

Obj ect .. Oriented
Design

&
Patterns

Second Edition

Cay Horstmann
San Jose State University

@
WILEY

John Wiley & Son s , Inc.

PUBLISHER:
SENIOR EDITORIAL ASSISTANT:
PROJECT MANAGER:
DIRECTOR OF MARKETING:
SENIOR PRODUCTION MANAGER:
COVER DESIGNER:
COVER PHOTO:

Bruce Spatz
Bridget Morrisey
Cindy Johnson, Publishing Services
Frank Lyman
Ken Santor
Harold Nolan
© Corbis/Media Bakery

This book was set in Adobe Caslon by Publishing Services and printed and bound by Malloy,
Inc. The cover was printed by Phoenix Color Corporation.

This book is printed on acid-free paper. 00

Copyright © 2006 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or oth
erwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.
To order books or for customer service, please call 1-800-CALL-WILEY (225-5945).

ISBN 978-0-471-74487-0

Printed in the United States of America

10 9 8 7 6 5

Preface

Making Object,Oriented Design Accessible

This book is an introduction to object-oriented design and design patterns at an
elementary level. It is intended for students with at least one semester of program
ming in an object-oriented language such as Java or C++.

I wrote this book to solve a common problem. When students first learn an
object-oriented programming language, they cannot be expected to instantly mas
ter object-oriented design. Yet, students should learn the principles of object-ori
ented design early enough to put them to work throughout the computer science
curriculum.

This book is suitable for a second or third course in computer science-no back
ground in data structures is required, and students are not assumed to have experi
ence with developing large software systems. Alternatively, the book can be used
as a companion text in a course in software engineering. (If you need a custom
version of this book for integration into another course, please contact your Wiley
sales representative.)

This second edition is fully updated for Java 5.0, including

• the use of generic collections and the "for each" loop

• a detailed discussion of parameterized type constraints

• auto-boxing and varargs methods, particularly in the reflection API

• multithreading with the j ava . uti 1 . concu r rent package

Integration of Design Patterns

The most notable aspect of this book is the manner in which the coverage of
design patterns is interwoven with the remainder of the material. For example,

• Swing containers and components motivate the COMPOSITE pattern.

• Swing scroll bars motivate the DECORATOR pattern, and Swing borders are
examined as a missed opportunity for that pattern.

• Java streams give a second example of the DECORATOR pattern. Seeing the
pattern used in two superficially different ways greatly clarifies the pattern
concept.

PREFACE

Without memorable examples, design patterns are just words. In order to visualize
design patterns, this book uses examples from graphical user interface programming.
Students will remember how a component is decorated by scroll bars, and how layout
managers carry out different strategies. (A small and carefully selected subset of Swing is
used for this purpose.)

A Foundation for Further Study

Mter covering the material in this book, students will have mastered the following topics
in three subject areas:

1. Object-oriented design

• A simple design methodology

• CRC cards and UML diagrams

• Design patterns

2. Advanced Java language

• Interface types, polymorphism, and inheritance

• Inner classes

• Reflection

• Generic types

• Multithreading

• Collections

3. User interface programming

• Building Swing applications

• Event handling

• Java 2D graphics programming

These skills clearly form a useful foundation for advanced computer science courses. In
fact, students who have completed this book will have encountered all features of the Java
language (but not, of course, the entire standard Java library, which is too huge for any
one person to master) . One advantage of using Java is indeed that students can compre
hend the entire language. Contrast that with C++, a language that is so complex that
virtually no one can truthfully claim to understand all of its subdeties.

In summary: Use this book if you want your students to understand object-oriented
design and design patterns early in the curriculum. As a bonus, your students will gain a
complete overview of the Java language, and they will be able to program simple Swing
user interfaces.

Programming and Design Tools

Another important aspect of this book is the coverage of tools. While many C++
programmers live their entire programming life in a large and complex integrated

Preface

environment, the Java culture has embraced the use of different tools such as BlueJ,
j avadoc, and]Unit. Due to the reflective nature of the Java language, there are many
interesting experimental tools. I highlight a number of them in the hope that students
will gain an interest and aptitude in evaluating and selecting tools that fit their working
style.

Students who learn object-oriented design also should become familiar with drawing
UML diagrams. An easy-to-use and no-cost tool for this purpose, the Violet UML edi
tor, is provided for their use. Chapter 8 of this book introduces the framework on which
Violet is based. All UML diagrams in this book were drawn with Violet.

A Tour o f the Book

Chapter I A Crash Course i n Java

This chapter introduces the basic syntax ofJava and can serve either as a refresher or as a
transition for students with a background in C++. Topics covered include

• Defining classes and methods

• Objects and object references

• Exploring objects with BlueJ

• Documentation comments

• Numbers, strings, and arrays

• Packages

• Exception handling

• Common utility classes: Ar rayL; st and Scanner

• Programming style guidelines

Chapter 2 The Obj ect�Oriented Design Process

This chapter introduces the process of object-oriented design, CRC cards, and UML
notation. It presents a case study of a simple voice mail system to illustrate the design
process, starting with the project's specification and culminating in its Java implementa
tion. Topics covered include

• IdentifYing classes and methods

• Relationships between classes

• CRC cards

• UML class, sequence, and state diagrams

• Case study

PREFACE

Chapter 3 Guidelines for Class Design

Unlike Chapter 2, which took a top-down view of the discovery of classes and their rela
tionships, this chapter focuses on the design of a single class or a small group of related
classes. Topics covered include

• Designing and implementing the interface of a class

• The importance of encapsulation

• Analyzing the quality of an interface

• Programming by contract: preconditions, postconditions, and invariants

Chapter 4 Interface Types and Polymorphism

This chapter introduces the notation of the Java interface type, without mentioning
inheritance. This approach has an important advantage: The reader learns about poly
morphism in its �rest form, without being burdened by technical matters such as super
class construction or the invocation of superclass methods.

The chapter also introduces the Swing user interface toolkit and AWT drawing opera
tions. It starts with the Icon interface type, which allows the placement of arbitrary
drawings in a frame.

Anonymous classes are introduced as an easy mechanism for "ad-hoc" objects that imple
ment a particular interface type. They are then put to use for Swing user interface
actions.

Up to this point, all interface types have been supplied in the standard library. The chap
ter ends with the design of a custom interface type. Topics covered include

• Frames, images, and shapes

• The Icon interface type

• The Comparabl e and Comparat:or interface types

• Anonymous classes

• User interface actions

• Designing interface types

Chapter 5 Patterns and GU I Programming

This chapter i'ntroduces the concept of patterns and covers a number of patterns that
arise in the Swing user interface toolkit and the Java collections library. Topics include

• Alexander's architectural patterns

• Software design patterns

• The ITERATOR pattern as an example of a design pattern

• The OBSERVER pattern, model/view/controller, and Swing listeners

• The STRATEGY pattern and layout managers

• The COMPOSITE pattern, user interface components and containers

• The DECORATOR pattern, scroll panes, and borders

Preface

Chapter 6 Inheritance and Abstract Classes

This chapter introduces the mechanics of inheritance using examples from the AWT
graphics library. There is an extensive discussion of abstract classes, a topic that many
beginners find challenging. An abstract shape class lays the foundation for the graph edi
tor framework created in Chapter 8. Several inheritance hierarchies are examined,
including the hierarchies of Swing components, geometric shapes, and exception classes.
The chapter discusses advanced exception handling, including the definition of new
exception classes (which, of course, requires inheritance). The chapter closes with a dis
cussion of when not to use inheritance. Topics covered include

• Defining and implementing subclasses

• Invoking superclass constructors and methods

• Abstract classes and the TEMPLATE METHOD pattern

• The inheritance hierarchy of Swing components

• The inheritance hierarchy of graphical shapes in the j ava . awt . geom package

• The inheritance hierarchy of exception classes

• When not to use inheritance

Chapter 7 The Java Obj ect Model

This chapter covers the Java type system in detail and introduces the important reflection
capabilities of Java. It then moves on to a rigorous treatment of the fundamental methods
of the Obj ect class: toStri ng, equal s , hashCode, and cl one. Generics are discussed at an
intermediate level, going well beyond the basics but stopping short of discussing techni
cal minutiae. As an application of reflection techniques, the JavaBeans component model
and the implementation ofJavaBeans properties are introduced. Topics covered include

• The Java type system, primitive types, wrappers, and array types

• Type inquiry and reflection

• Object equality and cloning

• Serialization

• Generic types

• Components and JavaBeans

Chapter 8 Frameworks

This capstone chapter culminates in the development of a graph editor framework and
its specialization to a UML class diagram editor. Topics covered include

• The framework concept

• Applets as a simple framework

• The collections framework

• Application frameworks

• The graph editor framework

PREFACE

Chapter 9 Multithreading

This chapter introduces the multithreading pnmltlves of the Java language, thus
completing the students' introduction to Java language semantics. The synchronization
primitives can be challenging for students to grasp because they tightly combine several
related features. I first cover the Lock and (ondi ti on classes in the j ava . uti l . concu r
rent package, then use that background to explain the built-in locks and wait sets.
Topics covered include

• Threads and the Runnab 1 e interface type

• Interrupting threads

• Thread synchronization

• The j ava . uti l . concurrent package

• An application: Algorithm animation

Chapter 10 More Design Patterns

The book concludes with a chapter that covers additional important design patterns. A
summary at the end of the chapter briefly describes additional classical design patterns
whose coverage is beyond the scope of this book. Topics covered include

• The ADAPTER pattern

• Actions and the COMMAND pattern

• The FACTORY METHOD pattern

• The PROXY pattern

• The SINGLETON pattern

• The VISITOR pattern

• Other design patterns

Figure 1 shows the dependencies between the chapters.

Pedagogical S tructure

Each chapter begins with an introduction and listing of the chapter topics. Concepts and
principles are presented in the context of programming examples, and many example
programs are printed in their entirety in the text to encourage students to read and
understand code listings. Complete source code for all of the examples in the text is
available from the book's Web site at http : //www . wi l ey . com/col l ege/horstmann (see
pages xvii-xix for a listing of the example programs that accompany this book).

Throughout the chapters, there are several kinds of special features to help your students.
These features are specially marked so they don't interrupt the flow of the main material.

Key concepts are highlighted
with margin notes.

Margin notes highlight important topics and help students navigate
the core material of each chapter by highlighting where new concepts
are introduced.

Preface

1
A Crash Course in Java

(optional)

2
The Object-Oriented

Design Process

3
Guidelines for
Class Design

4 9
Interface Types and Multithreading

Polymorphism (optional)

5
Patterns and

Gill Programming

6 10
Inheritance and More Design Patterns
Abstract Classes (optional)

7.7
.-- Generic Types

7.1-7.5 7.6
(optional)

The Java Reflection -
Object Model (optional)

7.8
'-- JavaBeans Components

(optional)

I 8.5 8.1-8.4
Enhancing the Graph Frameworks

Editor Framework (optional)

Figure 1

Dependencies Between the Chapters

PREFACE

Special Topics introduce background material or advanced subjects that can be skipped.
Several data structures that students in a second course may not have been introduced to
are presented in these Special Topics, making them available as needed. Other Special
Topics address features oflanguages other than Java that relate to the design principles in
the chapter. (See page xvi for a list of these topics by chapter.)

Design Patterns are specially marked with this icon. Each design pattern is presented in a
standard format that includes the context in which the pattern is useful, the solution that
the pattern provides, and a UML diagram of the pattern elements. Most design patterns
are then followed by a table that shows students how the pattern's structure is applied to
the example discussed in that section. (See page xvi for a list of patterns by chapter.)

NOTE Notes highlight important or interesting material, such as tips or pointers for further
reading.

INTERNET Internet notes contain links to further information on the Internet, including
locations for downloadable programming tools, documentation, and articles related to chap
ter topics.

TIP Tips are used liberally throughout the text to explain good programming practices and
to help students avoid common errors.

Web Resources

Additional resources can be found on the book's Web site at http : //www . wi l ey . com/
col l ege/horstmann. These resources include:

• Solutions to selected exercises (accessible to students)

• Solutions to all exercises (for instructors only)

• Help with common compilers

• Presentation slides for lectures

• Source code for all examples in the book

The Violet UML Editor

Students may download Violet, an easy-to-use and no-cost UML editor, at http : / /
horstmann . com/vi 01 et. Violet was used to draw the UML diagrams in the text, so
students can use this same tool to create similar diagrams for the programs they design.

Preface

Ac knowledgments

Many thanks to Bruce Spatz, Bill Zobrist, Bridget Morrisey, Catherine Shultz, Phyllis
Cerys, Ken Santor, and Lisa Gee at John Wiley & Sons for their support for this book
project.

I am very grateful to the many individuals who reviewed the manuscript, found embar
rassing errors, made valuable suggestions, contributed to the supplements, and helped
me make the book more student friendly:

Carl G. Alphonce, UniversityoJBuffalo

Bill Bane, Tarleton State University

Dwight Barnette, Virginia Polytechnic Institute and State University

Alfred Benoit,Johnson & Wales University

Richard Borie, University oj Alabama

Bruce Char, Drexel University

Chia Chen, Tuskegee University

Ashraful Chowdhury, Georgia Perimeter College

David M. Dacus, Mountain View College

Roger deBry, Utah Valley State College

Preetam Desai, University oj Missouri, St. Louis

Chris Dovolis, University oj Minnesota

Robert Duvall, Duke University

Anne B. Horton, AT&T Laboratories

Robert Kelly, State University oJNew York, Stony Brook

Walter W. Kirchherr, San Jose State University

Blayne Mayfield, Oklahoma State University

Marlene Miller

Evelyn Obaid, SanJose State University

Edward G. Okie, Radford University

Jong-Min Park, San Diego State University

Richard Pattis, Carnegie Mellon University

Hao Pham, SanJose State University

Gary Pollice, Worcester Polytechnic Institute

Saeed Rajput, Florida Atlantic University

Gopal Rao, California State University, Sacramento

Mike Rowe, University oj Wisconsin, Platteville

Ken Slonneger, University oJIowa

PREFACE

Richard L. Upchurch, University of Massachusetts, Dartmouth

Phil Ventura, State University of West Georgia

Victor Yu, DeAnza College

Steven J. Zeil, Old Dominion University

Rong Zhao, State University of New York, Stony Brook

I appreciate the enthusiasm and patience of my students at San Jose State University who
participated in courses based on early versions of this book and provided valuable feed
back for the development of this second edition.

Finally, a special thanks to Cindy Johnson of Publishing Services, who served as editor,
production supervisor, liaison with the publisher, general troubleshooter, and in innu
merable other roles. Her work was essential for quality, timeliness, and sanity, through
out the production of this book.

Contents
Preface i i i

� Chapter I A Crash Course i n Java I

1.1 "Hello, World!" in Java 2
1.2 Documentation Comments 6
1.3 Primitive Types 9
1.4 Control Flow Statements 12
1.5 Object References 12
1.6 Parameter Passing 14
1.7 Packages 16
1.8 Basic Exception Handling 18
1.9 Strings 21
1.10 Reading Input 23
1.11 Array Lists and Linked Lists 23
1.12 Arrays 26
1.13 Static Fields and Methods 28
1.14 Programming Style 29

� Chapter 2 The Object-Oriented Design Proc ess 35

2.1 From Problem to Code 36
2.2 The Object and Class Concepts 39
2.3 Identifying Classes 41
2.4 Identifying Responsibilities 45
2.5 Relationships Between Classes 46
2.6 Use Cases 48
2.7 CRC Cards 50
2.8 UML Class Diagrams 53
2.9 Sequence Diagrams 58
2.10 State Diagrams 60
2.11 Using j avadoc for Design Documentation 61
2.12 Case Study: A Voice Mail System 62

� Chapter 3 Guidelines for Class Design 89

3.1 An Overview of the Date Classes in the Java Library 90
3.2 Designing a Day Class 94
3.3 Three Implementations of the Day Class 98
3.4 The Importance of Encapsulation 109
3.5 Analyzing the Quality of an Interface 118
3.6 Programming by Contract 122
3.7 Unit Testing 131

CONTENTS

� Chapter 4 Interface Types and Polymorphism 137

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

The Icon Interface Type 138
Polymorphism 143
The Comparabl e Interface Type 144
The Comparator Interface Type 147
Anonymous Classes 148
Frames and User Interface Components
User Interface Actions 153
Timers 157
Drawing Shapes 159
Designing an Interface Type 164

151

� Chapter 5 Patterns and GUI Programming 173

5.1 The Iterator as a Pattern 174
5.2 The Pattern Concept 176
5.3 The OBSERVER Pattern 180
5.4 Layout Managers and the STRATEGY Pattern 183
5.5 Components, Containers, and the COMPOSITE Pattern 193
5.6 Scroll Bars and the DECORATOR Pattern 195
5.7 How to Recognize Patterns 198
5.8 Putting Patterns to Work 200

� Chapter 6 Inheritance and Abstract Classes 215

6.1 The Concept of Inheritance 216
6.2 Graphics Programming with Inheritance 223
6.3 Abstract Classes 228
6.4 The TEMPLATE METHOD Pattern 236
6.5 Protected Interfaces 240
6.6 The Hierarchy of Swing Components 243
6.7 The Hierarchy of Standard Geometric Shapes 247
6.8 The Hierarchy of Exception Classes 252
6.9 When Not to Use Inheritance 254

� Chapter 7 T he Java Object Model 261

7.1 The Java Type System 262
7.2 Type Inquiry 268
7.3 The Object Class 271
7.4 Shallow and Deep Copy 280
7.5 Serialization 285
7.6 Reflection 287
7.7 Generic Types 294
7.8 JavaBeans Components 302

Contents

� Chapter 8 Frameworks 319

8.1 Frameworks 320
8.2 Applets as a Simple Framework 321
8.3 The Collections Framework 324
8.4 A Graph Editor Framework 334
8.5 Enhancing the Graph Editor Framework 353

� Chapter 9 Multithreading 361

9.1 Thread Basics 362
9.2 Thread Synchronization 370
9.3 Animations 387

� Chapter 10 More Design Patterns 397

10.1 The ADAPTER Pattern 398
10.2 Actions and the COMMAND Pattern 401
10.3 The FACTORY METHOD Pattern 406
10.4 The PROXY Pattern 408
10.5 The SINGLETON Pattern 413
10.6 The VISITOR Pattern 415
10.7 Other Design Patterns 422

Glossary 427

Index 437

Photo Credits 451

SPECIAL FEATURES

2

3

4

5

6

7

A Crash Course in
Java

The Object-Oriented
Design Process

Guidelines for Class
Design

Interface Types
and Polymorphism

Patterns and
GUI Programming

Inheritance and
Abstract Classes

The Java Object
Model

8 Frameworks

9 Multithreading

10 More Design Patterns

� Special Topics

ECMAScript-An Object-Oriented
Language Without Classes

Queues

Total Orderings

Operator Overloading

Accurate Positioning of Text

Refactoring

Multiple Inheritance

Stacks

Consequences of the Symmetry
Condition for Equality Testing

Hash Tables

Accessing Java Properties from
JavaScript

Synchronized Blocks

Volatile Fields

40

44

91

97

163

234

246

257

276

278

308

385

386

� Patterns

SHORT PASSAGES 176

ITERATOR 178

OBSERVER 182

STRATEGY 192

COMPOSITE 194

DECORATOR 196

TEMPLATE METHOD 237

FACADE 305

PROTOTYPE 337

ADAPTER 399

COMMAND 403

FACTORY METHOD 407

PROXY 409

SINGLETON 414

VISITOR 421

Companion Code Listing

2

3

4

5

A Crash Course in
Java

The Object-Oriented
Design Process

Guidelines for Class
Design

Interface Types
and Polymorphism

Patterns and
GUI Programming

� Code in Tex t

helioworld/GreeterTester.java

helloworld/Greeter.java

mail/Message .java

mail/MessageQueue .java

mail/Mailbox.java

mail/Connection .java

mail/MailSystem .java

maillTelephone.java

mail/MailSystemTester.java

day1/Day.java

day2/Day.java

day3/Day.java

queue/MessageQueue .java

icon2/Marslcon.java

sort1/Country.java

sort1/CountrySortTester.java

frame/FrameTester.java

action1/ ActionTester.java

timermmerTester.java

icon3/Carlcon .java

animation/MoveableShape.java

animation/Shapelcon.java

animation/ AnimationTester.java

animation/CarShape.java

mailguiITelephone.java

layoutiFormLayout.java

layoutiFormLayoutTester.java

invoice/Lineltem.java

invoice/Product.java

invoice/Bundle.java

invoice/Discountedltem.java

invoice/lnvoiceFormatter.java

invoice/SimpleFormatter.java

invoice/lnvoice.java

invoice/lnvoiceTester.java

� C ompanion C ode

3 inputllnputTester.java

6

75

75

76

78

83

83

84

100 day1/DayTester.java

104 day2/DayTester.java

107 day3/DayTester.java

124 junitlDay.java

junitiDayTest.java

141 action2/ ActionTester.java

145 icon1/1conTester.java

146 icon1/MessageTester.java

152 icon2/1conTester.java

155 icon3/1conTester.java

158 sort2/ComparatorTester.java

161 sort2/Country.java

166 sort2/CountryComparatorByName.java

167 sort3/ComparatorTester.java

167 sort3/Country.java

168

187 decorator/ScroIiPaneTester.java

190 mailgui/Connection.java

191 mailguilMailbox.java

200 mailgui/MaiISystem.java

200 mailgui/MaiISystemTester.java

202 mailgui/Message.java

203 mailgui/MessageQueue.java

207

209

209

211

COMPANION CODE LISTING

6 Inheritance and
Abstract Classes

7 The Java Object
Model

8 Frameworks

� Code in Text

car/CarComponent.java

car/CarMover.java

scene1/SceneComponent.java

scene1/SceneEditor.java

scene2/SelectableShape.java

scene2/HouseShape.java

scene3/CompoundShape.java

reflect1/HardHello.java

reflect2/FieldTester.java

generic/Utils.java

generic/UtilsTester.java

carbean/CarBean.mf

carbean/CarBean.java

appletiBannerApplet.java

queue/BoundedQueue .java

queue/Queue Tester.java

graphed/Node .java

graphed/Edge .java

graphed/ AbstractEdge .java

graphed/Graph.java

graphed/SimpleGraph .java

graphed/SimpleGraphEditor.java

graphed/CircleNode.java

graphed/LineEdge .java

� C ompanion C ode

226 car/CarShape.java

227 scene1/CarShape.java

232 scene1/HouseShape.java

233 scene1/SceneShape.java

238 scene1/SelectableShape.java

238 scene2/CarShape.java

240 scene2/SceneComponent.java

scene2/SceneEditor.java

scene2/SceneShape.java

scene3/CarShape.java

scene3/CompoundShape.java

scene3/HouseShape .java

scene3/SceneComponent.java

scene3/SceneEditor.java

scene3/SceneShape.java

scene3/SelectableShape.java

291 seriaM/Employee.java

292 seriaM/SerializeEmployeeTester.java

301 seriaI2/Car.java

302 seriaI2/SerializeCarTester.java

311

313

323 appletiBannerApplet.html

328 graphed/GraphFrame.java

330 graphed/GraphPanel.java

339 graphed/PointNode.java

339 graphedfToolBar.java

341 graphed2/ AbstractEdge.java

342 graphed2/CircleNode.java

347 graphed2/Edge.java

348 graphed2/EnumEditor.java

348 graphed2/FormLayout.java

349 graphed2/Graph.java

graphed2/GraphFrame.java

graphed2/GraphPanel.java

graphed2/LineEdge .java

graphed2/LineStyle .java

graphed2/Node.java

graphed2/PointNode.java

graphed2/PropertySheet.java

graphed2/SimpleGraph.java

graphed2/SimpleGraphEditor.java

graphed2fToolBar.java

umleditor/ AbstractEdge.java

umleditor/ ArrowHead.java

umleditor/BentStyle.java

Companion Code Listing

8 Frameworks
(continued)

9 Multithreading

.... C ode In Text

greeting/GreetingProducer.java

greetinglThreadTester.java

queue1IThreadTester.java

queue1/Producer.java

queue1/Consumer.java

queue1/BoundedQueue.java

queue2/BoundedQueue.java

queue3/BoundedQueue.java

animation1/Sorter.java

animation11 ArrayComponent.java

animation11 AnimationTester.java

animation2/Sorter.java

animation21 AnimationTester.java

.... C ompanion C o d e

umleditor/ClassDiagramGraph.java

umleditor/ClassNode.java

umleditor/ClassRelationshipEdge.java

umleditor/Edge.java

umleditor/EnumEditor.java

umleditor/FormLayout.java

umleditor/Graph.java

umleditor/GraphFrame.java

umleditor/GraphPanel.java

umleditor/LineStyle.java

umleditor/MultiLineString.java

umleditor/MultiLineStringEditor.java

umleditor/Node.java

umleditor/PointNode.java

umleditor/PropertySheet.java

umleditor/RectangularNode .java

umleditorlSegmentedLineEdge.java

umleditorlShapeEdge .java

umleditorlToolBar.java

umleditor/UMLEditor.java

363 animation1/MergeSorter.java

365 animation21 ArrayComponent.java

371 animation2/MergeSorter.java

371 queue2/Consumer.java

372 queue2/Producer.java

373 queue2IThreadTester.java

380 queue3/Consumer.java

384 queue3/Producer.java

388 queue3IThreadTester.Java

389

390

391

392

10 More Design Patterns adapter/lconAdapter.java

adapter/lconAdapterTester.java

398 adapter/Carlcon.java

399

command/CommandTester.java 404

command/GreetingAction.java 405

proxy/lmageProxy.java 411

proxy/ProxyTester.java 412

visitor/FileSystemNode.java 417

visitor/FileNode.java 418

visitor/DirectoryNode.java 418

visitor/FileSystemVisitor.java 419

visitor/PrintVisitor.java 419

visitorNisitorTester.java 419

Chapter

A-Crasn Course
inJava

� "Helio, World!" in Java

� Documentation Comments

� Primitive Types

� Control Flow Statements

� Object References

� Parameter Passing

� Packages

� Basic Exception Handling

� Strings

� Reading Input

� Array Lists and Linked Lists

� Arrays

� Static Fields and Methods

� Programming Style

The purpose of this chapter is to teach you the elements of the Java

programming language-or to give you an opportunity to review them

assuming that you know an object-oriented programming language. In

CHAPTER 1 A Crash Course in Java

particular, you should be familiar with the concepts of classes and objects.
If you know C++ and understand classes, member functions, and construc
tors, then you will find that it is easy to make the switch to Java.

"Hel lo , World!" i n J ava

Classes are the building blocks ofJava programs. Let's start our crash course by looking
at a simple but typical class:

publ i c cl ass Greeter
{

}

publ i c Greete r (Stri ng aName)
{

name = aName ;
}

publ i c Stri ng sayHel l o ()
{

return "Hel l o , " + name + " ! " ;
}

pri vate Stri ng name ;

This class has three features:

• A constructor G reete r (St ri ng aName) that is used to construct new objects of this
class.

• A method sayHe 1 1 0 0 that you can apply to objects of this class. (Java uses the term
"method" for a function defined in a class.)

• A field name. Every object of this class has an instance of this field.

A class definition contains the
implementation of construc
tors, methods, and fields.

Each feature is tagged as publ i c or pri vate. Implementation details
(such as the name field) are private. Features that are intended for the
class user (such as the constructor and sayHe 1 1 0 method) are public.
The class itself is declared as public as well. You will see the reason in

the section on packages.

To construct an object, you use the new operator, which invokes the constructor.
new G reete r ("Worl d")

The new operator returns the constructed object, or, more precisely, a reference to that
object-we will discuss this distinction in detail in the section on object references.

The new operator constructs
new instances of a class.

The object that the new operator returns belongs to the Greeter class.
In object-oriented parlance, we say that it is an instance of the Greeter
class. The process of constructing an object of a class is often called

"instantiating the class".

1 . 1 "Hello, World!" in Java

Mter you obtain an instance of a class, you can call (or invoke) methods on it. The call
(new Greeter("Wor ld ")) . sayHe11 00

creates a new object and causes the sayHe 1 10 method to be executed. The result i s the
string "He 11 0 , Worl d ! " , the concatenation of the strings " Hel l o , " , name, and" ! " .

Object-oriented programming
follows the "client-server"
model. The client code
requests a service by invoking
a method on an object.

The code that invokes a method is often called the client code. We
think of the object as providing a service for the client.

You often need variables to store object references that are the result
of the new operator or a method call:

II!! _=

I
1 __

Greeter worl dGreeter = new Greete r ("Worl d ") ;
Stri ng g reeti ng = worl dGreete r . sayHel l o () ;

Now that you have seen how to define a class, you're ready to build your first Java pro
gram, the traditional program that displays the words "Hello, World!" on the screen.

You will define a second class, GreeterTester, to produce the output.

Chr/helloworld/GreeterTester.java

1 publ i c cl ass GreeterTester
2 {
3 publ i c stati c voi d mai n (Stri ng [] args)
4 {
5 Greete r wo rl dGreeter = new Greete r ("Worl d ") ;
6 Stri ng g reeti ng = worl dGreete r . sayHel l o () ;
7 System . out . pri ntl n (g reeti ng) ;
8 }
9 }

Execution of a Java program
starts with the mai n method
of a class.

This class has a rna i n method, which is required to start a Java applica
tion. The mai n method is static, which means that it doesn't operate on
an object. (We will discuss static methods-also called class meth-
ods----in greater detail later in this chapter.) When the application is

launched, there aren't any objects yet. It is the job of the mai n method to construct the
objects that are needed to start the program.

The args parameter of the mai n method holds the command-line arguments, which are
not used in this example. We will discuss command-line arguments in the section on
arrays.

You have already seen the first two statements inside the mai n method. They construct a
Greeter object, store it in an object variable, invoke the sayHel l o method, and capture
the result in a string variable. The last statement invokes the pri ntl n method on the
System . out object. The result is to print the message and a line terminator to the
standard output stream.

To build and execute the program, put the Greete r class inside a file Greete r . j ava and
the GreeterTester class inside a separate file Greete rTeste r . j ava. The directions for
compiling and running the program depend on your development environment.

The Java Software Development Kit (SDK) from Sun Microsystems is a set of
command-line programs for compiling, running, and documenting Java programs.

CHAPTER 1 A Crash Course in Java

Versions for several platforms are available at http : //j ava . sun . corn/j 2 se . If you use the
Java SDK, then follow these instructions:

1. Create a new directory of your choice to hold the program files.
2. Use a text editor of your choice to prepare the files Greeter . j ava and

GreeterTeste r . j ava. Place them inside the directory you just created.
3. Open a shell window.
4. Use the cd command to change to the directory you just created.
5. Run the compiler with the command

j avac GreeterTeste r . j ava

If the Java compiler is not on the search path, then you need to use the full path
(such as lusr 11 oca 1 Ij dkl . 5. O/bi n/j avac or c : \jdkl . 5. O\bi n\j avac) instead of
just javac. Note that the Greeter . j ava file is automatically compiled as well since
the GreeterTester class requires the Greeter class. If any compilation errors are
reported, then make a note of the file and line numbers and fix them.

6. Have a look at the files in the current directory. Verify that the compiler has gen
erated two class files, Greete r . c1 ass and GreeterTeste r . c1 ass.

7. Start the Java interpreter with the command
j ava GreeterTester

Now you will see a message "Hello, World!" in the shell window (see Figure 1).

The structure of this program is typical for a Java application. The program consists of a
collection of classes. One class has a rnai n method. You run the program by launching the
Java interpreter with the name of the class whose rnai n method contains the instructions
for starting the program activities.

Eile .Edit Ytew Ienni� TaQs Help

-$ cd oodp/Chl/helloworld
-/oodp/Chl/helloworld$ javac GreeterTester.java ------ Run compiler
-/oodp/Chl/helloworld$ java GreeterTester >---______ _

ello, World! -��d$ -----------___
_

Start interpreter
-/oodp/Chl/helloworld$ Message printed

Figure 1

Running the "Hello, World!" Program in a Shell Window

1.1 "Hello, World!" in Java

Some programming environ
ments allow you to execute
Java code without requiring a
mai n method.

The Blue] development environment, developed at Monash Univer
sity, lets you test classes without having to write a new program for
every test. Blue] supplies an interactive environment for constructing
objects and invoking methods on the objects. You can download Blue]
from http : //www . b 1 uej . org.

With Blue], you don't need a GreeterTester class to test the Greeter class. Instead, just
follow these steps.

1. Select "Project -+ New . . . " from the menu; point the file dialog box to a directory
of your choice and type in the name of the subdirectory that should hold your
classes-this must be the name of a new directory. Blue] will create it.

2. Click on the "New Class . . . " button and type in the class name Greeter . Right
click on the class rectangle and type in the code of the Greeter class.

3. Click on the "Compile" button to compile the class. Click on the "Close" button.
4. The class is symbolized as a rectangle. Right-click on the class rectangle and select

"new Greeter(aName)" to construct a new object. Call the object wor1 dGreeter
and supply the constructor parameter "Wor 1 d" (including the quotation marks).

5. The object appears in the object workbench. Right-click on the object rectangle
and select "String sayHello()" to execute the sayHe 1 1 0 method.

6. A dialog box appears to display the result (see Figure 2).

As you can see, Blue] lets you think about objects and classes without fussing with
publ i c stati c voi d mai n .

frojtct Edit Iools �It!w

rNewclass ,l �� Cl _ _ Gru.er ...--- ass [---;:]
C ----El [CO;Pil�] /Resuit dialog box

!: BlueJ MNhoa Re<"ult X

Figure 2

Ii Gr��' w·1n3 'HeHo" mf'ssaQe
// #te!um a mtSS8Qe comamll10 �Hel!(}· and the name 01
// U')e ;nUi'lM person or emIlY
SUing uyHelloO

worldGrttter.s;ayHelloO

returned:

SUing -H.llo, World!- I "------'

Object workbench

Testing a Class with BlueJ

Help

CHAPTER 1 A Crash Course in Java

Documentation Comments

Java has a standard form for comments that describe classes and their features. The Java
development kit contains a tool, called j avadoc, that automatically generates a conve
nient set of HTML pages that document your classes.

Documentation comments are delimited by /** and * /. Both class and method com
ments start with freeform text. The j avadoc utility copies the first sentence of each
comment to a summary table. Therefore, it is best to write that first sentence with some
care. It should start with an uppercase letter and end with a period. It does not have to be
a grammatically complete sentence, but it should be meaningful when it is pulled out of
the comment and displayed in a summary.

Method and constructor comments contain additional information. For each parameter,
supply a line that starts with @param, followed by the parameter name and a short expla
nation. Supply a line that starts with @retu rn to describe the return value. Omit the
@param tag for methods that have no parameters, and omit the @return tag for methods
whose return type is voi d .

Here is the Greeter class with documentation comments for the class and its public
interface.

Chr/helloworld/Greeter.java

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
1 8
19
20
21
22
23
24
25
26

/**
A class for producing simple greetings.

*/
publ i c cl ass Greeter
{

/**
Constructs a Greeter object that can greet a person or entity.
@param aName the name of the person or entity who should
be addressed in the greetings.

*/
publ i c Greete r(Stri ng aName)
{

name = aName ;
}

/**
Greet with a "Hello" message.
@return a message containing "Hello" and the name of
the greeted person or entity.

*/
publ i c Stri ng sayHel l o ()
{

return "Hel l o , " + name +
}

pri vate St ri ng name ;

"!";

27 }

1 . 2 Documentation Comments

Your first reaction may well be "Whoa! I am supposed to write all this stuffi" These com
ments do seem pretty repetitive. But you should still take the time to write them, even if
it feels silly at times. There are three reasons.

First, the j avadoc utility will format your comments into a nicely formatted set of
HTML documents. It makes good use of the seemingly repetitive phrases. The first
sentence of each method comment is used for a summary table of all methods of your
class (see Figure 3). The @param and @ret:urn comments are neatly formatted in the detail
descriptions of each method (see Figure 4). If you omit any of the comments, then
j avadoc generates documents that look strangely empty.

Supply comments for all
methods and public fields of
a class.

Next, it is possible to spend more time pondering whether a comment
is too trivial to write than it takes just to write it. In practical pro
gramming, very simple methods are rare. It is harmless to have a triv-
ial method overcommented, whereas a complicated method without

any comment can cause real grief to future maintenance programmers. According to the
standard Java documentation style, every class, every method, every parameter, and every
return value should have a comment.

Finally, it is always a good idea to write the method comment first, before writing the
method code. This is an excellent test to see that you firmly understand what you need to
program. If you can't explain what a class or method does, you aren't ready to implement
it.

"" Eile Edit Ylew .Go ,eool:.man:.s loots ytlndow tfelp

I � fileJ/lhomelcayloodpICh1IhelloworidIGreeter.html

...

Package �Tree Deprecated Index �
PRE v CLASS NEXT CLASS � J:I2.£l!IIIrul �

SUMMARV; NESTED I FIELD I � I M.IilllQQ DETAil FIElDI�I�

Class Greeter

java.lang.Object
LGreeter

public class Greeter
extends java.lang.Object

A class for producing simple greeting:s.

Constructor Summary
�(java.lang.Strin9 aHame)

Constructs a Greeter object that can greet a person or entity.

Method Summary
ja ... lang. Stringl.saYHCllO ()

Greet with a "Hello" message.

,)iil,.Q�U� ... - ---.�. -.- - "'.CC _ L .7-

Figure 3

A j avadoc Class Summary

Cl fjJ
.

-

.=!"

CHAPTER 1 A Crash Course in Java

... file fdit YJew yO Bookmarks Ioois WlndO\ll l:felp

:
I � fileJllhomelcay/oodpIChllheIiOWOridIGn1eter.html 1:11 III

IConstructor Detail I
Greeter

publ ic Greeter (java . lang .String aName)
Constructs a Greeter object that can greet a person or entil¥.

Parameters:
aName - the name of the person or entil¥ who should be addressed in the greeting.<.

IMethod Detail I
sayHello

public java. lang. String sayHello()

Greet with a "Hello" message.

Returns:
a m�sage containing "Hello" and the name of the greeted person or entil¥.

LJi.: bit,!:! 4I>i

Figure 4

Parameter and Return Value Documentation in j avadoc

Mter you have written the documentation comments, invoke the j avadoc utility.

1 . Open a shell window.
2 . Use the cd command to change to the directory you just created.
3. Run the j avadoc utility

j avadoc * . j ava

If the Java development tools are not on the search path, then you need to use the
full path (such as /usr /1 oca 1 /j dkl . 5. O/b; n/j avadoc or c : \j dkl . 5 . O\b; n\j ava
doc) instead of just j avadoc.

The j avadoc utility extracts
documentation comments and
produces a set of cross-linked
HTML files.

The j avadoc utility then produces one HTML file for each class
(such as Greete r . htm1 and GreeterTester . htm1) as well as a file
; ndex . htm1 and a number of other summary files . The ; ndex . htm1 file
contains links to all classes.

The j avadoc tool is wonderful because it does one thing right: It allows you to put the
documentation together with your code. That way, when you update your programs, you
can see immediately which documentation needs to be updated. Hopefully, you will then
update it right then and there. Mterwards, run j avadoc again and get a set of nicely for
matted HTML pages with the updated comments.

INTERNET The DocCheck program reports any missing j avadoc comments. Download it
from http : //java . sun . com/j 2 se/javadoc/doccheck/.

1 . 3 Primitive Types

.
.. fUe .Edit Yl8'¥l yO UOokmarts Ioois :l!lindow Help

·
·

ava,beans .
ava,beans,beanC(-

� � ava.lana.annotatl
ava.lana.instrume •

tateEdit �able
aleFactofY

� �-reamable
reamableValU6
treamCorruDted
treamHandler
treamPrintServic
treamPrintServi
treamResult
treamSource
treamT okenizer

�

I v file:lllusrltocalljdk.1 S OIdocslaplllndex.ntml al [Em
Overview Package mEmUse Tree Deprecated Index !:!!!!p J_
� � t:fl.6Mll I!l!...E!!8Mil

SUMMARY, NESTED I EID..Il I � I MilI:JQJl DETAIL' EID..Il I � I MilI:JQJl

Jalang

Class String

java . l ang. Object
Ljava. lanq. string

All Implemented Interfaces:
Serializable. Olar$eguence, Comparable<String>

pub l i c final class String
extends Object
implements Seri a l i z able, Comparable<String> , CharSequence

The String class represents character strings. All string lirerals in Java
programs, such as "abc", are implemented as instances of this class.

St.

.

• ,c • . .
• •
I1iI Q (>'1' flo'" ihomeJlcIpMdkI .s.�tri'l9 html -=�

Figure 5

The Java API Documentation

The Java development kit contains the documentation for all classes in the Java library,
also called the application programming interface or API. Figure 5 shows the documen
tation of the St ri ng class. This documentation is directly extracted from the library
source code. The programmers who wrote the Java library documented every class and
method and then simply ran j avadoc to extract the HTML documentation.

TIP Download the SDK documentation from http : //j ava . sun . com/j 2se . Install the doc
umentation into the same location as the Java development kit. Point your browser to the
docs/api Ii ndex . html file inside your Java development kit directory, and make a bookmark.
Do it now! You will need to access this information frequently.

Primitive Typ e s

Java has eight primitive types
for integers, floating-paint
numbers, bytes, characters,
and bool ean values.

In Java, numbers, characters, and Boolean values are not objects but
values of a primitive type. Table 1 shows the eight primitive types of
the Java language.

To indicate l ong constants, use a suffix L, such as 10000000000L. Sim
ilarly, fl oat constants have a suffix F, such as 3 . 141S92 7F.

CHAPTER 1 A Crash Course in Java

Characters are encoded in Unicode, a uniform encoding scheme for characters in many
languages around the world. Character constants are enclosed in single quotes, such as

, a ' . Several characters, such as a newline ' \n ' , are represented as two-character escape

Type Size Range

; nt: 4 bytes -2,147,483,648 . . . 2,147,483,647

l ong 8 bytes -9,223,372,036,854,775,808L . . .
9,223,372,036,854,775,807L

short: 2 bytes -32768 . . . 32767

byt:e 1 byte -128 . . . 127

char 2 bytes ' \uOOOO ' . . . ' \u FFFF '
\

bool ean fV se , t: rue

doubl e 8 bytes approximately ± 1 . 79769313486231570E+308

fl oat: 4 bytes approximately ± 3.40282347E+38F

Tab l e 1

The Primitive Types of the Java Language

Escape Sequence Meaning

\b backspace (\uOOO8)

\f form feed (\uOOOC)

\n newline (\uOOOA)

\r return (\uOOOD)

\t: tab (\uOOO9)

\\ backslash

\ ' single quote

\" double quote

\unln2n3n4 Unicode encoding

Ta ble 2

Character Escape Sequences

1 . 3 Primitive Types

sequences. Table 2 shows the most common permitted escape sequences. Arbitrary
Unicode characters are denoted by a \u, followed by four hexadecimal digits enclosed in
single quotes. For example, ' \u212 2 ' is the trademark symbol (TM) .

INTERNET You can find the encodings of tens of thousands of letters in many alphabets at
http : //www . uni code . org.

Conversions that don't incur information loss (such as short to i nt or fl oat to doubl e)
are always legal. Values of type char can be converted to i nt. All integer types can be
converted to fl oat or doubl e, even though some of the conversions (such as l ong to
doubl e) lose precision. All other conversions require a cast:

doub 1 e x = 10 . 0 / 3 . 0 ; / / sets x to 3.3333333333333335
i nt n = (i nt) x ; / / sets n to 3
fl oat f = (fl oat) x ; / / sets f to 3 .3333333

It is not possible to convert between the bool ean type and number types.

The Math class implements useful mathematical methods. Table 3 contains some of the
most useful ones. The methods of the Math class do not operate on objects. Instead,
numbers are supplied as parameters. (Recall that numbers are not objects in Java.) For
example, here is how to call the sq rt method:

doubl e y = Math . sq rt (x) ;

Since the method doesn't operate on an object, the class name must be supplied to tell
the compiler that the sqrt method is in the Math class. In Java, every method must
belong to some class.

Method Description

Math . sq rt (x) Square root of x, Fx
Math . pow(x , y) xY (x > 0, or x = ° and y > 0, or x < ° and y is an integer)
Math . toRadi ans (x) Converts x degrees to radians (i .e. , returns x . n/180)
Math . toDegrees (x) Converts x radians to degrees (i .e . , returns x . 180/n)
Math . round (x) Closest integer to x (as a l ong)
Math . abs (x) Absolute value I x I

Ta ble 3

Mathematical Methods

CHAPTER 1 A Crash Course in Java

C ontrol Flow S tatements

The i f statement is used for conditional execution. The el se branch is optional.

i f (x >= 0) y = Math . sq rt (x) ; el se y = 0 ;

The whi 1 e and do statements are used for loops. The body of a do loop is executed at least
once.

whi l e (x < target)
{

}

do
{

}

x = x * a ;
n++ ;

x = x * a ;
n++ ;

whi l e (x < target) ;

The for statement is used for loops that are controlled by a 100F counter.

fo r (i = 1 ; i <= n ; i ++)
{

x = x * a ;
sum sum + x ;

}

A variable can be defined in a for loop. Its scope extends to the end of the loop.

for (int = 1; i <= n ; i ++)
{

x = x * a ;
sum sum + x ;

}
/ / i no longer defined here

Java 5.0 introduces an enhanced form of the for loop. We will discuss that construct later
in this chapter.

Obj ect References

In Java, an object value is always a reference to an object, or, i n other words, a value that
describes the location of the object. For example, consider the statement

Greete r worl dGreeter = new Greeter ("Worl d") ;

An object reference describes
the location of an object. In
Java, you manipulate object
references, not objects.

The value of the new expression is the location of the newly con
structed object. The variable wo rl dGreeter can hold the location of
any Greeter object, and it is being filled with the location of the new
object (see Figure 6.)

1 . 5 Object References

worl dGreeter
Greeter

name = "Wo r l d "

F i g u re 6

An Object Reference

There can be multiple variables that store references to the same object. For example,
after the assignment

Greeter anotherGreete r = worl dG reete r ;

the two object variables refer to the same object (see Figure 7).

When you copy object refer
ences, the copy accesses the
same object as the original.

If the Greete r class has a setName method that allows modification of
the object, and if that method is invoked on the object reference, then
both variables access the modified object.

anotherGreeter . setName ("Dave") ;
/ / now worl dGreeter also refers to the changed object

To make a copy of the actual object, instead of just copying the object reference, use the
cl one method. Implementing the cl one method correctly is a subtle process that is dis
cussed in greater detail in Chapter 7. However, many library classes have a cl one
method. It is then a simple matter to make a copy of an object of such a class. For exam
ple, here is how you clone a Date object:

Date aDate = . . . ;
Date anothe rDate = (Date) aDate . cl one() ;

The cast (Date) is necessary because c l one is a generic method with return type Obj ect.
In Java, all classes extend the class Obj ect.

The special reference nul l refers to no object. You can set an object variable to nul l :

wo rl dGreete r = nul l ;

You can test if an object reference is currently nul l :

i f (worl dGreete r == nul l) . . .

The nul l reference refers to
no object.

If you invoke a method on a nul l reference, a Nul l Poi nterExcepti on
is thrown. Unless you supply a handler for the exception, the program
terminates. (Exception handling is discussed later in this chapter.)

wo rl dGreete r

anotherGreete r

� G reeter

�I--------{
name = "Worl d "

F i g u r e 7

A Shared Object

CHAPTER 1 A Crash Course in Java

It can happen that an object has no references pointing to it, namely when all object vari
ables that previously referred to it are filled with other values or have been recycled. In
that case, the memory that was used for storing the object will be automatically
reclaimed by the garbage collector. In Java, you never need to manually recycle memory.

NOTE If you are familiar with the C++ programming language, you will recognize that object
references in Java behave just like pointers in C++. In C++, you can have multiple pointers to
the same value, and a NULL pointer points to no value at all. Of course, in C++, pointers strike
fear in the hearts of many programmers because it is so easy to create havoc with invalid
pointers. It is sometimes said that Java is easier than C++ because it has no pointers. That
statement is not true. Java always uses pointers (and calls them references), so you don't have
to worry about the distinction between pointers and values. More importantly, the pointers in
Java are safe. It is not possible to create invalid pointers, and the garbage collector automati
cally reclaims unused objects.

Parameter Pas s ing

The object reference on which you invoke a method is called the implicit parameter. In
addition, a method may have any number of explicit parameters that are supplied between
parentheses. For example, in the call

myGreeter . setName ("Mars") ;

the reference stored in myGreete r is the implicit parameter, and the string "Mars" is the
explicit parameter. The explicit parameters are so named because they are explicitly
defined in a method, whereas the implicit parameter is implied in the method definition.

Occasionally, you need to refer to the implicit parameter of a method by its special name,
thi s. For example, consider the following implementation of the setName method:

publ i c cl ass Greeter
{

}

/**

*/

Sets this greeter's name to the given name.
@param name the new name for this greeter

publ i c voi d setName(Stri ng name)
{

thi s . name = name ;

}

The t hi s reference refers to
the object on which a method
was invoked.

The thi s reference refers to the object on which the method was
invoked (such as myGreete r in the call myGreete r . setName ("Mars")) .
The name field i s set to the value of the explicit parameter that i s also
called name. In the example, the use of the thi s reference was neces

sary to resolve the ambiguity between the name field and the name parameter.

1 . 6 Parameter Passing

Occasionally, the thi s reference is used for greater clarity, as in the next example.

A method can change the state
of an object whose reference
it receives.

In Java, a method can modifY the state of an object because the corre
sponding parameter variable is set to a copy of the passed object refer
ence. Consider this contrived method of the Greeter class:

publ i c cl ass Greeter
{

}

/**
Sets another greeter's name to this greeter's name.
@param other a reference to the other Greeter

*/
publ i c voi d copyNameTo (Greeter other)
{

other . name = thi s . name ;
}

N ow consider this call:

Greeter worl dGreeter = new Greeter ("Worl d") ;
Greeter daveG reete r = new Greeter("Dave") ;
worl dGreeter . copyNameTo(daveGreete r) ;

Figure 8 shows how the other parameter variable is initialized with the daveGreete r
reference. The copyNameTo method changes othe r . name, and after the method returns,
daveGreeter . name has been changed.

However, in Java, a method can never update the contents of a variable that is passed as a
parameter. For example, after the call

worl dGreeter . copyNameTo(daveGreete r) ;

the contents of daveGreete r is the same object reference before and after the call. It is
not possible to write a method that would change the contents of daveG reeter to
another object reference. In this regard, Java differs from languages such as C++ and C#
that have a "call by reference" mechanism.

To see that Java does not support call by reference, consider yet another set of contrived
methods. These methods try to modifY a parameter, but they have no effect at all.

daveGreeter

other

� G reete r

�I---------l
name = "Dave"

F i g u re 8

Accessing an Object through a Parameter Variable

CHAPTER 1 A Crash Course in Java

publ i c cl ass Greeter
{

/*;'
Tries to copy the length of this greeter's name into an integer variable.
@param n the variable into which the method tries to copy the length

*/

}

publ i c voi d copyLengthTo (i nt n)
{

}

/**

*/

/ / this assignment has no effect outside the method
n = name . l ength () ;

Tries to set another Greeter object to a copy of this object.
@param other the Greeter object to initialize

publ i c voi d copyGreeterTo (Greeter other)
{

}

/ / this assignment has no effect outside the method
other = new Greeter (name) ;

Let's call these two methods:

i nt l ength = 0 ;
Greeter worl dGreete r = new Greeter ("Worl d") ;
Greeter daveGreeter = new Greeter ("Dave") ;
worl dGreete r . copyLengthTo(l ength) ;

/ / has no effect on the contents of 1 ength
worl dGreeter . copyGreete rTo(daveGreeter) ;

/ / has no effect on the contents of daveG reeter

(

Java uses "call by value" when Neither method call has any effect. Changing the value of the param

passing parameters. eter variable does not affect the variable supplied in the method call.
Thus, Java has no call by reference. Java uses the "call by value" mech

anism for both primitive types and object references.

Packages

Java classes can be grouped into packages. Package names are dot-separated sequences of
identifiers, such as

j ava . uti l
j avax . swi ng
com . sun . mi sc
edu . sj su . cs . cs15 1 . al i ce

1.7 Packages

Java uses packages to group
related classes and to ensure
unique class names.

To guarantee the uniqueness of package names, the inventors of Java
recommend that you start a package name with a domain name in
reverse (such as com . sun or edu . sj su . cs) , because domain names are
guaranteed to be unique. Then use some other mechanism within your

organization to ensure that the remainder of the package name is unique as well.

You place a class inside a package by adding a package statement as the first statement of
the source file:

package edu . sj su . cs . cs151 . al i ce ;
publ i c cl ass Greeter
{

}

Any class without a package statement is in the "default package" with no package name.

The foIl name of a class consists of the package name followed by the class name, such as
edu . sj su . cs . cs15 1 . al i ce . Greete r . Some full class name examples from the Java library
are j ava . uti l . Ar rayLi st and javax . swi ng . JOpti onPane.

The i mpo rt directive allows
programmers to omit package
names when referring to
classes.

It is tedious to use these full names in your code. Use the i mport
statement to use the shorter class names instead. For example, after
you place a statement

i mport java . uti l . Scanner ;

into your source file, then you can refer to the class simply as Scanner. If you simulta
neously use two classes with the same short name (such as j ava . uti 1 . Date and
j ava . sql . Date) , then you are stuck-you must use the full name for one of them.

You can also import all classes from a package:

i mport j ava . uti l . * ;

However, you never need to import the classes in the j ava . 1 ang package, such as Stri ng
or Math .

Organize your class files in
directories that match the
package names.

Large programs consist of many classes in multiple packages. The
class files must be located in subdirectories that match the package
names. For example, the class file Greete r . cl ass for the class

edu . sj su . cs . cs151 . al i ce . Greeter

must be in a subdirectory

edu/sjsu/cs/cs151/al i ce

or

edu\sjsu\cs\cs151\al i ce

of the project's base directory (see Figure 9). The base directory is the directory that con
tains all package directories as well as any classes that are contained in the default pack
age (that is, the package without a name).

CHAPTER 1 A Crash Course in Java

Base directory - [j
? [j edu

9 [j cs

� [j cs151

? [j alice

D Greeter.java

Figure 9

Package Name Must Match the Directory Path

Always compile from the base directory, for example

j avac edu/sj su/cs/cs151/al i ce/Greete r . j ava

or
j avac edu\sj su\cs\cs151\al i ce\Greete r . j ava

Then the class file is automatically placed in the correct location. �
To run a program, you must start the Java virtual machine in the base directory and spec
ifY the full class name of the class that contains the main method:

j ava edu . sj su . cs . cs15 1 . al i ce . Greete r

Basic Exception Handling

When a program carries out a n illegal action, an exception i s generated. Here i s a com
mon example. Suppose you initialize a variable with the nul l reference, intending to
assign an actual object reference later, but then you accidentally use the variable when it
is still nu 1 1 .

St ri ng name = nul l ;
i nt n = name . l ength () ; II Illegal

When an exception occurs and
there is no handler for it, the
program terminates.

Applying a method call to nul l is illegal. The virtual machine now
throws a Nul l Poi nte rExcepti on. Unless your program handles this
exception, it will terminate after displaying a stack trace (the sequence
of pending method calls) such as this one:

Exception i n th read "mai n " j ava . l ang . Nu1 1 Poi nte rExcepti on
at Greeter . sayHel l o (Greete r . j ava : 2 5)
at GreeterTester . mai n (GreeterTester . j ava : 6)

Different programming errors lead to different exceptions. For example, trying to open a
file with an illegal file name causes a Fi 1 eNotFoundExcepti on.

1 . 8 Basic Exception Handling

Throw an exception to indicate
an error condition that the cur
rent method cannot handle.

You can also throw your own exceptions if you find that a programmer
makes an error when using one of your classes. For example, if you
require that the parameter of one of your methods should be positive,
and the caller supplies a negative value, you can throw an II I ega 1 -

ArgumentExcepti on:

i f (n <= 0) throw new Il l egal ArgumentExcepti on ("n shou l d be > 0") ;

There are two categories of
exceptions: checked and
unchecked. If you call a
method that might throw a
checked exception, you must
either declare it or catch it.

We will discuss the hierarchy of exception types in greater detail in
Chapter 6. At this point you need to be aware of an important dis
tinction between two kinds of exceptions, called checked exceptions and
unchecked exceptions. The Nul l Poi nte rExcepti on is an example of an
unchecked exception. That is, the compiler does not check that your
code handles the exception. If the exception occurs, it is detected at
runtime and may terminate your program. The IOExcepti on, on the

other hand, is a checked exception. If you call a method that might throw this exception,
you must also specify how you want the program to deal with this failure.

In general, a checked exception is caused by an external condition beyond the program
mer's control. Exceptions that occur during input and output are checked because the file
system or network may spontaneously cause problems that the programmer cannot con
trol. Therefore, the compiler insists that the programmer provide code to handle these
situations.

On the other hand, unchecked exceptions are generally the programmer's fault. You
should never get a Nul l Poi nte rExcepti on. Therefore, the compiler doesn't tell you to
provide a handler for a Nul l Poi nterExcepti on. Instead, you should spend your energy on
making sure that the error doesn't occur in the first place. Either initialize your variables
properly, or test that they aren't nul l before making a method call.

Whenever you write code that might cause a checked exception, you must take one of
two actions:

1. Declare the exception in the method header.

2. Handle (or catch) the exception.

Consider this example. You want to read data from a file.

publ i c voi d read (Stri ng fi l ename)
{

Fi l eReader reader = new Fi l eReade r (fi l ename) ;

}

If there is no file with the given name, the Fi l eReade r constructor throws a
Fi 1 eNotFoundExcepti on. Because it is a checked exception, the compiler insists that you
handle it. However, the implementor of the read method probably has no idea how to
correct this situation. Therefore, the optimal remedy is to let the exception propagate to its
caller. That means that the read method terminates, and that the exception is thrown to
the method that called it.

Whenever a method propagates a checked exception, you must declare the exception in
the method header, like this:

CHAPTER 1 A Crash Course in Java

publ i c voi d read (Stri ng fi l ename) throws Fi l eNotFoundException

{
Fi l eReader reader = new Fi l eReade r(fi l ename) ;

}

TIP There is no shame associated with acknowledging that your method might throw a
checked exception-it is just "truth in advertising".

If a method can throw multiple exceptions, you list them all, separated by commas. Here
is a typical example. As you will see in Chapter 7, reading objects from an object stream
can cause both an IOExcepti on (if there is a problem with reading the input) and a
Cl assNotFoundExcepti on (if the input contains an object from an unknown class). A
read method can declare that it throws both exceptions:

publ i c voi d read (Stri ng fi l ename)
throws IOException , Cl assNotFoundException

When you tag a method with a throws clause, the callers of this method are now put on
notice that there is the possibility that a checked exception may occur. Of course, thost,
calling methods also need to deal with these exceptions. Generally, the calling methods
also add throws declarations. When you carry this process out for the entire program, the
ma i n method ends up being tagged as well:

publ i c stati c voi d mai n (Stri ng [] args)

{

}

throws IOException , Cl assNotFoundExcepti on

If an exception actually occurs, the mai n method is terminated, a stack trace is displayed,
and the program exits.

However, if you write a professional program, you do not want the program to terminate
whenever a user supplies an invalid file name. In that case, you want to catch the excep
tion. Use the following syntax:

try
{

code that might throw an IOExcepti on

}
catch (IOExcepti on excepti on)
{

take corrective action
}

An appropriate corrective action might be to display an error message
and to inform the user that the attempt to read the file has failed.

When an exception is thrown,
the program jumps to the clos
est matching catch clause. In most programs, the lower-level methods simply propagate excep

tions to their callers. Some higher-level method, such as mai n or a part
of the user interface, catches exceptions and informs the user.

1.9 Strings

For debugging purposes, you sometimes want to see the stack trace. Call the pri nt
StackTrace method like this:

try
{

}
catch (IOExcepti on excepti on)
{

excepti on . p ri ntStackTrace () ;
take corrective action

}

Occasionally, a method must carry out an action even if a prior statement caused an
exception. A typical example is closing a file. A program can only open a limited number
of files at one time, and it should close all files that it opened. To ensure that a file is
closed even if an exception occurred during file processing, use the fi na 1 1 y clause:

Fi l eReader reader = nul l ;
reader = new Fi l eReader(name) ;
t ry
{

}
fi nal l y
{

reade r . cl oseO ;
}

Code in a fi na 1 1 y clause
is executed during normal
processing and when an
exception is thrown.

the cl ose method

S trings

The fi na 1 1 y clause is executed when the t ry block exits without an
exception, and also when an exception is thrown inside the try block.
In either case, the cl ose method is called. Note that the Fi 1 eReader
constructor is not contained inside the try block. If the constructor
throws an exception, then reade r has not yet been assigned a value, and
should not be called.

Java strings are sequences of Unicode characters. The charAt method yields the individ
ual characters of a string. String positions start at O.

St ri ng g reeti ng = "Hel l o" ;
char ch = g reeti ng . charAt (l) ; II sets ch to ' e '

A Java string is an
immutable sequence of
Unicode characters.

Java strings are immutable. Once created, a string cannot be changed.
Thus, there is no setCharAt method. This may sound like a severe
restriction, but in practice it isn't. For example, suppose you initialized
greeti ng to "Hel l o". You can still change your mind:

greeti ng = "Goodbye" ;

The string object " Hel l o" hasn't changed, but greeti ng now refers to a different string
object.

The 1 ength method yields the length of a string. For example, " Hel l o " . 1 engthO is 5.

CHAPTER 1 A Crash Course in Java

Figure 1 0

Extracting a Substrin g

I' H 'I' e '1' 1 '1' 1 'I' 0 'I
o 1 2 3 4

'-y---'

Note that the empty string oflength 0 is different from nu1 1-a reference to no string
at all.

The substri ng method computes substrings of a string. You need to specifY the positions
of the first character that you want to include in the substring and the first character that
you no longer want to include. For example, "Hel l o " . substri ngC1 , 3) is the string "e1 "
(see Figure 10). Note that the difference between the two positions equals the length of
the substring.

Since strings are objects, you need to use the equal s method to compare whether two
strings have the same contents.

i f Cg reeti ng . equa1 s C "Hel l o")) . . . II OK

If you use the == operator, you only test whether two string references have the identical
location. For example, the following test fails:

i f C "Hel l o" . substri ngC1 , 3) == "e1 ") . . . II NO

The substring is not at the same location as the constant string "e1 " , even though it has
the same contents.

You have already seen the string concatenation operator: " Hel l o , .. + name is the con
catenation of the string " He 1 1 0 , . . and the string object to which name refers.

If either argument of the + operator is a string, then the other is converted to a string. For
example,

i nt n = 7 ;
Stri ng g reeti ng = " Hel l o , .. + n ;

constructs the string " He 1 1 0 , 7 " .

If a string and an object are concatenated, then the object i s converted to a string by
invoking its toStri ng method. For example, the toStri ng method of the Date class in
the j ava . uti 1 package returns a string containing the date and time that is encapsulated
in the Date object. Here is what happens when you concatenate a string and a Date
object:

I I default Date constructor sets current date/time
Date now = new Date C) ;
St ri ng g reeti ng = " Hel l o , .. + now ;
II g reeti ng is a string such as "Hel l o , Wed J an 18 16 : 57 : 18 PST 2006"

Sometimes, you have a string that contains a number, for example the string " 7 " . To con
vert the string to its number value, use the Intege r . parseInt and Doub1 e . parseDoub1 e
methods. For example,

Stri ng i nput = " 7 " ;
n = Intege r . parseInt Ci nput) ; II sets n to 7

If the string doesn't contain a number, or contains additional characters besides a num
ber, the unchecked Numbe rFo rmatExcepti on is thrown.

1.10 Reading Input

Reading Input

The Scanner class can be
used to read input from the
console or a file.

Starting with Java 5 .0, the simplest way to read input in a Java pro
gram is to use the Scanner class. To read console input, construct a
Scanner from System . i n . Call the nextInt or nextDoubl e method to
read an integer or a floating-point number. For example,

Scanner i n new Scanner(System . i n) ;
System . out . pri nt("How ol d are you? ") ;
i nt age = i n . nextlnt () ;

If the user types input that is not a number, an (unchecked) InputMi smatchExcepti on is
thrown. You can protect yourself against that exception by calling the hasNextlnt or has
NextDoubl e method before calling nextInt or nextDoubl e.

The next method reads the next whitespace-delimited token, and nextL i ne reads the
next input line.

You can read input from a file by constructing a Scanne r from a Fi 1 eReade r. For exam
ple, the following loop reads all lines from the file i nput . txt:

Scanner i n = new Scanner (new Fi l eReader(" i nput . txt")) ;
whi l e (i n . hasNextLi ne())
{

Stri ng l i ne = i n . nextLi ne() ;

}

Array Lis t s and Linked L i s t s

The ArrayL i st class of the j ava . uti 1 package lets you collect a sequence of objects of
any type. The add method adds an object to the end of the array list.

ArrayLi st<Stri ng> countri es = new Ar rayLi st<Str i ng> () ;
countri es . add("Bel gi um") ;
countri es . add(" Ital y") ;
countri es . add ("Thai l and") ;

Starting with Java 5.0, the ArrayL i st class is a generic class with a type parameter. The
type parameter (Stri ng in our example) denotes the type of the list elements. You can
form array lists of any type, except for primitive types. For example, you can use an
ArrayL i st<Date> but not an Ar rayL i st<i nt>.

The si ze method returns the number of elements in the array list. The get method
returns the element at a given position; legal positions range from ° to s i ze O - 1. For
example, the following loop prints all elements of the countri es list:

for (i nt i = 0 ; i < countri es . s i ze () ; i ++)
{

}

Stri ng country countri es . get (i) ;
System . out . pri ntl n (country) ;

CHAPTER 1 A Crash Course in Java

Figure 1 1

Inserting into an Array List

t===::
New value

t=====: �
This loop is so common that Java 5.0 introduces a convenient shortcut: the enhanced for
loop or "for each" loop:

for (Stri ng country : countri es)
System . out . pri ntl n (count ry) ;

In each loop iteration, the variable before the : is set to the next element of the coun
tri es list.

The set method lets you overwrite an existing element with another:

count ri es . set (l , " F rance") ;

If you access a nonexistent position « 0 or >= s izeO), then an IndexOutOfBounds
Excepti on is thrown.

Finally, you can insert and remove elements in the middle of the array list.

countri es . add (l , "Ge rmany") ;
countri es . remove (O) ;

An array list is a collection of
objects that supports efficient
access to all storage locations.

A linked list is a collection of
objects that supports efficient
insertion and removal of ele-
ments. You use an iterator to
traverse a l inked list.

These operations move the remammg elements up or down. The
name "array list" signifies that the public interface allows both array
operations (get/set) and list operations (add/ remove) .

Inserting and removing elements in the middle of an array list is not
efficient. All elements beyond the location of insertion or removal
must be moved (see Figure 11) . A linked list is a data structure that
supports efficient insertion and removal at any location. When insert
ing or removing an element, all elements stay in place, and only the
neighboring links are rearranged (see Figure 12). The standard Java

library supplies a class L i nkedL i st implementing this data structure.

Fig ure 1 2

Inserting into a Linked List

1 . 1 1 Array Lists and Linked Lists

As with array lists, you use the add method to add elements to the end of a linked list.

Li nkedLi st<Stri ng> count ri es = new Li nkedLi st<Stri ng> () ;
count ri es . add ("Bel gi um") ;
countri es . add ("Ital y") ;
countr ies . add ("Thai l and ") ;

However, accessing elements in the middle of the linked list is not as simple. You don't
want to access a position by an integer index. To find an element with a given index, it is
necessary to follow a sequence of links, starting with the head of the list. That process is
not very efficient. Instead, you need an iterator, an object that can access a position any
where in the list:

Li stlterator<Stri ng> i te rator = countri es . l i stlte rato r () ;

The next method advances the iterator to the next position of the list and returns the
element that the iterator just passed (see Figure 13). The hasNext method tests whether
the iterator is already past the last element in the list. Thus, the following loop prints all
elements in the list:

whi l e (i te rator . hasNext())
{

}

Stri ng country = i te rato r . next () ;
System . out . p ri ntl n (country) ;

To add an element in the middle of the list, advance an iterator past the insert location
and call add:

i te rator = countri es . l i stlterato r () ;
i te rato r . next O ;
i te rator . add (" France") ;

To remove an element from the list, call next until you jump over the element that you
want to remove, then call remove. For example, this code removes the second element of
the countri es list.

i te rator = count ri es . l i stlterato r () ;
i te rator . nextO ;
i te rator . nextO ;
i te rato r . remove () ;

Figure 1 3

Iterator Movement

next next next

CHAPTER 1 A Crash Course in Java

Arrays

Array lists and linked lists have one drawback-they can only hold objects, not values of
primitive types. Arrays, on the other hand, can hold sequences of arbitrary values. You
construct an array as

new T[n]

where T i s any type and n any integer-valued expression. The array has type T[] .

i nt [] numbers = new i nt [10] ;

An array stores a fixed number
Now numbers is a reference to an array of 10 integers-see Figure 14.

of values of any given type. When an array is constructed, its elements are set to zero, fal se, or
nul l .

The length of an array is stored in the 1 ength field.

i nt l ength = numbers . l ength ;

Note that an empty array of length 0

new i nt [O]

is different from nul l-a reference to no array at all.

You access an array element by enclosing the index in brackets, such as

numbe rs[i] = i * i ;

If you access a nonexistent position « 0 or >= 1 ength), then an ArraylndexOutOf
Bounds Excepti on is thrown.

As with array lists, you can use the "for each" loop to traverse the elements of an array.
For example, the loop

for (i nt n : numbers)
System . out . pri ntl n (n) ;

is a shorthand for

for (i nt i = 0 ; i < numbers . l ength ; i ++)
System . out . pri ntl n (numbers [i]) ;

There is a convenient shorthand for constructing and initializing an array. Enclose the
array elements in braces, like this:

i nt [] numbers = { 0 , 1 , 4 , 9 , 16 , 2 5 , 3 6 , 49 , 64 , 81 } ;

Occasionally, it is convenient to construct an anonymous array, without storing the array
reference in a variable. For example, the Pol ygon class has a constructor

Pol ygon (i nt [] xval ues , i nt [] yval ues , i nt n) ;

You can construct a triangle by calling

Pol ygon tri angl e = new Pol ygon (
new i nt [] { 0 , 10 , 5 } , / / anonymous array of integers
new i nt [] { 10 , 0 , 5 } , / / another anonymous array
3) ;

1 .1 2 Arrays

Figure 1 4 numbers � i nt[]
An Array Reference

[0] = 0

[1] = 1
[2] = 4
[3] = 9
[4] = 16
[5] = 25
[6] = 36
[7] = 49
[8] = 64
[9] = 81

Mter an array has been constructed, you cannot change its length. If you want a larger
array, you have to construct a new array and move the elements from the old array to the
new array.

You can obtain a two-dimensional array like this:

i nt [] [] tabl e = new i nt [10] [20] ;

You access the elements as tabl e [row] [col umn] .

When you launch a program by typing its name into a command shell, then you can sup
ply additional information to the program by typing it after the program name. The
entire input line is called the command line, and the strings following the program name
are the command-line arguments. The args parameter of the mai n method is an array of
strings, the strings specified in the command line. The first string after the class name is
a rgs [0] . For example, if you invoke a program as

j ava GreeterTester Mars

then args . 1 ength is 1 and args [0] is "Mars" and not " j ava" or "Greete rTester " .

Java 5.0 introduces methods with a variable number of parameters. When you call such a
method, you supply as many parameter values as you like. The parameter values are auto
matically placed in an array. Here is an example:

publ i c doubl e sum (doubl e . . . val ues)
{

doubl e sum = 0 ;
fo r (doubl e v : val ues) sum += v ;
return sum ;

}

The . . . symbol indicates that the method takes a variable number of parameters of type
doub 1 e. The parameter variable val ues is actually an array of type doubl e [] . If you call
the method, for example as

doubl e resul t = sum(0 . 2 5 , - 1 , 10) ;

then the val ues parameter is initialized with new doubl e [] { 0 . 2 5 , - 1 , 10 } .

CHAPTER 1 A Crash Course in Java

S tatic Fie lds and Methods

Occasionally, you would like to share a variable among all objects of a class. Here i s a
typical example. The Random class in the j ava . uti 1 package implements a random num
ber generator. It has methods such as nextInt , nextDoub 1 e, and next Boo 1 ean that return
random integers, floating-point numbers, and Boolean values. For example, here is how
you print 10 random integers:

Random generator = new Random() ;
for (i nt i = 1 ; i <= 10 ; i ++)

System . out . p ri ntl n (gene rato r . nextlnt ()) ;

Let's use a random number generator in the Greeter class:

publ i c Stri ng saySomethi ng()
{

}

i f (generato r . nextBool ean ())
retu rn "Hel l o , " + name +

el se
return "Goodbye , " + name

" ! " ;

+ II I " · . ,

It would be wasteful to supply each Greete r object with its own random number genera
tor. To share one generator among all Greete r objects, declare the field as stati c :

publ i c cl ass Greeter
{

pri vate static Random gene rator = new Random() ;
}

A static field belongs to the
class, not to individual objects.

The term "static" is an unfortunate and meaningless holdover from
C++. A static field is more accurately called a class variable: there is
only a single variable for the entire class.

Class variables are relatively rare. A more common use for the stati c keyword is to
define constants. For example, the Math class contains the following definitions:

publ i c cl ass Math
{

}

publ i c stati c fi nal doubl e E = 2 . 71828182845904 5 2 3 54 ;
publ i c stati c fi nal doubl e PI = 3 . 1415926535897932 3846 ;

The keyword fi na 1 denotes a constant value. Mter a fi na 1 variable has been initialized,
you cannot change its value.

These constants are public. You refer to them as Math . PI and Math . E .

A static method (or class method) is a method that does not operate on an object. You have
already encountered static methods such as Math . sq rt and JOpti on Pane . showInputDi a l og .
Another use for static methods is factory methods, methods that return an object, similar to a
constructor. Here is a factory method for the G reete r class that returns a greeter object with
a random name:

1 .1 4 Programming Style

publ i c cl ass Greeter
{

}

publ i c stati c Greete r getRandomInstance()
{

}

i f (generato r . nextBool ean ())
return new Greeter (OOVenusOO) ;

el se
return new Greeter (OOMarsOO) ;

A static method is not invoked You invoke this method as Greeter . getRandomInstanceO . Note that

on an object. static methods can access static fields but not instance fields-they
don't operate on an object.

Static fields and methods have their place, but they are quite rare in object-oriented pro
grams. If your programs contain many static fields and methods, then this may mean that
you have missed an opportunity to discover sufficient classes to implement your program
in an object-oriented manner. Here is a bad example that shows how you can write very
poor non-object-oriented programs with static fields and methods:

publ i c cl ass BadGreete r
{

}

publ i c stati c voi d mai n (Stri ng [] args)
{

}

name = ooWorl d oo ;
p ri ntHel l oO ;

publ i c stati c voi d p ri ntHel l oO II Bad style
{
}

System . out . pri ntl n (O OHel l o , 00
+ name + OO ! OO) ;

private stati c Stri ng name ; I I Bad style

Programming S tyle)
Class names should always start with an uppercase letter and use mixed case, such as
Stri ng, Stri ngTokeni zer, and so on. Package names should always be lowercase, such as
edu . sj su . cs . cs151 . al i ceo Field and method names should always start with a lowercase
letter and use mixed case, such as name and sayHe 1 1 0. Underscores are not commonly
used in class or method names. Constants should be in all uppercase with an occasional
underscore, such as PI or MAX_VALUE.

Follow the standard naming
conventions for classes, meth
ods, fields, and constants.

These are not requirements of the Java language but a convention that
is followed by essentially all Java programmers. Your programs would
look very strange to other Java programmers if you used classes that
started with a lowercase letter or methods that started with an upper

case letter. It is not considered good style by most Java programmers to use prefixes for
fields (such as _name or m_name) .

CHAPTER 1 A Crash Course in Java

It is very common to use get and set prefixes for methods that get or set a property of an
object, such as

publ i c Stri ng getName ()
publ i c voi d setName (Stri ng aName)

However, a Boolean property has prefixes i s and set, such as

publ i c bool ean i sPol i te ()
publ i c voi d setPol i te (bool ean b)

Use a consistent style for
braces. We suggest that you
line up { and } in the same
row or column.

There are two common brace styles: The '�mann" style in which
braces line up, and the compact but less clear "Kernighan and Ritchie"
style. Here is the Greete r class, formatted in the Kernighan and
Ritchie style.

publ i c cl ass Greeter {

}

publ i c G reete r (Stri ng aName) {
name = aName ;

}

publ i c Stri ng sayHel l o () {
return "Hel l o , " + name + " ! " ;

}

pri vate St ri ng name ;

We use the AUmann style in this book.

Some programmers list fields before methods in a class:

publ i c cl ass Greeter
{

}

pri vate Stri ng name ;
/ / Listing private features first is not a good idea

publ i c Greeter (Stri ng aName)
{
}

However, from an object-oriented programming point of view, it makes more sense to
list the public interface first. That is the approach we use in this book.

Make sure that you declare all Except for pub 1 i c stati c fi na 1 fields, all fields should be declared

instance fields pri vate. pri vate. If you omit the access specifier, the field has package visibil-
ity-all methods of classes in the same package can access it--an unsafe

practice that you should avoid. Anyone can add classes to a package at any time. There
fore, there is an open-ended and uncontrollable set of methods that can potentially
access fields with package visibility.

It is technically legal-as a sop to C++ programmers-to declare array variables as

i nt numbers []

Exercises

You should avoid that style and use

i nt [] numbe rs

That style clearly shows the type i nt [] of the variable.

All classes, methods, parameters, and return values should have documentation comments.

You should put spaces around binary operators and after keywords, but not after method
names.

Good Bad

x > y x>y

i f (x > y) i f(x > y)

Math . sq rt (x) Math . sq rt (x)

You should not use magic numbers. Use named constants (fi na 1 variables) instead. For
example, don't use

h = 31 * h + val [off] ; I I Bad-what's 31?

What is 31? The number of days in January? The position of the highest bit in an inte
ger? No, it's the hash multiplier.

Instead, declare a local constant in the method

fi nal i nt HASH_MULTIPLIER = 31

or a static constant in the class (if it i s used by more than one method)

pri vate stati c fi nal i nt HASH_MULTI PLIER = 31

Then use the named constant:

h = HASH_MULTIPLIER * h + val [off] ; II 11uch better

INTERNET The CheckStyle program (http : //checkstyl e . sourceforge . net) can automat
ically check the quality of your code. It reports misaligned braces, missing documentation
comments, and many other style errors.

c:===--::EXERCISES
Exercise 1 . 1 . Add a sayGoodbye method to the G reete r class and add a call to test the
method in the GreeterTeste r class (or test it in BlueJ).

Exercise 1 .2. What happens when you run the Java interpreter on the Greete r class
instead of the GreeterTester class? Try it out and explain.

CHAPTER 1 A Crash Course in Java

Exercise 1.3. Add comments to the GreeterTester class and the mai n method.
Document args as "unused". Use j avadoc to generate a file Greete rTester . htm1 . Inspect
the file in your browser.

Exercise 1 .4. Bookmark docs/api Ii ndex . htm1 in your browser. Find the documentation
of the St ri ng class. How many methods does the St ri ng class have?

Exercise 1 .5 . Write a program that prints "Hello, San]ose". Use a \u escape sequence to
denote the letter e.

Exercise 1 .6. What is the Unicode character for the Greek letter "pi" (n)? For the Chi
nese character "bu" (:;y;;)?

Exercise 1 .7. Run the j avadoc utility on the Greeter class. What output do you get?
How does the output change when you remove some of the documentation comments?

Exercise 1.8. Download and install the DocCheck utility. What output do you get when
you remove some of the documentation comments of the Greeter class?

Exercise 1.9. Write a program that computes and prints the square root of 1000, rounded
to the nearest integer.

Exercise 1 .10. Write a program that computes and prints the sum of integers from 1 to
100 and the sum of integers from 100 to 1000. Create an appropriate class Summe r that
has no mai n method for this purpose. If you don't use Blue], create a second class with a
mai n method to construct two objects of the Summer class.

Exercise 1 . 1 1. Add a setName method to the Greeter class. Write a program with two
Greete r variables that refer to the same Greete r object. Invoke setName on one of the
references and sayHe 1 1 0 on the other. Print the return value. Explain.

Exercise 1 . 12. Write a program that sets a Greeter variable to nul l and then calls
sayHe 1 1 0 on that variable. Explain the resulting output. What does the number behind
the file name mean?

Exercise 1 . 13 . Write a test program that tests the setName, copyNameTo, copyLengthTo,
and copyGreeterTo methods of the examples in Section 1 .6, printing out the parameter
variables before and after the method call.

Exercise 1 . 14. Write a method voi d swapNames (Greeter other) of the Greeter class
that swaps the names of this greeter and another.

Exercise 1 .15 . Write a program in which Greete r is in the package
edu . sjsu . cs .yourcourse .yourname and GreeterTester is in the default package. Into
which directories do you put the source files and the class files?

Exercise 1 .16. What is wrong with the following code snippet?

ArrayLi st<Stri ng> stri ngs ;
stri ngs . add (" F rance") ;

Exercises

Exercise 1 . 17. Write a GreeterTester program that constructs Greeter objects for all
command-line arguments and prints out the results of calling sayHel l o. For example, if
your program is invoked as

j ava GreeterTester Mars Venus

then the program should print

Hel l o , Mars !
Hel l o , Venus !

Exercise 1 .18 . What are the values of the following?

(a) 2 + 2 + " 2 "

(b) " " + countri es, where countri es is an ArrayL i st filled with several strings

(c) "Hel l o" + new Greete r("World")

Write a small sample program to find out, then explain your answers.

Exercise 1 .19. Write a program that prints the sum of its command-line arguments
(assuming they are numbers). For example,

j ava Adder 3 2 . 5 -4 . 1

should print The sum i s 1 . 4

Exercise 1 .20. Write a program that reads input data from a file and prints the minimum,
maximum, and average value of the input data. The file name should be specified on the
command line. Use a class DataAnal yze r and a separate class DataAnal yzerTester.

Exercise 1 .21. Write a Greete rTester program that asks the user "What is your name?"
and then prints out "Hel l o , username" .

Exercise 1 .22. Write a class that can generate random strings with characters in a given
set. For example,

RandomStri ngGene rator generator = new RandomStri ngGenerator() ;
generato r . addRange (' a ' , ' z ') ;
generato r . addRange (' A ' , ' Z ') ;
Stri ng 5 = gene rato r . nextStri ng (10) ;

/ / A random string consisting of ten lowercase
/ / or uppercase English characters

Your class should keep an ArrayL i st<Range> of Range objects.

Exercise 1 .23. Write a program that plays TicTacToe with a human user. Use a class
Ti cTacToeBoard that stores a 3 x 3 array of char values (filled with ' x ' , ' 0 ' , or space
characters). Your program should use a random number generator to choose who begins.
When it's the computer's turn, randomly generate a legal move. When it's the human's
turn, read the move and check that it is legal.

Exercise 1 .24. Improve the performance of the getRandomlnstance factory method by
returning one of two fixed Greeter objects (stored in static fields) rather than construct
ing a new object with every call.

CHAPTER 1 A Crash Course in Java

Exercise 1 .25. Use any ZIP utility or the j ar program from the Java SDK to uncompress
the 5 rc . z; p file that is part of the Java SDK. Then look at the source code of the Stri ng
class in j ava/l ang/Str; ng . j ava. How many style rules do the programmers violate?
Look at the hashCode method. How can you rewrite it in a less muddleheaded way?

Exercise 1 .26. Look inside the source code of the class j ava . awt . Wi ndow. List the
instance fields of the class. Which of them are private, and which of them have package
visibility? Are there any other classes in the j ava . awt package that access those fields? If
not, why do you think that they are not private?

Chapter

Tne
Obj ect,Oriented
Design Process

� From Problem to Code

� The Object and Class Concepts

� Identifying Classes

� Identifying Responsibilities

� Relationships Between Classes

� Use Cases

� CRC Cards

� UML Class Diagrams

� Sequence Diagrams

� State Diagrams

� Using j avadoc for Design Documentation

� Case Study: A Voice Mail System

In this chapter, we will introduce the main topic of this book: object

oriented design. The chapter introduces a miniature version of a typical

object-oriented design methodology that can guide you from the

CHAPTER 2 The Object-Oriented Design Process

functional specification of a program to its implementation. You will see
how to find and document classes and the relationships between them,
using CRC cards and UML diagrams.

From Problem to Code

This book discusses the design and implementation of computer programs from the
object-oriented point of view. We focus on small and medium-sized problems. Although
much of what we say remains valid for large projects, there are added complexities with
large projects that we will not address here.

Programming tasks originate from the desire to solve a particular problem. The task may
be simple, such as writing a program that generates and formats a report, or complicated,
such as writing a word processor. The end product is a working program. To this end, it
is a common practice to break up the software development process into three phases:

• Analysis

• Design

• Implementation

The software development
process consists of analysis,
deSign, and implementation
phases.

This section briefly discusses the goals and methods of these phases.
Of course, it is simplistic to assume that development is a simple lin
ear progression through these phases. Successful software products
evolve over time. Implementation experiences may suggest an
improved design. New requirements are added, forcing another iteration

through analysis and design. Experience suggests that object-oriented design can lead to
software that facilitates the inevitable evolution better than software developed with tra
ditional methods because the objects and classes that represent the concepts of a problem
domain tend to be fairly stable.

fJ11- The Analysis Phase

The goal of the analysis phase
is a complete description of
what the software product
should do.

In the analysis phase, a vague understanding of the problem is trans
formed into a precise description of the tasks that the software system
needs to carry out. The result of the analysis phase is a detailed textual
description, commonly called a fUnctional specification, that has the
following characteristics:

• It completely defines the tasks to be performed.

• It is free from internal contradictions.

• It is readable both by experts in the problem domain and by software developers.

• It is reviewable by diverse interested parties.

• It can be tested against reality.

2.1 From Problem to Code

Consider, for example, the task of writing a word-processing program. The analysis
phase must define terms, such as fonts, footnotes, multiple columns, and document
sections, and the interaction of those features, such as how footnotes in multiple-column
text ought to look on the screen and the printed page. The user interface must be docu
mented, explaining, for example, how the user is to enter and move a footnote or specify
the font for footnote numbers. One possible format for an analysis document is a user
manual, very precisely worded to remove as much ambiguity as possible.

Another common format for describing the behavior of a system is a set of use cases. A
use case is a description of a sequence of actions that yields a benefit for a user of a sys
tem. At least in principle, it should be possible to enumerate all benefits that a system
can confer upon its users and supply use cases that show how they can be obtained.

The analysis phase concerns itself with the description of what needs to be done, not
how it should be done. The selection of specific algorithms, such as those that insert page
breaks or sort the index, will be handled in the implementation phase.

Although we do not do so in this book, it is possible to use object-oriented techniques in
the analysis phase as well as the design phase. An advantage of that approach is that the
object model of the analysis phase can be carried forward to the design phase. A poten
tial pitfall is that customers of a software product are generally not familiar with the ter
minology of object orientation. Clients may not find it easy to tell whether the analysis
will lead to a product that satisfies their needs.

flfl- The Design Phase

In the design phase, the program designer must structure the programming tasks into a
set of interrelated classes. Each class must be specified precisely, listing both its responsi
bilities and its relationship to other classes in the system. You will study this process in
this book in some detail.

The designer must strive for a result in which the classes are crisply defined and class
relationships are of manageable complexity. The exact choice of data structures, for
example, hash tables or binary search trees for a collection, is not of concern in the design
phase but is deferred until implementation. Even the choice of programming language is
not a design issue. It is possible to map an object-oriented design to a programming
language without object-oriented features, although that process can be somewhat
unpleasant.

The goal of object -oriented
deSign is the identification of
classes, their responsibilities,
and the relationships among
them.

Here are the major goals of the design phase:

• Identify the classes

• Identify the responsibilities of these classes

• Identify the relationships among these classes

These are goals, not steps. It is usually not possible to find all classes
first, then give a complete description of their responsibilities, then elaborate on their
relationships. The discovery process is iterative-the identification of one aspect of a
class may force changes in or lead to the discovery of others.

CHAPTER 2 The Object.Oriented Design Process

The end result of the design process consists of a number of artifacts:

• A textual description of the classes and their most important responsibilities

• Diagrams of the relationships among the classes

• Diagrams of important usage scenarios

• State diagrams of objects whose behavior is highly state-dependent

Depending on the tool support, this information may be stored on paper, in text and
graphics files, or in a CASE (computer-assisted software engineering) tool database.

The information gathered in this phase becomes the foundation for the implementation
of the system in an actual programming language. Typically, the design phase is more
time-consuming than the the actual programming, or-to put a positive spin on it-a
good design greatly reduces the time required for implementation and testing.

tIEl- The Implementation Phase

The goal of the implementation
phase is the programming,
testing, and deployment of the
software product.

In the implementation phase, the classes and methods are coded,
tested, and deployed. A part of this book concerns itself with the
problems of implementing an object-oriented design in Java.

Traditional programming methods rely on completion and unit test-
ing of procedural units, followed by an integration phase. This inte

gration tends to be frustrating and disappointing. Few programs are born according to
plan out of a successful "big bang" integration. Object-oriented development encourages
the gradual growth of a program by successively attaching more working classes and class
clusters and repeated testing.

It is quite common to defer the implementation of some operations and build a "rapid
prototype" that displays some functionality of the final product. Such a prototype can be
extremely helpful in influencing the design or even the problem analysis, especially in
cases where a problem was so incompletely understood that seeing a prototype do some
work gives more insights into the solutions that are really desired.

You should not rush the analysis and design phase just to get to a working prototype
quickly, nor should you hesitate to reopen the previous phases if a prototype yields new
insight.

Object-oriented design is particularly suited for prototyping. The objects supporting the
prototype are likely to be the same that need to be present in the final product, and grow
ing the prototype into a complete program often is feasible. Some developers welcome
this; others caution against it because prototypes are often rushed and without sufficient
time to work them over carefully. In fact, some people recommend implementing a pro
totype in a language such as Visual Basic and then writing the final product in another
language such as Java. For small to medium-sized products, a prototype can expand into
a complete product. If you follow this evolutionary approach, be sure that the transition
from prototype to final product is well managed and that enough time is allocated to fix
mistakes and implement newly discovered improvements.

For the remainder of this chapter, we will mainly be concerned with the design phase of
a programming project, focusing on object-oriented design techniques.

2.2 The Object and Class Concepts

The Obj ec t and Class Concepts

We assume that you have programmed with classes for some time, and that you are
familiar with the mechanics of defining classes and constructing objects. Thus, you have
a fairly good idea what objects and classes are in the context ofJava. Let's take a higher
level view and think about the concepts of objects and classes outside any particular pro
gramming language.

An object is characterized by
its state, behavior, and identity.

Objects are entities in a computer program that have three character
istic properties:

• State

• Behavior

• Identity

An object can store information that is the result of its prior operations. That
information may determine how the object behaves in the future. The collection of all
information held by an object is the object's state. An object's state may change over time,
but only when an operation has been carried out on the object that causes the state
change.

Consider the example of a mailbox in a voice mail system. A mailbox object may be in an
empty state (immediately after its creation) or full (after receiving a large number of mes
sages). This state affects the behavior of the mailbox object: A full mailbox may reject
new mail messages, whereas an empty mailbox may give a special response ("no messages
waiting") when asked to list all new messages.

The behavior of an object is defined by the operations (or methods, as they are called in
Java) that an object supports. Objects permit certain operations and do not support oth
ers. For example, a mailbox can add a mail message to its collection or retrieve a stored
message, but it cannot carry out other operations such as "translate the stored messages
into Lithuanian".

Object-oriented programs contain statements in which objects are asked to carry out cer
tain operations. Because not all operations are suitable for all objects, there must be a
mechanism for rejecting improper requests. Object-oriented programming systems differ
in this regard. Some systems attempt to weed out unsupported operations at compile
time; others generate run-time errors.

The momentary state and the collection of admissible operations, however, do not fully
characterize an object. It is possible for two or more objects to support the same opera
tions and to have the same state, yet to be different from each other. Each object has its
own identity. For example, two different mailboxes may, by chance, have the same con
tents, yet the program can tell them apart.

Some researchers define objects as entities that have state, behavior, and identity. This
definition is somewhat unsatisfactory-what, after all, is an "entity"? The definition is
also quite broad. As one computer scientist has pointed out, it then follows that his cat is
an object: It has a rich internal state (hungry, purring, sleeping); it carries out certain

CHAPTER 2 The Object-Oriented Design Process

operations (scratch sofa, catch mouse) while not supporting others (solve system of linear
equations); and it has an identity that differentiates it from its twin brother.

Of course, when designing software, we consider only objects that have an existence in a
computer program and that are, by necessity, models of real or abstract entities. The
physical cat exists in the real world and not in a computer program. But a software prod
uct (perhaps the software controlling a vacuum-cleaning robot) may well include Cat
objects that simulate certain relevant aspects of real cats.

A class specifies objects with
the same behavior.

Most object-oriented programming languages support the grouping
of similar objects into classes. A class describes a collection of related
objects. Objects of the same class support the same collection of oper

ations and have a common set of possible states. A class definition must therefore include
the following:

• The operations that are allowed on the objects of the class

• The possible states for objects of the class

Consider, for example, a class Mai 1 box that describes those aspects common to all mail
boxes. All mailboxes support the same operations (add a mail message, retrieve a stored
message, delete a message, and so forth). All mailboxes must store the same kind of
information (collection of messages, index of current message). Each object is con
strained by the properties of its class. It supports only those operations that the class lists
as admissible, and its legal states must stay within the range that the class permits.

An instance of a class is an
object that belongs to the
given class.

Objects that conform to a class description are called instances of that
class. For example, my mailbox in the voice mail system at my place of
work is an instance of the Mai l box class. The message that my boss
sent me yesterday is an instance of class Message .

T • SPECIAL T O P I C •
ECMAScript-An Object-Oriented Language Without Classes

Some programming languages have objects but no classes. Consider for example the ECMA
Script language that is the foundation of the JavaScript and JScript languages used in Web
programmmg.

INTERNET You can download the ECMAScript language specification at http : //www . ecma
i nternati onal . o rg/publ i cati ons/standards/Ecma-262 . htm. A tutorial that shows how
to use J avaScript inside Web pages is at http : //develope r . netscape . com/docs/manua 1 sl
communi cator/j sgui de4/i ndex . htm . The Rhino toolkit at http : //www . mozi l l a . o rg/
rhi nol is an ECMAScript interpreter that is implemented in Java. You can download it to
experiment with the language, or to add scripting capabilities to a Java program.

2.3 Identifying Classes

T There is no relationship between Java and JavaScript-Netscape renamed their "LiveScript"
language to J avaScript for marketing reasons. When the language was standardized by
ECMA, the European Computer Manufacturers Association, it acquired the catchy name
ECMAScript. ECMAScript lets you create objects without specifying a class, simply by set
ting values of fields and methods. Here we define an object that has a name field and a
sayHe 1 1 0 method.

worl dGreeter =

{
name : "Worl d " ,
sayHel l o : functi on () { return " He l l o , " + thi s . name + " ! " } ,

} ;

This object supports the sayHe 1 1 0 method:

message = worl dGreete r . sayHel l o() ;

To create multiple related objects, you can write a function that constructs them:

function Greeter (aName)
{

retu rn {
name : aName ,
sayHel l o : functi on () { return " Hel l o , " + thi s . name + " ! " }

}
}

marsGreeter = Greeter ("Mars") ;
message = marsGreete r . sayHel l o() ;

However, ECMAScript has no classes. Even though worl dGreete r and marsGreete r have
the same behavior and state set, the language does not recognize them as being related.

Note that variables in ECMAScript are untyped. The worl dGreeter variable can refer to dif
ferent objects at different times. You can store a string object in the variable at any time.

worl dGreeter = "Wel come to Venus ! " ;

Of course, if you now try to invoke the sayHe 1 1 0 method, then a run-time error occurs, since
the object to which the variable currently refers does not support that method.

Identifying C l a s s e s

To discover classes, look
for nouns in the problem
description.

A simple rule of thumb for identifYing classes is to look for nouns in
the functional specification. Later in this chapter, we will analyze,
design, and implement a voice mail system. To follow the examples
throughout the chapter, you may want to peek ahead at Section 2. 12,

or just use your general knowledge about voice mail systems.

CHAPTER 2 The Object-Oriented Design Process

The following nouns are typical of those that can be found in the functional description
of a voice mail system:

• Mai l box

• Message

• User

• Passcode

• Extensi on

• Menu

Many, but not necessarily all of them, are good choices for classes.

TIP Make sure not to fall into the trap of making your designs too specific. Suppose you are
designing software to process orders for kitchen appliances such as toasters and blenders. If
you let the object-oriented design process run amok, you end up with classes Ki tchen
App1 i ance, Toaster, and B1 ender. But wait-the kitchen appliance hierarchy is irrelevant to
our problem, namely to process orders for products. A Product class is probably a better
choice.
Don't fall into the opposite trap of making your designs unreasonably general. Consider the
mail system example. A mailbox is a kind of component, and there are connections between
various components. Connections can carry data (such as messages). Should you therefore
design classes Component, Connecti on, and Data? No-those classes are too general. You
would not be able to come up with clear responsibilities for them, and you would be no closer
to a solution of your design problem.

