

Class:

Class Name

Class Name

attribute
attribute; data_type
attribute : data ̂ type = init value

operation
operation f arg J is t): return type

Generalization (Inheritance):

Aggregation:

Aggregation (alternate form):

Assembly Class

Part-1-Class •
___________ f

i Z7fi_
Part-2-CJass

Object Instances:
—/■

(Class Name)
1 (Class Name) j
attribute name - value j

^ ------------- ------

Association:

Classy
Association Name

role-1 role 2 Class-2

Qualified Association:

--------- * Association Name
Class-1 quainter | foJe. t rote-2 Class-2 S

Multiplicity of Associations:

Exactly one

Class

1-2.4
Class

Many (zero or more)

Optional (zero or one)

One or more

Numerically spec&ed

Ordering:

(ordered)

Link Attribute:

O Class

Class-1
Name

Ternary Association:
.. . Association Name

Clas$-1 !•

Cia$s-2 S

J rotfi t *ok> 2

n
Class-2 j

roUi-3
. i _____________

• Class-3

Instantiation Relationship:

— --------- ' - — ---------- - * s

(C lass Nome) \
\ ___________ j

Class Name? j

This page may be freely copied without obtaining jKnmssion from the publishc

Abstract Operation: Association as Class:

Superclass

f............................ .
1 coemon *;*b$s?acti! Ooerauon ;s abstract
* I m the $upe?ciass.

ii
/ X

Subclass* t
\-

j CpgraSSn

j Subclass-2 \
j-------------------1 Subclasses must
}---------------- 1 p/0v*H» concrete

| t̂femematjons| operation
J of operation

Generalization Properties:

j i
(Superclass | Superclass

A

! Subclass*!
i_________

A

Subclasses have
overlapping (nandisfoint)
membership

! : i More subclasses 1-----
, Subclass-2 j *-• 0,xjs!. Subcioss-l j Subcloss-2

........

Multiple Inheritance:

f Superclass* 1 j j Superclass-2J
A

r
t

A
I

• « « I SubclassG
Class Attributes and Class Operations:

| Cl os* Name |

i %VSfv>-iU>

*$OWSSlM&n

Propagation of Operations:
/ • . V

I ■»
, --

v— — —— i
i opera!*)* ! . ----------------- -----

)«/••• •• ••• _

Superclass

discrlmtnotorŷ

Discriminator *5 an attribute
wnos© value differentiates
between subclasses.

t— t

Subclass*! Subclass-2

Derived Attribute:

r Class Name

\ .■attubute

Derived Class:

X?----‘-------- '“}
Q Class Nome j

Derived Association;

i C l f i f 5* t (Cl&$&*2

Constraints on Objects:

\ C tas?M •

L . - » . .

1
l iiSrto--? j
V w > » I * “ «— » " * *

f ,e r»D ‘ ^ 0 ;

Constraint between Associations:
w * ' v ‘ v > w w • «•.»

• Cfoosj- t j
A f

) ^{SyfeU rtJ

I—

r
• • • • « <

Cta.as«2

a ?""
?« w « * . r*

Thjs psgc may be freely copied without obtaining permmion from the publisher

o

i n

J

i i

James Rumbaugh
Michael Blaha
William Premerlani
Frederick Eddy
William Lorensen

Genera! Electric Research and Development (

Schenectady* Ncv.* York

enter

PRENTICE HALL

Ob je e T 'o r ten ted o o d e l in g ao<j des ign / Janes Runbaugh . . . [e t a t . 1.
p. co.

Jncludes^fc-ifc-Ltographical re fe re n c e s and index.
ISJ3M '0- 13- 62984i - 9 .

. *1'. Q $ je c t - o r le n tg d p ro g ra a *m g te e n p u te r s c ie n ce) 2 . $ y s t8»
. ’ d e s ig n . 1 . RunoaughV-Jaaes.

0A76 . 64 .026 1991 N
005. 1— OC20 90-7600

CIP

Editorial/production supervision: Kathleen Schiaparelli
Cover design: Butler/Vdell Design
Manufacturing buyer: Linda Behrens, Patrice Fraccio

©1991 by Prentice-Hall. Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs todetermine their effectiveness.
The author and publisher make no warranty of any kind, expressed or implied, with regard to these
programs or the documentation contained in this book. The author and publisher shall not be liable in
any event tor incidental or consequential damages in connection with, or arising out of. the furnishing,
performance, or use of these programs.

A pp le . LaserW riter, and M acA P P are registered tradem arks o f A p p le C om pute r. Inc.
D EC and V AX are registered tradem arks o f D ig ita l E qu ipm ent C o rpo ra tion .
E iffe l is a registered tradem ark o f In te rac tive Software Engineering. Inc.
F rum eM aker is a registered tradem ark o f Frame Techno logy C o rpo ra tion .
G em Stone is a registered tradem ark o f S crv io Logie.
IN G R ES is a tradem ark o f Inures C o rpo ra tion .
In te rlea f is a tradem ark o f In te rlea f. Inc.
L in o tro n ic is a registered tradem ark o f A llie d C o rpo ra tion .
MS-DOS is a tradem ark o f M ic ro so ft C o rpo ra tion .
Mae Draw is a registered tradem ark o f C laris C o rpo ra tion .
NeW'S, Sun W orksta tion , and Sun V iew are registered tradem arks o f Sun M icrosystem s. Inc .
O bjective-C is a registered tradem ark o f Stopstone C o rpo ra tion .
O NTO S is a tradem ark o f O n to log ic . Inc.
O R A C L E is a registered tradem ark of O racle C o rpo ra tion .
PostScript is a registered tradem ark o f A dobe Systems. Inc.
Snialhalk-HO is a tradem ark o f ParcPIaee Systems.
Stalem ate is a registered tradem ark o f i- l.ou ix . Inc.
U N IX is a tradem ark o f A T & T Bell Laboratories.
X W indow System is a tradem ark o f Massachusetts Ins titu te o f Technology.

All rights reserved. No pari of this book may be reproduced, in any
form or by any means, without permission in writing from the publisher.

Primed in the United States of America

20 19 IS 17 16 ! 5 M 13

IS B N

P re m ie e -H a ll In te rn a tio n a l * U K i L im ite d , London
P re n tic e -H a ll o f A u s tra lia Pty. L im ite d . Sydney
P re n tic e -H a il C anada In c .. 'Ibm tuo
P re n tic e -H u ll M isp a n o n m e rica n u . S .A .. Mexity*
P re n tic e -H a ll o f In d ia P riva te L im ite d , N vw D elh i
P ic m tc c 'H a il o f Japan, In c ., lo kyo
S um m A S chuste r A s ia P tc. L td .. Singapote
Editor** P re n tice I lu ll do B ras il, L u la .. AVo J** Janetro

Contents

PREFACE

Acknowledgments, xii

CHAPTER 1 INTRODUCTION

l.! What Is Object-Oriented?. I

! .2 What is Object-Oriented Development?, 4

i .3 Object-Oriented Themes, 7

1.4 Evidence for Usefulness of Object-Oriented Development. 9

1.5 Organization of this Book. 10

Bibliographic Notes. 12

References. 12

Exercises. 13

lx

1

Part t: Modeling Concepts

CHAPTER 2 MODELING AS A DESIGN TECHNIQUE 15

iA# 1 4 Modeling. 15
> ■? The Object Modeling Technique. 16

2.3 Chapter Summary* '9
ExertL'ises, 19

CHAPTER 3 OBJECT MODELING

3.1 Objects and Classes. 21

3.2 Links and Associations, 27

1 3|Mf.P Advanced Link arid Association Concepts. 31
A 4\,4 Generalization and Inheritance. ..>K

3.5 Grouping Constructs. 43

3.6 A Sample Object Model. 45

3.7 Practical Tips. 46

ill

3.8 Chapter Summary. 47

Bibliographic Notes. 48

References. 48

Exercises, 49

CHAPTER 4 ADVANCED OBJECT MODELING 57

4.1 Aaareuation. 57

4.2 A bs t rae t C' 1 asse s. 6 1

4.3 Generalization as Extension and Restriction. 63

4.4 Multiple Inheritance. 65

4.5 Metadata. 69

4.6 Candidate Keys. 7 1

4.7 Constraints, 73

4.8 Chapter Summary. 77

Bibliographic Notes. 79

References. 79

Exercises. 80

CHAPTER 5 DYNAMIC MODELING 84

5.1 Events and States. 84

5.2 Operations. 92

5.3 Nested State Diagrams. 94

5.4 Concurrency. 99

5.5 Advanced Dynamic Modeling Concepts. 101

5.6 A Sample Dynamic Model. 105

5.7 Relation of Object and Dynamic Models. 1 It)

5.8 Practical l ips. I 11

5.9 Chapter Summary. 112

Bibliographic Notes. I 13

References. 115

Exercises. 115

CHAPTER 6 FUNCTIONAL MODELING 123

0. I lunetional Models, 125

0 .2 D a ta H o w D ia g ra m s . 124

<>.4 Specifying Operations, 140

6.4 Constraints. 142

0.5 A Sample l uneiional Model. I 55

o.o Relation ot Hmehonul to Objec t and I'hnanne Models. I 57

0.7 (hapler SumnuiA . I

BiMioeiaphic Notes. I4U

R e le ie n e e s . 5 4 0

l ;\ei cases. 14 I

Part 2: Design M ethodology

CHAPTER 7 METHODOLOGY PREVIEW

7 .1 G M T as a Software Engineering Methodology. 144

7.2 The O M T Methodology. 145

7.3 Impact of an Object-Oriented Approach. 146

7.4 Chapter Summary. 146

Exercises. 147

CHAPTER 8 ANALYSIS 148

X. I Overview of Analysis. |4X

8.2 Problem Statement. 150

8.3 Automated Teller Machine Example, i 5 1

8.4 Object Modeling. 152

5.5 Dynamic Modeling. 169

8.6 Functional M od e lin g . 179

8.7 A dding Operations. 183

8.8 Iterating the Analysis. 185W *

5.9 Chapter Summary. IS?

Bibliographic Notes. lXS

References. 188

Exercises, I 89

CHAPTER 9 SYSTEM DESIGN 198

9 .1 Overview of System Design. 198
• V

9.2 Breaking a Sworn into Subsystems. 190

9.3 Identify imr Concurrency. 202

9.4 A llocating Subsystems to Processors ami Tasks. 203

9.5 Management of Data Stores. 205w

9 .6 Ilan d h n e (iln b a l Resources. 2**7

9 .7 Choosing Softw are C ontro l Im plem entation. 2**7

9.x Handling Boundary C onditions. 210

9 9 Sotting T ra d e -o il Priorities. 210

9 l*) C om m on A rchitectural bram ew nrks. 2 1 l

9 J I Architecture of the A T M System. 217

9 5 2 Chapter Sum m ary. 2 IS

Bibliographic Note'*. 22**

R clerem es. 2 2 0

10.4 Design Optimization. 235

10.5 Implementation of Control. 239

10.6 Adjustment of Inheritance, 242

10.7 Design of Associations. 245

10.8 Object Representation, 248

10.9 Physical Packaging, 249

10.10 Documenting Design Decisions. 251

10.11 Chapter Summary', 252

Bibliographic Notes, 254

References. 254

Exercises, 255

CHAPTER 11 METHODOLOGY SUMMARY 260

11.1 Analysis, 2 6 1

11.2 System Design. 262

11.3 Object Design. 263

11.4 Chapter Summary', 264

Exercises. 264

CHAPTER 12 COMPARISON OF METHODOLOGIES 266

12.1 Structured Analysis/Structured Design (SA/SD), 266

12.2 Jackson Structured Development (JSD). 268

12.3 Information Modeling Notations. 271

12.4 Object-Oriented Work, 273

12.5 Chapter Summary'. 274

References. 275

Exercises. 275

Part 3: Implementation

CHAPTER 13 FROM DESIGN TO IMPLEMENTATION 278

13 .1 Implementation Using a Programming Language. 278

13.2 Implementation Using a Database System. 279

13.3 Implementation Outside a Computer. 280

13.4 Overview of Part 3. 280

CHAPTER 14 PROGRAMMING STYLE 281

14.1 Object-Oriented Style. 2 8 1

14.2 Reusability. 282

14.3 Extensibility, 285

14.4 Robustness. 2X6

14.5 Prourammins’ -in -ih c -L a n ’c, 2SX^ S V

I4 .0 Chapter Sum m ary. 241

U ihlioeraphic N o te s 2 4 1

References. 292

Exercises. 292

CHAPTER 15 OBJECT-ORIENTED LANGUAGES

15.1 Translating a Design into an Implementation, 296

15.2 Class Definitions. 297

15.3 Creating Objects. 301

15.4 Calling Operations. 305

15.5 Using Inheritance. 308

15.6 Implementing Associations. 312

15.7 Object-Oriented Language Features. 3 18

15.8 Survey of Object-Oriented Languages, 325

15.9 Chapter Summary. 330

Bibliographic Notes. 332

References. 333

Exercises, 334

CHAPTER 16 NON-OBJECT-ORIENTED LANGUAGES

16.1 Mapping Object-Oriented Concepts. 340

16.2 Translating Classes into Data Structures, 342

16.3 Passing Arguments to Methods. 344

16.4 Allocating Objects. 345

16.5 Implementing Inheritance, 347

16.6 Implementing Method Resolution. 351

16.7 Implementing Associations, 355

16.8 Dealing with Concurrency. 358

16.9 Encapsulation. 359

16.J0 What You Lose. 361

16 .11 Chapter Summary, 362

Bibliographic Notes. 363

References. 364

Exercises. 364

CHAPTER 17 RELATIONAL DATABASES

17 .1 General DBMS Concepts. 366

17.2 Relational DBMS Concepts. 368

17.3 Relational Database Design, 373

17.4 Advanced Relational DBMS. 387

17.5 Chapter Summary. 388

Bibliographic Notes, 389

References. 390

Exercises. 390

Part 4: Applications

CHAPTER 18 OBJECT DIAGRAM COMPILER 397

18.1 Background, 398

18.2 Problem Staiement, 399

18.3 Analysis, 4 0 1

18.4 System Design, 407

18.5 Object Design, 408

18.6 Implementation, 4 12

18.7 Lessons Learned, 412

18.8 Chapter Summary, 413

Bibliographic Notes, 413

References, 413

Exercises, 414

CHAPTER 19 COMPUTER ANIMATION 416

19.1 Background, 417

19.2 Problem Statement, 4 18

19.3 Analysis, 420

19.4 System Design, 424

19.5 Object Design, 426

19.6 Implementation, 428

19.7 Lessons Learned, 430

19.8 Chapter Summary. 4 3 1

Bibliographic Notes, 4 3 1

References. 432

Exercises, 432

CHAPTER 20 ELECTRICAL DISTRIBUTION DESIGN SYSTEM 433

20.1 Background, 433

20.2 Problem Statement, 435

20.3 Analysis, 436

20.4 System Design. 444

20.5 Object Design, 445

20.6 Implementation, 448

20.7 Lessons Learned, 448

20.8 Chapter Summary. 449

Bibliographic Notes. 449

References, 449

Exercises, 450
A P P E N D IX A O M T G R A P H IC A L N O T A T IO N 453

A P P E N D IX B G L O S S A R Y 454

A N S W E R S TO S E L E C T E D E X E R C IS E S 465

IN D E X 491

Preface

Hus book presents an object-oriented approach to software development based on modeling

objects from the real world and then using the model to build a language-independent design

organized around those objects. Object-oriented modeling and design promote better under
standing of requirements, cleaner designs, and more maintainable systems. We describe a set
of object-oriented concepts and a language-independent graphical notation, the Object Mod
eling Technique, that can be used to analyze problem requirements, design a solution to the

problem, and then implement the solution in a programming language or database. Our ap
proach allows the same concepts and notation to be used throughout the entire software de
velopment process. The software developer does not need to translate into a new notation at
each development stage as is required by many other methodologies.

We show how to use object oriented concepts throughout the entire software life cycle,
from analy sis through design to implementation. The book is not primarily about object-ori
ented languages or coding. Instead we stress that coding is the last stage m a process ol de
velopment that includes stating a problem, understanding its requirements, planning a

solution, arid implementing a program in a particular language. A good design technique de
fers implementation details until later stages ol design to preserve flexibility. Mistakes in the

front of the development process have a large impact on the ultimate product ami on the time

needed to linish. Wc describe the implementation ol object-oiiented designs in object-onent-

ed languages. non-objcct-oriented languages, and relational databases.
1 he hook emphasizes that object-oriented technology is more than tust a way ot pto-

eramimni'. Most importantly. it is a wav ol thinking abstractly about a problem using ical
world concepts, rather than computer concepts, this may be a dillu tilt transition lor some

people because older programming languages Jotce one to think in terms ol the computer

is

and not in terms of the application. Books that emphasize object-oriented programming of
ten fail to help the programmer learn to think abstractly without using programming con
structs. We have found that the graphical notation that we describe helps the software

developer visualize a problem without prematurely resorting to implementation.
We show that object-oriented technology provides a practical, productive way to devel

op software for most applications, regardless of the final implementation language. We take

an informal approach in this book: there are no proofs or formal definitions with Greek let
ters. We attempt to foster a pragmatic approach to problem solving drawing upon the intui
tive sense that object-oriented technology captures and by providing a notation and
methodology for using it systematically on real problems. We provide tips and examples of
good and bad design to help the software developer avoid common pitfalls. To illustrate the

pragmatic nature of these concepts, we describe several real applications developed by the

authors using object-oriented techniques.
This book is intended for both software professionals and students. The reader will leam

how to apply object-oriented concepts to all stages of the software development life cycle.
*At present, there are few. if any. object-oriented books covering the entire life cycle, as op
posed to programming or analysis alone. In fact, there are few textbooks on object-oriented

technology of any kind. Although object-oriented technology is currently a “1101“ topic, most
readers have limited experience with it, so u'e do not assume any prior knowledge of object-
oriented concepts. We do assume that the reader is familiar with basic computing concepts,
but an extensive formal background is not required. Even existing object-oriented program
mers will benefit from learning how to design programs systematically: they may be sur
prised to discover that certain common object-oriented coding practices violate principles of
good design.

The database designer will find much of interest here. Although object-oriented pro
gramming languages have previously received the most attention, object-oriented design of
databases is perhaps even more compelling and immediately practical. We include an entire

chapter describing how to implement an object-oriented design using existing relational da
tabase management systems.

This book can be used as a textbook for a graduate or advanced undergraduate course

on software engineering or object-oriented technology. It can be used as a supplementary

text for courses on databases or programming languages. Prerequisites include exposure to

modern structured programming languages and a knowledge of basic computer science

terms and concepts, such as syntax, semantics, recursion, set. procedure, graph, and state:
a detailed formal background is not required. Exercises of varying difficulty are included in

each chapter along with selected answers at the back of the book.
Many object-oriented books primarily discuss programming issues, usually from the

point of view of a single language. The best of them discuss design issues, but they are nev
ertheless mainly about programming. Fewer books address object-oriented analysis or de

sign. We show that object-oriental concepts can and should be applied throughout the entire
software life c\cle. Recently books on object-oriented methodology have begun to appear
Our book is compatible with other books on object-oriented analysis and design, ami we feel
that it is complementary to them in content.

Several existing books on software methodology discuss the entire life cycle from a pro
cedural viewpoint. The traditional data How methodologies of DeMarco. Yourdon, and oth
ers are based mainly on functional decomposition, although recent revisions have been

influenced by object-oriented concepts. Even Jackson's methodology, which superficially

seems to be based on objects, quickly reverts to procedural issues.
Our emphasis differs in some respects from the majority of the object-oriented program

ming community but is in accord with the information modeling and design methodology

communities. We place a much greater emphasis on object-oriented constructs as models of
real things, rather than as techniques for programming. We elevate intcrobject relationships

to the same semantic level as classes, rather than hiding them as pointers inside objects. We

place somewhat less importance on inheritance and methods. We downplay line details of
inheritance mechanisms. We come down strongly in favor of typing, classes, modeling, and

advance planning. We use terminology that is universally accepted when possible, otherwise

we trv to choose the best terms among various alternatives. There is as vet no commonly ac-
cepted graphical notation for object-oriented constructs, so despite concerns about introduc
ing "yet another notation” we use our own Object Modeling Technique notation, which we

have used extensively on real problems and which has been successfully adopted by others.
In any case, the object-oriented concepts themselves are the most important thing, not the

shape of the symbols used to represent them. We also show how to apply object-oriented

concepts to state machines.
The book contains four parts. Part I presents object-oriented concepts in a high-level,

language-independent manner. These concepts are fundamental to the rest of the book, al
though advanced material can be skipped initially. The Object Modeling Technique notation

is introduced in Part I and used throughout the book to show examples. Part 2 describes a

siep-bv-step object-oriented methodology of software development from problem statement
through analysis, system design, and object design. All but the final stages of the methodol
ogy are language-independent; even object design is concerned mostly with issues indepen
dent of any particular language. Part 3 describes the implementation of object-oriented

designs in various target environments, including object-oriented languages, non-object-ori
ented languages, and relational databases. It describes the considerations applicable to d if
ferent environments, although it is not intended to replace books on object-oriented

programming. Part 4 presents case studies of actual object-oriented applications developed

bv the authors at the General Electric Research and Development Center. The problems cov

er a range of application domains and implementation targets.
The authors have used object-oriented analysis, design, programming, and database

modeling for several years on a variety of applications. We have also implemented an object
oriented language, developed an object-oriented notation and methodology, and developed

object-oriented support tools, so we are familiar with both theoretical and pragmatic issues

of implementing and using object-oriented technology. We are enthusiastic about the object-
oriented approach and have found that it is applicable to almost any kind ot application. We

have found that the use of object-oriented concepts, together with a graphical notation and a

development methodology, can greatly increase the quality, flexibility, and imderstandabihlv

of software. Wc hope that this book can help to get that message across.

ACKNOWLEDGMENTS

Wo wish to thank the many individuals who have made this hook possible. We especially

want to thank GH and our management at the Research and Development Center for their
foresight in giving us the opportunity to develop the ideas presented here by working on ob
ject-oriented technology when it was still a new and unproven field as well as for their sup
port, encouragement. and facilities in writing the book. We also wish to thank our colleagues

at GE who worked with us in exploring this exciting new held. We acknowledge the impor
tant contribution of Mary Loomis and Ashwin Shah, who participated in the original devel
opment of the Object Modeling Technique notation.

Many individuals helped in the review of the manuscript, but in particular we wish to

thank David Hentchel. Mark Kornfein. and Marc Lavtnon for their thorough reviews and

perceptive comments.
Finally and most importantly we w ish to thank our wives and families lor their patience

and encouragement during the mans long weekends and evenings that went into the writingw • W W W

of this book.

Production Note

The manuscript of this book was prepared by the authors on S IN workstations using the

FrameMaker document preparation system. We drew the diagrams using the FrameMaker
system. We created most object diagrams using our OMTool editor and converted them to

FrameMaker format. We performed detailed page layout, made the index, and generated the

table of contents using the FrameMaker system. Proof copies of the complete document
were printed on Apple LaserWriter Plus printers. We generated PostScript page description

tiles from the final document, copied them onto a I'nix tor tape, and sent the tape to the pub
lisher for generation of the camera cop\ on a l.inoironic 2(0 typesetter. The publisher pre

pared and set the title and eop>right pages.

Introduction

O h ji\ !-i>ru r.h-J nuuU'li/n; and design is a new way of thinking about problems using models

organized around real-world concepts. The fundamental construct is the object, which com
bines both data structure and behavior in a single entity. Object-oriental models are useful
for understanding problems, communicating with application experts, modeling enterprises,

preparing documentation, and designing programs and databases. This book presents an

object-oriented software development methodology, the Object Modeling Technique

(O.MTt. which extends from analysis through design to implementation. First an analysis

mi Kiel is built to abstract essential aspects of the application domain without regard for even
tual implementation. This model contains objects found in the application domain, including

a description of the properties of the objects and their behavior. Then design decisions are

made and details are added to the model to describe and optimize the implementation. The

application-domain objects form the framework of the design model, but they are imple
mented in terms ol computer-domain objects. F'inally the design model is implemented in a

programming language, database, or hardware.
We describe a graphical notation for expressing object-oriented models. Application-

domain and computer-domain objects can be modeled, designed, and implemented using the

same object-oriented concepts and notation. The same seamless notation is used from anal
ysis to design to implementation so that inlormation added in one stage ol development need

not be lost or translated lor the next stage.

1.1 WHAT IS OBJECT-ORIENTED?

Superficially the tenn "obiect■oriented" means that we organize soltwaie as a collection ol
discrete objects that incorporate both data structure and behavior. This is m contrast to con
ventional programming m which data structure and behavior are only loosely connected.
I here is some dispute about exactly what characteristics are required by an object oriented

approach, hut t)u."i generally include tour ,isjh .v (v identity, classification, polymorphism,

and inheritance

1.1.1 Characteristics of Objects

Identity means that data is quantized into discrete, distinguishable entities called objects. A

paragraph in a document, a w indow on my workstation. and the white queen in a chess game

are examples of objects. Figure I . I shows some additional objects. Objects can be concrete,

such as a file in a file system, or conceptual, such as a scheduling policy in a multiprocessing

operating system. Each object has its own inherent identity. In other words, two objects are

distinct even if all their attribute values (such as name and size) are identical.

variable name address

aCredit 10000007
aDebit 13537163
anAccount 56826358
aSavingsAccount 45205128 /

O

O

o
a symbol table a binary tree the gray television

Mike's bicycle Brian s bicycle a white rook

Figure l.l Objects

In the real world an object simply exists, but w ithin a programming language each ob
ject has a unique h a n d le by which it can be uniquely referenced. The handle may be imple
mented in various ways, such as an address, array index, or unique value of an attribute.
Object references are uniform and independent of the contents of the objects, permitting

mixed collections of objects to be created, such as a lile sxstem directors that contains both

tiles and subdirectories.
C la s s i f ic a t io n means that objects w ith the same data structure u n u ih u J c s) and beha\ lor

(o p e r a t h m s) are grouped into a class. P a r a g r a p h . W indow , and C h e s s P ie c e are examples o!
classes. A class is an abstraction that describes properties important to an application and

ignores the rest. Any choice of classes is arbitrary and depends on the application.
Each class describes a possibly infinite set of individual objects. Each object is said to

be an ins tance o f its class. Each instance o f the class has its ow n xalue tor each attribute but

shares the attribute names and operations w ith other instances o f the class. Figure l .2 show s

two classes and some o f their respective instance objects. A n object contains an im p lic it re f

erence to its ow n class; it "know s w hat kind o f tiling it is."

P o ly m o rp h is m means that the same opoiation max behave dittcrentlx on ditterent class

es. The m o \ < oper ation, tor exam ple, max Ivhax e d itle ien tlx on the H indi>w and < hcssPic. c

classes. An i ‘p c r a t io n is an action or transform ation that an ob|cct peitorm s or is suhiect to.

l \ r . :h ; i t i \ n ! \ . , h \ p n ; \ . and m o \ , ate exam ples o! operations. A specilic im plem entation ot an

Bicycle objects
Bicycle class

abstract

into

Attributes

frame size
wheel size
gears
material

O perations

shift
move
repair

Polygon class

Attributes
vertices
border color

abstract ̂ fill color
> O perations

draw
erase
move

l-inure 1.2 Objects and classes

operation by a certain class is called a mclh/nl. Because an object-oriented operator is poly

morphic. it may liave more than one method implementing it.
In the real world, an operation is simply an abstraction ol analogous behavior across d if

ferent kinds of objects. Each object “knows how“ to perform its own operations. In an ob-

lect onented programming language, however, the language automatically selects the

correct method to implement an operation based on the name ol the operation and the class

ut the object being operated on. The user of an operation need not be aware ol how many

m e t h o d s exist to implement a given polymorphic operation. New classes can be added with

out changing existing code, pros ideal methods are pros ideal lor each applicable operation on

the new classes.
I n h u u n u <■ is the sharing ol attributes and operations am ong classes based on a h ie ra r

chical re lationship . A class can be defined broadly and then refined into successively liner

uth. hr-.u". Bach -ailvlas-.. incorporates, or t r j u n l s . a ll ol (he p ropeilics ol its s u p n i A m and

add ' it-, ov. n unique properties The properties ol the superclass need mU be repeated ill each

subclass lo r exam ple , W o /A m d l uuinw and / n rJ V > uu lnw are subclasses o| W t m lo w Both

-.uK lasses inherit the properties ol such as a \is ib le region on the screen. Si i n l l i m ;

V, nulnv. adds a scroll bar and an o ||-.et. The ability to l.scloi out com m on properties o f sev

eral classes into a com m on superclass and to inherit the p topeities lio m the superclass can

• treat!;, reduce repetition w ith in designs and p io g ta n r. and is one ol the m am advantages ol

an objec t oriented sy stem

Polygon objects

1.2 WHAT IS OBJECT-ORIENTED DEVELOPMENT?

This hook is ahoul object-oriented development as a now way of thinking about software

based on abstractions that exist in the real world. In this context development refers to the

front portion of the software life cycle: analysis, design, and implementation. The essence

of object-oriented development is the identification and organization of application-domain

concepts, rather than their final representation in a programming language, object-oriented

or not. Brooks observes that the hard part of software development is the manipulation of its

essence due to the inherent complexity of the problem, rather than the accidents of its map
ping into a particular language which are due to temporary imperfections in our tools that

are rapidly being corrected [Brooks-871.
This book does not explicitly address integration, maintenance, and enhancement, but a

cleaner design in a precise notation facilitates these stages of the entire software life cycle.
The same object-oriented concepts and notation used to express a design provide useful doc
umentation during these stages.C w

1.2.1 Modeling Concepts, Not Implementation

Most of the effort to date in the object-oriented community has been focused on program
ming language issues. The current emphasis in the literature is on implementation rather than

analysis and design. Object-oriented programming languages are useful in removing restric
tions due to the inflexibility of traditional programming languages. In a sense, however, this

emphasis is a step backwards for software engineering by focusing excessively on imple
mentation mechanisms, rather than the underlying thought process that they support.

The real payoff comes from addressing front-end conceptual issues, rather than back
end implementation issues. Design Haw s that surface during implementation are more costlv

to fix than those that are found earlier. Focusing on implementation issues tooearlv restricts

design dunces and often leads to an inferior product. An object-oriented development ap
proach encourages software developers to work and think in terms of the application domain

through most of the software engineering life cycle. It is only w hen the inherent concepts of
the application are identified, organized, and understood that the details of data structures
and functions can be addressed effectively.

Object-oriented development is a conceptual process independent of a programmin'.:
language until the final stages. Object-oriented development is fundamentally a new wav of
thinking and not a programming technique. Its greatest benefits come from helping specifi
ers. developers, and customers express abstract concepts clearly and communicate them to

each other. It can serve as a medium for specification, analysis, documentation, and interfac
ing. as well as for programming. Hven as a programming tool, it can have \arious lancets,
including conventional programming languages and databases as well as object-oriented
lanuuaees.

* K,

1.2.2 Object-Oriented Methodology

WV present ;i m etliodo!oe.\ lor object-oriented developm ent ami a eraphical notation loi rep

icsentm e object oriented coneeptv The m ethodoloev consists ot buddtne a w o ./** /o f an ap

plication domain and then adding implementation details to it during the design o f a system.
We call this approach the Object Modeling Technique (O M T). The methodology has the fol

lowing stages:

1. Analysis: Starting from a statement of the problem, the analyst builds a model of the

real-world situation showing its important properties. The analyst must work with the

requestor to understand the problem because problem statements are rarely complete or

correct. The analysis model is a concise, precise abstraction o f what the desired system

must do. not how it will be done. The objects in the model should be application-domain

concepts and not computer implementation concepts such as data structures. A good

model can be understood and criticized by application experts who are not program

mers. The analysis model should not contain any implementation decisions. For exam
ple. a Window class in a workstation windowing system would be described in terms of

the attributes and operations visible to a user. Analysis is described in Chapter 8.

2. System design: The system designer makes high-level decisions about the overall archi

tecture. During system design, the target system is organized into subsystems based on

both the analysis structure and the proposed architecture. The system designer must de

cide what performance characteristics to optimize, choose a strategy o f attacking the

problem, and make tentative resource allocations. For example, the system designer

might decide that changes to the workstation screen must be fast and smooth even when

windows are moved or erased, and choose an appropriate communications protocol and

memorv buffering strategy. System design is described in Chapter 9.

3. Object design: The object designer builds a design model based on the analysis model

but containing implementation details. The designer adds details to the design model in

accordance with the strategy established during system design. The focus of object de

sign is the data structures and algorithms needed to implement each class. The object

classes from analysis are still meaningful, but they are augmented with computer-do

main data structures and algorithms chosen to optimize important performance mea

sures. Both the application-domain objects and the computer-domain objects are

described using the same object-oriented concepts and notation, although they exist on

different conceptual planes. For example, the Window class operations are now specified

in terms of the underlying hardware and operating system. Object design is described in

Chapter 10.

4. Im plementation: The object classes and relationships developed during object design

are finally translated into a particular programming language, database, or hardware im
plementation. Programming should be a relatively minor and mechanical part of the de

velopment cycle, because all of the hard decisions should be made during design. The

target language influences design decisions to some extent, but the design should not de

pend on tine details of a programming language. During implementation, it is important
to follow good software engineering practice so that traceability to the design is straight

forward and so that the implemented system remains flexible and extensible. For exam

ple, the Window class would be axled in a programming language, using calls to the

underlying graphics system on the workstation. Implementation is descrit>ed in Part 3

according to the target vehicle.

Object-oriented concepts can be applied throughout the system development life cycle, from

analysis through design to implementation. The same classes can be carried from stage to

stage without a change of notation, although they gain additional implementation details in

the later stages. Although the analysis view and the implementation view of Window are both

correct, they serve different purposes and represent a different level of abstraction. The same

object-oriented concepts of identity, classification, polymorphism, and inheritance apply

through the entire development cycle.
Some classes are not part of analysis but are introduced as part of the design or imple

mentation. For example, data structures such as trees, hash tables, and linked lists tire rarely

present in the real world. They are introduced to support particular algorithms during design.
Such data structure objects are used to implement real-world objects within a computer and

do not derive their properties directly from the real world.

1.2.3 Three Models

The O M T methodology uses three kinds of models to describe a system: the object model,

describing the objects in the system and their relationships: the dynamic model, describing

the interactions among objects in the system: and [he functional model, describing the data

transformations of the system. Each model is applicable during all stages of development
and acquires implementation detail as development progresses. A complete description of a

system requires all three models.
The object model describes the static structure of the objects in a system and their rela

tionships. The object model contains object diagrams. An object diagram is a graph whose

nodes are object classes and whose arcs are relationships among classes. The object model
is described in Chapters 3 and 4.

The dynamic model describes the aspects of a system that change over time. The dynam
ic model is used to specify and implement the control aspects of a system. The dynamic mod
el contains slate diagrams. A state diagram is a graph whose nodes are states and whose ares
are transitions between states caused bv events. The dvnamic model is described in♦ *
Chapter 5.

The functional model describes the data value transformations within a system. The

functional model contains data How diagrams. A data llow diagram represents a computa
tion. A data (low diagram is a graph whose nodes are processes and whose arcs are data

flows. The functional model is described in Chapter 6.
The three models are orthogonal parts of the description of a complete system and are

cross-linked. The object model is most fundamental, however, because it is necessary to de
scribe what is changing or transforming before describing when or how it changes.

1.2.4 Differences from Functional Methodology

O bject-oriented developm ent inverts the previous (unction-oriented m ethodology, as e x e m

p lified by the m ethodologies o f Yourdon | Yourdon-S ‘>| and D e M a rc o [D e M a rc o -T O j. In

these m ethodologies, prim arx emphasis is placed on specifying and decom posing sxstem

functionality. Such an approach might seem the most direct way of implementing a desired

goal, but the resulting system can be fragile. If the requirements change, a system based on

decomposing functionality may require massive restructuring. (To be fair, these methodolo
gies are more complex than this. See Chapter 12 for more details.)

By contrast, the object-oriented approach focuses first on identifying objects from the

application domain, then fitting procedures around them. Although this may seem more in
direct. object-oriented software holds up belter as requirements evolve, because it is based

on the underlying framework of the application domain itself, rather than the ad-hoc func
tional requirements of a single problem.

1.3 OBJECT-ORIENTED THEMES

There are several themes underlying object-oriented technology. Although these themes are

not unique to object-oriented systems, they are particularly well supported in object-oriented

systems.

1.3.1 Abstraction

Ahsiriu tion consists of focusing on the essential, inherent aspects of an entity and ignoring

its accidental properties. In system development, this means focusing on what an object is

and does, before deciding how it should be implemented. Use of abstraction preserves the

freedom to make decisions as long as possible by avoiding premature commitments to de
tails. Most modem languages provide data abstraction, but the ability to use inheritance and

polymorphism provides additional pow er. Use of abstraction during analysis means dealing

only with application-domain concepts, not making design and implementation decisions

before the problem is understood. Proper use of abstraction allows the same model to be used

for anal\ sis. high-level design, program structure, database structure, and documentation. A

language-independent style of design defers programming details until the final, relatively

mechanical stage of development.

1.3.2 Encapsulation

f-’ncupfuldtion (also infatmaiton hidingi consists ol separating the external aspects ol an ob
ject. winch are accessible to other objects, from the internal implementation details of the

object, which are hidden from other objects. Encapsulation prevents a program from becom
ing so interdependent that a small change has massive ripple elfects. The implementation of
an object can Ik - changed without affecting the applications that use it. One may want to

change the implementation of an object to improve performance, hx a bug. consolidate code,
or for porting. Encapsulation is not unique to object-oriented languages, but the ability to

combine data structure and behavior m a single entity makes encapsulation cleaner and more

powerful than m conventional languages that separate data structure and behavior.

1.3.3 Combining Data and Behavior

The caller of an operation need not consider how many implementations of a given operation

exist. Operator polymorphism shifts the burden of deciding what implementation to use

from the calling code to the class hierarchy. For example, non-object-oriented code to dis
play the contents of a window must distinguish the type of each figure, such as polygon, cir
cle. or text, and call the appropriate procedure to display it. An object-oriented program

would simply invoke the draw operation on each figure: the decision of which procedure to

use is made implicitly by each object, based on its class. It is unnecessary to repeat the choice

of procedure every time the operation is called in the application program. Maintenance is

easier, because the calling code need not be modified when a new class is added. In an object-
oriented system, the data structure hierarchy is identical to the operation inheritance hierar

chy (Figure 1.3).

Conventional procedural
approach

procedure hierarchy

Object-oriented
approach

class hierarchy

Figure 1.3 An object-oriented approach has one unified hierarchy

1.3.4 Sharing

Object-oriented techniques promote sharing at several different levels. Inheritance of both

data structure and behavior allows common structure to be shared among several similar
subclasses without redundance. The sharing of code using inheritance is one of the mam ad-
vantages of object-oriented languages. More important than the savings in code is the con
ceptual clarity from recognizing that different operations are all really the same thing. "1'his

reduces the number of distinct cases that must be understood and analyzed.
Object-oriented development not only allows information to Iv shared within an applica

tion. but also offers the prosjxvt of reusing designs and axle on future projects. Although this

possibility has been overemphasized as a justification for object-oriented technology, object-
oriented development provides the tools, such as abstraction, encapsulation, and inheritance,
to buiki libraries of reusable components. Object-orientation is not a magic formula to ensure

reusability, howevei. Reuse does not just happen; it must Iv planned by thinking beyond the

immediate application and imesting extra effort in a more general design.

1.3.5 Emphasis on Object Structure, Not Procedure Structure

Object-oriented technology stresses specifying what an object is. rather than how it is used.

Hie uses of an object depend highly on the details of the application and frequently change

during development. As requirements evolve, the features supplied by an object are much

more stable than the ways it is used, hence software systems built on object structure are

more stable in the long nm |Booch-S6|. Object-oriented development places a greater em
phasis on data structure and a lesser emphasis on procedure stnicture than traditional func
tional-decomposition methodologies. In this respect, object-oriented development is similar
to information modeling techniques used in database design, although object-oriented devel
opment adds the concept of class-dependent behavior.

1.3.6 Synergy

Identity, classification, polymorphism, and inheritance characterize mainstream object-ori
ented languages. Each of these concepts can be used in isolation, but together they comple
ment each other ssnergistically. The benetits of an object-oriented approach are greater than

they might seem at first. The greater emphasis on the essential properties of an object forces

the softw are developer to think more carefully and more deeply about what an object is anil
dives, with the result that the system is usually cleaner, more general, and more robust than

it would be if the emphasis were only on the use of data and operations. According to Tho
mas. these various features come together to create a different style of programming |Tho-
mas-S9|. Cox claims that encapsulation is the foundation for the object-oriented approach,
shifting emphasis from coding technique to packaging, while inheritance builds on encapsu
lation to make reuse of code practical |Cox-X6).

1.4 EVIDENCE FOR USEFULNESS OF OBJECT-ORIENTED DEVELOPMENT

We have been actively using object-oriented developm ent in internal applications at the G e n

eral Electric Research and D evelopm ent Center (G E K i t !)) . W e have used object-oriented

techniques for developing com pilers (C hap ter IS), graphics (C hapter |9>. user interlaces

(C hapter 2*9, databases [B Iaha-X 9), an object-oriented language |Shah X 9 |. C A I) systems,

simulations, meta models, control systems, and o ilier applications. We have used object ori

ented models to docum ent existing program s that are ill-structured and d ifficu lt to under

stand O ur im p lem en ta tio n targets base ranged from o b jec t-o rien ted languages to non

object-oriented languages to relational databases. W e have sticeesslnlly taught this approach

to other*, and base used it to com m unicate w ith application experts

We arc enthusiastic supporters ol object oriented developm ent and see no reason it

should not be used on most software projects. The m am benefit is not reduced developm ent

tim e, object oriented developm ent may lake m ore lim e than conventional developm ent, be

cause it is intended to promote tuturc reuse and reduce downstream e u o is am! maintenance

T h r tim e until code is fust com pleted is nrohabh about the same as. or shphth greater than.• 9 *
usun: a conventional approach. H ow ever, subsequent iterations of an object-oriented devel

opment are easier and faster than with conventional development because revisions are more

localized. Furthermore, fewer iterations are usually needed because more problems are un
covered and corrected during development.

The annual OOPSLA (Object-Oriented Programming Systems, Languages, and Appli
cations) and ECOOP (European Conference on Object-Oriented Programming) conferences

are the most important forums for disseminating new object-oriented ideas and application

results. OOPSLA and ECOOP proceedings describe many applications that have benelited

from an object-oriented approach. [Russo-88] describes a project that used C++ as the target
language for implementing an operating system. [Kerr-87] presents the results of using Fla
vors to implement a program for statistical analysis. [Jacky-86] describes a large medical ap
plication that was designed with object-oriented techniques and implemented in Pascal.
[Piersol-86] summarizes the results of using Smalltalk-80 to implement an advanced spread
sheet package. [Barry-89] describes the implementation of a signal processor prototype us
ing Smalltalk. We should note that most of the object-oriented literature to date has been

concerned with implementation and languages. We hope that this book will encourage more

emphasis on object-oriented development.
Many persons have heard of object-oriented technology but think of it as inefficient.

This attitude is due to the early object-oriented languages, such as Smalltalk, that were in
terpreted and were inefficient compared to C or Fortran. Subsequent object-oriented lan
guages, such as C++, can be used in an efficient manner, and compiler designers are

improving the efficiency of even the "pure" object-oriented languages [Chambers-89]. In

any case, object-oriented design is broader than object-oriented programming and provides

loaical benefits regardless of the choice of implementation language.

1.5 ORGANIZATION OF THIS BOOK

The remainder of this book is organized into four parts: modeling concepts, methodology,
implementation, and application case studies. Appendices summarize the O M T notation and

provide a glossary of object-oriented terms.
Part I explains object-oriented concepts and presents a graphical notation for expressing

them. It does not discuss the process of developing object-oriented models, which is the sub
ject of Pan 2. Chapter 2 introduces our Object Modeling Technique (O M T) notation. The

O M T consists of three orthogonal views: the object model, dynamic model, and functional
model. Chapters 3 and 4 describe the object model, which deals with the structural "data"

aspects of a system. Chapter 3 presents basic object modeling concepts. Even reader', famil
iar with object-oriented programming should read this chapter, as we introduce modeling

concepts not found in most object-oriented languages. Chapter 4 presents advanced object
modeling concepts; this chapter may be skipped on a first reading of the book. Chapter 3 de
scribes the dvnamic model, which deals with states and events and models the control as-
|vets of a system. Readers lamiliar with stale machines mav skim the beginning of the

chapter, but the remainder of the chapter describes some state machine structuring concepts

that arc not widely taught. Chapter b describes (lie functional model, which captuies lunc-
lions. v a lu e s , constraints and derived intonnation. Readers who know comcniional tunc-

1.5 O R G A N IZ A T IO N O F T H IS BOOK 11

tionally-oricnied methodologies will find this material familiar. Part I of the book deals with

concepts that permeate the software development cycle, applying equally to analysis, design,
and implementation. The notation described in Part 1 is used throughout the book.

Part 2 shows how to develop an object-oriented model and use it to develop a system

using our O M T methodology. Chapter 7 provides an overview of the O M T methodology.
Chapter 8 discusses analysis, the process of describing and understanding the application do
main without imposing implementation decisions. Analysis begins with a problem statement
from the customer. The analyst incorporates customer interviews and application domain

knowledge to construct an object model, a dynamic model, and a functional model.
Chapter 9 addresses high-level system design, which is primarily a task of partitioning a sys
tem into subsystems and making policy decisions. Chapter 10 discusses object design, the

augmentation of the analysis model with design decisions. These decisions include the spec
ification of algorithms, assigning functionality to objects, introduction of internal objects to

avoid recomputation, and optimization. Chapter 11 summarizes the methodology presented
in Chapters 8 through 10. Chapter 12 compares object-oriented methodologies with other
popular methodologies, including conventional software engineering approaches and infor

mation modeling notations from the database world.
Part 3 addresses implementation issues dependent on the target language. Chapter 13

provides an overview of implementation. Chapter 14 discusses guidelines for enhancing

readability, reusability, and maintainability using good object-oriented programming style.
Chapter 15 discusses problems of implementing object-oriented designs using object-
oriented languages, including varying degrees of support for different concepts by various

languages. 'Hie chapter includes a brief survey of several commercially-available languages

and describes current work on integrating object-oriented languages with databases.
Chapter 16 describes how to implement an object-oriented design with a non-object-orient-
ed language, such as C' or Ada. Chapter 17 shows how to implement an O M T design using

a relational database. Chapter 17 contains a small amount of introductory material for read
ers unfamiliar with database concepts.

Part 4 presents several case studies from our work at the (»li R & l) Center. These are sub
stantial applications that we developed using the O M T methodology. Chapter IK describes

a compiler for object diagrams. The compiler accepts an object diagram as input and gener
ates a relational database schema as output. This compiler was part of a bill-of-malerials ap
plication and helped motivate a successor project to generate declarations for object-oriented

languages and tor Ada. Chapter 19 describes a three-dimensional computer animation sys
tem that was implemented in C. using conventions on the delinition and use ol C structures

to obtain object oriented behavior. The computer animation system produces high quality
video sequences illustrating the results of scientific calculations and experiments. C haptcr
20 discusses a computer aided design tool for electrical power distribution. This chapter il

lustrates some of the dynamic modeling concepts presented m the book.
A ll chapters contain exercises. Selected exercises are answered m the back of the book.

We suggest that you try to work the exercises as you read this book, even il you are not a

student, fhe exercises bring out m any subtle points that are only touched upon m I he text.

The exercises provide practice in using the O M ’I m ethodology and serve as a stepping stone

to real applications.

abstraction functional model object design

analysis identity object-oriented

classification implementation Object Modeling Technique (O M T)

dynamic model inheritance polymorphism

encapsulation object model system design

Figure 1.4 Key concepts for Chapter I

BIBLIOGRAPHIC NOTES

Dave Thomas and Peter Wegner have published readable and informative articles on object-
oriented concepts in the March 1989 issue of BYTE magazine. The references listed below

by Grady Booch. Brad Cox, and Bertrand Meyer are particularly good sources of informa
tion. However. Cox and to a lesser extent Meyer emphasize the language aspects, although

they do devote some space to design issues. Shlaer and Mcllor discuss object-oriented anal

ysis and database implementation.

REFERENCES

Barry-89] Brian M . Barrv. Prototyping a real-time embedded system in Smalltalk. O O P S L V S 9 as

A C M S IG P L A N 24, l() (Oct. 1989). 255-265.

|Blaha-K9| Michael R. Blaha, Nancy L. Fastman. Malcolm M . Hall. An extensible A H & C database
model. Computers <uul Chemical Engineering IS , 7 (July 1989) 753-766.

[Booeh-S6| Grady Booch. Object-oriented development. IE E E Transactions on Software Engineerin'*

SIC 12, 2 (Feb. 1986). 211-221.

(Booch-9!) Grady Booch. O h jec t-O r ien tcJ Design. Redwood C ity. Calif.: Benjamm/Cummmgs.

1991.

[Brooks-871 Frederick P. Brooks. No silver bullet--essence and accidents of software engineering

IE E E Computer (April 1987). 10-19.

|Chambers-X9] Craig Chambers. David l ngar. Hlgin Lee. An efficient implementation ol SF.LI*. a dy-
namically-typed object-oriented language based on prototypes. 0 (> P S L V S o as A C M S l (i P l A \

24, lO tO cl! I9S9». 49-70.

|(\vx-X 6| Brad J. Cox. O h jc c t -O n c n tc J Pn ^ram m in x : Reading, MassaehuseUs; Addison-Wesley,

1986.

|I)cM areo-79| Tom DeMarco. Stnn-turcJ Analysis and Systems S p a itteaium Fnglcwood d i l ls . New

Jersey: Prentice Hall. 1970.

|Jackv-K<>) Jonathan Jacky. Ira Kalet. An object-oriented approach to a large scientific application
O O P S IA 'S t* as A(' M S H i P L W 21, 11 f N o \. 19S(w. 3oS-57c>.

|Kerr-S7| R.K. Kerr. I).B . Pcrcnal. Lse ol objecc-oriented progiammmg m a tunc ^encs analyst' sys

tern. O O p \ I A ‘S7 , a A C M S I C P I A S 22. 12 (Dec. P>87>. L IO

|Me\er-S<s| Bertrand M e\er. (>hft■< t (tnenteJSi*p \ \a tc (turn. I Ic illo iddm c. F.ngland. Prentuo

I tall International. loss

| Piet sol -No) k m l W Picrsol. (>bjccl oi icnteil ^picadshcotv the aiulyttc \pu\idslKvt package.
o n p \ ! *v , as U 'M S IC P I \ \ 2 ! . 11 iN o \. l ‘>so>, 5X5 ;oo

EXERCISES 13

JRusso-SS] Vincent Russo. Gary Johnston, Roy Campbell. Process management and exception han
dling in multiprocessor operating systems using object-oriented design techniques. OOPSLA'SS

as A C M S I G P I A S 23. I I (Nov. 1988). 248-258.

(Shah-89| Ashwin Shah. Janies Rumbaugh, Jung l lamel, Renee Borsari. DSM : an object-relationship

modeling language. O O PSLA 'SV as A C M S /G P L A S 24, I I (Nov. 1989). 191*202.

[Shlaer-SSj Sails Shiacr, Stephen J. Mellor. Object-Oriented Systems-Analysis: Modeling the World in

D ata Englewood Clift's, New Jersey: Yourdon Press. 1988.

[Thoma>-X9] Dave Thomas. W hafs in an object? BYTE /*/. 3 (March 1989), 231*240.

(Wegner-89) Peter Wegner. Learning the language. B Y T E /*/, 3 (March 1989), 245-253.

[Yourdun-S9j Edward Yourdon. M odern Structured Analysis. Englewood Cliffs. New Jersey: Yourdon

Press. 1989.

EXERCISES

'Die number m parentheses next to each exercise indicates the difficulty, from I (easy) to 10 (very

difficult). The word ’’(Project)" in front of an exercise means that the problem statement for the exer

cise is taken from the literature or that the exercise requires extensive work.

1.1 <2> What major problems have you encountered during past software projects? Estimate what

percentage of your lime you spend on analysis, design, coding, and testing/debugging/fixing.

How do xou go about estimating how much effort a project w ill require?

1.2 (3> Recall a system that you created on your own in the past. Briefly describe the system. What

o b s ta c le s did you encounter in the design? What software engineering methodology, if any, did

you use? What were your reasons for choosing or not choosing a methodology? Are you satis-

tied with the s\ stem as it exists? How difficult is it to add new features to the svstem? Is it main- * •
tamahlc?

1.3 14 1 Describe a large software system that was supposed to l>c created in the Iasi five years that

was behind schedule, over budget, or tailed to perform as expected. What factors were blamed?

How could the tailurc have been avoided?

1.4 f 3 / 1-rom a user’s point of % icw. critici/c a hardware or software system that has a flaw that par

ticularly annoys you. fo r example, some cars require the bumper to lx* removed to replace a lail

hght D e s c r ib e the system, the flaw . how it was overlooked, and how it could have been avoided

with a bn mure though! dunne design.V • •

1.5 ' 5 * A l l o b jc v b h a ve id e n t i ty a m ! a rc d is t in g u is h a b le H o w e v e r , lo r la rg e c o l le c t io n s o t o b je c ts ,

it m ay n o t i v a t r iv ia ! m a ile r to d e v is e a sche m e to d is t in g u is h th e m E u ith c rm o ie . a sch e m e m a y

d e p e n d on the p u rp o s e n ! the d is t in c t io n , f o r each o l the f o l lo w in g c o l le c t io n s o l o b ie c ts . tie -

vcrib .* h»*w they c o u ld be d is t in g u is h e d .

a All |Vf-orr. m the world (or the [impose 4*1 sending mail

b All persons in the world tor the purpose ol criminal investigations

c All customer* with -ate deposit Innes m a given bank,

d All telephones m the world Un making telephone calls

c -Ml cu t«)ft;ers 4** a :eIc|>hoiic company t«*r billing pur|*>scv

* All electronic mad addrev.es throughout the world

g Ml employ ec■* <»i a company u > restrict ac4.es*. tor six urn v reasons

1.6 (4) Prepare a list of objects that you would expect each of the following systems to handle:
a. a program for laying out a newspaper
b. a program to compute and store bowling scores
c. a telephone answering machine
d. a controller for a video cassette recorder
e. a catalog store order entry' system

1.7 (6) There are two lists below. The first is a list of classes that describe implementation objects.
The second is a list of operations. For each class, select the operations that make sense for ob
jects in that class. Discuss the behavior of each operation listed for each class.

Classes:
variable length array — ordered collection of objects, indexed by an integer, whose size can

vary at run-time
symbol table — a table that maps text keywords into descriptors
set — unordcrcd collection of objects with no duplicates

Operations:
append — add an object to the end of a collection
copy — make a copy of a collection
count — return the number of elements in a collection
delete — remove a member from a collection
index — retrieve an object from a collection at a given position
intersect — determine the common members of two collections
insert — place an object into a collection at a given position
update — add a member to a collection, writing over whatever is already there

1.8 (4) Discuss what the objects in each of the following lists have in common. You may add more
classes to each list.
a. scanning electron microscope, eyeglasses, telescope, bomb sight, binoculars
b. pipe, check valve, faucet, filter, pressure gauge
c. bicycle, sailboat, car. truck, airplane, glider, motorcycle, horse
d. nail, screw, bolt, rivet
e. tent. cave. shed, garage, bam. house, skyscraper
f. square root, exponential, sine, cosine

PART 1: MODELING CONCEPTS

2
Modeling as a Design Technique

A model is an abstraction of something for the purpose of understanding it before building

it. Because a model omits nonessential details, it is easier to manipulate than the original en
tity. Abstraction is a fundamental human capability that permits us to deal with complexity.
Hneineers. artists, and craftsmen have built models for thousands of years to trv out designs

before executing them. Development of hardware and software systems is no exception. To

build complex systems, the developer must abstract different views of the system, build

models using precise notations, verily that the models satisfy the requirements of the system,
and gradual!) add detail to transform the models into an implementation.

Part ! of the book describes the concepts and notations involved in object-oriented mod

eling. These concepts are applied to analysis, design, and implementation in Parts 2 and 3 of
the book. This chapter discusses modeling in general and then introduces the three kinds of
object-oriented models composing the Object Modeling Technique: the object model, which
describes static structure, the dynamic model, which describes temporal relationships; and

the functional model, which describes functional relationships among values.

2 .1 M O D E L IN G

D e s ig n e rs b u i ld m a n y k in d s o t m o d e ls to r v a r io u s p u rp o s e s b e fo re c o n s t ru c t in g t i l in g s . h . \ -

a m p te s in c lu d e a rc h ite c tu ra l rm n le ls to s h o w c u s to m e rs , a irp la n e sca le m o d e ls lo r w in d - tu n -

n e l te s ts , p e n c i l s k e tc h e s lo r c o m p o s i t io n o t o i l p a in t in g s , b lu e p r in ts o | m a c h in e p a r ts ,

s to ry b o a rd s o f a d v e r t is e m e n ts , a n d o u t l in e s o t b o n k s . M o d e ls se rve s e v e ra l p u rp o s e s ;

* a p h \ u t \ t l ent i ty h r f o t r hutUi tt t - j ti. T h e m e d ie v a l m a so n s d id n o t k n o w m o d e rn

p h vmcs. b u t th e v b u i l t sca le m o d e ls o! die (io th u c a th e d ra ls to tes t the to rc e s o n the s tru c *

d ire . S c a le m o d e ls of a irp la n e s , c a rs , a n d b o a ts h a v e b e e n te s te d in w in d tu n n e ls a n d w a te r

tanks to improve their aerodynamics. Recent advances in computation permit the simulation

of many physical structures without having to build physical models. Not only is simulation

cheaper, but it provides information that is too fleeting or inaccessible to be measured from

a physical model. Both physical models and computer models are usually cheaper than

building a complete system and enable flaws to be corrected early.

• Communication with customers. Architects and product designers build models to show

their customers. Mock-ups are demonstration products that imitate some or all of the exter
nal behavior of a system.

• Visualization. Storyboards of movies, television shows, and advertisements allow the

writers to see how their ideas How. Awkward transitions, dangling ends, and unnecessary

segments can be modified before detailed writing begins. Artists' sketches allow them to

block out their ideas and make changes before committing them to oil or stone.

• Reduction o f complexity. Perhaps the main reason for modeling, which incorporates all the

previous reasons, is to deal with systems that are too complex to understand directly. The

human mind can cope with only a limited amount of information at one time. Models reduce

complexity by separating out a small number of important things to deal with at a time.

2.1.1 Abstraction

Abstraction is the selective examination of certain aspects of a problem. The goal of abstrac

tion is to isolate those aspects that tire important for some purpose and suppress those aspects

that are unimportant. Abstraction must always be for some purpose, because the purpose de
termines what is and is not important. Many different abstractions of the same thing are pos
sible, depending on the purpose for which they are made.

All abstractions are incomplete and inaccurate. Reality is a seamless web. Anything we

say about it. any description of it, is an abridgement. All human words and language are ab
stractions— incomplete descriptions of the real world. This does not destroy their usefulness.
The purpose of an abstraction is to limit the universe so we can do things. In building models,
therefore, you must not search for absolute truth but for adequacy for some purpose. There

is no single "correct" model of a situation, only adequate and inadequate ones.
A good model captures the crucial aspects of a problem and omits the others. Most com

puter languages, for example, are poor vehicles for modeling algorithms because they force

the specification of implementation details that are irrelevant to the algorithm. A model that
contains extraneous detail unnecessarily limits vour choice of design decisions and diverts« 9 W

attention from the real issues.

2.2 THE OBJECT MODELING TECHNIQUE

We liiul it useful to model a system from three related but different viewpoints, each captur
ing important aspects of the system, but all required for a complete description. The Object

Modeling Technique 1O M T 1 is our name for the methodology that combines these three

view s ot' modeling systems. The object model represents the static, structural, "data" aspects

of a system. The dynamic model represents the temporal, behavioral, "control" aspects of a

system. The functional model represents the transformational, "function" aspects of a sys
tem. A typical software procedure incorporates all three aspects: It uses data structures (ob
ject model), it sequences operations in time (dynamic model), and it transforms values

< functional model). Each model contains references to entities in other models. Eor example,
operations are attached to objects in the object model but more fully expanded in the func

tional model.
TTe three kinds of models separate a system into orthogonal views that can be represent

ed and manipulated with a uniform notation. The different models are not completely inde
pendent— a system is more than a collection of independent parts— but each model can be

examined and understood by itself to a large extent. The interconnections between the dif
ferent models are limited and explicit. O f course, it is always possible to create bad designs

in which the three models are so inlertw ined that they cannot be separated, but a good design

isolates the different aspects of a system and limits the coupling between them.
Each of the three models evolves during the development cycle. During analysis, a mod

el of the application domain is constructed without regard for eventual implementation. Dur
ing design, solution-domain constructs are added to the model. During implementation, both

application-domain and solution-domain constructs are coded. 'Hie word model has two di
mensions— a view of a system (object model, dynamic model, or functional model) and a

stage of development (analy sis, design, or implementation). The meaning is generally clear

from context.

2.2.1 Object Model

The oh/ct t model describes the structure of objects in a system— their identity, their relation
ships to other objects, their attributes, and their operations. The object model provides the

essential framework into which the dynamic and lunctional models can be placed. Changes

and transformations are meaningless unless there is something to be changed or translormed.
Objects are the units into which we divide the world, the molecules of our models.

Our goal in constructing an object model is to capture those concepts from the real world

that are important to an application. In modeling an engineering problem, the object model
should contain terms familiar to engineers; in modeling a business problem, terms from the

business; in modeling a user interlace, terms Iron) the application domain. An analysis mod
el should not contain computer constructs unless the application being modeled is inherently

a computer problem, such as a compile! or an operating system. I he design model describes

how to solve a problem and may contain computer constructs.
The object model is represented graphically with object diagrams containing object

classes (.'lasses are arranged into hierarchies sharing common structure and behavior and are

associated with other classes. Classes dehne the attribute values carried by each object in
stance and the operations which each object peilomis or undeigf*es.

2.2.2 Dynamic Model

The dynam ic model describes those aspects of a system concerned with time and the

sequencing of operations— events that mark changes, sequences of events, states that detine

the context for events, and the organization of events and states. The dynamic model cap
tures control, that aspect of a system that describes the sequences of operations that occur,
without regard for what the operations do, what they operate on, or how they are imple
mented.

The dynamic model is represented graphically with state diagrams. Each state diagram

shows the state and event sequences permitted in a system for one class of objects. State di
agrams also refer to the other models. Actions in the state diagrams correspond to functions

from the functional model: events in a state diagram become operations on objects in the ob
ject model.

2.2.3 Functional Model

The functional model describes those aspects of a system concerned with transformations of
values— functions, mappings, constraints, and functional dependencies. The functional

model captures what a system does, without regard for how or when it is done.
The functional model is represented with data flow diagrams. Data flow diagrams show

the dependencies between values and the compulation of output values from input values

and functions, without regard for when or if the functions are executed. Traditional comput
ing concepts such as expression trees are examples of functional models, as are less tradi
tional concepts such as spreadsheets. Functions are invoked as actions in the dynamic model
and are shown as operations on objects in the object model.

2.2.4 Relationship among Models

Each model describes one aspect of the system but contains references to the other models.
The object model describes data structure that the dynamic and functional models operate

on. The operations in the object model correspond to events in the dynamic model and func
tions in the functional model. The dynamic model describes the control structure of objects.
It shows decisions which depend on object values and which cause actions that change ob
ject values and invoke functions. The functional model describes functions invoked by op
erations in the object model and actions in the dynamic model. Functions operate on data

values specifled by the object model. The functional model also shows constraints on object

values.
There are occasional ambiguities about which model should contain a piece of informa

tion. This is natural, because any abstraction is only a rough cut at reality; something will in
evitably straddle the boundaries. Some properties of a system may tv poorly represented by

the models. This is also normal, because no abstraction can capture every thing; the goal is to

simplify the system description without loading down the nuxlcl with so many constructs that
it becomes a burden and not a help. For those things that the mode! does not adequately capture,
natural language or application-specific notation is still a perfectly acceptable tool.

2.3 CHAPTER SUMMARY

Models are abstractions built to understand a problem before implementing a solution. All
abstractions are subsets of reality selected for a particular purpose.

The Object Modeling Technique (O.MTi consists of three kinds of models. The object
model describes the static structure of a system in terms of objects and relationships corre
sponding to real-world entities. The dynamic model describes the control structure of a sys
tem in terms of events and states. The functional model describes the computational

structure of a system in terms of values anil functions. Different problems place different em
phasis on the three kinds of models, but all three are necessary for any large system.

abstraction

dvnatntc model
functional model

mndclinu
object model
relationship among models

Figure 2.1 Ke> concepts for Chapter 2

EXERCISES

2.1 i l l Some characteristics of a tire are its m / c . material, internal construction tbias ply. steel bell

ed. tor example*, tread design. c o m . expected life. and weight. Which factors are important in

danJmg whether or not to bin a tire lor your car/ Which ones might be relevant to someone

simulating the performance of a computerized anti skid system for cars? Which ones are impor

tant to someone constructing a swing tor a ch ild /

2.2 r : ,S u j >[M>se sour bathroom sink is clogged and you haxc decided to try to unclog it by pushing

a wire into the drain You haxc sex oral types ol who available around the house, some insulated

arid some not. Which ot the following wire characteristics would \ou need to consider in select

mg a wire lor the job? Hxplain sour answers

a Inunumts to electrical noise

b Color of the insulation

. Resistance of the insulation Cn saltwater

d Resistance of the insulation to tire

e Cost
: Stillness
g l.a se o l s t r ip p in g the in s u la t io n

h Weight
l A*- a i la h d u x

I S tre n g th

k kessslaTue to h igh temperatures

t Resistance to stretching

2.3 (3) Wire is used in the following applications. For each application, prepare a list of wire char
acteristics that are relevant and explain why each characteristic is important for the application.
a. Selecting wire for a transatlantic cable
b. Choosing wire that you will use to create colorful artwork
c. Designing the electrical system for an airplane
d. Hanging a bird feeder from a tree
e. Designing a piano
f. Designing the filament for a light bulb

2.4 (3) If you were designing a protocol for transferring computer files from one computer to anoth
er over telephone lines, which of the following details would you select as relevant? Explain
how your selected details arc relevant:
a. Electrical noise on the communication lines
b. The speed at which serial data is transmitted, typically 300. 1200. 2400. 4800. or 9600 bits

per second
c. Availability of a relational database
d. Availability of a good full screen editor
e. Buffering and How control such as an XON/XOFF protocol to regulate an incoming stream

of data
f. Number of tracks and sectors on the hard and/or floppy disk drive
g. Character interpretation such as special handling of control characters
h. File organization, linear stream of bytes versus record-oriented, for example
i. Math co-processor

2.5 (2) There arc several models used in the analysis and design of electrical motors. An electrical
model is concerned with voltages, currents, electromagnetic fields, inductance, and resistance.
A mechanical model considers stiffness, density, motion, forces, and torques. A (henna! mode)
is concerned with heal dissipation and heat transfer. A fluid model describes the flow of cooling
air. Which model(s) should be considered to answer the following questions? Discuss your con
clusions:
a. How much electrical energy is required to run a motor? How much of it is wasted as heat?
b. How much docs a motor weigh?
c. How hot docs a motor get?
d. How much vibration does a motor create?
e. How long will it take for the bearings of a motor to wear out?

2.6 (3) Decide which modelts) (object, dynamic, functional) arc relevant for the following aspects
of a computer chess player. The board and pieces will be displayed graphically on a \idco dis
play. Human moves will tv indicated via a cursor controlled by a mouse. Of course, in some

cases, more than one category may apply. Defend your answers:
a. User interface which displays computer moves and accepts human moves
b. Representation of a configuration of pieces on the board
c. Consideration of a sequence of possible legal moves
d. Validation of a move requested by the human player

Object Modeling

An object mode! capiures (he static structure of a system by showing the objects in the sys
tem, relationships between the objects, and the attributes and operations that characterize

each class of objects. The object model is the most important of the three models. We em
phasize building a system around objects rather titan around functionality, because an object-
oriented model more closely corresponds to the real world and is consequently more resilient
with respect to change. Object models provide an intuitive graphic representation of a sys
tem and are valuable for communicating with customers and documenting the structure of a

system.
Chapter 3 discusses basic object modeling concepts that will be used throughout the

book. For each concept, we discuss the logical meaning, present the corresponding O M T no
tation, and provide examples. Some important concepts that we consider are object, class,
link, association, generalization, and inheritance. You should master the material in this

chapter before proceeding in the book.

3.1 OBJECTS AND CLASSES

3.1.1 Objects

The purpose of object modeling is to describe objects. For example, Joe Smith. Simples com

pany. Ixtssie. process number 7o*M'. and the top window are objects. An object is simply

something that makes sense in an application context.
Wc define an object as a concept, abstraction, or thing with crisp boundaries and mean

ing for the problem at hand. Objects serve two purposes: They promote understanding of the

real world and provide a practical basis for computer implementation. Decomposition of a

problem into objects depends on judgment and the nature of the problem. There is no one

correct representation.

All objects have identity and arc distinguishable. Two apples with the same color, shape,
and texture are still individual apples: a person can eat one and then eat the other. Similarly,
identical twins are two distinct persons, even though they may look the same. The term

identity means that objects are distinguished by their inherent existence and not by descrip
tive properties that they may have.

The word object is often vaguely used in the literature. Sometimes object means a single

thing, other times it refers to a group of similar things. Usually the context resolves any am
biguity. When we want to be precise and refer to exactly one thing, we will use the phrase

object instance. We will use the phrase object class to refer to a group of similar things.

3.1.2 Classes

An object class describes a group of objects with similar properties (attributes), common be
havior (operations), common relationships to other objects, and common semantics. Person,

company, anim al, process, and window are all object classes. Each person has an age. IQ.
and may work at a job. Each process has tin owner, priority, and list of required resources.
Objects and object classes often appear as nouns in problem descriptions.

The abbreviation class is often used instead o f object class. Objects in a class have the

same attributes and behavior patterns. Most objects derive their individuality from diller-
ences in their attribute values and relationships to other objects. However, objects with iden
tical attribute values and relationships are possible.

The objects in a class share a common semantic purpose, above and beyond the require
ment of common attributes and behavior. Thus even though a barn and a horse both have a

cost and age. they may belong to different classes. If barn and horse were regarded as purely

financial assets, they may belong to the same class. If the developer took into consideration

that a person paints a barn and feeds a horse, they would be modeled as distinct classes. The

interpretation of semantics depends on the purpose of each application and is a matter of
judgment.

Each object “knows" its class. Most object-oriented programming languages can deter
mine an object's class at run time. An object’s class is an implicit property ol the object.

If objects are the focus of object modeling, why bother with classes? The notion ol ab
straction is at the heart of the matter. By grouping objects into classes, we abstract a problem.
Abstraction gives modeling its power ami ability to generalize Iron) a few specitic cases to

a host of similar cases. Common definitions (such as class name and attribute names) are

stored once per class rather than once per instance. Operations can be written once lot each

class, so that all the objects in the class benefit from code reuse, l or example, all ellipses

share the same procedures to draw them, compute their areas, or test toi intersection w uh a
line; polygons would have a separate set ot procedures. Even special cases, such as circles

and squares, can use the general procedures, though more efticient procedures are poss ib le

3.1.3 Object Diagrams

We began tins chapter In discussing some basic m odeling concepts, spcctlically ; and

i l n w . We have d cscn lvd these concepts w ith examples ami piose. Since this apptoach is

vague for more complex topics, we need a formalism for expressing object models that is

coherent, precise, and easy to formulate.
Object diagrams provide a formal graphic notation for modeling objects, classes, and

their relationships to one another. Object diagrams are useful both for abstract modeling and

for designing actual programs. Object diagrams are concise, easy to understand, and work

well in practice. We use object diagrams throughout this book. New concepts are illustrated

by object diagrams to introduce the notation and clarify our explanation of concepts. There

are two types of object diagrams: class diagrams and instance diagrams.
A class diagram is a schema, pattern, or template for describing many possible instances

of data. A class diagram describes object classes.
An instance diagram describes how a particular set of objects relate to each other. An

instance diagram describes object instances. Instance diagrams are useful for documenting

test cases (especially scenarios) and discussing examples. A given class diagram corre
sponds to an infinite set of instance diagrams.

Figure 3.1 shows a class diagram (left) and one possible instance diagram (right) de
scribed by it. Objects Joe Smith, M a ry Sharp, and an anonymous person are instances of
class Person. The O M T symbol for an object instance is a rounded box. The class name in

parentheses is at the top of the object box in boldface. Object names are listed in normal font.
The O M T symbol for a class is a box with class name in boldface.

Person
(Person)

Joe Smith

Class

(Person)

Mary Sharp

Objects

(Person)

Figure 3.1 Class and objects

Class diagrams describe the general case in modeling a system. Instance diagrams are

used mainly to show examples to help to clarify a complex class diagram. 'Hie distinction

between class diagrams and instance diagrams is in fact artificial; classes and instances can

appear on the same object diagram, but in general it is not useful to mix classes and in

stances. (The exception is metadata, discussed in Section 4.5.)

3.1.4 Attributes

An attribute is a data value held by the objects in it class. Sam e. age. and weight are at
tributes of Person objects. Cohn, weight, and model-year arc attributes of C ar objects. Mach

attribute has a value for each object instance. For example, attribute age has value "34” in

object Joe Smith. Paraphrasing, Joe Smith is 24 years old. Different object instances may

have the same or different values for a given attribute. Path attribute name is unique within

a class (as opposed to being unique across all classes). Thus class Person ami class Company

mav each have an attribute called address.#

An attribute should be a pure data value, not an object. Unlike objects, pure data values

do not have identity. For example, all occurrences of the integer "17" are indistinguishable.

as are all occurrences of the string “Canada." The country Canada is an object, whose name

attribute has the value “Canada" (the siring). The capital of Canada is a city object and

should not be modeled as an attribute, but rather as an association between a country object
and a city object (explained in Section 3.2). The name of this city object is “Ottawa" (the

siring).
Attributes are listed in the second part of the class box. Each attribute name may be fol

lowed by optional details, such as type and default value. The type is preceded by a colon.
The default value is preceded by an equal sign. At times, you may choose to omit showing

attributes in class boxes. It depends on the level of detail desired in the object model. Class

boxes have a line drawn between the class name and attributes. Object boxes do not have

this line in order to further differentiate them from class boxes.
Figure 3.2 shows object modeling notation. Class Person has attributes name and a,i»<\

Name is a string and age is an integer. One object in class Person has the value Joe Smith for
name and the value 24 for age. Another object has name M a ry Sharp and age 52.

Person

name: string
age: integer

Class w ith A ttrib u tes

(Person)

Joe Smith
24

(Person)

Mary Sharp
52

O bjects w ith V alues

Figure 3.2 Attributes and values

Some implementation media, such as many databases, require an object to have a unique
identifier that identities each object. Explicit object identifiers are not required in an object
model. Each object has its own unique identity. Most object-oriented languages automatical
ly generate implicit identifiers with which to reference objects. You need not and should not
explicitly list identifiers. Figure 3.3 emphasizes this point. Identifiers are a computer artifact
and have no intrinsic meaning beyond identifying an object.

Person

name: string
age: integer j

*

W rong C orrect

Figure 3.3 Do not explicit!) list object ulcnlilicrs

D o mu confuse internal identifiers w ith rea l-w o rld attributes. Internal iden tilie is ate

puteK an im plem entation convenience and have no meaning in the ptoblem dom ain. For ex

am ple, social secunlx n u n ilv t. license plate num bei. and telephone number are not internal

identifiers because they have meaning in the real world. Social security number, license plate

number, and telephone number arc legitimate attributes.

3.1.5 Operations and Methods

An operation is a function or transformation that may be applied to or by objects in a class.
H ire, fire, and pay-dividend are operations on class Company. Open, close, hide, and redis

play are operations on class Window. All objects in a class share the same operations.
Each operation has a target object as an implicit argument. The behavior of the operation

depends on the class of its target. An object “knows” its class, and hence the right implemen
tation of the operation.

The same operation may apply to many different classes. Such an operation is polym or

phic: that is. the same operation takes on different forms in different classes. A method is the

implementation of an operation for a class. For example, the class File may have an opera
tion print. Different methods could be implemented to print ASCII files, print binary Hies,
and print digitized picture tiles. All these methods logically perform the same task— printing

a file: thus you may refer to them by the generic operation print. However, each method may

be implemented by a different piece of code.
An operation may have arguments in addition to its target object. Such arguments pa

rameterize the operation but do not affect the choice o f method. The method depends only

on the class of the target object. (A few object-oriented languages, notably CLOS. permit the

choice of method to depend on any number of arguments, but such generality leads to con
siderable semantic complexity, which we shall not explore.)

When an operation has methods on several classes, it is important that the methods all

have the same signature— the number anti types of arguments and the type of result value.
For example, print should not have file-nam e as an argument for one method and file-pointer

for another. 'Hie behavior of all methods for an operation should have a consistent intent. It
is best to avoid using the same name for two operations that are semantically different, even

if they apply to distinct sets of classes. For example, it would be unwise to use the name

invert to describe both a matrix inversion and turning a geometric figure upside-down. In a

very large project, some form of name scoping may be necessary to accommodate accidental
name clashes, but it is best to avoid any possibility of confusion.

Operations are listed in the lower third of the class box. Each operation name may be

followed by optional details, such as argument list and result type. An argument list is writ
ten in parentheses follow, mg the name; the arguments are separated by commas. The name

and type of each argument may be given. The result type is preceded by a colon and should
not Ik* omitted, because it is important to distinguish operations that return s allies front those

that do not. An empty argument list m parentheses shows explicitly that there are no argu
ments. otherwise no conclusions can be ilraw.ii. Operations may be omitted from high-level

diagrams.
In Figure .1.4. the class P a '.o n has attributes name and age and operations i hange-joh

ami ehange-tiddre^s. Same. age. i hange-joh. and ■ Image addtess are leatures ol Person.

Person File

name file name
age size in bytes

change-job last update

change-address print

Geom etric
object

color
position

move (delta: Vector)
select (p : Point): Boolean
rotate (angle)

Figure 3.4 Operations

Feature is a generic word for either an attribute or operation. Similarly. F ile has a print op
eration. Geometric object has move, select, and rotate operations. Move has argument delta.

which is a Vector, select has one argument p which is of type Point and returns a Boolean:

and rotate has argument angle.

During modeling, it is useful to distinguish operations that have side effects from those

that merely compute a functional value without modifying any objects. The latter kind of op
eration is called a query. Queries with no arguments except the target object may be regarded

as derived attributes. For example, the width of a box can be computed from the positions of
its sides. A derived attribute is like an attribute in that it is a property of the object itself, and

computing it does not change the state of the object. In many cases, an object has a set of
attributes whose values are interrelated, of which only a fixed number of values can be cho
sen independently. An object model should generally distinguish independent base a t

tributes from dependent derived attributes. The choice of base attributes is arbitrary but
should be made to avoid overspecifying the state of the object. The remaining attributes may

be omitted or may be shown as derived attributes as described in Section 4.7.4.

3.1.6 Summary of Notation for Object Classes

Figure 3.5 summarizes object modeling notation for classes. A class is represented by a box

which may have as many as three regions. The regions contain, from top to bottom: class

name, list of attributes, and list of operations. Each attribute name may be followed by op
tional details such as type and default value. Each operation name may be followed by op
tional details such as argument list and result type. Attributes and operations may or may not
be shown: it depends on the level of detail desired.

Class-Name

attribute-name-1 :data-type-l = default-value-1
attnbute-name-2 : data-type-2 = default-value-2

operation-name-1 (argument-list-1): result-type-1 i
operation-name-2 (argument-list-2) : result-type-2 1

.J

Htfiirc 3.5 Summ.ir) ol" object moJelmc notation tor c la v o

3.2 LINKS AND ASSOCIATIONS

Links and associations arc the means for establishing relationships among objects and

classes.

3.2.1 General Concepts

A link is a physical or conceptual connection between object instances. For example. Joe

Smith Works-for Simplex company. Mathematically, a link is defined as a tuple, that is. an

ordered list of object instances. A link is an instance of an association.
An association describes a group of links with common structure and common seman

tics. For example, a person Works-for a company. All the links in an association connect ob
jects from the same classes. Associations and links often appear as verbs in a problem

statement. An association describes a set of potential links in the same way that a class de
scribes a set of potential objects.

Associations are inherently bidirectional. The name of a binary association usually« • •

reads in a particular direction, but the binary association can be traversed in either direction.
The direction implied by the name is the fo rw ard direction; the opposite direction is the in

verse direction. For example. Works-for connects a person to a company. The inverse of
Works-for could be called Employs. and connects a company to a person. In reality, both di
rections of traversal are equally meaningful, and refer to the same underlying association; it
is only the names which establish a direction.

Associations arc often implemented in programming languages as pointers from one

object to another. A pointer is an attribute in one object that contains an explicit reference to

another object. For example, a data structure for Person might contain an attribute employer

that points to a Company object, and a Company object might contain an attribute employees

that points to a set of Employee objects. Implementing associations as pointers is perfectly

acceptable, but associations should not be modeled this way.
A link shows a relationship between two (or more) objects. Modeling a link as a pointer

disguises the fact that the link is not part of either object by itself, but depends on both of
them together. A company is not part of a person, and a person is not part of a company. Fur
thermore. using a pair of matched pointers, such as the pointer from Person to Company and

the pointer Irom Compans to a set of Employee, hides the fact that the forward and inverse
pointers are dependent on each other. All connections among classes should therefore be

modeled as associations, even in designs for programs. We must sttess that associations are

not just database constructs, although relational databases arc built on the concept of associ
ations.

Although associations are uuniclcd as bidirectional they do not have to be implemented

in both directions. Associations can easily Ik: implemented as pointers il they are only tra
versed in a single direction Chapter |0 discusses some trade-oils to consider when imple
menting associations.

Figure v6 shows a one-to-one association and corresponding links. F.ach association m

the class diagram corresponds to a set of links in the instance diagram, just as each class cor
responds to a set of objects. I:ach country has a capital city. Ilas-eaponl is the name of the

Country Has-capital City

name name
V Class

d iag ram

(Country)

Canada

(Country)

France

r (Country)

Senegal

Has-capital

Has-capital

Has-capital

(City)

Ottawa

(City)

Paris
In s tan ce
d iag ram

(City)

Dakar

Figure 3.6 One-io-one association and links

association. The O M T notation lor an association is a line between classes. A link is drawn

as a line between objects. Association names are italicized. An association name may be

omitted if a pair of classes has a single association whose meaning is obvious. It is good to

arrange the classes to read from left-to-right, if possible.
Figure 3.7 is a fragment of an object model for a program. A common task that arises in

computer-aided design (CAD) applications is to find connectivity networks: Given a line,
find all intersecting lines; given an intersection point, find ail lines that pass through it; given

an area on the screen, find all intersection points. (We use the word line here to mean a Unite

line segment.)
In the class diagram, each point denotes the intersection of two or more lines: each line

has zero or more intersection points. The instance diagram shows one possible set of lines.
Lines L L L2. and L3 intersect at point P I. Lines L3 and L4 intersect at point P2. Line Z_5 has

no intersection points and thus has no link. The solid balls and "2+" are multiplicity s\ mbols.
Multiplicity specifies how many instances of one class may relate to each instance of another
class and is discussed in the next section.

Associations may be binary, ternary, or higher order. In practice, the vast majority are

binary or qualified (a special form of ternary discussed later). We have encountered a lew

aeneral ternarv and lew. if anv. of order four or more. Higher order associations are more

complicated to draw, implement, and think about than binary associations and should be

avoided if possible.
Figure 3.8 shows a ternary association: Persons who are programmers use computer lan

guages on projects. This ternary association is an atomic unit and cannot be subdisided into

binary associations w ithout losing inlormation. A programmer ma\ know a language and work

on a project, but might not use the language on the project. The O M T sunbol for general ter
nary and n-ary associations is a diamond w-ith lines connecting to related classes. The name of
the association is written next to the diamond. Note that we did not name the association oi
links in Figure 3.8. Association names are optional and a matter of modeling judgment. As\o-
ciutions are often left unnamed when lhe\ can lx* easily identified In then classes, i Hus con

vention does not work if there are multiple associations between the same classes.!

Class
d iag ram

\ In s ta n ce

f d iag ram

i

S am ple
data

.Figure 3.7 Many-tO'fnanv association and links

Class
d iag ram

i

(Project) ^

, accounting system j r
(Language)

Cobol

V

(Project)

(Person)

Mary .

~ r ~

CAD program J
f (Language)

C

i
y

\

In s tan ce
d iag ram

fi

a

Figure XH Ternary .association awj links

3.2.2 Multiplicity

M ultip licity specifies how many instances of one class may relate to a single instance of an

associated class. Multiplicity constrains the number of related objects. Multiplicity is often

described as being “one” or “many,” but more generally it is a (possibly infinite) subset of
the non-negative integers. Generally the multiplicity value is a single interval, but it may be

a set of disconnected intervals. For example, the number of doors on a sedan is 2 or 4. Object
diagrams indicate multiplicity with special symbols at the ends of association lines. In the

most general case, multiplicity can be specified with a number or set of intervals, such as “ 1"
(exactly one), “ l+ “ (one or more), ”3-5“ (three to five, inclusive), and ”2.4,18“ (two. four,
or eighteen). There arc special line terminators to indicate certain common multiplicity val
ues. A solid ball is the O M T symbol for “many,” meaning zero or more. A hollow ball indi
cates “optional,” meaning zero or one. A line without multiplicity symbols indicates a one-
to-one association. In the general case, the multiplicity is written next to the end of the line,

for example, “ l+ “ to indicate one or more.
Reviewing our past examples. Figure 3.6 illustrates one-to-one multiplicity. Each coun

try has one capital city. A capital city administers one country. (In fact, some countries, such

as Netherlands and Switzerland, have more than one capital city for different purposes. If

this fact were important, the model could be modified by changing the multiplicity or by pro

viding a separate association for each kind of capital city.)
The association in Figure 3.7 exhibits many-to-many multiplicity. A line may have zero

or more intersection points. An intersection point may be associated with two or more lines.
In this particular case. L I , L2. and 1.4 have one intersection point: LJ has two intersection

points: L5 has no intersection points. P I intersects with three lines: P2 intersects with two

Figure 3.9 illustrates zero-or-one. or optional, multiplicity. A workstation may have one

of its windows designated as the console to receive general error messages. It is possible,
however, that no console window exists. (The word “console” on the diagram is a role name,

discussed in Section 3.3.3.)

W orkstation --------------------------- c W indow
console

Figure 3.9 Zero-or-one multiplicity

Multiplicity depends on assumptions and how you define the boundaries of a problem.
Vague requirements often make multiplicity uncertain. You should not worry excessively

about multiplicity early in software development. First determine objects, classes, and asso
ciations. then decide on multiplicity.

Determining multiplicity often exposes hidden assumptions built into the model. For ex
ample. is the Works-for association between Pcrsim and Com panyoue-to-m.my or many-to-
many? It depends on the context. A tax collection application would permit a person to work

for multiple companies. On the other hand, an auto workers' union maintaining member
records may consider second jobs irrelevant. Explicitly representing a model w till object d i
agrams helps elicit these hidden assumptions, making them visible ami subject to .scrutiny.

The most important multiplicity distinction is between "one" and "many.” Underesti
mating multiplicity can restrict the flexibility of an application. For example, many phone

number utility programs are unable to accommodate persons with multiple phone numbers.
On the other hand, overestimating multiplicity imposes extra overhead and requires the ap
plication to supply additional information to distinguish among the members of a "many"

set. In a true hierarchical organization, for example, it is better to represent "boss" with a

multiplicity of "zero or one." rather than allow for nonexistent matrix management.
This chapter only considers multiplicity for binary associations. The solid and hollow

ball notation is ambiguous for n-ary tn > 2) associations, for which multiplicity is a more

complex topic. Section 4.6 extends our treatment of multiplicity to n-ary associations.

3.2.3 The Importance of Associations

The notion of an association is certainly not a new concept. Associations have been widely

used throughout the database modeling community for years. (See Chapter 12 for details.)
In contrast, few programming languages explicitly support associations. We nevertheless

emphasize that associations are a useful modeling construct for programs as well as databas
es and real-world systems, regardless of how they are implemented. During conceptual mod
eling. you should not bury pointers or other object references inside objects as attributes.
Instead you should mooe! them as associations to indicate that the information they contain

is not subordinate to a single class, but depends on two or more classes (Rumbaugh-87).
Some object-oriented authors feel that every piece of information should be attached to

a single class, and they argue that associations violate encapsulation of information into

classes. We do not agree with this viewpoint. Some information inherently transeends a sin
gle class, and the failure to treat associations on an equal fooling with classes can lead to pro
grams containing hidden assumptions and dependencies.

Most object-oriented languages implement associations with object pointers. Pointers

can be regarded as an implementation optimization introduced during the later stages of de
sign. It is also possible to implement association objects directly, but the use of association

objects during implementation is really a design decision (see Chapter 10).

3.3 ADVANCED LINK AND ASSOCIATION CONCEPTS

3.3.1 Link Attributes

An attribute is a property of the objects in a class. .Similarly, a link attribute is a property ol
the links in an association. In Figure 3.10. ocrew permnsum is an attribute ol Act i’.vuhlc by.

Each link attribute has a value for each link, as illustrated by the sample data at the bottom

The Icfi!) .is uvr.j in itm N»>c |\ s',nun',itn':r. wiiti llic tonn tfUiimn m ol m jkuinh.tii}:li S ’ ji 4
-Aich the cu : oi (hr tcfiu rfUtUon iff n u th cm aticv \V<* h .r.c ibc tem w *

awn.1 vv;!h \hc fiwfcfc .o tfu tc* ! uve of the icrrn uvc<! in tchiiirtnal if.itah.ivo. umwIIs

pc/m ji fcljjJKtft; (vtfAccn pure \aluc*. ivm* *A*th ntcntir*

/etc/termcap
/etc/termcap
/usr/doe/.login

Yead)
read-write)
Iread-write)

John Doe
Mary Brown
John Doe

Figure 3.10 Link attribute for a tnany-to-many association

of the (igure. The O M T notation for a link attribute is a box attached to the association by a

loop: one or more link attributes may appear in the second region of the box. This notation

emphasizes the similarity between attributes lor objects and attributes for links.
Many-io-many associations provide the most compelling rationale for link attributes.

Such an attribute is unmistakably a property of the link and cannot be attached to either ob
ject. In Figure 3.10. access permission is a joint property of F ile and User, and cannot be

attached to either File or User alone without losing information.
Figure 3.11 presents link attributes for two manv-to-one associations. Each person

working for a company receives a salary and has a job title. The boss evaluates the perfor
mance of each worker. Link attributes may also occur for one-to-one associations.

Figure 3 .1 1 Link attributes for onc to-many associations

Figure 3 .12 shows link attributes for a ternary association. A pitcher may play for many

teams in a given year. A pitcher may also play many years for the same team. Each team has

many pitchers. For each combination of team and year, a pitcher has a won-loss record. I hits

for instance. 1 lam l-isensiat pitched for the Cleveland Indians in Id3l>. w inning <> games and

losing 7 games.
Figure 3.13 shows how it is possible to fold link attributes for one-to-one and one-to-

inany associations into the class opposite the "one" side. Ihis is not possible tor many to-
mnnv associations. As a rule, link attributes should not be folded into a class because tuturc

flexibility is reduced if the multiplicity of the association should change. Hither tonn m Fig
ure 3.13 can express a one-lo-many association. However, only the link attribute tonn re
mains collect if the multiplicity of \\'<>rk.\-ior is changed to many -to-many.

Harry
Harry
Willis
Willis
Willis
Willis

Eisenstat
Eisenstat
Hudlin
Hudlin
Hudlin
Hudlin

Cleveland Indians
Detroit Tigers
Cleveland Indians
Cleveland Indians
Washington Senators
St. Louis Browns

1939
1939
1939
1940
1940
1940

6
2
9
2
1
0

7
2
10
1
2
1

Figure 3.12 Link attributes for a ternary association

P re fe rre d
fo rm .

D isco u rag ed
fo rm .

fig u re 3.13 Link attribute versus object attribute

3.3.2 P/lodeling an Association as a Class

Som etim es it is useful to m odel an association as a class, I*ach link becomes one instance o f

the class. H ie link attribute box introduced in the previous section is actually a special case

of an association as a class, and may have a name and operations in addition to attributes.

Figure 14 shows the au th o ri/a iio n in form ation lo r users on workstations. I Isers m ay be au

thorised on m any workstations. Each authorisation carries a priority and access privileges.

shown as link attributes. A user has a home directors for each authorized workstation, but
%

the same home directory can Ik* shared among several workstations or among several users.

The home directory is shown as a many to-one association lietw een the authorization class

and the directory class. It is useful to im nlel an association as a class when links can partic

ipate in associations w ith other objects or when links are subject to operations,

Figure 3.14 Modeling an association as a class

3.3.3 Role Names

A role is one end of an association. A binary association has two roles, each of which may

have a role name. A role name is a name that uniquely identifies one end of an association.
Roles provide a way of viewing a binary association as a traversal from one object to a set
of associated objects. Each role on a binary association identifies an object or set of objects

associated with an object at the other end. From the point of view of the object, traversing

the association is an operation that yields related objects. The role name is a derived attribute

whose value is a set of related objects. Use of role names provides a way of traversing asso
ciations from an object at one end. without explicitly mentioning the association. Roles often

appear as nouns in problem descriptions.
Figure 3.15 specifies how Person and Company participate in association Works-for. A

person assumes the role of employee with respect to a company: a company assumes the role

of employer with respect to a person. A role name is written next to the association line near
the class that plays the role (that is. the role name appears on the destination end of the tra
versal). Use of role names is optional, but it is often easier and less confusing to assign role

names instead of. or in addition to. association names.

employee employer
Com panyr erson

W orks-for

employee employer
Joe Doe Simplex
Mary Brown Simplex
Jean Smith United Widgets

Figure 3.15 Role names for an association

Role names are necessary for associations between two objects of the same class. For
example, hoss and m u k e r distinguish the two employees participating in the asso
ciation in Figure 3.11. Role names are also useful to distinguish between two associations

between the same pair ol classes. When there is onl\ a single association between a pair of*

distinct classes, the names of the classes often serve as good role names, in which case the

role names mav be omitted on the diagram.♦ V

Because role names serve to distinguish among the objects directly connected to a given

object, all role names on the far end of associations attached to a class must be unique. A l
though the role name is written next to the destination object on an association, it is really a

derived attribute of the source class and must be unique within it. For the same reason, no

role name should be the same as an attribute name of the source class.
Figure 3.16 shows both uses of role names. A directory may contain many other direc

tories and may optionally be contained in another directory. Each directory has exactly one

user who is an owner, and many users who are authorized to use the directory.

{---------------------- owner _
User

o-----------------------------------o
authorized user

Directory
container

Figure 3.16 Role names for a directory hierarchy

An n-ars association has a role for each end. The role names distinguish the ends of them W

association and are necessary if a class participates in an n-ary association more than once.
Associations of degree 3 or more cannot simply be traversed from one end to another as bi
nary associations can. so the role names do not represent derived attributes of the participat
ing classes. For example, in Figure 3.12. both a team and a year are necessary to obtain a set
of pitchers.

3.3.4 Ordering

Usually the objects on the ‘'many*’ side of an association have no explicit order, and can be

regarded as a set. Sometimes, however, the objects are explicitly ordered. For example. Fig
ure 3.1? shows a workstation screen containing a number of overlapping windows. The win
dow s are explicitly ordered, so only the topmost w indow is visible at any point on the screen.
Tlie ordering is an inherent part ol the ass»K ialion. An ordered set of objects on the "many"

end of an association is indicated by writing "| ordered)” next to the multiplicity dot lor the

role. This is a special kind of constraint. (See Section -1.7 for a discussion of constraints.)

Window
1 icfdeff.-d)
6 ----------

V is ib loon
Screen

Figure 3.17 Ordered set*, m an assis. latum

3.3.5 Qualification

A t fu i ih ju d i i 'u ' i n iH cn relates tw o object classes ,md a The qualifier is a special

attribute that reduce-, the cMectis e m ultip lic ity ol an assoi i.ition ()nc-to -m any and m any to

many association- may K- qualified . The qualifier distinguishes among the set o! objects at

the many end of an association. A qualified association can also be considered a form of ter

nary association.
For example, in Figure 3 .18 a directory has many files. A file may only belong to a single

directory.” Within the context of a directory, the file name specifies a unique file. Directory

and File are object classes and file name is the qualifier. A directory plus a file name yields

a file. A file corresponds to a directors' and a file name. Qualification reduces the effective

multiplicity of this association from one-to-manv to one-to-one. A directors' has many files,

each with a unique name.

