–265

problems with implementation,

276–279

scanning, 260–262

Visitor pattern, 279–284,

283f, 284f
VSSJ (very simple subset of Java),

258–259

Languages, object-oriented, 10–11

Law of Demeter, 161–164

Layout, coding conventions for,

319–322

Lazy instantiation, 202–203

length instance variable, 91

Lexer (lexical analyzer), 261

Lifeline, object, 308

Line breaks, 320–321

Line comments, 326

Liskov Substitution Principle (LSP),

51, 97, 99, 104–105

12-M4377-IX.indd 33612-M4377-IX.indd 336 12/5/07 12:12:23 PM12/5/07 12:12:23 PM

 Index 337

List interface, 28–29, 28f
Listeners, in Observer pattern, 224,

225, 227

Local variables, 13

Loops

coding conventions for format-

ting, 322–323

in Iterator pattern, 205–207

M
map method, 210–211

Memento pattern, 248, 250–254,

253f
Method

abstract, 30

accessibility, 13–14, 39–41

accessor, 143

arithmetic, 176

case study

overriding clone method in

Java, 106–110

overriding equals method in

Java, 98–106

chaining, 163

class, 14, 15–16

class invariants, 90–91

cohesive, 87–89

commands, 89

convenience, 148–149

declaration, 12, 259

description, 11

design guidelines

code execution, 89

code void return type for

modifi er methods, 89

cohesiveness, 87

decomposition, 87

documentation, 92, 93, 95, 96

intention-revealing names, 84

well-formed objects, 90

doc comment, 329

documentation

external, 93–98

internal, 91–93

duplication, 146

dynamic method invocation,

31–35

essential, 148–149

execution level, 89

factory, 29, 192

functional decomposition, 85–87

instance, 14, 15–16

modifi er, 89, 152

mutators, 89

names, 84

objectless, 14

overloading names, 35–39

overriding, 22, 35, 150, 176

precondition and postcondition,

96–97, 147

protected, 40–41

queries, 89

refactoring, 110–120

renaming, 112–115

signature of, 22, 35–39

Method call, in UML sequence

diagram, 308–309

Minimizing coupling, 158

Minus (�) symbol, in class dia-

grams, 17

Mixin, 47

Model-View-Controller (MVC)

architecture, 234–238, 235f,
236f

Modifi er methods, 89, 152–153

Money class (case study), 173–193

converting between currencies,

184–187

Currency class, 181–182

currency instance variable,

179–182

CurrencyConverter class, 187, 187f
implementation issues, 187–192

MixedMoney class, 182–184,

183f, 187–192

MoneyConverter class, 184–187,

185f
representations of money, 173–175

SimpleMoney class, 183, 183f,
187–192

subclasses to represent currencies,

177–179, 179f
USMoney class, designing,

175–177

constructors, 176–177

getter behavior, 175

method headers, 176

public interface, 177

responsibilities, 175–176

setter behavior, 175

Move Method refactoring, 143

Mud balls, 4

Multimethods, 285

Multiple dispatch, 285

Multiplicity, association, 306–307

Mutability, 151–154

Mutators, 89

N
Naming conventions, 83–84

Navigability, UML class diagram

relationship, 306

NetBeans, 258

Non-object-oriented programming

overview, 9–10

variables and methods, 14

Note, in UML class diagram, 307

Notifi cation manager, 76

Nouns, extracting, 131–132

O
Object

description, 11

Expert pattern and, 142–143

extracting verbs to obtain actions

and behaviors, 131, 132

in UML sequence diagram,

307–310

creation, 310, 310f
destruction, 310, 310f
lifeline, 308

representation, 307–308, 308f
mutability, 151

referencing, 54–55, 75–78

serialization, 204

sorting in an array, 140

state, 14

in state diagram, 310–313, 312f,
313f

stateless, 15

type, 25–26

well-formed state, 90–91

Object class, inheritance of, 20

Object-oriented (OO) design

elegance, 1–7

levels, 82

Object-oriented (OO) programming

accessibility, 13–14, 39–41

advantages of, 11–12

distributed nature of, 10, 11

12-M4377-IX.indd 33712-M4377-IX.indd 337 12/5/07 12:12:23 PM12/5/07 12:12:23 PM

338 Index

Object-oriented (OO) programming

(continued)