Mter you have harvested the classes that are obvious from the program specification, you
need to turn your attention to other classes that are required to carry out necessary work.
For example, consider the storage of messages in a mailbox. The mailbox owner wants to
listen to the messages in the order in which they were added. In other words, messages
are inserted and retrieved in a FIFO (first in, first out) fashion. Computer scientists
defined the queue data type to describe this behavior, and they have discovered several
implementations of this data type, some of which are more efficient than others. (See the
note at the end of this section for more information about queues.) During design time,
it makes sense to describe a class MessageQueue and its FIFO behavior. However, the
exact implementation of the queue is of no interest in the design phase.

Class names should be nouns Class names should be nouns in the singular form: Message, Mai 1 box.

in the singular form. Sometimes the noun needs to be prefixed by an adjective or partici-
ple: Rectangu1 arShape, BufferedReader. Don't use Object in the class

name (Mai l boxObj ect)-it adds no value. Unless you are solving a very generic problem,
stay away from generic names such as Agent, Task, Item, Event, User. If you name your
classes after verbs (such as De 1 i ve r or Pri nti ng), you are probably on the wrong track.

2.3 Identifying Classes

Mter you go beyond the technique of finding nouns in the functional specification, it is
useful to look at other categories of classes that are often helpful. Here are some of these
categories:

• Tangible things

• Agents

• Events and transactions

• Users and roles

• Systems

• System interfaces and devices

• Foundational classes

Tangible things are the easiest classes to discover because they are visible in the problem
domain. We have seen many examples: Ma; 1 box, Message, Document, Footnote.

Sometimes it is helpful to change an operation into an agent class. For example, the
"compute page breaks" operation on a document could be turned into a Pag; nator class,
which operates on documents. Then the paginator can work on a part of a document
while another part is edited on the screen. In this case, the agent class is invented to
express parallel execution.

The Scanner class is another example. As described in Chapter 1, a Scanner is used to
scan for numbers and strings in an input stream. Thus, the operation of parsing input is
encapsulated in the Scanner agent.

Agent classes often end in "er" or "or".

Event and transaction classes are useful to model records of activities that describe what
happened in the past or what needs to be done later. An example is a MouseEvent class,
which remembers when and where the mouse was moved or clicked.

User and role classes are stand-ins for actual users of the program. An Adm; n; strator
class is a representation of the human administrator of the system. A Rev; ewe r class in an
interactive authoring system models a user whose role is to add critical annotations and
recommendations for change. User classes are common in systems that are used by more
than one person or where one person needs to perform distinct tasks.

System classes model a subsystem or the overall system being built. Their roles are typi
cally to perform initialization and shutdown and to start the flow of input into the sys
tem. For example, we might have a class Ma; 1 System to represent the voice mail system in
its entirety.

System interface classes model interfaces to the host operating system, the windowing
system, a database, and so on. A typical example is the F; 1 e class.

Foundation classes are classes such as St r; ng, Date, or Rectang 1 e. They encapsulate basic
data types with well-understood properties. At the design stage, you should simply
assume that these classes are readily available, just as the fundamental types (integers and
floating-point numbers) are.

CHAPTER 2 The Object-Oriented Design Process

SPEC IAL T O P I C

Queues

A queue is a very common data type in computer science. You add items to one end of the
queue (the tail) and remove them from the other end of the queue (the head). To visualize a
queue, simply think of people lining up (see Figure I). People join the tail of the queue and
wait until they have reached the head of the queue. �eues store items in a first in, first out or
FIFO fashion. Items are removed in the same order in which they have been added.
There are many applications for queues. For example, the Java graphical user interface system
keeps an event queue of all events, such as mouse and keyboard events. The events are
inserted into the queue whenever the operating system notifies the application of the event.
Another thread of control removes them from the queue and passes them to the appropriate
event listeners. Another example is a print queue. A printer may be accessed by several appli
cations, perhaps running on different computers. If all of the applications tried to access the
printer at the same time, the printout would be garbled. Instead, each application places all
bytes that need to be sent to the printer into a file and inserts that file into the print queue.
When the printer is done printing one file, it retrieves the next one from the queue. There
fore, print jobs are printed using the FIFO rule, which is a fair arrangement for users of the
shared printer.
The standard Java library defines a number of queue classes for multithreaded programming,
but for simple queues, the library designers suggest that you just use the add and remove
methods of the L i nkedL i st class. We will consider a "circular array" implementation of a
queue in the next chapter.

Figure 1

A Queue

2.4 Identifying Responsibilities

Identifying Respons ib il i t ies

To discover responsibilities,
look for verbs in the problem
description.

Just as classes correspond to nouns in the problem description, respon
sibilities correspond to verbs. If you read through the functional
description of the voice mail system in Section 2. 12, you will find that
messages are recorded, played, and deleted; users log in; passcodes are

checked. When you discover a responsibility, you must find one class (and only one class)
that owns that responsibility.

A responsibility must belong to For some classes, finding responsibilities is quite easy because we are

exactly one class. familiar with the territory. For example, any textbook on data struc-
tures will tell us the responsibilities of the MessageQueue class:

• Add a message to the tail of the queue.
• Remove a message from the head of the queue.
• Test whether the queue is empty.

With other classes, finding the right responsibilities is more difficult. Consider the fol
lowing responsibility in a voice mail system.

• Add the message to a mailbox.

Is this is a responsibility of the Message class? That is not a good idea. To see the reason,
think how a message could perform the responsibility. In order to add itself to a mailbox,
the message would need to know the internal structure of the mailbox. The details would
depend on whether the mailbox uses an array list, a queue, or another data structure to
hold its messages. But we always assume that those implementation details are private to
the Mai l box class, and that the Message class has no insight into them.

In our situation, the responsibility of adding a message to a mailbox lies with the mail
box, not with the message. The mailbox has sufficient understanding of its structure to
perform the operation.

When discovering responsibilities, programmers commonly make wrong guesses and
assign the responsibility to an inappropriate class. For that reason, it is helpful to have
more than one person involved in the design phase. If one person assigns a responsibility
to a particular class, another can ask the hard question, "How can an object of this class
possibly carry out this responsibility?" The question is hard because we are not yet
supposed to get to the nitty-gritty of implementation details. But it is appropriate to
consider a "reasonable" implementation, or better, two different possibilities, to demon
strate that the responsibility can be carried out.

TIP When assigning responsibilities, respect the natural layering of abstraction levels. At the
lowest levels of any system, we have files, keyboard and mouse interfaces, and other system
services. At the highest levels there are classes that tie together the software system, such as
Mai 1 System. The responsibilities of a class should stay at one abstraction level. A class Ma; 1 box
that represents a mid-level abstraction should not deal with processing keystrokes, a low-level
responsibility, nor should it be concerned with the initialization of the system, a high-level
responsibility.

CHAPTER 2 The Object-Oriented Design Process

Relation ships Between C l a s s e s

Three relationships are common among classes:

• Dependency ("uses")

• Aggregation ("has")

• Inheritance ("is")

We will discuss these three relationships in detail in this section.

fIjI- Dependency

A class depends on another
class if it manipulates objects
of the other class.

A class depends on another class if it manipulates objects of the other
class in any way. For example, the class Mai 1 box in a voice mail system
uses the Message class because Mai l box objects manipulate Message
objects.

It is almost easier to understand when a class doesn't depend on another. If a class can
carry out all of its tasks without being aware that the other class even exists, then it
doesn't use that class. For example, the Message class does not need to use the Mai l box
class at all. Messages need not be aware that they are stored inside mailboxes. However,
the Mai l box class uses the Message class. This shows that dependency is an asymmetric
relationship.

One important design goal is to minimize the number of dependency relationships; that
is, to minimize the coupling between classes. If one class is unaware of the existence of
another, it is also unconcerned about any changes in that other class. A low degree of
coupling tends to make it much easier to implement changes in the future.

For example, consider this message class:

publ i c cl ass Message
{

publ i c voi d pri nt() { System . out . p ri ntl n (text) ; }

}

The pri nt method prints the message to System . out. Therefore, the Message class is
coupled with both the System and the Pri ntStream classes. (The System . out object is an
instance of the Pri ntStream class.)

If the class is deployed in an embedded device such as a real voice message system or a
toaster oven, then there is no System . out. It would be better to have a method

publ i c Stri ng getText ()

that returns the message text as a string. Then it is up to some other part of the system to
send the string to System . out, to a dialog box, or to a speaker.

2.5 Relationships Between Classes

TIP Minimize the number of dependencies between classes. When classes depend on each
other, changes in one of them can force changes in the others.

flfl- Aggregation

A class aggregates another if
its objects contain objects of
the other class.

Aggregation takes place if objects of one class contain objects of
another class over a period of time. For example, MessageQueue has
Message objects, and we say that the MessageQueue class aggregates
the Message class.

Aggregation is a special case of dependency. Of course, if a class contains objects of
another class, then it is acutely aware of the existence of that class.

Aggregation is often informally described as the "has-a" relationship. A message queue
has a message. Actually, a message queue has several messages. With aggregation
relationships, it is useful to keep track of these multiplicities. There may be a 1 :1 or l :n
relationship. For example, each mailbox has exactly one greeting (1 :1) , but each message
queue may contain many messages (l :n) .

Aggregation is usually implemented through instance fields. For example, if a mailbox
has a greeting, then the Java implementation might look like this:

publ i c cl ass Mai l box
{

pri vate Greeti ng myGreeti ng ;
}

This particular implementation can serve as a 1 : 1 or 1 :0 . . . 1 relationship (if you allow
myGreeti ng == nul l to indicate that there is no greeting for a particular mailbox) . For a
l :n relationship, you need an array or a collection object. For example,

publ i c cl ass MessageQueue
{

pri vate ArrayLi st<Message> el ements ;
}

However, not all instance fields of a class correspond to aggregation. If an object contains
a field of a very simple type such as a number, string, or date, it is considered merely an
attribute, not aggregation. For example, suppose a message has a time stamp of type
Date.

publ i c cl ass Message
{

pri vate Date ti mestamp ;
}

We consider Date a foundational type, just like a number or a string. Thus, we don't say
that the Message class aggregates the Date class, but we consider the time stamp an
attribute.

CHAPTER 2 The Object-Oriented Design Process

The distinction between aggregation and attributes depends on the context of your
design. You'll need to make a judgment whether a particular class is "very simple", giving
rise to attributes, or whether you should describe an aggregation relationship.

f*,1- Inheritance

A class inherits from another if
it incorporates the behavior of
the other class.

A class inherits from another if all objects of its class are special cases
of objects of the other class, capable of exhibiting the same behavior
but possibly with additional responsibilities and a richer state.

Here is a typical example. Many voice mail systems let you forward a
message that you received to another user. When the forwarded message is played, it first
tells who forwarded it before playing the contents of the original message. We can model
this feature by having the ForwardedMessage inherit from the Message class.

We call the more general class the superclass and the more specialized class the subclass. A
subclass object must be usable in all situations in which a superclass object is expected.
For example, a forwarded message object can be stored and played, just like any other
message.

But a greeting in a voice mail system, even though it is in many respects similar to a mes
sage, is not usable in the same contexts as messages are. Users cannot store greetings in
mailboxes. We conclude that Greet; ng may not inherit from Message.

Inheritance is often called the "is-a" relationship. This intuitive notion makes it easy to
distinguish inheritance from aggregation. For example, a forwarded message is a message
(inheritance) while a mailbox has a greeting (aggregation) .

As you will see in Chapters 4 and 6, exploiting inheritance relationships can lead to very
powerful and extensible designs. However, we must point out that inheritance is much
less common than the dependency and aggregation relationships. Many designs can best
be modeled by employing inheritance in a few selected places.

U s e C a s e s

Use cases are an analysis technique to describe in a formal way how a computer system
should work. Each use case focuses on a specific scenario, and describes the steps that are
necessary to bring it to successful completion. Each step in a use case represents an inter
action with people or entities outside the computer system (the actors) and the system
itsel£ For example, the use case "Leave a message" describes the steps that a caller must
take to dial an extension and leave a message. The use case "Retrieve messages" describes
the steps needed to listen to the messages in the mailbox. In the first case, the actor is the
caller leaving a message. In the second case, the actor is the mailbox owner.

A use case lists a sequence of
actions that yields a result that
is of value to an actor.

An essential aspect of a use case is that it must describe a scenario that
completes to a point that is of some value to one of the actors. In the
case of "Leave a message", the value to the caller is the fact that the
message is deposited in the appropriate mailbox. In contrast, merely

2.6 Use Cases

dialing a telephone number and listening to a menu would not be considered a valid use
case because it does not by itself have value to anyone.

Of course, most scenarios that potentially deliver a valuable outcome can also fail for one
reason or another. Perhaps the message queue is full, or a mailbox owner enters the
wrong password. A use case should include variations that describe these situations.

Minimally, a use case should have a name that describes it concisely, a main sequence of
actions, and, if appropriate, variants to the main sequence. Some analysts prefer a more
formal writeup that numbers the use cases, calls out the actors, refers to related use cases,
and so on. However, in this book we'll keep use cases as simple as possible.

Here is a sample use case for a voice mail system.

Leave a Message

1. The caller dials the main number of the voice mail system.
2. The voice mail system speaks a prompt.

Enter mai l box numbe r fol l owed by # .

3 . The user types in the extension number o f the message recipient.
4. The voice mail system speaks.

You have reached mai l box xxxx . Pl ease l eave a message now .

S. The caller speaks the message.
6. The caller hangs up.
7. The voice mail system places the recorded message in the recipient's mailbox.

Variation #1

1.1. In Step 3, the user enters an invalid extension number.
1.2. The voice mail system speaks.

You have typed an i nval i d mai l box number .

1 .3. Continue with Step 2.

Variation #2

2 . 1 . Mter Step 4, the caller hangs up instead of speaking a message.
2.2. The voice mail system discards the empty message.

INTERNET The Web site http : //www . usecases . 0 rg/ contains a template for a more elabo
rate use case format. The "Use Case Zone" at http : //www . po 1 s . co . u k/use-case-zone/
has many useful links to articles that report on experiences with use cases, including some
interesting cautionary tales.

CHAPTER 2 The Object-Oriented Design Process

CRC Cards

A GRG card is an index card
that describes a class, its
high-level responsibilities, and
its collaborators.

The eRe card method is an effective design technique for discovering
classes, responsibilities, and relationships. A eRe card is simply an
index card that describes one class and lists its responsibilities and
collaborators (dependent classes). Index cards are a good choice for a
number of reasons. They are small, thereby discouraging you from piling

too much responsibility into a single class. They are low-tech, so that they can be used by
groups of designers gathered around a table. They are more rugged than sheets of paper
and can be handed around and rearranged during brainstorming sessions.

INTERNET The original article describing CRC cards is: Kent Beck and Ward Cunningham,
''A Laboratory for Teaching Object-Oriented Thinking", OOPSLA '89 Conference Proceed
ings October 1-6, 1989, New Orleans, Louisiana. You can find an electronic version at
http : //c2 . com/doc/oopsl a89/pape r . html .

You make one card for each discovered class. Write the class name at the top of the card.
Below, on the left-hand side, you describe the responsibilities. On the right-hand side,
you list other classes that need to collaborate with this class so that it can fulfill its
responsibilities.

The eRe card shown in Figure 2 indicates that we have discovered three responsibilities
of the mailbox: to manage the passcode, to manage the greeting, and to manage new and
saved messages. The latter responsibility requires collaboration with the MessageQueue
class. That is, the mailbox needs to interact with MessageQueue objects in some unspeci
fied way.

The responsibilities should be at a high level. Don't write individual methods. If a class
has more responsibilities than you can fit on the index card, you may need to make two

Mai l box
manage passcode MessageQueue
manage greeting
manage new and saved messages

._----"

- - ... _ .. _._-- - -

-

Figure 2

A CRC Card

2.7 CRC Cards

Mai l System

manage mailboxes Mai l box

Figure 3

Making the Mail System Responsible for
Managing Mailboxes

new cards, distribute the responsibilities among them, and tear up the old card. Between
one and three responsibilities per card is ideal.

TIP Programmers who start out with the CRC card technique sometimes equate responsi
bilities with methods. Keep in mind that responsibilities are at a high level. A single
responsibility may give rise to a number of methods. If you find that your card contains lots of
related responsibilities, try to express some of them at a higher level. For example, you may
want to replace "manage passcode" and "manage greeting" with "manage user options".

The collaborators don't have to be on the same lines as the responsibilities. Simply list
collaborators as you discover them, without regard for the ordering.

CRC cards are quite intuitive for "walking through" use cases. Consider, for example, the
use case "Leave a message". The caller dials the main number and is connected to the
voice mail system. That happens through the public telephone system and is outside our
concern. Next, the caller dials the extension. Now "someone" inside the voice mail
program needs to locate the mailbox that has the given extension number. Neither the
Mai 1 box nor the Message class can handle this responsibility. Perhaps a mailbox knows its
own extension number, but it doesn't know about the extension numbers of the other
mailboxes in the system. And a message doesn't know anything about mailboxes and
extension numbers. A Mai 1 System knows about all of its mailboxes, so it would be a
reasonable choice for a responsible agent. Let's create a new index card, shown in
Figure 3.

T IP Beware of the omnipotent system class. You often need a class that is responsible for
coordinating the working of the system that you are building, but there is a tremendous dan
ger of overburdening that class with too many responsibilities. Have a look at the evolution of
the Mai l System class throughout this chapter and see if we manage to keep it under control.

CHAPTER 2 The Object-Oriented Design Process

TIP Beware of classes with magical powers that have no connection with the real world or
computer systems. A Mai 1 System is actually quite real-when you buy a commercial voice
mail system, you get a box into which you plug phone cables. But you can't just define your
own "systems". Ifin doubt, check with experts that understand the problem domain.

Next, imagine how the mail system is going to locate the mailbox. Maybe each mailbox
knows its number, and the mail system asks each one of the mailboxes "are you number
x"? Or maybe the mailboxes don't know their numbers, and the mail system keeps a table
that lists all extension numbers and their mailboxes? Either one is a reasonable mecha
nism, and you don't have to setde for one or the other at this stage. All that matters is
that you are convinced that the mail system can do the job.

Let's finish the use case. The mail system has located the appropriate mailbox. It now
needs to deliver the message to that mailbox. Look again at the Mai l box eRe card. It
has a responsibility "manage new and saved messages". Thus, it seems to be up to the job
of storing the message. Now you should add the Mai l box class as a collaborator of the
Mai 1 System class. The mail system needs the collaboration of the mailbox to complete
the delivery.

TIP Avoid "mission creep". If a class acquires too many responsibilities, then consider split
ting it in two. Ideally, a class should not have more than three high-level responsibilities.

TIP Watch out for unrelated responsibilities. A class should represent a coherent concept,
with related responsibilities. If the Mai l box class gets charged with storing messages and
parsing input, make a new class and split the responsibilities.

TIP Resist the temptation to add responsibilities just because they can be done. For example,
someone may have suggested a Mai 1 box responsibility "sort messages". But the task at hand
requires no sorting, and you shouldn't collect unused responsibilities.

TIP A class with no responsibilities surely is not useful. Try eliminating classes that don't
seem to contribute to solving the problem at hand. Typical candidates are vague mechanisms
such as Connector and Data.

The walkthroughs with eRe cards are particularly suited for group discussion. Let's
assume the analysts are done with their work and have left behind a stack of use cases.
Get two or three designers together. Here is a good way to "break the ice" and get
started. Let all participants use the "noun and verb" technique to come up with a pool of
candidates for classes and operations. Then consider the first use case that looks
interesting and perform a walkthrough. Have one person play the protagonist, who
proposes a responsible agent and a method for carrying out the task. Invariably the
description will be somewhat vague, and the other participants will find it easy to ask for

2.8 UML Class Diagrams

clarification or to suggest different preferences. Rotate the protagonist role so that each
participant gets to play "devil's advocate".

Arrange cards on the table so that classes are physically close to their collaborators. The
visual arrangement of the cards can give clues to simple or overly complex relationships.
You should not be afraid to tear up cards or to erase, modifY, or reorganize operations.
Experienced designers will cheerfully admit that they rarely hit upon an optimal division
of responsibilities on the first try and that a fair amount of trial and error is necessary
even in seemingly simple designs.

You do not necessarily need a group of people for effective class discovery. If you work on
your own, though, it helps if you have a "Jekyll and Hyde" personality and can play your
own devil's advocate.

eRe cards are a good tool for proposing designs, but they are not particularly suited for
documenting them. The better the design discussions, the messier the cards look after
wards. The visual arrangement and movement of the cards are ephemeral. For this reason,
the cards should be discarded after a design has been found. They are meant as a discov
ery tool, not as archival information. We will discuss more permanent documentation
tools in the next sections.

In summary, eRe cards are a popular mechanism for discovering classes and operations.
Making a new card for each class as the need arises and marking new operations on the
cards is easy. Scenarios can be "played out" by moving the cards around while tracing the
control flow.

UML Class D iagrams

Graphical notations are very popular for conveying design information, for a good
reason. It is easier to extract relationship information by looking at a diagram than by
reading documentation.

A UML diagram illustrates an
aspect of an object -oriented
design, using a standardized
notation.

To express design information, some convention is required. You may
have seen flowcharts that use diamond-shaped symbols for decisions.
Of course, there is no logical reason why decisions couldn't be denoted
by triangles or circles. The diamond is just the standard choice. For
quite some time, there was no similar standard for object-oriented

design diagrams. A number of diagramming conventions had been proposed over time
that differed greatly in their visual appearance. Finally, three well-known researchers,
Booch, Rumbaugh, and Jacobson, got together to unifY their disparate notations and
developed UML, the unified modeling language. We will use UML for all diagrams in this
book.

INTERNET There are a number of tools available for drawing UML diagrams. The best
known commercial programs are

• Rational Rose (http : //www . i bm . com/software/rati onal /)
• Together (http : //www . borl and . com/together/)

CHAPTER 2 The Object-Oriented Design Process

The commercial programs can be expensive. Freely available programs are
• ArgoUML (ht:t:p : / /argoum1 . t:i g ri s . org/) and its commercial cousin Poseidon

UML Community Edition (ht:t:p : / /www . gent:1 eware . com/)
• Dia (ht:t:p : / /www . gnome . org/p roj ect:s/di aj a Windows version is available from

ht:t:p : //hans . breue r . org/di a/)

For simple UML diagrams, you can use the Violet tool that you can download from the com
panion Web site for this book or from ht:t:p : / /horst:mann . com/vi 01 et:. In Chapter 8, you
will learn more about the design of the Violet program.

A class diagram shows classes
and the relationships among
them.

There are a number of different types of UML diagrams. In this
book, we will use class diagrams, sequence diagrams, and state
diagrams.

The basic UML notation for class diagrams is fairly simple. Classes
are drawn as boxes, which contain the class name and, when appropriate, the names of
attributes and methods in additional compartments (see Figure 4). The UML defines an
attribute as a named property of a class that describes a range of values that instances of
the property may hold. Often, an attribute simply corresponds to an instance field. Occa
sionally, an attribute is conceptually at a higher level than the actual implementation. You
usually do not list all attributes and methods, only the most important ones.

TIP If you have lots of attributes, check whether you can group some of them into classes.
For example, if a St:udent: class has attributes name, st: reet:, ci t:y, st:at:e, and zi p, then you
missed the opportunity of discovering a class Add ress.

You can also specify the type of an attribute. Unlike in Java, where the type precedes a
variable, the UML format is attribute : Type, for example,

t:ext: : St:ri ng

Similarly, you can specify the parameter and return types of a method, for example

get:Message (i ndex : i nt:) : Message

Class name

- -
Ma i lbox

newMessages - --
savedMessages

add() - - -
getCurrentMessage()

F i g u re 4

UML Notation for Classes

_ _ _ _ Attributes

_ _ _ _ Methods

2.8 UML Class Diagrams

F i g u re 5

UML Connectors

Dependency

Aggregation

Inheritance

Composition

Association

Directed
Association

-- ->

<)>--------

-------[>

•

)

Interface Type _ -(>
Implementation

Often, the types of attributes, parameters, and return values are omitted to conserve
space. Thus, if you see methodNameO, you cannot automatically assume that the method
has no parameters.

Classes are joined by various kinds of connections (see Figure 5) . You are already familiar
with the first three relationships. We will discuss the others in this section.

You have to be careful about the shapes of the arrow tips. The inheritance arrow is
closed, whereas the dependency arrow is open. Also note that the arrow tips for inherit
ance and dependency are at the end of the dependent class, but the diamond for
aggregation is at the end of the aggregating class.

For the "has" relationship, you can also write the multiplicity on the end points of the
connection. The most common choices for the multiplicity are:

• any number (zero or more) : *

• one or more: 1 . . *

• zero or one: 0 . . 1

• exactly one: 1

For example, Figure 6 denotes that a message queue can hold any number of messages,
and a message is in exactly one message queue.

Figure 6

Multiplicities of an Aggregation Relationship

CHAPTER 2 The Object-Oriented Design Process

TIP Make sure that you use either aggregation or an attribute for a particular feature, but not
both. For example, suppose the class Message has a field ti mestamp of type Date. If you
consider the time stamp an attribute, then you should not draw a box and an aggregation
connector for the Date class.

TIP Challenge counts of one. Does a mailbox really only have one greeting? Many real sys
tems have multiple greetings: one for inside callers and one for outside callers, and yet
another one for weekends. Once you have a class, you can construct as many objects as you
need.

Some designers differentiate between aggregation and composltlOn. Composition is a
stronger form of aggregation where the contained objects do not have an existence inde
pendent of their container. For example, in the voice mail system, the message queues are
permanently contained in the mailboxes-a message queue never exists outside a mail
box. The UML notation for composition is a line with a solid diamond at the end (see
Figure 7). In contrast, messages move throughout the mail system and don't always
reside in a message queue. Thus, messages are aggregated in message queues, but a mes
sage queue is not composed of messages. We will not make that distinction in this book,
but you may encounter it elsewhere.

TIP Use aggregation (or composition) only if a class actively manages objects of another class.
For example, does a gas station have cars? Of course it does. Should you therefore draw an
aggregation between the class GasStati on and the class Car? Not necessarily. If the gas sta
tion objects do not need to keep track of the cars, then aggregation is not appropriate.

Some designers do not like the aggregation relationship because they feel it is too
implementation-specific. UML defines a more general association between classes. An
association is drawn as a solid line without a diamond. You can write roles at the ends of
the lines (see Figure 8).

Mailbox r.� _______ --iI..._
M
_

e
_
S
_
S
_
ag
_

e
--,

.

Queue

Figure 7

Composition

2.8 UML Class Diagrams

Course registers for

Figure 8

An Association with Roles

has as participant Student

Here we model the fact that students register for courses and courses have students as
participants. Early in a design, this general relationship makes a lot of sense. As you
move closer to implementation, you will want to resolve whether a Cou rse object man
ages a collection of students, a Student object manages a collection of courses, or both
courses and students manage collections of each other.

The relationship between courses and students is bidirectional-cou rse objects will need
to know about the students in the course, and Student objects need to know about the
courses for which they are registered. OlIite often, an association is directed, that is, it
can only be navigated in one way. For example, a message queue needs to be able to
locate the messages inside, but a message need not know in which message queue it is. A
directed association is drawn with an open arrow tip (see Figure 9). It is easy to confuse
that connector with inheritance-you have to pay close attention to the shapes of the
arrow tips when drawing UML diagrams.

In Chapter 4, we will introduce the notion of an interface type. An interface type
describes a set of methods, but it contains no implementation at all. A class can imple
ment the interface by supplying implementations of its methods. In the UML notation,
you denote an interface by adding the stereotype descriptor « ; nterface» above the inter
face name. (The « and » characters are called guillemets or French quotation marks. They
have Unicode values \uOOAB = 171 and \uOOBB = 187.) If a class implements an interface,
you draw a dotted arrow with a closed arrow tip. Figure 10 shows an example.

L
_
M
_

e
_

s
_
s
_
a
9

e
:---------7t;1 Me=ge Queue

.

Figure 9

A Directed Association

c:J. «interface»
L::J-------------------------- -!>'--c_o_m_p_a_ra_b_le---l

Figure 1 0

Implementing an Interface Type

CHAPTER 2 The Object-Oriented Design Process

Because the j avadoc documentation and the class browsers in integrated development
environments only display the inheritance relationship, they give the false impression
that inheritance is the most important of the relationships between classes. Actually, that
is not the case-inheritance is simply easy to determine from the program code. The
most important relationship to control is the dependency or "uses" relationship. Too
many dependencies make it difficult to evolve a design over time.

TIP You should not aim for a comprehensive diagram that shows all classes and relationships
in the system. A diagram with too much information becomes just a blur. The reason for
drawing diagrams is to communicate design decisions. To achieve this purpose, each UML
diagram should focus on a particular aspect of the design, and it should be accompanied by
text that explains its relevance. When drawing a diagram, you should only include those ele
ments that are needed to make a particular point, and omit all distractions.

Sequence D iagrams

A sequence diagram shows the
time ordering of a sequence of
method calls.

Class diagrams are static-they display the relationships among the
classes that exist throughout the lifetime of the system. In contrast, a
sequence diagram shows the dynamics of a particular scenario. You
use sequence diagrams to describe communication patterns among

objects. Figure 1 1 shows the key elements of a sequence diagram-a method call from
one object to another.

Sequence diagrams describe interactions between objects. In UML, you use underline to
distinguish object rectangles from class rectangles. The text inside an object rectangle has
one of the following three formats:

• obj ectName : (1 assName (full description)

• obj ectName (class not specified)

• : (1 assName (object not specified)

The dashed vertical line that emanates from the object is called the lifeline. In some
object-oriented programming languages, objects can be explicidy destroyed, which
causes their lifeline to end at the point of destruction. However, we will always draw the
lifeline so that it goes on indefinitely.

I aMa:lbo, I new Messages
: MessageQueue

I

� add

Figure 1 1

A Sequence Diagram

2.9 Sequence Diagrams

Figure 1 2

Self-Call : MaiiSystem

I [q" locateMailbo'

I

The rectangles along the lifeline are called activation bars. They show when the object
has control, executing a method. When you call a method, start an activation bar at the
end of the call arrow. The activation bar ends when the method returns. (Note that the
activation bar of a called method should always be smaller than that of the calling
method.)

In the most common form, a sequence diagram illustrates the behavior of a single
method. Then the leftmost object has one long activation bar, from which one or more
call arrows emanate. For example, the diagram in Figure 1 1 illustrates the add method of
the MessageQueue class. A message is added to the message queue that holds the new
messages. The diagram corresponds to the Java statement

newMessages . add(. . .)

You cannot tell from the diagram what parameter was passed to the method.

A method can call another method on the same object. Then draw the activation bar of
the called method over the one of the calling method, as in Figure 12.

If a method constructs a new object, you can use the stereotype « create » to indicate the
timing of the creation. Arrange the object rectangle of the created object as in Figure 13.

When drawing a sequence diagram, you omit a large amount of detail. Generally, you do
not indicate branches or loops. (The UML defines a notation for that purpose, but it is a
bit cumbersome and rarely used.) The principal purpose of a sequence diagram is to show
the objects that are involved in carrying out a particular scenario and the order of the
method calls that are executed.

Figure 1 3

Creating an Object

: MaiiSystem

I
r--

«create» : Mailbox

CHAPTER 2 The Object-Oriented Design Process

Sequence diagrams are valuable for documenting complex interactions between objects.
These interactions are common in object-oriented programs where any one object tends
to have limited responsibilities and requires the collaboration of several other objects.
You will see examples in the case study at the end of this chapter.

TIP If you played through a use case when using CRC cards, then it is probably a good idea
to use a sequence diagram to document that scenario. On the other hand, there is no require
ment to use sequence diagrams to document every method call.

S tate D iagrams

Some objects have a discrete set of states that affect their behavior. For example, a voice
mail system is in a "connected" state when a caller first connects to it. Mter the caller
enters an extension number, the system enters the "recording" state where it records
whatever the caller speaks. When the caller enters a passcode, the system is in the "mail
box menu" state. The state diagram in Figure 14 shows these states and the transitions
between them.

A state diagram shows the
states of an object and the
transitions between states.

The state has a noticeable impact on the behavior. If the caller speaks
while the system is in the "mailbox menu" state, the spoken words are
simply ignored. Voice input is recorded only when the system is in the
"recording" state.

States are particularly common with objects that interact with the program user. For
example, suppose a user wants to retrieve recent voice mail messages. The user must

• Enter the mailbox number.

• Enter the passcode.

• Enter a menu command to start playing messages.

connected

exten sion dialed

\

recording

pass code entered

\

Figure 1 4 mailbox
menu

A State Diagram

2.11 Using j avadoc for Design Documentation

The telephone touchpad has no concept of these steps-it keeps no state. Whenever the
user presses a key, that key might be a part of the mailbox number, passcode, or menu
command. Some part of the voice mail system must keep track of the current state so
that it can process the key correctly. We will discuss this issue further in the case study at
the end of this chapter.

U sing j avadoc for D e s ign D oc umentat ion

You can use j avadoc to
generate design information by
applying comments to classes
and methods that are not yet
implemented.

You already saw in Chapter 1 how to use the j avadoc tool to document
classes and methods: Add documentation comments to your source
file and run the j avadoc tool to generate a set of hyperlinked docu
ments. You can also use j avadoc to document your designs. Simply
write a skeleton class with no fields and leave all method implementa
tions blank. Of course, supply the class and method comments.

Here is an example:

/**
A mailbox contains messages that the mailbox owner can manage.

*/
publ i c cl ass Mai l box
{

}

/**

*/

Adds a message to the end of the new messages.
@param aMessage a message

publ i c voi d add (Message aMessage)
{
}

/**

*/

Returns the current message.
@return the current message

publ i c Message getCu r rentMessage()
{
}

Do not compile this file-the compiler will complain about unknown types and methods
with no return statements. Instead, simply run the j avadoc program to extract the
HTML documentation. This approach has two benefits. You can post the HTML doc
umentation on the Web and easily share it with your team members. And you can carry
the Java files into the implementation phase, with the comments for the key methods
already in place.

Professional object-oriented design tools can also produce HTML reports of classes and
methods as well as skeleton source code. If you use one of those tools for your design
work, then you do not need to use j avadoc.

CHAPTER 2 The Object-Oriented Design Process

C a s e Study: A Voi c e Mail S y s te m)
To walk through the basic steps of the object-oriented design process, we will consider
the task of writing a program that simulates a telephone voice mail system, similar to the
message system that many companies use.

In a voice mail system, a person dials an extension number and, provided the other party
does not pick up the telephone, leaves a message. The other party can later retrieve the
messages, keep them, or delete them. Real-world systems have a multitude of fancy fea
tures: Messages can be forwarded to one or more mailboxes; distribution lists can be
defined, retained, and edited; and authorized persons can send broadcast messages to all
users.

We will design and implement a program that simulates a voice mail system, without
creating a completely realistic working phone system. We will simply represent voice
mail by text that is entered through the keyboard. We need to simulate the three distinct
input events that occur in a real telephone system: speaking, pushing a button on the
telephone touchpad, and hanging up the telephone. We use the following convention for
input: An input line consisting of a single character 1 . . . 9 or # denotes a pressed button
on the telephone touchpad. For example, to dial extension 13, you enter

1
3

An input line consisting of the single letter H denotes hanging up the telephone. Any
other text denotes voice input.

The first formal step in the process that leads us toward the final product (the voice mail
system) is the analysis phase. Its role is to crisply define the behavior of the system. In
this example, we will define the behavior through a set of use cases. Note that the use
cases by themselves are not a full specification of a system. The functional specification
also needs to define system limitations, performance, and so on.

tJtJ� Use Cases for the Voice Mail System

Reach an Extension

1 . The user dials the main number of the voice mail system.

2. The voice mail system speaks a prompt.

Enter mai l box number fol l owed by # .

3 . The user types in the extension number of the message recipient.

4. The voice mail system speaks.

You have reached mai l box xxxx . Pl ease l eave a message now.

2.1 2 Case Study: A Voice Mail System

Leave a Message

1. The caller carries out Reach an Extension.

2. The caller speaks the message.

3. The caller hangs up.

4. The voice mail system places the recorded message in the recipient's mailbox.

Log in

1. The mailbox owner carries out Reach an Extension.

2. The mailbox owner types the passcode, followed by the # key. (The default pass
code is the same as the mailbox number. The mailbox owner can change it-see
Change the Passcode.)

3 . The voice mail system plays the mailbox menu:

Ente r 1 to retri eve your messages .
Ente r 2 to change you r passcode .
Ente r 3 to change you r g reeti ng .

Retrieve Messages

1. The mailbox owner carries out Log in.

2. The mailbox owner selects the "retrieve your messages" menu option.

3. The voice mail system plays the message menu:

Enter 1 to l i sten to the cu rrent message .
Enter 2 to save the current message .
Enter 3 to del ete the current message .
Enter 4 to retu rn to the mai l box menu .

4. The mailbox owner selects the "listen to the current message" menu option.

5. The voice mail system plays the current new message, or, if there are no new mes
sages, the current old message. Note that the message is played, not removed from
the queue.

6. The voice mail system plays the message menu.

7. The user selects "delete the current message". The message is permanently
removed.

8. Continue with Step 3 .

Variation #1. Saving a message

1 . 1 . Start at Step 6.

1 .2. The user selects "save the current message". The message is removed from its
queue and appended to the queue of old messages.

1.3. Continue with Step 3.

CHAPTER 2 The Object-Oriented Design Process

Change the Greeting

1. The mailbox owner carries out Log in.

2. The mailbox owner selects the "change your greeting" menu option.

3. The mailbox owner speaks the greeting.

4. The mailbox owner presses the # key.

s. The mail system sets the new greeting.

Variation #1. Hang up before confirmation

1 . 1 . Start at Step 3.

1 .2. The mailbox owner hangs up the telephone.

1.3. The mail system keeps the old greeting.

Change the Passcode

1. The mailbox owner carries out Log in.

2. The mailbox owner selects the "change your passcode" menu option.

3. The mailbox owner dials the new passcode.

4. The mailbox owner presses the # key.

s. The mail system sets the new passcode.

Variation #1. Hang up before confirmation

1 . 1 . Start at Step 3.

1 .2. The mailbox owner hangs up the telephone.

1.3. The mail system keeps the old passcode.

tltlJ- CRC Cards for the Voice Mail System

Let us walk through the process of discovering classes for the voice mail system. Some
obvious classes, whose nouns appear in the functional specification, are

• Mai l box

• Message

• Mai 1 System

Let's start with Mai 1 box since it is both important and easy to understand. The principal
job of the mailbox is to keep messages. The mailbox should keep track of which messages
are new and which are saved. New messages may be deposited into the mailbox, and
users should be able to retrieve, save, and delete their messages.

2.12 Case Study: A Voice Mail System

The messages need to be kept somewhere. Since we retrieve messages in a first-in, first
out fashion, a queue is an appropriate data structure. Since we need to differentiate
between new and saved messages, we'll use two queues, one for the new messages and
one for the saved messages. So far, the CRC cards looks like this:

Mai l box

keep new and saved messag_es __ MessageQueue

1---------

MessageQueue

add and remove messages in
FIFO order

Where are the mailboxes kept? There needs to be a class that contains them all. We'll call
it Mai l System. The responsibility of the mail system is to manage the mailboxes.

Mai l System

manage mailboxes Mai l box

- - - -

CHAPTER 2 The Object-Oriented Design Process

We can't go much further until we resolve how input and output is processed. Since we
have been simulating telephone equipment, let's start with a class Tel ephone. A tele
phone has two responsibilities: to take user input (button presses, voice input, and
hangup actions), and to play voice output on the speaker.

Tel ephone

t'!':: '!!�Jnp1!t.fr0m touc�p,!d,
microphone, han ___ gu-,-'P __ _

5peak output

I� ------ ---------------1

When the telephone gets user input, it must communicate it to some object. Could it tell
the mail system? Superficially, that sounds like a good idea. But it turns out that there is
a problem. In a real voice mail system, it is possible for multiple telephones to be con
nected to the voice mail system. Each connection needs to keep track of the current state
(recording, retrieving messages, and so on). It is possible that one connection is currently
recording a message while another is retrieving messages. It seems a tall order for the
mail system to keep multiple states, one for each connection. Instead, let's have a sepa
rate Connecti on class. A connection communicates with a telephone, carries out the user
commands, and keeps track of the state of the session.

Connecti on

Ket input from telephone Tel ephone
carry out wer commanth Mai l System
keep track of 5tate

------ ------ -- -----

TIP Consider reasonable generalizations when designing a system. What features might the
next update contain? What features do competing products implement already? Check that
these features can be accommodated without radical changes in your design.

2.12 Case Study: A Voice Mail System

For example, to arrive at the design of the voice mail system in this chapter, I considered two
reasonable generalizations:

• Can the system be extended to support two telephones?
• Can the system use a graphical user interface instead of a command-line interface?

Now that we have some idea of the components of the system, it is time for a simple sce
nario walkthrough. Let's start with the Leave a Message use case.

1. The user dials an extension. The Tel ephone sends the dialed extension number to
the Connecti on. (Add Connecti on as a collaborator of Tel ephone. Place the two
cards next to each other.)

2. The Connecti on asks the Mai l System to find the Mai l box object with the given
extension number. (This is at least vaguely included in the "manage mailboxes"
responsibility. Arrange the Mai l System and Mai 1 box cards close to the Connecti on
card.)

3. The Connecti on asks the Mai l box for its greeting. (Add "manage greeting" to the
Mai l box responsibilities, and add Mai 1 box as a collaborator of Connecti on.)

4. The Connecti on asks the Tel ephone to play the greeting on the speaker.

5. The user speaks the message. The Tel ephone asks the Connecti on to record it.
(Add "record voice input" to the responsibilities of Connecti on.)

6. The user hangs up. The Tel ephone notifies the Connecti on.

7. The Connecti on constructs a Message object that contains the recorded message.
(Add Message as a collaborator of Connecti on. Make a Message card with a
responsibility "manage message contents".)

8. The Connecti on adds the Message object to the Mai l box.

As a result of this walkthrough, the Tel ephone, Connecti on, and Mai 1 box cards have been
updated, and a Message card has been added.

Tel ephone

take user input from touchpad, Connecti on --'----

__ !!!.i'!.opho,!!,!_ ha!!gup"
speak output

- ----------------]

CHAPTER 2 The Object-Oriented Design Process

Con necti on

get int.ut ftom telephone Tel ephone
carry out user commands Mai l System

---.!.eep track of state Mai l box

record voice input Message

Mai l box

keep new and saved messaxes MessageQueue
manage greeting

r- - - --------------------------------1

Message

manage message contmts

Now let's consider the use case Retrieve Messages. The first steps of the scenario are the
same as that of the preceding scenario. Let's start at the point where the user types in the
passcode.

1. The user types in the passcode. The Tel ephone notifies the Connecti on.

2. The Connecti on asks the Mai l box to check the passcode. (Add "manage passcode"
to the responsibilities of the Mai l box class.)

2.12 Case Study: A Voice Mail System

3. Assuming the passcode was correct, the Connect; on sets the Ma; 1 box as the cur
rent mailbox and asks the Tel ephone to speak the mailbox menu.

4. The user types in the "retrieve messages" menu option. The Tel ephone passes it on
to the Connect; on.

5. The Connecti on asks the Tel ephone to speak the message menu.

6. The user types in the "listen to current message" option. The Tel ephone passes it
on to the Connect; on.

7. The Connect; on gets the first Message from the current Ma; 1 box and sends its
contents to the Tel ephone. (Add "retrieve messages" to the responsibilities of
Ma; 1 box.)

8. The Connect; on asks the Tel ephone to speak the message menu.

9. The user types in the "save current message" menu option. The Tel ephone passes
it on to the Connect; on.

10. The Connect; on tells the Ma; 1 box to save the current message. (Modify the
responsibilities of Ma; 1 box to "retrieve, save, delete messages".)

1 1 . The Connecti on asks the Tel ephone to speak the message menu.

That finishes the scenario. As a result, the Ma; 1 box CRC card has been updated.

Mai l box

keeL new and saved messages �essageQueue -
manage greeting
manage passcode -
retrieve, save, delete messages - - -

- - - -- -----
- - - -- --

The remaining use cases do not add any new information, so we omit the scenarios here.

There are a few points to keep in mind when using CRC cards. It is not easy to reason
about objects and scenarios at a high level. It can be extremely difficult to distinguish
between operations that are easy to implement and those that sound easy but actually
pose significant implementation challenges. The only solution to this problem is lots of
practice. Try your best with the CRC cards, and when you run into trouble with the
implementation, try again. There is no shame in redesigning the classes until a system
actually works. In fact, I redesigned the mail system classes at least twice before arriving
at the current design.

CHAPTER 2 The Object-Oriented Design Process

Also, don't be deceived by the seemingly logical progression of thoughts in this section.
Generally, when using eRe cards, there are quite a few false starts and detours. Describ
ing them in a book would be pretty boring, so the process descriptions that you get in
books tend to give you a false impression. One purpose of eRe cards is to fail early, to
fail often, and to fail inexpensively. It is a lot cheaper to tear up a bunch of cards than to
reorganize a large amount of source code.

fiJtlJ.- UML Class Diagrams for the Voice Mail System

The "collaboration" parts of the eRe cards show the following dependency
relationships:

• Mai 1 box depends on MessageQueue

• Mai 1 System depends on Mai 1 box

• Connecti on depends on Tel ephone, Mai 1 System, Message, and Mai 1 box

• Tel ephone depends on Connecti on

Figure 15 shows these dependencies.

MaiiSystem r ----------------------, Mailbox f---u-------------u M�:��
'

..-_�i _--, /_-//
/----- L-___ ...J ,------------------ Connection

: , : , , : , , :
-It

'T' ,
: , , , , ,
:
:

Telephone -------------------:

Fig ure 1 5

The Voice Mail System Dependencies from the CRC Cards

2.12 Case Study: A Voice Mail System

MailSystem

Mailbox 10--------'2=-1 Message
Queue

Connection

1-
,
,
,
,
,
:

" " " " " " " " " " " "
r-

M

-

e

-

s

-

S

-

a

-

g

-

e
�

________ ------,

Telephone

Figure 1 6

,
,
,
:
,

- - - - - - - - - - - - - _ _ _ _ _ _ 1

The UML Class Diagram for the Voice Mail System

Next, consider the aggregation relationships. From the previous discussion, we know the
following:

• A mail system has mailboxes.

• A mailbox has two message queues.

• A message queue has some number of messages.

• A Connecti on has a current mailbox. It also has references to the Mai l System and
Tel ephone objects that it connects.

There is no inheritance relationship between the classes. Figure 16 shows the completed
UML diagram. Note that an aggregation relationship "wins" over a dependency
relationship. If a class aggregates another, it clearly uses it, and you don't need to record
the latter.

tJtJI-- UML Sequence and State Diagrams

The purpose of a sequence diagram is to understand a complex control flow that involves
multiple objects, and to assure oneself at design time that there will be no surprises dur
ing the implementation.

In our case, the interactions between the Tel ephone, Connecti on, Mai l System, and
Mai 1 box classes are not easy to understand. Let us draw a sequence diagram for the use
case Leave a Message (see Figure 17).

CHAPTER 2 The Object-Oriented Design Process

I · To':
h
'", 1 1 Co"�'''i''l I M"'�ml EJ

I I I I
- I I I

dial I I I - I I
findMailbox I I

Qe��eetinQ I
I
I
I
I

I 'u I
I

speak I I U I
I
I
I

record I -

hanauD "� -

c<create)) " M!llilHUI!l

add Message I

"� I
I I
I I
I I
I I
I I I
I I I

I I I I
-r I I I I

Figure 1 7

Sequence Diagram for Leaving a Message

The Tel ephone class reads user input one line at a time and passes it on to the
Connecti on class. Let's postulate three methods for the Connecti on class:

• di a 1 passes on a button press.

• record passes on speech.

• hangup tells the connection that the telephone has hung up.

First, the caller keys in the extension number, resulting in several calls to di a 1 . We show
only one of them-there is no advantage in modeling the repetition.

Once the Connecti on has the complete mailbox number, it needs to play the greeting.
How does it know what greeting to play? It needs to get the mailbox and ask it for the
greeting. How does it get the mailbox? It asks the mail system, calling a method that we
call fi ndMai 1 box.

The fi ndMai 1 box method returns a Mai 1 box object. You don't see parameters and return
values in the sequence diagram. You have to keep track of the objects yourself and realize
that the Mai l box object to the right of the figure is meant to be the object returned by the
fi ndMai 1 box call.

Now that the connection has access to the mailbox, it needs the greeting. Thus, it
invokes the getGreeti ng method on the mailbox and gets the greeting, which it then

2.12 Case Study: A Voice Mail System

plays on the telephone speaker. Note that the greeting does not show up at all in the
sequence diagram since it is entirely passive-no methods are invoked on it.

Next, the telephone reads the message text from the user and passes it on to the connec
tion. Then the telephone reads the hangup signal and calls the hangup method. That is
the signal for the connection to construct a message object and to add it to the mailbox.

Which mailbox? The same one that was previously obtained by calling fi ndMa i l box.
How does the connection remember that mailbox? Mter all, it had called fi ndMai 1 box in
another method call. This is an indication that the Connecti on class holds on to the cur
rent mailbox.

Figure 18 shows the sequence diagram for the use case Retrieve Messages. It is a good
exercise for you to analyze the sequence calls one by one. Ask yourself exactly where the
objects of the diagram come from and how the calling methods have access to them.

User enters 1
(retrieve messages)

User enters 1 D
(listen to current
message)

User enters 2 D
(save current
message)

Figure 1 8

1 T'''�OO'!
r- dial

soeak

lJ
dial
soeak

lJ
dial

soeak U
dial

: Connection

I I
I I

I
checkPasscode I

U

I

I

qetCurrentMessaqe

��ext

'-;-
I

saveCurrentMessaqe

.�
I

I I
I I

Sequence Diagram for Retrieving a Message

I . M'�'" 1

I
I
I
I
I
I
I

.�
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER 2

change
passcode

change
greeting

F i g u re 1 9

The Object-Oriented Design Process

connected

hang up

State Diagram for the Connection States

recording

1 #,2#,3#

One complexity of the voice mail system is that it is not in control of the input. The user
may provide touchpad or spoken input in any order, or simply hang up the phone. The
telephone notifies the connection when such an event occurs. For example, notice that
the connection is called at least three times in the "Leave a Message" scenario. (As
already mentioned, the di a 1 method is called for each separate key. The connection
needs to aggregate keys until the user hits the # key. We didn't show that detail in the
sequence diagrams.) The connection needs to keep track of the various states so that it
can pick up at the right place when it receives the next user input. Figure 19 shows the
state diagram.

tltJt- Java Implementation

Now we are ready to implement the system in Java. The files below give the implementa
tion, which at this point is quite straightforward. You should compile and run the pro
gram to see the mail system in action. When you run the program, type Q to terminate it.

Mter running the program, have a look at each of the classes. Read the documentation
comments and compare them with the CRC cards and the UML class diagrams. Look

2.12 Case Study: A Voice Mail System

ll!� _'"

\r& 1 __

again at the UML sequence diagrams and trace the method calls in the actual code. Find
the state transitions of the Connecti on class.

This simulation has a somewhat unsightly keyboard interface. In Chapter 5, you will see
how to attach a graphical user interface (with buttons for the telephone keys and a text
area to enter simulated voice). That change will require modification of just two classes:
Tel ephone and Mai l SystemTeste r . Because the other classes have been decoupled from
input and output, they require no changes whatsoever. Furthermore, in that program,
you will be able to use two simulated telephones that can interact with the voice mail
system at the same time, just like in a real voice mail system. This is possible because
each connection between a telephone and the voice mail system is managed by a separate
Connecti on object.

Ch2/mail/Message.java

/** 1
2
3
4
5
6
7

A message left by the caller.
*/
publ i c cl ass Message
{

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 }

/**
Construct a message object.
@param messageText the message text

*/
publ i c Message (Stri ng messageText)
{

text = messageText ;
}

/**
Get the message text.
@return message text

*/
publ i c St ri ng getText ()
{

return text ;
}

p ri vate Stri ng text ;

Ch2/mail/MessageQueue. java

1 i mport java . uti l . Ar rayLi st ;
2
3
4
5
6
7
8
9

/**

*/

A first-in, first-out collection of messages. This
implementation is not very efficient. We will consider
a more efficient implementation in Chapter 3.

publ i c cl ass MessageQueue
{

I ._�

CHAPTER 2 The Object-Oriented Design Process

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

/**
Constructs an empty message queue. */

publ i c MessageQueue()
{

queue = new ArrayLi st<Message> () ;
}

/**
Remove message at head.
@return message that has been removed from the queue */

publ i c Message remove ()
{

return queue . remove (O) ;
}

/**
Append message at tail.
@param newMessage the message to be appended */

publ i c voi d add (Message newMessage)
{

}

/**

*/

queue . add (newMessage) ;

Get the total number of messages in the queue.
@return the total number of messages in the queue

publ i c i nt si ze()
{

}

/**

*/

return queue . si ze () ;

Get message at head.
@return message that is at the head of the queue, or nul l
if the queue is empty

publ i c Message peek()
{

}

i f (queue . si ze() == 0) retu rn nul l ;
el se return queue . get (O) ;

56
57 }

pri vate Ar rayLi st<Message> queue ;

Chz/mail/Mailbox. java

1 /**
2 A mailbox contains messages that can be listed, kept or discarded.
3 */
4 publ i c cl ass Mai l box
5 {

2.12 Case Study: A Voice Mail System

6 /**
7 Creates Mailbox object.
8 @param aPasscode passcode number
9 @param aGreeti ng greeting string

10 */
1 1 publ i c Mai l box(Stri ng aPasscode , Stri ng aGreeti ng)
12 {
13 passcode = aPasscode ;
14 greeti ng = aGreeti ng ;
15 newMessages = new MessageQueue() ;
16 keptMessages = new MessageQueue () ;
17 }
18
19 /**
20 Check if the passcode is correct.
21 @param aPasscode a pass code to check
22 @return t rue if the supplied passcode matches the mailbox passcode
23 */
24 publ i c bool ean checkPasscode (Stri ng aPasscode)
25 {
26 return aPasscode . equal s (passcode) ;
27 }
28
29 /**
30 Add a message to the mailbox.
31 @param aMessage the message to be added
32 */
33 publ i c voi d addMessage (Message aMessage)
34 {
35 newMessages . add(aMessage) ;
36 }
37
38 /**
39 Get the current message.
40 @retu rn the current message
41 */
42 publ i c Message getCurrentMessage ()
43 {
44 i f (newMessages . si ze () > 0)
45 retu rn newMessages . peek() ;
46 el se i f (keptMessages . si ze () > 0)
47 retu rn keptMessages . peek() ;
48 el se
49 return nul l ;
50 }
51
52 /**
53 Remove the current message from the mailbox.
54 @return the message that has just been removed
55 */
56 publ i c Message removeCu rrentMessage()
57 {
58 i f (newMessages . si ze () > 0)
59 return newMessages . remove () ;
60 el se i f (keptMessages . si ze () > 0)
61 return keptMessages . remove () ;

� .

1 _

CHAPTER 2 The Object-Oriented Design Process

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107 }

el se
retu rn nul l ;

}

/**
Save the current message. */

publ i c voi d saveCu rrentMessage()
{

}

/**

*/

Message m = removeCurrentMessage () ;
i f (m ! = nul l)

keptMessages . add (m) ;

Change mailbox's greeting.
@param newGreeti ng the new greeting string

publ i c voi d setGreeti ng (Stri ng newGreeti ng)
{

g reeti ng = newGreeti ng ;
}

/**
Change mailbox's passcode.
@param newPasscode the new passcode */

publ i c voi d setPasscode(Stri ng newPasscode)
{

}

/**

*/

passcode = newPasscode ;

Get the mailbox's greeting.
@return the greeting

publ i c Stri ng getGreeti ng()
{

return g reeti ng ;
}

pri vate MessageQueue newMessages ;
pri vate MessageQueue keptMessages ;
pri vate Stri ng g reeti ng ;
pri vate Stri ng passcode ;

Ch2/mail/Connection.java

1 /**
2 Connects a phone to the mail system. The purpose of this
3 class is to keep track of the state of a connection, because
4 the phone itself is just a source of individual key presses.
5 */
6 publ i c cl ass Connecti on
7 {

2.12 Case Study: A Voice Mail System

8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

/**

*/

Construct a Connecti on object.
@param 5 a Mai 1 System object
@param p a Tel ephone object

publ i c Connection(Mai l System 5 , Tel ephone p)
{

}

/**

system = 5 ;
phone = p ;
resetConnection() ;

Respond to the user's pressing a key on the phone touchpad.
@param key the phone key pressed by the user

*/
publ i c voi d di al (Stri ng key)
{

}

/**

if (state = = CONNECTED)
connect (key) ;

el se i f (state RECORDING)
l ogi n (key) ;

el se i f (state CHANGE_PASSCODE)
changePasscode (key) ;

el se i f (state == CHANGE_GREETING)
changeG reeti ng (key) ;

el se i f (state == MAILBOX_MENU)
mai l boxMenu (key) ;

el se i f (state == MESSAGE_MENU)
messageMenu (key) ;

Record voice.
@param voi ce voice spoken by the user

*/
publ i c voi d record (St ri ng voi ce)
{

}

/**

*/

if (state = = RECORDING I I state
currentRecordi ng += voi ce ;

The user hangs up the phone.

publ i c voi d hangup()
{

i f (state == RECORDING)

CHANGE_GREETING)

cur rentMai l box . addMessage(new Message(cur rentRecordi ng)) ;
resetConnecti on() ;

}

/**

*/

Reset the connection to the initial state and prompt
for mailbox number.

CHAPTER 2 The Object-Oriented Design Process

64 pri vate voi d resetConnection()
65 {
66 currentReco rdi ng = " " ;
67 accumul atedKeys = " " ;
68 state = CONNECTED ;
69 phone . speak(INITIAL_PROMPT) ;
70 }
71
72 /**
73 Try to connect the user with the specified mailbox.
74 @param key the phone key pressed by the user
75 */
76 pri vate voi d connect(Stri ng key)
77 {
78 i f (key . equal s ("#"))
79 {
80 currentMai l box = system . fi ndMai l box (accumul atedKeys) ;
81 i f (cur rentMai l box ! = nul l)
82 {
83 state = RECORDING ;
84 phone . speak (currentMai l box . getGreeti ng()) ;
85 }
86 el se
87 phone . speak (" Incorrect mai l box numbe r . Try agai n ! ") ;
88 accumul atedKeys " " ;
89 }
90 el se
91 accumul atedKeys += key ;
92 }
93
94 /**
95 Try to log in the user.
96 @param key the phone key pressed by the user
97 */
98 pri vate voi d l ogi n (Stri ng key)
99 {

100 i f (key . equal s ("#"))
101 {
102 i f (currentMai l box . checkPasscode (accumul atedKeys))
103 {
104 state = MAILBOX_MENU ;
105 phone . speak(MAILBOX_MENU_TEXT) ;
106 }
107 el se
108 phone . speak("Incor rect passcode . Try agai n ! ") ;
109 accumu 1 atedKeys " " ;
110 }
111 else
1 12 accumul atedKeys += key ;
113 }
1 14
1 15 /**
1 16 Change passcode.
117 @param key the phone key pressed by the user
118 */
119 pri vate voi d changePasscode(Stri ng key)

2.12 Case Study: A Voice Mail System

120 {
121 i f Ckey . equal s ("#"))
122 {
123 cur rentMai l box . setPasscode (accumul atedKeys) ;
124 state = MAILBOX_MENU ;
125 phone . speak (MAILBOX_MENU_TEXT) ;
126 accumu 1 atedKeys "" ;
127 }
128 el se
129 accumul atedKeys += key ;
130 }
131
132 /**
133 Change greeting.
134 @param key the phone key pressed by the user
135 */
136 p ri vate voi d changeGreeti ng (Stri ng key)
137 {
138 i f (key . equal s ("#"))
139 {
140 cur rentMai l box . setGreeti ng (cu r rentRecordi ng) ;
141 cur rentReco rdi ng = " " ;
142 state = MAILBOX_MENU ;
143 phone . speak (MAILBOX_MENU_TEXT) ;
144 }
145 }
146
147 /**
148 Respond to the user's selection from mailbox menu.
149 @param key the phone key pressed by the user
150 */
151 pri vate voi d mai l boxMenu (Stri ng key)
152 {
153 i f Ckey . equal s ("l "))
154 {
155 state = MESSAGE_MENU ;
156 phone . speak (MESSAGE_MENU_TEXT) ;
157 }
158 el se i f (key . equal s (" 2 "))
159 {
160 state = CHANGE_PASSCODE ;
161 phone . speak (" Enter new passcode fol l owed by the # key") ;
1 62 }
163 el se i f (key . equal s (" 3 "))
1 64 {
165 state = CHANGE_GREETING ;
166 phone . speak ("Record you r g reeti ng , then p ress the # key") ;
167 }
168 }
169
1 70 /,'*
171 Respond to the user's selection from message menu.
172 @param key the phone key pressed by the user
1 73 */
1 74 p ri vate voi d messageMenu(Stri ng key)
175 {

CHAPTER 2 The Object-Oriented Design Process

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228 }

i f (key . equal s ("1 "))
{

Stri ng output = " " ;
Message m = cur rentMai l box . getCurrentMessage () ;
i f (m == nul l) output += " No messages . " + "\n " ;
el se output += m . getText O + "\n" ;

}

output += MESSAGE_MENU_TEXT ;
phone . speak (output) ;

el se i f (key . equal s (" 2 "))
{

}

cur rentMai l box . saveCu rrentMessage() ;
phone . speak (MESSAGE_MENU_TEXT) ;

el se i f (key . equal s (" 3 "))
{

currentMai l box . removeCurrentMessage () ;
phone . speak (MESSAGE_MENU_TEXT) ;

}
el se i f (key . equal s (" 4"))
{

state = MAILBOX_MENU ;
phone . speak(MAILBOX_MENU_TEXT) ;

}
}

pri vate Mai l System system ;
pri vate Mai l box cur rentMai l box ;
pri vate Stri ng currentReco rdi ng ;
pri vate Stri ng accumul atedKeys ;
pri vate Tel ephone phone ;
pri vate i nt state ;

p ri vate stati c fi nal i nt DISCONNECTED =

p ri vate stati c fi nal i nt CONNECTED = 1 ;
pri vate stati c fi nal i nt RECORDING = 2 ;
p ri vate stati c fi nal i nt MAILBOX_MENU =

0 ;

3 ;
pri vate stati c fi nal i nt MESSAGE_MENU = 4 ;
pri vate stati c fi nal i nt CHANGE_PASSCODE
pri vate stati c fi nal i nt CHANGE_GREETING =

5 ;
6 ;

pri vate stati c fi nal Stri ng INITIAL_PROMPT
" Enter mai l box numbe r fol l owed by #" ;

pri vate stati c fi nal Stri ng MAILBOX_MENU_TEXT
" Enter 1 to l i sten to you r messages\n"

+ " Enter 2 to change you r passcode\n"
+ " Enter 3 to change you r greeti ng" ;

p ri vate stati c fi nal Stri ng MESSAGE_MENU_TEXT
" Enter 1 to l i sten to the current message\n "

+ " Enter 2 to save the current message\n "
+ " Enter 3 to del ete the current message\n "
+ " Enter 4 to retu rn to the mai n menu " ;

2.1 2 Case Study: A Voice Mail System

i __

Ch2/mail/MailSystem.java

1
2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40

i mport j ava . uti l . ArrayLi st ;

/**
A system of voice mailboxes.

*/
publ i c cl ass Mai l System
{

/**

*/

Constructs a mail system with a given number of mailboxes.
@param mai 1 boxCount the number of mailboxes

publ i c Mai l System (i nt mai l boxCount)
{

}

/**

*/

mai l boxes = new Ar rayLi st<Mai l box> () ;

/ / Initialize mailboxes.

for (i nt i = 0 ; i < mai l boxCount ; i ++)
{

}

St ri ng passcode = " " + (i + 1) ;
Stri ng g reeti ng = "You have reached mai l box " + (i + 1)

+ " . \nPl ease l eave a message now . " ;
mai l boxes . add (new Mai l box(passcode , g reeti ng» ;

Locate a mailbox.
@param ext the extension number
@return the mailbox or nul l if not found

publ i c Mai l box fi ndMai l box (Stri ng ext)
{

}

i nt i = Integer . parselnt (ext) ;
i f (1 <= i && i <= mai l boxes . si ze (»

return mai l boxes . get(i - 1) ;
el se return nul l ;

pri vate ArrayLi st<Mai l box> mai l boxes ;
41 }

Ch2/mail{Telephone.java

1 i mport j ava . uti l . Scanner ;
2
3
4
5
6
7
8

/**

*/

A telephone that takes simulated keystrokes and voice input
from the user and simulates spoken text.

publ i c cl ass Tel ephone
{

1111 _=
a 1 _

CHAPTER 2 The Object-Oriented Design Process

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 }

/" *
Construct phone object.
@param aScanner that reads text from a character-input stream

*/
publ i c Tel ephone (Scanner aScanner)
{

scanner = aScanne r ;
}

/**
Speak a message to System . out.
@param output the text that will be "spoken"

*/
publ i c voi d speak (Stri ng output)
{

}

/**

*/

System . out . pri ntl n (output) ;

Loops reading user input and passes the input to the
Connecti on object's methods di a 1 , reco rd, or hangup.
@param c the connection that connects this phone to the
voice mail system

publ i c voi d run (Connection c)
{

}

bool ean more = true ;
whi l e (more)
{

}

Stri ng i nput = scanne r . nextLi ne() ;
i f (i nput == nul l) retu rn ;
i f (i nput . equal sIgnoreCase("H"))

c . hangupO ;
el se i f (i nput . equal sIgnoreCase("Q"))

more = fal se ;
el se i f (i nput . l ength() == 1

&& "1234567890#" . i ndexOf(i nput) >= 0)
c . di al (i nput) ;

el se
c . record (input) ;

pri vate Scanner scanne r ;

Ch2/mail/MailSystemTester.java

1 i mport j ava . uti l . Scanne r ;
2
3
4
5
6
7
8

/**

*/

This program tests the mail system. A single phone
communicates with the program through System . i n/System . out.

publ i c cl ass Mai l SystemTester
{

Exercises

9 publ i c stati c voi d mai n (Stri ng [] args)
10 {
1 1 Mai l System system = new Mai l System(MAILBOX_COUNT) ;
12 Scanner consol e = new Scanner (System . i n) ;
13 Tel ephone p = new Tel ephone(consol e) ;
1 4 Connection c = new Connecti on(system , p) ;
15 p . run (c) ;
16 }
17
18 pri vate stati c fi nal i nt MAILBOX_COUNT 20 ;
19 }

EXERClSES
Exercise 2.1 . Consider the development of an online course registration system that
allows students to add and drop classes at a university. Describe the activities that will
take place during the analysis, design, and implementation phases. Give specific exam
ples of activities that relate to the registration system.

Exercise 2.2. What is the difference between an object and a class? What is the differ
ence between a class and a type?

Exercise 2.3. Consider cars in a car-racing video game. Explain the notions of state,
behavior, and identity as they relate to car objects.

Exercise 2.4. Download the Mozilla Rhino implementation of ECMAScript. Imple
ment the G reete r class and write a program that tests two instances of G reete r.

Exercise 2.5. Implement a class Car in ECMAScript. A car has a fuel efficiency (in miles
per gallon or the metric equivalent) and a certain fuel level. Supply methods to add fuel,
find out the fuel remaining in the tank, and drive a given distance.

Exercise 2.6. List at least eight classes that can be used in an online course registration
system that allows students to add and drop classes at a university.

Exercise 2.7. Consider the development of a computer system for car rentals. Name one
class that might be useful in this context from each of the following categories:

(a) Tangible things
(b) Agents
(c) Events and transactions
(d) Users and roles
(e) Systems
(f) System interfaces and devices
(g) Foundational classes

CHAPTER 2 The Object-Oriented Design Process

Exercise 2.8. What relationship is appropriate between the following classes: aggrega
tion, inheritance, or neither?

(a) Uni versi ty-Student

(b) Student-Teachi ngAssi stant

(c) Student-Freshman

(d) Student-Professor

(e) Car-Door

(f) Truck-Vehi cl e

(g) Traffi c-Traffi cSi gn

(h) Traffi cSi gn-Col or

Exercise 2.9. Consider an online course registration system that allows students to add
and drop classes at a university. Give the multiplicities of the associations between these
class pairs.

(a) Student-Cou rse

(b) Cou rse-Secti on

(c) Secti on-Instructor

(d) Secti on-Room

Exercise 2.10. Consider an airline reservation system with classes Passenger, Iti ne rary,
Fl i ght, and Seat. Consider a scenario in which a passenger adds a flight to an itinerary
and selects a seat. What responsibilities and collaborators will you record on the C RC
cards as a result?

Exercise 2 .11 . How does the design of the preceding exercise change if you have a group
of passengers that fly together?

Exercise 2. 12. Consider an online store that enables customers to order items from a cat
alog and pay for them with a credit card. Draw a UML diagram that shows the relation
ships between these classes:

Customer
Order
RushOrder
Product
Add ress
Credi tCard

Exercise 2.13. Consider this test program:
publ i c cl ass Teste r
{

}

publ i c stati c voi d mai n (Stri ng [] args)
{

}

Stri ng s = "Hel l o Worl d" ;
Scanner i n = new Scanne r (s) ;
whi l e (i n . hasNext ())

System . out . pri ntl n (i n . next ()) ;

Exercises

Draw a sequence diagram that shows the method calls of the mai n method.

Exercise 2.14. Consider a program that plays TicTacToe with a human user. A class
Ti cTacToeBoard stores the game board. A random number generator is used to choose
who begins and to generate random legal moves when it's the computer's turn. When it's
the human's turn, the move is read from a Scanner, and the program checks that it is
legal. Mter every move, the program checks whether the game is over. Draw a sequence
diagram that shows a scenario in which the game starts, the computer gets the first turn,
and the human gets the second turn. Stop the diagram after the second turn.

Exercise 2.15. Look up the API documentation of the URLConnecti on class and draw a
state diagram of the states of an object of this class.

Exercise 2.16. Consider the scenario ''A user changes the mailbox passcode" in the voice
mail system. Carry out a walkthrough with the mail system's CRC cards. What steps do
you list in your walkthrough? What collaborations and responsibilities do you record as a
result of the walkthrough?

Exercise 2.17. In our voice mail simulation, the Connecti on objects hold a reference to
the "current mailbox". Explain how you can change the design so that the Connection
class does not depend on the Mai l box class. Hint: Add responsibilities to the Mai l System
class.

Exercise 2.18. Design and implement a program that simulates a vending machine.
Products can be purchased by inserting the correct number of coins into the machine.
A user selects a product from a list of available products, adds coins, and either gets the
product or gets the coins returned if insufficient money was supplied or if the product is
sold out. Products can be restocked and money removed by an operator. Follow the
design process that was described in this chapter.

Exercise 2.19. Design and implement a program that manages an appointment calendar.
An appointment includes the description, date, starting time, and ending time; for
example,

Denti st 2006/10/1 17 : 30 18 : 30
CS1 cl ass 2006/10/2 08 : 30 10 : 00

Supply a user interface to add appointments, remove canceled appointments, and print
out a list of appointments for a particular day. Follow the design process that was
described in this chapter.

Exercise 2.20. Airline seating. Design and implement a program that assigns seats on an
airplane. Assume the airplane has 20 seats in first class (5 rows of 4 seats each, separated
by an aisle) and 180 seats in economy class (30 rows of 6 seats each, separated by an
aisle). Your program should take three commands: add passengers, show seating, and
quit. When passengers are added, ask for the class (first or economy), the number of pas
sengers traveling together (1 or 2 in first class; 1 to 3 in economy), and the seating pref
erence (aisle or window in first class; aisle, center, or window in economy) . Then try to
find a match and assign the seats. If no match exists, print a message. Follow the design
process that was described in this chapter.

Chapter

Guiaelines for
Class Design

� An Overview of the Date Classes in the Java Library

� Designing a Day Class

� Three Implementations of the Day Class

� The Importance of Encapsulation

� Analyzing the Quality of an Interface

� Programming by Contract

� Unit Testing

In the preceding chapter, we discussed how to find classes for solving a

practical programming problem. We looked at all classes in a program and

the relationships among them. In this chapter, we take a very different,

"bottom up" point of view, and explore how to write a single class well.

There are a number of useful rules and concepts that can dramatically

improve the quality of the classes and interfaces that you design. It is well

worth spending time on "good craftsmanship" of class design. The result is

classes that are useful and reusable, and increased pride and satisfaction for

you, the designer.

CHAPTER 3 Guidelines for Class Design

An Overview of the Date C l a s s e s

in t h e J ava Library

Many programs need to process dates such as "Saturday, February 4, 2006". The Java
library has a Date class in the j ava . uti 1 package that can help. For example, the follow
ing statements print out the current date and time:

Date now = new Date () ;
/ / constructs current date/time

System . out . pri ntl n (now . toStri ng ()) ;
/ / prints date such as Sat Feb 04 16 : 34 : 10 PST 2006

As you can see, a Date object keeps track of both the date and the time. Look at the prin
cipal methods in the Date class:

Method Description

bool ean after(Date when) Tests if this date is after the specified date

bool ean before (Date when) Tests if this date is before the specified date

i nt compareTo(Date anotherDate) Compares two Date objects for ordering

l ong getTi me 0 Returns the number of milliseconds since
1970-01-01 00:00:00 GMT
represented by this Date object

voi d setTi me(l ong ti me) Sets this Date object to represent a point in
time that is ti me milliseconds after
1970-01-01 00:00:00 GMT

NOTE This table omits a number of deprecated methods-methods that the class designers
had originally provided but then decided not to support any longer. You should not use dep
recated methods because they may be withdrawn from a future version of the library without
further notice. And, of course, there is a reason they were deprecated-someone realized that
they were poorly thought out and should not have been included in the first place.

The Date class implements a very straightforward abstraction-a point in time, mea
sured in milliseconds. (Ti me might have been a better name for this class.)

If you have two Date objects, it makes sense to ask which one comes before the other
see Figure 1 . In mathematical terms, points in time have a total ordering. The befo re and
after methods compute the ordering relationship.

3.1 An Overview of the Date Classes in the Java Library

0��g - - - - - - - - - - ---+--------d+-----+----I .. � Time

Epoch � e
1970-01-01 �

00:00:00 GMT Points in time

Figure 1

Two Points in lime

T • SP�CIAL T O P I C

Total Orderings

represented by
two Date objects

A total ordering is a relation between the elements in a set that fulfills certain properties. In
particular, a total ordering defines how elements can be sorted. Since sorting is an important
operation, we are often interested in total orderings for objects of a class.
Let us review the definition of a total ordering. In mathematical notation, it is customary to
use ';;; or a similar symbol (such as �) to denote an ordering relation. With the ';;; symbol, the
characteristic properties of a total ordering are:

1. Transitivity: If x ,;;; y and y ,;;; z, then x ,;;; z

2. Reflexivity: x ,;;; x

3. Antisymmetry: If x ,;;; y and y ,;;; x, then x = y
4. Totality: For any x and y, x ,;;; y or y ,;;; x

(A relation that fulfills only the first three properties is called a partial ordering.)

The totality condition means that all elements can be compared with each other. An example
of a total ordering is the standard ,;;; relationship on the real numbers. Here is another exam
ple: For two Date objects x and y, you can define x ,;;; y as

x . befo re (y) I I x . equal s (y)
This ordering lets you sort objects of the Date class.
It is not always so easy to find total orderings. Consider for example objects of the Rectang 1 e
class. Does the set of rectangles in the plane have a total ordering? That is, is there some way
of comparing rectangles such that any two rectangles are comparable to each other? The first
ordering relationship that comes to mind is containment (or � in mathematical notation). A
rectangle is considered "smaller" than another if it is contained in the other.

CHAPTER 3 Guidelines for Class Design

This relationship is indeed a partial ordering, but it is not total. It is easy to find two rectan
gles that are not comparable to each other:

I I I

It is possible to define a total ordering on the set of rectangles, but it requires more effort. We
will take up this issue again in Chapter 4 when we discuss the Comparab 1 e interface type.

The Date class provides a second service beyond supplying a total ordering. The getTi me
and setTi me methods convert between Date objects and another common measurement
of time-the number of milliseconds from the "epoch", 1970-01-01 00:00:00 GMT.

Date d = new Date () ;
l ong n = d . getTi me () ;

/ / sets n to the number of milliseconds since the epoch

In other words, the call
d . after (e)

is equivalent with the condition

d . getTi me () > e . getTi me()

But if you have a Date object and would like to know in what month or year it occurs,
then you are out ofluck. The Date class has no methods for computing that information.
(We do not consider the deprecated methods or the toStri ng method-that method is
only intended for debugging.)

Instead, the responsibility of determining months, years, weekdays, and so on, is handled
by a class Gregori anCa 1 endar that knows about the intricacies of our calendar such as the
fact that January has 31 days and February has 28 or sometimes 29. The Gregorian cal
endar is named after Pope Gregory XIII. In 1582, he ordered the implementation of the
calendar that is in common use throughout the world today. Its predecessor was the
Julian calendar, instituted by Julius Caesar in the first century BeE. The Julian calendar
introduced the rule that every fourth year is a leap year. The Gregorian calendar refines
that rule by specifying that years divisible by 100 are not leap years, unless they are divis
ible by 400. Thus, the year 1900 was not a leap year but the year 2000 was.

NOTE The Microsoft Excel program treats 1900 as a leap year. The explanation at http : / /
support . mi c rosoft . com/defau l t . aspx?sci d=kb ; en-us ; 214326 claims that this choice
was intentional to provide greater compatibility with another spreadsheet program that had
the same error. Apparently, one group of programmers was not diligent enough to research

3.1 An Overview of the Date Classes in the Java Library

leap years, and another group of programmers couldn't figure out how to rectify that problem.
Details do matter.

Defining the Gregori an Cal endar class separate from the Date class is good class design.
There are many possible descriptions of a point in time. For example, February 3, 2001 is

• Annee 209 de la Republique Mois de Pluvi6se Decade 2 Jour du O!tintidi in the
French Revolutionary Calendar

• 12.19.7.17 .1 in the Mayan Long Count

While you aren't likely to have customers using the French Revolutionary or Mayan cal
endar, there are other calendars in active use around the world, such as the Chinese,
Jewish, and Islamic calendars.

INTERNET You can find a detailed discussion of the French Revolutionary, Mayan, Chinese,
Jewish, and Islamic calendars at http : //www . tonderi ng . dk/cl aus/cal endar . html .

Thus, the responsibility of the Grego ri anCa 1 endar class is to assign descriptions to points
in time, and conversely, to compute the point in time that corresponds to such a descrip
tion. It would be possible in principle to design a class F renchRevo 1 uti onaryCa 1 endar or
Isl ami cCal endar that converts between Date values and descriptions in those calendar
systems.

For that reason, the Java library designers provide a superclass Cal endar that is supposed
to help implementors of other calendars. Figure 2 shows the relationship between these
classes in UML notation.

8--------------- Calenda,

Fig ure 2

Gregorian
Calendar

The Date Handling Classes in the Java Library

CHAPTER 3 Guidelines for Class Design

The following table shows some of the most important methods of the Cal endar class:

Method Description

i nt get (i nt fi e 1 d) Gets a field value; fi e 1 d is a Cal endar
class constant such as YEAR, MONTH, DATE,
HOUR, MINUTE, SECOND

voi d set (i nt fi el d , i nt val ue) Sets a field value

voi d add (i nt fi el d , i nt i nc rement) Adds to a field value

Date getTi me O Converts to a Date value

voi d setTi me (Date d) Converts from a Date value

D e signing a Day C l a s s

This section explores a variety of possible designs for a Day class, a class that represents a
calendar day in the Julian/Gregorian calendar, such as February 4, 2006. You are encour
aged to always use the standard Java class library in your own programs, but the behavior
of calendar days is just subtle enough to make other class examples interesting.

For simplicity, we do not deal with time, and we fix a place on the globe, ignoring the
fact that elsewhere it may be a day earlier or later. We assume that the switchover from
the Julian to the Gregorian calendar is on October 15, 1582, even though different coun
tries adopted the Gregorian calendar at different times.

A Day object encapsulates a particular day. Unlike the designers of the Date class, who
felt that the most useful operation for the Date class is the total ordering (befo re, after) ,
we will implement a stronger set of methods. In particular, we want to be able to answer
questions such as

• How many days are there between now and the end of the year?

• What day is 100 days from now?

Day

(��elate calendar days to day counts
\

-- ---_._-

3.2 Designing a Day Class

The days From method computes the number of days between two days. For example, if
bday is your birthday, and today is today's day, then

i nt n = today . daysFrom (bday) ;

computes how many days you have lived. The value of d l . daysFrom (d2) i s negative if dl
comes before d2, it is 0 if they are the same, and positive if dl comes after d2. Thus, Day
objects also have a total ordering.

Conversely, if n is a number of days (either positive or negative), then the addDays
method computes the day that is n days away from the current day. For example, here is
how you compute 999 days from today:

Day l ater = today . addDays (999) ;

However, unlike the Date class, the Day class does not reveal an "epoch", a fixed day 0
such as January 1, 1970. If it uses an epoch for its internal computations, it is a hidden
implementation detail.

In other words, we define the "difference" between two days as an integer, and we define
an "addition" operation that takes a day and an integer and yields another day. These
operations are inverses of each other, in the sense that

d . addDays (n) . daysFrom(d) is the same as n

and

dl . addDays (d2 . daysFrom(dl)) is the same as d2

This becomes clearer if you write addDays as + and daysF rom as -.

(d + n) - d is the same as n

and

dl + (d2 - dl) is the same as d2

Clearly, there is a mathematical structure here. We don't want to overemphasize this fact,
but neither do we want to hide it. Often times, the existence of a mathematical structure
can be used to define the behavior of a class in a precise and unambiguous manner.

NOTE If you are familiar with pointers into arrays in C or C++, you will recognize that
pointers have the same mathematical structure as our Day objects. The difference between
two pointers is an integer (or, to be precise, a pt rdi fCt value). The sum of a pointer and an
integer is another pointer.

Finally, we want a constructor that constructs a Day object from a given year, month, and
day, and we want methods to obtain the year, month, and day of the month. For
example,

Day today = new Day(2006 , 2 , 4) ; II February 4, 2006
Day l ater = today . addDays (999) ;
System . out . pri ntl n (l ate r . getYear()

+ "-" + l ater . getMonthO
+ " - " + l ater . getDate O) ; II prints 2008-10-30

System . out . p ri ntl n (l ate r . daysFrom (today)) ; II prinh 999

CHAPTER 3 Guidelines for Class Design

Note that the constructor expects the year, followed by the month, and finally the day, as
defined in the ISO 8601 standard. That international standard recommends always pre
senting days in a standard order: four-digit year, month, and day. This convention avoids
confusion with dates such as 02/04/06, which are interpreted differently in different
countries.

INTERNET The official ISO 8601 standard document is available for purchase from http : / /
www . i so . ch. See http : //www . cl . cam . ac . uk/-mgk2 5/i so-ti me . html for a nice explanation
of the main points of the standard.

Thus, our Day class has the following public interface:

publ i c cl ass Day
{

/**

*/

Constructs a day with a given year, month, and day
of the Julian/Gregorian calendar. The Julian calendar
is used for all days before October 15, 1582 .
@param aYear a year ! = 0
@param aMonth a month between 1 and 12
@param aDate a date between 1 and 31

publ i c Day(i nt aYear , i nt aMonth , i nt aDate) { . . . }

/**

*/

Returns the year of this day .
@return the year

publ i c i nt getYearO { . . . }

/**

*/

Returns the month of this day.
@return the month

publ i c i nt getMonthO { . . . }

/**

*/

Returns the day of the month of this day.
@return the day of the month

publ i c i nt getDateO { . . . }

/**

*/

Returns a day that is a certain number of days away from
this day.
@param n the number of days, can be negative
@return a day that is n days away from this one

publ i c Day addDays (i nt n) { . . . }

3.2 Designing a Day Class

/**

*/

Returns the number of days between this day and another
day.
@param other the other day
@return the number of days that this day is away from
the other (> 0 if this day comes later)

publ i c i nt daysFrom (Day other) { . . . }

}

T .SpeC ia l Top ic
Operator Overloading

The Day class has a method to compute the "difference" between two Day objects, that is, the
number of days between two Day objects. In some programming languages, you can actually
use the familiar subtraction operator (-) to denote this conceptual difference. That is, you can
use the statement

i nt n = today - bday ;

instead of

i nt n = today . daysFrom (bday) ;

This mechanism is called operator overloading. In C++, you achieve operator overloading by
defining methods with special names. For example, you define a method called ope rator- to
overload the subtraction operator. Whenever you use the subtraction operator, the compiler
checks whether you want to subtract numbers or values of another type. When you subtract
two Day objects, the compiler locates the ope rator- method of the Day class and invokes it.
That method should of course have the same functionality as the days From method.
Operator overloading can make programs easier to read, particularly when dealing with
mathematical objects such as big numbers, vectors, and matrices. For example, the expression

x + y * z

is much clearer than the equivalent

x . add(y . mul ti pl y (z))

The Java programming language does not support operator overloading. The language
desigers felt that operator overloading was a complex feature that would make Java harder to
learn. Furthermore, operator overloading seems to have limited applicability outside scientific
computing.
Not everyone agrees with this decision. Mathematicians have extensive experience with
designing notation that makes complex expressions easier to read. It would be desirable to
make use of some of that expertise and make computer programs easier to read as well.

CHAPTER 3 Guidelines for Class Design

Three Implementations of the Day C l a s s

Let us consider a straightforward implementation of the Day class, where the state of a
Day object is represented as

pri vate i nt yea r ;
pri vate i nt month ;
pri vate i nt date ;

Then the constructor and the three get methods are trivial to implement.

publ i c Day(i nt aYear . i nt aMonth . i nt aDate)
{

}

year = aYear ;
month = aMonth ;
date = aDate ;

publ i c i nt getYear()
{

return yea r ;
}

Of course, the addDays and days From methods are tedious. Consider the following facts:

1. April, June, September, and November have 30 days.

2. February has 28 days, except in leap years, when it has 29 days.

3. All other months have 31 days.

4. Leap years are years that are divisible by 4, except after 1582, when years that are
divisible by 100 but not 400 are not leap years.

5. There is no year 0; year 1 is preceded by year -1.
6. In the switchover to the Gregorian calendar, 10 days were dropped so that

October 15, 1582, followed immediately after October 4.

You will find a solution in Section 3.3 .1 . Have a look at it and note how it depends on
helper methods nextDay and p revi ousDay.

These helper methods have been declared as pri vate and not publ i c. It may not be (
immediately obvious why this is a good arrangement. Mter all, since you went through
the trouble of implementing the methods, shouldn't you make them available for others
to use?

There are three reasons why you should be cautious about making helper methods
public:

• They can clutter up the public interface, making it harder for class users to under
stand your class.

• Sometimes, helper methods require a special protocol or calling order. You may
not trust your class users to understand the subtleties, or you may not want to doc
ument them as carefully as you document the public interface.

3.3 Three Implementations of the Day Class

• Sometimes, helper methods depend on a particular implementation. Their need
goes away when you switch to another implementation. But if you make them
public, then there is the possibility that one of the users of your class has actually
called the method. Now you need to keep it working under the new implementa
tion, or you risk the wrath of the user who will not want you to take it away. "Once
public, always public".

TIP Choose private visibility for those methods that are of no concern to the class user and
for those methods that could not easily be supported if the class implementation changed.

Our first implementation of the Day class is quite inefficient because all computations
increment or decrement one day at a time. Now let us turn to a completely different
implementation. Rather than storing the year, month, and date, the second implementa
tion will store the Julian day number. The Julian day number is the number of days from
January 1, 4713 BCE. For example, the Gregorian calendar day May 23, 1968, corre
sponds to the Julian day number 2,440,000. Standard functions can compute the Julian
day number from a calendar date and a calendar date from the Julian day number-see
the source code in Section 3 .3 .2 for the formulas.

NOTE The Julian day number is unrelated to the Julian calendar enacted by Julius Caesar.
The sixteenth-century historian Joseph Scaliger used the recurrence intervals for certain
astronomical events and the IS-year Roman tax cycle to find a synchronization point, January
1, 4713 BCE. He used that point as a zero for mapping every event in written history reliably
to a positive day number. Scaliger named this day number after his father Julius. Julian day
numbers are used today by astronomers throughout the world.

With the Julian day number, the addDays and daysF rom methods become trivial and very
efficient.

publ i c cl ass Day
{

}

publ i c Day addDays(i nt n)
{

return new Day (j ul i an + n) ; II Calls private constructor
}

publ i c i nt daysFrom (Day other)
{

return j u l i an - other . j ul i an ;
}

pri vate i nt j u l i an ;

fflJ-
III! _=

I
1 ._

CHAPTER 3 Guidelines for Class Design

Of course, now the public Day(i nt aYear , i nt aMonth , i nt aDate) constructor and
the getYear, getMonth, and getDate methods are not very efficient. In particular, con
sider the call

System . out . pri ntl n (l ate r . getYear()
+ " - " + l ate r . getMonthO
+ " - " + l ate r . getDateO) ;

The computation for converting a Julian day number back to the calendar day now runs
three times, once for each accessor.

This problem can be overcome with a third implementation that combines the benefits
of the two. Keep both the year-month-date representation and the j ul i an representa
tion, converting between them as needed. The conversion should be lazy-the j u 1 i an
value should be computed only when it is required. That way, we pay no conversion cost
if a Day object never executes any date arithmetic. Conversely, if an object is constructed
with the private Day(i nt j ul i an) constructor, the year-month-date representation
should only be generated when one of the get methods is called. Mter all, maybe the
object is used for intermediate calculations only.

To implement the lazy conversion between the two representations, use two bool ean
variables ymdVa 1 i d and j u 1 i anVa 1 i d . See the source code for the third implementation in
Section 3.3 .3 for details.

Which of these three implementations is best? There is no one answer-it depends on
the application. If little date arithmetic is required, then the first implementation is
entirely acceptable. The last implementation is the most efficient, but it is undeniably
complex and requires more storage.

Implementation # 1

Ch3/daY1/Day.java

1 publ i c cl ass Day
2 {
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
1 8

/**

*/

Constructs a day with a given year, month, and day
of the Julian/Gregorian calendar. The Julian calendar
is used for all days before October 15, 1582.
@param aYear a year ! = 0
@param aMonth a month between 1 and 12
@param aDate a date between 1 and 31

publ i c Day(i nt aYear , i nt aMonth , i nt aDate)
{

}

/**

year = aYear ;
month = aMonth ;
date = aDate ;

(

3.3 Three Implementations of the Day Class

19 Returns the year of this day.
20 @return the year
21 */
22 publ i c i nt getYear()
23 {
24 return yea r ;
25 }
26
27 /**
28 Returns the month of this day.
29 @return the month
30 */
31 publ i c i nt getMonth ()
32 {
33 return month ;
34 }
35
36 /**
37 Returns the day of the month of this day.
38 @retu rn the day of the month
39 */
40 publ i c i nt getDate ()
41 {
42 retu rn date ;
43 }
44
45 /**
46 Returns a day that is a certain number of days away from
47 this day.
48 @param n the number of days, can be negative
49 @return a day that is n days away from this one
50 */
51 publ i c Day addDays (i nt n)
52 {
53 Day resu l t = thi s ;
54 whi l e (n > 0)
55 {
56 resul t = resul t . nextDay () ;
57 n- - ;
58 }
59 whi l e (n < 0)
60 {
61 resul t = resul t . previ ousDay() ;
62 n++ ;
63 }
64 return resu l t ;
65 }
66
67 /**
68 Returns the number of days between this day and another
69 day.
70 @param othe r the other day
71 @retu rn the number of days that this day is away from
72 the other (> 0 if this day comes later)
73 */
74 publ i c i nt daysF rom(Day other)

CHAPTER 3 Guidelines for Class Design

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
1 12
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

{

}

/**

*/

i nt n = 0 ;
Day d = thi s ;
whi l e (d . compareTo(othe r) > 0)
{

d = d . p revi ousDay() ;
n++ ;

}
whi l e (d . compareTo (other) < 0)
{

d = d . nextDayO ;
n-- ;

}
return n ;

Compares this day with another day.
@param other the other day
@return a positive number if this day comes after the
other day, a negative number if this day comes before
the other day, and zero if the days are the same

pri vate i nt compareTo(Day other)
{

}

/**

*/

i f (year > othe r . year) retu rn 1 ;
i f (year < othe r . year) retu rn - 1 ;
i f (month > othe r . month) return 1 ;
i f (month < othe r . month) return -1 ;
return date - othe r . date ;

Computes the next day.
@return the day following this day

pri vate Day nextDay ()
{

i nt y = yea r ;
i nt m = month ;
i nt d = date ;
i f (y == GREGORIAN_START_YEAR

&& m == GREGORIAN_START_MONTH
&& d = = JULIAN_END_DAY)

d = GREGORIAN_START_DAY ;
el se i f (d < daysPerMonth(y , m))

d++ ;
el se
{

d = 1 ;
m++ ;
i f (m > DECEMBER)
{

m = JANUARY ;
y++ ;
i f (y == 0) y++ ;

(

3.3 Three Implementations of the Day Class

131 }
132 }
133 return new Day (y , m , d) ;
134 }
135
136 /**
137 Computes the previous day.
138 @return the day preceding this day
139 */
140 pri vate Day previ ousDay ()
141 {
142 i nt y yea r ;
143 i nt m month ;
144 i nt d date ;
145
146 i f (y == GREGORIAN_START_YEAR
147 && m == GREGORIAN_START_MONTH
148 && d == GREGORIAN_START_DAY)
149 d = JULIAN_END_DAY ;
150 el se i f (d > 1)
151 d-- ;
152 el se
153 {
154 m- - ;
155 i f (m < JANUARY)
156 {
157 m = DECEMBER ;
158 y-- ;
159 i f (y == 0) y-- ;
160 }
161 d daysPe rMonth(y , m) ;
162 }
163 return new Day (y , m , d) ;
164 }
165
166 /**
167 Gets the days in a given month.
168 @param y the year
169 @param m the month
170 @return the last day in the given month
171 */
1 72 pri vate stati c i nt daysPe rMonth (i nt y , i nt m)
1 73 {
1 74 i nt days = DAYS_PER_MONTH [m - 1] ;
1 75 i f (m == FEBRUARY && i sLeapYear (y))
176 days++ ;
177 return days ;
178 }
179
180 /**
181 Tests if a year is a leap year.
182 @param y the year
183 @return true if y is a leap year
1 84 */
1 85 pri vate stati c bool ean i s LeapYear (i nt y)
1 86 {

CHAPTER 3 Guidelines for Class Design

1 87
1 88
1 89
190
191
192
193
194
195
196
197
198
1 99
200
201
202
203
204
205
206 }

}

i f (y % 4 ! = 0) retu rn fal se ;
i f (y < GREGORIAN_START_YEAR) retu rn t rue ;
return (y % 100 ! = 0) I I (y % 400 == 0) ;

pri vate i nt year ;
pri vate i nt month ;
pri vate i nt date ;

pri vate stati c fi nal i nt [] DAYS_PER_MONTH
{ 31 , 2 8 , 3 1 , 30 , 3 1 , 30 , 3 1 , 3 1 , 30 , 3 1 , 30 , 3 1 } ;

p ri vate stati c fi nal i nt GREGORIAN_START_YEAR = 1582 ;
p ri vate stati c fi nal i nt GREGORIAN_START_MONTH = 10 ;
p ri vate stati c fi nal i nt GREGORIAN_START_DAY = 15 ;
p ri vate stati c fi nal i nt JULIAN_END_DAY = 4 ;
pri vate stati c fi nal i nt JANUARY = 1 ;
pri vate stati c fi nal i nt FEBRUARY = 2 ;
pri vate stati c fi nal i nt DECEMBER = 12 ;

Implementation #2

Ch3/daY2/Day.java

1 publ i c cl ass Day
2 {
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
1 9
20
2 1
22
23
24
25
26
27
28

/**

*/

Constructs a day with a given year, month, and day
of the Julian/Gregorian calendar. The Julian calendar
is used for all days before October 15, 1582.
@param aYear a year ! = °
@param aMonth a month between 1 and 12
@param aDate a date between 1 and 31

publ i c Day (i nt aYear , i nt aMonth , i nt aDate)
{

}

/**

*/

j u l i an = toJ ul i an (aYear , aMonth , aDate) ;

Returns the year of this day.
@return the year

publ i c i nt getYear ()
{

}

/*"

*/

return fromJ ul i an (j ul i an) [O] ;

Returns the month of this day.
@retu rn the month

3.3 Three Implementations of the Day Class

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

publ i c i nt getMonth ()
{

}

/**

*/

return fromJul i an (j ul i an) [l] ;

Returns the day of the month of this day.
@return the day of the month

publ i c i nt getDate ()
{

}

/**

*/

return fromJ ul i an (j ul i an) [2] ;

Returns a day that is a certain number of days away from
this day.
@param n the number of days, can be negative
@return a day that is n days away from this one

publ i c Day addDays(i nt n)
{

}

/**

*/

return new Day (j ul i an + n) ;

Returns the number of days between this day and another day.
@param other the other day
@return the number of days that this day is away from
the other (> 0 if this day comes later)

publ i c i nt daysFrom (Day other)
{

return j u l i an - other . j ul i an ;
}

pri vate Day(i nt aJ ul i an)
{

}

/**

j u l i an = aJul i an ;

Computes the Julian day number of the given day.
@param year a year
@param month a month
@param date a day of the month
@return The Julian day number that begins at noon of
the given day
Positive year signifies CE, negative year BCE.
Remember that the year after 1 BCE is 1 CEo

A convenient reference point is that May 23, 1968, noon
is Julian day number 2,440,000.

Julian day number 0 is a Monday.