Figure 3.18 A qualified association

Qualification improves semantic accuracy and increases the visibility of navigation

paths. It is much more informative to be told that a director}' and file name combine to iden
tify a file, rather than be told that a directory has many files. The qualification syntax also

indicates that each file name is unique within its directory. One way to find a file is to first
find the directory and then traverse the file name link.

A qualifier is drawn as a small box on the end of the association line near the class it
qualifies. Directory + file name yields a File, therefore file name is listed in a box contiguous

to Directory.

Qualification often occurs in real problems, frequently because of the need to supply

names. There normally is a context within which a name has meaning. For instance, a direc
tory provides the context for a file name.

Figure 3.19 provides another example of qualification. A stock exchange lists many

companies. However, a stock exchange lists only one company with a given ticker symbol.
A company may be listed on many stock exchanges, possibly under different symbols. tThis

may actually not be true for stocks.) The unqualified notation cannot accommodate different
ticker symbols for the same company on different exchanges.

Qualification usually reduces multiplicity from many to one. but not always. In Figure

3.20. a company has one president and one treasurer but many persons serving on the board

of directors. Qualification partitions a set of related objects into disjoint subsets, but the sub
sets may contain more than one object.

3.3.6 Aggregation

A^^rcyation is the "'part-whole'' or "a-parl-ot'' relationship in which objects representing the

com ponents of something are associated with an object representing the entire assem bly . One

I Ills IS Oll!\ 1UIL* loi SOUK* OJVMtun: S> Sll'llls I or example. a IV IX >S Ilk- iivVs tvloiu: lO a silicU*
loi\ \ r\t\ lik1 max Ivlune \o multiple thuviones thue .team, the piecm* nature oi an obievt u:%\!c! *Se
|vmls upon the npplu alien

! Stock
exchange

Stock
exchange

v
Lists

________o________

ticker symbol
---------- (T---------

Company
Lists

ticker symbol Com pany

Unqualified Qualified

Figure 3.19 l nquulificd and qualified association

I*
Company

I ~ -------1 organization
I office £>—-------------
\ i

officer
Person

ABC widgets
ABC widgets
ABC widgets
ABC widgets
ABC widgets
XYZ candy

President Roger Slick
Treasurer Joe Embezzle
Director Joe Doe
Director Jane Doe
Director Moe Brown
President Moe Brown

Figure 3.20 Many-io-mam qualification

com m on exam ple is the b ill-o f-m ateria ls or parts explosion tree. For exam ple , a nam e, argu

ment list, and a com pound statement are part o f a O -language function delin ition . w hich in

turn is part ol an entire program . A ggregation is a tigh tly coupled form o f association w ith

some extra semantics. The most significant properly o f aggregation is tra n s it iv ity . that is. i f

A is pan o f i i and H is part o f C , then A is part o f C A ggregation is also a n tis y m m e tr ic , that

is. it A ts part ol H . then l i is not part o f A . F in a lly , some properties o f the assembly p ro p o x a te

to the components as w e ll, possibly w ith some local m odifications. For exam ple, the e n v i

ronment o f a statement w ith in a function defin ition is the same as the environm ent of the

v.holc function, except lor changes made w ith in the function. The speed and location o f a

door handle is obtained from the door o f which it is a part; the door in turn obtains its prop

erties from the car of which it is a part. F'nlcss there are com m on properties ol components

that can Ik- attached to the assembly as a w hole, there is little point m using aggregation. A

parts tree t-> clearly an aggregation. but there are borderline cases where the use ol aggrega

tion is not clear cut. W hen in doubt, use ordinary association. Section -1.1 explores the use

o! aggregation in more detail.

We delm e an aggregation relationship as relating an assembly class io o ne component

sla-.s. An assemble w ith many Linds o f components corresponds to many aggregation tela-

tionships. V.c define each indie ulual pairing as an aggregation so that we can speedy the

ruultiphcrte >'t each com ponent w ith in the assemble. This defin ition emphasizes that aggre

gation I-. a special torrn ot association

Aggregation is drawn like association, except a small diamond indicates the assembly

end of the relationship. Figure 3 .21 shows a portion of an object model for a word processing

program. A document consists of many paragraphs, each of which consists of many sentenc

es.

Document O --------------- c Paragraph O -------------------cj Sentence

Figure 3.21 Aggregation

The existence of a component object may depend on the existence of the aggregate ob
ject of which it is part. For example, a binding is a part of a book. A binding cannot exist
apart from a book. In other cases, component objects have an independent existence, such as

mechanical parts from a bin.
Figure 3.22 demonstrates that aggregation mav have an arbitrarv number of levels. A

microcomputer is composed of one or more monitors, a system box. an optional mouse, and

a keyboard. A system box. in turn, has a chassis, a CPU, mans RAM chips, and an optional
fan. When we have a collection of components that till belong to the same assembly, we can

combine the lines into a single aggregation tree in the diagram. The aggregation tree is just
a shorthand notation that is simpler than drawing many lines connecting components to an

assembly. An object model should make it easy to visually identify levels in a part hierarchy.

Figure 3.22 M u lt i le v e l agg rega tion

3.4 GENERALIZATION AND INHERITANCE

3.4.1 General Concepts

(ie n e ra li/a tio n ami inheritance are pow erfu l abstractions for sharing s im ila rities am ong

classes w hile preserving their differences, l-or exam ple, we w ould like to be aide to model

the fo llo w in g situation: F.ach piece ol equipm ent has a m anufacture!, w eight, and cost

Pumps also have suction pressure and How rate. Tanks also have volume and pressure. We

would like to detine equipment features just once and then add details for pump. lank, and
other equipment types.

Cenerali:ation is the relationship between a class and one or more relined versions of
it. The class being retined is called the superclass and each relined version is called a sub

class. For example. Equipment is the superclass of Pump and Tank. Attributes and opera
tions common to a group of subclasses are attached to the superclass and shared by each

subclass. Each subclass is said to inherit the features of its superclass. For example. Pump

inherits attributes manufacturer, weight, and cost from Equipment. Generalization is some
times called the "is-a” relationship because each instance of a subclass is an instance of the

superclass as well.
Generalization and inheritance are transitive across an arbitrary number of levels. The

0

terms ancestor and Jescendent refer to generalization of classes across multiple levels. An

instance of a subclass is simultaneously an instance of all its ancestor classes. The state of
an instance includes a value for every attribute of every ancestor class. Any operation on any

ancestor class can be applied to an instance. Each subclass not only inherits all the features

of its ancestors but adds its own specific attributes and operations as well. For example.
Pump adds attribute flow rate, which is not shared by other kinds of equipment.

The notation for generalization is a triangle connecting a superclass to its subclasses.
'The superclass is connected by a line to the apex of the triangle. The subclasses are connect
ed by lines to a horizontal bar attached to the base of the triangle. For convenience, the tri
angle can be inverted, and subclasses can be connected to both the top and bottom of the bar.
but if possible the superclass should be drawn on top and the subclasses on the bottom.

Figure 3.23 shows an equipment generalization. Each piece of equipment is a pump,
heal exchanger, tank, or another type of equipment. There are several kinds of pumps: cen
trifugal. diaphragm, and plunger. There are several kinds of tanks: Homing roof, pressurized,
and spherical. Pump type and tank type both refine second level generalization classes down

to a third level; the fact that the tank generalization symbol is drawn below the pump gener
alization symbol is not significant. Several object instances are displayed at the bottom of
the figure. Each object inherits features from one class at each level of the generalization.
ITius P in t embodies the features of equipment, pump, and diaphragm pump. EM)2 assumes

the properties of equipment and heat exchanger.
Hie dangling suivclass ellipsis (triple dot) in Figure 3.23 indicates that there are addi

tional subclasses that are not shown on the diagram, pet haps because there is no room on the

sheet and the\ are shown elsewhere, or maybe because enumeration of subclasses is still in
com plete.

The w ool , w ritten next to the triangles in the diagram , such as e q u ip m e n t typ e , p u m p

i spe. and tani. type, arc discrim inators. A a m n n u n a to t is an attribute of enum eration type

that indicates w h u h proper!), ol an object is being abstracted by a particular generalization

relationship. Only one property should be d iscim in iated at once, For exam ple, class \ eh it le

can fv discrim inated on propulsion (w ind , gas. coal, anim al, g rav ity) and also on operating

cm iro n m ent (land. air. water, outer spacer 'Ih e discrinunaloi is simply a name tor the basis

ot generalization I)iscrinuriato i •, .dues arc inherently in one to one correspondence w ith the

subclasses of a generalization For exam ple, the operating environm ent d iscrim m alo i for

/ (D i a p h ragm pump

name = P101
manuf = Simplex
weight = 100 Kg
cost = $5000
suet pres = 1.1 atm
disch pres = 3.3 atm
flow rate = 300 l/hr

y ^ d ia mat! = Teflon

(Heat exchanger)

name = E302
manuf = Brown
weight = 5000 kg
cost = $20000
surface area = 300 m2
tube diameter = 2 cm
tube length = 6 m
tube pres = 15 atm
shell pres = 1.7 atm j

[Floating roof tank

name = T 111 i
manuf = Simplex |
weight = 10000 kg \
cost = $50000 '
volume = 400000 liter :
pressure = i . i atm
diameter = 8 m

it = 9 m\ h e i g l y

Figure 3.23 A n u i l t i lc w l inh e rita n ce h ie ra rch) w ith instances

h o o t is The d iscrim inator is an optional part o f a generalization relationship: i f a d is

crim inator is included, it should he draw n next to the generalization m angle.W *

F ic tile 3 .24 show s classes o f graphic geom etric figures. Th is exam ple has more of a pto-

gram m ing llavor and em phasizes inheritance o f operations. ,U<m c . \<7«t /. lo to lc . and ./i. '/’/n t

j Figure

j color
i center position
j pen thickness
j pen type
-------------------------------------1

move
select
rotate
display

1
\ dimensionality

Point

display

Line 1

endpoints

display

Arc

radius
start angle
arc angle

display

r--------------------------i
1*

j 0 Dimensional 1 Dimensional 2 Dimensional

t
i

orientation orientation
fill type

1
1
!

scale scale
fill

ii/ V/ A

Polygon

num of sides
vertices

display

1
Circle

diameter

display
rotate

I* iuiirc 3.24 Inheritance tor graphic lieures

arc operations inherited by all subclasses. Si <//<* applies to one- and tw o-d im ensional figures.

l i l t applies only to tw o-d im ensional Injures.

D o not nest subclasses too deeph . D eeply nested subclasses can be d ilficu lt to under

stand. much like deeply nested blocks o! code in a procedural laneuai^e. O ltc n w ith some

carctui thoueht and a little restn icturm e. you can reduce the depth ot an overextended inher

itance hierarchy. In practice, whether or not a subclass is "too deeply nested"’ depends upon

judgm ent and the parm ular details ot a problem . The lo llo w im : guidelines m ay help: A n in

heritance hierarch;. that is tw o or three l o els deep is certain!;, acceptable, ten lesels deep is

probably excessise, live or six levels may or may not be proper

3.4.2 Use of Generalization

(icn erah /a iton is a uselul construct

era it/a tio n iacthtnh> in t>.Ie 11no by

d a f and w hat is d ille rc n t about

tor both conceptual mode I mi! and im plem entation < ien-

stniclurm e classes and M k u iK tls captumu.' v.hat is sun

classes In h e rita n c e o| o p era tio n s is h e lp lu l d iiiiu p

Object-oriented languages provide strong support for the notion of inheritance. (The

concept of inheritance was actually invented far earlier, but object-oriented languages made

it popular.) In contrast, current database systems provide little or no support for inheritance.
Object-oriented database programming languages (Section 15.8.5) and extended relational
database systems (Section 17.4) show promise of correcting this situation.

Inheritance has become synonymous with code reuse within the object-oriented pro
gramming community. After modeling a system, the developer looks at the resulting classes

and tries to group similar classes together and reuse common code. Often code is available

from past work (such as a class library) which the developer can reuse and modify, where

necessary, to get the precise desired behavior. The most important use of inheritance, how
ever, is the conceptual simplification that comes from reducing the number of independent

features in a system.
The terms inheritance, generalization, and specialization all refer t s aspects of the same

idea and are often used interchangeably. We use generalization to refer to the relationship

among classes, while inheritance refers to the mechanism of sharing attributes and opera
tions using the generalization relationship. Generalization and specialization are two differ
ent viewpoints of the same relationship, viewed from the superclass or from the subclasses.
The word generalization derives from the fact that the superclass generalizes the subclasses.
Specialization refers to the fact that the subclasses refine or specialize the superclass. In prac
tice, there is little danger of confusion.

3.4.3 Overriding Features

A subclass may override a superclass feature by defining a feature with the same name. The

overriding feature (the subclass feature) refines and replaces the overridden feature (the su
perclass feature). There are several reasons why you may wish to override a feature: to spec
ify behavior that depends on the subclass, to tighten the specification of a feature, or for
better performance. For example, in Figure 3.24. display must be implemented separately for
each kind of figure, although it is defined for any kind of figure. Operation rotate is overrid
den for performance in class Circle to be a null operation. Chapter 4 discusses overriding

features in more detail.
You may override default values of attributes and methods of operations. You should

never override the signature, or form, of a feature. An override should preserve attribute

type, number, and type of arguments to an operation and operation return type. Tightening

the type of an attribute or operation argument to be a subclass of the original type is a form

of restriction (Section 4.3) and must be done with care. It is common to boost performance

by overriding a general method with a special method that takes advantage of specific infor
mation but does not alter the operation semantics (such as rotate-circle in Figure 3.24).

A feature should never be overridden so that it is inconsistent with the signature or se-
mantics of the original inherited feature. A subclass is a special case of its superclass and

should be compatible with it in even' respect. A common, but unfortunate, practice in object-
oriented programming is to "borrow” a class that is similar to a desired class and then modify

it by changing and ignoring some of its features, even though the new class is not really a

special case ot the o rig ina l class. Th is practice can lead 1 0 conceptual contusion and hidden

assumptions built into programs. (See Section 4 .3 lo r further discussion o f overrides, t

3.5 GROUPING CONSTRUCTS

3.5.1 Module

A ntn Ju U ' is a logical construct for grouping classes, associations, and generalizations. A

m odule captures one perspective or v iew o f a situation, (-'or exam ple, e lectrical, p lum bing,

ami ventilation modules are d ifferent view s o f a build ing. The boundaries o f a m odule are

som ewhat arbitrary and subject to judgm ent.

A n object m odel consists o f one or more modules. M odules enable you to partition an

object m odel into manageable pieces. M odules provide an interm ediate unit o f packaging

between an entire object model and the basic build ing blocks o f class and association. Class

names and association names must be unique w ith in a m odule. As much as possible, you

should use consistent class and association names across modules. The m odule name is usu

ally listed at the top o f each sheet, ’('here is no other special notation for modules.

Che same class may be referenced in different modules. In fact, referencing the same

class in m ultip le modules is the m echanism for binding m odules together. There should be

tew er l in k s between modules (external b in d im i) than w ith in modules (in ternal b inding).

3.5.2 Sheet

A com plex model w ill not lit on a single piece o f paper. A sln i i is the m echanism for break

ing a large object m odel dow n into a series o f pages. A sheet is a single printed page. Knell

m odule consists o f one or more sheets. A s a rule, we never put more than one m odule per

sheet. A sheet is just a notational convenience, not a logical construct.

(inch sheet has a title and a name or number. Knell association and generalization a p

pears on a single sheet. Classes may appear on m ultip le sheets. M u ltip le copies o f the same

class form the budge for connecting sheets in an object m odel. Sheet num bers or sheet

names inside circles contiguous to .i class box indicate other sheets that refer to a class. I sc

ot sheet cross-relerence circles is optional.

3.6 A SAMPLE OBJECT MODEL

l ieurc 3 25 shows an object m odel ot a w orkstation window m anagem ent system, such as

the X W indow S \s te m or SunVicw Hus m odel is greatly sim plified a real m odel ot a w in

dow ing system would require a number ot panes but it illustrates many object m odeling

constructs and shows how they lit together into a large model.

Figure 3.25 Object model o f windowing system

Class Window defines common parameters of all kinds of windows, including a redan-
gular boundary defined by the attributes x i . y l . x 2 . y2. and operations to display and mulis-
play a window and to raise it to the lop (foreground) or lower it to the bottom (background)

ot che entire set ot windows. Panel. Canvas, and Text whitlow are varieties of windows. A

canvas is a region for drawing graphics. It inherits the window boundary from Window and

adds the dimensions of the underlying canvas region defined by attributes e x l . c v l , cx2. cv2.

A canvas contains a set of elements, shown by the association to class Shape. All shapes have

color and line width. Shapes can be lines, ellipses, or polygons, each with their own param
eters. A polygon consists of an ordered list of vertices, shown as an aggregation of many

points. Ellipses and polygons are both closed shapes, which have a fill color and a fill pat
tern. Lines are one-dimensional and cannot be filled. Canvas windows have operations to
add elements and to delete elements.

Text window is a kind of a Scrolling window, which has a 2-dimensional scrolling offset
within its window, as specified by x-nffset and y-ojfset. as well as an operation scroll to

change the scroll value. A text window contains a string, and has operations to insert and

delete characters. Scrolling canvas is a special kind of canvas that supports scrolling; it is

froth a Canvas and a Scrolling window. This is an example of multiple inheritance, to be ex
plained in Section 4.4.

A Panel contains a set of Panel item objects, each identified by a unique item name

within a given panel, as shown by the qualified association. Each panel item belongs to a

single panel. A panel item is a predefined icon with which a user can interact on the screen.
Panel items come in three kinds; buttons, choice items, and text items. A button has a siring

which appears on the screen; a button can be pushed by the user and lias an attribute de

pressed. A choice item allows the user to select one of a set of predefined choices, each of
which is a O unce entry containing a string to be displayed and a value to be returned if the

entrv is selected. There are two associations between Choice item and Choice entrv: am *

onc-to-manv association defines the set of allowable choices, while a one-to-one association

identifies the current choice. The current choice must be one of the allowable choices, so one

association is a subset of the other as shown by the arrow between them labeled " | subset}
This is an example of a constraint, to be explained in Section 4.7.

When a panel item is selected by the user, it generates an Event, which is a signal that
something has happened together with an action to be performed. All kinds of panel items

have notify event associations. Each panel item has a single event, but one event can be

shared among many panel items. Text items have a second kind of event, which is generated

when a keyboard character is typed while the text item is selected. Association keyboard

event shows these events. Text items also inherit the notify event from superclass Panel item;

the notify event is generated when the entire text item is selected with a mouse.
There are many deficiencies in this model, fo r example, perhaps we should define a type

Rectangle, which can then be used for the window and canvas boundaries, rather than having

two similar sets of four position attributes. Maybe a line should he a special case of a polyline

(a connected series of line segments), in which case maybe both Polyline and Polygon

should be subclasses of a new common superclass that defines an ordered list of points.
Many attributes, operations, and classes are missing from a description of a realistic win
dowing system. Certainly the windows have associations among themselves, such as over
lapping one another. Nevertheless, this simple model gives a flavor of the use ol object
modeling. We can crmci/e its details because it says something precise. If would serve as

the basis for a fuller model.

3.7 PR AC TICA L TIPS

We have gleaned the following tips for constructing object diagrams from our application

work. Many of these tips have been mentioned throughout this chapter.

• Don’t begin constructing an object model by merely jolting down classes, associations,
and inheritance. First, you must understand the problem to be solved. The content of an

object model is driven by relevance to the solution.

• Strive to keep your model simple. Avoid needless complications.

• Carefully choose names. Names are important and carry powerful connotations. Names

should be descriptive, crisp, and unambiguous. Names should not be biased towards one

aspect of an object. Choosing good names is one of the most difficult aspects of object
modeling.

• Do not bury pointers or other object references inside objects as attributes. Instead mod
el these as associations. This is clearer and captures the true intent rather than an imple
mentation approach.

• Try to avoid general ternary and n-ary associations. Most of these can be decomposed

into binary associations, with possible qualifiers and link attributes.

• Don’t try to get multiplicity perfect too early in software development.

• Do not collapse link attributes into a class.

• Use qualified associations where possible.

Try to avoid deeply nested generalizations.

Challenge one-to-one associations. Often the object on cither end is optional and zero-
or-one multiplicity may be more appropriate. Other times many multiplicity is needed.

Don't be surprised if your object model requires revision. Object models often require

multiple iterations to clarify names, repair errors, add details, and correctly capture

structural constraints (Section 4.7). Some of our most complex models, which are only

a few pages long, have required half a dozen iterations.

Try to get others to review your model. Object models can be a focal point for stimulat-
inu the involvement of others.

A lw ays docum ent your object m odels. The d iagram specifies the structure o f a model

but cannot describe the reasons behind it. The w ritten explanation guides the reader

through the m odel and explains subtle reasons w hy the m odel was structured a particular

w ay. The w ritten explanation clarifies the m eaning o f names in the m odel and should

convey the reason for each class and relationship.

• Do not feel bound to exercise all object modeling constructs. The O M T notation is an

idealization. Not all constructs are needed for every problem. Manx constructs are op
tional and a matter of taste. Use only what you need for the problem at hand.

3.8 CHAPTER SUMMARY

Object models describe the static data structure of objects, classes, and their relationships to

one another. The content of an object model is a matter of judgment and is driven by its rel
evance to an application. An object is a concept, abstraction, or thing with crisp boundaries

and meaning for an application. All objects have identity and are distinguishable. An object
class describes a group of objects with common attributes, operations, and semantics. An at
tribute is a property of the objects in a class: an operation is an action that may be applied to

objects in a class.
Links and associations establish relationships among objects and classes. A link con

nects two or more objects. An association describes a group o f links with common structure

and common semantics. Multiplicity specilies how many instances of one class may relate

to each instance of another class. An association is a logical construct, of which a pointer is

an implementation alternative. There are other ways of implementing associations besides

using pointers.
Additional constructs for modeling associations include: link attribute, role, qualifier,

and aggregation. A link attribute is a property of the links in an association. Many-to-many

associations demonstrate the most compelling rationale for link attributes. Such an attribute

is unmistakably a property of the link and cannot be attached to either object. A role is a di
rection across an association. Roles are particularly useful in dealing with associations be
tween objects of the same class. A qualifier reduces the effective m ultiplicity o f an

association by selecting among the set of objects at the many end. Names are often qualifiers.
Aggregation is a tightly coupled form of association with special semantics, such as transi
tive closure and attribute value propagation. Aggregation is commonly encountered in bill-
of-matcrial or parts explosion problems.

Generalization and inheritance are fundamental concepts in object-oriented languages that
are missing in conventional languages and databases. Generalization is a useful construct for
both conceptual modeling and implementation. During conceptual modeling, generalization

enables the developer to organize classes into a hierarchical structure based on their similarities

and differences. During implementation, inheritance facilitates code reuse. The term general

ization refers to the relationship among class; the term inheritance refers to the mechanism of
obtaining attributes and operations using the generalization structure. Generalization provides

the means for refining a superclass into one or more subclasses. The superclass contains fea
tures common to all classes; the subclasses contain features specific to each class. Inheritance

may occur across an arbitrary number of levels where each level represents one aspect of an

object. An object accumulates features from each level of a generalization hierarchy.
Module and sheet are grouping constructs. An object model consists of one or more

modules. A module is a logical grouping construct which captures one perspective or view

of a situation. Most references to classes lie within modules; a few span modules. Each mod
ule has one or more sheets. A sheet is merely a notational convenience for lilting object mod
els onto fixed sized pieces of paper.

'Hie various object modeling constructs work together to describe a complex system

precisely, as show n by our example of a model for a windowing system. Once an object mod
el is available, even a simplified one. the model can be compared against knowledge of the

real world or the desired application, criticized, and improved.

aggregation generalization method override
association identity module qualification
attribute inheritance multiplicity role
class instance object sheet
discriminator link operation signature
feature link attribute ordering specialization

Figure 3.26 Key concepts for Chapter 3

BIBLIOGRAPHIC NOTES

The object modeling approach described in this book builds on the O M T notation originally

proposed in |Loomis-871. (Blaha-88) extends the O M T notation for the purpose of database

design. This book redelines the term O M T\ in this book O M T does not merely refer to a no
tation but refers to our entire methodology. Our object model is analogous to the O M T nota

tion discussed in the papers. This book refines object modeling notation beyond that shown

in the papers and sets forth a complete methodology for its use.
The object modeling notation is one of a score of approaches descended from the sem

inal entity-relationship (ER) model of (Chen-76|. A ll the descendents attempt to improve on

the ER approach. Enhancements to the ER model have been pursued for several reasons. The

ER technique has been successful for database modeling and as a result, there has been great
demand for additional power. Also. ER modeling only addresses database design and not
programming. There are too many extensions to ER for us to discuss them all here. (Chapter

12 discusses some extensions to ER.)
A noteworthy aspect of our approach to object modeling is the emphasis we place on

associations. Just as inheritance is useful for conceptual modeling and implementation, so

too associations are important for conceptual modeling and implementation. Most existing

object-oriented programming languages ((Cox-861, (Goldberg-83], and (Meyer-88)) lack

the notion of associations and require the use of pointers. Most database design techniques

recognize the importance of associations. (Rumbaugh-87] is the original source of our asso
ciation ideas. The use of the term relation in [Rumbaugh-S7] is synonymous with our use of

association in this book.
|Khosha(ian-86| defines the concept of object identity and its importance to program-

mine laneuaues and database systems.

REFERENCES

(Blaha-SK] Michael Blaha. W illiam Premerlaui, James Rumhaugh. Relational database design using
an object-oriented methodology. Com m unications o f the A C M 3 / . 4 (April l ‘>S$) 414 -42 '.

|Chcn-76| I’.P.S. Chen. The Entity-Relationship model— toward a unified view o f data. A O / fransa* ■

turns on Database Systems l . 1 (March 1**76).

|C o \-8 6 | Brad J. Cox. O bject-O riented i'royram m iny . Reading, Mass.: Addison-W olcy. I **86.

(Goldberg-831 Adele Goldberg. David Robson. SmalitalkuSO: The Lani>tut*e a n d its Im plem entation.

Reading. Muss.: Addison-Wesley. 1^X3.

(Khosharian-86] S.N. Khoshatian. G.P. Copeland. Object identity. O O P L S A '86 as A C M SIG PLAS* 21.
I I I Nov. P>X6). 406-416.

(Loomis-871 Man. E.S. Loomis. Ashwin V. Shah. James E. Rumbaugh. An object modeling technique

for conceptual design. European Conference on O b jec t-O rien ted Program m ing, Paris. France.
June 15* 17. |0S7, published as Lecture Soles in Com puter Science. 27ft. Springer-Verlag.

(Mc>er-SS) Bertrand Meyer. O bject-O riented S tfh i are Construction. Hertfordshire. England: Prentice
Hall International. PJS8.

|Rumbaugh-S7| James E. Rumbaugh. Relations as semantic constructs in an object-oriented language.
O O P S L A S ? as A C M S IG P L A S 22. 12 (Dec. I *>S7), 466 -481.

EXERCISES

3,1 1 2) Prepare a class diagram from the instance diagram in Figure E3.1.

■ Spam j

f (Country)') Borders f (Country)']
France J ̂ Belgium j

Figure E3.I Instance diagram for a portion of Europe

3.2 (2 1 Prepare a class diagram from the instance diagram in Figure E3.2. Explain vour multiplicity

decisions. Each point has an x coordinate and a > coordinate. What is the smallest number of

points required to construct a polygon? Docs it make a difference whether or not a given point

ma\ be shared between several polygons? How can \ou express the lact that points arc in a se

quence'

i (Point)'

to
10

_ . — . w V*

r.
Has Has

r
<Polnl>i Has
■10 i--------

: ' 0_ J

(Polygon) |
_ ^

r~ 7 Has

(Point)

10
10

(Point)

10
-10

i i^uri.- K3.2 ImCiiKC D u rra n i«»! :i pohimn itt-tl h.ipjvm to Iv .1 Mjuatr

3.3 1 1) v,nh tl-,c ohjcvt ih.ivr.ifii th.it ><>u prcp.ircil in cvckivc 3.2. ilr.iv> .m mM.im.t: di.i
•/r.vn i-<i i'*(i !(i.ia^lci with lomnion ‘.tcK* un.lft the lullov. mi: Lonilnioiiv

.1 \ p-»:is? . to c <-.jct! one p ohp jn

h A i>!in: ivloniv. to or more poivpms

3.4 (3) Prepare a class diagram from the instance diagram in Figure E3.3. Explain your multiplicity
decisions. Wow does your diagram express the fact that points arc in a sequence?

Figure E3.3 Another instance diagram of a polygon that h a p p e n s to he a square

3.5 (3) Prepare a written description for the object diagrams in exercise 3.2 and exercise 3.4,

3.6 (5) Prepare a class diagram from the instance diagram in Figure E3.4.

Mate

Figure K3.4 Instance diagram for part ol sour tamih tree

3.7 (3» Prepare a class diagram from the instance diagram of a geometrical document shown m Fig-

lire E3.5. This particular document has 4 pages. The lirst page has a red point and a \eilo\v

square displaced on it. I he second page contains a line and an ellipse. An arc. a circle, and a

rectangle appear on the Iasi nvo pages. In preparing >our diagram, use exacih one aggregation

relationship ami one or more generalization relationships.

3.S toi a. Prepare an instance diagram lor the class diagram m Figure I ' o for the expression

(A V 2 1 i V 3 *) I . Parentheses are used in die expression tor grouping, hut are not need

ed in the diagram I he main tiuiltiplicin indicates that a tenn nun he used u\ more than one

expression.
h Mtuhlx the class diaeiatu so lhat leiun are not dialed and to handle unaix munis

Figure K3.5 Instance diagram for a gcomelrical document

Figure FJ.6 Class diagram lor simple arithmetic expressions

3/J <3> Figure 1:3.7 is a partialis completed object diagram of an air transportation s\stem Multi-

phciiv balls luse been Ictf out Add them to the diagram. Defend your decisions. Demonstrate

hove rmshtpheil) decisions depend on sour perception ol the world

3.10 f'D Reuse Figure F3 7 fo make seat location a qualifier

3 .1 1 <3) Add association name, to the uolalvlcd ass<h. lalions in f igure L3. f.

3.12 < Add role names f<« the unlahded associations m f igure 1-3 7

3.13 f*D Prepare an instance diagram for an imagm.tr> round trip > °14 v-eehetid to London.

Intitule at least one instance ol each object class Formnatels. duett flights on a h\|Hrrsonic

Figure E3.7 Partially completed model of an air transportation system

plane were available. A friend o f yours went with you but decided to stay a while and is still

there. Captain Johnson was your pilot on both flights. You had a different seat each way, but

you noticed it was on the same plane because of a distinctive dent in the tail section.

3.14 (1) Add the following operations to the object diagram in Figure E3.7: heat. hire. lire, refuel,

reserve, clean, de-ice. takeoff, land, repair, cancel, delay. It is permissible to add an operation

to more than one object class.

3.15 Prepare object diagrams showing at least 10 relationships among the following object classes.

Include associations, aggregations, and generalizations. Use qualified associations and show

multiplicity balls in your diagrams. You do not need to show attributes or operations. Use asso

ciation names where needed. As you prepare the diagrams, you may add additional object

classes.

a. (4) school, playground, principal, school board, classroom, book, student, teacher, cafeteria,

rest room, computer, desk, chair, ruler, door, swing

b. (4) castle, moat, drawbridge, tower, ghost, stairs, dungeon, floor, corridor, room, window,

stone, lord. ladv. cook

e. (7) expression, constant, variable, function, argument list, relational operator, term, factor,

arithmetic operator, statement, program

d. (6 i file system, file, directory, file name. A S C II file, executable file, directory tile. disk,

drive, track, sector

e. (4) automobile, engine, wheel, brake, brake light, door, battery , muffler, tail pipe

f. (6) gas furnace, blower, blower motor, room thermostat, furnace thermostat, humidifier, hu-

miditv sensor, uas control, blower control, hot air vents
9 *

g. 15> chess piece, rank, file, square, board, move, position, sequence o f moves

h. (5) sink. free/er. refrigerator, table, light, switch, w indovv. smoke alarm, inugl.tr alarm, cab
inet. bread, cheese, ice. door, kitchen

3.16 <5» Add at least 15 attributes and at least 5 operations to each of the object diagrams >ou pre
pared in the previous exercise.

3.17 <5> Figure K3.X is a portion of an object diagram lor a computer program for plavitn; several

types o f card games. Deck, hand, discard pile, and draw pile arc collections of cards H\c untta!

>i/c of a ham! depends on the lype of game. Each card has a suit and rank. Add the following

operations it' tlie diagram: display, shuttle, deal, initialize, sort, insert, delete, top-ot-pile. bot-

tom-ot'-pile. draw, and discard. Some operations may appear in more than one object class. For

each class in which an operation appears, describe the arguments to the operation and what the

operation should do to an instance o f that class.

Collection of cards

visibility
location

{ordered}

A
1 ______ 1_______ I _ J _____

Deck Hand Discard pile Draw pile

initial size

Figure E5J& Portion of an objeci diagram for a card playing system

3.1X (5) Figure Ii3.9 is a portion of an object diagram for a computer system lor laying out a news*

paper. The system handles several pages which may contain, among other things, columns ol

text. The user may edit the width ami length o f a column ol text, move it around on a page, or

move u from one page to another. As shown, a column is displayed on exactly one page, h is

desired to modify the system so that portions ol the same column may appear on more than one

page. It the user edits the text on one page, the changes should appear automatically on other

pages. Modify the object diagram to handle this enhancement. You should change x location

and y location into link attributes.

! Pagei
Column -------------c Line--------------d

width
! length
j left margin
i right margin

x location
y location
width
length

text

j top margin
I bottom margin

Figure K3.9 Portion of an object diagram lor a newspaper publishing system

3.19 <-t) f igure K3 It) is an object diagram that might be used m designing a system to sirnplily ihe
scheduling and scoring of judged athletic competitions such as gymnastics, diving, and figure
skat mg There arc several events and competitors luuh competitor may enter several events and
each event has many competitors, Ivach event has several judges who subjec tively rate the per
formance of competitorv in that event A judge rates every competitor lor an event. In some cas
es, a judge may s^orc more than one event Ihe focal points of the competition are truth Patch
trial is an attcmpl by one tompciitof m turn in the best performance possible m one event. A trial
is scored b* die panel of judges for that event and a net score determined. Add role names and
multiplicity balls to the associations

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.2S

Figure K3.10 Portion o f an object diagram lor an athletic event scoring system

(3) Add the following attributes to Figure E 3.I0: address, age. date, difficulty factor, name. In

some cases, you may wish to use the same attribute in more than one class.

(2) Add an association to Figure E 3 .I0 to make it possible to directly determine what events a

competitor intends to try' without involving the class Trial.

(6) Prepare an object diagram for the dining philosopher’s problem. There arc 5 philosophers

and 5 forks around a circular table. Each philosopher has access to 2 forks on either side. Each

fork is shared by 2 philosophers. Each fork may be either on the table or in use by one philoso

pher. A philosopher must have 2 forks to eat.

(5) Prepare an object model to describe undirected graphs. An undirected graph consists o f a set

of vertices and a set o f edges. Edges connect pairs of vertices. Your model should capture only

the structure o f graphs (i.e.. connectivity), and need not be concerned with geometrical details

such as location of vertices or lengths of edges. A typical graph is shown in Figure E 3 .11.

v5 eI v4

Figure F3 .1 I Sample undirected graph

(3) Prepare an instance diagram for Figure E3.I I.

(4) Extend the object diagram you prepared in exercise 3.23 to accommodate geometrical de

tails. including locations o f vertices and names of vertices and edges.

t5) Prepare an object model to describe directed graphs. A directed graph is similar to an undi

rected graph, except the edges arc oriented. A typical graph is shoun in Figure E3.12. I Ac d i

rection as a qualifier in your diagram so that it is possible to determine the vertex that is con

nected to the head or to the (ail of eaeti edee.*

(3) Prepare an instance diagram for Figure E 3 .I2

<<>> Several object classes shown in Figure E3.13 have attributes that are ically pointers toother
object classes and which could be replaced with associations. A person max luxe up to three
companies as employers. Each person has an II). A car is assigned an ID (‘.us max be owned

v5 e 1 v4

Figure E3.12 Sample directed graph

by persons, companies, or banks. Car owner ID is (he ID of the person, company, or bank who

owns the car. A car loan may be involved in the purchase o f a car.

Burying object references as pointers is the incorrect way to construct an object model. Pre

pare an object diagram in which the pointers are replaced with relationships. Try to get m ulti

plicities right. You may need to add one or more object classes o f your own. Eliminate all IDs.

Some attributes may be converted to discriminators.

Person Car Car loan

name owner ID vehicle ID
age vehicle ID customer type
employer 1 ID owner type customer ID
employer 2 ID model account number
employer 3 ID year bank ID
person ID interest rate

! address current balance

Company Bank

name name
company ID bank ID

Figure K 3 .I3 Object classes with some attributes that are pointers.

3.29 O) A problem arises when several independent systems need to identify the same object. For

example, the department of motor vehicles, an insurance company, a bank, and the police mav

wish to identify a given motor vehicle. Discuss the relative merits of using the following iden

tification methods:

a Identify by its owner

b. Identify by attributes such as manufacturer, model, ami year
c. Use the vehicle identification number (V IN i assigned to the car by its manufacturer

d Use IDs generated internally by each interested agency

3JU) (7 i Prepare an object model that might t>e used to troubleshoot a 4 cycle lawn mower engine.

Use three sheers for the model, with one sheer for each of the following paragraphs:

power is developed in such an engine by the combustion of a mixlutc ol air and gasoline

against a piston Ihc piston is attached to a crankshaft \ ia a connecting rod. and moves up and

down inside a cylinder as the shaft rotates. As the piston moves down, an intake valve opens,

allowing the piston to draw a mixture of fuel and air into the cylinder. At the bottom of the

stroke, the intake valve closes The piston compresses and hears the mixture as it moves upwarvl.

Kings in grooves around the piston rub against the cylinder wall providing a seal necessary lor

compression and spreading lubricating oil At the top ot the stroke, an electrical spark trom a

spark plug detonates the mixture. The expanding gases develop power during the downward

stroke. At the bottom, an exhaust valve is opened. On the next upward stroke, the exhaust gases

are driven out.

Fuel is mixed with air in a carburetor. Dust and din in the air. which could cause excessive

mechanical wear, are removed by an air filter. The optimum ratio o f fuel to air is set by adjusting

a tapered mixture screw. A throttle plate controls the amount o f mixture pulled into the cylinder.

The throttle plate, in turn, is controlled through springs by the operator throttle control and a

governor, a mechanical device which stabilizes the engine speed under varying mechanical

loads. Intake and exhaust valves are normally held closed by springs, and are opened at the right

time by a cam shaft which is gear driven by the crankshaft.

The electrical energy for the spark is provided and timed by a magnet, coil, condenser, and

a normally closed switch called the points. The coil has a low voltage primary circuit connected

to (he points and a high voltage secondary connected to the spark plug. The magnet is mounted

on a flywheel and as it rotates past the coil, it induces a current in the shorted primary circuit.

The points are driven open at the right instant by a cam on the crankshaft. W ith the aid of the

condenser, they interrupt the current in the primary circuit, inducing a high voltage pulse in the

secondary.

3.31 (5) The tower o f Hanoi is a problem frequently used to teach recursive programming techniques.

The object is to move a stack o f disks from one o f three long pegs to another, using the third peg

for maneuvering. Each disk is a different size. Disks may be moved from the top o f a stack on

a peg to the top of the stack on any other peg. one at a time, provided a disk is never placed on

another disk that is smaller than itself. The details o f the algorithm for listing the sequence of

required moves will depend on the structure o f the object diagram used. Prepare object diagrams

for each o f the following descriptions. Show object classes and associations. Do not show at

tributes or operations:

a. A tower consists of several (3) pegs. Each peg has several disks on it. in a certain order.

b. A lower consists o f several (3) pegs. Disks on the pegs are organized into subsets called

stacks. A stack is an ordered set o f disks. Even- disk is in exactly one stack. A peg may have

several stacks on it. in order.

e. A tower consists of several (3) pegs. Disks on the pegs are organized into subsets called

stacks, as in (b). with several stacks on a peg. However, the structure of a stack is recursive.

A stack consists o f one disk (the disk that is physically on the bottom o f the stack* and zero

or one stack, depending on the height of the stack,

d. Similar to (c). except only one stack is associated w ith a peg. Other stacks on the peg are

associated in a linked list.

3.32 (7) The recursive algorithm for producing the sequence of moves described in the previous ex

ercise focuses on a stack of disks. To move a stack ol height N. whore N > l. first nunc the stack

of height N -l to the free peg using a recursive call. Ihen move the bottom disk to the desired

peg. Finally, move the stack on the free peg to the desired peg. The recursion terminates, be

cause moving a stack of height I is triv ial. Which one ot the several object diagrams that vou

prepared in the previous exercise is best suited lor this algorithm? Discuss whv. Also, add at

tributes and operations to the diagram. What arc the arguments tor each operation? Describe

what each operation is supposed to do to each class for winch it is dclincd.

Advanced Object Modeling

Chapter 4 continues our discussion o f object m odeling concepts w ith treatm ent o f advanced

topics such as aggregation, inheritance, m etadata, and constraints. Th is chapter provides

subtleties for im proved m odeling that can be skipped upon a first reading o f this book.

4.1 AGGREGATION

A ggregation is a strong form o f association in which an aggregate object is m a d e o j"com po

nents. Com ponents are p a r t o f the aggregate. The aggregate is sem antically an extended ob

ject that is treated as a unit in m any operations, although physically it is made o f several

lesser objects. A single aggregate object mav have several parts; each part-w hole re la tion

ship is treated as a separate aggregation m order to em phasi/e the s im ilarity to association.

Parts mas or may nut exist apart from the aggregate or appear in m ultip le aggregates. A g

gregation is inherent!) transitive; an aggregate has parts, w hich m ay in turn have parts. M any

aggregate operations im p ly transitive closure and operate on both d u e tt and indirect parts.

Recursive aggregation is com m on.

• *f v ln u i ic n a ic o n fro m >*r.jph theory t l / U o iio tc* an oh *o am i .V ile m iic s a i i ih Ic am i S i \ the
-•e !o f a lt pair*. t»i m n n r i f r U h • an il:c n S* ohe ira n . it iw - e loM ire <>l St i*. the *-£■! «»l a ll *>l n m lrs

<n i f i ' lu o . tl;» v<'micctc«5Kt a '.eijiicnt,c *4 I hu'. N * in. huh*', all i n v . (m h are tl> u 'u m s t-

r<l. iwU-?* sonnet h> ('An o L ’cv, m*lc\ uku a !c*l hv Ihree eitee--. anil !(*ilh

M

4.1.1 Aggregation Versus Association

Aggregation is a special form of association, not an independent concept. Aggregation adds

semantic connotations in certain cases. If two objects are tightly bound by a pan-whole re
lationship. it is an aggregation. If the two objects are usually considered as independent, even

though they may often be linked, it is an association. Some tests include:

• Would you use the phrase part of!

• Are some operations on the whole automatically applied to its parts?

• Are some attribute values propagated from the whole to all or some pans?

• Is there an intrinsic asymmetry to the association, where one object class is subordinate

to the other?

Aggregations include pan explosions and expansions of an object into constituent pans. In

Figure 4.1 a company is an aggregation of its divisions, which are in turn aggregations of
their departments: a company is indirectly an aggregation of departments. A company is not
an aggregation of its employees, since company and person are independent objects of equal
stature.

Figure 4.1 Aggregation and association

The decision to use aggregation is a matter of judgment and is often arbitrary. Often it
is not obvious if an association should be modeled as an aggregation. To a large extent this
kind of uncertainly is typical of modeling: modeling requires seasoned judgment and there

are few hard and fast rules. Our experience has been that if you exercise careful judgment
and are consistent, the imprecise distinction between aggregation and ordinary association
does not cause problems in practice.

4.1.2 Aggregation Versus Generalization

Aggregation is not the same thing as generalization. Aggregation relates instances. Two dis-
tinct objects arc involved; one of them is a part of the other. Generalization relates classes

and is a way of stnicturing the description of a single object. Both superclass and subclass

refer to properties of a single object. With generalization, an object is simultaneously an in
stance of the superclass and an instance of the subclass. Confusion arises because both ag
gregation and generalization give rise to trees through transiihe closure. An aggregation tree

is composed of object instances that are all part of a composite object; a generalization tree

is composed of classes that describe an object. Aggregation is often called "a-part-of" rela
tionship; generalization is often called “a-kind-of ’ or "is-a” relationship.

Figure 4.2 illustrates aggregation and generalization for the case of a desk lamp. Parts

explosions are the most compelling examples of aggregation. Base, cover, switch, and wir
ing are all part of a lamp. Lamps may be classified into several different subclasses: fluores
cent and incandescent, for example. Each subclass may have its own distinct parts. For
example, a fluorescent lamp has a ballast, twist mount, and starter; an incandescent lamp has

a socket.

Lamp

Figure 4.2 Aggregation and generalization

Aggregation is sometimes called an ‘'and-rclationship” and generalization an “or-rela-
lionship." A lamp is made of a base and a cover and a switch and wiring and so on. A lamp

is a fluorescent lamp or an incandescent lamp.

4.1.3 Recursive Aggregates

Aggregation can be fixed, variable, or recursive. A fixed aggregate has a fixed structure; the

number and types of subparts are predefined. The lamp in Figure 4.2 has a fixed aggregate

structure.
A variable aeureeate has a finite number of levels, but the number of parts mav varv.

The company in Figure 4 . 1 is a variable aggregate with a two-level tree structure. 'There are

many divisions per company and many departments per division.
A recursive aggregate contains, directly or indirectly, an instance of the same kind of

aggregate; the number of potential levels is unlimited. Figure 4.3 shows the example of a

computer program. A computer program is an aggregation of blocks, with optionally recur
sive compound statements; the recursion terminates with simple statements. Blocks can be

nested to arbitrary depth.
Figure 4 .3 illustrates the usual form of a recursive aggregate: a superclass and tw o sub

classes, one o f which is an interm ediate node o f the aggregate and one o f w Inch is a term inal

node of the aggregate. The interm ediate node is an assembly ol instances o f the abstract su

perclass.

Figure 4.3 Recursive aggregate

4.1.4 Propagation of Operations

Propagation (also called triggering) is the automatic application of an operation to a net
work of objects when the operation is applied to some starting object |Rumbaugh-8 S|.’ For
example, moving an aggregate moves its parts; the move operation propagates to the pans.
Propagation of operations to parts is often a good indicator of aggregation.

Figure 4.4 shows an example of propagation. A person owns multiple documents. Each

document is composed of paragraphs that are. in turn, composed of characters. The copy op

eration propagates from documents to paragraphs to characters. Copy ing a paragraph copies

all the characters in it. The operation does not propagate in the reverse direction: a paragraph

can be copied without copying the whole document. Similarly, copying a document copies

the owner link but does not spawn a copy of the person w ho is owner.

Person
Owns „

Document cop^
/N m

Paragraph copy; Character i
i

-------------C V o "V-
i

copy copy copy |

Figure 4.4 Propagation of operations

M ost other approaches present an a ll-o r-no th ing option: cops an entire netw ork w ith

deep cops, or cops the starting object and none o f the related objects svith shalloss cops. The

concept o f propagation o f operations pros ides a concise and posverful svay for specifying an

entire continuum o f behavior. A n operation can be thought o f as starting at Nome in itia l o b

ject and llosving from object to object through links according to propagation rules. Propa

gation is possible for o ther operations inc lud ing save/restore. destros. p rin t, lo ck , and

display,

Propagation is indicated on object models ss ith a special notation. The propagation Iv -

havior is bound to an association tor aggregation i. d irection , and operation Propagation is

indicated with a small arrow and operation name next to the affected association. The arrow

indicates the direction of propagation.

4.2 ABSTRACT CLASSES

An abstract class is a class that has no direct instances but whose descendent classes have

direct instances. A concrete class is a class that is instantiate; that is. it can have direct in
stances. A concrete class may have abstract subclasses (but they in turn must have concrete

descendants). A concrete class may be a leaf class in the inheritance tree; only concrete class
es may be leaf classes in the inheritance tree. Figure 4.5 summarizes the definition of abstract
and concrete class. (The dotted line is the object modeling notation for instantiation and is

discussed in Section 4.5.1.)

Figure 4.5 O b je c t m ode l d e fin in g abstract and concre te class

All the occupations shown in Figure 4.6 are concrete classes, Butcher. Baker, and C an

dlestick Maker are concrete classes because they have direct instances. The ellipsis notation

(...) indicates that additional subclasses exist but have been omitted from the diagram, per
haps for lack of space or lack of relevance to the present concern. Worker also is a concrete

class because some occupations may not lie further specified.

1 I ■ ■ I —■

Worker

----------r—

f
f----------
I Butcher

T

Baker
L Z E I ”
Candlestick

Ptlaker

Figure 4,6 ru n t fete classes

Class Employee in Figure 4.7 is an example of an abstract class. All employees must be

either hourly, salaried, or exempt.

Figure 4.7 Abstract class and abstract operation

Abstract classes organize features common to several classes. It is often useful to createW
an abstract superclass to encapsulate classes that participate in the same association or ag
gregation. Some abstract classes appear naturally in the application domain. Other abstract
classes are artificially introduced as a mechanism for promoting code reuse.

Abstract classes are frequently used to define methods to be inherited by subclasses. On

the other hand, an abstract class can define the protocol for an operation without supplying

a corresponding method. We call this an abstract operation. (Recall that in Chapter 3 we de
fined an operation as the protocol for an action that may be applied to objects in a class. A

method is the actual implementation of an operation.) An abstract operation defines the form

of an operation for which each concrete subclass must provide its own implementation. A

concrete class may not contain abstract operations because objects of the concrete class

would have undefined operations.
Figure 4.7 shows an abstract operation. An abstract operation is designated by a com

ment in braces. Compute-pay is an abstract operation of class Employee: its form but not its

implementation is defined. Each subclass must supply a method for this operation.
The origin elass of a feature is the topmost defining class. The origin class defines the

protocol of the feature, that is the type of an attribute or the number and type of arguments

and result type for operations, as well as the semantic intent. Descendent classes can refine

the protocol by further restricting the types or by overriding the initialization or method

code. Descended! classes may not expand or change the protocol.
Note that the abstract nature of a class is always provisional, depending on the point of

view. A concrete class can usually be refined into several subclasses, mak.nu; it abstract.* V

Conversely, an abstract class may become concrete in an application in which the difference

amony its subclasses is unimportant.

4.3 GENERALIZATION AS EXTENSION AND RESTRICTION

An instance of a class is an instance of all ancestors of the class. This is part of the definition

of generalization. Therefore all ancestor class features must apply to the subclass instances.
A descendent class cannot omit or suppress an ancestor attribute because then it would not
truly be an ancestor instance. Similarly operations on an ancestor class must apply to all de
scendent classes. A subclass may reimplement an operation for reasons of efficiency but can
not change the external protocol.

A subclass may add new features. This is called extension. For example, Figure 4.7 ex
tends class Employee with three subclasses that inherit all Employee features and add new

features of their own.
A subclass may also constrain ancestor attributes. This is called restriction because it

restricts the values that instances can assume. For example, a circle is an ellipse whose major
and minor axes are equal. Arbitrary changes to the attribute values of a restricted subclass

may cause it to violate the constraints, such that the result no longer belongs to the original
subclass. This is not a problem from the perspective of the superclass because the result is

still a valid superclass instance. For example, a circle that is scaled unequally in the x and y

dimensions remains an ellipse but is no longer a circle. Class Ellipse is closed under the scal

ing operation, but Circle is not.
Inherited features can be renamed in a restriction. The inherited major and minor axes

of a circle must be equal and could be renamed the diameter.

Class membership can be defined in two ways: implicitly by rule or explicitly by enu
meration. A rule defines a condition for membership in a class; all objects whose values sat
isfy the rule belong to the class. This is the usual mathematical usage. Polygons, triangles,
ellipses, circles, and other mathematical objects are defined by rule. This works well for im
mutable values but not so well for objects that can undergo changes yet remain the same ob
ject. Most object-oriented languages consider an object to be a discrete unit with explicit
properties, one of which is the class of the object. An object has explicit class membership

and the attributes it bears flows from its class. In contrast, for rule-based definition, class

membership flows from attribute values.
In an e x p l ic i t d e f in i t io n o f c la s s m e m b e rs h ip , o p e ra t io n s th a t w o u ld in v a l id a te c la s s

m e m b e rs h ip c o n s tra in ts m u s t t v d is a l lo w e d o n s e m a n tic g ro u n d s . R e s t r ic t io n im p l ie s th a t a

s u b c la s s m ay n o t in h e r i t a l l th e o p e ra t io n s o f its a n c e s to rs . In an id e a l w o r ld , s u c h o p e ra t io n s

w o u ld be a u to m a t ic a l ly d e te c te d b y a s u p p o r t s y s te m , b u t f o r n o w th e y m u s t be s p e c if ie d b y

the d e s ig n e r, ' f in is th e C i r c le c la s s m u s t s u p p re s s th e u n e q u a l sca le o p e ra t io n . O n th e o th e r

h a n d , an o b je c t d e c la re d to be an e l l ip s e is n o t re s tr ic te d to re m a in a c ir c le e v e n i f its m a jo r

a n d m in o r a xe s h a p p e n to ! v te m p o ra r i ly e q u a l.

F a i l in g to n o te th e d i f fe re n c e b e tw e e n r e s t r ic t io n a n d e x te n s io n lia s c a u se d c o n fu s io n m

th e p a s t S o m e a u th o rs h a v e b e e n b o th e re d b y th e fa c t th a t s u b c la s s e s m u s t s u p p re s s so m e

o p e ra t io n s . C h a p te r 10 o f (M e y e r -X K) n o te s th a t su b c la sse s c a n I v v ie w e d as b o th s p e c ia l iz

in g a n d e x te n d in g s u p e rc la s s fe a tu re s . These m e a n in g s a re c o m p le m e n ta ry . S o m e o p e ra t io n s

are m e a n in g fu l o n ly to a su bse t o f in s ta n c e s , n a r ro w in g th e set o f in s ta n c e s b ro a d e n s the

n u m b e r o f a p p lic a b le o p e ra t io n s . M e y e r a ls o n o te s th a t th e in te rn a l im p le m e n ta t io n o f an o p

e ra t io n c a n t v o v e r r id d e n , p ro v id e d th e e x te rn a l p ro to c o l re m a in s th e sam e.

4.3.1 Overriding Operations

There is tension between use of inheritance for abstract data types and for sharing implemen
tation. Most of this tension relates to overriding methods. The trouble arises when the over
riding method substantially differs from the overridden method, rather than just refining it.
Overriding is done for the following reasons:

Overriding fo r extension. The new operation is the same as the inherited operation, ex
cept it adds some behavior, usually affecting new attributes of the subclass. This concept is

supported by Eiffel (redefine) and Smalltalk (SUPER). For example. Window may have a

draw operation that draws the window boundary and contents. Window could have a sub
class called LabeledW indow that also has a draw operation. The draw-LabeledW indow

method could be implemented by invoking the method to draw a Window and then adding

code to draw the label.
Overriding fo r restriction. The new operation restricts the protocol, such as tightening

the types of arguments. This may be necessary to keep the inherited operation closed within

the subclass. For example, the superclass Set may have the operation add(object). The sub
class IntegerSet would then have the more restrictive operation addtinteger).

Overriding fo r optimization. An implementation can take advantage of the constraints

imposed by a restriction to improve the code for an operation, and this is a valid use of over
riding. The new method must have the same external protocol and results as the old one. but
its internal representation and algorithm may differ completely.

For example, superclass IntegerSet could have an operation to find the maximum inte
ger. The method for finding the maximum of an IntegerSet may be implemented as a sequen
tial search. The subclass SortedlntegerSet could provide a more efficient implementation of
the maximum operation, since the contents of the set are already sorted.

Overriding fo r convenience. A common practice in developing new classes is to look

for a class similar to what is desired. The new class is made a subclass of the existing class

and overrides the methods that are inconvenient. This ad hoc use of inheritance is semanti
cally wrong and leads to maintenance problems because there is no inherent relationship be
tween the parent and child classes. A better approach is to generalize the common aspects of
the original and new classes into a third class, from which the first two classes both inherit.W

We propose the following semantic rules for inheritance. Adherence to these rules will
make your software easier to understand, easier to extend, and less prone to errors of oversight.

• All query operations (operations that read, but do not change, attribute values* are in

herited bv all subclasses.

• A l l u p d a te o p e ra t io n s (o p e ra t io n s th a t c h a n g e a t t r ib u te \ a l l ie s) a ie in h e r ite d a c ro ss a ll

e x te n s io n s .

• U p d a te o p e ra t io n s th a t c h a n g e c o n s tra in e d a t t r ib u te s o r a s s o c ia t io n s are b lo c k e d a c ro ss

a r e s t r ic t io n . l o r e x a m p le , th e sca lc-x o p e ra t io n is p e rm it te d fo r c la ss k l i i p s c . b u t m u s t

be b lo c k e d lo r s u b c la s s C i t r i c .

• ()peratioiis m ax n o t be o v e r r id d e n to m a k e th e m b e h a x e d i f f e ie iu ly t in th e ir e x te rn a l I \ •

v is ib le m a n ife s ta t io n s) f r o m m h c i i te d o p e ra t io n s . A l l m e th o d s th a t im p le m e n t an o p e r

a t io n m u s t h a v e th e sa m e p ro to c o l.

♦ Inherited operations can be refined by adding additional behavior.

The implementation and use of many existing object-oriented languages violates these prin

ciples.

4.4 MULTIPLE INHERITANCE

M ultiple inheritance permits a class to have more than one superclass and to inherit features

from all parents. This permits mixing of information from two or more sources. This is a

more complicated form of generalization than single inheritance, which restricts the class hi
erarchy to a tree. The advantage of multiple inheritance is greater power in specifying classes

and an increased opportunity for reuse. It brings object modeling closer to the way people

think. The disadvantage is a loss of conceptual and implementation simplicity. In principle,
all kinds of different mixing rules can be defined to resolve conflicts among features defined

on different paths.

4.4.1 Definition

A class may inherit features from more than one superclass. A class with more than one su
perclass is called a jo in class. A feature from the same ancestor class found along more than

one path is inherited only once: it is the same feature. Conflicts among parallel definitions

create ambiguities that must be resolved in implementations. In practice, such conflicts

should be avoided or explicitly resolved to avoid ambiguities or misunderstandings, even if
a particular language provides a priority rule for resolving conflicts.

In Figure 4.K. AmphihiousVehirle is both LamlVehiele and WaterVehiele. In Figure 4.9.
Vested! fourlyEmployee is both YcxtedEmployee and llourlyEm plnyee. AmphihiousVehiclc

and Vested! InurlyEtnphiyec are join classes.

LandVohlcto J £ WatorVohlcIo

A _ A T
i--------- -------------- 1 f-------- ------- ~|“ *■----- j r------------- 1 ----------- j r— —* ■ —

Car J | AmphlblousVohlcIo j |^Boat

Figure JJR Multiple inheritance (mm mcrlappmg classes

R aeh g e n e ra liz a t io n s h o u ld c o v e r a s in g le p ro p e r ty , fo r e x a m p le w h e re a v e h ic le tra v e ls .

I f a c la s s ca n \k re t in e d o n s e v e ra l d is t in c t a m i in d e p e n d e n t d im e n s io n s , th e n live m u lt ip le

g e n e ra liz a t io n s . R e c a ll th a t the c o n te n t o | an o b je c t m o d e l is d r iv e n b y its re le v a n c e to an

Figure 4.9 Multiple inheritance from disjoint classes

application solution, so do not list all possible generalizations, just show the important ones.
In Figure 4.9, class Employee independently specializes on pay status and pension status.
This is shown with two separate generalizations.

The generalization subclasses may or may not be disjoint. For example, LandYehicle

and WaterVehicle overlap because some vehicles travel on both land and water. H ourly Em

ployee t SalarieclEmployee, and ExempiEmployec are disjoint; each employee must belong to

exactly one of these. A hollow triangle indicates disjoint subclasses; a solid triangle indicates

overlapping subclasses. A class can multiply inherit from distinct generalizations or from

different classes within an overlapping generalization but never from two classes in the same

disjoint generalization.
The term multiple inheritance is used somewhat imprecisely to mean either the concep

tual relationship between classes or the language mechanism that implements that relation
ship by sharing of behavior and data. Whenever possible, we try to distinguish between

generalization (the conceptual relationship) and inheritance (the language mechanism), but
in the case of multiple inheritance the term is so widely used already that use of the term

"multiple generalization" would be confusing.

4.4.2 Accidental Multiple Inheritance

An instance of a join class is inherently an instance of all the ancestors of the join class. For
example, an instructor is inherently both faculty and student. But what about a Harvard Pro
fessor taking classes at M IT? There is no class to describe the combination (it would be ar
tificial to make one). This is an example of "accidental" multiple inheritance, in which one

instance happens to participate in two overlapping classes. This case is poorly handled by

most object-oriented languages. As shown in Figure 4.10. the best approach using conven
tional languages is to treat Person as an object composed of multiple UniversityMember oh-

jects. This workaround replaces inheritance with delegation (discussed in the next section).
This is not totally satisfactory because there is a loss of identity between the separate roles,
but the alternatives involve radical changes to the 0 0 framework |McAllesler-8 6).

Figure 4.10 Workaround for accidental multiple inheritance

4.4.3 Workarounds

Dealing with lack of multiple inheritance is really an implementation issue, but early restruc
turing of a model is often the easiest way to work around its absence. Some restructuring

techniques are described below. Two of the following approaches make use of delegation,

which is an implementation mechanism by which an object forwards an operation to another
object for execution. Sec Section 10.6.3 for further discussion of delegation.

Delegation using aggregation o f roles. A superclass with multiple independent general
izations can be recast as an aggregate in which each component replaces a generalization.
This approach is similar to that for accidental multiple inheritance in the previous section.
This approach replaces a single object having a unique ID by a group of related objects that
compose an extended object. Inheritance of operations across the aggregation is not automat
ic. They must be caught by the join class and delegated to the appropriate component.

For example, in Figure 4 .11 EmployeePayroH becomes a superclass of H ourly Employ

ee. SaiariedEmployee, and ExanptEmployee. EmployeePension becomes a superclass of
VestedEmployec and UnvestedEtnployee. Then Employee can be modeled as an aggregation
of EmployeePayroH and EmployeePension. An operation such as compute-pay sent to an

Employee object would have to be redirected to the EmployeePayroH component by the Em

ployee class.
In this approach, the various join classes need not actually be created as explicit classes.

All combinations of subclasses from the different generalizations are possible.
Inherit the most important class and delegate the rest. Figure 4 .12 makes a join class a

subclass of its most important superclass. 'Hie join class is treated as an aggregation of the

remaining superclasses and their operations arc delegated as in the previous alternative. This

approach preserves identity and inheritance across one generalization.
Nested generalization Factor on one generalization first, then the other. This approach

multiplies out all possible combinations. For example, in Figure 4 .13 under each of Hourly-

Employee. SaiariedEmployee. and ExemptEmployee. add two subclasses for vested and un
vested employees. Tins preserves inheritance but duplicates declarations and code and

violates the spirit o f object-oriented programming.

O Employee k> <I

Employee
Pension

\
/ \ pension status

Vested i j Unvested |
Employee j j Employee :

Figure 4 .11 M ultiple inheritance using delegation

pay status y \

Hourly
Employee

Salaried
Employee

Exempt i
Employee j

______ I Employee j
I Pension
I_____________j

I
, / \ pension status

» *i •

[Vested i | Unvested I
j Employee j j Employee ;

Figure 4.12 Multiple inheritance using inheritance and delegation

!
Employee j

t
pay status

Hourly Salaried j
Employee Employee |

pension status / \ pension status

| Exempt !
1 Employee ;

per; ton status

Hourly
Vested
Employee

Hourly
Unvested
Employee

_____j______

Salaried
Vested
Employee i

I Salaried ;
Unvested J
Employee ;

_______ |_________ I______

■ Exempt : ' Exempt I
; Vested . 1 Unvested !
• Employee • i Employee i

Figure 4.13 Multiple inheritance using nested

Any of these workarounds can be made to work... but ail compromise io p rz i structure #
J mamtainabUitv. Some issues to consider when selecting rite best workaround art:

^ a subclass has several superclasses, alt of equal importance,it may be best to dej.
Pgiition (Figure 4.JJ j and preserve svtnmetrv in the model.

• I f one superclass dearly dominates and the others are less important, implementing mul
tiple inheritance via single inheritance and delegation may be best (Figure 4.12).

• I f the number of combinations is small, consider nested generalization t Figure 4.13 i. If

the number of combinations is large, avoid it.

• I f one superclass has significantly more features than the other superclasses or one su
perclass clearly is the performance bottleneck, preserve inheritance through this path

(Figure 4.12 or Figure 4.13).% W

• I f you choose to use nested generalization (Figure 4.13). factor on the most important
criterion first, the next most important second, and so forth.

• Try to avoid nested generalization (Figure 4.13) if large quantities of code must be du
plicated.

• Consider the importance of maintaining strict identity. Only nested generalization (Fig

ure 4.13> preserves this.

4.5 METADATA

Metadata is data that describes other data. For example, the definition of a class is metadata.
Models are inherently metadata, since they describe the things being modeled (rather than

oW/n? the things). Many real-world applications have metadata, such as pans catalogs, blue
prints. and dictionaries. Computer language implementations also use metadata heavily. Fig

ure 4.5 is another example of metadata. In Section 4.2 while explaining the modeling

concept of concrete and abstract classes w e found it useful to use an object model to explain
object modeling constructs. Tne case study in Chapter IS presents an actual application that
required a model of metadata (a metamodel).

Relational database management systems (see Chapter 17) also use metadata. A person

can define database tables for storing information. Similarly, a relational DBMS has several
mclaiabics that store table definitions. Thus a data table may store the fact that the capital of
Japan is Tokyo, the capital of Thailand is Bangkok, and the capital of India is New Delhi. A

mctatublc would store the fact that a country has a capital city.
Metadata is frequently confusing because it blurs the normal separation between the

model and the real world. With ordinary applications, the same terms can be used to refer to

both the model and the real world; the context of usage distinguishes which is meant. With

metadata, the context is not sufficient to distinguish the description from the thing being de
scribed. so a more precise distinction must be made.

4.5.1 Patterns and Metadata

A class describes a set of object instances of a given form, instantiation relates a class to its

instances. In a broader sense, any pattern describes examples of the pattern; the relationship

between pattern and example can be regarded as an extension of instantiation.

Figure 4,14 shows an example of instantiation. Joe Smith and M ary Wilson are instances

of class Person. The dotted arrows connect the instances to the class. Explicitly showing the

instantiation relationship is useful when both instances and classes must be manipulated as

objects, for example in interpreters, modeling tools, and language support mechanisms. In
stantiation is also useful for documenting examples and test cases. For most problems, how
ever, classes and their instances need not be shown together.

Person

name
age
weight

'(P e rs o n) ^
Joe Smith
age=39

^w eight=158,

r (Person) ^
Mary Wilson
age=27

vweight= 1 2 1 ,

Figure 4.14 Notation for instantiation

Real-world things mav be metadata. There are real-world things that describe other real-e. * w

world things. A part description in a catalog describes manufactured parts. A blueprint de
scribes a house. An engineering drawing describes a system.

For example, consider models of cars made by different manufacturers, such as a 1969

Ford Mustang ora 1975 Volkswagen Rabbit. Each Cat-Model in Figure 4.15 describes a par
ticular kind of car; each CarM ode! has its own attributes and associations. Each CarM odel

object also describes a set of physical cars owned by persons. For example. John Doe may

own a blue Ford with serial number I PAPP and a red Volkswagen with serial number 7P.S1P.

Each car receives the common attributes from CarM odel but also has its own list of partic
ular attributes, such as serial number, color, and list of options. It would be possible to create

a class to describe each kind of car. but the list of models keeps growing. It is belter to con
sider the C arM odel object as a pattern, a piece of metadata, that describes C ar objects.

CarModel <t o Car

model name serial #
year color
base price options

Manufacturer

Company ~j
x—

Owner

Person

K ijiu ro 4 . 1 5 P.i IIc iu n .tin! u n l iM il iu is

4.5.2 Class Descriptors

Classes can also be considered as objects, but they are meta-objects and not real-world ob
jects. Class descriptor objects have features, and they in turn have their own classes, which

are called menu-lasses. Treating everything as an object provides a more uniform implemen
tation and greater functionality for solving complex problems.

A class attribute describes a value common to an entire class of objects, rather than data

peculiar to each instance. Class attributes are useful for storing default information for cre
ating new objects or summary' information about instances of the class.

A class (Operation is an operation on the class itself. The most common kind of class op
erations are operations to create new class instances. Operations to create instances must be

class operations because the instance being operated on does not initially exist. A query that
provides summary information for instances in a class is also a class operation. Operations

on class structure, such as scanning the list of attributes or methods, are class operations.
Figure 4.16 shows a class Window with class features indicated bv leading dollar signs.

Window has class attributes for the set of all windows, the set of visible windows, default
window size, and maximum window size. Window contains class operations to create a new

window object and to find the existing window with the highest priority.

Window

size: Rectangle
visibility: Boolean
Sail-windows: Set[Window]
Svisible-windows: Set(Window)
$default-size: Rectangle
Smaximum-size: Rectangle

display
$new-Window
$get-highest-priority-Window

Figure 4.16 Class with class features

4.6 CANDIDATE KEYS

The ball notation discussed tn Chapter 3 works line when discussing multiplicity for binary
associations and is the preferred notation for binary associations. 1 lowever. multiplicity balls

are ambiguous for n ary <n>2) associations. The best approach for n-ary associations is to

specify candidate keys.
A candidate l.cs is a minimal set of attributes that uniquely identities an object or link.

Bv minimal, we mean that sou cannot discard an attribute from the candidate key and still * • ♦
distinguish all objects and links. A class or association may have one or more candidate keys,
each of which may have different combinations and numbers of attributes. The object ID is

always a candidate key for a class. One or more combinations of related objects are candi
date keys for associations.

Candidate key is a term commonly used within the database community. However can
didate key is really not a database concept; candidate key is a logical concept. Each candi
date key constrains the instances in a class or the multiplicity of an association. Most
programming languages lack the notion of a candidate key. A candidate key is delimited in

an object model with braces. (This is the object modeling notation for constraints, which are

discussed in the next section.)
Figure 4.17 compares multiplicity and candidate keys for binary associations. Multiplic

ity and candidate keys have nearly the same expressive power for binary associations. (M u l
tiplicity also includes the notion of existence dependency— whether an object must
participate in an association.) A many-to-many association requires both related objects to

uniquely identify each link. A one-to-many association has a single candidate key: the object
on the many end. A one-to-one association has two candidate keys: either of the objects. If

we specify the country, or specify the capital city, there is no ambiguity. Note that a candidate

key may be specified even when one or both classes are optional. For example, a city may

not be a capital at all. but a city is capital of at most one country.

M any-to-m any
association

One-to-many Optional-to-one
association association

{Candidate key:
(person, company))

{Candidate key:
(person))

{Candidate keys:
(country)
(city)}

Figure 4.17 Comparison of multiplicity with candidate keys for binary associations

Figure 4.18 shows a ternary association that has one candidate key consisting of all three
objects. Persons who are programmers use computer languages on projects. Several links are

presented at the bottom of the figure. No combination of just one or two objects will uniquely
identify each link.

Hgure 4.19 contains another ternary association. A student lias one advisor at a univer-
sily. A student may attend more than one university. A professor mav be an advisor at more

than one university. Mere the instances suggest that (student, university) is the only candidate

key. 1 his candidate key involves only two of the three related objects.

We deduce the candidate key by considering all the possibilities. S m J e n t is not a can
didate key; two links have the value M u r y . P ro fe ss o r and l ’/mr/.w/v ate not candidate kevs.
S i u t i c n t + P r o f e s s o r . P r o f r s s t i r + l ^ u v e r s t i r are not candidate kevs; S u \ o n + W e a v <v.

(Candidate key: (project, person, language)}

Project Person Language

CAD program Mary C
control software Susan Ada
C++ compiler Mike C
CAD program Bob assembler
CAD program Mike C
CAD program Mike assembler

Figure 4.18 Ternary association

(Candidate key: (student, university))

Student Professor Unlvers

Mary Prof Weaver SUNY
Mary Prof Rumrow RPI
Susan Pro! Weaver RPI
Susan Proi Weaver SUNY
8ob Prof Shapiro Oxford

Figure 4.19 Ternary association

Weuvcr+SUNY appear twice. Studeni+Univcrsity may be a candidate key. since no links

share the same values. Based on the problem statement, we decide that Studrtu+Unhrrsiry

really is a candidate key and would distinguish other links beyond the live in Figure 4.10.
Student+Pmfcssor-rVnivcrsity is not a candidate key, becttu.se it is not a minimal set of tit-

tributes.

4.7 CONSTRAINTS

4.7.1 Definition

Cunstratntr, are functional relationships between entities of an object model. The term entity

includes objects, classes, attributes, links, and associations. A constraint restricts the values

that entities can assume, fixampics include: No employee’s salary can exceed the salary of

the employee’s boss (a constraint between two things at the same time). No window will
have an aspect ratio (length/width) of less than 0.8 or greater than 1.5 (a constraint between

properties of a single object). The priority of a job may not increase (constraint on the same

object over time). Figure 4.20 lists these examples. Simple constraints may be placed in ob
ject models. Complex constraints should be specified in the functional model (see

Chapter 6).

Window
Employee „boss Job-----

length
widthsalary D------- 1 priority

{salary < boss.salary) {0.8 < length/width < 1.5} {priority never increases}

Figure 4.20 Constraints on objects

We favor expressing constraints in a declarative manner. Ordinarily, constraints must be

converted to procedural form before they can be slated in a programming language. Ideally

conversion should be automatic, but this may be difficult or impossible to achieve. Object
models capture some constraints through their very structure. For example, single inherit
ance implies that subclasses are mutually exclusive.

Constraints provide one criterion for measuring the quality of an object model: a "good”

object model captures many constraints through its structure. It often requires several itera
tions to get the structure of a model right from the perspective of constraints. In principle,
we could embellish object modeling notation with all kinds of special constructs to capture

more and more structural constraints. This is probably not a good idea. The object modeling

notation advanced by this book represents a compromise between expressive power and sim
plicity. There will always be constraints that must be expressed in natural language.

Object modeling syntax for constraints is as follows: Constraints are delimited by braces

and positioned near the constrained entity. A dotted line connects multiple constrained enti
ties. An arrow may be used to connect a constrained entity to the entity it depends on. Instan
tiation is a kind of constraint and therefore uses the same notation.

4.7.2 Constraints on Links

Multiplicity constrains an association. It restricts the number of objects related to a gi\en ob
ject. Object modeling notation has a special syntax for showing common multiplicity \ allies

([0 . 1 1 , exactly l. and ()+>. Other values of multiplicity can be shown by a numerical inters al
near an association role. For example. Figure 4.5 specifies "I for two association roles.

The notation “ |ordered)" indicates that the elements of the "many" end of an associa
tion have an explicit order that must be preserved. Figure 4.2 I shows an object model for the

officers of a country. Finch oflice (such as president, chief justice, king) for each country has

a set of persons who base held the oflice. ordered chronologically.

Figure 4.21 Constraints on association links

4.7.3 General Constraints

General constraints must be expressed with natural language or equations. You should draw

a dotted line between classes involved in the constraint and specify the details with com
ments in braces. Sometimes it may be impractical to draw lines to all the classes, so make

the best of it. Sometimes it is better to have an unattached constraint than to draw lines all
over the place.

For example, one association may be a subset of another. In Figure 4.22 the chair of a

committee must be a member of the committee: the Chair-oJ association is a subset of the

M em ber-of assoc iat ion.

«

:>
Person

M em ber-of

{subset)

Chair-of

Committee

Figure 4.22 Subset constraint between associations

4.7.4 Derived Objects, Links, and Attributes

A derived object is defined as a function of one or more objects, which in turn may be de
rived. 'Hie derived object is completely determined by the other objects. Ultimately, the der-
ivation tree terminates with base objects. Thus a derived object is redundant but may be

included in an object model to ease comprehension: it often represents a meaningful real-
world concept. Similarly, there are also derived links and derived attributes.

The notation for a derived entity is a slash or diagonal line (on the corner ol a class box.

on an association line, or in front of an attribute;. You should show the constraint that deter
mines the derived value. Like most of the object modeling notation, the derived value nota

tion is optional.
As shown in Figure 4.23. age provides a good example of a derived attribute. Age can

be derived from birth date and the current date.
In Figure 4 .2 4 , a machine consists of several assemblies that in turn consist of pans. An

asvemblv has a geometrical offset with respect to machine coordinates, each part has an o li
vet with respect to assembly coordinates. We can define a coordinate system tor each part
that is derived from machine coord in.lies, assembly offset. and pan ollset. Ibis cooidniatg

swletn can be reprevcnied as a derived object class called Offset related to each pan In a de

rived association called XetOlfset.

Person

birthdate
/age

Current
date

{age = currentdate - birthdate}

Figure 4.23 Derived attribute

{offset = assembly-machine.offset x
part-assembly.offset}

Figure 4.24 Derived object and association

Real world concepts are highly redundant, therefore we expect to see many derived en
tities in models; it is desirable to use concepts that appear in the application domain. Never
theless it is important to distinguish independent and dependent entities in a model so that
the true complexity can be seen. Derived entities are constrained by their base entities and

the derivation rule.

4.7.5 Homomorphisms

A homomorphism maps between two associations as illustrated by Figure 4.25. For example,
in a parts catalog for an automobile, a catalog item may contain other catalog items. Each

catalog item is specified by a model number that corresponds to thousands or millions of in
dividual manufactured items, each with its own serial number. The individual items are also

composed of subitems. Each physical item’s parts explosion tree has the same form as the

catalog item's parts explosion tree. The contains aggregation on catalog items is a homomor
phism of the contains aggregation on physical items. This form of homomorphism between

two trees is common.
In general, a homomorphism involves four relationships among tour classes as shown

in Figure 4.26. The homomorphism maps links of one general association V<) into links of
another general association U) as a many-to-one mapping. Two instantiation relationships

map elements of one class into another; r is a many-to-one mapping from class it to class A

and v is a many-to-one mapping from class D to class C. In the common case where t is on

a simile class and ti is on a simile class, then A =C. t i - D . and as in Figure 4.25.

Contains Maps

i
Caialogltem O — Item O —

model number <......
Describes

....@ serial number

Contains

{iieml contains item2 => item 1 .model contains item2 .model}

Figure 4.25 Homomorphism for a parts catalog

A

/
M.

C

4

(u(b.d) => t(b.r. d.s)}

r
L_

B

.

°

i

Figure 4.26 General homomorphism

At first, the homomorphism may seem to be an esoteric concept. However, our experi

ence has been that they really do appear in practice. Homomorphisms are most likely to oc
cur for complex applications that deal with metadata. The homomorphism is essentially just
an analogy— a special type of relationship between relationships. Proper use of homomor
phism* constrain the structure of an object model and improve the correspondence between
the mode! and the real world.

4.8 CHAPTER SUM M ARY

This chapter covers several diverse topics that explain subtleties of object modeling. These

concepts are not needed for simple models but may be important for complex applications.
Remember, the content of any object model should be driven by its relevance to an applica
tion. Only use the advanced concepts in this chapter if they indy add to your application, ei
ther by improving clarity, tightening structural constraints, or permitting expression of a

difficult concept.
Aggregation is a special form of transitive association where a group of component ob

jects fonn a single semantic entity. Operations on an aggregate often propagate to die com
ponents. Recursive aggregates allow a component to also be an aggregate. Aggregation must

not be confused with generalization, even though both constructs form trees; aggregation is

a tree of instances, generalization is a tree of classes.
Ahstrru i and are useful terms for referring to classes in an inheritance hierar

chy. Abstract classes help organize the class hierarchy and have no direct instances. Concrete

classes may have direct instances. Abstract classes are frequently used to deline methods in

one place for use by several subclasses. Abstract classes can also be used to deline the form

or protocol of an operation, leaving the implementation to each subclass.
Inheritance has two different but complementary aspects. Extension means that a subclass

may add new features. Restriction means that a subclass may constrain inherited features. For
semantic reasons, a subclass should not suppress a superclass attribute or change the external

protocol of a superclass operation. An instance of a subclass is simultaneously an instance of
a superclass; thus it is not permissible for a subclass to violate superclass behavior. Unfortu
nately, it is common practice in existing object-oriented languages to abuse inheritance in this

way. The price that is paid is more obscure code and awkward maintenance.
Multiple inheritance permits a subclass to inherit features from more than one super

class. A class with more than one superclass is called a join class. Each generalization should

discriminate a single semantic quality. The subclasses of a given superclass should be ar
ranged into more than one generalization if the superclass specializ.es on more than one dis
criminator. A join class may combine classes from different generalizations, or it may

combine classes from an overlapping generalization, but it may not combine classes from

the same disjoint generalization. Accidental inheritance is a properly of instances and must

be represented by delegation.
Metadata is data that describes other data. Object classes are metadata, since they de

scribe objects. The instantiation relationship links class descriptor objects to class instances.
Metadata is a useful concept for two reasons; It occurs in the real world and it is a powerful
tool for implementing complex systems. Modeling metadata can be confusing because the

distinction between descriptor and referent is blurred.
A candidate key is a minimal set of attributes that uniquely identifies an object or link.

Candidate keys constrain the multiplicity of an association. Multiplicity balls serve as a

shorthand notation: candidate keys express the fundamental abstraction. Multiplicity balls

are line for binary associations but are ambiguous for n-ary associations. The best approach

for n-ary associations is to use candidate keys.
Explicit constraints among objects, links, and attributes are sometimes needed to ex

press application semantics. The notation for a constraint is a comment in braces near the

constrained entity; a dotted line can be added to bind constrained entities. Generalization and

multiplicity are examples of constraints built into the fabric of object modeling. Momomor-
phisms are mappings between associations: a frequent usage is the mapping between a de
scriptor tree and a part tree. Derived entities may appear in a model for oiganiz.ationa! or
naming purposes, but do not add fundamental information.

abstract class
aggregation

candidate ke\
class feature

concrete class

constraint

derived entity
ecnerali/ation

homomorphism

inheritance

instantiation

join class
motaclass

metadata

multiple inheritance

origin class

ou-rrulc
propagation

protocol

F igu re -1.27 Kc\ concepts lor c'haptcr -

B IB LIO G R A PH IC N O TE S 79

BIBLIO G RAPHIC NOTES

There have been a number of atiempis to understand types, sometimes going considerably

beyond the object-oriented paradigm. [Cardelli-S5| describes a lattice of type definition

models, of which object-oriented models are seen to be just one case (and not the most gen
eral i. Extremely powerful type definition systems tend to be hard to understand and imple
ment. so most language implementors have been more restrained.

[Teorey-S9] presents an interesting approach to improving the understandability of
large, complex models. The basic idea is that a model can be viewed at various levels of de
tail. High-level views hide low-level details within clusters. A cluster is a group of classes,
associations, generalizations, and possibly other clusters which are abstracted into a single

entity for presentation in a higher level view. Clusters can be recursively constructed until
the proper level of abstraction is achieved. Teorey uses a heavy outline box to indicate clus

tering which is compatible with our O M T notation.
We choose not to present clustering as a section in this book because there are several

unresolved issues. We are uncomfortable with Teorey \ approach for handling associations

between the external world and an emits within a cluster. In one sense, a cluster hides the

(act that an entity is buried within, but this is contradicted by the visibility required to make

the association. Also we regard the priority rules for forming clusters as vague and confus
ing. Nevertheless, we recommend the reading of Teorey's paper as it represents significant
progress in an important area.

Many of the basic premises and details of object-oriented technology are controversial.
The annual OOPS1.A (Object-Oriented Programming Systems, Languages, and Applications)
and f:C0OP t European (‘onferencc on Object-(Oriented Programming) conferences are the ve
hicles for new concepts, novel implementations, and philosophical arguments about the object-
oriented held. Past theoretical controversies include the proper role of inheritance (single ver
sus multiple, inheritance versus delegation, the need for metaclasses), more general lorms ol
type systems, handling of metadata, tiealment of constraints, and handling of aggregation.

REFERENCES

\tAoyj :s5j Thmnjs M Ar.so.vl An object-oriented DHMS lor design support applications. //:/:/.
t t i ' . t f ' I V I >;< 2'c) to"

K’.sri!c ill Lik .i (.irtlci
phi-.::ii \ r \ f r ,i 'WpUil

W\c\ tcr-XA] [).;%hi \k
U>_-. l'/.v:;. -:r- «1 1

|̂ !icr*r.mvJ
ii.ii! •il. I*>:

£ 1 . 1

UifTi- n n r \ ! . \ • • '
J C ’i I «17**1 ; I 1 v » f i . | i r . t t M | J H I (t ' U ,) t ' i m <<<• . v • «< ' . v . , , , f .

. ! . .'.r(.*.ui Jt?r ti **r . u : 0 j t i . c (n/nnn/n/t litmus the

EXERCISES

4.1 (4) The object diagram in Figure E4.1 is a partial representation of the structure of an automo
bile. Improve it by changing some of the associations to aggregations.

Door Body Gas tank

Autom obile

Engine Transm ission Wheel Brake

Power tram Steering system Braking system

i i A o

Brake switch

Exhaust system

Muffler
I

Pipe

Electrical system

-c jB ra k e light

Starter Battery Alternator

Figure E4.1 Portion of an object diagram of the assembly hierarchy of an automobile

4,2 (4) Figure E4.2 is a partially completed object diagram for an interactive diagram editor. A sheet
is a collection of links and boxes. A link is a sequence of line segments that connect two boxes.
Each line segment is specified by two points. A point may be shared by a vertical and a horizon
tal line segment in the same link. A selection is a collection of links and boxes that have been
highlighted in anticipation of an editing operation. A buffer is a collection of links and boxes
that have been cut or copied from the sheet. As it stands, the diagram does not express the con
straint that a link or a box belongs to one buffer or one selection or one sheet. Revise the object
diagram and use generalization to express the constraint by creating a superclass for the classes
Buffer, Selection, and Sheet. Discuss the merits of the revision.

4.3 (3) Categorize the following relationships into generalization, aggregation, or association Be

ware. there may be ternary or n-ar\ associations in the list, so do not assume e \c r \ relationship

mvol\ mg three or more object classes is a generalization. Defend sour answers.

a. A country has a capital city.
b. A dining philosopher is using a fork.
e. A tile is an ordinary file or a directory file,
d. Files contain records.
c. A polygon is composed of an ordered set of points.
1. A drawing object is text, a geometrical object, or a group.
g. A person uses a computer language on a project.
h. Modems and keyboards are input/output devices.

i. Object classes may ha\e several attributes.

j. A person plays for a team in a certain year.
k. A route connects two cities.
l. A student takes a course from a professor.

4.4 (7) Prepare an object diagram for a graphical document editor that supports grouping, which is
a concept used in a variety of graphical editors. Assume that a document is composed of several
sheets. Each sheet contains drawing objects, including text, geometrical objects, and groups. A
group is simply a set of drawing objects, possibly including other groups. A group must contain
at least two drawing objects. A drawing object can be a direct member of at most one group.
Geometrical objects include circles, ellipses, rectangles, lines, and squares.

4.5 1 6) A directory file contains information about files in a directory , including both ordinary files
as well as other directory files. Prepare an object diagram which models directory files and or
dinary files. Since a directory plus a file name uniquely identifies a file, you w ill probably want
to use file name as a qualifier.

4.6 i(y) Prepare a verbal description of a situation that involves recursion, similar to the previous two
exercises, and prepare the corresponding object diagram. Defend the need for recursion in your
description.

4.7 <8 1 Descriptions of operations on some object classes in exercise 4.2 are given below. The no
tation is c)ass:;opcra!ion(argumemsj. niink about how operations on some classes trigger oper
ations on other classes through associations. For each operation on each class, prepare a list of
propagated operations, (lie list should contain class-operation pairs that are triggered through
associations.

huffcr::p:iMc<offset) - Copy and translate the contents of the buffer into the sheet. 'Hie x and
y translation is specified by ttffset.

selection: cult i - Transport the selected contents of the sheet from the sheet to the buffer.
Links between a box that is selected and a box that is not selected are deleted. Hie pre*
sinus contents of the buffer, if any, are deleted.

selection: copyf » ■ Make a copy ol the selected contents of the sheet in the buffer. Links be
tween a box that is selected and a box that is not selected arc not copied. The previous
contents of the buffer, if any, arc deleted.

selection movcioffscl) Translate the selected contents ol the sheet by the specified offset.
1 inks between a box that is selected and a box that is not selected are stretched

link vclccti) 1 lighlipht the link and add it to the selected links if it has not already l>ccn se
lected

imk deselect!) * 7 urn off highlighting ol the link and remove it from the selected list il it has
not already l>ccn deselected

link tngglc./vdection* i - Select the link if it is not selected, otherwise deselect it

box::sclect() - Highlight the box and add it to the selected boxes if it has not already been
selected.

box::desclect() - Turn off highlighting of the box and remove it from the selected list if it has
not already been deselected.

box::toggle_selection() - Select the box if it is not selected, otherwise deselect it.

4.8 (6) The following is a partial taxonomy of rotating electrical machines. Electrical machines may
be categorized for analysis purposes into alternating current (ac) or direct current (dc). Some
machines run on ac, some on dc. and some will run on either. An ac machine may be synchro
nous or induction. A few examples of electrical machines include large synchronous motors,
small induction motors, universal motors, and permanent magnet motors. Most motors found in
the home are usually induction machines or universal motors. Universal motors are typically
used in where high speed is needed such as in blenders or vacuum cleaners. They will run on
cither ac or dc. Permanent magnet motors arc frequently used in toys and will work only on dc.
Prepare an object diagram showing how the categories and the machines just described relate to
one another. Use multiple inheritance where it is appropriate to do so.

4.9 (6) Revise the object diagram that you prepared for the previous exercise to eliminate all use of
multiple inheritance. You may wish to use delegation and/or nested generalizations.

4.10 (7) Prepare a metamodcl that supports only the following subset of the OMT notation: object
classes, attributes, and binary associations, including multiplicity and roles. Use only object
classes, attributes, and binary associations to build your metamodcl.

4.11 (8) Prepare an instance diagram of the metamodcl you prepared in the previous diagram. Treat
the metamodel as an object diagram that can be represented by instances of the classes of the
metamodcl. As a minimum your instance diagram should include an instance for each class, at
tribute, and binary association in the metamodel.

4.12 (10) (a) Prepare an object diagram for undirected graphs. Refer to exercise 3.23.
(b) Two undirected graphs G and H are isomorphic to each other if there exists a 1:1 correspon
dence between the edges of G and H such that the incidence relationships will be preserved. Ex
tend your object diagram using a homomorphism to express the conditions under which two un
directed graphs are isomorphic to each other.

4.13 (5) Figure E4.3 is a portion of a metamodel which describes generalization. A generalization is
associated with several generalization roles, which are the roles that object classes play in gen
eralization relationships. Role type is either subclass or superclass. Does this model support
multiple inheritance? Explain your answer.

Figure I£4.3 Metamodel of generalization relationships

4.14 (7) Describe how to find which class is the superclass of a generalization using the metamodel
in Figure E4.3. Revise the metamodcl to simplify the query. Describe how to determine the su
perclass of a generalization using your revised metamodcl. Make sure that your revised meta-
model supports multiple inheritance.

4.15 (?» I low well docs the mctamodel in Figure E4.3 enforce the constraint that even' generalization

has exactly one superclass? Discuss how accurately it reflects the logical structure o f generali

zation relationships as it stands. Revise it to improve the enforcement of the constraint.

4.16 Figure E4.3 is a mctamodel which describes object models such as in Figure E4.4. Prepare

an instance diagram using the object classes from the metamode! to describe the model in Figure

E4.4. To simplify the problem o f identifying instances in your diagram, the generalizations have

been labeled. Use the same labels in your answer.

Figure K4.4 Object diagram with multiple inheritance

4.17 (7 j Prepare a portion of an object diagram for a library book checkout system that shows the

date a book is due and the late charges for an overdue book as derived objects.

4 .IS t IU) Prepare a mctamodel of Backus-Naur (B N F) representations of computer languages. The

mukIcI could be used by a compiler-compiler (such as the U N IX program Y A C C) that accepts

these representations m graphical form as input and which produces a compiler for the repre

sented language. An example of a Backus-Naur form that the compiler-compiler will accept is

shoyyn in Figure E4.5. Nonterminals are shown in rectangles and terminals are shown in circles

or rectangles with rounded comers. Circles arc used for single characters. Rectangles with

rounded edecs arc used for a sequence of several characters. Arrows indicate the direction of

flow through the diagram. Where several directed paths diverge, it is permissible to take any one

of them. Hie name of the nonterminal being described appears at the beginning of its represen

tation.

name / ■ — ..—o - / n a m e)
1

Mnng

string

\ 1 /
~j character <•

>

I'igurc K4.5 I ’urlicm o f .» HNf* diagram

Dynamic Modeling

T e m p o ra l r e la t io n s h ip * a re d i f l ie u l t to u n d e rs ta n d . A s y s te m ean b e s t be u n d e rs to o d b \ h i m

e x a m in in g its s ta t ic s t ru c tu re , th a t is . th e s tru c tu re o f its o b je c ts a n d th e n rclationshipo to

e a ch o th e r a t a s in g le m o m e n t in l im e . T h e n w e e x a m in e c h a n c e s to th e o b je c ts a n d th e ir re -

la t io n s h ip s o v e r t im e . T h o s e a sp e c ts o f a s y s te m th a t a re c o n c e rn e d w i th t im e ami c h a in s

are th e d y n a m ic m ode l, in c o n tra s t w i th th e s ta t ic , o r o b je t . . m o d e l. C o n t r o l is th a t a spe c t o f

a s y s te m th a t d e s c r ib e s the se q u e n ce s o f o p e ra t io n s th a t o c c u r in re s p o n s e to e x te rn a l s t im u l i ,

w i th o u t c o n s id e ra t io n o f w h a t th e o p e ra t io n s d o . w h a t th e y o p e ra te o n . o r h o w th e \ a re im

p le m e n te d .

T h is c h a p te r d e s c r ib e s c o n c e p ts d e a lin g w i th H o w o f c o n t r o l , in te ra c t io n s . a m i s e q u e n c

in g o f o p e ra t io n s in a s y s te m o f e o n c u r re n t ly -a c t iv e o b je c ts . The m a jo r d x n a m ic m o d e lin g

c o n c e p ts a re evenly, w h ic h re p re s e n t e x te rn a l s t im u l i , a n d a m / c m w h ic h re p re s e n t x a ll ie s o t

o b je c ts . The \ t a ie d ia g r a m is a s ta n d a rd c o m p u te r s c ie n c e c o n c e p t ta g ra p h ic a l ic p re s e n ta

l io n o f f in i te s ta te m a c h in e s) th a t has b e e n h a n d le d in d i f fe r e n t w a x s m th e l i te ra tu re , d e p e n d

in g o n its use . W e e m p h a s iz e th e use o f ex e n ts a n d s ta te s to s p c c ifx c o n t r o l , ra th e r th a n as

a lg e b ra ic c o n s tru c ts . W e shoxx th a t s ta tes a n d ex c u ts ca n be o re a m /e d in to e c n c r a h /u t io n in
V V

e ra rc h ie s to sh a re s tru c tu re a n d b e h a v io r .

In t in s c h a p te r w e m a in ly fo l lo w th e n o ta t io n o f D a x id H a r d (H a r d - N ^ | lo t d ra w in g

s tru c tu re d s ta le d ia g ra m s u s m e n e s te d c o n to u rs to sh o w s t ru c tm c .■w. v

5.1 E V E N T S A N D S TA TE S

\ n object model dcscnbcs the possible patterns o f objects, attributes, and links :ha! van exist

m a sxsiem. I he a imbutc values and l in k s h d d In an object ate called; Us \ : . ; v Oxei tunc,

the ohio. ts shmuialc each other. result me in a set ics o f chances tv' then states \ n mdix d u a l

stimulus horn one objcv t to anoihet is an t - \ en : 1 he lesponse to an ex cm depends on the state

oi the object icceixme. it. ami can include a d i .m ge o! state oi the sending ot another event

SI

to the original sender or to a third object. The pattern of events, states, and state transitions

for a given class can be abstracted and represented as a state diagram. A state diagram is a

network of states and events, just as an object diagram is a network of classes and relation
ships. The dynamic model consists of multiple state diagrams, one slate diagram for each

class with important dynamic behavior, and shows the pattern of activity for an entire sys
tem. Each state machine executes concurrently and can change state independently. The state

diagrams for the various classes combine into a single dynamic model via shared events.