dynamic method invocation,

31–35

implementation inheritance,

18–24

Object class, 20

single inheritance in Java,

23–24, 24

subclasses and superclasses,

19–24

use for generalization, 22–23

use for specialization, 18–22

languages, 10–11

non-OO programming compared,

9–10

overloading method names, 35–39

overriding a method, 22, 35

overview, 9–10

types and subtypes, 24–30

Observer pattern, 223–230,

225f, 228f
Observers, in Observer pattern,

224, 228

Open-Closed Principle, 155–156

Operation, class diagram, 304, 305

Optimization of source code, 120

Originator, in Memento pattern, 253

Overloading method names, 35–39

Overriding, 22, 35

P
Package access, 40

Parentheses, coding conventions for

use of, 319

Parsers, 287, 289–290, 292–299

Plug-and-play, 27

Plus (+) symbol, in class diagrams,

17

Polygon-drawing application, 61–64,

61f, 63f, 64f
Polymorphism, 292–299

subtype

conditional statement, avoid-

ing, 64

description, 26–27

dynamic method invocation,

31–35

value of, 27–30

pop method, 89

Postcondition, 96

Precondition, 96, 147

Private (keyword), 13–14

Private access, 13–14, 39–41

Private static variable, 202

Processes, duplication of, 147

Program design

bad smell, 161

change, designing for, 154–161

CRC card use, 132–135, 133f, 134f
extracting nouns and verbs,

131–132

inappropriate intimacy, 161

Money class (case study),

173–193

Open-Closed Principle, 155–156

steps in, 128

use case, 129–131, 130f
Protected methods, 40–41

Protocol

complete and consistent, 147–151

constructing class protocols,

135–137

defi ned, 128

Prototype pattern, 238–239,

240–241, 240f
Public (keyword), 13–14

Public access, 13–14, 39–40

Public interface. See Protocol

Publishers, in Observer pattern, 224,

225, 226, 228

Pull Up Method refactoring, 120

Punctuation, coding conventions for,

319–322

Q
Queries, 89

R
Readability of code, improving with

functional decomposition,

85–87

Realization, UML class diagram

relationship, 25, 305

Redo operation, 248, 250–251

Refactoring, 110–120

automated, 119

Encapsulate Field, 120

Extract Method, 113, 119

Hide Method, 120

Introduce Explaining Variable,

115–116

Move Method, 143

Pull Up Method, 120

Rename Method, 112–115, 119

Rename Variable, 119

Replace Magic Number with

Symbolic Constant, 120

Replace Parameter with Explicit

Methods, 120

Replace Temp with Query,

116–119

Separate Query from Modifi er,

117, 119

Split Temporary Variable, 117

time required for, 119

Reference, defi ned, 13, 13f
Referencing

designs using, 54–55

inheritance compared, 55f,
75–78

Refl exive (relational property), 99

Rename Method refactoring,

112–115, 119

Rename Variable refactoring, 119

Replace Magic Number with

Symbolic Constant

refactoring, 120

Replace Parameter with Explicit

Methods refactoring, 120

Replace Temp with Query

refactoring, 116–119

Responsibility

categories of, 142

CRC cards and, 132–135

duplication of, 144–147

in class diagram, 305

separating to different classes,

140–144

Reuse of code

implementation inheritance and,

18–22

inheritance and, 46–47

Role playing, with CRC cards, 132

Rounding off, 176

Rumbaugh, Jim, 303

S
Scanner, 260–262

Scenarios, use case, 130

12-M4377-IX.indd 33812-M4377-IX.indd 338 12/5/07 12:12:23 PM12/5/07 12:12:23 PM

 Index 339

Separate Query from Modifi er

refactoring, 117, 119

Sequence diagram, UML, 162–163,

162f, 163f
description of, 307–310, 308f–310f
elements

activation bar, 308, 308f
guards, 309

interaction frames, 309, 309f
method calls, 308

object lifeline, 308

objects, 307–310

found message, 308

loops in, 309–310, 310f
object creation, 310, 310f
object destruction, 310, 310f
synchronous and asynchronous