CHAPTER 3 Guidelines for Class Design

85 This algorithm is from Press et al., Numerical Recipes
86 in C, 2nd ed., Cambridge University Press, 1992.
87 */
88 pri vate stati c i nt toJul i an (i nt year , i nt month , i nt date)
89 {
90 i nt j y = year ;
91 i f (year < 0) j y++ ;
92 i nt jm = month ;
93 i f (month > 2) j m++ ;
94 el se
95 {
96 j y- - ;
97 jm += 13 ;
98 }
99 i nt j u l = (i nt) (java . l ang . Math . fl oo r (365 . 2 5 * jy)

100 + j ava . l ang . Math . fl oor (30 . 6001 * j m) + date + 1720995 . 0) ;
101
102 i nt IGREG = 15 + 31 * (10 + 12 * 1582) ;
103 / / Gregorian calendar adopted October 15, 1582
104
105 i f (date + 31 * (month + 12 * year) >= IGREG)
106 / / Change over to Gregorian calendar
107 {
108 i nt ja = (i nt) (0 . 01 * j y) ;
109 j u l += 2 - ja + (i nt) (0 . 2 5 * j a) ;
110 }
1 1 1 return j u l ;
1 12 }
1 13
114 /**
1 15 Converts a Julian day number to a calendar date.
1 16
1 17 This algorithm is from Press e t al., Numerical Recipes
118 in C, 2nd ed., Cambridge University Press, 1992.
1 19
120 @param j the Julian day number
121 @return an array whose 0 entry is the year, 1 the month,
122 and 2 the date
123 */
124 pri vate stati c i nt [] fromJ ul i an (i nt j)
125 {
126 i nt j a = j ;
127
128 i nt JGREG = 2299161 ;
129 / / The Julian day number of the adoption of the Gregorian calendar
130
131 i f (j >= JGREG)
132 / / Crossover to Gregorian calendar produces this correction
133 {
134 i nt j al pha = (i nt) (((fl oat) (j - 1867216) - 0 . 2 5)
135 / 36524 . 2 5) ;
136 ja += 1 + j al pha (i nt) (0 . 2 5 * ja l pha) ;
137 }
138 i nt j b = ja + 1524 ;
139 i nt j c = (i nt) (6680 . 0 + ((fl oat) (jb - 2439870) - 122 . 1)
140 / 365 . 2 5) ;

3.3 Three Implementations of the Day Class

141
142
143
144
145
146
147
148
149
150
151
152
153 }

}

i nt j d = (i nt) (365 * j c + (0 . 2 5 * j c)) ;
i nt j e = (i nt) ((j b - jd) / 30 . 6001) ;
i nt date = j b - j d - (i nt) (30 . 6001 * j e) ;
i nt month = j e - 1 ;
i f (month > 12) month - = 12 ;
i nt year = j c - 4715 ;
i f (month > 2) --year ;
i f (year <= 0) --year ;
return new i nt [] { yea r , month , date } ;

pri vate i nt j u l i an ;

fEEl- Implementation #3

II!! _'"

\ -

Ch3/daY3/Day.java

1 publ i c cl ass Day
2 {
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35

/**

*/

Constructs a day with a given year, month, and day
of the Julian/Gregorian calendar. The Julian calendar
is used for all days before October 15, 1582.
@param aYear a year ! = 0
@param aMonth a month between 1 and 12
@param aDate a date between 1 and 31

publ i c Day (i nt aYear , i nt aMonth , i nt aDate)
{

}

/**

*/

year = aYear ;
month = aMonth ;
date = aDate ;
ymdVal i d = t rue ;
j ul i anVal i d = fal se ;

Returns the year of this day.
@return the year

publ i c i nt getYear ()
{

}

/**

*/

ensu reYmd O ;
return yea r ;

Returns the month of this day.
@return the month

publ i c i nt getMonth()
{

CHAPTER 3 Guidelines for Class Design

36 ensu reYmd () ;
37 return month ;
38 }
39
40 /**
41 Returns the date of this day.
42 @return the date
43 */
44 publ i c i nt getDate()
45 {
46 ensu reYmd () ;
47 return date ;
48 }
49
50 /**
51 Returns a day that is a certain number of days away from
52 this day.
53 @param n the number of days, can be negative
54 @retu rn a day that is n days away from this one
55 */
56 publ i c Day addDays (i nt n)
57 {
58 ensure)ul i an () ;
59 retu rn new Day (j ul i an + n) ;
60 }
61
62 /**
63 Returns the number of days between this day and another
64 day.
65 @param other the other day
66 @return the number of days that this day is away from
67 the other (> 0 if this day comes later)
68 */
69 publ i c i nt daysFrom(Day other)
70 {
71 ensure)u l i an () ;
72 othe r . ensureJ ul i an () ;
73 return j ul i an - othe r . j ul i an ;
74 }
75
76 pri vate Day(i nt aJul i an)
77 {
78 j ul i an = aJul i an ;
79 ymdVal i d = fal se ;
80 j ul i anVal i d = true ;
81 }
82
83 /**
84 Computes the Julian day number of this day if
85 necessary.
86 */
87 pri vate voi d ensu reJ ul i an ()
88 {
89 i f (j ul i anVal i d) retu rn ;
90 j u l i an = to) ul i an (yea r , month , date) ;
91 j u l i anVal i d = true ;

3.4 The Importance of Encapsulation

92 }
93
94 /**
95 Converts this Julian day number to a calendar date if necessary.
96 */
97 pri vate voi d ensu reYmd O
98 {
99 i f (ymdVal i d) retu rn ;

100 i nt [] ymd = fromJul i an (j u l i an) ;
101 year = ymd [O] ;
102 month = ymd [l] ;
103 date = ymd [2] ;
104 ymdVal i d = t rue ;
105 }
106

A number oj repetitive methods are omitted here

190 pri vate i nt yea r ;
191 pri vate i nt month ;
192 pri vate i nt date ;
193 pri vate i nt j ul i an ;
1 94 pri vate bool ean ymdVal i d ;
195 p ri vate bool ean j ul i anVal i d ;
196 }

The Importance of Encap sulat ion

The three implementations in the previous section illustrate an important point: Even a
seemingly simple class such as the Day class can be implemented in different ways, each
with its own benefits and drawbacks. By using encapsulation, the users of the Day class
can be blissfully unaware of the implementation details, and the implementor of the class
can switch implementations without inconveniencing the class users.

Suppose we had started out with a Day class that used public instance variables

publ i c cl ass Day
{

}

publ i c i nt yea r ;
publ i c i nt month ;
publ i c i nt date ;

But then we decide to speed up date calculations by using a Julian day number instead.
We remove the year, month, and date fields and supply an i nt j u l i an field. What is the
impact of this change on the class user? Of course, none of the class user's code that
accessed the public fields will compile after the change has been made. Code such as

m = d . month ;

CHAPTER 3 Guidelines for Class Design

must be replaced by

m = d . getMonth() ;

How about

d . year++ ;

That gets trickier, and also less efficient.

d = new Day(d . getDay() , d . getMonth() , d . getYear () + 1) ;

What should be a simple change of representation turns into a major effort. In practical
programming situations, many worthwhile improvements are not undertaken simply
because they would force other programmers to go through an effort just like this.

Private data fields are essen
tial for improving the imple
mentation of a class without
disruption to its users.

In this scenario, it is still possible to identifY all places that require
change, simply by recompiling and following the compiler's error
messages. But suppose we want to switch from the first to the third
implementation, adding the j u 1 ; an field and the flags to indicate
which of the two representations is currently valid. Now the compiler

will accept code containing d . year. The programmers using the Day class must inspect
each line of the program to see whether it is affected by the change. They have to be
trusted to set the flags correctly. If any one of them makes a mistake, data may be cor
rupted and time-consuming debugging sessions may result.

Thus, even though encapsulation forces programmers to spend more time on planning
and design, it is an essential feature for larger programs. Successful software products
evolve over time. New user requirements must be implemented, and obsolete features are
sometimes retired. The existing code must be maintainable. Rewriting all code for every
product release would be too slow and expensive. (Novice programmers initially find it
hard to envision this-if the lifetime of your homework assignment is three weeks, then
you are much more interested in coding quickly than in keeping the code maintainable.)

Data encapsulation provides a mechanism for restricting the range of the program that is
affected by a change to a small subset, namely the methods of a class. Once that subset
has been updated to track a change, the programmer can state with confidence that no
other portion of the program needs attention in this regard.

.

fill- Accessors and Mutators

A mutator method modifies the
state of an object; an accessor
method leaves the state
unchanged.

Objects of an immutable class
cannot be changed after they
have been constructed.

We make a conceptual distinction between mutator methods, which
change the state of an object, and accessor methods, which merely read
its instance fields.

For example, the Day class of the preceding section has no mutators. It
is an immutable class, just like the St r; ng class. In contrast, the j ava .
uti 1 . Date class has a mutator, setT; me. The Gregor; anCa 1 endar class
has several mutators as well-look at the set and add methods in the
API documentation.

3.4 The Importance of Encapsulation

Should we add methods voi d setYear(i nt aYear) , voi d setMonth(i nt aMonth) , and
voi d setDate (i nt aDate) ? These methods are actually not a good idea. Consider this
sequence of events.

Day deadl i ne = new Day (2006 , 1 , 31) ;

Now we want to move the deadline by a month:

deadl i ne . setMonth (2) ;

Clearly, this won't work-there is no February 31 . Or should the day have rolled over to
March 3? The set method in the Gregori anCa 1 endar class actually does that! The results
aren't pretty. Consider the following sequence, where the desired outcome is to move the
deadline by a day:

deadl i ne . setMonth (2) ;
deadl i ne . setDate (l) ;

Oops-now the deadline has been set to March I ! Silly me, you'll say. I should have first
set the date. But that won't always work either:

Day deadl i ne = new Day (2006 , 2 , 1) ;
deadl i ne . setDate (30) ;
deadl i ne . setMonth (4) ;

If setDate rolls over to the next valid day, then the deadline is first set to March 2, then
to April 2. Clearly, these set methods are a disaster waiting to happen.

There is no need to supply set methods for every instance field or as a counterpart of
every get method. However, some tools that generate code from UML diagrams auto
matically supply get and set methods for all attributes. If you use such a tool, you should
use this feature with caution.

TIP Don't automatically supply set methods for every instance field.

There is one great advantage to classes without mutator methods: Their object references
can be freely shared. In contrast, you need to be careful about sharing of mutable objects.
In particular, it is dangerous for an accessor method to give out a reference to a mutable
instance field. Consider the following example:

cl ass Empl oyee
{

publ i c Stri ng getName ()
{

retu rn name ;
}

publ i c doubl e getSal ary()
{

retu rn sal ary ;

CHAPTER 3 Guidelines for Class Design

}

}

publ i c Date getHi reDate ()
{

return hi reDate ;
}

pri vate Stri ng name ;
pri vate doubl e sal ary ;
p ri vate Date hi reDate ;

The get methods look quite harmless-Java programmers write many methods like this.
But actually, there is a hidden danger. The getHi reDate method breaks encapsulation.
Since the Date class is a mutable class, anyone can apply a mutator method to the
returned reference and thereby modifY the Empl oyee object.

Empl oyee harry = • . • ;
Date d = harry . getHi reDate () ;
d . setTi me (t) ; / / Changes Harry's state! (See Figure 3)

Clearly, this is not what the designer of the Empl oyee class intended. The getHi reDate
method was designed to give information about the Empl oyee object, not to permit mod
ification of it. The remedy is to clone the object before giving it out.

publ i c Date getHi reDate()
{

return (Date) hi reDate . c l one() ;
}

The cl one method of the Obj ect class makes a copy of the object with the same fields as
the original. The recipient of the cloned object is of course still able to modifY it, but
those modifications don't affect the Date object held by the employee.

harry = �
Em�l otee

name = " ha r ry"

hi reDate =

�
d

Date

Figure 3

Changing Object State Through a Reference to a Subobject

3.4 The Importance of Encapsulation

Cloning is more subtle than it appears at first sight-you will see all the details in
Chapter 7.

However, the getName method is safe. The Stri ng class is immutable. Nobody can mod
ifY the name object, so it is not a problem to return a reference to it.

TIP An accessor method should never return a reference to a mutable instance field. Instead,
clone the field. However, it is safe to return primitive types and references to immutable
objects.

There is a second potential problem with Date references in the Empl oyee class. When
you construct an Empl oyee object, you supply a Date reference. Suppose the constructor
looks like this:

publ i c Empl oyee (Stri ng aName , Date aHi reDate)
{

}

name = aName ;
hi reDate = aHi reDate ;

Then an evil or clueless programmer could construct an Empl oyee object and later mutate
the construction parameter:

Date d = new Date () ;
Empl oyee e = new Empl oyee("Harry Hacker" , d) ;
d . setTi me (. . .) ;

Once again, the encapsulation is broken. The remedy is to clone the value in the con
structor. As you can see, properly dealing with mutable classes is quite tedious.

TIP Immutability is a valuable feature. If you can make your class immutable, you should.

Eltl- Final Instance Fields

You can mark an instance field as fi na 1 to indicate that it doesn't change once it has been
constructed. For example,

publ i c cl ass Date
{

}

pri vate fi nal i nt day ;
p ri vate fi nal i nt month ;
pri vate fi nal i nt yea r ;

This is a good way of expressing that this class is immutable. However, the f i n a 1 keyword
only refers to the contents of the variable, not to the state of the object to which it refers.

CHAPTER 3 Guidelines for Class Design

For example, you can declare a variable containing an ArrayL i st reference as fi na 1 .

publ i c c l as s MessageQueue
{

p ri vate fi nal Ar rayLi st el ements ;
}

But that merely guarantees that no other ArrayL i st object is ever attached to the
el ements field. The fi na 1 keyword does not prevent changes to the contents of the array
list.

flEI- Separation of Accessors and Mutators

We've been pretty negative on mutators in this section. Let's put mutators in perspective.
Of course, many classes require mutators. In fact, a benefit of using objects is to represent
states that mutate over time.

When you have a class that has both accessors and mutators, then it is a good idea to
keep their roles separate. A method that returns information about an object should ide
ally not change the object state. A method that changes the object state should ideally
have return type voi d .

For example, in a BankAccount class, you don't expect the getBal ance method to affect
the balance by deducting a "balance inquiry" charge. You expect that you can call acces
sors as often as you like and always get the same result, as long as no mutator changed
the object state.

Let's look at a couple of examples that violate this rule. The next method of the Scanner
class returns a value: the next token from the input. Therefore, it appears to be an acces
sor method. But it also changes the state of the Scanner object. The next time you call
next, you get a different token. Thus, it is a mutator as well.

Could the two be separated? Of course-by using two methods:

• Str i ng getCu rrent O II Gets the current token

• voi d next 0 I I Advances to next token

This approach has one advantage: Suppose that you wanted to look at the current token
twice. With the original interface, you have to store the return value of next because it's
gone for good once you call the method. With the redesigned interface, the tokenizer
remembers the current token and you can retrieve it as often as you like.

Why didn't the designers of the standard library think of this approach? Maybe they
wanted to avoid a method call? Maybe they never explored the various alternatives and
simply implemented the first solution that came to mind? Maybe they didn't know that it
is a good idea to keep accessors and mutators separate? We don't know, but the standard
library is not perfect, and you should not follow its designs blindly.

Let's look at the MessageQueue class of Chapter 2. There is a remove method that
removes and returns the first message in the queue. Of course, removing the message
changes the state of the queue. Isn't that a violation of the "mutators should return voi d"

rule?

3.4 The Importance of Encapsulation

We need to refine that rule a bit. Indeed, it would not be good if the only way of getting
the object at the front of the queue was to remove it. What if you just wanted to look at
the head without removing it? Once you remove it, you can't put it back to the front. A
queue only lets you insert to the back. Therefore, a queue interface should offer a method
peek that returns the front object without removing it. Then you could declare the
remove method to return vo; d. That way, a user of the queue class can always call peek
and then remove.

Then again, it seems cruel to force the class user to make an added method call. It is a
convenience for the user if the remove method returns the removed object. A user who
just wants to remove without looking at the object can just ignore the return value. Thus,
a mutator can return a value for the user's convenience. But there also should be an acces
sor that gets the same value, so that the class user isn't forced to mutate the object. In the
example of the Scanner class, there is nothing wrong with the next method-the real
problem is that there isn't a getCu rrent method.

TIP Whenever possible, keep accessors and mutators separate. Ideally, mutators return vo; d.
It is OK to return a value for the user's convenience, provided that there is an accessor that
returns the same value without mutating the object.

EIII- Side Effects

A side effect of a method is any data modification that is observable when the method is
called. If a method has no side effects, you can call it as often as you like, and you always
get the same answer (provided, of course, that no other methods with a side effect have
been called in the meantime). This is clearly a desirable property.

Some programming languages (called fUnctional programming languages) can improve
the efficiency of code that avoids side effects altogether. In an object-oriented program
ming language, however, it is accepted that mutator methods have a side effect, namely
the mutation of the implicit parameter.

A method can modifY other objects besides the implicit parameter, namely

• Explicit parameters

• Accessible static fields

Generally, users of your class expect that its methods do not modifY the explicit parame
ters that they supply. For example, consider this example from the standard library. You
can add all elements from one array list to another with the call

a . addAl l (b) ;

Mter this call, all elements from the array list b have been added to a. Thus, the implicit
parameter of the call has been modified. That is to be expected-the addA 1 1 method is a
mutator. However, if the call changed the contents of b, for example by removing ele
ments, then an undesirable side effect would occur. Fortunately, the addA 1 1 method does
not modifY the object b, which is the behavior that most programmers expect.

CHAPTER 3 Guidelines for Class Design

The standard library does not have many methods that mutate an explicit parameter.
Here is one of the few examples. The Si mpl eDateFormat class has a method parse to
parse a string describing a date into a Date object:

Si mpl eDateFormat formatte r = new Si mpl eDateFormat ("yyyy-MM-dd") ;
Stri ng dateStri ng = " 2001-02-03" ;
Date d = formatter . parse (dateStri ng) ;

There is a second version of parse that analyzes a string containing a date description
together with other characters. That method has an additional parameter of type Fi e 1 d
Posi ti on that describes a position in the field. The call

Date d = formatte r . parse (dateStri ng , posi ti on) ;

parses the date that starts at the given position, and then moves the position object to the
index immediately following the date substring. There is a side effect: The explicit
parameter is modified.

Is this side effect necessary? Not really. The fo rmatte r object could remember the field
position. That design would eliminate the side effect. Of course, then a particular
Si mp 1 eDateFormat object would only be able to parse one string at a time.

Another kind of side effect is changing the state of an accessible static field, such as
System . out. This too is a side effect that you should avoid if possible. In particular,
printing error messages to System . out is reprehensible:

publ i c voi d addMessage()
{

i f (newMessages . i s Ful l ())
System . out . p ri ntl n ("Sorry--no space") ; I I DONT DO THAT!

}

Instead, throw an exception to report an error condition. Exceptions give a great deal of
flexibility to the programmers that use your classes.

TIP Minimize side effects that go beyond mutating the implicit parameter.

flft- The Law of Demeter

In the voice mail system example of Chapter 2, we had one method that purposefully
returned an object so that other methods could mutate it. The fi ndMai 1 box method of
the Mai l System class returned a Mai 1 box object, and the Connecti on object changed its
contents by adding and removing messages. That too breaks the encapsulation of the
Mai 1 System class. Perhaps a future version of the program no longer uses Mai 1 box classes
to hold the messages, but instead holds the messages in one large queue or a database.
Now the Mai l System class might have to manufacture Mai l box objects for backwards
compatibility!

3.4 The Importance of Encapsulation

Some researchers believe that this object promiscuity is a sign of poor organization that is
likely to lead to maintenance headaches. Karl Lieberherr has formulated the Law of
Demeter that states that a method should only use

• Instance fields of its class

• Parameters

• Objects that it constructs with new

A method that follows the Law
of Demeter does not operate
on global objects or objects
that are a part of another
object.

In particular, a method should not ask another object to give it a part
of its internal state to work on.

The law was named after the Greek goddess Demeter, the goddess of
agriculture and the sister of Zeus. The researchers first chose the
name Demeter because they were working on another project called

Zeus and they needed a related name. Also, they were promoting the concept of growing
software-hence the agricultural theme.

Like so many laws, the Law of Demeter tells you what not to do, but it doesn't tell you
what to do instead. For example, how can the Connecti on class avoid working on the
Mai 1 box object that the Mai l System finds for it? We can give the mail system more
responsibilities, such as "add this message to the mailbox with that number", "return the
current message of the mailbox with that number", and so on. Then the Mai l System class
needs to delegate those method calls to the mailbox that it manages.

All that delegation can get tedious to implement. The Demeter researchers claim that
this tedium is not so much a problem with the law but a limitation of the programming
language. You can find tools on the Demeter Web site that translate an expression of the
programmer's intent at a higher level into the Java methods that carry out the intent.

You should not take the Law of Demeter as a natural or mathematical law. Simply con
sider it, together with other and possibly conflicting design guidelines, when you design
your programs.

INTERNET The site http : //www . ccs . neu . edu/research/demete r/ covers the Law of
Demeter and the tools that support it. You can find an electronic version of the overview
article by Karl J. Lieberherr and Ian Holland, "Assuring Good Style for Object-Oriented
Programs," IEEE Software, September 1989, pages 38-48, at ftp : //ftp . ccs . neu . edu/pub/
research/demete r/documents/pape rs/LH89-l aw-of-demeter . ps .

T IP The Law of Demeter implies that a class should not return a reference to an object that
is a part of its internal implementation. Rather than letting some other code interact with the
subobject, the class should take on the responsibility for that work. If you follow the Law of
Demeter, you can reorganize the internal structure of your classes extensively without having
to modify the public interface.

CHAPTER 3 Guidelines for Class Design

Analyzing the Q uality of an Interface

The design and implementation of classes must be approached from two points of view
simultaneously. Programmers design and implement classes to be used in code by other
programmers who are often referred to as class users. Class users are different from the
end users of the final software application who, of course, wish to know nothing about
the application code. The customer of the class designer is another programmer, the class
user. As in any relationship between service providers and customers, the service provider
must consider the needs of the customer.

The class designer has certain objectives, such as efficient algorithms and convenient
coding. Programmers who use the classes in their code have different priorities. They
want to be able to understand and use the operations without having to comprehend the
internal data representations. They want a set of operations that is large enough to solve
their programming tasks yet small enough to be comprehensible.

Beginning programmers in an object-oriented language often find it difficult to separate
these two aspects because, in their first programming projects, they are both the class
designer and the class user. Getting together with a colleague for a project is very helpful.
Each programmer designs a set of classes, then you switch roles and complete the assign
ment with the other programmer's classes. Of course, no substantial changes to the
classes should be made after the switch. This will give you a feel for the difficulty of
anticipating the needs of another programmer and of working with classes that were pro
duced with less-than-perfect anticipation of these needs. In a project where group work
is not possible, you must play Dr. Jekyll and Mr. Hyde and envision both roles yourself.

In this section, we discuss several criteria used to analyze the quality of the interface of a
class.

,,.,t- Cohesion

A class is cohesive if a l l of its
methods are related to a single
abstraction.

A class is an abstraction of a single concept. All class operations must
logically fit together to support a single, coherent purpose.

Consider this mailbox class:

publ i c cl ass Mai l box
{

publ i c voi d addMessage (Message aMessage) { . . . }
publ i c Message get(u rrentMessage() { . . . }
publ i c Message remove(urrentMessage () { . . . }
publ i c voi d process(ommand (Stri ng command) { . . . }

}

The p rocess(ommand operation sticks out as being different from all other operations.
The other operations deal with a single abstraction: a mailbox that holds messages. The
process(ommand operation adds another wrinkle to it, the ability to process commands.
How? In what format? It would be better to have a different class deal with commands
and leave the mailbox to do what it does best: store messages.

3.5 Analyzing the Quality of an Interface

TIP The public interface of a class should be cohesive: The class features should be related to
a single abstraction. If a class has unrelated responsibilities, split it up into two classes.

flfl- Completeness

A class interface should be complete. It should support all operations that are a part of
the abstraction that the class represents.

Consider the Date class in the Java library. Suppose you have two Date objects and would
like to know how many milliseconds have elapsed between them.

Date start = new Date () ;
/ / Do some work
Date stop = new Date () ;
/ / How many milliseconds between start and stop?

The before and after methods indicate that start came before stop. But they won't tell
you how big the difference between them was. The designer of the Date class may argue
that this responsibility falls outside the scope of the Date class. But that is not a credible
argument. The Date class is willing to map any Date object to an absolute number of mil
liseconds. Why is measuring the distance between two points so unrelated to the mission
of the Date class, when checking their ordering is something it is willing to undertake?

Of course, this is not a fatal flaw. You can use the getTi me method and compute
l ong di fference = stop . getTi me() - start . getTi me () ;

Generally, the classes that you find in the standard library are complete enough that you
can achieve what you need to, even if it sometimes requires heroic effort. (Consider, for
example, the task of computing the number of days between two Gregori anCal endar
objects.)

But when you are working on a project in which new classes are designed, it is common
that you come across a class that is simply missing an essential method. Then you must
negotiate with the class designer to have that method added.

fl,1- Convenience

An interface may be complete in the sense that it supplies sufficient tools to achieve any
necessary task. However, programmers should not have to jump through hoops to solve
conceptually simple tasks. A good interface shouldn't merely make all tasks possible, it
should also make common tasks easy.

Consider the common task of reading input from System . i n . Unfortunately, System . i n
has no methods for reading lines of text or numbers. Before Java 5 .0, you had to wrap
System . i n into an InputSt reamReader and then into a BufferedReader, which was very
inconvenient indeed. This problem was finally fixed with the Scanner class.

Why did it take the library designers such a long time to remove the inconvenience? I
suspect they had a wrong view of their customers. The layered stream and reader classes
are very convenient for other library programmers who need to program other kinds of
streams. But nobody paid attention to the convenience of the application programmers.

CHAPTER 3 Guidelines for Class Design

When a class designer has the wrong customer in mind, the result is all too often a set of
classes that makes all tasks possible and common tasks difficult.

TIP Your interfaces should provide convenient ways to accomplish common tasks.

'Ijl- Clarity

The interface of a class should be clear to programmers, without generating confusion.
Confused programmers write buggy code.

Lack of clarity can come from unnecessarily complex call protocols. Consider list itera
tors in the standard Java library. Here we construct a linked list and add some elements.

Li nkedLi st<Stri ng> l i st = new Li nkedLi st<Stri ng> () ;
l i st . add ("A") ;
l i st . add (" B") ;
l i st . add ("C") ;

To iterate through the elements in the linked list, you use a list iterator:

Li stlterator<Stri ng> i te rato r = l i st . l i stlte rato r () ;
whi l e (i te rato r . hasNext ())

System . out . p ri ntl n (i te rator . next ()) ;

As you can see, the iterator is similar to the string tokenizer.

An iterator position indicates a position between two list elements, just like the "I -beam"
cursor in your word processor that sits between two characters. The add method of the
L i stIte rator class adds an element before the cursor, just like your word processor does.
For example, here is how to insert an element before the second element of a list:

Li stlterator<Stri ng> i te rator = l i st . l i stlte rator() ; II I ABC
i te rato r . next () ; II A I BC
i te rator . add(" X") ; II AX I BC

But the remove method is not intuitive. The word processor analogy would suggest that
remove removes the element to the left of the cursor. For example, you'd expect that two
calls to remove delete the first two elements of the list.

II This isn't how it works
i te rato r . remove () ; II A I BC
i te rato r . remove () ; II I BC

Instead, both calls are illegal. The API documentation describes the remove method this
way:

"Removes from the list the last element that was returned by next or p revi ous. This call
can only be made once per call to next or p revi ous. It can be made only if add has not
been called after the last call to next or p revi ous."

3.5 Analyzing the Quality of an Interface

In other words, to remove these two elements, you have to first jump over them and then
remove them immediately afterwards. If your word processor worked like that, you'd be
pretty unhappy.

Whenever the explanation of a method is complex, you should pause and think whether
the complexity is necessary; in this case, it plainly isn't. It would be straightforward to
implement a remove operation that removes the element to the left of the iterator (like
the BACKSPACE key) .

flit- Consistency

The operations in a class should be consistent with each other with respect to names,
parameters and return values, and behavior.

The Java library has its share of minor inconsistencies. To specify a day in the Gregori an
Ca 1 endar class, you call

new Gregori anCal endar (yea r , month - 1 , day)

because the constructor expects a month between 0 and 1 1 . But the day is between 1 and
31 . That's not consistent. (The reason is presumably compatibility with a C library that
has the same convention.)

To check if two strings are equal, you call

s . equal s (t) ;

or

s . equal sIgnoreCase (t) ;

That's simple enough, and there is a pair of methods compareTo/compareToIgno reCase
that follows the same scheme. But then there is an inconsistent pair

bool ean regionMatches (i nt toffset , Stri ng other , i nt ooffset , i nt l en)
bool ean regi onMatches (bool ean i gnoreCase , i nt toffset , St ri ng othe r ,

i nt ooffset , i nt l en)

Why not regi onMatchesIgnoreCase? Or, if it is such a good idea to have a parameter for
ignoring case, why not use that scheme for equal s and compareTo? This seems like a
minor matter, but it can be extremely irritating to class users. If nothing else, it is a sign
of shoddy craftsmanship. Your class users are like any other customers-they will enjoy
using your classes if they perceive quality and attention to detail, and they will use them
reluctantly otherwise.

TIP In this section, we recommend that you strive for cohesion, completeness, convenience,
clarity, and consistency. You will often find that these requirements conflict with each other.
As with any engineering task, you need to use your judgment to balance these conflicts.

CHAPTER 3 Guidelines for Class Design

Programming by C ontract

As you have seen, encapsulation makes it possible to produce dramatically more reliable
code than the traditional programming style in which every function was able to modify
data fields. Once we ensure that all constructors of a class create only objects with valid
state and that all mutator operations preserve the valid state, then we can never have
invalid objects. No operation should waste a lot of time checking for invalid objects. Ber
trand Meyer, the pioneering designer of the Eiffel language, uses the metaphor of a con
tract to describe these guarantees. This chapter explores the ideas surrounding the
concepts of programming by contract.

f'll- Preconditions

Consider the MessageQueue class of Chapter 2.
publ i c cl ass MessageQueue
{

publ i c voi d add (Message aMessage) { . . . }
publ i c Message remove () { }
publ i c Message peek() { . }
publ i c i nt s i zeO { . . . }

}

What should happen if a programmer using this class attempts to remove a message
from an empty queue?

There are two ways to answer this question. The designer of the queue class may declare
this behavior as an error. Users of the queue are plainly forbidden to invoke remove on an
empty queue. Or, the designer of the queue class may decide to tolerate potential abuses
and build in a robust failure mechanism, such as returning a nul l reference.

In the terminology of "Programming by Contract" that is advocated by Bertrand Meyer
and other computer scientists, methods are viewed as agents fulfilling a contract. The
remove method promises to deliver the correct result when applied to a npnempty queue.
For an empty queue, you must read the fine print. Maybe remove is free to take any
action, however disastrous, when applied to an empty queue. Maybe it promises to han
dle the error gracefully.

Consider the contract you have with your bank. When you write a check that is not cov
ered by the funds in your checking account, what happens? Your bank may, as a courtesy,
pay the check if you have been a reliable customer in the past. But if the bank refuses to
pay the check, then you have no reason to complain. Some banks offer-for an extra fee,
of course-an overdraft protection plan where they cover checks for you. Should you pay
that extra fee for an overdraft protection plan? Or would you rather save the money and
take the risk? It's a tradeoff.

The same tradeoff holds for programs. Would you rather use classes that check for all
possible abuses (even though you never intend to abuse them) if the cost is a significant
reduction in performance?

3.6 Programming by Contract

A precondition of a method is a
condition that must be fulfilled
before the method may be
called.

The important point is that the class that provides a service and its
caller should have a formal agreement on these issues. The terminol
ogy of pre- and postconditions serves to formalize the contract
between a method and its caller. A precondition is a condition that
must be true before the service provider promises to do its part of the

bargain. If the precondition is not true and the service is still requested, the provider can
choose any action that is convenient for it, no matter how disastrous the outcome may be
for the service requester. A postcondition is a condition that the service provider guaran
tees upon completion. We will discuss postconditions in Section 3 .6.4.

Thus, we can define a precondition for the remove method:

/**

*/

Remove message at head.
@return the message that has been removed from the queue
@precondi ti on si ze () > 0

publ i c Message remove ()
{

retu rn el ements . remove (O) ;
}

NOTE Here we use @precondi ti on as if it were a valid j avadoc tag. Actually, the standard
j avadoc program skips all tags that it doesn't know, so the @precondi ti on information won't
make it into the documentation. To include preconditions, run j avadoc with the option -tag
p recondi ti on : cm : " Precondi t ion : " . (The letters cm instruct j avadoc to look for this tag
only in constructors and methods.)

This remove method makes no promises to do anything sensible when you call it on an
empty queue. In fact, this particular implementation causes an IndexOutOfBounds
Excepti on in that situation that might terminate the program. However, a different
implementation is free to act differently. Consider a change in implementation.

The remove method of the MessageQueue class of Chapter 2 is quite inefficient. If you
remove a message, all other references are moved down in the array (see Figure 4).

You can avoid this problem with a "circular array" implementation of a queue. In this
implementation, we use two index variables head and tai 1 that contain the index of the

F i g u re 4

Inefficient Removal of an Element

CHAPTER 3 Guidelines for Class Design

Figure 5

Adding and Removing Queue Elements
in a Circular Array

Figure 6

A Queue Element Set That Wraps
around the End of the Array

head

tai l

tai l

head

next element to be removed and the next element to be added. Mter an element is
removed or added, the index is incremented (see Figure 5).

Mter a while, the tai 1 element will reach the top of the array. Then it "wraps around"
and starts again at o-see Figure 6 For that reason, the array is called "circular".

Here is an implementation of a q�e as a circular array. This implementation supplies a
bounded queue-it can eventually fill up. It is not difficult to enhance the implementation
to remove that limitation, by allocating a larger array when the original array fills up (see
Exercise 3 .25).

Ch3/queue/MessageQueue.java

1 /**
2 A first-in, first-out bounded collection of messages.
3
4
5
6
7
8
9

10
11
12
13
14
15

*/
publ i c cl ass MessageQueue
{ /**

Constructs an empty message queue.
@param capaci ty the maximum capacity of the queue */

publ i c MessageQueue(i nt capaci ty)
{

el ements = new Message [capaci ty] ;
count = 0 ;
head 0 ;
tai l = 0 ;

3.6 Programming by Contract

16
17
18
1 9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 }

}

/**

*/

Removes message at head.
@return the message that has been removed from the queue
@precondi ti on si ze () > 0

publ i c Message remove()
{

}

/**

Message r = el ements[head] ;
head = (head + 1) % el ements . l ength ;
count- - ;
retu rn r ;

Appends a message at tail.
@param aMessage the message to be appended

*/
publ i c voi d add (Message aMessage)
{

}

/**

*/

el ements [tai l] = aMessage ;
tai l = (tai l + 1) % el ements . l ength ;
count++ ;

Gets the total number of messages in the queue.
@retu rn the total number of messages in the queue

publ i c i nt s ize()
{

}

/**

*/

retu rn count ;

Gets message at head.
@return the message that is at the head of the queue
@p recondi ti on s ize() > 0

publ i c Message peek ()
{

retu rn el ements [head] ;
}

pri vate Message [] el ements ;
pri vate i nt head ;
pri vate i nt tai 1 ;
pri vate i nt count ;

Now, if you call remove on an empty queue, you may get some element that still happens
to be in the el ements array from a prior assignment; also, you might mess up the state of
the head index and set count to -1 . All these effects may cause strange and seemingly

CHAPTER 3 Guidelines for Class Design

random behavior during debugging. Thus, here the cost of violating the precondition is
high.

One important aspect of preconditions is that they need to be checkable by the caller.
Consider again the circular array implementation of the MessageQueue class. A precondi
tion of the add method is that the array is not full:

/**
Appends a message at the tail.
@param aMessage the message to be appended
@precondi ti on si ze () < el ements . l ength ;

*/
publ i c voi d add (Message aMessage) { . . . }

But the caller cannot check this precondition because the el ements field is private. There
is no way for the caller to find out the capacity of the queue. To remedy that situation,
add a method i s Ful l that tests whether the queue is already full. Then the precondition
can be reworded as

@precondi ti on ! i s Ful l ()

TIP The class user must be able to check the precondition of a method. Preconditions of
public methods must only involve public methods of the class.

EUI- Assertions

When you implement a method with a precondition, what action should you take if the
method is called with one of its preconditions violated? The easiest choice is to do noth
ing at all. That is certainly a permissible strategy, but it can result in difficult debugging
seSSIOns.

Alternatively, you may want to alert the user of your class whenever you detect a precon
dition violation. The Java language has a special feature for alerts of this kind: the
assertion mechanism.

The statement
asse rt condition ;

checks that the condition is true. If so, then execution simply continues. However, if the
condition fails, then an Asse rti onError is thrown. Normally, the program terminates as
a result.

There is a second form of the assert statement, in which an explanation is supplied to
the Asse rti onE r ror object:

assert condition : explanation ;

An assertion is a condition
that a programmer expects
to be true.

The explanation is usually a string. If it is an expression of another
type, it is converted to a string.

Here is a typical example of an assertion.

/

3.6 Programming by Contract

/**

*/

Removes message at head.
@return the message that has been removed from the queue
@p reconditi on si ze () > 0

publ i c Message remove ()
{

}

asse rt count > 0 : "vi ol ated precondi ti on s izeO > 0" ;
Message r = el ements [head] ;
head = (head + 1) % el ements . l ength ;
count-- ;
return r ;

If a user invokes this method on an empty queue, then the program terminates with an
assertion error. In most execution environments, an error message is displayed that con
tains the file and line number of the failed assertion statement, as well as the explanation
string.

It appears as if assertions negate an advantage of preconditions-to free the implementa
tion from the computational cost of checking for violations. However, assertions can be
turned off completely after testing is completed.

The mechanism for enabling or disabling assertions depends on your execution environ
ment. With the virtual machine launcher in the JDK, you use the -enabl easserti ons (or
-ea) switch to turn assertions on. For example:

j ava -enabl easserti ons Mai l SystemTest

By default, assertions are disabled.

Some computer scientists think that assertions shouldn't be turned off after debugging is
completed. Mter all, would you wear a life vest only while sailing close to the shore and
throw it overboard when you reach the middle of the ocean? Unfortunately, it's not that
simple. If assertion checking slows down the program too much, then you need to turn
off some or all of the checks. Assertions let you make that choice, which is better than
not having the choice at all.

Would it be "nicer" to drop preconditions and instead return "harmless" values? For
example,

/**
Removes message at head.
@return the message that has been removed from the queue

*/
publ i c Message remove ()
{

i f (count == 0) return nul l ;

}

Actually, this is not a benefit for the caller. The nul l return value may also cause prob
lems later when the cause of the error is less clear. The "tough love" approach of termi
nating the program with an assertion error makes it possible to locate the error precisely.

CHAPTER 3 Guidelines for Class Design

TIP In some programming languages (in particular C and C++), assertions are implemented
in the compiler. To activate or deactivate assertions, you need to recompile the source files that
contain the assertion statements. However, in Java, assertions are handled by the Java class
loader. When a class is loaded and assertions are disabled, the class loader simply strips out
the virtual machine instructions for assertion checking.

As a consequence, you can selectively enable and disable assertions in different classes and
packages. See http : //j ava . sun . com/j 2se/l . 4/docs/gui de/l ang/assert . html for more
information.

E'fl- Exceptions in the Contract

A common strategy for dealing with problem cases is throwing an exception. Here is an
example:

publ i c Message remove ()
{

}

i f (count <= 0)
th row new NoSuchEl ementException(

"viol ated precondi tion s i zeO > 0") ;

Unlike an assertion test, this check cannot be turned off and therefore always incurs a
small performance penalty.

That does not mean that you should stay away from exceptions. In fact, exceptions afe../
often a part of the contract. Consider this constructor.

/**

*/

Creates a new Fi 1 eReader, given the name of the file to read from.
@param fi 1 eName the name of the file to read from
@throws Fi l eNotFoundException if the named file does not exist, is
a directory rather than a regular file, or for some other reason
cannot be opened for reading

publ i c Fi l eReader (Stri ng fi l eName)

As you can see, the constructor promises to throw a Fi 1 eNotFoundExcepti on if there is
no file with the given name.

There is an important distinction between a precondition and a contractually specified
exception. This constructor has no precondition. In particular, "fi 1 eName must be the
name of a valid file" is not a precondition. Recall that a method may do anything at all if
the precondition is violated. But this particular constructor makes a very definite prom
ise, namely to throw a Fi 1 eNotFoundExcepti on, when there is no file with the given
name. Programmers calling this constructor are entitled to rely on this behavior.

You may wonder why the implementors of this constructor didn't simply set a precondi
tion. Couldn't a caller of this constructor have checked that the file exists? Not really,
because another program could have removed the file immediately after that check and
before the constructor call. Thus, existence of the file is not a verifiable precondition. In
such a situation, throwing an exception is entirely appropriate.

3.6 Programming by Contract

leI- Postconditions

A postcondition of a method is
a condition that holds after the
method has completed.

Of course, every operation promises to do "the right thing", provided
that the precondition was fulfilled when it was called. For example,
the remove operation of the MessageQueue class promises to return the
element that has been in the queue for the longest time. Such a promise

is called a postcondition.

In general, a postcondition is any condition that a method promises to fulfill after it is
called. For example, the add method of the MessageQueue class has a useful postcondition
that after adding an element, si ze 0 > o. This condition is useful because it implies the
precondition of the remove method. Mter you add an element, it is always safe to call
remove.

q . add (m) ;
/ / Postcondition of add: q . si ze 0 > 0
/ / Precondition of remove: q . s i ze 0 > 0
m = q . remove 0 ;

TIP It is useful to document postconditions that go beyond the description of the method
purpose and @return tag, such as

@postcondi ti on si ze() > 0

But don't repeat the @return comment in a @postcondi ti on comment-that adds no value.

If a postcondition is not fulfilled, you should not throw an exception. Mter all, that is a
failure in your own code. But you can use assertions to check for postconditions.

l'lt-- Class Invariants

A class invariant is a condition
that is fulfilled by all objects of
the class after the com pletion
of any constructor or method.

A class invariant is a logical condition that holds for all objects of a
class, except possibly those that are undergoing mutation. In other
words, the condition must be true before and after every method call,
but it can be temporarily violated inside a method call.

Here is a class invariant of the circular array implementation of the
MessageQueue class.

o � head and head < el ements . l ength

To prove an invariant you need to check that

1 . It is true after every constructor has completed execution.
2. It is preserved by every mutator.

That means, if it is true at the start of the mutator, then it is again true when the mutator
returns. We don't worry about accessor operations because they don't change the object
state.

The first point above guarantees that no invalid objects can be created. Thus, the first
time a mutator is applied, we know the invariant is true at the outset. The second point

CHAPTER 3 Guidelines for Class Design

guarantees that it is again true when the first mutator operation completes. By the same
logic, the second mutator operation must preserve the invariant condition, as must all
subsequent operations. As a consequence we know that the invariant must be true upon
entry and exit of all operations.

Mter the MessageQueue constructor has been executed, the invariant is true because head
has been set to zero. But wait-how do we know that el ements . 1 ength is positive? Let's
give the constructor a precondition:

/**

*/

Constructs an empty queue.
@param capaci ty the maximum size of the queue
@precondi ti on capaci ty > 0

publ i c MessageQueue (i nt capaci ty) { . . . }

Now we know that el ements . 1 ength must be positive. Therefore, the invariant is true at
the end of the constructor.

There is only one method that changes the value of head, namely remove. We need to
show that it preserves the invariant. The method carries out the assignment

headnew = (heado1d + 1) % el ements . 1 ength .

Here heado1d denotes the value of the head instance field before the method was called,
and headnew denotes the value after the method returns. Now since we assume that
heado1d fulfilled the invariant at the beginning of the method, we know that

heado1 d + 1 > o .

Hence

headnew = (heado1d + 1) % el ements . 1 ength � 0

And, by the definition of the % operator, it is less than el ements . 1 ength. That proves the
invariant. But what good is it?

We can now reason that every array access of the form el ements [head] is legal. You can
similarly prove that

o $ tai l and tai l < el ements . l ength

is an invariant. That invariant guarantees that array accesses of the form el ements [tai 1]
are always legal. In other words, we have just proven that there will never be an array
exception raised in the MessageQueue class.

NOTE The % operator computes the remainder that is left when dividing an integer by
another. For example, 17 % 5 is 2 since 17 = 5 . 3 + 2. Unfortunately, many programming
languages (including Java) have a quirk in the behavior of the % operator. Instead of comput
ing a proper remainder, which would always be 0 or a positive number, the result of% can be
negative when one or both of the arguments are negative. For example, -17 % 5 is -2 , even
though the mathematical remainder is 3 since -17 = 5 · (-4) + 3. For that reason, we had to
be careful to verify that the argument head + 1 of the % operator was not negative. In gen
eral, negative remainders are a common cause for programming errors. It is unfortunate that

3.7 Unit Testing

programming language designers ignored the experience of mathematicians who had hun
dreds of years to figure out the best definition for remainders.

Of course, the invariant that we have just proven is quite simple, but it is very typical. As
long as the instance fields of a class are private, you have complete control over all opera
tions that modifY the instance fields. You can usually guarantee that certain values are
within a legal range or that certain references are never null. Invariants are the appropri
ate tool for documenting such guarantees.

We distinguish between interface invariants and implementation invariants. Interface
invariants are conditions that involve only the public interface of a class. Implementation
invariants involve the details of a particular implementation. Interface invariants are of
interest to the class user because they give a behavior guarantee for any object of the
class. Implementation invariants can be used by the class implementor to ensure the cor
rectness of the implementation algorithms.

The invariants that we discussed in the queue examples were implementation invariants.
The values of head and el ements are meaningless for the class user.

Interface invariants must be stated in terms of the public interface of a class. For exam
ple, an interface invariant of the Day class is that

1 <= getMonth () && getMonth () <= 12

I NTERNET Invariants are useful for bringing out those properties of your classes that ensure
freedom from bad casts, null pointers, or array bounds errors. Using theorem-proving tech
nology, it is even possible to automate some of these checks. Check out Compaq Extended
Static Checker for Java (ESClJava) from http : //research . compaq . com/SRC/esc/ to see
this technology in action.

Unit Te s ting

A unit test of a class tests the
class in isolation.

In this chapter, you have seen design rules that apply to a single class.
We will conclude the chapter with a look at unit testing: testing a sin
gle class by itself, outside a complete program.

When implementing a class, it is a good idea to think about test cases that demonstrate
that the class works correctly. For example, when writing the specification of a class, or
when formulating postconditions or invariants, you can also think about test cases that
demonstrate the correct working of the class.

Having a collection of test cases is particularly valuable when changing the implementa
tion. Running the test cases again after the change gives you confidence that you have
not broken the functionality of the class.

Experience has shown that programmers are much less reluctant to improve the imple
mentation when they have a collection of test cases that they can use to validate their
changes.

CHAPTER 3 Guidelines for Class Design

o JUmt
JUnit

Test dass name:: J.;ID:::! ... ;:Tt:.;st���==����==.JlIc.:..J·1 Q �
(t3 Relold dusts ever; run

Runs: 4/4

Ruulu:

x FailurfS

x Errors: 1

Java lang AssenionError

at DayTest testAddNegattve(OayTest java.32)

x Fulures: 0

at sun. reflect.NaliveMethOd.A£cII!:ssorlmpl. lnwk.eO{Native MethOd)

at sun. renee. NcurveMethOdAccessorlmpl.lnwk.e(NativeMethodAccess

finished: 0.269 seconds

Figure 7

Unit Testing with JUnit

u

One popular tool for unit testing is]Unit.]Unit makes it very simple to collect and run
test cases. Figure 7 shows the graphical user interface of]Unit.

To test a class with]Unit, you need to design a companion class that contains the test
cases. Each test case needs to be placed in a method whose name starts with test. Follow
this template:

i mport j uni t . framework . * ;
publ i c cl ass DayTest extends TestCase
{

publ i c voi d testAdd() { . }
publ i c voi d testDaysBetween O { . . . }

}

Each test case executes some code and then checks a condition. Here is a typical test case
for testing the add Days method of the Day class:

publ i c voi d testAdd ()
{

}

Day d1 = new Day (1970 , 1 , 1) ;
i nt n = 1000 ;
Day d2 = d 1 . addDays (n) ;
assertTrue(d2 . daysFrom (d1) == n) ;

If the test fails, then the testing framework catches the assertion error and records the
failure.

When compiling the test class, you need to add the j uni t . jar file to the class path:

j avac -cl asspath . : j uni t . j ar DayTest . j ava

Exercises

To run all tests in the graphical test runner, execute

j ava -cl asspath . : j u ni t . j ar j uni t . swi ngui . TestRunner DayTest

If all tests pass, the user interface shows a green bar, and you can relax. Otherwise, there
is a red bar and a detailed set of error messages. That's great too. It is much easier for you
to fix the class in isolation than it would be to track down the error when the class is part
of a complex program.

I NTERNET You can download the]Unit tool from http : //j uni t . org. The documentation
describes a

'
number of advanced options for fine-tuning the testing process.

X E RC 1 S ES

Exercise 3.1. Find two total orderings for Stri ng objects. Find a partial ordering that is
not a total ordering.

Exercise 3.2. Find a total ordering for Rectangl e objects. Hint: Use lexicographic order
ing on (x, y, width, height).

Exercise 3.3. Search the Internet for a description of the French Revolutionary calendar.
How do you convert your birthday to that calendar?

Exercise 3.4. Implement a class FrenchRevo 1 uti onaryCa 1 endar that extends the
Cal endar class.

Exercise 3.5. Have a look at the Cal endar and Gregori anCa 1 endar classes in the standard
library. The Cal endar class is supposed to be a general class that works for arbitrary cal
endars, not just the Gregorian calendar. Why does the public interface fall short of that
ideal?

Exercise 3.6. Write a program that computes the number of days that have elapsed since
you were born. Use the Gregori anCa 1 endar class, not the Day class of this chapter.

Exercise 3.7. Write a program that computes the number of days that have elapsed since
you were born. Use the Day class of this chapter, not the Gregori anCal endar class.

Exercise 3.8. Write a program that prints the calendar of a given month. For example,

June 2006
5 M T W T F 5

1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

Use the getFi rstDayOfWeek method of the Cal endar class to find the first day of the
week-it's Monday in most of the world (so that Saturday and Sunday fall on the week's
end). The DateFormatSymbo 1 5 class yields the names of the months and the weekdays.

CHAPTER 3 Guidelines for Class Design

Exercise 3.9. Add befo re and after methods that define a total ordering on Day objects
to the first implementation of the Day class.

Exercise 3. 10. Implement a class Ti meOfDay that stores a time between 00:00:00 and
23:59:59. Supply a constructor Ti meOfDay(i nt hours , i nt mi nutes , i nt seconds) and
accessor methods to get the current hours, minutes, and seconds. Supply methods

Ti meOfDay addSeconds (i nt seconds)
i nt secondsFrom (Ti meOfDay other)

The first method returns a Ti meOfDay object that is the given number of seconds away
from the current object. The second method computes the number of seconds between
two Ti meOfDay objects. Use three integers for the hours, minutes, and seconds as the
internal representation.

Exercise 3 .11 . Reimplement the Ti meOfDay class of Exercise 3.10 by using a different
internal representation: the number of seconds since midnight.

Exercise 3 .12. Implement a class Mat ri x that represents a matrix of the form

ar-1, ,-1

Here r and c are the number of rows and columns of the matrix. Your class should sup
port the following operations:

• Constructs a matrix with a given number of rows and columns.

• Gets and sets the element at a particular row and column position.

• Adds and multiplies two compatible matrices. (You may need to look up the defi
nition for matrix addition and multiplication in a linear algebra book or on the
Web.)

As the internal representation, store the elements in a two-dimensional array

pri vate doubl e [] [] el ements ;

In the constructor, initialize the array as

el ements = new doubl e [r] [c] ;

Then you can access the element at row i and column j as el ements [i] [j] .

Exercise 3.13. In many applications, matrices are sparse. They have mostly values of zero
off the diagonal, values of one on the diagonal, and a few other values:

Exercises

Such a matrix can be stored more efficiently by simply keeping track of the special values
and their row and column positions. Reimplement the Matri x class of Exercise 3 .12
using a representation that is optimized for sparse matrices.

Exercise 3 .14. Reimplement the Mat ri x class of Exercises 3 .12 and 3.13 so that you
switch between a full and a sparse representation, depending on the number of elements
in the matrix that are not zero off the diagonal or one on the diagonal.

Exercise 3.15. List all accessors and mutators of the Date class (but skip the deprecated
methods) .

Exercise 3 .16. This chapter discusses the drawbacks of mutator methods for setting the
year, month, and date of a Day object. However, the Cal endar class of the standard library
has a set method for just that purpose. Does that method solve the issues that were
raised in our discussion?

Exercise 3.17. List three immutable classes from the standard Java library.

Exercise 3.18. The implementation of the Si mpl eDateFo rmat class in JDK 5.0 (and pos
sibly other versions of the JD K) contains a subtle flaw that makes it possible to break the
behavior of the class by applying a mutator to an object that one of the accessor methods
returns. Find the flaw. Hint: Look at the mutable instance fields.

Exercise 3 .19 . Implement a variant of the standard Stri ngTokeni zer class with two
methods

Stri ng nextToken 0 / / Gets the current token and advances to the next token
Stri ng getToken O / / Gets the current token and doesn't advance

Exercise 3 .20. Reimplement the voice mail system of Chapter 2 so that the Law of
Demeter holds. In particular, the Mai l System class should not give out Mai 1 box objects.
Instead, you need to add additional methods to the Mai l System class.

Exercise 3.21. Critique the j ava . i o . Fi 1 e class. Where is it inconsistent? Where does it
lack clarity? Where is it not cohesive?

Exercise 3.22. The job of the NumberFormat class is to format numbers so that they can
be presented to a human reader in a format such as an invoice or table. For example, to
format a floating-point value with two digits of precision and trailing zeroes, you use the
following code:

Numbe rFormat formatte r = NumberFormat . getNumbe rlnstance () ;
formatter . setMi ni mumFracti onDi gi ts (2) ;
formatter . setMaxi mumFracti onDi gi ts (2) ;
St ri ng formattedNumbe r = formatter . format (x) ;

Critique this class. Is it convenient? Is it clear? Is it complete? (Hint: How would you
format a table of values so that the columns line up?)

Exercise 3 .23. In many text-processing applications, it is useful to "peek" at the next
character in a file without actually reading it. For example, if the next character is a digit,
then one may want to call a method readNumbe r, without first consuming the initial digit.
The standard library offers a PushbackReader for this purpose. Is that class a convenient
solution to the "one character lookahead" problem?

CHAPTER 3 Guidelines for Class Design

Exercise 3.24. According to the API documentation, what are the preconditions of the
following methods?

i nt j ava . uti l . Bi tSet . nextSetBi t(i nt fromlndex)
Stri ng j ava . uti l . P roperti es . get (Stri ng key)
i nt j ava . uti l . Arrays . bi narySearch(i nt [] a, i nt key)

How accurate is the API documentation when stating the prerequisites of the methods
in this exercise? Can you find conditions under which the methods fail to work properly?
Hint: Try nul l parameters.

Exercise 3.25. Improve the circular array implementation of the bounded queue by grow
ing the el ements array when the queue is full.

Exercise 3.26. Add assertions to check all preconditions of the methods of the bounded
queue implementation.

Exercise 3.27. Show that (tai 1 - head - count) % el ements . 1 ength == 0 is an invari
ant of the bounded queue implementation.

Exercise 3.28. Design a test class to test the MessageQueue class with JUnit.

Chapter

Interlace Types
and Polymorphism

" ;'·'*" ;IIIIiI'IIi·I'I'.II'''#.�ill----------------
� The Icon Interface Type

� Polymorphism

� The Comparabl e Interface Type

� The Comparato r Interface Type

� Anonymous Classes

� Frames and User Interface Components

� User Interface Actions

� Timers

� Drawing Shapes

� Designing an Interface Type

A class defines a set of operations (the interface) and statements that

specifY how to carry out the operations and how to represent object state

(the implementation) . However, it is often useful to separate the interface

concept from that of a class. This can help in the development of reusable

code.

Multiple classes can implement the same interface type. That is, these

classes all have the methods that the interface type requires, which makes

it possible to write programs that can operate on a mixture of objects from

CHAPTER 4 Interface Types and Polymorphism

any of these classes. This behavior is called polymorphism. By focusing on
interface types first, you will study polymorphism in its purest and simplest
form. Chapter 6 will cover inheritance, which gives rise to polymorphism
in a more complex setting.

In this chapter, you will study several useful interface types in the Java
library. At the end of the chapter, you will learn how to design a new
interface type.

The Icon Interfac e Type

You can display a dialog box that contains a simple message with the following call:

JOpti on Pane . showMessageDi a l og (nul l , "Hel l 0 , Worl d ! ") ;

Figure 1 shows the result. (The first parameter of the method is the parent window of
the dialog box; a nul l parameter indicates that the dialog box should be placed at the
center of the screen.)

Note the icon at the left side of the message dialog box. You can show a different icon by
using a more complex version of the showMessageDi a l og method. In that method, you
need to supply the window title, message type, and icon, in addition to the parent and
the message. Here is an example:

JOpti onPane . showMessageDi al og (
nul l , / / parent window
"He 1 1 0 Worl d ! " , / / message
"Message" , / / window title
JOpti on Pane . INFORMATION_MESSAGE , / / message type
new ImageIcon ("gl obe . gi f")) ;

Figure 2 shows the result. Note that the image from the GIF file is displayed instead of
the standard information icon.

However, suppose you want to draw shapes without first producing an image file, such as
the outline of the planet Mars in Figure 3.

L1 Message X

Q) Hello, World!

Figure 1

Displaying a Message

4.1 The Icon Interface Type

Ll Message X

Hello, World!

Figure 2

Displaying an Image Icon

Fortunately, you can use the same showMessageDi a l og call as in the preceding example.
The showMessageDi a l og method is declared as

publ i c stati c voi d showMessageDi al og (
Component parent ,
Obj ect message ,
Stri ng ti tl e ,
i nt messageType ,
Icon anI con)

If a method has a parameter of
an interface type, then you can
supply an object of any class
that implements the interface
type.

An interface type specifies a
set of methods, but it does not
implement them.

Note that the last parameter is of type Icon. That means that you do
not have to supply an Imagelcon object. You can supply an object of
any class that implements the Icon interfoce type. The Imagelcon class
is one such class, but we can write our own classes that also imple
ment the Icon interface type.

Here is the definition of the Icon interface type:

publ i c i nte rface Icon
{

}

i nt getlconWi dth () ;
i nt getlconHei ght () ;
voi d pai ntlcon (Component c , Graph ics g , i nt x , i nt y) ;

Ll Message X • Hello, Mars!

�
Figure 3

Drawing a Shape

CHAPTER 4 Interface Types and Polymorphism

When a class implements an
interface type, it defines
implementations for the
methods that the interface
type specifies.

An interface type has no implementation. It merely specifies a set of
methods. Note that the methods in the interface type are not declared
as pub 1 i c-all methods of an interface type are automatically public.
A class implements the interface type by providing an i mpl ements
clause and supplying implementations for the methods that are
declared in the interface type.

publ i c cl ass Mylcon i mpl ements Icon

{

}

publ i c i nt getlconWi dth ()
{

implementation
}

publ i c i nt getlconHei ght ()
{

implementation
}

publ i c voi d pai ntlcon (Component c , Graph i cs g , i nt x , i nt y)
{

implementation
}

An interface type cannot specify instance variables. Instance variables are implementa
tion details that need to be supplied by implementing classes. The interface type only
specifies what needs to be done, not how to do it.

NOTE The i nte rface keyword of the Java language is used to define an interface type: a type
with a set of methods but no implementation. However, the term "interface" is often used
more loosely to describe the set of methods of a class. When reading about interfaces, you
need to infer from the context whether the term refers to a data type or a set of methods.

Any class that implements the Icon interface type has two responsibil�ties:

• Give the size of the icon.

• Paint the icon.

You may wonder why the pai ntlcon method receives a parameter of type Component.
That parameter is the user interface component containing the icon. You can query
properties of the component such as the background color or font, which allows the
painting code to produce a drawing that matches the component. The x and y parame
ters tell the location of the icon inside the component. Generally, it is safe to ignore these
parameters.

Section 4.9 discusses the Graphi cs class in detail. However, it should be clear that by
varying the painting instructions, you can paint different kinds of images. Because the
paint instructions are executed as the program runs, you have a great deal of flexibility
and can achieve effects that would not be possible by just displaying image files.

4.1 The Icon Interface Type

11!1 _.,
�a 1 __

Let's design a class Marslcon that implements the Icon interface type. The Marslcon
class must

• Declare that it implements the Icon interface type.

• Supply implementations for the methods of the Icon interface type.

Here is the complete code for the Marslcon class. Its pai ntIcon method simply draws a
red circle.

Ch4ficon2/Marslcon. java

1 i mpo rt j ava . awt . * ;
2 i mpo rt j ava . awt . geom . * ;
3 i mpo rt j avax . swi ng . * ;
4
5 /**
6 An icon that has the shape of the planet Mars.

*/ 7
8
9

publ i c cl ass Marslcon i mpl ements Icon

10
11
12
13
14
15
16

{

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 }

/**

*/

Constructs a Mars icon of a given size.
@param aSi ze the size of the icon

publ i c Marslcon (i nt aSi ze)
{

s i ze = aSi ze ;
}

publ i c i nt getlconWi dth()
{

return s i ze ;
}

publ i c i nt getlconHei ght ()
{

return si ze ;
}

publ i c voi d pai ntlcon (Component c , Graphi cs g , i nt x , i nt y)
{

}

Graphi cs2D g2 = (Graphi cs2D) g ;
El l i pse2 D . Doubl e pl anet = new El l i pse2 D . Doubl e (x , y ,

s i ze , si ze) ;
g2 . setCo lor (Col o r . RED) ;
g2 . fi l l (pl anet) ;

pri vate i nt s i ze ;

Figure 4 shows the Icon interface type and the classes that implement it.

CHAPTER 4 Interface Types and Polymorphism

JOpt ion
Pane

Figure 4

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .;:> « interface»
Icon

f
I
:

I- - - - - - - - - - - - -�--- - - - - - - - - - -
I I
: I M .. :"on I Imageloon

The Icon Interface Type and Implementing Classes

TIP When you implement a method that has been defined in an interface type, you need not
supply a j avadoc comment if the comment in the interface type is sufficient. The j avadoc
utility automatically inserts links to the documentation of the interface type. If the interface
type belongs to the standard library, you should run the j avadoc utility with the -1 i nk option
and supply a URL for the standard library documentation. For example:

j avadoc - l i nk http : //java . sun . com/j 2se/1 . 5 . 0/docs/api * . j ava

This section ends with a couple of technical remarks about interface types.

An interface type cannot specifY any implementation details. In particular, an interface
type never specifies instance variables. It is, however, legal to supply variables in an inter
face type definition. These variables are automatically declared as pub 1 i c stati c fi na 1
variables. For example, the interface type ImageObserver defines a number of constants:

publ i c i nterface ImageObserve r
{

i nt ABORT = 128 ; / / a public static final constant
}

A class can implement as many interface types as it likes. For example, the Marslcon class
can choose to implement two interface types:

publ i c cl ass Marslcon i mpl ements Icon , Shape { . . . }

Of course, then the class must supply definitions for the methods of all of its interface
types.

An interface type can extend another by adding additional requirements. For example,
you can define an interface type Moveab 1 elcon that extends the Icon interface and also
requires that the icon shape can be moved around:

publ i c i nte rface Moveabl elcon extends Icon
{

voi d transl ate (i nt x , i nt y) ;
}

4.2 Polymorphism

A class that chooses to implement this interface type must supply the t ransl ate method
and all methods of the Icon interface type.

Polymorphism

Recall that the showMessageDi a l og method is declared as

publ i c stati c voi d showMessageDi al og (. . . , Icon anlcon)

Now put yourself into the shoes of the programmer who implemented this method. That
programmer must show a dialog box that contains

• The icon

• The message

• The "0 K" button

The programmer needs to compute the size of the dialog box. The width of the dialog
box is computed by adding the icon width, the message width, and some blank space to
separate the components. How can the programmer compute the icon width? Fortu
nately, the Icon interface type provides a method for that purpose:

i nt i conWi dth = anlcon . getlconWi dth() ;

If a class implements an
interface type, its objects can
be assigned to variables of
the interface type.

Note that the implementor of the showMessageDi a l og class has no idea
what kind of icon is passed as a parameter. Maybe it is an Imagelcon.
Maybe it is a Marslcon. (Since the Marslcon was invented by the
author of this textbook, the library implementor did not even know
about this class!) Of course, it doesn't matter what object was used to

initialize the parameter variable, as long as it belongs to a class that implements the Icon
interface type.

The type of an object is never
an interface type. However, the
type of a variable can be an
interface type. Such a variable
contains a reference to an
object whose class implements
the interface type.

anlcon

Figure 5

Let's have a closer look at the anlcon parameter variable. It contains a
reference to an object. What do we know about the class of that
object? We know that the class is not Icon. The Icon type is an inter
face type, not a class type. There are no objects whose class is Icon.

In fact, we do not know the exact class, but we know one fact about it:
It must implement the Icon interface type (see Figure 5). Thus, we
are certain that the class has a ge1:IconWi dth method.

�
.. Implements Icon

interface type

A Variable of Interface Type

CHAPTER 4 Interface Types and Polymorphism

When the call anlcon . getIconW; dth () is executed, the Java interpreter first looks up the
actual type of the object, then it locates the getlconW; dth method of that type, and
finally invokes that method. For example, suppose you pass a Marslcon to the s how
MessageD; a l og method:

JOpt; onPane . showMessageD; al og (. . . , new Marslcon(50» ;

Then the getIconW; dth method of the Marslcon class is invoked. But if you supply an
Imagelcon, then the getlconW; dth method of the Imagelcon class is called. These two
methods have nothing in common beyond their name and return type. The Marslcon
version simply returns the s; ze instance field, whereas the Imagelcon v:ersion returns the
width of the bitmap image.

Polymorphism refers to the
ability to select different
methods according to the
actual type of an object.

The ability to select the appropriate method for a particular object is
called polymorphism. (The term "polymorphic" literally means "having
multiple shapes".)

An important use of polymorphism is to promote loose coupling. Have
another look at Figure 4. As you can see, the JOpt; onPane class uses the

Icon interface, but it is decoupled from the Imagelcon class. Thus, the JOpt; on Pane class
need not know anything about image processing. It is only concerned with those aspects
of images that are captured in the Icon interface type.

Another important use of polymorphism is extensibility. By using the Icon interface type,
the designers of the JOpt; onPane class don't lock you into the use of bitmap icons. You
can supply icons of your own design.

The Compa rabl e I nterfac e Type

The Co 1 1 ect; ons . s o rt
method can sort objects of any
class that implements the
Comparabl e interface type.

For another useful example of code reuse, we turn to the Co 1 1 ect; ons
class in the Java library. This class has a static sort method that can
sort an array list:

Col l ect;ons . sort(l ; st) ;

The objects in the array list can belong to any class that implements the Comparabl e
interface type. That type has a single method:

publ i c i nterface Comparabl e<T>
{

; nt compareTo(T other) ;
}

This interface is a generic type, similar to the Ar rayL ; st class. We will discuss generic
types in greater detail in Chapter 7, but you can use the Comparabl e type without know
ing how to implement generic types. Simply remember to supply a type parameter, such
as Comparabl e<Str; ng>. The type parameter specifies the parameter type of the compareTo
method. For example, the Comparabl e<Country> interface defines a compareTo(Country
other) method.

4.3 The Comparabl e Interface Type

The call

obj ectl . compareTo (object2)

is expected to return a negative number if obj ectl should come before obj ect2, zero if
the objects are equal, and a positive number otherwise.

Why does the sort method require that the objects that it sorts implement the Compara
b 1 e interface type? The reason is simple. Every sorting algorithm compares objects in
various positions in the collection and rearranges them if they are out of order. The code
for the sort method contains statements such as the following:

i f (obj ectl . compareTo(object2) > 0)
rearrange obj ectl and obj ect2 ;

For example, the Stri ng class implements the Comparab 1 e<St ri ng> interface type.
Therefore, you can use the Co 1 1 ecti ons . sort method to sort a list of strings:

ArrayLi st<Stri ng> count ri es = new Ar rayLi st<Stri ng>() ;
count ri es . add ("U ruguay") ;
count ri es . add ("Thai l and") ;
countri es . add ("Bel gi um") ;
Co 1 1 ecti ons . sort (countri es) ; / / Now the array list is sorted

If you design a class whose
objects need to be compared to
each other, your class should
implement the Comparabl e
interface type.

If you have an array list of objects of your own class, then you need to
make sure your class implements the Compa r ab 1 e interface type. Oth
erwise' the sort method will throw an exception.

For example, here is a class Country that implements the Compara
bl e<Count ry> interface type. The compareTo method compares two
countries by area. The test program demonstrates sorting by area.

1 _ _

Ch4/sortI/Country.java

1 /**
2 A country with a name and area.
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22

*/
publ i c cl ass Country i mpl ements Comparabl e<Count ry>
{

/**

*/

Constructs a country.
@param aName the name of the country
@param anA rea the area of the country

publ i c Count ry(St r i ng aName , doubl e anA rea)
{

}

/**

*/

name
area

aName ;
anArea ;

Gets the name of the country.
@return the name

publ i c St r i ng getName ()
{

CHAPTER 4 Interface Types and Polymorphism

23 retu rn name ;
24 }
25
26 /**
27 Gets the area of the country.
28 @return the area
29 */
30 publ i c doubl e getArea()
31 {
32 return area ;
33 }
34
35 /**
36 Compares two countries by area.
37 @param otherObj ect the other country
38 @return a negative number if this country has a smaller
39 area than otherCountry, 0 if the areas are the same,
40 a positive number otherwise
41 */
42 publ i c i nt compareTo (Country other)
43 {
44 i f (area < othe r . area) return -1 ;
45 i f (area > othe r . area) return 1 ;
46 return 0 ;
47 }
48
49 pri vate St ri ng name ;
50 pri vate doubl e area ;
51 }

Ch4/sortr/CountrySortTester.java

1 i mport j ava . uti l . * ;
2
3 publ i c cl ass Count rySo rtTester
4 {
5
6

publ i c stati c voi d mai n (Stri ng [] args)
{

7
8
9

10
11
12
13
14
15
16
17 }

}

ArrayLi st<Country> count ri es = new ArrayLi st<Count ry> () ;
countr ies . add (new Country("U ruguay" , 176220)) ;
countri es . add(new Country("Thai l and" , 5 14000)) ;
count ri es . add (new Country("Bel gi um" , 30510)) ;

Col l ecti ons . sort (countri es) ;
/ / Now the array list is sorted by area
for (Country c : countri es)

System . out . p ri ntl n (c . getName () + " " + c . getArea O) ;

4.4 The Comparator Interface Type

The Compa rato r I nterfac e Typ e

Now suppose you want to sort an array of countries by the country name instead of the
area. It's not practical to redefine the compareTo method every time you want to change
the sort order. Instead, there is a second sort method that is more flexible. You can use
any sort order by supplying an object that implements the Comparator interface type.
The Comparator<T> interface type requires one method

i nt compare (T fi rst , T second)

that returns a negative number, zero, or a positive number depending on whether fi rst
is less than, equal to, or greater than second in the particular sort order.

Similar to the Comparabl e interface type, the Comparator interface type is also generic.
The type parameter specifies the type of the compare method parameters. For example,
to compare Country objects, you would use an object of a class that implements the Com
parator<Country> interface type.

You can sort a collection in
any sort order by supplying
an object of a class that
implements the Comparator
interface type.

Note the method is called compare, not compareTo-it compares two
explicit parameters rather than comparing the implicit parameter to
the explicit parameter.

If comp is an object of a class that implements the Comparator inter
face type, then

Col l ecti ons . sort(l i st , comp)

sorts the objects in 1 i st according to the sort order that comp defines. Now 1 i st can con
tain any objects-they don't have to belong to classes that implement any particular inter
face type. For example, to sort the countries by name, define a class CountryComparator
ByName whose compare method compares two Country objects.

publ i c cl ass CountryComparatorByName i mpl ements Comparator<Country>
{

}

publ i c i nt compare (Country count ryl , Country country2)
{

retu rn countryl . getName () . compareTo (country2 . getName ()) ;
}

Now make an object of this class and pass it to the sort method:

Comparator<Country> comp = new Count ryComparatorByName () ;
Col l ecti ons . sort (countri es , comp) ;

An object such as comp is often called a Junction object because its sole purpose is to exe
cute the comparison function.

The Count ryComparatorByName class has no state-all objects of this class behave in exacdy
the same way. However, it is easy to see that some state might be useful. Here is a compar
ator class that can sort in either ascending or descending order.

publ i c cl ass Count ryComparato r i mpl ements Comparator<Country>
{

publ i c CountryComparator (bool ean ascendi ng)
{

CHAPTER 4 Interface Types and Polymorphism

}

i f (ascendi ng) di rection 1 ; e l se di rection - 1 ;
}

publ i c i nt compare (Country count ry1 , Country country2)
{

retu rn di rection * count ry1 . getName () . compareTo (country2 . getName ()) ;
}

pri vate i nt di rection ;

Then an object

Comparator<Country> reverseComp = new CountryComparator (fal se) ;

can be used to sort an array of Country objects from Z to A.

Anonymous C l a s s e s

Consider again the call to the s o rt method of the preceding section:

Comparator<Country> comp = new Count ryComparatorByName () ;
Col l ecti ons . sort(countri es , comp) ;

There is actually no need to explicitly name the comp object. You can pass an anonymous
object to the sort method since you only need it once.

Col l ecti ons . sort (countri e s , new CountryComparatorByName ()) ;

An anonymous object is an
object that is not stored in
a variable.

Mter the call to sort, the comparator object is no longer needed.
Thus, there is no reason to store it in the comp variable.

Is it good style to use anonymous objects? It depends. Sometimes, the
variable name gives useful information to the reader. But in our situa

tion, the variable comp did not make the code clearer. If you look at your own programs,
you will find that you often use anonymous values of type i nt or Stri ng. For example,
which of these two styles do you prefer?

countryNames . add ("Uruguay") ;

or

Stri ng countryName1 = "U ruguay" ;
countryNames . add (countryName1) ;

Most programmers prefer the shorter style, particularly if they have to type the code
themselves.

An anonymous class is a class
without a name. When defining
an anonymous class, you must
also construct an object of that
class.

An anonymous object is handy if you only need an object once. The
same situation can arise with classes. Chances are good that you only
need the CountryComparatorByName class once as well-it is a "throw
away" class that fulfills a very specialized purpose.

If you only need a class once, you can make the class anonymous by
defining it inside a method and using it to make a single object.

4.5 Anonymous Classes

Comparator<Country> comp = new
Comparator<Count ry>O / / Make object of anonymous class
{

} ;

publ i c i nt compare (Country count ryl , Country country2)
{

return countryl . getName () . compareTo (country2 . getName ()) ;
}

The new expression:

• Defines a class with no name that implements the Comparator<Country> interface
type.

• Has only one method, compare.
• Constructs one object of the class.

NOTE An anonymous class is a special case of an inner class. An inner class is a class that is
defined inside another class.

TIP Most programmers find it easier to learn about anonymous classes by rewriting the code
and explicitly introducing a class name. For example:

cl ass MyComparator i mpl ements Comparator<Country> / / Give a name to the class
{

}

publ i c i nt compare (Country count ryl , Country country2)
{

return count ryl . getName () . compareTo(country2 . getName ()) ;
}

Comparator<Country> comp = new MyComparator() ;

Mter you have gained experience with anonymous classes, they will become quite natural,
and you will find that you no longer need to rewrite the code.

Anonymous classes are very useful because they relieve you from the drudgery of having
to name and document classes that are merely of a technical nature. Unfortunately, the
syntax is rather cryptic. You have to look closely at the call new to find out that it con
structs an object of an anonymous class.

The opening brace after the constructor parameter

new Comparator<Country>() { . . . }

shows that a new class is being defined.

Of course, in this situation, you know that new Comparator<Count ry> O couldn't have
been a regular constructor call-Comparator<Country> is an interface type and you can't
construct instances of an interface type.

Note the semicolon after the closing brace of the anonymous class definition. It is part of
the statement

Comparator<Count ry> comp = an object ;

CHAPTER 4 Interface Types and Polymorphism

TIP To make anonymous classes easier to read, you should start the anonymous class defini
tion on a new line, like this:

Comparator<Country> comp = new / / Break line here
Comparator<Country> O / / Indent one tab stop
{

} ;

The line break after the new keyword tips you off that something special is going to happen.
Furthermore, the interface type name lines up nicely with the braces surrounding the defini
tions of the features of the anonymous class.

NOTE Anonymous classes look tricky when first encountered. However, they are a program
ming idiom that has become extremely popular with professional Java programmers. You will
encounter anonymous classes frequently when looking at professional Java code, and it is
important that you spend time mastering the idiom. Fortunately, with a little practice, it
quickly becomes second nature to most programmers.

In our first example, we made a single short-lived object of the anonymous class, making
it truly into a "throwaway" class. But it is easy to create multiple objects of the anonymous
class, simply by putting the construction inside a method. For example, the Country class
can have a static method that returns a comparator object that compares countries by
name:

publ i c cl ass Country
{

}

publ i c stati c Comparator<Country> comparatorByName ()
{

}

return new
Comparator<Country> 0 / / Make object of anonymous class
{

} ;

publ i c i nt compare (Country countryl , Country country2)
{

return countryl . getName () . compareTo(country2 . getName ()) ;
}

You can now sort an array list of countries like this:
Col l ecti ons . sort (countri e s , Country . comparatorByName ()) ;

Actually, for a class that doesn't have one natural ordering, this is a very nice setup, much
better than implementing the Comparabl e interface type. Rather than defining a
compareTo method that sorts rather arbitrarily by area or name, the Country class can
define two methods that return Comparator objects.

4.6 Frames and User Interface Components

comparatorByName
comparatorByArea

This design gives both comparisons equal preference. Using anonymous classes in these
methods makes it easier to define them.

Frames and U s e r Interfac e Components

We will now turn to an important example of Java interface types from the domain of
graphical user interface programming. A graphical user interface contains buttons,
menus, and other components that a user can activate. In Java, you specifY the actions
that occur upon activation by defining classes that implement the Act; onL; stene r inter
face type.

However, before we are ready to attach action listeners to buttons, we need to cover some
basic material about graphical user interfaces. In this section, you will learn how to dis
play a window and how to add user interface components to it.

A frame window is a top-level
window, usually decorated

Let's start with a very simple application that contains two buttons
and a text field (see Figure 6).

with borders and a title bar. The window containing the components is called a frame window.

A frame window is displayed as follows:

J Frame frame = new J F rame () ;
frame . packO ;
frame . setVi si bl e (t rue) ;

The pack command sets the size of the frame to the smallest size needed to display its
components. Alternatively, you can set the size of the frame to a given width and height
(in pixels):

.

frame . setSi ze(FRAME_WIDTH , FRAME_HEIGHT) ;

If you don't pack the frame or set the size, then the window is displayed at a rather use
less size of 0 by 0 pixels.

For a simple demo program, add the following line:

frame . setDefaul tCl oseOperati on(J F rame . EXIT_ON_CLOSE) ;

. Then the program exits when the user closes the frame window. If you don't include this
setting and if you don't provide for some other way of exiting the program, then the pro
gram will stay alive after the user closes the frame window.

Figure 6

A Frame with Several User Interface Components

CHAPTER 4 Interface Types and Polymorphism

Now it is time to construct the buttons.

J Button hel l oButton = new J Button (" Say Hel l o") ;
J Button goodbyeButton = new J Button ("Say Goodbye") ;

A layout manager sets the
positions and dimensions of
components. The

You must decide on a layout manager for the frame to have multiple
user interface components lined up. We will discuss layout manage
ment in Chapter 5. For now, we'll just use the Fl owLayout. This lay
out manager simply lays out the components by placing them next to
each other.

Fl owLayout lines up
components side by side.

frame . setLayout (new Fl owLayout ()) ;

Finally, you can add the components to the frame.

frame . add (he l l oButton) ;
frame . add (goodbyeButton) ;

To finish the user interface, place a text field next to the buttons. The text field is con
structed as follows:

fi nal i nt FIELD_WIDTH = 20 ;
JTextFi el d textFi el d = new JTextFi el d (FIELD_WIDTH) ;

Use the setText method to place text inside the field:

textFi el d . setText("Cl i ck a button ! ") ;

Of course, the text field must also be added to the frame. Here is the complete program.

Ch4/frame/Frame Tester.java

1
2
3
4
5
6
7

i mport j ava . awt . * ;
i mport j avax . swi ng . * ;

publ i c cl ass F rameTester
{

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

publ i c stati c voi d mai n (St ri ng [] args)
{

}

J Frame frame = new J Frame () ;

J Button hel l oButton = new J Button ("Say Hel l o") ;
J Button goodbye Button new J Button ("Say Goodbye") ;

fi nal i nt FIELD_WIDTH 20 ;
JTextFi el d textFi el d = new JTextFi el d (FIELD_WIDTH) ;
textFi el d . setText("Cl i ck a button ! ") ;

frame . setLayout (new Fl owLayout ()) ;

frame . add (hel l oButton) ;
frame . add (goodbyeButton) ;
frame . add(textFi e l d) ;

frame . setDefaul tCl oseOpe ration (J Frame . EXIT_ON_CLOSE) ;
frame . packO ;
frame . setVi si bl e (true) ;

4.7 User Interface Actions

When you run this program, you will notice that the user interface is displayed correctly.
However, clicking on the buttons has no effect. In the next section, you will learn how to
attach actions to the buttons.

NOTE If you look closely at the program that displays a frame, you may wonder why the pro
gram doesn't quit immediately after showing the frame and exiting the rnai n method. Indeed,
the main thread of the program quits, but the setVi si bl e method spawns another thread.
This thread keeps running until the user closes the frame window. You will learn more about
threads in Chapter 9 .

U s e r Interface Act ions

To define the action of a button,
add an object of a class
that implements the
Acti onL i stener interface
type. When the button is
clicked, the code of the

Now that the user interface displays correctly, it's time to specifY the
actions of the "Say Hello" and "Say Goodbye" buttons. When a user
clicks on the "Say Hello" button, you want to display the message
"Hello, World!" in the text field. And, of course, when the user clicks
the "Say Goodbye" button, you want to display "Goodbye, World!"
instead.

acti on Pe rfo rrned method
is executed. In the Java user interface toolkit, the code that executes when a but

ton is clicked is defined in a listener class. You make an object of that
listener class and attach it to the button as an action listener. A button can have any num
ber of action listener objects. When the button is clicked, each of them is notified.

Of course, just as with the sort method, there is a catch-there needs to be a standard
method call for the notification. In the case of a button, the listener objects must belong
to classes that implement the Acti onL i stener interface type.

publ i c i nte rface Acti onLi stener
{

voi d actionPerforrned CActi onEvent event) ;
}

The ActionEvent parameter contains information about the event, such as the event
source. However, we do not need that information in most listener methods.

To define the action of the hel l oButton, add an action listener and use an anonymous
class to implement the Acti onL i stener interface type.

hel l oButton . addActi onLi stener Cnew
Acti onL i stener()
{

publ i c voi d actionPerforrned CActi onEvent event)
{

}
}) ;

/ / Button action goes here
textFiel d . setText {"Hel l o , Worl d ! ") ;

CHAPTER 4 Interface Types and Polymorphism

TIP Action listeners are a bit tedious to read. The best way to deal with them is to glaze over
the routine code and focus on the code inside the acti onPerformed method, like this:

hel l oButton . addActi onLi stene r (new
Acti onL i stene r O
{

publ i c voi d acti onPe rformed (Acti onEvent event)
{

textFi el d . setText ("Hel l o , Worl d ! ") ;
}

}) ;

This looks pretty intuitive: When the button is clicked, set the text field to a new greeting.

Let's review how buttons do their jobs.

1. When setting up the user interface, you construct a listener object and add it to
the button.

hel l oButton . addActi onLi stene r (new Acti onLi stener() { . . . }) ;

The button simply stores the listener object. Note that the acti onPe rformed
method is not yet called.

2. Whenever the button detects that it has been clicked, it calls the acti onPe rformed
method of its listeners:

Acti onEvent event = . . . ;
for (l i stene r : l i steners)

l i stene r . acti onPe rformed (event) ;

In our example, each button has only one listener.

3. The acti onPerformed methods execute.

Methods of inner classes can
access variables that are visi
ble in the enclosing scope.

If you look closely at the statement inside the acti onPe rfo rmed
method of our example, you will notice something very remarkable:
The methods of an inner class can access variables from the enclosing
scope. In our example, the acti onPe rformed method ·of the anonymous

listener class accesses the textFi e 1 d variable of the enclosing mai n method. This is
clearly a very useful feature.

If you access a local variable
from an inner class, you must
declare it as fi na 1 .

There is just one technicality that you need to keep in mind. If an
inner class accesses a local variable from an enclosing scope, that vari
able must be declared as fi na 1 . If you look at the complete source
code for the example at the end of this section, you will note that the

text field is declared as

fi nal JTextFi e l d textFi el d = new TextFi el d (FIELD_WIDTH) ;

The keyword fi na 1 denotes the fact that the textFi e 1 d variable refers to the same object
during its lifetime.

Here is the complete program:

4.7 User Interface Actions

Ch4/actionr/ Action Tester.java

1
2
3
4
5
6
7
8

i mport j ava . awt . * ;
i mport j ava . awt . event . * ;
i mport j avax . swi ng . * ;

publ i c cl ass Acti onTester

9
10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
41

{

42
43
44
45
46
47 }

publ i c stati c voi d mai n (Stri ng [] args)
{

}

J Frame frame = new J Frame () ;

fi nal i nt FIELD_WIDTH = 2 0 ;
fi nal JTextFi e l d textFi el d new JTextFi el d (FIELD_WIDTH) ;
textFi el d . setText ("Cl i ck a button ! ") ;

J Button hel l oButton = new J Button (" Say Hel l o") ;

hel l oButton . addActi onLi stener (new
Acti onL i stener 0
{

publ i c voi d acti onPe rformed (Acti onEvent event)
{

}
}) ;

textFi e 1 d . setText ("Hel l 0 , Worl d ! ") ;

J Button goodbyeButton = new JButton (" Say Goodbye") ;

goodbyeButton . addActi onLi stener (new
Acti onLi stenerO
{

publ i c voi d acti onPerformed (Acti onEvent event)
{

}
}) ;

textFi el d . setText ("Goodbye , Worl d ! ") ;

frame . setLayout(new Fl owLayout ()) ;

frame . add (hel l oButton) ;
frame . add (goodbyeButton) ;
frame . add (textFi el d) ;

frame . setDefaul tCl oseOperati on(J Frame . EXIT_ON_CLOSE) ;
frame . packO ;
frame . setVi s i bl e(t rue) ;

NOTE It is very convenient that an inner class method can access variables that are visible in
the scope of the class definition. If you think about it, it is actually quite remarkable that an
inner class can have this capability. Mter all, the mai n method has exited by the time the

CHAPTER 4 Interface Types and Polymorphism

acti onPerformed method is called, and its local variables no longer exist. In order to over
come this problem, the inner class actually makes a copy of all variables that its methods use.
Thus, the action listener object has its own textFi e 1 d reference that is initialized with the
value from the textFi e 1 d in the mai n method. You don't really have to worry about this-it is
all automatic. However, this mechanism explains why you can only refer to fi nal local vari
ables of the enclosing scope. That way, the meaning of textFi e 1 d cannot change during the
execution of mai n, and there is no ambiguity about the object reference that the inner class
should copy.

You should know about a very useful trick that comes in handy when you have several
action listeners with similar actions. Consider the two button actions in our example.
They only differ in the message string. It is very appropriate in this case to construct two
objects of the same listener class with an instance field that stores the message text.

However, anonymous classes don't have constructors. To construct multiple objects of
the same anonymous class, you must instantiate the anonymous class in a helper method,
and then call that method twice. In the following code example, the createGreeti ng
ButtonL i stener helper method is called twice to construct two instances of the same lis
tener class. The helper method is stati c because it is called from the stati c mai n
method.

publ i c c l ass Acti onTester
{

}

publ i c stati c voi d mai n (Stri ng [] args)
{

}

textFi e l d = new JTextFi el d (FIELD_WIDTH) ;
hel l oButton . addActi onLi stene r(

createGreeti ngButtonLi stener ("Hel l o , Worl d ! ")) ;
goodbyeButton . addActi onLi stener(

createGreeti ngButtonLi stener ("Goodbye , Worl d ! "» ;

publ i c stati c Acti onLi stener c reateGreeti ngButtonLi stener (
fi nal Stri ng message)

{

}

retu rn new
Acti onLi stene r()
{

} ;

publ i c voi d acti onPerformed (Acti onEvent event)
{

textFi el d . setText (message) ;
}

p ri vate stati c JTextFi e l d textFi el d ;

Note that message is a parameter variable of the c reateGreeti ngButtonL i stener
method. It too needs to be tagged as fi na 1 so that you can reference it in the method of
an anonymous class. However, the textfi e 1 d variable need not be declared as fi na 1

4.8 Timers

because inner class methods always have access to fields of enclosing classes. The field is
stati c because the inner class is defined inside a stati c method.

This program constructs two objects of the same anonymous class. Each object stores the
message value that was supplied when the c reateGreeti ngButtonL i stener method was
called.

Timers

The Ti me r class in the j avax . swi n g package generates a sequence of action events,
spaced apart at equal time intervals, and notifies a designated action listener. To set up
the timer, you supply the delay between the events (in milliseconds) and a listener:

Acti onL i stener 1 i stener = . . . ;
fi nal i nt DELAY = 1000 ; / / 1000 milliseconds delay between action events
Ti mer t = new Ti mer (DELAY , l i stener) ;

Then start the timer.

t . startO ;

The start method returns immediately. A new thread of execution is started that issues
action events in the specified frequency.

Timers are useful for animation. In the next section, you will see how to use a timer to
move a car across a window.

The program at the end of this section displays a simple digital clock (see Figure 7).

The program displays a text field inside a frame. A timer is set up to notifY a listener once
per second:

Acti onLi stener l i stene r = new
Acti onLi stenerO
{

} ;

publ i c voi d acti onPerformed (Acti onEvent event)
{

}

Date now = new Date () ;
textFi el d . setText (now . toStri ng()) ;

Ti mer t = new Ti me r (DELAY , l i stener) ;

Every second, the acti onPerformed method of the listener class will be called. The text
field is then updated to the current time.

Fig ure 7

The limerTester Program

CHAPTER 4 Interface Types and Polymorphism

NOTE There are two classes named Ti me r in the Java library: one in the j avax . swi ng pack
age, and another one in the java . uti 1 package. If you write a program that imports all
classes from both packages, and then refer to Ti me r, the compiler reports an ambiguity. To
resolve that ambiguity, you can use the fully qualified name:

j avax . swi ng . Ti me r t = new javax . swi ng . Ti me r (DELAY , l i stener) ;

Alternatively, you can add a directive to import a single class:

i mport j avax . swi ng . Ti me r ;

Ch4/timer{IimerTester.java

1 i mport java . awt . * ;
2 i mpo rt j ava . awt . event . " ;
3 i mport j ava . uti l . * ;
4 i mport j avax . swi ng . * ;
5 i mport j avax . swi ng . Ti me r ;
6
7 /**
8 This program shows a clock that is updated once per second.
9 "�I

10
11 publ i c cl ass Ti me rTester
12 {
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 }

publ i c stati c voi d mai n (Stri ng [] args)
{

}

J F rame frame = new J F rame () ;

fi nal i nt FIELD_WIDTH = 20 ;
fi nal JTextFi el d textFi el d = new JTextFi el d (FIELD_WIDTH) ;

frame . setLayout (new Fl owLayout()) ;
frame . add (textFi el d) ;

Acti onLi stene r l i stene r new
Acti onL i stene rO
{

} ;

publ i c voi d acti onPe rformed (Acti onEvent event)
{

}

Date now = new Date() ;
textFi el d . setText(now . toSt ri ng ()) ;

fi nal i nt DELAY = 1000 ;
/ / Milliseconds between timer ticks

Ti mer t = new Ti mer (DELAY , l i stener) ;
t . startO ;

frame . setDefaul tCl oseOpe rati on(J F rame . EXIT_ON_CLOSE) ;
frame . packO ;
frame . setVi si bl e (t rue) ;

4.9 Drawing Shapes

D rawing Shapes

The Graphi c s parameter of a
pai nt method carries out
drawing operations. To use the
powerful 20 drawing opera
tions, you need to cast it to the
Graphi cs2D type.

In Section 4.1, you saw how an icon can paint a circle. This section
gives a brief overview of the classes that the Java library provides for
drawing geometric shapes. Let's have a closer look at the pai ntIcon
method of the Icon interface type. That method has the signature

publ i c voi d pai ntlcon(
Component c , Graph i c s g , i nt x , i nt y)

The Graphi cs object i s a graphics context. You invoke methods on that object whenever
you want to draw a shape or change the current color or font. In general, a "context"
object is usually an object that has some specialized knowledge of how to carry out com
plex tasks. You don't have to worry how the context object works; you just create it and
pass it along as required.

Recent versions of Java have been enhanced to use a more powerful Graphi cs2D class.
However, for historical reasons, most methods still use the older Graphi cs parameter
type, even though a Graphi cs2D object is always passed into the methods. To take advan
tage of the more powerful type, you need to apply a cast:

publ i c voi d pai ntlcon (Component c , Graph i c s g , i nt x , i nt y)
{

Graphi cs2D g2 = (Graphi cs2D) g ;

}

Then you are ready to draw an object of any class that implements the
Shape interface type.

Shape s = • • • ;
g2 . d raw(s) ;

You can draw objects of any
class that implements the
Shape interface type, such as
rectangles, ell ipses, and line
segments.

The Java library supplies a number of classes that implement the Shape
interface type. In this book, we will only draw shapes that are composed of line seg
ments, rectangles, and ellipses. More complex shapes can be drawn by using arbitrary
quadratic and cubic curve segments; those shape classes will not be covered here.

To draw a rectangle, construct and draw a Rectangl e2D . Doubl e object:

Shape rectangl e = new Rectangl e2D . Doubl e (x , y , width , hei ght) ;
g2 . d raw(rectangl e) ;

You need to specifY the top left corner, the width, and the height of the rectangle. (The
strange class name Rectangl e2D . Doubl e is explained in Chapter 6.)

Constructing an ellipse is very similar. You must supply the bounding rectangle of the
ellipse (see Figure 8). In particular, note that x and y do not form the center of the
ellipse-in fact, they don't even lie on the ellipse.

Shape el l i pse = new El l i pse2D . Doubl e (x , y , wi dth , hei ght) ;
g2 . d raw(el l i pse) ;

CHAPTER 4

Figure 8

Interface Types and Polymorphism

(x,y) Width
An Ellipse and Its
Bounding Rectangle \, � - - - - - - - - - - - - - - - - - -::.;-=---- - - --=-=-=-- -

Figure 9

_ o-:_� ____ �_=-:: _ _

To draw a line segment, construct an object of type L i ne2 D . Doub 1 e as follows:

Poi nt2D . Doubl e start = new Poi nt2D . Doubl e (xl , yl) ;
Poi nt2D . Doubl e end = new Poi nt2D . Doubl e (x2 , y2) ;
Shape segment = new Li ne2 D . Doubl e (start , end) ;
g2 . d raw(segment) ;

Figure 9 shows the relationships among these classes.

Graphics

Graphics2D - - - - - - - - - - - - - - - - - « interface»
Shape

if ,
:
: , , - - - - - - - - - - - - - - - -- - - - - - - � - .

I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

I

Commonly Used
Rectangle2D

.Double
Ei l ipse2D
.Double

Line2D
.Double

Classes for Drawing Shapes

4.9 Drawing Shapes

1 ._

r:l Message X

G? Hello, Car!

• •

Figure 1 0

A Car Icon

You can also jill a shape instead of drawing the outline. For example, the call

g2 . fi l l (el l i pse) ;

fills the inside of the ellipse with the current color. To change the color, make a call such as

g2 . setCol or (Col or . RED) ;

To draw text, call the drawStri ng method:

g2 . d rawStri ng (text , x , y) ;

This call draws the given text so that its basepoint falls on the given coordinates (see
Figure 11 and the Special Topic note at the end of this section for more information on
text placement) .

The following program puts these shapes to work to draw a sketch of a car (see
Figure 10).

Ch4/icon 3/Car Icon.java

1 i mport j ava . awt . * ;
2 i mport j ava . awt . geom . * ;
3 i mport j avax . swi ng . * ;
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

/**
An icon that has the shape of a car.