5.1.1 Events

An event is something that happens at a point in time, such as user depresses left button or
Flight 123 departs from Chicago. An event has no duration. O f course, nothing is really in
stantaneous; an event is simply an occurrence that is fast compared to the granularity of the

time scale of a given abstraction.
One event may logically precede or follow another, or the two events may be unrelated.

Flight 123 must depart Chicago before it can arrive in San Francisco; the two events are

causally related. Flight 123 may depart before or after Flight 456 departs Rome; the two

events are causally unrelated. Two events that arc causally unrelated are said to he concur

rent; they have no effect on each other. If the communications delay between two locations

exceeds the difference in event limes, then the events must be concurrent because they can
not influence each other. Even if the physical locations of two events are not distant, we con
sider the events concurrent if they do not affect each other, in modeling a system we do not
try to establish an ordering between concurrent events because they can occur in any order.
An\ realistic model of a distributed svstem must include concurrent events and activities.✓ *

An event is a one-way transmission of information from one object to another. It is not
like a subroutine call that returns a value. In the real world, all objects exist concurrently. An

object sending art event to another object may expect a reply, but the reply is a separate event
under the control of the second object, which may or may not choose to send it.

livery event is a unique occurrence, but we group them into event classes and give each

event class a name to indicate common structure and behavior. This structure is hierarchical,
just as object class structure is hierarchical. For example. Flight 123 departs from Chicago

and Flight 450 departs from Home are both instances of event class airplane flight departs.

Some events are simple signals, but most event classes have attributes indicating the infor
mation they convey. For example, airplane flight departs has attributes airline, flight num

ber. and < ay. The time at which an event occurs is an implicit attribute of all events.
An event conveys information from one object to another. Some classes of events may

be simply signals that something has occurred, while other classes of events convey data val
ues. The data values conveyed by an event are its attributes, like the data values held by ob
jects, Attributes are shown in parentheses after the event class name. Figure 5.1 shows some

examples of event classes with attributes. Showing attributes is optional.
'Hie term event is often used ambiguously. .Sometimes event refers loan event instance,

at other times to an event class In practice, this ambiguity is usually not a pioblcm and the

precise meaning is apparent from the context.

airplane flight departs (airline, flight number, city)
mouse button pushed (button, location)
input string entered (text)
phone receiver lifted
digit dialed (digit)
engine speed enters danger zone

Figure 5.1 Event classes and attributes

Events include error conditions as well as normal occurrences. For example, motor

jammed, transaction aborted, and time-out are typical error events. There is nothing differ
ent about an error event: only our interpretation makes it an “error."

5.1.2 Scenarios and Event Traces

A scenario is a sequence of events that occurs during one particular execution of a system.
The scope of a scenario can vary'; it may include all events in the system, or it may include

only those events impinging on or generated by certain objects in the system. A scenario can

be the historical record of executing a system or a thought experiment of executing a pro

posed system.
Figure 5.2 shows a scenario for using a telephone line. This scenario only contains

events affecting the phone line.

caller lifts receiver
dial tone begins
caller dials digit (5)
dial tone ends
caller dials digit (5)
caller dials digit (5)
caller dials digit (1)
caller dials digit (2)
caller dials digit (3)
caller dials digit (4)
called phone beings ringing
ringing tone appears in calling phone
called party answers
called phone stops ringing
ringing tone disappears in calling phone
phones are connected
called party hangs up
phones are disconnected
caller hangs up

F ig u re 5.2 S cenario fo r phone ca ll

Each event transmits in form ation from one object to another. For exam ple, d i a l n m c be-

gm.v transmits a signal from the phone line to the caller. The next step after w riting a scenario

is to identify the sender and receiver objects o f each event. The sequence ol events and the

objects exchanging events can both be show n in an augmented scenario called an event t ra c e

diagram. This diagram shows each object as a vertical line and each event as a horizontal
arrow from the sender object to the receiver object. Time increases from top to bottom, but
the spacing is irrelevant; it is only the sequences of events that are shown, not their exact
timing. (Real-time systems impose time constraints on event sequences, but that is a separate

matter requiring extra notation.) Figure 5.3 shows an event trace for a phone call. Note that
concurrent events can be sent (Phone line sends events to C alle r and Callee concurrently)
and events between objects need not alternate (C aller dials several digits in succession).

Caller Phone line Callee

caller lifts receiver

dial tone begins
--- >

dials (5) ;

dial tone ends

dials (5)

dials (5)
S’

dials (1)

dials (2)

dials (3)
s :

dials (4)
* ■ 1 >

ringing tone phone rings

answers phone
's .

- f -
tone stops ringing stops

K

phones connected phones connected

callee hangs up

4
connection broken connection broken

N_

caller hangs up
------ -V

S ’

Figure 5.3 Event trace for phone call

5.1.3 States

A state in an abstraction of the attribute values and links of an object. Sets of values are

grouped together into a state according to properties that affect the gross behavior of the ob
ject. For example, the state of a bank is cither solvent or insolvent, depending on whether its

assets exceed its liabilities. A stale specifics the response of the object to input events. The

response to an event received by an object may vary quantitatively depending on the exact
values of its attributes, but the response is qualitatively the same for all values within the

same state, and may be qualitatively different lor values m different stales. Hie response of

an object to an event may include an action or a change of state by the object. For example,
if a digit is dialed in state D ia l tone, the phone line drops the dial tone and enters state D ia l

ing ; if the receiver is replaced in stale D ia l tone, the phone line goes dead and enters state

Idle.

A state corresponds to the interval between two events received by an object. Events

represent points in time; states represent intervals of time. For example, after the receiver is

lifted and before the first digit is dialed, the phone line is in state D ia l tone. The state of an

object depends on the past sequence of events it has received, but in most cases past events

are eventually hidden by subsequent events. For example, events that happened before the

phone is hung up have no effect on future behavior; the Id le state "forgets" events received

prior to the hang up event.
A state has duration; it occupies an interval of time. A state is often associated with a

continuous activity, such as the ringing of a telephone, or an activity that takes time to com

plete. such as Hying from Chicago to San Francisco. Events and states are duals of one an
other; an event separates two states, and a state separates two events.

A state is often associated with the value of an object satisfying some condition. For ex
ample, water is liquid is equivalent to saying “the temperature of the water is greater than 0

C and less than 100 C ." In the simplest case, each enumerated value of an attribute defines

a separate state. For example, an automobile transmission might be in slates Reverse. Neu

tra l. First. Second, or Third.

In defining states, we ignore those attributes that do not affect the behavior of the object,
and we lump together in a single state all combinations of attribute values and links that have

the same response to events. O f course, every attribute has some efleet on behavior or it
would be meaningless, but often some attributes do not a fleet the pattern of control and can

be thought of as simple parameter values within a given state. Recall that the purpose of
modeling is to focus on those qualities of an entity that are relevant to the solution of an ap
plication problem and abstract away those that are irrelevant. The three different O M T mod
els (object, dynamic, and functional) present different views of a system; the particular

choice of attributes and values are not equally important in these three different view s. For
example, except for leading Os and Is. the exact digits dialed do not affect the control of the

phone line, so we can summarize them all with state D ialing and track the phone number as

a parameter. Sometimes, all possible values of an attribute are important but usually only

when the number of possible values is small.
Both events and states depend on the level of abstraction used. For example, a travel

agent planning an itinerary would treat each segment of a journey as a single event; a flight
status board in an airport would distinguish departures and arrivals; an air traffic control sys

tem would break each flight into many geographical legs.

A slate can be characterized in various ways. Figure 5.4 shows various characterizations

of the slate Alarm ringing on a watch. The slate has a suggestive name and a natural-lan
guage description of its purpose. The event sequence that leads to the state consists of setting

the alarm, dome anvthinu that doesn't clear the alarm, and then ha\ inc the taruet time iveur.«. • w l. s.

A declarative condition for the state is given in terms of parameters, such as alarm and :a> get

time; the alarm stops ringing after 20 seconds. Finally, a stimulus-response table shows the

State: Alarm rinyini;

Description: alarm on watch is ringing to indicate target time

Event sequence that produces the state:

set alarm (target lime)W

any sequence not including clear alarm

current time = target time

Condition that characterizes the state:

alarm = on. and target time < current time < target time + 20 seconds,
and no button has not been pushed since target lime

Events accepted in the state:

event action next state

current time = tarsiet time + 20 reset alarm normal

button pushed (any button) reset alarm normal

Figure 5.4 Various characterizations of a state

effect of events current time and button pushed, including the action that occurs and the next

stale. The different descriptions of a slate may overlap.
Can links have state? In as much as they can be considered objects, links can have state.

As a practical matter, it is generally sufficient to associate state only with objects. The state

of an object can include the values of its links.

5.1.4 State Diagrams

A state diagram relates events and states. When an event is received, the next stale depends

on the current slate as well as the event; a change of state caused by an event is called a tran

sition. A stale diagram is a graph whose nodes are states and whose directed arcs are transi
tions labeled by event names. A state is drawn as a rounded box containing an optional name.
A transition is drawn as an arrow from the receiving stale to the target state; the label on the

arrow is the name of the event causing the transition. All the transitions leaving a slate must
correspond to different events.

'Hie state diagram specifies the slate sequence caused by an event sequence. If an object
is in a state and an event labeling one of its transitions occurs, the object enters the state on

the target end of the transition. 'Hie transition is said toJirr. If more than one transition leaves

a state, then the lirst event to occur causes the corresponding transition to lire. If an event
occurs that has no transition leaving the current state, then the event is ignored. A sequence

of events corresponds to a path through the graph.
Figure 5.5 shows a state diagram describing the behavior of a telephone line. Hie dia

gram is drawn lor one phone ime, not the caller or callee. The diagram contains sequences
associated with normal calls as well as some abnormal sequences, such as timing out while

dialing or gelling busy lines. The event on-hook causes a transition from any state to the Idle

state: this is drawn as a bundle of transitions leading to Idle, Later we will show a more gen
eral notation that represents events applicable to groups of states with a single transition.

Note that the states do not totally define all values of the object. For example, state D i

aling includes all sequences of incomplete phone numbers. It is not necessary to distinguish

between different numbers as separate states since they all have the same behavior, but the

actual number dialed must of course be saved as an attribute.
A slate diagram describes the behavior of a single class of objects. Since all instances of

a class have the same behavior (by definition). they all share the same state diagram, as they

all share the same class features. But as each object has its own attribute values, so loo each

object has its own state, the result of the unique sequence of events that it has received. Each

object is independent of other objects and proceeds at its own pace.

State diagrams can represent onc-shot life cycles or continuous loops. The diagram for
the phone line is a continuous loop. In describing ordinary usage of the phone, we do not
know or care how the loop is started. (I f we were describing installation of new lines, the

initial state would be important.) One-shot diagrams represent objects with finite lives. A

one-shot diagram has initial and final states. The initial state is entered on creation of an ob
ject; entering the final state implies destruction of the object. An initial state is shown by a

solid circle. The circle can be labeled to indicate different initial conditions. A linal state is

shown bv a bull’s-eve. The bull's-eve can be labeled to distinguish final conditions. Figure« « • w V

5.6 shows the life cycle of a chess game (with some simplifications). A one-shot diagram can

be considered a state diagram “subroutine” that can be referenced from various places in a

high-level diagram. Later we will show how creation and termination of an object lit into an

overall system.

Black wins

Draw

W hite wins

Figure 5.6 One-shot state diagram for chess game

The dynamic model is a collection of state diagrams that interact with each other via

shared events. An object model represents the static structure of a system, while a dynamic

model represents the control structure of a system. A state diagram, like an object class, is a

pattern; it describes an entire, possibly infinite, range of sequences. A scenario is to a dynam

ic model as an instance diagram is to an object model.

5.1.5 Conditions

A c o n d i t io n is a Boolean function of object values, such as "the temperature is below freez
ing." A condition is valid over an interval of time. For example, "the temperature was below

freezing from November I5. IV2l until March 3. IV22," It is important to distinguish con
ditions from events, which have no time duration. A state can Ik defined in terms of a con

dition; conversely, being in a state is a condition.
Conditions can Ik* used as guards on transitions. A guarded transition fires when its

event occurs, but only if the guard condition is true. For example, "when you go out in the

morning t event), if the temperature is below freezing {condition), then put on your gloves

(next.(late)." A guard condition on a transition is shown as a Boolean expression in brackets

following the event name.
Figure 5.7 shows a state diagram with guarded transitions for traffic lights at an inter

section. One pair of electric eyes checks the north-south left turn lanes; another pair checks

North/south
may go straight

time-out

East/west
may turn left

tim e-out [cars in N/S left lanes]

time-out (no cars
in N/S left lanes]

time-out [cars in E/W left lanes]

^ North/south
may turn left

time-out

East/west
may go straight

Figure 5.7 State diagram with guarded transitions

the east-west turn lanes. If no car is in the north-south and/or east-west turn lanes then the

traffic light control logic is smart enough to skip the left turn portion of the cycle.

5.2 OPERATIONS

The stale diagrams presented so far describe the patterns of events and slates for a single ob
ject class. In this section we show how events trigger operations.

5.2.1 Controlling Operations

State diagrams would be of little use if they just described patterns of events. A behavioral
description of an object must specify what the object does in response to events. Operations

attached to states or transitions are performed in response to the corresponding states or
events.

An activity is an operation that takes time to complete. An activity is associated with a

state. Activities include continuous operations, such as displaying a picture on a television

screen, as well as sequential operations that terminate by themselves after an interval of lime,
such as closing a valve or performing a computation. A state may control a continuous ac
tivity. such as ringing a telephone bell, that persists until an event terminates it by causing a

transition from the state. The notation "do: A" within a stale box indicates that activity A

starts on entry to the state and stops on exit. A stale may also control a sequential activity,
such as a robot moving a part, that progresses until it completes or until it is interrupted by

an event that terminates it prematurely. The same notation "d<>: A" indicates that sequential
activity A begins on entry to the state and stops when complete. If an event causes a transition

Irom the state before the activity is complete, then the activity is terminated prematurely. For
example, a robot might encounter resistance, causing it to cease moving. The two uses are

not really dillcrcnt: a continuous activitv may be viewed as a sequential aciiuiy that lasts
indefinitely.

An iu tion is an instantaneous operation. An action is associated with an e\ent. An ac
tion represents an operation whose duration is insignificant compared to the resolution ot the

slate diagram. For example, disconnect phone line might be an action in response to an on-

hook event for the phone line in Figure 5.5. A real-world operation is not really instanta
neous. of course, but modeling it as an action indicates that we do not care about its internal
structure for control purposes. If we do care, then an operation should be modeled as an ac
tivity. with a starting event, ending event, and possibly some intermediate events.

Actions can also represent internal control operations, such as setting attributes or gen
erating other events. Such actions have no real-world counterparts but instead arc mecha
nisms for structuring control within an implementation. For example, an internal counter
might be incremented every time a particular event occurs. In a computer, of course, even

simple operations take some time, but they can be considered instantaneous with respect to

the granularity of real events under consideration.
The notation for an action on a transition is a slash ('/ ') and the name (or description) of

the action, following the name of the event that causes it. Figure 5.8 show's the state diagram

for a pop-up menu on a workstation.When the right button is depressed, the menu is dis
played: w hen the right button is released, the menu is erased. While the menu is visible, the

highlighted menu item is updated whenever the cursor moves.

Idle

right button down < display popup menu

right button up ■ erase popup menu

Menu
visible

cursor m oved 'highlight menu item

Figure 5.8 Actions for pop-up menu

5.2.2 Summary of Notation for State Diagrams with Operations

Figure 5.9 summarizes the notation presented in Sections 5 .1 and 5.2 for unstructured state

diagrams. Section 5.3 discusses extensions for structured state diagrams.

Statel
do activity i

\

event / (attnbs) [condition 1] - action t State2

Figure 5.9 Summary «»f notation tor unstructured state diagrams

As show it m Figure 5.9. a state name is w ritten in boldface w ithin a rounded box. An

event name is written on a transition arrow and may optionally be followed by one or more

attributes within parentheses. A condition may lx- listed w ithin square brackets after an event
name. An aetr- it % is indicated within a state box bs the kevword " d o " followed by the name

or description of the activity. An action is indicated on a transition following, the event name

bv a " f character followed by the event name. All these constructs are optional in slate

diagrams.

Figure 5.10 shows the state diagram for the phone line, previously shown in Figure 5.5.
but now with actions and activities.

5.3 NESTED STATE DIAGRAMS

State diagrams can he structured to permit concise descriptions ot complex s\ stems. 1 he
wavs of structurin': slate machines are similar to the wa\s ol structuring objects: getterali/a-
lion ami aeuietnilion, Cienerali/ation is equivalent to expanding nested activities. It allows

an activ its to be described at a high level, then expanded at a lower level b\ adding details,
similar to a nested procedure call. In addition, generalization allows states and events to be

ananeed into eenerali/ation Itietarchies w ith inheritance of common structure ami Ivhav tor.% s

similar to inheritance of attributes and operations in classes. Aggregation allows a state to be

broken into orthogonal components, with limited interaction among them, similar to an ob
ject aggregation hierarchy. Aggregation is equivalent to concurrency of states. Concurrent
slates generally correspond to object aggregations, possibly an entire system, that have in
teracting parts.

5.3.1 Problems with Flat State Diagrams

State diagrams have often been criticized because they allegedly lack expressive power and

are impractical for large problems. These problems are true of flat, unstructured state dia
grams. Consider an object with n independent Boolean attributes that affect control. Repre
senting such an object with a single flat state diagram would require 2" states. By partitioning

the state into /; independent state machines, however, only 2// states are required. Or consider
the state diagram shown in Figure 5 .11. in which t r transitions are needed to connect every

state to every other state. If this model can be reformulated using structure, the number of
S W

transitions could be reduced as low as n. All complex systems contain a large amount of re
dundancy that can be used to simplify state diagrams, provided appropriate structuring

mechanisms are available.

Figure S.l 1 Combinatorial explosion o f transitions in flat stale diagram

5.3.2 Nesting State Diagrams

An activity in a state can be expanded as a lower-level state diagram, each state representing

one step of the activity. Nested activities are one-shot state diagrams with input and output
transitions, similar to subroutines. The set of nested state diagrams forms a lattice. (It is a

tree if we expand out different copies of the same nested diagram.).
Future 5.12 shows a top-level model for a vending machine. This diagram contains an

activity dispense item and an event sclcaitienU that are expanded in more detail in nested

state diagrams. The diagram also shows a hit of alternate notation. The event coins iniu-

mounti is written w ithin the Collecting money slate. I his indicates a transition that remains

within a single state Also, the transition from the unnamed state containing "do: dispense

item” to state Idle has no event label. The lack of event label indicates that the transition fires

automatically when the activity in the state is complete.

Idle

— *

coins in(am ount) / set balance

ca n ce ll refund coins

x Collecting money

coins in(amount) / add to balance

[item empty]

* ------- A

select(ilem)

'

[change<0]

do: test item and compute changej

[change=0] [change>0]

do: dispense item k- do: make change

Figure 5.12 Vending machine model

Figure 5.13 shows a subdiagram for the dispense item activity of Figure 5.12. This ac

tivity corresponds to a sequence of lower-level states and events that are invisible in the orig
inal high-level state diagram.

do: move arm ̂a rm / do: move arm t a rm ready f do: push ite m \ pushed ’
to correct row) H ,0 correct column J H 0ff shelf Ks)

Figure 5.13 Dispense item activity of vending machine

Events can also be expanded into subordinate state diagrams. Figure 5.14 shows the sc-

le d item event from Figure 5.12. which actually involves several low-level events. The cus
tomer keys in an item number and can start over by hitting clear: the selection is continued

by hitting enter. The label on the bull's-eye indicates the event generated on the higher-level
state diagram.

digit(n)

do: reset
item

digit(n)

clear

do:append
digit

enter
select(item)

<°)
Figure 5.14 Seleet item transition of vending machine

5.3.3 State Generalization

A nested state diagram is actually a form of generalization on states. Generalization is the
"or-rclationship.” An object in a state in the high-level diagram must be in exuctlv one state

in the nested diagram. It must be in the first state, or the second state, or in one of the other

states. The states in the nested diagram are all refinements of the state in the high-level dia
gram. In the previous section, the states in the nested diagram are unaffected by transitions

in the high-level diagram, but in general the states in a nested state diagram may interact with

other slates.

States may have substates that inherit the transitions of their superstates, just as classes
have subclasses that inherit the attributes and operations of their superclasses. Any transition
or action that applies to a state applies to all its substates, unless overridden by an equivalent
transition on the substate. For example, the phone line model in Figure 5.5 could be simplified
by replacing the transitions from each state to Idle on event on-hook with a single transition
from a superstate Active to Idle. All the original states except Id le are subslates of Active. The
occurrence of event on-hook in anv active substate causes a transition to state Idle.*

Figure 5.15 shows a stale diagram for an automatic transmission. The transmission can

be in reverse, neutral, or forward: if it is in forward, it can be in first, second, or third gear.
Stales f irst. Second, and Third are subslates of state Forward. The generalization notation

for slates is different from that used for classes, to avoid a large number of lines that could

be confused with transitions. A superstate is drawn as a large rounded box enclosing all of
its substates. Substales in turn can enclose further .substates. Because the rounded boxes rep
resenting the various slates are nested. Hard calls them contours.

f Transm ission push R

O- Neutral

push N

l Forward

l p u sh N 1 Reverse

push F

O

stop , upshift , ,

{ ^ rs* j~dov/nshift ^Secondj downshift *rc*

upshift .

Figure 5.15 State diagram ol car transmission with generalization

The transitions o f a superstate are inherited by each o f its substates. Selecting “ N " in any

forw ard gear causes a transition to neutral. Th e transition from F o r w a r d to N e u t r a l im plies

three inherited transitions, one from each forw ard gear to neutral. Selecting " F " in neutral

causes a transition to forw ard. W ith in state F o r w a r d , substate F i r s t is the default in itia l state,

shown by the unlabeled transition from the solid c irc le w ith in the F o r w a r d contour. F o r w a r d

is just an abstract state: control must be in a real state, such as F i r s t

The transition on event slop Irotn the h o r w a n l contour to stale F i r s t represents a transi

tion inherited by all three substates. In any forw ard gear, stopping the car causes a transition

to F irs t .

It is possible to represent m ore com plicated situations, such as an e xp lic it transition

from a subst.de to a state outside the contour, or an exp lic it transition m to the contour. In such

cases, all the state , must appear on one diagram using the contour notation. In simplec cases

where there is no interaction except for initiation and termination, the nested states can sim
ply be drawn as a separate diagram and referenced by name in a “do” statement, as in the

vending machine example of Figure 5.12.

5.3.4 Event Generalization

Events can be organized into a generalization hierarchy with inheritance of event attributes.
Figure 5.16 shows part of a tree of input events for a workstation. Events mouse button down

and keyboard character are two kinds of user input. Both events inherit attribute time from

event event f the root of the hierarchy) and attribute device from event user input. Mouse but

ton down and mouse button up inherit location from mouse button. Keyboard characters can

be divided into control characters and graphic characters. Ultimately every actual event can

be viewed as a leaf on a generalization tree of events. Inherited event attributes are shown in

the second part of each box. An input event triggers transitions on any ancestor event type.
For example, typing an ‘a' would trigger a transition on event alphanumeric as well as event
keyboard character.

Figure 5.16 Partial event hierarchy lor keyboard events

Providing an event hierarchy permits different levels of abstraction to be used at differ
ent places in a model. For example, in some states all input characters might be handled the
same and would lead to the same next slate; in other stale*, control characters would be treat
ed differently from printing characters; still others might have different actions on mdiv idua!
characters.

5.4 CONCURRENCY

5.4.1 Aggregation Concurrency

A dynamic model describes a set of concurrent objects, each with its own state and state di
agram. The objects in a system are inherently concurrent and can change state independently.
The state of the entire system cannot be represented by a single state in a single object: it is
the priKluct ol the states ol'all the objects in it. In many systems, the number of objects can
chance dtnamicallv as well.W »* •

A state diagram lor an assembly is a collection of state diagrams, one for each compo
nent. Aggregation implies concurrency. The aggregate stale corresponds to the combined
states of all the component diagrams. Aggregation is the "and-relationship." The aggregate
state is one stale from the lirst diacram.<//n/a stale from the second diaeram. aiui a stale fromW W

each other diagram. In the more interesting cases, the component states interact. Guarded
transitions for one object can depend on another object being in a given stale. This allows
interaction between the state diagrams, while preserving modularity.

Figure 5 .1 shows the state of a (’or as an aggregation ofComponent states: the Ig n i t io n ,

yV-i///\/w .\wo/i. \t fc U -r a to r . and B r a k e <plus other umnentioned objects). Hach component
state also has substates. The state of the ear includes one subslate from each component.
Fuch component undergoes transitions in parallel with all the others. The stale diagrams of
the components are almost, but not quite, independent: The car will not start unless trans
mission is m neutral. This is shown by the guard expression 7/v/ / i .\/w .v.v/o / i in S a u r a l on the
transition from l \ ; n i n a n - 0 / { to l ^ m t t o n S i a r t i n ^ .

5.4.2 Concurrency within an Object

(’o ik u rre n c) w ithm the state o f a single object arises w hen the object can be partitioned into

subw-ts o i attributes or links, each o f w h ich has its ow n subdiagram. The slate o l the object

comprises one slate from each subdiagram. The subdiagrams need not be independent; the

same e \cn t can ia iise transitions m more than one subdiagram. (’oncunency w ith in a single

com posite state of an object is shown hv pa iim onm g the com posite slate in to subdiagrams

w ith dotted lines 'I he name o f the overa ll com posite stale can be w ritten in a separate region

oJ the box. separated by a solid line hum the concurrent subdiagrams. b igure 5. IS shows the

state d iagram for the plus of a bridge rubber. W hen a side w ins a game, it becomes "v u ln e r

able**. the first side to w in tw o games wms the rubber. I h irin g the play o l the n ibbe i. the state

ot the rubber o>n- o l one state from each subdiagram. W hen the /'/</v/m ; m b b a compos

lie .tale entered, both subdiagrams are in it ia lly m their respective de lau li slates \ o / \ : t l

n , ' r a h * 9 |-.a< h subduer am ̂an independent!'. adv auce to stale l u l n a a b le when Us side w ms

a game. When one side wms a second ra tne. a transition occuis to the co iiespondm g W m \

r u b h r r -.tale. "I his transition terminates both voncu ircn l subdiagrams because the) are part

i *l the same uunpo-m e state m b h r t and are only active when the top level state di

a /fa m j • sn that state

Ignition
turn key to start
(Transmission

inNe^tra' l - > (s i ^ g
re lease key

&

turn key off

Transm ission

/F o rw a rd
StOD .

push R

M N eutra l] push N (Reverse

push N

stop / • -

> /n r s l), downshift

upshift --------- upshift

Second) dotm sh itt (W

/

Accelerator

depress accelerator

release accelerator

Brake

depress brake_

release brake

On , ;
/

/

Figure 5.17 An aggregation and its concurrent state diagrams

Playing rubber

Not
vulnerable

N-S vulnerability

N-S gam e
-^Vulnerable

N-S lgam e ^ w |n s ^

I ' rubber

(Not
vu lnerab le)'

E*W vulnerability

E-W gam e
/ Vulnerable^

E -W \pame ^ wins \
■ " ' V^rubber

Figure 5 .IS Hmlge game v itli concunent Mato

5.5 ADVANCED DYNAMIC MODELING CONCEPTS

In this section we present advanced dynam ic m odeling concepts as w ell as some refinements

on the notation.

5.5.1 Entry and Exit Actions

As an alternative to show ins: actions on transitions, actions can he associated w ith enteringW

or exiting a state. There is no d ifference in expressive pow er between the tw o notations, bin

frequcntlx all transitions into a state perform the same action, in which case attaching the

action to the stale is more concise.

Tor exam ple. Figure 5. IV> shows the control o f a garage door opener. The user generates

d e p / r w exents w ith a push-button to open and close the door. Each event reverses the d irec

tion o f the door, but for safety the door must open fu lly before it can be closed. The control

generates /«<»/<»/■ up and m o to r d o w n actions for the motor. The m otor generates d o o r o p r n

and d ‘ >nr (7<>v'«/events when the m otion has been com pleted. Both transitions entering stale

O p e n in g cause the door to open.

i ' l c u r c j; yo shows the same model using actions on entry to states. An entry action is

sho-.xn ins’d f the stale box to llow ing the key'.void r n t i \ and a " i " character. W hcnexcr the

Oatc is .-mered, h \ am. incom ing transition, the entrx action is perform ed. An entry action is

'Minx a la r to attaching tile action to every incom ing transition. I f an incom ing transition al-

<••• 1,1,), . , 'm il. its action is perform ed Inst

I . . , are less com m on than entrx actions, but they are occasionally uselul. An

ast'on is shown inside the state box lo llo p in g tiie Keyword r u t and a “ i" c ii.u .icier.

o, i.! ,-e ;s exited.. h \ am. outeom-.: transition, the exit action is perto im ed hist.

I: ** l , l r > *lK‘ JH-Tlonni'il m the Io Mo w im i: o u k t .

f njuiii;- u.m M Unn. t/ntr\ acTitur-.. ti<* ,:l ip .>Uc \ . c u i ,klt«»:iv .u-lu>ns on tin*

• M fi'n ’n" ir L‘iU m u-nupUM b \ events iliat i.m se (m u m Moiis out *>t

#t. . , . ■. p .n’ f . .nitl evil .tch<>rr-. .nc L o m p lr in l (Ih*\ .ue om su i

if .. a . tmro l! a do a, to m. i . interrupted, the exit action is n r \ er the less
s i ! *.i H I i Hg I J1 • i '

Entry and exit actions are particularly useful in nested state diagrams because they per
mit a stale (possibly an entire subdiagram) to be expressed in terms of matched entry-exit
actions without regard for what happens before or after the state is active. It is possible to

use actions attached to transitions as well as entry and exit actions in a diagram.
Transitioning into or out of a substate in a nested diagram can cause execution of several

entry or exit actions, if the transition reaches across several levels of generalization. The en
try actions are executed from the outside in and the exit actions from the inside out. This per

mits behavior similar to nested subroutine calls.

5.5.2 Internal Actions

An event can cause an action to be perfonned without causing a state change. The event
name is written inside the state box. followed bv a " f and the name of the action, t Keywords

entry, e.xit. and do are reserved words within the state box.) When such an event occurs, its

action is executed but not the entrv or exit actions for the state. There is therefore a difference

between an internal action and a self-transition: the self-transition causes the exit and entry

actions for the state to be executed. Figure 5.12 shows an internal action within the Collect

ing money stale.
Figure 5.21 summarizes the additional notation for entrv. exit, ami internal actions.

Statel
do: activity 1
entry aclion2
exit; action3
event ■' action*) /

e ve n tl (a ttribs l) (condition 1] / action)
State2

event2 (attnbs2)

_ . _.y__ ___.

Object class
_ - ___

I'ijiurc 5.21 Summ.ir) ot extended notation loi state diaetams

5.5.3 Automatic Transition

Frequently the only purpose of a state is to perfonn a sequential activity. When the activity

is completed, a transition to another state lires. An arrow without an event name indicates an

automatic transition that tires when the activity associated with the source state is completed.
If there is no activitv. the unlabeled transition lires as soon as the state is entered (but the en-
try and exit actions are always performed). Such unlabeled transitions are sometimes called

lambda transitions, after the Greek letter used to indicate them in some textbooks. Figure

5.12 shows four unlabelcd transitions from the state containing activity "test item and com
pute change." Each transition has a guard condition. When the activity is complete, the tran

sition with a valid guard condition tires.
If a state has one or more automatic transitions, but none of the guard conditions are sat-

istied. then the state remains active until one of the conditions is satisfied or until an event
causes another transition to tire. The change in value of a condition is an implicit event (re
ferred to in digital hardware as "edge triggering”). For example, "the temperature is below-
freezing" is a condition. “The temperature goes belong freezing" is the edge-triggered event
associated with the condition.

5.5.4 Sending Events

A n object can perfonn the action o f sending an event to another object. A system o f objects

interacts bv exchanging events.

The action " S a u l l i i a t i n h u t e s r sends event /: w ith the given attributes to the object or

objects that receive it. For exam ple, the phone line sends a nmnct Uphone-number) event to

the switcher when a com plete phone num ber has been dialed. A n event can be directed at a

set o f objects or a single object. A ny and all objects tth transitions on the event can accept

it concurrentlv. The word “ send" can be om itted if it is d e a r that /.* is the name o f an event.

In our diagram s, event names arc shown in italics and action names in norm al text, so there

is no contusion.

f igure 5 .2 1 shows another notation for sending an event from one object to another. The

drilled line from a transition to an object indicates that an event is sent to the object when the

transition tires. The arrow could be connected d irectly to a transition w ith in the slate diagram

ot the target object to indicate that the target transition depends on the event.

it a state can accept events from more than one object, the order m which concurrent

events are received max atlect the final state; this is called a /o re n m d i t io n . For exam ple, in

f ig u re 2b the do or max or max not rem ain open it the button is pressed at about the tim e

the door becomes lu lls open. A race condition is not necessarily a design error, but concur

rent sterns freuucntiv contain unwanted race conditions which must be avoided h \ careful

design A requirem ent ot tw o events being received sim ultaneously is never a m eaningful

condition in the real w orld , as slight variations in transmission speed are inherent m any d is

tributed s W e m .4

W hen an nbjex t interact-, w nh an external object. such as a person or device, sending an

event is often indistinguishable Irom an action, hot exam ple, m the event trace of Figure 5.5.

actions d ia l tone begins and ringing tone are actually events between the phone line and the

caller.

5.5.5 Synchronization of Concurrent Activities

Sometimes one object must perform two (or more) activities concurrently. The internal steps

of the activities are not synchronized, but both activities must be completed before the object
can progress to its next state. For example, consider a cash dispensing machine that dispens
es cash and returns the user’s card at the end of a transaction. The machine must not reset
itself until the user takes both the cash and the card, but the user may take them in either order
or even simultaneously. The order in which they are taken is irrelevant, only the fact that both

of them have been taken. This is an example of splitting control into concurrent activities

and later merging control.

Figure 5.22 shows a concurrent state diagram for the emitting activity. Concurrent ac
tivities within a single composite activity are shown by partitioning a state into regions with

dotted lines, as explained previously. Each region is a subdiagram that represents a concur
rent activity within the composite activity. The composite activity assumes exactly one state

from each subdiasram.

Setting y ready
up

i /R e a d y toS
’ u e s e t J

taken

Figure 5.22 Synchronization of control

Splitting of control into concurrent parts is shown by an arrow that forks. The forked

arrow selects one state from each concurrent subdiagram. In the example, the transition on

event ready splits into two concurrent parts, one to each concurrent subdiagram. When this

transition lires, two concurrent subslates become active and execute independently. Each

concurrent substate could be a whole state diagram.
Any transition into a state with concurrent subdiagrams activates each ol the subdia-

grams. If any subdiagrams arc omitted from the transition, they start in their default initial
states. In this example, a forked arrow is not actually necessary. A transition could be drawn

to the Emitting state, with a default initial state indicated in each subdiagram.
Merging of concurrent control is shown by an arrow w ith a lorkcd tail. 1 he target state

becomes active when both events occur in any order. The events need not be simultaneous.
Hach subdiagram terminates as soon as its part of the transition tires, but all putts o! the tran
sition must lire before the entire transition lires and the composite state is terminated. It thcic

are any subdiagrams in the composite state that are not part ol the merge, then the> are

automatically terminated when the merge transition lires. The exit actions til'any) of all sub
diagrams are performed when the merge transition lires. In the example, the transitions

taken and eanl taken are part of a single merge transition. When both parts of the merge tran
sitions tire, state Ready to reset becomes active. Drawing a separate transition from each sub-
state to the target state would have a different meaning; either transition would terminate the

other subdiacram without wailing for the other transition.
In this example, the number of concurrently-active states varies during execution from

one to two and back to one again.

5.6 A SA M PLE DYNAM IC M O DEL

We present a sample dynamic model of a real device to show how the various modeling con
structs tit together. This is a model of a Sears "Weekender" Programmable Thermostat. This

model was constructed by reading the instruction manual and by experimenting with the ac
tual dev ice. This device controls a furnace and air conditioner according to lime-dependent
attributes which the owner enters using a pad of buttons.

While running, the thermostat operates the furnace or air conditioner to keep the current
temperature equal to the target temperature. The target temperature is taken from a table of
program values supplied by the user. The table specifies target temperature for S different
time periods. 4 on weekdays and 4 on weekends, w ith start times specified by the user. The

target temperature is reset from the table at the beginning of each program period. The user
can override the target temperature for the remainder of the current period or indefinitely.
The user programs the thermostat using a pari of 10 push buttons ami 3 sw itches. The user
sees parameters on an alphanumeric display. A switch illuminates a night light. The thermo
stat has a temperature sensor that reads the air temperature. The thermostat operates power
relax s tur a furnace and an air conditioner, and an indicator lights up when the furnace or air
conditioner is operating.

Each push button generates an event everv time it is pushed. We assign one input event
per button;

t i - m h i i*

i h.m h n o w s

T IM !', i v< n

HACK

S! i C l OCR

raises target temperature or program temperature

lowers target temperature or program temperature

advances clock time or program time

retards clock time or program tune

sets curient time of du\

SI-. I D A 1)

HI S H K tiM

V II.V . | ‘RC,M

H O LD I l 'M H

I C lt(n 1A

sets current dav oi the week
t

Ie;t\cs setup nt program mode and runs the program

enters program mode to examine and modify K ptoeram tune and

program temperature '-eUinpx

holds current larpet temperature m spile id the pi opt am

alternate1* temperature display iv tv .een fah tcnhe i l and Celsius

Each switch supplies a parameter value chosen from two or three possibilities. We mod
el each switch as an independent concurrent subdiagram with one state per switch setting.
Although we assign event names to a change in state, it is the state of each switch that is ofV V

interest. The switches and their settings are:

Light switch Lights the alphanumeric display. Values: light off, light on.

Season switch Specifies which device the thermostat controls. Values: heat (fur
nace), cool (air conditioner), off (none).

Fan switch Specifies when the ventilation fan operates. Values: fan on (fan
runs continuously), fan auto (fan runs only when furnace or air
conditioner is operating).

The thermostat controls the furnace, air conditioner, and fan power relays. We model
this control by activities “run furnace," “run air conditioner." and “run fan."

The thermostat has a temperature sensor that it reads continuously, which we model by

an external parameter letup. The thermostat also has an internal clock that it reads and dis
plays continuously. We model the clock as another external parameter lime, since we are not
interested in building a state model of the clock. In building a dynamic model, it is important
to only include states that affect the flow of control and to model other information as pa
rameters or variables. We introduce an internal state variable target temp, which represents

the current temperature that the thermostat is trying to maintain. This state variable is read

by some actions and set by other actions: it permits communication among parts of the dy

namic model.
Figure 5.23 shows the top-level state diagram of the programmable thermostat. It con

tains 7 concurrent subdiagrams. The user interface is too large to show and is expanded sep
arately. The diagram includes trivial subdiagrams for the season switch and the fan switch.
The other 4 subdiagrams show the output of the thermostat: the furnace, air conditioner, and

fan relays, and the run indicator light. Each of these subdiagrams contains an 0 // ‘and an On

substate. The state of each subdiagram is totally determined by conditions on input parame
ters and the state of other subdiagrams, such as the season switch or the fan switch. The state

of the 4 subdiagrams on the right is totally derived and contains no additional information.
Figure 5.24 shows the subdiagram for the user interface. The diagram contains 3 concur

rent subdiagrams, one for the interactive display, one for the temperature mode, and one for the

night light. The night light is controlled by a physical switch, so the default initial state is irrel
evant; its value can be determined directly. The temperature display mode is controlled by a

single push button that toggles the temperature units between Fahrenheit and Celsius. The de
fault initial slate is necessary: when the device is powered on. the initial temperature mode is
Fahrenheit.

The subdiagram for the interactive display is more interesting. The device is either op
erating or being set up. Substate Operate contains two substates. Run and Hold, in addition

to two concurrent substates, one which controls the target temperature display ami one which

controls the current time and temperature display, livery 2 seconds the display alternates be
tween the current lime and current temperature.

f Program mable thermostat \

(User interface
V

Season switch

H e a t)
____ s
A

heat o il

(° bA

Off cool

\ t
y

CCool

©

jL

Furnace relay

[temp < target temp
and season switch in Heat]

Furnace
off

' / Furnace
on

do: run
furnace /

(temp > target temp d
or season switch not in Heat]

Air conditioner relay

© (temp>target temp
and season switch in Cool]

(temp < target temp • d
or season switch not in Cool)

Fan switch

S '
(Fan switch \
\ on J

A
fan j fan
off j auto

—

{ Fan switch \
auto J

i
i

Run indicator

© (in Furnace on or in AC on]

Jr____ A -•

Everything\
off)

V

7 Something
f on
\ do: light
\ indicator

(in Furnace off and in AC off]

Fan relay

(in Something on or
in Fan switch on)

":Y Fan ̂
on i

l.. do: run fan /

jin Everything off and
in Fan switch auto)ft

ftII

f
/

Kigurc 5.23 Scac inf (hcniu^uii

User interface

l-'i|»iir€* 5.24 SuKliajirain I’m thcnnovl.u user nucil.it. c

/ Set clock
tim e ftvd increment minutes tim e Avd'increment hours

© — > Set minutes
se t clock

\d o : show minutes h ___________

v ------------ r -— ' se t c lock

->/ Set hours
do: show hours

lim e b a ck 'decrement minutes tim e Ocicfc'decrement hours

Set day
se t day
/increment day

do:show day

7\

©

©

©

©

Set program

/set to first
program time

tim e Avd add 15"
to program time

do: display
program lime

view p rog ram ^advance
to next program time

i set to first
program temp

7 //me backsubtract 15'
from program time

tem p up(temp<90F]
/increment

program temp

do: display
y program temp

v iew p rogram 'advance
to next program temp

) tem p doivnfiemp>40F]
decrement program temp

set to first

i)
view p ro g ra m ’advance
to next program period

Figure 5.25 Sulxli.igrams fur thermostat user interface setup

"Hie target temperature is displayed continuously and is modified by the temp up and

temp <itm u buttons, as well as the set target event that is generated only in the Run state. Note

that the target temp parameter set by this subdiagram is the same parameter that controls the
output relays.

While in the Operate state, the device is cither in the Run or H a iti subslates, livery sec
ond in the Run slate, the current time is compared to the stored program times in the program

table; if they are equal, then the program advances to the next program period, and the Run

state is reentered. Hie run stale is also entered whenever the run program button is pressed

in any state, as shown by the transition from the contour to the Operate state and the default
initial transition to Run. Whenever the Run state is entered, the entry action on the state resets

the target temperature from the program table. While the program is in the H old state, the

program temperature cannot be advanced automatically, but the temperature can still be

modified directly by the temp up and temp down buttons. The default substate on power on

is the Run substate. I f the interface is in one of the setup states for 90 seconds without any

input, the system enters the H old state. This transition is shown as an arrow from the Setup

contour directly to the H old substale. Entering the H old substate also forces entry to the de
fault initial states of the other two concurrent subdiagrams of Operate. The Setup state was

included in the model just to group the three setup substates for the 90-second time-out tran
sition. Note a small anomaly of the device: The hold button has no effect within the Setup

state, although the H old state can be entered by waiting for 90 seconds.
The three setup subdiagrams are shown in Figure 5.25. Pressing set clock enters the Set

minutes substate as initial default. Subsequent set clock presses toggle between the Set hours

and the Set minutes substates. The time fw d and time back buttons modify the program time.
Pressing set day enters the Set day substate and shows the day of the week. Subsequent press
es increment the day directly. Pressing view program enters the Set program substate. which

has three concurrent subdiagrams, one each controlling the display of the program time, pro
gram temperature, and program period. The Set program state always starts with the first
program period, while subsequent view program events cycle through the 8 program peri
ods. The view program event is shown on all three subdiagrams, each diagram advancing the

setting that it controls. Note that the time fw d and time back events modify time in 15 minute

increments, unlike the same events in the set clock state. Note also that the temp up and temp

down transitions have guard conditions to keep the temperature in a fixed range.
None of the Interactive display substates has an explicit exit transition. Each substate is

implicitly terminated by a transition into another substate from the main Interactive display

contour.

5.7 RELATION OF OBJECT AND DYNAMIC MODELS

The dynamic model specifies allowable sequences of changes to objects from the object
model. A state diagram describes all or part of the behavior of one object of a given class.
States are equivalence classes of attribute and link values for the object. Events can be rep
resented as operations on the object model.

Dynamic model structure is related to and constrained by object model structure. A sub-
state refines the attribute and link values that the object can have. Each substate restricts the

values that the object can have. But this refinement of object values is exactly generalization

by restriction, as discussed in Section 4.3. A hierarchy of states of an object is equivalent to

a restriction hierarchy of the object class. Object-oriented models and languages do not usu
ally support restriction in the generalization hierarchy, so the dynamic model is the proper
place to represent it. Both generalization of classes and generalization of states partition the

set of possible object values. A single object can have different states over time the object

preserves its identity— but it cannot have different classes. Inherent differences among ob
jects are therefore properly modeled as different classes, while temporary differences are

properly modeled as different states of the same class.
A composite state is the aggregation of more than one concurrent substale. There are

three sources of concurrency within the object model. The first is aggregation of objects:
Each component of an aggregation has its own independent state, so the assembly can be

considered to have a state that is the composite of the states of all its parts. The second source

is aggregation within an object: The attributes and links of an object are its parts, and groups

of them taken together define concurrent substates of the composite object state. The third

source is concurrent behavior of an object, such as found in Figure 5.22. The three sources

of concurrency are usually interchangeable. For example, an object could contain an at
tribute to indicate that it was performing a certain activity.

The dvnamic model of a class is inherited bv its subclasses. The subclasses inherit both « *
the states of the ancestor and the transitions. The subclasses can have their own state dia
grams. But how do the state diagrams of the superclass and the subclass interact? We have

noted that states are equivalent to restriction on classes. I f the superclass state diagrams and

the subclass state diagrams deal with disjoint sets of attributes, there is no problem. The sub
class has a composite state composed of concurrent state diagrams. If. however, the state di
agram of the subclass involves some of the same attributes as the state diagram of the

superclass, a potential conflict exists. The state diagram of the subclass must be a refinement
of the state diagram of the superclass. Any state from the parent state diagram can be gener
alized or split into concurrent parts, but new slates or transitions cannot be introduced into

the parent diagram directly because the parent diagram must be a projection of the child di
agram. Although refinement of inherited state diagrams is possible, usually the state diagram

of a subclass should be an independent, orthogonal, concurrent addition to the state diagram

inherited from a superclass, defined on a different set of attributes (usually the ones added in

the subclass).

Tlte event hierarchy is independent of the class hierarchy, in practice if not in theory.
Events can Ik* defined across dif ferent classes of objects. Events are more fundamental than

states and more parallel to classes. States are defined by the interaction of objects and events.
Transitions can often Ik* implemented as operations on objects. The operation name corre
sponds to the event name. Events are more expressive than operations, however, because the

effect of an event depends not only on the class of an object but also on its state.

5.8 PR A C TIC A L TIPS

The precise content of ail O M T models depends on the needs of the application. This is true

for the object, dynamic, anti functional models. The examples in this chapter illustrate the

various modeling constructs without showing the process for constructing a model in the

first place. Parts 2 and 5 of this book show how to apply these principles; Part -t presents

several real applications

The following practical tips have been mentioned throughout the chapter but are sum
marized here for convenience.

• Only construct state diagrams for object classes with meaningful dynamic behavior. Not
all object classes require a state model.

• Check the various state diagrams for consistency on shared events so that the full dv-W W 0

namic model will be correct.

• Use scenarios to help you begin the process of constructing state diagrams. (Chapter $

describes this process in detail.)

• Only consider relevant attributes when defining a state. All attributes shown in an object
model need not be used in state diagrams.W

• Consider the needs of the application when deciding on the granularity of events and

states.

• Let the application distinguish between activities and actions. Activities occur over a pe
riod of time; actions are instantaneous compared to the time scale of an application.

• When a state has multiple incoming transitions and all transitions cause the same action

to occur, put actions within state boxes preceded by an entry event instead of listing

them on transition arcs. Do likewise for exit events.

• Use nested stales when the same transaction applies to many states.

• Most concurrency arises from object aggregation and need not be expressed explicitly

in the state diagram. Use composite states to show independent facets of the behavior of

a single object.

• Try to make the state diagrams of subclasses independent of the state diagrams of their
superclasses. The subclass state diagrams should concentrate on attributes unique to the

subclasses.

• Beware of unwanted race conditions in state diagrams. Race conditions may occur when

a state can accept events from more than one object.

5.9 CHAPTER SUMMARY

The dynamic model represents control information; the sequences of events, slates, anil op
erations that occur within a system of objects. Like the object model, the dynamic model is

a pattern that specifies the allowable scenarios that may occur. The notation for the dynamic

model represents a compromise between simplicity and expressiveness; there are some

meaningful constraints that cannot be expressed by the notation we present. As w ith the ob
ject model, these constraints must be expressed in natural language.

An event is a signal that something has happened. A state represents the interval be
tween events and specifies the context in which events are interpreted. A transition between

states represents the response to an event, including the next state and possible actions .uni

BIBLIOGRAPHIC NOTES 113

events sent to other objects. A condition is a Boolean function that controls whether a tran
sition is allowed to occur. A state diagram is a graph of states and transitions labeled by
events.

An action is an instantaneous operation in response to an event, often purely formal or
internal. One kind of action is sending an event to another object. Actions can be attached to

transitions or to entering or exiting a state. An activity is a sequence of actions that takes lime

to complete. An activity can be equated with a state or an entire state diagram. The result of
an activity can be used as a decision to choose the next state.

Stales and events can both be expanded into nested state diagrams to show- greater detail.
Events and states can both be organized into inheritance hierarchies. Substates inherit the

transitions of their superstates. Subevents trigger the same transitions as their superevents.
Objects are inherently concurrent. Each object is a collection that has its own state. State

diagrams show concurrency as an aggregation of concurrent states, each operating indepen
dently. Concurrent objects interact by exchanging events and by testing conditions of other
objects, including states. Transitions can split or merge fiow of control.

Entry and exit actions permit actions to be associated with a state, to indicate all the tran
sitions entering or exiling the state. They make self-contained slate diagrams possible for use

in multiple contexts. Internal actions represent transitions that do not leave the state. Auto
matic transitions lire when the their conditions are satisfied and any activity in the source♦ «

state has terminated.
States are really restriction generalizations on a class and are complementary to ordinary

extension generalizations. A subclass inherits the state diagrams of its ancestors, to be con

current with any state diagram that it delines. It is also possible to reline an inherited state

diagram by expanding states into substates or concurrent subdiagrams.
A realistic model of a programmable thermostat lakes three pages and illustrates subtle

ties of behavior that are not apparent from the instruction manual or from everyday opera

tion.

.S C In H I contour irenerali/atiim< scenario

.twin ity control guard state
aggregation dynamic model ♦ nested diagram state diagram

concurrence event operation transition
condition event trace race condition

fig u re 5.26 Key concepts tor (liaptcr 5

B IBLIO G RAPHIC NOTES

A com parison ol -.everal techniques lor specify mg dynam ic behavior of systems is g iven in

(I) . ! ' . I S - X S | .

M uch ol this chapter fo llow s the w ork ot D av id Hare!, w ho has lo rm a li/e d his concepts

in .1 notation Called statccharls f lla rc l S7J H afe l's treatment is the most successful attempt

to date to structure finite state machines and avoid the combinatorial explosion that has

plagued them. Harel’s statecharts are part of a larger development methodology that has been

implemented as a commercial product called STATEMATE |Harel-S8a). Harel describes a

contour-based notation for state diagrams, as well as object diagrams as special cases of a

general diagram notation that he calls higraphs [Harel-88b|.
We have used treelike notation for object diagrams and contour notation for state dia

grams. although the notations are logically equivalent. As Harel indicates, the contour nota
tion could also be used for object diagrams. Nested contours are good for conveying the

intuitive feel that the general case includes all its specialized varieties. Contours have the dis
advantage of being awkward to draw if nesting exceeds two or three levels. It is particularly

inconvenient to develop top-down diagrams because the initial outer contours are usually too

small and have to be redrawn. On the other hand, trees extend cleanly to any depth, and

nodes at all levels can be drawn at the same resolution. Wc have chosen to use contours for
states, which do not have a lot of text contents, but to use trees of object class boxes in a fiat
space to describe classes, which do have a lot of contents. In an earlier work, we had devel
oped a treelike notation for states called state trees [Rumbaugh-88]. but Harel's notation

seems superior in most cases.
Finite state machines are a basic computer science concept that are described in any

standard text on automata theory, such as [Hopcroft-79). They are often described as recog
nizers or generators of formal languages. Basic finite state machines are limited in expres
sive power. They have been extended with local variables and recursion as Augmented

Transition Networks [Woods-70] and Recursive Transition Networks. These extensions ex
pand the range of formal languages they can express but do little to address the combinatorial
explosion that makes them unwieldy for practical control problems.

[Shlaer-90] attaches a finite state machine to each object class. Actions attached to state

entry are expressed in natural language. An object interacts with another object by sending

an event to it as part of an action. There is no multilevel structure on the state machines and

the interactions between objects tend to get buried in the code for actions.
Traditional finite automata have been approached from a synchronous viewpoint. Petri

nets [Reisig-85] are a formalization of concurrency and synchronization of systems with dis
tributed activity without resort to any notion of global lime. Although thev succeed well asr • v w

an abstract conceptual model, they are too low level and inexpressive to be useful for spec
ifying large systems.• c c .

Finite state machines have been used widely for specifying control of computer archi
tectures and programs. Typically the problem is divided into data flow and control parts, the

control part being spccilicd by a finite stale machine. Much of the thrust of previous work is

to transform the Unite state machines to minimize the size of the hardware. Details can be
found in a standard text on switching theory or logic design, such as |Comer*S4| or JMiller-
79|.

The need to specify interactive user interfaces has created se\eral techniques for speci
fying control. This work is directed toward linding notations that clearh express powerful
kinds of interactions while also being easily implementable. See |('*rcon-N6| lot a compari
son of some of these techniques.

REFERENCES

|Comer-84| David J. Comer. Digital Logic and Slate Machine Design. New York: Holt, Rinehart,
1984.

[Davi$-SS) Alan M. Davis. A comparison of techniques for (lie specification of external system behav
ior. Communications o f ACM 3 1 . 9 (September 1988). 1098-1115.

[Green-86] Mark Green. A survey of three dialogue models. ACM Transactions on Graphics 5 .3 (July
1 9 8 6 k 244-275 .

[Harel-87] David Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming >S { 1 9 8 7), 231 -274 .

(Harel-SSaj D. Harel. H. Lachovcr, A. Naamad, A. Pnucli, M. Politi, R. Shennan, A. Shtul-Trauring.
STATEN1ATE: A working environment for the development of complex reactive systems. Pro
ceedings of iOth IEEE International Conference on Softw are Engineering, Singapore. April 1988.

[Harcl"ft8b] David Hard. On visual formalisms. Communications of ACM 31,5 (May 1988), 514-530.
[Hopcroft-79] J.E. Hopcroft, J.D. Ullrnan. Introduction to Automata Theory, Languages, and Compu

tation. Reading, Mass.: Addison-Wesley, 1979.
[M il le r -7 9] Raymond A. Miller. Switching Theory. Huntington, New York: Robert E. Krieger, 1979.
(Reisig*S51- W. Rcisig. Petri.Vets: An Introduction. Berlin: Springer-Verlag, 1985.
[Rumhaugh-SS] James Rumbaugh. State trees as structured finite state machines for user interfaces.

ACM SIGGRAPH Symposium on User Interface Software* Banff, Alberta, October 17*19, 1988.
[Shlaer-90| Sally Shlaer, Stephen J. Mellor. Object Life Cycles: Modeling the World in States. Engle-

wood Cliffs. New Jersey: Yourdon Press. 1990.
(Woods-70) W.A. Woods. Transition network grammars lor natural language analysis. Communica

tions o f A C M 13. 10 (Oct. 1970). 591-606.

EXERCISES

5.1 (3) Write scenarios lor the following activities:

a. Moving a bag of corn, a goose, and a fox across a river in a boat. Only one thing may Ik

earned in the boat at a time. If the goose is left alone with the com. the coni w ill Ik* eaten. If

the goose is left alone with the fox, the goose will Ik* eaten. Prepare two scenarios, one in

which something gets eaten and one in which everything is safely transported across the riv

er.
b Getting ready to take a trip m your car. Assume an automatic transmission. Don't forget vour

scat belt and emergency brake,

c An elevator fide to the top floor.

d. Operation of a car cruise control. Include an encounter with slow moving traffic that requires

sou to disengage and then resume control.

5.2 t4 i Some combined hath-showers have two faucets and a lever for controlling the How* of the

water The lever controls whether the water (lows from the shower head or directly into the tub.

When the water is lira turned on. it flows directly into the tub. When the lever is pulled, a valve

closes and latches, diverting the flow of water to the shower head To switch from shower to

bath with the water running, one must push the lescr. Shutting ofl the water releases the lever

so that the nest time the water is turned mi. it flows directly into the tub. Write a scenario for a

shower that is interrupted by a telephone call.

5.3 (3) The direction control for some of the first toy electric trains was accomplished by interrupt
ing the power to the train. Prepare state diagrams for the headlight and wheels of the train, cor
responding to the following scenario:

Power is off, train is not moving.
Power is turned on. train moves forward and train headlight shines.
Power is turned off. train stops and headlight goes out.
Power is turned on. headlight shines and train does not move.
Power is turned off. headlight goes out.
Power is turned on. train runs backward with its headlight shining.
Power is turned off, train stops and headlight goes out.
Power is turned on, headlight shines and train does not move.
Power is turned off, headlight goes out.
Power is turned on, train runs forward with its headlight shining.

5.4 (4) An extension ladder has a rope, pulley, and latch for raising, lowering, and locking the ex
tension. When the latch is locked, the extension is mechanically supported and you may safely
climb the ladder. To release the latch, you raise the extension slightly with the rope. You may
then freely raise or lower the extension. The latch produces a clacking sound as it passes over
rungs of the ladder. The latch may be reengaged while raising the extension by reversing direc
tion just as the latch is passing a rung. Prepare a state diagram of an extension ladder.

5.5 (4) A simple digital watch has a display and two buttons to set it, the A button and the B button.
The watch has two modes of operation, display time and set time. In the display time mode,
hours and minutes are displayed, separated by a flashing colon. The set time mode has two sub
modes, set hours and set minutes. The A button is used to select modes. Each time it is pressed,
the mode advances in the sequence: display, set hours, set minutes, display, etc. Within the sub
modes. the B button is used to advance the hours or minutes once each time it is pressed. Buttons
must be released before they can generate another event. Prepare a state diagram of the watch.

5.6 (5) Revise the dynamic model from the previous exercise to provide for more rapid setting of
the time by pressing and holding the B button. If the B button is pressed and held for more than
5 seconds in set time mode, the hours or minutes (depending on the submodel increment once
every I/2 second.

5.7 (6) Figure E5.1 is a partially completed, simplified, state diagram for the control of a telephone
answering machine. Calls arc automatically answered as follows: An incoming call is detected
on the first ring and the machine answers the call w ith a prerecorded announcement. When the
announcement is complete, the caller's message is recorded. When the caller hangs up. the ma
chine hangs up and shuts off. Place the following in the diagram: call detected, answer call. plax
announcement, record message, caller hangs up. announcement complete.

]

f Hung up Announcing ^ ----->/^ Recording \

Figure K5.I Partially completed state diagram for an answering machine

5.8 (7l The telephone answering machine m the previous exercise is actuated on the first ring Re

vise the state diagram io have the machine answer alter fixe rings. II the telephone ts answered

before live rings, (he niachme should do nothing. He careful lo distinguish between five calls in
which the telephone is answered on the first ring and one call that rings five times.

,9 (3) In a personal computer, a disk controller is typically used to transfer a stream of bytes from
a floppy disk drive to a memory buffer w ith the help of a host such as the central processing unit
(CPl> or a direct memory access (DMA) controller. A partially completed, simplified, state di
agram for the control of the data transfer is shown in figure 1:5.2. The controller signals the host
each time a new bvte is available. The data must then Ik* read and stored before another bvte is« •

read). When the disk controller senses the data has been read, it indicates that data is not avail
able. in preparation for the next hue. If any byte is not read before the next one comes along,
the disk controller asserts a data lost error signal until the disk controller is reset. Add the fol
low ing to the diagram: reset, indicate data not available, indicate data available, data read by
host, new data readv, indicate data lost.

X

Data not available A Data available

Data losty

Figure K5.2 Partially completed state diagram of a data transfer protocol

JO i6> Figure 1:5.3 is a partially completed stale diagram for one kind of motor control that is com-
monl) used in household appliances. A separate appliance control determines when the motor
should Ik* on and continuously asserts “on*' as an input to the motor control when the motor
should be running.

Figure K5J Partially completed stale diagram for a motor control

When “on" is asserted, the motor control should start and run the motor. Starting is accom

plished In applying power to both the “start** and the “ run" windings of the motor. A sensor,

called a ‘starting relax/* determines when the motor has started, at which point the “start" wind

ing is turned off. lea*, tnp on!) the "run" winding powered. Moth w Hidings are shut off when “on

is not asserted

Appliance motors could Ik* damaged by overheating if they are overloaded or tail to start. I o

protect against thermal damage, the motor control oltcn includes an over-temperature sensor. If

the motor becomes ton hot. the motor control removes power Irom both windings and ignores

any "on" assertion from the appliance control until a reset button on the motor control is pressed

and the motor has cooled

Add the following to the diagram. Activities: apply power to run winding, apply power to
start winding. Conditions: motor is overheated, on is asserted, motor is running. Events: reset.

5.11 (8) Convert the state diagram that you prepared in the previous exercise into a nested state dia
gram to take advantage of the commonality between the starting and running stale. There is a
transition from either the starting or the running slate to the off state when '‘on” is not wanted.

5.12 (8) There was a single, continuously active input to the control in exercise 5.10. In another com
mon motor control, the user is provided two push buttons, one for "start'* and one for "stop.” To
start the motor, the user depresses the "start” button. The motor continues to run after the "start"
button is released.To stop the motor, the "stop” button is pressed. The "stop" button takes pre
cedence over the "start” button so that the motor does not run while both buttons are depressed.
If both buttons are depressed and released, whether or not the motor starts depends on the order
in which the buttons are released. If the "stop” button is released first, the motor starts. Other
wise the motor does not start. Modify the state diagram that you prepared in exercise 5.10 to
accommodate "start” and "stop” buttons.

5.13 (8) Figure E5.4 is a partially completed, simplified, slate diagram for the receiver in a universal
asynchronous receiver transmitter (U ART). A UART is used to transmit digital information one
character at a time over a serial communications link. To simplify the exercise, we have ignored
several features of actual UARTs. such as detection of parity, framing, and overrun errors.

Receive start bit

Detect start bit Verify start bit

/

Receive data bits

V

Wait for data bituv-r
. > ------ V

Sample data bit

Transfer character S1—1

Figure K5.4 Partially completed state diagram for an asynchronous recci\cr

Characters are transmitted as a sequence o f bits at a fixed and predefined rate. A character

consists of a start bit. sexeral data bits, and a stop bit. The number of data bits m a character

varies between 5 anil S ami can ho set In the user. W ithin a character, bits are assigned precise

lime slots. A transmitter semis a I or a it hit In setting the pohntx of its output timuighout the

time slot for that bit. The receiver decides w bother a bit is a 1 or a 0 by sampling it at the center
of ii> time slot. The transmitter sends a start bit at the beginning of each character to resynchro-
nize the receiver. The edge of the start bit triggers the receiver, which then verifies the start bit
at the center of the time slot. If it is not the correct polarity at that time, the assumption is that a
short pulse of noise falsely triggered the receiver, and it goes back to waiting for a valid start bit.
A 0 stop bit is used at the end of a character to separate characters, otherwise a 1 bit at the end
of a character could interfere with the detection of the next start bit.

Once a valid start bit is found, the receiver proceeds to assemble bits into a character by sam
pling them in the centers of their time slots. When all of the bits have been assembled into a char
acter. the receiver transfers it to an interface.

Complete the state diagram in Figure E5.4 with events, actions, activities, etc. The Transfer
chariu u r state is used to move a character from the shift register to a holding register.

5.14 (9) Prepare concurrent state diagrams to control the buffered copying of an ASCII file to a per
sonal computer from a remote computer through a CART (see exercise 5.13 for a description of
a UART). You may assume that a program has already initiated the transfer from the remote
computer and is waiting for data. The program must process interrupts from the UART and from
a disk controller. The UART and the disk controller operate independently.

There will lx* an interrupt from the UART each time it receives a byte. To process the inter
rupt. the program must check for UART errors and add the byte into a buffer. If there is a UART
error, the program must close the file, terminate the transfer and display an error message.

The disk controller generates an interrupt when it is ready for more data. Whenever the disk
driver is ready and there is data in the buffer, write a byte to the file.

A special control character is used to signify the end of transmission. When the UART re
ceives this character the program should close the file, terminate the transfer, and display a
message that the transfer is complete.

Because (he remote computer may send data faster than the disk can handle, the program w ill
need to control the buffer. Whenever the buffer becomes nearly full, the program must send a
request to the remote computer to suspend transmission. When the buffer becomes nearly emp
ty, send a request to resume transmission.

5.15 (5) Three phase induction motors will spin cither clockw ise or counterclockwise, depending on
the connection to the power lines. In applications requiring motor operation in both directions,
two separate contactors (power relays) might be used to make the connections, one for each di
rection Also, in some applications of large motors, the motor starts through a transformer that
reduces the impact on the power supply. The transformer is bypassed by a third comactoi after
the motor has been given enough time to come up to speed. There are three momentary control
inputs, requests for forward, reverse, or off When the motor is off. forward or reverse requests
cause the motor to start up and run in the requested direction. A reverse request is ignored il the
motor is starting or running in the forward direction, and m cc versa. An off request at any lime
shuts the motor oft.

Figure F.5.5 is a Mate diagram for one possible motor control. Convert K Irom a single stale
diagram into two concurrent slate diagrams, one to control the direction of ihe motor and one

for starting control.

5.16 (3; The control m the previous exercise does not provide for thermal protection.
a Modify the state diagram m Figure E5 s to shut the motor off if an overheating condition is

detested at am time

Off

A/\

o f f r e q u e s t

f o r w a r d r e q u e s t

Starting forward

ertfry/start timer
do: energize forward contactor

Starting reverse

entryislari timer
do: energize reverse contactor

r e v e r s e r e q u e s t

o f f r e q u e s t

o f f r e q u e s t

t im e - o u t (Running forward

t im e - o u t

do: energize running contactor
do: energize forward contactor

Running reverse

do: energize running contactor
do: energize reverse contactor

o f f r e q u e s t

Figure E5.5 State diagram lor a reduced-voltage-start, reversing,
three phase induction motor control

b. Modify the concurrent state diagrams that you produced in exercise 5.15 to shut the motor

off if an overheating condition is detected at any time.

5.17 (2) Place the following event classes into a generalization hierarchy with inheritance of event

attributes: pick operation, character input, line pick, circle pick, box pick, text pick, event.

5.18 (6) Prepare a stale diagram for selecting and dragging items with the diagram editor described

in exorcises -4.2 and 4.7.
A cursor on the diagram tracks a two-button mouse. If the left button is pressed with the cur

sor on an item (a box or a link), the item is selected, otherwise previous!) selected items are de

selected. Moving the mouse with the left button held down drags any selected items.

5.19 (9 j A gas-fired, forced hot air. home heating system maintains room temperature and humiditv

in the w inter using distributed controls. The comfort o f separate rooms may be controlled some

what independently. Heat is requested from the furnace for each room based on its measured

temperature anti the desired temperature for that room. When one or more rooms require heat,

the furnace is turned on. When the temperature in the furnace is high enough, a blower on the

furnace is turned on to send hot air through heating ducts. If the temperature in the furnace ex

ceeds a safely limit, the furnace is shut off and the blower continues to run. flappers in the ducts

are controlled bv the system to delis er heal only to those rooms which need it. When the roomtsi

no longer requires heat, the furnace is shut off. but the Nowet continues to deliver hot air until

the furnace has cooled oil.
ihtmidilv is also maintained based on a stralcyv involvin'.: desired humnhtv, measured hu- • * * *•

nudity, and outside temperature. The desired humiditv is set b\ the user tor the entuc home I hi

midity of the cool air returning to the blower is measured. When the system determines that the
humidity is too low, a humidifier in the furnace is turned on. whenever the blower is on, to inject
moisture into the air leaving the blower.

Partition the control of this system into concurrent slate machines. Describe the functioning
of each state machine without actually going into the details of states, actions, or activities.

5.20 (7) While exploring an old castle, you and a friend discovered a bookcase that you suspected to
be the entrance to a secret passageway. While you examined the bookcase, your friend removed
a candle from its holder, only to discover that the candle holder was the entrance control. The
bookcase rotated a half turn, pushing you along, separating you from your friend. Your friend
put the candle back. This time the bookcase rotated a full turn, still leaving you behind it. Your
friend took the candle out. The bookcase sinned to rotate a full turn again, but this lime you
stopped it just shy of a full turn by blocking it with your body. Your friend handed you the can*
die and together you managed to force the bookcase back a half turn, but this left your friend
behind it and you in from of it. You put the candle back. As the bookcase began to rotate, you
took out the candle, and the bookcase stopped after a quarter turn. You and vour friend then en
tered to explore funher.

Develop a state diagram for the control of the bookcase that is consistent with the previous
scenario. What should you have done at first to gain entry with the least fuss?

5,21 (10) Figure 1:5.6 is a portion of the state diagram for the control of a video cassette recorder
(VCR). Tlic VCR has several buttons, including select, untoff, and set lor setting the clock and
automatic start-stop timers, auto for enabling automatic recording, ver for bypassing the VCR,
and timed for recording for a while. Many of the events in Figure F£5.6 correspond to pressing
the button with the same name. Several buttons have a toggling behavior. For example, pressing
ver toggles between VCR and TV mode. Several buttons used for manual control of the VCR
are not accounted for m Figure F5.6 such its play, record.fast fo rw ard , rewind, pause, and eject.

These buttons are enabled only in the M a n u a l stale. Do the following:
a. Prepare lists of events, actions, and activities.
b. Prepare a user’s manual explaining how to operate the VCR.
c. By adding states, extend the stale diagram to accommodate another start-stop timer lora sec

ond channel.
d. There is a great deal of commonality in vour answer to the previous pan. For example, set

ting the hour may he done in several contexts with similar results. Discuss how duplication
of effort could l>e reduced.

Set clock
doidisplay time

jk._
Day

doiflash day
sef'next day

select --------->
Hour

doiflash hour
seftaext hour

select -------- >
Minutes

do:flash minutes
setfnext minute

select

Set start tim er

en/ry/initialize start time
do:display start time

' Start day | select ' Start hour select 'S ta rt m inutes' select ' Channel '

doiflash day doiflash hour doiflash minutes doiflash channel
Vsetfnextdav,/ \set/nex[houy ^setfnext minute J Isetnext channel

select

on/off

on/off

Tim ed record

do:record
timed1more time

\ time- on/off
timed out

>' ' ' y

Set stop timer

enfry/initiaiize stop time
do:display stop time

Stop hour

do:flash hour
sefc'next hour

select
Stop minutes

doiflash minutes
setnext minute

______ ^

select

/

Manual

doidisplay time
s e ie c p K . doiupdate time

VCR S vcr

do:vcr output ve ry do:tv output

1 ----- auto

) auto
/

r
Autom atic

doidisplay time
doiupdate time
doidisotav "auto"

 ̂ [time = start time] /A u to record

Auto off L-_______________ -V do record / i
y (time = stop time] V ________ J

Figure F5.6 Portion o f a state diagram lor a video cassette recorder

Functional Modeling
4 1

Tlie functional model describes computations within a system. The functional model is the

third let: of the modeling tripod, in addition to the object model and the dynamic model. The

functional model spccilies what happens, the dynamic model specifies when it happens, and

the object model specifies what it happens to.
The functional model shows how output values in a computation are derived from input

values, without regard for the order in which the values are computed. The functional model
consists of multiple data flow diagrams which show the flow of values from external inputs,
through operations and internal data stores, to external outputs. The functional model also

includes constraints among values within an object model. Data How diagrams do not show

control or object structure information: these belong to the dynamic and object models. We
mainly follow the traditional exposition of data flow diagrams.

6.1 FUNCTIONAL MODELS

Hie functional model specifies the results of a computation without specifying how or when

they are computed. The functional model specifies the meaning of the operations in the ob
ject model and the actions in the dynamic model, as well as anv constraints in the object
mtxicl Xoninteractive programs. Mich as compilers, have a trivial dynamic model; their pur
pose is to compute a function. The functional model is the main model lor such programs,
although the object model is important for any problem with nontrivial data structures. Many

interactive programs also have a significant functional model. By contrast, databases ollen

have a trivial tunctional model, since their purpose is to store and organize data, not to trans
form it

A spreadsheet is a hind o f tunctional model. In most cases, the values in the spreadsheet

are trivia! and cannot In- structured further. The o n l \ interesting object structure is the cells

m the spreadsheet itself . "Ilk’ purpose o f the spreadsheet is to specify values in terms ol other

salues.

A compiler is almost a pure computation. The input is the text o f a program in a partic

ular language: the output is an object file that implements the program in another language,
often the machine language o f a particular computer. The mechanics of compilation are ir

relevant to the application.
The tax code is a large functional description. It specifies formulas for computing taxes

based on income, expenses, donations, marital status, and so on. The lax code also defines

objects (income, deductions) and contains dynamic information (when taxes are due. when

estimated taxes are due, when income forms must be sent to employees). A set of tax forms

and instructions is an algorithm implementing the functional model. Tax forms specify how

to compute taxes based on a set of input values, such as income, expenses, deductions, and

withholding. Note that tax forms only provide an algorithm for computing taxes; they do not
define the actual tax due function. By contrast, the lax code usually defines the tax due func

tion without specifying the algorithm for computing it. A taxpayer need not fill in the form

in the exact sequence given in the instructions to get the correct answer.

6.2 DATA FLOW DIAGRAMS

The functional model consists of multiple data How diagrams which specify the meaning of
operations and constraints. A data flow diagram (D FD) shows the functional relationships of

the values computed by a system, including input values, output values, and internal data

stores. A data flow diagram is a graph show ing the flow of data values from their sources in

objects through processes that transform them to their destinations in other objects. A data

flow diagram does not show control information, such as the time at which processes arc ex
ecuted or decisions among alternate data paths: this information belongs to the dynamic

model. (Some authors do include control information in DFDs. primarily to show everything

on one diagram, but we have broken out the control information into a separate diagram, the

state diagram.) A data How diagram does not show the organization of values into objects:
this information belongs to the object model.

A data flow diagram contains processes that transform data. data flows that move data.
actor objects that produce and consume data, and data store objects that store data passively

Figure 0 .1 shows a data llow diagram for the display of an icon on a windowing system. The

icon name and location are inputs to the diagram from an unspecified source. The icon is ex
panded to vectors in the application coordinate system using existing icon definitions. The

vectors are clipped to the si/e of the window, then offset by the location of the window on

the screen, to obtain vectors in the screen coordinate system. Finally the vectors are conven
ed to pixel operations that are sent to the screen buffer for display The data llow diagram

show s the sequence of transformations performed, as well as the external v .dues and objects

that affect the compulation.

6.2.1 Processes

A p n u ' c w transforms data values. The lowest level processes .tie pute functions without side

ellects. Tvpica l functions include the sum ol two numbeis. the finance charge on a set of

location

icon name

location

Screen
buffer

screen
vector
list

pixel
operations

Figure 6.1 Data flow diagram for windowed graphics display

credit card transactions, and the spline through a list of points. An entire data How graph is

a high-level process. A process may have side effects if it contains nonfunctional compo
nents. such as data stores or external objects. The functional model does not uniquely specify

the results of a process with side effects. The functional model only indicates the possible

functional paths; it does not show which path will actually occur. 1'he results of such a pro
cess depend on the behavior of the system, as specified by the dynamic model. Examples of
nonfunctional processes include reading and writing files, a voice recognition algorithm that
learns from experience, and the display of images within a workstation windowing system.

A process is draw n as an ellipse containing a description of the transformation, usually

its name. Iiacli process has a fixed number of input and output data arrows, each of which

carries a value of a given type. The inputs and outputs can be Libeled to show their role in

the computation, but often the type of value on the data How is suflicient. f igure b.2 shows

two processes. Note that a process can have more than one output. The tli.\pLiy non process

represents the entire data How diagram of f igure f>. 1 at a higher level ol abstraction.

dividend

■■V^Tnteger

quotient

II

divisor ‘ remainder

icon name
display

--------------icon
location —

pixel operations

r i^ u ri’ 6.2 Processes

‘I ’m: diagram n n h shows the pattern ol inputs am! outputs. I ho computation ol output

v.tlucs from input values must also he sjvcil ied. A hiph-lovel process can I v expanded into

.in entire data flow ducrarn . mueii as a subroutine can he expanded into lowet-levcl subrou

tines. hvenlualiv the recursion must stop, and the atomic processes must be described direct

iv. in natural la tu m a /e , mathematical equations, or h \ some other means, hor example,

"integer division" could Ive detined mathematk all> and "displas icon would in* dchned in

terms ol f uture h i I rc q u c n th the atomic processes -no trivial and sunpls access a value

t fom an object, tor example.

Processes are implemented as methods (or method fragments) of operations on object
classes. The target object is usually one of the input (lows, especially if the same class of ob
ject is also an output flow. In some cases, however, the target object is implicit. For example,
in Figure 6.2, the target o f display icon is the window that receives the pixel operations.

6.2.2 Data Flows

A data flow connects the output of an object or process to the input of another object or pro
cess. It represents an intermediate data value within a computation. The value is not changed

by the data flow.
A data flow is drawn as an arrow between the producer and the consumer of the data

value. The arrow is labeled with a description of the data, usually its name or type. The same

value can be sent to several places; this is indicated by a fork with several arrows emerging

from it. The output arrows are unlabeled because they represent the same value as the input.
Figure 6.3 shows some data flows.

street

Figure 6.3 Data (lows to copy a value and split an aggregate value

Sometimes an aggregate data value is split into its components, each of which goes to a

different process. This is shown by a fork in the path in which each outgoing arrow is labeled

with the name of its component. The combination of several components into an aggregate

value is just the opposite.
Each data How represents a value at some point in the computation. The data flows in

ternal to the diagram represent intermediate values within a computation and do not neces

sarily have any significance in the real world.
Flows on the boundary of a data How diagram are its inputs and outputs. These flows

mav he unconnected (if the diagram is a fragment of a complete xvstem). or thev mav be con-
neeted to objects. The inputs of Figure 6 .1 are icon name and location: their sources must be

specified in the larger context in which the diagram is used. The outputs of Figure 6 .1 are

pixel operations, which are sent to the screen buffer object. The same inputs and outputs ap
pear in the bottom part of Figure 6.2. in which the entire data flow diagram of Figure 6.1 has

been abstracted into a process.

6.2.3 Actors

An actor is an active object that drives the data flow graph by producing or consuming v.tl
ucs. Actors are attached to the inputs and outputs of a data flow graph. In a sense, the actors

lie on tile boundary o f the data flow graph but term inate the flow o f data a.s sources and sinks

o f data, and so are sometimes called te rm u h ito rs . Kxam ples o f actors include the user o f a

program , a thermostat, and a m otor under com puter control. Th e actions o f the actors are ou t

side the scope o f the data flow diagram but should be part o f the dynam ic m odel.

A n actor is draw n as a rectangle to show that it is an object. A rrow s between the actor

and the diagram are inputs and outputs o f the diagram . Th e screen buffer in Figure 6. 1 is an

actor that consumes pixel operations.

6.2.4 Data Stores

A d-.itu store is a passixe object w ith in a data flow diagram that stores data for later access.

I 'n lik e an actor, a data store does not generate any operations on its ow n but merely responds

to requests to store and access data. A data store a llow s values to be accessed in a d ifferent

order than they are generated. Aggregate data stores, such as lists and tables. p ro \ ide access

o f data by insertion order or index keys. Sam ple data stores include a database o f a irline seat

reservations, a bank account, and a list o f tem perature readings over the past day.

A data store is draw n as a pair o f parallel lines containing the name o f the store. Input

arrows indicate in form ation or operations that m odify the stored data; this includes adding

elem ents, m od ify ing values, or deleting elem ents. O utput arrows indicate in form ation re

trieved from the store. This includes retrieving the entire value or some com ponent ot it. The

actual structure o f the object must be described in the object m odel, together w ith a descrip

tion o f the update and access operations perm itted.

Figure A.-la shows a data store for temperature readings. Hvery hour a new temperature

reading enters the store. A t the end o f the day. the m axim um and m in im um reading are re

trieved from the store In addition to introducing delays in the use o f data, data stores permit

many pieces ot data to be accum ulated and then used at once.

Fm urc 6 .4b shows a data store for a bank account. The double headed arrow indicates

that fh i!ant'tr is both an input .uni an output oi the subtraction o |v ra lm n . I his could be draw n

w ith tw o separate arrows, but accessing and updating a value in a data store is a com m on

operation.

f-igure b.-L siuiv,*» a price list lor items. Input to the store consists o! pairs o| item name

and cost \a iu cs . Later an item is p t\e n . and the corresponding cost is lound. I lie unlaheled

arrow trom the data store to the pn\.css indicates that the entire price list is an input to the

-.election operation Note that the item name is not an input to the data stole during the se

lection operation K ra u s e it does no; rnodils the store hut m e ie h supplies input to the selec

mm process.
bieurc b -Li shows the periodic tahlc being accessed to tmd the atomic weight ol an el

ement Oin iou-ds the properties o! chemical elements are constant and not a, satiable ot the

p:*'i*fam !l is ewnsemeni to represent the operation as a simple access ot a . o/jo,;/;,' Oo/o

object Suv h a data dorc has no inputs

Hu:h a .m i-, and data arc objects We distinguish them because then heliavuu and

a-ace is gcnera il’. dd lc fen t. although m an object m ;ented language the;, m ight both be im

pie merited a - ohrec !* < >n the other hand, a data -.hue might be im plem ented as a hie and an

tem perature------------------- max temp
---------------- =► Readings_______

------------------- min temp

(a)

item n a m e -----------------
----------------- > Price

cost list

V

Account
------ * -----

| balance
withdrawal

(b)

Periodic
table

atomic weights
v

element^ /^ l in c T ^ \atomic weight
^ \ w e i g h t y *

(d)

Customer

Figure 6.4 Data stores

are pure values, such as integers, which lack individual identity. (In an object-oriented lan

guage, however, objects and pure values are often implemented the same.)
There is a difference between viewing an object as a single value and as a data store con

taining many values. In Figure 6.5, the customer name selects an account from the bank. The

result of this operation is the account object itself, which is then used as a data store in the

update operation. A data flow that generates an object used as the target of another operation

is indicated by a hollow triangle at the end of the data flow. In contrast, the update operation

modifies the balance in the account object, as indicated by the small arrowhead. The hollow

triangle indicates a data flow value that subsequently is treated as an object, usually a data

store. (This is a new construct that we have introduced. Traditional data flow notation does

not adequately represent the dynamic creation or selection of an object for later use in the

diagram as an aggregate.)

----------- accounts
Bank --------------- > r select ■£> Account

\

name

Customer
request

balance

update

Figure 6.5 Selection with an object as result

Figure 6.6 shows the creation of a new account in a bank. The result of the cr<\itc </c-
ctndii process is a new account, which is stored in the bank. The customer's name and de
posit are stored in the account. 'Hie account number from the new account is given to the

customer. In this example, the account object is viewed both as a data value (stored in the

bank) and as a data store (used to store and retrieve values).

Bank

Figure 6.6 Creation o f a new object

6.2.5 Nested Data Flow Diagrams

A data How diagram is particularly useful for show ing the high-level functionality of a sys
tem and its breakdown into smaller functional units. A process can he expanded into another
data flow diagram. Hath input and output of the process is an input or output of the new di
agram. The new diagram mav have data stores that are not shown in the higher-level dia-fc «. » u

gram. The non process of f igure h.2 corresponds to the data flow diagram of Figure
6 .1. Diagrams can he nested to an arbitrary depth, and the entire set of nested diagrams forms

a tree. Nesting of a data flow diagram permits each level to he coherent and understandable

yet the overall functionality can he arbitrarily complex. A diagram that references itself rep
resents a recursive computation. (The nesting of diagrams has also been called leveling.

since the diagrams are organized into different levels.)
Hvemiially the nesting ol diagrams terminates with simple functions. These functions

must be specified as operations, to he explained in Section ft.3.

6.2.6 Control Flows

A data Ilow diagram show s all possible computation paths for values; it does not show which
paths are executed and in what order. Decisions and sequencing are control issues that are
part of the dynamic model. A decision allects whether one or more functions are even per
formed. rather than supply mg a value to the functions, liven though the functions do not have
input values irom these decision functions, it is sometimes useful to include them in the
functional model so dial they are not forgotten and so their data dependencies can be shown.
This is done by including < u n n o l j ! n w \ in the data flow diagram.

A control flow a boolean value that affects whether a process is ev aluated. The control
flow is not an input value to the process itself. A control Ilow is shown by a dotted line from
a pr<Kcss producing a Boolean value to the pr«>cess being controlled.

f igure ft.7 shows a data Ilow diagram for a withdrawal from a hank account. The cus
tomer supplies a password and an amount. The withdrawal occurs only if the password is
successfully verified 'Die update process could be expanded with a similar control flow to
guard against overdrafts.

Control Mows can occa aonally tv.; useful. Inn they duplicate information in Ihe dynamic
model arid should lx: used sparingly.

coded
password Account

password password
OK

Custom er

cash

Figure 6.7 Control How

6.3 SPECIFYING OPERATIONS

Processes in data flow diagrams must eventually be implemented as operations on objects.
Each bottom-level, atomic process is an operation. Higher-level processes may also be con
sidered operations, although an implementation may be organized differently from the data

How diagram it represents because of optimization. Each operation may be specified in var
ious wavs, including the following:f W W

- mathematical functions, such as trigonometric functions:

- table of input and output values (enumeration) for small finite sets:

- equations specifying output in terms of input;

- pre- and post-conditions (axiomatic definition!:

- decision tables:

- pseudocode:

- natural language.

Specification of an operation includes a signature and a transformation. The signature de
lines the interface to the operation: the arguments it requires (number, order, and types) and

the values it returns (number, order, and types). The operation is usually listed in the object
model to show the pattern of inheritance: the signature of all methods implementing an op
eration must match. The transformation delines the effect of an operation: the output values

as functions of the input values and the side effects of the operation on its operand objects.
The external specification o f an operation on ly describes changes visible outside the o p

eration. D uring the im plem entation o f an operation, internal values m ay be created tor con

venience or optim ization . Sonic values m ay even be part o f the internal slate o f an object.

For exam ple, a sorted list o f values can be im plem ented using various data structures, such

as a linear list or a balanced tree, whose internal organization can be freely changed provided

it iloes not change the external ordering o f the list. Such internal details are private to an o p

eration (and possibly to an object class) and do not appear in its external specification. The

purpose o f the specification is to indicate what an operation must do logically , not how »

must Iv im plem ented. Therefore the state o f the object itsclt must be d iv ided into externally

v isible in lorm ation and private internal inform ation. Changes to the internal state o f an o b

ject that are not externally v isible do not change the value ot the obieci.

.-\c<v.vv operations arc operations that read or write attributes or links of an object. It is

unnecessary to list or specify access operations during analysis, since they are trivial. During
design, it is necessary to note which access operations will be public and which will be pri
vate to the object class. iSee Section 1.2.2 for an explanation of analysis and design.) The

reason for restricting access is not for reasons of logical correctness but rather to encapsulate

classes for protection against bugs and to permit modifications to the implementation in the

future. Access operations are derived directly from the attributes and associations of a class

in the object model.
Nontrivial operations can be divided into three categories: queries, actions, and activi

ties. A (/tiers i> an operation that has no side effects on the externally visible stale of anv ob
ject: it is a pure function. A query with no parameters (except for the target object) is a

derived attribute4, it has the form (although not necessarily the implementation) of an at
tribute. For example, if a point is speeilied in Cartesian coordinates, then the radius and angle

are derived attributes. In the object model, query operations can be grouped with attributes,
but their derived status should be indicated because they do not contribute additional infor
mation to the state of the object. In many cases, the choice of certain attributes as base at
tributes and others as derived attributes is arbitrary. For example, a point may be expressed

in both Cartesian and polar coordinates; neither is more correct. Because query' operations

have no external effects, they are less important in analyzing and designing a system than

base attributes and actions. T hey can often be specified w ith equations written in terms of
other attributes and do not require a control component. Query operations are derived from

paths in the object model or by repackaging data from the object model.
An ai non is a transformation that has side effects on the target object or other objects in

the system reachable trom the target object. An action has no duration in time; it is logically

instantaneous (although any actual implementation will take some lime, of course). Because

the state ot an object is defined by its attributes and links, all actions must be definable in

terms of updates to base attributes and links. An action can be defined in terms of the state

of the system before and after the action: a control component is unnecessary. l;or example,
the action of scalimr a window on a workstation imolves sealine the window boundary and

all of the contents of the window by a fixed (actor. The order in which the scaling is per
formed is irrelevant to the specification of the action; only the final result matters. Actions

arc usually derived from processes in (lie lunetional model.
Actions can be described m various ways, including m athem atical equations, decision

trees, decision tables, enum eration o f all possible inputs, predicate calculus, and natural lan

guage. It is im portant that a specification be clear and unam biguous, not that it be form al.

F igure 6.K shows the specification for a telephone switcher connecting a call. There are sev

eral elements ot a specification; the (unction name, the inputs and outputs, the iranslorm a-

Itons to salues. and the constraints that must be observed. N o te that no a lg o rith m lo r

determ ining connections is given. The specification is m torm al and still ambiguous. J*or e x

am ple. the topology of the network must lx* specified in more detail. Nevertheless, this w ill

do lor an in itia l top-lesel specification.

O ne way ot specifying an actum is to give an a lgorithm tllnghsh . pseudocode, or actual

codei lor com puting it frequently a sim ple but inefficient algorithm for a function is easy

to define, th is does not im ply that ihc program must use the same algorithm , only that the

results lx- identical, although prow ng that two algorithm s yield the same result can be d ilh

Function: connect call

Inputs: phone line, number dialed, current settings of switches

Outputs: new settings o f switches, connection status

Transformation: Connect the calling phone to the dialed phone by closing con

nections in the switcher, observing the following constraints:

Constraints: Only two lines are a time may be connected on any one circuit.

Previous connections must not be disturbed.

If the called line is already in use, then no switches are closed, and the status is

reported as busy.

I f a connection is impossible because loo many switches are in use. then no switch
es are closed, and the status is reported as switcher busy.

Figure 6.8 Action for telephone switcher connection

cult. Some functions can be specified in ways that do not provide a basis for an algorithm,
even an inefficient one. For example, the inverse of a matrix A is defined as "that matrix B

such that A times B yields the identity matrix." Matrix multiplication is easily defined, but

deriving an algorithm to compute the inverse requires a considerable amount of linear alge
bra. Supplying an algorithm is part of design.

An activity is an operation to or by an object that has duration in time, as opposed to

queries and actions, which are considered as instantaneous (logically, if not actually). An ac
tivity inherently has side effects because of its extension in time. Activities only make sense

for actors, objects that generate operations on their own. because passive objects are mere

data repositories. An operating system demon, such as an output spooler, is considered an

actor because it has an active role in controlling the flow o f information. The details of an

activity are specified by the dynamic model as well as the functional model and cannot be

considered just as a transformation. In most cases, an activity corresponds to a state diagram

in the dynamic model.

6.4 CONSTRAINTS

A constraint shows the relationship between two objects at the same time (such as frequency

and wavelength) or between different values of the same object at different times (such as

the number of outstanding shares of the mutual fund). A constraint may be expressed as a

total function (one value is completely specified by another) or a partial function (one value

is restricted, but not completed specified, by another). For example, a coordinate transforma
tion might specify that the scale factor for the x-coordinate and the y-coordinate will be

equal: this constraint totally defines one value in terms of the other. The Second Law of Ther

modynamics expresses a partial constraint: it states that the entropy (disorder) of the Uni
verse can never decrease.

Constraints can appear in each of the kinds of model. Object constraints specify that
some objects depend entirely or partially on other objects. Dynamic constraints specify re
lationships among the states or events of different objects. Functional constraints specify re
strictions on operations, such as the scaling transformation described above.

A constraint between values of an object over time is often called an invariant. Conser
vation laws in physics are invariants: The total energy, or charge, or angular momentum of
a system remains constant. Invariants are useful in specifying the behavior of operations.

6.5 A SAMPLE FUNCTIONAL MODEL

In this section, we describe the functional model for a Hight simulator. The simulator is re
sponsible for handling pilot input controls, computing the motion of the airplane, computing

and displaying the outside view from the cockpit window, and displaying the cockpit gauges.
The simulator is intended to be an accurate but simplified model of Hying an airplane, ignor
ing some of the smaller effects and making some simplifying assumptions. For example, we

omit the rudder, under the assumption that it is held so as to keep the plane pointing in the

direction of motion. Figure 6.9 shows the top-level data flow' diagram for the (light simulator.
There are two input actors: the Pilot, who operates the airplane controls, and the Weather,

which varies according to some specified pattern. There is one output actor: the Screen.

which displays the pilot’s view. There are two read-only data stores: the Terrain database.

w hich specifies the geometry of the surrounding terrain as a set of colored polygonal surfac
es. and the Cockpit database, which specifies the shape and location of the cockpit viewport
and the locations of the various gauges. There are three internal data stores: Spatial param

eters, which holds the 3-D position, velocity, orientation, and rotation of the plane; l-'ttel,

which holds the amount of fuel remaining; and Weight, which holds the total weight of the

plane (consumption of fuel causes the weight to decrease). The initialization of the internal
data stores is necessary but is not shown on the data flow diagram.

'Hie processes in the diagram can be divided into three kinds: handling controls, motion

computation, and display generation. The control handling processes are adjust controls,

which transforms the position of the pilot’s controls (such as joysticks) into positions of the

airplane control surfaces and engine speed; consume fuel, which computes fuel consumption

as a function of engine speed; and compute weight, which computes the weight of the air
plane as the sum of the base w eight and the weight of the remaining fuel. V u k c s s adjust con

trols is expanded on Figure 6.10. where it can be seen as comprising three distinct controls:
the elevator, the ailerons, and the throttle. There is no need to expand these processes further,
as they can be described by input-output functions t we do not attempt to specify them here).

I’hc motion computation processes are compute fo u rs, w hich computes the various

forces and torques on the plane and sums them to determine the net acceleration and the ro
tational torques, and ir.teyjate motion, which integrates the differential equations of motion.
Process compute forte-, incorporates both geometrical and aeronautical computations. It is

expanded on Figure 6 11. Net force is computed as the vector sum of drag, lilt, thrust, and

Pilot Weather

controls

control surfaces,
engine speed

wind velocity.
pressure,
temperature

acceleration,
torque

gauge
layout

Figure 6.9 Functional model of flight simulator

stick extension

stick angle

throttle

elevator
angleadjust

^ “ levatoi
aileron

N /"adjusTs angle

is

\g j ierons--

^ '7 e a c T \
A . value ’

engine
^ /"ad ju sT / speed

' en g in e /

Figure 6.10 I:\pansion of aJju\t . «>/jr/o/.\ privets

weight. These forces in turn depend on intermediate parameters, such as airspeed, angle of
attack, anil air density. The aerodynamic calculations must be made relative to the air mass,
so the wind velocity is subtracted from the plane's velocity to g i\e the airspeed relative to

orientation

Figure 6 .11 Expansion of compute forces processes

the air mass: the orientation of the plane must be transformed also. Air density is also com
puted and used in subsequent processes. The intermediate parameters arc computed in terms

of data store parameters, such as airplane velocity, orientation, rotation rates roll rate and

pitch rale, and altitude, obtained from Spatial parameters', wind velocity, temperature, and

pressure, obtained from Weather, weight, obtained from HVig/i/; and in terms of output data

flows from other processes, such as elevator angle, aileron angle, and engine speed, obtained

tra n s fo rm v ie w process d is p la y v ie w process

d is p la y g a u g e s process

Irnm process adjust controls. The internal processes, such as compute dray, compute hit. ami
compute density, would be specified by aeronautical formulas and look-up tables lor the spe
cific airplane. For example, compute lift is specified by the equation L = O utS pV ':/2. w hcie
L is lift, a is the angle of attack. S is the wing area, p is the air densiu. V is the airspeed, ami
C is the coellicient of lift as a function of angle of attack, specified by a table lor the partic
ular kind of wing. Process integrate motion is the solution to the differential equations ot

m otion. It is eas\ to specify, but its im plem entation involves careful num erical analysis con

siderations.