messages, 309

Serialization, object, 204

Signature, of a method, 35–39

Simplicity, of design, 6

Singleton class, 201–204

Singleton pattern, 201–204, 203f
Software engineering

overview, 4–5

stages, 5

Sorting, 64–74, 65f, 69f, 70f, 72f
Source code

bad smelling, 111, 161

brittle, 111

documentation, internal, 91–93

duplication, 146

optimization, 120

refactoring, 110–120

Spacing, coding conventions for,

318–319

Specialization, using inheritance for,

18–22

Specifi cation, project

extracting nouns and verbs,

131–132

use cases, creating, 129–131,

130f
Split Temporary Variable

refactoring, 117

State diagrams, UML

activity state, 313, 313f
example, 310–312, 312f
fi nal state, 312

initial pseudostste, 311

role of, 310–311

transition labels, 311–313

State information, instance variables

and, 13

State pattern, 239, 241–244, 245,

245f
Static (keyword), 15

Stereotype, in class diagram, 305

Subclass

in Money class case study,

177–179, 179f
overview, 19–24

Subclassing, 18. See also Implemen-

tation inheritance

arrays in Java, 74–75

Subjects, in Observer pattern, 224,

228

Subscribers, in Observer pattern,

224, 225, 228

Subtype

downcasting values, 33

polymorphism, 31–35, 64

Sun Microsystem conventions, 83,

318–331

Superclass, 19–24

Supertype

description, 26

polmorphism, 26–30, 31–35

Symmetric (relational property), 99

T
Tags, Javadoc, 328

Threads, 203

Tokens, 260

toString method, 150

Transitive (relational property), 99

Type

defi ning new, 25

description, 25

dynamic method invocation,

31–35

interfaces, 25–26, 26f
subtypes, 26–30

U
Undo operation, 248,

250–252, 252f
Unifi ed Modeling Language (UML),

16–18, 17f
“uses” arrows, 65, 65f

abstract methods in, 30

associations, 56

class diagrams, 304–307, 304f,
305f, 307f

abstract class/method, 23, 23f,
305

aggregation, 307

arrows in, 305–306

association, 305–307

attributes, 304, 305

class name, 304

composition, 307

dependency, 306

elements, 304f, 305f
generalization, 305

has-a (reference) relationship,

55f, 56

interface, representation of, 25,

26f, 305

multiplicity, 306–307

navigability, 306

note, 305

operations, 304, 305

overview, 16–18, 17f
realization, 305

relationships between classes,

305–307, 307f
responsibilities, 305

generalization relationship, 19

notation for subclass and

superclass, 19, 19f
overview, 303–304

realization relationship, 25

sequence diagrams, 162–163,

162f, 163f, 307–310, 308f,
309f, 310f

activation bar, 308, 308f
description of, 307–310,

308f–310f
found message, 308

guards, 309

interaction frames, 309,

309f
loops in, 309–310, 310f
method calls, 308

object creation, 310, 310f
object destruction,

310, 310f
object lifeline, 308

objects, 307–310

12-M4377-IX.indd 33912-M4377-IX.indd 339 12/5/07 12:12:24 PM12/5/07 12:12:24 PM

340 Index

Unifi ed Modeling Language (UML)