*/
publ i c cl ass Carlcon i mpl ements Icon
{

/**

*/

Constructs a car of a given width.
@param wi dth the width of the car

publ i c Carlcon(i nt aWi dth)
{

wi dth = aWi dth ;
}

publ i c i nt getlconWi dth()
{

CHAPTER 4 Interface Types and Polymorphism

21 return wi dth ;
22 }
23
24 publ i c i nt getlconHei ght ()
25 {
26 retu rn wi dth / 2 ;
27 }
28
29 publ i c voi d pai ntlcon (Component c , Graphi cs g , i nt x , i nt y)
30 {
31 Graphi cs2D g2 = (Graphi cs2D) g ;
32 Rectangl e2D . Doubl e body
33 = new Rectangl e2D . Doubl e(x , y + wi dth / 6 ,
34 wi dth - 1 , wi dth / 6) ;
35 El l i pse2D . Doubl e frontTi re
36 = new El l i pse2D . Doubl e(x + wi dth / 6 , y + wi dth / 3 ,
37 wi dth / 6 , wi dth / 6) ;
38 El l i pse2D . Doubl e rearTi re
39 = new El l i pse2 D . Doubl e(x + wi dth * 2 / 3 , y + wi dth / 3 ,
40 wi dth / 6 , wi dth / 6) ;
41
42 / / The bottom of the front windshield
43 Poi nt2D . Doubl e r1
44 = new Poi nt2D . Doubl e(x + wi dth / 6 , y + wi dth / 6) ;
45 / / The front of the roof
46 Poi nt2D . Doubl e r2
47 = new Poi nt2D . Doubl e (x + wi dth / 3 , y) ;
48 / / The rear of the roof
49 Poi nt2D . Doubl e r3
50 = new Poi nt2D . Doubl e (x + wi dth * 2 / 3 , y) ;
51 / / The bottom of the rear windshield
52 Poi nt2D . Doubl e r4
53 = new Poi nt2D . Doubl e(x + wi dth * 5 / 6 , y + wi dth / 6) ;
54
55 Li ne2D . Doubl e frontWi ndshi el d
56 = new Li ne2D . Doubl e (r1 , r2) ;
57 Li ne2D . Doubl e roofTop
58 = new Li ne2D . Doubl e (r2 , r3) ;
59 Li ne2D . Doubl e rearWi ndshi el d
60 = new Li ne2D . Doubl e (r3 , r4) ;
61
62 g2 . fi l l (frontTi re) ;
63 g2 . fi l l (rearTi re) ;
64 g2 . setCol or (Col o r . RED) ;
65 g2 . fi l l (body) ;
66 g2 . d raw(frontWi ndshi el d) ;
67 g2 . draw(roofTop) ;
68 g2 . d raw(rearWi ndshi el d) ;
69 }
70
71 pri vate i nt wi dth ;
72 }

4.9 Drawing Shapes

T =- Spec ia l Top ic
Accurate Positioning of Text

When drawing text on the screen, you usually need to position it accurately. For example, if
you want to draw two lines of text, one below the other, then you need to know the distance
between the two basepoints. Of course, the size of a string depends on the shapes of the
letters, which in turn depends on the font face and point size. You will need to know a few
typographical measurements (see Figure 11) :

• The ascent of a font is the height of the largest letter above the baseline.
• The descent of a font is the depth below the baseline of the letter with the lowest

descender.
These values describe the vertical extent of strings. The horizontal extent depends on the indi
vidual letters in a string. In a monos paced font, all letters have the same width. Monospaced
fonts are still used for computer programs, but for plain text they are as outdated as the type
writer. In a proportionally spaced font, different letters have different widths. For example, the
letter I is much narrower than the letter m.

To measure the size of a string, you need to construct a FontRende rContext object, which
you obtain from the Graphi cs2D object by calling getFontRende rContext. A font render
context is an object that knows how to transform letter shapes (which are described as curves)
into pixels. The Graphi cs2D object is another example of a context object-many people call
it a "graphics context".
To get the size of a string, you call the getSt ri ngBounds method of the Font class. For example,

Stri ng text = "Message" ;
Font font = g2 . getFont () ;
FontRende rContext context = g2 . getFontRende rContext () ;
Rectangl e2D bounds = font . getSt ri ngBounds (text , context) ;

The returned rectangle is positioned so that the origin (0, 0) falls on the basepoint (see
Figure 1 1) . Therefore, you can get the ascent, descent, and extent as

doubl e ascent = -bounds . getY() ;
doubl e descent = bounds . getHei ght () - ascent ;
doubl e extent = bounds . getWi dth () ;

Base point - 1----"-�----""-'-----...-.--"-"'---� ... �-I1111110---'-�

Extent

Figure 1 1

Drawing Text

t Descent

CHAPTER 4 Interface Types and Polymorphism

D e s igning an Interface Typ e

In this section, we will put a timer to work in an animation program (see Figure 12).

Ten times per second, the car shape will move and the window will be repainted so that
the new position is displayed.

In order to paint the car shape, define a class that implements the Icon interface type:

publ i c cl ass Shapelcon i mpl ements Icon
{

}

publ i c voi d pai ntlcon ((omponent c , Graph i cs g , i nt x , i nt �)
{

paint the shape
}

Exercise 4.20 asks you to enhance this class to paint multiple shapes.

We place the icon inside a] Labe 1 :

Shapelcon i con = new Shapelcon (. . .) ;
J Label l abel = new J Label (i con) ;

Then we place the label inside a frame in the usual way.

The timer action moves the shape and repaints the label.

Acti onLi stener l i stener = new
Acti onLi stenerO
{

} ;

publ i c voi d acti onPerformed (ActionEvent event)
{

move the shape
1 abe 1 . repai nt 0 ;

}

The repai nt method causes the label to be repainted as soon as possible. When the label
paints itself, it erases its contents and paints its icon. The pai ntlcon method then
redraws the shape in the new position.

Figure 1 2

An Animated Car

4.10 Designing an Interface Type

paint the shape
move the shape

Figure 1 3

Moveabl eShape

CRC Card for the Moveab 1 eShape I nterface Type

If you review this plan, you will note that it doesn't matter what the shape looks like, as
long as it can be painted and moved. The same plan will work for animating any shape.

Therefore, it is a good idea to design a new interface type that recognizes the basic shape
operations (see Figure 13).

The interface has two methods, to paint the shape and move it by a given amount. In
order to be consistent with the method names of the Java library, we call these methods
d raw and transl ate.

publ i c i nterface Moveabl eShape
{

voi d d raw(Graphi cs2D 92) ;
voi d transl ate (i nt dx , i nt dy) ;

}

We then supply a CarShape class that implements the Moveab 1 eShape interface type. You
will find the code at the end of this section. The implementation is straightforward. The
d raw method draws the geometric shapes that make up the car. The transl ate method
moves the top left corner position:

publ i c voi d transl ate Ci nt dx , i nt dy)
{

}

x += dx ;
y += dy ;

Design your own interface
types to decouple general
mechanisms from specific
implementation details.

By introducing the Moveab 1 eShape interface type, we have decoupled
the animation from the specifics of the car shape. As you can see in
Figure 14, the animation only depends on the Moveab 1 eShape inter
face type. It is an easy matter to change the program so that it ani
mates another shape. Designing your programs so that they can be

easily extended and modified is an important part of object-oriented design. In this
example, we achieved this flexibility by defining a custom interface type.

CHAPTER 4 Interface Types and Polymorphism

«interface»
JLabel «interface» Timer Action

Icon

r i
Shapelcon

Figure 1 4

Classes in the Animation Program

«interface»
Moveable -

Shape
t;.

, ,
, ,
,
,
,
, , Ic",s�apel

Listener
t;.

anonymous ------------------ timer listener

TIP Whenever you design a mechanism that asks someone else to supply an object of a class,
you should consider whether it would be more appropriate to specify an interface type
instead. By using interface types, you give added flexibility to the programmers that use' the
services that you provide.

Ch4/animation/MoveableShape.java

1
2
3
4
5
6
7
8
9

i mport j ava . awt . * ;

/**
A shape that can be moved around.

*/
publ i c i nterface Moveabl eShape
{

10
1 1
12
13
14
15
16
17
18
19
20 }

/**
Draws the shape.
@param 92 the graphics context

*/
voi d d raw(Graphi cs2D 92) ;

/**

*/

Moves the shape by a given amount.
@param dx the amount to translate in x-direction
@param dy the amount to translate in y-direction

voi d transl ate Ci nt dx , i nt dy) ;

4.10 Designing an Interface Type

11 Ch4/animation/Shapelcon.java Ih _..,

1 i mport j ava . awt . * ;
i __ 2 i mport j ava . uti l . * ;

3 i mport j avax . swi ng . * ;
4
5 /**
6 An icon that contains a moveable shape.
7 */
8 publ i c cl ass Shapelcon i mpl ements Icon
9 {

10 publ i c Shapelcon (Moveabl eShape shape ,
1 1 i n t w i dth , i n t h e i ght)
12 {
13 thi s . shape = shape ;
14 thi s . wi dth = wi dth ;
15 thi s . height = hei ght ;
16 }
1 7
1 8 publ i c i nt getlconWi dth ()
19 {
20 retu rn wi dth ;
21 }
22
23 publ i c i nt getlconHei ght ()
24 {
25 retu rn hei ght ;
26 }
27
28 publ i c voi d pai ntlcon (Component c , Graphi cs g , i nt x , i nt y)
29 {
30 Graphi cs2D g2 = (Graphi cs2D) g ;
31 shape . d raw(g2) ;
32 }
33
34 pri vate i nt wi dth ;
35 pri vate i nt hei ght ;
36 pri vate Moveabl eShape shape ;
37 }

Ch4/animation/ Animation Tester.java

1 i mport j ava . awt . * ;
2 i mport j ava . awt . event . * ;
3 i mport j avax . swi ng . * ;
4
5
6
7
8
9

10
11
12
13
14

/**

*/

This program implements an animation that moves
a car shape.

publ i c cl ass Ani mati onTester
{

publ i c stati c voi d mai n (St ri ng [] args)
{

J Frame frame = new J F rame() ;

CHAPTER 4 Interface Types and Polymorphism

15 fi nal Moveabl eShape shape
16 = new CarShape (O , 0 , CAR_WIDTH) ;
17
18 Shapelcon i con = new Shapelcon (shape ,
19 ICON_WIDTH , ICON_HEIGHT) ;
20
21 fi nal J Label l abel = new J Label (i con) ;
22 frame . setLayout (new Fl owLayout ()) ;
23 frame . add(l abel) ;
24
25 frame . setDefaul tCl oseOperati on (J F rame . EXIT_ON_CLOSE) ;
26 frame . pack() ;
27 frame . setVi si bl e(true) ;
28
29 fi nal i nt DELAY = 100 ;
30 / / milliseconds between timer ticks
31 Ti mer t = new Ti mer (DELAY , new
32 Acti onLi stene r()
33 {
34 publ i c voi d acti onPerformed (Acti onEvent event)
35 {
36 shape . transl ate (1 , 0) ;
37 l abel . repai nt O ;
38 }
39 }) ;
40 t . start () ;
41
42
43
44
45
46 }

}
pri vate stati c
pri vate stati c
pri vate stati c

fi nal i nt
fi nal i nt
fi nal i nt

Ch4/animation/CarShape.java

1 i mpo rt j ava . awt . * ;
2 i mpo rt j ava . awt . geom . * ;
3 i mport j ava . uti l . * ;
4

/**

ICON_WIDTH = 400 ;
ICON_HEIGHT = 100 ;
CAR_WIDTH = 100 ;

5
6
7
8
9

A car that can be moved around.

10
11
12
13
14
15
16
17

*/
publ i c cl ass CarShape i mpl ements Moveabl eShape
{

/**

*/

Constructs a car item.
@param x the left of the bounding rectangle
@param y the top of the bounding rectangle
@param wi dth the width of the bounding rectangle

publ i c CarShape (i nt x , i nt y , i nt wi dth)
{

4.10 Designing an Interface Type

18 thi s . x = x ;
19 thi s . y = y ;
20 thi s . wi dth = wi dth ;
21 }
22
23 publ i c voi d transl ate(i nt dx , i nt dy)
24 {
25 x += dx ;
26 y += dy ;
27 }
28
29 publ i c voi d d raw(Graphi cs2D g2)
30 {
31 Rectangl e2D . Doubl e body
32 = new Rectangl e2D . Doubl e (x , y + wi dth / 6 ,
33 wi dth - 1 , wi dth / 6) ;
34 El l i pse2D . Doubl e frontTi re
35 = new El l i pse2D . Doubl e (x + wi dth / 6 , y + width / 3 ,
36 wi dth / 6 , wi dth / 6) ;
37 El l i pse2D . Doubl e rearTi re
38 = new El l i pse2D . Doubl e (x + wi dth * 2 / 3 , y + wi dth / 3 ,
39 wi dth / 6 , wi dth / 6) ;
40
41 / / The bottom of the front windshield
42 Poi nt2D . Doubl e r1
43 = new Poi nt2D . Doubl e (x + wi dth / 6 , y + wi dth / 6) ;
44 / / The front of the roof
45 Poi nt2D . Doubl e r2
46 = new Poi nt2D . Doubl e (x + wi dth / 3 , y) ;
47 / / The rear of the roof
48 Poi nt2D . Doubl e r3
49 = new Poi nt2D . Doubl e (x + wi dth * 2 / 3 , y) ;
50 / / The bottom of the rear windshield
51 Poi nt2D . Doubl e r4
52 = new Poi nt2D . Doubl e(x + wi dth * 5 / 6 , y + wi dth / 6) ;
53 Li ne2D . Doubl e frontWi ndshi e l d
54 = new Li ne2D . Doubl e (r1 , r2) ;
55 Li ne2D . Doubl e roofTop
56 = new Li ne2D . Doubl e (r2 , r3) ;
57 Li ne2D . Doubl e rearWi ndshi el d
58 = new Li ne2D . Doubl e (r 3 , r4) ;
59
60 g2 . d raw(body) ;
61 g2 . d raw(frontTi re) ;
62 g2 . d raw(rearTi re) ;
63 g2 . d raw(frontWi ndshi el d) ;
64 g2 . d raw(roofTop) ;
65 g2 . d raw(rearWi ndshi el d) ;
66 }
67
68 pri vate i nt x ;
69 p ri vate i nt y ;
70 pri vate i nt wi dth ;
71 }

CHAPTER 4 Interface Types and Polymorphism

EXERCtSES
Exercise 4.1 . When sorting a collection of objects that implements the Comparabl e type,
the sorting method compares and rearranges the objects. Explain the role of polymor
phism in this situation.

Exercise 4.2. In J ava, a method call on an object such as x . f 0 is resolved when the pro
gram executes, not when it is compiled, in order to support polymorphism. Name two
situations where the Java compiler can determine the exact method to be called before
the program executes.

Exercise 4.3. Write a class that implements the Icon interface type and draws an image
of a coffee mug by drawing and filling shapes.

Exercise 4.4. Write a class BankAccount that implements the Comparabl e interface type.
Order bank accounts by increasing balance. Supply a test program that sorts an array list
of bank accounts.

Exercise 4.5. Write a method

publ i c stati c Object mi ni mum (Ar rayLi st a)

that computes the smallest element in the array list. Assume that the elements of the
array list implement the Comparabl e interface type, and that the array is not empty. Doc
ument these preconditions. (Here, we use the "raw" ArrayL i st and Comparabl e types
without type parameters. As a result, the compiler will issue warnings that you may
ignore. You will see in Chapter 7 how to properly deal with generic type parameters:)

Exercise 4.6. Write a method

publ i c stati c St ri ng maxi mum (Ar rayLi st<Stri ng> a , Comparator<Stri ng> c)

that computes the largest string in the array list, using the ordering relationship that is
defined by the given comparator. Supply a test program that uses this method to find the
longest string in the list.

Exercise 4.7. Define an interface type Measurer as follows:

publ i c i nterface Measurer
{

doubl e measure (Obj ect x) ;
}

Then supply a method

publ i c stati c Obj ect maxi mum (Object [] a , Measu re r m)

that computes the object in the array with the largest measure. Test your method by
populating an array list with rectangles and finding the one with the largest area.

Exercise 4.8. Define an interface type Fi 1 ter as follows:

publ i c i nte rface Fi l te r
{

bool ean accept (St ri ng x) ;
}

Exercises

Then supply a method

publ i c stati c Stri ng [] fi l ter (St ri ng [] a , Fi l te r f)

that returns an array containing all elements of a that are accepted by the filter. Test your
method by filtering an array of strings and accepting all strings that contain at most three
characters.

Exercise 4.9. Define an interface type Drawabl e as follows:

publ i c i nterface Drawabl e
{

voi d d raw(Graphi cs2D g2) ;
}

Then provide a class Car that implements the Drawabl e interface type and a class Draw
ab 1 elcon that can paint any drawable shape. Reimplement the program in Section 4.9
that shows the car icon in an option pane. What is the benefit of this redesign?

Exercise 4.10. Write a class Rectangl eComparator that defines a total ordering on objects
of type Rectangl e2D . Doubl e. Then write a test program that sorts an array of rectangles.
The challenge is to define a total ordering. Hint: Use lexicographic ordering on (x, y,
width, height) . First compare the x-values. If they are the same, then compare the y-val
ues. If they are also the same, compare the widths and finally, if necessary, the heights.

Exercise 4. 1 1 . Rewrite the program that displays the Mars icon by creating an anony
mous class that implements the Icon interface type.

Exercise 4.12. Add two methods

publ i c stati c Comparator<Country> c reateComparatorByName (
fi nal bool ean i ncreasi ng)

publ i c stati c Comparator<Country> c reateComparatorByArea(
fi nal bool ean i ncreasi ng)

to the Country class. The methods should return instances of anonymous classes that
implement the Comparator interface type. The bool ean parameters indicate whether the
comparison should be in increasing or decreasing order. The parameters are declared
fi na 1 so that you can access them in your compare methods.

Exercise 4.13. Write a program that shows a frame with a button labeled "Date" and a
text field. Whenever the user clicks the button, the current date and time should be dis
played in the text field. You can obtain the current date and time as follows:

Stri ng dateAndTi me = new Date () . toStri ng () ;

Exercise 4.14. Write a program that shows a frame with three buttons labeled "Red",
"Green", and "Blue", and a label containing an icon showing a circle that is initially red.
As the user clicks the buttons, the fill color of the circle should change. When you
change the color, you need to invoke the repai nt method on the label. The call to
repai nt ensures that the pai ntIcon method is called so that the icon can be repainted
with the new color.

Exercise 4.15. Write a program that shows a frame with two buttons labeled "Zoom in" ,
and "Zoom out", and a label containing a car icon. As the user clicks the buttons, the car

CHAPTER 4 Interface Types and Polymorphism

should get larger or smaller. As in Exercise 4. 14, you need to invoke the repai nt method
on the label to trigger a redisplay of the image.

Exercise 4.16. You have seen how you can define action listeners with similar behavior by
using a helper method. In this exercise, you will explore another way to achieve the same
effect. Define a listener class with an explicit name, and then construct two objects:

hel l oButton . addActi onLi stene r (
new Greeti ngButtonLi stener (textFi el d , "Hel l o , Worl d")) ;

goodbyeButton . addActi onLi stener(
new Greeti ngButtonLi stene r (textFi el d , "Goodbye , Worl d")) ;

Your task is to define the Greeti ngButtonL i stener class and complete the program that
shows the message text selected by the buttons. Do not use inner classes. '

Exercise 4.17. Construct a j avax . swi ng . Ti mer object and supply an action listener such
that the message "Hello, World" is printed to System . out once per second.

Exercise 4.18. Write a class (l ocklcon that implements the Icon interface type. Draw an
analog clock whose hour, minute, and second hands show the current time. To get the
current hours and minutes, construct an object of type Gregori an(a 1 endar with the
default constructor.

Exercise 4.19. Continue Exercise 4.18 by adding a j avax . swi ng . Ti mer object to your
program. The timer's action listener should invoke the repai nt method once per second.

Exercise 4.20. Enhance the Shapelcon class so that it displays multiple moveable shapes.
Then modify the animation program to show a number of moving cars. Hint: Store all
shapes in an array list.

Exercise 4.21 . Modify the animation program to show a moving airplane.

Exercise 4.22. Modify the animation program to make the moving shape reappear on the
left-hand side after it disappears from the frame.

Cha p t er

Patterns ana
GUI Programming

� The Iterator as a Pattern

� The Pattern Concept

� The OBSERVER Pattern

� Layout Managers and the STRATEGY Pattern

� Components, Containers, and the COMPOSITE Pattern

� Scroll Bars and the DECORATOR Pattern

� How to Recognize Patterns

� Putting Patterns to Work

In this chapter, we introduce the concept of patterns. A pattern is a

description of a problem and its solution that you can apply to many

programming situations. In recent years, a number of useful patterns have

been formulated and standardized. They now have become a part of the

everyday vocabulary of many software developers. Some of the most com

mon patterns are introduced in this chapter. When possible, the patterns

are explained with examples from the Swing user interface toolkit, so that

you can learn about patterns and CUI programming at the same time.

CHAPTER 5 Patterns and GUI Programming

The Iterator as a Pattern

Recall how you use a list iterator to iterate through the elements of a linked list in Java.

L i nkedL i st<Stri ng> 1 i st = . . . ,
Li stlterator<St ri ng> i terato r = l i st . l i stlte rator () ;
whi l e (i te rator . hasNext ())
{

Stri ng cu r rent = i terato r . next () ;

}

The has Next method tests whether the iterator is at the end of the list. The next method
returns the current element and advances the iterator to the next position.

Why does the Java library use an iterator to traverse a linked list?

If you look at a classical data structures book, you will find traversal code that looks quite
different. In the traditional approach, the programmer manipulates the links directly:

L i n k currentLi nk = countri es . head ;
whi l e (cu r rentLi nk ! = nul l)
{

do something with currentLi n k . data ;
currentLi nk = currentLi n k . next ;

}

Iterators do not expose
the internal structure of a
collection class.

This approach has two disadvantages. From a high-level point of
view, it is not satisfactory because it exposes the links to the user of
the list. But the links are just an artifact of the implementation that
should be hidden from the user. As you may know, there are several

variations for list implementations, such as circular lists or lists with a dummy header
node. List users certainly should not have to worry about those implementation details.

Furthermore, as anyone who has ever implemented a linked list knows, it is very easy to
mess up links and corrupt the link structure of a linked list. Thus, survival instinct dic
tates that list users should be shielded from the raw links.

Let's return to the high-level point of view. In Chapter 2, we used a queue class and had
no problem defining the methods that make up a queue (see Figure 1) :

voi d add(E x)
E peekO
E remove O
i nt s izeO

ITl-_-_-_-_-_-_�
Insert in back / Remove from front

Figure 1

The Queue Interface

5.1 The !terator as a Pattern

F i g u re 2

The Ar ray Interface

get/ set access all positions

Here, E denotes the type of the queue elements. Similarly, it is an easy matter to define
the methods that make up an array structure with random access (see Figure 2):

E get (i nt i)
voi d set(i nt i , E x)
voi d add(E x)
i nt s i zeO

But the interface for a linked list is not so simple. We want to be able to add and remove
elements in the middle of the linked list, but it would be very inefficient to specify a posi
tion in a linked list with an integer index.

One implementation that you sometimes see is a list with a cursor (see Figure 3). A list
cursor marks a position similar to the cursor in a word processor. The list with cursor has
the following interface:

E getCu rrent O I I Get element at cursor
voi d set (E x) I I Set element at cursor to x
E remove 0 I I Remove element at cursor
voi d i nsert(E x) II Insert x before cursor
voi d reset 0 I I Reset cursor to head
voi d next 0 I I Advance cursor
boo 1 ean hasNext 0 I I Check if cursor can be advanced

The state of such a list consists of

• The sequence of the stored elements

• A cursor that points to one of the elements

The reset method resets the cursor to the beginning. The next method advances it to
the next element. The get, set, i nse rt, and remove methods are relative to the cursor
position. For example, here is how you traverse such a list.

for (l i st . reset () ; l i st . hasNext () ; l i st . next ())
{

do something with l i st . getCu r rentO ;
}

At first glance, a list with a cursor seems like a good idea. The links are not exposed to
the list user. No separate iterator class is required.

Cursor

�
Figure 3

�-_-n
A List with a Cursor get/set/i nse rt/remove access cursor position

CHAPTER S

Iterators are preferred over
cursors since you can attach
more than one iterator to a
collection.

The iterator concept occurs in
many different programming
situations.

Patterns and GUI Programming

However, that design has severe limitations. Since there is only one
cursor, you can't implement algorithms that compare different list ele
ments. You can't even print the contents of the list for debugging pur
poses. Printing the list would have the side effect of moving the cursor
to the end!

Thus, the iterator is a superior concept. A list can have any number of
iterators attached to it. That means that you should supply iterators,
and not a cursor, whenever you implement a collection class.

Furthermore, the iterator concept is useful outside the domain of col
lection classes. For example, the Scanner is an iterator through the tokens in a character
sequence. An InputStream is an iterator through the bytes of a stream,. This makes the
iterator into a pattern. We will explain the concept of patterns in the next section.

The Pattern Conc ept

The architect Christopher Alexander formulated over 250 patterns for architectural
design. (See Christopher Alexander et al., A Pattern Language: Towns, Buildings, Con
struction, Oxford University Press, 1977.) Those patterns lay down rules for building
houses and cities. Alexander uses a very distinctive format for these rules. Every pattern
has

• A short name

• A brief description of the context

• A lengthy description of the problem

• A prescription for a solution

Here is a typical example, showing the context and solution exactly as they appear in
Alexander's book. The problem description is long; it is summarized here.

PATTERN

•

•

•

•

•

SHORT PASSAGES'----:::::::===

Context

1 . " . . . long, sterile corridors set the scene for everything bad about modern
architecture."

Problem

This section contains a lengthy description of the problem of long corridors, with a
depressing picture of a long, straight, narrow corridor with closed doors, similar to the
one on the facing page.

Alexander discusses issues of light and furniture. He cites research results about patient
anxiety in hospital corridors. According to the research, corridors that are longer than 50
feet are perceived as uncomfortable.

5.2

•

•

•

•

•

•

•

•

•

•

•

•

The Pattern Concept

Solution

Keep passages short. Make them as much like rooms as possible, with carpets or wood
on the floor, furniture, bookshelves, beautiful windows. Make them generous in shape
and always give them plenty of light; the best corridors and passages of all are those that
have windows along an entire wall.

Not too long

A pattern presents proven
advice in a standard format.

011....--._
Like a room

Light

As you can see, this pattern distills a design rule into a simple format.
If you have a design problem, it is easy to check whether the pattern is
useful to you. If you decide that the pattern applies in your situation,

then you can easily follow the recipe for a solution. Because that solution has been suc
cessful in the past, there is a good chance that you will benefit from it as well.

A design pattern gives advice
about a problem in software
design.

Alexander was interested in patterns that solve problems in archi
tecture. Of course, our interest lies in software development. In this
chapter, you will see patterns that give you guidance on object
oriented design.

CHAPTER 5

The ITERATOR pattern teaches
how to access the elements of
an aggregate object.

Patterns and GUI Programming

Let's start by presenting the ITERATOR pattern. As you saw in the
preceding section, iterators are useful for traversing the elements
of a linked list, but they also occur in other programming situa
tions. String tokenizers and input streams are both examples of the

ITERATOR pattern.

PATTERN

. --�

•

•

•

•

•

•

•

•

•

•

ITERATOR

Context

1 . An object (which we'll call the aggregate) contains other objects (which we'll call
elements) .

2. Clients (that is, methods that use the aggregate) need access to the elements.

3. The aggregate should not expose its internal structure.

4. There may be multiple clients that need simultaneous access.

Solution

1 . Define an iterator class that fetches one element at a time.

2. Each iterator object needs to keep track of the position of the next element to fetch.

3. If there are several variations of the aggregate and iterator classes, it is best if they
implement common interface types. Then the client only needs to know the interface
types, not the concrete classes.

«interface»
«interface»
Aggregate

-

createlteratorO

t:;.

Iterator

nextO
isDoneO
currentltemO .

t:;.

- - - - - - - - -8- - - - - - - -

Concrete Concrete
Aggregate � -------------------------------------�

Iterator

Note that the names of the interface types, classes, and methods (such as Agg regate,
(onc retelterator, c reatelterato r, i sDone) are examples. In an actual realization of the
pattern, the names may be quite different.

5.2 The Pattern Concept

For example, in the case of linked list iterators, we have:

Name in Design Pattern Actual Name

Agg regate Li st

Conc reteAggregate Li nkedLi st

Ite rator Li stlterator

Concretelterator An anonymous class that implements
the L i stIterator interface type

createlte rator() 1 i stIte rator O

next O next O

i sDone O Opposite of has Next 0

cur rentItemO Return value of next O

The influential book, Design Patterns by Gamma, Helm, Johnson, and Vlissides, con
tains a description of many patterns for software design, including the ITERATOR
pattern. Because the book has four authors, it is sometimes referred to as the "Gang of
Four" book.

NOTE The original Gang of Four-Jiang Qing (Mao Zedong's wife), Zhang Chunqiao, Yao
Wenyuan, and Wang Hongwen-were radical Chinese communists who were strong advo
cates of the Cultural Revolution. There is no apparent connection between the two "gangs"
beyond the fact that they each have four members.

INTERNET Since the publication of the "Gang of Four" book, many authors have been bitten
by the pattern bug. You can find many patterns for specialized problem domains on the Web.
A good starting point for exploration is http : //hi 1 1 si de . net/patterns/. There is even a
column on "bug patterns", detailing common Java bugs, at http : //www . i bm . com/
devel ope rworks/j ava/l i brary/j -di agl . html .

NOTE Design patterns give you constructive advice. Antipatterns are the opposite of design
patterns-examples of design that are so bad that you should avoid them at all cost. Among
the commonly cited antipatterns are:

• The Blob: A class that has gobbled up many disparate responsibilities.
• The Poltergeist: A spurious class whose objects are short-lived and carry no significant

responsibilities.

CHAPTER 5 Patterns and GUI Programming

The OBSERVER Pattern

Have you ever used a program that shows you two editable views o f the same data, such
as a "what you see is what you get" (WYSIWYG) and a structural view of a document?
(See Figure 4.) When you edit one of the views, the other updates automatically and
instantaneously.

You may well wonder how such a feature is programmed. When you type text into one of
the windows, how does it show up in the other window? What happens if you have a
third view of the same information?

The key to implementing this behavior is the model/view/controller architecture. One
object, the model, holds the information in some data structure-an array of numbers, or
a tree of document parts. The model has no visual appearance at all. It just holds the raw
data. Several other objects, the views, draw the visible parts of the data, in a format that
is specific to the view. For example, the table view displays numbers in a table. The graph
view displays the same numbers in a bar chart. Finally, each view has a controller, an
object that processes user interaction. The controller may process mouse and keyboard
events from the windowing system, or it may contain user interface elements such as but
tons and menus.

Edit XHTMl XMl links VIWfS Style Speclltl "r"h��' Mnotatlons 800klftirkl :nopf!rJ,lioo Help

� � � . � ' � m q e � a � W lli m � � � D � + . D . � ep.n lholllehflPsl�.84f"'IYW'A��8P19. hlNl

Figure 4

strong i Amaya
is a Web client that acts both as a browser and

a href=http://www.w3.org/ l acronym titie=World Wide Web Consortium i W3C
with the primary purpose of demonstrating new

acronym title=What You See Is What You Get i WYSIWYG) environment. The current version implements
acronym title=Hypertext Markup Language i HTML) , Extensible HVI�"rll"yt

A WYSIWYG and a Structural View of the Same HTML Page

5.3 The OBSERVER Pattern

Some people are confused by the term "model". Don't think of an airplane model that
approximates a real airplane. In the model/view/controller architecture (see Figure 5),
the model is the real thing, and the views approximate it. Think instead of a model that
poses for a painting. The model is real, and different artists can observe the same model
and draw different views.

Here is what happens when a user types text into one of the windows:

• The controller tells the model to insert the text that the user typed.

• The model notifies all views of a change in the model.

• All views repaint themselves.

• During painting, each view asks the model for the current text.

This architecture minimizes the coupling between the model, views, and controllers. The
model knows nothing about the views, except that they need to be notified of all
changes. The views know nothing of the controllers. It is easy to add more views to a
model. It is also easy to change the controller of a view, for example to facilitate voice
input.

Let's have a closer look at the notification mechanism. The model knows about a number
of observers, namely, the views. An observer is an object that is interested in state changes
of the model. The model knows nothing in detail about the observers except that it
should notifY them whenever the model data changes.

The OBSERVER pattern teaches
how an object can tell other
objects about events.

You have seen a similar situation in Chapter 4. An event source such
as a button holds a number of listeners. When something interesting
happens to the button, such as a button click, then the button notifies
its listeners. The button knows nothing about its listeners except that

Figure 5

they implement a particular interface type.

The fact that this arrangement occurs as a solution in two separate problems shows that
it may be useful to distill the solution into a pattern. This notification pattern is called
the OBSERVER pattern.

Controller

insertText

repaint

Sequence Diagram for
Inserting Text into a View

PATIERN

•

•

•

•

•

•

•

•

•

•

CHAPTER S Patterns and GUI Programming

OBSERVER

Context

1 . An object (which we'll call the subject) is the source of events (such as "my data has
changed").

2. One or more objects (called the observers) want to know when an event occurs.

Solution

1. Define an observer interface type. Observer classes must implement this interface
type.

'

2. The subject maintains a collection of observer objects.

3. The subject class supplies methods for attaching observers.

4. Whenever an event occurs, the subject notifies all observers.

Subject

attachO

«interface"
Observer

notifyO
t;..

Concrete
Observer

As you know, the names of the classes, interface types, and methods in the pattern
description are examples. In the case of a button and its event listeners, we have:

Name in Design Pattern Actual Name

Subj ect J Button

Obse rver Acti onLi stener

Conc reteObserver The class that implements the
Acti onL i stene r interface type

attachO addActi onLi stener

noti fy 0 acti onPerformed

5.4 Layout Managers and the STRATEGY Pattern

The OBSERVER pattern is pervasive in user interface programming with Java. All user
interface elements-buttons, menus, check boxes, sliders, and so on-are subjects that
are willing to tell observers about events.

Layout Managers and the STRATEGY Pattern

You add user interface
components to a container.

You build up user interfaces from individual user interface components:
buttons, text fields, sliders, and so on. You place components into con
tainers. For example, a frame is a container.

When you add a component to a container, the container must put it somewhere on the
screen. In some user interface toolkits, the programmer (or a layout tool) specifies pixel
positions for each component. However, that is not a good idea. Component sizes can
change from the original design, usually for one of two reasons:

1. The user chooses a different "look and feel". The Swing user interface toolkit
allows users ofJava programs to switch between various "look and feel"
implementations, such as the native Windows or Macintosh look and feel or a
cross-platform look and feel called "Metal". A Windows button has a different
size than a Macintosh or Metal button.

2. The program gets translated into a different language. Button and label strings
can become much longer (in German) or shorter (in Chinese).

A layout manager arranges the Suppose a programmer painstakingly defines the pixel position for all

components in a container. components to have them line up nicely. Then the look and feel or the
language changes and the components no longer line up nicely. The

Java layout managers are a better idea. By choosing an appropriate layout manager, you
describe how the components should be aligned. The layout manager looks at the sizes of
the components and computes their positions .

.. III- Using Predefined Layout Managers

There are several built-in layout managers in Java (see Figure 6).

• The Fl owLayout lays out components left to right, then starts a new row when
there isn't enough room in the current one.

• The Box Layout lays out components horizontally or vertically without starting
additional rows and columns.

• The BorderLayout has five areas, NORTH, SOUTH, EAST, WEST, and CENTER. You specify
in which area each component should appear. Unlike the Fl owLayout and
BoxLayout, the Borde rLayout grows each component to fill its area. Not all of the
areas need to be occupied. It is common to leave one or more of the areas
completely empty.

• The Gri dLayout arranges components in a rectangular grid. All components are
resized to an identical size.

• The Gri dBagLayout also arranges components in a grid, but the rows and columns
can have different sizes and components can span multiple rows and columns.

CHAPTER S Patterns and GUI Programming

1 I I 2 1

3 I 2

,---4 ---11 CO 0 o Box Layout (horizontal)

I 4 I
Fl owLayout Box Layout (vertical)

NORTH 0 0 0 1 1 1
WEST CENTER EAST

SOUTH

� 0 QJ 0 1 3 1 0
0 0 0 0 1 6

I Ll G 0 0 0 1 9

I
BorderLayout Gri dLayout Gri dBagLayout

Figure 6

Layout Managers

To set a layout manager, pick an appropriate layout manager class and add it to a con
tainer. For example,

J Panel keyPanel = new J Panel () ;
keyPanel . setLayout(new Gri dLayout (4 , 3)) ;

Figure 7 shows the relationships between these classes.

Let's put layout managers to work and write a GUI front end for the voice mail system of
Chapter 2. We want to arrange the components so that they resem

,
ble a real telephone,

«interface»
Container Layout

Manager

if
: ,
: , , , , , , , , , ,

Figure 7
JPanel GridLayout

Layout Management Classes

5.4 Layout Managers and the STRATEGY Pattern

with the speaker on top, the keypad in the middle, and the microphone on the bottom
(see Figure 8). (The speaker and microphone are simulated with text areas.) Figure 9
shows the layout of the frame window.

You will find the complete code for the telephone layout at the end of this section.
Because there are so many components to lay out, the code looks complicated. However,
the basic concepts are straightforward.

When a user interface has a large number of components, it can be difficult to use a sin
gle layout manager to achieve the desired layout effect. However, by nesting panels, each
with its own layout manager, you can achieve complex layouts easily. A panel is simply a
container without visible decorations that can hold components.

First, note that the keypad is arranged in a grid. Clearly, the grid layout is the appropri
ate layout manager for this arrangement. We will therefore add the buttons to a panel
that is controlled by a Gri dLayout.

J Panel keyPanel = new J Panel () ;
keyPanel . setLayout (new Gri dLayout (4 , 3)) ;
for (i nt i = 0 ; i < 12 ; i ++)
{

J Button keyButton = new J Button (. .) ;
keyPanel . add (keyButton) ;
keyButton . addActi onL i stener (. . .) ;

}

reached mailbox 12.

Send speech I I Hangup

Figure 8 Figure 9

Telephone Handset A GUI Front End for the Mail System

CHAPTER 5 Patterns and GUI Programming

Figure 1 0

Laying out the Microphone
Components

Icrophone:
ello Fifil This is Aramis. Are we sUIl on for

unch todaY? Please call me back Thanks!1

Send speech I I Hangup

NORTH

CENTER

SOUTH

Just as we collect the keypad buttons in a panel, we will use a separate panel to hold the
label and the text area for the simulated speaker. We use a border layout to place the label
in the NORTH position and the text area in the CENTER position.

J Panel speake r Panel = new J Panel () ;
speake rPanel . setLayout(new Borde rLayout()) ;
speake rPanel . add(new J Label ("Speake r : ") , BorderLayout . NORTH) ;
speake rFi el d = new JTextArea(lO , 2 5) ;
speake rPanel . add(speake rFi el d , Bo rderLayout . CENTER) ;

We'll apply the same layout manager to the simulated microphone. However, now we
need to add two buttons to the SOUTH area. Since each of the areas of a border layout can
only hold a single component, we place the buttons inside a panel and add that button
panel to the SOUTH area of the microphone panel (see Figure 10).

Finally, we need to stack up the panels for the speaker, keypad, and microphone. We take
advantage of the fact that, by default, a frame has a border layout and add the'three pan
els to the NORTH, CENTER, and SOUTH areas (see Figure 11).

Figure 1 1

The Contents of the
Telephone Frame

peaker: .
ou have reached mailbox 12,
lease leave a message now,

i 2 3

4 5 6

7 8 9

. 0 /I

Microphone: Hello Fifil This is Aramis. Are we still on (or
unch today\' Please call me baCk Thanks!1

I Send speech I I Hangup I

.... l"- NORTH

CENTER

/" SOUTH

�

5.4 Layout Managers and the STRATEGY Pattern

In Chapter 2, we defined a Tel ephone class for reading simulated voice and key presses
from System . i n and sending simulated speech output to System . out. Remarkably, you
can simply replace that class with the new Tel ephone class. None of the other classes of
the voice mail system need to be changed.

Ch5/mailgui/Telephone.java

1 i mport j ava . awt . * ;
2 i mport j ava . awt . event . * ;
3 i mport j avax . swi ng . * ;
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

/**
Presents a phone GUI for the voice mail system.

*/
publ i c cl ass Tel ephone
{

/**

*/

Constructs a telephone with a speaker, keypad,
and microphone.

publ i c Tel ephone ()
{

J Panel speake rPanel = new J Panel () ;
speakerPanel . setLayout(new Bo rderLayout ()) ;
speakerPanel . add (new J Label ("Speake r : ") ,

BorderLayout . NORTH) ;
speakerFi el d = new JTextArea(10 , 2 5) ;
speake rPanel . add(speake rFi el d ,

BorderLayout . CENTER) ;
St ri ng keyLabel s = "12 3456789"0#" ;
J Panel keyPanel = new J Panel () ;
keyPanel . setLayout (new Gri dLayout (4 , 3)) ;
for (i nt i = 0 ; i < keyLabel s . l ength() ; i ++)
{

fi nal Stri ng l abel = keyLabel s . substri ng(i ,
J Button keyButton = new J Button(l abel) ;
keyPanel . add (keyButton) ;
keyButton . addActi onLi stener (new

Acti onLi stene rO
{

+ 1) ;

publ i c voi d acti onPe rformed (ActionEvent event)
{

}

}
}) ;

connect . di al (l abel) ;

fi nal JTextArea mi crophoneFi el d = new JTextArea (10 , 2 5) ;

J Button speechButton = new J Button (" Send
speechButton . addActi onLi stener (new

Acti onLi stene rO
{

speech ") ;

CHAPTER S Patterns and GUI Programming

47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100 }

}

/**

publ i c voi d acti onPe rformed (Acti onEvent event)
{

}
}) ;

connect . record (mi crophoneFi el d . getText ()) ;
mi c rophoneFi el d . setText (" ") ;

J Button hangupButton = new J Button ("Hangup") ;
hangupButton . addActi onLi stener (new

ActionL i stenerO
{

publ i c voi d acti onPerformed (Acti onEvent event)
{

}
}) ;

connect . hangup() ;

J Panel button Panel = new J Panel () ;
buttonPanel . add(speechButton) ;
buttonPanel . add (hangupButton) ;

J Panel mi c rophonePanel = new J Panel () ;
mi crophonePanel . setLayout(new Bo rde rLayout ()) ;
mi crophonePanel . add (new J Label ("Mi crophone : ") ,

Borde rLayout . NORTH) ;
mi crophonePanel . add (mi c rophoneFi el d , BorderLayout . CENTER) ;
mi c rophonePanel . add (buttonPanel , BorderLayout . SOUTH) ;

J Frame frame = new J F rame () ;
frame . setDefaul tCloseOperati on (JFrame . EXIT_ON_CLOSE) ;
frame . add (speakerPanel , Borde rLayout . NORTH) ;
frame . add (keyPanel , Borde rLayout . CENTER) ;
frame . add (mi c rophonePanel , Bo rde rLayout . SOUTH) ;

frame . packO ;
frame . setVi s i b l e (true) ;

Give instructions to the mail system user.
*/
publ i c voi d speak (Stri ng output)
{

speakerFi el d . setText (output) ;
}

publ i c voi d run (Connecti on c)
{

connect = c ;
}

pri vate JTextArea speakerFi el d ;
pri vate Connection connect ;

5.4 Layout Managers and the STRATEGY Pattern

" fl- Implementing a Custom Layout Manager

It is not difficult to write your own layout manager. Figure 12 shows a custom layout
manager that aligns the odd-numbered components towards the right and the even
numbered components towards the left. This layout is useful for simple forms.

A layout manager must support the LayoutManager interface type:

publ i c i nterface LayoutManager
{

}

Di mensi on mi ni mumLayoutSi ze (Contai ner parent) ;
Di mensi on preferredLayoutSi ze (Contai ner parent) ;
voi d l ayoutContai ner (Contai ner parent) ;
voi d addLayoutComponent(Stri ng name , Component comp) ;
voi d removeLayoutComponent (Component comp) ;

The mi ni mumLayoutSi ze and prefe rredLayoutSi ze methods determine the minimum
and preferred size of the container when the components are laid out. The 1 ayout
Contai ner method lays out the components in the container, by setting the position and
size for each component. The last two methods exist for historical reasons and can be
implemented as do-nothing methods.

When you write a layout manager, start out with the preferredLayoutSi ze method.
Compute the preferred width and height of your layout by combining the widths and
heights of the individual components. For example, the form layout manager computes
the width as follows: It finds the widest component on the left and the widest compo
nent on the right. Then it adds their widths and adds a small gap value. The computation
of the height is slightly different. The height is obtained by adding up the heights of all
rows. The height of each row is the maximum of the heights of the components in the
row. Have a look at the prefe rredLayoutSi ze computation in FormLayout . j ava at the
end of this section. It is not difficult to follow the process.

When the container is ready to lay out its contents, it calls the 1 ayoutContai ner method
of its layout manager. Then the layout manager positions the components according to
its rules. The exact positioning is more tedious than just computing the preferred width,
but the concepts are the same. If you look at the 1 ayoutContai ner method of the Form
Layout, you can see that the method computes the positions of each component and then
calls the setBounds method to put the component into the correct location. You don't
have to worry about the details of the computation. The point of showing you this
example is simply to demonstrate how flexible layout management can be. This flexibility
is a direct consequence of separating layout management into a separate class.

Figure 1 2

The Fo rmLayout Custom
Layout Manager

CHAPTER 5 Patterns and GUI Programming

The FormLayoutTester program shows how to put the custom layout to work. Simply set
the layout manager of the frame to a FormLayout object. Then add the components to the
container.

Ch5/layout/FormLayout.java

1 i mport j ava . awt . * ;
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

/**
A layout manager that lays out components along a central axis.

*/
publ i c cl ass FormLayout i mpl ements LayoutManage r
{

publ i c Di mensi on prefe r redLayoutSi ze (Contai ner parent)
{

}

Component []
l eft = 0 ;
ri ght = 0 ;
hei ght = 0 ;
for (i nt i =

{

components = parent . getComponents () ;

}

0 ; i < components . l ength ;

Component cl eft = components [i] ;
Component cri ght = components [i + 1] ;

+= 2)

Di mens i on dl eft = cl eft . getPrefe rredSi ze () ;
Di mens ion dri ght = cri ght . getPrefe rredSi ze () ;
l eft = Math . max (l eft , dl eft . wi dth) ;
ri ght = Math . max (ri ght , dri ght . wi dth) ;
hei ght = hei ght + Math . max (dl eft . hei ght ,

dri ght . hei ght) ;

return new Di mensi on (l eft + GAP + ri ght , hei ght) ;

publ i c Di mensi on m in i mumLayoutSi ze (Contai ner parent)
{

return preferredLayoutSi ze (parent) ;
}

publ i c voi d l ayoutContai ner (Contai ner parent)
{

preferredLayoutSi ze (parent) ; / / Sets left, right

Component [] components = parent . getComponents () ;

Insets i nsets = parent . getInsets () ;
i nt xcente r = i nsets . l eft + l eft ;
i nt y = i nsets . top ;

for (i nt i = 0 ; i < components . l ength ;
{

Component cl eft = components [i] ;
Component cri ght = components [i + 1] ;

+= 2)

5.4 Layout Managers and the STRATEGY Pattern

48
49 Di mensi on dl eft = cl eft . getPrefer redSi ze() ;
50 Di mensi on dri ght = cri ght . getPrefe r redSi ze() ;
51
52 i nt hei ght = Math . max(dl eft . hei ght , dri ght . hei ght) ;
53
54 cl eft . setBounds (xcenter - dl eft . wi dth , y + (hei ght
55 - dl eft . hei ght) / 2 , dl eft . wi dth , dl eft . hei ght) ;
56
57 cri ght . setBounds (xcenter + GAP , y + (hei ght
58 - dri ght . hei ght) / 2 , dri ght . wi dth , dri ght . hei ght) ;
59 y += hei ght ;
60 }
61 }
62
63 publ i c voi d addLayoutComponent(Stri ng name , Component comp)
64 {}
65
66 publ i c voi d removeLayoutComponent (Component comp)
67 {}
68
69
70
71
72
73 }

pri vate
pri vate
pri vate
pri vate

i nt l eft ;
i nt ri ght ;
i nt hei ght ;
stati c fi nal i nt GAP = 6 ;

Ch5/layout/FormLayoutTester.java

1
2
3
4
5
6
7

i mport j ava . awt . * ;
i mport j avax . swi ng . * ;

publ i c cl ass FormLayoutTester
{

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 }

publ i c stati c voi d mai n (Stri ng [] args)
{

}

J Frame frame = new J Frame () ;
frame . setLayout(new FormLayout ()) ;
frame . add(new J Label ("Name")) ;
frame . add (new JTextFi el d (15)) ;
frame . add (new J Label ("Add ress ")) ;
frame . add (new JTextFi el d (20)) ;
frame . add (new J Label ("Ci ty")) ;
frame . add (new JTextFi el d (lO)) ;
frame . add (new J Label ("State ")) ;
frame . add(new JTextFi el d (2)) ;
frame . add (new J Label ("ZIP")) ;
frame . add(new JTextFi el d (5)) ;
frame . setDefaul tCl oseOperati on(J Frame . EXIT_ON_CLOSE) ;
frame . pack () ;
frame . setVi s i bl e (t rue) ;

CHAPTER 5 Patterns and GUr Programming

.. lEI- The STRATEGY Pattern

The STRATEGY pattern teaches
how to supply variants of an
algorithm.

You have seen how the layout manager concept gives user interface
programmers a great deal of flexibility. You can use one of the stan
dard layout manager classes or provide a custom layout manager. To
produce a particular layout, you simply make an object of the layout

manager class and give it to the container. When the container needs to execute the lay
out algorithm, it calls the appropriate methods of the layout manager object. This is an
example of the STRATEGY pattern. The STRATEGY pattern applies whenever you want
to allow a client to supply an algorithm. The pattern tells us to place the essential steps of
the algorithm in a strategy interface type. By supplying objects of different classes that
implement the strategy interface type, the algorithm can be varied.

PATIERN

•

•

•

•

•

•

•

•

•

•

•

STRATEGY =---= ::

Context

1 . A class (which we'll call the context class) can benefit from different variants of an
algorithm.

2. Clients of the context class sometimes want to supply custom versions of the
algorithm.

Solution

1. Define an interface type that is an abstraction for the algorithm. We'll call this inter
face type the strategy.

2. Concrete strategy classes implement the strategy interface type. Each strategy class
implements a version of the algorithm.

3. The client supplies a concrete strategy object to the context class.

4. Whenever the algorithm needs to be executed, the context class calls the appropriate
methods of the strategy object.

I Cootexl [----------------------- -

« interface··
Strategy

doWork()
£>.

Concrete
Strategy

5.5 Components, Containers, and the COMPOSITE Pattern

Here is the relationship between the names in the STRATEGY design pattern and the lay
out management manifestation.

Name in Design Pattern Actual Name

Context Contai ner

St rategy LayoutManage r

ConcreteStrategy A layout manager such as Bo rderLayout

doWorkO A method of the LayoutManager interface type
such as 1 ayoutContai ner

In Chapter 4, you encountered a different manifestation of the STRATEGY pattern.
Recall how you can pass a Comparator object to the Co 1 1 ecti ons . sort method to specify
how elements should be compared.

Comparator comp = new Count ryComparatorByName () ;
Co1 1 ecti ons . sort (count ri es , comp) ;

The comparator object encapsulates the comparison algorithm. By varying the compara
tor, you can sort by different criteria. Here is the mapping from the pattern names to the
actual names:

Name in Design Pattern Actual Name

Context Co 1 1 ecti ons

St rategy Comparator

ConcreteStrategy A class that implements the Comparator interface type

doWorkO compareO

Components , Containers , and the COMPOSITE Pattern

In the preceding section, you saw how one can use layout managers to organize compo
nents in a container. As you have seen in the telephone example, you often need to group
components into a panel in order to achieve a satisfactory layout.

The COMPOSITE pattern teaches
how to combine several
objects into an object that has
the same behavior as its parts.

There is just one technical issue. User interface components are con
tained in containers. If a J Pane 1 can contain other components, it
must be a Contai nero But if we want to add it to the frame, it must
also be a Component. Can a container itself be a component?

The COMPOSITE pattern gives a solution to this problem. This pat
tern addresses situations where primitive objects can be grouped into composite objects,
and the composites themselves are considered primitive objects.

PATIERN

•

•

•

•

•

•

•

•

•

CHAPTER S Patterns and GUI Programming

There are many examples of this pattern. Later in this chapter you will see a program
that deals with selling items. It is sometimes useful to sell a bundle of items as if it were a
single item. The solution is to make a Bundl e class that contains a collection of items and
that also implements the Item interface type.

Similarly, the Contai ner class contains components, and it also extends the Component
class.

One characteristic of the COMPOSITE design pattern is how a method of the composite
object does its work. It must apply the method to all of its primitive objects and then
combine the results.

For example, to compute the price of a bundle, the bundle class computes the prices of
each of its items and returns the sum of these values.

Similarly, consider the task of computing the preferred size of a container:The container
must obtain the preferred sizes of all components in the container and combine the
results. In the preceding section, you saw how a container carries out that work by dele
gating it to a layout manager.

COMPOSITE

Context

1 . Primitive objects can be combined into composite objects.

2. Clients treat a composite object as a primitive object.

Solution

1. Define an interface type that is an abstraction for the primitive objects.

2. A composite object contains a collection of primitive objects.

3. Both primitive classes and composite classes implement that interface type.

4. When implementing a method from the interface type, the composite class applies
the method to its primitive objects and combines the results.

«interface»
Primitive .

methodO B------- !
_ _ _ _ _ _ _ _ _ 1- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1
Composite

methodO --- --- ----- --- --
'
C
-

aIl
-

s
-me

-
t
-

h
-
Od
-

C
-

)
-

fo
-

r D
each primitive and
combines the results

5.6 Scroll Bars and the DECORATOR Pattern

As with the previous patterns, we show how the names in the design pattern map to the
the Swing user interface toolkit.

Name in Design Pattern Actual Name

Pri mi t ive Component

Composite Contai ner or a subclass such as J Panel

Leaf A component that has no children such as J Button or
JTextArea

methodO A method of the Component interface such as
getPrefe rredSi ze

S c roll Bars and the DECORATOR Pattern

When a component contains more information than can b e shown on the screen, it
becomes necessary to add scroll bars (see Figure 13). Scroll bars make the most sense for
text areas and lists, but other components, such as tables and trees, can also benefit from
them.

For example, here is how you add scroll bars to a text area:

JTextArea area = new JTextArea (lO , 2 5) ;
JScrol l Pane scrol l e r = new JScrol l Pane(area) ;

Figure 14 shows the relationships between these classes. Because the scroll bars add
functionality to the underlying text area, they are called a decoration.

Component
1

JTextArea JScroliPane

Figure 1 3 F i g u re 1 4

Scroll Bars Adding a Scroll Bar to a Text Area

CHAPTER 5 Patterns and GUI Programming

The DECORATOR pattern teaches
how to form a class that adds
functionality to another class
while keeping its interface.

You can decorate any component with a scroll pane, not just text
areas. The important point is that a J Scrol l Pane decorates a compo
nent and is again a component. Therefore, all of the functionality of the
Component class still applies to scroll bars. For example, you can add
the scroll pane into a container.

PATIERN

frame . addCscrol l e r , Borde rLayout . CENTER) ;

The JScrol l Pane class is an example of the DECORATOR pattern. The DECORATOR
pattern applies whenever a class enhances the functionality of another class while pre
serving its interface. A key aspect of the DECORATOR pattern is that the decorated com
ponent is entirely passive. The text area does nothing to acquire scroll bars.

An alternate design would be to make the JTextArea class responsible for supplying
scroll bars. An older version of that class (called TextArea without a J) does just that. If
you want scroll bars, you have to pass a flag to the constructor.

There are two advantages to using decorators. First, it would be a bother if lots of differ
ent components (such as text areas, panels, tables, and so on) would each have to inde
pendently supply an option for scroll bars. It is much better if these component classes
can wash their hands of that responsibility and leave it to a separate class.

Moreover, there is a potentially unbounded set of decorations, and the component classes
can't anticipate all of them. Maybe you want a zoom bar, a slider that automatically
shrinks or magnifies a component? There is no support for zoom bars in the Swing user
interface toolkit, but nothing prevents an enterprising programmer from supplying a
zoom bar decorator.
As with the COMPOSITE pattern, we note that the decorator implements a method from
the component interface by invoking the same method on the component and then aug
menting the result. For example, the pa; nt method of a scroll pane paints the decorated
component and also the scroll bars.

. '--- DECORATOR m-
Context

•
1 . You want to enhance the behavior of a class. We'll call it the component class.
2. A decorated component can be used in the same way as a plain component.

• 3. The component class does not want to take on the responsibility of the decoration.
4. There may be an open-ended set of possible decorations.

• Solution

1. Define an interface type that is an abstraction for the component.

• 2. Concrete component classes implement this interface type.
3. Decorator classes also implement this interface type.
4. A decorator object manages the component object that it decorates.

5.6 Scroll Bars and the DECORATOR Pattern

• 5. When implementing a method from the component interface type, the decorator

•

•

•

•

•

class applies the method to the decorated component and combines the result with
the effect of the decoration.

Concrete
Component

«interface»
Component 1

methodO T
_ _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1
Decorator

methodO ---
... ------- Calls method 0 for

D

the component and
augments the results

Superficially, the DECORATOR pattern looks very similar to the COMPOSITE pattern.
However, there is an essential difference. A decorator enhances the behavior of a single
component, whereas a composite collects multiple components. There is also a difference
in intent. A decorator aims to enhance, whereas a composite merely collects.
Here is the mapping of pattern names to actual names in the case of the J Sc ro1 1 Pane
decorator.

Name in Design Pattern Actual Name

Component Component

Conc reteComponent JTextArea

Decorator J Sc ro 1 1 Pane

methodO A method of the Component interface. For example, the pai nt
method paints a part of the decorated component and the
scroll bars .

.. jll- Stream Decorators

Another example for the DECORATOR pattern is the set of stream filters in the I/O
library. The Reader class supports basic input operations: reading a single character or an
array of characters. The Fi 1 eReader subclass implements these methods, reading charac
ters from a file. However, a Fi 1 eReade r has no method for reading a line of input.

The BufferedReade r class adds the ability of reading line-oriented input to any reader.
Its readL i ne method keeps calling read on the underlying reader until the end of a line is
encountered. Here is how you use it:

CHAPTER 5 Patterns and GUI Programming

BufferedReader i n = new BufferedReader (new Fi l eReade r (" i nput . txt")) ;
Stri ng fi rstLi ne = i n . readLi ne () ;

The BufferedReader class adds another useful service. It asks the reader that it decorates
to read data in larger blocks. The BufferedReader's read method then gives out the char
acters that are stored in the buffer. This buffering increases efficiency.

The BufferedReader class is a decorator. It takes an arbitrary reader and yields a reader
with additional capabilities.

Name in Design Pattern Actual Name

Component Reader

Conc reteComponent Fi l eReader

Decorator Buffe redReader

method O The read method. Calling read on a buffered reader invokes
read on the component reader if the buffer is empty.

The Java library contains a number of decorators for readers. The PushbackReader is
designed for applications that require you to "peek ahead" at input. For example, suppose
you process input and need to skip past a sequence of space characters. You read charac
ters until you find a character that is not a space. But now you wish that you hadn't read
that character because another part of the program wants to process it. With a Pushback
Reader, you can call the un read method to push the character back.

PushbackReade r reader = new PushbackReader(
new Fi l eReader C " i nput . txt")) ;

char c = reade r . read C) ;
i f C . . .) reade r . un read Cc) ;

A PushbackReader simply keeps a small buffer of pushed back characters. Its read
method looks inside that buffer before reading from the decorated reader.

Other common decorators for readers are decryptors and decompressors (see
Exercise 5.12).
Of course, writers can be decorated as well. A basic Wri ter simply sends characters to
some destination. The P ri ntWri ter decorator takes on the responsibility of formatting
numbers and strings.

How to Recognize Patterns

Students of object-oriented design often have trouble recognizing patterns. The descrip
tions of many patterns look superficially alike. As we discussed, the descriptions of the
COMPOSITE and DECORATOR patterns appear to be almost identical. As you encounter

5.7 How to Recognize Patterns

additional patterns, you will find it increasingly difficult to tell them apart if you merely
try to memorize the pattern descriptions.
One solution is to focus on the intent of the pattern. The intent of the COMPOSITE pat
tern is to group components into a whole, whereas the intent of the DECORATOR pat
tern is to decorate a component. The intent of the STRATEGY pattern is completely
different, namely to wrap an algorithm into a class.

Another solution is to remember a place where the pattern is put to use. Many program
mers remember the STRATEGY pattern as the pattern for layout managers and DECO
RATOR as the pattern for scroll bars. Of course, a pattern is more general than any of its
manifestations, but there is nothing wrong with using the examples as a memorization
aid.

Students often fall into another trap. The patterns have such intuitive names (such as
OBSERVER or STRATEGY) that it is tempting to suspect their usage in many situations
where they don't actually apply. Just because something seems strategic does not mean
that the STRATEGY pattern is at work. Patterns are not vague concepts. They are very
specific. The STRATEGY pattern only applies when a number of conditions are fulfilled:

• A context class must want to use different variants of an algorithm.

• There must be an interface type that is an abstraction for the algorithm.
• Concrete strategy classes must implement the strategy interface type.
• A client must supply an object of a concrete strategy class to the context class.
• The context class must use the strategy object to invoke the algorithm.

In other words, you should turn every statement in the "Context" and "Solution" parts of
the pattern description into a litmus test.
Let's put this litmus test to work in another situation.
Figure 15 shows a decoration that you can apply to a component-a border. Typically,
you place a border around a panel that holds related buttons. But you can apply a border
to any Swing component. There are a number of classes that implement the Bo rde r
interface type, such as the EtchedBorder and Bevel Border classes. Pass an object of any
of these classes to the setBorder method:

Borde r b = new EtchedBorder() ;
panel . setBorder(b) ;

Style

D ltalic D Buld [SiZe

o Small 0 Medium ® large

Figure 1 5

Borders Around Panels

• • CHAPTER 5 Patterns and GUI Programming

While a border is undeniably decorative, it is not a manifestation of the DECORATOR
pattern. To see why, let's go through the context elements of the DECORATOR pattern.

• You want to enhance the behavior of a class. We'll call it the component class.

This condition holds true. We want to enhance the behavior of a Swing component.
• A decorated component can be used in the same way as a plain component.

This condition still holds true. A component with a border is a component.

• The component class does not want to take on the responsibility of the decoration.
This condition doesn't apply here. The component class has a setBorde r method. It is
responsible for applying the border.

Thus, Swing borders are not a manifestation of the DECORATOR pattern.

Putting Patterns to Work

In this section, we will put several patterns to work in a simple application. We will
implement an invoice that is composed of line items. A line item has a description and a
price. Here is the L i neItem interface type:

Illl � Ch5/invoice/Lineltem.java

i __ 1 /" *
2 A line item in an invoice.

3
*/

4 pub 1 i c i nte rface L i neItem
5 {
6 /**
7 Gets the price of this line item.
8 @return the price
9 */

10 doubl e getPri ce() ;
1 1
12 /**
13 Gets the description of this line item.
14 @return the description
15 */
16 Stri ng toStri ng() ;
17 }

We will encounter different kinds of line items. The simplest one is a product. Here is
the Product class:

Ch5/invoice/product.java

1 /**
2 A product with a price and description.
3

*/
4 publ i c cl ass Product i mpl ements Li neltem
5 {

5.8 Putting Patterns to Work

6 /**
7 Constructs a product.
8 @pararn descri pti on the description
9 @pararn pri ce the price

10 */
1 1 publ i c Product (Stri ng descri pti on , doubl e pri ce)
12 {
13 thi s . descri pti on = descri pti on ;
14 thi s . pri ce = pri ce ;
1 5 }
16 publ i c doubl e getPri ce() { return pri ce ; }
17 publ i c St ri ng toStri ng () { retu rn descri pti on ; }
18 pri vate Stri ng descri pti on ;
19 pri vate doubl e pri ce ;
20 }

NOTE Because roundoff errors are inevitable with floating-point numbers, it is actually not a
good idea to use a doubl e variable to store a monetary value. For financial accuracy, it would
be better to store the price in pennies, as an i nt or l ong value, or to use the Bi gDeci rna 1 class.

Now let's consider a more complex situation. Sometimes, stores will sell bundles of
related items (such as a stereo system consisting of a tuner, amplifier, CD player, and
speakers). It should be possible to add a bundle to an invoice. That is, a bundle contains
line items and is again a line item. This is precisely the situation of the COMPOSITE pat
tern (see Figure 16).

The COMPOSITE pattern teaches us that the Bundl e class should implement the L i neItern
interface type. When implementing a Li neItern method, the Bundl e class should apply
the method to the individual items and combine the result. For example, observe how the
getPri ce method of the Bundl e class adds the prices of the items in the bundle.

«interface»
Lineltem .

getPriceO I Pcod"" Inmn T
- -- - _ _ - -_1-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 1 6

A Bundle of Line Items

1
Bundle

getPriceO -_ _

-..

Calls getPri c e O l:>
for each line item
and adds the results

•

\ -

CHAPTER S Patterns and GUI Programming

Here is the code for the Bundl e class.

Ch5/invoice/Bundle.java

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

i mport j ava . uti l . * ;

/**
A bundle of line items that is again a line item.

*/
publ i c c l ass Bundl e i mpl ements Li neltem
{

/**
Constructs a bundle with no items.

*/
publ i c Bundl e() { i tems = new Ar rayLi st<Li neltem> () ; }

/**

*/

Adds an item to the bundle.
@param i tern the item to add

publ i c voi d add (Li neltem i tem) { i tems . add (i tem) ; }

publ i c doubl e getPri ce()
{

}

doubl e pri ce = 0 ;

for (Li neltem i tem : i tems)
pri ce += i tem . getPri ce() ;

return pri ce ;

publ i c Stri ng toSt r ing()
{

}

St ri ng desc ri pti on = "Bundl e : " ;
fo r (i nt = 0 ; i < i tems . si ze() ; i ++)
{

}

i f (i > 0) desc ri pti on += " , " ;
descri pti on += i tems . get(i) . toStri ng() ;

return desc ri pti on ;

39
40 }

pri vate Ar rayLi st<Li neltem> i tems ;

A store may give a discount for a bundle, or, for that matter, for other line items. We can
use the DECORATOR pattern to implement discounts. That pattern teaches us to design
a decorator class that holds a Li neItem object and whose methods enhance the L i neItem
methods. For example, the getPri ce method of the Di scountedItem class calls the
getPri ce method of the discounted item and then applies the discount (see Figure 17) .

5.8 Putting Patterns to Work

i _

«interface»
Lineltem 1

I Pmd"ct Imuum 1 getPriceO

_ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Discounted
Item

getPriceO - • • •

Figure 1 7

The Di scountedItem Decorator

Here is the code for the Di scountedltem class.

Ch5/invoice/DiscountedI tern.java

1 /**
2 A decorator for an item that applies a discount.
3 */
4 publ i c cl ass Di scountedltem i mpl ements Li neltem
5 {
6
7
8
9

10

/**

*/

Constructs a discounted item.
@param i tem the item to be discounted
@param di scount the discount percentage

" . Calls getPri ce O �
for the line item and
applies the discount

11
12

publ i c Di scountedltem(Li neltem i tem , doubl e di scount)
{

13
14
15
16
17
18
19
20
2 1
22
23
24
25
26
27
28
29
30 }

}

thi s . i tem = i tem ;
thi s . di scount = di scount ;

publ i c doubl e getPri ce ()
{

retu rn i tem . getPri ce() * (1 - di scount / 100) ;
}

publ i c Stri ng toStri ng()
{

return i tem . toStri ngO + " (Di scount " + di scount
+ "%) " ;

}

p ri vate Li neltem i tem ;
pri vate doubl e di scount ;

•

· ' CHAPTER S Patterns and GUI Programming

Now let's look at the Invoi ce class. An invoice holds a collection of line items.
publ i c cl ass Invoi ce
{

publ i c voi d addItem (Li neItem i tem) { i tems . add (i tem) ; }

pri vate ArrayLi st<Li neItem> i tems ;
}

Our sample program will have a graphical user interface in which we show the invoice
text in a text area. When items are added to the invoice, the invoice text should be
updated. Of course, we could make the "Add" button responsible for updating the text
area, but we prefer a solution that decouples adding items from the invoice display. If we
just knew when new items are added to the invoice, then we could simply refresh the text
area at that time. The OBSERVER pattern teaches us how to proceed.

1 . Define an observer interface type. Observer classes must implement this interface
type.

2. The subject maintains a collection of observer objects.

3. The subject class supplies methods for attaching observers.
4. Whenever an event occurs, the subject notifies all observers.

These steps are easy to follow. Rather than designing an interface type from scratch, use
the ChangeL i stene r type from the Swing library:

publ i c i nte rface ChangeLi stener
{

voi d stateChanged (ChangeEvent event) ;
}

The subject is the Invoi ce class. You are told to supply a collection of observers and a
method to attach observers.

publ i c cl ass Invoi ce
{

}

publ i c voi d addChangeLi stene r (ChangeLi stener l i stener)
{

l i steners . add(l i stener) ;
}

pri vate ArrayLi st<ChangeLi stene r> l i stene rs ;

Furthermore, when the invoice changes, you must notifY all observers. This is easily
achieved by appending the following code to the add Item method:

ChangeEvent event = new ChangeEvent (thi s) ;
for (ChangeLi stener l i stene r : l i steners)

l i stener . stateChanged (event) ;

This completes the modifications to the Invoi ce class that are needed to support the
OBSERVER pattern.
We were motivated to use that pattern because we wanted the text area to update itself
automatically whenever the invoice changes. That goal is now easily achieved (see
Figure 18).

5.8 Putting Patterns to Work

« interface»
Invoice Change

Listener

addChangeListenerO

stateChangedO

Figure 1 8

Observing the Invoice

fi nal Invoi ce i nvoi ce = new Invoi ce() ;

t;>.

(anonymous
class)

fi nal JTextArea textArea = new JTextArea (20 , 40) ;
ChangeLi stener l i stener = new

ChangeL i stene rO
{

} ;

publ i c voi d stateChanged (ChangeEvent event)
{

}

Stri ng formattedInvoi ce = . . . ;
textArea . setText (formattedInvoi ce) ;

i nvoi ce . addChangeLi stene r (l i stener) ;

•

Clients of the Invoi ce class may need to know the line items inside an invoice. However,
we do not want to reveal the structure of the Invoi ce class. For example, it would be
unwise to return the i terns array list. That simple-minded approach causes problems if
we later change the internal implementation, storing the items in another data structure
or in a relational database table. Instead, we will follow the ITERATOR pattern.
For simplicity, we make use of the Ite rator interface of the Java library. This interface
has three methods:

publ i c i nterface Ite rator<E>
{

}

bool ean hasNext () ;
E nextO ;
voi d remove 0 ;

The remove method is described as an "optional operation". When defining an iterator
class, this method cannot be skipped because it belongs to the interface type. But you can
implement it trivially by throwing an UnsupportedOpe rati onExcepti on . We will discuss
the optional operations of the Java library in more detail in Chapter 8.

· . CHAPTER 5 Patterns and GUI Programming

Invoice
-

getitemsO

Figure 1 9

«interface»
Iterator

nextO
hasNextO

�

(anonymous
class)

Iterating Through the Items of an Invoice

The following method returns an iterator. The returned object belongs to an anonymous
class that implements the Ite rator interface (see Figure 19). If you follow the defini
tions of the next and has Next methods, you can see how the iterator object traverses the
array list.

publ i c Ite rato r<Li neltem> getltems()
{

}

return new
Ite rator<Li neltem> ()
{

} ;

publ i c bool ean hasNext ()
{

return current < i tems . si ze () ;
}

publ i c Li neltem next ()
{

}

Li neltem r i tems . get (cu rrent) ;
cur rent++ ;
return r ;

publ i c voi d remove ()
{

th row new Unsuppo rtedOpe rati onExcepti on() ;
}

pri vate i nt current 0 ;

\
J

5.S Putting Patterns to Work

III� _=

I __

NOTE The ArrayL i st: class has an i t:e rat:or method that yields an iterator for traversing the
array list. The get:It:erns method could have simply returned i t:erns . i t:e rat:o r O . We chose to
implement the iterator explicitly so that you can see the inner workings of an iterator object .

. $ 19.95
I : Hammer. Assoned nails (Discount 10.0%): $26.91

I Bundle: Hmlmer, Assorted n�ls cPiscount lo.00'q) ·1 1 Add I

Figure 20

The Invoi ceTeste r Program

Finally, let's take a closer look at the task of formatting an invoice. Our sample program
formats an invoice very simply (see Figure 20). As you can see, we have a string
"INVOICE" on top, followed by the descriptions and prices of the line items, and a total
at the bottom.

However, that simple format may not be good enough for all applications. Perhaps we
want to show the invoice on a Web page. Then the format should contain HTML tags,
and the line items should be rows of a table. Thus, it is apparent that there is a need for
multiple algorithms for formatting an invoice.
The STRATEGY pattern addresses this issue. This pattern teaches us to design an inter
face to abstract the essential steps of the algorithm. Here is such an interface:

Ch5/invoice/lnvoiceFormatter.java

1 /**
2 This interface describes the tasks that an invoice
3 formatter needs to carry out. 4 */
5 publ i c i nt:e rface Invoi ceForrnat:t:er
6 {
7
8
9

10

/**

*/

Formats the header of the invoice.
@ret:u rn the invoice header

. : CHAPTER 5 Patterns and GUI Programming

1 1 Stri ng formatHeader() ;
12
13 /**
14 Formats a line item of the invoice.
15 @return the formatted line item
16 */
17 Stri ng formatLi neltem(Li neltem i tem) ;
18
19 /**
20 Formats the footer of the invoice.
21 @retu rn the invoice footer
22 */
23 Stri ng formatFooter () ;
24 }

We make a strategy object available to the format method of the Invoi ce class:
publ i c St ri ng format (Invoi ceFo rmatter formatter)
{

}

Stri ng r = formatter . formatHeader() ;
Ite rator<Li neltem> i ter = getltems() ;
whi l e (i te r . hasNext ())
{

Li neltem i tem = i te r . next () ;
r += formatter . formatLi neltem (i tem) ;

}
return r + formatter . formatFooter () ;

The Si mpl eFormatter class implements the strategy interface type. Figure 21 shows the
relationships between the classes used for formatting.
This particular version provides a very simple formatting algorithm. Exercise 5 .16 asks
you to supply an invoice formatter that produces HTML output.

EJ------------------------.,..

Figure 21

Formatting an I nvoice

«interface»
Invoice

Formatter

formatHeaderO
formatLineltemO
formatFooterO

fi.

Simple
Formatter

5.8

i

Putting Patterns to Work . -

II!l _=
. -

Ch5/invoice/SimpleFormatter.java

/**
A simple invoice formatter.

*/

1
2
3
4
5
6
7

publ i c c l ass Si mpl eFormatter i mpl ements Invoi ceFormatter
{

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 }

publ i c Stri ng formatHeader ()
{

}

total = 0 ;
retu rn " I N V 0 I C E\n\n\n " ;

publ i c St ri ng formatLi neItem(Li neItem i tem)
{

}

total += i tem . getPri ce () ;
return (Stri ng . format (

"%s : $% . 2f\n " , i tem . toStri ngO , i tem . getP ri ceO)) ;

publ i c Stri ng formatFooter ()
{

retu rn (Stri ng . format ("\n\nTOTAL DUE : $% . 2f\n " , total)) ;
}

pri vate doubl e total ;

This concludes the design of the invoice program. We have made use of five separate
patterns during the design. Here are the complete Invoi ce class and the test program.

Ch 5/invoice/lnvoice.java

1 i mport j ava . uti l . * ;
2 i mpo rt j avax . swi ng . event . * ;
3
4 /**
5 An invoice for a sale, consisting ofline items.
6 */
7 publ i c c l ass Invoi ce
8 {
9 /**

10 Constructs a blank invoice.
11 */
12 publ i c Invoi ceO
13 {
14 i tems = new ArrayLi st<Li neItem>() ;
15 l i steners = new Ar rayLi st<ChangeLi stener>() ;
16 }
1 7
18 /**
19 Adds an item to the invoice.
20 @param i tern the item to add
21 */
22 publ i c voi d addItem(Li neItem i tem)
23 {

CHAPTER S Patterns and GUI Programming

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79 }

}

/**

*/

i tems . add (i tem) ;
/ / NotifY all observers of the change to the invoice
ChangeEvent event = new ChangeEvent (thi s) ;
for (ChangeLi stener l i stener : l i stene rs)

l i stene r . stateChanged (event) ;

Adds a change listener to the invoice.
@param 1 i stener the change listener to add

publ i c voi d addChangeLi stene r (ChangeLi stener l i stener)
{

}

/**

*/

l i steners . add(l i stene r) ;

Gets an iterator that iterates through the items.
@return an iterator for the items

publ i c Ite rator<Li neltem> getltems()
{

}

retu rn new
Ite rator<Li neltem> ()
{

} ;

publ i c bool ean hasNext()
{

return cu r rent < i tems . si ze() ;
}

publ i c Li neltem next ()
{

retu rn i tems . get(cur rent++) ;
}

publ i c voi d remove ()
{

th row new UnsupportedOpe rationExcepti on () ;
}

pri vate i nt current 0 ;

publ i c Stri ng format (Invoi ceFormatte r formatter)
{

}

Stri ng r = formatter . formatHeader() ;
Ite rator<Li neltem>i ter = getltems () ;
whi l e (i te r . hasNext ())

r += formatter . formatLi neltem(i te r . next ()) ;
retu rn r + formatter . formatFooter () ;

pri vate Ar rayLi st<Li neltem> i tems ;
pri vate ArrayLi st<ChangeLi stene r> l i steners ;

5.8 Putting Patterns to Work

Ch5/invoice/lnvoiceTester.java

1 i mport j ava . awt . * ;
2 i mport j ava . awt . event . * ;
3 i mport j avax . swi ng . * ;
4 i mport j avax . swi ng . event . * ;
5
6 /**
7 A program that tests the invoice classes.
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

*/
publ i c cl ass Invoi ceTester
{

publ i c stati c voi d mai n (Stri ng [] args)
{

fi nal Invoi ce i nvoi ce = new Invoi ce () ;
fi nal Invoi ceFormatter formatter = new Si mpl eFo rmatter() ;

/ / This text area will contain the formatted invoice
fi nal JTextArea textArea = new JTextArea(20 , 40) ;

/ / When the invoice changes, update the text area
ChangeLi stener l i stene r = new

ChangeL i stener 0
{

publ i c voi d stateChanged (ChangeEvent event)
{

textArea . setText (i nvoi ce . format (fo rmatter)) ;
}

} ;
i nvoi ce . addChangeLi stene r (l i stene r) ;

/ / Add line items to a combo box
fi nal JComboBox combo = new JComboBox () ;
Product hammer = new Product ("Hammer" , 19 . 95) ;
P roduct nai l s = new Product ("Assorted nai l s " , 9 . 95) ;
combo . addItem(hamme r) ;
Bundl e bundl e = new Bundl e () ;
bundl e . add (hammer) ;
bundl e . add (nai l s) ;
combo . addItem (new Di scountedItem (bundl e , 10)) ;

/ / Make a button for adding the currently selected
/ / item to the invoice
J Button addButton = new J Button("Add") ;
addButton . addActi onLi stener (new

Acti onL i stenerO
{

publ i c voi d acti onPe rfo rmed (Acti onEvent event)
{

}
}) ;

Li neItem i tem = (Li neItem) combo . getSel ectedItem() ;
i nvoi ce . addItem(i tem) ;

/ / Put the combo box and the add button into a panel
J Panel panel = new J Panel () ;

CHAPTER 5 Patterns and GUI Programming

55 panel . add(combo) ;
56 panel . add (addButton) ;
57
58 / / Add the text area and panel to the frame
59 J Frame frame = new J Frame () ;
60 frame . add (new JScrol l Pane (textArea) ,
61 Borderlayout . CENTER) ;
62 frame . add (panel , Borde rlayout . SOUTH) ;
63 frame . setDefaul tCl oseOperati on (JFrame . EXIT_ON_ClOSE) ;
64 frame . pack() ;
65 frame . setVi s i bl e (t rue) ;
66 }
67 }

You have now seen a number of common patterns. You have seen how they are used in
GUI programming, and you have seen simple code examples that put them to work. We
will introduce additional patterns throughout this book.

EXERClSES
Exercise 5 .1 . Write a program that contains two frames, one with a column of text
fields containing numbers, and another that draws a bar graph showing the values of
the numbers. When the user edits one of the numbers, the graph should be redrawn.
Use the OBSERVER pattern. Store the data in a model. Attach the graph view as a lis
tener. When a number is updated, the number view should update the model, and the
model should tell the graph view that a change has occured. As a result, the graph view
should repaint itself

Exercise 5.2. Improve Exercise 5 .1 by making the graph view editable. Attach a mouse
listener to the panel that paints the graph. When the user clicks on a point, move the
nearest data point to the mouse click. Then update the model and ensure that both the
number view and the graph view are notified of the change so that they can refresh their
contents. Hint: Look up the API documentation for the Mousel i stener interface type.
In your listener, you need to take action in the mousePressed method. Implement the
remaining methods of the interface type to do nothing.

Exercise 5.3. A slider is a user interface component that allows a user to speci�
continuum of values. To be notified of slider movement, you need to attach a class that
implements the Changel i stener interface type. Read the API documentatiorr f6r
JSl i der and Changel i stener. Make a table of pattern names and actual names that
shows how this is a manifestation of the OBSERVER pattern.

Exercise 5.4. Implement a program that contains a slider and a car icon. The size of the
car should increase or decrease as the slider is moved.

Exercise 5.5. Read about the Gri dBaglayout and reimplement the Tel ephone class by
adding all components directly to the frame controlled by a single grid bag layout.

Exercises

Exercise 5.6. Add two telephone handsets to the GUI version of the voice mail program.
When you test your program, add a message through one of the handsets and retrieve it
through the other.

Exercise 5.7. Improve the program of Exercise 5.6 so that the program does not
terminate as soon as one of the handset frames is closed. Hint: Don't use a default
close operation but install a Wi ndowL i stene r into the frames. The wi ndowCl osi ng method
of the listener should call System . exi t (0) when the last frame is being closed.

Exercise 5.8. Add scroll bars to the text areas of the telephone frame.

Exercise 5.9. Use the COMPOSITE pattern to define a class Composi tel con that imple
ments the Icon interface type and contains a list of icons. Supply a method

voi d addlcon (Icon i con , i nt x , i nt y)

Exercise 5 .10. You can give a title to a border by using the Ti tl edBorder class. For
example,

panel . setBorde r (new Ti tl edBorder (new EtchedBorde r() ,
" Sel ect one opti on")) ;

Which pattern is at work here? Explain.

Exercise 5 .11 . A Scanner can be used to read numbers and lines from a Reader. Is this an
example of the DECORATOR pattern?

Exercise 5.12. Supply decorator classes Encrypti ngWri ter and Dec rypti ngReade r that
encrypt and decrypt the characters of the underlying reader or writer. Make sure that
these classes are again readers and writers so that you can apply additional decorations.
For the encryption, simply use the Caesar cipher, which shifts the alphabet by three char
acters (i.e., A becomes D, B becomes E, and so on).

Exercise 5 .13 . Improve the classes of Exercise 5 .12 so that it is possible to vary the
encryption algorithm. Which design pattern are you employing?

Exercise 5.14. Suppose you want to combine the benefits of the PushbackReader and
Buffe redReader decorators and call both the readL i ne and un read methods. What prob
lem might you encounter? What redesign could fix the problem? What design lesson can
you draw from your observation?

Exercise 5.15 . Make tables for the five patterns of the invoice program that show how
the names used in the pattern descriptions map to the actual names in the
implementations.

Exercise 5 .16. Provide a class that implements the Invoi ceFormatter interface type,
using HTML to format the output prettily.

Exercise 5.17. Write a new pattern from your own programming experience. Think of a
problem that you ended up solving more than once, and describe the problem and solu
tion in the pattern format.

Chapter

Inneritance ana
A bstract Classes

.. The Concept of Inheritance

.. Graphics Programming with Inheritance

.. Abstract Classes

.. The TEMPLATE METHOD Pattern

.. Protected Interfaces

.. The Hierarchy of Swing Components

.. The Hierarchy of Standard Geometric Shapes

.. The Hierarchy of Exception Classes

.. When Not to Use Inheritance

In this chapter we discuss the important class relationship of inheritance.
A class inherits from another class if it describes a specialized subset of

objects. For example, a class Manage r may inherit from a class Empl oyee.

All methods that apply to employees also apply to managers. But manag

ers are more specialized because they have methods that are not applicable

to employees in general. For example, managers may get bonuses that

regular employees do not enjoy.

CHAPTER 6 Inheritance and Abstract Classes

We start with a very simple example to show the mechanics of
inheritance. Then we progress to a series of interesting graphical programs
that demonstrate advanced techniques. Finally, we examine how
inheritance is used in the Java class libraries.

The Concept of Inheritance

Using Inheritance for Modeling Specialization

Specialized subclasses inherit
from superclasses that repre
sent more general concepts.

You use inheritance to model a relationship between classes in which
one class represents a more general concept and another a more
specialized concept. For example, consider a class Manager that inher
its from the class Empl oyee. This is a valid use of inheritance because

managers are a special type of employee. Every manager is an employee, but not every
employee is a manager. The more general class is called the superclass and the more spe
cialized class the subclass.

A subclass can define addi
tional methods and fields.

Generally, the subclass extends the capabilities of the superclass. The
specialized subclass objects may have additional methods and fields.

Consider this simple Empl oyee class:

publ i c cl ass Empl oyee
{

}

publ i c Empl oyee (St ri ng aName) { name = aName ; }
publ i c voi d setSa lary(doubl e aSal ary) { sal ary aSal ary ; }
publ i c Stri ng getName () { return name ; }
publ i c doubl e getSal ary() { retu rn sal ary ; }
pri vate Stri ng name ;
pri vate doubl e sal ary ;

Subclasses can override
methods by giving a new
definition for a method that
exists in the superclass.

Here is a Manager class that adds a new method and a new field. The
subclass also overrides an existing method of the superclass, giving a
new definition. The Manager version of getSal arY ,will compute the
sum of the base salary and the bonus.

publ i c cl ass Manager extends Empl oyee
{

publ i c Manager (Stri ng aName) { . . . }
J

publ i c voi d setBonus (doubl e aBonus) { bonus = aBonus ; } II new method
publ i c doubl e getSal aryO { . . . } II overrides Empl oyee method
pri vate doubl e bonus ; I I new field

}

Note that Java uses the extends keyword to denote inheritance. You will see the code for
the Manager constructor and the getSal ary method later in this chapter.

Figure 1 shows the class diagram.

6.1 The Concept of Inheritance

Emp loyee

name
salary
getNameO
getSalaryO
setSalaryO

Manager

bonus

setBonusO
getSalaryO -

Figure 1

-

Overrides D
Employee

method

The Manage r Class Inherits from the Empl oyee Class

Subclasses inherit the methods
of the superclass.

overrides them.

When inheriting from a superclass, you need to declare only the
difference between the subclass and superclass. The subclass auto
matically inherits all features from the superclass, unless the subclass

In the example, the Manage r subclass has the following methods and fields:

• Methods setSa 1 ary and getName (inherited from Empl oyee)

• A method getSa1 ary (overridden in Manager)

• A method setBonus (defined in Manage r)

• Fields name and sal ary (inherited from Empl oyee)

• A field bonus (defined in Manager)

NOTE If a method is tagged as fi na 1 , it cannot be overridden in a subclass, which is useful
for particularly sensitive methods (such as security checks). It is also possible to declare a class
as fi na 1 . A fi na 1 class cannot be extended. For example, the St ri ng class is a fi na 1 class.

11ft- The Super/Sub Terminology

Beginners are often confused by the super/sub terminology. Isn't a manager superior to
employees in some way? Mter all, each Manage r object contains all the fields of an
Emp 1 oyee object. Why then is Manage r the subclass and Empl oyee the superclass?

CHAPTER 6 Inheritance and Abstract Classes

Managers

Employees

Figure 2

The Set of Managers is a Subset of the Set of Employees

Subclass objects form a
subset of the set of
superclass objects.

The terminology becomes clear when you think of a class as a set of
objects. The set of managers is a subset of the set of employees, as
shown in Figure 2.

'MEl- Inheritance Hierarchies

In the real world, concepts are often categorized into hierarchies. Hierarchies are fre
quently represented as trees, with the most general concepts at the root of the hierarchy
and more specialized ones towards the branches.

Sets of classes can form com-
In object-oriented design, it is equally common to group classes into

plex inheritance hierarchies. complex inheritance hierarchies. Figure 3 shows a part of a hierarchy
of classes that represent various kinds of employees. We plac�he class

Obj ect at the base of the hierarchy because all other classes in Java extend th, Obj ect
class. You will learn more about that class in Chapter 7.
When designing a hierarchy of classes, you ask yourself which features are common to all
classes that you are designing. Those common properties are collected in superclasses at
the base of the hierarchy. For example, all employees have a name and a salary. More spe
cialized properties are only found in subclasses. In our model, only managers receive a
bonus.
Later in this chapter, we will analyze several important hierarchies of classes that occur
in the Java library.

6.1 The Concept of Inheritance

I
Manager

i

Object

't
Employee

't

J

I
Clerical

Staff
Member

'r I
Executive Receptionist Secretary

Figure 3

A Hierarchy of Employee Classes

@tl- The Substitution Principle

I
Technical

Staff
Member

't I I
Software Test

Developer Engineer

According to the Liskov substi
tution principle, you can use a
subclass object whenever a
superclass object is expected.

Since a subclass inherits the behavior of its superclass, you can substi
tute subclass objects whenever a superclass object is expected. This
rule is called the Liskov substitution principle, named after Barbara
Liskov, a professor at MIT and pioneering researcher in the field of
object-oriented programming.

For example, consider the following instructions:
Empl oyee e ;

System . out . pri ntl n (" name=" + e . getName O) ;
System . out . pri ntl n (" sal a ry=" + e . getSal ary O) ;

The Liskov substitution principle states that the instructions work equally well if you
supply a Manage r object where an Empl oyee object is expected.

e = new Manage r (" Berni e Smi th") ;

Let's look at each of the calls in turn. The call
e . getNameO

poses no particular problem. The Manager class inherits the getName method from the
Emp 1 oyee class.
However, the call

e . getSal aryO

is more interesting. There are two versions of the getSa 1 ary method, one defined in the
Empl oyee class, and another in the Manage r class. As you already saw in Chapter 4, the
Java virtual machine automatically executes the correct version of the method, depending

CHAPTER 6 Inheritance and Abstract Classes

on the type of object to which e refers. If e refers to a Manager object, then the Manager
version of the getSa 1 ary method is invoked. Recall that this phenomenon is called
polymorphism.

',,.1- Invoking Superclass Methods

Now let's implement the getSal ary method of the Manager class. This method returns
the sum of the base salary and the bonus.

publ i c cl ass Manager extends Empl oyee
{

}

publ i c doubl e getSal ary()
{

retu rn sal ary + bonus ; / / ERROR-private field
}

A subclass cannot access pri-
However, we have a problem. The sal ary field is a private field of the

vate features of its superclass. Emp 1 oyee class. The methods of the Manage r class have no right to
access that field. A subclass has to play by the same rules as any other

class, and use the public getSa 1 ary method.
publ i c doubl e getSal ary()
{

return getSa 1 aryO + bonus ; / / ERROR-recursive call
}

Use the super keyword to call Unfortunately, now we have a different problem. If you call getSal ary

a superclass method. inside a method that is also called getSa 1 ary, then the method calls
itself However, we want to call the superclass method to retrieve the

employee salary. You use the super keyword to express that intention.
publ i c doubl e getSal ary()
{

retu rn super . getSal ary() + bonus ;
}

Note that super is not a variable; in particular, it is not like the thi s variable. Of course,
if you called

thi s . getSal ary() ;

then the Manager version of the getSal aryO method would call itself-and produce an
infinite regression of calls. � Also note that you can't simply convert the thi s reference to the superclass �e. Con
sider this attempt:

Empl oyee supe rThi s = thi s ;
retu rn superThi s . getSal ary() + bonus ;

However, the call superThi s . getSal ary still invokes the Manager method! This is the
effect of polymorphism. The actual type of the object to which a variable refers, and not
the declared type of the variable, determines which method is called. Since the object to
which supe rThi s refers is of type Manager, the getSal ary method of the Manager class is
invoked.

6.1 The Concept of Inheritance

The super keyword suppresses the polymorphic call mechanism and forces the superclass
method to be called instead.

TIP As you just saw, subclasses have no right to access the private features of a superclass.
Beginners sometimes try to "solve" this problem by redeclaring fields in the subclass:

publ i c cl ass Manager extends Empl oyee
{

pri vate doubl e sal ary ; / / ERROR-replicated field
}

Now a Manager object has two fields named sal ary! One of them is manipulated by the
Empl oyee methods and the other by the Manager methods. Be sure to avoid this common
design error.

'M'I- Invoking Superclass Constructors

Use the supe r keyword to call
a superclass constructor at the
start of a subclass constructor.

To complete the implementation of the Manage r class, we need to
supply the Manager constructor. The constructor receives a string for
the name of the manager. As already discussed, you cannot simply set
the name field to the parameter value, because that field is a private field

of the Empl oyee class. Instead, you must call the Empl oyee constructor. You also use the
super keyword for this purpose:

publ i c Manager(Stri ng aName)
{

super (aName) ; / / Calls superclass constructor to initialize private fields of superclass
bonus = 0 ;

}

The call to the superclass constructor must be the first statement of the subclass
constructor.

If a subclass constructor does
not call a superclass con
structor, then the superclass
constructor with no parameters
is called automatically.

If the superclass has a constructor with no parameters, then a subclass
constructor doesn't have to call any superclass constructor. By default,
the superclass is constructed automatically with its no-parameter
constructor. For example, later in this chapter, we will form subclasses
of the]Component and J Frame classes. Because those classes have
constructors JComponentO and J F rameO with no parameters, the sub

class constructors needn't call super.

If all superclass constructors require parameters, then the subclass must call super or the
compiler reports an error.

B'I-- Preconditions and Postconditions of Inherited Methods

Recall from Chapter 3 that a precondition of a method is a condition that must be true
before the method can be called. The caller of the method is responsible for making the
call only when the precondition holds.

CHAPTER S

A subclass method can only
require a precondition that is
at most as strong as the pre
condition of the method
that it overrides.

Inheritance and Abstract Classes

When a subclass overrides a method, the precondition of that method
cannot be stronger than the precondition of the superclass method
that it overrides.
For example, let's give a reasonable precondition to the setSa 1 ary
method of the Empl oyee class: The salary should be a positive value.

publ i c cl ass Empl oyee
{

/**
Sets the employee salary to a given value.
@param aSal ary the new salary
@precondi ti on aSal ary > 0

*/
publ i c voi d setSal a ry(doubl e aSal a ry) { . . . }

}

Now consider a subclass Manager . Can the Manage r class set a precondition of the set
Sal ary method that the salary is always at least $100,000? No. The precondition in the
subclass method cannot be stronger than the precondition in the superclass method.

To see the reason, consider these statements.

Empl oyee e = . . . ;
e . setSal ary(50000) ;

This code would appear to be correct because the method parameter is > 0, fulfilling the
precondition of the Empl oyee method. However, if e referred to a Manage r object, then
the precondition that the salary be at least $100,000 would be violated. This conflicts
with the concept that preconditions must be checkable by the programmer making the
call.
To summarize: When a subclass overrides a method, its precondition may be at most as
strong as the precondition of the superclass method. In particular, if a superclass method
has no precondition, the subclass method may not have a precondition either.

A subclass method must
ensure a postcondition that
is at least as strong as the
postcondition of the method
that it overrides.

Conversely, when a subclass overrides a method, its postcondition
must be at least as strong as the postcondition of the superclass
method. For example, suppose Empl oyee . setSa 1 ary promises not to
decrease the employee's salary. Then all methods. that override set
Sa 1 ary must make the same promise or a stronger promise.

NOTE You just saw that preconditions of subclass methods cannot be more restX:i)ive than
the preconditions of the superclass methods that they override. The same reasoning holds for
a number of other conditions. In particular:

• When you override a method, you cannot make it less accessible.

• When you override a method, you cannot throw more checked exceptions than are
already declared in the superclass method.

6.2 Graphics Programming with Inheritance

Graphi c s Programming with Inheritance

Designing Subclasses o f the J Component Class

In this section, we will put inheritance to work in practical programming situations.

In Chapter 4, you saw how to draw shapes by using classes that implement the Icon
interface type.

publ i c cl ass Mylcon i mpl ements Icon
{

}

publ i c voi d pai ntlcon (Component c , Graphi cs g , i nt x , i nt y)
{

drawing instructions go here
}

To draw shapes, subclass the
]Component class and over
ride the pai ntComponent
method.

Another common technique is to form a subclass of]Component. You
redefine its pai ntComponent method, like this:

publ i c cl ass MyComponent extends JComponent
{

}

publ i c voi d pai ntComponent (Graph i cs g)
{

drawing instructions go here
}

There is one advantage to this approach-the]Component class has a rich behavior that
you automatically inherit. For example, you can attach a mouse listener to the compo
nent and receive notification when the user clicks on the component with the mouse.
This is an important difference between implementing an interface type and extending a
class. When you implement an interface type, you start with nothing--the interface type
supplies only the names and signatures of the methods you must support. When you
extend a class, you inherit all features that the superclass offers.
We will develop a program that allows a user to move a car by dragging it with the
mouse. In the following sections, that program will be enhanced to show a scene com
posed of arbitrary shapes.
The CarComponent class stores a reference to a CarShape object. Its pai ntComponent
method draws the shape:

publ i c cl ass CarComponent extends JComponent
{

}

publ i c voi d pai ntComponent (Graphi cs g)
{

}

G raphi cs2D g2 = (Graphi cs2D) g ;
car . d raw(g2) ;

p ri vate CarShape car ;

CHAPTER 6 Inheritance and Abstract Classes

1,,1- Listener Interface Types and Adapter Classes

To complete the car drawing program, we need to add mouse event handlers. When the
user presses the mouse button, we want to check whether the mouse position is inside
the car. If so, we will initiate the dragging process. When the user drags the mouse, we
move the car to follow the mouse position.