The display processes are t ra n s fo rm view, d is p la y view, d is p la y gauges, ami d is p la y

cockpit . These processes convert the airplane parameters and terrain into a sim ulated view

on the screen. They are expanded on Figure (>. 12. Process t ra n s fo rm v iew transforms the co

ordinates o f a set o f polygons in the T e r r a in d a ta b a s e into the p ilo t's coordinate system, by

first offsetting them by the p lane’s position, rotating the polygons by the p lane’s orientation,

and then transform ing the polygons’ perspective onto the v iew ing plane to produce a 2 -D

image in the p ilo t’s e \e view . The position and orientation o f the plane are input parameters.

Process d is p la y v iew clips the image o f the transform ed polygons to rem ain w ith in the output

o f the cockpit v iew port, whose shape is specified in a C o c k p i t d a ta b a s e . T h e c lipped 2 -D

pobgons are draw n on the screen using the colors sped lied in the T e r ra in d a ta b a s e . Process

d is p la y natives displays various airplane parameters as gauges, using locations specified in

the cockpit database. Process d is p la y t o c k p u displays a fixed image o f the stationary parts

o f the cockpit and needed not be expanded.

Note that the tunciional model does not specify when. w in . and how often values are

com puted. In a sim ulation such as this one. the m otion integration might he perform ed more

often than m o w com putation because integration is subject to cum ulative errors i f too large

an internal is used. O ther com putations can be om itted by sorting data c leverly . A smart

view -m apping algorithm w ould qm cklx e lim inate most o f the terrain polygons using crude

direction or distance checks so that o n h a tew polygons would require costly full transfor

mations and v is ib ih t) checks. The set o! active polygons w ould have to be updated occasion-

a ll) as the plane m oves, but hopefu lly not loo often. Such considerations arc part ol the

im plem entation algorithm but do not show up in the data How diagram , w hich shows the un-

d e rh m g llow m data and com putations but not the control decisions added by an im p lem en

tation*

6.6 RELATION OF FU N CTIO N AL TO O B JEC T AND DYNAM IC M ODELS

The ruuwliona! model shows what ’‘lias to be done" by a xssicm. I he leal piocesses aie the

operations on objects. The object model show s the ' ‘doers" the objects. H ath process is tin

plem ented b% a method on some object. The dynam ic model shows the sequences m which

the operations are perlnm icd . bach sequence is im plem ented as a sequence, loop, or allem a

non of statements w ith in some method The three models come together m the im plem eiila

non ot methods I he tunciional model is a guide to the methods.

Die processes in the f tm uional model correspond to operations m the objec t model (>1

ten there is a direct correspondence at each level ot nesting A top level process coiresponds

;o an operation on a complex object, and lower Ic'.cl pro; esses correspond to operations on

more basic objects that ale part ot the complex object or that implement it. Sometime', one

pros:es-> corresponds to several operations, and sometimes one opera!ton corresponds to sev

eral processes

P ro -,esses m th<‘ l u i k t i o n a l model sh o w o b j e c t s that are related bv I u i k I iom O lien one

id the input !>..• p j * \ e . v an he idem died a . the target oh;e<. t. w ith the rest being paiameteis

to the operation. The target object is a client of the other objects (called suppliers) because

it uses them in performing the operation. The target knows about the clients, but the clients

do not necessarily know about the target. The target object class is dependent on the argu
ment classes for its operations. The client-supplier relationship establishes implementation

dependencies among classes; the clients are implemented in terms of. and are therefore de
pendent on, the supplier classes.

A process is usually implemented as a method. If the same class of object is an input and

an output, then the object is usually the taiget. and the other inputs are arguments. If the output
of the process is a data store, the data store is the target. I f an input of the process is a data store,
the data store is the target. Frequently a process with an input from or output to a data store

corresponds to two methods, one of them being an implicit selection or update of the data store.
I f an input or output is an actor, then it is the target. I f an input is an object and an output is a

part of the object or a neighbor of the object in the object model, then the object is the taiget.
I f an output object is created out of input pans, then the process represents a class method. If

none of these rules apply, then the target is often implicit and is not one of the inputs or outputs.

Often the target of a process is the target of the entire subdiagram. For example, in Figure 6.9.
the target of compute forces is actually the airplane itself. Data stores weight and spatial p a

rameters are simply components of the airplane accessed during the process.
Actors are explicit objects in the object model. Data flows to or from actors represent

operations on or by the objects. The data flow values are the arguments or results of the op
erations. Because actors are “self-motivated” objects, the functional model is not sufficient

to indicate when they act. The dynamic model for an actor object specifies when it acts.
Data stores are also objects in the object model, or at least fragments of objects, such as

attributes. Each flow into a data store is an update operation. Each flow out of a data store is

a query operation, with no side effects on the data store object. Data stores are passive ob
jects that respond to queries and updates, so the dynamic model of the data store is irrelevant
to its behavior. The dynamic model of the actors in a diagram is necessary to determine the

order of operations.
Data flows are values in the object model. Many data flows are simply pure values, such

as numbers, strings, or lists of pure values. Pure values can be modeled as classes and im
plemented as objects in most languages, but they do not have identity. A pure value is not a

container whose value can change but just the value itself. A pure value therefore has no state

and no dynamic model. Operations on pure values yield other pure values and have no side

effects. Arithmetic operations are examples of such operations.
Other data flows represent normal objects. The selection data flow notation of Figure 6.5

explicitly produces a data store object to be operated on by other (lows. Some input data

flows to processes represent objects that are the targets of the processes. For example, the

polygons in the lop half of Figure 6 .12 are the targets of several operations. In the object
model, class polygon would have operations subtract position, rotate, transform perspective.

and clip to viewport. In still other cases, a data How represents an object that remains encap
sulated; it is created by one process and passed through to another u ithout change. Such data
flows represent arguments to operations, rather than targets. For example, in Figure (>.(>. the

input account to hank is an object that is stored within hank without being operated on: the

same object is treated as a target object with respect to deposits from the customer.
Relative to the functional model: The object model shows the structure of the actors,

data stores, and Hows in the functional model. The dynamic model shows the sequence in

which processes are performed.
Relative to the object model: The functional model shows the operations on the classes

and the arguments of each operation. It therefore shows the supplier-client relationship

among classes. The dynamic model shows the states of each object and the operations that
are performed as it receives events and changes state.

Relative to the dynamic model: The functional model shows the definitions of the leaf
actions and activities that are unde lined with the dynamic model. The object model shows

what changes state and undergoes operations.

6.7 CHAPTER SUM M ARY

Tne functional model shows a compulation and the functional derivation of the data values

in it without indicating how, when, or win the values are computed. The dynamic model
controls which operations are performed and the order in which they are applied. The object
model defines the structure of values that the operations operate on. l;or batch-like compu
tations. such as compilers or numerical computations, the functional model is the primary

model, but in large systems all three models are important.
Data tlow diagrams show the relationship between values in a computation. A data How

diagram is a graph of processes, data flow s, data stores, and actors. Processes transform data

\alues. I.ow-le'-el processes are simple operations on single objects. Inn higher-level pro
cesses can contain internal data stores subject to side effects. A data How diagram is a pro
cess. Data flows relate values on processes, data stores, and actors. Actors are independent
objects that produce and consume values. Data stores are passive objects that break the flow-
of control b\ introducing delas s between the creation and the use ol data. As a rule, control ¥ •
in form ation d iou ld lx* shown in the dynam ic m odel and not the lunctional m odel, although

control t lu v .\ m data llov. diagram s are occasionally useful.

D ata f lo w d ia g ra m s can l x nested In e ra rc h ic a llv . hu t u lt im a te ly the lea l processes m ust

l x spec i tied d ire c t I > as o p e ra tio n s . (operations can he spe c ifie d hy a vane ts o l m eans, in c h u l

m e m a th e m a tu .il equa tions , tab les, and co n s tra in ts be tw een the in p u ts and o u tp u ts . A n op

c ra tto n can he s p e c if ie d h \ p se u d o co d e , hu t a s p e c il ic a t io n docs no t tm p l\ a p a th c u la r

im p le m e n ta tio n , it mas he im p le m e n te d hs a d il le re n t a lg o r ith m that v ie ld s e q u iva le n t te-

sn its O pera tion -, base M in ia tu res tha t sp e ed) then e s te rn .d in te r la c e and t ia iis ln im a ito n s

tha t sp e e d) th e ir d ie s ts O tic ! ie - are operation** v. it hour side d ic e Is; th e) can he im p le m e n t

cd as pure iu n e ti* *ns Act** »ns are * *per at ions w ith side e tle c ts hu t w it hi >ut dut at io n , I lies can

be im p le m e n te d a-* p rocedures. A c tr . d ies are o p e ra tio n s v. dh side e fle c ls and d i lu t io n , the)

m ust i x im p le m e n te d as (a d.s (>}>eratmus can lx* a ttached to c lasses w it ln n d ie ohjec I m ode l

arid im p le m e n te d as rneduK ls

Constraints specify additional relationships that must be maintained between values in

the object model. Invariants specify that some functions of values remain constant over time.
The object model, dynamic model, and functional model all involve the same concepts,

namely data, sequencing, and operations, but each model focuses on a particular aspect and

leaves the other aspects uninterpreted. All three models are necessary' for a full understand
ing of a problem, although the balance of importance among the models varies according to

the kind of application. The three models come together in the implementation of methods,
which involve data (target object, arguments, and variables), control (sequencing con
structs). and operations (calls, expressions, and data access). Data flow diagrams are partic
ularly useful for showing the high-level functionality of a system and for showing complex

transformations with multiple inputs, outputs, and intermediate values.

action data llow diagram nested data How diagram
activity data store operation
actor derived attribute process
client function query'
constraint functional model signature
control flow invariant terminator
data llow leveling

Figure 6.13 Key concepts for Chapter 6

BIBLIOGRAPHIC NOTES

Data flow diagrams are the primary modeling construct in a number of traditional software

development methodologies. Many readers will be familiar with these concepts from previ
ous work. (Yourdon-89] presents the classic exposition of the leading traditional methodol
ogy. including an explanation of data llow diagrams. |DeMarco-791 and |Gane-7SJ are

earlier pioneering hooks in the area. | Ward-861 adds control concepts to the standard data

llow diagram notation. Engineers commonly use several equivalent data flow notations, such

as signal processing diagrams. PERT charts are another familiar example, albeit with some

additional semantics.

REFERENCES

|DcM arco-7‘i| Tom DeMarco. Stnu t tu rJ A n u lw h < ; « < / Siuu ifn ution Englewood ('lifts . New

Jersey: Prentice Hall.
|(iane-7X| Chris Cane ami I rish Sarson. Strut-tuuul Systems Uuih.sh: /.>.»/> *;#:./ Hnglc-

wood (l it is , New Jersey: Prentice Hall. P>7S.

Paul Ward and Steve MelU»* S t tm -n a cJ /VwAyv '.vm ,»/ A Y . /M w c l:m:leuo<\l

(Mills. Ness Jetsey: Yotirdon Press. PW v
| Yoimlon **>) I dward Ymiidon. M u lv r n Stnn t u n < i \ * u t h u s Hndewood (Mills. New Jersey YouuJon

Press. P>S‘ >.

EXERCISES

6.1 (2) Describe the meaning of the data flow diagram in Figure E6.1

load characteristics

electrical parameters

voltage, frequency

temperature

thermal parameters

analysis
ambient temperature

fan torque

Figure E6.1 Data How diagram of motor analysis

6.2

6J

6 .4

<>S

<6) Figure H6.1 cannot be considered a description of how to actually compute the performance
of a motor because it contains circular dependencies. For example, electrical analysis uses speed
as an input and computes electrical torque. Mechanical analysis uses electrical torque as an input
in computing speed. Suppose you were given four subroutines that performed the compulations
involved in each of the four processes. Each subroutine computes the outputs of the associated
process from the inputs. Discuss how to compute the temperature of a motor in view of the cir
cular dependencies.

(6) Prepare a data How diagram for computing the net score for a trial in judged athletic compe
titions that describes the following method. Each attempt of a competitor in an event is observed
by several judges. Each judge rates the attempt and holds up a score. A reader assigned to the
group of judges announces the .scores one at a time to a panel of storekeepers. Three score keep
ers write the scores down, cross off the highest and the lowest scores, and total up the rest. They
check each other's total to detect errors in recording and/or arithmetic. In sonic cases, they may
itsfc the reader to repeat the scores. When they arc satisfied, they hand their figures to three oilier
storekeepers who multiply the total score by a difficulty factor for the event and take the average
to determine a net score.. The net semes arc compared to detect and correct scoring errors.

(>) Prepare a data flow diagram for computing the volume and surface area of a cylinder. Inputs
are the height and radius of the cylinder. Outputs are volume and surface area. Discuss several
ways of implementing the data How diagram.

*6) Prepare ;r data flow diagram for computing the mean of a sequence <>f input values. A sepa

rate cortmri input \s provided to revet the computation. Each time a new value is input, the mean

of all values input since the Iasi revet command should he output. Since you have no way o f

knowing how many values w ill i:< processed between resets, the amount of data storage ilia* you

use should m»; depend on the number of input values. Detail your diagram down to the level o f

multiplications, divisions, and additions

6.6 (3) Using the quadratic formula as a starting point, prepare a data flow diagram for computing
the roots of the quadratic equation ax" + bx + c = 0. Real numbers, a, b and c are inputs. Out
puts are values of x = Rl and x = R2. which satisfy the equation. Remember, Rl and R2 may
be real or complex, depending on the values of a, b, and c. The quadratic formula for R l and R2
\$ l - h ± S Q R T (h 2 - 4 a c)) / (2 a) .

6.7 (6) Some types of computer architectures perform arithmetic quickly but are slow at performing
control branching. On these machines, computation time may be reduced in some cases by
avoiding the use of conditions, which may be eliminated by converting them into calculations.
For example, suppose that it is desired to compute the function y = Y(x) without using a condi
tion, where Y(x) is defined conditionally as Y(x) = F(x) when x is positive and Y(x) = G(x) oth
erwise, with both F(x) and G(x) given. The two statements may be combined into a single cal
culation, K(.v) = S/CAf(.v)xF{.v)+ (I -S/G/V(.v)) xG(.v). where S/GN(x) = l if .v> 0 , else
SIGN(x) = 0. (SIGN(x) could be itself computed or provided by the hardware.)
a. Using if statements, express an algorithm for computing the following real periodic function

Tf.v) for all real values of .v: For a portion of the domain of 77a). -3 < x < 3, T(x) can be de
scribed as 3+.v for -3 < ,v < -2 , as - a - l for -2 < a* < - l . as l+.v for - I < a < 0, as l-v for
0 < a < 1. as a - 1 for 1 < x < 2 and as 3-.v for 2 < a < 3.

b. Sketch the function T(x) for -5 < v < 5.

c. Using the SIGN(x) function, prepare a data flow diagram for T(x) that uses only functions

and arithmetic.

6.8 (8) Figure E6.2 is an object diagram for a simple diagram editor. Prepare a data flow diagram
showing how cutting and pasting works. Refer to exercise 4.7 for a synopsis of some operations.

6.9 (7) A data tlow diagram expresses functional dependencies. The outputs of each process are
functionally dependent on the inputs to the process. For example, in Figure E6.1. losses depend
on electrical parameters, voltage, frequency, temperature, and speed. Air flow depends only on
speed.
a. Prepare an object diagram (metamodcl) that could be used to represent functional dependen

cies.
b. A graph of processes and data Hows represents a partial ordering of the processes. Describe

an operation whose inputs are processes and data Hows and whose output is an ordered list
of processes. Each process in the list does not require the outputs of any process later on in
the list.

e. Place the following processes in a partial order, and also prepare a data tlow diagram. If an
input to a process is not listed as the output of another process, you may assume it comes
from an actor or from a data store.
Process: pi: Inputs: ini, in2; Outputs: dl, d2:
Process: p2; Inputs: dl, d3. d4; Outputs: d7;
Process: p3; Inputs: in3. in4; Outputs: d4, d5;
Process: p4: Inputs: <12, d>: Outputs: d6;
Process: p5; Inputs: db. d7; Outputs: out:
Process: pb; Inputs: in5. inb; Outputs: d3:

6 ,It) (3) There is a clear distinction between the definition and the implementation ot a (unction. ’Hu:

definition describes the behavior of the function white the implementation actual!) computes

the function. The definition ot a function may be used to test the accuracy of the implementation.

o—o

cut
select
deselect
toggle selection

Collectio J o - d

A
• Selection

cut
copy
move

Buffer

paste

Link

select
deselect
toggle selection

---------------- (T -

Sheet

delete
O—

Line segment

cut

Drawing Drawing file

drawing name file name

add sheet
next sheet
previous sheet
save
load

Figure F6.2 Object diagram used by an interactive editor of simple diagrams

Prepare definitions of each of the folios*, mg functions using mathematics, diagrams, or pre* and

posi-eunditions.

a absolute value

b. trigonometric sine

c. natural logarithm

ti square nxu

6.11 (Write pseudocode u> implement each of the functions m the previous exercise. You may

vMsh to refer to a bt.H>K on numerical analysis. Describe the accuracy of your implementations.

PART 2: DESIGN METHODOLOGY

7
Methodology Preview

Pan 1 of this book presents O M T concepts, specifically the concepts and notation for the

object, dynamic, and functional models. We now shift our focus in Pan 2 and discuss die

process for devising the three O M T models. Pan 1 discusses what constitutes a model; Pan 2

explains how to formulate a model. Our treatment in Part 2 of this book is language-indepen-
dent and applies equally well to object-oriented languages, traditional procedural languages,
and databases. Part 3 shows how this generic design maps to specific implementation targets.

7.1 OMT AS A SOFTWARE ENGINEERING METHODOLOGY

A software engineering methodology is a process for the organized production of software,
using a collection of predefined techniques and notational conventions. A methodology is

usually presented as a series of steps, with techniques and notation associated with each step.
The concepts and notations that support the O M T methodology have been presented in

Part I of this book. The steps of software production are usually organized into a life cycle

consisting of several phases of development. The complete software life cycle spans from

initial formulation of the problem, through analysis, design, implementation, and testing of
the software, followed by an operational phase during which maintenance and enhancement
are performed.

The O M T methodology supports the entire software life cycle. This book covers life

cycle phases from problem formulation through requirements analysis, design, and imple
mentation. This book does not cover testing and maintenance. Both testing and maintenance

are simplified by an object-oriented approach, but the traditional methods used in these phas
es are not significantly altered. However, an object-oriented approach produces a clean,
well-understood design that is easier to test, maintain, and extend than non-object-oricnted

designs because the object classes provide a natural unit of modularity.

Some software developers prefer a rapid prototyping approach, whereby a small portion

of the software is initial!) developed and evaluated through use. The software is gradually

made robust through incremental improvements to the specification, design, and implemen
tation. In contrast, with the life cycle approach, software is fully specified, fully designed,
then full) implemented.

Other authors ha\e made various arguments for and against the merits of rapid proto
typing. These arguments do not concern us here, since the O M T methodology applies

equally well in either case. T he notion of objects provides a solid basis for specifying,
designing, and implementing software in one pass, or gradually building software through

multiple passes. Object-oriented software development is anchored to real-world objects:
software objects can easih assume additional behavior associated with their real-world

counterparts. In contrast, rapid prototyping is more difficult with function-based software

development, since a functional breakdown suitable for a prototype may not be suitable for
a full implementation.

7.2 THE O M T M ETH O D O LO G Y

The O M T methodology consists of several phases:
A/uilwis iChapter Si is concerned with understanding and modeling the application and

the domain w ithin which it operates. The initial input to the analysis phase is a problem state
ment which describes the problem to be solved and provides a conceptual overview' of the

proposed s\ stem. Subsequent dialogue with the customer and real-world background know l
edge are additional inputs to analysis. The output from analysis is a formal model that cap
tures the three essential aspects of the system: the objects and their relationships, the

dynamic tlow of control, and the functional transformation of data subject to constraints.
The overall architecture of the system is determined during System Design (Chapter (>).

I'sine the object model as a guide, the system is organized into subsystems. Concurrency is
organized by grouping objects into concurrent tasks. Overall decisions are made about inter
process communication, data storage, and implementation ol the dynamic model. Priorities

are established tor making design trade-oils.
Dunne the / /V \n ;n phase (Chapter 10). the analysis models are elaborated,

refined, and then optimized to produce a practical design. During object design there is a

shot in emphasis from application concepts towards computer concepts, hirst the basic

algorithms are chosen to implement each major Junction ol the system. Based on these algo
rithms, the structure of the object model is then optimized lor ellicicnt implementation. The

deneri must also account tor conenirenev and dynamic control flow as determined durum

\% stern design The implementation ol each association ami attribute is determined, hmally.
the subv.stem- arc packaged into modules.

(hapler 11 sum m arizes the O M T m cthodulogs presented m Chapters S, o # and 10.

C hapter 12 compares the O M I methodology w ith other software cnginccnng m ethodo lo

gies

7.3 IMPACT OF AN OBJECT-ORIENTED APPROACH

The O M T methodology is an object-oriented software construction approach which differs

from traditional software development approaches. These differences affect the process of
software development, and ultimately the software product, itself.

Shifting o f development effort into analysis. An object-oriented approach moves much

of the software development effort up to the analysis phase of the life cycle. It is sometimes

disconcerting to spend more time during analysis and design, but this extra effort is more

than compensated by faster and simpler implementation. Because the resulting design is

cleaner and more adaptable, future changes are much easier.
Emphasis on data structure before function. An object-oriented approach focuses atten

tion on data structure instead of the functions to be performed. This change of emphasis

gives the development process a more stable base and allows the use of a single unifying

software concept throughout the process: the concept of an object. All other concepts, such

as functions, relationships, and events, are organized around objects so that information re
corded during analysis is not lost or transformed when design and implementation take

place.
The data structures of an application and the relationships between them are much less

vulnerable to changing requirements than the operations performed on the data. Organizing

a system around objects rather than around functions gives the development process a sta
bility that is lacking in function-oriented approaches. Encapsulated objects, with public in

terfaces that hide their private internal implementation, are further protected from the effects

of change.
Seamless development process. Because an object-oriented approach defines a set of

problem-oriented objects early in the project and continues to use and extend these objects

throughout the development cycle, the separation of life cycle phases is much less distinct.
In the Object Modeling Technique, the object model developed during analysis is used for
design and implementation, and work is channeled into refining the model at progressively

more detailed levels rather than converting from one representation into another. The process

is seamless because there are no discontinuities in which a notation at one phase is replaced

by a different notation at another phase.
Iterative rather than sequential. Although the description of the Object Modeling Tech

nique is of necessity linear, the actual development process is iterative. The seamlessness of
object-oriented development makes it easier to repeat the development steps at progressively

liner levels of detail. Each iteration adds or clarifies features rather than modifies work that
has already been done, so there is less chance of introducing inconsistencies and errors.

7.4 CHAPTER SUMMARY

A software engineering methodology consists of a process tor organized development based

on a set of coordinated techniques. The O M T methodology is based on the development ot
a three-part model of the system, which is then refined ami optimized to constitute a design.
The object model captures the objects in the system and their relationships. Hie dwumic

model describes the reaction of objects in the system to events, and the interactions between

objects. The functional model specifies the transformations of object values and constraints

on these transformations. The Object Modeling Technique produces systems that are more

stable with respect to changes in requirements than traditional function-oriented approaches.

anahsis9 object design
impact of 0 0 methodology OMT methodology
life cvcle • system design

Figure 7.1 Key concepts for Chapter 7

EXERCISES

7.1 <2> "It seems there is never enough time to do a job right the first lime, but there is always time
to do it over.'* Discuss how the methodology presented in this chapter overcomes this tendency
of human behavior. What kinds of errors do you make if you rush into the implementation phase
of a software project? Compare the relative effort required to prevent errors with that needed to
detect and correct them.

7.2 15) This book explains how to use object-oriented techniques to implement programs and data
bases. Discuss how object-oriented techniques could be applied in other arenas, such as lan
guage design, knowledge representation, and hardware design, for example.

Analysis

Analysis, the first step of the O M T methodology, is concerned with devising a precise, con
cise, understandable, and correct model of the real-world. Before building anything com
plex, such as a house, a computer program, or a hardware-software system, the builder must
understand the requirements and the real-world environment in which it will exist.

The purpose of object-oriented analysis is to model the real-world system so that it can

be understood. To do this, you must examine requirements, analyze their implications, and

restate them rigorously. You must abstract important real-world features first and defer small
details until later. The successful analysis model states what must be done, without restrict
ing how it is done, and avoids implementation decisions. The result of analysis should be

understanding the problem as a preparation for design.
In this chapter you will learn how to take the concepts discussed in Part 1 of this book

and apply them to construct a formal and rigorous model of the real-world problem. This

real-world model consists of the object, dynamic, and functional models. The analysis model
serves several purposes: It clarifies the requirements, it provides a basis for agreement be
tween the software requestor and the software developer, and it becomes the framework for
later design and implementation.

8.1 OVERVIEW OF ANALYSIS

As shown in Figure 8 .1, analysis begins with a problem statement generated by clients and

possibly the developers. The statement may be incomplete or informal; analysis makes it
more precise and exposes ambiguities and inconsistencies. 'Hie problem statement should

not be taken as immutable but should serve as a basis for refining the real requirements.

Next, the real-world system described by the problem statement must be understood,
and its essential features abstracted into a model. Statements in natural language are often

ambiguous, incomplete, and inconsistent. H ie analysis model is a precise, concise represen
tation of the problem that permits answering questions and building a solution. Subsequent
design steps refer to the analysis model, rather than the original vague problem statement.
Perhaps even more important, the process of constructing a rigorous model of the problem

domain forces the developer to confront misunderstandings early in the development pro
cess while thev are still oasv to correct.# ♦*

The analysis model addresses the three aspects of objects: static structure (object mod
el;. sequencing of interactions (dynamic model), and data transformations (functional mod
el). All three submodels are not equally important in every problem. Almost all problems

have useful object models derived from real-world entities. Problems concerning interac
tions and liming, such as user interfaces and process control, have important dynamic mod
els. Problems containing significant computation, such as compilers and engineering
calculations, have important functional models. All three submodels contribute operations

which are summarized on the object model.
Analysis cannot always be carried out in a rigid sequence, Large models are built up it

eratively, Fust a subset ot the model is constructed, then extended, until the complete prob
lem is understood.

Analysis is not a mechanical process. Most problem statements lack essential informa
tion. which must be obtained from the requestor or from the analyst's knowledge of the real-
world problem domain. The analyst must communicate with the requestor to clarify ambi
guities and misconceptions. The analysis models facilitate precise communication.

8.2 PROBLEM STATEMENT

The first step in developing anything is to state the requirements. This applies just as much

to leading-edge research as to simple programs and to personal programs, as well as to large

team efforts. Being vague about your objective only postpones decisions to a later stage

where changes are much more costly.
As summarized in Figure 8.2. the problem statement should state what is to be done and

not how it is to be done. It should be a statement of needs, not a proposal for a solution. A

user manual for the desired system is a good problem statement. The requestor should indi

cate which features are mandatory and which are optional, to avoid overly constraining de

sign decisions. The requestor should avoid describing system internals, as this restricts

implementation flexibility. Performance specifications and protocols for interaction with ex
ternal systems are legitimate requirements. Software engineering standards, such as modular

construction, design for testability, and provision for future extensions, are also proper.

Requirements Design &

Statement Implementation

• Problem scope • General approach

• What is needed • Algorithms

• Application context • Data structures

• Assumptions • Architecture

• Performance needs • Optimizations

Figure 8.2 Overview of analysis process

Many problem statements, from individuals, companies, and government agencies, mix

true requirements with design decisions. There may sometimes be a compelling reason to re
quire a particular computer or language: there is rarely justification to specify the use of a

particular algorithm. The analyst must separate the true requirements from design and im

plementation decisions disguised as requirements. The analyst should challenge such pseu
dorequirements. as they restrict Hexibility. There may be political or organizational reasons

for the pseudorequirements, but at least the analyst should recognize that these externally

imposed design decisions are not essential features ot the problem domain.

A problem statement may have more or less detail. A requirement for a conventional

product, such as a payroll program or a billing sy stem, may have considerable detail. A re
quirement for a research effort in a new area may lack many details, but presumably the re

search has some objective, which should be clearly stated.
Most problem statements are ambiguous, incomplete, or even inconsistent. Some re

quirements arc just plain wrong. Some requirements, although precisely stated, have un

pleasant consequences tin the system behav ior or impose unreasonable implementation

costs. Some requirements seem reasonable at first hut do not woik out as well as the request
or thought. The problem statement is just a starling point for understanding the problem, not
an immutable document. The purpose ot the subsequent analysis is to fully understand the

problem and its implications. There is no reason to expect that a problem statement prepared
without a full analysis w ill be correct.♦

The analyst must work with the requestor to refine the requirements so they represent

the requestor’s true intent. This involves challenging the requirements and probing for miss

ing information. The psychological, organizational, and political considerations of doing this

are beyond the scope of this book, except for the following piece o f advice: I f you do exactly

what the customer asked for. but the result does not meet the customer’s real needs, you w ill

probably be blamed anyway.

8.3 AUTOMATED TELLER MACHINE EXAMPLE

The following problem statement for an automated teller machine (A TM) network shown in

Figure 8.3 serves as an example throughout the chapter:

Figure K J A T M network

Design the software to support a computerized hanking network including both human cash

iers and automatic teller machines«A T M s i to he shared hv a consortium of hanks. Each hank♦

provides its own computer to maintain its own accounts and process transactions against

them. Cashier stations arc owned by individual banks and communicate directly with their

own bank's computers Human cashiers enter account and transaction data. Automatic teller

machines communicate with a central computer which clears transactions with the appropri

ate banks. An automatic teller machine accepts a cash caul, interacts with the user, commu

nicates with the central system to carry out the transaction, dispenses cash, and prints re

ceipts. The system requires appropriate recordkeeping and security provisions. The system

must handle concurrent accesses to the same account correctly. Thc banks w ill provide their

own software lor their own computers, you arc to design the software for the A f Ms and the

network The cost of the lharcd system w ill be apportioned to the banks ,uc“ nhng to the

number of customers with cash card*.

8.4 OBJECT MODELING

The first step in analyzing the requirements is to construct an object model. The object model

shows the static data structure of the real-world system and organizes it into workable pieces.

The object model describes real-world object classes and their relationships to each other.
Most crucial is the top level organization of the system into classes connected by associa

tions; lower-level partitions within classes (generalizations) are less critical. The object

model precedes the dynamic model and functional model because static structure is usually

better defined, less dependent on application details, more stable as the solution evolves, and

easier for humans to understand.
Information for the object model comes from the problem statement, expert knowledge

of the application domain, and general knowledge of the real world. If the designer is not a

domain expert, the information must be obtained from the application expert and checked

against the model repeatedly. Object model diagrams promote communication between

computer professionals and application-domain experts.

Identify classes and associations first, as they affect the overall structure and approach

to the problem. Next add attributes to further describe the basic network of classes and asso
ciations. Then combine and organize classes using inheritance. Attempts to specify inherit

ance directly without first describing low-level classes and their attributes often distort the

class structure to match preconceived notions. Add operations to classes later as a by-prod

uct of constructing the dynamic and functional models. Operations modify objects and there

fore cannot be fully specified until the dynamics and functionality are understood.
It is best to get ideas down on paper before trying to organize them too much, even

though they may be redundant and inconsistent, so as not to lose important details. An initial

analysis model is likely to contain Haws that must be corrected by later iterations. 1 he entire

model need not be constructed uniformly. Some aspects of the problem can be analyzed in

depth through several iterations while other aspects are still sketchy. Analysis and design are

rarely completely linear.

The following steps are performed in constructing an object model:

• Identify objects and classes [8 .4 .1 -8 .4 .21

• Prepare a data dictionary 18.4.31

• Identify associations (including aggregations) between objects 18.4.4-8.4.31

• Identify attributes of objects and links 18.4.0-8.4.71

• Organize anil simplify object classes using inheritance |8.4.S)

• Verify that access paths exist for likely queries |S.4.l) |

• Iterate and refine the model |8.4. |()|

• (iroup classes into modules |8.4.1 11

8.4.1 Identifying Object Classes

The first step in constructing an object model is to identify relevant object classes from the

application domain. Objects include physical entities, such as houses, employees, and ma

chines. as well as concepts, such as trajectories, seating assignments, and payment sched

ules. A ll classes must make sense in the application domain; avoid computer implementation

constructs, such as linked lists and subroutines. Not all classes are explicit in the problem

statement: some are implicit in the application domain or general knowledge.

As shown in Figure 8.4. begin by listing candidate object classes found in the written

description of the problem. Don't be too selective: write down every class that comes to

mind. Classes often correspond to nouns. For example, in the statement "a reservation sys

tem to sell tickets to performances at various theaters” tentative classes would be Reserva

tion. System. Ticket. Performance, and Theater.

Requirem ents.

Statement

Tentative

Object Classes V sses
eliminate spurious^ Object

Classes

Fijjure 8.4 Identifying object classes

Don’t worry much about inheritance or high-level classes; first get specific classes right

so that you don't subconsciously suppress detail in an attempt to lit a preconceived structure.

For example, if you are building a cataloging and checkout system for a library, identify d if
ferent kinds of materials, such as hooks, magazines, newspapers, records, videos, and so on.

You can organize them into broad categories later, by looking for similarities and differences

ainone basic classes.

A TM example Examination of the nouns in the ATM problem statement of Figure X.3 yields

the tentative object classes listed in Figure 8.5. Additional classes that do not appear directly

in the statement, but can be identified from our knowledge of the problem domain, are listed

in Figure 8.6.

8.4.2 Keeping the Right Classes

Now discard unnecessary and incorrect classes according to the following criteria. Figure
8.7 shows the classes eliminated from the ATM example.

• Redundant classes. If two classes express the same information, the most descriptive

name should be kept. For example, although customer might describe a person taking

an airline flight, passenger is more descriptive. On the other hand, if the problem con

cerns contracts for a charter airline, customer is also an appropriate word, since a con

tract might mvolsc several passengers.
In the A TM example. Customer and User are redundant; Customer is retained be

cause it is more descriptive

Software Banking
network

Cashier ATM Consortium Bank

Bank Account Transaction CashierA A • Account Transaction
datacomputer station data

Central
computer

Cash
Card

User Cash Receipt System

Recordkeeping
provision

Security
provision

Access Cost Customer

Figure 8.5 ATM classes extracted from problem statement nouns

Communications Transaction
line log

Figure 8.6 ATM classes identified from knowledge of problem domain

Bad Classes

Account ATM Bank Bank Cash
Computer Card

I Cashier*-

Cashier
Station

Central
Computer

Consortium Customer [Transaction'

Figure 8.7 I liminaling unncccssar) clas»es from A T M problem

Irre levant classes. I f a class has little or nothing to do with the problem, it should be

eliminated. This involves judgment, because in another context the class could be im

portant. For example, in a theater ticket reservation system, the occupations of the ticket

holders are irrelevant, but the occupations of the theater personnel may be relevant.

In the A T M example, apportioning Cost is outside the scope of the A T M transac

tion software.

Vague classes. A class should be specific. Some tentative classes may have ill-defined

boundaries or be too broad in scope. For example. Recordkeeping provision is vague. In

the A T M problem, this is part o f Transaction. In other applications, this might be in

cluded in other classes, such as Stock sales, Telephone calls, or M achine fa ilures.

Attributes. Names that primarily describe individual objects should be restated as at

tributes. For example, name. age. weight, and address are usually attributes. I f the inde

pendent existence of a property is important, then make it a class and not an attribute.

For example, an employee’s room would be a class in an application to reassign rooms

after a reorganization.
Tire A T M example contains several names that are best modeled as attributes. A<-

count data is underspecified but in any case probably describes an account. An A T M

dispenses cash and receipts, but beyond that cash and receipts do not affect the problem.

so thev should be treated as A T M attributes.*

Operations. If a name describes an operation that is applied to objects and not manipu

lated in its own right, then it is not a class. For example, a telephone call is a sequence

of actions involving a caller and the telephone network. If we are simply building tele

phones, then C a ll is pan of the dynamic model and not an object class.

An operation that has features of its own should be modeled as a class, however.
For example, in a billing system for telephone calls a C a ll would be an important class

with attributes such as date, time, and destination.

Roles. The name of a class should reflect its intrinsic nature and not a role that it plays

in an association. For example. Owner would he a poor name for a class in a car manu

facturer’s database. SVhat if a list of drivers is added later? What about persons who

lease cars? 'rite proper class is Person (or possibly Customer), which assumes various

different roles, such as owner, driver, and lessee.

One physical entity sometimes corresponds to several classes. For example. Person

and employee may be distinct classes in some circumstances and redundant in others.
From the viewpoint of a company database of employees, the two may be identical. In

a government tax database, a person may hold more than one job. so it is important to

distinguish Person from Employee: each person can correspond to zero or more instanc

es of employee information.

Implementation constructs. Constructs extraneous to the real world should Ik* eliminat

ed from the analysis model. They may Ik* needed later during design, but not now. For
example. CPU. subroutine, process, algorithm, and interrupt arc implementation con-

structs for most applications, although they are a legitimate classes for an operating sys

tem. Data structures, such as linked lists, trees, arrays, and tables, are almost always im
plementation constructs.

Some tentative A T M classes are really implementation constructs. Transaction log

is simply the set o f transactions: its exact representation is a design issue. Communica

tion links can be shown as associations; Communications line is simply the physical im

plementation o f such a link.

8.4.3 Preparing a Data Dictionary

Isolated words have too many interpretations, so prepare a data dictionary for all modeling

entities. Write a paragraph precisely describing each object class. Describe the scope of the

class within the current problem, including any assumptions or restrictions on its member

ship or use. The data dictionary also describes associations, attributes, and operations. Figure

8.8 shows a data dictionary for the classes in the ATM problem.

8.4.4 Identifying Associations

Next, identify associations between classes. Any dependency between two or more classes

is an association. A reference from one class to another is an association. As we discussed

in Chapter 3. attributes should not refer to classes: use an association instead. For example,

class Person should not have an attribute em ployer; relate class Person and class Company

by association Works-for. Associations show dependencies between classes at the same level
of abstraction as the classes themselves, while object-valued attributes hide dependencies

and obscure their two-way nature. Associations can be implemented in various ways, but

such implementation decisions should be kept out o f the analysis model to preserve design

freedom.
Associations often correspond to stativc verbs or verb phrases. These include physical

location (next to. p art of. contained in), directed actions {drives), communication (talks to),

ownership {has. part of), or satisfaction of some condition {worksfor, m arried to. manages).

Extract all the candidates from the problem statement and get them down on paper first:

don’t trv to refine thinss too earlv.
Don’t spend much time trying to distinguish between association and aggregation. A g

gregation is just an association with extra connotations. Use whichever seems most natural

at the time and move on.
Figure 8.9 shows associations for the ATM example. H ie majority are taken directly

from verb phrases in the problem statement. For some associations the verb phrase is implicit

in the statement. Finally, some associations depend on real-world knowledge or assump

tions. These must be verified with the requestor, as they are not in the problem statement.

li

I

Account— a single account in a bank against which transactions can be applied. Ac
counts may be of various types, at least checking or savings. A customer can hold
more than one account.

ATM — a station that allows customers to enter their own transactions using cash
cards as identification. The ATM interacts with the customer to gather transaction in
formation. sends the transaction information to the central computer for validation
and processing, and dispenses cash to the user. W e assume that an ATM need not
operate independently of the network.

Bank— a financial institution that holds accounts for customers and that issues cash
cards authorizing access to accounts over the ATM network.

Bank computer— the computer owned by a bank that interfaces with the ATM network
and the bank's own cashier stations. A bank may actually have its own internal net
work of computers to process accounts, but we are only concerned with the one that
talks to the network.

Cash card— a card assigned to a bank customer that authorizes access ol accounts
using an ATM machine. Each card contains a bank code and a card number, most
likely coded in accordance with national standards on credit cards and cash cards.
The bank code uniquely identifies the bank within the consortium. The card number
determines the accounts that the card can access. A card does not necessarily ac
cess all of a customer's accounts. Each cash card is owned by a single customer, but
multiple copies of it may exist, so the possibility of simultaneous use of the same card
from different machines must be considered.

Cashier— an employee of a bank who is authorized to enter transactions into cashier
stations and accept and dispense cash and checks to customers. Transactions, cash,
and checks handled by each cashier must be logged and properly accounted for

Cashier station— a station on which cashiers enter transactions for customers. Cash
iers dispense and accept cash and checks; the station prints receipts. The cashier
station communicates with the bank computer to validate and process the transac
tions.

Central computer— a computer operated by the consortium which dispatches trans
actions between the ATMs and the bank computers The central computer validates
bank codes but does not process transactions directly.

Consortium— an organization of banks that commissions and operates the ATM net
work. The network only handles transactions for banks in the consortium.

Customer— the holder of one or more accounts in a bank. A customer can consist ol
one or more persons or corporations; the correspondence is not relevant to this prob
lem The same person holding an account at a different bank is considered a different
customer.

Transaction— a single integral request for operations on the accounts of a single cus
tomer. Wo only specified that ATMs must dispense cash, but wo should not preclude
the possrbility of printing checks or accepting cash or checks. Wo may also want to
provide the f(o*;b‘My to operate on accounts of different customers, although it is not
required ye* Tno different operations must balance properly

H i t u r r S.S tl.ii.i i)u l i i i i i . i i ’i lo t A 1 M i l. iv . i" .

Verb phrases:
Banking network includes cashiers and ATMs
Consortium shares ATMs
Bank provides bank computer
Bank computer maintains accounts
Bank computer processes transaction against account
Bank owns cashier station
Cashier station communicates with bank computer
Cashier enters transaction for account
ATMs communicate with central computer about transaction
Central computer clears transaction with bank
ATM accepts cash card
ATM interacts with user
ATM dispenses cash
ATM prints receipts
System handles concurrent access
Banks provide software
Cost apportioned to banks

Im plicit verb phrases:

Consortium consists of banks
Bank holds account
Consortium owns central computer
System provides recordkeeping
System provides security
Customers have cash cards

Knowledge o f problem domain:

Cash card accesses accounts
Bank employs cashiers

Figure 8.9 Associations from ATM problem statement

8.4.5 Keeping the Right Associations

Now discard unnecessary and incorrect associations, using the following criteria:

Associations between elim inated classes. I f one of the classes in the association has been

eliminated, then the association must be eliminated or restated in temis of other classes.
In the A TM example, we can eliminate Banking network includes cashier stations and

ATM s. Cost apportioned to hanks. A T M prints receipts. A T M dispenses cash. System

provides recordkeeping. System provides seeurity. and Banks provide software.

• Irrelevant o r implementation associations. Eliminate any associations that are outside

the problem domain or deal with implementation constructs. For example. System han

dles concurrent access is an implementation concept. Real-world objects are inherently

concurrent: it is the implementation of the access algorithm that is required to be con

current.

• Actions. An association should describe a structural property of the application domain,

not a transient event. For example. A TM accepts cash «ard describes part of the interac

tion cycle between an A TM and a customer, not a permanent relationship between

A TMs and cash cards. We can also eliminate A TM internets with user.

Sometimes, a requirement expressed as an action implies an underlying structural
relationship and should be rephrased accordingly. For example. C entral computer

clears transaction with hank describes an action that implies the structural relationship

C entral computer communicates with hank.

• Ternary associations. Most associations between three or more classes can be decom

posed into binary associations or phrased as qualified associations. For example, Cash

ier enters transaction fo r account can be broken into Cashier enters transaction and

Transaction concerns account. Bank computer processes transaction against account

can be broken similarly. A TM s communicate with central computer about transaction

is really the binary associations ATM s communicate with central computer and Trans

action entered on A TM .

I f a term in a ternary' association is purely descriptive and has no features of its own,

then the term is a link attribute on a binary' association. Association Company pays sal

ary to person can be rephrased as binary association Company employs person with a

salary value for each Company-Person link.
Occasionally a general ternary association is required. Professor teaches course in

room cannot be decomposed without losing information. We have not encountered as

sociations with four or more classes in our work.

• Derived associations. Omit associations that can be defined in terms of other associa

tions because they are redundant. For example. Grandparent o fc an be defined in terms

of a pair of Parent o f associations. Also omit associations defined by conditions on ob

ject attributes. For example, younger than expresses a condition on the birth dates o f two

persons, not additional information.
As much as possible, classes, attributes, and associations in the object model should

represent independent information. Multiple paths between classes often indicate de

rived associations which are compositions of primitive associations. Consortium shares

A TM s is a composition of the associations Consortium owns central computer and Cen

tra l computer communicates with ATM s.

Be careful because not all associations that form multiple paths between classes in

dicate redundancy. Sometimes the existence of an association can be derived from two

or more primitive associations and the multiplicity can not. Keep the extra association

if the additional multiplicity constraint is important. For example, in Figure 8 .10 a com
pany employs many {versons and owns many computers. Each employee is assigned

zero or more computers for the employee’s personal use; some computers are for public

use and are not assigned to anyone. The multiplicity of the As.ugned-to association can
not be deduced from the Employs and Owns associations.

Although derived associations do not add information, they are useful in the real
world and in design. For example, kinship relationships such as Uncle. M other-in -law .

and Cousin have names because they describe familiar relations considered important

within our society. You may show derived associations in object diagrams, but they

should be drawn using dotted lines to indicate their dependent status and to distinguish

them from fundamental associations.

Figure 8.10 Nonrcdundant associations

Further specify the semantics of associations as follows:

• M isnam ed associations. Don’t say how or why a situation came about, say what it is.

Names are important to understanding and should be chosen with great care. Bank com

puter maintains accounts is a statement of action; rephrase as Bank holds account.

• Role names. Add role names where appropriate. The role name describes the role that a

class in the association plays from the point of view of the other class. For example, in

the W orks-for association Company has the role employer and Person has the role em

ployee. I f there is only one association between a pair of classes, and the name of a class

adequately describes its role, you may omit role names. For example, the roles in the

association C entral computer communicates with A T M are clear from the class names.

An association between two instances of the same class (a reflexive association) re

quires role names to distinguish the instances. For example, the association Person m an

ages person would have the roles boss and worker.

• Q ualified associations. Usually a name identifies an object within some context: most
names are not globally unique. The context combines with the name to uniquely identify

the object. For example, the name of a company must be unique within the chartering

state but may be duplicated in other slates (there once was a Standard Oil Company in

Ohio. Indiana. California, and New Jersey). The name of a company qualifies the asso

ciation State charters company: State and company name uniquely identify Company.

A qualifier distinguishes objects on the “many” side of an association. For example,
the qualifier hank code distinguishes the different banks in a consortium. Each cash card

needs a bank code so that transactions can be directed to the appropriate bank.

• M ultip licity. Specify multiplicity, but don’t put too much effort into getting it right, as

multiplicity often changes during analysis. Challenge multiplicity values of "one.” For

example, the association one M anager manages many employees precludes matrix man

agement or an employee with divided responsibilities. For multiplicity values of

"many,” consider whether a qualifier is needed; also ask if the objects need to be ordered

in some wav.
0

• Missing assoeiations. Add any missing associations that arc discovered, hor example,
we overlooked Trti/isat lion e nu r e d u / j nishier station. Customers have aect*unt\, and
T ro n s i i c t t o n authorized h\ cash card. II cashiers are restricted to spccilic stations, then
the association Cashier tiutlu>ri:ed on eashier statnm would he needed.

A T M example. Figure 8.11 shows an object diagram with fhe remaining associations. Note

that Transaction as been split into Remote transaction and Cashier transaction to accommo

date different associations. The diagram shows multiplicity values. Some analysis decisions

could have been made differently. Don’t worry; there are many possible correct models of a

problem. We have shown the analysis process in small steps; with practice, you can elide

several steps together in your mind.

Figure 8.11 Initial object diagram for A TM system

8.4.6 Identifying Attributes

Next identify object attributes. Attributes are properties of individual objects, such as name,
weight, velocity, or color. Attributes should not lx- objects; use an association to show any

relationship between two objects.

Attributes usually correspond to nouns followed by possessive phrases, such as "the cob

or of the car” or "the position of the cursor.” Adjectives often represent specific enumerated

attribute s alucs. such as m l. nn. or expired t'nlike classes ami associations, attributes are

less ld.c!> to he fulls dcscrilvcd in the problem statement. You must drass on your knowledge

of the application domain and the real world to find them, l oitunatelv attributes seldom a f
fect the basic structure of the problem.

Do not carry discovery of attributes to excess. Only consider attributes that directly re

late to a particular application. Get the most important attributes first; fine details can be add

ed later. During analysis, avoid attributes which are solely for implementation. Be sure to

give each attribute a meaningful name.

Derived attributes should be omitted or clearly labeled. For example, age is derived

from birth date and current time (which is a property of the environment). Derived attributes,

like derived objects and associations, can be useful in abstracting meaningful properties of

an application, but they should be clearly distinguished from base attributes, which define

the state of the object. Derived attributes should not be expressed as operations, such as get-

age’, although they may eventually be implemented as such.

Link attributes should also be identified. A link attribute is a property of the link between

two objects, rather than being a property of an individual object. For example, the many-to-

many association between Stockholder and Com pany has a link attribute of num ber o f

shares. Link attributes are sometimes mistaken for object attributes.

8.4.7 Keeping the Right Attributes

Eliminate unnecessary and incorrect attributes with the following criteria:

• Objects. If the independent existence of an entity is important, rather than just its value,

then it is an object. For example. Boss is an object and salary is an attribute. The dis

tinction often depends on the application. For example, in a mailing list city might be

considered as an attribute, while in a census C ity would be an object. An entity that has

features of its own within the given application is an object.

• Qualifiers. I f the value of an attribute depends on a particular context, then consider re

stating the attribute as a qualifier. For example, employee number is not a unique prop
erty of a person with two jobs; it qualifies the association Company employs person.

* Names. Names are often better modeled as qualifiers rather than object attributes. Test:

Does the name select among objects in a set? Can an object in the set have more than

one name? If so. the name qualifies an association. If a name appears to be unique, you

may have missed the object class that is being qualified. For example, department name

may be unique within a company, but eventually the program may need to deal with

more than one company.

A name is an object attribute when it does not depend on context, especially when

it need not be unique. Names of persons, unlike names of companies, may be duplicated

and are therefore object attributes.

♦ Identifiers. Object-oriented languages incorporate the notion of an object identifier fin
unambiguously referencing an object. Do not list these object identifiers in object mod

els. as object identifiers are implicit in object models. Only list attributes which exist in

the application domain. For example, account code is a bonat ide attribute; Banks assign

</< count codes. In contrast, titinsaction IP should not be listed as an attribute, although

it may be convenient (o geneiate one duting implementation.

• Link attributes. I f a property depends on the presence of a link, then the property is an

attribute of the link and not of a related object. Link attributes are usually obvious on

many-io-manv associations: they cannot be attached to either class because of their mul
tiplicity. Link attributes are more subtle on many-to-one associations because they

could be attached to the "many" object without losing information. Link attributes are

also subtle on one-to-one associations.

• In ternal values. If an attribute describes the internal state of an object that is invisible

outside the object, then eliminate it from the analysis.

• Fine detail. Omit minor attributes which are unlikely to affect most operations.

• Discordant attributes. An attribute that seems completely different from and unrelated

to all other attributes may indicate a class that should be split into two distinct classes.

A class should be simple and coherent. Unfocused classes frequently result from prema
ture consideration of implementation decisions during analysis.

We apply these criteria to the A TM problem to obtain attributes for each class (Figure 8.12).

Some tentative attributes are actually qualifiers on associations. Some observations are:

• Bank code and card code are present on the card. Their format is an implementation de
tail. but we must add a new association Bank issues cash card. C ard code is a qualifier

on this association: bank code is the qualifier o f Bank with respect to Consortium.

• 'The computers do not have suite relevant to this problem. Whether the machine is up or

down is a transient attribute that is part of implementation.

• Avoid the temptation to omit Consortium, even though it is currently unique. It provides

the context for the bank code qualifier and may be useful for future expansion.

Keep in mind that the A TM problem is an example and not a full application. Real applica

tions. when fleshed out. tend to have many more attributes per class than shown in Figure 8 .12.

8.4.8 Refining with Inheritance

The next step is to organi/e classes by using inheritance to share common structure. Inher
itance can be added in two directions: by generalizing common aspects of existing classes

into a superclass (bottom up) or by rclming existing classes into specialized subclasses (lop

down).
You can discover inheritance from the bottom up by searching for classes with similar

attributes, associations, or operations. For each generalization, detine a superclass to share

common features. For example. Remote tranutt lion and Cashier transaction are similar, ex

cept in their initiation, and can In: generalized by I r a nun turn. On the other hand. C entral

I omputer ami Bank computer have little in common lor purposes of the ATM example. Some

attributes or even classes may have to be redefined slightly to fit in properly. This is accept

able. but don't push too hard it it doesn't h i: you may have the wrong generalization. Some

generalizations will suggest themselves fused on existing taxonomy in the real world; use

existing concepts whenever possible. Symmetry will suggest classes that are missing from

certain gcneralizatu>ns.

card
code

Consortium

Owns

bank
code

Consists

k >

nsji
o f Bank

account
code

name

station
code

em
co

goyee

O wns Em ploys
O wns

Account Has C ustom er

balance name
credit limit address
type

Concerns

Central
com puter bank

code

station
code

Com m unicates
with

Bank
com puter

Cashier

station
code

Com m unicates
with

name

Enured

Accesses

Concerns

Com m unicates
with

Cashier
station

A
Entered on Cashier

<H transaction

kind
date-time
amount

ATM

cash on hand
dispensed

Entered on
Remote

transaction

kind
date-time
amount

>
>

A uthorized
by

Cash
card

password

Has

Figure 8.12 ATM object model with attributes

Top-down specializations are often apparent from the application domain. Look for

noun phrases composed o f various adjectives on the class iVMnc: Jhiorcsccni lamp, incandes

cent lamp; fixed menu, pop-up menu, sliding menu. Avoid excessive refinement. If proposed

specializations are incompatible with an existing class, the existing class may be improperly

formulated. Enumerated subcases in the application domain are the most frequent source of

specializations. Often, it is sufficient to note that a set of enumerated subcases exists, without

actually listing them. For example, an ATM account could be relined into Checking acan in t

and Savings account. While undoubtedly useful in some banking applications, this distinc

tion does not affect behavior within the ATM application; account type can be made a simple

attribute of Account.

Multiple inheritance may be used to increase sharing, but only if necessary, because it

increases both conceptual and implementation complexity. In using multiple inheritance, it

is often possible m designate a primary superclass which supplies most of the inherited struc
ture and behavior. Secondary superclasses add orthogonal details.

When ilit* same association name appears more than once with substantially the same

meaning, try to generalize the associated classes. For example. Transaction is entered on

both Cashier station and A TM : Entry station generalizes Cashier station and A TM . Some

times the classes have nothing in common but the association, but more often you will un

cover an underlying generality that you have overlooked.
Attributes and associations must be assigned to specific classes in the class hierarchy.

Each one should be assigned to the most general class for which it is appropriate. Some ad

justment ma\ be needed to get even-tiling right. Symmetry may suggest additional attributes

to distinguish amomt subclasses more clearlv.

Figure S .I3 s h o w s the ATM object model after adding inheritance.

Entry
station E ntered on

A

ATM Cashier
station

cash on hand
dispensed 1

Com m unicates
w ith

Com m unicates
w ith

station
i code

istation
code

Central l . ____
computer bank, i
— - - code "

| Bank
.j com puter

- - - - - - - - - - - Commumcates L
with

Owns\

Owns
Owns

C o n so rtiu m ,.. _.Oan*’
- - — - -• code

[station;
i code 1 ---------------- -

• '-employed
Bank cede •

Transaction

kind
date-time
amount

Concerns

Cashier
transaction

Rem ote
transaction

E ntered by

Cashier

name

Employs
A uthorized

by

Issues 1
--- C ashH
.---------------] Has card J j
: Customerj ° password] '

name
address

.... _ ...j

l name Icaro >
C ons is ts o f * “ * * c c J t

account 1

i

code

Has

Account 1 Accesses
___ . d — - ■ ■—

8.4.9 Testing Access Paths

Trace access paths through the object model diagram to see if they yield sensible results.

Where a unique value is expected, is there a path yielding a unique result? For multiplicity

“many" is there a way to pick out unique values when needed? Think of questions you might

like to ask. Are there useful questions which cannot be answered? They indicate missing in

formation. If something that seems simple in the real world appears complex in the model,

you may have missed something (but make sure that the complexity is not inherent in the

real world).

A T M example. A cash card itself does not uniquely identify an account, so the user must

choose an account somehow. If the user supplies an account type (savings or checking), each

card can access at most one savings and one checking account. This is probably reasonable,

and many cash cards actually work this way, but it limits the system. The alternative is to

require customers to remember account numbers. If a cash card accesses a single account,

then transfers between accounts arc impossible.
We have assumed that the ATM network serves a single consortium of banks. Real cash

machines today often serve overlapping networks o f banks and accept credit cards as well

as cash cards. The model would have to be extended to handle that situation. We will assume

that the customer is satisfied with this limitation on the system.

8.4.10 Iterating Object Modeling

An object model is rarely correct after a single pass. The entire software development pro

cess is one of continual iteration: different parts of a model are often at different stages of

completion. If a deficiency is found, go back to an earlier stage if necessary to correct it.

Some refinements can only come after the dynamic and functional models are completed.

Signs of missing objects include:

• asymmetries in associations and generalizations: Add new classes hv analogy.

• disparate attributes and operations on a class: Split a class so that each part is coherent.

• difficulty in generalizing cleanly: One class may be playing two roles. Split it up and

one pari may then lit in cleanly.

• an operation with no good target class: Add the missing target class.

• duplicate associations with the same name and purpose: Generalize to create the missing

superclass that unites them.

• a role substantially shapes the semantics of a class: Maybe it should be a separate class.

This often means converting an association into a class. |-\>r example, a person can be

employed by several companies with different conditions of employment at each: Em

ployee is then a class denoting a person working for a particular company. in addition

to class Person and Company.

Signs of unnecessary classes include:

• lack of attributes, operations, and associations on a class: Why is it needed.?

Signs of missing associations include:

• missing access paths for operations: Add new associations so that queries can be an

swered.

Signs of unnecessary associations include:

• redundant information in the associations: Remove associations that do not add new in

formation or mark them as derived.

• lack of operations that traverse an association: I f no operations use a path, maybe the

information is not needed. This test must wait until operations arc specified. (See

Section 8 .7J

Signs of incorrect placement of associations:

• role names that are too broad or too narrow for their classes: Move the association up or
down in the class hierarchy.*

Signs of incorrect placement of attributes:

• need to access an object by one of its attribute values: Consider a qualified association.

In practice, model building is not as rigidly ordered as we have shown. You can combine sev

eral steps once you are experienced. For example, you can identify classes, reject the incor

rect ones without writing them down, and add them to the object diagram together with their

associations. You can take some parts of the model through several steps and develop them

in some detail, while other parts are still sketchy. The order of steps can be interchanged

when appropriate. If you are just learning object modeling, however, we recommend that
you follow the steps in full detail the first few times.

A T M example. Cash card really has a split personality— it is both an authorization unit within

the bank allowing access to the customer's accounts and also a piece of plastic data that the

ATM reads to obtain coded IDs. In this case, the codes are actually pan of the real world, not

just computer artifacts; the codes, not the cash card, are communicated to the central com

puter. We should split cash card into two objects: C ard authorization. an access right to one

or more customer accounts: and Cash card, a piece of plastic that contains a bank code and

a cash card number meaningful to the bank. Each card authorization may have several cash

cards, each containing a serial number for security reasons. The card code, present on the

physical card, identities the card authorization within the bank. Each card authorization iden
tities one or more accounts, for example, one checking account and one savings account.

Transaction is not general enough to permit transfers between accounts because it con
cerns only a single account In general, a Tran.un non consists of one or more updates on in

dividual accounts An update is a single action (withdrawal, deposit, or query) on a single

account. All updates in a single transaction must be processed together as an atomic unit; if
any one fails, then they all are canceled.

The distinction between Haul, and H au l < mnputet and between Consonant} and (e n tra l

computer doesn’t seem i<• alfect the analysis. ’Die tact that communications arc processed by

computers is actually an implementation concept Merge H au l < mnputer into Hank and C en

tra l computer into Consortium.

Customer doesn’t seem to enter into the analysis so far. However, when we consider op

erations to open new accounts, it may be an important concept, so leave it alone for now.

Figure 8.14 shows a revised object model diagram that is simpler and cleaner.

ATM

cash on hand
dispensed

Owns

Consortium bank
code

E ntered on
Transaction

date-time

O Consists o l

Cashier
station

Consists o f

Owns

station sta ion
code code

Bank

name
account

code

Em f toys

employee
coae7

card
code

Cashier
transaction

Remote
transaction

E ntered by

Cashier

name

Concerns

Started by

Issues

Customer

name
address

Has

identifies

Card
authorization!

password
limit

XT

H a s Cash Card

Holds

A

Account

balance
credit limit
type

bank-code
card-code
serial number

Accesses

Figure 8.14 ATM object model after further revision

8.4.11 Grouping Classes into Modules

The last step of object modeling is to group classes into sheets and modules. Diagrams n u \

be divided into sheets of uniform size for convenience in drawing, printing, and viewing.
Tightly-coupled classes should be grouped together, but since a sheet holds a lived amount

of information the breakdown is occasionally arbitrary. A module is a set of classes tone or• *

more sheets) that captures some logical subset of the entire model. For example, a mixlcl of

a computer operating system might contain modules for process control, device control, file

maintenance, and memorv management. Modules mav varv in size.

Each association should generally be shown on a single sheet, but some classes must be

shown more than once to connect different sheets. Look for cut points among the classes: a

class that is the sole connection between two otherwise disconnected parts of the object net

work. Such a class forms the bridge between two sheets or modules. For example, in a file

management system, a file is the cut point between the directory structure and the file con

tents. I f a single cut point cannot be found, try to minimize the number of bridge classes. Try

to choose modules to reduce the number of crossovers in the object diagram. With a little

care, most object diagrams can be drawn as planar graphs, without crossing lines.

A “star" pattern is frequently useful for organizing modules: a single core module con

tains the top-level structure o f high-level classes. Other modules expand each high-level

class into a generalization hierarchy and add associations to additional low-level classes.

Reuse a module from a previous design if possible, but avoid forcing a fit. Reuse is eas
iest when part of the problem domain matches a previous problem. If the new problem is

similar to a previous problem but different, the original design may have to be extended to

encompass both problems. Use your judgment about whether this is better than building a
new design.

A T M exampU’. The model we have presented is small and would not require breakdown into

modules, but it could serve as a core for a more detailed model. The modules might be:

• tellers— cashier, entry station, cashier station, A TM

• accounts— account, cash card, card authorization, customer, transaction, update, cashier
transaction, remote transaction

• banks— consortium, bank

Each module could add details: The account module could contain varieties of transactions,

information about customers, interest payments and fees; the banks module could contain

information about branches, addresses, and cost allocations.

8.5 DYNAMIC MODELING

The dynamic model shows the time-dependent behavior of the system and the objects in it.
Begin dynamic analysts by looking for events— cxtcrnaliy-visible stimuli and responses.

Then summarize permissible event sequences for each object with a state diagram. Algo
rithm execution is not relevant during analysis if there arc no cxtemally-visihic manifesta
tions; algorithms arc part of implementation.

The dynamic model is insignificant lor a purely static data repository, suc h as a database.
The dynamic model is important for interactive systems. For most problems, logical correct

ness depends on the sequences of interactions, not the exact times of interactions. Real-time

systems, however, do have specific tuning requirements on interactions that must be consid
ered during analysis. W c do not address real-time analysis in this book.

First prepare scenarios o f typ ica l d ia logs. E ven though these scenarios m ay not cover

every contingency, they at least ensure that com m on interactions are not overlooked . E xtract

events fro m the scenarios. I t is usually best to id e n tify events first and then assign each event

to its target object. O rg an ize the sequences o f events and states into a state d iagram . F in a lly

com pare state d iagram s fo r d iffe re n t objects to m ake sure the events exchanged by them

m atch. T h e resulting set o f state d iagram s constitute the d ynam ic m odel.

In summary', the fo llo w in g steps are perform ed in constructing a dynam ic m odel:

• Prepare scenarios o f typ ica l in teraction sequences [8 .5 .1]

• Id e n tify events betw een objects [8 .5 .3]

• Prepare an event trace fo r each scenario [8 .5 .3]

• B u ild a state d iagram [8 .5 .4]

• M atch events betw een objects to v e rify consistency [8 .5 .5]

8.5.1 Preparing a Scenario

Prepare one or m ore typ ica l dialogs betw een user and system to get a feel fo r expected sys

tem behavior. These scenarios show the m ajo r interactions, external d isp lay form ats, and in

fo rm ation exchanges. A pproach the dynam ic m odel by scenarios, rather than try ing to w rite

dow n the general m odel d irectly , to ensure that im portant steps are not overlooked and that

the o vera ll flo w o f the interaction is sm ooth and correct.

Som etim es the prob lem statem ent describes the fu ll in teraction sequence, but most o f

the lim e you w ill have to invent (o r at least flesh ou t) the in teraction form at. F o r exam ple ,

the A T M problem statement indicates the need to obtain transaction data from the user but

is vague about exactly w hat param eters are needed and w hat o rder to ask fo r them . T h e prob

lem statem ent m ay specify needed in fo rm atio n but leaves open the m anner in w h ich it is ob

tained. In m any applications, gathering input is a m a jo r task o r som etim es the o n ly m ajo r

task. T h e d ynam ic m odel is crucia l in such applications.

First prepare scenarios fo r "n o rm a l” cases, interactions w ith o u t any unusual inputs or

error conditions. Th en consider “ special” cases, such as om itted input sequences, m a x im u m

and m in im u m values, and repeated values. T h en consider user erro r cases, inc lud ing inva lid

values and fa ilures to respond. For m any in teractive applications, erro r handling is the most

d iffic u lt part o f the im p lem entation . I f possible, a llo w the user to abort an operation or ro ll

back to a w e ll-d e fin e d starting point at each step. F in a lly consider various other kinds o f in

teractions that can be overla id on basic interactions, such as help requests and status queries.

A scenario is a sequence o f events. A n event occurs w henever in fo rm atio n is exchanged

betw een an object in the system and an outside agent, such as a user, a sensor, or another

task. T h e in fo rm atio n values exchanged are param eters o f the event. F o r exam p le , the event

password entered has the password value as a param eter. Events w ith no param eters arc

m ean ing fu l and even com m on. T h e in fo rm atio n in such an event is the fact that it has oc

curred— a pure signal. A n y tim e in fo rm atio n is input to the system o r output front the system ,

an event occurs.

F o r each event, id e n tify the actor (system , user, o r o ther external agent) that caused the

event and the param eters o f the event. T h e screen layout o r output fo rm at genera lly doesn’t

affect the log ic o f the in teraction o r the values exchanged. D o n ’t w o rry about output form ats

fo r the in itia l d ynam ic m odel; describe output form ats d u rin g refinem ent o f the m odel.

ATM example. F igure 8 .1 5 shows a norm al A T M scenario. F igure 8 .1 6 shows a scenario w ith

exceptions.

The ATM asks the user to insert a card; the user inserts a cash card.
The ATM accepts the card and reads its serial number.
The ATM requests the password; the user enters "1234."
The ATM verifies the serial number and password with the consortium; the

consortium checks it with bank “39" and notifies the ATM of acceptance.
The ATM asks the user to select the kind of transaction (withdrawal, deposit,

transfer, query); the user selects withdrawal.
The ATM asks for the amount of cash; the user enters $100.
The ATM verifies that the amount is within predefined policy limits and asks the

consortium to process the transaction; the consortium passes the request to
the bank, which eventually confirms success and returns the new account
balance.

The ATM dispenses cash and asks the user to take it; the user takes the cash.
The ATM asks whether the user wants to continue; the user indicates no.
The ATM prints a receipt, ejects the card, and asks the user to take them; the

user takes the receipt and the card.
The ATM asks a user to insert a card.

Figure 8.15 Normal ATM scenario

The ATM asks the user to insert a card; the user inserts a cash card.
The ATM swallows the card and reads its serial number.
The ATM requests the password; the user enters "9999."
The ATM verifies the serial number and password with the consortium, which

rejects it after consulting the appropriate bank.
The ATM indicates a bad password and asks the user to renter it; the user enters

'1 2 3 4 ' which the ATM successfully verifies with the consortium.
The ATM asks the user to select the kind of transaction; the user selects

withdrawal.
The ATM asks for the amount of cash; the user has a change of mind and hits

"cancel."
The ATM ejects the card and asks the user to take it; the user takes it.
The ATM asks a user to insert a card.

Figure 8.16 A T M scenario with exceptions

Many other variations can be described: The user fails to insert the card in time, the

ATM can’t read the card, the card has expired, the transaction is inappropriate to the account,
the amount is invalid, the machine is out of cash or paper, the remote communication lines

are down, or the transaction is rejected because of suspicious patterns of usage on the card.

A d d itio n a l scenarios should be w ritten fo r adm in is tra tive parts o f the A T M system , such

as au thoriz ing new cards, opening accounts, adding banks to the consortium , and obtain ing

transaction logs. W e w ill not exp lo re these aspects.

8.5.2 Interface Formats

M ost interactions can be separated into tw o parts: application logic and the user interface.

T h e analysis should concentrate lirst on the in fo rm ation flo w and contro l, rather than the pre

sentation fo rm a t. T h e sam e p rogram lo g ic can accept input fro m co m m an d lines, files,

m ouse buttons, touch panels, physical push buttons, o r rem ote links, i f the surface details are

c a re fu lly isolated. T h e d yn am ic m odel captures the contro l logic o f the application .

It is hard to evaluate a user in terface w ithout actu a lly testing it. O ften the interface can

be m ocked up so that users can try it. A p p lic a tio n logic can often be sim ulated w ith dum m y

procedures. D eco u p lin g app lication log ic fro m the user interface a llo w s the " lo o k and fee l"

o f the user interface to be evaluated w h ile the app lication is under developm ent.

F ig u re 8 .1 7 show's a possible A T M layou t. Its exact deta ils arc not im portant at this

po in t, even less the w a rd in g o f the messages. T h e im portant th ing is the in fo rm atio n e x

changed. in w h a te v e r fo rm . F o r e x a m p le , d o n 't w o rry about the sequence o f keystrokes

needed to enter a password: treat "en ter passw ord" as an atom ic event. N evertheless, it is

good to d raw at least one possible illustration o f each interaction fo rm at, to help m ake sure

nothing im portant is forgotten.

Messages to userW

0 i *> m"i 4

5 6 7
l ■

s

ENTER CLEAR CANCEL

“------------ ---------- —̂

L __ j r — 1

receipts c;s>h slot

ri$»urcS,l7 l omi.tt ol ATM mlalaco

8.5.3 Identifying Events

E xam ine the scenarios to id en tify all external events. Events include a ll signals, inputs, d e

cisions. interrupts, transitions, and actions to or from users or external devices. In ternal c o m

putation steps are not events, except fo r decision points that interact w ith the external w orld .

Use scenarios to lind norm al events, but d o n ’t fornet erro r conditions and unusual events.

A n action by an object that transm its in fo rm atio n is an event. F o r exam ple , enter pass
word is an event sent fro m external agent User to app lication object ATM. M o s t o b ject-to -

object interactions and operations correspond to events. F o r exam p le , insert coni is an event

sent fro m User to ATM. Som e in fo rm atio n flow s are im p lic it. For exam p le , dispense cash is

an event from ATM to User.
G ro u p together under a single nam e events that have the same effect on flo w o f contro l,

even i f the ir param eter values d iffer. F o r exam p le , enter password should be an event class,

since the password value does not affect the How o f contro l. S im ila r ly dispense cash is also

an event class, since the am ount o f cash dispensed does not affect the (low o f contro l. Events

that affect the How o f contro l should be distinguished. Account OK. had account, and had
password are all d if ferent events; d o n 't group them under card status.

You must decide w hen differences in quantita tive values are im portant enough to d is tin

guish. For exam p le , d iffe ren t d ig its from a keyboard w o u ld usually be considered the same

event, since the h ig h -leve l contro l does not depend on num erica l values. Pushing the “enter"

key, how ever, w ou ld probably lx- considered a d istinct event, since the application w ou ld re

spond d iffe ren tly . T h e d istinction depends on the app lication . You m ay have to construct the

state d iagram before you can classify a ll events; som e distinctions betw een events tnav have

no effect on behavior and can be ignored.

A llo ca te each type o f event to the object classes that send it and receive it. T h e event is

an output event fo r the sender and an input event fo r the receiver. Som etim es an object sends

an event to itse lf, in w hich case the event is both an output and an input for the same class.

Show each scenario as an event trace— an ordered list o f events Ixtuveen d ifferent objects

assigned to colum ns in a table, f ig u re K. IX show s an event trace for an A T M scenario. I f m ore

than one object o f the same class participates in the scenario, assign a separate colum n to each

object. By scanning a particular colum n in the trace, you can see the events that d irectly a Heel

a particular object. O n ly these events can appear in the state diagram for the object.

Show the events between a group o! classes (such as a m odu le) on an e ven t J io w d ia

gram, as in f ig u re X j y . Th is d iagram sum m arizes events betw een classes, w ithou t regard

for sequence. Include events from all scenarios, including error events. T h e event flo w d ia

gram is a dynam ic counterpart to an object d iagram . Paths in the object d iagram show pos

sible in fo rm atio n Hows; paths m the event flo w d iagram show possible contro l Hows.

8.5.4 Building a State Diagram

Prepare a state d iagram lor each object class w ith nontnvta l dynam ic behavior, show ing the

events the object receives arid sends E very scenario or event trace corresponds j{> a path

through tiie state d iagram . Each branch ui contro l How is represented by a state w ith m ore

H u n one exit transition.

User ATM Consortium Bank

insert card

request password

enter password

request kind

enter kind

request amount

enter amount

dispense cash

request take cash

take cash

request continuation
<-

terminate

verify account
■>

account OK

process transaction

transaction succeed

verify card with bank

bank account OK

process bank transaction
->

bank transaction succeed
re

print receipt
<-

eject card

request take card

take card

display main screen

l-'inurc 8. IX l: \ ont trace tor A TM scenario

invert card
enter password. enter kind
enter amount
take cash, take card
cancel, terminate. continue

User ATM

----------------------7\

display mam screen
unreadable card message
request password
request kind, request amount
canceled message
eject card, failure message
dispense cash, request take cash
request continuation
print receipt, request take card
bad account message
bad bank code message

transaction succeed
transaction failed
account OK
bad account
bad password
bad bank code

verify account
process transaction

verity cord with bank,
process bank transaction

____ .Y________ _

Bank Consortium

hank transaction succeed.
bonk transaction failed, bonk account OK
had bank account, bad bank password

Figure 8.19 Event flow diagram for A T M example

S ia n w ith the event trace d iagram s that affect the class being m odeled . P ick a trace

show ing a typ ical interaction and on ly consider the events affecting a single object. A rrange

the events into a path whose arcs are labeled by the input and output events found along one

co lum n in the trace. 'The in terval betw een any tw o events is a state. G iv e each state a nam e,

i f a nam e is m ean in g fu l, but d o n ’t bother i f it is not. 'H ie in itia l d iagram w ill be a sequence

o f events and states. I f the scenario can be repeated indefin ite ly , close the path in the stale

diagram .

N o w fmd loops w ith in the d iagram . I f a sequence o f events can be repeated indefin ite ly ,

then they fo rm a loop. R eplace fin ite sequences o f events w ith loops w hen possible. In a

loop, the first stale ami the last state arc identical. I f the object ''rem em bers*' that it has tra

versed a loop, then the tw o states arc not realty identical, and a sim ple loop is incorrect. A t

least one state in a loop must have m u ltip le transactions leaving it or the loop w ill never te r

m inate.

N o w m erge other scenarios into the state d iagram , bind the point in each scenario w here

it diverges from previous scenarios. Hus (joint corresponds to an existing state in the d ia

gram . A ttach the new event sequence to the existing state as an a lternative path. W h ile e x

am in ing states and scenarios, you may th ink o f other possible events that can occur at each

state; add (hern to (he state d iagram as w ell

netw ork responds

O

W ait for
netw ork hs

response

Interrupt
do:canceled

message

insert ca rd
[readab le] en te r passw ord

M ain screen

do:display main
screen

doirequest
password

cance l

doiverify
account

take
card

insert ca rd
[unreadable]

f U n re a d a b le ^

do:unreadable
card messagjy

bad
p assw ord

bad
account

cance l

Card
^ ejected

do:eject card;
request take card.

cancel

do; canceled
message

Finish

do; print receipt
[do:bad account message

accoun t O K

do:request kind

cance l

cance l

en te r
k in d

doirequest
amount

continue

term inate

cance l
en te r am ount

take cash
transaction
succeed

do:request
continuation

'aoidispense cash;
request lake cash

do;process
transaction

netw ork responds =
accoun t OK. b ad account
b ad bank code, b a d passw ord
transaction fa iled
transaction succeed

wait 5 .
seconds

transaction
(a iled

/
/ do failure

message i

cance l

Figure N.20 State diagram for c lass A T \f

process transaction

do:process bank transaction

bank transaction fa iled
/ transaction (a iled

transaction

<s>

O

verify accoun t

do: verily bank code

(bad code]
/b a d bank code

(good code]

doiverify card with bank
___ ______________ /

b a d bank accoun t
/ bad accoun t

bank transaction succeed
succeed

b a d bank p assw ord
/b a d p a ssw ord

bank accoun t O K /account O K

(2)
I* igurc X .21 State diagram for class C onsortium

< °>

<2)
■ ©

process bank transaction

' do update account J

{failure} >
'b a n k transaction (a iled

(?)

verify ca rd w ith bank

do verity card number

[invalid]
/ b ad bank account

[valid]

r -V
(invalid]
/b ad bank passw ord

i do verity password

1 (success)
1 bank transaction succeed

(o)

J

■ ©

•<°)

(?)
(valid]
bank account O K

Hutire S-22 State diagram lor daw ft,ml.

T h e hardest th ing is d e c id in g at w h ic h state an a lternate path re jo ins the ex is tin g d ia

g ram . T w o paths jo in at a state i f the ob ject “ forgets” w h ic h one was taken. In m an y cases,

it is ob v io u s fro m y o u r k n o w le d g e o f the a p p lic a tio n that tw o states are id e n tica l. F o r e x a m

p le , in serting tw o n icke ls into a v en d in g m ach ine is e q u iv a le n t to inserting one d im e .

B e w a re o f tw o paths that appear id en tica l but w h ic h can be d is tingu ish ed under som e

circum stances. F o r e x a m p le , som e system s repeat the input sequence i f the user m akes an

e rro r e n te rin g in fo rm a tio n but g iv e up a fte r a certa in n u m b e r o f fa ilu res . T h e repeat sequence

is a lm ost the sam e excep t that it rem em bers the past fa ilu res . T h e d iffe re n ce can be glossed

o v e r by ad d in g a p aram eter, such as number o f failures, to re m em b e r in fo rm a tio n . A t least

one trans ition m ust depend on the va lu e o f the param eter. T h e ju d ic io u s use o f param eters

and c o n d itio n a l transitions can s im p lify state d iag ram s c o n s id erab ly but at the cost o f m ix in g

together state in fo rm a tio n and data. S tate d iagram s w ith too m uch data dependency can be

co n fu s in g and c o u n te rin tu itiv e . A n o th e r a lte rn a tiv e is to p a rtitio n a state d ia g ram in to tw o

concurren t subd iag ram s, using one su b d iag ram fo r the m a in lin e and the o th e r fo r the d is tin

gu ish in g in fo rm a tio n . F o r e x a m p le , a subd iag ram to a llo w fo r one user fa ilu re m ig h t have

states No error and One error.
A fte r n o rm a l events have been cons idered , add b o u n d ary cases and specia l cases, as d is

cussed in S ection 8 .5 .1 . C o n s id e r events that occu r at a w k w a rd tim es , fo r e x a m p le , a request

to cancel a transaction a fte r it has been subm itted fo r processing. In cases w h en the user (o r

o th e r ex te rn a l ag en t) m ay fa il to respond p ro m p tly and som e resource m ust be re c la im e d , a

time-out even t can be genera ted a fte r a g iv en in te rv a l. H a n d lin g user errors c le a n ly o ften re-

quires m ore thought and code than the n o rm a l case. E rro r h an d lin g o ften c o m p lica tes an o th

e rw ise c lean and com pact p ro g ram structure, but it m ust be done.

Y ou are fin ished w ith the state d ia g ra m o f a class w hen the d ia g ra m covers a ll scenarios,

and the d ia g ra m handles a ll events that can a ffec t an ob ject o f the class in each o f its states.

You can use the state d ia g ra m to suggest n ew scenarios bv co n s id erin g h o w som e even t not
^ W W* V v

a lread y hand led should a ffec t the state o f the o b jec t. Posing “ W h a t i f * questions is a good

w a y to test com pleteness and e rro r-h a n d lin g c a p a b ilitie s o f a class (an d should be repeated

at the m o d u le and system levels as w e ll) .

I f there are c o m p le x in teractions w ith independent inputs, you can o rg an ize the d y n a m ic

m o d el using a nested state d ia g ra m , as described in C h a p te r 5 . O th e rw is e a Hat slate d ia g ram

is u su a lly adequate.

R epeat the above process o f b u ild in g state d iag ram s fo r each class ot ob jects . C o n c e n

trate on classes w ith im p o rtan t in teractions.

N o t a ll classes need a state d ia g ra m . M a n y objects respond to input events in d ep en d en t

ly o f th e ir past h istory, o r capture a ll im p o rtan t h is to ry as param eters that do not a ffec t c o n

tro l. Such ob jects m ay rece ive and send events. L ist the input events lo r each ob ject and the

output events sent in response to each input even t, but there w il l be no fu rth er state structure.

E v e n tu a lly yo u m a y be ab le to w rite d o w n state d iag ram s d ire c tly w ith o u t p reparing

event traces. A few scenarios are u su a lly h e lp fu l, in any case.

A T M exam ple. Objects A T M . C ash ier station. C o n s< > rttu m . anil Hank are actors that ex

change events. Objects Cash card, 'I'ransactitm. and A cctw ni are passive objects that are act

ed on and do not exchange events. The customer and cashier are actors, but their interactions

with the entry stations are already shown; the customer and cashier objects tire external to

the system and need not be implemented within it anyway. Figure 8.20 shows the state ma

chine for the A TM . Figure 8.21 shows the state diagram for the consortium. Many copies of

the diagram may be active concurrently: each diagram corresponds to one transaction. Fig

ure 8.22 shows the state machine for the bank. Again, each diagram corresponds to one

transaction. These state diagrams are all simplistic, especially with regard to their error han

dling. For example. Figure 8.20 makes no provision for failure of the network communica

tion link. In such a case, an A TM would be expected to eject the customer’s card; we do not

show this behavior. The state machine for Cashier station has been omitted to save space: it

is similar to A TM .

8.5.5 Matching Events Between Objects

Check for completeness and consistency at the system level when the slate diagrams for each

class are complete. Every event should have a sender and a receiver, occasionally the same

object. Slates without predecessors or successors are suspicious; make sure they represent

starling or termination points of the interaction sequence. Follow the effects of an input event

from object to object through the system to make sure that they match the scenarios. Objects

are inherently concurrent; beware of synchronization errors where an input occurs at an awk

ward time. Make sure that corresponding events on different state diagrams are consistent.

Tlte set of stale diagrams for object classes with important dynamic behavior constitute the

dynamic model for an application.

A T M example. An account can potentially be accessed concurrently by more than one ma

chine. Access to an account needs to be controlled to ensure that only one update at a time

is applied.
Examination of the slate diagrams shows that had hank code is sent by consortium but

not received by ATM . It needs to Ik- added, followed by action p rin t had hank code and a

transition to eard ejei ted.

8.6 FUNCTIONAL MODELING

The functional mode! shows how values are com puted , w ithout regard for sequencing, d e c i

sions. or object structure. T h e functional m odel shows w h ich values depend on w h ich other

values and the functions that relate them. Data How diagram s arc useful for show ing fun c

tional dependencies. Functions are expressed in various ways, me hid ing natural language,

m athem atica l equations, and pseudocode.

I he processes on a data flow d iagram correspond lo activities or actions in the slate d i

agrams o f the classes. T h e Mows on a data flow d iagram correspond to objects or attribute

values in an object d ia g ram li is f:«esl to construct the lunctional m odel alter the object and

d ynam ic models.

The following steps are performed in constructing a functional model:

• Identify input and output values [8.6.11

• Build data How diagrams showing functional dependencies [8.6.2)

• Describe functions 18.6.31

• Identify constraints [8.6.4J

• Specify optimization criteria [8.6.5]

8.6.1 Identifying Input and Output Values

Begin by listing input and output values. Input and output values are parameters of events

between the system and the outside world. Examine the problem statement to line! any input

or output values that you missed.
Figure 8.23 shows input and output values for the ATM application. Since all interac

tions between the system and the outside world pass through the ATM (or the cashier station,

which is not elaborated here), all input and output values are parameters of ATM events. In

put events that only affect the How of control, such as cancel, terminate, or continue, do not
supply input values. Acknowledgment events, such as take cash or take can / similarly, do

not supply data.

8.6.2 Building Data Flow Diagrams

N o w construct a data llow d iagram showing how each output \a lu e is computed trom input

values. A data How d iagram is usually constructed in lasers. The top lasei mas consist oi .»

single process, or perhaps one process each to gather inputs, compute values. am! genetate

outputs. higure X .2 4 s lum s the lop-level data tlovv d iagram lot the A T M example; in p u t and

output values are supplied and consumed In external objects, such as \ w ; and (\ ; v ; <

W ith in each data Ih m diagram laser, work backward trom each output value to deter

mine the function that computes u. I f the inputs to the opeiation aie at! inputs ot the entuc

diagram, vou are done. Otherwise some o f the operation inputs are intermediate va lue ' that

Figure 8.24 Top level data flow diagram for A T M

must be traced backward in turn. You can also trace forward from inputs to outputs, but it is

usually harder to identify all the uses of an input than to identify all the sources of an output.
Expand each nontrivial process in the top-level diagram into a lower-level data flow di

agram. If second-level processes still contain nontrivial processes, they can he expanded re

cursively. Figure 8.25 expands the perform transaction process from Figure 8.24. Much of
the perform transaction process selects the appropriate account, based on bank code, card

code, and account type. The actual update process applies the transaction kind and amount

to the selected account.

Consortium

password

account p/po

bad bank code

amount, transaction kmd

invalid card code

^ card authorization

a c c o u n ts /^ x password

Z l veriiv 'N bad password

. / ‘ select \
vaccouf)!/—

Vpasswbrdj

bad account

Account
~x—

balance

------- ‘fansocnon faded
'accounjL.<_^

cash, receipt

Figure 8.25 Data flow diagram fur A T M perform In in u n t iu / t process

Most systems contain internal storage objects that retain values between iterations. The

ATM computation reads and writes values from the Account object. An internal store can be

distinguished from a data llow or a process because it receives values that do not result in

immediate outputs but instead arc used at some distant time in the future.
Data How diagrams specify only dependencies among operations. They do not show de

cisions or sequencing of operations; in tact, some operations can be optional or mutually ex

clusive. For example, the password must be verified before the account is updated: if it fails,

then the account is not updated. Such sequencing decisions are part of the dynamic model,

not the functional model.

Some data values affect decisions in the dvnamic model. Decisions do not directlv affectW 9

output values in the data flow model, as the data flow model shows all possible computation

paths. However, it can be useful to capture decision functions in the data flow model, since

they may be complicated functions of input values. Decision functions can be shown on the

data flow diagram, but their outputs are control signals, indicated by dotted output arrows.

These functions are “data sinks" within the data flow diagram: their outputs affect the flow

of control in the dynamic model and not output values directly. For example, verify password

is a decision function. We have shown the error signal that it may produce but left implicit

the control arrow' to the update account process. I f you wish, you can draw- a control arrow-

to a process controlled by a decision.

8.6.3 Describing Functions

When the data flow diagram has been refined enough, write a description of each function.

The description can be in natural language, mathematical equations, pseudocode, decision

tables, or some other appropriate form. Focus on what the function does, not how to imple

ment it. The description can be declarative or procedural. A declarative description specifies

the relationships between input and output values and the relationships among the output
values. For example, the description of a "sort and remove duplicate values" function might

be "every value in the input list appears exactly once in the output list, the output list contains

only values from the input list, and the values in the output list are in strictly increasing or

der." A procedural description specifies a function by giving an algorithm to compute it. The

purpose of the algorithm is only to specify what the function does: during implementation,
any other algorithm that computes the same values can be substituted. Declarative descrip
tions are preferable to procedural descriptions, because they do not imply an implementa

tion. but if the procedural description is much easier to write it should be used.

Most of the functions in the ATM example are trivial. Figure K.2b shows the description

of the update account function. The primary purpose is to specify what is to happen in all
cases: for example, if the request exceeds the account balance, will a partial withdiaw.il be

permitted?

8.6.4 Identifying Constraints Between Objects

Idcn li fv constraints between objects. Constraints are functional dependencies between ob-

jects that are not related by an input-output dependenev Constraints can be on tw o objects

update account (account, amount, transaction-kind) -> cash, receipt, message
If the amount on a withdrawal exceeds the current account balance.

reject the transaction and dispense no cash
If the amount on a withdrawal does not exceed the current account balance.

debit the account and dispense the amount requested
If the transaction is a deposit

credit the account and dispense no cash
If the transaction is a status request

dispense no cash
In any case,

the receipt shows ATM number, date. time, account number,
transaction-kind, amount transacted (if any), and new balance

Figure 8.26 Function description for update aceount function

at the same time, between instances of the same object at different times (an invariant), or
between instances of different objects at different limes (although the latter are usually input-

output functions). Preconditions on functions are constraints that the input values must sat

isfy. and postconditions are constraints that the output values are guaranteed to hold. State

the times or conditions under which the constraints hold.

A constraint in the ATM problem is "no account balance may ever be negative." If we

add accounts with overdraft privileges, the constraint becomes “no negative account balance

may exceed the credit limit for the account." These constraints do not specify what to do if

an excessive withdrawal is attempted; the analyst must incorporate the constraint into the dy

namic and functional models to complete the specification.

8.6.5 Specifying Optimization Criteria

Specify values to be maximized, minimized, or otherwise optimized. If there are several op
timization criteria that conflict, indicate how the trade-off is to be decided. Don't worry

about making this too precise; you usually won’t be able to. and the criteria are likely to

change before the project is done anyway.
Optimization criteria for the ATM example might include; M inim ize the number of

physical messages sent between ditfereni sites. Minimize the time an account is locked for
concurrency reasons. It is extremely urgent to minimize the time an entire bank is locked for

concurrency reasons, if such locking is needed.

8.7 ADDING OPERATIONS

O ur style o f object-oriented analysis places much less emphasis on defining ojieralions than

more traditional programming-based object-oriented methodologies. 1 he list of potentially-

uvcful operations is open-ended and it is difficult to know when to stop adding them, O p e r

ations in object-oriented program ming languages can correspond to queries about attributes

or associations in the object model tsuv.ll as at t a u n t h a h i tu e or i a \ h - t a r d hau l.) , to events

in the d yn a m ic m odel tsvich as f a n e e l sent f ro m u \ e r to A T M) , and to functions m the

functional model (such as update account). We find it more useful to distinguish these vari
ous kinds of operations during analysis. In some object-oriented languages, such as Small

talk, all these operations would be implemented the same, but other languages, such as DSM

[Shah-89] provide separate mechanisms for each of them.

Key operations should now be summarized in the object model. They are discovered

during the following analysis steps.

8.7.1 Operations from the Object Model

Operations from object structure include reading and writing attribute values and association

links. These operations need not be shown explicitly on the object model, but are implied by

the presence of an attribute. During analysis it is assumed that all attributes are accessible.

A "dot” notation is convenient to indicate an attribute access, such as "ATM.cash-on-hand".

Navigating a path from one object to another through the object model can be expressed as

a series of “pseudo-attribute” accesses on association roles, such as “account.bank” or “re

mote-transaction.card-authorization.customer”. Accessing a qualified link can be shown us

ing an “ index" notation, such as “consortium.bank|bank-code|.account[account-code]".

This notation can be used in pseudocode to deline functions and actions.

8.7.2 Operations from Events

Each event sent to an object corresponds to an operation on the object. Depending on system

architecture, events can be implemented directly by including an event handler as pan of the

system substrate, or they can be converted into explicit methods. During analysis, events are

best represented as labels on state transitions and should not be explicitly listed in the object

model.

8.7.3 Operations from State Actions and Activities

Actions and activities in the state diagram may be functions. These functions having inter

esting computational structure should be delined as operations on the object model. F:or ex
ample. in the ATM example Consortium has the activity verify bank code and Hank has the

activity verify password.

8.7.4 Operations from Functions

Each function in the data f low diagram corresponds to an operation on an object (or possibly

several objects). These functions frequently have interesting cotnputation.il structure and

should be sum m arized on the object model. Organize the functions into operations on oh-

.Kets. O m it access functions that traverse the object model.

I f the same series o f equations or pseudocode fragments describes more than one fun c

tion, then a new operation can be introduced to s im plify the functional model.

I f we consider Figure 8 .25 . the select operations are all really path traversals in the o b

ject model. The only interesting operations are v e r i fy -p a s . \ \u > r d and u p d a te -a c c o u n t . W e can

define v e n f x - p a s s w in d as an operation on class (a r d - a u t h o r i z a t t o n and upaate-> icc< iun t as

an operation on class A ccoun t. In expanding the detiniiion o f update-account, it may be con

venient to define simpler operations for each kind o f transaction:

a c c o u n t : : w ith d r a w (k in a , a m o u n t) —̂ s ta tu s

a c c o u n t : : d e c e s i t (k in d , a m o u n t) —» s ta tu s

8.7.5 Shopping List Operations

Sometimes the real-world behavior of classes suggests operations. Meyer [Meyer-88} calls

this a “shopping list” because the operations are not dependent on a particular application

nor subject to a particular order of execution but are meaningful in their own right. Shopping

list operations permit considering future possible needs while the organization o f classes is

still fluid. They provide an opportunity to broaden the base o f an object definition beyond

the narrow needs of the immediate problem. They are meaningless for a purely function-ori

ented problem decomposition but make sense because we have insisted that objects have a

real-world meaning that transcends their use in a single problem. Omit operations that cor

respond to path traversals.
Some operations not already required by the ATM problem include:

account. : : close
account. :: authorize-cash-card (cash-eard-authorization)
bank : : creaoe-saviriejs-account (customer)—»account
bank :: creato-checkina-account(customer) —>account
bank :: create-cash-card (customer)—>cash card-authorization

eash-card-authorizat ion :: remove-account (account)
cash-card-author i cat :or: :: close

8.7.6 Simplifying Operations

Exam ine the object model for s imilar operations and variations in Conn on a single operation.

T ry to broaden the definit ion o f an operation to encompass such variations and special cases.

Use inheritance where possible to reduce the number o f distinct operations. Introduce new

superclasses as needed to simplify the operations, provided that the new superclasses are not

forced and unnatural. Locate each operation at the correct level w ith in the class hierarchy. A

result o f this refinement is often fewer, more powerfu l operations that are nevertheless s im

pler to specify than the original operations, because they are more un iform and general.

The A T M exam ple is not complex enough to require simplification.

8.8 ITERATING THE ANALYSIS

Most analysis models require more than one pass to complete. M ost problem statements c o n

tain circularities and most applications cannot l>c approached in a com plete ly linear wav. be

cause d i f fe r e n t parts o f the p r o b le m in te rac t . To un d ers ta n d a p r o b le m w i th a l l us

implications, you must attack the analysis iteratively, preparing a first approxim ation to the

model and then iterating the analysis as your understanding increases. There is no linn line

between analysis and design, so don’t overdo it. Verily the final analysis with the requestor
and application domain experts.