(continued)

 synchronous and asynchronous

messages, 309

state diagrams, 310–313, 312f,
313f

activity state, 313, 313f
example, 310–312, 312f
fi nal state, 312

initial pseudostste, 311

role of, 310–311

transition labels, 311–313

suppressed features, 303–304

use case, 130, 130f, 313–316, 315f,
316f

Use case

creating, 129–131, 130f
defi ned, 314

diagrams, UML, 313–316, 315f,
316f

V
Value downcasting, 33

Variable

boolean

coding conventions, 324–326

naming, 84

class, 14–15

declaration, 259

incrementing integer, 323–324

initialization, 29

interface type, 29–30

List type, 28

local, 13

naming, 84

objectless, 14

private instance, 39–40, 158–160

private static, 202

public and private, 13–14, 39–40

public instance, 13–14, 39–40

static, 15, 202

Variable declaration, parts of, 12

Verbs, extracting, 131, 132

Visibility, class diagram, 305

Visitor pattern, 279–284, 283f, 284f
Vlissides, John, 196

VSSJ (very simple subset of Java),

258–259

W
White space, 259

Wrapper class, 153, 200–201

12-M4377-IX.indd 34012-M4377-IX.indd 340 12/5/07 12:12:24 PM12/5/07 12:12:24 PM

	Cover Page
	Title Page
	Copyright Page
	Dedication
	Contents
	CHAPTER 1: Elegance in Object-Oriented Design and Implementation
	Section 1.0 Introduction
	Section 1.1 Why Worry?
	Section 1.2 Software Engineering
	Section 1.3 Criteria for Elegant Software
	Section 1.4 Road Map

	CHAPTER 2: Fundamentals of Object Orientation
	Section 2.0 Introduction
	Section 2.1 Object-Oriented Programming vs.Non–Object-Oriented Programming
	Overview of OO vs. Non-OO Programming
	Object-Oriented Languages
	Advantages of OO programming

	Section 2.2 Classes, Objects, Variables, and Methods in Java
	Section 2.3 Aside: Class Methods & Variables in Java
	Introduction to Class Variables and Methods
	Class Variables in Java and Their Uses
	Class Methods in Java and Their Uses
	Summary

	Section 2.4 Brief Introduction to UML Class Diagrams
	Section 2.5 Implementation Inheritance
	Specialization
	The Object Superclass in Java
	Another Use of Specialization
	Generalization
	Single Inheritance in Java

	Section 2.6 Types, Subtypes, and Interface Inheritance
	Type
	Polymorphism
	The Value of Polymorphism

	Section 2.7 Interfaces vs. Abstract Classes
	Section 2.8 Dynamic Method Invocation
	Section 2.9 Overloading vs. Overriding
	Section 2.10 Controlling Access to Methods and Data (Public, Private, Protected, Package)
	Section 2.11 Summary

	CHAPTER 3: Elegance and Implementation Inheritance
	Section 3.0 Introduction
	Section 3.1 Four Perspectives onInheritance
	Code Reuse Perspective
	Is-A Perspective
	Public Interface Perspective
	Polymorphism Perspective

	Section 3.2 Sufficiency of Code Reuse
	Section 3.3 Sufficiency of Code Reuse and the Is-A Relationship
	Section 3.4 Sufficiency of Code Reuse, the Is-A Relationship, and PublicInterfaces
	Section 3.5 Has-A Relationships and UML Associations
	Section 3.6 Sufficiency of Code Reuse, the Is-A Relationship, Public Interfaces, and Polymorphism
	Section 3.7 Costs of Using Implementation Inheritance
	Section 3.8 Example: Person, Woman, and Man
	Section 3.9 Example: Drawing Polygons
	Section 3.10 Example: Sorting
	Section 3.11 Subclassing Arrays in Java
	Section 3.12 Inheritance vs. Referencing Revisited
	Section 3.13 Summary

	CHAPTER 4: Elegance and Methods
	Section 4.0 Introduction
	Section 4.1 Coding Styles and Naming Conventions
	Section 4.2 Methods and Decomposition
	Section 4.3 Cohesive Methods
	Section 4.4 Well-Formed Objects and ClassInvariants
	Section 4.5 Internal Documentation
	Section 4.6 External Documentation
	Section 4.7 Case Study: Overriding the Equals Method in Java
	Section 4.8 Case Study: Overriding the Clone Method in Java
	Section 4.9 Refactoring
	Section 4.10 Code Optimization
	Section 4.11 Summary and Further Reading