To track mouse actions, you
attach mouse listeners and
mouse motion listeners to
components.

To enable mouse tracking, you attach a listener to the component.
Actually, there are two listener types, one for listening to mouse clicks
and another for listening to mouse movement. These two event types
are separated because listening for mouse movement is fairly expensive.
Program users move the mouse a lot, causing frequent calls to mouse

motion listeners. If a client is only interested in mouse clicks, then it is best not to install
a mouse motion listener.

Here are the interface types:

publ i c i nte rface Mouseli stene r
{

}

voi d mouseCl i cked (MouseEvent event) ;
voi d mousePressed (MouseEvent event) ;
voi d mouseRel eased (MouseEvent event) ;
voi d mouseEnte red (MouseEvent event) ;
voi d mouseExi ted (MouseEvent event) ;

publ i c i nte rface MouseMoti onli stener
{

}

voi d mouseMoved (MouseEvent event) ;
voi d mouseD ragged (MouseEvent event) ;

Listener interface types with
many methods have corre
sponding adapter classes with
do-nothing methods. Extend
the adapter rather than imple
menting the listener.

Both the Mousel i stener and MouseMoti onl i stener interface types
have several methods, yet an actual listener usually wants a nontrivial
action in only one or two of them. To simplifY the implementation of
listeners, some friendly soul has produced two classes, MouseAdapter
and MouseMoti onAdapter, that implement all methods to do nothing.

Here is the implementation of the MouseAdapte r class:

publ i c cl ass MouseAdapte r i mpl ements Mouseli stener
{

}

publ i c voi d mouseCl i cked (MouseEvent event) {}
publ i c voi d mousePressed (MouseEvent event) { }
publ i c voi d mouseRel eased (MouseEvent event) {}
publ i c voi d mouseEntered (MouseEvent event) {}
publ i c voi d mouseExi ted (MouseEvent event) {}

To define your own listener, just extend these adapter classes and override the methods
you care about. For example, the mouse listener of the CarComponent only cares about the
mousePressed method, not the other four methods of the Mousel i stener interface type.

6.2 Graphics Programming with Inheritance

TIP If most subclasses need one version of the method, and a few need a different one, move
the most common method to the superclass. The few subclasses that need a different version
can override the default, but most classes need to do nothing.

Use an anonymous class to define the mouse listener. The anonymous listener class
extends MouseAdapte r rather than implementing Mousel i stener. (Note that the extends
keyword is not used in the definition of an anonymous subclass.)

publ i c cl ass CarComponent extends JComponent
{

}

publ i c CarComponent()
{

}

addMouseli stener (new
MouseAdapte r 0
{

publ i c voi d mousePressed (MouseEvent event)
{

}
}) ;

/ / mouse action goes here
mousePoi nt = event . getPoi nt () ;
i f (! car . contai ns (mousePoi nt)) mousePoi nt

pri vate CarShape car ;
pri vate Poi nt mousePoi nt ;

nul l ;

The CarComponent class inherits the addMousel i stener method from its superclass.

The mousePressed method is overridden so that we gain control as soon as the mouse
button is depressed. The mouseCl i cked method is not appropriate here-it's only called
after the mouse button has been depressed and released.

The mousePressed method remembers the position at which the mouse was pressed.
That position is needed later when dragging the car. Therefore, we store it in the mouse
Poi nt instance field. However, if the mouse position was not inside the car, we set the
mousePoi nt field to nul l . That is an indication that dragging the mouse should not move
the car.

Next, we need a mouse motion listener. We want to track when the mouse is dragged
(moved while a mouse button is depressed). Whenever the mouse position changes, the
mouseD ragged method is called. We compute the difference between the previous and the
current mouse positions, update the car position, and ask the component to repaint itself
so that the car is drawn in the new position.

addMouseMoti onli stener (new
MouseMoti onAdapte r ()
{

publ i c voi d mouseDragged (MouseEvent event)
{

/ / mouse drag action goes here

1111_=
1 ._

CHAPTER 6 Inheritance and Abstract Classes

}
}) ;

i f (mousePoi nt == nul l) retu rn ;
Poi nt l astMousePoi nt = mousePoi nt ;
mousePoi nt = event . getPoi nt () ;

doubl e dx = mousePoi nt . getX() - l astMousePoi nt . getX() ;
doubl e dy = mousePoi nt . getY() - l astMousePoi nt . getY() ;
car . transl ate ((i nt) dx , (i nt) dy) ;
repai nt O ;

Here is the complete program. (The code for the CarShape class is in Section 4.10.)
Figure 4 shows the class diagram.

Ch6/car/CarComponent.java

1 i mport
2 i mport
3 i mport
4 i mport
5 i mport
6

/**

j ava . awt . * ;
j ava . awt . event . * ;
j ava . awt . geom . * ;
j avax . swi ng . * ;
j ava . uti l . * ;

7
8
9

A component that shows a scene composed of items.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

*/
publ i c cl ass CarComponent extends JComponent
{

publ i c CarComponent ()
{

car = new CarShape (20 ,
addMouseLi stener (new

MouseAdapte r 0
{

20 , 50) ;

publ i c voi d mousePressed (MouseEvent event)
{

}
}) ;

mousePoi nt = event . getPoi nt() ;
i f (! car . contai ns (mousePoi nt))

mousePoi nt = nul l ;

addMouseMoti onLi stener (new
MouseMoti onAdapter()
{

publ i c voi d mouseDragged (MouseEvent event)
{

}
}) ;

i f (mousePoi nt == nul l) retu rn ;
Poi nt l astMousePoi nt = mousePoi nt ;
mousePoi nt = event . getPoi nt() ;

doubl e dx = mousePoi nt . getX()
doubl e dy = mousePoi nt . getY()
car . transl ate ((i nt) dx , (i nt)
repai ntO ;

- l astMousePoi nt . getX() ;
- l astMousePoi nt . getY() ;
dy) ;

6.2 Graphics Programming with Inheritance

Figure 4

41 }
42
43 publ i c voi d pai ntComponent (Graphi cs g)
44 {
45 Graphi cs2D g2 = (Graphi cs2D) g ;
46 car . d raw(g2) ;
47 }
48
49 pri vate CarShape car ;
50 p ri vate Poi nt mousePoi nt ;
51 }

Ch6/car/CarMover.java

i mport
i mport
i mport
i mport

/**

j ava . awt . * ;
j ava . awt . geom . * ;
j ava . awt . event . * ;
j avax . swi ng . * ;

1
2
3
4
5
6
7
8
9

A program that allows users to move a car with the mouse.
*/

10
1 1
12

publ i c cl ass CarMover
{

13
14
1 5
16
1 7
1 8
1 9
20
21
22
23 }

publ i c stati c voi d mai n (Stri ng [] a rgs)
{

}

J Frame frame = new J F rame () ;
frame . setDefaul tCl oseOpe rati on (JF rame . EXIT_ON_CLOSE) ;

frame . add (new CarComponent ()) ;
frame . setSi ze (FRAME_WIDTH , FRAME_HEIGHT) ;
frame . setVi s i bl e (t rue) ;

pri vate stati c fi nal i nt FRAME_WIDTH = 400 ;
pri vate stati c fi nal i nt FRAME_HEIGHT = 400 ;

JComponent

L «interface»
Mouse

Listener

f
Mouse

Adapter

Car Car

."
The Classes
of the

Shape Component
;: ::,-.. -,��� - -- --- - - - --- -----

, , ,
"

" '
"

(anonymous
class)

Car Mover
Program

«interface»
Mouse
Motion

Listener

r
Mouse
Motion

Adapter

r
(anonymous

class)

Fig ure 5

CHAPTER 6 Inheritance and Abstract Classes

Abstract Clas s e s

As a practical example of object-oriented design techniques, we will develop a scene edi
tor program. A scene consists of shapes such as cars, houses, and so on.
The scene editor draws the shapes and allows the user to add, move, and delete shapes
(see Figure 5). As is common with programs of this kind, we allow the user to select a
shape with the mouse. Clicking on a shape selects it, clicking again unselects it. The
selection is used when dragging the mouse or clicking on the "Remove" button. Only the
selected shapes are moved or deleted. Shapes need to draw themselves in a different way
when they are selected. In this version of our scene editor, the houses and cars use a black
fill to denote selection.

There are a number of operations that the shapes must carry out (see Figure 6):

• Keep track of the selection state.

• Draw a plain or selected shape.

• Move a shape.
• Find out whether a point (namely the mouse position) is inside a shape.

Therefore, a natural next step is to design an interface type
publ i c i nterface SceneShape
{

}

voi d setSel ected (bool ean b) ;
bool ean i sSel ected () ;
voi d d raw(Graphi cs2D 92) ;
voi d drawSel ecti on (G raphi cs2D 92) ;
voi d transl ate (i nt dx , i nt dy) ;
bool ean contai ns (Poi nt2D aPoi nt) ;

SceneSh ape

manage selection state
draw the shap!"
move the shape
containment testing

Figure 6

The Scene Editor A CRC Card of the SceneShape Interface Type

6.3 Abstract Classes

We'll then define classes CarShape and HouseShape that implement this interface type.

However, there is some commonality between these classes. Every shape needs to keep a
selection flag. The naive approach would be to supply the selection flag separately in each
class:

publ i c cl ass HouseShape i mpl ements SceneShape
{

}

publ i c voi d setSel ected (bool ean b) { sel ected = b ; }
publ i c bool ean i sSel ected () { return sel ected ; }
pri vate bool ean sel ected ;

publ i c cl ass CarShape i mpl ements SceneShape
{

publ i c voi d setSel ected (bool ean b) { sel ected = b ; }
publ i c bool ean i sSel ected () { return sel ected ; }
pri vate bool ean sel ected ;

}

Move common fields and
methods into a superclass.

Clearly, it is a better idea to design a class that expresses this com
monality. We will call this class Se 1 ectab 1 eShape.

publ i c cl ass Sel ectabl eShape i mpl ements SceneShape
{

publ i c voi d setSel ected (bool ean b) { sel ected = b ; }
publ i c bool ean i sSel ected () { return sel ected ; }
pri vate bool ean sel ected ;

}

publ i c cl ass CarShape extends Sel ectabl eShape { }
publ i c cl ass HouseShape extends Sel ectabl eShape { }

Figure 7 shows the relationships between these types.

However, there is a problem with the Se 1 ectab 1 eShape class. It does not define all of the
methods of the Scene Shape interface type. Four methods are left undefined in this cla3s.

• voi d d raw(Graphi cs2D 92)

• voi d d rawSel ecti on(Graphi cs2D 92)

• voi d transl ate (doubl e dx , doubl e dy)

• bool ean contai ns (Poi nt2D aPoi nt)

An abstract method is unde
fined and must be defined in a
subclass. A class with one or
more abstract methods must
be declared as abstract.

We say that these methods are undefined or abstract in the Se 1 ectab 1 e
Shape class. It is the job of further subclasses to define them. For that
reason, the Sel ectabl eShape class must be tagged as abstract:

publ i c abstract c l ass Sel ectabl eShape i mpl ements
SceneShape { . . . }

The HouseShape and CarShape classes are concrete subclasses that define the remaining
methods.

CHAPTER S Inheritance and Abstract Classes

Figure 7 «interface»

Relationships Between
Sel ectabl eShape Types

Scene
Shape

You cannot construct objects
of an abstract class.

isSelectedO
setSelectedO
drawO
drawSelectionO
translateO
containsO

t;..

Selectable
Shape

{abstract}

selected

isSelectedO
setSelectedO

f I I
Car House

Shape Shape

drawO drawO
drawSelectionO drawSelectionO
translateO translateO
containsO containsO

Abstract classes are convenient placeholders for factoring out com
mon behavior. They behave exactly the same as any other classes, with
a single exception: You cannot instantiate an abstract class. That is, it

is an error to construct a Se 1 ectab 1 eShape object:
Sel ectabl eShape shape = new Sel ectabl eShape () ; II EFUR()R

Such an object would be dangerous-an error would occur if one of its missing methods
was called.

However, it is perfectly legal to have variables whose type is an abstract class. Naturally,
they must contain a reference to an object of a concrete subclass (or nul l) .

Sel ectabl eShape shape = new HouseShape () ; II ()K

TIP Students are often scared about abstract classes, equating "abstract" with "halid to under
stand", and then believing that any class that is hard to understand should t�erefore be
abstract. Don't fall into that trap. An abstract class is simply a class that cannot b€--instanti
ated, generally because it has unimplemented methods.

The Se 1 ectab 1 eShape class is abstract because it lacks the definition of several methods.
However, you can tag any class as abstract, thereby making it impossible to construct
objects of that class. That mechanism is useful for supplying a class that defines useful

6.3 Abstract Classes

services for subclasses but that, for conceptual reasons, should not be instantiated. You
will see an example later in this chapter.
An abstract class is somewhere between an interface type and a concrete class. It requires
that subclasses implement methods with a given signature. However, an abstract class
usually has some implementation-methods, fields, or both.

TIP It is a common misconception that abstract classes have no instance fields, or that all
methods of an abstract class should be abstract. That is not so; abstract classes can have
instance fields and methods. You always want to move as much common functionality as pos
sible into the superclass, whether or not it is abstract. For example, the Se 1 ectab 1 eShape
class is an abstract class. But that doesn't mean it can't have fields or methods. An abstract
shape does know how to do something, namely manage the selection flag. But it doesn't know
everything; hence, it is abstract.

Abstract classes have an advantage over interface types: they can define common behav
ior. But they also have a severe disadvantage: A class can only extend one abstract class,
but it can implement several different interface types.

For that reason, we have both a Scene Shape interface type and a Se 1 ectab 1 eShape class.
The Se 1 ectab 1 eShape is a service for classes that wish to implement the SceneShape
interface type. If they find its implementation appropriate, and if they don't already
extend another class, they are free to extend the class. But they aren't forced into any
thing--a class can implement the interface type in any way it chooses.
In general, it is a good idea to supply both an interface type and a class that implements
some of its methods with convenient defaults.

NOTE The Java library has a number of "interface type/abstract class" pairs, such as
Col l ecti on/AbstractCol l ecti on and Li stModel /AbstractLi stModel . The abstract class
implements some of the methods of the interface type, making it easier for programmers to
supply concrete classes that implement the interface type. It would be a good idea to follow
that naming convention and rename the Se 1 ectab 1 eShape class into Abst ractShape. We did
not do so because students preferred the more descriptive name.

Here is the core code for the scene drawing program. The program is very similar to the
car mover program of the preceding section. However, a SceneComponent holds an array
list of SceneShape objects. Its pai ntComponent method draws the shapes. If a shape is
selected, its selection decoration is drawn as well.
The mouse press handler of the SceneComponent searches all shapes in the scene, looks
for the shape containing the mouse position, and toggles its selection state. Then the
component is asked to repaint itself, so that the change in the selection state is properly
painted.

The code for dragging shapes is exactly analogous to that of the car mover program.
However, we now move all selected shapes.

CHAPTER S Inheritance and Abstract Classes

11 _= Ch6/sceneI/SceneComponent.java

� 1 i mport j ava . awt . * ;
; __ 2 i mport j ava . awt . event . * ;

3 i mport j ava . awt . geom . * ;
4 i mport j avax . swi ng . * ;
5 i mport j ava . uti l . * ;
6
7 /**
8 A component that shows a scene composed of shapes.
9 */

10 publ i c cl ass SceneComponent extends JComponent
11 {
12 publ i c SceneComponent ()
13 {
14 shapes = new ArrayLi st<SceneShape> () ;
15
16 addMouseLi stener (new
17 MouseAdapter()
18 {
19 publ i c voi d mousePressed (MouseEvent event)
20 {
21 mousePoi nt = event . getPoi nt() ;
22 for (SceneShape s : shapes)
23 {
24 i f (s . contai ns (mousePoi nt))
25 s . setSel ected (! s . i sSel ected ()) ;
26 }
27 repai nt O ;
28 }
29 }) ;
30
31 addMouseMoti onLi stener (new
32 MouseMotionAdapter()
33 {
34 publ i c voi d mouseDragged (MouseEvent event)
35 {
36 Poi nt l astMousePoi nt = mousePoi nt ;
37 mousePoi nt = event . getPoi nt () ;
38 fo r (SceneShape s : shapes)
39 {
40 i f (s . i sSel ected O)
41 {
42 doubl e dx
43 = mousePoi nt . getX() - l astMousePoi nt . getX() ;
44 doubl e dy
45 = mousePoi nt . getY() - l astMousePoi nt . getY() ;
46 s . trans l ate ((i nt) dx , (i nt) dy) ;
47 } __ _

48 }
49 repai nt O ;
50 }
5 1 }) ;
52 }
53
54 /**

6.3 Abstract Classes

1 __

55 Adds a shape to the scene.
56 @param s the shape to add
57 */
58 publ i c voi d add (SceneShape s)
59 {
60 shapes . add(s) ;
61 repai nt () ;
62 }
63
64 /**
65 Removes all selected shapes from the scene.
66 */
67 publ i c voi d removeSel ected ()
68 {
69 fo r (i nt i = shapes . si zeO - 1 ; i >= 0 ; i --)
70 {
71 SceneShape s = shapes . get (i) ;
72 i f (s . i sSel ected ()) shapes . remove (i) ;
73 }
74 repai nt() ;
75 }
76
77 publ i c voi d pai ntComponent(Graphi cs g)
78 {
79 Graphi cs2D g2 = (Graphi cs2D) g ;
80 for (SceneShape s : shapes)
81 {
82 s . d raw(g2) ;
83 i f (s . i sSel ected O)
84 s . d rawSel ecti on(g2) ;
85 }
86 }
87
88 pri vate ArrayLi st<SceneShape> shapes ;
89 pri vate Poi nt mousePoi nt ;
90 }

Ch6/scener/SceneEditor.java

1 i mport
2 i mport

j ava . awt . * ;
j ava . awt . geom . * ;
j ava . awt . event . * ; 3

4
5
6
7
8
9

10
1 1
12
13
14
15
16

i mport
i mport . . * J avax . SWl ng . ;

/**

*/

A program that allows users to edit a scene composed
of Items.

publ i c cl ass SceneEdi tor
{

publ i c stati c voi d mai n (St ri ng [] args)
{

J Frame frame = new J Frame () ;
frame . setDefaul tCl oseOperati on (J F rame . EXIT_ON_CLOSE) ;

CHAPTER 6 Inheritance and Abstract Classes

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 }
59 }

fi nal SceneComponent scene = new SceneComponent () ;

J Button houseButton = new JButton("House") ;
houseButton . addActi onLi stener (new

Acti onL i stene r 0
{

publ i c voi d acti onPe rformed (Acti onEvent event)
{

}
}) ;

scene . add (new HouseShape (20 , 20 , 50» ;

J Button carButton = new J Button ("Car") ;
carButton . addActi onLi stene r (new

Acti onL i stene r O
{

publ i c voi d acti onPerformed (Acti onEvent event)
{

}
}) ;

scene . add (new CarShape (20 , 20 , 50» ;

J Button remove Button = new J Button ("Remove") ;
removeButton . addActi onLi stener (new

Acti onL i stene rO
{

publ i c voi d acti onPerformed (Acti onEvent event)
{

}
}) ;

scene . removeSel ected () ;

J Panel buttons = new J Panel () ;
buttons . add (houseButton) ;
buttons . add (carButton) ;
buttons . add (removeButton) ;

frame . add(scene , Borde rLayout . CENTER) ;
frame . add (buttons , BorderLayout . NORTH) ;
frame . setSi ze (300 , 300) ;
frame . setVi si bl e (t rue) ;

Spec ia l Top ic
Refactoring

Martin Fowler has coined the term refactoring for restructuring code in a disciplined way. His
book (Refactoring, Addison-Wesley, 2000) and Web site (http : //www . refactori ng . com) list
a large number of refactoring rules. The rules have a simple format. Each rule starts with a
brief explanation of the possible benefits of applying the restructuring and then contains

6.3 Abstract Classes

T "before" and "after" scenarios, separated by an arrow (�). Here is a typical example of a refac
toring rule that we used in the preceding section:

Extract Superclass

Symptom You have two classes with similar features.

Remedy Create a superclass and move the common features to the superclass.

Selectable
Shape

selected
setSelectedO
isSelectedO

Car House I'
Shape Shape =} I I

selected selected Car House
setSelectedO
isSelectedO

' setSelectedO
isSelectedO

· Shape Shape

In general, a refactoring rule teaches you how to make small transformations of your code.
Some are quite mundane, for example:

Introduce Explaining Variable

Symptom You have an expression that is hard to understand.

Remedy Put the value of the expression in a temporary variable whose name
explains the purpose of the expression.

car . transl ate (mousePoi nt . getX() - l astMousePoi nt . getX () ,
mousePoi nt . getY() - l astMousePoi nt . getY()) ;

-lJ,
i nt xdi stance = mousePoi nt . getX() - l astMousePoi nt . getX () ;
i nt ydi stance = mousePoi nt . getY() - l astMousePoi nt . getY () ;
car . t ransl ate (xdi stance , ydi stance) ;

It has been observed that programmers are often reluctant to make any changes in existing
code, presumably because they are afraid of breaking it. The advocates of "relentless refactor
ing" suggest that programmers should be familiar with the refactoring rules and apply them
whenever they see code that can be improved. In order to validate that the refactoring has not
introduced any bugs, it is essential to run a test suite after the refactoring.
Refactoring rules are quite different from design patterns. Refactoring tells you how to
improve code that has already been written. A design pattern tells you how to produce a bet
ter design so that you hopefully won't need to apply refactoring later.

CHAPTER 6 Inheritance and Abstract Classes

The TEMPLATE METHOD Pattern

Consider the task of drawing the selection adornment of a shape. Selected shapes need
to be drawn in a special way so that they can be visually distinguished. In the preceding
section, each shape was responsible for drawing a special decoration when it was selected.
However, that approach was not very satisfactory. Each shape class had to provide a sep
arate mechanism for drawing the decoration. Figure 8 shows a better way that can be
applied generically, independent of the particular shape: Move the shape by a small
amount, draw it, move it again, and draw it again. That draws a thickened image of the
shape.

This method can be supplied in the Se 1 ectab 1 eShape class:

publ i c voi d d rawSel ecti on (Graphi cs2D g2)
{

}

transl ate (l , 1) ;
d raw(g2) ;
transl ate (l , 1) ;
d raw(g2) ;
t ransl ate (-2 , -2) ;

Of course, the abstract Se 1 ectab 1 eShape class doesn't know how the actual subclass will
do the drawing and translating. It just knows that the subclass has these methods, and
that calling them in this order will achieve the desired effect of drawing a thickened
image of the shape.

The Template Method pattern
teaches how to supply an
algorithm for multiple types,
provided that the sequence
of steps does not depend on
the type.

Figure 8

The d rawSel ecti on method is an example of the TEMPLATE
METHOD pattern. In this pattern, a superclass defines a method that
calls primitive operations that a subclass needs to supply. Each subclass
can supply the primitive operations as is most appropriate for it. The
template method contains the knowledge of how to combine the
primitive operations into a more complex operation . .

Remove

Highlighting a Shape

6.4 The TEMPLATE METHOD Pattern

PAITERN

• c=:==.::r�cMPLATE M ETHOD

•

•

•

•

•

•

•

•

•

•

Context

1 . An algorithm is applicable for multiple types.
2. The algorithm can be broken down into primitive operations. The primitive operations

can be different for each type.
3. The order of the primitive operations in the algorithm doesn't depend on the type.

Solution

1. Define an abstract superclass that has a method for the algorithm and abstract
methods for the primitive operations.

2. Implement the algorithm to call the primitive operations in the appropriate order.
3. Do not define the primitive operations in the superclass or define them to have

appropriate default behavior.
4. Each subclass defines the primitive operations but not the algorithm.

AbstractClass
{abstract}

templateMethodO - -

primitiveOp1 0 - - - -

primitiveOp20 - - - -

i
ConcreteClass

primitiveOp 1 0
primitiveOp20

Here is the mapping of the pattern concepts to the shape drawing algorithm:

Name in Design Pattern Actual Name

AbstractCl ass Sel ectabl eShape

Conc reteCl ass CarShape, HouseShape

templ ateMethod O drawSel ecti on O

pri mi ti veOpl() , pri mi ti veOp2() transl ate () , d raw()

Illl _� (
1 __

CHAPTER S Inheritance and Abstract Classes

TIP The TEMPLATE METHOD pattern teaches you how to deal with a set of subclass meth
ods whose implementations are almost identical. To check whether you can apply the pattern,
see whether you can express the difference between the various methods as another method.
Then move the common code to the superclass and call a method for the variant part. You
saw an example of that process in the d rawSe 1 ecti on method of the Se 1 ectab 1 eShape class.

Ch6/scene2/SelectableShape.java

1
2
3
4
5
6
7
8
9

i mport j ava . awt . * ;
i mport j ava . awt . geom . * ;

/**
A shape that manages its selection state.

*/
publ i c abst ract cl ass Sel ectabl eShape i mpl ements SceneShape
{

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 }

publ i c voi d setSel ected (bool ean b)
{

sel ected = b ;
}

publ i c bool ean i sSel ected ()
{

return sel ected ;
}

publ i c voi d d rawSel ecti on (Graphi cs2D g2)
{

}

transl ate (l , 1) ;
d raw(g2) ;
transl ate (l , 1) ;
d raw(g2) ;
transl ate(-2 , -2) ;

pri vate bool ean sel ected ;

Ch6/scene2/HouseShape.java

1 i mpo rt j ava . awt . * ;
2 i mport j ava . awt . geom . * ;
3
4
5
6
7
8

/**
A house shape.

*/
publ i c cl ass HouseShape extends Sel ectabl eShape
{

6.4 The TEMPLATE METHOD Pattern

9
10
1 1
12
13
14
15
16
17
1 8
19
20
2 1
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
61
62 }

/**

*/

Constructs a house shape.
@param x the left of the bounding rectangle
@param y the top of the bounding rectangle
@param wi dth the width of the bounding rectangle

publ i c HouseShape (i nt x , i nt y , i nt wi dth)
{

}

thi s . x = x ;
thi s . y = y ;
thi s . wi dth = wi dth ;

publ i c voi d draw(Graphi cs2D g2)
{

}

Rectangl e2D . Doubl e base
= new Rectangl e2D . Doubl e (x , y + wi dth , wi dth , wi dth) ;

/ / The left bottom of the roof
Poi nt2D . Doubl e rl

= new Poi nt2 D . Doubl e (x , y + wi dth) ;
/ / The top of the roof
Poi nt2D . Doubl e r2

= new Poi nt2D . Doubl e (x + wi dth / 2 , y) ;
/ / The right bottom of the roof
Poi nt2D . Doubl e r3

= new Poi nt2D . Doubl e (x + wi dth , y + wi dth) ;

li ne2D . Doubl e roofleft
= new li ne2D . Doubl e (rl , r2) ;

li ne2D . Doubl e roof Ri ght
= new li ne2D . Doubl e (r 2 , r3) ;

g2 . d raw(base) ;
g2 . d raw(roofleft) ;
g2 . d raw(roofRi ght) ;

publ i c bool ean contai ns (Poi nt2D p)
{

return x <= p . getX() && p . getX () <= x + wi dth
&& y <= p . getY() && p . getY() <= y + 2 * wi dth ;

}

publ i c voi d t ransl ate (i nt dx , i nt dy)
{

}

x += dx ;
y += dy ;

pri vate i nt x ;
pri vate i nt y ;
pri vate i nt wi dth ;

, . CHAPTER 6 Inheritance and Abstract Classes

Protected Interfa c e s

In this section, we introduce the concept of a protected interface, consisting of operations
that are intended only for subclasses. To motivate this concept, we introduce the (om
poundShape class that stores shapes that are made up of several individual shapes. The
(ompoundShape class makes use of the Gene ra 1 Path class in the standard library.
To create a compound shape, you simply append individual shapes to a General Path
object:

General Path path = new General Path () ;
path . append (new Rectangl e (. . .) , fal se) ;
path . append (new Tri angl e (. . .) , fal se) ;
g2 . d raw(path) ;

The value of fal se for the second parameter of the append method specifies that you do
not want to add line segments that connect the individual shapes. The shapes can belong
to any classes that implement the java . awt . Shape interface type.

There is a definite advantage of using Gene ral Path: That class knows how to do contain
ment testing and how to move its shapes. For example, the call

path . contai ns (aPoi nt)

tests whether the path contains the given point. Thus, there is no need to test the con
stituent shapes individually.
The (ompoundShape class delegates the methods of the SceneShape interface to a
Gene ral Path object:

Ch6/scene3/CompoundShape.java

1 i mport j ava . awt . * ;
2 i mpo rt j ava . awt . geom . * ;
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
1 8
19
20
21
22
23

/**
A scene shape that is composed of multiple geometric shapes.

*/
publ i c abstract cl ass (ompoundShape extends Sel ectabl eShape
{

publ i c (ompoundShape ()
{

path = new General Path () ;
}

protected voi d add (Shape s)
{

path . append (s , fal se) ;
}

publ i c bool ean contai ns (Poi nt2D aPoi nt)
{

return path . contai ns (aPoi nt) ;
}

6.5 Protected Interfaces

24 publ i c voi d transl ate (i nt dx , i nt dy)
25 {
26 path . t ransform (
27 Affi neTransform . getTransl atelnstance (dx , dy» ;
28 }
29
30 publ i c voi d d raw(Graphi cs2D g2)
31 {
32 g2 . d raw(path) ;
33 }
34
35 pri vate General Path path ;
36 }

Now HouseShape can easily be defined as a subclass of this class (see Figure 9):
publ i c cl ass HouseShape extends (ompoundShape
{

publ i c HouseShape (i nt x , i nt y , i nt wi dth)
{

}
}

Figure 9

Rectangl e2D . Doubl e base =

add (base) ;

Inheritance Diagram of the
HouseShape Class

« interface»
Scene
Shape

� :
,

Selectable
Shape

{abstract}

setSelectedO
isSelectedO
drawSelectionO

i
Compound

Shape
{abstract}

drawO
translateO
containsO
addO

i
House
Shape

CHAPTER S Inheritance and Abstract Classes

You may wonder why the (ompoundShape class supplies an add method. Can't the House
Shape constructor simply call

path . append (base) ;

However, this code does not compile: HouseShape does not have the right to access the
private path instance field of the superclass.
The obvious solution is to supply a public add method. But then any client can call that
method and add potentially unsightly shapes to cars and houses.

A protected feature can be
accessed by the methods of
all subclasses.

It is occasionally useful to consider subclass methods as more privi
leged than other code and to give them special access permissions.
This is achieved with protected access control. A protected feature of a
superclass is accessible by the methods of all subclasses. For example,

the add method of the (ompoundShape class is declared as protected:

publ i c abstract cl ass (ompoundShape
{

protected voi d add (Shape s) ;

}

The HouseShape constructor can call the add method, but methods of other classes that
are not subclasses of (ompoundShape cannot.
Note that the (ompoundShape class is declared as an abstract class, even though it has no
undefined methods. It would make no sense to construct (ompoundShape objects because
nobody could call their add method. The add method can only be called by subclass
methods such as the HouseShape constructor.

As an added security measure, methods can use protected features only on objects of their
own class. This is to prevent the following attack:

publ i c Attacker extends (ompoundShape
/ / Tries to call protected add method

{
voi d ugl i fy(HouseShape house)
{

house . add (aShape) ;
/ / Won't work-can only call add on other Attacker objects

}
}

Could we declare the path instance field as protected?
publ i c abstract cl ass (ompoundShape
{

p rotected Gene ral Path path ; / / DONT!
}

/ -----./
Protected fields should be Technically, this is legal. However, protected data is never a good
avoided. They have the same idea. It is impossible to enumerate all classes that extend a given class.
disadvantages as public fields. Thus, protected access is open-ended. Mter a protected field has been

defined, its definition can never be modified because some subclass
somewhere might rely on it.

6.6 The Hierarchy of Swing Components

In Java, protected visibility has another strike against it. Classes in the same package also
have access to protected features, even if they don't belong to subclasses.
Some people use protected fields in the belief that subclasses have a better understanding
of a superclass and thus can be trusted more than others. This is a dangerous belief that
we do not encourage.

A class can supply a public
interface for all clients and
a protected interface for
subclasses.

However, protected methods can be helpful. They allow you to distin
guish between two interfaces: the interface for class users and the inter
face for refining the class behavior through inheritance.

Because a class has no control over who will extend it, protected
methods should be designed with the same care as public methods.

The Hierarchy of Swing Components

By repeated inheritance, you can organize a collection of related classes, factoring out
common behavior. The result is a hierarchy of classes. In this section, we will investigate
the hierarchy of user interface component classes that you find in the Java library.
Figure 10 shows the inheritance diagram.

I I
JPanel JLabel

Figure 1 0

Component

r
Container

r
JComponent

i
JText

Component

JText
Field

JText
Area

Inheritance Diagram of Swing Component Classes

Abstract
Button

JButton

I
JMenu

Item

CHAPTER 6 Inheritance and Abstract Classes

This analyis is useful because it shows you a complex hierarchy from a real-world library.
Furthermore, you use the Swing library whenever you program graphical user interfaces.
You often need to know about the inheritance relationships between Swing classes. For
example, if you know that the J Panel class extends the Contai ner class, you can add
components to a panel.

The base of the component hierarchy is the Component class. It has a large number of
commonly used methods such as

i nt getWi dth 0
i nt getHei ght 0
Di mensi on getPrefer redSi ze()
voi d setBackground (Col o r c)

Of course, all subclasses of the Component class inherit these methods.

The Contai ner class is a subclass of Component. The most important property of a
container is the ability to contain components, under the control of a layout manager.
We discussed the container/component relationship as an example of the COMPOSITE
pattern in Chapter 5.

To understand the component hierarchy in more detail, you need to know some Java
history. The first release of Java used a GUI toolkit called AWT (Abstract Windowing
Toolkit). You still see traces of the AWT in package names such as java . awt . The AWT
uses components that are native to the host windowing system. For example, when a Java
program shows an AWT button in Windows, it looks exacdy like all other Windows
buttons. When the same program runs on the Macintosh, it creates a Macintosh button.

The advantage of this setup is clear: Java programs look just like all other applications on
the same platform. However, as it turns out, there are subde platform differences, partic
ularly with the handling of mouse events, repainting, keyboard shortcuts, and so on.
Those differences meant that programmers were never quite able to write Java programs
that have the same behavior on multiple platforms. The promise of "write once, run any
where" turned into the ugly reality of "write once, debug everywhere".

To solve that problem once and for all, the Swing toolkit was developed. Swing paints all
components onto blank windows. The toolkit draws Swing buttons, scroll bars, and so
on, pixel by pixel. When the user clicks the button or moves the scroll bar, then the tool
kit redraws the component. In this way, Swing has complete control over the behavior of
the components. You can configure Swing to draw the components in a style that imi
tates the host windowing system, or you can use the cross-platform style called "Metal"
that you see in the screen captures in this book.

INTERNET You can also install alternative look and feel implementations and cQa� the way
your Java programs look. For example, the freely available "Napkin" look and feet at http : //
napki n 1 af . sourceforge . org paints the user interface components as if they had been
sketched out on a paper napkin-see Figure 11 . This look and feel is used for building "mock
ups" of user interfaces. Customers can try out mock user interfaces and check that they fulfill
their requirements, without being led to believe that the product is almost done.

6.6 The Hierarchy of Swing Components

c:l Violet X
- --- - -�-�il� pit �ie'" ��J. !jec..;lr ________________________ ---'1 lie'" •

Ctvl+o _________________ g�D�·
Ctvl� � [}] !SHS1 5J IS) lS) IS] rJ

SAve o.s

p.-r.,.t i"''':Je
!-i"t PO$Kcvirt

I

Figure 1 1

The Napkin Look and Feel

++

The]Component class is the base of all Swing components. (There are other user inter
face components that preceded the Swing toolkit, such as the Button and Panel classes.
These classes are less commonly used than the Swing classes, and we will not discuss
them further. Note that all Swing components start with the letter J .)

The]Component class is a subclass of Contai ner, which doesn't actually make conceptual
sense. Mter all, many of the Swing components are not meant to be containers for other
components. However, the designers of the Swing classes were in a bind. They would
have preferred a]Contai ner class that simultaneously extends]Component and Con
tai ner, but that is not possible in Java.
The]Component class has several methods that are of interest to the GUI programmer,
such as

voi d setBorder(Border b)
voi d setToo1Ti pText(Stri ng ti p)

A tooltip is a message that shows up when the user moves the mouse over a component.
(In a look and feel for blind people-or temporarily "blind" people such as motorists
the tooltip may be spoken by a speech synthesizer.) Tooltips and borders are only avail
able for Swing components, not for AWT components.
The]Component class has a number of subclasses, such as the familiar J Labe 1 and J Pane 1 .
Other familiar classes such as J Button and JTextFi e 1 d are not direct subclasses of

, . CHAPTER 6 Inheritance and Abstract Classes

Komponent. There are intermediate classes-AbstractButton and JTextComponent-that
capture commonalities with other classes. For example, JMenuItem is another subclass of
AbstractButton. Superficially, buttons and menu items don't seem to have much in com
mon, but they share quite a bit of behavior, such as the ability to notify an Acti on
Li stener . Similarly, JTextFi el d and JTextArea are subclasses of JTextComponent. The
JTextComponent class defines methods such as getText and setText.

T • Specia l Top ic
======== .====�::::::====:::::::=====:::J

Multiple Inheritance

When the Swing designers added the Komponent class, they might have liked to add a
Kontai ner class as well. Conceptually, a Kontai ner would extend both an AWT
Contai ner and a Swing JComponent (see Figure 12).
However, in Java, it is not possible for a class to have two direct superclasses. Therefore, the
Swing designers chose to have JComponent extend Contai nero
Other object-oriented programming languages, such as C++ and Eiffel, allow classes to
extend multiple superclasses. This feature is called multiple inheritance. As you just saw, multi
ple inheritance can be useful in practical programming situations.
Java does not have multiple inheritance because it can be complex to implement. Multiple
inheritance has two major challenges:

• How to deal with name clashes-features with the same name that are inherited from
multiple superclasses.

• How to share fields that are inherited through multiple paths.
The first problem can be addressed by renaming or scope resolution mechanisms. The second
problem is more vexing. For example, the Component class defines wi dth and hei ght fields.
Both Contai ner and Komponent inherit these fields. If Kontai ner extends both of these
classes, it inherits two copies of these fields. This is not desirable. Confusion would result if
some methods manipulated the wi dth and hei ght fields from one superclass and others used
the fields from the other superclass. In C++, implementors must use the virtual base class fea
ture to achieve an object layout that avoids the duplication of inherited fields. In C++ nota
tion, the inheritance is set up as follows:

cl ass Contai ner : vi rtual publ i c Component { . . . } ;
cl ass JComponent : vi rtual publ i c Component { . . . } ;
cl ass JContai ner : publ i c Contai ner , publ i c JComponent { . . . }

(In C++, the : symbol is the equivalent of the extends keyword in Java. C++ also distin
guishes between public and private inheritance. Public inheritance behaves like inheritance in
Java.) \
Fields of a virtual base class are shared if a class inherits them through multipkumeritance
paths. Thus, JContai ner only inherits a single set of Component fields.
However, virtual base classes are problematic. The designers of intermediate classes (such as
Contai ner) must have the foresight to use virtual inheritance to provide for the possibility
that someone might later want to combine the classes with multiple inheritance. But C++

6.7 The Hierarchy of Standard Geometric Shapes

Component

i I I
Container JComponent

i i I
JContainer

Figure 1 2

Hypothetical Multiple Inheritance of a
Swing Container Class

programmers are generally reluctant to use virtual base classes since the implementation is
somewhat inefficient.
The designers of the Java language decided that the complexity of multiple inheritance out
weighs the benefits. However, it is permissible in Java to implement multiple interface types.
Since interface types cannot contribute instance fields, none of the implementation complex
ities of shared fields can arise.

The Hierarchy of S tandard Geometr ic S h ap e s

In the preceding section, you learned about the hierarchy of Swing components. I n this
section, we will look at another inheritance hierarchy of the Java library: the hierarchy of
geometric shapes. As you study this hierarchy, you will see much factoring out of com
mon code, encounter another example of the TEMPLATE METHOD pattern, and learn
the secret behind the strange shape class names (such as Rectangl e2D . Doubl e).

To understand the twists and turns of the geometric shape classes, we need to delve into
the history of Java once again. The first version of Java contained a small number of
geometry classes that use integer coordinates. These classes are in the j ava . awt package.

• Poi nt

• Rectangl e

• Pol ygon

CHAPTER 6 Inheritance and Abstract Classes

Java 2 introduced a much richer set of shapes in the java . awt . geom package.

• Poi nt2D

• Rectang 1 e2D

• RoundRectangl e2D

• Li ne2D

• El l i pse2D

• Arc2D

• QuadCu rve2D

• Cubi cCu rve2D

• Gene ral Path

• Area

All of these classes, except for the Poi nt2D class, implement the Shape interface type.

The legacy Poi nt and Rectangl e classes are subclasses of Poi nt2D and Rectang 1 e2D
respectively.

The four classes

• Rectang 1 e2D

• RoundRectangl e2D

• El l i pse2D

• Arc2D

are subclasses of the class Rectangu 1 arShape. Of course, ellipses and elliptical arcs aren't
strictly rectangular, but they have a rectangular bounding box. The class Rectangul ar
Shape has a number of useful methods that are common to these classes, such as

• getCenterX

• getCenterY

• getMi nX

• getMi nY

• getMaxX

• getMaxY

• getWi dth

• getHei ght

• setFrameFromCenter

• setFrameFromDi agonal

None of these are complex to implement, but they are all nice to have.

, (

Figure 13 shows the inheritance hierarchy of the geometric shape classes. We omit the
QuadCu rve2D, Cubi cCu rve2D, and Area classes that we won't use in this book.

6.7 The Hierarchy of Standard Geometric Shapes

Point2D

Point

Figure 1 3

«interface»
Shape

. _ , _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ . _ _
I I I I
I I I I
I , I I I Une2D I Rectangular

GeneralPath P
Shape

, , ,
S

I I
Rectangle2D

Round
Eilipse2D Arc2D Rectangle2D

i
Rectangle

I nheritance Hierarchy of the Geometric Shape Classes

Now we are ready to explain the curious Rectangl e2D . Fl oat and Rectangl e2D . Doubl e
classes.

First, why have two separate classes at all? Wouldn't it be simpler to store the coordinates
in doubl e values? Indeed, but the range of the fl oat type is more than sufficient for the
vast majority of graphical applications. Mter all, as long as the roundoff error of a calcu
lation is less than a visible pixel, then it is not a concern for the user. In a program that
manipulates a large number of graphical objects, the space savings of using fl oat coordi
nates is substantial. A fl oat value uses 4 bytes of storage and a doubl e uses 8 bytes.

Why didn't the library designers then use fl oat values for all graphical objects? First,
there may well have been the nagging suspicion that some applications need double pre
cision. Perhaps more importantly, it is somewhat painful to program with fl oat: the
constants have an F at the end, such as O . OF, and you often have to apply a (fl oat) cast,
such as (fl oat) Math . sq rt (. . .) . Therefore, the library designers decided to give the
programmer a choice.
Fl oat and Doubl e are inner classes, declared inside the Rectang 1 e2D class. This explains
the class names: Rectangl e2D . Fl oat is the Fl oat class defined inside the Rectangl e2D

• CHAPTER 6 Inheritance and Abstract Classes

Figure 1 4
Rectangle2D

Subclasses of the Rectangl e2D Class {abstract}

i I I
Rectangle2D Rectangle2D

.Double .F loat

class. In this situation, the inner class was used only for naming reaso�s. The designers of
the library felt that Rectangl e2D . Fl oat was a nicer name than, say, Fl oatRectangl e2D.

Furthermore, Fl oat and Doubl e are subclasses of the Rectangl e2D class (see Figure 14).
They only define a small number of methods, in particular

• doubl e getXO

• doubl e getYO

• doubl e getWi dth ()

• doubl e getHei ght()

Note that both the Fl oat and Doubl e classes return double values! Even for the Fl oat
class, most of the intermediate computations are done in double precision.
Here is an extract of the source code for the Rectang 1 e2D class and its inner classes.

publ i c abst ract cl ass Rectangl e2D extends Rectangul arShape
{

publ i c stati c cl ass Fl oat extends Rectangl e2D
{

publ i c doubl e getX() { return (doubl e) x ; }
publ i c doubl e getY() { retu rn (doubl e) y ; }
publ i c doubl e getWi dth () { retu rn (doubl e) wi dth ; }
publ i c doubl e getHei ght() { retu rn (doubl e) hei ght ; }

publ i c voi d setRect (fl oat x , fl oat y , fl oat w , fl oat h)
{

}

thi s . x = x ;
thi s . y = y ;
thi s . wi dth = w ;
thi s . hei ght = h ;

(
publ i c voi d setRect (doubl e x , doubl e y , doubl e w , doubl e h\
{

thi s . x = (fl oat) x ;
thi s . y = (fl oat) y ;
thi s . wi dth = (fl oat) w ;
thi s . hei ght = (fl oat) h ;

6.7 The Hierarchy of Standard Geometric Shapes

}

}

}

publ i c fl oat x ;
publ i c fl oat y ;
publ i c fl oat wi dth ;
publ i c fl oat hei ght ;

publ i c stati c cl ass Doubl e extends Rectangl e2D
{

}

publ i c doubl e getX() { return x ; }
publ i c doubl e getY() { return y ; }
publ i c doubl e getWi dth() { return wi dth ; }
publ i c doubl e getHei ght () { retu rn hei ght ; }

publ i c voi d setRect (doubl e x , doubl e y , doubl e w , doubl e h)
{

}

thi s . x = x ;
thi s . y = y ;
thi s . wi dth = w ;
thi s . hei ght = h ;

publ i c doubl e x ;
publ i c doubl e y ;
publ i c doubl e wi dth ;
publ i c doubl e hei ght ;

The Rectangl e2D class has no instance fields.

NOTE The keyword stati c for the inner classes denotes the fact that the inner class meth
ods do not access the outer class instance fields and methods. An inner class that doesn't
require access to the surrounding scope is called a nested class. Objects of nested classes do not
contain a reference to an outer class object in the inner class.

Most of the work is done by methods of the Rectangl e2D class, not the inner classes.
Here is a typical method:

publ i c bool ean contai ns (doubl e x , doubl e y)
{

}

doubl e xO = getX() ;
doubl e yO = getY() ;
retu rn x >= xO

&& y >= yO
&& x < xO + getWi dth ()
&& y < yO + getHei ght () ;

Depending on the actual type of the object, the getX, getY, getWi dth, and getHei ght
methods of the Fl oa t or Dou b 1 e subclass are called to retrieve these values (in the doubl e

CHAPTER S Inheritance and Abstract Classes

type). These methods are only implemented in the Fl oat and Doubl e subclasses; the
Rectang 1 e2D superclass does not provide a definition.
The conta; ns method is another example of the TEMPLATE METHOD pattern:

Name in Design Pattern Actual Name

AbstractCl ass Rectangl e2D

Conc reteClass Rectangl e2D . Doubl e

temp 1 ateMethod 0 conta; nsO

pr; m; t; veOp10 , pr ;m; t; veOp2 0 , . getX() , getY() , getW; dth () , getHe; ght ()

Fortunately, you only need to worry about all of these issues when you construct a rectan
gle. Then you need to be specific whether you want a Fl oat or Doubl e rectangle. Mter
wards, just reference the object through a Rectang 1 e2D variable:

Rectangl e2D rect = new Rectangl e2D . Doubl e (5 , 10 , 2 0 , 30) ;

Of course, all the other "2D" classes have the same setup, for example
Po; nt2D pt = new Po; nt2D . Fl oat (5 . 0F , 10 . 0F) ;

The Hierarchy of Except ion C l a s s e s

The Java library uses inheritance to categorize a large number of exception classes. To use
exception handling effectively, it is essential that you understand the hierarchy of the
standard exception classes, and that you know how to add custom exception classes to
the hierarchy.

Subclasses of E rror describe All exceptions must ultimately extend the class Th rowabl e. The

fatal errors. Throwabl e class has two subclasses, E rro r and Except; on. Subclasses
of the E r ror class denote fatal errors that cannot be remedied, such as

memory exhaustion of the virtual machine or an assertion failure. Application program-
mers generally do not deal with these errors.

.

Subclasses of Runt; me-
Except; on are unchecked
exceptions.

The Except; on class is the superclass for exceptions that may occur
on the application level. The most important subclass of the Excep
t; on class is the Runt; meExcept; on class. All subclasses of Runt; me
Except; on are unchecked: the compiler does not check whether your

methods catch or declare them. Examples of unchecked exceptions are Nul l Po; nter
Except; on and IndexOutOfBoundsExcept; on.

On the other hand, subclasses of Except; on that are not subclasses of Runt; me Except; on "-
are checked exceptions. You need to either catch them or list them in throws clauses.
Examples are IOExcept; on and its subclasses.
Figure 15 shows an inheritance diagram of the most common exception classes.

6.8 The Hierarchy of Exception Classes

Throwable

I
Exception

i
Runtime

Exception

I I
Nul iPointer

IndexOut
OfBounds

Exception Exception

Figure 1 5

Exception Classes

You catch an exception in a t ry block of the form
try
{

code that may throw exceptions
}
catch CExceptionTypel exceptionl)
{

handler for Exception Typel
}
catch CExceptionType2 exception2)
{

handler for Exception Type2
}

i

IOException

FileNotFound
Exception

I
Error

I
Class

NotFound
Exception

A catch clause catches
exceptions of a given class or
any of its subclasses.

A catch clause gains control if a statement inside the try block (or in
a method that was called from the try block) throws an exception
object that belongs to the class of the catch clause or one of its sub
classes. For example, the clause

catch CIOExcepti on exception)

can catch an exception of type Fi 1 eNotFoundExcepti on . The inheritance hierarchy of
exception classes makes it possible for the code that throws an exception to be specific
about the nature of the error (such as "file not found") without burdening the error

CHAPTER S Inheritance and Abstract Classes

handling code. The error handling code can catch exceptions at a more general level
(such as "all I/O errors").
When you encounter an error condition in your code, and you want to throw an excep
tion, then you need to make a decision whether to use an exception class in the standard
library, or whether to design your own exception class. If you design your own class, you
first need to decide whether the exception should be checked or unchecked. Recall that a
checked exception should be used when an error condition is beyond the control of the
programmer (such as a network failure), whereas an unchecked exception is appropriate
when an error was caused by programmer inattention (such as a null pointer exception).
Unchecked exceptions must be subclasses of Runti meExcepti on.

When you design an exception class, you should provide two constructors: a default
constructor and a constructor with a string parameter that signifies the reason for the
exception. The latter constructor should simply pass the reason string to ,the superclass
constructor. Here is a typical example. You want to throw an II I ega 1 FormatExcepti on
when a user enters information in the wrong format. Since user actions are beyond
the control of the programmer, we design a checked exception. We inherit from the
Excepti on class but not from Runti meExcepti on.

publ i c cl ass Il l egal FormatException extends Excepti on
{

publ i c Il l egal FormatException() {}
publ i c I l l egal FormatException(Stri ng reason) { supe r (reason) ; }

}

Now we can throw an exception of this new class:
i f (. . .) th row new I l l egal FormatException("numbe r expected") ;

When N o t to U s e Inheritanc e

Points and Circles

Use inheritance for is-a
relationships, aggregation for
has-a relationships.

Recall that inheritance is used to model an is-a relationship. Use
aggregation (instance fields) for has-a relationships.
For example, a car has a tire (in fact, it has four or five, counting the
spare). A car is a vehicle.

It is easy to get this wrong. A tutorial that accompanied a popular C++ compiler showed
how to form a subclass Ci rcl e that extends a Poi nt class. Here is the Java equivalent:

publ i c cl ass Poi nt
{

}

publ i c Poi nt(i nt x , i nt y) { . . . }
publ i c voi d transl ate (i nt dx , i nt dy) { . . . }

pri vate i nt x ;
pri vate i nt y ;

6.9 When Not to Use Inheritance

publ i c cl ass Ci rcl e extends Poi nt II l)()N1l
{

}

publ i c Ci rcl e (Poi nt center , i nt radi us) { . . . }
publ i c voi d d raw(Graphi cs g) { . . . }

pri vate i nt radi us ;

This does little good. By sheer accident, one of the methods of Poi nt (namely
transl ate) is applicable to Ci rcl e objects. But that is not a good enough reason to use
inheritance. A circle has a center point-it isn't a point.

publ i c cl ass Ci rcl e II ()K
{

}

publ i c Ci rcl e(Poi nt center , i nt radi us) { }
publ i c voi d d raw(G raphi cs g) { . . . }
publ i c voi d transl ate (i nt dx , i nt dy) { }

pri vate Poi nt cente r ;
pri vate i nt radi us ;

The same tutorial goes on to derive Rectangl e from Poi nt. That doesn't work any better.
In fact, treating the two corner points differently is downright weird.

publ i c cl ass Rectangl e extends Poi nt II l)()�1l
{

}

publ i c Rectangl e (Poi nt a , Poi nt b) { . . . }
pub 1 i c voi d d raw(Graphi cs g) { . . . }
publ i c voi d transl ate (i nt dx , i nt dy) { . . . }

pr i vate Poi nt othe r ;

()ne of the corner points is stored in the superclass; the other is an instance field. None
of the methods can be inherited. The implementations of the methods look very strange
because of the asymmetry between the point stored in the superclass and the point stored
as an instance field:

voi d t ransl ate (i nt dx , i nt dy)
{

}

supe r . t ransl ate (dx , dy) ;
othe r . t ransl ate (dx , dy) ;

The authors of the tutorial had a reason for choosing this example. They wanted to dem
onstrate polymorphism of shapes:

Ar rayLi st<Poi nt> shapes = new ArrayLi st<Poi nt>() ;
shapes . add (new Ci rcl e (. . .)) ;
shapes . add (new Rectangl e (. . .)) ;
for (Poi nt p : shapes)
{

}

I I Polymorphic calls
p . transl ate(10 , 10) ;
p . d raw(g) ;

CHAPTER 6 Inheritance and Abstract Classes

Of course, that doesn't look right. Circles and rectangles aren't points, they are shapes. It
would have made more sense to define an abstract class or an interface type Shape. Per
haps the authors of the tutorial felt that the concept of an abstract class or interface type
was too advanced for students just starting with object-oriented programming.

In this situation, misusing inheritance resulted in code that was difficult to understand.

TIP As you just saw, the is-a test can tell you when you should use inheritance. However, you
have to be careful when applying that test. You should only use the is-a relationship when
comparing two classes. For example, ''A Chevrolet is a car" is a relationship between classes
(the class ofChevrolets and the class of cars). But now consider "My car is a Chevrolet". That
is a relationship between an object (my car) and a class (the class ofChevrolets). An object can
never inherit from a class. Thus, the is-a test does not apply here.

lUI- Vectors and Stacks

The j ava . uti 1 package has a Stack class that extends a dynamic array class (the Vecto r
class, a precursor of the ArrayL i st class):

publ i c cl ass Stack<T> extends Vector<T> II J)()�1l
{

T popO { . . . }
T push(T i tem) { . . . }

}

This is not a good idea. A stack isn't a special case of a dynamic array. Some things you
can do to an array make no sense for a stack. When using inheritance, the stack class
inherits all methods of the Vector class, whether appropriate or not. Consider this
sequence of method calls:

Stack<Stri ng>
s . push ("A") ;
s . push(" B") ;
s . push("C") ;
s . remove (l) ;

Don't use inheritance if
it violates the Liskov
substitution principle.

s = new Stack<Stri ng> () ;

I I Removes " B "

The code i s legal but obviously makes no sense for a stack. You can't
remove elements from the middle of a stack. Thus, the stack class vio
lates the Liskov substitution principle.

In this situation, misusing inheritance leads to a possibly dangerous
situation. Programmers can cause objects to have an invalid state by applying the wrong
methods.

The appropriate solution is to use aggregation, not inheritance.

publ i c cl ass Stack<T>
{

6.9 When Not to Use Inheritance

}

T pop e) { . . . }
T push (T i tem) { . . }

pri vate Ar rayLi st<T> el ements ;

In this chapter, you have learned how to use inheritance to design class hierarchies, and
how to recognize situations in which inheritance is not appropriate.

Spec ia l Top ic
Stacks

A stack lets you insert and remove elements at only one end, traditionally called the top of the
stack. To visualize a stack, think of a stack of books (see Figure 16).
New items can be added to the top of the stack. Items are removed from the top of the stack
as well. Therefore, they are removed in the order opposite from the order in which they were
added, called last in,jirst out or LIFO order. For example, if you add items A, B, and C and
then remove them, you obtain C, B, and A. Traditionally, the addition and removal operations
are called push and pop, respectively.
The following sample code shows how to use a stack.

Stack<Stri ng> s = new Stack<Str i ng> () ;
s . push ("A") ;
s . push("B") ;
s . push("C") ;

/ / The following loop prints C, B, and A
whi l e (s . si ze () > 0)

System . out . pri ntl n (s . pop()) ;

Figure 1 6

A Stack of Books

CHAPTER S Inheritance and Abstract Classes

EXERCISES
Exercise 6 .1 . Start with the following class.

publ i c cl ass BankAccount
{

}

publ i c voi d deposi t (doubl e amount) { bal ance += amount ; }
publ i c voi d wi thd raw(doubl e amount) { bal ance - = amount ; }
publ i c doubl e getBal ance() { return bal ance ; }
p ri vate doubl e bal ance ;

A checking account is just like a bank account, except that there is a service charge for
deposits and withdrawals. Each month, the first five transactions are free. All further
transactions cost $1 . Define a subclass Checki ngAccount with a constructor

Checki ngAccount (doubl e i ni ti al Bal ance)

and a method
voi d deductFees()

that deducts the fees and resets the transaction count. (The bank computer will call this
method once a month. There is no transaction charge for deducting the fees.) You will
also need to redefine the deposit and wi thd raw methods.

Exercise 6.2. Form subclasses Hou rl yEmpl oyee and Sal ari edEmpl oyee of the Empl oyee
class. Provide constructors

Hou rl yEmpl oyee (Stri ng aName , doubl e anHou rl ySal ary)
Sal ari edEmpl oyee (Stri ng aName , doubl e anAnnual Sal a ry)

Add a method getWeekl ySal ary. Assume that hourly employees work 40 hours per
week, and that salaried employees are paid 1/52 of their annual salary every week.

Exercise 6.3. Explain the two different uses of the super keyword. How can you tell
when super is used to invoke a constructor?

Exercise 6.4. Implement a class
publ i c cl ass Label edPoi nt extends j ava . awt . Poi nt
{

}

publ i c Label edPoi nt(i nt x , i nt y , St ri ng text) { . . . }
publ i c voi d d raw(Graphi cs g) { . . . }
p ri vate St ri ng text ;

The d raw method should draw a small circle and the label. Which methods does this
class inherit?

Exercise 6.5. Implement a class
publ i c c l ass Label edRectangl e extends Rectangl e
{

}

publ i c Label edRectangl e (i nt x , i nt y , i nt wi dth , i nt hei ght ,
Stri ng text) { . . . }

publ i c voi d d raw(Graphi cs g) { . }
pri vate Stri ng text ;

Exercises

The draw method should draw the rectangle and center the label string inside it.

Exercise 6.6. (hard) Make the class of Exercise 6.5 implement the methods of the
j ava . awt . Shape interface type so that a Label edRectangl e can be drawn with the draw
method of the Graphi cs2D class.

Exercise 6.7. Explain why a method in a subclass cannot throw more checked exceptions
than the superclass method that it replaces. Hint: Show how the checking mechanism
could be defeated.

Exercise 6.8. Find examples of fi na 1 methods and fi na 1 classes in the Java library.

Exercise 6.9. Consider the Ar rayL i st<E> and L i n kedL i st<E> classes of the standard
library. What abstract class do they extend? What interface types does that abstract class
implement? Draw a class diagram.

Exercise 6. 10. Consider the HashSet<E> and TreeSet<E> classes of the standard library.
What abstract class do they extend? What interface types does that abstract class imple
ment? Draw a class diagram.

Exercise 6. 11 . Find examples of abstract classes and abst ract methods in the Java
graphics library.

Exercise 6. 12. Consider the Numbe r class in the standard Java library.
(a) What are its subclasses?
(b) Why are the methods byteVa 1 ue and shortVa 1 ue not abstract? (Note that all

other methods are abstract.)

Exercise 6.13. Reorganize the code for the scene editor as follows: Define a class Scene
Frame that extends the J Frame class. Its constructor should set up the scene component
and the buttons. The mai n method of the SceneEdi tor class should merely construct the
SceneFrame and show it.

Exercise 6.14. Add more items to the scene editor (such as trucks, stop signs, and so on).

Exercise 6. 15. Start with the classes in the Ch6/scene2 directory. Reorganize the Car
Shape, HouseShape, and Se 1 ectabl eShape classes so that the Se 1 ectabl eShape class stores
the top left corner of the item. Move the transl ate method to the Sel ectabl eShape class.

Exercise 6.16. The scene editor user interface has an unnatural feel. When you click on a
selected shape, intending to drag it to a different position, it is deselected instead. Imple
ment an improved behavior that feels more natural.

Exercise 6.17. Most drawing programs indicate selected items by placing "grabbers"
around the corners. Implement this feature in the scene editor by adding a method

Rectangl e getBounds ()

to the SceneShape interface type. In the d rawSe 1 ecti on method of the Se 1 ectab 1 eShape
class, call getBounds to determine the grabber locations. Is this an example of the TEM

PLATE METHOD pattern?

Exercise 6. 18. A General Path collects shapes and is itself a shape. What design pattern
does it exemplify?

· . CHAPTER 6 Inheritance and Abstract Classes

Exercise 6.19. Find examples of protected methods and p rotected fields in the Java
library. Are the protected fields safe from modification by hostile code?

Exercise 6.20. The J Button class does not define an addActi onL i stener method. In
which superclass is that method defined?

Exercise 6.21. Suppose the class Square extends the Rectangl e class. Does this inherit
ance pass the conceptual is-a test? Does it pass the "Liskov substitution" test?

Exercise 6.22. In this chapter, we criticized a design in which classes (i rcl e and
Rectang 1 e extended a class Poi nt. Implement a better design in which the (i rc 1 e and
Rectangl e classes have a common supertype Shape. Should Shape be an interface type or
an abstract class? (You need to place your classes in a separate package to avoid conflict
with the j ava . awt classes.)

Exercise 6.23. Reimplement the Stack<E> class using aggregation instead of inheritance.
(You need to place your class in a separate package to avoid conflict with
j ava . uti 1 . Stack.)

Chapter

Tne Java
Object Model

� The Java Type System

� Type Inquiry

� The Obj ect Class

� Shallow and Deep Copy

� Serialization

� Reflection

� Generic Types

� JavaBeans Components

This chapter discusses five important concepts of object-oriented design.

First, we study the Java type system and the important subtype relationship.

We then have a close look at the Obj ect class, the common superclass of

all Java classes, and the services that it provides. We discuss the concept of

reflection, which allows a program to analyze its own objects and classes,

and examine generic programming, a recent feature of the Java language for

implementing classes and methods with type parameters. The chapter

concludes with an introduction to the concept of components, entities

CHAPTER 7 The Java Object Model

that encapsulate functionality at a conceptually higher level than objects.
We look at the JavaBeans™ component model and investigate how
components can be assembled into applications in a graphical user interface
builder.

The J ava Type System

*111- Types and Subtypes

A type i s a set of values
together with a set of
operations that can be
applied to the values.

An important concept in a programming language is the notion of type.
A type specifies a set of values and the operations that can be carried out
with those values. For example, the ; nt type specifies all 32-bit integers
and the arithmetic operations on them. A class type specifies a set of
objects, together with the methods that can be applied to them.

In a strongly typed language, the compiler and run-time system carry out checks to ensure
that your programs never execute an operation on a value that would be forbidden under
the type system rules. Java is strongly typed. Most attempts to apply an illegal operation
are caught by the compiler. Others-such as invalid casts-are detected by the virtual
machine and result in an exception. Other languages, in particular C and C++, do not
have complete checks for type system rules. Those languages rely on the programmer to
produce correct code.

Most type system rules of the Java language are validated during compilation. In order to
support compile-time checking, variables have types. If you declare a variable of type
Emp 1 oyee, it can only hold references to objects of type Empl oyee or one of its subclasses.
The compiler can check that all operations on the variable are legal. For example, a Java
compiler finds the error in the code

Empl oyee e = new Empl oyee () ; II This is Java
e . cl ear 0 ; I I Compile-time error; undefined method

Not all programming languages make an effort to check types ' at compile time. For
example, a variable in J avaScript can hold values of any type. If you apply an operation
that is not applicable for the value that is currently stored in the variable, then a run-time
error occurs.

var e = new Empl oyee O ; II This is JavaScript
e . c l earO ; I I Run-time error; undefined method

Of course, compile-time checking is safer than run-time checking. The compiler checks
the entire program, whereas run-time checks may pass during testing and later fail dur
ing deployment when unforeseen values are stored in untyped variables.

In order to fully understand which values can be stored in which variables, we will
describe the types of the Java programming language in a systematic way.

7.1 The Java Type System

Every type in Java is one of the following:

1 . A primitive type (i nt, short, l ong, byte, char, fl oat, doubl e, bool ean)

2. A class type
3. An interface type
4. An array type
5. The null type

Examples for types are:
i nt
Rectangl e
Shape
Stri ng []

NOTE If you have an array type, the type of the array elements i s called the component type of
the array. For example, the component type of the St ri ng [] array type is St ri ng.

NOTE The null type is defined in the Java language specification as the type with a single
value, nul l . This solves a technical problem-every value, including nul l , should belong to
one specific type.

Every value in Java is one of the following:

1 . A value of a primitive type
2. A reference to an object of a class
3. A reference to an array
4. nul l

Examples for values are
13
new Rectangl e (5 , 10 , 2 0 , 30)
new i nt [] { 2 , 3 , 5 , 7 , 11 , 13 }
nul l

Note that you cannot have a value of an interface type. Interface types are only used to
declare variables, method parameters, or return types.

NOTE According to the Java language specification, voi d is not a type. The voi d keyword is
merely used to tag a method that returns no value.

You can substitute a value of a
subtype whenever a supertype
value is expected.

An important relationship between types is the subtype relationship. A
subtype contains a subset of the values of a given type. You can use a
subtype whenever a supertype is specified. For example, J Button is a
subtype of Component, so you can store J Button objects in Component

CHAPTER ? The Java Object Model

variables. In general, if 5 is a subtype ofT, the values of 5 can be assigned to variables of
type T without a cast.

Here is the complete rule set for the subtype relationship between non-generic types. The
rules for generic types are more complex-see Section 7.7. A type 5 is a subtype of the type T
if

1 . 5 and T are the same type.
2. 5 and T are both class types and 5 is a direct or indirect subclass ofT.
3. 5 and T are both interface types and 5 is a direct or indirect subinterface ofT.
4. 5 is a class type, T is an interface type, and 5 or one of its superclasses implements

the interface type T or one of its subinterfaces.
5. 5 and T are both array types and the component type of 5 is a subtype of the com

ponent type ofT.
6. 5 is not a primitive type and T is the type Obj ect.

7. 5 is an array type and T is the type Cl oneabl e or Seri al i zabl e . (These types are
explained later in this chapter.)

8. 5 is the null type and T is not a primitive type.

Object

I' I
Component

r
Container

r
JComponent

r
Abstract
Button

r
Figure 1

JButton

Examples of Subtype Relationships

-------I
Flow

Layout

«interlace»
Layout

Manager
if' -------- - -1

« interlace»
Layout

Manager2

(\

7.1 The Java Type System

For example (see Figure 1) :

• Contai ner is a subtype of Component because the class Contai ner directly extends
the class Component. (Rule 2)

• J Button is a subtype of Component because J Button extends Abst ractButton,
which extends JComponent, which extends Contai ner, which extends Component.
(Rule 2)

• LayoutManager2 is a subtype of LayoutManager because the LayoutManager2 inter
face type extends the LayoutManager interface type. (Rule 3)

• Fl owLayout is a subtype of LayoutManage r because Fl owLayout implements the
LayoutManager interface type. (Rule 4)

• J Button [J is a subtype of Component [J because J Button is a subtype of Component.
(Rule 5)

• i nt [J is a subtype of Obj ect. (Rule 6)
However, note that i nt is not a subtype of l ong, nor is l ong a subtype of i nt. Similarly,
i nt [J is not a subtype of Obj ect [J .

*Ifl- Array Types

Array types are somewhat subtle in Java. Consider the rule that S [J is a subtype of T[J
when S i s a subtype ofT. Let's look at a concrete example: an array of rectangles.

Rectangl e [J r = new Rectang l e [10J ;

Because Shape [J is a supertype, you can store the reference r in a variable of type Shape [J :
Shape [J s = r ;

Note that r and s point to the same array of ten rectangle references (see Figure 2).

r
Rectangl e [] v---...-/' [OJ = -

s

[lJ
[2 J : � i'----[3 J
[4J =

[5 J =

[6J =

[7 J =
[8J =

[9J =

Figure 2

Two Array Variables of Different Types
Referring to the Same Array of Rectangles

Rectangl e

Rectangl e

CHAPTER 7 The Java Object Model

At first, this seems to make sense. Of course, all 5 [i] are rectangles and hence shapes.

But now what stops you from storing a non-rectangle shape in the array?

5 [0] = new Pol ygon (. . .) ;

The compiler accepts this statement because Pol ygon is a subtype of Shape, the type of
5 [0] . However, this code will throw an Ar rayStoreExcepti on at runtime. Every array
object remembers its component type. The virtual machine keeps track of all array stores
and throws an exception if you try to store an object in an array whose class isn't a sub
type of the array component type.

UEI- Wrappers for Primitive Types

Use wrapper classes when
ever you need to supply
primitive type values to
services that require objects.

For efficiency's sake, primitive types aren't objects in' Java. However, it
is occasionally necessary to wrap primitive types into objects. There
are eight wrapper classes:

Intege r
Short
Long
Byte
Character
Fl oat
Doubl e
Bool ean

NOTE The wrapper classes are immutable. In particular, you cannot simulate "call by refer
ence" by using wrappers.

For example, here is how you convert a value of type i nt into an Integer wrapper.

i nt n = 13 ;
Integer i = new Integer (n) ;

To unwrap a wrapped integer value, use the i ntVa 1 ue method of the Integer wrapper class:
n = i . i ntVal ue() ;

There are corresponding methods such as doub 1 eVa 1 ue, boo 1 eanVa 1 ue, and so on, in the
other wrapper classes.

Starting with Java 5.0, the conversion between primitive types and the corresponding
wrapper classes is automatic. For example,

i nt n = 13 ;
Integer i =

Auto-boxing is the automatic
conversion of a primitive type
value into an object of a
wrapper class.

n ; / / Automatically calls the Integer constructor

This process is called auto-boxing (even though auto-wrapping might
have been a better term). Conversion in the other direction is also
automatic:

n = i ; / / Automatically calls the i ntVa 1 ue method

7.1 The Java Type System

Auto-boxing is particularly convenient if you need to store primitive type values in col
lections. For example, the type parameter of the ArrayL i st<E> class cannot be a primitive
type. However, you can use an ArrayL i st<Integer>, and auto-boxing gives you the illu
sion that it contains i nt values:

ArrayLi st<Intege r> l uckyNumbers = new Ar rayLi st<Integer>() ;
1 uckyNumbe rs . add (13) ; / / Automatically calls the Intege r constructor

NOTE Be careful when comparing wrapper objects. The == operator only checks whether the
wrapper objects are identical, not whether they have equal contents.

*111- Enumerated Types

An enumerated type is a type with a finite set of values. A typical example is a type Si ze
with three values

SMALL
MEDIUM
LARGE

It is common to "fake" enumerated types by sequences of integers:

publ i c stati c fi nal i nt SMALL = 1 ;
publ i c stati c fi nal i nt MEDIUM = 2 ;
publ i c stati c fi nal i nt LARGE = 3 ;

However, this approach is not very satisfactory, because the compiler cannot check type
errors. For example, consider the following code:

i nt s i ze
si ze++ ;

Use an enum instead of a
sequence of integers to define
enumerated types.

LARGE ;

Now the value for si ze is no longer one of the three permitted values.
Starting with Java 5.0, you can instead define an enumerated type:

publ i c enum Si ze { SMALL , MEDIUM , LARGE } ;

The enum keyword defines a class with a private constructor and a finite
number of instances. It is equivalent to the following:

publ i c cl ass Si ze
{

}

pri vate Si ze() { }

publ i c stati c fi nal Si ze SMALL = new Si ze() ;
publ i c stati c fi nal Si ze MEDIUM = new Si ze() ;
publ i c stati c fi nal Si ze LARGE = new Si ze () ;

Note that the constructor for the Si ze class is private. Only the methods of the Si ze class
can construct new instances. However, there are no such methods. Thus, the only three
instances of the Si ze class that can ever exist are the three static members.

CHAPTER ? The Java Object Model

A user of the enumerated type can declare variables of type Si ze and initialize them with
one of the three constant values:

Si ze i mageSi ze = Si ze . MEDIUM ;

You can use the == operator to compare enumeration values against each other. For example,
i f (i mageSi ze == Si ze . SMALL) . . .

NOTE An enum variable can be nul l ! For example, the i mageSi ze variable in the preceding
example has four possible values: SMALL, MEDIUM, LARGE, and nu 1 1 .

Because enumerated types are classes, you can add methods and instance fields. You can
also supply constructors, but they can only be used to construct the enumeration values.
For example,

publ i c enum Si ze
{

}

SMALL (O . 5) , MEDIUM (l) , LARGE (2) ;
pri vate Si ze(doubl e val ue) { thi s . val ue = val ue ; }
publ i c doubl e getVal ue() { retu rn val ue ; }
p ri vate doubl e val ue ;

All enumeration classes automatically extend the Enum class, from which they inherit a
number of useful methods. In particular, the toStri ng method yields the name of an
enumerated constant. For example, Si ze . SMALL . toStri ng O returns the string " SMALL" .
The Enum class implements the Comparabl e interface. The compareTo method compares
enumeration instances in the order in which they are defined.

Typ e Inquiry

The i nstanceof operator
tests whether the type of an
object is a subtype of a given
type.

To test whether an expression e is a reference to an object of a given
type or one of its subtypes, use the i nstanceof operator. The follow
ing condition tests whether e refers to an object of a subtype of the
Shape interface type:

i f (e i nstanceof Shape)

You might use this test before you apply a cast, to make sure that the cast does not fail.
For example,

Object x = . . . ;
i f (x i nstanceof Shape)
{

}

Shape s = (Shape) x ; / / Cast is guaranteed to succeed
g2 . d raw(s) ;

The i nstanceof operator can test whether the type of a value is a subtype of a given type,
but it won't give you the exact type. For example, if e i nstanceof Shape is true, then you
don't know whether e is a Rectangl e object or another shape. Testing e i nstanceof

7.2 Type Inquiry

Rectangl e still doesn't give you a definite answer-e might belong to a subclass of
Rectangl e .

NOTE If e i s nul l , the test e i nstanceof T does not throw an exception but simply returns
fal se.

An object of the Cl ass class is
a descriptor for a type.

If you have any object reference, you can find the actual type of the
object to which it refers with the getCl ass method. That method
returns an object of type Cl ass that describes the object's class.

Cl ass c e . getCl ass () ;

Mter you have a Cl ass object, you can obtain a large amount of information about the
class.

TIP It can be hard to imagine Cl ass objects. A Cl ass object is a type descriptor. It contains
information about a given type, such as the type name and the superclass. Figure 3 shows you the
contrast between an Empl oyee object and the Cl ass object that describes the Empl oyee class.

Empl oyee

name = " J ane Doe"

sal ary = 50000

Cl ass

name = " Empl oyee"

supercl ass =

Figure 3

V : Cl ass

name = " j ava . l ang . Object"

supercl ass = nul l

Contrasting an Employee Object with the Employee Class Object

To get the exact class name of a Java object, get its Cl ass object and invoke the getName
operation on it. The result is a string spelling out the class name. You can print it out for
debugging purposes.

System . out . pri ntl n (e . getCl ass () . getName ()) ;

For example, if e is a Rectangl e, then the class name is the string " j ava . awt . Rectangl e " .

• CHAPTER ? The Java Object Model

The static fo rName method of the Cl as s class is the converse of the getName method.
Given a string that includes the package name, you get a Cl ass object. For example,

Cl ass c = Cl ass . forName (" java . awt . Rectangl e") ;

Adding the suffix . c 1 as s to a
type name yields the Cl ass
object that describes the type.

Instead of calling Cl ass . forName, you can use literal class objects, by
applying a suffix . cl ass to a type name:

Cl ass c = Rectangl e . cl ass ;

NOTE You may wonder why you have to specifY the full package name in Cl ass .
forName ("java . awt . Rectangl e ") , but you can refer to Rectangl e . cl ass without the pack
age name. Keep in mind that package lookup is a service of the compiler. If you import the
j ava . awt package, then the compiler translates Rectangl e into j ava . aW,t . Rectangl e . In a
running program, all classes (including those in the j ava . 1 ang package) must be qualified
with the package name.

NOTE The name Cl ass is a misnomer--(l ass objects can describe any type, including prim
itive types, class types, and interface types. For example, i nt . cl ass is the Cl ass object that
describes the i nt type.

NOTE The Cl ass class has a type parameter. For example, Rectangl e . cl ass is an instance
of Cl ass<Rectangl e>-in fact, it is the sole instance of that type. For simplicity, we omit the
type parameter for now.

There is only one Cl ass object for every type that has been loaded into the virtual
machine. Therefore, you can use the == operator to test whether two class objects
describe the same type. For example, here is how you can test whether the object e is an
instance of the Rectangl e class:

i f (e . getCl ass () == Rectangl e . cl ass) . . .

This test is true if the class of e is exactly the Rectang 1 e class.

TIP You should not use type inquiry as a substitute for polymorphism. When you find code
of the form

i f (e . getCl ass O == Empl oyee . cl ass) some action ;
e l se i f (e. getCl ass O == Manage r . cl ass) another action ;

ask yourself how the variation of the action can be described by a method. Then supply two
versions of the method, one in the Empl oyee class and one in the Manager class, and call

e . actionO ; �
The mechanism of polymorphism automatically invokes the correct method, even if you later
add other subclasses of Empl oyee. Code with polymorphism is much easier to maintain and
extend than code that uses type inquiry.

7.3 The Obj ect Class

When getCl ass is applied to an array, the result is a Cl ass object that describes the array
type. The i sAr ray method tests whether a type is an array type. The getComponentType
method returns a Cl ass object describing the component type.

doubl e [) a = new doubl e [lO) ;
Cl ass c = a . getCl ass () ;
i f (c . i sArray O)

System . out . pri ntl n ("Component type=" + c . getComponentType O) ;
/ / Prints Component type=doubl e

NOTE For historical reasons, the getName method produces strange-looking names for array
types. For example, doubl e [) . cl ass . getName O is

" [0"

and Stri ng [) [] . cl ass . getNameO is
" [[Ljava . l ang . Stri ng ; "

In general, an array type name is made up according to the following rules:

[type array type
B byte
C char
D doubl e
F fl oat
I i nt
J l ong
Lname ; class or interface
5 short
z bool ean

The Obj ect Class

The Ob j ect class is the
common superclass of all
other Java classes.

All Java classes are subclasses of the Obj ect class. A class that is defined
without an extends clause is a direct subclass of Obj ect. Therefore, the
methods of the Obj ect class apply to all Java objects (including arrays).
The most important methods of the Obj ect class are:

Method Description

Stri ng toStri ngO Returns a string representation of the object

bool ean equal s (Obj ect other) Compares the object with another object

i nt hashCode 0 Returns a hash code

Object cl oneO Returns a copy of the object

CHAPTER 7 The Java Object Model

*,,1- The toSt ri ng Method

The toStri ng method yields
a string that describes the
state of an object.

The toStri ng method is important because it is automatically applied

• When you concatenate an object with a string

• When you print an object with the pri nt or pri ntl n method of
the Pri ntStream and Pri ntWri ter classes

• When you pass an object reference e to an assert statement of
the form assert condition : e ;

For example,

Rectangl e r = new Rectangl e (5 , 10 , 20 , 30) ;
Stri ng s = " r=" + r ;

really executes code that is equivalent to

Stri ng s = " r=" + r . toStri ng O ;

That sets s to the string

" r=java . awt . Rectangl e [x=5 , y=10 , wi dth=20 , hei ght=30] "

The Rectang 1 e class has implemented the toSt ri ng method to print out the class name,
followed by the names and values of the instance fields.

Not all class implementors were that thoughtful. For example, if you print a General Path
object, you will get a printout somewhat like this:

j ava . awt . geom . General Path@4abc9

The implementor of the General Path class did not override toStri ng, so the default
implementation of the toStri ng method in the Object class is used. That method
returns the name of the class and the hash code of the object. (We will discuss hash codes
later in this chapter.)

Because the toStri ng method is a useful debugging aid, it is a good idea to implement it
in your own classes. For example,

publ i c cl ass Empl oyee
{

}

publ i c Stri ng toStri ng()
{

}

return getCl ass () . getName ()
+ " [name=" + name
+ " , sal ary=" + sal ary
+ " J " ;

A typical string is

Empl oyee [name=Harry Hacke r , sal ary=3 5000]

/\ (

However, if the class has a superclass, then you should first call its toSt ri ng method and
then add the fields of the subclass:

7.3 The Obj ect Class

publ i c cl ass Manager extends Empl oyee
{

}

publ i c Stri ng toStri ng()
{

}

return super . toStr;ng()
+ " [bonus=" + bonus
+ "] 1 1 ;

A typical string is

Manager [name=Wendy (hen , sal ary=100000] [bonus=20000]

TIP The toSt ri ng methods in your programs should always return the result of calling get
(l ass O . getNameO , not a hard-coded class name. Then the correct class name is produced
for subclasses.

Iff*- Equality Testing

The equa 1 s method tests
whether two objects have
equal contents.

The test

x == y

tests whether x and y are two references to the same object.

In contrast, the test

x . equal s (y)

tests whether x and y are references to two objects that may be distinct but that have
"equal" contents.

The default implementation of equal s in the Obj ect class simply tests for identity:

publ i c cl ass Obj ect
{

}

publ i c bool ean equal s (Obj ect obj)
{

retu rn thi s == obj ;
}

Each class needs to define what it means for its objects to be equal to another. For exam
ple, we may consider two Empl oyee objects equal to each other if they have equal name
and sal ary fields. Alternatively, one may take the position that two Empl oyee objects are
equal if they have the same ID number, without testing the name and salary values. The
second definition might be more appropriate in an application where employee names
and salaries are subject to change. Thus, it is up to each class how to define the notion of
equality that is most appropriate for its objects.

CHAPTER 7 The Java Object Model

The equal s method is used by many methods in the collection classes. Here is a typical
example, the i ndexOf method of the Ar rayL i st class.

/**

*/

Searches for the first occurrence of the given argument, testing
for equality using the equal s method.
@param e 1 em an object
@return the index of the first occurrence of the argument in this
list; returns -1 if the object is not found.

publ i c i nt i ndexOf(Obj ect el em)
{

}

i f (el em == nul l) . . .
el se
{

}

for (i nt i = 0 ; i < s i ze ; i ++)
i f (el em . equal s (el ementData [i]))

return i ;

return - 1 ;

Because s o many methods i n the Java library assume that objects have a well-defined
notion of equality, it is important that you define the equal s method for your own
classes. In many cases, objects are equal if corresponding fields are equal:

publ i c c l ass Empl oyee
{

publ i c bool ean equal s (Obj ect othe rObj ect) / / Not complete - see below
{

}

}

Empl oyee othe r = (Empl oyee) othe rObj ect ;
return name . equal s (othe r . name)

&& sal ary == othe r . sal ary ;

Note the use of equal s to compare fields of a class type and == to compare fields of a
primitive type.

However, it is not always this simple. For example, two sets should be considered equal if
they contain the same elements in some order, not necessarily the same order. The
equal s method of the AbstractSet class, the common superclass of HashSet and
TreeSet, tests that two sets have the same size and that one is contained in the other.
Here is a slighdy simplified version of the actual implementation.

publ i c cl ass AbstractSet . . .
{

}

publ i c bool ean equal s (Obj ect othe rObj ect)
{

}

i f (! (otherObj ect i nstanceof Set)) return fal se ;
Col l ecti on other = (Col l ecti on) othe rObj ect ;
i f (si ze() ! = othe r . s i ze ()) return fal se ;
return contai nsAl l (other) ;

/ {
�

7.3 The Obj ect Class

There are some technical requirements that the Java Language Specification imposes on
the equal s method.

• It is reflexive: for any reference value x, x . equa 1 s (x) should return true.

• It is symmetric: for any reference values x and y, x . equal s (y) should return true if
and only if y . equal s (x) returns true.

• It is transitive: for any reference values x, y, and z, if x . equal s (y) returns true and
y . equal s (z) returns true, then x . equal s (z) should return true.

• For any non-nul l reference value x, x . equal s (nul l) should return fal se.

The equal s method must
be reflexive, symmetric, and
transitive.

The equal s method of the Empl oyee class in the preceding example
violates two of these rules. First, it doesn't return fal se if otherObj ect
is nul l . That's easy to fix:

publ i c bool ean equal s (Obj ect otherObject)
{

i f (otherObj ect == nul l) return fal se ;

}

What should happen if othe rObj ect is not an Empl oyee object? It seems reasonable that
the equal s method should then also return fal se.

publ i c cl ass Empl oyee
{

}

publ i c bool ean equal s (Obj ect otherObj ect)
{

i f (getCl ass () ! = otherObj ect . getCl ass ()) return fal se ;

}

This makes sense; if the classes aren't identical, the objects can't be truly equal.

Finally, it is a good idea to check whether thi s == othe rObj ect at the beginning of the
equa 1 s method. Many times, equal s is called on identical objects, and then there is no
point in checking for equal contents. Thus, the perfect equal s method starts out like this:

publ i c bool ean equal s (Obj ect otherObj ect)
{

}

i f (thi s == othe rObj ect) return true ;
i f (otherObj ect == nul l) return fal se ;
i f (getCl ass() ! = otherObject . getCl ass ()) return fal se ;

Because a subclass has no access to the superclass state, its equal s method must invoke
the superclass version:

publ i c cl ass Manager extends Empl oyee
{

publ i c bool ean equal s (Obj ect otherObj ect)
{

i f (! super . equal s (otherObject) return fal se ;
Manager other = (Manager) otherObj ect ;
return bonus == other . bonus ;

CHAPTER 7 The Java Object Model

}

}

T • Specia l Top ic -; -::�::-.
Consequences of the Symmetry Condition for
Equality Testing

In many published examples, you will find that programmers use an i nstanceof test in the
equa 1 s method. However, that test is often wrong, for a subtle reason. Consider this example:

publ i c cl ass Empl oyee
{

}

publ i c bool ean equal s (Object otherObj ect)
{

i f (! (otherObj ect i nstanceof Empl oyee)) return fal se ; II l)O�Jr
}

publ i c cl ass Manager extends Empl oyee
{

}

publ i c bool ean equal s (Obj ect otherObj ect)
{

i f (! (otherObj ect i nstanceof Manager)) return fal se ; II l)O�Jr
}

Suppose you compare an Empl oyee object e and a Manage r object m that happen to have the
same name and the same salary. Then e . equal s (m) would be true, but m . equa 1 s (e) would
be false. The symmetry condition is violated!
Using getCl ass instead of i nstanceof is much safer. You are automatically guaranteed that
the symmetry condition holds.
However, not every use of i nstanceof in an equal s method is an error. If a class is fi na 1 ,
then it doesn't matter whether one uses i nstanceof or getCl ass, because a final class has no
subclasses. Also, if you look again at the definition of equality of the Abst ractSet class that
you saw earlier in this section, you will note the test

i f (! (otherObj ect i nstanceof Set)) return fal se ;

As you can see, an AbstractSet is willing to compare itself to any objects that implement the
Set interface type. In order to preserve symmetry, all other classes that im�ement the Set
interface must now support the same notion of equality. For sets, this is not a problem
because the mathematical definition of a set specifies when two sets are equal.
However, in most programming situations, subclasses cannot simply inherit the notion of
equality from their superclasses. As a rule of thumb, you should avoid the use of i nstanceof
in equal s methods.

7.3 The Obj ect Class

flEI- Hashing

The hashCode method
computes the hash code of an
object. It must be compatible
with the equa 1 s method.

The HashSet and HashMap classes of the Java library use hash tables to
quickly locate elements. (See the special topic at the end of this sec
tion for more information on hash tables.) Because the Obj ect class
has a hashCode method, objects of any type can be stored in hash
tables.

Of course, it is important that the hashCode be consistent with the equal s method, that
IS,

• If x . equal s (y) , then x . hashCodeO == y . hashCode O .

The default implementation of hashCode in the Obj ect class hashes the memory address
of the object, which is consistent with the Obj ect . equal s method. But if you redefine
the equal s method in a subclass, you must also redefine hashCode, or the hash table will
not function correctly.

A hash function computes an integer hash code from an object, so that different objects
are likely to have different hash codes. Let's first look at how the standard library com
putes a hash code from a string. Clearly, the character values of the string must be
combined to yield some integer. You could, for example, add up the character values:

i nt h = 0 ;
for (i nt i = 0 ; i < s . l ength() ; i ++)

h = h + s . charAt (i) ;

However, that would not be a good idea. It doesn't scramble the character values enough.
Strings that are permutations of another (such as "eat" and "tea") all have the same
hash code.

Here is the method that the standard library uses to compute the hash code for a string.

i nt h = 0 ;
for (i nt i = 0 ; i < s . l ength () ; i ++)

h = 31 * h + s . charAt (i) ;

For example, the hash code of "eat" is

31 * (31 * ' e ' + ' a ') + ' t ' = 100184

The hash code of "tea" is quite different, namely

31 * (31 * ' t ' + ' e ') + ' a ' = 114704

(Use a Unicode table to look up the character values: ' a ' is 97, ' e ' is 101, and ' t ' is 1 16.)

Now consider the Empl oyee class. Two Empl oyee objects are considered equal to one
another if they have equal names and salaries. Therefore, we should compute the hash
codes of the individual fields and combine them. It is best to multiply individual hash codes
with relatively prime factors before adding them together, to minimize the risk of collisions.

Here is a definition of hashCode for the Empl oyee class. Note that we wrap the doubl e
value before computing its hash code.

publ i c cl ass Empl oyee
{

publ i c i nt hashCode ()
{

CHAPTER 7 The Java Object Model

retu rn 11 * name . hashCode()
+ 13 * new Doubl e (sal ary) . hashCode() ;

}

}

N ow equal Empl oyee objects will yield the same hash code.

To emphasize that the hashCode computation is tied to the definition of the equal s
method, let's look at the hashCode implementation of the AbstractSet class. Two sets
that are equal must yield the same hash code, even if the order of their elements differs.
For that reason, the AbstractSet class simply adds up the hash codes of its elements.

publ i c cl ass AbstractSet
{

}

publ i c i nt hashCode()
{

}

i nt h = 0 ;
Iterator i = i terator() ;
whi l e (i . hasNext ())
{

Obj ect obj = i . next() ;
i f (obj ! = nul l) h += obj . hashCode() ;

}
return h ;

The sum stays the same, even if the order of the elements changes.

Sp-ec i a l To JJ i c --====::::::;;1
Hash Tables

The technique of hashing can be used to find elements in a data structure quickly, without
making a linear search through all elements. Hashing gives rise to the ha$h table, which can be
used to implement sets and maps.
A hash function is a function that computes an integer value, the hash code, from an object in
such a way that different objects are likely to yield different hash codes. The Object class has
a hashCode method that other classes need to redefine. The call

i nt h = x . hashCode () ;

computes the hash code of the object x.
It is possible that two or more distinct objects have the same hash code. That �d a colli
sion. A good hash function minimizes collisions. For example, the St ri ng class defines a hash
function for strings that does a good job of producing different integer values for different
strings. Table 1 shows some examples of strings and their hash codes.
A hash code is used as an array index into a hash table. In the simplest implementation of a hash
table, you could make an array and insert each object at the location of its hash code (see Figure 4).

7.3 The Object Class

String Hash Code

"Adam" 2035631

" Eve" 70068

"Harry" 6949448

" J i m" 74478

" Joe" 74656

" J ul i et" -2065036585

" Katheri ne" 2079199209

"Suel l 83491

Table 1

Sample Strings and
Their Hash Codes

I I
I I

700,,§g
I I
I I

74478§9
I I

74656§g
I I
I I
I I
I I

Figure 4

A Simplistic Implementation
of a Hash Table

Then it is a very simple matter to find out whether an object is already present in the hash
table or not. Compute its hash code and check whether the array position with that hash code
is already occupied. This doesn't require a search through the entire array.
However, there are two problems with this simplistic approach. First, it is not possible to
allocate an array that is large enough to hold all possible integer index positions. Therefore,
choose an array of some reasonable size and then reduce the hash code to fall inside the array:

i nt h x . hashCode () ;
i f (h < 0) h = -h ;
h = h % s i ze ;

Second, it is possible that two different objects have the same hash code. Mter reducing the
hash code for a smaller array size, it becomes even more likely that several objects collide and
need to share a position in the array.
To store multiple objects in the same array position, use (short, we hope) link sequences for
the elements with the same hash code (see Figure 5). These link sequences are called buckets.

Now the algorithm for finding an object x in a hash table is quite simple.
1. Compute the hash code and reduce it to fit the table. This gives an index h into the

hash table.
2. Iterate through the elements of the bucket at position h. For each element of the

bucket, check whether it is equal to x .
3. If a match is found among the elements of that bucket, then x is in the set. Otherwise,

it is not.
In the best case, in which there are no collisions, all buckets either are empty or have a single
element. Then checking for containment takes constant or 0(1) time.
More generally, for this algorithm to be effective, the bucket sizes must be small. If the table
has only a few entries, then collisions are unavoidable, and each bucket will get quite full.

: . CHAPTER 7

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

Figure 5

The Java Object Model

1 Harry 1

Nina I
Susannah I

Larry I
Eve I

Sarah I
I Adam I

Juliet

-I Sue 1

Katherine Tony

A Hash Table with Linked Lists to Store Elements with the Same Hash Code

I

Then the linear search through a bucket is time consuming. In the worst case, where all ele
ments end up in the same bucket, a hash table degenerates into a linked list!
Therefore, it is recommended that the table be somewhat larger than the number of elements
that you expect to insert. Then there is a good chance for avoiding collisions altogether. An
excess capacity of about 30 percent is typical. According to some researchers, the hash table
size should be chosen to be a prime number to minimize the number of collisions.
Adding an element is a simple extension of the algorithm for finding an object. First compute
the hash code to locate the bucket in which the element should be inserted. Try finding the
object in that bucket. If it is already present, do nothing. Otherwise, insert it.
Removing an element is equally simple. First compute the hash code to locate the bucket in
which the element should be inserted. Try finding the object in that bucket. If it is present,
remove it. Otherwise, do nothing.
As long as there are few collisions, an element can be added or removed in "constant or 0(1) time.

S hal low and D e e p Copy

A deep copy or clone of an
object is an object with distinct
identity and equal contents.

As you know, a copy of an object reference is another �ce to the
same object. The cl one method of the Obj ect class is useful when you
want to make a deep copy or clone of the object (see Figure 6).

Empl oyee e = new Empl oyee(. . .) ;
Empl oyee cl oned = e . cl one() ;

Here we assume that the Empl oyee class supplies an appropriate cl one method.

7.4 Shallow and Deep Copy

Figure 6
e

Cloning an Object Empl oyee

name = "Smi th"

sal ary = 35000

cl oned
Empl oyee

name = "Smi th"

sal ary = 35000

In general, a cl one method is expected to fulfill these three conditions:

• x . cl oneO ! = x

• x . cl one() . equal s (x)

• x . cl one() . getCl ass () == x . getCl ass()

That is, the clone should be a new object, but it should be equal to its original.

For reasons that will become apparent presently, cloning is a subtle process. Therefore,
the Object class didn't dare to make cl one a public method and made it protected
instead. If a class wants to allow clients to clone its instances, it must redefine cl one to a
pub 1 i c method.

publ i c cl ass Empl oyee
{

publ i c Empl oyee cl one ()
{

retu rn super . cl oneO ; II Not complete
}

}

NOTE When overriding the Obj ect . cl one method, we change the return type from Obj ect
to Empl oyee. This is a feature ofJava 5.0. In older versions ofJava, it was not possible to con
strain the return type when overriding a method.

To define a cl one method,
a class must minimally
implement the Cl oneab 1 e
interface type and override
the c lone method.

However, it isn't this simple. The designers of the Obj ect class were so
nervous about clonability that they added a second requirement. Any
class willing to be cloned must implement the Cl oneab 1 e interface type.

publ i c cl ass Empl oyee impl ements Cl oneabl e

{
publ ic Empl oyee cl one ()
{

Figure 7

CHAPTER 7 The Java Object Model

retu rn (Empl oyee) supe r . cl one () ; / / Not complete
}

}

The Cl oneab 1 e interface type is a curious interface type because it has no methods:

publ i c i nte rface Cl oneabl e { }

It is a "tagging" interface type-you can only use it to test whether an object implements it:

i f (x i nstanceof Cl oneabl e) . . .