8.8.1 Refining the Analysis Model

The overall analysis model may show inconsistencies and imbalances within and across

models. Iterate the different stages to produce a cleaner, more coherent design. Attempt to

refine object definitions to increase sharing and improve structure. Add details that you

glossed over during the first pass.

Some constructs will feel awkward and won’t seem to fit in right. Reexamine them care

fully; you may have the wrong concepts. Sometimes major restructuring in the model is

needed as your understanding increases. It is easier to do now than it w ill ever be. so don’t

avoid changes that seem right just because you already have a model in place. When there

are many constructs that appear similar but don’t fit together right, you have probably missed

or miscast a more general concept. Watch out for generalizations factored on the wrong at

tributes.
A common omission is a physical object that has two logically-dislinct aspects. These

should be modeled with a distinct object for each aspect. An indication o f this is an object

that doesn't fit in cleanly because of its need to fill two roles.*

Other indications to watch for include exceptions, many special cases, lack of expected

symmetry’, and an object with two or more sets of unrelated attributes or operations. Consider

restructuring your model to better capture constraints within its structure.
Remove objects or associations that seemed useful at first but now appear extraneous.

Often two distinct objects in the analysis can be combined because the distinction between

them doesn’t affect the rest of the model in anv meanineful wav.
A good model feels right and does not appear to have extraneous detail. Don’t worry if

it doesn’t seem perfect; even a good model w ill often have a few small areas where the de

sign is adequate but never feels quite right.

8.8.2 Restating the Requirements

W h e n the analysis is complete, the model serves as the basis for the requirements and detines

the scope o f future discourse. M ost o f the real requirements w i l l be part o f the model. Some

requirements specify performance constraints; these should be stated clearly together u ith

optim iza t ion criteria. O ther requirements specify the method o f solution; these should be

separated and challenged, i f possible.

T h e final model should be verified w ith the requestor. D ur ing analysis some require

ments m ay appear to be incorrect or impractical; corrections to the requirements should be

confirm ed. T h e analysis m odel should also be verif ied by applicat ion d om ain experts to

make sure that it correctly models the real world . We have found analysis models to be an

effective means o f com m unication w ith application experts w ho are not com puter experts.

T h e final verified analysis model serves as the basis tor system architecture, design, ami

im plem entation. The orig inal problem statement should be revised to m coipor. i le correc

tions and uiuieistaiulimt discovered d m im : anaKsis.

8.8.3 Analysis and Design

Tiie goal of the analysis is to fully specify the problem and application domain without in

troducing a bias to any particular implementation, but it is impossible in practice to avoid all

taints of implementation. There is no absolute line between the various design phases, nor is

there any such thing as a perfect analysis. Don't treat the rules we have given too rigidly. The

purpose of the rules is to preserve flexibility and permit changes later, but remember that the

goal of modeling is to accomplish the total job. and flexibility is just a means to an end.

8.9 CHAPTER SUMMARY

The purpose o f analysis is to state and understand the problem and the application domain

so that a correct design can be constructed. A good analysis captures the essential features

of the problem without introducing implementation artifacts that prematurely restrict design

decisions.

First write an initial problem statement, in consultation w ith requestors, users, and do
main experts. The requirements should describe what needs to be done, not how it will be

implemented. The problem statement may be incomplete, ambiguous, and erroneous— it is

just a starting point.
The object model show s the sialic structure of the real world. First identify object class

es. Then identify associations between objects, including aggregations. Object attributes and

links should be identified, although minor ones can be deferred. Inheritance should be used

to organize and simplify the class structure. Organize tightly-coupled classes and associa
tions into modules. Information in object models should be supplemented with brief textual

descriptions, including the purpose and scope of each entity.
The dynamic model shows the behavior of the system, especially sequencing of inter

actions. First prepare scenarios of typical and exceptional sessions. Then identify external

events between the system and the outside world. Build a state diagram for each active object
showing the patterns of events it receives and sends, together with actions that it perforins.

Match events between state diagrams to verily consistency: the resulting set o f state dia

grams constitute the dynamic model.W *

The functional model shows the functional derivation of values, without regard for
when they arc computed, hirst identify input and output values of the system as parameters

of external events. Then construct data flow diagrams to show the compulation of each out

put value from other values and ultimately input values, Data flow diagrams interact with

interna! objects that serve as data stores Ik m w c c i i iterations, Finally speedy constraints and

optimization criteria.
Operations are derived from several sources in this methodology and we do not find it

useful to group them together during analysis. Only ojK-ratmns from the functional model

(and possibly shopping list operations) need be shown on the object diagram.
Methodologies are never as linear as they appear in books. This one is no exception.

Any complex analysis is constructed hv iteration on multiple levels All parts of the model

need not be developed at the same pace. The result of analysis replaces the original problem

statement and serves as the basis for design

analysis identifying attributes
analysis model identifying classes
building the dynamic model identifying events
building (he functional model identifying operations
building the object model problem statement
data dictionary scenario
identifying associations testing the model

Figure 8.27 Key concepts for Chapter 8

BIBLIOGRAPHIC NOTES

Shlaer and Mellor [Shlaer-88] present a similar approach to analyzing a problem in terms of

real-world objects, attributes, and relationships, and constructing state machines for each ob

ject. Their approach is oriented more to relational database representations than ours. Our

methodology stresses the freedom of an analysis model from implementation constructs,

such as relational tables and identifiers. Shlaer and Mellor construct stale models for passive

objects, such as accounts, while we would restrict state models to active objects. Neverthe

less the reader can easily make the correspondence between the notations and approaches.

Meyer [Meyer-88] provides many useful insights into principles underlying a good de
sign. He advocates the use of data-directed bottom-up design, discovery o f “shopping list op

erations," and the lack of any “main program” in a system. We would not reject his goals,

although we have found that operations can be derived from the dynamic and functional

models as part of design. He makes effective use of assertions, pre- and post-conditions for
specifying operations.

Booch presents perhaps the best short explanation of object-oriented design in his brief
paper [Booch-86|. He discusses how to find objects and operations by looking at nouns and

verbs in the problem statement.
A more thorough comparison with other methodologies and notations is given in Chap

ter 12.

REFERENCES

|Booch-X6] Grady Booch. Object-oriented development. I E E E Tn inst ia ions on So jhu irc /f/ryrwcrmy
S E -12 . 2 (February 1986). 211-221.

| Meyer-XS] Bertrand Meyer. O h jo t O n o i t c d S o f t w a r e Construction. Hertfordshire. England: Prentice
Hall International. 19SS.

|Shah-K9| Ashwin Shah. James Rumbauglt. Jung Hamel. Renee Borsari. DSM: an object-relationship
modeling language. O O I ’S I A SO ^ A C M SK',! ' ! A \ 24, II (Nov. FHOIO

(Shlaet-XX) Sally Shlaer. Stephen J. Mellor. <>/*/<'*' i -O n c n u 'J Systems Anoly.u* Englewood Chits.
New Jetsev: Younlon Press. 19XX.

EXERCISES

8.1 (3> For each of the following systems, identify the relative importance of the three aspects of
modeling: I) object modeling, 2) dynamic modeling.. 3) functional modeling. Explain your an*
swers. For example, for a compiler, the answer might be 3,1, and 2. Functional modeling is most
important for a compiler because it is dominated by data transformation concerns.
a. bridge player
b. change-making machine
c. car cruise control
d. electronic typewriter
e. spelling checker
f. telephone answering machine

8.2 (4) Prepare functional specifications, similar to the problem statement given for the ATM sys
tem in Section 8.3. for each of the systems in exercise X.l. You may limit the scope of the sys
tem, but be precise and avoid making implementation decisions. Use 150-300 words per speci
fication.

8J <3) Rephrase the following requirements to make them more precise. Remove any design deci
sions posing as requirements:
a. A system to transfer data from one computer to another over a telecommunication line. The

system should transmit data reliably over noisy channels. Data must not be lost if the receiv
ing end cannot keep up or if the line drops out. Data should be transmitted in packets, using
a master-slav c protocol in vv Inch the receiving end acknowledges or negatively acknowledg
es all exchanges,

b. A system for automating the production of complex machined parts is needed. The parts will
be designed using a three-dimensional drafting editor that is part of the system. The system
will produce tapes that can be used by numerical control (N/Ci machines to actually produce

the parts.
e. A desktop publishing system is needed, based on a what-you-scc-is-whai-you-get philoso

phy The system will support text and graphics. Graphics includes lines, squares, boxes,
polygons, circles, and ellipses. Internally, a circle is represented as a special Case of an ellipse
and a square as a special cave of a box. The system should support interactive, graphical ed
iting of documents.

d. A system for generating nonsense tv desired. Hie inpul is a sample document, lire out put is
random text that mimics the input text by imitating the frequencies of combinations of letters
of the input. The user specifies the order of the mutation ami ihc length of the desired output.
For order \ \ every output sequence of N characters is found in the input and at approximately
the same frequency As the order im reuses, the sty Ic of the output more closely matches the
input The system should generate Us output with the following method: Select a position at
random in the document Ivmg mutated Scan forward m the inpul text until a sequence of
characters ts found that exactly matches the last V ! characters of ihe output It sou reach
the end of the input, continue scanning from the beginning. When a match is loum], copy the
letter that follow \ the matched sequence from the input to the output Repeat until the desired
amount of rest is generated

< A system tor distributing ckvtronk mail over a network is needed F-ich user ol the system
should be able to -end mad from any computer account and receive mad on one designated
account. Iherc should provision** tor answering or forwarding mail, .is well a*, saving

messages in files or printing them. Also, users should be able to send messages to several
other users at once through distribution lists. Each computer on the net should hold any mes
sages destined for computers which arc down.

8.4 (7) Create an object diagram for each system from exercise 8.3.

Exercises 8.3-8.15 are related. Exercise 8.5 should be done first. The following are tentative functional
specifications for a simple diagram editor that could be used as the core of a variety of applications:

The editor will be used interactively to create and modify drawings. A drawing contains several
sheets. Drawings are saved to and loaded from named ASCII files. Sheets contain boxes and links.
Each box may optionally contain a single line of text. Text is allowed only in boxes. The editor must
automatically adjust the size of a box to fit any enclosed text. The font size of the text is not adjustable.
Any pair of boxes on the same sheet may be linked by a scries of alternating horizontal and vertical
lines. A simple, one sheet drawing is shown in Figure E8.1.

Figure K8.1 Sample drawing

The editor will be menu driven, with pop-up menus. A three button mouse will be used for menu,
object, and link selections. The following arc some operations the editor should provide: create sheet,
delete sheet, next sheet, previous sheet, create box, link boxes, enter text, group selection, cut, move
or copy selections, paste, edit text, save drawing, and load drawing. Copy, cut. and paste will work
through a buffer. Copy will create a copy of selections from a sheet to the buffer. Cut will remove se
lections to the buffer. Paste will copy the contents of the buffer to the sheet. Each copy and cut opera
tion overwrites the previous contents of the buffer. Pan and zoom will not be allowed; drawings will
have fixed si/e. When boxes are moved, enclosed text should move with them and links should be
stretched.

8.5 <3> The following is a list of candidate object classes. Prepare a list of classes that should Iv
eliminated for an\ of the reasons gi\en in this chapter. Give a reason for each elimination. If
there is more than one reason, give the main one:

character, line, \ coordinate, y coordinate, link, position, length, width, collection, se
lection. menu, mouse, button, computer, drawing, drawing file, sheet, pop-up, point,
menu item, selected object, selected line, selected box, selected text, file name. box.
buffer, line segment coordinate, connection, text. name, origin, scale factor, comer
point, end point, graphics object.

8.6 15) Prepare a data dictionary for the pre\ toils exercise.

8.7 <3i The following is a list ot candidate associations and generalizations for the diagram editor
described in exercise S.5. Prepare a list ot associations ami generalizations that should tv elim
inated or renamed lor ain ot the reasons given m this chaplet. Give a reason tor each diminution
• H ren.imiiu'. If there is more than one reason, eive the main one

a box has text, a box has a position, a link logically associates two boxes, a box is
moved, a link has points, a link is defined by a sequence of points, a selection or a buffer
or a sheet is a collection, a character string has a location, a box has a character string,
a character string has characters, a line has length, a collection is composed of links and
boxes, a link is deleted, a line is moved, a line is a graphical object, a point is a graphical
object, a line has two points, a point has an x coordinate, a point has a y coordinate

8.8 (8) Figure E8.2 is a partially completed object diagram for the diagram editor described in ex
ercise 8.5. Mow could it be used for each of the following queries?
a. What are all selected boxes and links?
b. Given a box, determine all other boxes that are directly linked to it,
c. Given a box. find all other boxes that am directly or indirectly linked to it.
d. Given a box and a link, determine if the link involves the box.
e. Given a box and a link, find the other box logically connected to the given box through the

other end of the link.
f. Given two boxes, determine all links between them.
g. Given a selection, determine which links am “bridging" links. If a selection does not include

all boxes on a sheet, “bridging" links may result. A "bridging" link is a link that connects a
box that has been selected to a box that has not. A link that connects two boxes that are se
lected or two boxes that are not selected is not a “bridging” link. "Bridging" links require
special handling during a cut or a move operation on a selection.

Figure E8.2 Partially completed object diagram for a diagram editor

8.9 (6) Figure E8.3 is a variation of the object diagram for the previous exercise in which the class
Connection is used to explicitly represent the connection of a link to a box. Explain how to carry
out those queries from the previous exercise that become simpler with this representation. Do
any of them become more difficult? If so, which ones? Discuss the merits of this variation.

8.10 (4; Prepare a scenario for the preparation of the drawing in Figure KX. 1. Include at least one of
each of the editor operations listed in exercise 8.5. Do not worry about error conditions.

8.11 (3) Prepare 3 error scenarios, starting from the previous exercise.

8.12 <4t Prepare event traces for the scenarios you prepared in the previous two exercises.

8.13 (4) Prepare an event flow diagram for the diagram editor

8.14 ((» What object classes require state diagrams? (You may want to consider adding the classes
Editor and/or Mosne if your object diagram does not already have them,) Prepare state diagrams
for the classes that need them. Check corresponding events for consistency.

Figure E8.3 Partially completed object diagram for a diagram editor

8.15 (5) Prepare a functional model for the diagram editor.

Exercises 8.16-8.27 are related. Exercise 8.16 should be done first. These exercises are concerned with
a computerized scoring system you have volunteered to create for the benefit of a local children's syn
chronized swimming league. Teams get together for competitions called meets during which the chil
dren perform in two types of events: figures and routines. Figure events, which are performed individ
ually. arc particular water ballet maneuvers such as swimming on your back with one leg raised
straight up. Routines, which are performed by the entire team, are water ballets. Both figures and rou
tines arc scored, but your system is concerned only with figures.

Children must provide their names, ages, addresses, and team names to register prior to the meet.
To simplify scoring, each contestant is assigned a number.

During a meet, figure events are held simultaneously at several stations that are set up around a
swimming pool, usually one at each corner. There are volunteer judges and storekeepers. Storekeep
ers lend to become burned out. so there is a fair amount of turnover in their ranks. Several judges and
storekeepers are assigned to each station during a meet. Over the course of a season each judge and
storekeeper may serve several stations. For scoring uniformity, each figure is held at exactly one sta
tion with the same judges. A station may process several figure events in the course ol a meet.

Contestants are split up into groups, with each group starting at a different station. When a child is
finished at one station, he or she proceeds to another station for another event. When everyone has been
processed at a station for a given event, the station switches to the next event assigned to it.

Each competitor gets one try at each event, called a trial. Just before a trial, the child's number is
announced to the child and to the scorckcepcrs. Sometimes the children gel out of order or the score-
keepers get confused and the station stops while things get straightened out. Each judge indicates a raw
score lor each observed trial by holding up numbered cards. The raw scores arc read to the scorckecp-
crs. who record them and compute a net score for the trial. The highest and lowest raw scores arc dis
carded and the average of the remaining is multiplied by a difficulty factor tor the figure.

Individual and team prizes are awarded at the conclusion of a meet based on top individual and
team scores. There are several age categories, with separate prizes Tor each category Individual prizes
are based on figures only. Team prizes are based on figures and routines.

Your svstem will be used to store all information needed tor scheduling, registration, and scoring
At the beginning of a season, all sw imrners will Iv entered into the s>stem and a season schedule will
be prepared, including deciding which figures will Iv judged at which meets. Prior to a meet, the s\s-
tein w ill Iv i^ed to process registrations. During a meet, it w ill record scores and determine w tuners

8*16 (3) The following is a list of candidate object classes for the scoring system. Prepare a list of
classes that should be eliminated for any of the reasons given in this chapter. Give a reason for
each elimination. If there is more than one reason, give the main one:

address, age. age category, average score, back, card, child, child’s name, competitor,
compute average, conclusion, contestant, corner, date, difficulty factor, event, figure,
file of team member data, group, individual, individual prize, judge, league, leg. list of
scheduled meets, meet, net score, number, person, pool, prize, register, registrant, raw

. score, routine, score, scorekecpcr, season, station, team, team prize, team name, trial,
try, water ballet.

8.17 (3) Prepare a data dictionary' for the previous exercise.

8.18 (4>Thc following is a list of candidate associations and generalizations for the scoring system.
Prepare a list of associations and generalizations that should be eliminated or renamed for any
of the reasons given in this chapter. Give a reason for each elimination or renaming. If there is
more than one reason, give the main one:

a season consists of several meets, a competitor registers, a competitor is assigned a
number, a number is announced, competitors are split into groups, a meet consists of
several events, several stations are set up at a meet. Severn! events are processed at a
station, several judges are assigned to a station, routines and figures are events, raw
scores are read, highest score is discarded, lowest score is discarded, figures are pro
cessed. a league consists of several teams, a team consists of several competitors, a trial
of a figure is made by a competitor, a trial receives several scores from the judges, prizes
arc based on scores.

8.19 (8) f igure K8.4 is a partially completed object diagram for the scoring system. Explain how it
could be used for each of the follow ing queries. You may need to revise the diagram to process
some of the queries;
a. Find all the members of a given team.
b Find which figures were held more than once in a given season.
c. Find the art score of a competitor for a given figure at a given meet.
d. Find the team average over all figures in a given season.
c. Find the average score of a competitor over all figures m a given meet.
f. Find the team average in a given figure at a given meet.
g. f ind the set of all individuals vs ho competed in any events in a given season.
h. Find the set of all indiv idualv who competed in all of the events held in a given season.
i. Find all the judges who judged a given event in a given season.
j. Find the judge who awarded the lowest score during a given event.
L Find the judge who awarded the lowest score for a given figure.
I Modify the diagram so that the competitors registered for an event can Ik determined.

8.20 <3> Prepare a scenario tor setting up the scoring system at the beginning of a season. Data on
teams, competitors, and judge*, will Ik entered A schedule of meets lor the season will Ik pro*
pared and events lor each meet will be selected fintcr difficult) factors tor events. Include at
least 2 teams. 6 competitors, 3 judges, 3 meets, and 12 events. IX* not worry about error condi
tions

8.21 «3> Prepare 1 error scenarios, starting from exercise X.20

Figure E8.4 Partially completed object diagram for a scoring system

8.22 (3) Prepare a scenario for printing and processing preregistration forms for the scoring system.
Include entering changes in address in two of the returned forms and two children unable to at
tend. Assign a number to each contestant.

8.23 (5) Prepare scenarios for scoring on the day of a meet. To simplify matters, limit the scenario to
2 teams,4 competitors. 2 stations. 6 judges, and 4 events. Include both scoring during events and
determination of winners at the end.

8.24 (6) What object classes require state diagrams? You may want to consider adding classes. Pre
pare state diagrams for the classes that need them. Check corresponding events for consistency.

8.25 (5) Prepare a functional model for the scoring system.

8.26 (3) Prepare a shopping list of operations for the scoring system and place them in an object di
agram.

8.27 (5) For each operation listed in the previous exercise, summarize what the operation should do.

Exercises 8.28-8.33 illustrate additional fine points o f performing object-oriented analysis.

8.28 (6) Revise the diagrams in Figure E8.5. Figure E8.6. Figure E8.7, and Figure E8.K to eliminate

ternary associations. In some cases you w ill have to promote the association to a class.

Figure F.8.5 is a relationship between P i n n n . P i n i o n , and P a t e - t m u • which might be en

countered in a system used by a c lin ic w ith several doctors on the stall. Candidate keys tor the

relationship include P a l e - t i m e + P a t i e n t or P a t e - t i n :*• D o c t o r

Figure K8.5 Ternary association lor doctor, patient, and date-time

Figure K8.6 Ternary* association for student, professor, and university

Figure K8.7 Ternary association for seat, person, and concert

Edge

Figure K O Ternary- association for directed graphs

Figure iiS.b is a relationship between Student. Professor. and University which might he

used to cypress the contacts between students and professors who teach at or attend several uni
versities.

There is one link in the relationship for a student that takes one or more classes from a pro

fessor at a university. 'Hie candidate key is S t u d e n t + P n d c w o r + U n i v e r s i t y .

Figure H8.7 s h o w s the relationship expressing the seating arrangement at a concert.

C o n v e r t * S e a t is a candidate kcv.✓
Figure M8.H expresses the connectivitv of a directed graph. Each edge o f a directed graph is

connected in a specific order to exactly 2 vertices More than one edge can !>c connected be

tween a given pair of vertices 'Die only candidate key of the relationship is !uh:e

In each cave, try to come as close as possible to the onginal intent and discuss what is lost.

8.29 fd> Figure F’H iv an object diagram tor exercise K *a. Sender and H eeener arc the only classes

with important dynamic behavior Construct an event trace tor the following scenario. Sender

tries to establish a connection to the receiver by sending a Mart of transaction packet Ihc re

ceiver successfully reads the packet and replies w ith an acknowledgment. I he sender then trans

mits a start of file p,akcl. which is acknowledged, ‘Iben. the file data is IfamnnUed in thtce ;»c*

know (edged packets, followed bv end of tile, and end of transaction, which are also acknowl

edged

Figure K8.9 An object diagram fora file transfer system

8.30 (3) Prepare additional event traces for the previous example to include errors caused by noise
corruption of eacli type of sender packet. Revise your previous answer.

8.31 (5) Prepare a state-event diagram for a file transfer system from the event traces prepared in ex
ercises 8.29 and 8.30.

8.32 (3) Prepare a state diagram for the class Cashier station for the ATM problem described in this
chapter.

8.33 (6) In an airline reservation system, there could be a ternary relationship between flight, seat,
and passenger. What are the candidate keys of the relationship under the following conditions?
a. A given seal on a given flight is assigned to zero or one passenger. A passenger may travel

on many llights but must have exactly one seat on a traveled night and must lx* sitting in it
during the flight.

b. A given seal on a given flight is assigned to zero or one passenger, as in the previous. A pas
senger may travel on many flights and may have several seats on a traveled flight, as long as
the extra seats arc paid for. (Some passengers may be willing to pay for the extra elbow room,
or may have some delicate electronic equipment that they want to strap into a seat.)

8.34 (4) Use generalization to improve the object diagram for a file system shown in Figure KS.IO.

l iijn rc KX.10 An <>l\iccl <) i . s i : m i h " I .1 file \y>.tcm

S y s t e m D e s i g n

After you have analyzed a problem, you must decide how to approach the design. System

design is the high-level strategy for solving the problem and building a solution. System de

sign includes decisions about the organization of the system into subsystems, the allocation

of subsystems to hardware and software components, and major conceptual and policy de

cisions that lonn the framework for detailed desian.
The overall organization o f a system is called the system architecture. There are a num-V#' * •

ber of common architectural styles, each of which is suitable for certain kinds of applica

tions. One way to characterize an application is by the relative importance o f its object,
dynamic, and functional models. Different architectures place differing emphasis on the

three models.
In this chapter you will leant about the many aspects o f an application problem that you

should consider when formulating a system design. We also present several common archi

tectural styles that you can use as a starting point for your designs. This list of architectural

styles is not meant to be complete; new architectures can always be invented or adapted as

needed. The treatment o f system design in this chapter is intended for small to medium soft

ware development efforts; large complex systems, involving more than about ten develop

ers. are limited by human communication issues and require a much greater emphasis on

design logistics. Most o f the suggestions in this chapter are suitable for non-objcct-orientcd

as well as object-oriented systems.

9.1 OVERVIEW OF SYSTEM DESIGN

During analysis, the focus is on what needs to be done, independent of how it is done. During

design, decisions are made about how the problem will be solved, first at a high level, then
at increasingly detailed levels.

System design is the lirst design stage in which the basic approach to solving the prob

lem is selected. During system design, the overall structure and style are decided. The system

architecture is the overall organization of the system into components called subsystems.

The architecture provides the context in which more detailed decisions are made in later de

sign stages. By making high-level decisions that apply to the entire system, the system de

signer partitions the problem into subsystems so that further work can be done by several

designers working independently on different subsystems.
The system designer must make the following decisions:

• Organize the system into subsystems 19.2]

• Identify concurrency inherent in the problem |9.3]

• Allocate subsystems to processors and tasks (9.4J

• Choose an approach for management of data stores [9.51

• Handle access to global resources [9.6]

• Choose the implementation of control in software [9.7]

• Handle boundary conditions [9 .81

• Set trade-off priorities [9 .91

Often the overall architecture of a system can be chosen based on its similarity to previous

systems. Certain kinds of system architecture are useful for solving several broad classes of

problems. Section 9.10 surveys several common architectures and describes the kinds of

problems for which they are useful. Not all problems can be solved by one o f these architec

tures but many can. Many other architectures can be constructed by combining these forms.

9.2 BREAKING A SYSTEM INTO SUBSYSTEMS

For all but the smallest applications, the first step in system design is to divide the system

into a small number o f components. Each major component of a system is called a sub

system. Each subsystem encompasses aspects of the system that share some common prop

erty— similar functionality, the same physical location, or execution on the same kind of

hardware. For example, a spaceship computer might include subsystems for life support,
navigation, engine control, and running scientific experiments.

A subsystem is not an object nor a function but a package of classes, associations, op

erations, events, and constraints that are interrelated and that have a reasonably well-defined

and (hopefully) small interface with other subsystems. A subsystem is usually identilied by

the sen ices it provides. A service is a group of related functions that share some common

purpose, such as I/O processing, drawing pictures, or performing arithmetic. A subsystem

defines a coherent way of looking at one aspect of’ the problem. For example, the lile system

within an operating system is a subsystem; it comprises a set of related abstractions that are

largely, but not entirely, independent of abstractions in other subsystems, such as the mem
ory management subsystem or the process control subsystem.

Each subsvstern has a '.sell defined interlace to the rest of the system. ’The interface

specifics the form of all interactions and the information How across subsystem boundaries

but does not specify how the subsystem is implemented internally. Each subsystem can then

l>c designed independently -without at fee ting the others.

Subsystems should be defined so that most interactions are within subsystems, rather

than across subsystem boundaries, in order to reduce the dependencies among the sub

systems. A system should be divided into a small number of subsystems: 20 is probably too

many. Each subsystem may in turn be decomposed into smaller subsystems of its own. The

lowest level subsystems are called modules. as discussed in Chapter 3.
The relationship between two subsystems can be client-supplier or peer-to-peer. In a cli

ent-supplier relationship, the client calls on the supplier, which performs some service and

replies with a result. The client must know the interface of the supplier, but the supplier does

not have to know the interfaces of its clients because all the interactions are initialed bv cli-

ents using the supplier’s interface. In a peer-to-peer relationship, each of the subsystems may

call on the others. A communication from one subsvstem to another is not necessarily fol-» 0

lowed by an immediate response. Peer-to-peer interactions are more complicated because

the subsystems must know each other's interfaces. Communications cycles can exist that are

hard to understand and liable to subtle design errors. Look for supplier-client decomposi

tions whenever possible because a one-way interaction is much easier to build, understand,

and change than a two-way interaction.

The decomposition o f systems into subsystems may be organized as a sequence of hor

izontal layers or vertical partitions.

9.2.1 Layers

A layered system is an ordered set of virtual worlds, each built in terms of the ones below it

and providing the basis o f implementation for the ones above it. The objects in each layer

can be independent, although there is often some correspondence between objects in differ

ent layers. Knowledge is one-wav only: A subsystem knows about the layers below it. but

has no knowledge of the layers above it. A supplier-client relationship exists between lower

layers (providers of services) and upper layers (users of services).

In an interactive graphics system, for example, windows arc made from screen opera

tions, which are implemented using pixel operations, which execute as device I/O opera
tions. Each layer may have its own set of classes and operations. Each layer is implemented

in terms of the classes and operations of lower layers.

Layered architectures come in two forms: closed and open. In a closed architecture.

each layer is built only in terms of the immediate low er layer. This reduces the dependencies

between layers and allows chanties to be made most easily because a layer's interface only

affects the next layer. In an open architecture. a layer can use features of any lower layer to

any depth. This reduces the need to redefine operations at each level, which can result in a

more efficient and compact code. However, an open architecture does not observe the prin

ciple of information hilling. Changes to a subsystem can affect am higher subsvstem. so an

open architecture is less robust than a closed architecture. Both kinds of architectures are

useful: the designer must weigh the relative value of efficiency and modularitv.

U sua lly on ly the top and bo ttom layers are specified bv the p rob lem statement: The top

is the desired system, the bo ttom is the ava ilab le resources (hardw are, opera ting svstem. e x

is ting lib ra ries). If the d ispa rity between the tw o is too g ieat (as it o ften is t. then the svstem

layer*.
A system constructed in lasers can be ported to other hardware/software platforms by

that are system-dependent.

9.2.2 Partitions

Partitions vertically divide a system into several independent or weakly-coupled sub

s y s te m s . each pros iding one kind of service. For example, a computer operating system in-

su b sy stems may 'nave some know ledge of each other, but this knowledge is not deep, so ma

jor design dependencies are not created.

A system can be successively decomposed into subsystems using both layers and parti
tions m various possible combinations: Layers can be partitioned and partitions can be lay

ered. Figure v. | shows a block diagram of a ty pical application, which involves simulation

of the application and interactive graphics. Most large systems require a mixture of layers
and part it urns.

application package

i ■ -
user f— - ------- ---------

! dialog ! screen graphics
control:- ■ - - - -

window graphics

i simulation
j package

pixel graphics |

operating system

Hjjuri.- V.I BI«sA ili.n’i.tm o! .i ispnal application

9.2.3 System Topology

9.3 IDENTIFYING CONCURRENCY

In the analysis model, as in the real world and in hardware, all objects are concurrent. In an

implementation, however, not all software objects are concurrent because one processor may

support many objects. In practice, many objects can be implemented on a single processor

i f the objects cannot be active together. One important goal of system design is to identify

which objects must be active concurrently and which objects have activity that is mutually

exclusive. The latter objects can be folded together in a single thread o f control, or task.

9.3.1 Identifying Inherent Concurrency

The dynamic model is the guide to identifying concurrency. Two objects are inherently con

current if they can receive events at the same time without interacting. If the events are un

synchronized, the objects cannot be folded onto a single thread of control. For example, the

engine and the wing controls on an airplane must operate concurrently (if not completely in

dependently). Independent subsystems are desirable because they can be assigned to differ

ent hardware units without anv communication cost.*

Two subsystems that are inherently concurrent need not necessarily be implemented as

separate hardware units. The purpose of hardware interrupts, operating systems, and tasking

mechanisms is to simulate logical concurrency in a uniprocessor. Physically-concurrent in

put must of course be processed by separate sensors, but if there are no timing constraints on

response then a multitasking operating system can handle the computation.

Often the problem statement specifies that objects must be implemented as distinct hard

ware units. For example, if the ATM statement from Chapter S contained the requirement

that each machine should continue to operate locally in the event of a central system failure

(perhaps with reduced limits on transactions), then we would have no choice but to include

a CPU in each ATM machine with a full control program.

9.3.2 Defining Concurrent Tasks

Although all objects are conceptually concurrent, in practice many objects in a sy stem are

interdependent. By examining the stale diagrams of individual objects and the exchange of
events among them, many objects can often be folded together onto a single thread of con

trol. A thread o f control is a path through a set of state diagrams on which onlv a single object

at a time is active. A thread remains within a state diagram until an object sends an event to

another object and waits for another event. The thread passes to the receiver of the event until

it eventually returns to the original object. The thread splits if the object sends an event and

continues executing.

On each thread of control, only a single object at a time is activ e. Threads of control are

implemented as tasks in computer systems. F'or example, while the bank is verify ing an ac

count or processing a bank transaction, the ATM machine is idle. If the ATM is controlled

directly by a central computer, then the ATM object can be folded together with the bank

transaction object as a single task.

9.4 ALLOCATING SUBSYSTEM S TO PROCESSORS AND TASKS

Each concurrent subsystem must be allocated to a hardware unit, either a general purpose

processor or a specialized functional unit. The system designer must:

• Estimate performance needs and the resources needed to satisfy them.

• Choose hardware or software implementation for subsystems.

• Allocate software subsystems to processors to satisfy performance needs and minimize

interprocessor communication.

• Determine the connectivity of the physical units that implement the subsystems.

9.4.1 Estimating Hardware Resource Requirem ents

The decision to use multiple processors or hardware functional units is based on a need for

higher performance than a single CPU can provide. The number of processors required de

pends on the volume of computations and the speed o fihe machine. Eor example, a military

radar s w e m generates too much data in too short a time to handle in a simile CPU. even a

very large one. The data must be digested by many parallel machines before the linal analysis

about a threat can lx- performed.

The system designer must estimate the required CPU processing power by computing

the steady stale load as the product of the number of transactions per second and the time

required to process a transaction. The estimate will usually be imprecise. Often some exper

imentation is useful. 'Hie estimate should then be increased to allow for transient effects, due

to both random sanations in load as well as synchronized bursts of activity. The amount of• m

excess capacity needed depends on the acceptable rate of failure due to insufficient resourc
es.

9.4.2 Hardware-Software Trade-offs

Hardware can lx* regarded as a rigid but highly optimized form of software. The object-ori

ented view is a good way of thinking about hardware. Each device is an object that operates

concurrent!*, w ith other ohiccts (other devices or software). I he system desiener must decide

which subsystems '.'.ill lx* implemented in haidssarc and uhich in soltssare. Subsystems are

implemented in hardware lor tuo mam reasons:

• I : \ i s t m e hardw are p re s id e * exactly the lu iu Uonalits required. T o d ay it is easiei to bus

a l loa tm e point sh ip than to im plem ent floating point in software. Scnsois and aciualois

mu^l he hardw are , ot course.

• H ie he r perform ance is r e t i m e d than a peneraf purpose (PI can p io t id e . and more et

i ic icnt hardware is available. l*or exam ple , ships that perform the l ast I o u n e i 'I fans

fo rm d T T « are w id e lv used in sn/ual processing applications

M u c h ol the d it f it u l l \ of d r s m um p a ss stem com es fn<m m eet m e ester nails im posed haul

v,,ire and softw are constraints O b jec t-o rien ted desten provides no m apn soh ilion . but the

external packages can be modeled nicely as objects. You must consider compatibility, cost,

and performance issues. You should also think about flexibility for future changes, both de

sign changes and future product enhancements. Providing flexibility costs something; the ar
chitect must decide how much it is worth.

9.4.3 Allocating Tasks to Processors

The tasks for the various software subsystems must be allocated to processors. Tasks are as

signed to processors because:

• Certain tasks are required at specific physical locations, to control hardware or to permit

independent or concurrent operation. For example, an engineering workstation needs its

own operating system to permit operation when the interprocessor network is down.

• The response lime or information flow rate exceeds the available communication band

width between a task and a piece of hardware. For example, high performance graphics

devices require tightly-coupled controllers because of their high internal data generation

rates.

• Computation rates are too great for a single processor, so tasks must be spread among

several processors. Those subsystems that interact the most should be assigned to the

same processor to minimize communication costs. Independent subsystems should be

assigned to separate processors.

9.4.4 Determining Physical Connectivity

After determining the kinds and relative numbers of physical units, the system designer must

choose the arrangement and form of the connections among the physical units. The follow
ing decisions must be made:

• Choose the topology of connecting the physical units. Associations in the object model
often correspond to physical connections. Client-supplier relationships in the functional

model also correspond to physical connections. Some connections may be indirect, of

course, but the designer must attempt to minimize the connection cost of important re
lationships.

• Choose the topology of repealed units. If several copies of a particular kind of unit or

group of units are included for performance reasons, their topology must be specified.

The object model and functional model are not useful guides because the use of multiple

units is primarily a design optimization not required by analysis. The topologx of repeat

ed units usually has a regular pattern, such as a linear sequence, a matrix, a tree, or a star.
The designer must consider the expected arrival patterns of data and the proposed par

allel algorithm for processing it.

• Choose the form o ft he connection channels and the communication protocols. The sys
tem design phase max be too soon to specitx the exact interlaces among units, but the

general inleiaction mechanisms and protocols must tisuallx be chosen, l or example, sn-

teractions may be asynchronous, synchronous, or blocking. The bandwidth and latency

of the communication channels must be estimated and the correct kind of connection

channels chosen.

Even when the connections are logical and not physical, the connections must be considered.

For example, the units may be tasks within a single operating system connected by interpro

cess communication calls. On most operating systems, such IPC calls are much slower than

subroutine calls within the same program and may be impractical for certain time-critical

connections. In that case, the liuhtIv-linked tasks must be combined into a single task andW* # W

the connections made by simple subroutine calls.

9.5 MANAGEMENT OF DATA STORES

'Hie internal and external data stores in a system provide clean separation points between

subsystems with well-delined interfaces. In general each data store may combine data struc

tures. files, and databases implemented in memory or on secondary storage devices. For ex

ample. a personal computer application may use memory data structures, a R A M disk, and

a hard disk. An accounting system may use a database and files to connect subsystems. D if

ferent kinds of data stores provide various trade-offs between cost, access time, capacity, and

reliability.

Files are a cheap, simple, and permanent form of data store. I lowcver, file operations are

low level and applications must include additional code to provide a suitable level of abstrac
tion. File implementations vary for different computer systems, so portable applications

must carefully isolate file system dependencies. Implementations for sequential files are

mostly standard, but commands and storage formats for random access files and indexed

files vary w idely.* #
Databases, managed In database management systems (D B M S), are another kind of

* V *

data store. Various types of DBM S are available from vendors: hierarchical, network, rela

tional. object-oriented, and logic. DBMS attempt to cache frequently accessed data in mem

ory m order to achieve the best combination of cost and performance from memory and disk

''torage. Databases are powerful and make applications easier to port to different hardware

and operating system platforms, since the vendor ports the DBMS code. One disadvantage

is that DBM S have a complex interface. Many database languages integrate awkwardly with

programming languages.' S 1 *
The tV*lkmim! guidelines characterize the Kind of data that belongs in a formal database:

• Data that requires access at line levels ol detail by multiple users

• Data that can be efficiently managed with DBMS commands

* Data that must port across many hardware and operating system platforms

* Data that must Ik* accessible by more than one application program

lhe follow, m^ guidelines characterize the Kind ol data that belongs m a hie and not m a re

Phonal database

• Data that is voluminous in quantity but difficult to structure within the confines of

D B M S (such as a graphics bit map)

• Data that is voluminous in quantity and o f low information density (such as archival

files, debugging dumps, or historical records)

• “ Raw** data that is summarized in the database

• Volatile data that is kept a short time and then discarded

9.5.1 A dvantages of Using a Database

There are many advantages to using a D B M S instead o f simple liles:

• M an y infrastructure features, such as crash recovery, sharing between multiple users,

sharing between multiple applications, data distribution, integrity, extensibility, and

transaction support have already been programmed by the D B M S vendor.

• Com mon interface fo r a ll applications. Each application accesses the subset of the in

formation it needs and ignores the rest.

• A standard access language. The SQL language is supported by most commercial rela

tional database management systems.

9.5.2 D isadvantages of Using a Database

D B M S also have disadvantages that complicate and sometimes prevent their use on real

problems. D B M S provide a general purpose engine for flexible management o f data. But at

times. D B M S functionality is not powerful enough or the performance overhead from pro

viding general services too high. Some limitations o f current D B M S , particularly relational

D B m 's " are:

• Perform ance overhead. Few relational D B M S can exceed 50 simple transactions per

second on a computer such as a V A X 11/785. A simple transaction updates one row of

a relational DBM S table. For demanding applications, system designers must work with

the D B M S vendor to wring out extra performance or develop a custom solution.

• Insufficient functionality fo r advanced applications. Relational DBM S were developed

for business applications that have large quantities o f data with simple structure. Rela

tional D B M S are difficult to use for applications that require richer data types or non-

standard operations.

• A w kw ard interface with fungram m ing languages. Relational D B M S support set-orient

ed operations that are expressed through a nonprocedural language. Most programming

languages are procedural in nature anti can onls access relational DBM S tables a row at

a time. | l>remerlani-l>0| discusses a solution it) integrating object-oriented languages

with relational DBM S.

Some of th e s e disadxmilages may disappear as efficient object-oriented D B M S are imple

mented.

9.6 HANDLING GLOBAL RESOURCES

The svsicm designer must identify global resources and determine mechanisms for control-

ling access to them. Global resources include: physical units, such as processors, tape drives,

and communication satellites: space, such as disk space, a workstation screen, and the but

tons on a mouse; logical names, such as object IDs. filenames, and class names: and access

to shared data, such as databases.

I f the resource is a physical object, then it can control itself by establishing a protocol

for obtaining access within a concurrent system. If the resource is a logical entity, such as an
V • w #

object ID or a database, then there is danger o f conflicting access in a shared environment.

Independent tasks could simultaneously use the same object ID . for example. Each global

resource must be owned by a "guardian object" that controls access to it. One guardian ob

ject can control several resources. A ll access to the resource must pass through the guardian

object. For example, most database managers are free-standing tasks that other tasks can call

to obtain data from the database. Allocating each shared global resource to a single object is

a recognition that the resource has identity.«• ♦
A logical resource can also be partitioned logically, such that subsets are assigned to dif-

ferent guardian objects for independent control. For example, one strategy for object ID gen

eration in a parallel distributed environment is to preallocate a range o f possible IDs to each

processor in a network: each processor allocates the IDs within its preallocated range with

out the need for global synchronization.

In a time-critical application, the cost of passing all access to a resource through a guard

ian object is sometimes too high, and clients must access the resource directly. In this case,

locks can be placed on subsets of the resource. A lock is a logical object associated with some

defined subset of a resource that gives the lock holder the right to access the resource direct

ly. A guardian object must still exist to allocate the locks, but after one interaction with the

guardian to obtain a lock the user of the resource can access the resource directly. This ap

proach is more dangerous because each resource user must be trusted to behave itself in its

access to the resource. 'Die use of direct access to shared resources should be discouraged in

an object-oriented design unless absolutely necessary.

9.7 CHOOSING SOFTW ARE CONTROL IMPLEMENTATION

D u r in g analysis, all in teractions are show n as events b etw een objects. H a rd w a re contro l

closed), matches the analysis m odel , but the system designer must choose am ong several

ways to im p lem ent control in software. A l th o u g h there is no logical necessity that all sub

systems use the same im p lem enta t ion , usually the designer chooses a single control style lor

the w hole system. T h e re are tvso kinds of control l lows in a software system: external control

and internal control.

In t e r n a l control in the l lu w oj ex terna l ly -v is ib le events amom: the objects in the system.

Th ere are three kinds o f control tor external events: p rocedure-dr iven sequential, e v e n t -d r iv

en sequential, and concurrent ‘Ih e control style adopter! depends on the resources available

(language, operating system) and on the pattern of interactions in the application. External

control is discussed in this section.
Internal control is the flow of control within a process. It exists only in the implementa

tion and therefore is not inherently concurrent or sequential. The designer may choose to de

compose a process into several tasks for logical clarity or for performance (if multiple

processors are available). Unlike external events, internal transfers of control, such as pro

cedure calls or inter-task calls, are under the direction of the program and can be structured

for convenience. Three kinds of control How are common: procedure calls, quasi-concurrent

inter-task calls, and concurrent inter-task calls. Quasi-concurrent inter-task calls, such as

coroutines or lightweight processes, are programming conveniences in which multiple ad

dress spaces or call stacks exist but in which only a single thread of control can be active at

once.

9.7.1 Procedure-driven Systems

In a procedure-driven sequential system, control resides within the program code. Proce

dures issue requests for external input and then wait for it: when input arrives, control re

sumes within the procedure that made the call. The location of the program counter and the

stack of procedure calls and local variables deline the system state.
The major advantage of procedure-driven control is that it is easy to implement with

conventional languages: the disadvantage is that it requires the concurrency inherent in ob

jects to be mapped into a sequential flow of control. The designer must convert events into

operations between objects. A typical operation corresponds to a pair o f events: an output
event that performs output and requests input and an input event that delivers the new values.

Asynchronous input cannot be easily accommodated with this paradigm because the pro

gram must explicitly request input. The procedure-driven paradigm is suitable only if the

stale model shows a regular alternation o f input and output events. Flexible user interfaces

and control systems are hard to build using this style.
Note that all major object-oriented languages, such as Smalltalk. C++, and CLOS. are

procedural languages. Do not be fooled by the Smalltalk phrase message passing. A message

is a procedure call w ith a built-in case statement that depends on the class of the target object.

A major drawback of conventional object-oriented languages is that they fail to support the

concurrency inherent in objects. Some concurrent object-oriented languages ha\e been de

signed. but thev are not yet widelv used.

9.7.2 Event-driven Systems

In an event-driven sequential system, control resides w ithin a dispatcher or monitor provided

by the language, subsystem, or operating system. Application procedures are attached to

events and are called by the dispatcher when the corresponding events occur ("callback"*.

Procedure calls to the dispatcher send output or enable input but do not wail for it in-line.
All procedures return control to the dispatcher, rather than retaining control until input ar

rives. Events are handled directly by the dispatcher. Program stale cannot be piescrv ed using

the program counter and stack because procedures return control to the dispatcher. Proce

dures must use global variables to maintain state or the dispatcher must maintain local stale

for them. Event-driven control is more diflicult to implement with standard languages than

procedure-driven control but is often worth the extra effort.

Event-driven systems permit more flexible patterns o f control than procedure-driven

systems. Event-driven systems simulate cooperating processes within a single multi-thread

ed task; an errant procedure can block the entire application, so care must be taken. Event-

driven user interface subsystems are particularly useful; some commercial examples include

Sun View and X-Windows.

Use an event-driven system for external control in preference to a procedure-driven sys

tem whenever possible because the mapping from events to program constructs is much sim

pler and more powerful. Event-driven systems are also more modular and can handle error
conditions better than procedure-driven systems.

9.7.3 Concurrent Systems

In a concurrent system, control resides concurrently in several independent objects, each a

separate task. Events are implemented directly as one-way messages {not Smalltalk “mes

sages”) between objects. A task can w ait for input, but other tasks continue execution. The

operating system usually supplies a queuing mechanism for events so that events are not lost

if a task is executing when they arrive. The operating system resolves scheduling conflicts

among tasks. Examples of concurrent systems include tasks on an operating system and Ada

tasks. If there are multiple CPUs, then different tasks can actually execute concurrently.
Ada supports concurrent tasks within the language. Programs in other languages, such

as Fortran. C, or C++, can o f course be run as tasks within a standard operating system, but

inter-task communication usually requires costly operating system calls that are not portable

to other operating systems. None of the current major object-oriented languages directly sup

port tasking. Research is currently underway to develop concurrent object-oriented languag

es. some of which are in limited use.

9.7.4 Internal Control

During the design process, operations on objects are expanded into lower-level operations

on the same or other objects. Internal interactions between objects can be viewed similarly

to external interactions among objects, as events passed between objects, and the same im

plementation mechanisms can be used. There is an important difference: External interac
tions inherently involve waiting for events because different objects are independent and

cannot force other objects to respond; internal operations are generated by objects as part of
the implementation algorithm, so their response patients are predictable. Most internal op

erations can therefore l>e thought of as procedure calls, in which the caller issues a request
and waits ior the response 'Iliere are algorithms in which concurrency can be used profit
ably. if parallel processing is available, hut many computations are well represented sequen

tially and can easily Ik tolded onto a stnele thread ol control.

9.7.5 Other Paradigms

We assume that the reader is primarily interested in procedural programming, but other par

adigms are possible, such as rule-based systems, logic programming systems, and other

forms of nonprocedural programs. These constitute another control style in which explicit

control is replaced by declarative specification with implicit evaluation rules, possibly non-

deterministic or highly convoluted. Such languages are currently used in limited areas, such

as artificial intelligence and knowledge-based programming, but we expect their use to grow

in the future. Because these languages are totally different from procedural languages (in
cluding object-oriented languages), the remainder of this book has little to say about their

use.

9.8 HANDLING BOUNDARY CONDITIONS

Although most of the design effort in manv systems is concerned with the sieadv-state be-

havior, the system designer must consider boundary conditions as well: initialization, termi

nation. and failure. The following kinds of issues must be addressed:
In itia lization . The system must be brought from a quiescent initial state to a sustainable

steady state condition. Things to be initialized include constant data, parameters, global vari

ables. tasks, guardian objects, and possibly the class hierarchy itself. During initialization

only a subset of the functionality of the system is usually available. Initializing a system con

taining concurrent tasks is most difficult because independent objects must not get either too

far ahead or too far behind other independent objects during initialization.

Termination. Termination is usually simpler than initialization because many internal

objects can simply be abandoned. The task must release any external resources that it had

reserved. In a concurrent system, one task must notify other tasks of its termination.

Failure. Failure is the unplanned termination of a system. Failure can arise from user

errors, from the exhaustion of system resources, or from an external breakdown. The good•> ^

system designer plans for orderly failure. Failure can also arise from bugs in the system and

is often detected as an "impossible" inconsistency. In a perfect design, such errors would

never happen, but the good designer plans for a graceful exit on fatal bugs b\ leaving the

remaining environment as clean as possible and recording or printing as much information

about the failure as possible before terminating.

9.9 SETTING TRADE-OFF PRIORITIES

The system designer must set priorities that will be used to guide ttadc-oifs during the rest

of design. The designer is often required to choose among desirable but incompatible goals.

For example, a system can often be made faster by using extra memory. Design trade-offs

must be made regarding not only the softw are itself but also regarding the pioce-s of de\el-
oping it. Sometimes it is necessary to sacrifice complete funclionalits to get a piece of son-

ware into use (or into the marketplace) earlier. Sometimes the problem statement specifies

which goals are of highest priority, but often the burden falls on the designer to reconcile the

incompatible desires of the client and decide how the trade-offs should be made.

The system designer must determine the relative importance of the various criteria as a

guide to making trade-off decisions during design. All the trade-offs are not m aJt• during

system design, but the priorities for making them are established. Tor example, the lirst video

games ran on processors with limited memory. Conserving memory was the highest priority,

followed by fast execution. Designers had to use every programming trick in the book, at the

expense of maintainability, portability, and undersiandabilitv. As another example, there tire

several mathematical subroutine packages available on a wide range of machines. Well-con

ditioned numerical behavior is crucial to such packages, as well as portability and under-

standabilitx. These cannot be sacrificed for fast development. In another case, a user

interface is hard to evaluate without actually using it. The designer often uses rap id proto-

tvpintt. which is a ‘‘quick and dirty” implementation of part of the system to be evaluated,
while ignoring or simulating the rest of the system. Rapid prototyping minimizes initial de

sign lime by sacrificing completeness of functionality, efficiency, and robustness. Once the

prototype is evaluated, the interface can be reimplemented using different design trade-offs,

and the remainder of the system can be implemented.
The entire character of a system is affected by the trade-off decisions made by the de

signer. T he success or failure of the final product may depend on whether its goals are well-

chosen. Kven worse, if no system-wide priorities are established, then the various parts of

the s\ stem may optimize opposing goals (‘‘suboptimization”), resulting in a system that
wastes resources, Even on small projects, programmers often forget the real goals and be

come obsessed with "efficiency” when it really is not important.
Setting trade-off priorities is at best vague. You cannot expect numerical accuracy

(“speed 5.Vv. memory TI r<. portability I5 ‘T. cost l ‘T ” ». Priorities are rarely absolute: for

example, trading memory for speed does not mean that any increase in speed, no matter how

small, is worth anv increase m memory, no matter how large. We cannot even give a lull list
of design criteria that might Ive subject to trade-offs. Instead, the priorities are a statement of

design philosophy by the system designer to guide the design process. Judgment and inter

pretation arc required when trade-offs are actually made during the rest of the design.

9.10 COMMON ARCHITECTURAL FRAMEW ORKS

There are several prototypical architectural frameworks that are c om m o n in existing sys

tems Each of these is well-suited to a certain kind id system. If you have all application w ith

similar characteristics, you can save effort by using the corresponding architecture, or at

least using it as a starting point for your design. T he kinds of systems include:

• Hatch transformation a data transformation executed o iu e on an entire input set.

• Continuous transformation a data transformation performed continuously as inputs

change

• Interactive interlace a s'.stem dominated In external interactions.

• Dynamic simulation— a system that simulates evolving real-world objects.

• Real-time system— a system dominated by strict liming constraints.

• Transaction manager— a system concerned with storing and updating data, often includ

ing concurrent access from different physical locations.

This is not meant to be a complete list of known systems and architectures but a list of com

mon forms. Some problems require a new kind of architecture, but most can use an existing

framework or at least a variation on it. Many problems combine aspects of these architec

tures.

9.10.1 Batch Transformation

A batch transformation is a sequential inpul-to-output transformation, in which inputs are

supplied at the start, and the goal is to compute an answer; there is no ongoing interaction

with the outside world. Examples include standard computational problems: compiler, pay
roll program. VLSI automatic layout, stress analysis of a bridge, and many others.

The state model is trivial or nonexistent for batch transformation problems. The object

model may be simple or complex. The most important aspect of a batch transformation is the

functional model which specilics how input values are transformed into output values. This

is probably the area best addressed by current methodologies emphasizing data flow dia

grams and functional decomposition. However, the use of object models for data structures

improves on previous methods of representing data for problems that have complex, often

polymorphic data. A compiler is an example of a batch transformation with complex data

structures. Figure 9.2 shows the data flow diagram for a compiler.

source
text

object
code

lexical
analysis

token
list

format
object codej^

optimized
code

sequence

parse
tree

optimize i..-
/

code
sequence

/sem antic^
analysis/

augmented
oarse tree

code
generation

Figure 9.2 Data flow diagram of compiler

The steps in designing a batch transformation are:

• Break the overall transformation into stages, each stage performing one part o f the nans

fo r m a t io n . T h e s y s te m d ia g ra m is a d a ta f lo w d ia g ra m . T h is ca n u s u .il!> be ta k e n

straight from the functional model, although additional detail m av be added during w v

te rn d e s ig n .%

• Define intermediate object classes for the data flows between each pair o f siiccessoe

stages. Each stage knows only about the objects on either side o f it. its own inputs and

outputs. Each set of classes forms a coherent object model in the design, loosely coupled

to the object models from neighboring stages.

° E-xpand each stage in turn until the operations are straightforward to implement.

° Restructure the final pipeline for optimization.

9.10.2 Continuous Translorm aiion

A continuous transformation is a system in which the outputs actively depend on changing

inputs and must be periodically updated. Unlike a batch transformation, in which the outputs

are computed only once, the outputs in an active pipeline must be updated frequently (in the

ory' continuously, although in practice they are computed discretely at a tine time scale). Be

cause o f severe time constraints, the entire set o f outputs cannot usually be recomputed each

time an input changes (otherwise the application would be a batch transformation). Instead,

the new output values must be computed incrementally. Typical applications include signal

processing, windowing systems, incremental compilers, and process monitoring systems.

The functional model together with the object model defines the values being computed.
H ie dynamic model is less important because most of the structure of the application is due

to the steady flow of data and not due to discrete interactions.

Because a complete recomputation is impossible for every input value change, an archi

tecture for a continuous transformation must facilitate incremental computation. The trans

formation can be implemented as a pipeline of functions. The effect o f each incremental

change in an input value must be propagated through the pipeline. To make incremental

compulation possible, intermediate objects may be defined to hold intermediate values. Re
dundant values may be introduced for performance reasons.

Synchronization o f values within the pipeline may be important for high-performance

systems, such as signal processing applications. In such cases, operations are performed at

well-defined times and the How path o f operations must be carefully balanced so that values

arrive-at the right place at the right time without bottlenecks.

The steps in designing a pipeline for a continuous transformation are:

° Draw a data flow diagram for the system. The input and output actors correspond to data

structures whose values change continuously. Data stores within the pipeline show pa

rameters that affect the input-to-output mapping. Figure 9.3 shows a graphics applica
tion in three stages: First geometric figures in user-defined coordinates arc mapped into

window coordinates: then the figures are clipped to fit the w indow bounds: finally each

figure n offset by the position o f its window to yield a position on the screen.

Application
Coordinate
System

Window
Bounds

Window
Position

Graohrc
Model f

IJ. Viewsoaca j , Clipped

m ap 'V 5 ^ 0 - -

Figure 93 flow dnigtaMi U*t a fUapitkn a p p lk a tiw

[Screen !
'q Imago j

• Define intermediate objects between each pair of successive stages, as in the batch

transformation. For example, each geometric figure from the graphic model has a

mapped version of itself at each stage in the computation.

• Differentiate each operation to obtain incremental changes to each stage. That is. prop

agate the incremental effects of each change to an input object through the pipeline as a

series of incremental updates. For example, a change in the position of a geometric fig

ure requires its old image to be erased, its new position computed, and its new image

displayed; the images of other figures are unchanged and need not be recomputed.

• Add additional intermediate objects for optimization.

9.10.3 Interactive Interface

An interactive interface is a system that is dominated by interactions between the system and

external agents, such as humans, devices, or other programs. The external agents are inde

pendent of the system, so their inputs cannot be controlled, although the system may solicit

responses from them. An interactive interface usually includes only part of an entire appli

cation. one that can often be handled independently from the computational part of the ap

plication. The major concerns of an interactive interface are the communications protocol

between the system and the external agents, the syntax of possible interactions, the presen

tation of output (the appearance on the screen, for instance), the How of control within the

system, the ease of understanding and user interface, performance, and error handling. Ex

amples of interactive systems include a forms-based query interface, a workstation window

ing system, the command language for an operating system, and the control panel for a

simulation.

Interactive interfaces are dominated by the dynamic model. Objects in the object model

represent interaction elements, such as input and output tokens and presentation formats.

The functional model describes which application functions are executed in response to in

put event sequences, but the internal structure o f the functions is usually unimportant to the

behavior of the interface. An interactive system is concerned with external appearances, not

deep semantic structure.
The steps in designing an interactive interface are:

• Isolate the objects that form the interface from the objects that define the semantics of

the application.

• l !se predefined objects to interact with external agents, if possible. For example, work
station windowing systems such as X-\Yindows. NeWS. and MacAPP have extensive

collections of predefined windows, menus, buttons, forms, and other kinds of objects

ready to be adapted to applications.

• Use the dynamic model as the structure of the program. Interactive interfaces aie best

implemented using concurrent control (multi-tasking) or event-driven control (inter
rupts or call-backs). Procedure-driven control (writing output and then waiting for input

in-line) is awkward for anything but rigid control sequences.

• Isolate physical events from logical events. O ften a logical event corresponds to m u lt i

ple physical events. For exam ple , a graphical interface can take input from a form, from

a pop-up menu, from a function button on the keyboard, by typing a com m and sequence,

or from an indirect com m and file.

• Fully specify the application functions that are invoked by the interface. M a k e sure that

the information to im plem ent them is present.

9.10.4 Dynamic Simulation

A d y n a m ic s im u la t io n models or tracks objects in the real world . Exam ples include m o le c

u lar m o t io n m o d e l in g , spacecraft tra jectory com pu ta t io n , e c o n o m ic m odels , and v ideo

games. Tradit ional methodologies built on data How diagrams are poor at representing these

problems because simulations involve m any distinct objects that constantly update them

selves. rather than a single large transformation. S imulations are perhaps the simplest system

to design Using an object-oriented approach. T he objects and operations come directly from

the application. Control can be implemented in two ways: an explicit controller external to

the applicat ion objects can s imulate a state m achine , or objects can exchange messages

among themselves, similar to the real-world situation.

l. 'nlike an interactive system, the internal objects in a dynam ic simulation do correspond

to real-world objects, so the object model is usually important and often com plex . L ik e an

interactive system, the dynam ic model is an important part o f simulation systems. S im u la

tors often have a com plex functional model as well.

The steps in designing a dynam ic simulation are:

• Identity actors, active rea l-w orld objects, from the object model. T h e actors have a t

tributes that are periodically updated.

• Identity discrete events. Discrete events coriespond to discrete interactions with the o b

ject. such as turning power on or applying the brakes. Discrete events can be im p le m e n t

ed as operations on the object.

• Identity continuous dependencies. R ea l-w orld attributes may be dependent on other

real-world attributes or v ary continuously w ith tune, altitude, velocity, or steering wheel

position. Ihese attributes must be updated at periodic intervals using nuinetical app ro x

imation technique-, to m in u m /e quantization error

• (jcncrulty a simulation is driven by a tuning loop at a tine tune scale Disciete events

between objects can oiten I v exchanged as part oi the tuning loop.

Hie hardest problem with simulations p, usually providing adequate performance. In an ideal

world, an arbitrary number of parallel pro-^es-.ojs would execute the simulation in an exact

analogy io the real 'world situation In practice, the v.sicrn designer must estimate the com

putationa! Co-' o* e a d i up-late cycl e and provide adequate resources. Continuous processes

mu-.t !ve approximated a- discrete steps

9.10.5 Real-time System

A real-tim e system is an interactive system for which time constraints on actions are partic

ularly tight or in which the slightest timing failure cannot be tolerated. For critical actions,

the system must be guaranteed to respond within an absolute interval of time. Typical appli

cations include process control, data acquisition, communications devices, device control,

and overload relays. To guarantee response time, the worst case scenario has to be deter
mined and provided for. This can simplify analysis because it is usually easier to determine

the worst case behavior than the average case behavior.

Real-time design is complex and involves issues such as interrupt handling, prioritiza
tion of tasks, and coordinating multiple CPUs. Unfortunately, real-time systems are fre

quently designed to operate close to their resource lim its so that severe, nonlogical
restructuring of the design is often needed to achieve the necessary performance. Such con

tortions come at the cost of portability and maintainability. Real-time design is a specialized

topic that we do not cover in detail in this book.

9.10.6 Transaction Manager

A transaction m anager is a database system whose main function is to store and access in

formation. The information comes from the application domain. Most transaction managers

must deal with multiple users and concurrency. A transaction must be handled as a single

atomic entity without interference from other transactions. Examples of transaction manag

ers include airline reservation systems, inventory control systems, and database management

systems.
0

The object model is the most important. The functional model in a transaction manage
ment system is less important because operations tend to be predefined and to focus on up

dating and querying information. The dynamic model shows concurrent access of distributed

information. Distribution is an inherent part of the real-world problem and must be modeled

as part of the analysis. The dynamic model is also important for estimating transaction

throughput.

Frequently you can use an existing database management system. In such cases, the

main problem is to construct the object model and choose the granularity of transactions that

must be considered atomic by the system.

The steps in designing a transaction management system are:

• M a p the object m odel d irectly into a database. See Chapter 17 for ad \ ice on using a re

lational database.

• D eterm ine the units o f concurrency, that is. the resources that inherently or by specif i

cation cannot be shared. Introduce new classes as needed.

• D eterm ine the unit o f transaction, that is, the sot o f resources that must be accessed to

gether during a transaction. Typically a transaction succeeds or tails m its entirety.

• Design concurrency control for transactions. Most database management systems mcospo

rate tins. Ih e system may need to retry tailed transactions sewral times before g o in g up

9.11 ARCHITECTURE OF THE ATM SYSTEM

The ATM system introduced in Chapter S is a hybrid o f an interactive interface and a trans

action management system. The entry stations are interactive interfaces— their purpose is to

interact with a human to gather information needed to formulate a transaction. Specifying

the entry stations consists of constructing an object model and a dynamic model; the func

tional model is trivial. The consortium and banks are primarily a distributed transaction man
agement system. Their purpose is to maintain a database of information and to allow it to be

updated over a distributed network under controlled conditions. Specifying the transaction

management part of the system consists primarily of constructing an object model.

Figure 9.4 shows the architecture of the ATM system. There are three major subsystems:

the ATM stations, the consortium computer, and the bank computers. The topology is a sim
ple star; the consortium computer communicates with all the ATM stations and with all the

bank computers. Each connection is a dedicated phone line. The station code and the bank

code are used to distinguish the phone lines to the consortium computer.

ATM
stations

ATM

User L

u se r
interlace

Transaction!
jr

Consortium
computer

phone
lines

Consortium

station
code

bank
code

phone
lines

Transaction

Bank
computers

U

I

Cashier

Cashier
station

Database

Account

Customer

Card
authorization

Transactlonj..

figure ‘J.4 Architecture o! A IM ss stem

The onlv permanent data stores are m the bank computers. Because the data must be

kept consistent but may t>e accessed by several concurrent transactions, the data is kept in a

database Each transaction is processed as a single batch operation; an account is locked by

a transaction until the transaction is complete.

(’oncurrenev .irises bee .nice there arc mans A T M stations, each ol w h ich can Ik- active * •
.si once. There can be only one transaction pel A I M station, but each transaction requires the

assistance o f the consortium computer and a bank computer. A transaction cuts across p h y s

ical units; each transaction is chosen in the d iagram as three connected pieces During design,

each piece w ill become a separate implem entation class. A lthough there only one trunsac

lion per ATM station, there may be many concurrent transactions per consortium computer

or bank computer. This does not pose any special problem because access to any one account

is synchronized through the database.
The ATM station is little more than a state diagram. The consortium computer and bank

computers will be event driven. Each o f them queues input events but processes them one at

a time in the order received.
The consortium computer must be large enough to handle the expected maximum num

ber of simultaneous transactions. It may be acceptable to occasionally block a transaction,

provided the user receives an appropriate message. The bank computers must also be large

enough to handle the expected worst-case load, and they must have enough disk storage to

record all transactions.
The system must contain operations to allow ATM stations and bank computers to be

added and deleted. Each physical unit must protect itself against the failure or disconnection

of the rest of the netw'ork. A database will provide protection against loss of data. However,

special attention must be paid to failure during a transaction so that neither the user nor the

bank lose money. A complicated acknowledgment protocol before committing the transac

tion may be required. The ATM station should display an appropriate message if the connec

tion is down. Other kinds of failure must be handled as well, such as exhaustion of cash or

paper for receipts.
On a tinancial system such as this, fail-safe transactions are the highest priority. If there

is any doubt about the integrity of a transaction, then it must be aborted with an appropriate

message to the user.
There is little need fora lower layer of system implementation. The ATM station is just

a state machine: its functional model is trivial. The consortium computer simply forwards a

message from an ATM station to a bank computer and from a bank computer to an ATM sta

tion. It has minimal functionality. The bank computer is the only unit with any non-irivial

procedures, but even those are mostly just database updates. The only complexity might

come from failure handling.
All in all. the ATM system is a simple architecture, but many applications are similar.

9.12 CHAPTER SUMMARY

After analyzing an application and before beginning the detailed design, the system designer

must decide on the basic approach to the solution. The form of the high-level structure of the
system, including its breakdown into subsystems, its inherent concurrency, allocation of sub- # ̂ • •
systems to hardware and software, data management, coordination of global resources, soft-

* v *■

ware control implementation, boundary conditions, and trade-off priorities, is called the
system architecture.

A system can be divided into horizontal layers and vertical partitions. Each knot detines
a different abstract world that max differ completely from other laxeis. Each lax or is a client
of services ol the layer or layers below it and a supplier of services for the laxer or layers
aboxe it. Sxstems can also be divided intv* partitions, each performing a general kind o! ser

vice. Simple system topologies, such as pipelines or stars, reduce system complexity. Most

systems are a mixture of layers and partitions.

Inherently concurrent objects execute in parallel and cannot be combined on a single

thread o f control. These objects must be assigned to separate hardware devices or to separate

tasks in a processor. Other objects can be folded together on a single thread of control and

implemented as a single task.

Enough processors and special-purpose hardware units must be provided to achieve the

needed performance. Objects must be assigned to hardware such that the use o f hardware is

balanced and meets concurrency constraints. The system designer must estimate computa

tional throughput and allow for queuing effects in configuring the hardware. Some compute-

intensive compulations can be performed by special-purpose hardware. One goal in parti

tioning a hardware network is to minimize communications traffic between physically-dis-
tinct modules.

Data stores may be used to cleanly separate subsystems within an architecture and to

give application data some degree o f permanence. In general data stores may be implement

ed with memory data structures, tiles, and/or databases. Files are simple, cheap, and perma

nent but may provide too low a level o f abstraction for an application and necessitate much

additional programming. Databases provide a higher level of abstraction than files, but they

tot) involve compromises in terms of overhead costs and complexity.

The svstem designer must identify global resources and determine mechanisms for con-

trolling access to them. Some common mechanisms are: establishing a “guardian" object

that serializes all access, partitioning global resources into disjoint subsets which are man

aged at a lower level, and locking.^ W

Hardware control is inherently concurrent, but software control can be procedure-driv

en. event-driven, and concurrent. Control for a procedure-driven system resides within the

program code: the location of the program counter and the stack o f procedure calls and local

y ariabies define the system state. In an event-driven system control resides within a dispatch

er or monitor: application procedures are attached to events and are called by the dispatcher
when the corresponding events occur. In a concurrent system, control resides concurrently

in multiple independent objects. Event-driven and concurrent implementations are much

more flexible than procedure-driven control.

Most of system desien is concerned with steads -state behavior but boundarv conditions * »* * »
must be considered a s well: initialization, termination, and failure.

An essential aspect of system architecture is making trade-offs between lime and space,

hardware and software, simplicity and generality, and efficiency and maintainability. These

trade-offs depend on the goals ot the application. 'Ilte system designer must state the priori
ties so that trade-ott decisions during subsequent design will be consistent.

Several kinds of systems are frequently encountered lor winch standard arcliitecnn.il
frameworks exist. I he-e uu hide two kinds ot functional transformations: batch computation
and continuous transformation; three kinds ot tune-dependent systems: mtcr.ii live interface,
dynamic simulation, and real time, and a database system: transaction manager. Most appli
cation systems are usually a hybrid of several forms, possibly one lor each major subsystem.
Other kinds of architecture are possible.

architecture inherent concurrencym subsystem
client-supplier laver0 system desien• w
concurrency# partition system topology
data management peer-to-peer thread of control
event-driven system * real-time system trade-off priorities
hardware requirements service

Figure 9.5 Key concepts for Chapter 9

BIBLIOGRAPHIC NOTES

Software systems design is addressed bv several books on design methodology, such as• W « V W «

| Ward-851. |Pagc-Joncs-88|. and (Yourdon-89). Recent years have seen greater emphasis on

system design and issues of distributed and concurrent systems. The introduction of tasking

constructs in Ada has spurred a new emphasis on modularity and concurrency in program

ming: [Buhr-841 addresses these issues and introduces notation for them.

The design of large real-time hardware-software systems, such as military weapons sys
tems. air traffic control systems, and spacecraft launch and support systems, is another mat

ter entirely. Although the techniques in this book should be applicable to any kind o f system,

very large systems are dominated by logistical concerns. Analysis in such systems can in
volve extensive experiments to establish the requirements themselves and to determine what

is realizable by current technology. There are few if any books proposing methodologies for

such systems, and we do not profess to be experts.
For a description of an active transformation pipeline for a graphics processor, see

Chapter 10 of [Foley-821.

REFERENCES

[Mulir-S-t| R.J.A. Bulir. S\sfc/n Ih 's i^n wiih AJo Englewood C'lilts. New Jer«.e>: Prentice Hall. l l,S-5

[Foley-S21 James D. Foley. Aiulries Van Dam. l : iinJ>inuniii ls of i t t icn u nvo Ci>m{uiU'r l ,n ip i i to \

Reading. Ma-.v: Addison-Wedcv, I l>s2.
V ♦

|Rage-Joncs-NX| M c ilir Rage-Joncs. / he t yt\n (n \ i l Stnn 'nth 't i S y \ tc w \ Ihwt^K h.nglewood

Cliffs, Now Jersey: Prentice Hall. i^SX.

| l >remerlani-1>n| W illiam J. Rremerlam. Michael R. Hlaha. James H. Rumbaugh. Thomas A. \a rw ig

Building an obiecl-oriented D B M S on top ol a iclalional database. l:\pcctod to tv published m

(‘A C M , September RW l.

|W anl'X5| P a u l Waul. Steve Mellor. Sit a* u u < \ l />o t'lopmvnt /«*/ AY* ; / - l ime .VvA/rw*. In g le -

wood ('h tls . New Jeisev: Yomdon Ricss. R*S(v

| Yomdon Xl >| Rdward Yomdon. I airy Constantine. S s n u i u r c J /Y.wyn / P : \ t i pu t i c

• e i j iithi S’\ / > r . \ a tm l*nelewiHHt(lilts. New Jersey rrentice Hall.

EXERCISES

9.1 <4> For each o f the following systems, list the applicable style(s) of system architecture: batch

transformation, continuous transformation, interactive interface, dynamic simulation, real time

system, and transaction manager. Explain your selectionist. For systems which tit more than

one style, group features of the system by style.

a. An v U r t rank ' chess eampnnian. The system consists o f a chess board with a built-in comput

er. lights, and membrane switches. The human player registers moves by pressing chess piec

es on the board, activating membrane switches mounted under each square. The computer

indicates moves through lights also mounted under each square. The human moves the chess

pieces tor the computer. The computer should make only legal moves, should reject attempt

ed illegal human moves, and should try to win.

b. /In a irp la n e f l ig h t s im ulator f in a vulva game system. The video game system has already

been implemented and consists o f a computer with joystick and push-button inputs and an

output interface lor a color television. Your job is to develop the software for the computer

to display the view from the cockpit o f an airplane. The joystick and push button are used to

control the airplane. The display should be based on a terrain description stored in memory.

When your program is complete, it w ill be sold on cartridges that plug into the video game

svstem.*

c A f l ip p y dt\K e o tu n d le r chip. The chip is going to use a microprogram for internal condo).

You are concerned with the microprogram. The chip bridges the gap between a computer and

a floppy disk drive. Your portion o f the control w ill be responsible, for positioning the read/

write head and reading the data. Information on the diskette is organized into tracks and sec

tors. Tracks are equally spaced circles of data on the diskette. Data within a track is organized

into sectors. Your architecture w ill need to support the following operations: Find track 0.

find a given track, read a track, read a sector, write a track, and write a sector,

d. A snrutr \ \ \ t c /n . You arc concerned with the portion o f the system that detects undersea ob

jects am! computes how tar away they are irangei. This is done by transmitting an acoustic

pulse and analy /m g any resulting echo. A technique called correlation is used to perform the

analysis, in winch a time delayed copy of the transmitted pulse is m ultiplied by the returned

echo and integrated tor many values of time delay. Il the result is large for a particular value

ol time delay, it is an indication that there is an object with a range that corresponds to that

dclav¥

9.2 r.M Discuss how you would implement control for the applications described in the previous ex

ercise

9*3 As the system architect lor a new signal processing product, you must decide how to store

data in real tunc I he product uses analog to digital convenors to sample an analog input signal

at the fate <»! I ****** hytcsAecom! < 12WX)0 bits/secondi tor 10 seconds. \ nfonunately. the need

cd calculations are too tune consuming to do as the samples arc received, so you are gome to

have to More the samples temporarily The dcusum has already been made to lim it the amount

<d memory used hu butlers to bytes Ihe system has a I loppy th.sk drive that uses dis

kettes organized into 7? tracks tor a total o! 2-ltooO bytes of storage per diskette. It takes 10

m illivxonds to move the disk drive rcad/wntc head from one track to .mother and S3 nullivcc-

ondv on average. n» find the Isrpm m i;/ ot a track once the head is positioned Hie disk drive

w ill Iv positioned at th r correct track prior to the start ot data acquisition

Tw o solutions to the problem are being considered: (I) Simply write the data samples on the

diskette as they become available. W hy doesn’t this work? (2) Use memory as a buffer. Data

samples are placed in memory as they arc acquired and written to the floppy disk as fast as pos

sible on sequential tracks. W ill this method work? Describe the method in more detail. How

much memory is needed for the buffer? How many tracks w ill be used on the diskette? Prepare

a few scenarios. Describe how the control mi slit work.
W

9.4 (6) A system is desired for automating the drilling o f holes in rectangular metal plates. The size

and location o f holes is described interactively using a graphical editor on a personal computer.

When the user is satisfied with a particular drawing, a peripheral device on the personal com

puter punches a numerical control (N /C) tape. The tape can then be used on a variety o f com

mercially available N /C drilling machines which have moving drill heads and w hich can chance
W W w

drill sizes. You are concerned only with the editing o f the drawings and the punching o f the NY

C tapes. The tapes contain sequences o f instructions to move the drill head, change drills, and

drill. Since it takes some time to move the drill between holes, and even Ionizer to chance drills,

the system should determine a reasonably efficient drilling sequence. It is not necessary to

achieve the absolute minimum time, but the system should not be grossly inefficient either. The

drill head is controlled independently in the x and y directions, so the time it lakes to move be

tween holes is proportional to the larger o f the required displacements in the x and the v direc

tion. Prepare a system architecture. How would you characterize the style o f the system?

9.5 (5) A system for interactive symbolic manipulation o f polynomials is desired. The basic idea is

to allow a mathematician to be more accurate and productive in developing formulas. The user

enters mathematical expressions and commands a line at a time. Expressions are ratios o f poly

nomials, which are constructed from constants and variables. Intermediate expressions may be

assigned to variables for later recall. Operations include addition, subtraction, multiplication, d i

vision. and differentiation with respect to a variable. Develop an architecture for the system.

How would you characterize the style o f the system? How would you save work in progress to

resume at a future time?

9.6 (4) The following modules have been suggested for the system described in the previous exer

cise. Organize them into partitions and layers.

a. line syntax— scan a line o f user input for tokens

b. line semantics— determine meaning o f line input

c. command processing— execute user input, error checking

d. construct expression— build an internal representation o f an input expression

c. apply operation— carry' out an operation on one or more expressions

f. save work— save the current context

g. load work— read in previously saved context

h. substitute— substitute one expression for a variable in another expression

i. rationalize— convert an expression to canonical tonn

j. evaluate— replace a variable in an expression with a constant and simplify the expansion

9.7 <(>) A system for editing, saving, and printing object diagrams and generating relational database

schema is desired. Only a limited subset ol the object modeling notation is to bo supported, ob

ject classes with attributes and binar\ associations with multiplicity. Editing lunctions such as

create object class, create association, cut. copy, ami paste are required. Diagrams span scxcral

sheets. The editor must understand the semantics ot object diagrams. Eor example, when an ob<

lect class icctangle is moved, the lines representing a»\ attached associations are stretched. It

an object class is deleted, attached associations are also deleted. When the user is satisfied with
the diagram, the system vs ill generate the corresponding relational database schema. Discuss the
relative advantages of a single program which performs all functions versus two programs, one
which edits object diagrams and the other which generates database schema from object dia
grams

9JI <6> In the previous exercise. there are both physical and logical aspects ot object diagrams to be
considered Phy sical aspects include location and sizes of lines, boxes, circles, and (ext. Logical
aspects include connectivity, classes, attributes, and associations. Discuss basing your architec
ture on the following strategies. Consider issues involved in editing and saving object diagrams
as well as generating database schema:
a Model only the geometrical aspects of object diagrams. Treat logical aspects as derived at

tributes
b Model both the geometrical and logical aspects of object diagrams.

9.9 <5l Another approach to the system described in exercise 9.7 is to use a commercially available
desktop publishing system for object diagram preparation instead of implementing your own
object diagram editor. The desktop editor can dump its output in an ASCII markup language.
The vendor supplies the grammar for the markup language. Compare the two approaches. One
approach is lo build your own editor that understands the semantics of object diagrams. The oth
er is to use a commercially available desktop publishing system to edit object diagrams. What
happens if new versions of the desktop publishing system become available? Can you assume
that the user prepares a diagram using a notation that your database generator will understand'1
Is ii worth the effort to implement functions such as cut. copy, and paste that commercial sys
tems already do so well? W ho is going lo help the user if they run into problems** How is your
system going to be supported and maintained ’ How soon can you get the system completed?

9.10 (bi One architectural decision that could be made for the system described in the previous exer
cise is to perform a batch transformation, with the desktop publishing system file as input and
relational database schema as output. The following are proposed intermediate objects, not nec
essarily in the nghl order. Each is a model or file that is a distinct transform of the original object
diagram. Prepare a block diagram showing all steps in the transformation from input to output.
Describe what must be done in each step of the transformation:
a. database model -collection of tables
b. connection model - a collection of interconnected blocks containing text
c. document model— collection of lines, ellipses, and text
d object model—collection of object classes and relationships
c output file— list of database commands to create tables
f input file lists of graphic primitives on pages

9.11 { A common issue in many systems is how to store data so it is preserved in the event of power
loss or hardware failure The ideal solution should be reliable, low cost, small, fast, maintenance
free, simple to incorporate into a system Also, u should he immune to heal. dm. and humidity
Comprivmscs in the available technology often influence the functional requirements Compare
each of the following solutions m terms of the ideal
a Do not worry about it at all Reset all data every time the system is turned on
b Never turn the power off if it can he hclprd 1 se a special power supply, including backup

generators, if necessary

c. Keep critical information on a magnetic disk drive. Periodically make full and/or incremen
tal copies on magnetic tape.

d. Use a battery' to maintain power to the system memory' when the rest of the system is off. It
might even be possible to continue to provide limited functionality.

e. Use a special memory' component, such as a magnetic bubble memory or an electronically
erasable programmable read only memory'.

f. Critical parameters are entered by the user through switches. Several types of switches are
commercially available for this use. including several toggle switches in a package that con
nects the same way as an integrated circuit.

9.12 (7) For each of the following systems, select one or more of the strategies for data storage from
the previous exercise. In each case explain your reasoning and give an estimate (order of mag
nitude) of how much memory, in bytes, is required:
a. Four function pocket calculator. Main source of power is sunlight. Performs basic arith

metic.
b. Electronic typewriter. Main source of power is either rechargeable batteries or alternating

current. Operates in two modes. In one mode, documents are typed a line at a time. Editing
may be performed on a line before it is typed. A liquid cry stal display will display up to 16
characters for editing purposes. In the other mode, an entire document can be entered and
edited before printing. It is desired to save the working document for up to a year with the
main power off.

c. System clock fo r a personal computer. Main power is direct current supplied by the personal
computer when it is on. Provides time and date information to the computer. Must maintain
the correct date and time for at least 5 years with the main power off.

d. Airline reservation system. Main power is alternating current. Used to reserve seats on airline
llights. The system must be kept running at all times, at all costs. If, for some reason, the sys
tem must be shut off, no data should be lost.

e. Digital control and thermal protection unit fo r a motor. The device provides thermal protec
tion for motors over a wide range of horsepower ratings by calculating motor temperature
based on measured current and a simulation of motor heat dissipation. If the calculated motor
temperature exceeds safe limits, the motor is shut off and not allowed to be restarted until it
cools down. The main source of power is alternating current, which may be interrupted. The
system must provide protection as soon as it is turned on. Parameters needed for thermal sim
ulation are initially set at the factory, but provision must be made to change them, if neces
sary', after the system is installed. Because the motor temperature is not measured directly, it
is necessary to continue to simulate the motor temperature for at least an hour after loss of
main power, in case power is restored before the motor cools.

9.13 Designing file formats is a common activity that may be carried out during system design.
A BNF diagram is a coincident way to express file formats. Figure l;l>. I is a portion of a BNF
diagram of a language for describing object classes and binary associations. Nonterminal sym
bols are shown in rectangles and terminal symbols are show n in circles or rectangles w ith round
ed comers. With the exception of character, all nonterminals are defined in the diagram. A di
agram consists of classes and associations. A class has a unique name and main attributes. An
association has an optional name and two roles, one for each end of the association. A role con
tains (he name one of the object classes being associated and multiplicity information. Textual
information is described by quoted strings. A character is any ASCII character except quote,
a. Cm: the language m Figure F*M to describe the object diagram in Figure l:°.2

attribute

> 0
-^ A T T R IB U T E) ■ siring

0

— > { T) -------- >(R O L E) — i

f X

/
1 t i l l 1 I s . s f t

Z E R O -O N E

string

0 T----- /

character

->̂ O N E y ~

->(M A N Y y

-0----------------------------

>0

Figure K9.I liNF diagram lor a language which described object classes and associations

P o ly g o n
Point

x
y

Figure K9.2 Object diagram of polygons

b. Discuss similarities and dillcrences heuseon data in storage and data in motion. For example,

the description you prepared m the prewous part could Ik used in store an object diagram in

a file or to transmit a diagram from one location to another

C. Ih c language m this problem is used to describe the structure <>(object diagfains. Invent a

language to describe two dimensional polygons. I sc ItN F to describe \m ir language. D e

scribe a square and a triangle m >our language.

9.14 (6) A common problem encountered in digital systems is data corruption due to noise or hard
ware failure. One solution is to use a cyclic redundancy code (CRC). When data is stored or
transmitted, a code is computed from the data and appended to it. When data is retrieved or re
ceived, the code is recomputed and compared with the value that was appended to the data. A
match is necessary but not sufficient to indicate that the data is correct. The probability that er
rors will be detected depends on the sophistication of the function used to compute the CRC.
Some functions can be used for error correction as well as detection. Parity is an example of a
simple function that detects single bit errors.

The function to compute a CRC can be implemented in hardware or software. The choice for
a given problem is a compromise involving speed, cost, flexibility, and complexity. The hard
ware solution is fast, but may add unnecessary complexity and cost to the system hardware. The
software solution is cheaper and more flexible, but may not be fast enough and may make the
system software more complex.

For each of the following subsystems, decide whether or not a CRC is needed. If so, decide
whether to implement the CRC in hardware or software. Defend your choices.
a. floppy disk controller
b. system to transmit data files from one computer to another over telephone lines
c. memory board on a computer board in the space shuttle
d. magnetic tape drive
e. validation of an account number (a CRC can be used to distinguish between valid accounts

and those generated at random)

9.15 (Project) Advances in technology have made it possible to put banking functions in a credit card.
(See "The very smart card: a plastic pocket bank.” IEEE Spectrum. October 1988.) It is often
the case that new systems are constrained by considerations of compatibility with old methods.
What changes would y o u make in the architecture of the verv smart card if it did not have to be
compatible with existing credit cards? For example, what would happen if the card was not go
ing to be used to make imprints and did not have to be read magnetically. How would the archi
tecture change if size constraints were relaxed? Do you think the bending requirement would be
necessary if the smart card were not preceded by credit cards? Explain your answers.

Object Design

'Hit* analysis phase determines what the implementation must do, and the system design

phase determines the plan o f attack. The object design phase determines the full definitions

of the classes and associations used in the implementation, as well as the interfaces and al
gorithms of the methods used to implement operations. The object design phase adds inter

nal objects for implementation and optimizes data structures and algorithms. Object design

is analogous to the preliminary design phase of the traditional software development life cy

cle.
'litis chapter shows how to take the analysis model and flesh it out to provide a basis tor

implementation. In the O M T methodology, there is no need to transform from one model to

another, as the object-oriented paradigm spans analysis, design, and implementation. The

object-oriented paradigm applies equally well in describing the real-world specification and

computer-based implementation.

10.1 OVERVIEW OF OBJECT DESIGN

During object design the designer carries out the strategy chosen during system design and

Meshes out the details. There is a shift in emphasis from application dom ain concepts toward

computer concepts. T h e objects discovered during analysis serve as the skeleton of the d e

sign. but the object designer must choose among dilterent ways to im plem ent them w ith an

eye toward m in im iz in g execution t ime, m em ory, and other measures of cost. In particular,

the operations identified during analysis must l>c expressed as a igo iithm s, w ith com plex o p

erations dccomjmsed into simpler internal operations. D ie classes, attributes, and associa

tions from analysis must !>e implemented as speohe data structures. New object classes must

introduced to store intermediate results during program execution and to avoid the need

for rccoinputatioii O p t im iza t io n ot the design should not be carried to excess, as ease of i m

plementation. maintainabil ity , and extensibility ate also impoitant concents.

■> ->7
* . *• I

10.1.1 Working from Analysis and Architecture

The object model describes the classes of objects in the system, including their attributes and

the operations that they support. The information in the analysis object model must be

present in the design in some form. Usually the simplest and best approach is to carry the

classes from analysis directly into design. Object design then becomes a process o f adding

detail and making implementation decisions. Occasionally, an analysis object does not ap

pear explicitly in the design but is distributed among other objects for computational effi-

ciency. More often, new redundant classes are added for efficiency.

The functional model describes the operations that the system must implement. During

design we must decide how each operation should be implemented, choosing an algorithm

for the operation and breaking complex operations into simpler operations. This decompo

sition is an iterative process that must be repeated at successively lower levels of abstraction.

The algorithms and decomposition must be chosen to optimize important implementation

measures, such as case of implementation, understandability. and performance.

The dynamic model describes how the system responds to external events. The control
structure for a program is primarily derived from the dynamic model. The flow of control

within a program must be realized either explicitly (bv an internal scheduler that recognizes

events and maps them into operation calls) or implicitly (by choosing algorithms that per

form the operations in the order specified by the dynamic model).

In choosing an architecture, we have already taken some steps toward making the deci

sions necessary to implement the system. We have chosen the overall How of control and

data through the system and have partitioned the system into manageable subsystems. If

multiple processors are involved, we have decided how objects will be allocated to proces
sors. The choice of architecture will also influence the decision of how to map events into

operations.

Object-oriented design is primarily a process of refinement or adding detail. This chap

ter shows how to evolve an analysis model into a design bv organizing and augmenting the• % • w* w s- <>

analysis model.

10.1.2 Steps of Object Design

During object design, the designer must perform the following steps:

• Combine the three models to obtain operations on classes 110 .21

• Design algorithms to implement operations [I0 .3|

• Optimize access paths to data 110 .4J

• Implement control for external interactions 110.5|

• Adjust class structure to increase inheritance [|0.b|

• Design associations 110 .7 1

• Determine object representation | I0.X|

• Package classes and associations into m odules 1 I0 .0 |

Obion-oriented design is an iterative process. When you think that the object design is com

plete at one lew el of abstraction, add more detail and flesh out the design further at a liner

lex el of detail. You may find that new operations and attributes must be added to classes in

the object model, and possibly new classes will be identified. It may even be necessary to

revise the relationships between objects (including changes to the inheritance hierarchy).

You should not be surprised if you lind yourself iterating several limes.

10.1.3 Object Modeling Tool Example

Mans of the examples in this chapter come from the design of the Object Modeling Tool
(OMTool >. a program written by one of the authors. OMTool is a graphic editor for con

structing object diagrams. With OMTool a person can easily create, load. edit. save, and print

object diagrams. A major design goal for OMTool has been to provide simple and natural

user interaction.

Before the adxeni ol OMTool, we constructed object diagrams w ith a general purpose

graphic editor. It is tedious to construct object diagrams by drawing lines, boxes, text, and

so forth. OMTool permits the user to build object diagrams directly from O M T modeling

symbols, for instance, as the user moves a class box. relationship lines stay connected and

inose with it. (f.MTool prevents illogical constructs, such as dangling relationship lines. With

OMTool, it is easy to quickly sketch out and then clean up an object diagram. We have also

developed several backend programs that take acquired OMTool data and generate program

ming code stubs and relational database schema.
One major architectural decision that we made for OMTool was to store both a logical

and graphical model. The graphical model stores the picture that is draw n on the screen: the

choice ol symbols, positimi of symbols, length of lines, and so forth. The logical model

stores the underlying meaning of the picture, that is. classes, attributes, operations, and then

relationships. The graphical model is useful for interacting w ith the user of OMTool and pre

paring printouts. The logical model is useful for semantic checking and interacting with the

backend programs which need to know what the diagram means but do not care about the

precise manner in which it is drawn. The examples in this chapter are taken Irom both the

OMTool cranhical and logical models.

10.2 COMBINING THE THREE MODELS

\ber analysts v.e have she object. dynamu. and luncdonal m odels, hut the object m odel is
the: nam trameworJ. around which the desien is constituted The object model liom analysis
may no; shov. operations. The designer must corner! the actions and activities o! the dynam
u model and the processes <*i the turn tmnal model into operations atuched to classes in the
object mode! In inajunp thn corner-non. u.e beem the process ot mappuu* the Inptcai M in e

lure ot the analv-.i*. mode! into a physical o r iM m /a i io n *»f program

fu u h date d iagram th -v n b e -. the h ie history o i an object A transition is a chance ot

'date or the object and map* into an operation on the object We can associate an operation

*A:th cash event received bv an object In the state diaetam. the action |>etlormed in a trail

sition depends on both the event and the state of the object. Therefore the algorithm imple

menting an operation depends on the state of the object. I f the same event can be received

by more than one state of an object, then the code implementing the algorithm must contain

a case statement dependent on the state. (I f the language permits an object to change its class

at run time, then the slates of the object can be implemented as subclasses of the original

class, and the method resolution mechanism eliminates the need for a case statement. State

can be considered an example of generalization by restriction, as explained in Section 4.3.

but most object-oriented languages do not support dynamic changing of an object's class.)

However, in many cases, an event can only be received in a single state, or all transitions on

the event result in the same action, so no case statement is necessary.
An event sent by an object may represent an operation on another object. Events often

occur in pairs, with the first event triggering an action and the second event returning the re

sult or indicating the completion of that action. In this case, the event pair can be mapped

into an operation performing the action and returning control provided that the events are on

a single thread of control passing from object to object.

An action or activity initiated by a transition in a state diagram may expand into an entire

data flow diagram in the functional model. The network of processes within the data flow

diagram represents the body of an operation. The flows in the diagram are intermediate val

ues in the operation. The designer must convert the graph structure of the diagram into a lin

ear sequence of steps in an algorithm. The processes in the data How diagram constitute

suboperations. Some of them, but not necessarily all. may be operations on the original target

object or on other objects. Determine the target object of a suboperation as follows:

• If a process extracts a value from an input flow, then the input How is the target.

• I f a process has an input How and an output flow of the same type, and the output value

is substantially an updated version of the input How. then the input/output flow is the

target.W

• If a process constructs an output value from several input flows, then the operation is a

class operation (constructor) on the output class.

» If a process has an input from or an output to a data store or an actor, then the data store

or actor is a target of the process. (In some cases, such a process must be broken into

two operations, one for the actor or (.lata store and one for a flow value.)

The original target class is a client o f any classes that supply internal operations to one of its

operations. The client-supplier relationship defines the structure of the operation calling

graph (sometimes called the program structure chart).

10.3 DESIGNING ALGORITHMS

Each operation specified in the functional m odel must he form ulated as an The

analysis specification tells w h . i i the operation does from the view point o f its clients, but the

a lgorithm show s how it is done. A n a lg o rithm m ay be subdi\ ided into calls on sim pler o p

erations, and so on recursively, until the lowest-level operations are simple enough to imple

ment directly without further refinement.

The algorithm designer must:

• Choose algorithms that minimize the cost of implementing operations

• Select data structures appropriate to the algorithms

• Define new internal classes and operations as necessary

• Assign responsibility for operations to appropriate classes

10.3.1 Choosing Algorithms

Many operations are simple enough that the specification in the functional model already

constitutes a satisfactory algorithm because the description of what is done also shows how

it is done. Many operations simply traverse paths in the object-link network to retrieve or

change attributes or links. For example. Figure 10.1 shows a Class box object containing an

Operation list, which in tum contains a set of Operation entry objects. There is no need to

write an algorithm to find the class box containing a given operation entry because the value

is found by a simple traversal of unique links. Nontrivial algorithms are primarily needed for

two reasons: to implement functions for which no procedural specification is given and to

optimize functions for which a simple but inefficient algorithm serves as definition.

Figure 10.1 Fragment of OMTool model

Some functions are specified as declarative constraints, without any procedural defini

tion. For example, "the circle passing through three noneolincar points" is a nonprocedural

specification of a circle. In such cases, you must use your knowledge of the situation (and

appropriate reference books) to invent an algorithm. The essence of most geometry prob

lems, such as the example given, is the discovery of appropriate algorithms and the proof

that they are correct.
Most functions have simple mathematical or procedural definitions. Often the simple

definition is also the best algorithm for computing the f unction or else is so close to any other
algorithm that any loss m efficiency is worth the gain in clarity. For example, a class box

from Figure 10.1 is drawn by first drawing Us outline and llicn iteratively draw ing its parts,

(he operation list and the attribute list.
In other cases, the simple dctinilinn of an operation would lx* hopelessly inefficient and

must be implemented with a more efficient algorithm. For example, searching for a value in

a set of size n by scanning the set requires an average of n/2 operations, whereas a binary

search takes log n operations and a hash search takes less than 2 operations on average, re

gardless of the size of the set.
The level of abstraction of the algorithms should not so below the level of granularity

of the objects in your object model. For example, in sketching the recursive draw algorithm

for the class box in Figure 10 .1, it is inappropriate to worry about the low-level graphics calls

that will draw the box icon. It is not necessary to write algorithms for trivial operations that

are internal to one object, such as setting or accessing the value of an attribute.