	CHAPTER 5: Elegance and Classes
	Section 5.0 Introduction
	Section 5.1 Starting Out Finding Classes and Their Relationships
	Extract Nouns and Verbs
	Use Concepts from the Application Domain
	Use CRC Cards
	Class Protocols
	The Big Picture

	Section 5.2 Maximizing Cohesion
	Section 5.3 Separation of Responsibility
	Section 5.4 Duplication Avoidance
	Section 5.5 Complete and Consistent Protocols
	Section 5.6 Mutability vs. Immutability Revisited
	Section 5.7 Designing for Change
	Section 5.8 Law of Demeter
	Section 5.8 Summary and Further Reading

	CHAPTER 6: Simple Case Study of a Money Class
	Section 6.0 Introduction
	Section 6.1 Naive Representations of Money
	Section 6.2 A USMoney Class
	Section 6.3 Using Subclasses of Money to Represent Different Currencies
	Section 6.4 Using One Class of Money with a Currency Attribute
	Section 6.5 Mixed Currencies vs. Simple Currencies
	Section 6.6 Converting Between Currencies
	Section 6.7 MoneyConverter Issues
	Section 6.8 MixedMoney and SimpleMoney Issues
	Section 6.9 Mixed Money Only
	Section 6.10 Alternate Implementation with Binary Trees
	Section 6.11 Summary

	CHAPTER 7: Introduction to Design Patterns
	Section 7.0 Introduction
	Section 7.1 The Adapter Pattern
	Section 7.2 The Singleton Pattern
	Section 7.3 The Iterator Pattern
	Section 7.4 The Command Pattern
	Section 7.5 Factories
	Section 7.6 Summary

	CHAPTER 8: Figure-Drawing Application Case Study
	Section 8.0 Introduction
	Section 8.1 The User Interface
	Section 8.2 The Observer Pattern
	Section 8.3 The Figure Hierarchy
	Section 8.4 The Model-View-Controller Architecture
	Section 8.5 The Prototype Pattern
	Section 8.6 The State Pattern
	Section 8.7 The Composite Pattern
	Section 8.8 The Memento Pattern
	Section 8.9 Summary

	CHAPTER 9: Language Parser Case Study
	Section 9.0 Introduction
	Section 9.1 VSSJ: A Very Simple Subset of Java
	Section 9.2 Pretty Printing
	Section 9.3 Scanning
	Section 9.4 A Simple Pretty Printer
	Section 9.5 Interpreter Pattern
	Section 9.6 Design of the AST
	Section 9.7 Method Finder
	Section 9.8 Some Problems with These Elegant Implementations
	Section 9.9 The Visitor Pattern
	Section 9.10 Visitors and Double-Dispatching
	Section 9.11 Facade Pattern
	Section 9.12 Parsers and Builders
	Section 9.13 Tokens, Visitors, and Polymorphism (Optional Section)
	Section 9.14 Summary

	APPENDIX A: An Introduction to UML
	Section A.0 Introduction
	Section A.1 Class Diagrams
	Section A.2 Sequence Diagrams
	Section A.3 State Machine Diagrams
	Section A.4 Use Case Diagrams
	Section A.5 Summary

	APPENDIX B: Coding Conventions and Javadoc Comments
	Section B.0 Introduction
	Section B.1 Indentation and Spacing
	Section B.2 Punctuation and Layout
	Section B.3 Formatting a Loop
	Section B.4 Incrementing Integer Variables
	Section B.5 Working with Boolean Variables
	Section B.6 Line and Block Comments
	Section B.7 File Layout
	Section B.8 Javadoc Syntax
	Section B.9 Summary

	Index