When the Obj ect class finds that the object to be cloned isn't an instance of a class that
implements Cl oneab 1 e, it throws a Cl oneNotSupportedExcepti on. Unfortunately, this is
a checked exception, so you must declare or catch it. Normally, we advocate declaring
checked exceptions instead of catching them. But in this case, that would for<;e the caller
to handle an exception that will in fact never happen. Therefore, in this case, it is appro
priate to "squelch" the exception:

publ i c cl ass Empl oyee impl ements Cl oneabl e

{

}

publ ic Empl oyee cl one ()
{

}

try

{
retu rn (Empl oyee) supe r . cl one() ;

}
catch (CloneNotSupportedException e)

{
return nul l ; / / Won't happen

}

Why all the fuss? The Obj ect . cl one method makes a shallow copy. It makes a new object
of the same type as the original and copies the values of all fields. If the fields are object
references, the original and the clone can share common subobjects.

e = � Em�l oi'ee

name =

sal ary = 3 5000

� r : Stri ng

hi reDate =

cl oned � Em�l oi'ee :

name = /
sal ary = 35000 : Date

hi reDate =

A Shallow Copy

7.4 Shallow and Deep Copy

e

cl oned

Figure 8

Em�l ol::ee

name =

sal ary = 35000

h i reDate =

Em�l ol::ee

name =

sal a ry = 3 5000

h i reDate =

A "Sufficiently Deep" Copy

Stri ng

..........

.-/
Date ---

-.......

: Date ---

Consider an Empl oyee class that stores the employee name, salary, and hire date. Figure 7
shows the shallow copy that Obj ect . cl one creates. As you can see, both the original and
the clone share a Stri ng and a Date object.

The sharing of the Stri ng object is not a problem-strings are immutable. But sharing a
Date is only reasonable if we know that none of the Emp 1 oyee methods mutates it. Other
wise, it too should be cloned.

Here is how you can define a "sufficiently deep" copy of the Empl oyee class with a hire
date (see Figure 8).

publ i c cl ass Empl oyee impl ements Cl oneabl e

{
publ i c Empl oyee cl one()
{

t ry
{

}

Empl oyee cl oned
cl oned . hi reDate
return cl oned ;

(Empl oyee) supe r . cl one() ;
(Date) hi reDate . cl one() ;

catch (Cl oneNotSupportedExcepti on e)
{

: , CHAPTER 7 The Java Object Model

return nul l ;
}

}

}

NOTE The cl one method is defined for arrays. It makes a shallow copy of the array, that is, a
new array of the same type and size whose elements are copies (but not clones) of the original
elements.

Now you know why the Object . cl one method is so paranoid. Its behaviof"7-to make a
shallow copy of all fields-is simply not appropriate for most subclasses. The designers of
the Obj ect class were in a position to express their paranoia in three ways: the protected
attribute, the Cl oneabl e interface type, and the checked Cl oneNotSupportedException .

The users of your classes aren't so lucky. The Empl oyee . cl one method is every bit as risky
as Obj ect . cl one. A subclass must be very careful to override cl one ifit has mutable fields.

publ i c cl ass Manager extends Empl oyee
{

}

publ i c Manager cl one()
{

}

Manager cl oned = (Manager) supe r . cl one() ;
clone mutable fields
retu rn cl oned ;

But unlike Obj ect . c lone, Empl oyee . cl one carries no warning. It is a public method that
throws no exceptions. And, of course, since Empl oyee implements Cl oneab 1 e, all of its
subclasses do too.

NOTE As you can see, tagging interface types such as (1 oneab 1 e are not really useful for
non-fi na 1 classes. A tagging interface type is supposed to validate that a programmer under
stands a subtle issue. But interface types are inherited, so the validation automatically extends
to subclasses, even though there is no guarantee that the subclass implementors have the
same understanding.

NOTE You may wonder why the cl one method doesn't make a deep copy by default. Argu
ably, a deep copy is a more reasonable default than a shallow copy. But it is not always
appropriate. Sometimes, a cloned object should share some subobjects with the 'pr-igioal
object. Suppose, for example, that each Empl oyee object has a field of type Department that
signifies the department in which the employee works. A clone of an employee object should
probably not make a deep copy of the department object. Mter all, there is a benefit of shared
references to the same department object. If the department changes its name (say, from
Personnel to Human Resources), then all employees automatically pick up the name change

7.5 Serialization

of the shared object. Thus, cloning truly is a subtle business, and each class needs to decide
which fields to clone.

S erialization

Serialization denotes the
process of storing an object
and its dependent objects in
a stream.

In J ava, it is simple to save objects to a stream without converting them
to an external representation. For example, suppose you want to save an
array of Emp 1 oyee objects to a file.

Empl oyee [] staff = new Empl oyee [2] ;
staff eD] = new Empl oyee () ;
staff [l] = new Empl oyee() ;

Construct an Obj ectOutputSt ream that is associated with a Fi 1 eOutputStream.

ObjectOutputStream out = new ObjectOutputStream(
new Fi l eOutputStream(" staff . dat")) ;

Then write the array and close the stream.

out . wri teObject(staff) ;
out . cl oseO ;

Now the array and all objects that it references are saved to the file. To read the data back,
reverse the process.

Obj ectlnputStream i n = new Obj ectlnputSt ream(
new Fi l elnputStream (" staff . dat")) ;

Empl oyee [] staff = (Empl oyee []) i n . readObj ect() ;
i n . cl ose O ;

Mterwards, the staff array is filled with Empl oyee objects that are identical to the saved
ones.

Objects of classes that imple
ment the Se ri al i zab 1 e
interface type can be serialized
in object streams.

Remarkably, the Empl oyee class does not have to implement any
methods to make this possible. This is in marked contrast to the
toSt ri ng and cl one methods, which require programmers to supply
an implementation. The only requirement is that the class (or one of
its superclasses) implements the Se ri al i zab 1 e interface type.

publ i c cl ass Empl oyee i mpl ements Seri al i zabl e

{

}

The Seri al i zabl e interface type is a tagging interface type similar to Cl oneabl e, with no
methods.

To gain some respect for the serialization mechanism, let's understand how it works in a
complex situation. Suppose that each Empl oyee object has a field

pri vate Empl oyee buddy ;

The buddy of an employee is another employee, perhaps one who is called to duty if an
employee cannot show up for work. Figure 9 shows a scenario in which two employees
are buddies of each other. Suppose the array of employees is serialized.

CHAPTER 7 The Java Object Model

staff = � (#2) : Empl oyee

Fig ure 9

'-- (#1) : Empl oyee []

[0]
[1]

name =

sal ary =

buddy =

(#3) : Empl oyee

name =

sal a ry =

buddy =

Objects with References Between Them to be Serialized

The serialized file contains the following information:

• Object #1, type = Empl oyee []
• [0] component is Object #2, type = Empl oyee

• name field is . . .
• sal ary field is . . .
• buddy field is Object #3, type = Empl oyee

• name field is . . .
• sal ary field is . . .
• buddy field is Object #2 (already described)

• [1] component is Object #3 (already described)

As you can see, every object gets a serial number (#1, #2, #3) . When an object is saved for
the first time, its fields are saved as well. However, when an object has been previously
saved, then only the serial number is saved.

There are a few times when it is not desirable to have a field serialized explicitly. By
marking the field as transi ent, it is simply not saved or restored. For example, when
serializing an item in a scene, you may not want to save whether or not the item was cur
rently selected. Then declare the sel ected flag like this:

pri vate transi ent bool ean sel ected ;

Another reason for using the t ransi ent keyword is to avoid errors with instance fields of
types that are not serializable. For example, the graphical shapes in the j ava . awt . geom
package are not serializable. There is no good reason for this limitation. The ;?f0gt:l\m
mers who implemented these classes simply neglected to implement the S�ri al i zab 1 e
interface type. If your class has fields of that type, you must mark them as t ransi ent. (If
you don't, then a NotSe ri al i zabl eExcepti on will be thrown when trying to write the
object.) For example, in a serializable Car class, you would declare the tires as transient.

p ri vate transi ent El l i pse2 D . Doubl e frontTi re ;

7.6 Reflection

NOTE If you use transient fields, then the default serialization mechanism may not store suf
ficient information. To overcome that problem, you need to supply special methods

pri vate voi d wri teObject (ObjectOutputSt ream out)
pri vate voi d readObj ect(ObjectlnputSt ream i n)

These methods must first call defau 1 tWri teObj ect/defau l tReadObj ect to write or read the
superclass information and any non-transient fields, and then manually write or read the
remaining information. You will find an example in the companion code to this book in Ch7 /
seri a l 2/Car . j ava.

NOTE Serialization is well suited for short-term storage of objects. However, if the definition
of a class changes, then the serialization format also changes. As a consequence, you cannot
read in files that contain objects of an older version of the class. A better alternative for long
term storage of classes whose definition may change over time is the long-term persistence
storage for]avaBeans-see http : //java . sun . com/products/j fc/tsc/arti cl es/pe rsi s
tence/i ndex . html .

Reflection

Reflection denotes the ability of
a program to analyze its
objects and their capabilities.

Reflection is a mechanism by which a program can find out about the
capabilities of its objects at runtime, and manipulate the objects
whose capabilities it has discovered. Reflection is particularly useful
for building programming tools. For example, the Blue] environment

uses reflection to enumerate the constructors and methods of arbitrary classes. Reflection
is also an essential part of the J avaBeans component model that we describe at the end of
this chapter.

In order to support reflection, a number of classes have been created to describe the vari
ous features ofJava types. They are shown in the table below.

Reflection Class Purpose

Cl ass Describes a type

Package Describes a package

Fi e l d Describes a field and allows inspection and modification of fields

Method Describes a method and allows its invocation on objects

Constructor Describes a constructor and allows its invocation

Ar ray Has static methods to analyze arrays

CHAPTER 7 The Java Object Model

TIP Just as the (1 ass class can be demystified by thinking of it as a type descriptor, you
should think of the other reflection classes as descriptors. For example, a Method object is not
a method. It just describes a method. The object knows the method name and its parameter
and return types. It knows how to call the method. But it doesn't know what the method does.

fIll- Enumerating the Features o f a Class

As you have seen, you can obtain the (1 ass object that describes the type of any object.
The (1 ass object gives a wealth of information about the class:

• The superclass

• All interface types that the class implements

• The package of the class

• The names and types of all fields

• The names, parameter types, and return types of all methods

• The parameter types of all constructors

The getSupercl ass method returns the (1 ass object that describes the superclass of a
given type. If the type does not have a superclass (because it is Obj ect or not a class type),
then the getSupe rcl ass method returns nul l .

The getlnte rfaces method returns an array of (1 ass objects describing the interface
types that a class implements or an interface type extends. If the type doesn't implement or
extend interface types, an array oflength 0 is returned. Note that this method only returns
the direct superinterface. That means you need to call this method on all superclasses and
superinterfaces to obtain the complete collection of interface types that a class implements.

For example, the statement

(l ass [] i nterfaces = Rectangl e . cl ass . getlnterfaces() ;

yields an array consisting of the two elements Shape . cl ass and Seri al i zabl e . cl ass.
Note that (1 oneabl e . cl ass is not in the array because it is not a direct superinterface.

The getPackage method returns a Package object that describes the package of a class.
For example,

Package pkg = Stri ng . cl ass . getPackage () ;
System . out . pri ntl n (pkg . getName O) ; II Prints j ava . l ang

Using reflection, you can
enumerate all fields, methods,
and constructors of a class.

The getDecl aredFi elds method returns an array of Fi el d objects for
all fields that this class or interface declares. That includes public, pri
vate, protected, and package-visible fields. Both instance �ds-:m d
static fields are included. However, fields from superclasses are not. If

you want to have information on a specific field whose name you know, then you can call
the getDecl aredFi el d method to get a Fi el d object describing the field with the given
name. There is also a less useful getFi e 1 ds method that returns all public fields of the
class and its superclasses.

7.6 Reflection

The Fi e 1 d class has three methods to describe the field: getName gets the field name,
getType gets the field type (as a Cl ass object), and getModi fi ers gets an integer that has
various bits set to indicate whether the field is public, private, protected, static, or final.
Use the static i sPubl i c, i sPri vate, i sProtected, i sStati c, i sFi na 1 methods of the
Modi fi er class to test the return value of getModi fi ers . For example, the following loop
prints out the names of all static fields of the Math class.

Fi el d [] fi el ds = Math . cl ass . getDec laredFi el ds () ;
for (Fi el d f : fi el ds)

i f (Modi fi e r . i sStati c (f . getModi fi ers ()))
System . out . pri ntl n (f . getName ()) ;

The getDecl aredConst ructors method of the Cl ass class returns an array of Constructor
objects that describes the constructors of the class. A class can have multiple constructors,
each with different parameter types. The getParameterTypes method of the Constructor
class returns an array of Cl ass objects that describe the parameter types.

For example, calling

Const ructor [] constructors = Rectangl e . cl ass . getDecl aredConst ructors()

returns an array of seven Const ructor objects, one for each of the constructors of the
class. The double loop

for (Constructor c : const ructors)
{

}

Cl ass [] params = c . getParameterTypes() ;
System . out . pri nt("Rectangl e (") ;
for (i nt = 0; i < params . l ength ; i ++)
{

}

i f (i > 0) System . out . pri nt (" , ") ;
System . out . pri nt(params [i] . getName ()) ;

System . out . pri ntl n (") ") ;

prints the parameter types of all of them, yielding the output

Rectangl e O
Rectangl e (java . awt . Rectangl e)
Rectangl e (i nt , i nt , i nt , i nt)
Rectangl e (i nt , i nt)
Rectangl e (java . awt . Poi nt , j ava . awt . Di mensi on)
Rectang l e (java . awt . Poi nt)
Rectang l e (java . awt . Di mensi on)

Finally, the getDecl aredMethods method of the Cl ass class returns an array of Method
objects that describes each method. As with Constructor objects, the getParameter
Types method returns an array of parameter types. In addition, the getName method
returns the method name, and the getRetu rnType method returns a Cl ass object describ
ing the return type.

You can also get the descriptor of a single method. Call the getDec 1 aredMethod method
with the method name and the parameter types. The parameter types are needed because

· . CHAPTER 7 The Java Object Model

there may be multiple methods with the same name. For example, to obtain a Method
object for the method

contai ns (i nt x , i nt y)

of the Rectang 1 e class, you call

Method m = Rectangl e . cl ass . getDecl aredMethod (" contai ns " ,
i nt . cl ass , i nt . cl ass) ;

Similarly, to obtain a single Const ructor object, you specifY the parameter types, such as

Constructor c = Rectangl e . cl ass . getDecl aredConstructor () ;
/ / Gets the default constructor because no parameters specified

You will see in the next section how to call a method that is described by a Method object.

NOTE The getDecl aredMethod and getDecl aredConst ructor methods are "varargs" meth
ods that take a variable number of parameters of type Cl ass. They are declared as

Method getDecl aredMethod (Stri ng name , Cl ass . . . paramete rTypes)
Const ructor getDec1 aredConst ructor(Cl ass . . . paramete rTypes)

You supply zero or more parameters of type C1 ass.

In the examples of this section, we showed you the effect of the reflection mechanism on
known classes such as St ri ng and Rectang 1 e. However, the real importance of the mech
anism is to analyze classes that are not known when the program is compiled. For
example, the Blue] program lets you load arbitrary classes, and it enumerates their con
structors and methods for you.

" ll- Invoking Methods

A Method object describes a method of some class. Can you call the method? Sure you
can. The Method class has an i nvoke method for that purpose. Give it the implicit and
explicit parameter objects, and the method is invoked. Let's run through an example.

Suppose you want to call the pri ntl n method of the Pri ntSt ream class the hard way, by
getting the Method object and giving it System . out and " Hel l o , Worl d ! " as parameters.

First, get the Method object, as discussed in the preceding section: You wantthe pri ntl n
method of the Pri ntSt ream class that takes one parameter of type Stri ng.

Method m = Pri ntSt ream . cl ass . getDecl aredMethod ("p ri ntl n " , Stri ng . c l as s) ;

Then invoke m on the implicit parameter System . out, and supply the explicit parameters.
In this case, there is just one explicit parameter, the string "He 1 1 0 , Worl d ! " .

m . i nvoke(System . out , "Hel l o , Worl d") ;

As a result, the string "He 1 1 0 , Worl d ! " is printed to System . out.

The i nvoke method receives a variable number of parameters of type Object" The first
parameter is the implicit parameter of the call. Supply nul l if you call a static method.
The remaining parameters are the explicit parameters of the call.

Here is the complete program.

7.6 Reflection

111 1_=
i _ _

Ch 7 /reflectI/HardHello. java

1
2
3
4
5
6
7
8
9

10
1 1
1 2
13
14
15
16
17

i mport j ava . l ang . refl ect . * ;
i mport j ava . i o . * ;

1**

*1

T�is prograI? prints "He 1 1 0 , Wo r 1 d ! " the hard way,
usmg refiectlOn.

publ i c cl ass HardHel l o
{

publ i c stati c voi d mai n (Stri ng [] args)

{

}

throws NoSuchMethodExcepti on , 11 l egal AccessException ,
1nvocati onTargetExcepti on

Method m = Pri ntStream . cl ass . getDecl aredMethod (
" pri ntl n " , Stri ng . c l ass) ;

m . i nvoke (System . out , " Hel l o , Wo rl d ! ") ;

18 }

The getDecl aredMethod and i nvoke methods can throw a number of serious excep
tions-if the method doesn't exist, if you call it with the wrong parameter types, if the
method is not accessible (for example, because it is pri vate) , or if the method throws an
exception during its execution.

If any of the method parameters are primitive types, they need to be wrapped into
objects of the corresponding wrapper classes. As of Java 5.0, auto-boxing takes care of
this issue.

If the method returns a value, the i nvoke method returns it as an Obj ect. If the return
type is a primitive type, then it is wrapped in a wrapper object. For example, if a method
returns a doubl e, then i nvoke returns a Doubl e object. You can have it automatically
unboxed, provided that you cast the returned value to the wrapper type.

For example, here is a call to Math . sqrt (4 . 0) :

Method m = Math . cl as s . getDecl aredMethod (" sq rt" , doubl e . cl ass) ;
doubl e r = (Doubl e) m . i nvoke (nul l , 4 . 0) ; II r is 2 . 0

Why would anyone want to go through this trouble to call a method? There is of course
no sense in calling a known method in this way. However, if a program needs to call a
method that is not known when the program is compiled, then the dynamic invocation
mechanism is required. For example, the]Unit program dynamically invokes all methods
of a test class whose names start with test.

*'*1- Inspecting Objects

You can also use the reflection mechanism to dynamically look up the fields of objects as a
program runs. Of course, fields are generally private, so you must override the normal access
control mechanism. To allow access to a field, call its setAccessi b 1 e method, like this:

Cl ass c = obj . getCl ass () ;
Fi el d f = c . getDecl aredFi el d (name) ;
f . setAccess i b l e (true) ;

CHAPTER 7 The Java Object Model

It appears dangerous to allow a program to read and write private fields of any object. For
that reason, the setAccessi b 1 e call can be protected by installing a security manager. By
default, basic Java applications do not install a security manager. However, applets, serv
lets, and other types of programs run with a security manager that disallows access to
private fields. (For more information on security managers, see Horstmann and Cornell,
Core Java, 7th ed., vol. 2, Sun Microsystems Press, 2005).

If you are granted access, you can read and write any field of the object:

Obj ect val ue = f . get (obj) ;
f . set (obj , val ue) ;

Of course, f must be a Fi e 1 d object that describes a field of the class of obj ; otherwise,
the get and set methods throw an exception.

If the field type is a primitive type, then the get method returns a wrapper object. Con
versely, the set method expects a wrapper object and unwraps it.

To read or write a static field, supply nul l for the object.

Let's run through an example. The following program spies on the internal state of a
randomizer. When you run the program, you can observe how the seed field changes.
Note the generic spyFi e 1 ds method that can show the fields of any object, not just a ran
dom number generator.

Ch7/reflectz/FieldTester.java

1 i mport j ava . l ang . refl ect . * ;
2 i mport j ava . uti l . * ;
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/**
This program shows how to use reflection to print
the names and values of all nonstatic fields of an object.

*/
publ i c cl ass Fi el dTeste r
{

publ i c stati c voi d mai n (Stri ng [] args)
th rows Il l egal AccessExcepti on

{

}

/**

*/

Random r = new Random() ;
System . out . p ri nt (spyFi el ds (r)) ;
r . nextInt O ;
System . out . pri ntl n ("\nAfter cal l i ng
System . out . pri nt(spyFi el ds (r)) ;

nextlnt : \n ") ;

Spies on the field names and values of an object.
@param obj the object whose fields to format
@retu rn a string containing the names and values of
all nonstatic fields of obj

publ i c stati c Stri ng spyFi el d s (Object obj)
th rows Il l egal AccessExcepti on

{

(

7.6 Reflection

29
30
3 1
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 }
47 }

Stri ngBuffer buffer = new Stri ngBuffe r () ;
Fi el d [] fi el ds = obj . getCl ass () . getDecl aredFi el d s () ;
for (Fi el d f : fi el ds)
{

}

i f (! Modi fi e r . i sStati c (f . getModi fi e rs ()))
{

}

f . setAccessi bl e (true) ;
Object val ue = f . get(obj) ;
buffe r . append (f . getType () . getName ()) ;
buffe r . append (" ") ;
buffe r . append (f . getName ()) ;
buffe r . append ("=") ;
buffe r . append (" " + val ue) ;
buffe r . append ("\n") ;

return buffe r . toStr ing() ;

Here is a typical output of the program.

j ava . uti l . concurrent . atomi c . Atomi cLong seed=214 5 5 7 38243 3043
doubl e nextNextGaussi an=O . O
bool ean haveNextNextGaussi an=fal se

After calling nextInt:

j ava . uti l . concu r rent . atomi c .Atomi cLong seed=2 31457616363298
doubl e nextNextGaussi an=O . O
bool ean haveNextNextGaussi an=fal se

NOTE You may wonder why Java doesn't use a method such as spyFi e 1 ds to implement a
generic toStri ng method. However, it isn't always so simple. Suppose the Empl oyee class has
a field Empl oyee buddy. Ifit happens that Harry's buddy is Joe, and Joe's buddy is Harry, then
the mechanical implementation of toStri ng would die in an infinite recursion.

*111-- Inspecting Array Elements

The Fi e 1 d class allows you to read and write the value of an arbitrary field of an object.
The Array class does a similar job for array objects. If a is any array, then you can read a
value at index i as

Object val ue = Array . get (a , i) ;

You set a value as

Ar ray . set (a , i , val ue) ;

You can find out the length of the array as

i nt n = Array . getLength (a) ;

CHAPTER 7 The Java Object Model

To create a new array, call the static newlnstance method with the desired component
type and length. For example, here is how you can double the size of an array:

Object anew = Array . newlnstance (
a . getCl ass () . getComponentType () ,
2 * Array . getLength (a) + 1) ;

System . arraycopy(a , 0 , anew , 0 , Array . getLength (a)) ;
a = anew ;

Generic Typ e s

fill- Type Variables

A generic type has one o r more A generic type is a type that is parameterized by one or more type

type variables. variables. A generic type is instantiated when actual types are sub-
stituted for the type variable. For example, ArrayL i st<E> is a generic

type, and ArrayL i st<Stri ng> is an instantiation.

In Java, type variables can only be instantiated with class or interface types, not with
primitive types. For example, it is not possible to declare an ArrayL i st<i nt>.

When you define a generic class, you use type variables for the generic types of variables,
fields, and methods. Here is a fragment of the definition of the ArrayL i st<E> class:

publ i c cl ass ArrayLi st<E>
{

publ i c E get (i nt i)
{

}

i f (i < 0 I I i >= si ze) th row new IndexOutOfBoundsExcept ion(. . .) ;
return el ementData [i) ;

publ i c E set(i nt i , E newVal ue)
{

}

i f (i < 0 I I i >= si ze) th row new IndexOutOfBoundsException (. . .) ;
E ol dVal ue = el ementData [i) ;
el ementData [i) = newVal ue ;
retu rn ol dVal ue ;

pri vate E [) el ementData ;
pri vate i nt s i ze ;

} �

When the generic class is instantiated, then the type variables are substitute{
with the

actual types. For example, the instantiated class Ar rayL i st<Stri ng> has methods

String get O
Stri ng set (i nt i , Stri ng newVal ue)

7.7 Generic Types

NOTE There is no subclass relationship between generic classes that are instantiated with
subtypes. For example, ArrayL i st<Rectangl e> is not a subclass of Ar rayL i st<Shape>. The
two classes are completely unrelated. In this regard, generic collections differ from the built
in array types.

Generic types are most commonly used for collections, with a type variable denoting the
element type. However, there are many other uses as well. We have seen the generic
Comparab 1 e interface

publ i c i nte rface Comparabl e<T>
{

i nt compareTo (T other) ;
}

Here, the type variable specifies the parameter type of the compareTo method.

lUI- Generic Methods

A generic method is a method with one or more type parameters. A generic method can
be declared inside an ordinary class or a generic class. Here is an example of a generic
method that is declared inside an ordinary class Uti 1 s .

publ i c cl ass Uti l s
{

}

publ i c stati c <E> voi d fi l l (ArrayLi st<E> a , E val ue , i nt count)
{

}

for (i nt i = 0 ; i < count ; i ++)
a . add (val ue) ;

The type parameter list <E> after the publ i c stati c modifiers indicates that this method
is generic. The type parameter is used to denote the type of the array elements and the
fill value.

When you call a generic method, you need not specifY type parameters. Instead, it is
inferred from the call parameters. For example, consider the call

Ar rayLi st<Stri ng> i ds = new ArrayLi st<Str i ng>() ;
Uti l s . fi l l (i ds , "defaul t" , 10) ;

The compiler matches the generic parameter types (Ar rayL i st<E> and E) against the
actual parameter types (ArrayL i st<Stri ng> and Stri ng) . It then infers that E is St ri ng in
this method call.

The type matching mechanism is rather sophisticated. Consider for example the call

Ar rayLi st<Shape> shapes = new Ar rayLi st<Shape> () ;
Uti l s . fi l l (shapes , new Rectangl e (5 , 10 , 20 , 30) , 10) ;

Now the compiler needs to work harder when matching the generic parameter types
(ArrayL i st<E> and E) against the actual parameter types (ArrayL i st<Shape> and
Rectangl e) . Matching E with Shape succeeds since Rectangl e is a subtype of Shape.

CHAPTER ? The Java Object Model

However, matching E with Rectangl e does not succeed because ArrayL i st<Rectangl e> is
not a subtype of Ar rayL i st<Shape>.

The compiler will figure out the appropriate method instantiation automatically. How
ever, for greater clarity, you can specifY the instantiation-place the actual type parame
ters before the method name, like this:

Uti l s . <Shape>fi l l (shapes , new Rectangl e (5 , 10 , 20 , 30) , 10) ;

1'11- Type Bounds and Wildcards

Type variables can be
constrained with bounds.

It is often necessary to specifY constraints between the types that can
be used in a generic class or method. Consider a generic method that
appends elements from one array list to another: _

publ i c stati c <E> voi d append (Ar rayLi st<E> a , Ar rayLi st<E> b , i nt count)
{

}

for (i nt i = 0 ; i < count && i < b . s i ze() ; i ++)
a . add (b . get(i)) ;

This method is rather limited. It cannot be used to append an ArrayL i st<Rectangl e> to
an Ar rayL i st<Shape>. Here, we will want to use two type bounds E and F to express the
fact that the two array lists may have different types:

publ i c stati c <E , F> voi d append (ArrayLi st<E> a , ArrayLi st<F> b , i nt count)

However, we can only append elements of a subtype. We use a type bound to express this fact:

publ i c stati c <E , F extends E> voi d append (

{

}

Ar rayLi st<E> a , ArrayLi st<F> b , i nt count)

for (i nt i = 0 ; i < count && i < b . s i ze() ; i ++)
a . add(b . get(i)) ;

You use the the extends keyword to express that a type is a subtype of a given type as
defined in Section 7. 1 . 1 . For example, you can append an ArrayLi st<Shape> and an
Ar rayL i st<Rectangl e> because Rectangl e is a subtype of the Shape type.

NOTE Occasionally, you want to specity multiple type bounds; in that case, ·separate them
with & symbols:

E extends Cl oneabl e & Seri al i zabl e

It is possible to simplity the declaration of the append method. Note that the type variable F
is never used in the body of the function. We can eliminate it and replace it with a wildcard:

publ i c stati c <E> voi d append (

{

}

Ar rayLi st<E> a , Ar rayLi st<? extends E> b , i nt count)

for (i nt i = 0 ; i < count && i < b . s i ze () ; i ++)
a . add(b . get (i)) ;

)

7.7 Generic Types

The expression ? extends E matches any subtype of E.

Use a wildcard type for a
generic type parameter that
can be anonymous.

Wildcards can only be used as type parameters, inside < > brackets.
You cannot not define a variable or an array of type ?

Wildcard type parameters restrict the methods that you can call. For
example, the set method of Ar rayL i st<? extends E> has the form

? extends E set(i nt i , ? extends E newEl ement)

You cannot call this method! If you call b . set (i , x) , the compiler only knows that x
must belong to some subtype of E, but it does not know which type is required. There
fore, any such call is an error. However, the get method is still usable:

? extends E get(i nt i)

It returns an object of an unknown subtype of E, and you can safely use it as an object of
type E.

Wildcards can also be bounded in the opposite direction. The expression ? super F
matches any supertype of F. We could have equally well defined the append method as

publ i c stati c <F> voi d append(

{

}

Ar rayLi st<? super F> a , Ar rayLi st<F> b , i nt count)

for (i nt i = 0 ; i < count && i < b . s i ze() ; i ++)
a . add(b . get(i)) ;

Note that the add method of Ar rayL i st<? super F> has the form

bool ean add(? super F newEl ement)

The method can safely receive any object of type F.

NOTE You will sometimes find unbounded wildcards such as (1 ass<?> in the API documen
tation. This typically means that the API was defined before generics were introduced. You
cannot call any methods that require type parameters (such as newlnstance) on the resulting
(1 ass object, but you can call methods such as getName.

I NTERNET Subtype relationships between generic types are more subtle than those for non
generic types in Section 7. 1 .1 , particularly when wildcards are involved. For example,
ArrayL i st<Rectangl e> is not a subtype of ArrayL i st<Shape>, but it is a subtype of
ArrayL i st<? extends Shape> or Ar rayL i st<?>. For a full description of the rules, see
Angelika Langer's Generics FAQ at http : //www . 1 ange r . camel ot . de/Generi csFAQ/
J avaGeneri csFAQ . html .

Let's look at a more complex example of using type bounds and wildcards. We want to write
a generic getMax method that finds the largest element in an array list of objects. In general,
we don't know how to compare array elements, but we can use a type bound to ensure that
the element type is a subtype of the (omparab 1 e interface. Here is a first attempt:

publ i c stati c <E extends (omparabl e<E» E getMax (ArrayLi st<E> a)
{

CHAPTER 7 The Java Object Model

}

E max = a . get (O) ;
fo r (i nt i = 1 ; i < a . si ze () ; i ++)

i f (a . get(i) . compareTo(max) > 0) max a . get(i) ;
return max ;

Here, we use the type bound to express that the element type of the array should be a
subtype of the type bound Comparab 1 e<E>. For example, you can call the getMax method
with a Stri ng [] array but not with a Rectangl e [] array-the Stri ng class implements
Comparabl e<Stri ng>, but Rectangl e does not implement Comparabl e<Rectangl e>.

The definition of the getMax method is overly restrictive. Suppose you want to sort an
Ar rayLi st<Grego ri anCal endar>. The Grego ri anCal endar class is a subclass of the
Cal endar class which implements Comparabl e<Cal endar>. Therefore, Gregori anCal endar
also implements Comparabl e<Ca 1 endar>, but not Comparab 1 e<Grego rianCa 1 endar>. This
is not a problem-you can still find the largest entry, by using the superclass comparison.

Therefore, we should only require that the element type E implements Comparab 1 e<S> for
some supertype S of E. Since we never need to know exactly what that supertype is, we
can use a wildcard:

publ i c stati c <E extends Comparabl e<? super E» E getMax (ArrayLi st<E> a)

fill-- Type Erasure

The raw type of a generic type
is obtained by erasing the type
variables.

The virtual machine that executes Java programs does not work with
generic classes or methods. Instead, it uses raw types, in which the
type variables are replaced with ordinary Java types. Each type vari-
able is replaced with its bound, or with Obj ect if it is not bounded.

The compiler erases the type variables when it compiles generic classes and methods. For
example, the generic class ArrayL i st<E> turns into the following raw class:

publ i c cl ass Ar rayLi st
{

}

publ i c Object get (i nt i)
{

}

i f (i < 0 I I i >= si ze) th row new IndexOutOfBoundsExcepti on (. . .) ;
return el ementData [i] ;

publ i c Object set (i nt i , Object newVal ue)
{

}

i f (i < 0 I I i >= si ze) th row new IndexOutOfBoundsExcepti on (. . .) ;
Object ol dVal ue = el ementData [i] ;
el ementData [i] = newVal ue ;
return ol dVal ue ;

p ri vate Object [] el ementData ;
pri vate i nt s i ze ;

As you can see, the type variable E has been replaced by Object. The result is an ordinary
class.

7.7 Generic Types

The same process is applied to generic methods. Mter erasing the type parameter, the
getMax method of the preceding section turns into an ordinary method:

publ i c stati c Comparabl e getMax (ArrayLi st a)
{

Comparabl e max = (Comparabl e) a . get (O) ;
for (i nt i = 1 ; i < a . si ze () ; i ++)

i f (a . get(i) . compareTo(max) > 0) max a . get(i) ;
return max ;

}

Note that due to the type bound (E extends Comparab 1 e<? super E» the type E has
been erased to Comparabl e.

In order to interface with
legacy code, you can convert
between generic and raw
types.

Raw types are necessary when you interface with legacy code that was
written before generics were added to the Java language. For example,
if a legacy method has a parameter Ar rayL i st (without a type vari
able), you can pass an ArrayL i st<Stri ng> or ArrayL i st<Empl oyee>.
This is not completely safe-after all, the legacy method might insert

an object of the wrong type. The compiler will issue a warning, but your program will
compile and run.

NOTE When generic code compiles without warnings, the code is typesaft: no Cl assCast
Excepti on will be thrown at runtime. However, when you mix generic and raw collections,
the compiler can no longer guarantee type safety. For example,

ArrayLi st<Stri ng> names = new Ar rayLi st<Stri ng> () ;
Ar rayL i st a = names ; I I Compiles with warning
a . add (new Country(. . .)) ; II Not an error
Stri ng n = names . get (O) ; II Cl assCastExcepti on thrown

" 11- Limitations of Generics

Knowing about raw types helps you understand limitations ofJava generics. For example,
you cannot replace type variables with primitive types. Erasure turns type variables into
the bounds type, such as Obj ect or Comparab 1 e. The resulting types can never hold values
of primitive types.

Another limitation is that you cannot construct new objects of a generic type. That is,
the following method, which tries to fill an array list with copies of default objects, would
be wrong:

publ i c stati c <E> voi d fi l lWi thDefau l t s (Ar rayLi st<E> a , i nt count)
{

fo r (i nt i 0 ; i < count ; i ++)
a . add (new E()) ; II ERROR

}

To see why this is a problem, carry out the type erasure process, as if you were the compiler:

publ i c stati c voi d fi l lWi thDefaul ts (ArrayList a , i nt count)
{

• • CHAPTER 7 The Java Object Model

}

for (i nt i = 0 ; i < count ; i ++)
a . add (new Object ()) ; II ERROR

Of course, if you start out with an Ar rayL i st<Rectangl e>, you don't want it to be filled
with Obj ect instances. But that's what the code would do after erasing types.

In situations such as this one, the compiler will report an error. You then need to come
up with another mechanism for solving your problem.

You can pass a (1 ass object to make new instances, using reflection. For example,

publ i c static <E> voi d fi l l Wi thDefau lts (ArrayLi st<E> ,

{

}

(l ass<? extends E> cl , i nt count)
th rows Instanti ati onExcepti on , I l l egal AccessExcepti on

for (i nt i = 0 ; i < count ; i ++)
a . add(cl . newlnstance ()) ;

Here, we use the fact that the (1 ass class has a type parameter. That parameter deter
mines the return type of methods such as newlnstance:

cl ass (l ass<T>
{

publ i c T newlnstance ()
th rows Instanti ati onExcepti on , I l l egalAccessException { . . . }

}

We require that the (1 ass type parameter is a subtype of E. For example, the following
call will compile:

ArrayLi st<Shape> shapes = new ArrayLi st<Shape> () ;
fi l l Wi thDefaul t (shapes , Rectangl e . cl ass)

The Rectangl e. cl ass object is an instance of(l ass<Rectangl e>, and Rectangl e is a sub
type of Shape. But the call

fi l l Wi thDefau lt (shapes , Stri ng . cl ass)

will not compile.

There are other technical limitations of generic classes that are consequences of the type
erasure mechanism. Here are the most important ones:

• You cannot form arrays of parameterized types. For example, an array
(omparab 1 e<E> [] is illegal. A remedy is to use an array list
ArrayLi st« omparabl e<E» .

• You cannot reference type parameters of a generic type in a static context, that is, in
static fields, methods, or inner classes. For example, the following is illegal:

publ i c cl ass My(l ass<E>
{

p ri vate stati c E defaul tVal ue ; II Error

}

J

7.7 Generic Types

This code gives the impression as if there was a separate defau 1 tVa 1 ue for each
instantiation type. However, after erasure, the class can only have one static field.
Therefore, use of type variables in static contexts is outlawed.

• You can neither throw nor catch generic types. In fact, a generic type cannot
extend Th rowab 1 e .

• You cannot have type clashes after erasure. For example, Gregori anCa 1 endar can
not implement Comparab 1 e<G rego ri anCa 1 endar> since it already inherits the
Comparab 1 e<Ca 1 endar> interface, and the two interfaces are erased to the same raw
type.

The following program contains the various sample methods that were discussed in the
preceding sections.

Ch7/generic/Utils.java

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

i mport j ava . uti l . * ;

publ i c cl ass Uti l s
{

publ i c stati c <E> voi d fi l l (ArrayLi st<E> a , E val ue , i nt count)
{

}

for (i nt i = 0 ; i < count ; i ++)
a . add (val ue) ;

publ i c stati c <E , F extends E> voi d append(ArrayLi st<E> a ,
ArrayLi st<F> b , i nt count)

{

}

for (i nt i = 0 ; i < count && i < b . s i ze() ; i ++)
a . add(b . get(i)) ;

publ i c stati c <E extends Comparabl e<? super E»
E getMax (ArrayLi st<E> a)

{

}

E max = a . get (O) ;
for (i nt i = 1 ; i < a . s i ze () ; i ++)

i f (a . get(i) . compareTo(max) > 0) max
return max ;

a . get(i) ;

publ i c stati c <E> voi d fi l l Wi thDefaul ts (Ar rayLi st<E> a ,
Cl ass<? extends E> cl , i nt count)

{
th rows Instanti ati onExcepti on , Il l egalAccessExcepti on

for (i nt i = 0 ; i < count ; i ++)
a . add (cl . newlnstance ()) ;

33
34 }

}

• CHAPTER 7 The Java Object Model

Ch7/generic/UtilsTester.java

1 i mport j ava . uti l . * ;
2 i mport j ava . awt . * ;
3
4 publ i c cl ass Uti l sTester
5 {
6 publ i c stati c voi d mai n (Stri ng [] args)
7 th rows Instanti ati onExcepti on , Il l egal AccessExcepti on
8
9

10
1 1
12
13
14
15
16
17
1 8
19
20
21
22
23
24
25
26
27 }

{

}

Ar rayLi st<Stri ng> i ds = new ArrayLi st<Stri ng> () ;
Uti l s . fi l l (i ds , "defau lt " , 10) ;
System . out . pri ntl n (i ds) ;

Ar rayLi st<Shape> shapes = new ArrayLi st<Shape> () ;
Uti l s . fi l l (shapes , new Rectangl e (5 , 10 , 2 0 , 30) , 2) ;
System . out . pri ntl n (shapes) ;

ArrayLi st<Pol ygon> pol ys = new ArrayLi st<Pol ygon> () ;
Uti l s . fi l lWi thDefau l ts (pol ys , Pol ygon . cl ass , 10) ;
Uti l s . append (shapes , pol ys , 2) ;
System . out . pri ntl n (shapes) ;

Ar rayLi st<Gregori anCal endar> dates
= new Ar rayLi st<Gregori anCal endar> () ;

Uti l s . fi l l Wi thDefau lts (dates , Gregori anCal enda r . cl ass ,
System . out . pri ntl n (Uti l s . getMax (dates)) ;

J avaBeans Components

Components

5) ;

A software component is a
building block that can be
combined with other
components into programs,
usually by employing a
program builder tool.

Objects form the building blocks of object-oriented programming.
However, objects are too fine-grained to provide significant reusabil
ity of complex behavior. A software component is a construct that
encapsulates more functionality than a single class, in such a way that
you can compose an application from multiple components with only
minimal additional programming.

In the early days of object-oriented programming, it was envisioned that
classes would be sold as standardized "software Ies (integrated circuits)". Rather than
programming another linked list from scratch, programmers would purchase a standard
linked list class from a vendor. However, few customers wanted to buy a linked list since
it isn't that hard to write your own or just use the library version. In order to be commer
cially viable, reusable software needed to supply more functionality.

The first successful example of reusable software was the market for Visuiil 'i\asic controls
(also called "ActiveX" controls). Typical Visual Basic controls are:)

• A calendar control that lets users select a date from a pop-up calendar

• A graph control that draws multiple types of graphs

7.8 JavaBeans Components

• A control that connects to a database and displays the results of a query as a scroll
able table

• A control that communicates with a Lego Mindstorms robot

These components have complex behavior, and it would not be economical to reimple
ment them in-house. There is an active market for developing and selling these kinds of
components.

When you buy such a component, you need to customize it. For example, a graph compo
nent may have dozens of graph types, with many choices for fonts and colors. In your
particular application, you will want to select just one or two choices.

Next, you need to compose the component with other components, such as a data source
for the values that are being displayed in the graph.

This process of customization and composition typically takes place in a builder environ
ment, a program that displays the components and that allows an operator (who need not
be a programmer) to combine the components into a program (see Figure 10).

Figure 1 0

A Builder Environment

Form N�Fram •
... I;;:J Other Com pontnts

If :::l UFram.)

� CridSagLoyout

JLab.11 ULab.1j - Prop.nlts .

9 Prop.nits

com ponentPopl <none>

disploy.dMn.m

font Dialog 12
for. ground • (51,51,51)

hori.ontalAlign LEADINC

icon null

labell=or <none>

ext Us.r Name!
toolTipT.xt null

v.nicaIAlignm. CENTER

text
OavaJang.String) Defines the single line
of t.xt this compontnt 11 display.

. ' CHAPTER ? The Java Object Model

'I:fl-- }avaBeans

A Java bean is composed of
one or more classes that are
packaged together, allowing a
builder or execution
enviroment to discover the
methods, properties, and
events that the bean exposes.

javaBeans is the term for a component model used to create applica
tions with a graphical user interface. A Java bean is an entity with
three capabilities:

• The ability to execute methods (which are like object methods)

• The ability to expose properties (which are like object attributes)

• The ability to emit events (see Figure 1 1)

Just a s with classes, the implementation details of a bean are private and not accessible to
programmers using it. However, a Java bean is typically composed of multiple classes
because its functionality is generally more complex than that of a sif!gle class.

Fig ure 1 1

A Java Bean

External
interactions

I

I
I

I

Bean

D O 0 I
I

I
/ ,,

/
,, / I

' t] I '

/ /;,, "
", ,, "'"

/ ... '" ... '"
" ,

,:';'5""
/"

Objects

• Methods

• Properties

Events

INTERNET Figure 12 shows a calendar bean that you can integrate into any application that
requires users to input dates. You can download that bean from http : //www . toedter . com/
en/j cal endar.

II March 20051:1
Sun Mon Tue Wed Thu Fri Sat 10 11 12 13 14 ����'��L __ ���

Fig ure 1 2

A Calendar Bean

7.8

•

•

•

•

•

JavaBeans Components

jLabel1 ULabel) - Properties 't!i ffiH�
i �opertiesll Events II Code I
\I Properties

background 0 (238,238,2
componentPopl <nont>
displayedMnem
font Dialog 12 80 .. .
foreground • 151,51,51) .. .

horizontalAlign LEADINe

Icon
labelFor
text

null
<none>

UserNam�
toolTipText null
verticalAlignm e CENTER

text
(ja.vaJang.Strlng) Defines the: single line
of text this componem wI! display.

F i g u re 1 3

A Property Sheet

•

A Java bean is intended to be manipulated by a builder environment that allows for the
modification and composition of components without programming. For example, a
component's properties can be set with a property sheet, a dialog box that lists all proper
ties of the component and allows them to be edited interactively (see Figure 13).

Because the Java language has no special support for components, each bean designates a
single class to be the facade for the bean. That class contains methods that describe the
bean methods, properties, and events. Clients of the bean call methods of the facade
class, and those methods call on other classes in the bean.

FKCADE

Context

1 . A subsystem consists of multiple classes, making it complicated for clients to use.

2. The implementation of the subsystem is subject to change, but the functionality that
it provides is stable.

3. In order to support reuse of components, you want to give a coherent entry point to
the capabilities of the subsystem.

Solution

1. Define a facade class that exposes all capabilities of the subsystem as methods.

2. The facade methods delegate requests to the subsystem classes.

3. The subsystem classes do not know about the facade class.

. .
•

•

•

•

•

•

•

•

CHAPTER 7 The Java Object Model

L.'

Subsystem VI �
Class

Subsystem p- Subsystem
Class Class

Subsystem
Class

The following table shows the meaning of the names in the pattern when it is applied to
a Java bean.

Name in Design Pattern Actual Name

Cl i ent Builder tool

Facade Main bean class with which the builder tool interacts

SubsystemCl ass Class used to implement bean functionality
.

'I:!I- Bean Properties

A component property is a
named value that denotes a
characteristic of the compo
nent, and that can be accessed
by component clients.

A property of a bean has a name and methods for getting and setting
the property value. (Most properties are get-and-set, bu� there are
also get-only and set-only properties.) What happens when xou get or
set the property is entirely up to the implementor. The iryJlementor
specifies methods that carry out the getting and setting. Note that a

7.8 J avaBeans Components •

property is generally not the same as an instance field. For example, a property may be
stored in a database. Even when a property is stored as an instance field, the getter and
setter methods may do more work than just getting or setting the field value. For exam
ple, in a visual component, the setter for a col o r property may update a field and then
call a repaint method, so that the changed property becomes visible.

Component-oriented program
ming languages have special
syntax for accessing proper
ties. In Java, properties are
implemented through methods
that follow a strict naming
convention.

Programming languages that support components have a convenient
syntax for getting and setting properties . For example, in C# and
Visual Basic, properties look like public instance fields of an object,
even though they are actually manipulated through special methods.
The statement

b .propertyName = val ue

automatically calls the property setter, whereas

va 1 ue = b .propertyName

calls the property getter.

However, the Java programming language has no such syntax. When you implement
properties of a Java bean, you need to provide a pair of methods that follows a naming
convention. The get method starts with get and is followed by the name of the property,
with the first letter capitalized. It must have no parameters, and its return type is the type
of the property. The set method starts with set, followed by the name of the property,
with the first letter capitalized, a single parameter whose type is the type of the property,
and a return type of voi d .

pub 1 i c X getPropertyNameO
pub 1 i c voi d setPropertyNameCX x)

For example, the following two methods implement a backg round property:

publ i c Col or getBackg roundC)
publ i c voi d setBackg round CCol o r c)

There is an exception for Boolean-valued properties. For them, the naming convention is

pub 1 i c bool ean i sPropertJ!NameO
publ i c voi d setPropertyNameCbool ean b)

That is, you use i s as the prefix of the method for getting the Boolean property value,
not get.

Finally, when a property is array-valued, you supply four methods, two for getting and
setting the entire array, and two for getting and setting individual elements:

publ i c X C] getPropertyNameO
publ i c voi d setPropertyNameCX [] ar ray)
publ i c X getPropertyNameCi nt i)
publ i c voi d setPropertyNameCi nt i , X x)

Remember to replace PropertyName with the capitalized name of the actual property.

If a property has a get method and no set method, it is considered get-only. Conversely,
a property without a get method is set-only.

When a builder environment loads a bean, then the facade class is analyzed and searched
for methods that start with get and set. (This search uses the reflection mechanism.) As

CHAPTER 7 The Java Object Model

long as the methods follow the naming convention exactly, then a property is deduced by
taking the name of the method, removing the get or set prefix, and "decapitalizing" the
remainder. That is, the first character is converted to lowercase unless both the first and
second character are uppercase, in which case the first letter is not changed. Thus, get
Backg round yields a property backg round but getURL yields a property URL. (This kind of
hokus-pokus is what you have to deal with when a programming language isn't able to
express a useful concept and you have to fake it through coding conventions.)

Spec i a l Top ic
Accessing .Java Properties from .JavaScript

Let's run a J avaScript experiment to appreciate the benefits of an easier syntax for properties.
Rhino is a JavaScript interpreter that is tightly integrated with Java. That integration allows
you to access J avaBeans properties with a simplified syntax.
Download the Rhino program from http : //www . mozi 1 1 a . org/rhi no. Install it into a direc
tory of your choice.
Open a shell window, change to the Rhino install directory, and launch the Rhino interpreter:

j ava -jar j s . j ar

You get a prompt

j s>

Now you can type any JavaScript commands. Start by constructing a frame and a button.

i mportPackage(Packages . j avax . swi ng) ;
var frame = new J F rame() ;
var button = new J Button () ;

(Note that JavaScript variables are untyped. Any variable can hold an object of any type.)
Now set the text property of the button:

button . text = " Hel l o , Worl d ! " ;

Behind the scenes, Rhino has discovered that the J Button class has getText and setText
methods that correspond to a text property, and it calls the method button .
setText ("He 1 1 0 , Worl d ! ") . That's exactly the kind of functionality that the designers of
JavaBeans had in mind. The programmer can use a convenient syntax, and the run-time envi
ronment automatically generates the equivalent method call.
Next, add the button to the frame:

frame . add (button) ;

Finally, let's pack and show the frame:

frame . packO ;
frame . vi si bl e = true ;

The frame and the button are displayed immediately (see Figure 14).

'\)

7.8 JavaBeans Components

81. Edit yjew Ierminal T _Its tlelp
java -jar j s . j ar
Rhino 1 . 5 release 5 2004 03 25
j s> importPackage (Packages . j avax . swing) ;
j s> var frame = new JFrame () ;
j s> var button = new JButton() ;
j s> button . text = " Hello , World ! " ;

ello , World !

. -

j s> frame . add(button) ;
javax . swing . JButton [, O , O , OxO , invalid , alignmentX=O . O , alignmentY=0 . 5 , border=javax .
swing . plaf . BorderUIResource$CompoundBorderUIResource@23e5d1, flags=296 , maximumSiz
e= , minimumSize= , preferredSize= , defaultlcon= , disabledlcon= , disabledSelectedlcon= ,

argin=j avax . swing . plaf. InsetsUIResource [top=2 , left=14 , bo ttom=2 , right=14] , paintB
order=true , paintFoc us=true , pressedlcon= , rolloverEnabled=true , rolloverlcon= , rollo

erSelec tedlcon= , selectedlcon= , text=Hello , World ! , defaultCapable=true]
j s> frame . pack() ;
j s> frame . visible = true ;
true
j s> 0

Figure 1 4

Running the Rhino Interpreter

0:11- Editing Bean Properties in a Builder Tool

In this section, we describe the process of editing bean properties in the NetBeans 4.0
development environment. Other development environments, such as Eclipse or
JBuilder, have similar options.

INTERNET The NetBeans development environment is available at no charge from http : / /
www . netbeans . o rg.

Select File � New Project from the menu, then make a project of type Java Application
in the General category. Then select File � New File from the menu and make a JFrame
from in the Java GUI forms category (see Figure 15). You now see an empty J F rame.

Locate the component palette and the J Button icon inside the palette. Click on the icon,
and then click on the south end of the frame. The button is added to the frame, and you

CHAPTER ? The Java Object Model

!:"l New File X

Steps
L 0.00 •• File T�.
2.

Figure 1 5

0.00 •• FII. TW'

frOjec1: I:, j "'ppllc.lionlO

5,;..logo,i •• :

a j ... CI
... a I CUI Form sl

Cl Java8u.ns Objects
a jUnil

CI XML
a AnI Build Scripl.

a Other

Description:

file Types: tr jApple, Form 1m JOI.'og Form
::l jFrame Form
E1 jlntern.,Fr.m e Form
o jPanel Form
/aI Bean Form
g j P.ck.ge

Using this template, you can design a newJFC (Swng) Fram e.

Frames are typically used as standalone top-level wndO\NS as the m ain user interlace to ==
the a.pplication.

<. �.ck Next > I I [Inish I I C.ncel I I lielp

The New Template Wizard in NetBeans

see a property sheet that lists the properties of the button. You'll see properties such as
text, font, and backg round (see Figure 16). By clicking on the properties, you can
change them. Try it out: Change the button text to "Hello, World!" and the background
color to pink. As you make the changes in the property sheet, the button is instantly
updated.

What is going on? The builder tool has enumerated the properties of the J Button class
and constructed a property sheet that shows the names of the properties. Then the builder
tool invoked the getter methods for these properties to find the current button settings. It
painted graphical representations of the property values next to the property names in the
property sheet. Whenever you change the value of a property, the builder tool invokes the
setter method with the new value, so that the button immediately shows the new setting.

As you can see, the builder tool allows developers to inspect and set properties visually.
Many developers prefer this approach over writing code because they find it faster and
more intuitive.

*I:Jt- Packaging a Bean � Since a bean is typically composed of multiple classes and other resources, such as icon
files, it needs to be packaged for inclusion into a builder tool. You use the jar (Java

7.8 JavaBeans Components

L" NetBf>ans IDE 4 0 - JavaApph(allon6 X

AWT
Beans

Property sheet / com pone:ntPopl <none:>
font Dialog 12 Bo ...
foreground • [51,51,51)

Figure 1 6

The Property Sheet of a Buttton

icon null

mne:m onic

te'" Hello, World!
toolTipTe:xt null

9 Other Propenlts

UIClasslD ButtonUt
actionComm an,Hellol World!
alignm entX 0.0
alignm entY O.S
autoscrolls 0
border (Com poundBo '"

Ie'"
O ... a.lang.String) The button's text.

archive) packaging tool to bundle the files that make up the bean. Actually, a j a r file can
contain multiple beans. To specify which classes are the facade classes for the beans in
the archive, you need to supply a manifest file. Here is a typical example:

Ch7/carbean/CarBean.mf

1 Mani fest-Versi on : 1 . 0
2
3 Name : CarBean . cl ass
4 J ava-Bean : True

To make a jar file, first write the manifest file. Then run the j a r program as

j ar cvfm CarBean . j ar CarBean . mf * . cl ass

If your bean classes are in packages, then the subdirectory path in the archive must match
the package name, such as edu/sj su/cs/cs151/al i ce/CarBean . cl ass .

CHAPTER 7 The Java Object Model

Once the bean is packaged, you can load the archive into a builder tool. The builder tool
will then analyze the contents and may display the discovered bean (or beans) in a toolbar.

If you have a builder tool such as NetBeans, you should run the following experiment.
First, compile the CarBean class and package it into a file CarBean . j ar. The CarBean is
simply a J Panel that draws a car. It has two properties, x and y, that denote the x- and
y-positions of the top-left corner of the car.

Then start your builder tool. We will describe the steps for NetBeans, but other builder
tools have equivalent commands.

1. Choose the Tools � Palette Manager menu option and install the CarBean . j ar
file in the "Beans" palette.

2. Choose the File � New File menu option and use the wizard d�alog box to make
a new JFrame CUI form.

3. In the "Swing" palette, click on the JSlider button. Then click on the bottom of
the JFrame. A slider is now added to the form.

4. In the "Beans" palette, click on the CarBean button. (It has a default icon because
we didn't supply a prettier one.)

5. Click in the center of the JFrame. The CarBean is now added to the form. (See
Figure 17.)

6. Right-click on the car and select the Properties menu option. In the property
sheet for the car, set the values for the x and y properties to 50. The car moves
toward the center of the panel.

7. If you like, build and execute the current application. Of course, the slider doesn't
do anything yet.

8. In the builder tool, right-click on the slider and select the menu option Events �
Change � stateChanged.

9. The builder tool pops up the source window and positions your cursor next to a
comment

II Add your handl i ng code here :

10. Add the code

carBean l . setX(jSl i derl . getVal ue()) ;

11 . Compile and execute the program. Now the slider moves the car position.

What can you learn from this experiment? You produced a running program, using an
approach that is very different from traditional programming.

• You composed the application by arranging pre-packaged components.

• You customized one of the components by setting its properties in the property
sheet.

• You wrote only one line of code. If the Java language supported properties, that
code would have been even simpler: J carBeanl . x = j Sl i derl . val ue ;

• The builder tool supplied all the knowledge about frames and event hand ng.

7.8 JavaBeans Components

I"'l NetBeans IDE 4.0 - JavaAppl.cat.on6
----- ---- ----I x

file �di.)Ii...., §.uild Bun Re(�ctor V!f1ioning Iools �indow t!elp r;;: o Jl iI;l. ...
'--____ ..l.-'=.__.e-.:. ___ .-' IaI Ne"'!l�r.me ·

. L-____ .:::DIl=.t.J"'B"' ::.. C l"'�
.I

..... tI-·"'S\M ... n-g -
AWT ��

Fig ure 1 7

Composing Beans in a Builder Tool

-Layouts Beans

Inspector
�� � Form Ne-..jFrame

� Other Components
� ::I U�ram eJ

� 8orderLayout o carlleanl (C.rBe.nJ
"'" JSliderl USliderJ

car8eanl (CarBeanl � Properties 19BU!J
r:.eci!iiriLes Events Code

\terifylnputWher [21
ve.oabl.Chang, (Array of Jav. bea.
visibleRect
.,,;d.h
x

y
9 L.you.

y (in.) y

rQ u. u. OJ
Q
20
30

This example concludes our discussion of Java components. As you have seen, compo
nents encapsulate complex functionality that may exceed the capabilities of a single class.
Component properties may have arbitrary types and can be edited by component assem
bly tools. In Java, the component programmer provides getter and setter methods to
identifY properties and assembles component classes inside a JAR file.

Ch 7/carbean/CarBean.java

1 i mport j ava . awt . * ;
2 i mport j ava . awt . geom . * ;
3 i mport j avax . 5wi ng . * ;
4

CHAPTER 7 The Java Object Model

5 /**
6 A component that draws a car shape.
7
8
9

10
1 1
1 2
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

*/
publ i c cl ass CarBean extends JComponent
{

/**
Constructs a default car bean.

*/
publ i c CarBean O
{

}

/**

*/

x = 0 ;
y = 0 ;
wi dth = DEFAULT_CAR_WIDTH ;
hei ght = DEFAULT_CAR_HEIGHT ;

Sets the x property.
@param newVa 1 ue the new x position

publ i c voi d setX(i nt newVal ue)
{

}

/**

*/

x = newVal ue ;
repai nt O ;

Gets the x property.
@return the x position

publ i c i nt getX()
{

return x ;
}

/**
Sets the y property.
@param newVa 1 ue the new y position

*/
publ i c voi d setY(i nt newVal ue)
{

}

/**

*/

y = newVal ue ;
repai nt O ;

Gets the y property.
@return the y position

publ i c i nt getY()
{

retu rn y ;
}

publ i c voi d pai ntComponent (Graphi cs g)
{

\)

7.8 JavaBeans Components

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
1 10
1 11
112
113
114
115 }

}

Graphi cs2D g2 = (Graphi cs2D) g ;
Rectangl e2D . Doubl e body

= new Rectangl e2D . Doubl e (x , y + hei ght / 3 ,
wi dth - 1 , hei ght / 3) ;

El l i pse2D . Doubl e frontTi re
= new El l i pse2D . Doubl e (x + wi dth / 6 ,
y + hei ght * 2 / 3 , hei ght / 3 , hei ght / 3) ;

El l i pse2D . Doubl e rearTi re
= new El l i pse2D . Doubl e(x + wi dth * 2 / 3 ,
y + hei ght * 2 / 3 , hei ght / 3 , hei ght / 3) ;

/ / The bottom of the front windshield
Poi nt2D . Doubl e r1

= new Poi nt2D . Doubl e (x + wi dth / 6 , y + hei ght / 3) ;
/ / The front of the roof
Poi nt2D . Doubl e r2

= new Poi nt2D . Doubl e (x + wi dth / 3 , y) ;
/ / The rear of the roof
Poi nt2D . Doubl e r3

= new Poi nt2D . Doubl e (x + wi dth * 2 / 3 , y) ;
/ / The bottom of the rear windshield
Poi nt2D . Doubl e r4

= new Poi nt2D . Doubl e(x + wi dth * 5 / 6 , y + hei ght / 3) ;

Li ne2D . Doubl e frontWi ndshi el d
= new Li ne2D . Doubl e (r1 , r2) ;

Li ne2D . Doubl e roofTop
= new Li ne2D . Doubl e (r2 , r3) ;

Li ne2D . Doubl e rearWi ndshi el d
= new Li ne2D . Doubl e (r 3 , r4) ;

g2 . d raw(body) ;
g2 . d raw(frontTi re) ;
g2 . d raw(rearTi re) ;
g2 . d raw(frontWi ndshi e l d) ;
g2 . d raw(roofTop) ;
g2 . draw(rearWi ndshi el d) ;

publ i c Di mensi on getPrefe r redSi ze()
{

return new Di mensi on (DEFAULT_PANEL_WIDTH ,
DEFAULT_PANEL_HEIGHT) ;

}

pri vate i nt x ' ,
pri vate i nt y ;
pr i vate i nt wi dth ;
pri vate i nt hei ght ;

pr i vate stati c fi nal i nt DEFAULT_CAR_WIDTH = 60 ;
pri vate stati c fi nal i nt DEFAULT_CAR_HEIGHT = 30 ;
pri vate stati c fi nal i nt DEFAULT_PANEL_WIDTH = 160 ;
pri vate stati c fi nal i nt DEFAULT_PANEL_HEIGHT = 130 ;

CHAPTER 7 The Java Object Model

EXERCISES
Exercise 7.1 . Which types can you use for variables but not for values in Java?

Exercise 7.2. What is the type of nul l ?

Exercise 7.3. Which of the following types are subtypes of another type?

(a) Object

(b) i nt

(c) l ong

(d) i nt []

(e) Obj ect []

(f) i nt [] []

(g) Rectangl e

(h) Rectangl e []

(i) Rectang 1 e2D []

G) Cl oneabl e

Exercise 7.4. Write a program that generates an Ar rayStoreExcepti on. Why can't the
validity of array stores be checked at compile time?

Exercise 7.5. When do you use wrapper classes for primitive types?

Exercise 7.6. What Java code do you use to test

(a) Whether x belongs to the Rectangl e class?

(b) Whether x belongs to a subclass of the] Pane 1 class (but not the] Pane 1 class
itself)?

(c) Whether the class of x implements the Cl oneab 1 e interface type?

Exercise 7.7. Give three distinct ways of obtaining the Cl ass object that describes the
Rectang 1 e class.

Exercise 7.8. Why is there a Cl ass object to represent voi d even though there is no voi d
type? Why isn't there a Cl ass object to represent the null type?

Exercise 7.9. Write a program that prompts the user for the name of a class and the val
ues of construction parameters. Construct an instance of the class. Then prompt the user
to enter the name of any method and its parameters, provided that they are primitive
type values, strings, or nul l . Invoke the method on the constructed object and print the
result if the method is not declared to be voi d. Continue applying methods until the user
wishes to quit. If there are multiple methods that match the user inputs, then print an
error message. Sample dialog:

Const ruct object : java . awt . Rectangl e 5 10 20 30
Invoke method (bl ank l i ne to qui t) : getWidth
20
Invoke method (bl ank l i ne to quit) : transl ate 10 10

Exercises

Invoke method (bl ank l i ne to qui t) : getX
15

Exercise 7.10. Write a method dumpCl ass that prints out the name of a class (including
its package name), its superclass, and all of its constructors, methods, and fields, includ
ing parameter and field types and modifiers (such as stati c and fi na 1) . Format the
output to look as much as possible like a class definition. The input to the method should
be either the Cl ass object that describes the class or an object of the class.

Exercise 7 .11 . Use the method of Exercise 7.10 to peek inside an anonymous inner class
that accesses a local variable from the enclosing scope. Explain the constructor and the
instance fields.

Exercise 7.12. Write a method dumpArray that prints the elements of any array to
System . out, using toStri ng on the array elements if the array elements are objects.

Exercise 7.13. Explain why you can't simply use the spyFi el ds of the Fi el dTest program
as the basis for a generic toStri ng method. That is, why can't you simply add

Stri ng toStri ng() { return Fi el dTest . spyFi el ds (thi s) ; }

to each of your classes?

Exercise 7.14. Remedy the problem of Exercise 7.13 . Implement a Fi el dDumper class
that can dump the fields of an object, then the fields of all referring objects, and so on, in
such a way that there is no infinite recursion. Hint: Keep track of the objects that were
already encountered in the dumping process, and only print an indication of the repeti
tion if you encounter it again.

Exercise 7.15. Survey the source code for the standard Java library. How many classes
implement the equal s method? How many implement the equal s method correctly, that
is, so that it fu1fi11s the axioms that are laid out in the Java API specification?

Exercise 7.16. Complete the definitions of the Manager and Empl oyee classes and their
toStri ng, equal s, and hashCode methods.

Exercise 7.17 . Repeat Exercise 7.16 for an Empl oyee class with a buddy field.

Exercise 7.18. Define toStri ng, equal s, and hashCode methods for the Day class of
Chapter 3.

Exercise 7.19. Consider the following approach to cloning. Using serialization, save an
object to a stream and read it back. You get a new object that appears to be a clone of the
original, because all of its instance fields are distinct. Implement this approach to clone
employees with a buddy field. VerifY that the result is a proper clone.

Exercise 7.20. Give two limitations of the approach used in Exercise 7.19.

Exercise 7.21. Study the source code for the ArrayL i st class. It defines wri teObj ect/
readObj ect methods. What do these methods do, and why?

Exercise 7.22. Turn the MessageQueue class of Chapter 3 into a generic class Queue<E>.

Exercise 7.23. Write a generic class Pai r<E> that stores two values of type E. Supply
methods to get and set the first and second value of the pair.

CHAPTER 7 The Java Object Model

Exercise 7.24. Make the Pai r class of Exercise 7.23 cloneable and serializable. Introduce
the required type bounds, and test with a Pai r<Rectangl e>.

Exercise 7.25. Supply a method

publ i c stati c <E> Pai r<E> getFi rstLast (Ar rayLi st<E> a)

in the Uti 1 s class that returns a pair consisting of the first and last element of a.

Exercise 7.26. Supply a method

publ i c stati c < . . . > voi d putFi rstLast (ArrayLi st< . . . > a , Pai r< . . . > p)

in the Uti 1 s class that places the first and last element of a into p. Supply appropriate
type bounds.

Exercise 7.27. Supply a method getMi nMax in the Uti l s class that returns a pair consist
ing of the smallest and largest element of a. Supply a constraint to express that T should
be a subtype of an appropriate Comparabl e instantiation.

Exercise 7.28. Provide a generic class EventL i stenerL i st<L> that manages a list of event
listeners of type L, similar to the j avax . swi ng . Event . EventL i stene rL i st class. Your
class should only manage listeners of a fixed type, and you need not be concerned with
thread safety.

Exercise 7.29. What is the difference between the types Cl ass and Cl ass<?>? (Hint:
Which methods can you call?)

Exercise 7.30. What are the Java bean properties of the Rectangl e class?

Exercise 7.31 . What are all Java bean properties of the JS l i der class?

Exercise 7.32. Download the calendar bean from http : //www . toedter . com and put it
into a builder environment such as NetBeans. Make a screen shot that shows how you
customize a Cal endar object. What properties does the bean have? Which of them can
your builder environment display?

Exercise 7.33. ModifY the CarBean to have separate wi dth and hei ght properties.

Exercise 7.34. ModifY the CarBean to have separate color properties for the base and the
tires .

Exercise 7.35. Write JavaScript code that shows an instance of a CarBean inside a J Frame,
after you set the color and dimension properties. Test your code with Rhino.

Exercise 7.36. Produce a HouseBean class with wi dth, hei ght, and col or properties.

Exercise 7.37. ModifY the application that was composed from the CarBean by adding
two sliders: one to adjust the x property and another to adjust the y property. List the
steps you carried out in the builder tool.

Exercise 7.38. Compose a more complex application from the CarBean: Animate the car
by adding a timer bean to the frame. Wire the slider to the timer bean and the timer bean
to the car. The slider should change the frequency of the timer, and every timer event
,hould moyo tho ,'-' by a ,mall amount. Li" tho "oP' you ,,,,iod out in tho)" tool.

FrameworKs

� Frameworks

� Applets as a Simple Framework

� The Collections Framework

� A Graph Editor Framework

� Enhancing the Graph Editor Framework

C h a p t e r

In Chapter 6, you saw how the inheritance mechanism can be used to

derive a new class that extends and customizes a given class. In this

chapter we will go beyond simple inheritance and turn to larger clusters of

classes, called frameworks, that collectively form the basis for customiza

tion. We will study how to use frameworks to derive new classes or even

entire applications. Then we will turn to the design of a sample framework

and show how that framework forms the basis of the Violet UML editor.

• CHAPTER S Frameworks

Framework s

A framework is a set of
classes and interface types
that structures the essential

A framework is a set of cooperating classes that implements the
mechanisms that are essential for a particular problem domain. A pro
grammer can create new functionality in the problem domain by
extending framework classes. For example, Swing is a framework for
the problem domain of graphical user interface programming. A pro-

mechanisms of a particular
domain.

grammer can implement new GUI programs by forming subclasses of
J Frame, JComponent, and so on.

Unlike a design pattern, a framework is not a general design rule. It consists of classes
that provide functionality in a particular domain. Typically, a frar;nework uses multiple
patterns.

An application framework is a
framework for creating appli
cations of a particular type.

An application framework consists of a set of classes that implements
services common to a certain type of application. To build an actual
application, the programmer subclasses some of the framework classes
and implements additional functionality that is specific to the applica

tion that the programmer is building. Thus, the first characteristic of an application
framework is:

• An application framework supplies a set of classes that an application programmer
augments to build an application, often by forming subclasses of framework
classes.

Inversion of control in a
framework signifies that the
framework classes, and not
the application classes, are
responsible for the control
flow in the appl ication.

The programmer has little or no influence on the order in which the
methods of the programmer-supplied classes are called. The majority
of activity occurs in the framework, and eventually some objects of the
programmer-defined classes are constructed. Then the framework
calls their methods in the order that it deems appropriate. This phe
nomenon is often called inversion of control .

• In an application framework, the framework classes, and not the application
specific classes, control the flow of execution.

It is the role of the framework to determine which methods to call at what time. Its
designers have expert knowledge about control flow. It is the job of the application pro
grammer to override those methods to fulfill the application-specific tasks.

TIP Designing a single class is an order of magnitude harder than designing a single method
because you must anticipate what other programmers will do with it. Similarly, designing a
framework is much harder than designing a class library or a single application because you
must anticipate what other programmers want to achieve. A good rule of thumb for validat
ing the design of a framework is to use it to build at least three different applicili ns.

I

8.2 Applets as a Simple Framework

Applets as a S imple Framework

An applet is a Java program
that runs inside a browser.

The applet package is a simple
framework that demonstrates
subclassing from framework
classes and inversion of
control.

Java applets are Java programs that run inside a Web browser (see
Figure 1).

The java . app 1 et package is a simple application framework: It con
tains superclasses to make applets, and the application programmer
adds classes and overrides methods to make an actual applet. The
rna; n method is not supplied by the programmer of a specific applet.
The sequencing of the operations that the programmer supplies is
under the control of the framework.

To design an applet, you must write a class that extends the Appl et class. You must over
ride some or all of the following methods:

• ; n; t : Called exactly once, when the applet is first loaded. Purpose: Initialize data
structures and add user interface elements .

• start : Called when the applet is first loaded and every time the user restores the
browser window containing the applet. Purpose: Start or restart animations or
other computationally intensive tasks.

M@itiijI!iifM
Mm·!I';-

,11144,,'rtH8
� IfftfHlfTIMII <I

-"Mne
Adm··
++§i;'WW
iWMMt.n'

Figure 1

An Applet

Jmol Applet
T�m Grey (t9rey()Ic.3(.U� and 8r<ldle), A. Smith (yeldarGhome.cQm) have done some amazing work con\'erting Jmol for us. IS an
Applet. Her. are two samples of the Jmol Applet with Caff"lne {)(Vl) and Methanol (eMU:

Controls:

CHAPTER 8 Frameworks

• stop : Called when the user leaves the browser window containing the applet, and
when the browser terminates. Purpose: Stop computationally intensive tasks when
the applet is not being viewed.

• destroy : Called when the browser terminates. Purpose: Relinquish any resources
that were acquired during i ni t or other processing.

• pai nt : Called when the applet window needs repainting. Purpose: Redraw the
window contents to reflect the current state of the applet data structures.

The sample applet at the end of this section is quite typical. The applet shows a scrolling
banner (see Figure 2). A Web designer can customize the applet by specifYing different
messages, fonts, and delay timings. Here is a typical HTML file:

<appl et code=" Banne rAppl et . cl ass" wi dth=" 300" hei ght="lOO">
<param name="message" val ue="Hel l o , Wo rl d ! "/>
<param name="fontname" val ue="Seri f"/>
<param name="fontsi ze" val ue="64"/>
<param name="del ay" val ue="lO"/>
</appl et>

The i ni t method reads these parameters with the getParameter method. It then initial
izes a Font object and a timer. The timer moves the starting position of the string and
calls repai nt whenever the timer delay interval has lapsed.

The start method starts the timer and the stop method stops it. Thus, the message does
not scroll when the applet is not visible. You can verifY this by minimizing the browser
window and restoring it again. The scrolling picks up where it left off when you mini
mized the window.

Finally, the pai nt method draws the string.

Ll MOZllla X
� Eile .Ed" Ylew Qo aool(mar�s Iools ::Ii.lndow !::!elp

file:lI/homC I IljIP)

Hello , W<
1 . ..

Fig ure 2

The Scrolling Banner Applet

8.2 Applets as a Simple Framework

You can see the typical characteristics of the framework in this example.

• The applet programmer uses inheritance to extend the App 1 et framework class to a
specific program.

• The App 1 et class deals with the behavior that is common to all applets: interaction
with the browser, parsing param tags, determining when the applet is visible, and
so on. The applet programmer only fills in customized behavior for a particular
program.

• Inversion of control means that the applet programmer is not concerned with the
overall flow of control, but only fills in handlers for initialization, starting, stop
ping, and painting. When these methods are called is beyond the control of the
applet programmer.

ll!l;,,,,
Ch8/applet/BannerApplet.java

i _ 1 i mport j ava . appl et . * ;
2 i mpo rt j ava . awt . * ;
3 i mpo rt j ava . awt . event . * ;
4 i mport j ava . awt . font . * ;
5 i mpo rt j ava . awt . geom . * ;
6 i mpo rt j avax . swi ng . * ;
7
8 publ i c cl ass Banne rAppl et extends Appl et
9 {

10 publ i c voi d i ni t O
1 1 {
12 message = getParameter("message") ;
13 Stri ng fontname = getParamete r("fontname") ;
14 i nt fontsi ze = Intege r . parseInt(getParameter ("fontsi ze")) ;
15 del ay = Intege r . parseInt (getParameter ("del ay")) ;
16 font = new Font (fontname , Font . PLAIN , fontsi ze) ;
17 Graphi cs2D g2 = (Graphi cs2D) getGraphi cs() ;
18 FontRenderContext context = g2 . getFontRenderContext () ;
19 bounds = font . getStri ngBounds (message , context) ;
20
21 t imer = new Ti mer (del ay , new
22 Acti onLi stene r()
23 {
24 publ i c voi d acti onPerformed (Acti onEvent event)
25 {
26 start-- ;
27 i f (start + bounds . getWi dth 0 < 0)
28 start = getWi dth () ;
29 repai ntO ;
30 }
31 }) ;
32 }
33
34 publ i c voi d start ()
35 {
36 t ime r . start() ;
37 }
38

CHAPTER B Frameworks

39 publ i c voi d stop e)
40 {
41 time r . stop() ;
42 }
43
44 pub 1 i c voi d pai nt (Graphi cs g)
45 {
46 g . setFont (font) ;
47 g . d rawStri ng(message , start , (i nt) -bounds . getY()) ;
48 }
49
50 p ri vate Ti me r time r ;
51 pri vate i nt start ;
52 p ri vate i nt del ay ;
53 p ri vate Stri ng message ;
54 pri vate Font font ;
55 pri vate Rectangl e2D bound s ;
5 6 }

The C ol lect ions Framework

The collections l ibrary is both a
repository of common data
structures and a framework for
new collection classes.

As you know, the Java library contains useful data structures such as
linked lists and hash tables. Most programmers are simply interested
in the collection library as a provider of common data structures.
However, the designers of these collection classes supplied more than
just a set of useful classes. They provided a framework that makes it

easy to add more collection classes in such a way that the new classes can interact with
existing collections. We will demonstrate this capability by adding the queue class of
Chapter 3 to the framework. We will then critically examine the collections framework.

1:111- An Overview of the Collections Framework

A collection is a data structure that contains objects, which are called the elements of the
collection. The collections framework specifies a number of interface types for collections.
They include

• Co 1 1 ecti on: the most general collection interface type

• Set: an unordered collection that does not permit duplicate elements

• SortedSet: a set whose elements are visited in sorted order

• Li st: an ordered collection

The framework also supplies concrete classes that implement these interface types.
Among the most important classes are

• HashSet: a set implementation that uses hashing to locate the set elements

• TreeSet: a sorted set implementation that stores the elements in a balanced binary
tree

• L i nkedL i st and Ar rayL i st: two implementations of the Li st interface

These interface types and classes are shown in Figure 3.)

8.3 The Collections Framework

8-------

E}-----
Figure 3

-j)

-j)

« i nterface»
Set

«interface»
SortedSet

« interface»
Collection

I I
« interface»

List

�
,
, 1- -- --------- ---------

ArrayList Lin kedList

Collection Interface Types and Implementing Classes

All collection classes and interfaces are generic types; the type parameter denotes the
type of the collected elements.

NOTE The collections framework also defines a Map interface type and implementations
HashMap and TreeMap. A map associates one set of objects, called the keys, with another set of
objects, called the values. An example of such an association is the map of applet parameters
that associates parameter names with parameter values. However, the Map type is not a sub
type of the Co 1 1 ecti on type. Programmers generally prefer to use methods that locate map
values from their keys. If a map was implemented as a collection, programmers would need to
work with a sequence of key/value pairs.

For simplicity, we will not consider maps in our discussion of the collections framework.

1:lCfJ- The Col l ecti on and Ite rato r Interface Types

The two fundamental interface types of the collections framework are Co 1 1 ecti on and
Ite rator. A collection is any class that can hold elements in some way. Individual collec
tion classes may have different disciplines for storing and locating elements. For example,
a linked list keeps elements in the order in which they were inserted, whereas a sorted set
keeps them in ascending sort order. An iterator is a mechanism for visiting the elements
of the collection. We discussed iterators already in Chapters 1 and 3. Recall that the
Ite rator<E> interface type has three methods:

bool ean hasNext()
E nextO
voi d remove 0

The Col l ecti on<E> interface extends the Ite rabl e<E> interface type. That interface type
has a single method

Ite rator<E> i te rator ()

CHAPTER S Frameworks

NOTE Any class that implements the Iterabl e<E> interface type can be used in the "for
each" loop. Therefore, you use the "for each" loop with all collections.

The Co 1 1 ecti on<E> interface type has the following methods:

bool ean add (E obj)
bool ean addAl l (Col l ecti on<? extends E> c)
voi d c l earO
bool ean contai ns (Obj ect obj)
bool ean contai nsAl l (Col l ecti on<?> c)
bool ean equal s (Object obj)
i nt hashCodeO
bool ean i sEmpty()
Iterator<E> i te rato r ()
bool ean remove (Obj ect obj)
bool ean removeAl l (Col l ection<?> c)
bool ean retai nAl l (Col l ection<?> c)
i nt si ze O
Obj ect [] toArray()
E [] toArray (E [] a)

That is a hefty interface type. It would be quite burdensome to supply all of these meth
ods for every collection class. For that reason, the framework supplies a class Abst ract
Co 1 1 ecti on that implements almost all of these methods. For example, here is the
implementation of the toArray method in the Abst ractCo1 1 ection<E> class.

publ i c Object [] toAr ray ()
{

}

Object [] result = new Obj ect [s ize()] ;
Ite rator<E> e = i terator() ;
for (i nt i = 0 ; e . hasNext () ; i ++)

resul t [i] = e . next () ;
return resul t ;

This is again the TEMPLATE METHOD pattern at work: The toAr ray method is synthe
sized from the primitive operations si ze and i te rator.

NOTE Because it is impossible to construct an array from a generic type parameter, this
method returns an Obj ect [] array, not an array of type E [] .

The Abst ractCol l ecti on class leaves only two methods undefined. They are

i nt si ze O
Ite rator<E> i te rato r()

Any concrete collection class must minimally supply implementations of these two
methods. However, most concrete collection classes also override the add and remove
mctho�.)

8.3 The Collections Framework

NOTE The AbstractCol l ection class defines the add method as a dummy operation that
throws an Unsuppo rtedOperationExcepti on. That default is reasonable for immutable
collections.

1:111- Adding a New Collection to the Framework

In this section, you will see how to fit the queue class of Chapter 3 into the collections
framework.

We will enhance the queue class of Chapter 3 and define a generic class BoundedQueue
that extends the AbstractCo 1 1 ecti on class (see Figure 4).

We have to make a slight change to the add method. The collections framework requires
that the add method return true if adding the element modifies the collection. The
queue class always returns t rue, but a set class would return fal se if the element to be
added was already present in the set.

Finally, we need to supply an iterator that visits the queue elements. You will find the
code at the end of this section.

A class that is added to the
collections hierarchy can
benefit from the mechanisms
that the framework provides.

What is the benefit of adding the queue class to the collections frame
work? The Java library contains a number of mechanisms that work
for arbitrary collections. For example, all collections have an addA 1 1
method that does a bulk addition of all elements of one collection to
another. You can pass a BoundedQueue object to this method. Moreover,

the Co 1 1 ecti ons class that you encountered in Chapter 4 has static methods for a num
ber of common algorithms, such as finding the minimum and maximum element in any
collection. Thus, a large number of methods can be applied to BoundedQueue objects
when the class becomes a part of the framework.

Figure 4

Adding the BoundedQueue Class
to the Collections Framework

« interface»
Collection

!
,
,
,
,
,
,

Abstract
Collection

Bounded
Queue

CHAPTER S Frameworks

NOTE As ofJava 5 .0, the standard library has a Queue interface type. That interface type has
been designed primarily for threadsafe queues. For simplicity, our BoundedQueue class doesn't
implement it.

NOTE Because it is not possible to construct arrays with a generic type, the BoundedQueue
stores its value in an Obj ect [] array. Casts are used when accessing elements of type E. The
compiler flags these casts as unsafe because it cannot verify their correctness. You can do
better-see Exercise 8.7.

Ch8/queue/BoundedQueue.java

1 i mpo rt j ava . uti l . * ;
2
3 /**
4 A first-in, first-out bounded collection of objects.
5 */
6 publ i c cl ass BoundedQueue<E> extends AbstractCol l ecti on<E>
7 {
8 /**
9 Constructs an empty queue.

10 @param capaci ty the maximum capacity of the queue
1 1 @precondi t ion capacity > 0
12 */
13 publ i c BoundedQueue (i nt capaci ty)
14 {
15 el ements = new Object [capaci ty] ;
16 count = 0 ;
17 head 0 ;
18 tai l = 0 ;
19 }
20
21 publ i c Iterator<E> i te rator()
22 {
23 return new
24 Ite rator<E> ()
25 {
26 publ i c bool ean hasNext()
27 {
28 return vi si ted < count ;
29 }
30
31 publ i c E next ()
32 {
33 i nt i ndex = (head + vi si ted) % el ements . l ength ;
34 E r = (E) el ements [i ndex] ;
35 vi si ted++ ;
36 return r ;
37 }
38
39 publ i c voi d remove()
� { �)

8.3 The Collections Framework

41 th row new UnsupportedOpe rati onExcepti on() ;
42 }
43
44 pri vate i nt vi si ted 0 ;
45 } ;
46 }
47
48 /**
49 Removes object at head.
50 @return the object that has been removed from the queue
51 @preconditi on s i zeO > 0
52 */
53 publ i c E remove ()
54 {
55 E r (E) el ements [head] ;
56 head = (head + 1) % el ements . l ength ;
57 count-- ;
58 retu rn r ;
59 }
60
61 /**
62 Appends an object at tail.
63 @param anObject the object to be appended
64 @return true since this operation modifies the queue.
65 (This is a requirement of the collections framework.)
66 @preconditi on ! i sFul l ()
67 */
68 publ i c bool ean add (E anObj ect)
69 {
70 el ements [tai l] = anObj ect ;
71 tai l = (tai l + 1) % el ements . l ength ;
72 count++ ;
73 return true ;
74 }
75
76 publ i c i nt si ze ()
77 {
78 return count ;
79 }
80
81 /**
82 Checks whether this queue is full.
83 @retu rn true if the queue is full
84 */
85 publ i c bool ean i s Ful l ()
86 {
87 return count == el ements . l ength ;
88 }
89
90 /**
91 Gets object at head.
92 @return the object that is at the head of the queue
93 @precondi tion si zeO > 0
94 */
95 publ i c E peekO
96 {

• CHAPTER S Frameworks

97 retu rn (E) el ements [head] ;
98 }
99

100 pri vate Object [] el ements ;
101 pri vate i nt head ;
102 pri vate i nt tai 1 ;
103 pri vate i nt count ;
104 }

Ch8/queue/QueueTester.java

1 i mport j ava . uti l . * ;
2
3 publ i c cl ass QueueTester
4 {
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20 }

publ i c stati c voi d mai n (St ri ng [] args)
{

}

BoundedQueue<Stri ng> q = new BoundedQueue<Stri ng> (lO) ;

q . add (OO Bel gi umOO) ;
q . add (oo Ital yOO) ;
q . add(OO FranceO O) ;
q . removeO ;
q . add(OOThai l and OO) ;

Ar rayLi st<St ri ng> a = new Ar rayLi st<Stri ng> () ;
a . addAl l (q) ;
System . out . pri ntl n (OO Resu l t of bul k add : 0 0 + a) ;
System . out . pri ntl n (O OMi n imum : 0 0 + Col l ecti ons . mi n (q)) ;

1:$11- The Set Interface Type

As you have seen, the Co 1 1 ecti on interface type defines methods that are common to all
collections of objects. That interface type has two important subtypes, Set and Li st.
Let's discuss the Set interface first. Its definition is

publ i c i nte rface Set<E> extends Col l ecti on<E> { }

Perhaps surprisingly, the Set interface type adds no methods to the Co 1 1 ecti on interface
type. Why have another interface type when there are no new methods?

Conceptually, a set is a collection that eliminates duplicates. That is, inserting an element
that is already present has no effect on the set. Furthermore, sets are unordered collec
tions. Two sets should be considered equal if they contain the same elements, but not
necessarily in the same order.

That is, the add and equal s methods of a set have conceptual restrictions when compared
to the same methods of the Co 1 1 ecti on interface type. Some algorithms may require sets,
not arbitrary collections. By supplying a separate interface type, a method can require a
Set parameter and thus refuse collections that aren't sets.

\
)

8.3 The Collections Framework

I:EJf- The Li st Interface Type

The Java collections framework defines a "list" as an ordered collection in which each
element can be accessed by an integer index. The L i st<E> interface type adds the follow
ing methods to the Co 1 1 eni on<E> interface type:

voi d add (i nt i ndex , E obj)
bool ean addAl l (i nt i ndex , Col l ecti on<? extends E> c)
E get Ci nt i ndex)
i nt i ndexOf(Obj ect obj)
i nt l astlndexOf(Obj ect obj)
Li stlte rator<E> l i stlte rator ()
Li stlte rator<E> l i stlte rator (i nt i ndex)
E remove (i nt i ndex)
E set(i nt i ndex , E el ement)
Li st<E> subLi st(i nt fromlndex , i nt tolndex)

As you can see, most of these methods are concerned with the index positions.

The L i stHe rator<E> interface type is a subtype of Herator<E>. Here are the added
methods:

i nt nexUndexO
i nt previ ouslndex()
bool ean hasP revi ous()
E p revi ousO
voi d add (E obj)
voi d set C E obj)

Recall from Chapter 1 that an iterator is conceptually located between two elements.
The nexUndex and p revi ouslndex methods yield the index positions of the neighbor
elements. These methods are conceptually tied to the fact that the list iterator visits an
indexed collection.

The other methods are unrelated to indexing. They simply allow backwards movement
and element replacement.

Of course, the best-known class that implements the Li st interface type is the Ar rayL i st
class. More surprisingly, the L i nkedL i st class also implements the Li st interface type.
That flies in the face of everything that is taught in a data structures class. Accessing ele
ments in a linked list by their index is slow: To visit the element with a given index, you
must first visit all of its predecessors.

This is indeed a weakness in the design of the collections framework. It would have been
an easy matter to supply two interface types: Orde redCo 1 1 ecti on for linked lists and
IndexedCo 1 1 ecti on for arrays.

The library programmers belatedly noticed this problem when they implemented the
bi narySearch method in the Co 1 1 ecti ons class. The binary search algorithm locates an
element in a sorted collection. You start with the middle element. If that element is larger
than the element you are looking for, you search the first half Otherwise, you search the
second half Either way, every step cuts the number of elements to consider in half The
algorithm takes O(10g2(n)) steps if the collection has n elements, provided you can access
an individual element in constant time. Otherwise, the algorithm is completely pointless
and it would be faster to use a sequential search that simply looks at all elements.

CHAPTER B Frameworks

«interface»

«interface»
Collection

«interface»
List

'" , , ,

-

p - .. , , , , , , , ,

-')

-

Random <l--------- ArrayList
Access

LinkedList

Figure 5

The List Classes

«interface»
Iterator

«interface»
List

Iterator

To fix this problem, version 1.4 of the library added an interface type RandomAccess that
has no methods. It is simply a tagging interface type, to be used with an i nstanceof test.
For example, a search method can test whether a Li st supports fast element access or
not:

i f (l i st i nstanceof RandomAccess)
/ / Use binary search

el se
/ / Use linear search

The Ar rayL i st class implements this interface type, but the L i nkedL i st class does not.

As so often in software design, it is better to be familiar with the foundations of com
puter science and apply them correctly than to try to patch up one's design errors later.

Figure 5 shows the Li st interface type and the classes that implement it.

1:111- Optional Operations

If you look at the API documentation of the collections framework, you will find many
methods that are tagged as "optional operations". Among them is the add method of the
Col l ecti on interface type. The AbstractCol l ecti on class defines the add method so that
an UnsupportedOpe rati onExcepti on is thrown when it is called. The optional operations
are controversial, but there is a good reason why the library designers make use of them.
The need for optional operations arises from certain views. A view is an object of a class
that implements one of the interface types in the collections framework, and that permits
restricted access to a data structure.

8.3 The Collections Framework

The collections framework defines a number of methods that yield views. Here is a typi
cal example. An array is a built-in Java type with no methods. The asL i st method of the
Arrays class turns an array into a collection that implements the Li st interface type:

Stri ng [] stri ngs = { "Kenya" , "Thai l and" , " Po rtugal " } ;
Li st<Stri ng> vi ew = Ar rays . asLi st(stri ngs) ;

You can apply the Li st methods to the vi ew object and access the array elements. The
vi ew object does not copy the elements in the array. The get and set methods of the view
object are defined to access the original array. You can think of the view as a shallow copy
of the array.

What is the use? A Li st has a richer interface than an array. You can now take advantage
of operations supplied by the collections framework, such as bulk add:

anothe rCol l ecti on . addAl l (vi ew) ;

The addA 1 1 method asks the view for an iterator, and that iterator enumerates all ele
ments of the original array.

However, there are some operations that you cannot carry out. You cannot call the add or
remove methods on the view. Mter all, it is not possible to change the size of the under
lying array. For that reason, these methods are "optional". The asL i st view simply
defines them to throw an UnsupportedOpe rati onExcepti on.

Would it have been possible to define a separate interface type that omits the add and
remove methods? The problem is that you soon have an inflation of interface types. Some
views are read-only, other views (such as the one returned by the asL i st method) allow
modifications, as long as the size of the collection stays the same. These are called "mod
ifiable" in the API documentation. Having three versions of every interface type (read
only, modifiable, and resizable) adds quite a bit of complexity. The drawback of the
"optional" operations is that the compiler cannot check for errors.

NOTE The Co 1 1 ecti ons utility class has convenient static methods that give unmodifiable
views of collections, lists, sets, and so on. These views are useful if you want to give a client of
a class the ability to view a collection but not to modify it. For example, the Mai l box class of
Chapter 2 can give out an unmodifiable list of messages like this:

publ i c cl ass Mai l box
{

}

publ i c Li st<Message> getMessages()
{

return Col l ecti ons . unmodi fi abl eLi st (messages) ;
}

pri vate ArrayLi st<Message> messages ;

The Co 1 1 ecti ons . unmodi fi ab 1 eL i st method returns an object of a class that implements
the Li st interface type. Its accessor methods are defined to retrieve the elements of the
underlying list, and its mutator methods fail by throwing an UnsupportedOpe rati on
Excepti on.

CHAPTER B Frameworks

A Graph Editor Framework

1:111- The Problem Domain

The problem domain for our In this section we will introduce a simple application framework in
which the programmer has to add a number of classes to complete an
application. The problem domain that we address is the interactive
editing of graphs. A graph is made up of nodes and edges that have cer
tain shapes.

graph editor framework is the
interactive editing of graphs
that consist of nodes and
edges.

An application that is based on
Consider a class diagram. The nodes are rectangles, and the edges are
either arrows or lines with diamonds. A different example is an elec
tronic circuit diagram, where nodes are transistors, diodes, resistors,
and capacitors. Edges are simply wires. There are numerous other
examples, such as chemical formulas, flowcharts, organization charts,

the graph editor framework
defines specific behavior for
the nodes and edges.

and logic circuits.

Traditionally, a programmer who wants to implement, say, a class diagram editor, starts
from scratch and creates an application that can edit only class diagrams. If the
programmer is lucky, code for a similar program, say a flowchart editor, is available for
inspection. However, it may well be difficult to separate the code that is common to all
diagrams from the flowchart-specific tasks, and much of the code may need to be recre
ated for the class diagram editor.

The graph editor framework
encapsulates those aspects
that are common to ali graph
editing applications.

In contrast, the graph editor framework encapsulates those aspects
that are common to all graph editors, in particular the user interface
and the handling of commands and mouse events. The framework
provides a way for specific diagram types to express their special
demands that go beyond the common services.

1:lfJ- The User Interface

Many of the tasks, such as selecting, moving, and connecting elements, are similar for all
editors. Let's be specific and describe the user interface that our very primitive editor will
have. The screen is divided into two parts, shown in Figure 6.

On the top is a too/bar, a collection of buttons. There is one button for each node type
and one for each edge type. We will see later how a specific application supplies the icons
for the buttons. The leftmost button is the grabber tool that is used for selecting nodes or
edges. Exactly one of the tool buttons is active at any time.

There are also menu options for loading and saving a diagram, and for deleting selected
nodes and edges.

In the middle is the diagram drawing area. The mouse is used for drawing. The program
user can click the mouse on a node, an edge, or in empty space. The user can also use the
mouse to connect nodes or to drag a node to a new position. The mouse actions depend
on where the user clicks or drags, and what the currently selected tool is.

8.4 A Graph Editor Framework

Figure 6
File Edit

An Instance of the Graph
Editor Framework

• When the current tool is a node, clicking on an empty space inserts a new node.
Its type is that of the currently selected node in the toolbar.

• When the current tool is the grabber, clicking inside a node or on an edge selects
that node or edge.

• When the current tool is the grabber, starting a drag operation inside an existing
node moves the node as well as the edges that are connected to it.

• When the current tool is an edge, starting a drag operation inside an existing node
and dragging the cursor inside another existing node inserts a new edge. Its type is
that of the currently selected edge in the toolbar.

Of course, programs written with this framework are rather limited in their functionality.
There is no provision to supply text labels for edges and nodes. There is no support for
common commands such as cut/copy/paste or undo/redo. These features can be handled
by an extended version of this framework. This example is kept as simple as possible to
show the main concept: the separation of framework code and application-specific code.

1:111- Division of Responsibility

The framework programmer
is responsible for generic
mechanisms, whereas the
application programmer needs
to supply code that is specific
to a particular application.

When designing a framework, one must divide responsibilities
between the framework and specific instances of the framework. For
example, it is clear that the code to draw a transistor-shaped node is
not part of the general framework-only of the electronic circuit
instance.

Drawing the shapes of nodes and edges is the responsibility of the
application programmer. The same holds for hit testing: finding out

whether a node or edge is hit by a mouse click. This can be tricky for odd shapes and
cannot be the responsibility of the framework.

On the other hand, drawing the toolbar and managing the mouse clicks is the job of the
framework. An application programmer need not be concerned with these aspects of a
graph editor at all.

CHAPTER S Frameworks

A concrete graph class must
enumerate all node and edge
types for the g iven graph.