Considerations in choosins anions alternative algorithms include:

• Com putational complexity. Mow does processor time increase as a function of the size

of the data structures? Don’t worry about small factors in efficiency— avoid "bit push
ing.” For example, an extra level of indirection is insignificant if it improves clarity. It

is essential, however, to think about the complexity of the algorithm, that is. how the

execution lime (or memory) grows with the number of input values— constant time, lin

ear. quadratic, or exponential— as well as the cost of processing each input value. For

example, the infamous "bubble sort” algorithm requires time proportional to / r . where

n is the size of the list, while most alternative sort algorithms require time proportional

to n log n.

• Ease o f implementation and understandability. It is worth giving up some performance

on noncritical operations if they can be implemented quickly with a simple algorithm.

For example, a pick operation on an OM Tool diagram is implemented as a recursive

search of top-level diagram elements, such as class boxes and associations, working

down toward primitive elements, such as individual attribute entries. This is not the

most efficient algorithm theoretically, but it is simple to implement and extensible.

Mere, speed is not a problem because the operation is only performed when the user

pushes a button, and the number of elements on the page is limited.

• Flexibility. Most programs will be extended sooner or later. A highly optimized algo
rithm often sacrifices readability and ease of change. One possibility is to provide two

implementations of critical operations— a simple but inefficient algorithm that can be

implemented quickly and used to validate the system, and a complicated but efficient

algorithm, whose correct implementation can be checked against the simple one. f or ex

ample. a more complicated algorithm for picking objects in a diagram am id be imple

mented by spatially sorting all the objects in a large. Hat data structure. This algorithm

would be faster for large diagrams, but it imposes constraints on the form of the objects

and requires that the algorithm know details for all objects. In anx case, the original sim

ple algorithm could be used as a correctness check.

• F in e tu n in g the o b je c t m o d e l . I f the object m odel w ere structured d if fe ic n th . w ould

there be other alternatives? For exam ple . F igure 10.2 show s tw o designs o f the m apping

betw een d iagram elem ents and w indow s m O M T o o l. In the o rig in a l upper design, each

diagram elem ent contains a list o f w indow s in w h ich it is v isib le. T h is is in e ffic ien t b e

cause operations on a set ol elem ents must be com puted sepai atelx for each w in d o w . In

the low er design, each e lem ent belongs to one sheet, w h ich max appeal in anx num ber

1
DiagramL H ----------

_____________________________\ A / l n / ^ r v t i r

element p
__________i

visible

I |
I DiagramL
j element r
i I

sheet
Sheet ----------o! Window

visible I

L* 10.2 Alternative structure

of w indovvs. The image on tiie sheet can be computed once, and then copied to each win
dow as a bitmap operation. The reduction in repeated operations is worth the extra level
of indirection.

10.3.2 Choosing Data Structures

Choosing algorithms involves choosing the data structures thev work on. Durum analvsis.W ^ » W •

we concentrated onlv on the logical structure of the infonnation in the system, but during
W « ^

object design we must choose the form of the data structures that will pemiit efficient algo

rithms. The data structures do not add information to the analvsis model, but thev organize

it in a form convenient for the algorithms that use it. Many implementation data structures

are instances of i ontam er classes. Such data structures include arrays, lists, queues, stacks,

sets, bags, dictionaries, associations, trees, and many variations on these, such as priority

queues and binary trees. Most object-oriented languages provide an assortment of generic

data structures as part of their predefined class libraries.

For example, the diagram elements in a picture must be drawn on the screen in some

specific order because the ones drawn last may overlap the ones drawn first. To permit con

sistent ordering, they are organized into an ordered list.

10.3.3 Defining Internal Classes and Operations

D uring the expansion o f a lgorithm s, new classes o f objects m ay be needed to hold in te rm e

diate results. N ew . lo w -le v e l operations may be invented during the decom position of high

level operations.

A com plex operation can be defined in terms ol lo w er-leve l operations on s im pler o b

jects. These lo w -le v e l operations must be defined during object design because most of them

are not v is ib le exicrnallv Som e o f the required lo w er-leve l operations mav be found am ong

the "shopp ing -lis t" operations that were identified during analvsis as being poientia llv use

ful. Hut there w ill usual I v he a need to add new interna! operations as we expand h igh -level

functions lo r exam ple , the O M T o o l erase operation on a d iagram elem ent is conceptually

sim ple, but its im plem entation on a p ixel-based screen is m ore com plicated, lo erase an ob

ject, it must be draw n m the background color, then objects uncovered bv the e iasu ie or dam

aged bv the draw must be repaired bv l»cing redraw n I be repair operation is purelv an

interna! operation needed because we arc w ork ing on a p ixel-based screen.

When you reach this point during the design phase, you may have to add new classes

that were not mentioned directly in the client's description of the problem. These low-level

classes are the implementation elements out of which the application classes are built. For

example, an OMTool class box image is made of rectangles, lines, and text strings in various

fonts. In OMTool. the low-level graphics elements come from the graphics toolkit module,

which supplies its services to the rest of the system. Typically low-level implementation

classes are placed in a distinct module.

10.3.4 Assigning Responsibility for Operations

Many operations have obvious target objects, but some operations can be performed at sev

eral places in an algorithm, by one of several objects, as long as they eventually get done.

Such operations are often part of a complex high-level operation with many consequences.

Assigning responsibility for such operations can be frustrating, and they are easy to overlook

in laying out object classes because they are not an inherent part of any one class.

For example, OMTool has a drai> operation applicable to diagram elements. Dragging a

box moves the box and all the lines attached to it. provided nothing pushes up against an ob

stacle. The drag operation propagates from object to object along connections between objects.

Some drags can fail because of obstacles, and backtracking may be required. Eventually the

picture must be redrawn on the screen. When should each object image be redrawn on the

screen? After it is dragged by another object? After it drags other objects? After all objects have

been dragged? Is each object responsible for redrawing itself, or is the entire picture responsi

ble for redrawing itself? Such questions are hard to answer because the breakdown on a com

plex externally meaningful operation into internal operations is arbitrary .

When a class is meaningful in the real world, then the operations on it are usually clear.

During implementation, however, internal classes are introduced that do not correspond to

real-world objects but merely some aspect of them. Since the internal classes are invented

for implementation, they are somewhat arbitrary, and their boundaries are more a matter of

convenience than of logical necessity.
Mow do you decide what class owns an operation? When only one object is involved in

the operation, the decision is easy: Ask (or tell) that object to perform the operation. The de

cision is more diflicull when more than one object is involved in an operation. You must de

cide which object plays the lead role in the operation. Ask y ourself the following questions:

• Is one object acted on while the other object performs the action? In general, it is best

to associate the operation with the target of the operation, rather than the nuti,ito>.

• Is one object modified by the operation, while other objects are only queried for the in

formation they contain? The object that is changer! is the target of the operation.

• Looking at the classes and associations that are involved in the operation, which class

is the most centrallv'-located in this subnetwork of the obiccl-modeL’ It the classes and0

associations form a star about a sinele central class, it is the target ot the operation.

° It the objects were not software, but were the real-world objects being represented in

ternally. what real object would you push. move, activate, or otherwise manipulate to
initiate the operation?

Assigning an operation to a class w ithin a generalization hierarchy can sometimes be diffi
cult because the definitions of the subclasses within the hierarchy are often lluid and can be♦*
adjusted during design as convenient. It is common to move an operation up and down in the
hierarchy during design, as its scope is adjusted.

10.4 DESIGN OPTIMIZATION

'Hie basic design model uses the analysis model as the framework for implementation. The

analysis mode! captures the logical information about the system, while the design model
must add details to support efficient information access. The inefficient but semantically-cor-

rect analysis model can be optimized to make the implementation more efficient, but an op

timized system is more obscure and less likely to be reusable in another context. 'The

designer must strike an appropriate balance between efficiency and clarity.
During design optimization, the designer must:

• Add redundant associations to minimize access cost and maximize convenience

• Rearrange the computation for greater efficiency

• Save derived attributes to avoid recomputation of complicated expressions

10.4.1 Adding Redundant Associations for Efficient Access

During analysis, it is undesirable to have redundancy in the association network because re
dundant associations do not add any information. During design, however, we evaluate the

structure of the object mode! for an implementation. Is there a specific arrangement of the

network that would optimize critical aspects of the completed system? Should the network

lx* restructured by adding new associations? Can existing associations be omitted? The as

sociations that were useful during analysis may not form the most efficient network when

the access patterns and relative frequencies of different kinds of access are considered.

To demonstrate the analysis of access paths, consider the design of a company's employ

ee skills database. A portion of the object model from the analysis phase is shown in f igure

10.3. The operation Conipunv::fuul-skill returns a set of persons in the company with a given

skill. For example, we might ask for all employees who speak Japanese.

1 E m p lo ys r_ ~i H as-sk i l l T o tTiii
! Company '.---------— — q Person p -----------------------q Skill

Figure 10.3 (h.iin of u».M*<fatton,v

For tills example, suppose that the company has 1000 employees each of w hom has 10

skills on average. A simple nested loop would traverse Employs 1000 times and lias -sk ill

10.000 limes. If only 5 employees actually speak Japanese, then the test-to-hit ratio is 2000.

Several improvements are possible. First, lia s -s k ill need not he implemented as an un-

ordered list but instead as a hasher! set. Hashing can be performed in constant lime, so the

cost of testing whether a person speaks Japanese is constant, provided Speaks Japanese is

represented by a unique skill object. This rearrangement reduces the number of tests from

10.000 to 1,000. one per employee.
In cases where the number of hits from a query is low because only a fraction of objects

satisfy the test, we can build an index to improve access to objects that must be frequently

retrieved. For example, we can add a qualified association Speaks language from Company

to Employee, where the qualifier is the language spoken (Figure 10.4). This permits us to im

mediately access all employees who speak a particular language with no wasted accesses.

There is a cost of the index: It requires additional memory, and it must he updated whenever

the base associations are updated. The designer must decide when it is worthwhile to build

indexes. Note that if most queries return all or most o ft he objects in the search path, then an

index real I v does not save much because the test-to-hit ratio is near 1.

Company language
Speaks language

-d Person

Figure 10.4 Index for personal skills database

Speaks language is a derived association, defined in terms of underlying base associa

tions. The derived association does not add any information to the network but permits the

model information to be accessed in a more efficient manner.
Analyze the use of paths in the association network as follows:

• Examine each operation and see what associations it must traverse to obtain its informa
tion. Note which associations are traversed in both directions (usually not In a single

operation) ami which are traversed in a single direction only: the latter can be imple

mented efficiently with one-way pointers.

For each operation, note the following items:

• I low often is the operation called? 1 low costly is it to perform?

• What is the "fan-out" along a path through the network? Estimate the average count of

each “many" association encountered along the path. Multiply the individual fan-outs

to obtain the fan-out of the entire path, w hich represents the number of accesses on the

last class in the path. Note that “one" links do not increase the Ian-out. although they

increase the cost of each operation slightly: don't worry about such small effects.

• What is the fraction of "hits" on the final class, that is. objects that meet selection critena

(if any) and are operated on? If most objects are rejected timing the tiaveis.il for some

reason, then a simple nested loop may be inefficient at finding t.uget objects.

Provide indexes fo r frequent, costly operations w ith a lo w hit ra tio because such operations

are ineffic ien t to im p lem ent using nested loops to traverse a path in the netw ork .

1 0 .4 .2 Rearranging Execution Order for Efficiency

A fte r adjusting the structure o f the object m odel to o p tim ize frequent traversals, the next

th ing to o p tim ize is the a lgorithm itself. A c tu a lly , data structures and a lgorithm s are d ire c tly

related to each other, but w e find that usually the data structure should be considered first.

O ne key to a lg o rith m o p tim iza tio n is to e lim in a te dead paths as e a rly as possible. F o r

exam ple , suppose w e w ant to find a il em ployees w h o speak both Japanese and French. S up

pose 5 em ployees speak Japanese and 100 speak French: it is be lte r to test and find the Jap

anese speakers first, then test i f they speak French. In general, it pays to narrow the search

as soon as possible. Som etim es the execution order o f a loop m ust be inverted fro m the o rig

ina l specification in the functional m odel.

1 0 .4 .3 Saving Derived Attributes to Avoid Recomputation

D ata that is redundant because it can be derived from other data can be ' ‘cached” o r stored

in its com puted fo rm to avoid the overhead o f recom puting it. N e w objects o r classes m ay

be defined to retain this in fo rm atio n . T h e class (hat contains the cached data m ust be updated

i f any o f the objects that it depends on are changed.

F igure 10 .5 shows a use o f a derived object and derived attribute in O M T o o l. Each class

box contains an ordered list o f attributes and operations, each represented as a text string (le ft

o f d ia g ra m >. G iv e n the location o f the class box itself, the location o f each attribute can be

com puted by adding up the size o f a ll the e lem ents in fro m o f it. S ince the location o f each

elem ent is needed frequently , the location o f each attribute string is com puted and stored.

T h e region conta in ing the entire attribute list is also com puted and saved so that input points

need not be tested against a ttribu te text e lem ents in other boxes (r ig h t o f d iag ram). I f a new

attribute string is added to the list, then the locations o f the ones a fte r it in the list are s im p ly

offset bv the size o f the new elem ent.

(ordered)

Class — ■ ■ ci
box

Attribute

tex t

location c
(ordered) j

i

L

^Operation

text J

S Attribute
list

region

^Operation
list

(ordered)

fO--------- * text
/location

[^region (ordered)

Operation

text
/location

Figure 10.5 Derived .illnhulc to avoid rceomputation

The use of an association as a cache is shown in Figure 10.6. A sheet contains a priority

list of partially overlapping elements. I f an element is moved or deleted, the elements under

it must be redrawn. Overlapping elements can be found by scanning all elements in front of

the deleted element in the priority list for the sheet and comparing them to the deleted ele

ment. I f the number of elements is larse, this algorithm grows linearly in the number of ele-
ments. The Overlaps association stores those elements that overlap an object and precede it

in the list. This association must be updated when a new element is added, but testing for

overlap using the association is more efficient.

O verlaps

Priority
lis t

previous

Figure 10.6 Association as a cache

Derived attributes must be updated when base values change. There are three ways to

recognize when an update is needed: by explicit code, by periodic recomputation, or by us

ing active values.

Explicit update. Each derived attribute is defined in terms o f one or more fundamental

base objects. The designer determines which derived attributes are affected by each change

to a fundamental attribute and inserts code into the update operation on the base object to

explicitly update the derived attributes that depend on it.

Periodic recomputadon. Base values are often updated in bunches. Sometimes it is possi

ble to simply recompute all the derived attributes periodically without recomputing derived at

tributes after each base value is changed. Recomputation of all derived attributes can be more

efficient than incremental update because some derived attributes may depend on several base

attributes and might be updated more than once by an incremental approach. Also periodic re-

computaiion is simpler than explicit update and less prone to bugs. On the other hand, if the

data set changes incrementally a few objects at a lime, periodic recomputation is not practical

because too many derived attributes must be recomputed when only a lew are affected.
Active values. An active value is a value that has dependent values. Each dependent val

ue registers itself with the active value, which contains a set o f dependent values and update

operations. An operation to update the base value triggers updates o f all the dependent val

ues, but the calling code, need not explicitly invoke the updates. Separating the calling code

from the dependent object updates provides the same kind of modularity advantage as sep

arating the call o f an operation from the methods that it might invoke. Some programming

languages implement active values.

10.5 IMPLEMENTATION OF CONTROL

Th e designer must refine the M rategy for im p lem en ting the state-event m odels present in the

dynam ic m odel. As pan o f system design. you w ill liave chosen a basic strategy for rea liz ing

the d w ia m ic m odel (Section d .7). Now ih irin e object desien vou must llesh out this strategy.

There are three basic approaches to im p lem enting the dynam ic m odel:

• I 's in g the location w ith in the program to hold state (p rocedure-driven system)

• D irect im plem entation o f a state m achine m echanism (even t-d riven system)

• L s in c concurrent tasks

10.5.1 State as Location within a Program

D us i> the trad itiona l approach to representing contro l w ith in a program . Th e location o f

control w ith in a program im p lic itly delines the program state. A n y fin ite state m achine can

be im plem ented as a program (easily using gotos. som ewhat harder using nested program

structures i. Each state transition corresponds to an input statem ent. A fte r input is read, the

program branches depending on the input event received. Each input statem ent needs to han

dle any input value that could be received at that point. In h ig h ly nested procedural code,

lo w -le v e l procedures must accept inputs that they m ay know nothing about and pass them

up through many levels o f procedure calls until some procedure is prepared to handle them ,

"file lack ot m odularity is the biggest draw back o f this approach.

O ne technique ot converting a state d iagram to code is as fo llow s:

l. Identity the m am control path, beg inn ing w ith the in itia l state, identify a path through

the d iagram that corresponds to the norm ally expected sequence ol events. W rite the

names ot states along this path as a linear sequence. I Ins becomes a sequence o f state

ments m the program

"I
Identity alternate paths that brain.h o lt the m am path am i le jo m it later. These becom e

conditional statements m the program .

Id c n tit) backw ard paths th.il b ran d) of! the m am loop am i re jo in il earlier. These b e

com e loop* m the program It there are m u ltip le backw ard paths that do not cross, they

becom e nested loop** m the propm m B ackw ard paths that cross do not nest and can be

im plem ented v. uh coins jj .dJ cbo lads, but these art* rare

I he state*-, and trati-ulions that rem ain correspond to exception conditions. T h e \ can be

handled b \ •e ’.era! tec hnnjucs m cludm p error subroutines, exception h.m dlm p support

ed be the l.m ^uaee. i»r ettm e and testm:.: ol -.talus llai's hxccption handlim * is a lepm

rrs.:le use tor e<dos m .* p ropram m ine lam uupc becam e their use frequently sim plifies

nreakm e ou: <»{ A nested -iriK ture but do not use litem unless necessary

Let's see how the above approach could be applied to the state model for the ATM class

introduced in Chapter 8. Figure 10.7 shows the state model and the pseudocode derived from

it. First, we identify the main path of control, which corresponds to the reading of a card,

querying the user for transaction information, processing the transaction, printing a receipt,

and ejecting the card. Alternative Hows of control occur if the customer wants to process

more than one transaction or if the password is bad and the customer is asked to try again.

Pseudocode

do forever
display main screen
read card
repeat

ask for password
read password
verify account

until account verification is OK
repeat

repeat
ask for kind of transaction
read kind
ask for amount
read amount
start transaction
wait for it to complete

until transaction is OK
dispense cash
wait for customer to take it
ask whether to continue

until user asks to terminate
eject card
wait for customer to take card

K igurr 10.7 A IM contml

Putting these all together, the right portion of Figure 10.7 shows the pseudocode for the ATM

control loop. The caned events could be added to the flow ol control and implemented as

goto exception handling code.
Input events within a single-threaded program are coded as blocking I/O reads, that is.

I/O statements that wait for input (usually immediately following a write). In a multitasking

language, such as Ada. input events can also be coded as wait statements for an inter-task

call. The operating system is responsible for catching interrupts and queuing them up for or

dinary programs.

10.5.2 State Machine Engine

The most direct approach to implementing control is to have some way o f explicitly repre

senting and executing state machines. For example, a general “state machine engine” class

could provide the capability to execute a state machine represented by a table o f transitions

and actions provided by the application. Hach object instance would contain its own inde

pendent stale variables but would call on the state engine to determine the next state and ac

tion. (The state machines are objects but not application objects. They are part o f the

language substrate to support the semantics o f application objects.)
This approach allows you to quickly progress from the analysis model to a skeleton pro

totype of the system by defining classes from the object model, state machines from the dy

namic model, and creating "stubs” of the action routines. A stub is the minimal definition of

a function or subroutine without any internal code (code to return a precalculated or con

trived value may be included). Thus if each stub prints out its name, this technique allows

you to execute the skeleton application to verify that the basic flow of control is correct.

A parser, such as Unix yucc or /<w. produces an explicit state machine to implement a

user interface. Some application packages, especially in the user interface area, permit state

machines to be supplied as tables to be interpreted by the package.

Creation of a state machine mechanism is not particularly difficult using an object-ori

ented language and should be considered as a practical alternative if you do not have a state

machine package already available.

10.5.3 Control as Concurrent Tasks

An object can be implemented as a task in the programming language or operating system.
This is the most general approach, as it preserves the inherent concurrency of real objects.
Events are implemented as inter task calls using the facilities ol the language or operating

system. As m the presious implementation, the task uses its location within the program to

keep track of its state

Some languages, such as ('uncurrent Pascal or Concurrent ('* « , support concurrency,
but acceptance of such languages in production environments is still limited. Ada supports

concurrency, provided an object is equated with an Ada task, although (he run time cost is

high. The major object-oriented languages do not yet xiipjnirt concurrency

10.6 ADJUSTM ENT OF INHERITANCE

As object design progresses, the definitions o f classes and operations can often be adjusted

to increase the amount o f inheritance. The designer should:

• Rearrange and adjust classes and operations to increase inheritance

• Abstract common behavior out of groups of classes

• Use delegation to share behavior when inheritance is semanticallv invalid

10.6.1 Rearranging Classes and Operations

Sometimes the same operation is defined across several classes and can easily be inherited

from a common ancestor, but more often operations in different classes are similar but not

identical. By slightly modifying the definitions o f the operations or the classes, the opera

tions can often be made to match so that they can be covered by a single inherited operation.

Before inheritance can be used, each operation must have the same interface and the

same semantics. A ll operations must have the same signature, that is. the same number and

types of arguments and results. If the signatures match, then the operations must be exam

ined to see if they have the same semantics. The following kinds of adjustments can be used

to increase the chance of inheritance:

• Some operations may have fewer arguments than others. The missing arguments can be

added but ignored. For example, a draw operation on a monochromatic display does not

need a color parameter, but the parameter can be accepted and ignored for consistency

with color displays.

• Some operations may have fewer arguments because they are special cases of more gen

eral arguments. Implement the special operations by calling the general operation with

appropriate parameter values. For example, appending an element to a list is a special

case of inserting an element into list: the insert point simply follows the last element.

• Similar attributes in different classes may have different names. Give the attributes the

same name and move them to a common ancestor class. Then operations that access the

attributes w ill match better. Also watch for similar operations with different names. A

consistent naming strategy is important to avoid hiding similarities.

• An operation may be defined on several different classes in a group but be undefined on

the other classes. Define it on the common ancestor class and declare it as a no-op on

the classes that don't care about it. For example, in O M Tool the operation

places some figures, such as class boxes, in a special draw mode to permit rapid resizing

while the text in them is being edited. Other figures have no special draw mode, so the

b c ^ in -a lit operation on these classes has no effect.

10.6.2 Abstracting Out Comm on Behavior

O pportun ities to use inheritance are not alwaxs ie c o g n i/e d during the ana) \Ms phase ot dexel-

opm ent. so it is w o rth w h ile to reexam ine the object m odel Un'king for com m onahtx Iv tw i-c n

classes. In addition, new classes and operations are often added during design. If a set of oper

ations and/or attributes seems to be repeated in two classes, it is possible that the two classes

are really specialized variations of the same thing when viewed at a higher level of abstraction.

When common behavior has been recognized, a common superclass can be created that

implements the shared features, leaving only the specialized features in the subclasses. This

transformation o f the object model is called obstructing our a common superclass or com

mon behavior. Usually the resulting superclass is abstract, meaning that there are no direct

instances o f it. but the behavior it defines belongs to all instances o f its subclasses. For ex

ample. a draw operation o f a geometric figure on a display screen requires setup and render

in'.: o f the ceometrv. The rendering varies among different figures, such as circles, lines, and

splines, but the setup, such as setting the color, line thickness, and other parameters, can be

inherited by all figure classes from abstract class Figure.

Sometimes it is worthwhile to abstract out a superclass even when there is only one sub

class in your project that inherits from it. Although this does not result in any sharing o f be

havior in the immediate project, the abstract superclass thus created may be reusable in

future projects. It may even be a worthwhile addition to your class library. When a project is

completed, the potentially reusable classes should be collected, documented, and general

ized so that they may be used in future projects.

Abstract superclasses have benefits other than sharing and reuse. The splitting o f a class

into two classes that separate the specilic aspects from the more general aspects is a form of

modularity. Each class is a separately maintained component with a well documented inter

face.
Tlie creation o f abstract superclasses also improves the extensibility o f a software prod

uct. Imagine that you are developing a temperature-sensing module for a larger computer

ized control system. There is a specilic type of sensor (Model J55) that you must use. with a

particular way o f reading the temperature, and a formula for converting the raw numeric

reading into degrees Celsius. You could implement all this behavior in a single class, with

one instance for every sensor in the system. But realizing that the J55 sensor is not the only« # V

type available, you create an abstract Sensin' superclass that defines the general behavior

common to all sensors. A particular subclass called Sensor JSS implements reading and con

version that is particular to this ukhIcI.
Now. when your control system converts to use a new model ol sensor, all you have to

do is implement a new subclass for that model with only the specialized behavior that is d if

ferent. The common behavior has already been implemented. Perhaps best of all. you will

not have to change a single line of code in the large control system that uses these sensors

because the interlace is the same, as defined by the sensor superclass.
T h e re is a subtle but im portant way that abstract superclasses im p ro ve the e o n f ig u ra t io n

m a n a g e m e n t aspect of software maintenance and distribution. Suppose that your control sys

tem software must he distributed to m a n y plants throughout the country, each of w h ich has

a d if ferent system configuration invo lv ing (am ong other things) a d i l lerent m ix of tem p era

ture sensors. S o m e plants still use the o ld m odel , w hile others have converted to the n e w

er K ‘W m odel, and some plants may have a m ix ture of both types. U e n e ra tm g custom ized

versions o f your software to match each d if ferent configuration could l v tedious.

Instead, you distribute one version o f software that contains a sulvlass for each k no w n

mode! o f sensor W h e n the software starts up. it reads a configu ia t ion tile provided by lhe

customer that tells it which model of sensor is used in which location and creates an instance

of the particular subclass that handles that type o f sensor. A ll the rest of the code treats the

sensors as if they were all the same as delined by the Sensor superclass, it is even possible

to change from one type o f sensor to another on-the-fly (while the system is running) if the

software is told to create a new object to manage the new type of sensor.

10.6.3 Use Delegation to Share Im plem entation

Inheritance is a mechanism for implementing generalization, in which the behavior o f a su

perclass is shared by all its subclasses. Sharing o f behavior is justifiable only when a true

generalization relationship occurs, that is. only when it can be said that the subclass is a form

of the superclass. Operations of the subclass that override the corresponding operation of the

superclass have a responsibility to provide the same services provided by the superclass, and

possibly more. When class B inherits the specification o f class A . we can assume that every

instance of class B is an instance o f class A because it behaves the same.

Sometimes programmers use inheritance as an implementation technique with no inten

tion of guaranteeing the same behavior. It often happens that an existing class already imple

ments some of the behavior that we want to provide in a newly-delined class, although in

other respects the two classes are different. The designer is then tempted to inherit from the

existing class to achieve part of the implementation of the new class. This can lead to prob

lems if other operations that are inherited provide unwanted behavior. We discourage this in

heritance o f implementation because it can lead to incorrect behavior.

As an example of implementation inheritance, suppose that you are about to implement

a Stack class, and you already have a List class available. You may be tempted to make Stack

inherit from List. Pushing an element onto the stack can be achieved In addine an elementW « W

to the end of the list and popping an element from a stack corresponds to removing an ele

ment from the end of the list. But we are also inheriting unwanted list operations that add or

remove elements from arbitrary positions in the list. If these are ever used (by mistake or as

a "short-cut") then the Stack class will not behave as expected.

Often when you are tempted to use inheritance as an implementation technique. \ou

could achieve the same goal in a safer way by making one class an attribute or associate of

the other class. In this way. one object can selectively invoke the desired functions of another

class, using ileleyation rather than inheritance. Delegation consists of catching an operation

on one object and sending it to another object that is part of or related to the l i i s t ob ject. Onl\

meaningful operations are delegated to the second object, so there is no danger of inheriting

meaningless operations by accident.

A safer implementation of Stack would delegate to the List class as shown in bignte

ltl.S. Every instance ol'.S'n/i A contains a private instance ol7.;.\/. (The actual implementation

of ill is aggregation is optimized as discussed in Section I0.7. possiblv using an embedded

object or a pointer attribute. > The Stack .push operation delegates to the list In calling Us /,,n;

and (/(/(/operations to add an element at the end of the list, and the/>- >;> operation has a similar

implementation using ihe last and remove operations. The abilus to coriupt the stack In add

me or removin'.! arbitral \ elements is hidden from the client of the Shu >. class.

List

\v..
'■-acd f i

rarnove /
firsts /

\

Stack

push
pop

i Stack
1

t̂ N i

List

body list (private)
add

push
M ww

remove
pop first

last

D iscouraged Recommended

Figure I0.S Alternative implementations ol a Suck
i m i u : inheritance 1 loti i aiui delegation m y h u

In genera!, it is best not to use inheritance tor strictlx implementation reasons. Reserve
the use of inheritance tor cases uhere sou can sa\ that an instance of one class also i \ ans «

instance of some other class.
Some Lmeuuecs. such as HilYcI and ('++. permit a subclass to inherit the form of a su

perclass but to selccm ch inherit operations from ancestors ami selective!) export opera*
tions to clients This ts tantamount to the use of’delegation. because the subclass /.\ t un a loim
of the superclass in all respects and is not confused with it.

10.7 DESIGN OF ASSOCIATIONS

As-ivcuiions are the " c lu e ” <>t our object model, p n n iduu! access paths between objects. A s

sociations are conceptual entities uselul lot modeling and analysis. During the object desien

phase we must Jormulate a Mraicev tor im plem enting the associations in the object model.

\ \ c can either choose a elob.tl suatee> tor implementing all associations uniform ly , or we

can select a particular technique b»r each association, takmi! into account the wax it w i l l l v

Used xn the application lo make mtell ieeut decision % about associations. we lust need to a n

alyze the v .a \ the> are used

10.7.1 Analyzing Association Traversal

\ nov. that associations .tie m heient l) buluec lional. which iscc t tam lvW c h a * . e a s s u m e d u
t r u e i n a n a . b ,
o n e d : r e * . n o n . t h e i r
m e r) t s * f n) o u r a p p i t
t r a % e r * - ! t r i e a s s - t c : . * !

f lv .
f t • •) ' « < (1 C M I o II I* l U C , I * * ' * 9 \ * S • , * * * * * * ’ >• S | l J f | \

* $

i >ou max avid a new operation later th.it needs to

For prototype work, we always use bidirectional associations so that we can add new

behavior and expand or modify the application rapidly. For production work we optimize

some associations. Whichever implementation strategy you choose, you should hide the im

plementation using access operations to traverse and update the association. This will allow

you to change your decision w ith minimal effort.

10.7.2 One-way Associations

If an association is only traversed in one direction, it may be implemented as a pointer— an

attribute which contains an object reference. If the multiplicity is "one." as show n in Figure

10.9. then it is a simple pointer: if the multiplicity is "many.” then it is a set of pointers. If

the "many" end is ordered, then a list can be used instead of a set. A qualified association

w'ith multiplicity "one" can be implemented as a dictionary object. (A dictionary is a set of

value pairs that maps selector values into target values. Dictionaries are implemented effi

ciently in most object-oriented languages using basiling.) Qualified associations w ith multi

plicity "many" are rare, but they can be implemented as a dictionary o f sets of objects.

Figure 10.9 Im p le m e n ta tio n o f o n e -w a y a ssoc ia tio n us ing po in te rs

10.7.3 Two-way Associations

Many associations are traversed in both directions, although not usually with equal frequen

cy. There are three approaches to their implementation:

• Implement as an attribute in one direction only and perform a search when a backward

traversal is required. This approach is useful only if there is a great disparity in trav ersal

frequency in the two directions and minimizing both the storage cost anti the update cost

are important. The rare backward traversal will be expensive.

• Implement as attributes in both directions, using the techniques outlined in the piev unis

section and shown in Figure l(>. It). This approach permits fast access, but if either at

tribute is updated then the other attribute must also be updated to keep the link consis

tent. This approach is useful il accesses outnumber updates.

W orks-for
Company

Figure 10.10 Implementation of two-way association using pointers

« Implement as a distinct association object, independent of either class, as shown in Fig

ure 10.11 (Rumbaugh-87j. An association object is it set of pairs of associated objects

(triples for qualified associations) stored in a single variable-size object. For efficiency,

an association object can be implemented using two dictionary objects, one for the for

ward direction and one for the backward direction. Access is slightly slower than with

attribute pointers, but if hashing is used then access is still constant time. This approach

is useful for extending predefined classes from a library which cannot be modified, be

cause the association object can be added without adding any attributes to the original

classes. Distinct association objects are also useful for sparse associations, in which

most objects o f the chesses do not participate because space is used only for actual links.

5

(Person) j*.

(Person) V

G(Person) y .-

v_______ '

S ’
((Persori)V-

(^(Person) ’>

WorkS'for

© —

— o O r " '

— 0

G ~ ~ -~

o —

"T (Company)]
-Ts. s

*---—----
>((Company/]

Figure 10.11 impSrmem.Uion 0j- iV.ux i.ttjuo of) object

10.7.4 Link Attributes

If an association has link attributes, then its implementation depends on the multiplicity. It'

the association is one-to-one. the link attributes can be stored as attributes of either object.

If the association is many-to-onc. the link attributes can be stored as attributes of the "many"

object, since each "many" object appears only once in the association. If the association is

many-lo-manv. the link attributes cannot be associated with either object: the best approach

is usually to implement the association as a distinct class, in which each instance represents

one link and its attributes.

10.8 OBJECT REPRESENTATION

Implementing objects is mostly straightforward, but the designer must choose when to use

primitive types in representing objects and when to combine groups of related objects.
Classes can be defined in terms of other classes, but eventuallv everything must be im-

plemented in terms of built-in primitive data types, such as integers, strings, and enumerated

types. For example, consider the implementation of a social security number within an em

ployee object as shown in Figure 10 .12. The social security number attribute can be imple

mented as an integer or a string, or as an association to a social security number object, which

itself can contain either an integer or a string. Definina a new' class is more flexible but oftenv s. s-

introduces unnecessary indirection.

Em ployee Em ployee ^ SSN
o -------------------

---------1
SS num ber

i
SSN: integer SSN: integer

Em ployee Em ployee . SSN
o ------------------- SS num ber

SSN: string SSN: string

Figure I0 .I2 Alternative representations for an attribute

In a similar vein, the designer must often choose whether to combine groups of related

objects. Figure 10.13 show s two common implementations of 2-dimensional lines, one as a

separate class and one embedded as attributes within the Point class. Neither representation

is inherently superior because both arc mathematically correct.

Line

x 1: real [~ Line l o -p- -
Point

y l : real
x2: real
y2: real

[_ J x- real
y: real

Figure 10.13 I mbedded and espliut obtests

10.9 PHYSICAL PACKAGING

Programs are made o f discrete physical units that can be edited, compiled, imported, or oth

erwise manipulated. In some languages, such as C and Fortran, the units are source files. In

Ada. the package is an explicit language construct for modularity. Object-oriented languages

have various degrees of packaging. In any large project, careful partitioning of an implemen

tation into packages (o f whatever form) is important to permit different persons to coopera

tively work on a program. Packaging involves the following issues:

• Hiding internal information from outside viewW

• Coherence of entities

• Constructing, physical modules

10.9.1 Information Hiding

One design goal is to treat classes as "black boxes." whose external interface is public but

whose internal details are hidden from view. Hiding internal information permits implemen

tation of a class to be changed without requiring any clients of the class to modify code. Fur

thermore. additions and changes to the class are surrounded by "lire walls" that limit the

effects of any changes so that changes can be understood clearly. There is a trade-off be

tween information hiding and the optimization activities as discussed in Section I0.4. From

the packaging viewpoint, we seek to minimize dependencies, while optimization takes ad

vantage of details and may lead to redundant components and associations. The designer
must balance these conflicting demands.

During analysis, we were not concerned with information hiding. During design, how
ever. the public interface of each class must be carefully defined. The designer must decide

what attributes should be accessible from outside the class. These decisions should be re

corded in the object model by adding the annotation (private! after attributes that are to be

hidden, or by separating the list of attributes into two pails.

Taken to an extreme, a method on a class could traverse all the associations of the object

model to locate and access another object in the system. This unconstrained visibility is ap

propriate during analysis, but methods that know too much about the entire model are fragile

because any change in representation invalidates them. During design we try to limit the

scope of any one method. We need to define the bounds of visibility that each method re

quires. Specifying what other classes a method can see defines the dependencies between
classes.

fiach operation should have a limited know ledge of the entire model, including the

structure of classes, associations, and operations. The fewer things that an operation knows

about, the less likely if will be affected by any changes. Conversely, the fewer operations

know about details of a class, the easier the class can lx* changed if needed. Hie following

design principles help to bunt the scojxr of know ledge of any operation:

♦ Allocate to each class the responsibility of performing operations and providing infor
mation that pertains to it.

• Call an operation to access attributes belonging to an object of another class.

• Avoid traversing associations that are not connected to the current class.

• Define interfaces at as high a level o f abstraction as possible.

• Hide external objects at the system boundary by defining abstract interface classes, that

is, classes that mediate between the system and the raw external objects.

• Avoid applying a method to the result of another method, unless the result class is al

ready a supplier of methods to the caller. Instead consider writing a method to combine

the two operations.

10.9.2 Coherence of Entities

One important design principle is coherence o f entities. An entity, such as a class, an opera

tion. or a module, is coherent if it is organized on a consistent plan and all its parts lit together

toward a common goal. An entity should have a single major theme; it should not be a col

lection of unrelated parts.

A method should do one thing well. A single method should not contain both policy and

implementation. Policy is the making of context-dependent decisions. Implementation is the

execution of fully-specified algorithms. Policy involves making decisions, gathering global

information, interacting with the outside world, and interpreting special cases. A policy

method contains I/O statements, conditionals, and accesses data stores. A policy method

does not contain complicated algorithms but instead calls various implementation methods.
An implementation method does exactly one operation, without making any decisions, as

sumptions. defaults, or deviations. All its information is supplied as arguments, so the argu

ment list may be Ions.
Separating policy and implementation greatly increases the possibility of reusability.

The implementation methods do not contain any context dependencies, so they are likely to

be reusable. The policy methods must usually be rewritten in a new application, hut they are

often simple and consist mostly of high-level decisions and calls on low-level methods.

For example, consider an operation to credit interest on a cheeking account. Interest is

compounded daily based on the daily balance, but all interest for a month is lost if the ac
count is closed. The interest crediting should be separated into two parts: an implementation

method that computes the interest due between a pair of days, without regard to any forfei

tures or other provisions: and a policy method that decides whether and for what interval the

implementation method is called. This separation permits either the policy or the implemen
tation to be modified independently and greatly increases the chance of reusing the imple

mentation method, which is likely to be the more complicated. Policy methods are less likely

to be reusable, but they are not usually as complicated because they do not contain compu

tational algorithms.
A class should not sene too many purposes at once. If it is too complicated, it can be

hmken tiii usine either Generalization or auureuation. Smaller pieces are more likelv to he

reusable than large complicated pieces. Exact numbers are somewhat risky, but as a rule of

thumb consider breaking up a class if it contains more than about 10 attributes. 10 associa
tions. or 20 operations. Always break a class if the attributes, associations, or operations

sharply divide into two or more different groups that seem unrelated.

10.9.3 Constructing Modules

During the analysis and system design phases we partitioned the object model into modules

(and because of limitations on screen or paper size the modules may have been further par
titioned into sheets). This initial organization may not be suitable or optimal for the linal

packaging of the system implementation. The new classes that we have added during design

either add to an existing module or layer or can be organized into a separate module or layer

that did not exist in the analysis.
Modules should be defined so that their interfaces are minimal and well-delincd. The in

terface between two modules consists of the associations that relate classes in one module

with classes in the other and operations which access classes across module boundaries

(these operations define the client-supplier relationship of classes, taken from the functional

model).

The connectivity of the object model can be used as a guide for partitioning modules. A

rough rule of thumb is that classes that are closelx connected by associations should be in % * #
the same module, while classes that are not connected, or are looselv connected mav be in

separate modules. The binding strength of client-supplier relationships, due to the functional

model, is weaker than the strength of assoc iations, w hich are an inherent part o f a set of ob
jects.

O f course there are other aspects to be considered. Modules should have some function
al cohesiveness or unity of purpose. The classes in a module should represent similar kinds

of things in the application or should be components of the same composite object.

The number of different operations that traverse a given association is a good measure

of its coupling strength. This number expresses the number of different ways that the asso

ciation is used, not the frequency of traversal. Try to encapsulate strong coupling w ithin a

silicic module.

10.10 DOCUMENTING DESIGN DECISIONS

Th e design decisions discussed in this ehapier must be docum ented w hen they aie m ade, or

you w ill becom e confused. 'Ih is i>> especially true it you aie w o rk in g w ith other d e v e lo p e d .

It is im possible to rem em ber design details for any no n triv ia l soltw an* system, and docu

m entation is o lten the best way o i transm itting the design to o th ers ami re fo ld in g it lot ic l-

erence during m aintenance

The D esign Do-.um cnt should he an extension o| the R equirem ents A nalysis |)ni ument

"Ibus the D e -ig ri D ostuiient w ill include a revised and m uch m ore detailed dew option o(the

Object Model, in both graphical form (object model diagrams) and textual form (class de

scriptions). Additional notation is appropriate for showing implementation decisions, such

as arrows showing the traversal direction o f associations and pointers from attributes to other

objects.

The Functional Model will also be extended during the design phase, and it must be kept

current. Again, this is a seamless process because design uses the same notation as analysis

but with more detail and specifics. It is particularly important to specify all operation inter

faces by giving their arguments, results, input-output mappings, and side effects.

I f the Dynamic Model is implemented using an explicit state control or concurrent tasks,

then the analysis model or its extension is adequate. I f the dynamic model is implemented

by location within program code, then structured pseudocode for algorithms is needed.
Despite the seamless conversion from analysis to design, it is probably a good idea to

keep the Design Document distinct from the Analysis Document. Because o f the shift in

viewpoint from an external user's view to an internal implementor's view, the design docu

ment includes many optimizations and implementation artifacts. It is important to retain a

clear, user-oriented description of the system for use in validation o f the completed software

and for reference during the maintenance phase. Traceability from an element in the original

analysis to the corresponding element in the design document should be straightforward

since the design document is an evolution of the analysis model and retains the same names.

10.11 CHAPTER SUMMARY

Object design follows analysis and system design. Object design does not begin from scratch

but rather elaborates on the previous analysis and system design. The object design phase

adds implementation details, such as restructuring classes for efficiency, internal data struc
tures and algorithms to implement operations, implementation of control, implementation of

associations, and packaging into physical modules. Object design extends the analysis mod

el with specific implementation decisions and additional internal classes, attributes, associ

ations. and operations.
The designer must transfer operations from the functional and dynamic models onto the

object model for implementation. A process from the functional model becomes an opera

tion on an object. An event form the dynamic model may also become an operation on an

object, depending on the implementation of control.
Each operation from the analysis model must be assigned an algorithm that implements

it clearly and efficiently, according to the optimization goals selected during system design.
The design must consider computational complexity but should sacrifice small amounts ol

performance for greater clarity of the code. Internal classes and operations max be added to

implement algorithms efficiently.
The initial design derived from analysis must be extended and icstruclured loi p w p o s e s

of optimization. The original information is not discarded, but new icdundant into) illation is

added to optimize access paths and preserve intermediate results that would otherwise have

to tv recomputed. Algorithms can be rearranged to reduce the number of operations to be

executed.
State-event interactions can be implemented using one of three different styles o f con

trol: use of the location within a program to preserve the control state, explicit state machine

representation, or concurrent tasks.
During object design, the definitions o f internal classes and operations can be adjusted

to increase the amount of inheritance. These adjustments include modifying the argument
list o f a method, moving attributes and operations from a class into a superclass, defining an

abstract superclass to cover the shared behavior of several classes, and splitting an operation

into an inherited part and a specific part. Delegation should be used rather than inheritance

when a class is similar to another class but not truly a subclass.
Associations subsume many implementation techniques under a single uniform notation

during analysis, but they can be implemented as pointers within objects or distinct objects

depending on their access patterns. An association traversed in a single direction can be im

plemented as an attribute pointing to another object or a set of objects, depending on the mul

tiplicity of the association. A bidirectional association can be implemented as a pair of

pointers, but operations that update the association must always modify both directions of

access. Associations can also be implemented as association objects.

The exact representation of objects must be chosen. At some point, user-defined objects

must lx* implemented in terms of primitive objects or data types supplied by the program-

mine language. Some classes can be combined.
Programs must be packaged into physical modules for editors and compilers as well as

for the convenience of programming teams. Information hiding is a primary goal of packag
ing to ensure that future changes affect few modules. Modules should be coherent and orga

nized about a common theme.
Desien decisions should lx documented bv exteruline the analysis model, by adding de-

tail to the object, dynamic, and functional models. Implementation constructs are appropri

ate. such as pointers (in the object model), structured pseudocode (in the dynamic model),

and functional expressions <in the function model).

ahsiractm t: out a superclass

i ,sh:t>ri(hni
j anah/tnp association traversal

combining the three models
• v o n t . t i i h r r c la s si

delcVatton
j t lc n -m e operations

J im plem entation or avsniiarionv

implementation of control How

opium /,ition n! desiirn

phv sic.il patkapine

polity versus implementation

redundant v to improve speed
visibility of associations

visibility of attributes

visibility ol ojxrtatiims

H ^ure 10.14 Kcv contcpf- b»i Chapter 10

BIBLIOGRAPHIC NOTES

Algorithms and data structures are part o f the basic computer science curriculum. Knuth’s

classic series covers basic concepts as well as many advanced practical algorithms and data

structures. There are several good books which cover algorithms from the viewpoint of com
putational complexity, such as JAho-75] and |Sedgewick-83|. There are many bewildering

variations on common algorithms for searching and sorting, however, and their performance

on different problems can be difficult to analyze: see [Gonnet-84] for empirical measure

ments of algorithm performance.
Adding indexes and rearranging access order to improve performance is a mature tech

nique in data base optimization. See lUllman-88] or lLoomis-87] for examples.
Much of software engineering practice has been concerned with rules lor packaging

programs into modules with appropriate visibility rules.] Yourdon-89| gives the standard ap

proach. (Buhr-84] is heavily focused on packaging of Ada programs, but the notation should

be extendible to object-oriented applications.
[Lieberherr-88] is an early attempt to provide visibility guidelines that preserve maxi

mum modularity within an object-oriented context. | Meyer-88] suggests style rules for using

classes and operations.

REFERENCES

| Aho-751 Alfred Aho. John I lopcroli. Jeffrey Ullman. The Design a m i Analysis o f C om puter A lg o

rithms. Reading. Mass.: Addison-Weslev. 1975.

| Buhr-84 J R.J.A. Bulir. System Design with Ada. Englewood C liffs. New Jersey: Prentice Hall. 1984.

|Gonnet-S4) G .H . Gonnet. Handbook o f Algorithms a n d D a ta Struetures Reading. Mass.: Addison -

Wes lev. I9S4.
9

|Knuih-751 Donald Knulh. The A r t o f 'Com puter P n w a m m i n x . \o lunnw Reading, Mass.: Addi-

son-Weslev. HJ75.
•

|Lieberherr-SN| K. Lieberherr. I. Holland, A. R id . Object-Oriented programming: an objective sense

of siylc. O O P S IA 'X S as A C M S IG P IA S ' 33. 11 1 Nov. L>SS>. 323-334.

| Loomis S7) Mary Loomis. The Dahihuse lUu>k. Now York: M acm illan. L>S7.

|Mcycr-SX| Morn and Mover. (\ tnstruetton. 1 leitfordshire. Lngland; Prentice

Iia ll International. PWN.

[Rumbaugh-S7| James L. Riimbaugh. Relations as semantic constructs m an ohjoet-onented language.

O O TS t. \ \ S 7 as A C M S IG P IA .X 22. 1 2 (0 ,1 . P>X7). 4ob-4XI

(Scdgewick-X3| Rcibert Scdgcwick. Aigonthtns Reading. Mass. Addisnn-Woslev. I 4)S3.

| (‘llman SS | Jeffrey l liman. /Von //>/c.\ nf lh iu i tn i \e */':</ Mam/<*deC'/>\/w Sw tenw. \< '/:we.\ 1. 3

Rockville. M ankind: ('ompulei Science Press. P>ss.

| Yuunlon X‘>| Id w a u l Yoiudou. L a m (\m slanim e. U t n \ i / a t i i l a m e n u i l y <*t />/s.
f,*i P l io f i lm iifu! SwU'in* /V v ;snj Inglew ood ('litis . New Jenev. Pieutue Hall. L Jy)

EXERCISES

10.1 (3) Write algorithms to draw the following figures on a graphics terminal. Hie figures are not
filled. Assume pixel based graphics. State any assumptions that you make.
a. circle
b. ellipse
c. square
d. rectangle

10.2 (2) Discuss whether or not the algorithm that you wrote in the previous exercise to draw an el
lipse is suitable for drawing circles and whether or not the rectangle algorithm is suitable for
squares.

103 (3) By careful ordering of multiplications and additions, the total number of arithmetic steps
needed to evaluate a polynomial can Ik* minimized. For example, one way to evaluate the poly
nomial a4.r4 +■ciy* r a-,.x' + a vx + a0 is to compute each term separately, adding each term to
the total as it is computed, which requires 10 multiplications and 4 additions. Another way is to
rearrange the order of the arithmetic to x ■ (x • (a - {.v • «4 +-ti3) + o ,) + « ,) + which re
quires only 4 multiplications and 4 additions. Mow many multiplications and additions arc re
quired by each method for an mh order polynomial? Discuss the relative merits of each ap
proach.

10.4 (5) Many conventional data structures can be replaced with associations. Draw sample object
diagrams in which each of the following conventional data .structures is replaced by one or more
associations. Keep your answers simple.
a. array
b. list
C. MUCK

d. queue
e. binary tree

103 <4) Improve the object diagram in Figure EKU by generalizing the classes Ellipse and Rectan
gle to the class Graphics primitive, transforming the object diagram so that there is only a single
one-to-one association to the object class Boundary. In effect, you will be changing the 0 .1 mul
tiplicity to exactly-one multiplicity. As it stands, the class Boundary is shared between Ellipse

and Rectangle. A Boundary is the smallest rectangular region that will contain the associated El
lipse or Rectangle.

Ellipse

V
\

Boundary

Rectangle

Figure KlO.l Portion of an object diagram with a shared days

10.6 (5) Which class(es) in the object diagram that you produced for the previous exercise would be
the most suitable owner of a delete operation? Explain your answer.

10.7 (3) Assign a data type to each attribute in Figure EI0.2.

Figure E l0.2 Portion of an object diagram of a newspaper

10.8 (3) Express an operation that moves a Column of a newspaper in terms of an operation on a Line

of text, in Figure E l0.2.

10.9 (4) Modify the object diagram in Figure E10.2 so that margins are described in a separate class
and so that default margins may be specified for the entire newspaper. Also, the default margins
may be overridden on specific pages.

10.10 (4 > Characterize each association in Fiuure EI0.2 in terms of traversal dircctionalitx and order-W 9

ing. Stale any assumptions that you make. Describe how you would implement each association.

10.11 (3) Modify Figure FI 0.2 to make it possible to be able to determine what I ’oyc a Line is on with
out first determining what Column it is in.

10.12 (4) Assign a data type to each attribute in Figure FI 0.3. Visibility controls whether the fronts or
the backs of cards are displayed. Location is the place where the collection is to be displayed.
List enumeration values.

Collection of cards

visibility
location

initialize
delete
insert
bottom-of-pile
top-ol-pile

r 1
Deck Hand Discard pile Draw pile

shuffle
deal

initial size

sort
draw draw

O
(ordered)

fig u re L 10.3 I ’oition ol an ob|ett diagram ol a card playing piogram

10.13 i^» W n t c p>oudiH.'i*le tm e.ich operation in Ncurc 1:111.3. In it ia l ize causes a deck to start with

52 cards and am thm c cKc lo become omptv. Delete and tn \e t t lake a card as a smelc argument

,i»d delete or insert I he card into a collection, lo iu n e the collection to redisplax itsell aliens ards.

D e h .V n allowed onh on the top card o! a deck, a draw pile, oi a discard pile, lo p -n f p ile and

ht are ijueries. Shnffh mives a deck. D e a l selects cards trom the lop ut the ileck one

at a time, dclctme them trom the ileck and insertion ihem into hands which are eivated and re*

turned an arrax o| hands. S.>»/ is used to sort .1 hand b\ suit and rank. /)r.'/»/<n displays a card.

/> /'. deletes a card from the collection that contains it and places it on top o f the draw pile,

uInch is passed as an argument, /h im deletes the top card Irom a draw or discard pile and in

serts the card into a hand, which is passed as an argument.

10.14 i . i Cliaraciert/e the association in Figure l: lit..' in terms ot traversal diieetionahty and ordering.
Stale any assumptions that you make Describe how you would implement the association.

10.15 i5 i Assign a data t \pe to each attribute m Figure F. 10.4. Keter to exercise X. lb tor a description

ot the application.

Season

staging date;
endma date '

— a Meet

date
location

a Station o —a Scorekeeper

i
L

location name

Figure >■

i^gure title j
difficulty factor ‘

. description

-f—
i
i----O

_____ 0.
E vent

____ c| starting timej

0
1
CL____
J u d g e

name
i — r. . .

Q__
Trial

net score
0

r ~6------------ ,
o Raw s c o re ,

■ value

League....... a Te am * o Com petitor

name ! name
, age
! add'ess

telephone number I

I*il*urc 1-. Ift.4 I'mtiuii >.»! d in^ji \! t! i (. t i l l r.J ,i v c o n t i c s \ v t c m

10 .16 t < h .i.M ♦ *• V i i / 4̂ C - t . f l <•! ?Ik* .j' -**t i . m o n s m l t p i n c l i n 4 in term-s o l t r a v e rs a l

< »•«•Icnf ip. St. An \ .t-. • i i iTip; l - t i r . tha t *>u m.s k»*

i o . r i < - W r i t r ; p* h r i* }»* h *i . (• m p u u n ; : the uc\ ••v'uJi* !i»r .i t r i a l m l iv’ u r c 1 JO 4

u ' tx*I .J .
* ..
• * . t i P ! i f »tl D ! h- r i t n . i l j- \L» »f c< j

i n . i x V: « r ir - r
^ k 1. •uh ‘ "Ji* It1 *? 11 i •: j l iU-,; < :n*n- : . .< !.» *. in I i e u f o 1*. 1 n •

A 14» u->’ 4 • > e Vt i t .» f !t>: ,tfi im, o i ;

h * rc>m * : 4 A . . M i ; !<*; , i i l * ».■?)[> a \ a mum; »

c. (4) select and schedule events for a meet
d. (4) schedule meets in a season
e. (4) assign events, judges, and scorekccpcrs to stations

10.19 (9) Figure El 0.5 is a portion of an object diagram meta model which might be used in a compiler
of an object-oriented language. Write pseudocode for an algorithm for the operation
trace in h e r i tan c e jta th that traces an inheritance hierarchy as follows: input to the operation is
a pair of classes. The operation returns an ordered list of classes on the path from the more gen
eral class to the more specific class. Tracing is only through generalizations; aggregations and
associations are ignored. If tracing fails, an empty list is returned. You may assume that multiple
inheritance is not allowed.

Figure E l0.5 Portion of an object diagram meta model

10.20 (8) Refine Figure El 0.5 by eliminating the associations to the classes Role and Relationship, re
placing them with associations to (he subclasses o f Role and Relationship. This is an example of
a transformation on an Object diagram. Write pseudocode for the trace J n h c r i t a m v j n t t h algo
rithm for the diagram that you produce.

10.21 (7) Referring to Figure E l0.5, prepare an algorithm lor an operation that will generate a name
for an association that does not already have one. This operation would be useful in a program
that generates database schema from an object diagram, to assure that all associations in an ob
ject diagram have names, whether or not they were named by the user. Input to the operation is
an instance o f Association. The operation must return a globally unique relationship name. It
the association already has a name, the operation should return it. Otherwise the operation
should generate a name using a strategy that you must devise. The precise strategy is not critical,
but the generated names must he unique, and anyone reading the names should be able to deter
mine which association the name refers to. Assume all associations are binary. You may assume
that a similar operation on the class Role already has been designed that w ill return a role name

unique w ithin the context of a relationship. It the name that would be formed collides w ith an
existing name, modify the name in some wav to make it unique. If you fee! you need to modify
the diagram or use additional data structures, go ahead, but be sure to describe them

10.22 (7) Improve the object diagram m Figure hlO .o b \ transforming it. adding the class F a lu n

partx t . Associate \ 'oter with a party. Discuss why the transformation is an improvement.

10.23 <7> Sometimes an airline w ill substitute a smaller aircraft for a larger one lor a Might with tew

passengers W rite an algorithm lor reassigning seals so that passengers with low row numbers

do not have to be reassigned Assume both am rati have tin* same num lvr of seats per row

Figure E10.6 Object diagram representing voter membership in a political party

10.24 (8) 'Hie need Cor implementation efficiency may force you to create classes that are not in the
original problem statement. For example, a two dimensional CAD system may use specialized
data structures to determine which points fall within a rectangular window specified by the user.
One technique is to maintain a collection of points sorted on x and then y. Points that fall within
a rectangular window can usually be found without having to check all points. Prepare an object
diagram that describes collections of points sorted on x and y. Write pseudocode for the opera
tions delete, add. and search. The input to search is a description of a rectangular region and a
collection of points. The output of search is a set of points from the input collection which fall
within the region. Inputs to both delete and add are a point and a collection of points. The input
point is added'or deleted from the collection.

10.25 (Hi Determine how the time required by the search operation in the previous exercise depends
on the number of points in a collection. Explicitly state any assumptions yon make.

10.26 (3) In selecting an algorithm, it may Ik* important to evaluate its resource requirements. How
does the time required to execute the following algorithms depend on the following parameters?

a. The algorithm in exercise 10. Id on the depth of the inheritance hierarchy.

b. The algorithm in exercise 10.23 on the number of passengers.

10.27 i.5) Figure E l0.7 is a state diagram for a garage door opener. Implement it by using state as lo
cation within a program. You may use pseudocode or any structured programming language.

d e p re s s start opening door Opening>\

door open

C losed }

door c losed - ■ {
S '

d e p re ss^ lari opening door Op©n J

: C lo s in g f
__/

\ depress^tan closing door

Figure K10.7 Slate diagram fin a garage dour opener

10.2# (Project) As a ebsse project, design a state machine engine. The design should include descrip
tion.?. of djit-i stAivture*- and algorithms needed to make the engine run.

Methodology Summary

This chapter summarizes the methodology o f the Object Modeling Technique. The tech

niques discussed in previous chapters are listed below as numbered steps. While this implies

that the order is important, we find that:

• Experienced developers are able to combine several steps or perform certain steps in

parallel for portions of a project.

« Iteration o f the steps is necessary at successively lower levels of abstraction, adding

more detail to the model.

After the overall analysis has been completed at a high level of abstraction, subsystems

within a large project can be designed independently and concurrently at lower levels of
abstraction.

The distinction between analysis and design may at times seem arbitrary anil confusing. The

following simple rules should guide your decisions concerning the proper scope of analysis

and design.

The analysis model should include information that is meaningful from a real-world

perspective and should present the external view of the system. The analysis model should

be understandable to the client for a system and should provide a useful basis for eliciting

the true requirements for a system. The true requirements are those that are really needed,
internally consistent, and feasible to achieve.

In contrast, the design model is driven by relevance to the computer implementation.

Thus the design model must be reasonably efficient and practical to encode. In practice,

many portions of the analysis model can often be readily implemented without change: thus

there may be considerable overlap between the analysis and design models. The design mod

el must address low level details that are elided in the analvsis model. The analvsis and de-m m

sign models combine to provide valuable documentation for a system from two different, but
complementary, perspectives.

11.1 A NA LYSIS

The goal of analysis is to develop a model of what the system will do. The mode! is ex

pressed in terms o f objects and relationships, dynamic control flow, and functional transfor
mations. The process of capturing requirements and consulting with the requestor should

continue throughout analysis.W* ¥

1. Write or obtain an initial description of the problem (Problem Statement).

2. Build an Object Model:

• Identify object classes.

• Begin a data dictionary containing descriptions o f classes, attributes, and associations.

• Add associations between classes.

• Add attributes for objects and links.

• Organize and simplify object classes using inheritance.

■ Test access paths using scenarios and iterate the above steps as necessary.

• Group classes into modules, based on close coupling and related function.

=> Object Model = object model diagram + data dictionary.

3. Develop a Dynamic Model:

• Prepare scenarios of typical interaction sequences.

• Identify events between objects and prepare an event trace for each scenario.

• Prepare an event flow diagram for the system.

• Develop a state diagram for each class that has important dynamic behavior.

• Check for consistency and completeness of events shared among the state diagrams.

-■> Dynamic Model = state diagrams + global event flow diagram.

4. Construct a Functional Model:

• Identify input and output values.

• Use data flow diagrams as needed to show functional dependencies,

• Describe vs hat each f unction does.

• Identify constraints.

• Specify optimization criteria.

-o Functional Model = data flow diagrams -*• constraints.

5. Verify, iterate, and refine the three models:

» Add key operations that were discovered during preparation of the functional model to

the object model. Do not show all operations during analysis as this would clutter the

object model; just show the most important operations.

• Verify that the classes, associations, attributes, and operations arc consistent and com

plete at the chosen level of abstraction. Compare the three models with the problem

statement and relevant domain knowledge, and test the models using scenarios.

• Develop more detailed scenarios (including error conditions) as variations on the basic

scenarios. Use these "w hat-if' scenarios to further verify the three models.

• Iterate the above steps as needed to complete the analysis.

=}> Analysts Document = Problem Statement + Object Model + Dynamic Model +

Functional Model.

11.2 SYSTEM DESIGN

During system design, the high-level structure of the system is chosen. Chapter 9 presents

several canonical architectures that may serve as a suitable starting point. The object-orient
ed paradigm introduces no special insights into system design, but we include system design

for complete coverage of the software development process.

Organize the system into subsystems.

Identify concurrency inherent in the problem.

Allocate subsystems to processors and tasks.

4. Choose the basic strategy for implementing data stores in terms of data structures, files,

and databases.

5.

6.

Identify global resources and determine mechanisms for controlling access to them.

Choose an approach to implementing software control:

Use the location within the program to hold state, or

Directly implement a state machine, or

Use concurrent tasks.

7. Consider boundary conditions.

K. Establish trade-off priorities.

-> System Design Document = structure of basic architecture tor the system

as well as high level strategy decisions.

11.3 OBJECT DESIGN

During object design we elaborate the analysis model and provide a detailed basis for imple
mentation. We make the decisions that are necessary to realize a system without descend inn# t W

into the particular details of an individual language or database system. Object design starts

a shift away from the real-world orientation o f the analysis model towards the computer ori
entation required for a practical implementation.

1. Obtain operations for the object model from the other models:

• Find an operation for each process in the functional model.

• Define an operation for each event in the d\ namic model, depending on the implemen
tation of control.

2. Design algorithms to implement operations:

• Choose algorithms that minimize the cost of implementing operations.

• Select data structures appropriate to the algorithms.

• D e f in e new internal classes and operations as necessary.

• Assign responsibility for operations that are not clearly associated with a single class.

Optimize access paths to data:

• A d d redundant associations to m in im ize access cost and m a x im ize convenience.

• Rearrange the computation tor greater eff ic iency.

• Save derived '.allies to avoid recomputation o f complicated expressions.

Im plem ent software control by Meshing out the approach chosen during system design.

Adjust class structure to increase inheritance:

• Rearrange and adjust classes and operations to increase inheritance.

• Abstract com m on lx:has ior out ot groups o f classes.

• l sc delegation to share behavior where inheritance is sem antically invalid .

Design im plem entation of associations:

• A n a lyze the traversal o! associations.#

• Im p lem ent each a w o d t io n as a distinct object or in ,uMun* ob ject-valued attributes to

one or K ith classes m the association

a.

5

7, D e te rm in e tin : exact re p re se n ta tio n o l o b je c t a ttr ib u te s .

S I'acd.aee e lav-os and a w s * tation-* in to m o d u le s

* D e s ig n D o c u m e n t ~ D e ta ile d O b je c t M o d e l ♦ D e ta ile d D y n a m ic M o d e l *

D e ta ile d f w m u o n a] M o d e l

11.4 CHAPTER SUMMARY

The O M T Methodology is based on the use of an object-oriented notation to describe classes

and relationships throughout the life-cycle. The Object Model is augmented with a Dynamic

Model and a Functional Model to describe all aspects of a system. The analysis phase con

sists of developing a model of what the system is supposed to do. regardless of how it is im

plemented. The design phase consists of optimizing, relining, and extending the Object

Model. Dynamic Model, and Functional Model until they are detailed enough for implemen

tation. As we shall see in Part 3. implementation of the design is a straightforward matter of

translating the design into code, since most difficult decisions are made during design.

analysis

dynamic model

functional model
object design

object model
relationship between models

system design

Figure 11.1 Key concepts for Chapter 11

EXERCISES

Use the Object Modeling Technique to develop the following systems. Prepare scenarios, diagrams,

models, specifications, and documents as appropriate. For each diagram and model that you prepare,

show both your first version and your last refinement. Stale any assumptions you make concerning

functional requirements. Also, summarize the order m which you followed the steps ol'ihe methodol

ogy.

11.1 (Project) A simple flight simulator. Using a bit mapped display, present a perspective view tiom

the cockpit of a small airplane, periodically updated lo icflcct the motion olThe plane. The world

m which flights lake place includes mountains, rivets, lakes, roads, bridges, a iadio tower and.

of course, a run was. Control inputs arc fiom two joy slicks. The left joy stick opetates the rudder

and engine. The right one controls ailerons and elevator. Make the simulator as realistic as pos

sible w ithout being loo complex.

11.2 (Protect! A system lor automatically executing the actions needed to build a sotiware system

I mm its components, similar to the l M X Make facility. I he system leads a tile which describes

what must be done m the form of dependency rules. I.ach mle has one oi inoie targets, one ot

more sources, and an optional action. I atgels and souices are names of tiles. Il any ot the souic-

es of a rule are newer than any of its targets, the action of ihe mle is executed by the system to

rebuild the targets from the souices

11.3 lP io |ecii A computei Ik t.u toe playci. Inputs and outputs aie provided through a dedicated

hardware mlerf.kc. the usei indicates moves by pressing membrane switches, one toi each of

the nine squaies \ \ .md ate displayed by a liquid crystal dopl.tv Ihe user may select a

level ot sk ill and who is to go lust

11.4 (Project) A system tor compressing data, using the method described by Edward R. Fiala and
Daniel H. Greene, "Data Compression with Finite Windows." on pages 490-505 of ih cCommo-

/m uttons of ike ACM* Volume 32, Number 4, April 1989.

11.5 (Project) A program to provide a computer opponent for the game Othello. Rules of the game
are simple. Players take turns placing their markers on squares in an X-by-S board. One player
has black marker*, the other while. When one player places a marker so that one or more of the
opponent’s markers are surrounded in a straight line vertically, horizontally, or diagonally, the
surrounded markers change color. A player who cannot place a marker must pass. The object of
the game is to occupy as many squares as possible vs ith your markers. The skill ol the computer
will be set at the start of the game b> entering a skill level. The game starts with two black mark
ers and two white markers arranged as shown in Figure El l . l . The hoard and markers should
be displayed using bit mapped graphics. Human moves will be entered by a light pen.

~n
i

0 oc 0

Figure Kl 1.1 Starting position for Othello

Comparison of Methodologies

This chapter summarizes other software engineering approaches and compares them to the

Object Modeling Technique (O M T). Specifically, we survey Structured Analysis/Structured

Design (SA/SD). Jackson Structured Design (JSD), various information modeling notations,

and other object-oriented work. We identify the strengths and weaknesses of each approach.

Our purpose is to clearly identify the major differences and similarities between the

O M T and other approaches. The reader will gain deeper insight into the O M T by comparing

it with other methodologies that may already be familiar. Our coverage of these other meth
odologies is brief; interested readers are referred to the references for additional information.

This chapter can be skipped by readers unfamiliar with or uninterested in other methodolo

gies.

12.1 STRUCTURED ANALYSIS/STRUCTURED DESIGN (SA/SD)

Currently, the most widely-used software engineering methodologies are those based on data

How diagrams. Several variations of the data How approach are used in practice. We discuss

Structured Analysis/Structured Design (SA /SD t as a representative of the data tlou ap

proach. Yourdon. Constantine. DeMarco, Page-Jones. and others have written about SA SD.
Ward and Mellor have added real-time extensions to SA/SD. SA/SD is pervasiv e. applicable

to many problems, and well-documented.

The O M T and SA/SD methodologies both incorporate similar modeling components.

Both methodologies support three orthogonal \ iews of a system— the object, dynamic, and

functional models. The O M T and SA/SD methodologies differ in the relative emphasis that

they place on the various modeling components. O M T designs are dominated h\ the object
model. The real-world paradigm of objects and relationships provides the context foi under
standing dvnnmic and functional behav ior. In contrast. SA/SD stresses functional decompo

sition. A system is viewed primarily as providing one or more functions to the end user.

12.1.1 Summary of SA/SD Approach

SA/SD includes a variety of notations for formally specifying software. During the analysis

phase, data flow diagrams, process specifications, a data dictionary, state transition dia

grams, and entity-relationship diagrams are used to logically describe a system. In the design

phase, details are added to the analysis models and the data flow diagrams are convened into

structure chan descriptions o f programming language code.
D a ta flo w diagram s model the transformations of data as it flows through a system and

are the focus of SA/SD. A data flow diagram consists of processes, data flows, actors, and

data stores. Chapter 6 discusses data flow diagrams in detail. Starting from the top level data

flow diagram, SA/SD recursively divides complex processes into sulKliagrams, until many

small processes are left that are easy to implement. When the resulting processes are simple

enough, the decomposition stops, and a process specification is written for each lowest-level
process. Process specifications may be expressed with decision tables, pseudocode, or other
techniques.

The data dictionary contains details missing from data flow diagrams. The data dictio
nary defines data flows and data stores and the meaning of various names. Chapter 8 presents

a sample data dictionary.

State transition diagrams model time dependent behavior and are similar to the dynamic

model presented in Chapter 5 of this book. Most state transition diagrams describe control
processes or timing of function execution and data access triggered by events.

Entity-relationship (E li) diagrams highlight relationships between data stores that oth

erwise would only he seen in the process specifications. Each HR data element corresponds

to one data flow diagram data store. The object modeling notation described in this book

(primarily Chapter 3) is an enhanced form of HR diagram. (Section 12.3 discusses HR dia
grams./

The above tools are used during the process of structured analysis. Structured design

follows structured analysis and addresses low-level details, l or example, during structured

design, data flow diagram processes are groujK:d into tasks and allocated to operating system

processes and CPUs. Data flow diagram processes are converted into programming language

functions, and a structure t h a n is created showing the procedure call tree.

12.1.2 Comparison with OIWT

SA/SD and O M T modeling have miu.li in common. Roth methodologies use similar model

ing constructs and support flic three orthogonal views of a system. The difference between

SA/SD and O M T is primarily a matter of style and emphasis. In the SA/SD approach, the

functional model dominates, the dynamic model is next most important, and the object mod

el least important. In contrast. O M T modeling regards flic object model as most important,

then the dynamic model, and hnally the functional model,
SA/SD organizes a system around procedures. In contrast, an object-oriented design

technique (such as OMT> org.m i/cs a system around real-world objects, or conceptual ob

jeets that exist m the user \ view ot the world. M om changes m requirements are changes in

function rather than in the objects, so change can be disastrous to procedure-based design.

By contrast, changes in function are readily accommodated in an object-oriented design by

adding or changing operations, leaving the basic object structure unchanged. SA/SD is use

ful for problems where functions are more important and complex than data. SA/SD assumes

that this often occurs.

An SA/SD design has a clearly-defined system boundary, across which the software pro
cedures must communicate with the real world. The structure of a SA/SD design is derived

in part from the system boundary, so it can be difficult to extend a SA/SD design to a new

boundary. It is much easier to extend an object-oriented design: one merely adds objects and

relationships near the boundary to represent objects that existed previously only in the out

side world. An object-oriented design is more resilient to change and more extensible.

The direct analogy between objects in an object-oriented design and the objects in the

problem domain results in systems that are easier to understand. This makes the design more

intuitive and simplifies traceability between requirements and software code. It also makes

a design more coherent to persons who are not part of the original design team.

In SA/SD the decomposition of a process into subprocesses is somewhat arbitrary. D if

ferent people will produce different decompositions. In object-oriented design the decompo

sition is based on objects in the problem domain, so developers of different programs in the

same domain tend to discover similar objects. This increases reusability of components from

one project to the next.
An object-oriented approach better integrates databases with programming code. One

uniform paradigm, the object, can model both database and programming structure. Re

search on object-oriented databases may further improve this situation. In contrast, a proce

dural design approach is inherently awkward at dealing with databases. It is difficult to

merge programming code organized about functions with a database organized about data.

There are many reasons why data flow approaches are in such wide use. Programmers

have tended to think in terms of functions, so data How based methodologies have been eas

ier to learn. Another reason is historical: SA/SD was one of the tirst w ell-thought-out. formal

approaches to software and system development. We believe that the benefits of an object-
oriented approach and the maturation of object-oriented technology will gradually promote

its wide use for analysis, design, and implementation.

12.2 JACKSON STRUCTURED DEVELOPMENT (JSD)

Jackson Structured Development (JSD) is another mature methodology, which has a diner-
ent style than SA/SD or OM T. The JSD methodology was developed by Michael Jackson

and is especially popular in Europe. JSD does not distinguish between analysis and design

and instead lumps both phases together as specification. JSD divides system development
into two stages: specification, then implementation. JSD first determines the "what” and then

the "how." JSD is intended especially lor applications in which timing is important.

JSD uses graphical models, as do SA/SD. OM T. and other techniques, but we will not

show any JSD diagrams in this chapter. Sample diagrams are not requited to communicate

the lla \or ol JSD. In our opinion. JSD is less graphically oriented than SA/SD and OMT.

12.2.1 Summary of JSD Approach

A JSD model begins with consideration of the real world. The purpose of a system is to pro

vide functionality, but Jackson feels that one must lirst consider how this functionality lits in* *

with the real world. A JSD model describes the real world in terms o f entities, actions, and

ordering of actions. Entities usually appear as nouns in requirements statements and actions

appear as verbs. JSD software development consists of six sequential steps: entity action

step, entity structure step, initial model step, function step, system timing step, and imple

mentation step.
During the entity action step the software developer lists entities and actions for pan of

the real world. The purpose of the overall system guides the choice of entities and actions.
The input to the entity action step is the requirements statement: the output is a list o f entities

and actions.
I Jackson-831 presents several examples, one of which is the design of an elevator con

trol system. We will refer to Jackson’s elevator example in our discussion. The elevator con
trol svstem controls two elevators which service six floors. Each elevator has six inside

buttons— one for each floor. Each floor has up and dow n buttons in the waiting area. Jackson

identities two entities for the elevator control example: button and elevator. He identifies

three actions: Press a button, elevator arrives at floor n. and elevator leaves floor n.

Actions occur m the real world and are not an artifact of the system. Actions take place

at a point in time, are atomic, and not decomposable. The entity structure step partially or

ders the actions of each entity by time. The elevator control system illustrates the importance

of ordering actions. It is permissible for an elevator to arrive at floor 3. leave floor 3, arrive

at floor 2, leave floor 2. and so on. It does not make sense for two arrive actions to occur m

succession: arrive and leave operations must alternate.
Tlte in itia l model step states how the real world connects to the abstract model. JSD sup

ports state-vector and data stream connection.
The elevator control system illustrates state-vector connection. What happens if some

one presses the up-button live times rapidly in succession? The elevator user does not want
the control system to remember each button press ami send an elevator live times to service

the request. Instead pressing the up-hulton sets an “tip-flag” to true. Pressing the up-button

extra times has no further effect. T he JSD model of the computer system is unaware of the

number of presses and only communicates with the real world via the "up-flag." Jackson

calls this "up-flag" a state-vector connection.
A computer print buffer illustrates data stream connection. The computer user diK's not

want to lose information if the computer can transmit faster than the pt infer can print. A print

buffer partially decouples the computer from the printer; CPI pr«H.essing and priming can

overlap. A real printer bufter is of finite si/e; when the buffer is full, the computer must wail
before sending further data JSD data stream connections arc buffers of infinite si/e. The ini

tial model step of a JSD design, docs not address physical buffer limitations
The fu / it t w ’i step u*.es pseudocode to slate outputs of actions. At the end of tins step the

developer has a complete specification of flic required sy stem. In the elevator example, turn
ing the display panel lights on and oft as an elevator ainvcs at each floor is a function that

must be specified.

The system timing step considers how much the model is permitted to lag the real world.

For the most part, the result o f the timing step is a set o f informal notes on performance con

straints. For example, an elevator control system must detect when up and down buttons are

pressed. How long must the user keep the button contact closed upon a press? It is annoying

to press an elevator button and not have the system respond. A low threshold means that the

control system is more likely to detect a sendee request. However if a button press is detect
ed via a polling scheme, a low value demands more computer resources. The designer ex

plicitly makes performance trade-offs during the system timing step.
The implementation step focuses on the problems of process scheduling and allocates

processors to processes. The number of processes may be different from the number of pro

cessors. Jackson’s elevator control model has 50 processes. The developer must decide

whether to match each process to one of 50 CPUs or how to get several processes to share

the same CPU. After the six JSD steps comes writing of code and database design.

12.2.2 Comparison with OMT

Some authors refer to JSD as being "object-oriented.” We disagree. JSD docs begin with

consideration of the real world and in this sense is object-oriented. However. Jackson iden

tities few entities (objects) and shows little of their structure. Each o f the three examples pre

sented in [Jackson-83] have only two or three entities. We believe that an object-oriented

model should have a rich mixture of data structure and relationships.

We find the JSD approach complex and difficult to fully comprehend. We think that JSD

is more obscure than data-flow and object-oriented approaches. One reason for JSD's

complexity is its heavy reliance on pseudocode: graphic models are easier to understand.

JSD is also complex because it was specifically designed to handle difficult real-time

problems. For these problems. JSD may produce a superior design and be worth the effort.

However, JSD’s complexity is unnecessary and a bit overwhelming for the more common,

simpler problems.
Jackson places more emphasis on actions and less on attributes than we do. Some JSD

actions look similar to O M T associations. For example. </ clerk allocates product to an order.

We call allocates an association: Jackson calls it an action. Jackson linds attributes confusing

and prefers to avoid them. Actions have such a prominent role in JSD modeling that they

preempt attributes, in much the same way that attributes diminish the importance of opera

tions in O M T object models.
JSD is a useful methodology for the following types of applications:

• Concurrent software where processes must synchronize w ith each other.

• Real time software. JSD modeling is extremelv detailed and focuses on tune.

• Microcode. JSD is thorough, m akes no assumptions about the a\ ailahilily of an operat

ing system, and considers concurrent processing and timing.

• Programming parallel computers. The JSI) paradigm of many processes may be helpltil

here.

JSD is ill-suited for some other applications:

High level analysis. JSD does not foster broad understanding of a problem. JSD is inef

fective at abstraction and simplification. JSD meticulously handles details but does not

help a developer grasp the essence o f a problem.

Databases. Database design is a more complex topic than Jackson implies. JSD model
ing is biased towards actions and away from entities and attributes. As a natural conse

quence. it is a poor technique for database design.

Conventional software running under an operating system. JSD's abstraction of hun

dreds or thousands of processes is confusing and unnecessary'.

12.3 INFORMATION MODELING NOTATIONS

O M T object modeling combines object-oriented concepts (class and inheritance) with infor

mation modeling concepts (entities and associations). Information modeling originated

within the database community and is concerned with modeling the structure of data so that

it can be properly managed with a database.
The Entity-Relationship <ER) approach (Chen-76) is the most common approach to in

formation modeling. ER is a graphical technique that is popular because the notation is easy

to understand, yet powerful enough to model real problems. ER diagrams are readily trans

lated into a database implementation.
There really is no "standard HR“; all practical implementations, and there are many of

them, extend ER in various ways. For instance, |Tcorey-S6| discusses the LR D M approach.
LR D M ts a useful extension to ER and supports basic concepts such as inheritance, associ

ation. and entities that are described by attributes. [Shlaer-NKa| describes another enhance

ment to ER.
O M T object modeling is also an enhanced form of ER. We add several new concepts,

such as qualification, and a methodology for programming ami database design. Figure 12 .1
and Figure 12.2 compare the readability and expressability of ER and O M T notations for the

same problem. Our presentation of ER syntax was taken from |L llman SS| and (Chen-76).
In these figures, a person has a nam e, address, and social security num ber. A person m ay

charge lim e to projects and earn a salary. A com pany has a nam e, address, phone num ber,

and p rim ary product. A com pany lures and tires persons, f ’ t-rson m u l C u m p t i n y have a m any-

lo *m anv relationship Job title depends on hath person and com pany.

T nere are tw o types o f persons: w orkers and m anagers Each w o rker w orks on m any

projects: each m anager is responsible for m any projects A project is stalled by m any w ork

ers and exactly one m anager Each project has a nam e, budget, and internal p rio rity for se

curing resources.
A com pany is com posed o f m u ltip le departm ents: each departm ent w iihm a com pany is

uniquely identified by Us nam e. A departm ent usually, but not a lw ays, has a manager. M ost

m anagers m anage a departm ent: a few m anagers .ue not assigned to any departm ent. F.ach

department m anufactures many products: w h ile each product is m ade by exactly one depart

ment. A product has a nam e, cost, ami weight

Figure 12.2 O M T object model

12.4 O B JE C T-O R IE N TE D W O R K

Nov. v c compare* the O M T w ith other ob ject-o rien ted approaches. O u r com parison is nec-

esNarilv lim ited because little has been published on object oriented m ethodologies tor soft

w a re e n e in e e r in e . O u t a p p ro a c h is c o m p a t ib le w ith the le v p u b lic a t io n s v e h ave

encountered to dale . To a latue e x ten t, our w o rk synthesizes several d iffe re n t cam ps o f

thought: databases, o b jec t-o rien ted concepts, and softw are etis jiueetm e. W e consider our

work, to l v a consolidation ot past e llo rts w ith some increm ental im p n n c m e n ls .

|Booc!i-S<>| describes the rudim ents o l o b jec t-o iicn ted s o ltv a ic developm ent. H e e x

plains that ob ject-oriented developm ent is lu n d a m c n ia ii) d itle ren t Iro m trad itional function

al approaches to d es ig n , such as those based on data How . O b je c t-o r ie n te d soltvvare

decom position m ore closely m odels a person's perception ot reality , w h ile functional d e

com position is only achieved through a transform ation ol the problem space. T hus it is not

surprising that softw are developed w itli an object onen led approach is m ote understandable,

extensible, and m ainta inable.

! Ib n K h -o I | extetuls p iev ious A d a -o ile n tc d v o ik to the en tile o h jev t-o iicn ted design

area. His excellent discussion ot m heiitance and c lassilicatio ii arc particu la ily v o ith read

me. hooch's m etitodoloev m d u ile s a vauetv ol m odels that address the ob|eci. dv nam ic. and

Junctional aspects oj a s o itw a ie system. We w ould say that his book places less em phasis on

analysis ami m ore em phasis on design than we do. A m ajor d istinction betw een Hooch's a p

proach ami the O M T approach is ihe emphasis we place on associations. Bouch m entions

associations in rc le rn ng to our past w ork but has not indy incorporated them into ins m eth

odology. The s im ilarities betw een the appioachcs a ic m ore striking than the d iltcrences. and

both approaches com plem ent one another

(M e v e r-S S j is rcalls not a m ethodology land does mu c la im to b e i but has m any lips on

good design. M e y e r ’s book is heavily oriented towards using language as a veh ic le lo r e x

pressing a desicn; we use e ra p h ie s . M ey er tines not deal w ith conceptual m odeling or anal

VMS.

f S ldaer-SSb) d e s u ib e s a com plete m ethodology lor ob ject-o rien ted analysis w h ich is

sim ilar lo o m s . Shlaei am i M e llo f \ m ethodology, like out () M I m ethodology. hieaks anal

vsis d o w n into three p h a s e s , static m odeling oj objects, d y iia m u m odeling ot stales and

events, and functional m odeling A ll in a ll. we think that then m ethodology is quite good. A

llaw with Shlaer and M e llo r ’s treatm ent is their e u e v*M \e preoeitipalron w ith re lational d a

tabase tables and database keys

Shlaer and M eilo r only J ;n m their m ethodology as an approach to analysis, and caution

lhal the Sinai ilesien nmrht tv d itfe ie n t V*e have tried In show how the o l» |e il oriented par

adigm can perm eate the enure so itw aie developm ent process tio in analysis to design to

im plem entation

(M a d and Yourdon ((Vi.ul uMj present an approach to ob ject-o rien ted analysis that is

'U in la r to the o rig ina l O M [approach taken by u% (l < S • I ami by Shlaer and M i llor

they iom h briefly on design
Jacob‘.en {J.u->b en X’M v t .m n . to have a Juli objcx t m iented development meth<ulology.

but only bunted detail ot ins methiMologv have been pubiislied. the rest is av a liable through

a commercial course. He analyzes a system in terms of entities (an object model) and use

cases (prototypical scenarios covering dynamic behavior). For implementation, functional

ity is grouped into services, groups of related functional requirements. Design consists of

constructing a system architecture in terms of modular blocks.

All of the object-oriented methodologies, including ours, have much in common, and

should be contrasted more with non-object-oriented methodologies than with each other.

12.5 CHAPTER SUMMARY

Several popular software engineering approaches are based on the notion of data flow. The

Structured Analysis/Structured Design (SA/SD) methodology is representative of the data

flow approach. SA/SD begins with a single process or function that represents the overall

purpose of the desired software. SA/SD recursively divides complex processes, until one is

left with many small functions that are easy to implement.

SA/SD and O M T modeling have much in common. Both methodologies support the

three orthogonal views of a system— the object, dynamic, and functional models. The d if

ference is that SA/SD emphasizes the functional model while O M T emphasizes the object

model. We believe that for most problems an object-oriented approach is superior to a data

flow approach. An object-oriented design is more extensible, provides better traceability,

and better integrates database and programming code.

Michael Jackson advocates a different approach to system development, called JSD. A

JSD model begins with consideration of the real world. One culls out the most important en

tities and actions in the real world, from the perspective of the application. The remaining

JSD steps develop detailed pseudocode that precisely specify desired software behavior and

their correspondence to real-world actions.
We regard JSD as a valuable approach, as are SA/SD and OM T. Each methodology has

its niche where it clearlv excels. JSD is an excellent methodology for real-time and micro-¥ *
code applications. We consider JSD a poor approach for high-level analysis and database de

sign.

We have compared O M T object modeling to the entity-relationship (HR) information

modeling notation. In essence, O M T object modeling is an enhanced form of HR. O M T ob
ject modeling improves on HR in the areas of expressiveness ami readability

The O M T methodology builds on earlier object-oriented work and benefits from in

sights that have come with experience.

entity-relationship (H R i diagram

information modeling notations

Jackson Structured Development tJSD)

Object Modeling Technique (O M T i
other approaches to object-oriented development

Structured Analysts/Stiuclurcd Design tS A /S D i

Higure 12.J* Ke> concepts lor (‘hapiet \?

REFERENCES

| BcKx:h-.S6] Grady Booth. Object-oriented development. IE E E Transactions on Software Engineering

12. 2 (Feb.IVS6). 211-221.
| Booeh-911 Grady Booth. O b je c t-O rie n te d D esign. Redwood City. Calif.: Benjamin/Cummings.

IW I.
|Camcron-S9] John Cameron. JSP <& JSL): The Jackson Approach to Software Development. Washing

ton. DC: I EMI: Computer Society Press. 1989.
iChen-76| P.P.S. Chen. The entity-relationship model—toward a unified view of 4 m . A C M Transac

tions on Database System /. I (March 1976).
[Coad-90] Peter Coad. Edward Yourdon. O bject-O rien ted Analysis. Englewood Cliffs. New Jersey:

Yourdon Press. 1 WO.
(Jackson-83) Michael A. Jackson. System Development. Englewood Cliffs, New Jersey: Prentice Hall

International, 1983.
Uacohsen*87| Ivar Jacobsen. Object oriented development in an industrial environment. O O P S LA '87

as A C M S IG P L W 22, 12 (December 1987), 183*191.
[Loomis-871 Man* E.S. Loomis. Ashwin V. Shah, James E. Ruinbaugh. An object modeling technique

for conceptual design. European Conference on O b jec t-O rien ted P rogram m ing* Paris. France,
June 15-17. 1987. published as Lecture So les in C om puter Science. 276, Springer-Verlag,

| Meyer *88 J Bertrand Meyer. O bject-O rien ted Software C onstruction , Hertfordshire. England: Prentice
Hall International. 1988.

fShlaer-KSa) Sally Shlaer and Stephen J. Mel lor. O b jec t-O rien te d Systems A n a lys is : M od e ling the

W orld in D a ta . Englewood Cliffs, New Jersey: Yourdon Press, 1988,
{Shliier SXbl Sally Shlaer, Stephen J. Mellor, Deborah Ohlsen, and Wayne I lywari, The object-oriented

method for anal) sis. Proceedings o f the Tenth S tructu red Developm ent b o r ton, 1988.
[Teorcy 86) Toby J. Teorey. Dongqing Yang, James P. Fry. A logical design methodology for relational

databases using the extended entity-relationship model. Com puting Surveys IS , 2 (June 1986),
197-222.

[UUman-SS] Jeffrey Ullman. P rinc ip les o f Database and Knowledge-Hose Systems, Volumes I a nd 2.

Rockville, Maryland: Computer Science Press. 1988.

JYourdon*79J Edward Yourdon, t-^irry L. Constantine. Stnn fared Design Englewood Cliffs, New Jer

sey: Yourdon Press, 1979,

(Yourdori‘89) Edw ard Yourdon. Modern Structured Analysis, Englewood Cliffs, New Jersey: Yourdon
Press, 1989.

EXERCISES

I2J tbj You are designing a portable tester lor integrated circuits. The tester will base several dif
ferent types o i sockets. An integrated circuit will be tested by placing it in the socket that match
es its pm configuration and identifying the type of circuit. The tester will then run through a se
nes of tests, applying |*»wer and signals to the appropriate puts and measuring the response of
the circuit. A portion of the object diagram for the tester is shown in Figure E l2.1 There is a
doubly qualified a w * tat ton between test case ami socket. Each test case applies several named
signals t<> pros of a socket The same signal may be applied to more than one pin. Fauh pin may
receive signals from several test c.imts. Prepare a corresponding EK diagram; preserve as much
semantic content as vnu can

Figure El 2.1 Portion of an object diagram for an integrated circuit tester

12.2 (3) Figure El 2.2 is an object diagram for a portion of a simplified simulator for training glider
pilots. The simulator is for one glider with wings and rudder only. Effects of the wind and forces
generated bv the body of the glider are neglected. Details of the user interface to the simulator
are outside the scope of this exercise. A glider has several associated lifting surfaces, in this case
two wings and a rudder. The wings provide lift and the rudder is used to steer. Methods would
be provided to perform simulation. For instance, the force on each surface would be calculated
from its attribute values, and the orientation, velocity, and rotational rate of the glider. The force
on the rudder would also depend on its deflection. The translational acceleration would be com
puted by retrieving the results of force calculations and masses of associated surfaces. The ac
celerations would be numerically integrated to update position, orientation, velocity, and rota
tional rate.

G lider o Surface

position : vector
orientation : vector
velocity : vector
rotational rate : vector

area
chord : shape
relative location : vector
relative orientation : angles
mass
moment of inertia : tensor
center of gravity : vector

compute translational acceleration
compute rotational acceleration
integrate accelerations

compute torque
compute force

W ing
1

Rudder

deflection . ancle
i

Figure E l 2.2 Object diagram of a portion o f a glider simulator

Figure H12.3 is the corresponding data How diagram lot the glider. Position, orientation, ve

lo c ity and rotation vectors are data stores which serve as stale variables lor the simulator.

a. Modilv both diagrams to add an elevator to the tail ot the glider to prov <dc additional control

and to arid another small wmg on the nose of the glider to provide additional lilt and stabihtv

b. How would each diagram be modified to simulate the tvhavior ol the glider alter an\ com

bination of surfaces tails off, including elevator, rudder, leti main wing, right mam wmg. !e!t

nose wmg. and right nose wmg. (There are U \ combinations.*

Figure E12J Data How diagram for a portion of a glider simulator

12J {Project.) Consult a few of the references at the end of the chapter and compare and contrast the
way inheritance, methods, and ternary relationships are handled by Shlaer and Mcllor. Booeh.
Teorcy. and ON IT,

PART 3: IMPLEMENTATION

13
From Design to Implementation

Part I of this book presents object modeling concepts: Parts 2 and 3 deal with the develop

ment process for applying these concepts. Pan 2 presents the front end of the development

process, the portion that is generic in nature and spans implementation targets. Pan 3 covers

the tail end of software development and discusses the speeilic details for implementing a

system using object-oriented languages, non-objeci-oriented languages, and database man

agement svstems.
Writing code is an extension of the design process. Writing code should be straightfor

ward. almost mechanical, because all the difficult decisions should already have been made

during design. The code should be a simple translation of the design decisions into the pe

culiarities of a particular language. Decisions do have to be made while writing code, but

each one should affect only a small part of the program so they can be changed easily. Nev

ertheless. the program code is the ultimate embodiment of the solution to the problem, so the

way in which it is written is important for maintainability and extensibility.

13.1 IMPLEMENTATION USING A PROGRAMMING LANGUAGE

Most executable languages are capable of expressing the three aspects of soft w are specifica

tion: data structure, dynamic flow of control, and functional transformation.
Data structure is expressed in a declarative (nonprocedural) subset of a language. Hie

statements that are used to declare data structures are sometimes mixed in w ith the procedur
al statements but are not executable. In some lancuaces. such as Aria, a slurp distinction is

made between external specification, w hich is purely dcelarntne. and internal specification,

w hich is often combined with procedural statements.
Mow of control may be expressed either proceduraily (conditionals, loops, and calls) or

nonprocedural^ (rules, constraints, tables, and state machines). Traditional languages are

purely procedural, although the programmer can implement nonproccduiul constructs as

data. Nonprocedural languages, such as rule-based systems, constraint maintenance sys-

27S

terns. and logic programming languages, support entirely different ways of organizing pro

grams. Their relationship to object-oriented concepts is still under exploration, and we do

not cover them in this book.
Support for concurrent threads of control is lacking in most major languages (except for

Ada). Multitasking and interprocess communication are provided by modem operating sys

tems but must be accessed from programs using awkward subroutine calls. Concurrency can

also be simulated within programs using coroutines, control modules, or event handlers.

Functional transformations are expressed in terms of the primitive operators of the lan

guage. as well as calls to subprograms. Most procedural languages are similar in the kinds

of functionality they support and do not differ greatly from Fortran. Lisp permits construc

tions o f functions at run time, which permits interesting (and confusing) operations.
Implementation of an object-oriented design is easiest using an object-oriented lan

guage. but even object-oriented languages vary in their degree of support foi object oriented

concepts. Each language represents a compromise among conceptual powci. efficiency, and

compatibility with previous work. Chapter 15 describes various characteristics and limita

tions of object-oriented languages and how to work around (Item.
Even when a non-object-oriented language must be used, an object-oriented design is

beneficial. Object-oriented concepts can be mapped into non-object-oriented language con

structs. There is really not a problem of power— after all. programming languages are even
tually convened to machine language anyway— as much as an issue of expressiveness. Use

of a non-object-oriented language requires greater care and discipline to preserve the object-

oriented structure of the program, and the programmer cannot obtain help from the language

in finding violations. Chapter 16 describes implementation of object-oriented designs using

C. Ada. and Fortran.
Any language, object-oriented or non-object-oriented, is a tool that can be used well or

poorly. Object-oriented programming can greatly improse the expressiveness of programs, but
it can also increase the opportunity for obfuscation bv caieless programmers. As with any craft,

gtxxl programming requires discipline and adherence to principles of good style Chapter 14

describes style guidelines that promote the effective use of object-oriented techniques.