This brings up a very interesting problem. The framework must have
some idea of the node and edge types in the application so that each
type of node or edge can be painted as an icon in a button. Just as
importantly, it must be possible to add new nodes and edges of the

types that are specified in the buttons. The application programmer must tell the frame
work about the node and edge types that can occur in a particular kind of graph.

There are several ways of achieving this task. For example, a concrete graph could pro
duce a list of class names or Cl ass objects to describe the node and edge classes.

However, we follow a slightly different approach. In our graph editor framework, a con
crete graph must give the framework prototype objects. For example, the application
instance in Figure 6 was created by defining a node class, Ci rc 1 eNode, an edge class,
L i neEdge, and a Si mp 1 eGraph class that specifies two node prototypes and an edge
prototype.

publ i c cl ass Si mpl eGraph extends Graph
{

}

publ i c Node [] getNodePrototypes()
{

}

Node [] nodeTypes =

{

} ;
new Ci rcl eNode (Col or . BLACK) ,
new Ci rcl eNode (Col o r . WHITE)

return nodeTypes ;

publ i c Edge [] getEdgePrototypes ()
{

}

Edge [] edgeTypes =
{

new L i neEdge 0
} ;

retu rn edgeTypes ;

When the toolbar is constructed, it queries the graph for the node and edge prototypes
and adds a button for each of them. The nodes and edges draw themselves in the
pai ntlcon method of the button icon object.

When a user inserts a new node or edge, the object corresponding to the selected tool
button is cloned and then added to the graph:

Node prototype = node of currently selected too/bar button ;
Node newNode = (Node) prototype . cl one() ;
Poi nt2D mousePoi nt = current mouse position ;
g raph . add (newNode , mousePoi nt) ;

Why use prototype objects and not classes? Note that the two circle nodes are instances
of the same class, one with a black fill color and the other with a white fill color. Thus,
cloning prototype objects is a bit more economical than instantiating classes.

8.4 A Graph Editor Framework

The Prototype pattern teaches
how a system can instantiate
classes that are not known
when the system is built.

This mechanism is an example of the PROTOTYPE pattern. The pro
totype pattern gives a solution to the problem of dealing with an
open-ended collection of node and edge types whose exact nature was
not known when the framework code was designed.

PATIERN

•

•

•

•

•

•

•

•

•

•

-===Il ROTOTYPE

Context

1 . A system needs to create several kinds of objects whose classes are not known when
the system is built.

2. You do not want to require a separate class for each kind of object.

3. You want to avoid a separate hierarchy of classes whose responsibility it is to create
the objects.

Solution

1. Define a prototype interface that is common to all created objects.

2. Supply a prototype object for each kind of object that the system creates.

3. Clone the prototype object whenever a new object of the given kind is required.

Creator

createlnstanceO

« interface»
Prototype

_ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _ _ _ _ _ _ , , , , , , , , , , , , , , , , ,

Concrete
Prototype 1

Concrete
Prototype2

For example, in the case of the node and edge types, we have

Name in Design Pattern Actual Name

Prototype Node

ConcretePrototypel Ci rcl eNode

Creator The GraphPanel class that handles the mouse operation
for adding new nodes to the graph

CHAPTER 8 Frameworks

1:111- Framework Classes

The Node and Edge interface
types describe the behavior
that is common to all nodes
and edges.

The framework defines the interface types Node and Edge. The meth
ods of these interface types define the shapes of the nodes and edges.

Both Node and Edge have a draw method that is used when painting
the graph and a conta; ns method that is used to test whether the
mouse point falls on a node or an edge.

Both interface types have a getBounds method that returns the rectangle enclosing the
node or edge shape. That method is needed to compute the total size of the graph as the
union of the bounding rectangles of its parts. The scroll pane that holds the graph panel
needs to know the graph size in order to draw the scroll bars.

The Edge interface type has methods that yield the nodes at the start and end of the
edge.

The getConnect; onPo; nt method in the Node interface type computes an optimal attach
ment point on the boundary of a node (see Figure 7). Since the node boundary may have
an arbitrary shape, this computation must be carried out by each concrete node class.

The getConnect; on Po; nts method of the Edge interface type yields the two end points of
the edge. This method is needed to draw the "grabbers" that mark the currently selected
edge.

The cl one method is declared in both interface types because we require all implement
ing classes to supply a public implementation of the cl one method. That method is
required to clone prototypes when inserting new nodes or edges into the graph. (Recall
that the cl one method of the Obj ect class has protected visibility.)

Exterior point

Boundary point

Center of node

Fig ure 7

Node Connection Points

8.4 A Graph Editor Framework

ll!! _ ..,

�a 1 __

Ch8/graphed/Node.java

1
2
3
4
5
6
7
8
9

i mport j ava . awt . * ;
i mport j ava . awt . geom . * ;
i mport j ava . i o . * ;

/**
A node in a graph.

*/
publ i c i nte rface Node extends Seri al i zabl e . Cl oneabl e
{

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 }

/**
Draws the node.
@param g2 the graphics context

*/
voi d draw(Graphi cs2D g2) ;

/**

*/

Translates the node by a given amount.
@param dx the amount to translate in the x-direction
@param dy the amount to translate in the y-direction

voi d transl ate (doubl e dx . doubl e dy) ;

/**
Tests whether the node contains a point.
@param aPoi nt the point to test
@retu rn true if this node contains aPoi nt

*/
bool ean contai ns (Poi nt2D aPoi nt) ;

/**
Gets the best connection point to connect this node
with another node. This should be a point on the boundary
of the shape of this node.
@param aPoi nt an exterior point that is to be joined
with this node
@return the recommended connection point

*/
Poi nt2D getConnecti onPoi nt (Poi nt2D aPoi nt) ;

/**

*/

Gets the bounding rectangle of the shape of this node.
@return the bounding rectangle

Rectangl e2D getBounds () ;

Obj ect cl oneO ;

Ch8/graphed/Edge.java

1 i mport j ava . awt . * ;
2 i mport j ava . awt . geom . * ;
3 i mport j ava . i o . * ;
4

, . CHAPTER 8 Frameworks

/**
An edge in a graph.

*/

5
6
7
8
9

publ i c i nterface Edge extends Seri al i zabl e , Cl oneab l e
{

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57 }

/**
Draws the edge.
@param g2 the graphics context

*/
voi d d raw(Graphi cs2D g2) ;

/**
Tests whether the edge contains a point.
@param aPoi nt the point to test
@return true if this edge contains aPoi nt

*/
bool ean contai ns(Poi nt2D aPoi nt) ;

/**

*/

Connects this edge to two nodes.
@param aStart the starting node
@param an End the ending node

voi d connect (Node aStart , Node anEnd) ;

/**

*/

Gets the starting node.
@retu rn the starting node

Node getStartO ;

/**

*/

Gets the ending node.
@return the ending node

Node get End 0 ;
/**

*/

Gets the points at which this edge is connected to
its nodes.
@return a line joining the two connection points

Li ne2D getConnectionPoi nts () ;

/**

*/

Gets the smallest rectangle that bounds this edge.
The bounding rectangle contains all labels.
@return the bounding rectangle

Rectangl e2D getBounds (Graphi cs2D g2) ;

Object cl one O ;

8.4 A Graph Editor Framework

The programmer using this framework must define specific node and edge classes that
realize these interface types:

cl ass Transi stor i mpl ements Node { . . . }
cl ass Wi re i mpl ements Edge { . . . }

For the convenience of the programmer, the framework also supplies an abstract class
AbstractEdge that provides reasonable implementations of some, but not all, of the
methods in the Edge interface type. Whenever these default implementations are appro
priate, a programmer can extend that class rather than having to implement all methods
of the interface type. There is no corresponding AbstractNode class since all of the meth
ods of the Node interface type require knowledge of the node shape.

ChB/graphed/ AbstractEdge.java

1 i mport j ava . awt . * ;
2 i mport j ava . awt . geom . * ;
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/**

*/

A class that supplies convenience implementations for
a number of methods in the Edge interface type.

publ i c abstract c l ass AbstractEdge i mpl ements Edge
{

publ i c Obj ect cl one()
{

}

try
{

}
return super . cl one() ;

catch (Cl oneNotSupportedException excepti on)
{

retu rn nul l ;
}

publ i c voi d connect (Node s , Node e)
{

}

start = s ;
end = e ;

publ i c Node getStart ()
{

return start ;
}

publ i c Node getEnd()
{

return end ;
}

CHAPTER B Frameworks

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 }

publ i c Rectangl e2D getBounds (Graphi cs2D g2)
{

}

Li ne2D conn = getConnecti onPoi nts () ;
Rectangl e2D r = new Rectangl e2D . Doubl e () ;
r . setFrameFromDi agonal (conn . getXl() , conn . getYl() ,

conn . getX2 () , conn . getY2 ()) ;
return r ;

publ i c Li ne2D getConnecti onPoi nts ()
{

}

Rectangl e2D startBounds = start . getBounds () ;
Rectangl e2D endBounds = end . getBounds () ;
Poi nt2D startCenter = new Poi nt2D . Doubl e (

startBounds . getCenterX() , startBounds . getCenterY ()) ;
Poi nt2D endCenter = new Poi nt2D . Doub l e (

endBounds . getCenterX() , endBounds . getCenterY ()) ;
return new Li ne2D . Doubl e (

start . getConnecti onPoi nt (endCenter) ,
end . getConnecti onPoi nt (startCenter)) ;

pri vate Node start ;
pri vate Node end ;

The Graph class supplies
methods for adding, finding,
and removing nodes and
edges.

The Graph class collects the nodes and edges. It has methods for add
ing, removing, finding, and drawing nodes and edges. Note that this
class supplies quite a bit of useful functionality. This is, of course,
characteristic of frameworks. In order to supply a significant value to
application programmers, the framework classes must be able to sup

ply a substantial amount of work.

Nevertheless, the Graph class is abstract. Subclasses of Graph must override the abstract
methods

publ i c abstract Node [] getNodePrototypes()
publ i c abstract Edge [] getEdgePrototypes()

These methods are called when a graph is added to a frame. They populate the toolbar
with the tools that are necessary to edit the graph. For example, the getNodePrototypes
method of the Si mp 1 eGraph class specifies two circle node prototypes.

Ch8/graphed/Graph.java

1 i mpo rt
i mport
i mport
i mport
i mport

/**

j ava . awt . * ;
j ava . awt . geom . * ; . . * J ava . l O . ;
j ava . uti l . * ;
j ava . uti l . Li st ;

2
3
4
5
6
7
8 A graph consisting of selectable nodes and edges.

8.4 A Graph Editor Framework

9 */
10 publ i c abstract cl ass Graph i mpl ements Seri al i zabl e
1 1 {
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

/**
Constructs a graph with no nodes or edges.

*/
publ i c Graph O
{

}

/**

*/

nodes
edges

new ArrayLi st<Node> () ;
new Ar rayLi st<Edge> () ;

Adds an edge to the graph that joins the nodes containing
the given points. If the points aren't both inside nodes,
then no edge is added.
@param e the edge to add
@param pI a point in the starting node
@param p2 a point in the ending node

publ i c bool ean connect (Edge e , Poi nt2D pI , Poi nt2D p2)
{

}

/**

*/

Node n1 = fi ndNode (p1) ;
Node n2 = fi ndNode (p2) ;
i f (n1 ! = nul l && n2 ! =

{

}

e . connect (n1 , n2) ;
edges . add (e) ;
retu rn true ;

retu rn fal se ;

nul l)

Adds a node to the graph so that the top left corner of
the bounding rectangle is at the given point.
@param n the node to add
@param p the desired location

publ i c bool ean add (Node n , Poi nt2D p)
{

}

/',*

*/

Rectangl e2D bounds = n . getBounds() ;
n . transl ate (p . getX() - bounds . getX() ,

p . getY () - bounds . getY()) ;
nodes . add(n) ;
return true ;

Finds a node containing the given point.
@param p a point
@return a node containing p or nul l if no nodes contain p

publ i c Node fi ndNode (Poi nt2D p)
{

CHAPTER B Frameworks

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
1 10
1 11
112
113
1 14
1 15
116
117
118
1 19

}

1" *

for (i nt i = nodes . si ze () - 1 ;
{

Node n = nodes . get(i) ;
i f (n . contai ns (p)) return n ;

}
return nul l ;

>= 0 ; i --)

Finds an edge containing the given point.
@param p a point
@return an edge containing p or nul l if no edges contain p *1

publ i c Edge fi ndEdge (Poi nt2D p)
{

}

1**

for (i nt i = edges . si ze () - 1 ;
{

Edge e = edges . get(i) ;
i f (e . contai ns (p)) return e ;

}
return nul l ;

Draws the graph.
@param g2 the graphics context "'1

publ i c voi d d raw(Graphi cs2D g2)
{

}

1* *

for (Node n : nodes)
n . d raw(g2) ;

for (Edge e : edges)
e . d raw(g2) ;

>= 0 ; i --)

Removes a node and all edges that start or end with that node.
@param n the node to remove *1

publ i c voi d removeNode (Node n)
{

for (i nt i = edges . si ze () - 1 ;
{

Edge e = edges . get (i) ;

>= 0 ; i --)

if (e . getStartO = = n I I e . getEndO n)

}

I'd,

*1

edges . remove (e) ;
}
nodes . remove(n) ;

Removes an edge from the graph.
@param e the edge to remove

publ i c voi d removeEdge (Edge e)

8.4 A Graph Editor Framework

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175 }

{

}

/**

*/

edges . remove (e) ;

Gets the smallest rectangle enclosing the graph.
@param g2 the graphics context
@retu rn the bounding rectangle

publ i c Rectangl e2D getBounds (Graphi cs2D g2)
{

}

/**

*/

Rectangl e2D r = nul l ;
for (Node n : nodes)
{

}

Rectangl e2D b = n . getBounds () ;
i f (r = = nul l) r = b ;
e l se r . add (b) ;

fo r (Edge e : edges)
r . add (e . getBounds (g2)) ;

return r == nul l ? new Rectangl e2D . Doubl e()

Gets the node types of a particular graph type.
@return an array of node prototypes

publ i c abstract Node [] getNodePrototypes() ;

/**

*/

Gets the edge types of a particular graph type.
@retu rn an array of edge prototypes

publ i c abst ract Edge [] getEdgePrototypes() ;

/**
Gets the nodes of this graph.
@return an unmodifiable list of the nodes

*/
publ i c Li st<Node> getNodes ()
{

return Col l ecti ons . unmodi fi abl eLi st (nodes) ;
}

/**
Gets the edges of this graph.
@return an unmodifiable list of the edges

*/
publ i c Li st<Edge> getEdges ()
{

return Col l ecti ons . unmodi fi abl eLi st (edges) ;
}

pri vate Ar rayLi st<Node> nodes ;
pri vate ArrayLi st<Edge> edges ;

r · ,

. . CHAPTER S Frameworks

The GraphF rarne, Too 1 Bar,
and G raphPanel framework
classes are responsible for the
user interface. Application pro
grammers need not subclass
these classes.

The graph editor uses the following classes for editing the graph:

• GraphFrarne: a frame that manages the toolbar, the menu bar,
and the graph panel.

• Tool Bar: a panel that holds toggle buttons for the node and
edge icons.

• GraphPane 1 : a panel that shows the graph and handles the
mouse clicks and drags for the editing commands.

We do not list these classes here. The implementations are straightforward but a bit long.
The graph frame attaches the toolbar and graph panel, sets up the menu, and loads and
saves graphs using object serialization, as discussed in Chapter i. The toolbar sets up a
row of buttons with icon objects that paint the nodes and edges, and which are scaled
down to fit inside the buttons. The mouse handling of the graph panel is similar to that
of the scene editor in Chapter 6.

Interestingly enough, the Node and Edge interface types are rich enough that the frame
work classes do not need to know anything about particular node and edge shapes. The
mechanics of mouse movement, rubber banding, and screen update are completely
solved at this level and are of no concern to the programmer using the framework.
Because all drawing and mouse operations are taken care of in the framework classes, the
programmer building a graphical editor on top of the framework can simply focus on
implementing the node and edge types.

1:'If- Turning the Framework into an Application

The classes for the simple graph editor are summarized in Figure 8. The bottom four
classes are application-specific. All other classes belong to the framework.

Let's summarize the responsibilities of the programmer creating a specific diagram
editor:

• For each node and edge type, define a class that implements the Node or Edge
interface type and supply all required methods, such as drawing and containment
testing. For convenience, you may want to subclass the Abst ractEdge class.

• Define a subclass of the Graph class whose getNodePrototypes and getEdge-
/ Prototypes methods supply prototype objects for nodes and edges.

• Supply a class with a rna; n method such as the 5; rnp 1 eGraphEd; tor class below.

To build a graph editor applica
tion, subclass the Graph class
and provide classes that imple
ment the Node and Edge
interface types.

Note that the programmer who turns the framework into an applica
tion supplies only application-specific classes and does not implement
the user interface or control flow. This is characteristic of using a
framework.

8.4 A Graph Editor Framework

j---
v

ToolBar
« interface»

Edge

Graph Graph
Frame P-- Panel

0--- Graph

o
0 0
0 0
0
0 0

Simple
Simple

Graph ---------- ----- -- --------------') Graph
Editor

Figure 8

Application and Framework Classes

Ch8/graphed/SimpleGraph.java

i mport j ava . awt . * ;
i mport j ava . uti l . * ;

1**

P-
I------ « interface»

Node

T
P-

:

Circle
Node

1
2
3
4
5
6
7
8
9

A simple graph with round nodes and straight edges.
*1
publ i c cl ass Si mpl eGraph extends Graph
{

10
1 1
1 2
1 3
14
15
16
17
18
19
20
21
22
23
24
25
26
27 }

publ i c Node [] getNodePrototypes ()
{

}

Node [] nodeTypes =
{

} ;

new Ci rcl eNode (Col or . BLACK) ,
new Ci rcl eNode (Col o r . WHITE)

return nodeTypes ;

publ i c Edge [] getEdgePrototypes ()
{

}

Edge [] edgeTypes =

{
new L i neEdge 0

} ;
return edgeTypes ;

Abstract
Edge

Line
Edge

1 _

1 __

CHAPTER a Frameworks

Ch8/graphed/SimpleGraphEditor.java

1
2
3
4
5
6
7
8
9

10
1 1
12

i mport j avax . swi ng . * ;

/**
A program for editing UML diagrams.

*/
publ i c cl ass Si mpl eGraphEditor
{

publ i c stati c voi d mai n (Stri ng [] args)
{

}

J F rame frame = new GraphFrame (new Si mpl eGraph ()) ;
frame . setVi si bl e (true) ;

13 }

Ch8/graphed/CircleN ode. java

1 i mport j ava . awt . * ;
2 i mport j ava . awt . geom . * ;
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

/**
A circular node that is filled with a color.

*/
publ i c cl ass Ci rcl eNode i mpl ements Node
{

/**

*/

Construct a circle node with a given size and color.
@param aCo l or the fill color

publ i c Ci rcl eNode (Col o r aCol or)
{

}

si ze = DEFAULT_SIZE ;
x = 0 ;
y = 0 ;
col or = aCol o r ;

publ i c Obj ect cl one()
{

}

try
{

}
return supe r . cl one() ;

catch (Cl oneNotSupportedException excepti on)
{

return nul l ;
}

publ i c voi d d raw(Graphi cs2D g2)
{

El l i pse2D ci rcl e = new El l i pse2D . Doubl e (
x , y , si ze , si ze) ;

Col o r ol dCol or = g2 . getCol or () ;
g2 . setCol or (col or) ;

8.4 A Graph Editor Framework

\ .-

39 g2 . fi l l (ci rcl e) ;
40 g2 . setCol o r (ol dCol o r) ;
41 g2 . d raw(ci rcl e) ;
42 }
43
44 publ i c voi d t ransl ate (doubl e dx , doubl e dy)
45 {
46 x += dx ;
47 y += dy ;
48 }
49
50 publ i c bool ean contai ns (Poi nt2D p)
51 {
52 El l i pse2D ci rcl e = new El l i pse2D . Doub l e (
53 x , y , si ze , si ze) ;
54 return ci rcl e . contai ns(p) ;
55 }
56
57 publ i c Rectangl e2D getBounds()
58 {
59 return new Rectangl e2D . Doubl e (
60 x , y , si ze , si ze) ;
61 }
62
63 publ i c Poi nt2D getConnecti onPoi nt(Poi nt2D other)
64 {
65 doubl e cente rX = x + si ze / 2 ;
66 doubl e cente rY = y + si ze / 2 ;
67 doubl e dx = othe r . getX() - centerX ;
68 doubl e dy = othe r . getY() - centerY ;
69 doubl e di stance = Math . sq rt (dx * dx + dy * dy) ;
70 i f (di stance == 0) return othe r ;
71 el se return new Poi nt2D . Doubl e (
72 centerX + dx * (si ze / 2) / di stance ,
73 centerY + dy * (size / 2) / di stance) ;
74 }
75
76 pri vate doubl e x ;
77 pri vate doubl e y ;
78 pri vate doubl e si ze ;
79 pri vate Col o r col o r ;
80 pri vate stati c fi nal i nt DEFAULT_SIZE 2 0 ;
81 }

Ch8/graphed/LineEdge.java

1 i mport j ava . awt . * ;
2 i mport j ava . awt . geom . * ;
3
4
5
6
7
8

/**
An edge that is shaped like a straight line.

*/
publ i c cl ass Li neEdge extends Abst ractEdge
{

• CHAPTER S Frameworks

9 publ i c voi d d raw(Graphi cs2D g2)
10 {
1 1 g2 . d raw(getConnecti onPoi nts ()) ;
12 }
13
14 publ i c bool ean contai ns(Poi nt2D aPoi nt)
15 {
16 fi nal doubl e MAX_DIST = 2 ;
17 return getConnecti onPoi nts () . ptSegDi st (aPoi nt)
18 < MAX_DIST ;
19 }
20 }

1:*11- Generic Framework Code

The generic framework code
does not need to know about
specific node and edge types.

In the last section you saw how to customize the framework to a spe
cific editor application. In this section we will investigate how the
framework code is able to function without knowing anything about
the types of nodes and edges.

The framework code is too long to analyze here in its entirety, and some technical
details, particularly of the mouse tracking, are not terribly interesting. Let's consider two
operations: adding a new node and adding a new edge.

First let's look at adding a new node. When the mouse is clicked outside an existing
node, then a new node of the current type is added. This is where the cl one operation
comes in. The getSe 1 ectedToo 1 method of the Tool Bar class returns an object of the
desired node type. Of course, you cannot simply insert that object into the diagram. If
you did, all nodes of the same type would end up in identical positions. Instead you
invoke cl one and add the cloned node to the graph. The mousePressed method of the
mouse listener in the GraphPanel class carries out these actions.

publ i c voi d mousePressed (MouseEvent event)
{

}

Poi nt2D mousePoi nt = event . getPoi nt() ;
Object tool = tool Bar . getSel ectedTool () ;

i f (tool i nstanceof Node)
{

}

Node p rototype = (Node) tool ;
Node newNode = (Node) prototype . cl one() ;
g raph . add (newNode , mousePoi nt) ;

repai nt () ;

Figure 9 shows the sequence diagram. Note how the code is completely independent of
the actual node type in a particular application.

8.4 A Graph Editor Framework

mouse
listener

Figure 9

Inserting a New Node

clone
I
I
I

add

prototype
: Node I �aob I

Next, consider a more involved action, adding a new edge. When the mouse is clicked,
we must first determine whether the click is inside an existing node. This operation is
carried out in the fi ndNode method of the Graph class, by calling the contai ns method of
the Node interface:

publ i c Node fi ndNode (Poi nt2D p)
{

}

for (Node n : nodes)
i f (n . contai ns (p)) return n ;

return nul l ;

If the mouse is clicked inside an existing node and the current tool is an edge, we
remember the mouse position in the rubbe rBandStart field of the GraphPanel class.

publ i c voi d mousePressed (MouseEvent event)
{

}

Node n graph . fi ndNode (mousePoi nt) ;
i f (tool i nstanceof Edge)
{

}
i f (n ! = nul l) rubberBandStart mousePoi nt ;

In the mouseDragged method, there are two possibilities. If the current tool is not an
edge, then the purpose of the dragging is to move the selected node elsewhere. We don't

CHAPTER 8

" .

Figure 1 0

Frameworks

I
aetPoint

I
etPoint

findNode

I

qetSele�tedToOI

I
get Point I r��nt

I
I
I
I
I
I
I
I
I
I
I
I
I

connect

B EJ G
contains

j

I I
I I ,
I I
I I
I I
I I
I I

I
draw

I draw
I 'u I
I

I
I

I I
I I

I I I
I I I

Inserting a New Edge

care about that case right now. However, if we are currently inserting an edge, then we
want to draw a "rubber band", a line that follows the mouse pointer.

�Ubl i C voi d moUSeDragged (MOU5��Jnt event)

Poi nt2D mousePoi nt = event . ge Poi nt e) ;

}

l astMousePoi nt = mousePoi nt ;
repai nt O ;

The repai nt method invokes the pai ntComponent method of the GraphPane 1 . It draws
the graph and, if rubberBandStart is not nul l , the rubber banded line.

publ i c voi d pai ntComponent(Graphi cs g)
{

8.5 Enhancing the Graph Editor Framework

}

Graphi cs2D g2 = (Graphi cs2D) g ;
g raph . d raw(g2) ;
i f (rubberBandStart ! = nul l)

g2 . d raw(new Li ne2D . Doubl e (rubbe rBandStart , l astMousePoi nt)) ;

When the mouse button goes up, we are ready to add the edge.

publ i c voi d mouseRel eased (MouseEvent event)
{

}

Object tool = tool Bar . getSel ectedTool () ;
i f (rubbe rBandStart ! = nul l)
{

}

Poi nt2D mousePoi nt = event . getPoi nt () ;
Edge prototype = (Edge) tool ;
Edge newEdge = (Edge) p rototype . cl one() ;
g raph . connect (newEdge , rubbe rBandStart , mousePoi nt) ;
rubbe rBandStart = nul l ;
repai ntO ;

Figure 10 shows the sequence diagram.

These scenarios are representative of the ability of the framework code to operate with
out an exact knowledge of the node and edge types.

Enhancing the Graph Editor Framework

1:,.,1- Editing Node and Edge Properties

Figure 1 1

In this section, we will discuss an important enhancement of the graph editor frame
work: the ability to edit properties of nodes and edges. We add a menu option Edit -7
Properties that pops up a dialog box to edit the properties of the selected node or edge
(see Figure 11) .

Flit Edit

\ 0
- Prope-rtlf''' X

? color D PS5,17S. 175 § L...lpl_nk_--,

Editing a Node Property

CHAPTER S Frameworks

Clearly, such a facility is necessary to enable users to select colors, line styles, text labels,
and so on. The challenge for the framework designer is to find a mechanism that allows
arbitrary node and edge classes to expose their properties, and then to provide a generic
user interface for editing them.

To enable a graph editor appli
cation to edit the properties of
nodes or edges, an application
programmer simply imple
ments them as JavaBeans
properties. The graph editor
framework contains the code
for editing the properties.

Fortunately, this problem has been solved elsewhere. Recall from
Chapter 7 that Gill builders are able to edit arbitrary properties of
JavaBeans components. We will therefore require the implementors of
nodes and edges to expose editable properties using the JavaBeans
convention: with get and set methods. To edit the properties, we
supply a property sheet dialog box that is similar to the property edi
tor in a Gill builder.

For example, the Ci rcl eNode class can expose a Col or property simply
by providing two methods

publ i c voi d setCol or (Col or newVal ue)
publ i c Col or getCol or ()

No further work is necessary. The graph editor can now edit node colors.

Let's consider a more complex change: to support both solid and dotted lines. We will
define an enumerated type L i neStyl e with two instances:

Li neStyl e . SOLID
Li neStyl e . DOTTED

(See Chapter 7 for a discussion of the implementation of enumerated types in Java.)

The L i neStyl e enumeration has a convenience method

Stroke getStroke ()

That method yields a solid or dotted stroke object. The L i neEdge method uses that
object in its draw method:

publ i c voi d d raw(Graphi cs2D g2)
{

}

St roke ol dSt roke = g2 . getSt roke () ;
g2 . setStroke(l i neStyl e . getStroke ()) ;
g2 . d raw(getConnecti onPoi nts ()) ;
g2 . setStroke (ol dStroke) ;

The effect is either a solid or dotted line that joins the connection points.

Of course, we need to add getters and setters for the line style to the L i neEdge class.

Altogether, the following changes are required to add colored nodes a�tted lines to
the simple graph editor: /'

• Add setCol or and getColor methods to Ci rcl eNode.

• Supply a L i neStyl e enumeration.

• Enhance the L i neEdge class to draw both solid and dotted lines, and add getL i ne
Styl e and setL i neStyl e methods.

It is a simple matter to support additional graph properties, such as line shapes, arrow
shapes, text labels, and so on.

8.5 Enhancing the Graph Editor Framework

I:Ifl- Another Graph Editor Instance: A S imple UML Class Editor

Figure 12 shows a simple UML class diagram editor that has been built on top of the
graph editor framework.

The editor is essentially the same as the Violet UML editor. However, it supports only
class diagrams, and it lacks some convenience features such as keyboard shortcuts, image
export, and snap-to-grid.

To build a simple UML editor,
add class node and class rela
tionship edge classes to the
graph editor framework.

Of course, the node and edge classes of this editor are more complex.
They format and draw text, compute edges with multiple segments,
and add arrow tips and diamonds. It is instructive to enumerate the
classes that carry out this new functionality. None of these classes are
difficult to implement, although there is an undeniable tedium to

some of the layout computations.

• The Rectangu1 arNode class describes a node that is shaped like a rectangle. It is the
superclass of C1 assNode.

• The SegmentedL i neEdge class implements an edge that consists of multiple line
segments. It is the superclass ofC1 assRe1 ati onshi pEdge.

• ArrowHead and BentSty1 e classes are enumerations for arrow heads and edge
shapes, similar to the L i neSty1 e class of the preceding section.

• Mul ti L i neStri ng formats a string that may extend over multiple lines. A C1 ass
Node uses multiline strings for the class name, the attributes, and the methods.

• Finally, the C1 assDi ag ramGraph class adds the C1 assNode and various edge proto-
types to the toolbar.

The basic framework is not affected at all by these changes. The implementor of the
UML editor need not be concerned about frames, toolbars, or event handling. Even the
editing of properties is automatically provided because the framework supplies a dialog

Flle Edit

IMailbOX

Figure 1 2

Message Lh-__ -1IM�e�S�Sa�gle I Queue r text

A Simple UML Class Diagram Editor

CHAPTER S Frameworks

o
File Edil

Figure 1 3

Ll Propet1IPor. X

? bentStylt HVH 1.1
endArrowHud NONE I�J l

tndl�bel ,..' --.-r-'
rnld��tt:::�: SOLID l�I I,:

sul1ArrowHud DIAMOND I �l 5nnL�btl ___ ... J

�

The Edge Property Editor

box that manipulates the JavaBeans properties (see Figure 13) . Thus, the framework
allows the implementor of any particular graph type to focus on the intricacies of the
nodes and edges of just that graph .

• :,.,1- Evolving the Framework

The Violet UML editor uses an
enhanced version of the graph
editor framework. The simple
graph editor can take advan
tage of the enhancements with
no changes in appl ication
code.

The Violet UML editor uses an enhanced version of the graph editor
framework that adds a number of useful features such as graphics
export, a grid for easier alignment, and simultaneous display of multi
ple graphs. The companion code for this book does not include the
Violet code because some of it is rather lengthy. You can find the
source code at http : //horstmann . comlvi 01 et.

Remarkably, you can still integrate the simple graph editor with its
circle nodes and line edges into the enhanced framework (see Figure 14).

This demonstrates another advantage of using a framework. By decoupling the frame
work and the application code, the application designers can take advantage of the
framework evolution, without having to change the application-specific code .

• :,..,1- A Note on Framework Design

In this chapter, you have learned how to put existing application frameworks to use. In
order to use a framework, you have to understand the requirements that the designer of
the framework set forth for application programmers. For example, to turn the graph
editor framework into an application, you have to supply subclasses of Graph, Node, and
Edge. Other frameworks have similar requirements.

Designing your own framework is a far bigger challenge than using a framework. You
need to have a thorough understanding of the problem domain that the framework
addresses. You need to design an architecture that enables application programmers to

Exercises

Figure 1 4

The Simple Graph Editor Takes Advantage of the
Enhanced Framework

0" 01' IllI

a" 01' IllI

add application-specific code, without changing the framework code. The design of the
framework should shield application programmers from internal mechanisms and allow
them to focus on application-specific tasks. On the other hand, you need to provide
"hooks" that allow application programmers to modify the generic framework behavior
when applications require nonstandard mechanisms. It is notoriously difficult to antici
pate the needs of application programmers. In fact, it is commonly said that a framework
can only claim to have withstood the test of time if it is the basis of at least three different
applications. Rules for the effective design of application frameworks are an area of active
research at this time.

Exercise 8.1 . The j ava . ; 0 package contains pluggable streams, such as Pushbacklnput
Stream and Z; plnputStream. Explain why the stream classes form a framework. Describe
how a programmer can add new stream classes to the framework, and what benefits
those classes automatically have.

Exercise 8.2. Search the Web for application frameworks until you have found frame
works for three distinct problem domains. Summarize your findings.

CHAPTER S Frameworks

Exercise 8.3. Turn the scene editor of Chapter 6 into an applet.

Exercise 8.4. Write an applet that can display a bar chart. The applet should obtain the
chart values from a set of param tags.

Exercise 8.5. Explain the phenomenon of "inversion of control", using the graph editor
framework as an example.

Exercise 8.6. Re-implement the BoundedQueue class as a subtype of the Queue interface
type in the standard library.

Exercise 8.7. Prove the following class invariant for the BoundedQueue<E> class:

• All values in the el ements array belong to a subtype of E .

Why does this invariant show that the class implementation is safe, despite the compiler
warnings? Why can't the compiler determine that the implementation is safe?

Exercise 8.8. Suppose the designers of the collections framework had decided to offer
separate interface types for ordered collections (such as linked lists) and indexed collec
tions (such as array lists). Explain the changes that must be made to the framework.

Exercise 8.9. Suppose the designers of the collections framework had, instead of allow
ing "unsupported operations", supported three kinds of data structures: read-only, modi
fiable, and resizable. Explain the changes that must be made to the framework. How do
the basic interface types change? Which classes need to be added? Which methods need
to be added to the Arrays and Col l ections classes?

Exercise 8.10. The RandomAccess interface type has no methods. The Set interface type
adds no methods to its superinterface. What are the similarities and differences between
the functionality that they are designed to provide?

Exercise 8 .11 . The standard C++ library defines a collections framework (known as STL)
that is quite different from the Java framework. Explain the major differences.

Exercise 8.12. Contrast the algorithms available in the Java collections framework with
those of the standard C++ library.

Exercise 8.13. Enhance the Si mpl eGraphEdi tor to support both circular and rectangular
nodes.

Exercise 8.14. Enhance the Si mpl eGraphEditor to support lines with arrow tips.

Exercise 8 .15. Enhance the Si mpl eGraphEdi to r to support text annotations o(lines.
Hint: Make a label property.

Exercise 8.16. Enhance the Si mpl eGraphEdi tor to support multiple arrow shapes:
v-shaped arrow tips, triangles, and diamonds.

Exercise 8.17. Add cut/copy/paste operations to the graph editor framework.

Exercise 8.18. Design a sorting algorithm animation framework. An algorithm anima
tion shows an algorithm in slow motion. For example, if you animate the merge sort
algorithm, you can see how the algorithm sorts and merges intervals of increasing size.
Your framework should allow a programmer to plug in various sorting algorithms.

Exercises

Exercise 8.19. Design a framework for simulating the processing of customers at a bank
or supermarket. Such a simulation is based on the notion of events. Each event has a time
stamp. Events are placed in an event queue. Whenever one event has finished processing,
the event with the earliest time stamp is removed from the event queue. That time stamp
becomes the current system time. The event is processed, and the cycle repeats. There are
different kinds of events. Arrival events cause customers to arrive at the bank. A stream
of them needs to be generated to ensure the continued arrival of customers, with some
what random times between arrivals. This is typically done by seeding the event queue
with one arrival event, and having the processing method schedule the next arrival event.
Whenever a teller is done processing a customer, the teller obtains the next waiting
customer and schedules a "done processing" event, some random time away from the
current time. In the framework, supply an abstract event class and the event processing
mechanism. Then supply two applications that use the framework: a bank with a number
of tellers and a single queue of waiting customers, and a supermarket with a number of
cashiers and one queue per cashier.

C h a p t e r

Multitnreaaing

'i';'f4'9',,;e;tIIlf' .. ·I�9'''I'I4'r�.l'�------------------------------
� Thread Basics

� Thread Synchronization

� Animations

In this chapter, you will learn how to manage programs that contain

multiple threads--program units that can be executed in parallel. You will

learn how to start new threads and how to coordinate the threads of a

program. Thread programming poses a number of complexities. The order

in which threads are executed is not deterministic. You need to ensure that

the behavior of a program is not affected by variations in execution order.

Furthermore, you need some way of synchronizing the threads. One

thread may need a result that is being computed by another thread.

Another common problem occurs when multiple threads simultaneously

try to modify a shared object; you will learn how to deal with these issues

in this chapter.

CHAPTER 9 Multithreading

Thread Bas ic s

Threads and the Run nabl e InterfaceType

When you use a computer, you often run multiple programs at the same time. For exam
ple, you may download your e-mail while you write a report in your word processor. The
operating system of your computer is able to run multiple programs at the same time,
switching back and forth between them. Technically speaking, a modern operating sys
tem can concurrently execute multiple processes. The operating system frequently switches
back and forth between the processes, giving the illusion that they run in parallel. Actu
ally, if a computer has multiple central processing units (CPUs), then some of the pro
cesses really can run in parallel, one on each processor.

It is often useful for a single program to carry out two or more tasks at the same time. For
example, a Web browser can load multiple images into a Web page at the same time. A
program can do a lengthy computation in the background, while responding to user
commands in the foreground. Or an animation program can show moving figures, with
separate tasks computing the layout of each separate figure. Of course, you can obtain
effects such as these by implementing a loop that first does a little bit of the first task,
then a little bit of the second, and so on. But such programs get complex quickly, because
you have to mix the code for doing the work with the code to control the timing.

A thread of execution is a
program unit that is executed
independently of other parts
of the program.

In Java, you can implement each of several tasks as a thread of execution.
A thread is a program unit that is executed independently of other
parts of the program. The Java virtual machine executes each thread for
a short amount of time and then switches to another thread. You can
visualize the threads as programs executing in parallel to each other.

There is an important difference between processes and threads. Modern operating sys
tems isolate processes from each other. For example, processes can't overwrite each
other's memory. Obviously, this isolation is an important safety feature. But it also makes
the switching between processes rather slow. Threads, on the other hand, run within a
single process so switching between threads is very fast. But multiple threads share mem
ory and are able to corrupt each other's data if programmers are not careful.

Threads let you concentrate on the task that you want to carry out, without having to
worry how that task is alternated with other tasks. If you need to carry out two tasks in
parallel, you simply start a thread for each of them.

Running a thread is simple-just follow these steps:

1 . Define a class that implements the Runnab 1 e interface type. That inter&2e type
has a single method called run.

publ i c i nte rface Runnabl e
{

voi d run O ;
}

2. Place the code for the task into the run method of the class.

3. Create an object of the class.

9.1 Thread Basics

4. Construct a Th read object and supply the Runnab 1 e object in the constructor.

5. Call the start method of the Th read object to start the thread.

The start method of a
Th read object starts a new
thread that executes the run
method of its Runnab 1 e.

Let's look at a concrete example. You want to run two threads in par
allel, each of which prints ten greetings.

Each thread executes this loop.

for (i nt i = 1 ; i <= REPETITIONS ; i ++)
{

}

System . out . pri ntl n(i + " : " + g reeti ng) ;
Thread . sl eep (DELAY) ;

Mter printing the greeting, let each thread sleep for a short amount of time. That gives
the other thread a chance to run. Every thread should occasionally yield control to other
threads. Otherwise the thread is seljish. On some platforms, a selfish thread can prevent
other threads from making progress.

The sl eep method puts the
current thread to sleep for a
given number of milliseconds.

When a thread is interrupted,
the most common response is
to terminate the run method.

The static sl eep method of the Th read class puts the current thread to
sleep for a given number of milliseconds. In our case, the thread sleeps
for 100 milliseconds or 1/10th of a second.

There is, however, one technical problem. Putting a thread to sleep is
potentially risky-a thread might sleep for so long that it is no longer
useful and should be terminated. As you will see later in this chapter,
a thread is terminated by interrupting it. When a sleeping thread is

interrupted, an Inter ruptedExcepti on is generated. This is a checked exception, declared
by the sl eep method. You need to catch that exception in your run method. The simplest
way to handle thread interruptions is to give your run method the following form:

publ i c cl ass MyRunnabl e i mpl ements Runnabl e
{

}

publ i c voi d rune)
{

}

try
{

}
do work

catch (Inte rruptedException excepti on)
{
}
clean up, if necessary

Here is the complete class of the Runnabl e that produces a sequence of greetings.

Ch9/greeting/GreetingProducer.java

1 /**
2 An action that repeatedly prints a greeting. 3 */
4 publ i c cl ass Greeti ngProducer i mpl ements Runnabl e
5 {

. ' CHAPTER 9

6 /**

Multithreading

7 Constructs the producer object.
8 @param aGreeti ng the greeting to display
9 */

10 publ i c Greeti ngProducer(Stri ng aGreeti ng)
1 1 {
12 g reeti ng = aGreeti ng ;
13 }
14
15 publ i c voi d run O
16 {
17 try
18 {
19 for (i nt i = 1 ; i <= REPETITIONS ; i ++)
20 {
21 System . out . pri ntl n (i + " : " + greeti ng) ;
22 Th read . sl eep(DELAY) ;
23 }
24 }
25 catch (Inte rruptedException excepti on)
26 {
27 }
28 }
29
30 pri vate Stri ng g reeti ng ;
31
32 p ri vate stati c fi nal i nt REPETITIONS = 10 ;
33 pri vate stati c fi nal i nt DELAY = 100 ;
34 }

This class is not a thread. It is merely a class that defines an action in its run method. To
execute that action in a thread, you create a thread and start it.

Runnabl e r = new Greeti ngProduce r ("Hel l o , Worl d ! ") ;
Th read t = new Th read (r) ;
t . start () ;

Figure 1 shows the relationships between these classes.

Thread

Figure 1

«interface»
Runnable

�

Greeting
Producer

A Thread and Its Runnable

9.1 Thread Basics

r'-

I I

«create»

start

Figure 2

t1 : Thread

I « create»

I
I
I
I

I I start

! !
I

Starting Two Threads

t2 : Thread

I
I
I

I I
I I

A thread terminates when the
run method of its Runnab 1 e
terminates.

The start method creates a new thread in the Java virtual machine.
That thread calls the run method of the Runnab 1 e object. The thread
terminates when the run method returns or throws an uncaught
exception.

NOTE You can also define threads by forming subclasses of the Th read class and overriding
the run method in the subclass. However, there are other mechanisms for executing
Runnabl e objects without having to create new threads. In particular, you can execute a
Runnabl e in a thread pool. A thread pool contains a number of threads that are already con
structed, ready to execute the run method of any Runnabl e . By using a thread pool, you
amortize the high cost of constructing a new thread. This is particularly important for pro
grams that launch a very large number of short-lived threads, such as Web servers. See the
API documentation of the Executors class in the j ava . uti l . concu rrent package for
details.

To run two threads in parallel, simply construct and start two Thread objects. The fol
lowing test program does just that. Figure 2 shows the sequence diagram.

Ch9/greeting/ThreadTester. java

1 /**
2 This program runs two threads in parallel. 3 */
4 publ i c cl ass ThreadTester
5 {
6
7

publ i c stati c voi d mai n (Stri ng [] args)
{

CHAPTER 9 Multithreading

8 Runnabl e r1 = new Greeti ngProducer ("Hel l o , Worl d ! ") ;
9 Runnabl e r2 = new Greeti ngProduce r ("Goodbye , Worl d ! ") ;

10
11 Th read t1 new Thread (r1) ;
12 Th read t2 new Thread (r2) ;
13
14 t1 . start () ;
15 t2 . start() ;
16 }
17 }

Note that the mai n method runs in its own thread, the main thread of the program. The
main thread terminates after starting t2, but both t1 and t2 still execute. The program
only ends when all of its threads terminate.

NOTE This observation also explains why graphical user interfaces keep running long after
the mai n method exited. When the first frame of an application is shown, a user interface
thread is started. That thread processes user interface events such as mouse clicks and key
presses. The user interface thread only terminates if the program is forced to exit, for example
by calling the System . exi t method or by closing a frame with the EXIT _ON_CLOSE setting.

I,fl- Scheduling Threads

Here is a sample output of the thread tester program. Each thread runs for a short
amount of time, called a time slice. Then the scheduler activates another thread. There
fore, both producer threads take turns, and the two sets of greetings are interleaved.

1 : Hel l o , Wo rl d !
1 : Goodbye , Worl d !
2 : Hel l o , Worl d !
2 : Goodbye , Wo rl d !
3 : Hel l o , Worl d !
3 : Goodbye , Wo rl d !
4 : Hel l o , Worl d !
4 : Goodbye , Worl d !
5 : Hel l o , Worl d !
5 : Goodbye , Worl d !
6 : Hel l o , Worl d !
6 : Goodbye , Worl d !
7 : Hel l o , Wo rl d !
7 : Goodbye , Worl d !
8 : Goodbye , Worl d !
8 : Hel l o , Wo rl d !
9 : Goodbye , Worl d !
9 : Hel l o , Worl d !
10 : Goodbye , Worl d !
10 : Hel l o , Worl d !

9.1 Thread Basics

The thread scheduler allows
each thread to execute for a
short amount of time, called a
time slice.

If you look closely at the output, you will find that the two threads
aren't exactly alternating. Sometimes, the second thread seems to
jump ahead of the first thread. This shows an important characteristic
of threads. The thread scheduler gives no guarantee about the order
in which threads are executed. Moreover, there will always be slight

variations in running times, especially when calling operating system services (such as
input and output). Thus, you should expect that the order in which each thread gains
control appears to be somewhat random.

Let's have a closer look at the algorithm that the scheduler uses to pick the next thread to
run. Each thread has

• A thread state

• A priority

The thread state is one of the following (see Figure 3):

• new (before start is called)

• runnable

• blocked

• dead (after the run method exits)

� NOTE There is no separate state to indicate whether a runnable thread is actually running.

new

start block

unblock

runnable

run exits

dead

Figure 3

Thread States

CHAPTER 9 Multithreading

A thread can enter the blocked state for several reasons that we will discuss in the
remainder of this chapter. They include:

• Sleeping

• Waiting for input/output

• Waiting to acquire a lock (see Section 9.2.3)

• Waiting for a condition (see Section 9.2.4)

Once a thread is blocked in a particular way, it stays blocked until the event for which it
is waiting has occurred. For example, a sleeping thread can only become runnable again
after the sleep time has elapsed.

The scheduler will activate a new thread when one of three events occurs:

• A thread has completed its time slice

• A thread has blocked itself

• A thread with a higher priority has become runnable

The thread scheduler selects
among the runnable threads
with the highest priority value.

When the scheduler is about to activate the next thread, it looks at all
threads that are currently runnable, computes the highest priority
value, and then picks one among the threads whose priority equals
that highest value. The Java standard does not specify which thread

among the eligible ones should be scheduled. A scheduler could pick one at random, or
use a round-robin scheme that gives each thread a chance.

NOTE Priority values are system-dependent and not portable. Application programmers
should generally not adjust thread priorities. Just stick to the normal priority that each thread
has by default. Then the scheduler will simply pick among the runnable threads.

EIEI--- Terminating Threads

A thread terminates when the run method of its Runnabl e returns. This is the normal
way of terminating a thread-implement the run method so that it returns when it
determines that no more work needs to be done.

However, sometimes you need to terminate a running thread. For example, you �ay have
several threads attempting to find a solution to a problem. As soon as the first /bne has
succeeded, you can terminate the other ones. In the initial release of the Java library, the
Th read class had a stop method to terminate a thread. However, that method is now
deprecated-computer scientists have found that stopping a thread can lead to danger
ous situations if the thread holds a lock on shared resources. Instead of simply stopping a
thread, you should notify the thread that it should terminate itself. The thread needs to
cooperate, by releasing any resources that it currently holds and doing any other required
cleanup.

9.1 Thread Basics

To notifY a thread that it should clean up and terminate, use the i nterrupt method.

t . i nter rupt () ;

This call doesn't terminate the thread; it merely sets a flag in the thread data structure.

A thread should check whether The run method should check whether its thread has been interrupted.

it has been interrupted. In that case, it should do any necessary cleanup and exit. The most
practical strategy for dealing with thread interruptions is to surround

the entire work portion of the run method with a t ry block that catches the
InterruptedExcepti on . Then the run method has the form

publ i c voi d rune)
{

}

try
{

}

whi 1 e (more work to do)
{

}

do work
Th read . sl eep (DELAY) ;

catch (Inter ruptedExcepti on excepti on)
{
}
clean up

This code works because the sl eep mehod checks the "interrupted" flag. If the flag is set,
the sl eep method clears it and throws an Inter ruptedException .

Occasionally, it is inconvenient to call sl eep-then you should check the "interrupted"
flag manually:

i f (Th read . cu rrentTh read() . i slnterrupted ()) . . .

TIP You may find code that squelches the Inte r ruptedExcepti on, like this:

t ry / / Bad!
{

Th read . sl eep(DELAY) ;
}
catch (Inter ruptedExcepti on excepti on)
{
}

Apparently, the try/catch clause was added to "shut up" the compiler's complaint about the
checked exception that the sl eep method may throw. Don't do that. If such a thread is inter
rupted, then the interruption is ignored and the thread simply keeps on running.

Sometimes, you need to call a method such as sl eep inside a method that cannot throw a
checked exception (for example, an event handler). In that case, catch the Interrupted
Excepti on and reactivate the "interrupted" flag of the thread.

try
{

Th read . sl eep(DELAY) ;

CHAPTER 9 Multithreading

}
catch (InterruptedExcepti on excepti on)
{

Th read . currentThread () . i nterrupt() ;
}

Of course, then you need to check for interruptions elsewhere.

NOTE Strictly speaking, nothing in the Java language specification says that a thread must
terminate when it is interrupted. It is entirely up to the thread what it does when it is
interrupted. Interrupting is a general mechanism for getting the thread's attention, even
when it is sleeping. However, in this chapter, we will always terminate a thread that is being
interrupted.

Thread S ynchronization

Corrupting a Shared Data Structure

When threads share access to a common object, they can conflict with each other. To
demonstrate the problems that can arise, we will investigate a sample program in which
two threads insert greetings into a queue, and another thread removes them. Each pro
ducer thread inserts 100 greetings, and the consumer thread removes all of them.

We use a bounded queue that is similar to the one developed in Section 8.3.3.

The run method of the Producer class contains this loop:

i nt i = 1 ;
whi l e (i <= greeti ngCount)
{

}

i f (l queue . i s Ful l ())
{

}

queue . add(i + 0 0 . 0 0 + greeti ng) ;
i ++ ;

Th read . sl eep ((i nt) (Math . random () * DELAY)) ;

The run method of the Consumer class simply removes the greetings from the queue. In a
more realistic program, the consumer would do something with these objects, but here
we just print them.

i nt i = 1 ;
whi l e (i < = greeti ngCount)
{

i f (l queue . i sEmpty())
{

Stri ng g reeti ng = queue . remove() ;
System . out . pri ntl n (greeti ng) ;
i ++ ;

9.2 Thread Synchronization

Illl _ ..
Q
1 ._

}
Th read . sl eep((i nt) (Math . random() * DELAY)) ;

}

When the program runs, it displays output similar to the following.

1 : Hel l o , Worl d !
1 : Goodbye , Worl d !
2 : Hel l o , Worl d !
3 : Hel l o , Worl d !

99 : Goodbye , Worl d !
100 : Goodbye , Worl d !

At least that is what should happen. However, there is a small chance that the program
will corrupt the queue and not work correctly.

Have a look at the source code to see if you can spot the problem. We will analyze the
flaw in the next section.

Ch9/queuer{fhreadTester.java

1 /**
2 This program runs two threads in parallel.
3 */
4 publ i c cl ass ThreadTester
5 {
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 }

publ i c stati c voi d mai n (St ri ng [] args)
{

}

BoundedQueue<Stri ng> queue = new BoundedQueue<Stri ng> (10) ;
queue . setDebug (t rue) ;
fi nal i nt GREETING_COUNT = 100 ;
Runnabl e run1 = new Produce r (" Hel l o , Worl d ! " ,

queue , GREETING_COUNT) ;
Runnabl e run2 = new Producer ("Goodbye , Worl d ! " ,

queue , GREETING_COUNT) ;
Runnabl e run3 = new Consume r (queue , 2 * GREETING_COUNT) ;

Th read thread1
Th read th read2
Th read thread3

th read! . start () ;
th read2 . start () ;
th read3 . start () ;

new Th read (run1) ;
new Thread (run2) ;
new Th read (run3) ;

Ch9/queuer/producer.java

1 /**
2 An action that repeatedly inserts a greeting into a queue.
3 */
4 publ i c cl ass Produce r i mpl ements Runnabl e
5 {

CHAPTER 9

6 /**

Multithreading

7 Constructs the producer object.
8 @param aGreeti ng the greeting to insert into a queue
9 @param aQueue the queue into which to insert greetings

10 @param count the number of greetings to produce
11 */
12 publ i c Produce r(Stri ng aG reeti ng , BoundedQueue<Stri ng> aQueue ,
13 i nt count)
14 {
15 g reeti ng = aG reeti ng ;
16 queue = aQueue ;
17 g reeti ngCount = count ;
18 }
19
20 publ i c voi d runO
21 {
22 try
23 {
24 i nt i = 1 ;
25 whi l e (i <= g reeti ngCount)
26 {
27 i f (! queue . i sFul l O)
28 {
29 queue . add(i + " . " + g reeti ng) ;
30 i ++ ;
31 }
32 Th read . sl eep((i nt) (Math . random() * DELAY)) ;
33 }
34 }
35 catch (Inter ruptedExcepti on excepti on)
36 {
37 }
38 }
39
40 p ri vate Stri ng g reeti ng ;
41 pri vate BoundedQueue<St ri ng> queue ;
42 pri vate i nt g reeti ngCount ;
43
44 p ri vate stati c fi nal i nt DELAY 10 ;
45 }

Ch9/queueI/Consumer.java

1 /**
2 An action that repeatedly removes a greeting from a queue.
3 */
4 publ i c cl ass Consumer i mpl ements Runnabl e
5 {
6
7
8
9

10
1 1
1 2

/**

*/

Constructs the consumer object.
@param aQueue the queue from which to retrieve greetings
@param count the number of greetings to consume

publ i c Consumer (BoundedQueue<Stri ng> aQueue , i nt count)
{

9.2 Thread Synchronization

13 queue = aQueue ;
14 g reeti ngCount = count ;
15 }
16
17 publ i c voi d run O
18 {
19 try
20 {
21 i nt i = 1 ;
22 whi l e (i <= greeti ngCount)
23 {
24 i f (! queue . i sEmptyO)
25 {
26 Stri ng g reeti ng = queue . remove () ;
27 System . out . pri ntl n (g reeti ng) ;
28 i ++ ;
29 }
30 Th read . sl eep((i nt) (Math . random() * DELAY)) ;
31 }
32 }
33 catch (Inter ruptedExcepti on excepti on)
34 {
35 }
36 }
37
38 pri vate BoundedQueue<St ri ng> queue ;
39 pri vate i nt g reeti ngCount ;
40
41 pri vate stati c fi nal i nt DELAY 10 ;
42 }

Ch9/queuer/BoundedQueue.java

1 /**
2

*/
A first-in, first-out bounded collection of objects.

3
4
5
6
7

publ i c cl ass BoundedQueue<E>
{

8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22

/**
Constructs an empty queue.
@param capaci ty the maximum capacity of the queue

*/
publ i c BoundedQueue (i nt capaci ty)
{

}

/**

*/

el ements = new Obj ect [capaci ty] ;
head 0 ;
tai l 0 ;
si ze 0 ;

Removes the object at the head.
@return the object that has been removed from the queue
@precondi tion ! i sEmpty()

CHAPTER 9 Multithreading

23 publ i c E remove ()
24 {
25 i f (debug) System . out . pri nt (" remove") ;
26 E r = (E) el ements [head] ;
27 i f (debug) System . out . pri nt(" . ") ;
28 head++ ;
29 i f (debug) System . out . pri nt (" . ") ;
30 si ze-- ;
31 if (head == el ements . l ength)
32 {
33 i f (debug) System . out . pri nt (" . ") ;
34 head = 0 ;
35 }
36 i f (debug)
37 System . out . p ri ntl n (" head=" + head + " , tai l =" + tai l ,
38 + " , si ze=" + si ze) ;
39 return r ;
40 }
41
42 /**
43 Appends an object at the tail.
44 @param newVal ue the object to be appended
45 @precondi ti on ! i sFul l () ;
46 */
47 publ i c voi d add (E newVal ue)
48 {
49 i f (debug) System . out . pri nt("add ") ;
50 el ements [tai l] = newVal ue ;
51 i f (debug) System . out . pri nt (" . ") ;
52 tai l ++ ;
53 i f (debug) System . out . p ri nt(" . ") ;
54 si ze++ ;
55 i f (tai l == el ements . 1 ength)
56 {
57 i f (debug) System . out . p ri nt(" . ") ;
58 tai l = 0 ;
59 }
60 i f (debug)
61 System . out . pri ntl n ("head=" + head + " , tai l =" + tai l
62 + " , si ze=" + si ze) ;
63 }
64
65 publ i c bool ean i sFul l O
66 {
67 retu rn si ze == el ements . l ength ;
68 }
69
70 publ i c bool ean i sEmpty()
71 {
72 return si ze == 0 ;
73 }
74
75 publ i c voi d setDebug (bool ean newVal ue)
76 {
77 debug = newVal ue ;
78 }

9.2 Thread Synchronization

79
80 p ri vate Obj ect [] el ements ;
81 pri vate i nt head ;
82 pri vate i nt tai l ;
83 pri vate i nt si ze ;
84 pri vate bool ean debug ;
85 }

Wtll- Race Conditions

If you run the program of the preceding section several times, you may find that the con
sumer thread gets stuck and won't complete. Even though 200 greetings were inserted
into the queue, it can't retrieve them all. At other times, it may complete, but print the
same greetings repeatedly.

To see better what is happening, turn debugging on by calling

queue . setDebug (true) ;

The debug messages show the queue status.

You may need to run the program quite a few times to get it to misbehave. Activating the
queue debugging messages increases the chance of observing the failure.

Here is one of many scenarios that demonstrates how a problem can occur.

1 . The first thread calls the add method of the BoundedQueue class and executes the
following statement:

el ements [tai l] = newVal ue ;

2. The second thread calls the add method on the same BoundedQueue object and
executes the statements

el ements [tai l] = newVal ue ;
tai l ++ ;

3 . The first thread executes the statement

tai l ++ ;

The consequences of this scenario are unfortunate. Step 2 overwrites the object that the
first thread stored in the queue. Step 3 increments the tail counter past a storage location
without filling it. When its value is removed later, some random value will be returned
(see Figure 4).

A race condition occurs if the
effect of multiple threads on
shared data depends on the
order in which the threads are
scheduled.

This situation is an example of a race condition. Both threads, in their
race to complete their respective tasks, rush to store objects in the
queue and to increment the tail index. The end result depends on
which of them happens to win the race.

What is the likelihood of corruption? If you turn off the debugging
mode and run the program on a fast computer, then you may not see

the problem for a long time. Testing the program only under auspicious circumstances
can give you the dangerous illusion of correctness. Of course, the problem hasn't gone

CHAPTER 9 Multithreading

I
Store

new value

I

Increment
tai l

Figure 4

A Race Condition

I
Store

new value

Increment
tai l

I

tai l

(old junk)
" Hel l o "

(old junk)
tai 1 "Goodbye"

tai 1 (old junk)
"Goodbye"

tai l

(old junk)
"Goodbye"

away; it just has become much less frequent, and therefore more difficult to observe. To
really fix the race conditions, you need to ensure that only one thread manipulates the
queue at any given moment. That is the topic of the next section.

9.2 Thread Synchronization

,*,1- Locks

A thread can acquire a lock.
When another thread tries to
acquire the same lock, it is
blocked. When the first thread
releases the lock, the other
threads are unblocked.

To solve problems such as the one that you observed in the preceding
section, a thread can temporarily acquire ownership of a lock. While
the thread owns the lock, no other thread can acquire the same lock.
If another thread tries to do so, it is temporarily blocked. When the
first thread unlocks the lock, it releases ownership and the other
thread becomes unblocked.

As ofJava 5.0, there are two kinds oflocks:

• Objects of the Reent rantLock class or another class that implements the Lock
interface type in the j ava . uti l . concu r rent . l ocks package .

• Locks that are built into every Java object.

We discuss the Lock interface first because it is easier to understand, and it is also a bit
more flexible than the built-in locking mechanism.

You use the following idiom to ensure that a block of code is exclusively executed by a
single thread:

aLock = new Reent rantLock () ;

aLock . l ockO ;
try
{

protected code
}
fi nal l y
{

aLock . un l ockO ;
}

The fi na 1 1 y clause ensures that the lock is unlocked even when an exception is thrown
in the protected code.

Let's see how locks avoid the unfortunate scenario of the preceding section. Assuming
the body of the add method is protected by a lock, the troublesome scenario that we con
sidered in the preceding section plays out differently.

1 . The first thread calls the add method and acquires the lock. The thread executes
the following statement:

el ements [tai l] = newVal ue ;

2. The second thread also calls the add method on the same queue object and wants
to acquire the same lock. But it can't-the first thread still owns the lock. There
fore, the second thread is blocked and cannot proceed.

3. The first thread executes the statement

tai l ++ ;

4. The first thread completes the add method and returns. It releases the lock.

5. The lock release unblocks the second thread. It is again runnable.

6. The second thread proceeds, now successfully acquiring the lock.

CHAPTER 9 Multithreading

Of course, the remove method must be protected by the same lock. Mter all, if one
thread calls add, we don't want another thread to execute the remove method on the same
object.

Note that each queue needs to have a separate lock object. It is perfectly acceptable if two
threads operate on different BoundedQueue objects.

",I- Avoiding Deadlocks

Unfortunately, protecting the bodies of the add and remove methods with locks i s not
enough to ensure that your program will always run correctly. Consider these actions of
the producer:

i f (! queue . i s Ful l O)
{

queue . add(i + " . " + g reeti ng) ;
i ++ ;

}

Now suppose the producer thread has ascertained that the queue is not yet full, and then
its time slice has elapsed. Another thread gains control and fills up the queue. The first
thread is reactivated and proceeds where it left off, adding a message to the full queue.
The queue is again corrupted.

Clearly, the test should be moved inside the add method. That ensures that the test for
sufficient space is not separated from the code for adding the element. Thus, the add
method should look like this:

publ i c voi d add (E newVal ue)
{

}

queueLock . l ock() ;
try
{

whi 1 e (queue is full)
wait for more space

}
fi nal l y
{

queueLock . unl ock() ;
}

A deadlock occurs if no thread
can proceed because each
thread is waiting for another to
do some work first.

But how can you wait for more space? You can't simply call sl eep
inside the try block. If a thread sleeps after locking queueLock, no
other thread can remove elements because that block of code is
protected by the same lock. The consumer thread will call remove, but
it will simply be blocked until the add method exits.

But the add method doesn't exit until it has space available. This is called a deadlock or,
more poetically, a deadly embrace.

9.2 Thread Synchronization

NOTE Technically speaking, threads are not completely deadlocked if they sleep and periodi
cally wake up and carry out a futile check. Some computer scientists call this situation a "live
lock". A true deadlock can be achieved if two threads try to acquire two separate locks, with
one thread locking the first and attempting to lock the second, and the other thread acquiring
the second lock and then attempting to lock the first. How to resolve such deadlocks is
beyond the scope of this book.

Calling awai t on a
Condi ti on object makes the
current thread wait and allows
another thread to acquire the
lock.

The methods of the Condi ti on interface are designed to resolve this
issue. Each lock can have one or more associated Condi ti on objects
you create them by calling the newCondi ti on method, like this:

pri vate Lock queueLock = new ReentrantLock () ;
pri vate Condi ti on spaceAvai l abl eCondi ti on

queueLock . newCondi tion() ;
pri vate Condi tion val ueAvai l abl eCond iti on

queueLoc k . newCondi tion() ;

It is useful to create a condition object for each condition that needs to be monitored. In
our example, we will monitor two conditions, whether space is available for insertion and
whether values are available for removal.

Calling awai t on a condition object temporarily releases a lock and blocks the current
thread. The current thread is added to a set of threads that are waiting for the condition.
For example, the add method starts with the loop

publ i c voi d add (E newVal ue)
{

}

whi l e (si ze == el ements . l ength)
spaceAvai l abl eCondi tion . awai t () ;

A waiting thread is blocked
until another thread calls

When a thread calls awai t, it enters a blocked state. To unblock the
thread, another thread must execute the si gnal Al l method on the
same condition object. The si gna 1 Al l method unblocks all threads
waiting for the condition, making them all runnable again.

si gnalAl l or si gnal on
the condition object for which
the thread is waiting. You call the si gna 1 Al l method whenever the state of an object has

changed in a way that might benefit waiting threads. In our queue
example, this is the case after an object has been removed. At that time, the threads that
are waiting for available space should be unblocked so that they can finish adding ele
ments. Here is how you should modify the remove method:

publ i c E remove ()
{

}

E r el ements [head] ;

spaceAvai l abl eCondition . signalAl l 0 ; / / Unblock waiting threads
return r ;

: . CHAPTER S Multithreading

The val ueAvai 1 ab 1 e(ondi ti on is maintained in the same way. The remove method starts
with the loop

whi l e (si ze == 0)
val ueAvai l abl e(ondi t ion . awai t() ;

Mter the add method has added an element to the queue, it calls

val ueAvai l abl e(ondi tion . si gnal Al l () ;

Note that the test for a condition must be contained in a whi 1 e loop, not an i f statement:

whi 1 e (not ok to proceed)
a(ondi ti on . awai t () ;

The condition must be retested after the thread returns from the call to awai t.

NOTE There is also a si gna 1 method, which randomly picks just one thread that is waiting
on the object and unblocks it. The si gnal method can be more efficient than the si gnal Al l
method, but it is useful only if you know that every waiting thread can actually proceed. In
general, you don't know that, and si gna 1 can lead to deadlocks. For that reason, we recom
mend that you always call si gnal Al l .

With the calls to awai t and si gnal Al l in the add and remove methods, we can launch
any number of producer and consumer threads without a deadlock. If you run the sample
program, you will note that all greetings are retrieved without ever corrupting the queue.
Here is the source code for the modified queue.

Ch9/queuez/BoundedQueue.java

1 i mport j ava . uti l . concu rrent . l ocks . * ;
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/**
A first-in, first-out bounded collection of objects.

*/
publ i c c l ass BoundedQueue<E>
{

/**
Constructs an empty queue.
@param capaci ty the maximum capacity of the queue

*/
publ i c BoundedQueue(i nt capaci ty)
{

}

/**

*/

el ements = new Obj ect [capaci ty] ;
head 0 ;
tai 1 0 ;
s i ze o · ,

Removes the object at the head.
@return the object that has been removed from the queue

publ i c E remove () th rows Inter ruptedException

9.2 Thread Synchronization

25 {
26 queueLock . l ock() ;
27 try
28 {
29 whi l e (si ze == 0)
30 val ueAvai l abl eCondi t ion . awai t () ;
31 E r = (E) el ements [head] ;
32 head++ ;
33 si ze-- ;
34 i f (head == el ements . l ength)
35 head = 0 ;
36 spaceAvai l abl eCondi t ion . si gnalAl l () ;
37 return r ;
38 }
39 fi nal l y
40 {
41 queueLock . unl ock() ;
42 }
43 }
44
45 /**
46 Appends an object at the tail.
47 @param newVa 1 ue the object to be appended
48 */
49 publ i c voi d add (E newVal ue) th rows InterruptedException
50 {
51 queueLock . l ock() ;
52 try
53 {
54 whi l e (si ze == el ements . l ength)
55 spaceAvai l abl eCondi ti on . awai t () ;
56 el ements [tai l] = newVal ue ;
57 tai l ++ ;
58 si ze++ ;
59 i f (tai 1 == el ements . 1 ength)
60 tai l = 0 ;
61 val ueAvai l abl eCondi t ion . s i gnal Al l () ;
62 }
63 fi nal l y
64 {
65 queueLock . unl ock() ;
66 }
67 }
68
69 pri vate Obj ect [] el ements ;
70 pri vate i nt head ;
71 pri vate i nt tai l ;
72 pri vate i nt si ze ;
73
74 pri vate Lock queueLock = new Reent rantLock () ;
75 pri vate Condi ti on spaceAvai l abl eCondi ti on
76 queueLock . newCondi ti on () ;
77 pri vate Condi t ion val ueAvai l abl eCondi t ion
78 queueLock . newCondi tion() ;
79 }

CHAPTER 9 Multithreading

TIP Note that the awai t method can throw an InterruptedExcepti on. It would be a bad
idea to catch the Inte r ruptedExcepti on inside the add and remove methods. These meth
ods have no way of knowing what the current thread wants to do if it is interrupted. In most
cases, it is best to let methods throw an Inte r ruptedException if they call the awai t or
s l eep methods. (\

'*11- Obj ect Locks

The Lock and (ondi ti on interface types were added in Java 5.0 to address limitations of
the original synchronization primitives of the Java language. In this section, we will
examine those primitives.

'

Every Java object has an associated object lock. It is very easy to acquire and release the
lock belonging to the implicit parameter of a method: simply tag the method with the
synch roni zed keyword.

Consider for example the BoundedQueue class. We can protect a queue object simply by
declaring its methods to be synch roni zed.

publ i c cl ass BoundedQueue<E>
{

}

publ i c synchroni zed voi d add (E newVal ue) { . . . }
publ i c synchroni zed E remove () { . . . }

When a thread calls q . add (e) , it tries to acquire the lock of q. It succeeds unless another
thread owns that lock. Upon exiting the add method, the lock is automatically released.

Each object lock comes with one condition object. To wait on that condition, call wai t.
To signal that the condition has changed, call noti fyA 1 1 or noti fy. For example, here is
the add method:

publ i c synchroni zed voi d add (E newVal ue)
th rows Inter ruptedExcepti on

{

}

whi l e (si ze == el ements . l ength) wai t e) ;
el ements [tai l] = anObject ;

noti fyAl l 0 ;

Note that the wai t, noti fyA 1 1 , and noti fy methods belong to the Obj ect class and not
the Th read class. If you call x . wai t O , the current thread is added to the wait set of the
condition belonging to the lock of the object x. Most commonly, you will call wai tO ,
which adds the current thread to the wait set of thi s . Similarly, the call noti fyA 1 1 0
unblocks all threads that are waiting for thi s .

The BoundedQueue class of the preceding section used two conditions, to monitor
whether the queue was full or empty. Here, we use the implicit object lock, and we only
have a single condition. Whenever the queue contents changes in any way, all waiting
threads will be woken up.

9.2 Thread Synchronization

Figure 5

Visualizing Object Locks

As you can see, using synchronized methods is simpler than using Lock and Conditi on
objects, but it is also a bit more confusing because three different concepts are combined:
the object whose state must be protected, the lock, and the condition.

One way to visualize the locking behavior is to imagine that the object is an old
fashioned telephone booth with a door, and the threads are people wanting to make tele
phone calls. (See Figure 5.) The telephone booth can accommodate only one person at a
time. If the booth is empty, then the first person wanting to make a call just goes inside
and closes the door. If another person wants to make a call and finds the booth occupied,
then the second person needs to wait until the first person leaves the booth. If multiple
people want to gain access to the telephone booth, they all wait outside.

To visualize the condition behavior, suppose that the coin reservoir of the telephone is
completely filled. No further calls can be made until a service technician removes the
coins. You don't want the person in the booth to go to sleep with the door closed. The
wait: method makes the person leave the booth temporarily, waiting for the situation to
improve. That gives other people (one of whom is hopefully a service technician) a
chance to enter the booth. At some point, a service technician enters the booth, empties
the coin reservoir, and shouts a notification. Now all the waiting people compete again
for the telephone booth.

NOTE In the 1970s, Per Brinch Hansen and Tony Hoare invented the monitor construct for
managing thread interactions. A monitor is analogous to a Java class in which every method
is synchronized and every instance field is private. Those restrictions are eminently sensible:

: , CHAPTER 9 Multithreading

they guarantee that the object state cannot be corrupted by interfering threads. The Java syn
chronization primitives are unfortunately rather half-baked. They are neither as safe as moni
tors nor as efficient as explicit locks. In a fiery critique (http : //bri nch-hansen . net/
papers/1999b . pdf), Per Brinch Hansen wrote: "It is astounding to me that Java's insecure
parallelism is taken seriously by the programming community, a quarter of a century after the
invention of monitors and Concurrent Pascal. It has no merit."

Should you use Lock and (ondi ti on objects or implicit locks and synch roni zed methods
in your code? It depends. The implicit object locks have a few limitations:

• There is only a single condition. If the only available condition is "something has
changed", some threads may be woken up even though they have no realistic
chance of proceeding.

• It is not possible to interrupt a thread that is trying to acquire an implicit lock.

• You cannot specifY a timeout for trying to acquire an implicit lock.

Synchronized methods were invented for a specific purpose: to ensure the integrity of a
data structure. We suggest that you use them for that purpose. If you have a data struc
ture that is accessed by multiple threads, declare all of its methods as synch roni zed and
all of its instance fields as private. You will never have surprising race conditions.

However, synchronized methods can be tricky to use to implement other thread coordi
nation problems. The j ava . uti 1 . concu r rent package offers several pre-built classes for
managing threads. We will see one of them, the L i nkedBl ocki ngQueue, in the next section.

Here is the complete code for the BoundedQueue class with synchronized methods.

Ch9/queue3/BoundedQueue.java

1 /**
2

*/
A first-in, first-out bounded collection of objects.

3
4
5
6
7

publ i c cl ass BoundedQueue<E>
{

8
9

10
1 1
12
13
14
15
16
17
1 8
19
20
21
22
23
24

/**
Constructs an empty queue.
@param capaci ty the maximum capacity of the queue

*/
publ i c BoundedQueue (i nt capaci ty)
{

}

/**

*/

el ements = new Object [capaci ty) ;
head 0 ;
tai 1 0 ;
si ze o · .

Removes the object at the head.
@return the object that has been removed from the queue

publ i c synchroni zed E remove ()
th rows InterruptedExcepti on

{

9.2 Thread Synchronization

25 whi l e (si ze == 0) wai t e) ;
26 E r = (E) el ements [head] ;
27 head++ ;
28 si ze-- ;
29 i f (head == el ements . l ength)
30 head = 0 ;
31 noti fyAl l () ;
32 return r ;
33 }
34
35 /**
36 Appends an object at the tail.
37 @param newVa 1 ue the object to be appended
38 */
39 publ i c synch roni zed voi d add (E newVal ue)
40 th rows Inter ruptedExcepti on
41 {
42 whi l e (si ze == el ements . l ength) wai t e) ;
43 el ements [tai l] = newVal ue ;
44 tai l ++ ;
45 si ze++ ;
46 i f (tai l == el ements . l ength)
47 tai l = 0 ;
48 noti fyAl l () ;
49 }
50
5 1 pri vate Obj ect [] el ements ;
52 pri vate i nt head ;
53 pri vate i nt tai l ;
54 pri vate i nt si ze ;
55 }

eta l Top ic
Synchronized Blocks

Synchronized methods automatically manipulate the lock that is associated with the implicit
parameter of a method. You can manually manipulate the lock of any object by programming
a synchronized block. The syntax is

synch roni zed (an Object)
{

code
}

This statement acquires the lock of the given object, executes the code, and then releases the
lock. Of course, if the lock is already owned by another thread, then the thread executing the
statement blocks.
Consider this example from the standard Java library. The toSt ri ng method of the Date class
uses a static formatter to format Date objects. Here is a slight simplification of the code.

publ i c St ri ng toSt ri ng()
{

CHAPTER 9 Multithreading

}

i f (formatter == nul l)
formatter = new Si mpl eDateFormat (

" EEE MMM dd HH : mm : ss zzz yyyy" , Local e . US) ;
synchroni zed (fo rmatte r)
{

}

formatte r . setTi meZone (Ti meZone . getDefau l t ()) ;
return formatte r . format (thi s) ;

If the format method was interrupted in the middle of formatting one date and started to
format another, the internal state of the formatter object would become corrupted. The syn
chronized block ensures that two threads cannot simultaneously execute the call to
formatte r . fo rmat.
Most people find code with synchronized blocks hard to read. Explicit locks or synchronized
methods are better alternatives.

Spec ia l Top ic
Volatile Fields

Acquiring a lock is a time-consuming operation. Some programmers try to avoid locks and
synchronized methods for simple methods, in the mistaken belief that nothing is going to go
wrong. However, as computers with multiple processors are becoming more common, even
seemingly harmless-looking code can be problematic. Suppose, for example, we added a
method to the BoundedQueue class that reports the current size of the queue:

publ i c i nt getSi ze() { return si ze ; } II �ot threadsafe
Unfortunately, this method is not threadsafe. If one thread updates the si ze field, the change
may not be visible in another thread. This can happen if the two threads are executed by dif
ferent processors. For performance reasons, each processor duplicates frequently accessed
memory locations in a high-speed memory cache. (Ordinary memory is quite a bit slower
than modern CPUs!) If each processor caches a copy of the si ze field, then they only see
changes made by the other processor when the cache and memory are synchronized. The Java
virtual machine issues the (relatively slow) synchronization instructions when you use locks.
But otherwise, all bets are off Perhaps, one thread keeps adding elements to the queue, but
the other always sees the size as o.

Tagging the getSi ze method as synchroni zed solves this problem. There is also another
way-you can tag the si ze field as vol ati l e:

pri vate vol ati l e i nt si ze ;
The virtual machine ensures that changes to volatile fields are properly synchronized. How
ever, this is an advanced technique that is only needed to enhance performance. It is best to
first program for safety, using locks for all methods of a shared data structure. Use
optimizations such as volatile fields only after you have collected measurements that demon
strate a significant speedup.

9.3 Animations

Animations

One popular use for thread programming is animation. A program that displays an ani
mation shows different objects moving or changing in some way as time progresses. This
is often achieved by launching one or more threads that compute how parts of the ani
mation change.

As you saw in Chapter 4, you can use the Swing Ti mer class for simple animations with
out having to do any thread programming. However, more advanced animations are
better implemented with threads.

In this section, you will see a particular kind of animation, namely the visualization of
the steps of an algorithm. Algorithm animation is an excellent technique for gaining a
better understanding of how an algorithm works.

INTERNET Many algorithms can be animated-type "Java algorithm animation" into your
favorite Web search engine, and you'll find lots of links to Web pages with animations of var
ious algorithms.

Most algorithm animations have a similar structure. The algorithm runs in a separate
thread that periodically updates a drawing of the current state of the algorithm and then
sleeps. Mter a short amount of time, the algorithm thread wakes up and runs to the next
point of interest in the algorithm. It then updates the drawing and sleeps again. This
sequence is repeated until the algorithm has finished.

In our sample program, we will animate a merge sort algorithm that works just like the
Arrays . sort method of the standard Java library. The MergeSo rte r . sort method sorts
an array of objects.

Doubl e [] val ues = . . . ;
(omparator<Doubl e> comp = . ,
Me rgeSorte r . sort (val ues . comp) ;

The array is initialized with a sequence of random Doubl e values.

We supply a comparator that pauses the sorter thread before yielding the result of the
comparison. When the sorter thread is paused, the user interface thread draws the con
tents of the array (see Figure 6).

(omparator<Doubl e> comp = new
(omparator<Doubl e>()
{

} ;

publ i c i nt compare (Doubl e d l . Doubl e d2)
{

}

update drawing data
pause the threaa
return dl . compareTo(d2) ;

II!l _iil
t

1 ._

CHAPTER 9 Multithreading

Figure 6

Animating a Sort Algorithm

The So rte r class implements the Runnabl e interface type. Its run method calls Merge
Sorte r . sort. The sort algorithm repeatedly calls the comparator during the sorting
process. Each time, the animation is paused. When the pause has elapsed, the compara
tor returns the result of the comparison, and the algorithm continues.

The main program shows the array drawing panel and then starts the sorting thread.
When you run the program, you will see the merge sort algorithm in action. You can
observe how the algorithm repeatedly sorts sub arrays and merges them together.

Ch9/animationr/Sorter.java

1 i mport j ava . uti l . * ;
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/**

*/

This runnable executes a sort algorithm.
When two elements are compared, the algorithm
pauses and updates a panel.

publ i c c l ass So rter i mpl ements Runnabl e
{

/**
Constructs the sorter.
@param val ues the array to sort
@param panel the panel for displaying the array

*/
publ i c So rter (Doubl e [] val ues , Ar ray(omponent panel)
{

}

thi s . val ues = val ues ;
thi s . panel = panel ;

publ i c voi d rune)
{

(omparator<Doubl e> comp
(omparator<Doubl e> ()
{

new

9.3 Animations

26 publ i c i nt compare (Doubl e d1 , Doubl e d2)
27 {
28 panel . setVa 1 ues (val ues , d1, d2) ;
29 t ry
30 {
31 Th read . sl eep(DELAY) ;
32 }
33 catch (Inter ruptedExcepti on excepti on)
34 {
35 Th read . cu r rentTh read () . i nter rupt () ;
36 }
37 retu rn (d1) . compareTo (d2) ;
38 }
39 } ;
40 Me rgeSorte r . sort (val ues , comp) ;
41 panel . setVal ues (val ues , nul l , nul l) ;
42 }
43
44 pri vate Doubl e [] val ues ;
45 pri vate Ar ray(omponent panel ;
46 pr i vate stati c fi nal i nt DELAY 100 ;
47 }

Ch9/animationI/ArrayComponent.java

1 i mport java . awt . * ;
2 i mport j ava . awt . geom . * ;
3 i mport j avax . swi ng . * ;
4
5
6
7
8
9

10
11
12
13
14
15
16
17
1 8
19
20
2 1
22
23
24

/**

*/

This panel draws an array and marks two elements in the
array.

publ i c cl ass Array(omponent extends J(omponent
{

publ i c synch roni zed voi d pai nt(omponent (Graphi cs g)
{

i f (val ues == nul l) retu rn ;
Graphi cs2D g2 = (Graphi cs2D) g ;
i nt wi dth = getWi dth () / val ues . l ength ;
for (i nt i = 0 ; i < val ues . l ength ; i ++)
{

Doubl e v = val ues [i] ;
Rectangl e2D bar = new Rectangl e2D . Doubl e (

wi dth * i , 0 , wi dth , v) ;
i f (v == marked1 I I v == marked2)

g2 . fi l l (bar) ;
el se

g2 . d raw(bar) ;
25 }
26 }
27
28 /**
29 Sets the values to be painted.
30 @param val ues the array of values to display
31 @param marked1 the first marked element

· .

1 __

CHAPTER 9 Multithreading

32 @param marked2 the second marked element
33 */
34 publ i c synch roni zed voi d setVal ues (Doubl e [) val ues ,
35 Doubl e marked l , Doubl e marked2)
36 {
37 thi s . val ues = (Doubl e [)) val ues . cl one() ;
38 thi s . markedl = markedl ;
39 thi s . marked2 = marked2 ;
40 repai nt() ;
41 }
42
43 pri vate Doubl e [) val ues ;
44 pri vate Doubl e marked l ;
45 p ri vate Doubl e marked2 ;
46 }

Ch9/animationI/ Animation Tester.java

1 i mport j ava . awt . * ;
2 i mport j avax . swi ng . * ;
3
4 /**
5 This program animates a sort algorithm.

*/ 6
7
8
9

publ i c c l as s Ani mati onTester
{

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 }

publ i c stati c voi d mai n (Stri ng [) args)
{

}

J Frame frame = new J Frame () ;
frame . setDefaul tCl oseOpe ration(J F rame . EXIT_ON_CLOSE) ;

Ar rayComponent panel = new ArrayComponent() ;
frame . add (panel , BorderLayout . CENTER) ;

frame . setSi ze(FRAME_WIDTH , FRAME_HEIGHT) ;
frame . setVi s i b l e (true) ;

Doubl e [) val ues = new Doubl e [VALUES_LENGTH) ;
fo r (i nt i = 0 ; i < val ues . l ength ; i ++)

val ues [i) = Math . random () * panel . getHei ght () ;

Runnabl e r = new Sorte r (val ues , panel) ;
Th read t = new Th read (r) ;
t . start O ;

pri vate stati c fi nal i nt VALUES_LENGTH = 30 ;
pri vate stati c fi nal i nt FRAME_WIDTH = 300 ;
pri vate stati c fi nal i nt FRAME_HEIGHT = 300 ;

One drawback of our animation program is that it runs at a fairly brisk pace. To improve
the program, let's add two buttons labeled "Run" and "Step". The "Step" button runs the
algorithm until the next step and then pauses the algorithm. By repeatedly clicking on
the "Step" button, you can observe the algorithm one step at a time.

9.3 Animations

In a situation such as this one, it can be difficult to coordinate the button clicks in the
user interface thread and the pauses in the sorter thread. In single-step mode, we want
the sorter thread to wait until the user clicks the "Step" button.

We want a shared object that allows the two threads to communicate. When the sorter
thread has finished a step, it should ask the shared object for permission to proceed. The
thread blocks until the permission is issued. When the user clicks the "Step" button, the
shared object should be instructed to issue a permission, unblocking the waiting sorter
thread.

We could design a class with this behavior, but it is easier and safer to use an existing
class instead. The j ava . uti 1 . concu r rent library has a number of professionally imple
mented classes for thread synchronization-see Core Java, 7th Ed., Vol. 2, Chapter 2, by
Cay Horstmann and Gary Cornell for more details. The L i nkedBl ocki ngQueue class has
the behavior that we need. Whenever a button is clicked, we add a command string
" Step" or "Run" to the queue. The take method of the L i nkedBl ocki ngQueue removes a
value, blocking if none is available.

The compare method waits until a command string is available in the queue. If the com
mand is " Ru n " , the thread simply pauses for a short delay, just as in the first version of the
program, then adds the " Run" command back into the queue. In either case, the thread
proceeds until it calls the take method again, blocking until the next command is
available.

publ i c i nt compare CDoubl e dl , Doubl e d2)
{

}

Stri ng command = queue . take C) ;
i f Ccommand . equal s C " Run "))
{

}

Th read . sl eepCDELAY) ;
queue . add C " Run") ;

Here is the code for the So rter class and the main program. This example concludes our
introduction to Java threads. As you have seen, the Java synchronization primitives are at
a fairly low level. It is a good idea to use them as building blocks for higher-level syn
chronization mechanisms (such as the L i nkedBl ocki ngQueue) that are conceptually easier
to understand.

Ch9/animation2/Sorter.java

1 i mport j ava . uti l . * ;
2 i mport j ava . uti l . concu r rent . * ;
3
4
5
6
7
8
9

10

/**

*/

This runnable executes a sort algorithm.
When two elements are compared, the algorithm
pauses and updates a panel.

publ i c cl ass Sorte r i mpl ements Runnabl e
{

CHAPTER S Multithreading

1 1 publ i c Sorter (Doubl e [] val ues , ArrayComponent panel ,
12 Bl ocki ngQueue<St ri ng> queue)
13 {
14 thi s . val ues = val ues ;
15 thi s . panel panel ;
16 thi s . queue = queue ;
17 }
18
19 publ i c voi d run O
20 {
21 Comparator<Doubl e> comp new
22 Comparator<Doubl e> ()
23 {
24 publ i c i nt compare (Doubl e d1 , Doubl e d2)
25 {
26 t ry
27 {
28 St ri ng command = queue . take () ;
29 i f (command . equal s (" Run "))
30 {
31 Th read . sl eep(DELAY) ;
32 i f (! " Step" . equal s (queue . peek O))
33 queue . add ("Run ") ;
34 }
35 }
36 catch (Inte rruptedException excepti on)
37 {
38 Thread . cu r rentTh read () . i nterrupt () ;
39 }
40 panel . setVal ues (val ues , d1 , d2) ;
41 return d1 . compareTo (d2) ;
42 }
43 } ;
44 Me rgeSo rte r . sort (val ues , comp) ;
45 panel . setVal ues (val ues , nul l , nul l) ;
46 }
47
48 pri vate Doubl e [] val ues ;
49 pri vate ArrayComponent panel ;
50 pri vate Bl ocki ngQueue<St ri ng> queue ;
5 1 pri vate stati c fi nal i nt DELAY = 100 ;
52 }

II!l _",
Ch9/animation2/AnimationTester.java

i � _ 1 i mport j ava . awt . * ;
2 i mport j ava . awt . event . * ;
3 i mport j avax . swi ng . * ;
4 i mport j ava . uti l . concur rent . * ;
5
6 /*1'
7 This program animates a sort algorithm .
8 */
9 publ i c cl ass Ani mati onTester

10 {

9.3 Animations

1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66 }

publ i c stati c voi d mai n (Stri ng [] args)
{

}

J Frame frame = new J Frame () ;
frame . setDefaul tCl oseOpe rati on (J Frame . EXIT_ON_CLOSE) ;

Ar rayComponent panel = new ArrayComponent () ;
frame . add (panel , BorderLayout . CENTER) ;

J Button stepButton = new J Button ("Step") ;
fi nal J Button run Button = new J Button ("Run ") ;

J Panel buttons = new J Panel () ;
buttons . add (stepButton) ;
buttons . add (runButton) ;
frame . add (buttons , Borde rLayout . NORTH) ;
frame . setSi ze(FRAME_WIDTH , FRAME_HEIGHT) ;
frame . setVi s i bl e (true) ;

Doubl e [] val ues = new Doubl e [VALUES_LENGTH] ;
for (i nt i = 0 ; i < val ues . l ength ; i ++)

val ues [i] = Math . random() * panel . getHei ght () ;

fi nal Bl ocki ngQueue<Stri ng> queue
= new Li nkedBl ocki ngQueue<St ri ng>() ;

queue . add ("Step") ;

fi nal So rte r sorte r = new So rte r (val ues , panel , queue) ;

stepButton . addActi onLi stene r (new
Acti onL i stener O
{

publ i c voi d acti onPe rformed (Acti onEvent event)
{

}
}) ;

queue . add ("Step") ;
runButton . setEnabl ed (t rue) ;

runButton . addActi onLi stene r (new
Acti onL i stener 0
{

publ i c voi d acti onPe rformed (Acti onEvent event)
{

}
}) ;

runButton . setEnabl ed (fal se) ;
queue . add ("Run ") ;

Th read sorte rTh read = new Thread (sorte r) ;
sorterTh read . start () ;

pri vate stati c fi nal i nt FRAME_WIDTH = 300 ;
p ri vate stati c fi nal i nt FRAME_HEIGHT = 300 ;
p ri vate stati c fi nal i nt VALUES_LENGTH = 30 ;

CHAPTER 9 Multithreading

EXERC ISES
Exercise 9.1. Modify the ThreadTester program to execute the following instructions:

Runnabl e rl = new Greeti ngProducer C" Hel l o , Wo rl d ! ") ;
Runnabl e r2 = new Greeti ngProducer C"Goodbye , Worl d ! ") ;
rl . run O ;
r2 . run O ;

Note that the outputs are not interleaved. Explain.

Exercise 9.2. In the program in Section 9.1 , is it possible that both threads are sleeping at
the same time? That neither of the two threads is sleeping at a particular time? Explain.

Exercise 9.3. In Java, a graphical user interface program has more than one thread.
Explain how you can prove that.

Exercise 9.4. Give an example why you would want to terminate a thread in a Web
browser program.

Exercise 9.5. Suppose the following threads are alive.

Thread State

Th read-O Runnable

Thread-l Sleeping

Thread-2 Runnable

Thread-3 Waiting

The scheduler is about to give a time slice to a new thread. Among which of these
threads does it choose?

Exercise 9.6. Suppose threads in the following table are alive.

Thread State Priority

Thread-O Runnable Normal

Th read-l Sleeping High

Thread-2 Runnable Normal

Thread-3 Waiting High

Th read-4 Runnable Low

The scheduler is about to give a time slice to a new thread. Among which of these
threads does it choose?

Exercises

Exercise 9.7. What is the difference between a thread that sleeps by calling sl eep and a
thread that waits by calling awa; t?

Exercise 9.8. What happens when a thread calls awa; t and no other thread calls s; gna 1 -
Al l or s; gna1 ?

Exercise 9.9. Write a program that has multiple threads that make deposits and with
drawals in a shared bank account program without using locks. Demonstrate how the
bank account can become corrupted.

Exercise 9.10. Use synchronized methods to overcome the corruption problem of
Exercise 9.9.

Exercise 9. 11 . Use a ReentrantLock to implement a threadsafe BankAccount class.

Exercise 9.12. Suppose you call wa; t instead of awa; t on a condition object in the
BoundedQueue class that uses a ReentrantLock. Will the call compile? What will it do?

Exercise 9.13. List three other scenarios in which the queue in Section 9.2. 1 can get
corrupted.

Exercise 9.14. The special topic on synchronized blocks explains how the Date class
guarantees that no two threads call the static formatter in the toStr; ng method at the
same time. Discuss what would happen if two threads executed the toStr; ng method
before the static formatter was constructed. What can you do to avoid constructing two
instances of the formatter?

Exercise 9.15. It is always a good idea to look for classes in the standard library instead of
building your own, particularly when thread safety is an issue. Which Java library classes
can you use if you need a threadsafe queue?

Exercise 9. 16. The Ma; 1 System class in Chapter 2 is not threadsafe. Fix it (and any non
threadsafe classes on which it depends) so that multiple connections can have simulta
neous access.

Exercise 9.17. In Chapter 2, the mail system was acccessed through a console interface.
In Chapter 4, it was accessed through a GUI interface, allowing for multiple simulta
neous connections. Explain why it is safe to use the original Mai l System class in both
implementations.

Exercise 9. 18. ModifY the animation program in Chapter 4 so that various cars are mov
ing at different speeds. Use a separate thread for each car.

Exercise 9.19. ModifY the algorithm animation program so that it becomes a framework
for animating different sorting algorithms. Demonstrate the framework by animating
the selection sort algorithm.

Exercise 9.20. ModifY the algorithm animation program so that it becomes a framework
for animating algorithms of any kind. The algorithm needs to supply a mechanism for
drawing the current state of the data structure on which it operates. Demonstrate the
framework by animating the "Towers of Hanoi" algorithm.

CHAPTER 9 Multithreading

Exercise 9.21. Write a program WordCount that counts the words in one or more files.
Start a new thread for each file. For example, if you call

j ava Wo rdCount report . txt address . txt Homework . j ava

then the program might print

address . txt : 1052
Homework . j ava : 445
report . txt : 2099

Exercise 9.22. ModifY the program of Exercise 9.21 so that it prints the total of the
words in all files after the last counting thread has completed.

C h a p t e r

More Design
Patterns

� The ADAPTER Pattern

� Actions and the COMMAND Pattern

� The FACTORY METHOD Pattern

� The PROXY Pattern

� The SINGLETON Pattern

� The VISITOR Pattern

� Other Design Patterns

1 0

In this chapter, we discuss a number of important design patterns. As in

Chapter 5, we relate the patterns to examples in the Java class library

whenever possible, so that you can remember them easily. You can read

the sections of this chapter in any order, or just use them as a reference.

CHAPTER 1 0 More Design Patterns

The ADAPTER Pattern

I f you have ever had to hook up a laptop computer i n a foreign country, you are probably
familiar with the concept of an adapter. The power plug of your computer may not fit
into the wall outlet, and the foreign telephone plug may not fit into your computer
modem. To solve these problems, travelers often carry a set of adapter plugs that convert
one kind of plug into another.

In object-oriented programming, you often have similar problems. For example, in
Chapter 4, we designed a class Carlcon that implements the Icon interface type. Suppose
we want to add a car icon into a user interface container. But you add components, not
icons, into containers. What we need is an intermediary that a.dapts the Icon interface
type to the Component interface type.

The ADAPTER pattern teaches
how to use a class in a con
text that requires a different
interface.

It is an easy matter to provide such an adapter. The Icon interface
type has methods for painting and for sizing the icon. A component
has methods for the same purpose, but with minor differences. The
adapter simply translates one set of methods into the other. Using the
following adapter class, you can reuse the existing icon and add icon

components into a container.

Ch I o/adapter/lconAdapter. java

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
1 5
1 6
17
18
19
20
21
22
23
24
25
26
27
28

i mport j ava . awt . * ;
i mport j avax . swi ng . * ;

/**
An adapter that turns an icon into a]Component .

" /
publ i c cl ass IconAdapte r extends JComponent
{

/**

*/

Constructs a] Component that displays a given icon.
@param i con the icon to display

publ i c IconAdapter (Icon i con)
{

thi s . i con = i con ;
}

publ i c voi d pai ntComponent (Graph ics g)
{

i con . pai ntlcon (thi s , g , 0 , 0) ;
}

publ i c Di mensi on getPrefe rredSi ze ()
{

}

return new Di mensi on(i con . getlconWi dth () ,
i con . getlconHei ght()) ;

29
30 }

pri vate Icon i con ;

10.1 The ADAPTER Pattern

ll!l _.-. Chro/adapter/lconAdapterTester.java

'- 1 i mport j ava . awt . * ;
i __ 2 i mport j avax . swi ng . * ;

3
4 /**
5 This program demonstrates how an icon is adapted to
6 a component. The component is added to a frame.
7 */
8 publ i c cl ass IconAdapterTeste r
9 {

10 publ i c stati c voi d mai n (St ri ng [] args)
11 {
12 Icon i con = new Carlcon (300) ;
13 JComponent component = new IconAdapte r(i con) ;
14
15 J Frame frame = new J F rame () ;
16 frame . add (component , Bo rderLayout . CENTER) ;
17 frame . setDefaul tCl oseOperati on(J F rame . EXIT_ON_CLOSE) ;
18 frame . pack() ;
19 frame . setVi s i bl e (t rue) ;
20 }
21 }

Note that the IconAdapter holds a reference to the icon object that is being adapted.