13.2 IMPLEMENTATION USING A DATABASE SYSTEM

When the main concern is access to persistent data, rather than the operations on the data, a

database is often the appropriate form of implementation. The main foeus of a database is

the structure and constraints on the data. Database commands typically operate on sets ol
data from (he database, incorporating a high deg ice ol parallelism, while most conventional

languages are highls serial Database operations arc h u h h less priKvduial than conventional

programming language statements, although they are mote procedural than a rule-based sys

tem. Databases provide concurrent n|>erations on data by different useis as part oJ then fun

damental structure.
Wc discuss implementation of d-ilabase applications using existing relational database

management systems iR D B M S i in Chapter 17. .Most RDBMS provide separate languages

for data declarations and operations, analogous to the distinction in programming languages

The data definition language is used to declare the structure of the data. A query language

may be provided which allows the expression o f functional transformations (record locking

and update) and How of control. The query language may be limited to simple record access

based on fields that act as keys, or it might offer more o f the features of a general purpose

programming language.

Some recent object-oriented database systems attempt to integrate an object-oriented

language with a database in a single seamless package. Operations may be defined for each

class of object, but the programmer need not explicitly read and write information to persis

tent storage. Although object-oriented database systems promise better performance and

easier use in the long run, they are not yet as mature as conventional relational database sys

tems and may also pose problems integrating with existing conventional applications. Inte

grated object-oriented languages and databases are discussed as part of Chapter 15.

13.3 IMPLEMENTATION OUTSIDE A COMPUTER

The specification and design techniques described in this book are useful for implementation

targets besides programming languages and databases. Often the design of a computer ap

plication involves an implementation that will consist of a mixture of software and some oth

er structure. Typical domains include design of hardware, design of a knowledge base, and

modeling business enterprises. Object modeling techniques can be useful in capturing struc

tural. dynamic, and functional relationships in such domains in a way that can be communi

cated to domain experts. It is beyond the scope of this book to explore implementation in

these other domains.

13.4 OVERVIEW OF PART 3

Part 3 of the book discusses implementation of object-oriented designs in various target lan-

cuaties:

• Chapter 14 contains style guidelines for writing programs in object-oriented and non-

object-oriented languages in a proper object-oriented spirit, maximizing the possibility

of readability, reusability, and extensibility.

• Chapter 15 describes implementation using object-oriented languages having varying

degrees o f support for object-oriented concepts. It includes a survey of seveial c o m m e r

c ia l ly available lanuuaees. It also discusses inteerated object-oriented languages and via-- <* s v

labases.

• Chapter 1b shows how to implement object-oriented designs in a non-ohject-orieuted

language and addresses the limitations o f such an implementation. Var ious ob jec t -o r i

ented concept^ arc mapped into (Ada, and l-'ortrun code.

• Chapter 17 describes im plem entation o fo b je c t -o n e n te d designs usine exist im: relation*

al database management s \stems, including alternate v t a \ ' ol mapping \a tio u s object

oriented constructs and \v a \s to optim ize pe i lonnance.

Programming Style

As any chess player, cook, or skier can attest. there is a great difference between knowing

something and doing it well. Writing object-oriented programs is no different. It is not
enough to know the basic constructs and to be able to assemble them together into programs,

'rite experienced programmer follows principles to make readable programs that live beyond

the immediate need. These principles include general design principles, programming idi
oms Chow to do common tasks with the tools at hand'’), rules-of-thumb. tricks ot the trade,

and cautionary advice. Good style is important in all programming, but it is even more im
portant in object-oriented design and programming because much of the benefit ol the ob
ject-oriented approach is predicated on producing reusable, extensible, understandable
programs.

14.1 OBJECT-ORIENTED STYLE

Good programs do more than simply satisfy their functional requirements. Programs that b i l

low proper design guidelines are more likely to Ik correct, reusable, extensible, and quickly

debugged. Most stele guidelines that are intended lor conventional programs also apply to

object-oriented programs. In addition, facilities such as inheritance are peculiar to object-
oriented languages ami require new g u id e l in e s . Wc present object-oriented s(\ie guidelines

under the follow ing categories, although many guidelines contribute to more than one t ate*

gory:

• Reu%abihtv✓

• Extensibility

• Robustness

• Pfc »g raim m ng • m • t he -1 ar ec

is I

14.2 REUSABILITY

Reusable software reduces design, coding, and testing cost by amortizing effort over several

designs. Reducing the amount of code also simplifies understanding, which increases the

likelihood that the code is correct. Reuse is possible in conventional languages, but object-

oriented languages greatly enhance the possibility of code reuse.

14.2.1 Kinds of Reusability

There are two kinds of reuse: sharing of newly-written code within a project and reuse of

previously-written code on new projects. Similar guidelines apply to both kinds of reuse.

Sharing of code within a project is a matter of discovering redundant code sequences in the

design and using programming language facilities, such as procedures or methods, to share

their implementation. This kind of code sharing almost always pays off immediately by pro
ducing smaller programs, faster debugging, and faster iteration of the design.

Planning for future reuse takes more foresight and represents an investment. It is unlike

ly that a class in isolation will be used for multiple projects. Programmers are more likely to

reuse carefully thought out subsystems, such as abstract data types, graphics packages, and

numerical analysis libraries.

14.2.2 Style Rules for Reusability

Keep methods coherent. A method is coherent if it performs a single function or a group of
closely related functions. If it does two or more unrelated things, break it apart into smaller

methods.

Keep methods small. I f a method is large, break it into smaller methods. A method that ex

ceeds one or two pages is probably too large. By breaking a method into smaller parts, you

may be able to reuse some parts even when the entire method is not reusable.

Keep methods consistent. Similar methods should use the same names, conditions, argument

order, data types, return value, and error conditions. Maintain parallel structure when possi
ble. The Unix operating system offers many examples of inconsistent functions. For exam

ple. in the C library, there are two inconsistent functions to output strings, puts and fputs. The

puts function writes a string to the standard output, followed by a newline character:/puts

writes a string to a specified file, without a newline character. Avoid this kind of inconsis

tency.

Separate policy am i implementation. Policy methods make decisions, shuffle arguments,

and gather global context. Policy methods switch control among implementation methods.

Policy methods should check for status and errors: they should not directly perform calcula
tions or implement complex algorithms. Policy methods are often highly application-depen

dent. but they are simple to write and easy to understand. Policy methods are the "mortar."

Implementation methods perform specific detailed operations, without deciding wheth
er or w hy to do them. If implementation methods can encounter errors, they should only re

turn status, not take action, implementation methods perform specific computations on fully-

specified arguments anil often contain complicated algorithms. Implementation methods do

not access aloha! context, make decisions, contain defaults, or switch How of control. Be-

cause implementation methods are self-contained algorithms, they are likely to be meaning
ful and reusable in other contexts. Implementation methods are the "bricks."

Do not combine policy and implementation in a single method. Isolate the core of the

algorithm into a distinct, fully-specilied implementation method. This requires abstracting

out the particular parameters of the policy method as arguments in a call to the implementa

tion method.
For example, a method to scale a window by a factor of 2 is a policy method. It should

set the target scale factor for the window and call on an implementation method that scales

the window In an arbitrary scale factor. Later i f yo u decide to change the default scale factor

to another value, such as 1.5. you just have to modify the parameter in the policy method,

without changing the implementation method which actually does the work.

Provide uniform coverage. I f input conditions can occur in various combinations, write

methods for all combinations, not just the ones that you currently need. For example, if you

write a method to get the last element of a list, also w rite one to get the first element.

llroaden rhe method as much as possible. Try to generalize argument types, preconditions

and constraints, assumptions about how the method works, and the context in which the

method operates. Take meaningful actions on empty values, extreme values, and out-of-
bound.s values. Often a method can be made more general with a slight increase in code.

Avoid global information. Minimize external references. Referring to a global object impos

es required context on the use of a method. Often the information can be passed in as an ar
gument. Otherw ise store global information as pan of the target object so that other methods

can access it umformlv.

Avoid n w d fi Functions that drastically change behavior depending on current context are

hard to reuse. Try to replace them with modeless functions. For example, a text processing

application requires insert and replace operations. One approach is to set a mode to insert or

replace, then use a v.nte operation to insert or replace text depending on the current mode.
A modeless approach uses two operations, insert and repla> e. that do the same operations

without a mode setting. The danger of inodes is (hat an object left m a mode in one part of

an application can attest an operation applied later in the application.

14.2.3 Using Inheritance

The preceding guidelines improve the chance of inheriting shared code. Sometimes, howev
er. methods on dilferent classes are similar but not similar enough to represent with a single

inherited method There are several techniques ol breaking up methods to inherit some code.

Subroutines. The simplest approach is to taclor out the einnmon c<h!c into a single method

that is called b\ each method Hu* common method can tv assigned to an ancestor class. T his

is effectively a subroutine sal! and is shown in Figure 14 l

h tn tonne. In some eases the best wav to increase code lease

factor out the ditfcrenses between the methods u! ditterent s las

between similar classes is to

ses. leas mg the remainder ol

method A method B

common method

Figure 14.1 Code reuse via subroutines

the code as a shared method. This approach is effective when the differences between meth

ods are small and the .similarities are great. As shown in Figure 14.2. the common portion of

two methods is made into a new method. The new method calls an operation that is imple

mented by a different method containing the code differences in each subclass. Sometimes

an abstract class must be added to hold the top-level method. This approach makes it easier

to add new subclasses because only the difference code need be written.

common method
common code
call operation M

figure 14.2 Code reuse via I'actorin:

A package for plotting numerical data provides a good illustration of factoring. D a ta

Graph is an abstract class that organizes common data and operations for its subclasses. One

of D ataG rap h '* methods is draw, consisting of the following steps:
1) Draw border

2) Scale data
3) Draw axes

4) Plot data
5) Draw title
6) Draw legend

S u b c la s s e s o f D a taGraph. s u c h as L i nrG raph. HarG raph. a n d SeatterGraph. d ra w b o r

d e rs . t i t le s , a n d le g e n d s th e sa m e w a v b u t d i f f e r in th e w a \ th e v s c a le d a ta , d ra w a x e s , a n d

p lo t d a ta . F .ach s u b c la s s in h e r i ts th e m e th o d s draw llarder. draw Title, a n d draw {.extend f r o m

a b s t ra c t c la s s D a ta G ra p h . b u t e a c h s u b c la s s d e f in e s i t s o w n m e th o d s f o r seaieD ata .

drawAxes, a n d platD ata. T h e m e th o d draw n e e d o n lv be d e l in c d o n c e , o n c la s s D ataG raph.

a n d in h e r i t e d b y e a c h s u b c la s s . E a c h t im e th e d ra w m e th o d is in v o k e d , i t a p p l ie s

draw Harder, d raw T itle , a n d draw Leitend in h e r i t e d f r o m th e s u p e rc la s s a n d seaieData.

draw.-Vxis, a n d pio iD uta s u p p lie d b \ th e s u b c la s s f o r th e o b je c t . T o a d d a new s u b c la s s . o n l>

th e th re e s p e c ia l i /e d m e th o d s n e e d be w r i t te n .

Dele^attan. S o m e t im e s it a p p e a rs th a t use o f in h e r i ta n c e w o u ld in c re a s e c o d e re u se w i t h in

a p ro g ra m , w h e n a t ru e x u p e rc la s s /s u b c la s s r e la t io n s h ip d o e s n o t e x is t . D o n o t e n e in to th e

temptation to use this implementation inheritance: use delegation instead. Inheritance

should only be used when the generalization relationship is semantically valid. Inheritance

means that each instance of a subclass truly is an instance of the superclass: thus all opera

tions and attributes of the superclass must uniformly apply to the subclass. Improper use of

inheritance leads to programs that are hard to maintain and extend. Object-oriented languag
es are permissive in their use of inheritance and will not enforce the good programming prac

tice that we recommend.
Delegation provides a proper mechanism to achieve the desired code reuse. The opera

tion is caught in the desired class and forwarded to another class for actual execution. Since

each operation must be explicitly forwarded, unexpected side effects are less likely to occur.

The names of operations in the catching class may differ from those in the class supplying

the operations. Each class should choose names which are most appropriate for its purposes.

Encapsulate external code. Often you w ill want to reuse code that may have been developed

for an application with different interfacing conventions. Rather than inserting a direct call

to the external code, it is safer to encapsulate its behavior within an operation or a class. This

way the external routine or package can be changed or replaced, and you will only have to

change your code in one place.

For example, you may have a numerical analysis application hut. knowing that reliable

matrix inversion software already exists, you do not want to reimplement the algorithm in

your object-oriented language. A matrix class might be written to encapsulate the function

ality provided by the external subroutine package. The matrix class would have, for exam

ple. an inverse operation that takes the tolerance-for-singularity as an argument and returns

a new matrix that is the inverse of the operation's target.

14 .3 E X T E N S IB IL IT Y

Most software is extended in ways ihat its original developers may not expect. The guide

lines for reusability enhance extensibility as well. In addition, the following object-oriented

principles enhance extensibility

E n capsu la te < lasses. A class is encapsulated if its internal structure is hidden from other class
es Only methods on the class should access its implementation. Many compilers are smart
enough to optimize operations into direct access to the implementation, but the programmer
should not. Respect the information in other c lasses by never reaching inside the class fo: data.

H h i e d a ta s tun t u n s Do not export data structures from a method. Internal data structures
are specific to a method's .dcorithm It you export them, you limit flexibility to change the
algorithm later

A v o i d t r a s e rs in : : m u l t i p l e Itnf.s o t methods A method should have limited knowledge of an
object model. A method must lv able to traverse links to obtain its neighbors and must be
able to call operations on them, but it should not traverse a second link horn the neighbor to
a third class because the second link I > not directly visible to it. Instead, call an operation on
tile ncighlxif object to traverse the operation, if th<- association network changes, the opera

tion method can be rewritten without changing the call. Similarly, avoid applying a second

operation to the result o f an operation call unless the class o f the result is already known as

an attribute, argument, or ncisjhbor. or the result class is from a lower-level library. Instead,

write a new operation on the original target class to perform the combined operation itself.

The principles in this paragraph were proposed in |Lieberherr-89| as the ’'Law o f Demeter.’'

Avoid case statements on object type. Use methods instead. Case statements can be used to

test internal attributes o f an object but should not be used to select behavior based on object

type. Dispatching operations based on object type is the whole point o f methods, so don’t

circumvent them.

Distinguish public and private operations. Public operations are visible outside a class and

have published interfaces. Once a public operation is used by other classes, it is costly to

change its interlace, so public operations should be carefully defined. Private operations are

internal to a class and are used to help implement the public operations. Private operations

can be deleted or their interfaces can be changed to modify the implementation o f the class

with impact limited to other methods on the class.

Why classify operations as public and private?

• There is no need to bother the user o f a class with internal details. Private methods just

confuse the external user o f the class.

• Since private methods depend on internal implementation decisions, the method design

er may change the number and types o f arguments if the implementation changes.

• Private methods may rely on preconditions or state information created by other meth

ods in the class. Applied out of context, a private operation may calculate incorrect re

sults or cause the object to fail.

• Private methods add modularity. Internal details of the method only affect methods on

the class, not other methods.

Similarly, attributes and associations should be classified as public or private. In addition,

public attributes and associations may be classified as read-only or writable outside the own

er class.

14.4 ROBUSTNESS

You should strive for efficiency in writing methods but not at the expense of robustness. A

method is robust if it does not fail even if it receives improper parameters. Robustness

auainst internal hues may be traded off aeainst efficiency. Robustness acainst user errors
V. V • "to -

should never be sacrificed.

protect against errors. Software should protect itself against incorrect user input. Incorrect

user input should never cause a crash. Any method that accepts user input must v alidate in

put that could cause trouble.

The method designer must consider two kinds o f error conditions. Application (user) er

rors are identified during analysis and report on conditions that exist in the problem domain.

For example, an automatic teller machine application should report or process errors about

the ATM card scanner and communications lines. The response to these errors is part of the

analysis. On the other hand, low-level system errors concern programming aspects of a

method. These low-level errors include operating system errors, such as memory allocation

errors or file input/output errors, and hardware faults. Your program should check for these

errors and at least try' to die gracefully if nothing else is possible.
Try to guard against programming bugs as well as possible, and give good diagnostic

information even if fatal bugs occur. During development, it is often worthwhile to insen in

ternal assertions into the code to uncover bugs, even though the checks will be removed for

efficiency in the production version. A strongly-typed object-oriented language provides

greater protection against type mismatches, but assertions can be manually inserted in any

language.

Optim ize a fter the program runs. Don't optimize a program until you get it working. Often

programmers spend too much effort trying to improve portions o f code that are infrequently

executed. Measure the performance within the program before optimizing it; you may be

surprised to find that most parts consume little o f the total time. Study your application to

learn what measures are important, such as worst case limes and operation frequencies. I f an

operation may be implemented in more than one way, assess the trade-offs o f the alternatives

as they relate to memory', speed, and simplicity of implementation. In general, avoid opti

mizing more of the program than you have to. as optimization compromises extensibility,

reusability, and understandabilitv. If methods are properly encapsulated, they can be re

placed with optimized versions without affecting the rest of the program.

Vaitdate arguments, External operations, those available to users of the class, must rigorous

ly check their arguments to prevent failure. But internal methods may assume their argu

ments are valid for efficiency reasons. Public methods must take more care to check the va

lidity of arguments because external users are more likely to violate restrictions on argu

ments. Internal, or private, methods can often assume preconditions since the implementor

has tighter control and can rely on the public methods that call them for error checking.

Don’t include arguments that cannot be validated. For example, the infamous u a n f

function in Unix reads a line of input into an internal buffer without checking the size of the

buffer. Tins loophole has been exploited to write vims programs that force a buffer overflow

in system software that did not validate its arguments Don't write or use operations whose

arguments can't be validated.

Avoid predefined limits. When possible use dynamic memory allocation to create data struc

tures that do not have predefined limits. During design, it is difficult to predict the maximum

capacity expected of data structures m an application, so don’t set any limits. The day of
fixed limits on symbol table entries, user names, file names, compiler entries, and other

things should be long m cr. Most object-oriented languages have excellent dynamic memory

allocation facilities.

Instrument the program Jar debugging and performance monitoring. Just as a hardware cir

cuit designer instruments an IC board with lest points, you should instrument your code for

debugging, statistics, and performance. The level of debugging that you must build into your

code depends on the programming environment presented by the language. In Smalltalk, for

example, a class browser allows a developer to explore the class hierarchy, displaying at

tributes and the code for methods. An inspector lets the user interrupt execution and print the

internal state of an instance, if your implementation language does not have similar capabil

ities, then you can provide print methods for each class. These methods can be accessed from

your system debugger. Also, you can add debug statements to the methods. These debug

statements are conditionally executed depending on an instance variable that contains the de

bug level. You can print a message on entry' or exit and selectively print input or output val

ues.
Adding code to gather statistics will help you understand the behavior of your classes.

Some operating systems, such as Unix and V M S. offer tools to create execution proliles of

an application. Typically, these tools report the number of times each method was called and

the amount of processor time spent in each method. If your system does not have comparable

tools, you can instrument your code for gathering statistics much like for debugging.

14.5 PROGRAMMING-IN-THE-LARGE

Programming-in-the-large refers to writing large, complex programs with teams of program

mers. Human communication becomes paramount on such projects and requires proper soft
ware engineering practices. The following guidelines should be observed:

Do not prem aturely begin program m ing. It is important to first complete the generic thought

process before confronting the quirks o f an implementation target. All software development

methodologies emphasize the importance of first designing, then coding.

Keep methods understandable. A method is understandable if someone other than the creator

of the method can understand the code (as well as the creator after a time lapse). Keeping

methods small and coherent helps to accomplish this.

M ake methods readable. Meaningful variable names increase readability. Typing a few ex

tra characters is cheaper than the misunderstanding that can come later when another pro
grammer tries to decipher your variable names. Cheek the readability of your methods by

running them through a spelling checker. Avoid abbreviations that may confuse other pro

grammers. Use temporary variables instead of deeply nested expressions. Do not use the

same temporary variable for two different purposes u ithin a method, even if their usage does

not overlap: stack space is cheap ain way.

Use exactly the same names as in the object niiulel. The choice of names used w ithin a pro

gram should exactly match those found in the object model. A program may need to intro

duce additional names for implementation reasons, and this is fine, but the uniformitx of

names where they carry forward should be preserved. This practice improves traceability,

documentation, and understandability for the software as a whole.

Choose names carefully. Make sure your names accurately describe the operations, classes,
and attributes they label. Follow a uniform pattern in making up names. For example, you

might use the pattern "v c rb o b je c t" in making up operation names, such as addjelem ent or

d ra w jtig h lig h t. Be sure to define the verbs being used frequently (for example, you may

want to distinguish between copy and decpcopy or between new and create). Many object-
oriented languages automatically build method names from the class name and operation.

Do not use the same operation name for semantically different operations. A ll classes

that use the same name should have the same origin class and the same signature (number

and types of arguments).

Good
Circle::Area
Rectangle::Area

Bad
Matrix::lnvert (performs matrix inversion)
Figure "Invert (turns figure upside down)

Use program m ing guidelines. Project teams should use programming guidelines available

in their organizations. If guidelines do not exist, the software team should create guidelines

that address issues such as the form o f variable names, indentation style for control struc

tures, method documentation headers, and in-line documentation.

Package into modules. Group classes with similar functions into a module.

Module
plotting
geometry
v/indows
animation

Classes
line plot, bar chart, pie chart
polygon, circle
menus, buttons, toggles, panels
scenes, cues, key frames

Document classes and methods. The documentation of a method describes its purpose, func

tion, context, inputs, and outputs as well as any assumptions and preconditions about the

state of the object. You should describe the algorithm, including why it was chosen. Internal

comments within the method should describe major steps.

Publish the specification. The specification is a contract between the producer and the con

sumer o f the class. Once a .specification is written, the producer cannot break the contract,
for doing so would affect the consumer. The specification only contains declarations. The

user of a method should he able to use the method just by looking at the specification. Some

languages, such as Ada and C++, support separation o f specification and implementation.

On-line descriptions of the class and its features help promote the correct use o f the class.

Each operation should also be documented by itself (apart from its method on each class),
giving its origin, generic meaning, telling what each subc lass must do to implement the op

eration, and what related methods are needed by the subclass. A partial sample specification

follows.

Class Description
Class Name: Circle
Version: 1.0
Description: Ellipse whose major and minor axes are equal
Super Classes: Ellipse
Features:

Public Attributes:
center: Point — location of its center
radius: Real — its radius

Public Methods:
draw (Window) — draws a circle in the window
intersectLine (Line): Set of Points — finds the intersection of a line and a

circle, returns set of 0-2 points
area (): Real — calculates area of circle
perimeter (): Real — calculates circumference of circle

Private Methods: none
Method Description
Method Circ!e::intersectLine (line: L ine): Set of Points

Description: Given a circle and a line, finds the intersection, returns a set of
0-2 intersection points. If the line is tangent to the circle, the set contains

a single point.
Inputs:

self:Circle — circle to be intersected with line
line:Line — line to be intersected with circle

Returns:
A set of intersection points. Set may contain 0 ,1 , or 2 points

Side Effects: none
Errors: If the figures do not intersect, returns an empty set.

If the line is tangent to the circle, returns the tangent point.
If the circle’s radius is 0, returns a single point if the point is on the line.

Operation Description
Operation intersectLine (line: L ine): Set of Points

Origin Class: GeometricFigure
Description: Returns a set of intersection points between the geometric object

and the line. The set may contain 0. 1, or more points. Each tangent
point only appears once. If the line is colinear with a line segment in the
figure, only the two end points of the segment are included.

Status: Abstract operation in the origin class, must be overridden.

Inputs:
self: GeometricFigure — figure to be intersected with line
line:Line — line to be intersected with circle

Returns:
A set of intersection points. Set may contain 0 or more points.

Side Effects none

Errors: If the figures do not intersect, returns an empty set.
If the line is colinear with a line segment in the figure, the set includes
only the end points of the segment.
If the figure is an area, then its boundary is used.

14.6 CHAPTER SUMMARY

G o o d s ty le is im p o r ta n t to m a x im iz e th e b e n e f its o f o b je c t - o r ie n te d d e s ig n a n d p ro g r a m -

m in e : m o s t b e n e f its e o m e f r o m e re a i lv re d u c e d m a in te n a n c e a n d e n h a n c e m e n t c o s ts a n d inW U •

re u se o f th e n e w c o d e o n fu tu re p ro je c ts . O b je c t - o r ie n t a l p r o g r a m m in g s ty le g u id e l in e s in

c lu d e c o n v e n t io n a l p r o g r a m m in g s ty le g u id e l in e s as w e l l as p r in c ip le s u n iq u e ly a p p l ic a b le

to o b je c t - o r ie n te d c o n c e p ts s u c h as in h e r ita n c e .

A m a jo r g o a l o f o b je c t - o r ie n te d d e s ig n is m a x im iz in g r e u s a b i l i t y o f c la s s e s a n d m e th

o d s . R e u se v. i t h in a p ro g r a m o r p ro je c t is a m a tte r o f lo o k in g fo r s im i la r i t ie s a n d c o n s o l id a t

in g th e m u s in g in h e r i ta n c e . P la n n in g f o r re u s e I n fu tu r e p r o je c ts ta k e s m o re fo r e s ig h t

b e c a u s e d e s ig n in g re u s a b le s o f tw a re ta k e s m o re t im e a n d e f fo r t u p f r o n t . R e u s a b i l i t y is e n

h a n c e d b y k e e p in g m e th o d s s m a ll, c o h e re n t, a n d lo c a l. S e p a ra t io n o f p o l ic y a n d im p le m e n

ta t io n is im p o r t a n t . O n e w a y to u se in h e r i ta n c e is b y f a c to r in g a g e n e r ic m e th o d in t o

s u b o p e ra t io n s , s o m e o f w h ic h a re in h e r i te d f r o m th e o r ig in c la s s a n d s o m e o f w h ic h a re o v e r

r id d e n I n e a c h s u b c la s s . D e le g a t io n s h o u ld be u se d w h e n m e th o d s m u s t b e s h a re d b u t c la s s - • %

es a re n o t in a tru e g e n e ra l iz a t io n r e la t io n s h ip .

M o s t s o f tw a re is e v e n tu a l ly e x te n d e d . E x t e n s ib i l i t y is e n h a n c e d by e n c a p s u la t io n o f

c la s s e s a n d m e th o d s , m in im iz in g d e p e n d e n c ie s b e tw e e n c la s s e s a n d m e th o d s , u s in g m e th o d s

to a cce ss a t t r ib u te s o f o th e r c la sse s , a n d d is t in g u is h in g p u b l ic f r o m p r iv a te o p e ra t io n s o n a

c la s s .

R o b u s tn e s s s h o u ld n o t be s a c r if ic e d t o r e t l ic ie n c y . B e c a u s e o b je c ts c o n ta in re fe re n c e s

to th e i r o w n c la s s e s , d ie s a re le ss v u ln e ra b le to m is m a tc h e d ty p in g th a n c o n v e n t io n a l p r o

g r a m m in g v a r ia b le s a n d c a n b e c h e e k e d d y n a m ic a l ly to see th a t th e y m a tc h th e a s s u m p t io n s

w i t h in a m e th o d . P ro g ra m s s h o u ld a lw a y s p ro te c t a g a in s t u s e r a iu l s \ s te m e r ro rs . T e s tin g a s

s e r t io n s to c a tc h p ro L ’ r a m im n e h u e s ta k e s t im e b u t c a n be u se d d u r u m d e b u e u i im a n d re -

m o v e d d u r u m p ro d u c t io n .

W r i t in g la re e p ro g ra m s v. t i l l te ;u n v o l p ro g ra m m e rs i c i jm ic s m o re d is c ip l in e , b e tte r d o c

u m e n ta t io n . a n d b e tte r c o m m u n ic a t io n th a n o n e p e rs o n o r s m a ll p ro je c ts . W r i t in g re a d a b le .

’A d i - d o c u m e n te d m e th o d s is e s s e n t ia l

* dctCiMlmft
£<k apMilatmh

j c Ocnsihiht; .

j !d*.mnru*

pro* ; jam m ing m -the laf; 'e

puhln *• er-.tiv pm.itc j

j.iUitOnc.s
i|(Lation o) publk mierl-ke

l i^ure M..I uHkep!- !**r (lupin 1 J

BIBLIOGRAPHIC NOTES

In object-oriented programming, application concepts must be rendered into programming

language constructs without obscuring either application meaning or program structure, so

good programming style is important. Most conventional programming principles are also

valid for object-oriented programming. [Kemighan-78] is a classic style guide for program

ming, a bit low-level perhaps for current languages, but useful nevertheless. (Dijkstra-76)

stresses elegance in the design of demonstrably-correct programs.

REFERENCES

| Dijkstra-76] Edsger W. Dijkstra. A Discipline o f Programming. Englewood Cliffs. New Jersey: Pren
tice Hall. 1976.

|Kemighan-7$] Brian W. Kcrnighan. PJ. Plauger. The Elements of Programming Style. New York:
McGraw-Hill. 1978.

|Licbcrherr-89| Karl J. Lieberhcrr. Arthur J. Riel. Contributions to teaching object-oriented design and
programming. OOPS LA'89 as ACM SIGPLAN 24. 11 (Nov. 1989) 11-22.

EXERCISES

14.1 (4) A technique that can occasionally be used to reuse code is to use a method itself as an argu
ment for another method. For example, one operation that can be performed on a binary tree is
ordered printing. The subroutine Pri/iH node I could print the values in a tree rooted at node by a
recursive call to PrinKnode.left subtree). if there is a left subtree, followed by printing node.-

value, followed bv a recursive call lor the right subtree. This approach could lx* generalized to
apply other operations. List at least three operations that could be performed on the nodes of a
binary tree. Prepare pseudocode for a subroutine O rd e re d visinnode. m ethod i that applies
method to the nodes of the tree rooted at node, in order.

14.2 (3) Combining similar operations into a single operation can improve code reuse. Revise, ex
tend. or generalize the following two operations into a single operation. Also list the attributes
needed to track both types of accounts.
a. Cash check) norm al account, cheek) If the amount ot the cheek is less than the balance in

norma! account, cash the check and debit the account. Otherwise, bounce the check,
h. Cash chccktreserve account, check) It the amount ol the check is less than the balance in re

serve account, cash the check and debit the account. Otherwise, examine the reserve bal
ance. If the check can be covered by transferring funds from the reserve without going over
the reserve limit, cash the check and update the balances. Othcrw ise. bounce the check.

14J i l l Figure El-1.1 is a function coded in C to cieate a new sheet lo r a computer-aided design ap

plication. A sheet is a named, displax able, two-dimensional region containing text and graphics

Several sheets max lx* required to completely repiesent a sxstem being designed. 17tc luuction

given in the ligtire creates a new xeitical or horizontal sheet and constructs a name trom a toot

and a suffix. The C functions it calls arc sti icn to compute the length of a string, sirepy to copy
a string, strait to concatenate two strings, and maltoe to allocate memory. The data types
Sheetjype and Sheet are defined outside of the function in the same module. 'Hie functions
strlen. sirepy. and strait will cause a crash if they arc called with 0 for any argument. As it
stands, the subroutine is exposed to several types of errors. The arguments root mime and suffix

could be zero and sheet jy p e could be an illegal enumerated value. The call to malloc could fail
to allocate memorv.
a. Prepare a list of all the ways the function could fail. For each way. describe the consequenc

es.
b. Revise the function so that it does not crash as a result of any of the errors you listed in pan

a and so that it prints out a descriptive error message for each kind of error as an aid in de
bugging programs in which it is called.

h e c - t c r e a t e ^ s h o e t (s h e e p _ t y p o , r o o t _ r s a : n o (s u f f i x)

hoo t . t v e o s h o o t t v o e ; ̂ _ # »

c h a r * r o i o i _ name- « M i l 1

• c h a r • re a 1 i o c {) , * s t r o p y () , * 5 t r c a t t >
' »■ O •• * >1 • V •- .r l e r ; () , r o o t _ i e r . q t h , s u £ f 1 X 1 £

She e t s h e e t / v e r t s h e e t ^ n e w () , h o r i /.

e f iC j th ■■ s t r i e r . (r o o r ^ r . a f n e) •
9

<: tj • ̂v ̂,% *\ /** •» lr; s t r I on (su t !' i >;) ;

s f a » t r.-jiuC* " rr.a 1 Loc i r o o t _ l e n g t h > f; u 1

cl hf>Ot narr.o -• s. t r c p y (3 h e *> t n a rr. • •, r o o t

r. n a n o (s h e e r s u f f

\s «* \ C V: { i; h t vr;»* i

v e r t m e e t r.ev; () ;

h :e

*:hv**t {) ;

' : »• j v. ;

• #.* «■# » • * # . . . « *

Figure K I4 .I Function to ac.t(c a new named sheet

14.4 (3j Rewrite the C function in Figure I* 14? h> u%mp Iv tic r nainev The corresponding object d i

g ra m is in Figure l i t 4 .V The function determine** the value of a term by recursively e\p#uidm£

expressions Hie function < o m p u t? applies a binary operation to two values and *w v*'/ returns

Ih-e value ot a variable Rename these functions a\ vvcdl

V a l u e p t r e e _ g e t (t o p _ n d e)

T erm t o p _ n d e ;

(Value val/ vail, val2, compute(), var_get();

sv/itch (top_nde->node_type)

(c a s e C N S TN T:

v a l = t o p _ n d e - > v a l u e ;

r e t u r n v a l ;

b r e a k ;

c a s e VAR:

v a l = v a r _ g e t (t o p _ n d e - > n a m e) ;

r e t u r n v a l ;

b r e a k ;

c a s e EXP:

v a i l = p t r e e _ g e t (t o p _ n d e - > l e f t _ n d e) ;

v a ! 2 = p t r e e _ g e t (t o p _ n a e - > r i g h t _ n d e) ;

v a l = c o m p u t e (v a i l , v a i 2 , t o p _ n d e - > b i n a r y _ o p e r a c o r) ;

r e t u r n v a l ;

b r e a k ;

1

Figure E14.2 Function lo evaluate a Term

Figure E l4.3 Object diagram of a Term

14 ,5 (7) Add methods to the object diagram in Figure FI 4.4 to satis!) the following queries. You may
wish to review exercise 8.F>. Write pseudocode for each method that you add and indicate
whether the method is public or private. Separate policy from implementation. Avoid traversing
multiple links.
a. Find all the members of a given team.
b. Find which figures were held more than once in a given season.

c. Find the net score of a competitor for a given figure at a given meet.
d. Find the team average score over all figures in a given season.
e. Find the average score of a competitor over all figures in a given meet.
f. Find the team average score in a given figure at a given meet.
g. Find the set of all individuals who competed in any events in a given season.
h. Find the set of all individuals who competed in all of the events held in a given season.
i. Find all the judges who judged a given event in a given season.
j. Find the judge who awarded the lowest score during a given event.
k. Find the judge who awarded the lowest score for a given figure.

Figure K14.4 Portion of an object diagram of a scoring system

Object-Oriented Languages

Not surprisingly, the most natural implementation target lor an object-oriented design is an

object-oriented language. This chapter discusses how to take a generic design and make the

final implementation decisions that are required to realize the design in a specilic object-ori
ented language. The goal of the techniques in this chapter is to produce code for a program.

The chapter also surveys, compares, and contrasts various object-oriented languages in order

to show how the choice of a language influences these implementation decisions.

This chapter is one of three chapters included in Part 3 of the book covering implemen

tation in a particular kind o f target language, and is in parallel to Chapter 16 (Non-Object-

Oriented Languages) and Chapter 17 (Relational Databases).

After reading this chapter, you will understand how to map an object-oriented design

into an object-oriental language, and you will understand some factors to consider in choos

ing an object-oriented language.

15.1 TRANSLATING A DESIGN INTO AN IMPLEMENTATION

It is relatively easy to implement an object-oriented design with an object-oriented language

since language constructs are similar to design constructs. A precise delinition of an OO lan

guage is not crucial for selecting one. In general, an OO language supports objects (combin

ing data and operations), polym orphism at run-time, and inheritance. A more formal
discussion of the essential concepts of OO languages ami the diverse ways in which these

concepts are supported is found in |Stelik-X6| and | Wegner-S7|.
We use C++. HilTel. ami Smalltalk to explain how to implement an O M T design with

OO languages. We discuss implementation of the basic object-oriented concepts common to

all object-oriented languages, describing the \arums wavs in which different languages sup

port the concepts. Section 15.7 discusses more advanced leatutes ot object-oriented lan-

V)U

guages. including some features that are not well supported by current languages. Section

15.8 discusses distinctive aspects of several commercially available 0 0 languages: Small*

talk. C++. Eiffel, CLOS. and object-oriented database languages.
All three O M T models contribute to code development. The object model contains most

of the declarative structure: the specification of classes, attributes, inheritance hierarchy, and

associations. The dynamic model specifies the high-level control strategy for the system:

procedure-driven, event-driven, or multi-tasking. The functional model captures functional

ity of objects that must be incorporated into methods.

The following considerations apply to implementing an object-oriented design in an ob
ject-oriented language:

• Class definitions 115.2]

• Creating objects 115.31

• Calling operations (15.4]

• Using inheritance j 15.5]

• Implementing associations 115.6]

15.1.1 Graphics Editor Example

Figure 15 .1 shows a part of an object model for a graphics editor, which will be used as an

example throughout the chapter. The editor permits recursive groups of shapes to be con

structed from boxes and circles. A w indow contains a set of shapes. Groups can be built from

shapes or smaller groups. Items (shapes or groups) that are not part of a group are root items

in the window and are available for manipulation. A root item can be selected by picking one

of its embedded shapes w ith a locator cursor controlled by a mouse. A shape is picked if the

cursor point lies within it. Selected items can be grouped, ungrouped, cut from the window,

or moved by an offset. Commands are also provided to clear the selections or create new

shapes. Shapes are erased by writing over them in the background color.
'Hie diagram shows the attributes and operations of each class. Abstract operations are

indicated by the word abstract in the origin class

15.2 CLASS DEFINITIONS

The first step in implementing an object-oriented design is to declare object classes. Each

attribute and operation in an object diagram must be declared as part of its corresponding

class. It is good practice to earn,- forward the names from the design diagram. If you have

not already assigned data types to attributes, you must now do so. Declare attributes and op

erations as cither public or private, if the language supports the distinction. Public features

can be accessed by any method, while private features are only accessible by methods of the

same class.

Figure 15.1 Simple graphics editor

15.2.1 Class Definitions in C++

In C++, the declaration for the class Window is:

class Window
«
\

public:
/ •• consoruc-or method must have same name as the class
Window (Length xO,Length yO,Length width. Length height);
■ ' destructsr method must have same name as the class
-Window ();
// instance methods
void add_bo:< (Length Length y,

Length width, Length height);
void add_circle (Length >:, Length y, Length radius);
void ciear_selections();
void cut. select ions () ;
Group * grcup_selections();
void move_se iect ions (Length delta:-:, Length deltay) ;
void rearaw_al1();
void seloottern (Length Length y) ;
v o i d u r. g r o u p _ s e 1 e c r. ions () ;

private:
? *ii r% - * +■ V -. v » rv .Ty » * • • • 4 ' • 4 ii ^

* fN .***t* h • ***»»>•..*v n -.4 . , j Ii -1 ,. ,

L^ngih x!T:3x;
Length ymax;
void add to select ions(Shane* shaoe);

In C++, both attributes and methods are declared together as members of a class. A method

may not have the same name as an attribute. The object creation routine, called a construc

tor, must have the same name as the class (Section 15.3.1).

In C++, you must declare members as either public or private (the default is private).

Public members can be accessed by any function: private members can only be accessed by

methods tm the same class (not necessarily the same object, however). All attributes in this

example are private because arbitrary changes to a window are not permitted. In general, it
is gixxl practice to keep attributes private and provide access to them only through methods,

to prevent client code from being dependent on the exact implementation of a class. A ll op
eration-. are public, except odd to selections, which is used internally by the Window class.

We have omitted the associations from this declaration. Later, wc explain how to represent
association-, m an object-oriented language.

Length is a user-defined type (not a class) that hides the actual implementation ol the

length (so that it could be either integer or real, for example). It could lx- declared as a typedef

m C++:

typodof : .

or

> . - • I -j . ■ »

’ | ' . r ' « > ' -f • > I *typodof

15.2.2 Class Definitions in Eiffel

In Eiffel, the class declaration for the class Window is:

c l a s s WINDOW
e x p o r t

a d d _ b o x , a d d _ c i r c l e , c l e a r _ s e I e c t i o n s , c u t _ s e l e c t i o n s ,
g r o u p _ s e l e c t i o n s / m o v e _ s e le c t i o n s ,
r e d r a w _ a l l , s e l e c t _ i t e m , u n g r o u p _ s e le c t i o n s

f e a t u r e
x m in , y m in , xmax, ymax: REAL;
C r e a te (xO, yO, w i d t h , h e i g h t : REAL) i s b o d y e n d ;
add _ b o x (x , y , w i d t h , h e i g h t : REAL) i s b o d y e n d ;
a d d _ c i r c l e (x , y , r a d i u s : REAL) i s b o d y e n d ;
a d d _ t o _ s e l e c t i o n s (a s h a p e : SHAPE) i s b o d y e n d ;
c l e a r _ s e l e c t i o n s i s b o d y e n d ;
c u t _ s e l e c t i o n s i s b o d y e n d ;
g r o u p _ s e l e c t i o n s : G roup i s b o d y e n d ;
m o v e _ s e le c t i o n s (a e l t a x , d e l t a y : REAL) i s b o d y e n d ;
r e d r a w _ a l l i s b o d y e n d ;
s e l e c t _ i t e m (x , y : REAL) i s b o d y e n d ;
u n g r o u p _ s e l e c t i o n s i s b o d y e nd

end - - c l a s s WINDOW

In Eiffel, features (attributes and operations) are private unless they are explicitly made pub

lic with the export keyword. Create is automatically public. REAL is a simple, or predefined,

type. Although Eiffel is not case-sensitive, by convention simple types and class names are

capitalized.

15.2.3 Class Definitions in Smalltalk

Smalltalk programs are normally entered using the Smalltalk browser. The printed code we

show here would normally be added interactively. A ll Smalltalk classes are ultimately de

scended from class object.

c l a s s name Window
s u p e r c l a s s O b je c t
i n s t a n c e v a r i a b l e s xm in ym in xmax ymax
c l a s s m e th o d s

instantiating
c r e a c e A t : a P o in t o f W i d t h : w i d t h o f i i e i g h t : h e ig h t

i n s t a n c e m e thods
a d d i n g sh a p e s
a d d B o x A t : a P o in t o f W i d t h : w i d t h c r H e i q h t : h e io h t
ackiC i rc \ eAt : aPo i nt of Radi !#•*** V* %> • n C*4. V* 4

ft* f psh i net wi netew

rod raw A
•>
i

• ■» ' i, ** > **» s? *.•: ' /■*"'' * 'iO »... c; - j? jj ̂- •«y -*-<-■*. - - •
e l ^ a r c o l e c c i o n s
•*. ► v* ’ .•*. .*• * •. A r« o ̂L. i ti*‘w V - 0**C*
T •* ''. ■ » P x T ' O ̂ **isi »« C v fw • • •* ^ ^

rnc-YvSelect. ior .sBy: :iolt_aF
s e l e c t I t .errAt: a P o i n t
u:;a: DuoSclec" i o n s

s x r» t

c i' i va c o*
» -*T.*. * #**•"•» V v * • . .*•, f . o ♦V • V » « w • ^ c >•• ̂P ,-i

G t • *-* r— v

To make attributes (.instance variables in Smalltalk) private, we omit methods to query and

set the attributes. The groupings in italics are called categories, used to organize methods of

a class. Thev have no other semantic meaning. Bv convention, methods that are for internal * ̂ *
use only are put in the category private, but Smalltalk does not enforce the privacy. The pro

grammer must be careful to honor the convention.
We have replaced separate v and v coordinates by class Point in several places. Smalltalk

has a convenient method ' (« ’ to create a point from a pair o f numbers. For example:

f. P i <— *

15.3 CREATING OBJECTS

Object-oriented languages create new objects in one of two wavs. Some languages, such as

Smalltalk and DSM, have classes that are full objects in their own right. In these languages,
an operation applied to a class object (called a class operation) creates a new object of the

class. Other languages, such as C++ and HilTel, do not have class objects. These languages

have special operations that create new objects.

When a new object is created, the language must allocate storage for its attribute values

and must assign it a unique object ID , either the address of the storage block or an index in

a table. Objectoriented languages free the programmer of the necessity to explicitly allocate
memory lor objects.

DiUercnt languages use one ot two styles of destroying objects that are no longer need
ed. In some languages, objects are destroyed by an explicit operation (such as destroy). The

programmer must take care that no references to a destroyed object remain, or memory ac

cess errors may result. Explicit memory management is error prone, so some languages,
such as Smalltalk, include automatic garbage collectors that destroy objects that are inacces

siblc, without requiring (or permitting) any explicit deallocation.

15.3.1 Creating Objects In C++

(dives not have class objects or class operations to create instances ol a class. Instead it

has a special <on\tnn to/ operation to initialize new instances. The name of the method lor
the class constructor has the same name as the class, such as:

Window: :Window (Length xC, Length yC,
Length width, Length height)

4
\

xmin = xO; ytnin = yO;
xmax = xO + width; ymax = yO - height;

In C++, multiple constructors for a single class can be defined, distinguished by the number

and types of their arguments (this is an example of overloading). For example, we might

have constructors with the following arguments:

Window (); // default position and size
Window (Length xO, Length yO); // default size
Window (Length xO, Length yO, Length width, Length height);

A constructor is executed whenever a new' object instance is allocated. At the time of allo
cation. the programmer can specify the arguments for the constructor; the constructor with

matching argument types is executed. If no arguments are specified, then the default con

structor w'ith no arguments is executed.

C++ provides three kinds o f memory allocation for objects: preallocated by the compiler

in fixed global memory' (static). allocated on the stack (autom atic), and allocated from a heap

(dynamic).

Static storage is obtained by declaring a variable outside o f any function or by using the

keyword static on an attribute. A static attribute is a class attribute common to all instances

of the class. Static storage is preallocated by the compiler and does not change during exe
cution. A constructor can be specified, which is executed during program initialization. The

followins statement declares a static global variable to hold an initialized Window object:

Window main_windaw = Window (0.0,0.0,8.5,11.0);

Local variables within functions normally use automatic storage. When a function is entered,
enough space on the hardware stack is reserved to hold all the local variables of the function.

The storage is deallocated when the function exits, so references to automatic variables must

not be stored in other objects whose lifetimes might exceed the automatic variables. The dec
laration of local variables has the same form as the declaration of global variables shown

above, except they are declared within a function body.
Each class can have one destructor. A destructor performs any necessary cleanup before

an object is destroyed. Destructors do not take any arguments. Destructor methods ha\e the

name of the class prefixed by a tilde,
* ♦? » r > r J •» i i I Li'w' *• .. »_• II 1 » « ‘.4 *V O

:?v r /;e w) ar.\: - >!ra: ::e

When a function exits, the destructor for each automatic variable is called. Alter the destruc

tors have been run. the storage for automatic variables is implicitly deallocated when the

function return instruction adjusts the stack to its pre-call \alue.

Dynamic storage is allocated from a heap on an explicit request from the programmer.

The new operator allocates storage for a new object and returns a pointer to it, which can be

stored in a pointer variable. The new operator can include arguments lor the constructor:

Window ’ window = new Window {0.0,0.0,8.5,11.0);

A dynamic object may outlive the function in which it is created. Dynamic objects can only

be deallocated by applying the delete operator to the object pointer. The programmer must

make sure that no references to the object remain. The delete operator first invokes the de

structor for the class and then deallocates the storage for the object:

delete wtnocw;

Standard implementations o f C++ do not have a garbage collector and heap-based objects

must be explicitly deallocated by the delete operator, so there is danger o f dangling object

references to incorrectly deleted objects, as well as the loss of memory' to inaccessible ob

jects which have not been deleted. A dangling reference is a reference by one object to an

other object that no longer exists.
Note that constructors and destructors simply initialize and clean up objects. Memory

allocation and deallocation are invoked explicitly by the new and delete operators or implic

itly by declaration of local variables.
C++ permits considerable llexibility in memory allocation. The programmer can over

ride the built-in memory allocator for a given class and supply a new one. Because operators

such as assignment and type conversion can also be overridden on a class-by-class basis, it

is possible to completely control allocation and creation of objects, although most program

mers will not need to use such techniques.

15.3.2 Creating Objects in Eiffel

Eiffel separates the declaration of a variable (called an entity in Eiffel) from the creation of

an object. A declaration of an entity makes a name that can hold a reference to an object of
a given type, but the reference is initially void, that is. it does not refer to any object:

♦ * » ̂• r*. /■ • ♦W T fl rn i

This declaration makes a variable that can hold a reference to a window, but docs not store

an actual object in the variable. It is similar to a C++ declaration for a pointer or reference

variable.

A ll Eiffel objects are dynamic: there is no equivalent of the C++ static or automatic ob
jects. To create an object of the given type and store its reference in the entity, the Create

operation is applied to the entity:

w . " r ' a ! 0 ' 9 • ‘ 9

There is a default Create operation for each class that allocates a new instance of a class and

initializes its attributes to zero values. The programmer can override the default Create op

eration to perform additional actions or accept arguments:

class WINDOW
• 4 4

feature
C r e a te (xO, yO, w i d t h , h e i g h t : REAL) is

do
xm in := xO; ym in := yO;
xmax := xO + w i d t h ; ymax := yO + h e i g h t

e n d ; - - C r e a te
4 4 •

end - - c l a s s WINDOW

A second special operation. Clone, copies an existing object and creates a new object whose

attributes are identical.
There is no way to explicitly destroy an Eiffel object (such as the C++ delete operator).

The Forget operation removes the object reference from an entity, but it does not destroy the

object itself. The Eiffel garbage collector is responsible for destroying objects that are no

longer accessible because they cannot be reached from the root object or from any program

variables. This simplifies the programmer's job considerably and prevents many insidious

bugs, but imposes a run-time cost on the system.
Eiffel's garbage collector runs as a coroutine that checks for unused objects when mem

ory' usage reaches predefined thresholds. The garbage collector can be explicitly turned on

and off.

15.3.3 Creating Objects in Smalltalk

All Smalltalk objects are dynamic and are allocated from a heap. Deallocation is performed

by a built-in garbage collector. All variables are untyped and can hold objects of any class.
New- objects arc created using the same message passing (operation calling) mechanism

used for operations on objects. Smalltalk does not require any special creation operations, as

do C++ and Eiffel.
To allocate a new' object in Smalltalk, a message is sent to a class object, that is. an ob

ject that describes the class itself. Instance creation is a class operation, that is. it is an oper

ation on a class, rather than an operation on an instance object. By convention, the new

operation creates a new instance of a class:

v; <— W indow new

llnlike in C++ and Eiffel, there are no restrictions on the names of instance creation opera

tions. Because a creation operation is explicitly applied to a class object, it cannot be con

fused w ith an instance operation. The developer can w rite custom instance creation methods

that accept arguments:

w <— Wi fiUow c r e a t e A t : 0 c 0 o i rW io :.h : 5.

The method would be defined as follows:

c l a s s name W i s u f - w

c l a s s m e thods

* I • V « Vl k
♦ ♦ >
« • « V

i *• * ' »d .. ^ s ♦ mV** ' fi• :i £ «» ±. ; ♦ *■ . . if
■w ‘ i . • • « _ i v_ w : -:i t. h o f H o i a h t : h e i a h x.

✓*

•% i ri -
: now

' ."i . • "• r- * -T •- *• -st f i • X r> h.r* > *7 h ; • h*r> > phra, ” 4 <.. * • • I ''a » •1111.. • • • V ^ ^ * J *_ •

instance methods
;t 1 : ,:e : •*•: r . h : wi-.i’.h L* i a h t : h o i o h l

V ~ . ' •• <—4*1 » I » * T. r *.k % . « | . • «
< » ♦ r* ii r; •**. ̂ *•. •■mI • • K*

• • • >.4 11

• • % v •— * • ?r *, »* ♦ W ? *i r- •-
« 4

‘Hie class method cannot dirccilv access the attributes of the new instance, so an instance

method in i t ia l ize : \K ‘i d t h ’lu ' i \ :h (: must be written to initialize the attributes.
Objects cannot be explicitly deallocated. Storage is reclaimed by an automatic built-in

earbaee collector.

15.4 CALLING OPERATIONS

In most 0 0 languages, each operation has at least one implicit argument, the target object,
indicated w uh a special syntax. Operations may or may not have additional arguments. Some

languages permit a choice between passing arguments as read only values or as references

to values that can he ujHlatcd by a procedure.

15.4.1 Calling Operations in C++

A C + + operation is declared as a m em ber ot a class along with attributes. A n operation is

invoked using a similar notation to attribute access: the m em ber selection operator is

applied to an object pointer:

■ ii) i 1 . j •' * ̂ r j ■ 1 *

Addit iona l arguments may be objects, built- in types such as ////, fU m t% and r lu i r , and user-

delined types, such as /\/v</«;My pes.

A n attribute runic or operation name used as an idenlilier w ith in a 0 + + method im p l ic

itly refers to the target object oi the method In the lo l lo p in g exam ple , i and v are attributes

nS the target object o! class Shufu-:

*Ihe implicit areument th r , Lonlains a rolcicnce to the target object (usually to pass it as an

argument to another ojxrranofn I he previous code could be written as

v o i d S h a p e : :m o v e (L e n g th d e l ta ; - : , L e n g th d e l t a y)

{
t h i s - > x = t * n i s - > x + d e l ta : - : ;
t h i s - > y = t h i s - > y + d e l t a y ;

}

R eference to an a ttribu te o f an object that is not the target requires a q u a lified reference:

w i n d c w - > x m i n = x l ;

U nless the q u a lifie d ob ject is o f the same class as the m ethod , such d irect a ttribu te access

should be avo id ed because it v io la tes encapsulation o f classes. U se an access m ethod on the

class instead, w h ich perm its the in ternal representation o f the class to be changed.

U n lik e S m a llta lk and E iffe l, C + + m akes a d is tin ctio n betw een the ob ject record and a

re ference to an ob ject. Use o f the ob ject record d ire c tly perm its the attributes o f the object

to be updated, but does not p e rm it references to the object to be inserted in to associations.

M o s t o f the tim e it is best to co n s id er the o b jec t re ference as “ the o b je c t." T o use ob ject

records d ire c tly , o m it the C + + in d irec tio n operator (* o r &) :

Box b o x (1 0 . 0 , 1 3 . 4 , 5 . 1 2 , 3 . 1 4) ;
b o x .m o v e (ax , d y) ;

15.4.2 Calling O perations in Eiffel

M eth o d s in E if fe l are c a lle d routines. A rg u m en ts to routines can be s im p le types (REAL. IN
TEGER, BOOLEAN . and CHARACTER) o r user-defined classes. A lth o u g h a ll ob jects are

kept as po inters . E iffe l does not p erm it a rou tine to m o d ify a fo rm al p aram eter through as

s ignm ent or by a p p ly in g an operation (such as Create. Clone, o r Forget) that can m o d ify the

reference. H o w e v e r, o ther operations can be app lied to an object that is a fo rm a l param eter,

and these operations m ay result in changes to the state o f the object.

T h e E iffe l syntax fo r c a llin g an operation is s im ila r to C + + . N o te that the E iffe l a ttribute

selection operator V is eq u iva len t to the C + + operator

local
aShape: SHAPE;
dx, dy: REAL

do

aShape . move (.lx, dy) ;
end

Eiffel permits implicit access to the features of the target object b\ writing the name of the

feature. Identifiers v and v are attributes of the lareel SHARE:

move (de 11 •»x , d e ! r .iy :
- - rr.c>v« a

do
•T **• i • '• * ' * *i . ' i i t • — » i

• KAI.) i s
;i

end

Eit'fel supplies a predefined identilier. C urrent. that names the target object o f an operation.

Tins identifier is equivalent to this in C ++ and se lf in Smalltalk. The code above is equivalent
to:

r.c v e (d e l t a x , d e l t a * / : REAL) i s
- - move a s h a p e by a e i t a
do

• "* !'r»v -n r v • sr v H c* | r ji »„» ••— u * » n * i »_ • * ~ « _ • _ < » «. ^ • • • ' - A t r i l o A /

• J u r r e n t .y := C o r r e n t . v * d e x ta v * • •
e n d

Reference to a feature o f an object that is not the target requires a qualified reference:

w in d o w , xn*. in x l ;

15.4.3 Calling Operations in Sm alltalk

All arguments and variables in .Smalltalk are objects. A ll operations are methods associated

with objects. The programmer semis messitftes (applies operations) to objects. A message is

the name of an operation with a list of argument values. Smalltalk binds the message to a

method at run-time by examining the class of the object and searching the methods on the

class and its ancestors. Formal parameters to methods cannot be changed by assignment

within a method. 'The Smalltalk syntax for message passing does not use punctuation marks

but does use keywords to separate the arguments:

adr.a::c- .roveD»-rir. a : aPom *.

Tins method would lie implemented as follows:

c la s s name
in s t a n c e v a r i a b l e s

in s t a n c e m eth o d s
r - T. i : :vo ; •

x — x - ci r- o : r. * x
... V* »•

• i * t

Within a method, attributes of the target object (i/islatu e viiriubles in Smalltalk) may be ac

cessed directly h\ writing the name of the attribute, as in (++ J,ul F.illcl.
Smalltalk provides a pseudosariable. self, that refers to the receive! o(the message.

There is no Smalltalk equivalent of the (’ ♦ *■ and Hiflel opera tions to assess an attribute lioin

an object Only the attributes ot the target object can be accessed directly. Attributes ol other

objects must lx* accessed by Miser provided) access operations.

;i C • f M * ' i I I # 4 • 4 t l » i *

A ll attributes are therefore pm ate to the class, I n lo rtu n a lc l) . there is no way to restrict a l

iens to operations of a class; all operations arc public.

15.5 USING INHERITANCE

O b je c t-o r ie n te d languag es v a ry in the m ech an ism s p ro v id e d to im p le m e n t in h e rita n c e .

|K im -8 8 a , C h a p te r 3J discusses three independent d im en s io n s fo r c la s s ify in g inheritance

m echanism s: static o r d y n a m ic , im p lic it o r e x p lic it, and per ob ject or per group. M a n y o f the

p o p u lar languages are static (in h e rita n ce is bound at c o m p ile tim e), im p lic it (b e h a v io r o f an

object depends on its class, w h ich cannot be ch an g ed), and per group (in h eritan ce ch arac ter

istics are specified fo r a class, not fo r specific ob jects). In m ost languages, the dec la ra tio n o f

each class includes a list o f superclasses from w h ich it inherits attributes and m ethods.

15.5.1 Using Inheritance in C++

T h e superclass or superclasses o f a class are specified as part o f the class d ec la ra tio n . A sub

class is ca lled a derived class. T h e C + + code that fo llo w s declares Shape to be a subclass o f

Item. Bo.x and Circle are subclasses of Shape.

class I t e m

{
public:

v i r t u a l v o i d c u t () = 0 ;
v i r t u a l v o i d move (L e n g t h d e l t a : - : , L e n g t h d e l t a y) = 0 ;
v i r t u a l B o o le a n p i c k (L e n g t h p>:, L e n g t h py) = 0 ;
v i r t u a l v o i d u n g r o u p () = 0;

l ;
class Shape : public I t e m

f
protected:

L e n g th
L e n g t h v ;

public:
v o i d c u t () ;
v o i d d r a w () (w r i t e (CQLGR_FORRGROUND) ; }
v o i d e r a s e () (w r i t e (COLOR_SACKG?;OUN!D) ; •
v o i d move (L e n g t h d e i t a x , L e n g t h d e l t a y) ;
v i r t u a l B o o le a n p i c k (L e n o t h p x , Lena: h' p y > 0 ;
v o i d u n o r o u p O (}
V * 4 l dta 1 v o i d w:: i t : e (C o l o r c o l o r) 0 •

class Box: public Shape

protected:
Length width;
L e t . h h e i g h t ;

public:
• i . » . / • . , . * * • • * • ♦ ' s • • « » • » ♦ * a

; *-.*• i :. • , < l . . V . . g ' . » 4. :h t «. . • ; . . 1 . » . . O .) ,

• r (< i , < » *
. C .i . • • »*i «. . (* ■: •• :■ •- :) ;

. ■» • » •• »• • > • - «
* > 4 * . V) ;

class Z i rcle: public Shape

protected:
r a d i u s ;

public:
' r ■* ’ a j T ,*< *' .*i *' h v * * ,f~* *’* .*] t *?% * * 0 T n i’t *" ’ ‘ A iT i I 't? 0 \ *

r l '- • •-•, ' ^ •*- *-• ' /*» V I * ,7-* ,**? *- V*. v r |7 . r ' . '1 *• Vs T -J1 » \ .«p> • « ••.« ••• • • « •./ • » l •» •— « • '•< ^ • I * • '• * / V « • j / f

> *5 • . • » > * / . H r . r- " • .-N *. r I •» •. • • ■- i • » «. . ■. 7. \ ••• • k- "J t 9

The attributes declared in a superclass are inherited by its subclasses and need not be repeal

ed. They can be accessed from any subclass unless they are declared private. Only methods

of a class can access its private attributes. Attributes declared protected vac accessible to sub

classes but not to client classes.

B : r-lear. 2 c x : < Lc*:sqth L e n g t h d v)

-w rriL r. PV Li. t < -Ty t n e . q n t ;
i

Metluxls declared in a superclass are also inherited. If a method can be overridden by a sub

class. then it must lx- declared virtual in its first appearance in a superclass. For example,

method w rite in class Shape can lx overridden in classes Bo.\ and C irc le and is therefore vir

tual. Metluxls draw and erase on class Shape are not overridden by the subclasses so they

need not be declared virtual tthey are implemented by calling virtual function w rite with a

color of black or vs hi tel. Method Shape .» rite is declared virtual and “ initialized" to 0; this

identifies it as a pure v irtual function, that is. an abstract operation. Any class with a pure

virtual function is an abstract class and cannot be instantiated directly. The compiler verities

that any concrete subclass delines or inherits implementations for all pure virtual functions.

Metluxls that override inherited metluxls must be redeclared in the subclass, but those

that are inherited (and not overridden> need not lx- repeated. Likewise, inherited attributes

need not be repeated. Virtual operations are called using the same syntax as nonvirtual op
erations:

r. i; ;
/ . r

• ♦ i
4 *♦

i ♦

.4 < f r v . . — * r
» i • « V » { I / i

T h e kn o w led g e of a c lass ’s ancestry can lx* declared pithln or private. I I a superclass den*

sation is p n ><;/<*. then c lients <»t the class cannot call inherited operations d ire c tly nor access

attributes o f the ancestors M ask in g inherited operations perm its the safe use ol inheritance

for im p le m e n ta tio n purposes v.hcre a true g e n e ra liza tio n re la tio n s h ip docs not e x is t, a l

though v»c svould d iscourage tins k ind of usaee.*■ «•

supports m u ltip le inheritance, hv speeds mp a list o f superclasses m the d eriva tio n

statem ent ‘D ie use o f conflicting, a ttribu te or ojveratrnn names from d ific ren t superclasses is

not a llo w e d (’ + * supjxirts scvcr.il com plicated variations on m u ltip le inheritance, in c lu d in g

a chain o f constructor*, that arc a u to rn u ta u lh invoked vs hen a ncv. instance is created.•

15.5.2 Using Inheritance in Eiffel

In Eiffel, inheritance is indicated with the inherit clause as shown in the following example:

c l a s s ITEM
e x p o r t

c u t , move, p i c k , u n g ro u p
f e a t u r e

c u t i s d e f e r r e d end ;
move (d e l ta : - : , d e i t a y : REAL) i s d e f e r r e d en d ;
p i c k (:- : ,y: REAL) : BOOLEAN i s d e f e r r e d en d ;
u n g ro u p i s d e f e r r e d end

end

c l a s s SHAPE
e x p o r t c u t , d ra w , e r a s e , move, un g r o u p , w r i t e
i n h e r i t ITEM
f e a t u r e

x , y : REAL;
c u t i s b o d y end ;
d ra w i s b o d y end ;
e r a s e i s body end ;
move (d e l ta : - : , d e i t a y : REAL) i s b o d y en d ;
u n o ro u o i s bodv en d ;
w r i t e (a c o l o r : COLOR) i s d e f e r r e d end

end

c l a s s RCX
e x p o r t p i c k , wr i t e
i n h e r i t SHARE r e d e f i n e p i c k , w r i t e
f e a t u r e

w id e n , h e i g h t : PEAL;
C r e a t e (:-:0, yO, w i d t h ? , h e i g h t C : PEA'.) i s t o d y e n d ;
o i c k (:- : ,v: REAL): ROOLEAN i s bodv en d ;
w r i t e ta c o l o r : COLOR.) i s body end

end

c l a s s CIRCLE
e x p o r t p i c k , w: i t e
i n h e r i t SHAPE r e d e f i n e p i c k , w * i t <■*
f e a t u r e

* ; - i I ♦
♦ ♦ ♦ . 4 « i ! v i ♦ ♦ . / $

: a i : i:s
| •) i * •* I V ♦ • • u \ • I. * 1* • •’ * ‘ ’ f j * •, •. •• 1

♦ * • ... { i.r ■ - *. N: :

i s i . iy en d ;
i s ; \ :V end ;

» i s : :V end
end

Abstract operations ;*ro indicated w ith the </r;/< //« */ declaration. H iese oporatio iw must l v
im plem ented In all subclasses, Ira t in e s in the subclass that overt ulc features m the Mipoi

class must be indicated w ith the rcJe/im - clause m ot shown m this exam p lec K \u m v s that

are inherited am i not overridden . Mich as operation m ow w ith in class < 7A\ 7 /w need not lv

listed in eithei ihe * clause not ilie n-xl * ' ! inr claiwe

E xterna l v is ib ility o l’ features is specified by the export list, w h ich replaces the public
and private declarations o f C + + . A l l the features o f a superclass are ava ilab le to its deseen-

dents (th ere is no d istinction corresponding to C + + private and protected). Features can be

selectively exported to a specified chess (and all its descendents), s im ila r to the C ++friend
declaration . E iffe l features can be renam ed in a subclass^

E iffe l supports m u ltip le inheritance. R enam ing o f inherited features can h e lp to reduce

nam e conflic ts fro m d iffe ren t superclasses.

15.5.3 Using Inheritance in Smalltalk

In S m a llta lk , inheritance is indicated by supp ly ing the nam e o f the superclass fo r an object.

A s in C + + and E iffe l, on ly those features that are unique lo a subclass are specified. A n y

m ethods to be overridden are defined in the subclass.

class name
superclass

class name
superclass
instance variables

I torn
O b je c t

Shaoe
♦

Item

y
instance methods

c u t
draw
e ra s e
move: aPo-int
ungroup

class name
superclass
instance variables

l̂ f *i * Vj** ±. ■-* v < v

height.

instance methods
pick} aPoint
write: aCoios'

class methods
e r e a t e A t : aPo 1n t

class name
superclass
instance variables

radius
instance methods

pick: a P o i n t
Veits: aCoior

class methods

Box
Shape*

♦•idch: wi-dchsiee length
C i re d o

h a nf1

l e n g t h ? I k*

All the attributes of a superclass are available to all o f its descendents. There is no need to

indicate that a method can be overridden: all methods can be overridden. In C ++ and Eiffel,
an operation must be defined in its orig in class, that is, the least common ancestor of all the

classes that implement methods on the operation. In Smalltalk, by contrast, there is no need

to declare abstract methods, but the programmer must ensure that an undefined operation is

not applied to an object. A normal convention and good practice is to deline abstract methods

as “selfsubclassResponsibility" in case a method on a subclass is forgotten. The method snh-

classResponsibility then prints an error message if an undefined abstract operation is in

voked. Errors in Smalltalk programs are more likely to show up at run time, because of its

weak typing. There is no way to block the use of an operation by any class, so complete en

capsulation is not possible in Smalltalk.
"'lie standard implementations o f Smalltalk do not support multiple inheritance, al

though some experimental implementations have supported it.

15.6 IMPLEMENTING ASSOCIATIONS

Chapter 10 discussed how to implement associations and aggregations. There are two gen

eral approaches: buried pointers and distinct association objects.
I f your language does not explicitly support association objects (and most currently do

not), then buried pointers are easiest to implement. Buried pointers may be added during de

sign or deferred until now. In either case, the attributes needed to implement the buried point
ers must be added to the class definitions. A binary association is usually implemented as an

attribute in each associated object, containing a pointer to the related object or to a set of re

lated objects. In many cases, however, the association is only traversed in one direction, so

a pointer need only be added to one of the classes. Pointers in the “one” direction are simple

to implement: they simply contain object references. Pointers in the “many” direction re

quire a set of objects, or an array if the association is ordered, implemented most easily with

a collection class object from a class library.
An association can also be implemented as a distinct container object. An explicit asso

ciation object is conceptually a set of tuples, each tuple containing one value from each as

sociated cla1 s. A binary association object can be implemented as two D ictionary objects,

each dictionary mapping in one direction across the association.
There is an important consequence of hu ied pointers that is overlooked by many users

and designers of object-oriented laneuaees. Associations cannot be simulated bv attributes

on classes without violating encapsulation of classes because the paired attributes compos

ing an association are not independent. Updating one pointer in the implementation of an as
sociation implies that the other pointer must be updated as well to keep the implementation

consistent. The individual attributes should not be made freely available cxternallv because

they must not be updated separately. On the other hand, an extemally-available method to

update the altri uites cannot be attached to either class of the association without access to

the internal implementation of the other class because the attributes are mutually con

strained. C++ allows limited relaxation of encapsulation using the friend construct, and

Eiffel provides export of features to selected classes, but there is no clean way to encapsulate

associations as attributes in Smalltalk or most other languages.

Associations are intrinsically important since they arise when capturing and describing

requirements. (See Section 3.2.3.) The real-world need for associations does not go away

merely because most existing 0 0 languages are not rich enough to directly capture t tern.

The best solution to this problem would be for language designers to provide support for as

sociation objects as a basic concept, as is done in the DSM language jShah-<S9|.

15.6.1 Implementing Associations in C ++

The manv-io-one association between Item and Group could be implemented in C++ using

pointers:

class I t e r .

• c z n e r -a&eiaraz i o n s as o e r c r e
private:

+ ,♦*♦ r - * ♦ .» i •
— * ' » —• *- M *-• t

friend 7 : . ’.:c : : a , i d _ : t i l e : : . “) ;

friend 3: : : ren> - : • *;r: 11 *. *) ;
public:

() - return j:oun; •*• •**. ■ • r- *
* ^ a

class "I r u c.: public I♦ or.

j » . * • * * • - i
, •* * ■ . . *

*• • *

private:
I*. “ -

public:
v c ' i v r , l I * - ; r . •) ;

•V' •> ;
1 * V f) > return ; • ‘-rr :;

W henever a new link is added to the association, both pointers must !hv updated. W hen a link

is rem oved, both pointers must a h o be updated T h e code m ieh l look as fo llow s

• * , - i
*■ - f • * M ,i : : i : : . ' •••* (l * o r • . r - j

», • k t ; .» t

* f ♦ / t . r< ^ i. <* . , 4 ’ ♦ #
% % tf

The Group methods can update the .1>rottp attribute in an hem object because they are de
clared "as friends of class hem. The fr ie n d construct provides a clean mechanism for allowing

access to internal details without totally destroying encapsulation.

In this example we have omitted code to check whether an item is already in a group.

Before putting an item in a group, we should first check to see if it is already in an group,
and remove it if necessary. This check is not absolutely necessary' if we can guarantee that

we will never put an item in a group without first removing it from a previous group, but an

explicit check adds protection against bugs.
Class hemSet is a collection class that holds sets of items. It has the following protocol:

class I te m S e f
<
public:

ItiemSer. () ; / / c r e a t e an em pty s e t
~ I t e m S e t () ; / / d e s t r o y a s e t
v o i d add (I t e m *) ; / / add an i t e m t o t h e s e t
v o i d remove (I t e m *) ; / / d e l e t e an i t e m f r o m t h e
B o o le a n i n c l u d e s (I t e m *) ; / / t e s t f o r an i t e m i n
i n t s i z e () ; / / r e p o r t t h e number o f i t e m s i n t h e

1 ;

e t
h.o
4 « ’w' v.

se t

Collection classes that are more general (but weakly-typed) are found in available class li

braries. such as the N IH class library [Gorlen-90] produced at the USA National Institutes

of 1 lealth. This library also includes iterator objects to scan collections iny*»r-loops without

knowing the internal structure of the collection. There are operations to create an iterator, to

advance it while testing for the end of the collection, and to get the current object from the

collection:

Boolean Group::pick (Length
{

Itemlterator it(items);
while (i t + M

if (i t () - > p r c k (:•:, y))
return FALSE;

I

•W L e n g th y)

return • • »i

Variable-length array classes can be used to implement ordered associations. Some applica
tions may require other data structures, such as circular lists or trees. (We have omitted the

details of adapting a generic class, such as Set, to hold a specilic kind ol object, such as hem.

This will eventually be done using parameterized types in C++. Until those are part o! the

standard C++ language, class libraries implement various tricks to permit storing specitic

classes in eenenc containers.)
V

Distinct association objects are not difficult to implement if the class library does not

already contain them. A.\.\oeiation can be implemented as a new container class and placed

in the class library. The simplest approach is to implement an association object as two die

lionary objects. (A dictionary is a lookup table that maps one value into anoihet. It is pro

vided In most class lihianes.) One dictionary maps the association in the lorn aid direction

axul the other in the reverse direction. Both dictionaries must be updated when the associa

tion is updated, but traversal of an association is efficient.
Each association in the object model is implemented by an association object. The links

in the association are the elements of the association object. Using association objects pre

serves encapsulation of the constraint between the classes implicit in an association. For ex
ample. the previous routine could be written as:

A s s o c i a t i o n ' : to :n c r o u p asr. r r.c-w A s s o c i a t i o n (tnanv t o one) ;

W • ' v M
♦. m i ’iein d i e i ■;

/• .* j a orr., * V,V. • I 5 «t

« j •

i
• /'. • * r
^ ** 4.

• •
• 4 i : •r.)

1W « l
• ' t
•4 %

% r
y ' 4 r n*. o v v. { i t * / > %

» • .

i

%

t • ^*»4 L ()

< r r *) S ♦ *!f r . •» O 1 ••
- - * . . , 1 • .« » . ' r f * . * K l . j . ,

» . • .*< .1 (♦ • ' e l •
»

<)

i

W e base glossed over the details o f storing specilic object classes in generic container o b

jects. w hich can t v done either In casting the contents (as we base show n) or by using p a

ram eterized classes i when thc \ are added to ('■* n .

If an association is im plem ented as a separate object, then no attributes need be added

to either class in the association. I* die association is sparse Itltat is. a sm all traction o| o b

jects partic ipate m i t >. then a separate association object uses less sio iape than a pointei m

each object. Access ol values is som ewhat slower titan w ith pom teis m objects, but it asso

ciatm ns are im plem ented w ith d ictionaries that contain hash tables, die access tim e should

be a sm all constant, independent ol the num ber of lu d ,\ m tlie association.

15 .6 .2 Im p le m e n t in g A s s o c ia t io n s In E iffe l

H ie options lor unp iem entm e assov lations in lo lle l are baM*. alls the same as m (‘ ♦ ♦ h ilfe l

supports p a r.m ie te n /e d in [d te h container objects, w hich are param eterized ,u

confine to the \ % pc o! o b jrt t*. the;, ho lt! the I d ie! / 1 \ A / H I 1 ^ 1 . supplied m die Im m c v la*s

library. mas b< used ?<» im plem ent die mans to-one ass** latioh Iv lw cen H I *f and (* ! \() l I *

class ITEM
export

g e t _ g r o u p
- - s e l e c t i v e e x p o r t t o c l a s s GROUP

s e t _ g r o u p {GROUP}, f o r g e t _ g r o u p {GROUP}
feature

m y g ro u p : GROUP;
g e t _ g r o u p : GROUP is

do
R e s u l t := m ygroup

end;
se t_ g ro u p (g :G R O U P) i s

do
m ygroup := g

end;
f o r g e t _ g r o u p is

do
f o r g e t (m y g r o u p)

end;
end — ITEM
class GROUP
export add_item, remove_item, get_items
inherit

ITEM
feature

items:LINKED_LIST[ITEM); -- parameterisea type
Create is

do
items.Create

end;
add_itern(value:ITEM) is

do
items.finish;
items.insert_right(value);
value.set_group(Current)

end;
remove_item(value:ITEM) is

do
items.search (value, :);
items.delete;
value.forget_group

end ;

get_iterns(number:INTEGER):ITEM is
do

R e s u l t : i t e m s
en d ;

-- GROUPend

Eiffel permits selective export o f any feature. Here, we have exported IT E M '* set group and

fo rget group features to the G R O U P class. This maintains encapsulation by limiting write

access to participants in the IT E M /G R O U P association.

The Eiffel forget operator is for storage deallocation. It frees the object denoted by the

object-id it operates on. and also sets the object-id to void.

15.6.3 Implementing Associations in Smalltalk

Smalltalk’s rich class library helps developers to implement a variety of associations. For the

many-to-onc association (in Figure 15 .1) between a Group and the Items it contains, we use
a Set. found in the Smalltalk class library:

class name Item
super class Object
instance variables

r ^ i • r - *-4 - W V*

instance methods
: ' i : o r i n s t a n c e m e th o d s as b e f o r e
c e tC J ro u p

i q r oup
o r : v a c e m e t h o d s

p u v.Gz o u c : a G r o u p
r •> *r f .» *
o * _ • * » u* a'jrcuo

class name Grcuo
%

super class Ito:r.
instance variables

class methods
.OW

1 < (S ' ; p o r n e w) p u l 11 e r r .n : (S e : n o w))

instance methods
s t h ’ - r i n s tar : *o met h o d s a s

! “ o r : : ' i : . ! ' or ;
. *■. * * f'.rr*.

• • t \ . a » . . - ' . i

. »* ' » , ,t9 r .•••*: r • ' <■ • » . • » f . i . • •.< « •• •

r'*'V s s * I * : ir . • * -‘-r

, * : »*:r ; ..»m ! ’ »*-rr .

* ♦ • « '.. . * • t . ’ fc • / U • . » . • i%

I •
.•
• i * -»•»

: r J v .j • #* r > . r r,
r,*#* ; *

/ v ; o / '»?

■ * r - . «- iT..*’

Since Smalltalk * It ktv no fjpc checking. there are no restrictions on the class of items that can

ive added In a (lu m p An> object that responds to the puHUoup incom e is alhmed. Note

that proper encapsulation of the association is impossible in Smalltalk. The method pui-

Group: on class hem is marked as “private,” but it is up to the programmer to respect the

privacy of the method, because all methods are actually public.

15.7 OBJECT-ORIENTED LANGUAGE FEATURES

Object-oriented languages vary in their support of advanced object-oriented concepts. There

is no single language that matches all styles and meets all needs. In this section we discuss

various features of object-oriented lamjuaees that vary amona lanauaaes. Select a lanauaae

appropriate to your requirements. For example, if your design requires multiple inheritance,

you should consider languages that support it well. Interpreted languages are useful for rapid

prototyping but may not be adequate if you have stringent liming constraints. There is no

point in building your own class library if the language provides one with suitable classes

for your design. If you want extra compile-time error-checking, use a strongly-typed lan

guage. If memory usage is convoluted in your application, consider languages which provide

automatic garbage collection. If you require persistent data accessible by multiple users, you

may want to consider an 0 0 database. Unless a language is exceptionally clumsy to use.

svntax should only be a minor consideration.
J *

This chapter refers to a variety of 0 0 languages. C++, Eiffel, Objective-C. Smalltalk-

80 and CLOS are commercially available lanauaaes. Trellis-Owl and DSM are research lan-
m V V

guages. GemStone and O RIO N are database languages. Figure 15.2 at the end of the chapter

summarizes the features supported by certain commercially-available languages.

15.7.1 Multiple Inheritance

Some languages, such as C++ (Version 2). CLOS. Eiffel, and DSM . support multiple inher

itance. Many others do not. I f the language you select supports multiple inheritance, there is

a direct translation from your design to implementation. Otherwise, you must use some of
the workarounds suggested in Chapter 4.

Multiple inheritance introduces the possibility of eonlliei among attribute and operation

names. A class could have more than one ancestor with the same attribute. There are several
approaches that languages take to solving the problem. For example, the Eiffel compiler re

jects programs with such clashes. CLOS. on the other hand, has a protocol for resolxing

them. In anv case, we strondv recommend that vou avoid such conllicts. Relxine on the
♦ V • • • V

compiler to resolve conllicts is a matter of poor style because it damages extensibility and

can lead to confusion.

15.7.2 Class Library

Most () () laneuaees include a library of useful generic classes, which max be used as is nr

customized to meet a specific need through the ciealion of subclasses. The ax ailabihtx ol a

class library means that many components need not be rcimplemented bx the piogrammer.

The most useful kinds o f classes implement general purpose data structures, such as

sets, dynamic arrays, lists, queues, stacks, dictionaries, trees, and so forth. These classes, of
ten referred to as container classes, serve as a framework for organizing collections of other

objects. Classes implementing various kinds of associations should also be available in the

class library.
More complete class libraries might include device-independent abstractions of interface

classes (such as streams, input devices, display devices, file systems) or concurrent processes.

A separate library of user interface classes for use with one or more windowing systems is use
ful. as is a graphics library,.Support for string manipulation is needed by most programs.

15.7.3 Efficiency

Object-oriented languages have an undeserved reputation for inefficiency because some ear

ly languages (Smalltalk and Lisp-based languages) were interpreted rather than compiled.
The availability of compiled languages and more efficient interpreters lias given developers

more latitude in choosing an appropriate language. Use of an 0 0 language with a mature

class library often results in code that runs faster than that written with a n o n -00 language.
This is because the overhead o f an 0 0 language is often more than compensated by better

implementations of data structures and algorithms available in a mature class library. For ex

ample, many programmers would not bother to implement hash tables or balanced trees for

small programs, but such data structures are available in a good class library'.

One aspect o f object-oriented languages that seems inefficient is the use o f method res

olution at run-time (also known as dynamic binding) to implement polymorphic operations.

Method resolution is the process of matching an operation on an object to a specific method.

Tills would seem to require a search up the inheritance tree at mn time to find the class that

implements the operation for a given object. Most languages, however, optimize the look-up

mechanism to make it more efficient. As long as the class structure remains unchanged dur
ing program execution, the correct method for every operation can be stored locally in the

subclass. With this technique, known as method caching, dynamic binding can be reduced

to a single hash table look-up and performed in constant time regardless of the depth of the

inheritance tree or the number o f methods in the class. Clever compiler tricks can reduce

even the size of the constant cost.

In a strongly-typed language, such as C++, the cost of run tune method resolution can

be reduced to a single structure reference, almost insignificant compared to the cost of call
ing a procedure, Kaeh class has a structure containing methods accessible by objects of the

class. A pointer to each method is stored at a known location with the structure, A pointer to

the method structure for the class is stored in each object. Run-time method resolution is per
formed by retrieving the method .structure and indexing u by the known offset of the method.

This technique cannot be used if new methods can be created tu am time (because the struc

ture cannot be precomputed,i or if the name of a method can be constructed at run time (be
cause the offset cannot be precomputed).

A language system can further optimize method resolution to use dynamic look-up only

where it is needed, A large percentage of the method calls in a ty pical application can be slat-

ically bound by the compiler if it is provided with enough information. There are two ways

the compiler can acquire this information. One way is for the programmer to declare which

operations may be overridden, thus limiting dynamic binding to only those functions. The

virtual functions of C++ and the generic functions o f CLOS reflect this approach. The other

approach is to provide a final optimization pass that analyzes the application as a whole, de

cides what methods are not overridden, and then recompiles the application, taking advan

tage o f this information. This approach is adopted by the Eiffel language system. Note that

the declaration o f types for variables allows the compiler to be much more precise in its de
termination o f which method calls can be optimized.

15.7.4 Strong Typing Versus Weak Typing

Object-oriented languages vary greatly in their approach to typing. The term typing refers to

whether each variable and attribute value is merely known to be an object (weak typing) or

may be declared more precisely as belonging to a particular class or one of its descendents

(strong typing). The sample design in Figure 15 .1 assumes strong typing. For example, the

attribute radius is declared to be o f type Length. Smalltalk is a weakly typed language— all

variables in Smalltalk are objects o f unspecified class. Eiffel. DSM . Objective-C. and C++

are strongly typed languages. CLOS and Objective-C support strong typing but do not re

quire its use— a variable that references an object may optionally by declared, and the com

piler w ill check usage o f that variable. Hybrid languages, such as D S M . C ++ , and

Objective-C. even permit an attribute to assume a value which is not an object but rather is

an underlying C language type. Permitting nonobject values increases efficiency o f common

operations, such as arithmetic, at some cost in uniformity o f reference.

Strong typing in a language serves two purposes. Strong typing provides active support
to the programmer in detecting mismatched method arguments and assignment statements.

Strong typing also increases opportunities for optimization. The compiler can detect when a

general purpose operation can be replaced by a specific function call (sec Section 15.7.3).

No power is lost by the use of strong typing; the programmer can always declare every thing

to be of class Object to get the same effect as weak typing.

Although weak typing is flexible and powerful, it permits dangerous coding practices.

Modern programming language theorv has been evolving in the direction of strong tvpe

checking. Much of the advances in programming language theory have derived from restrict
ing the programmer's ability to perform dangerous operations. Most new languages support

strong typing. The premise behind strong typing is that it is easier to detect and correct soft
ware bugs at compile-time rather than at run-time. Strong typing improves the reliability of
delivered software.

15.7.5 Memory Management

1 he freedom w ith which objects can be created and accessed causes a problem when mem

ory space must be reclaimed. Most OO languages allocate memorv from a heap rather than

using fixed blocks of global memorv or a stack. A dvnamic memorv allocution svstem can
W 9 • # «

run out of memory unless objects that are no longer needed are deallocated. The principal

problem lies in determining when an object is not needed or can no longer be accessed. The

severity of the problem depends on the type of application and the memory architecture.
Many programs that have access to a large amount o f virtual memory can simply ignore the

problem. On the other hand, a highly interactive application expected to run indefinitely

must consider memory management no matter how large the available memory space.

There are two approaches to memory management: either it is done automatically by the

run-time system of the language or it is done explicitly by deallocation statements written by

the programmer. The preferred approach, automatic memory management, relieves the pro

grammer o f the responsibility of deciding when to deallocate memory and avoids the risk of

dangling object references that explicit deallocation is vulnerable to. However, users are un

derstandably dissatistied with some garbage collection schemes that result in long pauses at

unpredictable points during execution. Incremental garbage collection schemes avoid long

delays but impose a higher average cost. Improved garbage collection algorithms offer some

hope in this area.
Cl,OS and Smalltalk offer fully automatic garbage collection. C++ requires the pro

grammer to deallocate unneeded objects, but the C++ language allows the programmer to

define destructor functions, which are called automatically when a variable goes out of

scope. ‘litis gives the programmer a convenient way of organizing and invoking explicit stor

age deallocation but is not a garbage collector. Dynamically-allocated objects must be ex

plicitly deallocated by the delete operator. Explicit deallocation runs the dual risk o f

deallocating objects that are still referenced (leading to program crashes) ami failing to deal

locate objects that are inaccessible (leading to memory waste), but it does not impose any

additional time or memory costs on the program.

15.7.6 Encapsulation

Em apxulaium (also in/onnuitott huitn^i consists of separating the protocol, the external as

pects of an object that arc accessible to other objects, from the internal implementation de
tails of the object, which are hidden Irom other objects. Encapsulation prevents a program

from becoming so interlaced that a small change has massive ripple clfeets. You can change

the implementation of a class without affecting its clients. You may want to change the im

plementation of an object in order to improve performance, fix a bug. consolidate code, or
port it to a different system. Encapsulation is not unique to object-oriented languages, but

the ability to combine data structure and behavior in a single entity makes encapsulation

cleaner and more powerful than in conventional languages that separate data structure and

behavior. Languages diner greatly m the degree to w hich the class boundary is enforced.

One vs ay that encapsulation van be \ lolated occurs when code associated with one class

directly accesses the attributes ol another das*. Direct access makes assumptions about the

storage format and location ol the data I hesc implementation details should lv hidden w ith

in a class for example, an attribute value 111.1;, aettiallv Ih- computed Irom other inhumation.
The proper wav to access an attribute of another object is to "ask lor it“ In invoking an op

eration of the object, rather than simply "taking it " Many languages (such as Smalltalk) for

bid direct access n» the attributes ol another object or <js in (*♦■-» and Trellis Owl) permit
attributes to be dev hired either public 0 1 private EiMel provides perhaps the hnest control of

encapsulation through its export statement, which lists attributes that may be read and oper

ations that may be executed. The C++ friend declaration allows limited loosening of encap

sulation for access bv specified classes or functions.

Encapsulation can be violated through careless use of inheritance. A subclass inherits

the attributes of its superclass, but if the methods of the subclass directly access superclass

attributes, the encapsulation of the superclass is defeated. CLOS. Owl. Eiffel, and C++ per
mit a class to restrict its visibility from its subclasses. There are arguments in favor of allow

ing a class to access its superclasses, but the cost is tight binding between the classes.

Often it is useful to write some ’‘private" operations that are for internal use only by oth

er methods of the same class. It is desirable to restrict the visibility of these operations so

that other classes cannot use them. It is often necessary to allow subclasses to access these

internal operations, so a simple distinction between public and private is not possible. Some

languages permit a third level of access to subclasses (such as the C++ protected declara

tion).
A more complete discussion of encapsulation is found in [Micallef-S8].

15.7.7 Packaging

The class is not an adequate structuring construct for large systems. Most 0 0 languages lack

partitionin'.! mechanisms for controlline visibility between classes. We have suggested the

use of modules containing classes as a structuring mechanism during analysis.

A related problem is that object-oriented languages typically require that the names of

classes must be unique. Often this is not the case when two or more applications that were

developed independently are combined. For example, two designers working independently

might deline different versions of a class called Symbol with different operations and seman
tics. The problem is similar to name clashes in block-structured languages.

In the Ada language and in CEOS, the pin Lute construct provides the means to structure

a swiem into separate components with their own name-spaces. In Ada. names declared in

the specification of a package are not visible outside the package unless explicitly requested,
allowing control of both the name-space and inter-package dependencies. Entities that arc

known bv one name outside the package can be renamed within. Packages mav be nested,

allowing an entire subsystem to be encapsulated within a well-detined interface.
Object-oriented languages would benefit by the addition of packaging capability. In par

ticular. the ability to nest the packaging components ol a sy stem allow s better control ol \ is-

ibiliiy.

15.7.8 Development Environment

The tools that arc available for browsing and editing soince -.ode. compilation, debugging,
system mlcgiation. and testing have a big ellect on youi productivity. Suppoii tools are es-

peeiallv important m object-oriented languages because of the ditticully ot managing inher

ited and dM iam ieallv bound Icatuies in a laiee svstem.

A browser allows you to explore the source code in a structured way, asking what class

es are present and what operations are dclined lor each class. The Smalltalk-80 browser, de

scribed in lGoldberg-S4|, is the most prominent example.
The compiler or interpreter is the most important implementation tool. Whether the lan

guage is inteqjreted. compiled, or translated affects the speed with which you can make small

changes and test their effect. An interpreter allows more flexible debugging. Interpreted sys

tems such as Smalltalk and Lisp allow an executing program to be stopped, edited to correct a

bug, and resumed. Objeciive-C offers an optional interpreter in addition to the compiler.

Some compilers translate an object-oriented language to an intermediate language (such

as C) which is then compiled. The C++ language was first implemented by translation into

C. but true compilers are now available. Translation may pose problems for symbolic debug'

gers because they do not understand the original object-oriented code. In evaluating the de

bugger. find out whether it shows you the original object-oriented source code or the

intermediate code (which may be hard to read). 'The debugger should be able to inspect at

tribute values and evaluate object-oriented expressions.

Tools for system-building and change control are essential for large projects but are also

valuable for individual programmers. Consider whether the proposed language provides them

or integrates smoothly with existing tools. System rebuilding can consume much time if a sim

ple change in one module requires that client modules must be recompiled as well. Try to de

termine what kinds of change trigger recompilation of clients. Experience has shown that the

use of conventional building tools, such as U N IX make, are too crude for many purposes. Fitt

er-grained development environments are needed but are only recently available.

15.7.9 Metadata

metaoata (discussed in Chapter 4) is data about data, metadata that is present at run-time al

lows an application to reason about, and possibly even change, its own structure and capa
bilities, including the operations an object supports, the attributes it possesses, or the types

of attributes. There are also more conventional uses of metadata, such as writing a generic

procedure that prints or saves any object using the attribute names and types.

Languages containing explicit class descriptor objects (such as Smalltalk and DSM)
contain run-time metadata about classes. A class object acts as a template for the creation of
new instances. The class may also contain descriptions of the attributes and operations, such

a.s name, type, or arguments. For example, a Complex number class might define real part

and im aginary part attributes each of which is represented as a 32-bit floating point number.

O f course, the designer of the system knows the metadata, so in principle this data could

be embedded m the code. But if the design changes (say. by adding a new attribute to a class)

then all the code that depends on embedded data will become invalid. 'Hie use of metadata

at run-time rather than at compile-tirnc allows the construction of extensible systems with

generic procedures and abstract classes that are reusable in unforeseen applications, meta

data also can be used to support data persistence or by programming support tools such as

debuggers, brow sers, and inspectors.

15.7.10 Parameterized Classes

Parameterized classes, or generics [Meyer-86), allow a parameterized template to be written

that can then be applied in several cases that differ only in the types of the parameters. For

example, a generic List class can be instantiated as a list o f points or a list o f integers. The

generic add-element method on the list implicitly depends on the type of element. Local vari

ables within the method have generic type that depends on the instance. Parameterized class

es are present in the Ada language and in Eiffel. Parameterized templates have been

proposed for C++ |Stroustrup-88|.

15.7.11 Assertions and Constraints

Assertions and constraints improve the odds that the behavior of a class matches the expec

tations of its clients. We can do this informally by writing a natural language description of

the desired behavior, but how can we be sure that the description will be understood in the

same way (or even read) by another programmer who wants to use the class'?

Usually there are a lew critical assumptions about the behavior of a class, operation, or

method that can be expressed mathematically. These assumptions take the form o f assertions

that must be true at particular points during execution (such as preconditions anil postcondi

tions), and constraints that must be maintained, or invariants that must always be true.

Chapter 8 showed how to use assertions and constraints as part of the functional model.

Assertions should also be written into the software in a form that can be optionally compiled

and automatically checked at run-time. While this technique can be used in many languages

(such as the assert macro available in many C implementations), it is particularly well-sup

ported in the Eiffel language |Mever-881.
Constraints can be more than simply conditions to be tested. They can be viewed as a

way of expressing declaratively what might otherwise have to be written as procedural code.

A language system could understand constraints that are declared and insure that they remain

true by taking action at run-lime to maintain the constraints. The Prolog logic programming

language has such capabilities. It would not be surprising to see such constraint maintenance

systems become widely available under object-oriented languages.

15.7.12 Data Persistence

All computer programs operate on data. If you require data that persists beyond the lifetime

of a single program execution, then you will need to use a permanent data store. There are

various reasons for wanting persistent data:

• Persistent data may provide the easiest mechanism for passing data from one program

to another.

• Persistent data allows the same progrant to resume processing at a later dale.

• Data stores are often useful for historical or archival purposes.

There are several approaches to providing persistent data services: files, special purpose

hardware devices, databases, and intrinsic language support. Some new object-oriented da
tabases are especially convenient in their data storage services. To a large extent, such an ad

vanced object-oriented database looks like an object-oriented language, except that the

orthogonal property of persistence may be specified lor data structures. The advantages and

disadvantages of object-oriented databases, relative to conventional databases, are discussed

in Section I5.S.5.

15.8 SURVEY OF OBJECT-ORIENTED LANGUAGES

Having considered various language characteristics, we now examine how they have been

combined in several commercially available object-oriented languages: Smalltalk. C++.

Eiffel. C'LOS. and database programming languages.