The IconAdapte r only redefines two methods of the]Component class. For the other
methods, the]Component superclass supplies reasonable implementations.

This example can easily be generalized to a design pattern. You use the ADAPTER pat
tern when you would like to use an existing class but its interface doesn't match the one
you need.

PATIERN

•

•

•

•

•

•

ADAPTER

Context

1 . You want to use an existing class without modifying it. We'll call this class the adaptee.

2. The context in which you want to use the class requires conformance to a target inter-
face that is different from that of the adaptee.

3. The target interface and the adaptee interface are conceptually related.

Solution

1. Define an adapter class that implements the target interface.

2. The adapter class holds a reference to the adaptee. It translates target methods to
adaptee methods.

3 . The client wraps the adaptee into an adapter class object.

, . .

•

•

•

•

•

CHAPTER 1 0 More Design Patterns

Calls
adapteeMethod 0

-

« interface»
Target

targetMethod{)

f'

i
Adapter

targetMethod{)

For example, in the case of the icon adapter, we have:

Name in Design Pattern Actual Name

Adaptee Icon

Target JComponent

Adapter IconAdapte r

Adaptee

adapteeMethod{)

Cl i ent The class that wants to add icons into a container

targetMethod 0 pai ntComponent () , getPrefe rredSi ze()

adapteeMethod 0 pai ntlcon () , getlconWi dth () , getlconHei ght()

There is another use of the ADAPTER pattern in the Java stream library. Recall that an
input stream reads bytes, whereas a reader reads characters. The difference between bytes
and characters is significant in many languages. In some encoding schemes (such as
ASCII), a character is encoded as a single byte. But in many encoding schemes (for
example, the Unicode UTF-8 encoding or the JIS encoding for Japanese characters), a
variable number of bytes is required to encode characters. Therefore, you should use a
reader object whenever you read text input.

What do you do if you have an input stream and need a reader? Use the InputSt ream
Reader adapter. That adapter turns an input stream into a reader whose read method
reads bytes and translates them into characters, using a particular encoding scheme.

For example, System . i n is an InputStream. To turn it into a reader, you use the following
instructions:

Reader reader = new InputSt reamReader(System . i n) ;
/ / Uses the default character encoding

10.2 Actions and the COMMAND Pattern

or

Reader reader = new InputSt reamReader(System . ; n , " UTF-8") ;
/ / Uses the specified character encoding

In the case of the input stream reader adapter, we have:

Name in Design Pattern Actual Name

Adaptee InputStream

Target Reader

Adapter InputStreamReade r

Cl i ent The class that wants to read text from an input stream

targetMethod 0 read (reading a character)

adapteeMethod 0 read (reading a byte)

A c tions and the COMMAND Pattern

The user interfaces of many programs give you multiple ways of issuing a particular com
mand. For example, to cut a block of text in a word processor, you may select Edit � Cut
from the menu, click on a toolbar button with a scissors icon, or simply type the CTRL+X
key combination.

That is pretty easy to implement, of course. Simply route the event handlers for the
menu, the toolbar button, and the keypress to the code that carries out the "cut" com
mand. But there is more to a command than just the code that carries out the operation.
For example, if there is nothing to cut, then the menu item and toolbar button should be
disabled. A disabled menu item or button usually has a different visual appearance. It is
therefore helpful if the "cut" command can remember whether it is currently enabled or
disabled. Thus, a command has both behavior and state.

The Act; on interface type of the Swing library lets you implement commands that can
be enabled or disabled. Moreover, actions can store various informational items, such as
icons and descriptions.

The Act; on interface type extends the Act; onL; stener interface type. That is, you spec
ifY the command action in an act; onPerformed method. You use the setEnab 1 ed method
to enable or disable an action.

An action stores properties, including

• The action name, displayed on menu items and buttons

• An icon, also displayed on menu items and buttons

, . CHAPTER 1 0 More Design Patterns

figure 1

Using Actions for Menus and Toolbars

You set these properties with the putVa 1 ue method, by using predefined constants in the
Acti on type. For example,

hel l oActi on . putVal ue(Acti on . NAME . " Hel l o") ;
hel l oActi on . putVal ue (Acti on . SMALL_ICON . new Imagelcon ("hel l o . png")) ;

Once you have action objects, it is very simple to add them to menus and toolbars.

menu . add (hel l oActi on) ;
tool bar . add (hel l oActi on) ;

The menu and toolbar retrieve the action name and icon and display them (see Figure 1).
When the menu item or toolbar button is selected, the acti onPerformed method of the
action object is called.

The AbstractActi on class implements the Acti on interface type. You will want to extend
the AbstractActi on class rather than implement the Acti on interface type (see Figure 2).

fig ure 2

Action Classes

«interface»
Action

1> , ,
: , , ,

Abstract
Action

Greeting
Action

10.2 Actions and the COMMAND Pattern . .

In our example program, we define a class Greet; ngAct; on and construct two instances,
one to say "Hello, World", and one to say "Goodbye, World". Each action is added to
both the menu and the toolbar. Mter being selected, each command disables itself and
enables the other. As a result, the user must select the "Hello" and "Goodbye" commands
In sequence.

The COMMAND pattern teaches
how to implement commands
as objects whenever a
command has both behavior
and state.

Swing actions are an example of the COMMAND pattern. The com
mand pattern tells you to implement commands as objects rather than
methods. If a command is an object, it can have state. For example, a
Swing action object remembers whether it is currently enabled. There
is a second advantage. You can collect command objects. Collecting
command objects has several useful applications. For example, you can

define macros, that is, commands that are composed of other commands, or you can keep
a sequence of recently issued commands so that you can "undo" them.

PATIERN

• • -== :cC OMMAND

•

•

•

•

•

•

•

•

•

Context

1. You want to implement commands that behave like objects, either because you need
to store additional information with commands, or because you want to collect
commands.

Solution

1. Define a command interface type with a method to execute the command.

2. Supply methods in the command interface type to manipulate the state of command
objects.

3. Each concrete command class implements the command interface type.

4. To invoke the command, call the execute method.

«interface»
Command -B-------------------

executeO
t;>.

Concrete
Command

state

executeO

, . ' CHAPTER 1 0 More Design Patterns

For example, in the case of Swing actions, we have:

Name in Design Pattern Actual Name

Command Action

Conc reteCommand A subclass of Abst ractActi on

execute O acti onPerformed()

state Name and icon

Chlo/command/CommandTester.java

1 i mport j ava . awt . * ;
2 i mport j avax . swi ng . * ;
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/**

*/

This program demonstrates action objects. Two actions
insert greetings into a text area. Each action can be
triggered by a menu item or toolbar button. When an
action is carried out, the opposite action becomes enabled.

publ i c cl ass CommandTester
{

publ i c stati c voi d mai n (stri ng [] args)
{

J F rame frame = new J Frame() ;
JMenuBar bar = new JMenuBar() ;
frame . setJMenuBar (bar) ;
JMenu menu = new JMenu (" say") ;
bar . add (menu) ;
JTool Bar tool Bar new JTool Bar() ;
frame . add (tool Bar , Borde rLayout . NORTH) ;
JTextArea textArea = new JTextArea(lO , 40) ;
frame . add (textArea , Bo rde rLayout . CENTER) ;

Greeti ngActi on hel l oAction = new Greeti ngAction(
"Hel l o , Worl d" , textArea) ;

hel l oActi on . putVal ue(Acti on . NAME , " Hel l o ") ;
hel l oActi on . putVal ue (Acti on . sMALL_ICON ,

new ImageIcon (" hel l o . png")) ;

Greeti ngAction goodbyeActi on = new Greeti ngAction(
"Goodbye , Worl d" , textArea) ;

goodbyeActi on . putVal ue (Acti on . NAME , "Goodbye") ;
goodbyeActi on . putVal ue (Acti on . SMALL_ICON ,

new ImageIcon("goodbye . png")) ;

hel l oActi on . setOpposi te (goodbyeActi on) ;
goodbyeActi on . setOpposi te(hel l oActi on) ;

10.2 Actions and the COMMAND Pattern

i __

38 goodbyeActi on . setEnab l ed (fal se) ;
39
40 menu . add (hel l oActi on) ;
41 menu . add (goodbyeActi on) ;
42
43 tool Bar . add (hel l oActi on) ;
44 tool Bar . add (goodbyeAction) ;
45
46 frame . setDefaul tCl oseOperation(J F rame . EXIT_ON_CLOSE) ;
47 frame . pack() ;
48 frame . setVi s i bl e (true) ;
49 }
50 }

Chlo/command/GreetingAction.java

1 i mport java . awt . event . * ;
2 i mport j avax . swi ng . * ;
3
4
5
6
7
8
9

10
11
12
13
14
1 5
16
1 7
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

/**

*/

This action places a greeting into a text field
and afterwards disables itself and enables its
opposite action.

publ i c cl ass Greeti ngActi on extends AbstractActi on
{

/**
Constructs a greeting action.
@param g reeti ng the string to add to the text area
@param textArea the text area to which to add the greeting

*/
publ i c Greeti ngActi on(Stri ng g reeti ng . JTextArea textArea)
{

}

/**

*/

thi s . g reeti ng
thi s . textArea

g reeti ng ;
textArea ;

Sets the opposite action.
@param acti on the action to be enabled after this action was
carried out

publ i c voi d setOpposite(Action acti on)
{

opposi teActi on = acti on ;
}

publ i c voi d acti onPe rformed (Acti onEvent event)
{

textArea . append (greeti ng) ;
textArea . append ("\n ") ;
i f (opposi teAction ! = nul l)
{

setEnabl ed (fal se) ;

, . . CHAPTER 1 0 More Design Patterns

39 opposi teActi on . setEnabl ed (true) ;
40 }
41 }
42
43 pri vate St ri ng g reeti ng ;
44 pri vate JTextArea textArea ;
45 pri vate Action opposi teActi on ;
46 }

The FACTORY METHOD Pattern

Recall how a Java collection produces an iterator for traversing its elements. The
Co 1 1 ecti on interface type defines a method

Ite rator i te rator()

Each subclass of Co 1 1 ecti on (such as L i nkedL i st or our own Queue class in Chapter 8)
implements that method in a different way. Each i te rator method returns an object of a
class that implements the Ite rator interface type, but the implementations of these sub
types are completely different. An iterator through a linked list keeps a reference to the
last visited node. Our queue iterator keeps an index of the last visited array element.

You may wonder why the designers of the collections framework decided to have a
method that produces iterator objects. It would have been just as simple if every collec
tion had a companion iterator. Then you would simply construct the iterator, like this:

Li nkedLi st l i st = . . . ;
Ite rator i te r = new Li nkedLi stlterato r (l i st) ;

However, this approach has a drawback. If you don't know the exact type of the collec
tion, you don't know which iterator type to construct.

Col l ecti on col l = . . . ;
Ite rator i te r = new ??? (col l) ;

The i te rator method does not have this problem. Because of polymorphism, the call

Iterator i te r = col l . i te rato r () ;

calls the i terator method of the class to which the collection object belongs. That
method constructs an object of some class that implements the Iterator interface type.
(Actually, the iterator classes are often anonymous classes.)

The FACTORY METHOO pattern
teaches how to supply a
method that can be overridden
to create objects of varying
types.

A method such as i te rator is called a factory method. A factory
method is more flexible than a constructor. It can construct objects of
subclasses, not just a fixed class.

10.3 The FACTORY METHOD Pattern , .

PATTERN

• • I;ACTORV METHOD

•

•

•

•

•

•

•

•

•

•

Context

1 . A type (which we will call the creator) creates objects of another type (which we call
the product).

2. Subclasses of the creator type need to create different kinds of product objects.

3. Clients do not need to know the exact type of product objects.

Solution

1. Define a creator type that expresses the commonality of all creators.

2. Define a product type that expresses the commonality of all products.

3. Define a method, called the factory method, in the creator type. The factory method
yields a product object.

4. Each concrete creator class implements the factory method so that it returns an object
of a concrete product class.

«interface»
Creator

I------+------------------------�

factoryMethodO
L;>

«interface··
Product

�
I
I
I
:
I
I
:
I
:
I

Concrete Concrete
Creator

----------------------------.;:. Product

For example, in the case of iterators in the collections framework, we have:

Name in Design Pattern Actual Name

Creator Col l ecti on

ConcreteCreator A subclass of Co 1 1 ecti on

factoryMethod 0 i te ratorO

Product Iterator

ConcreteProduct A subclass of rterator (which is often anonymous)

� . : CHAPTER 1 0 More Design Patterns

Not all methods that create new objects are factory methods in the sense of this design
pattern. For example, consider the DateFormat class. If you want to format a Date object,
you can obtain a formatter like this:

DateFormat formatte r = DateFormat . getDatelnstance () ;
Date now = new Date () ;
Stri ng formattedDate = formatter . format (now) ;

The getDatelnstance method actually returns an object of type Si mpl eDateFormat, a
subclass of DateFo rmat. But it is a stati c method. It is not possible to have creator
subclasses that redefine the getDatelnstance method. This example only uses half of the
FACTORY METHOD pattern. We can form subclasses of the product but not the creator.

The PROXY Pa ttern

A proxy i s a person who i s authorized to act o n another person's behal£ For example, you
may send a proxy to a meeting who telephones you whenever a vote needs to be cast and
then votes according to your instructions. Similarly, in software design, a proxy is an
object that is a stand-in for another object.

There are many reasons to use proxies. Here we will look at a common application: to
delay the instantiation of an object. For example, it is somewhat expensive to load an
image. If a user never looks at the image, then it is not necessary to load it. To minimize
the cost of image loading, it makes sense to defer the construction of image objects until
there is a demand for them.

Consider the application shown in Figure 3. All but the top image are hidden when the
frame window is first displayed. Image loading can be deferred until the user clicks on
a tab.

Figure 3

A Tabbed Image Viewer

10.4 The PROXY Pattern , . -

Of course, it is desirable to implement the deferred loading so that the application pro
grammer doesn't have to think about it. That is where the proxy comes into play.

The application generates a series of J Labe 1 objects, each of which has an image icon.
Normally, an application programmer would construct a label like this:

J Label l abel = new J Label (new Imagelcon (i mageName)) ;

However, for delayed loading, we will instead supply a proxy object to the label.

J Label l abel = new J Label (new ImageProxy(i mageName)) ;

The ImageProxy class implements the Icon interface type. It remembers the image name
and loads the image as soon as it is needed. For example, the pai ntIcon method of the
proxy class ensures that the image is loaded, and then passes the request on to the actual
image object. The application generates a series of J Labe 1 objects, each of which has an
Image Icon.

publ i c voi d pai ntlcon (Component c , Graph i cs g , i nt x , i nt y)
{

i f (i mage == nul l) i mage = new Imagelcon (name) ;
i mage . pai ntlcon (c , g , x , y) ;

}

You will find the complete source code at the end of this section.

The PROXY pattern teaches how
an object can be a placeholder
for another object.

Note that the client of the image does not realize that the image
loading is delayed. The client has the impression that the proxy is "the
real thing".

PATIERN

•

•

•

•

•

•

PROXY

Context

1. A class, called the real subject, provides a service that is specified by an interface type,
called the subject type.

2. There is a need to modifY the service in order to make it more versatile.

3. Neither the client nor the real subject should be affected by the modification.

Solution

1. Define a proxy class that implements the subject interface type. The proxy holds a
reference to the real subject, or otherwise knows how to locate it.

2. The client uses a proxy object.

3. Each proxy method invokes the same method on the real subject and provides the
necessary modifications.

•

•

•

•

•

•

•

•

CHAPTER 1 0 More Design Patterns

B--------------------- «interface» - Subject

requestO

Invokes same
method on
subject

'" , , , , , ,-----------------------------------, , , , , , , , , , , , , ,
Proxy RealSubject

requestO requestO

For example, in the case of the image proxy, we have:

Name in Design Pattern Actual Name

Subj ect Icon

Real Subj ect Imagelcon

Proxy ImageProxy

requestO The methods of the Icon interface type

Cl i ent J Label

Computer scientists jokingly say that "every problem in computer science can be solved
by an additional level of indirection" . In our example, the image proxy provides a level of
indirection: The client calls the proxy which then calls the actual image. The additional
indirection solved the problem of on-demand instantiation. Another use for proxies
arises when a program needs to invoke a method on an object that is located on a remote
computer. To enable remote method calls, the method parameters must be encoded and
sent across a network connection. The programmer making remote calls should not be
burdened with the mechanics of the network communication. Instead, the Java Remote
Method Invocation (RMI) mechanism supplies proxy objects. An RMI proxy object
appears to the programmer as if it was a local object carrying out the desired method,

10.4 The PROXY Pattern

when in fact it merely transmits the method parameters to the remote object and relays
the response back to the caller.

Chlo/proxy/lmageProxy.java

1 i mport java . awt . * ;
2 i mpo rt j avax . swi ng . * ;
3
4
5
6
7
8
9

10
1 1
1 2
13
14
15
16
17
18
19
20
2 1
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

/**
A proxy for delayed loading of image icons.

*/
publ i c cl ass ImageProxy i mpl ements Icon
{

/**

*/

Constructs a proxy for delayed loading of an image file.
@param name the file name

publ i c ImageProxy (St ri ng name)
{

}

thi s . name = name ;
i mage = nul l ;

publ i c voi d pai ntlcon ((omponent c , Graphi cs g . i nt x , i nt y)
{

}

ensu relmageLoaded () ;
i mage . pai ntlcon (c , g , x , y) ;

publ i c i nt getlconWi dth ()
{

ensu relmageLoaded () ;
return i mage . getlconWi dth () ;

}

publ i c i nt getlconHei ght()
{

}

/**

*/

ensu relmageLoaded () ;
retu rn i mage . getlconHei ght () ;

Loads the image if it hasn't been loaded yet. Prints
a message when the image is loaded.

pri vate voi d ensu relmageLoaded()
{

}

i f (i mage == nul l)
{

}

System . out . pri ntl n (" Loadi ng " + name) ;
i mage = new Imagelcon (name) ;

i _

CHAPTER 1 0 More Design Patterns

49
50 p ri vate Stri ng name ;
51 pri vate ImageIcon i mage ;
52 }

Chlo/proxy/proxyTester.java

1 i mport j ava . awt . * ;
2 i mport j avax . swi ng . * ;
3
4
5
6

/**

*/

This program demonstrates the use of the image proxy.
Images are only loaded when you press on a tab.

7
8
9

publ i c cl ass ProxyTester
{

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 }

publ i c stati c voi d mai n (Stri ng [] args)
{

}

JTabbedPane tabbed Pane = new JTabbedPane () ;
for (Stri ng name : i mageNames)
{

}

J Label l abel = new J Label (new ImageProxy (name)) ;
tabbedPane . add (name , l abel) ;

J F rame frame = new J Frame () ;
frame . add (tabbedPane) ;

frame . setSi ze(FRAME_WIDTH , FRAME_HEIGHT) ;
frame . setDefaul tCl oseOperati on(JF rame . EXIT_ON_CLOSE) ;
frame . setVi si bl e (true) ;

p ri vate stati c fi nal Stri ng [] i mageNames
{

} ;

"devoni an . gi f" ,
" permi an . gi f" ,
" j u rassi cl . gi f" ,
" j u rass i c2 . gi f" ,
"cretaceousl . gi f" ,
" c retaceous2 . gi f" ,
" c retaceous3 . gi f" ,
" eocenel . gi f" ,
"eocene2 . gi f" ,
"ol i gocene . gi f" ,
"mi ocene . gi f" ,
" pl ei stocene . gi f"

pri vate stati c fi nal i nt FRAME_WIDTH = 500 ;
p ri vate stati c fi nal i nt FRAME_HEIGHT = 300 ;

10.5 The SINGLETON Pattern

The SINGLETON Pattern

A singleton class has exactly
one instance.

A singleton class is a class that has a single object. That unique object
constitutes a global facility for all clients. For example, consider a pro
gram with various classes that need to generate random numbers. It is

not a good idea to construct many independent random number generators. As you may
know, the sequence of numbers that a random number generator emits is not truly ran
dom but the result of a deterministic calculation. For that reason, computer-generated
random numbers should really be called pseudo-random numbers. In most algorithms for
generating a sequence of pseudo-random numbers, you start with a seed value and trans
form it to obtain the first value of the sequence. Then you apply the transformation again
for the next value, and so on.

NOTE The Java library uses a linear congruential generator. The seed is transformed according
to the equation

seed = (seed * 2 5 214903917 + 11) % 248

Typically, the seed of a random number generator is set to the time at its construction, to
some value obtained by measuring the time between user keystrokes, or even to the input
from a hardware device that generates random noise. However, for debugging purposes,
it is often helpful to set the seed to a known quantity. Then the same program can be run
multiple times with the same seed and thus with the same sequence of pseudo-random
numbers. For this debugging strategy to be effective, it is important that there is one glo
bal random number generator.

Let us design a class Si ngl eRandom that provides a single random number generator. The
key to ensuring that the class has a single instance is to make the constructor private. The
class constructs the instance and returns it in the static getInstance method.

publ i c cl ass Si ngl eRandom
{

}

pri vate Si ngl eRandom () { gene rator = new Random () ; }

publ i c voi d setSeed (i nt seed) { gene rator . setSeed (seed) ; }
publ i c i nt nextlnt () { return gene rato r . nextlnt () ; }

publ i c stati c Si ngl eRandom getlnstance () { return i nstance ; }

pri vate Random gene rator ;
pri vate stati c Si ngl eRandom i nstance = new Si ngl eRandom() ;

Note that the static field i nstance stores a reference to the unique Si ngl eRandom object.
Don't worry about the fact that this class has a static field of its own type. Recall that a
static field is merely a "global" variable. In Java, every field must be declared in some
class. We find it convenient to place the i nstance field inside the Si ngl eRandom class
itself.

CHAPTER 10 More Design Patterns

Clients have only one way of obtaining a Si ngl eRandom object, by calling the static get
Instance method.

i nt randomNumbe r = Si ngl eRandom . getInstance () . nextInt () ;

The SINGLETON pattern teaches
how to implement a class that
has exactly one instance.

Static fields of a class are initialized when the virtual machine loads
the class. Since a class must be loaded before any of its methods can
be called, the static i nstance field is initialized with the singleton
object before the first call to the getInstance method occurs.

PATTERN

Alternatively, you can delay the construction of the instance until the getInstance
method is called for the first time.

publ i c stati c synchroni zed Si ngl eRandom getInstance ()
{

i f (i nstance == nul l) i nstance = new Si ngl eRandom () ;
return i nstance ;

}

Note that this method needs to be synchronized to avoid a race condition if two threads
call it at the same time.

. �--� SING[ETON

•

•

•

•

Context

1 . All clients need to access a single shared instance of a class.

2. You want to ensure that no additional instances can be created accidentally.

Solution

1. Define a class with a private constructor.

2. The class constructs a single instance of itself

3. Supply a static method that returns a reference to the single instance.

The SINGLETON pattern is not as common as you may think. It only applies to classes
that are guaranteed to have a unique instance. Consider for example the Tool ki t class
that you can use to determine the screen size and other aspects of the windowing system.
The static getDefaul tTool ki t method returns a toolkit object.

Tool ki t ki t = Tool ki t . getDefaul tTool ki t () ;

However, this is not an example of the SINGLETON pattern. It is possible to construct
other toolkit objects besides the default toolkit object.

Utility classes such as the Math class are not singleton classes either. A utility is a class
with only static methods. You don't construct any objects of such a class.

10.6 The VISITOR Pattern

The VISITOR Pattern

Compound objects often have a complex structure, composed of individual elements.
Some elements may again have child elements. The elements belong to various element
classes. An operation on an element visits its child elements, applies the operation to
them, and combines the results (see Figure 4). An example is a user interface container
that is made up of components, some of which contain additional components. The
Component and Contai ner classes in the j ava . awt package contain numerous operations,
such as getPrefe r redSi ze and repai nt, that are recursively applied to child elements.

However, it is not easy to add new operations to such a design. Suppose we want to sup
port a new operation for user interface containers and components. That operation
would need to be added to the Component class and the various subclasses. But an appli
cation programmer cannot add methods to library classes.

The VISITOR pattern teaches how a library designer can supply an extensible mechanism
that solves this problem. Each element class supports a single method

voi d accept (Vi s ito r v)

Here, Vi si tor is an interface type. You supply a separate visitor class for each operation.
An element and its children accept the visitor. In its most basic form, the accept method
looks like this:

publ i c voi d accept (Vi si tor v)
{

v . vi si t (thi s) ;
}

By defining an appropriate vi si t method, a programmer can carry out arbitrary opera
tions on the elements.

« interface··
Element

method_1 0 ---
method_20 -. . .
method_nO

� ,
- ! -, , ' , , ' , , '

Concrete
Element1

Figure 4

Concrete
Element2

It Is Difficult to Add Operations to a
Hierarchy of Element Classes

Concrete
Element3

Adding more D
methods is
disruptive

CHAPTER 1 0 More Design Patterns

However, there is a problem. A particular operation may need to carry out different
actions for each element type. We cannot rely on polymorphism as a solution. In Java,
polymorphism can only be put to work with a fixed set of operations, since a polymor
phic operation must be a method, and a class can only have a fixed number of predefined
methods. Instead, we can use a trick, provided that there is only a fixed number of element
classes. Supply separate methods for each element type in the Vi 5 i to r interface type:

publ i c i nterface Vi si tor
{

}

voi d vi si tElementTypet CElementTypet el ement) ;
voi d vi si tElementType2 CElementType2 el ement) ;

voi d vi si tElementTypenCElementTypen el ement) ;

For example, consider a directory tree that is made up of directory nodes and file nodes.
The visitor interface for such a structure has two methods:

voi d vi si tDi recto ryNode CDi rectoryNode node)
voi d vi si tFi l eNode C Fi l eNode node)

A particular visitor simply supplies the actions for the various element types in these
methods.

To ensure that the appropriate method is called for each element, the accept methods
must be implemented carefully. The accept method for a given element type must call
the correct visitation method:

pub 1 i c cl ass ElementTypei
{

}

publ i c voi d accept CVi s i tor v)
{

v . vi si tElementTypeiCthi 5) ;
}

For example,

publ i c cl ass Di rectoryNode
{

}

publ i c voi d accept CVi si tor v)
{

v . vi si tDi rectoryNode Cthi s) ;
}

Of course, these methods are completely mechanical.

To see the visitation mechanism in action, let us flesh out the example with the file and
directory nodes. The Fi 1 e class in the java . i 0 package describes either a file or a direc
tory. You call the i sDi rectory method to find out whether a Fi 1 e object is actually a
directory. If a Fi 1 e object really is a directory, then you can call the 1 i stFi l es method
to get an array of its files and subdirectories. That is a confusing design. We'll clarify it
by supplying separate types for file and directory nodes, and supporting the VISITOR
pattern.

10.6 The VISITOR Pattern

« interface»
FileSystem

Node

accept()
�

,
,
, .. -- - - - - - -- -- - - .. , ,

, ,
, ,
, ,

Fi leNode Directory
Node

accept()

Calls
v; s; tFi l eNode

Figure 5

accept()

File System Classes for the VISITOR Pattern

«interface»
FileSystem

'> Visitor

visitFileNode()
visitDirectoryNode()

The Fi 1 eSystemNode interface type defines the accept method. The Fi 1 eNode and
Di rectoryNode classes are simple wrappers around the Fi 1 e class (see Figure 5).

We also supply an actual visitor. The Pri ntVi si tor prints the name of the visited node.
If the node is a directory, it also visits its children, incrementing the indentation level. A
typical printout looks like this:

command
CommandTeste r . j ava
Greeti ngActi on . j ava
hel l o . png
goodbye . png

vi si tor
Fi 1 eNode . j ava
Di rectoryNode . j ava
Pri ntVi si tor . j ava
Vi si torTeste r . j ava
Fi l eSystemNode . j ava
Fi l eSystemVi si tor . j ava

ChIO/visitor/FileSystemNode.java

1 /**
2 The common interface for file and directory nodes.
3 */
4 publ i c i nte rface Fi l eSystemNode
5 {
6 voi d accept (Fi l eSystemVi s i tor v) ;
7 }

1 __

CHAPTER 1 0 More Design Patterns

Chro/visitor/FileNode.java

1
2
3
4
5
6

i mport j ava . i o . * ;

publ i c cl ass Fi l eNode i mpl ements Fi l eSystemNode
{

7
8
9

10
1 1
12
13
14
15
16
17
18 }

publ i c Fi l eNode (Fi l e fi l e)
{

thi s . fi l e = fi l e ;
}

publ i c Fi l e getFi l e () { retu rn fi l e ; }

publ i c voi d accept (Fi l eSystemVi si tor v)
{

v . vi si tFi l eNode (thi s) ;
}

p ri vate Fi l e fi l e ;

Chr o/visitor/Directory N ode.java

1 i mpo rt j ava . i o . * ;
2
3 publ i c cl ass Oi rectoryNode i mpl ements Fi l eSystemNode
4 {
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 }

publ i c Oi recto ryNode (Fi l e di rectory)
{

thi s . di rectory = di rectory ;
}

publ i c voi d accept (Fi l eSystemVi si tor v)
{

v . vi si tOi rectoryNode (thi s) ;
}

publ i c Fi l e getOi recto ry() { retu rn di recto ry ; }

publ i c Fi l eSystemNode [] getChi l d ren()
{

}

Fi l e [] fi l es = di recto ry . l i stFi l es() ;
Fi l eSystemNode [] chi l d ren = new Fi l eSystemNode [fi l es . l ength] ;
fo r (i nt i = 0 ; i < fi l es . l ength ; i ++)
{

}

Fi l e f = fi l e s [i] ;
i f (f . i sOi rectory())

chi l d ren [i] new Oi rectoryNode (f) ;
e l se

chi l d ren [i] = new Fi l eNode (f) ;

retu rn chi l d ren ;

p ri vate Fi l e di recto ry ;

10.6 The VISITOR Pattern

Chro/visitor/FileSystem Visitor.java

1 /**
2 The visitor interface type for visiting file system nodes.

*/ 3
4
5
6
7

publ i c i nte rface Fi l eSystemVi s i tor
{

8
9

10
11
12
13
14
15
16
17 }

/**
Visits a file node.
@param node the file node

*/
voi d vi si tFi l eNode (Fi l eNode node) ;

/**
Visits a directory node.
@param node the directory node

*/
voi d vi si tDi rectoryNode (Di rectoryNode node) ;

Chro/visitor/print Visitor.java

1
2
3
4
5
6

i mport j ava . i o . * ;

publ i c c l ass Pri ntVi s i to r i mpl ements Fi l eSystemVi s i to r
{

7
8
9

10
11
12
13
14
15
16
17
1 8
1 9
20
21
22 }

publ i c voi d vi si tFi l eNode (Fi l eNode node)
{

}

for (i nt i = 0 ; i < l evel ; i ++) System . out . pr i nt ("
System . out . pri ntl n (node . getFi l e () . getName ()) ;

publ i c voi d vi si tDi rectoryNode (Di rectoryNode node)
{

}

for (i nt i = 0 ; i < l evel ; i ++) System . out . pri nt ("
System . out . pri ntl n (node . getDi rectory () . getName ()) ;
l evel ++ ;
for (Fi l eSystemNode c : node . getChi l d ren ())

c . accept (thi s) ;
l evel -- ;

pri vate i nt l evel o · ,

Chro/visitorNisitorTester.java

1 i mpo rt j ava . i o . * ;
2
3 publ i c cl ass Vi si torTester
4 {

") ;

") ;

• CHAPTER 10 More Design Patterns

5 publ i c stati c voi d mai n (Stri ng [] args)
6 {
7 Oi rectoryNode node = new Oi rectoryNode (new Fi 1 e (" . . ")) ;
8 node . accept (new Pri ntVi si tor()) ;
9 }

10 }

It is instructive to consider what happens when the accept method is called on the par
ent node (see Figure 6). That node is a Oi rectoryNode. Therefore, the accept method
calls v . vi si tOi rectoryNode. Because v is a Pri ntVi si tor, the vi si tOi rectoryNode
method of the Pri ntVi si tor class is called. This call pattern is called double dispatch
because it uses polymorphism twice, first to select the node type and then to select the
visitor type.

In some programming languages (such as Nice-see http : //ni ce . sou rceforge . net) ,
you can define methods that have multiple polymorphic parameters. However, in Java,
dynamic method dispatch only takes the implicit parameter into account. You can think
of the visitor pattern as a technique for overcoming this limitation.

Recall that the purpose of this mechanism is to enable an open-ended collection of oper
ations on the directory tree. For example, to find all files that contain a given keyword,
you can supply a different visitor.

The VISITOR pattern teaches
how to support an open-ended
set of operations on an object
structure with a fixed set of
element types.

Note that the visitor pattern only applies if there is a fixed number of
element classes. Adding a new element class would force a change in
the Vi s i to r interface type and all visitor classes.

Figure 6

Double Dispatch

: Directory
Node

Polymorphic I:l
selection of
node type

\.

: Print
Visitor

Polymorphic
selection of
visitor type

10.6 The VISITOR Pattern

PATIERN

• -- VISITOR m-
•

•

•

•

•

•

•

•

•

•

•

•

•

•

Context

1 . An object structure contains element classes of multiple types, and you want to carry
out operations that depend on the object types.

2. The set of operations should be extensible over time.

3. The set of element classes is fixed.

Solution

1. Define a visitor interface type that has methods for visiting elements of each of the
given types.

2. Each element class defines an accept method that invokes the matching element
visitation method on the visitor parameter.

3. To implement an operation, define a class that implements the visitor interface type
and supplies the operation's action for each element type.

,
, ,

« interface»
Element 1------+-----------------------------

acceptO

f , ,------------------:------------------, , , ' , , ' , , ' , , ' , , '
Concrete
Element1

acceptO

Concrete
Element2

acceptO

Concrete
Element3

acceptO

Calls
vi si tConcreteEl ementl()

Calls
v i s i tConcreteEl ement2 ()

Calls
v i s i tConcreteEl emen t 3 ()

."

« interface»
Visitor

visitConcreteElement1 0
visitConcreteElement2()
visitConcreteElement3()

i
Concrete

Visitor

CHAPTER 1 0 More Design Patterns

For example, in the case of the file and directory node structure, we have:

Name in Design Pattern Actual Name

El ement Fi l eSystemNode

Conc reteEl ement Fi l eNode, Di rectoryNode

Vi s i tor Fi l eSystemVi s i to r

Conc reteVi si tor Pri ntVi s i to r

Other D e s ign Patterns

We conclude this chapter with a table that shows the design patterns that we have not
yet discussed from the "Gang of Four" book. The table contains a short description of
each pattern so that you can tell at a glance when you need to learn more about it.

You have now come to the end of this book on object-oriented design with Java. In the
course of this book, you have studied material from three areas:

1. Object-oriented design

• The design methodology

• CRC cards and UML diagrams

• Design patterns

2. Advanced Java

• Interface types, polymorphism, and inheritance

• Inner classes

• Reflection

• Generic types

• Multithreading

• Collections

3. User interface programming

• Building Swing applications

• Event handling

• Graphics programming

You have seen how object-oriented design principles and design patterns are used in the
Java library. These knowledge areas will form a solid foundation for your study of
advanced computer science topics as well as for practical programming.

10.7 Other Design Patterns

Pattern Name Description Example

ABSTRACT An abstract class defines methods that An abstract class specifies methods
FACTORY construct related products. Concrete for constructing buttons, menus,

factories create these product sets. and so on. Each user interface "look
and feel" supplies a concrete subclass.

BRIDGE An abstraction and its implementa- A hierarchy of window types has
tion have separate inheritance separate implementations in various
hierarchies. operating systems.

BUILDER A builder class has methods to build A document builder has methods to
parts of a complex product, and to build paragraphs, tables, and so on.
retrieve the completed product.

CHAIN OF A request is passed to the first han- An event handling mechanism passes
RESPONSIBILITY dler in a chain. Each handler acts on a mouse or keyboard event to a com-

the request (or chooses not to act) pone nt, which then passes it to the
and passes the request on to the next parent component.
handler.

FLYWEIGHT Use shared objects instead oflarge A word processor uses shared objects
numbers of separate objects with for styled characters rather than a
identical state. separate object for each character.

INTERPRETER A class hierarchy represents grammar A program interactively evaluates
rules. The interpreter recursively mathematical expressions by build-
evaluates a parse tree of rule objects. ing and evaluating a parse tree.

MEDIATOR An object encapsulates the interac- All components in a dialog box
tion of other objects. notifY a mediator of state changes.

The mediator updates affected
components.

MEMENTO An object yields an opaque snapshot An "undo" mechanism requests a
of a part of its state, and can later memento from an object before
return to its state from that snapshot. mutating it. If the operation is

undone, the memento is used to roll
the object back to its old state.

STATE A separate object is used for each An image editor has different draw-
state. State-dependent code is dis- ing states. Each state is handled by a
tributed over the various state classes. separate "tool" object.

Ta ble 1

Other Design Patterns

CHAPTER 1 0 More Design Patterns

Exercise 10.1 . Consider the enumerati on and 1 i st methods of the Co 1 1 ecti ons class. To
what extent do they follow the ADAPTER pattern?

Exercise 10.2. Explain why MouseAdapter and Wi ndowAdapter are not adapters in the
sense of the ADAPTER pattern.

Exercise 10.3. The Iterabl e interface type is attractive because it allows objects to be
used in a "for each" loop. Design an adapter that adapts the Reade r class to the
Iterabl e<Integer> interface type.

Exercise lOA. Repeat Exercise 10.3, but now follow the DECORATOR pattern.

Exercise 10.5. Write an adapter that adapts a Map to an AbstractTabl eModel . The API
documentation for the Abst ractTab 1 eMode 1 class tells you that you need to supply three
methods:

publ i c i nt getRowCount ()
publ i c i nt getCol umnCount()
publ i c Obj ect getVal ueAt(i nt row , i nt col umn)

Then populate a SortedMap with key/value pairs and show the map inside a JTabl e.

Exercise 10.6. The STRATEGY and COMMAND patterns both suggest using objects in
place of methods. What is the difference in intent between these two patterns?

Exercise 10.7. Is an Acti onl i stener a command object in the sense of the COMMAND
pattern?

Exercise 10.8. Use Acti on objects to implement the ''Add House", ''Add Car", and
"Remove" commands in the scene editor of Chapter 6.

Exercise 10.9. Is the Borde rFactory class of the Java library an example of the FACTORY
METHOD pattern?

Exercise 10.10. Supply an interface type logFormatter that can be used to write objects
to a log file. The interface type has methods 1 ogObj ect, 1 ogCo 1 1 ecti on, and 1 0gMap to
log single objects, collections, and maps. Supply an interface type logFi 1 e with a factory
method getFormatter that returns a logFormatter object. Supply concrete subclasses
TextlogFi 1 e and HTMllogFi 1 e that log information in plain text and HTML format.

Exercise 10. 11 . The technique of "copy on write" minimizes copies by allowing multiple
clients to share an object. However, if a client calls a mutator method, then the object is
copied just before the mutator is applied. Implement a CopyOnWri tel i st proxy that
implements copy on write for li st objects.

Exercise 10.12. The image proxy has the disadvantage that the entire image is loaded
when you only need the width and height. Improve the implementation of the
ImageProxy class by calling the getlmage method of the Too 1 ki t class and attaching an

Exercises

ImageObserver to track the loading process. Consult the API documentation for details
about these classes.

Exercise 10.13. Look at the documentation and the source code of the BorderFactory
method. It holds out the possibility that shared borders are used whenever possible. Are
any of the shared borders actually singletons?

Exercise 10.14. Implement a singleton logger that a graphical application can use to log
messages to a frame containing a JTextArea. Supply a static method getInstance that
yields the logger and a method l og that adds a string to the text area.

Exercise 10.15. Why doesn't the Component hierarchy in the Java library support the
VISITOR pattern?

Exercise 10.16. Supply a visitor for the directory and file nodes that counts all files and
directories that it encounters.

Exercise 10.17. Supply a visitor for the directory and file nodes that collects the names of
all files that contain a given keyword.

r

Glossary
Abstract class A class that cannot be instantiated.

Accessor method A method that accesses an object but does not change it.

Activation bars The bars in a sequence diagram that indicate when a method is
called.

ADAPTER pattern A design pattern that teaches how to use a class in a context that
requires a different interface.

Aggregation The has a relationship between classes.

Analysis phase The phase of a software project that concerns itself solely with an
understanding of the problem domain and the problem to be solved, not with any
design or implementation strategy.

Anonymous array An array reference that is not stored in a named variable.

Anonymous class A class that does not have a name.

Anonymous object An object reference that is not stored in a named variable.

Application framework A framework for building application programs.

Array A collection of values of the same type stored in contiguous memory
locations, each of which can be accessed by an integer index.

Array list A Java class that implements a dynamically growing array of objects.

Ascent The vertical extent above the baseline of a font's characters.

Assertion A claim that a certain condition holds in a particular program location.

Association A relationship between classes in which one can navigate from objects
of one class to objects of the other class, usually by following object references.

Attribute A named property that an object is responsible for maintaining.

AWT (Abstract Windowing Toolkit) The Java toolkit for interacting with
platform-specific user-interface components and events.

Builder environment A program that allows for the interactive construction of
application programs or components. NetBeans is a builder environment.

Call by reference Passing the location of a value as a method parameter so that the
method can modifY it.

Call by value Passing a copy of a value as a method parameter.

GLOSSARY

Cast Explicitly converting a value from one type to a different type. For example, the
cast from a floating-point number x to an integer is expressed in Java by the cast notation
Ci nt) x .

Checked exception An exception that the compiler checks. All checked exceptions
must be declared or caught.

Class A programmer-defined data type.

Class diagram A diagram that depicts classes and their relationships.

Class file A file containing the Java virtual machine instructions for loading a class and
executing its methods.

Class invariant A logical condition that is fulfilled by all objects of a class after the
completion of any constructor or method.

Class method See static method.

Class variable See static field.

Clone A copy of an object that has the same state as the original.

Cloning Making a copy of an object whose state can be modified independently of the
original object.

Cohesion A class is cohesive if its features support a single abstraction.

Collaborator A class on which another class depends.

Collections framework The set ofJava classes for implementing collections.

COMMAND pattern A design pattern that teaches how to implement commands as
objects whenever a command has both behavior and state.

Command line The line the user types to start a program in DOS or UNIX or a
command window in Windows. It consists of the program name followed by any
necessary arguments.

Compiler A program that translates code in a high-level language (such as Java) to
machine instructions (such as bytecode for the Java virtual machine).

Component See user interface component, software component.

COMPOSITE pattern A design pattern that teaches how to combine several objects
into an object that has the same behavior as its parts.

Composition A stronger form of aggregation in which the contained objects do not
have an existence independent of their container.

Condition object An object that manages threads that currently cannot proceed.

Constructor A method that initializes a newly instantiated object.

Content pane The part of a Swing frame that holds the user interface components of
the frame.

Controller (in the model-view-controller architecture) The object that processes user
interaction.

Coupling The degree to which classes are related to each other by dependency.

Glossary

CRC card An index card representing a class, listing its responsibilities and its
collaborating classes.

Deadlock A state in which no thread can proceed because each thread is waiting for
another to do some work first.

Deadly embrace A set of blocked threads, each of which can only be unblocked by the
action of other threads in the set.

DECORATOR pattern A design pattern that teaches how to form a class that adds
functionality to another class while keeping its interface.

Deep copy Copying an object and all objects to which it refers.

Dependency The uses relationship between classes, in which one class needs services
provided by another class.

Deprecation Tagging a feature as obsolete and putting its users on notice that it may
be removed.

Descent The vertical extent below the baseline of a font's characters.

Design pattern A description of a design problem and a proven solution.

Design phase The phase of a software project that concerns itself with the discovery of
the structural components of the software system to be built, not with implementation
details.

Double dispatch The invocation of a polymorphic operation that depends on the types
of two parameters by calling two separate methods.

Edge A connection between two nodes in a graph.

Epoch A fixed point in time, such as January 1, 1970, 0:00 GMT.

Event adapter A class that implements an event listener interface by defining all
methods to do nothing.

Event class A class that contains information about an event, such as its source.

Event listener An object that is notified by an event source when an event occurs.

Event source An object that can notifY other classes of events.

Exception A class that signals a condition that prevents the program from continuing
normally. When such a condition occurs, an object of the exception class is thrown.

Explicit parameter A parameter of a method other than the object on which the
method is invoked.

FACADE pattern A design pattern that teaches how to simplifY a subsystem consisting
of multiple classes by introducing a facade class that exposes all capabilities of the
subsystem as methods.

Factory method A method that constructs a new object.

FACTORY METHOD pattern A design pattern that teaches how to supply a method
that can be overridden to create objects of varying types.

Field See instance field, static field.

� ... � GLOSSARY

Framework A collection of classes that provides mechanisms for a particular problem
domain.

Functional specification A detailed specification of the externally observable behavior
of a software system.

Generic class A class with one or more type parameters.

Generic method A method with one or more type parameters.

Generic programming Providing program components that can be reused in a wide
variety of situations.

Generic type A type variable that can be replaced by an actual type.

Graph A set of nodes and edges, where each edge connects a pair of nodes.

Graphics context A class through which a programmer can cause shapes to appear on a
window or off-screen bitmap.

Guillemets The « and » punctuation symbols.

Hash collision Two different objects for which a hash function computes identical
values.

Hash function A function that computes an integer value from an object in such a way
that different objects are likely to yield different values.

Hash table A data structure in which elements are mapped to array positions according
to their hash function values.

Identity That characteristic that distinguishes an object from all others.

Immutable class A class without a mutator method.

Implementation invariant A class invariant that refers to the private implementation
of the class.

Implementation phase The phase of software development that concerns itself with
realizing the design in a programming environment.

Implementing an interface type Implementing a class that declares itself as an
implementor of the interface type and that supplies methods of the interface type.

Implicit parameter The object on which a method is invoked. For example, in the call
x . fey) , the object x is the implicit parameter of the method f.

Inheritance The is a relationship between a more general superclass and a more
specialized subclass.

Inner class A class that is defined inside another class.

Instance field A variable defined in a class for which every object of the class has its
own value.

Instance method A method with an implicit parameter; that is, a method that is
invoked on an instance of a class.

Instance of a class An object whose type is that class.

Instantiation The process of creating an instance.

Glossary

Interface invariant A class invariant that refers to the interface of the class but not to
the private implementation.

Interface of a class The methods and fields of a class that are not private.

Interface type A type with no instance variables and only abstract methods and
constants.

Interrupting a thread Signaling an interruption to a thread, usually to terminate it.

Invariant A condition that is not changed by a transformation such as a method call or
a loop iteration.

Inversion of control Placing the responsibility for control flow outside the classes that
specifY the behavior of a program.

Invoking a method Calling a method.

Iterator An object that can inspect all elements in a container such as a linked list.

ITERATOR pattern A design pattern that teaches how to access the elements of an
aggregate object.

Julian day number The number of days from January 1 , 4713 BeE.

Law of Demeter A design guideline that states that a method should not operate on
global objects or objects that are a part of another object.

Layout manager A class that arranges user interface components inside a container.

Lazy evaluation Delaying a computation until its result is requested.

Lifeline The vertical line below an object in a sequence diagram that indicates the time
during which the object is alive.

Linear congruential generator A sequence of random numbers that is generated by
repeated transformation of a seed value according to the rule seed = (seed * a + b) %
n for fixed a, b, and n.
Linked list A data structure that can hold an arbitrary number of objects, each of
which is stored in a link object, which contains a pointer to the next link.

Liskov substitution principle The rule that states that you can use a subclass object
whenever a superclass object is expected.

Listener class See event listener.

Literal class object A (1 ass object of the form c. c1 ass, where C is the name of a class.

Lock A data structure that ensures that only one thread can execute a set of statements.

Magic number A number that appears in a program without explanation.

Manifest file A file that describes the contents of an archive file.

Map A container that stores associations between key and value objects.

Method A sequence of statements that has a name, may have formal parameters, and
may return a value. A method can be invoked any number of times, with different values
for its parameters.

GLOSSARY

Model (in the model-view-controller architecture) The object that contains the state
of a data structure, independent of any visual presentation.

Model/view/controller architecture An architecture that decouples the state, visual
representations, and manipulation mechanisms of a data structure.

Multiple inheritance Inheriting from two or more superclasses.

Mutator method A method that changes the state of an object.

Node A component of a graph.

Numeric type A type representing numbers, with special support provided by the
programming language. In Java, the numeric types are char, short i nt, l ong, fl oat, and
doubl e.

OBSERVER pattern A design pattern that teaches how an object can 'notify other
objects about events.

Operator overloading Assigning a new function to an operator that is selected if the
operator has arguments of a specific type.

Overloading Using the same name or symbol for a set of functions. The actual
function is selected according to the types of the arguments.

Overriding Redefining a method in a subclass.

Package A collection of related classes. The i mport statement is used to access one or
more classes in a package.

Package visibility Accessibility from the methods of the classes in the same package.

Panel A user interface component with no visual appearance. It can be used to group
other components, or as the superclass of a component that defines a method for
painting.

Parameterized type A family of types with features that depend on generic type
variables. By binding the type variables to actual types, a specific type is instantiated.

Pattern See design pattern.

Pointer A data structure that describes the memory address of a value.

Polymorphism Selecting a method among several methods that have the same name
on the basis of the actual types of the implicit parameters.

Postcondition A condition that is true after a method has been called.

Precondition A condition that must be true when a method is called if the method is
to work correctly.

Primitive type In J ava, a number type or the bool ean type.

Private feature A feature that is accessible only by methods of the same class or an
inner class.

Process A sequence of instructions that executes under the control of the operating
system.

Property A named value that is managed by a component.

Property sheet A table that lists property names and values.

Glossary

Proportionally spaced font A font whose characters have varying widths.

Protected visibility Accessibility from the methods of all subclasses and the classes in
the same package.

PROTOTYPE pattern A design pattern that teaches how a system can instantiate
objects of classes that are not known when the system is built.

PROXY pattern A design pattern that teaches how an object can be a placeholder for
another object.

Pseudo-random numbers Numbers that appear to be random but are generated by a
mathematical formula.

Qyeue A collection of items with "first in, first out" retrieval.

Race condition A condition in which the effect of multiple threads on shared data
depends on the order in which the threads are scheduled.

Refactoring Restructuring code to increase its quality.

Reference A value that denotes the memory location of an object.

Reflection The ability of a program to analyze its objects and their capabilities.

Responsibility A high-level task that a class is expected to carry out.

Runnable thread A thread that can proceed provided it is given a time slice to do work.

Seed An initial value for a sequence of numbers.

Selfish thread A thread that does not yield control to other threads.

Sequence diagram A diagram that depicts a sequence of method calls.

Serialization The process of saving an object, and all objects that it references, to a
stream.

Shallow copy Copying only the reference to an object.

Side effect An effect of a method other than returning a value.

Singleton class A class that has exactly one instance.

SINGLETON pattern A design pattern that teaches how to implement a class that has
exactly one instance.

Slider A user interface component for specifYing a continuous range of values.

Software component A building block that can be combined with other components
into programs, usually by employing a program builder tool.

Stack A data structure with "last in, first out" retrieval. Elements can be added and
removed only at one position, called the top of the stack.

Stack trace A printout of the call stack, listing all currently pending method calls.

State The current value of an object, which is determined by the cumulative action of
all methods that were invoked on it.

State diagram A diagram that depicts state transitions and their causes.

Static field A variable defined in a class that has only one value for the whole class; a
static field can be accessed and changed by any method of that class.

GLOSSARY

Static method A method with no implicit parameter.

Stereotype descriptor An adornment in a UML diagram that specifies a stereotypical
role such as "interface".

STRATEGY pattern A design pattern that teaches how to supply variants of an
algorithm.

Strongly typed language A programming language whose compiler ensures that
operations will only be executed if they conform to the type system rules.

Subclass A class that inherits variables and methods from a superclass but adds
instance variables, adds methods, or redefines methods.

Subtype A type that can be used when its supertype is expected.

Superclass A general class from which a more specialized class (a subclass) inherits.

Synchronized block A block of code that is controlled by a lock. To start execution, a
thread must acquire the lock. Upon completion, it relinquishes the lock.

Synchronized method A method that is controlled by a lock. In order to execute the
method, the calling thread must acquire the lock.

TEMPLATE METHOD pattern A design pattern that teaches how to supply an
algorithm for multiple types, provided that the sequence of steps does not depend on the
type.

Text field A user interface component for text entry.

Thread A program unit that is executed independendy of other parts of the program.

Thread pool A collection of threads that have been constructed in anticipation of their
use.

Time slicing Scheduling threads by giving each thread a small amount of time in
which to do its work, then giving control to another thread.

Toolbar A user interface component that holds a set of buttons.

Total ordering An ordering relationship in which all elements can be compared to each
other.

Type A named set of values and the operations that can be carried out with them.

Type descriptor A data structure that describes properties of a type. ·

Type parameter A parameter in a generic class or method that can be replaced with an
actual type.

Type system A system of types and their relationships.

Typesafe enumeration An idiom for implementing an enumerated type as a class with
a set of named objects.

UML, the unified modeling language A notation for specifYing, visualizing,
constructing, and documenting the artifacts of software systems.

Unchecked exception An exception that the compiler doesn't check.

Unicode A standard code that assigns code values consisting of two bytes to characters
used in scripts around the world. Java stores all characters as their Unicode values.

Glossary

Unit test A test of a method by itself, isolated from the remainder of the program.

Use case A sequence of actions that yields a result that is of value to an actor.

User interface component A building block for a graphical user interface, such as a
button or a text field. User interface components are used to present information to the
user and allow the user to enter information to the program.

Variable A symbol in a program that identifies a storage location that can hold
different values.

View (in the model-view-controller architecture) The object that provides a visual
representation of the underlying data.

Virtual base class In C++, a class whose fields are not replicated if they are repeatedly
inherited.

VISITOR pattern A design pattern that teaches how to support an open-ended set of
operations on an object structure with a fixed set of element types.

Wildcard An anonymous type parameter in a generic class or method.

INDEX

Ar rayL i st class, 17, 23-24, 256, 267
with collections framework, 324-325,

33 1-332
generic methods, 295-296
i ndexOf method, 274
i te rato r method, 207
type bounds, 296-297
type variables, 294-295

array lists, 23-25, 26
and class invariants, 129-131
and Comparabl e interface type, 144

arrays, 26-27
component type, 263
element inspection, 293-294

Ar raySto reExcepti on, 266
array types, 263, 265-266
Ar rowHead class, 356
ASCII encoding, 400
asL i st method, 333
assertions, programming by contract, 126-128
asse rt statement, 272
association, 56-57
Assuring Good Style for Object-Oriented

Programs (Lieberherr and Holland), 1 1 7
attributes, 47

UML definition, 54-55
auto-boxing, 266-267
auto-wrapping, 266
awai t method, 379
AWT (Abstract Windowing Toolkit),

244-245
AWT button, 244

Banne rAppl et . j ava, 323-324
base directory, 17
basi cWri ter class, 198
beans, See]avaBean components
befo re (Date when) method, 90
behavior, of an object, 39

commands, 401
BentStyl e class, 356
Bevel Border class, 199
bi narySearch method, 331
binary search trees, 37
The Blob antipattern, 179
Blue] development environment, S

arbitrary classes, 290
reflection, 287

boo 1 ean data type, 10
boo 1 eanVa 1 ue method, 266
Boo 1 ean wrapper, 266

BorderLayout class, 1 83, 1 84
borders, 199-200, 245
bounded queue, 124-126
BoundedQueue . j ava, 373-375

collections framework, 328-330
deadlock avoidance, 380-381
thread synchronization, 384-385

Box Layout class, 183, 1 84
BRIDGE pattern, 423
buckets, 279-280
Buffe redReade r class, as decorator, 197-198
buffered readers, 197-198
bug patterns, 179
builder environment, 303; 305
BUILDER pattern, 423
Bund l e class, 194, 201-202
Bundl e . j ava, 202
bundles, of related items, 194, 201-202
buttons, 183

cloning, 336
in frame windows, 151, 152
Swing, 244
user interface actions, 153-154

byte data type, 10
bytes, 400
Byte wrapper, 266

calendar bean, 304
Ca 1 endar class, 93-94
call, 3
call by reference, 15-16, 266
call by value, 16
CarBean class, 3 1 1
CarBean . j ava, 3 13-315
CarBean . mf, 3 1 1-313
CarComponent . j ava, 226-227
Carlcon . j ava, 161-162
Ca rMove r . j ava, 227
CarShape class, 165, 229
CarShape . j ava, 168-169
CASE (computer-assisted software

engineering) tool database, 38
cast, 11, 159-160
catch clause, 20, 253
CHAIN OF RESPONSIBILITI pattern, 423
ChangeL i stener interface type, 204-205
character escape sequences, 10
characters, 400

in]ava, 9-1 1
Character wrapper, 266
charAt method, 21

r

Index
% operator, 130-131

Abst ractAct; on class, 402-403
Abst ractButton class, 243, 246
abstract classes, 228-235
Abst ractCol l ect; on class, 231 , 326-327,

332
Abst ractEdge . j ava, 341-342
ABSTRACT FACTORY pattern, 423
Abst ractL; stModel class, 231
Abst ractSet class, 274, 276

hashCode method, 278
abs (x) method, 1 1
accessor methods

Day class, 1 10-113
separation, 1 14-115

Acti on interface type, 401-403
Act; onL; stene r interface type, 151 ,

153-156
with car animation, 164-169
with timers, 157-158

action listeners, 153-154
act; onPe rformed method, 154, 401, 402

with Ti mer class, 157-158
actions, 401-406
Acti onTeste r . j ava, 155
activation bars, 59
ActiveX controls, 302
actors, 48-49
adapter, 398-401
adapter classes, 224-227
ADAPTER pattern, 398-401
addA 1 1 method, 333
addDays method, 95, 98, 99

unit testing, 132
addItem method, 204
add method

Ar rayL i st class, 23

Cal endar class, 94
and deadlock avoidance, 378, 380
L; n kedL i st class, 25
and locks, 377
and object locks, 382

Adm; n; s t rator class, 43
aft e r (Date when) method, 90
agent classes, 43
aggregation, 47-48

composition contrasted, 56
multiplicities in UML class diagrams,

55-56
in patterns, 178
voice mail system, 71
when to use, 254

algorithms, 37
animation, 387-388

AUmann Java programming style, 30
analysis phase, 36-37
animations

with threads, 387-393
timer with, 164-169

Ani mati onTeste r . j ava, 390-391, 392-393
moving car, 167-168

anonymous arrays, 26
anonymous classes, 148-151
anonymous objects, 148
antipatterns, 179
append method, 296
application frameworks, 320, 356-357
application programming interface (API), 9
Arc2D class, 248, 249
Area class, 248
ArgoUML, 54
A r ray class, 287, 293-294
A r rayComponent . j ava, 389-390
Ar raylndexOutOfBounds exception, 26
Ar ray interface type, 175

Index

char data type, 10, 1 1
check boxes, 183
checked exceptions, 19-20, 252
CheckSty1 e program, 31
Chinese calendar, 93
Ci rc1 e class, 254-256
Ci rc1 eNode class, 354
Ci rc1 eNode . j ava, 348-349
circular arrays, 123-124
clarity, 120-121
C1 assCastExcepti on, 299
Cl ass class, 287, 289
class definition, 2
C1 assDi ag ramGraph class, 356
class diagrams, 38

UML, 53-58, 70-71
classes, 2. See also frameworks; inheritance;

Obj ect class; specific classes
abstract, 228-235
anonymous, 148-151
basic concepts, 40
clarity, 120-121
class design example (See Date class)
cohesion, 1 18-1 19
comments, 6, 7
completeness, 119
consistency, 121
convenience, 1 19-120
coupling, 46
design phase goals related to, 37-38
enumerating features of, 288-290
exception class hierarchy, 252-254
identification, 37, 41-43
implementation phase goals related to, 38
importing, 17
inner, 149, 154, 155-156
literal class objects, 270
with magical powers, 52
naming, 17, 29, 42
nested, 25 1
programming by contract, 122-133
quality of interfaces, 1 1 8-121
unit testing, 38, 131-133

class files, 4
class invariants, 129-131
class library, 320
class methods, 3
C1 assNotFoundExcepti on, 20, 253
C1 ass object, 269-271
class relationships, 46-48. See also aggregation;

dependency; inheritance

association, 56-57
composition, 56
identifYing in design phase, 37-38

class responsibilities, 37-38
avoid unrelated, 52
identifYing, 45
layering of abstraction levels, 45

class type, 263
class users, 1 1 8
class variables, 28-29
client code, 3
C1 oneab 1 e interface type, 264, 281-285
cl one method, 13, 1 12-1 13, 283-288, 338

buttons, 336
deep and shallow copy, 280-285

C1 0neNotSu pportedExcepti on, 282, 284
cohesion, 1 1 8-1 1 9
collaborators, 50, 5 1
Co1 1 ecti o n interface type, 23 1 , 406

with collections framework, 324, 325-326
collections, 324-333
Col l ecti ons class, 144
collections framework, 324-333

optional operations, 332-333
collision, 278
command-line arguments, 3
COMMAND pattern, 403-406
CommandTeste r . j ava, 404-405
Compa rabl e interface type, 144-146
Comparator interface type, 147-148
compare method, 147-148
compareToIgno reCase method, 121
compareTo method, 268

Comparabl e interface type, 144-145
Date class, 90, 121

completeness, 1 19
Component class, 243, 244
components, 302-303. See also COMPOSITE

pattern; containers; J avaBean
components

decoration, 195-198
layout managers, 1 83-193

component type, of arrays, 263
COMPOSITE pattern, 193-195

applying for invoice example, 201-202
similarity to DECORATOR pattern, 196,

197, 199
composition, 56
CompoundShape class, 240-243
CompoundShape . j ava, 240-243
Condi ti on interface, 379

, , • INDEX

Connect i on . j ava, 78-82
consistency, 121
constants, 29, 31
Const ructor class, 287
constructors, 2

comments, 6
Consumer class, 370
Consume r . j ava, 372-373
Contai ner class, 193, 194, 265

Swing components, 243, 244, 245
containers

as components, 193-195
consisting of components, some of which

contain additional components, 415
putting components into using layout

managers, 183-193
contai ns method, 252
control flow statements, 12
controller (modeVviewl controller

architecture), 180-181
convenience, 119-120
copyNameTo method, 15
Core}ava (Horstmann and Cornell), 391
Country class, 145
Count ryComparatorByName class, 147,

148-149
Country . j ava, 145-146
Count rySo rtTeste r . j ava, 146
coupling, between classes, 46
CRC cards, 50-53

scene editor, 228
voice mail system, 64-70

Cubi cCu rve2D class, 248
customers, keeping in mind when designing

classes, 119-120

data structures
choice deferred until implementation

phase, 37
corrupting shared, 370-375

Date class, 13, 43, 90-94. See also Day class
completeness, 119
toSt ri ng method, 22

Day class
design, 94-97
encapsulation, 109-1 17
implementations, 98-109

DaY · J ava
Julian day number implementation,

104-107

year-month-date and Julian day
implementation, 107-109

year-month-date implementation, 100-104
daysFrom method, 95, 98, 99
deadlocks, 378-382
deadly embrace, 378-379
debugging, for race conditions, 375
decompressors, 198
decoration, 195-198
DECORATOR pattern, 196-198

applying for invoice example, 202-204
and Scanner, 213
similarity of COMPOSITE pattern to, 196,

197, 199
decorators, 196-198
decryptors, 198
deep copy, 280-285
dependency, 46-47

in UML class diagrams, 55, 58
voice mail system, 70

deprecated methods, 90
design patterns, 179

refactoring contrasted, 235
Design Patterns (Gamma, Helm, Johnson, and

Vlissides: the Gang of Four), 179
design phase, 36, 37-38. See also Object

oriented design
dest roy method, 322
dialog boxes

with Icon interface type, 138-139
JavaBean property sheets, 305

Dia (UML tool), 54
Di rectoryNode . j ava, 418
disabled menu items, 401
Di scountedItem class, 202-203
Di scountedltem . j ava, 203
discounts, using DECORATOR class to

implement, 202-204.
DocCheck program, 8
documentation comments, 6-9
do statement, 12
Doubl e class, 249-251
doub 1 e data type, 10, 11 , 249
double dispatch, 420
doub 1 eVa 1 ue method, 266
Doubl e wrapper, 266
drawing shapes, See shape drawing
drawing text, 163
d rawSel ecti on method, 236-237
d rawS t ri ng method, 161

Index

Eclipse, 309
ECMAScript, 40-41
Edge interface type, 338
Edge . j ava, 339-341
edges, in graph editor framework, 333-357
elements

in arrays, 293-294
in patterns, 178

El l i pse2D class, 248, 249
El l i pse2D . Doubl e class, 159, 160
ellipse drawing, 159
e 1 s e branch, 12
-enab 1 easserti ons switch, 127
encapsulation, Day class, 109-1 17
enumerated types, 267-268
equality testing, 273-276

symmetry condition, 276
equal s method, 22, 273-276
E r ro r class, 252, 253
escape sequences, 10
EtchedBo rde r class, 199
event classes, 43
events, 359

JavaBean components, 304
and OBSERVER pattern, 182

evolutionary implementation approach, 38
Excepti on class, 252, 253
exception handling, 18-21

class hierarchy, 252-254
in programming by contract, 128-129

explicit parameters, 14
modification through side effects, 1 15-1 16

extends keyword, 216
extensibility, 144

FACADE pattern, 305-306
FACTORY METHOD pattern, 406-408
factory methods, 28-29, 406-408
Fi el d class, 287, 289, 292
field names, 2
Fi e l dTeste r . j ava, 292-293
FIFO (first in, first out), 42, 44
Fi l e class, 43
Fi l eNode . j ava, 418
Fi l eNotFoundExcepti on, 18, 19, 128,

253-254
Fi l eOutputSt ream, 285
Fi 1 eSystemNode . j ava, 417
Fi l eSystemVi si to r . j ava, 419
final classes, 217
final instance fields, 1 13-1 14

fi nal l y clause, 2 1
final methods, 217
fi ndNode method, 351
Fl oat class, 249-25 1
fl oat data type, 10, 1 1

problems with, 249
Fl oat wrapper, 266
Fl owLayout class, 152, 183, 184, 265
FLYWEIGHT pattern, 423
FontRende rContext object, 163
fo r each loop, 24
Fo rmLayout . j ava, 189, 190-191
FormLayoutTeste r . j ava, 191
fo rName method, 270
for statement, 12
foundation classes, 43
frames, 151-153
F rameTeste r . j ava, 152-153
frame windows, 15 1-152
frameworks

applets as simple, 321-324
application, 320, 356-357
collections framework, 324-333
defined, 320
design, 356-357
graph editor framework, 333-357

French Revolutionary calendar, 93
functional programming languages, 1 15
functional specification, 36-37
function objects, 147

Gang of Four book: Design Patterns (Gamma,
Helm,Johnson, and Vlissides), 179

Gene ral Path class, 240, 248, 249
generic methods, 295-296
generic types, 294-302
geometrical shape hierarchy, 247-252
getCente rX method, 248
getCenterY method, 248
getCl ass method, 269
getComponentType method, 271
getConnecti onPoi nt method (Node

interface), 338
getConnecti o n Poi nts method (Edge

interface), 338
getDate method, 100
getDecl aredConst ructors method, 289
getDecl a redFi el ds method, 288
getDecl aredMethods method, 289-290, 291
getDefaul tTool k i t method, 414
getFi e 1 ds method, 288

INDEX

getFontRende rContext method, 163
getHei ght method, 244, 248, 250-251
getlconWi dth method, 143-144
getInte rfaces method, 288
getItems method, 206-207
getMaxX method, 248
getMaxY method, 248
get method

Ar rayL i st class, 23, 24, 294
Cal endar class, 94
with iterators, 175

getMi nX method, 248
getMi nY method, 248
getModi fi e rs method, 289
getMonth method, 100
getName method, 1 13, 271, 289
getPackage method, 288
getPa ramete rTypes method, 289
getP refe r redS i ze method, 244, 415
getPri ce method, 201 , 202
getRandomlnstance method, 29
getSe 1 ectedToo 1 method, 350
getSt ri ngBounds method, 163
getSuperclass method, 288
getTi me method

Cal endar class, 94
Date class, 90, 92

getType method, 288
getWi dth method, 244, 248, 250-251
getX method, 250-25 1
getYear method, 100
getY method, 250-25 1
grabber tool, 334-335
graph editor framework, 333-334

classes, 338-346
division of responsibility, 335-337
enhancing, 353-357
generic code, 350-353
turning into application, 346-350
user interface, 334-335

G raphFrame class, 346
graphical user interface, frames with, 151-153
Graphi cs class, 140, 159-162
graphics context, 159, 163
G raphi cs2D class, 159
graphics programming,

using inheritance, 223-227
G raph . j ava, 342-346
G raphPanel class, 346
G reete r class, 2, 6, 13, 15-16, 30

random number generator with, 28-29

G reete r . j ava, 6-7
G reeterTester class, 3, 4
G reeterTeste r . j ava, 3
G reeti ngActi on . j ava, 405-406
G reeti ngProduce r . j ava, 363-365
G regori anCal endar class, 92-93, 1 1 1 , 121,

298, 301
Gri dBagLayout class, 183, 184
Gri dLayout class, 1 83, 184, 1 85-186
guillemets, 57

HardHel l o . j ava, 291
has-a relationship, 47. See also aggregation
hash code, 278-280
hashCode method, 277, 278
hash function, 278
hashing, 277-280
HashMap class, 277, 325
hash multiplier, 31
HashSet class, 277, 324, 325
hash tables, 278-280

choice deferred until implementation
phase, 37

hasNextDoub 1 e method, 23
hasNextlnt method, 23
hasNext method, 174

Invoi ce class, 206
L i n kedL i st class, 25

Hello World!, 2-6
hit testing, graph editor framework, 335
HouseShape class, 229, 241-242
HouseShape . j ava, 238-239

IconAdapter . j ava, 398
IconAdapterTeste r . j ava, 399
Icon interface type, 138-143

animated car application, 164-169
drawing shapes, 159-162

identity, of objects, 39-40
i f statement, 12
Il l egal ArgumentExcepti on, 19
Il l egal FormatExcepti on, 254
Imagelcon class, 139, 143, 144
ImageObserve r interface type, 142
ImageProxy class, 409-410
ImageProxy . j ava, 41 1-412
immutability, of Java strings, 2 1
immutable classes, 1 10

desirability of, 113
implementation invariants, 131
implementation phase, 36, 38

Index

implicit parameters, 14
i mport statement, 17
i ndexOf method, 274
IndexOutOfBounds exception, 24, 252, 253,

294
inheritance, 48. See also TEMPLATE METHOD

pattern
abstract classes, 228-235
exception class hierarchy, 252-254
geometrical shape hierarchy, 247-252
graphics programming with, 223-227
hierarchies, 218-219
with Java applet, 323
Liskov substitution principle, 2 19-220
multiple, 246-247
preconditions and postconditions, 221-222
protected interfaces, 240-243
for specialization modeling, 216-217
superclass constructors invocation, 221
superclass method invocation, 220-221
super/sub terminology, 48, 216, 217-21 8
swing component hierarchy, 243-247
in UML class diagrams, 55, 58
when not to use, 254-257

i ni t method, with Java applet, 321, 322
inner class, 149, 154, 155-156
I nputMi smatchExcepti on, 23
input reading, 23
InputSt ream object, 176
InputSt reamReade r adapter, 400-401
i nsert method, with iterators, 175
instance fields, 54

fi nal , 1 13-1 1 4
i nstanceof operator, 268-269, 276
instance variables, 140
instantiation

classes, 2
generic types, 294

i nt data type, 10, 1 1
Integer wrapper, 266
integration phase, 38
interactive graph editing, 333
interface invariants, 131
i nterface keyword, 140
interface types, 263. See also polymorphism;

specific interface types
can't specify implementation details, 142
denoting in UML class diagrams, 57
designing, 164-169
frames, 151-153
multiple classes implementing, 137-138

timers, 157-158
user interface actions, 153-156
variables can be, 143

INTERPRETER pattern, 423
I nte r ruptedExcepti on, 369-370, 382
i nt e r rupt method, 369
i ntVa 1 ue method, 266
inversion of control, 320

Java applet, 323
invocation, 3
invoice, implementing with patterns, 200-212
Invoi ce class, 204-205
Invoi ceFormatter . j ava, 207-208
I nvoi ce . j ava, 209-210
Invoi ceTeste r . j ava, 2 1 1-212
i nvoke method, 291
IOExcepti on, 19, 20, 252, 253
is-a relationship, 48. See also inheritance
i sAr ray method, 271
i sFi na 1 method, 289
i sInte rrupted method, 369
Islamic calendar, 93
ISO 8601 standard, 96
i sPri vate method, 289
i s P rotected method, 289
i s Publ i c method, 289
i sStati c method, 289
Ite rator interface type

with collections framework, 325-326
for invoice example, 205, 206

ITERATOR pattern, 1 78-179
applying for invoice example, 205-207

iterators, 174-176
and FACTORY METHOD pattern, 406
linked lists with, 25

j a r packaging tool, 3 10-3 1 1

Java. See also classes; object-oriented design
applets as simple frameworks, 321-324
array lists, 23-25, 26
arrays, 26-27
control flow statements, 12
documentation comments, 6-9
exception handling, 18-21
Hello World! example, 2-6
linked lists, 24-25
no multiple inheritance, 246-247
no relation to JavaScript, 41
object references, 12-14
packages, 16-1 8
package visibility, 30-31

INDEX

Java, continued
parameter passing, 14-16
primitive types, 9-1 1
programming style, 29-31
reading input, 23
static fields and methods, 28-29
thread of execution, 362
voice mail system implementation, 74-85

Java 5.0. See a!so A r rayLi st class; Scanne r
class

and Ar rayL i st class, 23
fo r each loop, 24
enumerated types, 267
locks, 377
methods with variable number of

parameters, 27
object locks, 382
and Queue interface type, 328
and Scanner class, 23, 119
wrappers for primitive types, 266

JavaBean components, 304-306
component palette, 309
editing properties, 309-310
manifest file, 3 1 1
naming convention, 307
packaging, 310-315
properties, 306-308
property sheet, 305
reflection, 287

Java bug patterns, 179
Java Development Kit (JDK), 3-4
j avadoc utility, 6-9

for design documentation, 61
Java Remote Method Invocation, proxy

objects, 410-411
JavaScript

accessing Java properties from, 308-309
and ECMAScript, 40-41
variables in, 262

Java strings, 21-22
Java type system

array types, 265-266
enumerated types, 267-268
primitive types, 266-267
type inquiry, 268-271
types and subtypes, 262-265

]Builder, 309
]Button class, 243, 245-246, 263, 265
)Component class, 243, 245-246

subclass design, 221 , 223
J Contai n e r, 246

Jewish calendar, 93
J F rame class, 309

subclass design, 221
]IS encoding, 400
J Label class, 243, 245
JMenultem class, 243, 246
JOpt i on Pane class, 1 7, 144
J Panel class, 184-186, 193, 243, 244, 245
JScript, and ECMAScript, 40-41
JScrol l Pane class, 196, 197
JSl i der class, 312
JTextArea class, 196, 243, 246
JTextComponent class, 243, 246
JTextFi el d class, 243, 245-246
Julian calendar, 92
Julian day number, 99-100
]Unit, 132-133, 291

Kernighan-Ritchie Java programming
style, 30

keys, 325

A Laboratory for Teaching Object-Oriented
Thinking (Beck and Cunningham), 50

Law of Demeter, 116-1 17
1 ayoutContai n e r method, 189
LayoutManager2 class, 265
LayoutManag e r interface type, 189
layout managers

for button, 152
custom, 189-191
and STRATEGY pattern, 192-193
using predefined, 183-188

legacy code, using raw types for interfacing
with, 299

1 ength method, 21
lifeline, 58
LIFO (last in, first out), 257
linear congruential generator, 413
L i ne2D class, 248, 249
L i ne2 D . Doub 1 e class, 160
L i neEdge class, 354-355
Li neEdge . j ava, 349-350
Li neltem . j ava, 200
L i neItem method, 201, 202
line items, 200-201
line segment drawing, 160
L i neStyl e class, 354, 355
L i n kedBl ocki ngQueue class, 391
L i nkedL i st class, 24-25

with collections framework, 324-325,
331-332

Index

linked lists, 24-25, 120
ITERATOR pattern, 179
iterators for traversing, 174
for queues, 44

Liskov substitution principle, 219-220
list cursor, 175-176
listener class, 153-154
listeners, 181-182

and user interface actions, 153-154
li st interface type, 324, 33 1-332
l i stIte rator interface type, with collections

framework, 331
list iterators, 120-121
l i stModel interface type, 231
literal class objects, 270
live lock, 379
LiveScript, renamed to JavaScript, 41
lock interface, 377
locks, 377-378
long corridors, using short passages to solve

problem of, 176-177
l ong data type, 10
long wrapper, 266
loose coupling, 144

macros, 403
magic numbers, 31
mailbox, in voice mail system, See voice mail

system
Mai l box . j ava, 76-78
Mai l Systern . j ava, 83
Mai l SysternTester . j ava, 84-85
rnai n method, 4
main thread, 366
manifest file, J avaBeans, 3 1 1
Map interface type, 325
maps, 325
Marslcon class, 141, 142, 143, 144
Marsleon . j ava, 141-142
Math class, 1 1 , 28, 289, 414
mathematical methods, 11
Mayan calendar, 93
MEDIATOR pattern, 423
MEMENTO pattern, 423
menus, 151, 183

disabled items, 401
Swing, 244

merge sort algorithm animation, 387-393
Message . j ava, 75
MessageQueue . j ava, 75-76, 124-126
Metal look and feel, 183, 244

Method class, 287, 290
methods, 2

comments, 6, 7
generic, 295-296
implementation phase goals related to, 38
interface type, 140
invoking, 290-291
JavaBean components, 304
naming, 29
sequence diagrams, 58-60
side effects, 1 15-1 16

rni ni rnurnlayoutSi ze method, 189
mission creep, 52
model/view/controller architecture, 1 80-181
monitor construct, 383-384
monospaced font, 163
MouseAdapter class, 224-225
rnou seCl i eked method, 225
rnouseD ragged method, 225-226

with graph editor framework, 35 1-352
MouseEvent class, 43
mouse event handlers, 224-227
Mousel i stene r interface type, 224
MouseMoti onAdapter class, 224
MouseMoti o n l i stene r interface type, 224
mouse motion listeners, 224
rnousePressed method, 224-227

with graph editor framework, 350-352
Moveabl eleon interface type, 142-143
Moveab 1 eShape interface type, 165-166
Moveabl eShape . j ava, 166
Mul ti l i neStri ng class, 356
multiple inheritance, 246-247
multiplicities, 47

in UML class diagrams, 55-56
multithreading, See threads
mutator methods

Day class, 1 10-1 13
separation, 1 14-1 15

Napkin look and feel, 244-245
nested class, 251
NetBeans development environment, 309,

312
newCondi ti on method, 379
new operator, 2
nextBoo 1 ean method, 28
nextDay method, 98
nextDoub 1 e method, 23, 28
nextlnt method, 23, 28
nextl i ne method, 23

, , • INDEX

next method, 23
Invoi ce class, 206
with iterators, 175
L i n kedL i st class, 25
Scanner class, 114

Nice programming language, 420
Node interface type, 338
Node . j ava, 339
nodes, in graph editor framework, 333-357
noti fyA 1 1 method, 382
noti fy method, 382
NotSe ri al i zabl eExcepti on, 286
nouns, as clues for identifying classes, 41
Nul l Poi nte rExcepti on, 13, 18, 19, 252, 253
n u l l reference, 13
null type, 263
Numbe rFormatExcepti on, 22
numbers, 9-1 1

Object class, 218-219
deep copy, 280-285
equality testing, 273-276
hashing, 277-280
hash tables, 278-280
serialization, 285-287
shallow copy, 282-285
toSt ri ng method, 272-273

object locks, 382-386
object-oriented design. See also classes; CRC

cards; frameworks; interface types; Java;
objects; patterns; threads; use cases; voice
mail system

analysis phase, 36-37
design phase, 36, 37-38
don't make design too specific, 42
evolutionary implementation approach, 38
implementation phase, 36, 38
from problem to code, 36-38
using j avadoc for design

documentation, 61
Obj ectOutputSt ream, 285
object references, 12-14
objects. See also sequence diagrams; state

diagrams
anonymous, 148
basic concepts, 39-40
equality testing, 273-276
function objects, 147
inspecting, 291-294
literal class, 270

OBSERVER pattern, 180-183
applying for invoice example, 204-205

observers, 181 , 182
operations, 39

changing into agent class, 43
deferring implementation of some, 38

operator overloading, 97
optional operation, 205

Package class, 287
packages, 16-18

naming, 29
package visibility, 30-31
pai ntComponent method, 231

overriding, 223
pai ntlcon method, 140, 159-162, 409

animated car application, 165
pai nt method, 322
panels, 185
parameter passing, 14-16
parameters

comments, 6, 7
in UML class diagrams, 54-55

parse method, 1 16
partial ordering, 91 , 92
A Pattern Language: Towns, Buildings,

Construction (Alexander et al.), 176
patterns. See also specific patterns

applying to make an invoice, 200-212
bug patterns, 179
defined, 173, 176-179
design versus antipatterns, 179
in frameworks, 320
Gang of Four book: Design Patterns, 179
miscellaneous patterns, 423
recognizing, 198-200
for specialized problem domains, 179

Poi nt class, 24, 249, 254-256
Poi nt2D class, 248, 249
Poi nt2D . Doub l e class, 160
pointers

similarity to Day objects, 95
similarity to object references, 14

The Poltergeist antipattern, 179
Pol ygon class, 26-27, 247, 249
polymorphism, 138, 143-144

don't use type inquiry as substitute for, 270
must have fixed set of operations, 416

Poseidon UML Community Edition, 54

Index

postconditions
inherited methods, 221-222
in programming by contract, 123, 129

pow (x , y) method, 1 1
preconditions

inherited methods, 221-222
in programming by contract, 122-126

p refe r redLayoutSi ze method, 189
p revi ousDay method, 98
primitive operations, 236
primitive types, 9-1 1 , 263, 266-267
pri ntl n method, toStri ng method

applied, 272
pri nt method, toSt ri ng method

applied, 272
print queue, 44
pri ntStackTrace method, 21
Pri ntVi s i to r . j ava, 419
pri ntWri t e r class, 198
private instance variables, 30-31
p rocessCommand operation, 1 1 8
Produce r class, 370
P roduce r . j ava, 371-372
Product . j ava, 200-201
programming by contract, 122-126
proportionally spaced font, 163
protected fields, 242-243
protected interfaces, 240-243
protected methods, 243
PROTOTYPE pattern, 337
prototyping

graph editor framework, 336-337
rapid, 38

proxies, 408-409
PROXY pattern, 409-412
P roxyTeste r . j ava, 412
pseudo-random numbers, 413
public interface, 1 19
public static fields, 29, 30, 142

modification through side effects, 1 15-1 16
PushbackReader class, 135, 198
putVa 1 ue method, 402

QuadCurve2D class, 248
Queue class, 327-330
queue data type, 42, 44. See also threads

bounded, 124-126
Queue interface type, 328
QueueTeste r . j ava, 330

race conditions, threads, 375-376
RandomAccess interface type, 332
Random class, 28
random number generation, 28, 413
rapid prototyping, 38
Rational Rose (UML tool), 53
raw types, 298
readL i ne method, 197-198
Rectangl e class, 43, 248, 249
Rectangl e2D class, 248, 249-251 , 252
Rectangl e2D . Doubl e class, 159, 160,

249, 252
Rectangl e2D . Fl oat class, 249, 250, 252
rectangle drawing, 159
Rectangul a rNode class, 356
Rectangul a rShape class, 248, 249
refactoring, 234-235
reflection, 287-294
regi onMatchesIgno reCase method, 121
relationships, See class relationships
remove method, 121

Ar rayL i st class, 24
and class invariants, 130
and deadlock avoidance, 378, 379
with iterators, 175
L i nkedL i st class, 25
and locks, 378
MessageQueue class, 1 14
and programming by contract, 123-124

repai nt method, 415
animated car application, 164
with graph editor framework, 352-353

reset method, with iterators, 175
responsibilities, See class responsibilities
return values

comments, 6, 7
in UML class diagrams, 54-55

reusable code, 137
Revi ewe r class, 43
Rhino, 308-309
Rhino toolkit, 40
role classes, 43
roundoff errors, 201
RoundRectangl e2D class, 248, 249
round (x) method, 1 1
run method, threads, 363, 365
Runnab 1 e interface type, 362-366, 368, 388
RunTi meExcepti on class, 252, 253, 254

INDEX

Scanner class, 23, 43, 1 19
and DECORATOR pattern, 213

Scanner object, 176
SceneComponent class, 231
SceneComponent . j ava, 232-233
SceneEdi tor . j ava, 233-234
scene editor program, 228-235
SceneShape interface type, 229-231
scheduling, of threads, 366-368
scroll bars, 195-196

Swing, 244
scrolling banner applet, 322-324
SegmentedL i neEdge class, 356
Sel ectabl eShape class, 229-23 1, 236-239
Sel ectabl eShape . j ava, 238
self-call, 59
selfish thread, 363
sequence diagrams, 54, 58-60

voice mail system, 71-74
Se ri al i zab 1 e interface type, 264, 285-287
serialization, 285-287
serial number, 286
setAccess i bl e method, 291-292
setBo rder method, 199, 200, 245
setBounds method, 189
setDate method, 1 1 1
setEnab 1 ed method, 401-402
setF rameF romCenter method, 248
setF rameF romDi agonal method, 248
Set interface type, 324, 330
set method

Ar rayL i st class, 24, 294
Cal endar class, 94
with iterators, 175

setMonth method, 1 1 1
setName method, 1 4
setText method, 152
setTi me method

Cal endar class, 94
Date class, 90, 92

setToolTi pText method, 245
setYear method, 1 1 1
shallow copy, 282-285
shape drawing, 159-162

geometrical shape hierarchy, 247-252
scene editor, 228-235
with subclasses of J eomponent, 223-227

Shapelcon . j ava, 167
Shape interface type, 159-162, 248, 249
short data type, 10, 1 1

short passages, to solve problem of long
corridors, 176-177

Short wrapper, 266
showMessageDi a l og method

with Icon interface type, 138-139
and polymorphism, 143, 144

side effects, 1 15-1 16
si gnal Al l method, 379, 380
si gnal method, 380
Si mpl eDateFormat class, 135
Si mpl e Fo rmatte r . j ava, 209
Si mpl eG raphEdi to r . j ava, 348
Si mpl eGraph . j ava, 347
Si ngl eRandom class, 413-414
singleton class, 413
SINGLETON pattern, 414
S i ze class, 267
si ze method, 23
sleep method, threads, 363, 369
sliders, 183, 212
software development process, 36-38. See also

object-oriented design
sort algorithm animation, 387-393
So rtedSet interface type, 324
So rte r class, 388
So rte r . j ava, 388-389, 391-392
s o rt method, 144-145, 147, 387
sparse matrices, 134
specialization, 216-217. See also inheritance
spyFi e 1 ds method, 292
sq rt ex) method, 1 1
squelching

Cl oneNotSupportedExcepti on, 282
of Inter ruptedExcepti on, 369-370

Stack class, 256-257
stacks, 257
stack trace, 18, 20, 21
start method

with Java applet, 321 , 322
threads, 363, 365
Ti mer class, 157

state, of objects, 15, 39-40
commands, 401

state diagrams, 38, 54, 60-61
voice mail system, 71-74

STATE pattern, 423
static fields, 28-29

public, 1 15-1 16, 142
static methods, 3, 28-29
stereotype descriptor, 57

Index

STL, 358
stop method, 322
STRATEGY pattern, 192-193, 199

applying for invoice example, 207-212
stream decorators, 197-198
Stri ng class, 43, 263

and Comparabl e interface type, 145
as final class, 217

strongly typed language, 262
subclasses, 48, 216, 217-218

constructors, 221
and Liskov substitution principle, 219-220
preconditions and postconditions, 221-222

substitution principle, 219-220
substri ng method, 22
subtype relationship, 263-264
summary table, 7
superclasses, 48, 216, 217-218

constructors invocation, 221
and Liskov substitution principle, 219-220
method invocation, 220-221
preconditions and postconditions, 221-222

super keyword, 221
Swing actions, 403
Swi ngTi mer class, 387
Swing user interface toolkit, 183

hierarchy of components, 243-247
symmetry condition, in equality testing, 276
synchronization, of threads, 370-386
synchronized blocks, 385-386
system classes, 43
system device classes, 43
System . exi t method, 366
System . i n object, 23

string input, 1 19
system interface classes, 43
System . out object, 24

tangible things classes, 43
telephone, using layout managers to model,

184-188
Tel ephone class, using layout manager, 187
Tel ephone . j ava, 83-84

layout manager application, 187-188
TEMPLATE METHOD pattern, 236-239

with collections framework, 326
contai ns method, 252

termination, of threads, 363, 368-370
TextArea class, 196
text fields, 183

accurate positioning, 163

adding scroll bars, 195-196
with buttons in frame windows, 152
drawing, 163
Swing, 244

thread pools, 365
threads

animations, 387-393
basic concepts, 362-370
deadlock avoidance, 378-382
execution order, 361
locks, 377-378
main thread, 366
object locks, 382-386
race conditions, 375-376
and Runnab 1 e interface type, 362-366
scheduling, 366-368
synchronization, 370-386
synchronized blocks, 385-386
terminating, 363, 368-370
with timers, 157-158
user interface thread, 366

Th readTeste r . j ava, 365-366, 371
Th rowab 1 e class, 252, 253
th rows declarations, 20, 252
Ti mer class, 157-158
timers, 157-158

with car animation, 164-169
Ti me rTest e r . j ava, 158
time slice, 366
toDeg rees ex) method, 1 1
Together (UML tool), 53
Tool Bar class, 346
toolbars, 334
tooltips, 245
toRadi ans ex) method, 11
toStri ng method, 22, 268, 385

Obj ect class, 272-273
total ordering, 90, 91-92
transaction classes, 43
transient keyowrd, 286
T reeMap class, 325
T reeSet class, 324, 325
t ry block, 21
type bounds, 296-298
type descriptor, 269
type erasure, 296-299
type inquiry, 268-271
type parameters, 295
typesafe code, 299
type variables, 294-295

� .. �.� _IN_D __ E_X __ __

UML (Unified Modeling Language), 53
UML class diagrams, 53-58

voice mail system, 70-71
UML class editor, 355-356
unbounded wildcards, 297
unchecked exceptions, 19-20, 252
underscores, 29
Unicode encoding, 10-1 1 , 400
unit testing, 38, 131-133
UnsupportedOperati onExcepti on, 205, 327,

333
use cases, 37, 48-49

voice mail system, 62-64
Use Case Zone Web site, 49
user classes, 43
user interface actions, 153-156
user interfaces, 37

and frames, 15 1-153
graph editor framework, 334-335

user interface thread, 366
user manual, 37
uses relationship, 46. See also dependency
Uti 1 5 class, 295
Uti l s . j ava, 301
Uti l sTeste r . j ava, 302

val ueAvai l abl eCond i t i on method, 380
values, 263, 325
variables, 3

defining in fo r loop, 12
variations, in use cases, 49
Vector class, 256-257
verbs, as clues for identifying class

responsibilities, 45
views

from collections framework, 332
model/view/controller architecture,

1 80-18 1

Violet UML editor, 5 4
and graph editor framework, 355, 356

virtual base class, 246
vi si t method, 415-416
Vi si tor interface type, 415
VISITOR pattern, 415-422
Vi s i to rTeste r . j ava, 419-420
Visual Basic

controls, 302-303
prototyping in, 38

voice mail system
class identification, 42-43
class responsibility identification, 45
CRC cards, SO-53, 64-70

'

design with Law of Demeter in mind,
1 16-1 17

GUI front end for, 1 84-185
j avadoc design documentation, 6 1
Java implementation, 74-85
layout manager application, 184-188
object and class concepts related to, 39-40
programming by contract, 122-133
sequence diagrams, 58-60, 71-74
state diagrams, 60-61, 71-74
UML class diagrams, 53-58, 70-71
use cases, 49, 62-64

voi d keyword, 263
volatile fields, 386

wai t method, 382
walk-through, 52-53
whi 1 e statement, 12
wildcards, 296-297
word-processing program, 37
wrapper classes, 266-267
WYSIWYG layout, 180

zoom bars, 196

Photo Credits

C hapter 2

Page 44: PhotodisciPunchstock.

Chapter 5

Page 177: Rob MeinychukiDigital Vision.
Page 185: EyeWire, Inc.lGetty Images.

Chapter 9
Page 383: Creatas/Punchstock.

Fitting Obj ect .. Oriented Design into Your Curriculum
Whether you teach design early or late, before or after data structures, Object-Oriented
Design & Patterns will help your students apply design principles in their programs.

Related Titles from Wiley:

Big Java, 2nd Edition Cay Horstmann, San Jose State University 0-471-69703-6, ©2006
Objects, Abstraction, Data Structures and Design Using Java 5.0 Elliot Koffman and Paul Wolfgang,

Temple University 0-471-69264-6, ©200S
Software Engineering: An Object-Oriented Perspective Eric J. Braude, Boston University 0-471-32208-3, ©2001
Data Structures and Algorithms in Java, 4th Edition Michael T. Goodrich, University of California, Irvine and

Roberto Tamassia, Brown University 0-471-73884-0, ©200S

I S B N 9 7 8 - 0 - 4 7 1 - 7 4 4 8 7 - 0

7 8 0 4 7 1 7 4 4 8 7 0

	Preface
	Contents
	1: A Crash Course in Java
	1.1 "Hello, World!" in Java
	1.2 Documentation Comments
	1.3 Primitive Types
	1.4 Control Flow Statements
	1.5 Object References
	1.6 Parameter Passing
	1.7 Packages
	1.8 Basic Exception Handling
	1.9 Strings
	1.10 Reading Input
	1.11 Array Lists and Linked Lists
	1.12 Arrays
	1.13 Static Fields and Methods
	1.14 Programming Style
	Exercises

	2: The Object-Oriented Design Process
	2.1 From Problem to Code
	2.2 The Object and Class Concepts
	2.3 Identifying Classes
	2.4 Identifying Responsibilities
	2.5 Relationships Between Classes
	2.6 Use Cases
	2.7 CRC Cards
	2.8 UML Class Diagrams
	2.9 Sequence Diagrams
	2.10 State Diagrams
	2.11 Using javadoc for Design Documentation
	2.12 Case Study: A Voice Mail System
	Exercises

	3: Guidelines for Class Design
	3.1 An Overview of the Date Classes in the Java Library
	3.2 Designing a Day Class
	3.3 Three Implementations of the Day Class
	3.4 The Importance of Encapsulation
	3.5 Analyzing the Quality of an Interface
	3.6 Programming by Contract
	3.7 Unit Testing
	Exercises

	4: Interface Types and Polymorphism
	4.1 The Icon Interface Type
	4.2 Polymorphism
	4.3 The Comparable Interface Type
	4.4 The Comparator Interface Type
	4.5 Anonymous Classes
	4.6 Frames and User Interface Components
	4.7 User Interface Actions
	4.8 Timers
	4.9 Drawing Shapes
	4.10 Designing an Interface Type
	Exercises

	5: Patterns and GUI Programming
	5.1 The Iterator as a Pattern
	5.2 The Pattern Concept
	5.3 The OBSERVER Pattern
	5.4 Layout Managers and the STRATEGY Pattern
	5.5 Components, Containers, and the COMPOSITE Pattern
	5.6 Scroll Bars and the DECORATOR Pattern
	5.7 How to Recognize Patterns
	5.8 Putting Patterns to Work
	Exercises

	6: Inheritance and Abstract Classes
	6.1 The Concept of Inheritance
	6.2 Graphics Programming with Inheritance
	6.3 Abstract Classes
	6.4 The TEMPLATE METHOD Pattern
	6.5 Protected Interfaces
	6.6 The Hierarchy of Swing Components
	6.7 The Hierarchy of Standard Geometric Shapes
	6.8 The Hierarchy of Exception Classes
	6.9 When Not to Use Inheritance
	Exercises

	7: The Java Object Model
	7.1 The Java Type System
	7.2 Type Inquiry
	7.3 The Object Class
	7.4 Shallow and Deep Copy
	7.5 Serialization
	7.6 Reflection
	7.7 Generic Types
	7.8 JavaBeans Components
	Exercises

	8: Frameworks
	8.1 Frameworks
	8.2 Applets as a Simple Framework
	8.3 The Collections Framework
	8.4 A Graph Editor Framework
	8.5 Enhancing the Graph Editor Framework
	Exercises

	9: Multithreading
	9.1 Thread Basics
	9.2 Thread Synchronization
	9.3 Animations
	Exercises

	10: More Design Patterns
	10.1 The ADAPTER Pattern
	10.2 Actions and the COMMAND Pattern
	10.3 The FACTORY METHOD Pattern
	10.4 The PROXY Pattern
	10.5 The SINGLETON Pattern
	10.6 The VISITOR Pattern
	10.7 Other Design Patterns
	Exercises

	Glossary
	Index