15.8.1 Smalltalk

Smalltalk was the first popular object-oriented language, developed at Xerox PARC, and its

success engendered many other object-oriented languages. Smalltalk is not only a language

but also a development environment incorporating some functions of an operating system.
For single-user development, it offers arguably the best features of both language and envi

ronment. Smalltalk falls short in areas where it was not intended to be used— in multiple per

son projects and in its weak or unspecified ability to interface with external software or

hardware devices. Smalltalk eleeantlv articulates the coals of extensibility and reusability.
W # W # •

All aspects of the Smalltalk language system are available through an on-line interpreter
and class browser. The language syntax is simple. Variables and attributes are untyped. Ev

erything is an object, including classes, (.'lasses can be added, extended, tested, anil de
bugged interactively. A garbage collector frees the programmer of the burden of memory

management.

What does Smalltalk provide the implementor? Perhaps the most important contribution

is the highly interactive development environment, which avoids the edit-compile-link cycle

delays of the traditional compiler-based language. The Smalltalk environment permits rapid

development o! programs. Another strength is the class library, which was designed to be

extended and adapted by adding subclasses to meet the needs of the application. Because

Smalltalk is an untyped language, library components can lx* combined to rapidly prototype
an application.

The ModclAoew/Controllcr (M V (') architecture for user interlace design is another im
portant contribution of Smalltalk. A user interface is divided into an underlying application-
defined model, am numfx*r of different views of the model, and controllers that synchronize

changes to the model and the views. M V C makes it possible to concentrate on the essentials

of an application (the Model) and add tlie user-interface (the Views and Controllers) inde

pendently. I he class library provides standard versions of each of these components, which

can lx- subclassed and extended incrementally. 'Ilicre can lx* many different view/eontroller

pairs for each model, and the views and controllers can be moditicd extensively with little

or no change in the model. However, the M VC is a complex system that is not easy to learn.

Smalltalk is a pure object-oriented system with extensive metadata available and mod

ifiable at run-time. Implementation of the language as an interpreter, tightly integrated w ith

other parts of the its self-contained environment, gives ideal support for rapid incremental
development and debugging.

15.8.2 C++

C++ is a hybrid language, in which some entities are objects and some are not. C++ is an

extension of the C language, implemented not only to add object-oriented capabilities but

also to redress some of the weaknesses of the C lainiuaee. Manv added features are orthos-
V W . V

onal to object-oriented programming, such as inline expansion o f subroutines, overloading

of functions, and function prototypes. Because of its origin as an extension of C. its backing

by major computer vendors, the perception of it as a nonproprietary language, and the avail

ability of free compilers. C++ seems likely to become the dominant object-oriented language

for general use.
C++ is a strongly-typed language developed by Bjarne St roust rup at A T& T Bell Labo

ratories. It w-as originally implemented as a preprocessor that translates C++ into standard

C. As a preprocessor. C++ introduced problems for symbolic debuggers, but direct compil

ers are now' available, and symbolic debuggers that support objects with inheritance and dy -

namic binding are now available. Commercial vendors offer C++ implementations for a

variety of operating systems. A C++ compiler with debugger and library are available for no

charge from the Free Software Foundation (with restrictions on commercial uset.

Unlike several other 0 0 languages. C++ does not contain a standard class library as part

of its environment, although the standard A T& T release includes libraries for I/O. coroutine

tasking, and complex arithmetic. Class libraries have been implemented by various develop

ers. including a class library developed by the USA National Institutes of Health (M i l) ,

which is achieving wide usage IGorlen-W). Class libraries for object-oriented windowing

systems include Interviews [Vlissidcs-SS) and FT++ [Weinand-SS]. Unfortunately, because

C++ provides no guidelines for library organization, different libraries may be incompatible.

The emergence of a consensus in favor of a standard foundation class library would be an

important asset to C++.
C++ contains facilities for inheritance and run-time method resolution, but a C++ data

structure is not automatically object-oriented. Method resolution and the ability to override

an operation in a subclass are only av ailable if the operation is declared vmiui l in the super

class. Thus, the need to override a method must be anticipated ami written into the origin

class definition. Unfortunately, the writer of a class may not expect the need to define spe
cialized subclasses or may not know what operations will have to be ledelined by a subclass

This means that the superclass often must be modified when a sulvlass is defined and places

a serious restriction on the abilitv to reuse librarv classes In creating subclasses, cspcctaliv

it souice code tor the library is not available. (O f course, sou couUI declare *;// operation** as

virtual, at a slight cost in memory and lunction-callme overhead.*

The implementation of run-lime method resolution is efficient. For each class, a pre-
detined .urnet is initialized with pointers to each method available to the class. Each object

contains a pointer to the method structure for its class. At run-time, a virtual operation is re

solved by reti ieving the method structure from the object and selecting a member to find the

method address. C++ does not support run-time class descriptor objects other titan the meth

od pointer structure. C++ 2.0 supports multiple inheritance.

C++ contains good facilities for specifying access to attributes and operations of a class.
Access may be permitted by methods of any class (public), restricted to methods of subclass

es of the class (protected), or restricted to direct methods of the class [private). In addition,

“spot" access can be given to a particular class or function using the fr ie n d declaration.

As with C. the declaration syntax of C++ is awkward and its grammar is difficult to

parse. C++ supports overloaded operators: several methods that share the same name but

whose arguments vary in number or type. C++ supports several memory' allocation strategies

for objects— statically allocated by the compiler, stack-based, and allocated at run-time from

a heap. The programmer must avoid mixing objects of different memory types or dangling

references may cause run-time failures. Each class can have several constructor m u \ conver

sion functions, which initialize new objects and convert between types for assignment and

argument passing: these are semantically sound but perhaps somewhat confusing for normal
Use.

In summary. C++ is a complex, malleable language characterized by a concern for the

early detection of errors, various implementation choices, atul run-time efficiency at the ex

pense of some design flexibility and simplicity.

15.8.3 Eiffel

Eiffel is a strongly typed object-oriented language written by Bertrand Meyer. Programs

consist of collections of class declarations that include methods. Multiple inheritance, pa
rameterized classes (ec/icnrv). memory management, and assertions are supported. A mod

est class library is provided, including Itsis. trees, stacks, queues, liles. strings, hash tables,

and binary trees. For portability, the Eiffel compiler translates source programs into C. Eiffel
has good software engineering facilities for encapsulation, access control, renaming, and

scope. Eiffel is arguably the best commercial (H> language in terms ol its technical capabil

ities.
'I he focal point o! lu lle l is the class declaration , vs Inch lists attributes and operations.

F.ilte l provides un ifo rm access to both attributes and operations by abstracting them into a

single concept called a feature. Art F.tflel class declaration may' include a list o l exported lea

tures. a list ot ancestor classes, and a list ot feature declarations. E tlfe l does not treat e ither

classes or associations as first class objects

E ttfe ! supports m em ory m anagem ent through a coroutine w hich detects objects that are

no longer referenced and releases the m em o iv allocated to them . I lie E iffe l run tim e system

execute'-* the coroutine v. henc*.cr the availab le m em ory space is low. Several m echanism s are

provided to contro l m em ory m anagem ent. A utom atic execution ol the coroutine m ay he sup

pressed ihrouirh a com piler sw itch or turned on or o il at n m -fim e . I-or operating systems that

do not support virtual memory, there is a compiler switch to arrange lor Eiffel's run-time sys

tem to provide automatic paging.
A contractual model of programming is supported by preconditions, postconditions, in

variants. and exceptions. A precondition is a condition that the caller of an operation agrees

to satisfy. A postcondition is one the operation itself agrees to achieve. An invariant is a con

dition that a class must satisfy at all stable times. Conditions and invariants are a part of the

class declaration and must also he obeyed by all descendent classes. If they are violated at

run-time, an exception occurs, which either causes the faulty operation to fail or executes an

exception handler for the class if the programmer provides one. Compiler switches provide

several levels of error checking. Once an application is debugged you can turn off assertion

checkinsi.
s -

15.8.4 CLOS

The Common I.isp Object System (Cl .OS) is an object-oriented extension of Common Lisp

which will soon become an official part of the Lisp language. It resulted from the work of a

Lisp standardization group working on the X 3JI3 A N S II standard. This group studied the

many existing object-oriented extensions of Lisp (such as Flavors anti CommonLoops). but

rather than selecting one of them as a standard, the group decided to formulate a new lan

guage based on language features that had proven successful. Because CLOS can be imple

mented in Common Lisp, it perm its experimentation on new concepts to continue, while

providing a common standard.

Although it was originally implemented in a hybrid fashion. Cl OS is so well integrated

with the traditional features of Common l isp that it has most of the advantages of a "pure"

object-oriented language. This is because every data object, including the atoms and lists of

Lisp, is a member of a class. Methods for Lisp primitives belong to an inheritance structure.
As a result, there is no practical distinction between Lisp primitives and objects.

The programming environment of Common Lisp and CLOS is an interpreter which also

allows code to be compiled into a form that is more ellicienily executed. Debugging facilities

under Common Lisp depend on the specific implementation but are generally excellent.

Commercial oflerings of Common Lisp w uh Cl.OS should be expected to pro\ ide complete

ly object-oriented debugger support.
Cl.OS currently does not haxe a standaid class library. Organizations that use ('LOS ate

currently collecting then ow n reusable classes, and there is some sharine of classes between

organizations. Commercial vendors will undoubtedly provide extension classes such as win
dow packages. One point in favor ot CLOS is that the Common Lisp types already present

form a common root for whatever new classes are added, so separately dev eloped class li
braries are more likely to be consistent.

CLOS provides powertul anil flexible inheritance capabilities. Multiple inheritance is

supported, and CLOS has rules toi lesoKmg the ambiguity lesullmg tiom inherited features

with the same name.

Polymorphic operations rei|tming dynamic method resolution can be implemented as

generic methods. All arguments to a generic method are explicit; theie is no special \ anable

like w-// in .Smalltalk. I nlike most object oticnied 1.menaces. Cl OS uses multiple atvu

merits to resolve methods, allowing the direct implementation of operations that exhibit

“multiple polymorphism" in which the specific method for an operation depends on more

than one of its arguments (for example, binary arithmetic operations).

CLOS provides a rich collection of metadata that can be accessed and updated at run

time. New classes can be defined, and methods can be added to classes dynamically. These
♦ ♦

features are a standard part of the language, documented its the "meta-object protocol." Un

like most languages. Lisp-based languages permit new procedures to be constructed at run

time out of source statements of other procedures.

Like Common Lisp. CLOS is a weakly-typed language. Native types are provided, and

classes behave like types, but there is no requirement to declare the type of a variable, and

there is no checking to insure that the use of an object is consistent w ith its declaration. While

achicv mg maximal design flexibility, weak typing can affect performance and ease of debug

ging. The optional declarations could be used by the compiler to optimize access, but this

optimization depends on the specilic implementation.

T he concept of encapsulation is not enforced by the ('LO S language system. Program

mers are encouraged to define and document the public interface ot each class and to use

only the advertised features ot other classes, but there is nothing to prevent the code of one

class from directly accessing the implementation details of another class. This lack of en
forcement is consistent with Lisp's general policy of providing maximum flexibility and

room for experimentation.

15.8.5 0 0 Database Programming Languages

A n O O D B M S unites tw o technolocies: data base m anagem ent and object o rien ted p ro

gram m ing . O b jec t-o rien ted program m ing languages (O O l ’ l . i are expressive but lack data

persistence b ia ta that outlasts the execution o f a single job). C onventiona l D B M S s have data

persistence but lack cxprcssih ility . O O D B M S s try to provide both data persistence and e \ -

prcssihility A n O O D B M S must handle large program s that operate on large data stores.

Lor conventional applications th.it com bine program s w ith D B M S access, the developer

uses a procedural technique, such as h iera ic luea l lu iic tional decom position or data (low d i

agram s. to design the o v e ra ll ap p lica tio n . A technique such as L n lily R e la tio n sh ip (see

C hapter I h may then be used to design die database. I lie database design m ay be conv erted

to S (.)l. code w hu h is em bedded m a language stu h as (Rascal , ot (obol

To say the least, the above scenario is tm allta i live file lum i.im ciita l problem ts tw o fo ld .

Lust, d itterent paradigm s arc used to design vanous pails of the system Second, the im p le

m entation vehicles m ism atch This book taiceb. the design p io h lem by im ito rm lv applying

object-o rien ted m odels to systems, program m ing code, and databases. O O D B M S research

is striv ing to remedy the im plem eisi.tlion side In juov iding one sottw .ue system that has the

richness ot program m ing languages and the practical features ot D B M S s .

In general there are tw o types ot database queues set oriented and navigational R e la

tion. il D B M S s arc intended to jH uform parallel operations on large sets ot data. In contrast.

O O program m ing languages .ire e lliu e n f at qu ickly navigating l i i ' i i i one object to another

by traversing pointers A relational D B M S p e ib 'im s navigation hv using |oins. w in d) are

several outers ot m agnbude -dower Ilian pointer tra v e lr.a! An O i) D B M S must elti-.. lently

perform both types of queries. One important feature of an O O -DBM S is the implicit as
sumption that the system is oriented towards operations on individual objects and the pro

grammer can expect these to perform well. This is notable mainly because the relational

model typically performs badly for single-object operations and navigation between objects

(Cattell-86, Maier-86].
The first generation of OO-DBMSs were early products and did not provide the robust

ness and "industrial strength” users have come to expect of conventional DBMSs. The per

formance of these systems was disappointing for large applications. GemStone. which is

marketed by Servio Logic, is a commercially marketed O O -D B M S. The GemStone lan

guage is similar to Smalltalk. The GemStone database has procedural interfaces to C and

Pascal. GemStone uses an optimistic concurrency scheme and server-client model and sup

ports single inheritance (Maier-86]. Another early OO -DBM S is ONTOS. marked by Onto-

logic Corporation. ONTOS has an object-oriented structure accessible by SQL queries and

C++ program statements.

O RIO N is an 0 0 database language prototype by M CC which is written in common

LISP. O R IO N ’s syntax is similar to Flavors and LOOPS. O RIO N supports multiple inherit

ance, versioning, and concurrency with an IBM -like locking protocol. O R IO N supports set-

oriented queries with a relational DBM S llavor. O RIO N permits some dynamic changes to

the database schema. [Kim-88]

Second generation OO-DBM Ss are under development by start-up companies whose

principals have previous experience developing both object-oriented languages and com

mercial-quality relational database management systems. There is reasonable hope that one

or more of these companies will succeed in producing a second-generation O O -DBM S that

can compete effectively with commercial relational DBMSs.

15.8.6 Comparison of Object-Oriented Languages

Figure 15.2 summarizes the discussion of object-oriented languages contained in this section

and in the previous section. As with any comparison table of this type, (here u ill aluay s be

inaccuracies due to changes in the languages and differences between implementations.
Nevertheless, we include this table because we think the benefits ol comparing languages at

a glance outweighs the shortcomings.

15.9 CHAPTER SUMMARY

T h is chapter shows how an ob ject-oriented language can be used to im plem ent a design d e

veloped using the O M T m ethodology. Practical advice has been g iven concerning the im p le

m entation o f various design constructs and the selection o f a language.
W %

In I he lirsi pan o l the chapter we concentrated on language features that are com m on to

most ob ject-orien ted languages, using (*+ + . H ilfe l. and S m allta lk as exam ples. Classes m the

object m odel are im plem ented by declaring classes w ith the attributes and associations re

i|m red . Im p lem entation o f inheritance is also accom plished In a sim ple d t \ laration m < > 0

2.0

Integration of classes hybrid
with primitive types

Strong type checking Y

Ability to restrict access to attributes:
Control of access from clients Y
Control of access from subclasses Y

Standard class library N

Parameterized classes F

Multiple inheritance Y

Scoping of class names (packages) N

Messaging model:
Single target object Y
Dynamic binding on multiple args N

Method combination features:
SUPER concept N
Before & after methods N

Assertions and constraints N

Metadata at run time N

Garbage collection N

Efficiency:
Static binding when possible Y

Smalltalk C IO S Eiffel Objective
SO C

pure integrated integrated hybrid

N N Y Y

Y N Y Y
N N Y N

Y N Y Y

— — Y N

N Y Y N

N Y N N

Y N Y Y
N Y N N

Y Y Y Y

N Y N N

N N Y N

Y Y N Y

Y Y Y N

N N Y Y

Key to table entries:
Y ii Yes. the feature is present.
N » No. the feature is not present in common current implementations.
F © Planned in a future release
— ... Not Applicable: Parameterized classes are not needed in languages with weak typing.

Figure 15.2 Comparison of commercially available object-oriented languages

languages. Associations are implemented either by using object references (pointers) or by

defining a new collection class (A ssociation)\o serve as a template for creating specific as

sociations in the design.
When writing methods to implement operations, object-oriented programming differs in

a few respects from conventional languages. In most current GO languages, the target object
is passed u> the method as an implicit argument, available within the method under a special

identifier far//, this, or Current). Other arguments should be passed as references to objects.

Objects can be explicitly allocated or destroyed using special operations provided by the lan

guage.

T h e second part o f the chapter discusses som e im portant features w h ich are not com m on

to all 0 0 languages. These features include m u ltip le inheritance, a class library, e ffic iency

o f im p lem enta tion , strong typ in g , autom atic m em ory m anagem ent, en forcem ent o f encapsu

la tion , packaging constructs, developm ent en v iro n m en t, m etadata accessible at ru n -tim e , pa

ram eterized classes, assertions and constraints, and persistent objects.

T h e final part o f the chapter is a b r ie f survey o f 0 0 languages, includ ing 0 0 database

systems. S m allta lk is an interpreted language w ith w eak type checking and garbage c o lle c

tion that is noted fo r its developm ent environm ent and extensive class library'. Such a lan

guage is ideal fo r rapid developm ent o f prototypes but does not support large team efforts

w e ll. T h e C + + language is a hybrid language based h eav ily on C but w ith im proved type

checking and extensions to support 0 0 program m ing . E ffic iency is obtained at the cost o f

some design flex ib ility . E iffe l is a strong ly-typed language that provides m any advanced fea

tures such as m u ltip le inheritance, generic classes, autom atic memory' m anagem ent, and as

sertio n c h e c k in g . C L O S is an in te g ra ted 0 0 e x te n s io n to C o m m o n L is p . It p ro v id es

pow erfu l inheritance capab ilities , rich m etadata accessible at run tim e, and an unusual but

very flex ib le means o f defin ing po lym orph ic operations. In the rap id ly evo lv in g area o f 0 0

database systems, the first generation products have been successful in p rov id ing basic O O

structure accessible from both a query' language and a program in terface but do not quite

meet industrial perform ance and robustness requirem ents. Research O O -D B M S have pro

vided m ore sophisticated features, and a second generation o f com m erc ia l systems is on the

way.

assertion
class library *
container class
encapsulation
implementation of associations
memory management
meta-information
method resolution

object-oriented database
object-oriented language
packages (name-space control)
parameterized class
persistence of data
programming environment
self-reference
strong t> ping

Figure 15.3 Key concepts lor Chapter 15

BIBLIOGRAPHIC NOTES

A survey of various approaches to object-oriented language characteristics may be found in

|Stefik-Xh|. A good comparison of specific languages is found in | Micallet-SX j. I he | Weg

ner-871 paper constructs a general design space of language characteristics nn ithm winch e v

istimi languages mav be classified and new research directions sought.
Descriptions of specific languages may be found in (StiousirupX4| lot C++, (Keene

N«>] lor CLOS. (Co\-Xb| lor Objeciivc-C. |Me\er-XS] for Eiffel. |(ioh!tvrg-S l| lor Small-

talk-XO. |Schafferi-Sn| lor Tiellis-Owl. and |Shah-S‘M lor DSM.

Despite his focus on Eiffel, (Meycr-88] provides a good general coverage of issues in

strongly typed object-oriented languages. The same can be said of (Cox-861 for general cov

erage of languages with weakly typed object systems. Good descriptions of the general pur

pose objects in a class library as an important supplement to the language itself may be found

in [Goldberg-83] and lGorlen-90).

Specific treatment of unresolved issues in object-oriented languages may be found in the

following sources: (Snyder-861 draws attention to the way that some views of inheritance

violate encapsulation, [Stein-87) compares delegation and inheritance as means o f sharing

behavior, and |Meyer-86] contrasts gencricity and inheritance.

REFERENCES

(CattcII-86) R G .G . Cattell. T.R. Rogers. Combining object-oriented and relational models o f data.

I9 S 6 In term it tana! Workshop on O b jec t-O rien ted D atab ase Systems* Pacific Grove. C alif., Sept.

1986.

(C o\-86J Brad Cox. O b jec t-O rien ted P rogram m ing: A n E vo lu tionary A pproach. Reading, Mass.: A d
dison-Wesley, 1986.

(Goldberg-831 Adclc Goldberg. David Robson. Sm alltalk-SO ; The Language a n d its Im plem entation.

Reading. Mass: Addison-Wesley. 1983.

(Goldhcrg-84) Adclc Goldberg. Sm alltalk-SO. The In terac tive P rogram m ing Environm ent, Reading,

Mass.: Addixon-Wesley. 1984.

(Gorlcn-901 Keith Gorien. Sanfor Orlow. Perry Plexico. D a ta Ahstractum and O b je c t-O rie n te d P m -

*ram m tn$ in C + + . Chichester. England: John Wiley & Sons Lid.. 1990.

[Kcenc-S9J Sonya Keene. O b jec t-O rien ted Program m ing in Com m on Lisp: A Program m er's G u ide to

C LO S. Reading. Mass.: Addison-Wesley, 1989.

(Kim-KXu| Won K im . Frederick 11. Ltvhovskv. O b jec t-O rien ted Concepts, D atabases, a n d A p p lic a

tions. New York: .ACM Press, 1988.

(K im -88b) Won Kim . Nat Ballou, Hong-Tai Chou. Jorge F. G ar/a . Jay Bancrjcc. Inicgraling an object-

oriented programming system with a database system. O O P S L A 'S S as A C M S IG P lA N 33, 11

< N ov 1988 >. 142-152.

|L«pprtun-39) Stanley B. t.ippman. A C + + P rim er. Reading. Mass.: Addison-Wexlcy, 1989.

JLiskov-87] Barbara Li\kov. Alan Snyder. Russell Atkinson, Craig Schaflcn. Abstraction mechanisms

in C U V Com m unu atoms o f the A (*M 2th K (August 1977). 564-576.

(M ,uer-K6| David Nt.ucf. Jacob Stem. Allen Otis. Alan Purdy. Development of an object-oriented

D B M S t) () p M A Sh as . 4 0 / S iG P lA S 21. I I (Nov. |9X6>. 472-4H2.

[M c)c r-S 6 | Bertrand Meyer. Gcncricil) versus inheritance. O O P S L YXo as A C M S IG P IA S 21 . I I

t Nov 1986). 391-405

IMcscr-SKj Bertrand Meyer O hject O n e n te d S < *fh \a tr i*o n \ttu * turn. Hertfordshire. England: Prentice

Hall International. 1988.

[M ita llc f HXj Josephine MicaUcl. Encapsulation* Rcuvibilit) and extensibility m object-oriented lan
guages. Journal a f t) h ; n t-f ln e n tc d P n ^ ram nun^ I . I (A pril/M ay 19XS). 12*38.

[SehalfenSb] Craig SsJultert. 'fopher Cooper, U nite B ulltv M ike Kthan. Cam e Wilpoh An intro
duction to Trellis O w l u n P S t A 'M as A C M S IG P L W 21. 11 iN ov 1986), 9 .16

(Shjh-K9j A tbw m Shah. James Rumbaugh, Jung Hamel. Renee Botsan D SM an object relationship

nuxklm g language O f)P S lA 'S ft : i \A C K t M G P IA S 2d. I I rN ov fOKuj, 191-202.

|Snydcr-86] Alan Snyder. Encapsulation and inheritance in object-oriented programming languages.
OOPSLA86 as ACM SIGPLAN 2 1, 11 (Nov. 1986). 38-45.

(Stefik-86) Mark Stel'tk, Daniel G. Bobrow. Object-oriented programming: themes and variations. The
A l Magazine 6 .4 (1986), 40-62.

(Stein-87) Lynn Andrea Stein. Delegation is inheritance. OOPSLA'87 as .4GW SIGPLAN 22. 12 (Dec.
1987). 138-147.

[Stroustrup-841 Bjamc Stroustrup. The C+ + Programming Language. Reading. Mass.: Addison-Wes
ley. 1986.

[Stroustrup-88| Bjarnc Stroustrup. Parameterized types for C++. USENIX C++ Conference. Denver.
Colo.. October 17-21. 1988.

[Vlissides-88] John M. Vlissides. Mark A. Linton. Applying object-oriented design to structured
graphics. Proceedings o f ihe 1988 USENIX C+ + Conference. Oct. 1988. 81-94.

|Weinand-88) Andre Weinand. Erich Gamma. Rudolf Many. ET+-I— an object-oriented application
framework in C++. OOPSLA88 as ACM SIGPLAN 23 .'11 (Nov. 1988). 46-57.

(Wegner-87| Peter Wegner. Dimensions of object-based language design. OOPSLYX7 as ACM SIGP-
LAN 22. 12 (Decri987). 168-182.

EXERCISES

15.1 (4) Write class declarations for the object diagram in Figure E 15.1 in any language that does not
directly suppon multiple inheritance. The application is a simulator that computes the perfor
mance of electrical machines.

Figure F.15.1 Paitt.il taxonomy lor electnc.il machines

15.2 (6) Write code, including class declarations and methods, to implement the following using
pointers in any object-oriented language:
a. One-to-one association which is traversed in both directions.
b. One-to-many association which is traversed in the direction front one to many. The associa

tion is considered unordcred.
c. One-to-many association which is traversed in the direction from one to many. The associa

tion is considered ordered.
d. Manv-io-many association which is traversed in both directions. The association is consid

ered ordered in one direction, and unordcred in the other direction.

15.3 (4) Describe some situations in which strong typing would help you. Describe some circum
stances in which strong typing would cause problems.

15.4 (8) Many object-oriented languages have libraries which support the creation and manipulation
of container classes such as Svinbol. Set. Arrow Dictionary, and Association.

A Sym bol is a siring object that enables you to determine if two strings match by simply
checking for equality of the object IDs. The first time a symbol with a given string value is cre
ated, a new object ID is allocated. All subsequent attempts to create a symbol with the same
string value will return the previously assigned ID.

A Set is an unordcred collection of unique values. Duplicate values are automatically dis
carded from a set. Values can be added, deleted, and tested.

An A rra y is an ordered, dynamic, collection of values, indexed by nonnegative integer selec
tor values. The number of elements is variable. Elements can be added or deleted at the end, be
ginning, or at any point in the middle. An insertion or deletion in the middle causes (he positions
of subsequent elements to change.

A D ic tio n a ry is a many-to-one mapping function whose domain and range are objects, in

cluding possibly other container objects.

An Assoautitm is a two-way mapping that can be composed from two dictionaries.

Write pseudocode to construct the following from container classes. List any operations that

you assume are defined on the container classes, and explain what they do.

a. A Sorted d ic tionary . Each entry in the dictionary maps a name to an object. Entries are sort

ed by name. Needed operations include insert? nam e, object), which adds an entry' to the dic

tionary; detenu nam e), which deletes an entry; fin d (n a m e), which returns thc object associat

ed with nam e’, f in d Jtrstt w Inch returns the first object in the dictionary; j t n d j a s f i /, which

returns the last; f in d prevunts inh ject), which returns the object just previous to object; and

f in d next oh/etut object), which returns the object which follows object. Also needed is an

initialization operation which creates a new, empty dictionary. The operation tm ertin u /n e .

o h je in replaces an entry in the dictionary if nam e is already in the dictionary'.

b. A Polygon. A Polygon is a two dimensional object whose x-v coordinates are stored as in

stances of the class Potnt. Needed operations on the class Polygon include d clc tc it. which

deletes a polygon, and get p o in t \ i i , which returns an array of points which belong to a poly

gon Needed operations on the class P o in t include delete! r, which removes it Irom its poly

gon; itfip rndffndvyonh which adds ii to a polygon; and i*et po lygon?), which returns the

poly gon to wInch it belongs. Also needed is an nutiali/ation operation to create a new poly

gon from an ordered list of points. Assume that a P om t belongs to one Polygon rather lhan

being shared If two polygons dure a common coordinate, two Points arc made with the

sarne coordinates

c. An Index. An Index is similar to a D ic tio n a ry , except the mapping is to a set instead o f indi

vidual objects. An index might be used, lor example, to determine all automobiles that were

manufactured in a given year. Needed operations include addi object ̂ selector, object j a r -

get), which adds a target object to the set associated with the selector; delcteiohjcct j> c k r u n .

o b je c t ja rg e th which deletes a target from the set associated w ith the selector; and f in d iu h -

je c t _selcctor h which returns a set o f objects which arc indexed by object ̂ e le c to r . Unlike

the insert operation in part (a), the o d d operation does not replace existing data but adds to it.

15.5 (5) Describe how you would use tools included in software development environments such as

browsers, compilers, interpreters, symbolic debuggers, system builders and change control sys

tems to help solve the following problems;

a. You are using an unfamiliar subroutine in a subsystem library. There is not much documen

tation. so you would like to quickly find out how it works by experimenting with it.

b. Your program seems to have a bug in it which makes no sense to you as you glare at your

source code for one o f the program modules. Now you are not sure that the program that you

just run was built from the source code that you are looking at. It is possible that you forgot

to recompile this module before you ran the linker.

c. The program you are developing quits with a memory fault error. The line at which it fails

is different each time you run the program, depending on the data. The problem is repeatable

with the same data.

d. You are the leader o f a team working on a large software project. You want to make sure that

only one person works on a file at a time. The latest version o f all modules must be accessible

to the group as a whole, bui individual users might want private copies lor debugging pur

poses.
e. 'There are too many steps involved in building the application for you to execute all of them

each lime you make a change. Furthermore, you have trouble simply remembering all these

steps, let alone trying to figure out which ones need to be redone as the result ol your latest

revision.
f. You have written your own preprocessor. The debugger you are using displays the output ot

the preprocessor. and you have trouble tracing errors back to the original source code.

15.6 <7) Describe strategies for dealing with the follow ing memory management problems, assuming

that automatic garbage collection is not feasible. Your answer should be in the tonn ol guide

lines that a programmer could use during coding.
a. A svsictu fo r n \\f in tin ijn ihifion A common operation is the creation ol one large test segment

in contiguous m em oi\ horn an arrav o f several smaller segments | he sysiem is expected to
• •

handle a lot o f text, and you cannot at ford to waste memory. You cannot set an upper hound

on either the text length or the array si/e 1 he following operations are convenient building

blocks which you must provide if they ate not available as library routines; Determine the

si/e ol a text segment, allocate a segment ol memory ol a given si/e, deallocate a prov toudy

allocated memory segment, copy text fiom one memory segment to another, and combine

I wo text segments placing the result in a previously allocated segment ot memory Write

pseudocode lor a method that combines text, ictovcnng memory space that in no longer

used.
b. A nw ht />c/w i . w i f t i i ' <>h|csts are created dynamically. 1 ash pass examines the objects cic-

ated on the pievious pass and produces obiests to be used on the next pass I he soniputet

s\ stem oil w Inch the compile) will inn has a pi, k Ik ally unlimited v irtu.it address space ami

an operating svstem w ith a eood sw appmc algotuhm I he routines m the run tune library tor

allocating and deallocating memory dynamically are inefficient. Discuss the relative merits
of two alternatives: (f) Forget about garbage collection all together and let (he operating sys
tem allocate a large amount'of virtual memory. (2) Carefully deallocate memory1 when ob
jects are no longer referenced.

c. Banking software or an air traffic control system that runs for a long time. You have the
same computer sysiem and run-time library as described in exercise 15.6(b). Discuss the rel
ative merits of the two approaches.

d. A subroutine which may create and return an abject that uses a large block o f memory. The
only operations allowed on the object class are implemented by other subroutines which you
are going to write. You do not wish to leave garbage lying around. Discuss the relative merits
of the following two approaches: < I) Each time the subroutine is called it destroys the object
created the last time it was called, if any. (2) Each time the subroutine is called, it may create
a ne w object. It is up to the calling routine to destroy the object when it is no longer needed
bv ailing a routine that vou will write. Consider both situations when the routine that calls
your routine is recursive and when it is not.

1.5.7 (4) Express the following as a constraint that is to he enforced in an application which handles
points and polygons: Points are associated with polygons. Every point belongs to exactly one
polygon. You do not want a polygon to be linked to a point that has been deleter!.

I5J8 (1) Dcscrilre the attributes and methods of the generic class B inaryjrce that will support the
construction of unbalanced binary trees from any class whose instances can be ordered. A com

pare method must be provided for each class that is included. Compare compares two instances
of a class, return mg less than, equal to. or greater than, depending on the order. Operations on
the class Binary tree include i nsertt object I whkU insens an object into a tree. delete(objectI
which deletes an object from a tree, print I i which prints all objects in ih; tree in order, and testf-
>:ib/ecr) which determines if a given object is in a tree. Assume that a print method is available
for all classes from which trees are constructed. Descriptions of attributes should include data
types ami whether the attribute is private or public. Descriptions of methods should include data
types of arguments and returned values as well as assertions and constraints.

15,9 (7) Write emit* in any object-oriented language to 'implement the generic class Binary tree
described in exercise 15 8. Test it on the billowing two classes; Person and Page. Person is or
dered by name and Page is order by page number. You will need to write a compare method
and a print method for each class. Make up a few attributes for each class.

I5JQ (3) Write code in any object-oriented language to shuffle a deck of cauls and to deal -! hands of
13 cards from the deck. Be sure to create new- instances of the classes Card. D a k and Hand from
Figure 1:15.2. 'Die relationship between Collection of cauls and Caul preserves the ordet in
which earth arc placed into collection which is not necessarily according to suit and rank

f5 .l l I'i) Using any object -oriented language, implement the aggregation between Card and
Collet fom of t aids in Figure IT 5.2 so that the order in which Cards are added to a
Collection of cards is preserved and so that the aggregation can hi traversed in both directions.

15,12 i4) Write code m artv object-oriented language to implement th(; son apemtitm on the class
Hand shown in Figure E l5.2. Sod the cards in each suit according to rank in descending order;
a«cc:. king, queen, jack, ten down to deuce. Suite should be arranged in a hand in I he order:
spades, hearts, dubs, and diamond*. There arc tu> arguments to the operation

Figure E15.2 Object diagram for a card-playing program

15.13 (4) Implement the insert operation in Figure E15.2 with any object-oriented language. There is
one argument, card, to the operation which insens the card into the Collection _of_cards. A card
is inserted at the top of a Deck, Hand, Discard pile, or D raw jn le .

You may wish to refer to exercise 8.5 for background for exercises 15.14-15.16.

15.14 (4) Using an object-oriented language, implement all associations involving the classes Box,

Link. Linejsegment, or Point in Figure E15.3. Note that the editor allows links only between
pairs of boxes.

15.15 (5) Implement the cut operation on the class Box in Figure EI5.3 using any object-oriented lan
guage. Propagate the operation from boxes to attached link objects. Update any associations that
are involved. Be sure to recover any memory that is released by the operation. You may assume
another routine will update the display.

15.16 (5) Implement a routine using any object-oriented language that will create a logical link be
tween two boxes. (Sec Figure E l5.3.) Inputs to the routine are two boxes and a list of points.
The routine should update associations and create object instances as needed. You may assume
another routine will update the display.

15.17 (8) Using any object oriented language, implement the following queries on Figure E15.3:
a. Given a box. determine all other boxes that are directly linked to it.
b. Given a box. find all other boxes that are directly or indirectly linked to it.
c. Given a box and a link, determine if the link involves the box.
d. Given a box and a link, find the other box logically connected to the given box through the

other end of the link.
e. Given two boxes, determine all links between them.
f. Given a selection and a sheet, determine which links connect a selected box to a deselected

box.

Box

text
left
top
width
height

cut
select
deselect
toggie_selection

Selection

Collection o -«

Link

select
deselect
toggle_selection

A
Buffer

paste

Sheet

delete

Drawing

drawing_name

add_sheel
next_sheet
prevlous_sheet
save
load

Line_segment

cut

1,2
© O —o Point

2
X

y

Drawing__file

file name

Figure fit 5.3 Object diagram for a diagram editor

g. Given two boxes and a Jink, produce an ordered sot of points. H ie first point is where the link
connects to the first box. the lost point is where the link connects to the second box and in
termediate points trace the link.

15.1.8 (Project) Write a program for simulating evolution, as described in the Computer Recreations

column in the May 1989 issue of Scientific American, using any object oriented language.

Non-Object-Oriented Languages

The analysis and design techniques introduced in this book can be implemented using non-

object-oriented languages as well as object-oriented languages. In this chapter, we discuss

techniques for mapping concepts into non-object-oriented languages. We present a general

discussion o f the issues and possible solutions and then show how to apply them to C. Ada.

and Fortran in particular. Where appropriate, the chapter describes the shortcomings o f each

language that restrict the application o f some principles. Many other languages, such as Pas

cal. face essentially the same problems as C and Ada.

Adhering to the object-oriented paradigm requires discipline and a non-object-oriented

language offers no indications when you start to go astray. Nevertheless, if you must use a

non-object-orienied laneuaae. you w ill benefit from object-oriented analysis and desien.

even if you lack some capabilities in the implementation language.

After reading this chapter, you w ill understand how to map an object-oriented design

into a non-object-oriented programming language.

16.1 M APPING O B JEC T-O R IEN TED C O N C EPTS

Implementing an object-oriented design in a non-object-oriented language requires basically

the same steps as implementing a design in an object-oriented language (Section 15.11. The

programmer using a non-object-oriented language must map object-oriented concepts into

the target language, whereas the compiler for an object-oriented language perforins such a

mapping automatically. The steps required to implement a design are:

• Translate classes into data structures 116.2|

• Pass arguments to methods 116.3|

• Allocate storage for objects 11(>.4|

• Implement inheritance in data structures (K o |

• Implement method resolution [16.6)

■ Implement associations [16.7)

• Deal with concurrency [16.8)

• Encapsulate internal details o f classes [16.9|

16.1.1 Graphics Editor Exam ple

See Section 15 .1.1 and Figure 15.I for a description o f a portion o f an object model for a

graphics editor, which w ill be used as an example throughout the chapter. This is the same

example that w as used to explain object-oriented language code in Chapter 15.

16.1.2 Im plem entation in C

The language C. w ith its loose type checking, provides the flexibility that allows several im

portant object-oriented concepts to be implemented. The C pointer mechanism and run-time

memory allocation also assist the implementation. It is fairly simple to implement classes,

instances, single inheritance, and run-time method resolution in C with little loss o f eflicien-

cy. (In fact, this is exactly the approach taken by several object-oriented languages which

generate C cotie as output: Objective C. Eiffel. D SM , and C++.)

16.1.3 Im plem entation in Ada

Ada supports data abstraction and discrete objects but does not support inheritance. There

fore it cannot be considered object-oriented. The main obstacles to a straightforward map

ping come from Ada's rigid typing system and lack of procedure pointers. From a practical

point of view, though, an object-oriented design constructed using the O M T methodology

can bo implemented in Ada. although somew hat less easily than in C. Ada offers excellent

encapsulation facilities that make possible development of large systems.

16.1.4 Im plem entation in Fortran

The lack of modem data structuring constructs and dynamic memory allocation makes For

tran difficult, it not impossible, to use for applications requiring complex nonnumeric data

structures. On the other hand. Fortran is still widely used for numeric applications, and its

provision for complex numbers and multidimensional arrays are unmatched in most ‘‘mod

ern” programming languages. Object-oriented analysis and design can be used profitably,

but you eventually have to translate data structures into arrays, the only data structuring

mechanism in f ortran. The Fortran programmer must manually translate many constructs

that would he supported directly by C* or Ada.

It your application requites mans numerical computations, including matrices and com

plex numbers, then f ortran does base advantages over most other languages. However, you

may consider coding the numerical computations in Fortran and coding the other parts— set

up. symbolic manipulation, data network traversal, user interaction— m another language.

The Fortran programs can be considered computational utilities and the non-Fortran pro

grams can manage the overall system.

16.1.5 O ther Languages

Pascal is much like Ada in its limitations. It has strong type-checking that is rigid, and it

lacks function pointer variables.

Lisp, on the other hand, is such a malleable language that almost anything is possible.

The implementation suggestions for C could easily be implemented in Lisp. On the other

hand, many Lisp programmers will have access to an object-oriented Lisp, such as C'LOS or

Flavors, so there is less need to provide LISP workarounds.

16.2 TRANSLATING CLASSES INTO DATA STRUCTURES

Normally you will implement each class as a single contiguous block of attributes— a record

structure. Each attribute in a class becomes an element in the record. Each attribute has a de

clared type, which can be a primitive type, such as intci>cr. r a i l , or chai\n h r. or can be a

structured value, such as an embedded record structure or a fixed-length array.

An object has state and identity and is subject to side effects. A variable that identifies

an object must therefore be implemented as a sharable reference and not simply by copying

the values of an object's attributes. A reference can be implemented as a memory address or

an array index but in any case must permit the sharing (aliasing)of a single object in memory

from multiple possible references.

16.2.1 Translating Classes into C Struct Declarations

Each class in the desien becomes a C smu t. Each attribute defined in the class becomes a

field of the (' struct. The structure for the ll hulou c la s s is declared as:

struct i :i J

^ % *• •• 9 -• • • • f • « t ■ •
1 1 :». 9 .. l J . i 1 1 » 1 /

, *
• • • • i • « • f •
, , 4 ' » | i t i 4 , , f

•

ll
• *• 4 • V !»v ♦
1

* * • • • * ' * * t

• 1 • r • * M • •
» « 4 • « a » i • • • « t

L e n g t h is a (.' type (not a class! defined with a l* /y/v </<7 statement to pro\ ide greater inodu
iaiity m the definition of \alues;

t y p e d e f : r . . r :: ;

In (’. an object reference can be represented In a romtei to its ob|cc l reconl:

s t r u c t ..

An object can be allocated statically, automatically (on the stack), or dynamically (on the

heap) because C can compose a pointer to any object, including one embedded within anoth

er structure.

16.2.2 Translating Classes into Ada Record Definitions

The Ada code for a class is similar to the C code. Ada uses a record type:

type Length is new FLOAT;
type 1 ndowp.eeord is record

» » • »> ♦ & r*. •* p-. •
• 4 i • /

t ■» f■. • T jz* ̂ ** •

V v • T . '5 f v - , .

•/m ax; ..em gen;
end record;

In Ada. an object reference, or pointer, can be represented by an access type:

type Wind:;-; is access W i n d o w R e c o r d ;

We use Ada access types to represent object references when the number of objects of a giv

en class is unbounded. In this case, the object records are allocated at run time using the Ada

new allocator, as shown below:

- W i n d o w : W i n d o w new W i n d o w R e c o r i ;

Access types are needed for dynamic allocation and for associations between objects. The

use of access types and dynamic allocation can be omitted when an object value is embedded

within another object and does not have a distinct identity. In any case, the components with
in the record represent object attributes, and are accessed as follow s:

A : L>'-:. : : 'h : aW; r.'iow . xn.Lr.;

16.2.3 Translating Classes into Fortran Arrays

Fortran has no user-defined data structure except the array, so the programmer must simulate

records. A class is represented as an implicit group of arrays, one for each attribute in the

class. The arras s all have the same dimension, which must be large enough to accommodate

all the objects of the class that w ill exist at any time, since Fortran does not support dynamic

memory allocation. The index into the arrays represents an object ID w i t h i n the gnr/i < lass.

Object IDs for different classes overlap, so you must know the class of a variable in the pro

gram (or determine it as explained later under inheritance). The arrays lot a single class can

be organized into a common block. For example, the storage tor windows in the previous
example would look like:

• ̂ • 1 1 1 , 1 « • ■ • - i • •
. i

• u * \ « * * • I J » .
s*' »• .. t

.. 1 .• « M 1 * > 4 + 4 m m

. i n . t

> v •*: V l > I •* • 0 «• • . t \ p * p • • »/ \ i . g «< r» & i i».*»,) i*
V » / • r * * * / • ' ■ , V V •*. V f ' • • i / • y i <
) f ► i » . 1 1 , <i ^ •' z) i i • •* . / f ! C i A / i I f

» »v.(II

-j

The programmer must maintain .i counter ot the number n| objects ol a j:ivcn class that have
been allocated f N W IN D O W j \o that new object IDs cat) be assigned

Fortran has no way to define new types, so you cannot deline Length symbolically, but
must expand it in terms o f primitive data types (such as REAL. C O M P L E X . IN T E G E R . L O G

IC A L , and C H A R A C TER).

Standard Fortran restricts the length of identifiers but many Fortran compilers allow

identifier names ot 32 or more characters. In our examples, we assume that long names in
cluding underscores are allowed. I f your compiler requires short names, you must map

meaningful names to abbreviations yourself at a considerable cost in readability.

In Fortran, an object can be represented by its index into the attribute arrays for its class.
Attributes are accessed by indexing the corresponding array. The program must know the

class of the object:

INTEGER AWINDOW
REAL XI
XI = XMIN(AWINDOW)

16.3 PASSING ARGUMENTS TO METHODS

Every method has at least one argument, the implicit .ve//'argument. In a non-object-oriented

language, the argument must be made explicit, of course. Methods may also have additional

objects as arguments. Some of the arguments may be simple data values and not objects. In

passing an object as an argument to a method, a reference to the object must be passed if the

value of the object can be updated within the method. If the method is a query that simply

extracts information from an object without modifying it. then a call-bv-value mechanism

can be used if the language permits. Passing all arguments as references is more uniform,

however.
We advise a consistent naminu convention for method function names. One that we have

found useful in C is to concatenate the class name, two underscores, and the operation name.

(The two underscores separate the class name from the operation name, each ol which may

contain single underscores.) Standard Fortran is overly restrictive on names, but many com
pilers permit long names and the use of underscores. Ada names may not contain double un

derscores and thev are case-insensitive, but names can be as lone as desired. Ada variable

and argument names must differ from type names.

16.3.1 Passing Arguments in C

In C\ an object should always be passed by pointer. Although C permits structures to by
passed by value, passing a pointer to an object structure is usually mote ellictent and pro

vides a uniform access mechanism for both query and update operations.

v\ i
* , I

. ♦

\ • i>» * .
• •, « »»,» ♦

< • . . i . 2 - •

. 4 4

I •
• i .*>n i

< • •■ * ■ »

16.3.2 Passing Arguments in Ada

In Ada. an object can bo passed as an access type:

type is access W
procedure Winicvr add t r

v;
(| w

c* c Y
♦

M * ♦ ? >C!

•«?) «9

(w* 1
• t • S

• • . 4
1 . • • *• i

Die object access parameter, self, is (by default) an in parameter because its value w ill not be

changed in the method. If the value of a variable will lx* updated within the method, it must be

passed as an in out parameter. Note, however, that the access type (or pointer) referencing an

object vs ill not be modified within the method, even though the record-object that it points to

may be. An access tv pc pennits modification of the attributes of the referenced object.

Access to the same object concurrently from different tasks is likely to cause inconsis

tencies. If concurrent access to an object is possible, objects should be encapsulated entirely

within a task and accessed only from within that task. T his will serialize concurrent access,

guaranteeing that each operation is completed before the next one is begun. In Section l>.3

we discussed how to identifv inherentiv concurrent tasks in a svstem.

16.3.3 Passing Arguments in Fortran

In Fortran, an object can he passed as an index into the arrays lor its class:

*, "•« »V * ', » ' /. »*. !•’ ’ ’ ' * (* •• •• '*»♦»*• i •)S » • « * « • I I • • • « * l • . • . . *■ • . • I f . ■ |

; r.

An object whose contents w ill be queried but not updated can be passed as a list o f attribute

values i f desired, although tile index is usuallv shorter and therefore more convenient:% «

16.4 ALLOCATING OBJECTS

O b je c ts can be a l lo ca te d s ta t ic a l !) ta t c o m p i le t im e) , d s n a m ic a l l) (f r o m a heap), o r on a

stack S ta t ic a l !) a l lo ca te d ob jec ts are im p le m e n te d as p lo h a l va r iab les a l lo ca te d In the c o m

pder. T h e i r i d e tu n e is the d u ra t io n o t the p ro c ra m . T h e) can be m e t ti l l o r s) s tem leve l o b

jects o r cons tan ts , hut it is p o o r o b je c t -o r ie n te d p ra c t ice to use too mans g lo b a l \a r ia b le s

because thev de fea t m o d u la n ts

M o s t te m p o ra l) and in te rm e d ia te ob jec ts v. i l l be im p le m e n te d as stack based \ar»ab les

f such as C a i t h *n n i tu an a bios * >r I 'a sc a I ! * h u l \ ar lab les 1. The ads ant ape ot stack - based \ at i-

ables is that the) are au tom a t ic a l l) a l loca ted and d e a l loca ted T l ie p ro p ta m m e i m ust ensure

that no re te re ru c s to a s tack-based ob jec t re m a in a fte r the dcvdann i: Mo*. k l ias been ex ited .• %

Sla i.k -based sa n ab le s are not su itab le lo r genera l ob jec ts w hose h ten me ou t las ts the p o u e

dure that create*I them I s inp suv h U \ hnu jues i. an lead to subtle hups w hiv h ate hard t* > f ind

Dynamically allocated objects are needed when the number o f them is not known at

compile time. A general object can be implemented as a data structure allocated on request

at run time from a heap (a block of global storage managed by the storage allocator). Storage

for dynamically allocated objects is requested explicitly by a special operator: m alloc in C,

new in Pascal or Ada, make in CommonLisp. Once allocated, dynamic objects persist until

they are explicitly deallocated, so pointers to them can be stored in other objects. Knowing

when to deallocate an object is not always simple, but this problem is shared with many ob

ject-oriented languages as well. Some languages, such as Lisp, provide garbage collection,

which removes the burden of deallocation from the programmer and avoids the danger of

dangling pointers.

16.4.1 Allocating Objects in C

Global objects can be declared as top-level struct variables. They can be initialized at com

pile time:

struct Window o u t e r _ w in d o w = (0 . 0 , 0 . 0 , 8 . 5 , 1 1 . 0 } ;

When calling a method, the address of the variable (& o u te r_ w in d o w) must be passed.

Most objects should be allocated dynamically using m alloc or calloc:

struct W i n d o w * c r e a t e _ w i n d o w (x m i n , y m i n , w i d t h , h e i g h t)

L e n g t h x m i n , y m i n , w i d t h , h e i g h t ;

{
struct W i n d o v ; * w i n d o w ;

w i n d o w = (struct W i n d o w *) m a l i o c (sizeof (struct W i n d o w));

w i n d o w - > x m i n = x m i n ;

w i n d o w - > y m i n =

w i n d o w - > x r n a x =

w i n d o w - > y m a x =

return w i n d o w ;

y m i n ;

x m i n +

y m i n +

w i d e n ;

h e i g h t ;

)

When an object is no longer needed, it must be deallocated using the C free function. Make

sure that there are no pointers to it before deallocating it. Also be sure to free any component
objects that are pointed to by its instance variables.

Temporary and intermediate objects can be allocated as ordinary C automatic variables

within a function body or block. When calling a method, the address of the variable must lx*

passed. Stack-based variables cannot be used when their lifetime outlasts the function that

created them.

16.4.2 Allocating Objects in Ada

Global objects can be allocated as constant access types and optionally initialized:

:::. j i n w i ndow : c o n s ta n t Window : -
new w i n d o w d W c o r d ' (0 . 0 , * •* f) ;

Most objects will be allocated dynamically usine new. Hither-level functions can be written

that allocate a new object and initialize some of its attributes:

function a-;e winicw <x:r.ir,, y : i . i h o • i - : h)
return i n d;. w i s

begin
return new ir.dowRecci-i* (xmin, ymir.,

rv-he 1 qru) ;*•»»'» ■** h « *rr, •
. i U : 1 1 • i i s_» * 4 ^ ^ i t . ^

end;

An Ada compiler may provide garbage collodion to recover allocated storage that can no

longer be referenced. In most cases, however, you must explicitly deallocate access types,

just as with C\ using the generic function t AC H E (K E D D E A L L O C A T IO N .

16.4.3 Allocating Objects in Fortran

As a programmer you must explicitly allocate new objects from predefined arrays. Program

ming a dynamic application would be much harder in Fortran than in C or Ada because you

must implement the allocation mechanism yourself (In simulating a heap):

• . . I « « . . » . . \ . I I . . i ; ' . ■ > I \ / s 1 f j • • > «. < < • |

/■s " | n » i • *.» • *.m * * * • y m ' * • y i » • * • '. '* * * V * T!«* * * ’ J "• f \ r*'
« * • • * » • * « * . O , » . v * . - i • / ! •*< A t + / • k l “ l * \ • \ f i t ' l ' w l f » « * l • » ' ♦ « ' *

*\.\-.» { . • .) , l C i . i l (i k j l. J) , A C U \ A (* .. . •) , J ;*;MA (a UlM.*)

. i * * . ; ♦
» ̂* •••i •
. . i . 1' i t . ■. • - »t

• > • • • • • » * i r « i »
> < . . ft * 9

w •
9 ' * / • - t • V

» » • « * • t •

. t i l . , % . I I , i »« . 4 %

V V * • ft'
ft t * - W)

v v •
4 « « » :: i

> •

1 t w
ft*

ft
^ * •
, 1 W ;

v ». * - V t 1 • • 1 . * * »

• ft 4 ft ft 9 A (• 1 «1 ft . • . a)
' . M l *

X (
1 *
1 »

V
11 «

» • • .
. » V v; i

■ . . . f .■ ,**• 4 » • - ♦ ♦ %
i«i • » • . % •

/

4 * f

* #

% 0 •
• ♦

ft •
• t *
I 4 A

♦ i f * f «

• ft ft

♦ # *
w
% *

♦
• «

* •

r s A « ft ft ftft

:

, v. • m A ; i m

m * « ̂4

16.5 IMPLEMENTING INHERITANCE

T h ere arc several w ays io im plem ent data structures lor inheritance in a non-object oriented

laneuaec:

• A \ f h t i t M ans applications do not require inhe iilance . M a n \ other applications have

o n l) a lev. classes requiring inheritance. Those classes not needine inheritance can he

im plem ented as sim ple records. |H ooch Kb| describes how to do ob ject-orien ted designs

in this manner lo r Ada.

♦ / (i i t t r n t i w i l a w h i r t a n l r . I ’se inheritance d in in g design but expand each conctete

class as an tndejKrndenl data structure tlm m p im plem entation . bach inherited operation

must he re itnp lem ented as a separate m ethod on each concrete class. M atten m e the In

er.irchs introduces dup lication , but the use ol lanpuape constructs such as A da pcneucs

or C m acros can help (ine usclul techim |ue is to croup some inherited attributes into a

record type and n n lv d the record in each concrete c lass to reduce the number o l dupli

cated lines in e«uii declaration

• Break out separate objects. Instead of inheriting common attributes from a superclass,
a group of attributes can be pulled out of all the subclasses and implemented as a sepa

rate object with a reference to it stored within each subclass. Grouping attributes under

a separate type permits a single method to be written to manipulate them. The subclasses

must delegate operations to the referenced object.

These approaches avoid the implementation of inheritance. When inheritance is actually

needed, the best implementation depends on the language and the application, as explained
below.

16.5.1 Implementing Inheritance in C

To handle single inheritance, embed the declaration for the superclass as the lirst part of each

subclass declaration. The first field of each struct is a pointer to a class descriptor object

shared by all direct instances of a class. The class descriptor object is a struct containing the

class attributes, including the name of the class (optional) and the methods for the class. Its

formal will be discussed later.

The class Shape is an abstract class, with concrete subclasses Box and Circle. The C dec
larations for classes Shape. Box. and C ircle are as follows:

s t r u c t Shape
/t

s t r u c t S h a p e d a s s * c la s s ;
L e n g th
L e n g th y ;

} ;

s t r u c t Box
I
I

s t r u c t B o x C la s s ‘ c l a s s ;
L e n o th
L o n q t . i i y ;

Lonqt. h widv. h ;
h h o L a h ' . ;

1;

s t r u c t 7 i v c 1o

s t r u c t
cjr

• *

*;

: S

A pointer in a liox or (Vr/c structure can t v passed to a (.' Junction expecting a pomtei to a
S h a p e sinielure because the first part of the l u n or C a r l e Mmcluic is identical to the
stiuclure. { lo he strielK correct. >ou should ea.u such an argument to tv a pomtei to x7;,;:v.
hut most compilers won't notice the diffctencc an \na\.» Because the pie!iv ot the stiuctutc is
the same as the supeielass structure, the superclass method smiph umoics the extia fields on
the end. l or example, a pointer to l u m is interpreted as a pomtei [o S h a p e m the follow inj: caii

s t r u c t
s t r u c t
I • I •

It • « . .* J >'l « 1 • i , *
A a • • . a ’* t

(w; r.uow, I> O A)

The first ticki of each structure is a pointer to the class descriptor for the actual class of each

object instance. This field is needed only if run-time method resolution is to be done. Its form

and use are described in Section Ib.b. I .
Multiple inheritance cannot be implemented using this approach because a subclass

with two superclasses cannot align its attributes with both of them. The best approach is to

eliminate multiple inheritance using the workarounds discussed in Chapter 4.

16.5.2 Implementing Inheritance in Ada

Ada's variant records can be used to implement inheritance (single inheritance only). A vari

ant record is a record structure w till several alternatives. Each record contains a discriminant.

which is a component to distinguish the alternate forms of the record. Declare a variant
record tor the riHit of each class hierarchy, w ith one variant for each subclass. The attributes#

in the superclass are common to all the variants. Multiple levels of variant nesting corre

spond to multiple levels of subclasses. A single method can operate on all variants of a single

root class because they are all the same Ada type.

The root classes must be chosen carefully because it is usually inefficient to make ev

er) thing a variant of class nhjci t This approach works well when the hierarchy is shallow.

The advantage of variant records is that no trickery is needed to use them, anil all access is
v. m

NWiLu/dcalU and scrnaniicalU correct:

t y p e I ' * .
s u b t y p e 0

t y p e :* :
c a se

when
when

i s i :

; iS
;

i s
* 4 •

- *

1

:* : c1 f> i'., ..: r
r a n g e b 71 ^ r,

i i s r e c o r d

' n u l l ;

f'i ̂1)
•• *
+ •*» ci ♦p

. # . . # ,. #
c a se \<x . i s

when :

when
, . « ♦ ■ . • 1 • » «
. <

when o t h e r s n u l l ;
end c a s e ;

end c a s e ;
end r e c o r d ;
t y p o ' i s a c c e s s . * t ;;
s u b t y p e J-3 . ’ ;
s u b t y p e i s *
s u b t y p e i s • ‘ ;
s u b t y p o • : - • i s ‘ "

The record type above represents the inheritance tree from Figure 15-1 consisting o f the

classes Item . Shape. Box, and C ircle. When an object is allocated from this record type, it is

constrained to be a specific variant, representing exactly one of the four classes. The dynam

ic allocator of a good Ada compiler will allocate only the space required by the attributes of

that class of object. The following code creates an object of the Croup class:

i t e m _ g r o u p : G roup := new Ic e m R e co rd (G r o u p C ia s s) ;

16.5.3 Implementing Inheritance in Fortran

Fortran has no user-defined records, therefore variant records are not possible. One approach

is to implement a given class hierarchy as a universal record. A universal record contains an

attribute for every attribute found in any descendent class. Those attributes that do not apply

in a particular case are simply ignored. This approach wastes storage but may be considered

if the variant part o f the record is small.

COMMON /SHAPE/X,Y,WIDTH,HEIGHT,RADIUS,NSHAPE
REAL X (1 0 0 0) , V U 0 0 0) , WIDTH(1 0 0 0) , HEIGHT(1000)
REAL R A D IU S (1 0 0 0)
INTEGER NSHAPE

A less wasteful approach, the Fortran equivalent of the variant record, is to separate a class

into subclasses, each implemented as a separate class with its own arrays and object indexes.

The original class is represented bv a pair of integer arrays: One array stores a code for the

subclass and the other stores the index of the object within its corresponding subclass array.

The programmer must first assign an integer code to each class in the system. In this example

we define class hem as either a Shape (1000 maximum) or a Croup (100 maximum). Com
mon block CLASSCS defines the integer code (breach class.

COMMON / IT E M / I TF.M_CL.ASS / ITEM^ID, N 17 EM
INTEGER ITEM_CLASS(1 1 0 0) , IT E M _ ID (1100)
INTEGER NITEM/ 0 /
COMMON /CLASSES/ GROUP, BOX, CIRCLE
! NT EG EE GROUP / 1 / , BOX/ P , C i ROLE ■ 3 /

When a new object is created, an index value must be allocated from the superclass as well
as the subclass. For example, the following code creates a new circle:

r CiJ1.. ; i lsl (a *.✓ ,
•> f *•? f * *■ TJTV * ;

♦ I ««*« « •** .»•% f v ♦

* ♦ • « L ~ ' J k % * . • * * • « • * * * . ' - I • \ V. . L s +*+

I ♦ a» • • % »• ̂ , \ ^ r* «
a ' ♦ *« * \ ' % t « * i > * •? »

v i *1. : a ; • \
• • \ • is k.i / < »

* • 1 « . , I r-« \)
\ • r »« *•» t ♦ « »*• r • * , *i A r..c; .« : . :\c. *
iT ” v a <; *:1 i . .. 4 .// . % l i t . . t ■ • •)

r i ;/v r;. / \
• i t • • . • . . . • r

* 1- /

••• / £ ’X ' >1 I I >•

I CSC)
•% f * 1

a s

% 0 % «• ♦ ♦ ♦

» ♦ *M♦ • c. : : J*..\

This same technique of representing an object in a generic situation by a pair of values, one

indicating the class and the other indicating a class-specilic ID . can be used by Ada. Pascal,

and other languages.

16.6 IMPLEMENTING METHOD RESOLUTION

In an object-oriented language, a single operation may be implemented by many methods

(poh morphism), depending on the run-time class of the object. Run-time method resolution

is one of the main features of an object-oriented language that is lacking in a non-object-ori-

ented laneuaee. Method resolution can be handled in several wavs:

• Avoid it. If each operation is defined only once in the class hierarchy and not overridden,

then there is no polymorphism and no need for run-time method resolution. Methods can still
be inherited: all subclasses share the methods of a superclass, but they cannot override them.

This advice is not as outrageous as it may seem. Casual overriding of operations to change

their behavior is semantically questionable because a subclass should not modify the mean

ing of an inherited operation (Section 4 .3 .1).

• Resolve methods at compile time. If the class of each object is known at compile time, then

the correct method can be determined and called directly, avoiding the need for run-time

method resolution. It is sufficient to know that the object class is a descentlent of the lowest

class that overrides the method. In many applications, the classes of most objects are known

at compile time. O f course, if the class hierarchy is changed or a new method is defined, then

the programmer must manually reevaluate the method resolution and substitute a new func

tion call.

• Resolve methods at run time, if you have a collection of objects of mixed classes to which

you need to apply an abstract operation, then dynamic method resolution is required. You

must test the class of the object to determine the correct method. An object-oriented lan

guage automatically makes this test. The C language supports an elegant and efficient tech
nique of performing methods resolution using a predefined structure containing method

pointers. Other languages, such as Ada and fortran, do not support method pointers, so you

must use <uw statements within a single dispatch method.

16.6.1 Method Resolution In C

Any methods that you can resolve at compile time can be implemented as straight C function

calls. Many operations are implemented only once as methods and never overridden, so they

do not need run time method resolution. For example, all methods of Window are unique.

'Hie most general approach, however, is to define a class descriptor object for each class con
taining a pointer to the method function for each operation visible from the class, including

inherited operations. Bach class descriptor is a C struct containing all the operations defined

in the class or inherited from a superclass. Bach class descriptor contains inherited opera
tions from its superclass as its first part, just as the strut t for an object instance contains in

herited attributes The following code shows the declaration for the class descriptors for

Item, Shape, Box, and Circle. W e append the w ord Class to the class nam e in declaring the

struct fo r the class descriptor.

struct I t e m C la s s
{

c h a r * c la s s _ n a m e ;
v o i d (* c u t) () /
v o i d (* move) () ;
B o o le a n (* p i c k) () ;
v o i d (* u n g ro u p) 0 ;

In
struct S h a p e C la s s
(

c h a r * c la s s _ n a m e ;
v o i d (* c u t) () /
v o i d (* move) () ;
B o o le a n (* p i c k) () ;
v o i d (* u n g ro u p) () ;
v o i d (* w r i t e) () ;

} ;

struct B o x C la s s
{

c h a r * c la s s _ n a m e ;
v o i d (* c u t) O ;
v o i d {* move) () ;
B o o le a n (* p i c k) () ;
v o i d (* u n g ro u p) On-
v o i d (* w r i t e) () ;

In
struct C i r c l e C l a s s
l

c h a r * c la s s _ n a m e ;
v o i d (' c u t) () ;
v o i d (* move) () ;
B o o le a n (* p i c k) () ;
v o i d (' u n a ro u p) O ;
v o i d (" w r i t e) 0 ;

The class descriptor struct defines the names of the operations visible to a class, but you still

have to define and initialize a class descriptor object for each class. Each descriptor object
is a global variable, the single instance of its class descriptor struct, t We use the same name

for the class descriptor object as the C struct because they belong to separate C name spaces

and cannot be confused.) You must initialize each field of the class descriptor object with

the name of the (' method function defined or inherited by the class. You can determine the

correct method b\ examining the object model, fo r example, class />Vv inherits operation

move from class Shape but overrides operations pick and write with its own methods:

struct BoxCiass SoxClass =

•*
1v t' Z. »?; -*» i » »•J ~ U <, /

3 h a p *-:*__mo v e ,
2o:-:__p i c k ,
3 h a p •? u n g r c u p,

w r i e

struct CircieClass CircleClass =

M • r/-* *-, ii

w - .

»• V

• *• r* » .*

^ •. i

rr-.ove,
V* * -•*♦' ± •- ' /
. J . N_- • k.l

v; r ; e

If a class has class attributes. they can also be stored in the class descriptor as additional

fields. For example, we store the name of each class in the class descriptor object for use dur
ing debugging, printing, or other uses.

Note that class descriptor objects are needed only for concrete classes and are unneces
sary for abstract classes, such as Shape. The only use of the class descriptor objects is to store

the methods and class variables available to objects. When a new- object instance is created,

the address of its class descriptor object is stored as the <7</.v.\ field in the object record. The

information about the class of an object, including its name, class attributes, and methods,

can be obtained at run time from the objects’s < la.\.\ field.
We omitted operations draw anil erase from the class descriptor. These operations are

implemented as methods only in the Shape class; they call the write operation w ith either the

foreground or background color. Because they are not overridden, they can l>e implemented

as direct function calls. Of course, we can include them in the class descriptor lor uniformity

and future extensions.

The < la \s Meld of each ob|ect must be initialized with a pointer to the class descriptor:

s t r u c t j . <• i • • t \ f /« • ■ t > n : ..id:)

struct . : • ;
' f* - -

'Struct isizoof (struct

r e t u r n :<•«

I f an operation must be resolved at run time, the class descriptor object is used to determine

the correct C function. The class descriptor object is obtained from the object and indexed

by the name of the operation. For example, to call the pick operation on an unknown Shape

requires the following code:

s t r u c t Shape ’ s h a p e ;
L e n g th x , y ;
B o o le a n s t a t u s ;
s t a t u s = (* s h a p e - > c ia s s - > p ic k) (s h a p e , y) ;

Note that the target object must be included twice, once to find the method and once as the

First argument of the method. Dynamic method resolution requires two more memory ac
cesses and one more add than a direct function call. Compared to the overhead of calling an

average function, the added cost is really insignificant.

16.6.2 Method Resolution in Ada

Ada permits overloading subprogram names based on the types of the subprogram argu

ments, but overloading must be resolved at compile time, and cannot be used lor cases re

quiring run-time type discrimination. Ada has no procedure pointers, so a method table

cannot be constructed. The best approach for dynamic method resolution in Ada is to detine

a “dispatch method" lor each operation, a single procedure shared by all classes that is called

whenever run-time method resolution on the operation is required. The dispatch method con

tains a case statement that tests the actual class of the object (represented by the discriminant
of the variant record) and calls the corresponding implementation method directly. I f you

add a new subclass requiring a new method, you have to add it to the case statement in the

dispatch method, but none of the client code that uses the operation need be modified. By

using dynamic method resolution only when required, the number o f dispatch methods can

be reduced to a minimum.
The following code shows the implementation of the move operation by two specific

methods followed by the more general dispatch method. We assume that the subclasses have

been implemented as a variant record and declared as Ada subtypes:

p ro c e d u re
b e g in

s e l f . : - :

Sha oe move (sell: Shaoe t lonath) is

a>:;
c* t *

S O - i . X
self.y i- ■ iy;

en d ;
p ro c e d u re Gr.:>up move- (s»vl 1 : G::onp

x. ho_.l : I f.erriL is*. ;
b e g in

I.eno.h) is

-•* ♦* ̂ N> •.v no
f o r . i n

rat -v* - (
en d lo o p ;

Stf i i
• no

• • *
• . . ' . . . (i t . . . t

'v.....?• lo o p
I .1 L eJ U ! ,

end;

procedure m o v e (s o l f : I t e m ; cix, civ : L e n g t h) i s

begin
case sei { A «! C is

when w • • Vt 'Z* w ̂ r. c: •£; — > p%.• W* O * w * «ac*e_ m o v e (s e l f , d x ,

when ‘ P-sf 1 O * w t. s#• r, e v? — > (*l fi? r* V̂» 4,our
*

m o v e (s o l i , d x ,

when others “■ null;
end case;

end;

The component named twins in the Iw m R e a m i implements the association between a group

and its items, as described later in Section 16.7. The Itcm U st type is a dynamic array of

items.

16.6.3 Method Resolution In Fortran

Methods for objects whose class is known at compile time can be resolved to direct proce
dure calls. The remaining objects must have class numbers stored in them (see the common

block CLASSES in Section 16.5.3). A dispatch procedure can be written for each operation,
with the class number and object index of each object as parameters. The dispatch procedure

contains a computed goto or a conditional on each possible class value to call the correct

method:
......- • s • •••.?"•«• / •• • * ̂•;* ? r-. ?'* v V't V i

» ' v « < . » » J I f f « f ♦ • /

. » ' j •. « ♦ * « j * * ■ . • .

• » *■ • • *
* • 9 . . v\L i..r- r * *

. ♦ » • t
: ‘ ’ . < * •* r •*’ '* i * /.
* , | ✓ \ • / • — f ^ / % A . /

/ • ♦ • f *

• » r « . • • •

4 %

» • • 4 a:>. r x , i n

%»
4
0 • $)

• • ♦ ♦
$ • •*

I * . »

< < 1 v •'
t

• s V

16.7 IM P L E M E N T IN G A S S O C IA T IO N S

Im p le m e n t in g a v a n -n ih o n s in a n o n o b je c t o r ie n te d la n p t ia p c p re v e n ts th e mimic two p o s s i

b i l i t ie s as m an object o r ie n te d la n e u a c e i i u p p m i ! th e m in to p o in te rs o r im p le m e n t im * th e m

d ir e c t ly .iv association c o n ta in e r o b je c ts W e h a v e d is c u s s e d th e s e c h o ic e s as p a n o l o b je c t

d e s ig n m S e c t io n 1 '* / ' ‘l o s u m m a n /c th e ir im p le m e n ta t io n .

* un h i tn *n \ if* fu u n h '* \ t h e t r a d i t io n a l a p p io a c h to im p lc m c n l in p b in a r y asso*

c ia i to n s is to m a p e a ^ h r**h : o j an a s s o c ia t io n in to an o b je c t p o in te r s to re d as a h e ld o i th e

.source object record. Each object contains a pointer to an associated object (if the multiplic

ity is “one” or “zero-one”) or a pointer to a set of associated objects (if the multiplicity is

greater than one). A set may be implemented using any appropriate available data struc

ture— often a linked-list or array, but a hash table or binary tree may be used when the greater

execution efficiency warrants the extra programming effort.

The association may be implemented in one direction or in both directions. If it is tra

versed in only a single direction, it may be implemented as a pointer from one object to an

other. I f it is traversed in both directions, it must be implemented using pointers in both

associated objects: the two pointers must be kept mutually consistent. It is best not to directly

update the pointers within general application code but to write a utility procedure to add or

delete links by updating both cross-linked pointers. You need not be so careful when access

ing values from the association— the pointers can be accessed directly from either object—

although there are maintenance advantages to hiding the implementation within an access

procedure.

• Implementing association objects. An association can be implemented directly as a data

structure. I f an association relates more than two classes then it cannot be mapped into point

ers, and a separate object must be used in any case. In its basic form (and its mathematical

definition), an association is simply a set of records, each containing one object ID for each

associated class. The simplest approach is to implement an association as an array or list of

records or record pointers. To traverse a binary link, the list is searched to find a link in which

one field is equal to the source object, and the value of the other field is returned as the target

object.
The access of values from an unordered list is incflieieni because the list must be linear

ly searched. A more efficient implementation is to sort the list on one or more key fields or

to hash the elements on one or more key iields. Such a data structured is said to be indexed

on the key Iields. If the association is to be traversed or accessed from more than one direc
tion, then multiple indexes must be built and maintained. Whenever an element is added,

modified, or deleted, all the indexes must be updated accordingly. Depending on the relative

numbers of updates and accesses in each direction o f traversal, it is more efficient to either

index the association on a single key (and search it linearly w hen an access occurs on a d if

ferent key) or to index the association on multiple keys (and update several indexes when a

link changes).

16.7.1 Implementing Associations in C

A binary association is usually implemented as a field in each associated object, containing

a pointer to the related object or to an array of related objects. For example, the many-to-one

association between Item and Group would be implemented as:

struct ! ■ oir:
ft

struct I • o:nC 1 as:*. " "licr;
struct G : . -'.i * .i:our;

s t r u c t G roup
t
*

s t r u c t G ro u p C la s s * c la s s ;
in c is :e :n _co u n t;
s t r u c t I c e:n • ' i c em s;

5 ;

Other data structures, such as a linked list or a hash table, can also be used to store sets of

objects. In this example, a group is created from a set of selected items. The memory for the

/ferns pointer can be allocated all at once, since the number of items in a group does not

change. If it were possible to add a single new item to a group, then both pointers must be

updated:

up add icerri (s e l f , i t era)
s t r u c t G rouo • s e i f ;
s t r u c t Ite m ' i te m ;

ite m -> g r o u p = s e i f ;
s e i : -> ite r n s = (s t r u c t Ite m

* i s e i f - > i Lem__count; ' s i z e o f (s t r u c t I te m * >) ;
terns ! s e i f - > i t e i n _ c o u n t - l] - i t e m ;

/
I

You can build more sophisticated data structures to avoid calling rea lto r more than neces

sary. It i.s useful to have available a library of generic container objects, such as variablc-

Icnuth arravs. lists, and hash tables.

16.7.2 Implementing Associations in Ada

A binary association is normally implemented in Ada as mutual pointers between two ob
jects. A pointer is implemented as an Ada access type. For example, the many-to-one asso

ciation between Item and Croup would bo implemented by adding i>roup and items to the

fields of the Item type:

ty p e U '•« ! .. sc r e c o r d (c a p a c i t y : P o s i t iv e ;) ;
ty p e 2 i. sc i s a c c e s s i i s t R e c o rd ;

ty p e : ia s s : l te rc C ia s s) i s r e c o r d
p t - G r p : n u l l ;

c a s e i s
when G r - ju r d a s i : -c

4

: t>e:: £ ; 1 '. n u l l ;
when

- - ! Z S e ri: v ti.ii.G ,;
en d c o s e ;

en d r e c o r d ;

t y p e ; i , i i s a r r a y f r o s l ra n g e v' -! o£ O 'jw ;

t y p e I t e m L i s t R e c o r d (c a p a c i t y : P o s i t i v e) i s r e c o r d
c o u n t : N a t u r a l := 0;
v a l u e s : I t e m V e c t o r { 1 . . c a p a c i t y) ;

e nd r e c o r d ;

The type Item ListRecord is can be allocated with any initial size. The collection of items in

a group can be expanded without bound if the ItemList is reallocated at a larger size when

its capacity is outgrown.

The collection of related objects could instead can be stored as a linked list in which

each item in the set contains a link to the next item in the set. In a linked list every' object that

may appear in a set must have an additional field to store the link to the next object in the

set. The related object contains an access pointer to the first object in the list.

16.7.3 Implementing Associations in Fortran

The same approaches are possible in Fortran as in other languages. Represent an association

by mutual pointers. An additional integer array is added to each class to hold the ID of an

associated object. In the case of multiplicity “many.” a set of related values is needed. Be

cause Fortran does not have dynamic memory allocation, a linked list is usually the easiest

way to represent a set of objects. To the common block G RO UP, we add array IT E M S con

taining the index of the first item in the list of items related to the group object. To the com

mon block IT E M , we add array N E X T J N jC J R O U P to link together the items in one list of

related items and also array G R O U P containing the index of the related group. Null relation

ships ttre indicated by an index of zero.

COMMON / 1TEM/1 TEM_CLASS, I7EM _ID , HEXT_IS_GROUP, GROUP, N IT EM
INTEGER I7EM_CLASS (I i 00) , ITEM_ID (I ICO) , NEX?_IN_G?.OU? (1 IOC)
IN T E G E R G R O U P (1 1 0 0)

IN T E G E R N I T E M / 0 /

COMMON /G R O U P /IT E N S ,N G R G U P

IN T E G E R IT E M ? (IC O) ,N G K O U ?

16.8 DEALING WITH CONCURRENCY

Most languages do not explicitly support concurrency, liven in the languages that support

concurrency, such as Ada. the cost of a task is usually large compared to a statement or a

procedure call, so it cannot be used freely. Although many algorithms could he implemented

in parallel if suitable machines and languages were available, algorithms can generally be

implemented sequentially with no loss of power and w ith less danger ol programming errorv

Concurrency is usually needed only when the external interactions torce it. that is. when

more than one external event can occur, ami the behavior of the program depends on then

limine.
Multiple tasks are required to implement true concurrency. Note that interiupts are log

ically equivalent to multiple (asks because the Mow of control in the interrupt is independent
of the How of control in the main piogram. If an object is Heated as a passive piece of data

accessible to two or more tasks concurrently, then inconsistencies can occur because each

task w ill have an incorrect picture of the state of the object. If. however, each object is

“owned” by one task, then there is little danger of conflict in the use of data because an object

cannot develop two concurrent threads of control. The use of shared data should therefore

be avoided, and communication between separate tasks should occur through messages ex

changed by tasks.

In a language lacking concurrent constructs, such as C or Pascal, there is no danger of

violating these rules because the only way to create concurrency is to ask the operating sys

tem to create a parallel task. If the operating system supports interrupt routines, usually im

plemented by calling a procedure in the address space of the main program, then the interrupt

procedure should not modify any objects accessible to the main program but should merely

store its data in a reserved location, set a software flag, and allow the main program to come

to a clean synchronization point for further processing.
In a language with tasking, such as Ada, there is danger of interference among concur

rent tasks. The danger can be reduced by assigning each global variable to a single task and

by allocating any dynamically created objects to a single task at a time. Communications

among tasks should use the defined synchronization operations, such as the Ada entry call

and accept statements.
There exist techniques, such as the use of semaphores, for sharing direct access to data

among more than one task. These techniques are equivalent to simulating a task without ac-
tuallv creatine one. They are less straightforward than the use of actual tasks and should be

avoided in most cases.

16.9 ENCAPSULATION

Encapsulation of data representation and method implementation is one of the major themes

of object-oriented programming. Object-oriented languages provide constructs to encapsu
late implementation. Some of this encapsulation is lost when the programmer must manually

translate object-oriented concepts into a non-object-oriented language, but you can still lake

advantage of the encapsulation facilities provided by the language.

16.9.1 Encapsulation In C

C has a reputation for encouraging loose programming style harmful to encapsulation. Nev

ertheless. you can take the following steps to improve encapsulation:

• Avoid the use o f g lobal variables,

• Package the methods for cadi class into a separate file. (>»ly include the declarations for
classes whose internal structure you need, such as ancestor classes of the current class.

Do not access the fields of objects of different classes, call an access method instead.

• Treat objects of other classes ;«s t\pc ” v - : while technically illegal, most com

pilers treat all pointers the same (but watch out for word length or alignment problems

on some machines).

16.9.2 Encapsulation in Ada

Ada provides strong enforcement of encapsulation by distinguishing between the external

view of a package (the package specilication) and the internal view of its implementation

(the package body). The package specilication and body may be compiled separately.
Private types provide further support for encapsulation. A type that is declared in the

package specification is visible outside the package and is therefore said to be “exported" by

the package. Ada provides mechanisms for declaring a private type whose implementation

is hidden. External clients of a private type must access objects o f that type only through op

erations defined by the package. The implementation of the type and its operations can be

changed without impacting the clients.
A common style o f Ada programming is to implement a class as a package that exports

a private type. This kind of package is sometimes called a type-manager because it encap

sulates the implementation of a type and operations that can be performed on it. Instances of

the class can have attributes if the type is a record type. Operations on the class are imple

mented as subprograms that are visible in the package specilication. Class variables can be

implemented as variables declared in the context of the package specification or its body.

Sometimes several classes are put in the same package to allow mutual visibility. The fol

lowing code gives an example of this style of implementation, representing the item class

and its subclasses. Shape, Box, and Circle as private types exported by an Ada package.

p a c k a g e .It:em_pkg i s
t y p e I,eng t h i s new F l o a c ;
t y p e 11 em i s p r i v a t e •/
s u b t y p e Shape i s i t m;
s u b t y p e Box i s ; tern: t
s u b t y p e C1 r c l e i s I em;
s u b t y p e Grou o i s ■ t

f u n c t i o n o re a t e box y , h e ig h t : , w i d t h : he n q rh
r e t u r n u » *o x ;

f u n c t i o n o re a t: e c .i r c l e (x , y , r a d i o s : he nor. h)
r e t u r n i v c 1 e ;

f u n c t i o n o re a tie o r e up r e t u r n G roup ;
p r o c e d u r e ad d i t e m (.> j. . • . «*•' 1.4 J.’ t . \ > u C. *«* • . v. 5? » i ■ J
p r o c e d u r e ve (o 1* : l i e : : . ; ciy : L e n g t h) ;
p r o c e d u r e d r aw (s e i • : : tern) ;

- - : A • * *a\i i t I 1 •■ 4 i. ■ * i 4. -Ji • 1 l * '»•
p r i v a t e

t y p e : •-'■rr.v* ■ i s (Gr l ,
s u b t y p e l i s 1 1 *tv.C ’. : t f t

r a n g e A . .-.'i
t y p e ».v:;: : ? v:r.- * S
t y p e I : i s a c c e s s

end I tem _ jpkg ;

r • ;c-c:.= s^) ;

The package specification above reveals only the external interface o ft he Item class and its

subclasses. The declarations within the private section of the specification are hidden from

external clients but are needed by the compiler in compiling external accesses. The imple

mentation o f these classes is hidden in the package body, which can be compiled separately:

package body is
type I te t r .L i s t R e c o rd (c a p a c i t y : P o s i t i v e) ;
type I t e r r C i s t is access I te n t L i s t R e c o r d ;

type I ter? .Record (c l a s s : Item C Tass) is record
— 1 Code d e l e t e d : See S e c t i o n 16. !>..? /

end record;
type I t e r . Y e c t c r is array (P o s i t i v e range <>) of I t e m ;
type : terr. l . i s t R e c o rd (c a p a c i t y : P o s i t i v e) is record

c o u n t : N a t u r a l := 0 ;
v a l u e s : I t e m Y e c t o r (i . . c a p a c i t y) ;

end record;
- - . Su b p r og r am b o d i e s have beer: d e l e t e d }

end Item

Using the variant record implementation of inheritance requires that all subclasses o f a given

class be together in the same package because all subclasses are subtypes of the parent class.

In Ada. strong type distinctions are not made between subtypes of a common base type. For

purposes of type checking and overload resolution by the compiler they are viewed as the

same base type.

16.9.3 Encapsulation in Fortran

The common blocks containing the storage of attributes fora class should be known onlv by

methods on the class involved. Other classes should access an object only by its index value.

All access to attributes of the class should be through an access procedure defined by the

class. Because of the lack of pointers in Fortran, encapsulation is adequate. If a separate data

manager is written in another language, encapsulation is even better because all objects in

Fortran would be treated as encapsulated objects represented as coded integers.

16.10 WHAT YOU LOSE

Use of an object-oriented or n<*n-ob|cct-ortcnted language is not a matter of functionality.

By using the mappings described above, you can translate any object-oriented construct into

a non-object oriented language. Computational power is never an issue because any univer

sal language can compute anything computable.
The real issue w ith languages is not power but expressiveness, convenience, protection

from errors, and m ain ta inab ility . A n ob ject-oriented language makes w ritin g , m ain ta in ing .

and extending programs easier and safer because it performs tasks that the non-object-ori-

ented language programmer must perform manually. These include:

• Expressiveness: The non-object-oriented programmer must map object-oriented opera

tions. such as method calling or subclass declaration, into explicit operations which are often

ugly.

• Convenience: The programmer must manually traverse the class hierarchy when calling

methods or passing arguments. If the class hierarchy changes, then the programmer must

manually reevaluate the traversals.

• E rro r protection: The programmer must ensure that all methods are included in a dispatch

method or dispatch structure. The programmer must initialize a new object with its class.

The programmer must avoid accessing internal attributes of other classes.

• M ainta inab ility : If changes are made to the object declarations, the programmer must de

termine their effects on the code and modify the code accordingly. An object-oriented lan

guage provides and enforces modularity o f classes that prevents changes from propagating

through the entire program. The non-object-oriented programmer requires discipline to

achieve similar modularity without the help of the language.
Nevertheless, i f you must use a non-object-oriented language, we feel that an

object-oriented design will simplify your task and provide greater flexibility and extensibil

ity if you are willing to program in a disciplined manner.

16.11 CHAPTER SUMMARY

Object-oriented designs can be implemented in conventional programming languages but re
quire programming discipline. Classes can be implemented as records in any modem lan

guage. In Fortran, classes should usually be implemented as implicit collections of arrays.
Method arguments should be address pointers or array indexes to permit shared access to an

object by different access paths (aliasing). Objects should be allocated from a heap, if pos

sible. In Fortran the programmer must preallocate storage for the maximum number of ob
jects expected. Inheritance can he simulated easily in C* by duplicating the structure o f a

superclass in a subclass and simply passing a subclass object to a superclass method. Inher

itance can be implemented with greater diflieulty using variant records in strongly-typed lan
guages such as Ada and Pascal. Run-time method resolution is clean and efficient in C. using

function pointers stored in a class descriptor object for each class. In Ada or Fortran, case

statements within a single dispatch method must be used for run-time method resolution. In

most applications, many operations can be resolved at compile time, and run-time method

resolution can be reserved lor special cases. Associations are usually implemented as point
ers from one object to another. Sets of related objects can be implemented as arrays, linked

lists, or other data structures. An association can also be implemented as a distinct object
containing a set of paired values. Concurrency is handled by operating s\stcm calls in most

languages except Ada. which contains explicit support for concurrent tasks. I f concurrency

exists, even object should be “owned” by a single task to prevent run-time conflicts. Ada

contains excellent encapsulation facilities; other languages contain some facilities for encap

sulation. but they rely upon the discipline of the programmer.

There is no support in non-object-oriented languages to generate object-oriented data

structures and enforce proper use o f the constructs. In particular, changes to code may force

the programmer to manually retranslate the object-oriented constructs. Before deciding to

accept these sacrifices, a design team should investigate using an object-oriented language

such as C++ or Eiffel. A transition from C to C++ is not difficult for a programming team,

yet offers object-oriented programming support. Nevertheless, if you must use a non-object-

oriented language, use o f object-oriented design will make your job easier. Any mappings

that you must make are conceptual mappings that you must make in any case to use the lan
guage, and object-oriented notation makes them explicit.

implementation of concurrency implementation of classes
encapsulation implementation of inheritance
implementation of associations implementation of method resolution

Figure 16.1 Key concepts for Chapter 16

BIBLIOGRAPHIC NOTES

Two workstation software libraries use C language object-based approaches to provide tools

for creating window-based applications. SunView (Sun-86] uses attribute keywords and

variable length argument lists to set and access the properties of windows, frames, panels,

buttons, and sliders. The X Window toolkit intrinsics library (McCormack-88] allows soft

ware developers to use widgets that deline the appearance and behavior of buttons, sliders,

and menus. Attributes are called resources. An inheritance mechanism provides for the ad
dition of new widgets by software developers.

Jack)11 Jacky-86] describes a medical radiation therapy planning system implemented in

Pascal. Objects are represented as Pascal records, using the fields in the record as attributes.

A message passing mechanism in Pascal provides run-time procedure binding.

The Ada language is covered in (Bamcs-K9|, which can serve either as a reference or as

a tutorial manual for serious readers. For a concise description of graphical object-oriented

design tor Ada. sec |Uooch-86). A good discussion of object-oriented programming in Atla

is found in |Scidew tt/-X7], w hich includes treatment of the usefulness and limitations of ge

nerics A taxonomy of general purpose data structures can be found in (Booth 87]. showing

Ada implementations that use generics. Before applying the Ada techniques, the reader is

advised to obtain lA dal.K M], the official language reference manual.

REFERENCES

lA d aL R M] A N S I/M IL -S T D -I8 1 5 A . M ilita ry S tandard --A da Program m ing L anyuaye. Ada Joint Pro

gram Office* U.S. Department o f Defense.

| Barnes-891 John G. P. Barnes. P rogram m ing in A d a . 3 rd edition. Reading. Mass.: Addison-Wesley.

1989.

| Booch-86) Grady Booch. Object-oriented development. IE E E Transactions on Softw are E ny inccriny .

March. 1986.

[Booch-87) Grady Booch. Softw are Com ponents w ith A da. Redwood City. Calif.: Bcnjamin/Cum-

mings. 1987.

|Jacky-86| Jonathan Jacky. Ira Kalet. An object-oriented approach to a large scale scientific applica

tion. 0 0 P S L A S 6 am"ACM S IG P L A N 21. 11 (Nov. 1986) 368-376.

|M cCorm ack-88) Joel McCormack. Paul Asente. Ralph R. Swick. A' Toolkit hurinsn s - C Lanyuayc

In te rfa ce . M IT Project Athena. 1988.

|Seidew ii/.-87] Ed Seidew iu. Object-oriented programming in Smalltalk and Ada. O O P S L V $? as

A C M S IG P L A N 22, 12 (Dec. 1987)202-213. "

(Sun-86] SnnView Program m er's G u ide . Sun Microsystems, M l. View, Calif.. 1986.

EXERCISES

Any code requested in the following exercises should be written in a non-object-oriented language.

Many o f the exercises are taken from the previous chapter, so refer to the figures there.

16.1 (5,1 Implement the following library objects:

a. A D ic tio n a ry , which is a one-way many-io-one mapping function whose domain and range

are objects.

b. A Set, w hich is an unordered collection o f unique values. Duplicate values are automatical!)

discarded from a set. Values can be added, deleted, and tested.

c. A V uriahU 'A rray . which is an ordered, dynamic, collection o f values, indexed bv nonnega

tive integer selector values. The number of elements is variable. Elements can be added or

deleted at the end. beginning, or at any point in the middle

16.2 (6) W rite code to implement the following:

a. One-to-one association which is traversed in both directions.

b. One-to-man> association which is traversed m the direction from one to many. The associa

tion is considered unordered.

c. One-to-many association which is traversed in the direction trom one to many. The associa

tion is considered ordered.

d. Manv-lo-manv association which is traversed in both directions. The assen tation is consid

ered ordered in one direction and unordered in the other direction.

16.3 <(>) Write library functions a llo m ta . \ i :e) , which allocate'' and returns a block o[m anors, and

dcallot a te th lo c l K which recovers an unused block of memory . These luneltons are tiselul m im

plementing object-oriented designs in a non-object-oriented language.

U \A id i Write code lor the otdeied aggregation between ('<>!!<\ turn «*.' c m d ' and i \ o d m figure

| ;. 15 2. Operations include insertion, deletion, and tiaversmg m both directions.

16.5 (4> Implement all associations involving the classes Box. Link. Line segment, or Point in Figure
E l5.3 using any technique discussed in this chapter.

16.6 (7> Write code for the cut operation on the class Box in Figure E l5.3. Propagate the operation
from boxes to attached link objects. Update any associations that are involved. Be sure to recov
er any memory that is released by the operation. You may assume another routine will update
the display.

16.7 (7) Prepare a routine that will create a logical link between two boxes. (See Figure E 15.3.) In
puts to the routine are two boxes and a list of points that define the line segments of the link.
The routine should update associations and create object instances as needed. You may assume
another routine will update the display.

16.8 (S) Implement the following queries on Figure E l5.3:
a. Given a box, determine all other boxes that are directly linked to it.
b. Given a box. find all other boxes that are directlv or indirectly linked to it.
c. Given a box and a link, determine if the link involves the box.
d. Given a box and a link, find the other box logically connected to the given box through the

other end of the link.
e. Given two boxes, determine all links between them.
f. Given a selection and a sheet, determine which links connect a selected box to a deselected

box.
g. Given two boxes and a link, produce an ordered set of points, The first point is where the link

connects to the first box, the last point is where the link connects to the second box, and in
termediate points (nice the link.

16.9 (7) Implement the classes in Figure E l5.1. Note the multiple inheritance.

16.10 Discuss how to implement the following classes described in exercise 15.4. using a non-ob-
jcvt-onentcd language:
9 w s.

a. Sorted dn ttonarx

b. Polygon
c. Index

16.11 <8> Write code in any non-object-oriented language to implement the generic class Binary tree

described in exercise ! 5.S. Make up at least three classes to lest it. You will need to w rite warn-
pare method and a print method for each class.

16.12 (Project) Write a program fin simulating, evolution, as described in the Computer Recreations
column in the May 1989 issue of Si tetuifn Ament an.

Relational Databases

The object-oriented paradigm is versatile. It not only provides a sound basis for designing

systems and programming code but can also be used to design databases. The use ol an ob

ject-oriented design transcends the choice of database. You can design hierarchical, network,

relational, and object-oriented databases. Object-oriented designs are efficient, coherent, and

less prone to the update problems that plague many other database design techniques. As a

side benefit, the use of a uniform design technique improves integration of database and pro

gramming language code.
You design a database by first performing the analysis steps described in Chapter S and

constructing an object model. The remaining methodology chapters (d and 10) primarily

concern design of programming code and apply to database design to a lesser extent. This

chapter resumes where Chapter 8 ends and considers implementation issues. How can we

map an object model to database structures and tune the result for fast performance ’ This

chapter also includes a brief introduction to databases for new readers.

Chapters 15 and IS complement this chapter. Chapter 15 includes a section on object-

oriented DBMS that have developed from object-oriented programming languages. Chapter

IS discusses automation of the objcct-model-to-database mapping process.

The coverage of this chapter is biased towards relational DBMS for the following rea
sons. Relational DBMS are gaining popularity at the expense of hierarchical and network

DBMS. Relational DBMS are increasing their advantage in I'unciionaliiv and llexibilin and
%• w . •

are catching up in performance. Object-oriented DBMS look promising but have not \et

reached the commercial mainstream. Logic DBMS also seem promising but are even further
away f rom mass market acceptance.

17.1 GENERAL DBMS CONCEPTS

A D ata Hiisc M a n a i’t’incnt Svsti'tn tD M M St is a computer program for managing a perma

nent. self-descriptive repositoty of data. This repository of data is called A iia tabau ' and is

stored in one or more tiles. There are main reasons u ln de\elopeis me a DBMS

• Crash recovery. The database is protected from hardware crashes, disk media failures,
and some user errors.

• Sharing between users Multiple users can access the database at the same lime.

• Sharing between applications. Multiple application programs (presumably related) can
read and write data to the same database. A database is a neutral medium that facilitates
communication between free-standing programs.

• Security. Data can be protected against unauthorized read and write access.

• Integrity. You can specify rules that data must satisfy. A DBMS can control the quality
of its data over and above facilities that may be provided by application programs.

• Lxtensibihts. Data may be added to the database w ithout disrupting existing programs.
Data can be reorganized for faster performance.

• Data distribution. The database may be partitioned across various sites, organizations,
and hardware platforms.

The life cycle for most database applications includes the following steps.

1. Design the application.

2. Devise a specific architecture for coupling the application to a database.

3. Select a specific DBMS to serve as a platform.

4. Design the database. Write DBMS code to set up the proper database structures.

5. Write programming language axle to compensate for DBMS shortcomings, provide
a user interface, validate data, and perform computations. Many DBMS provide pro
ductivity tools to simplify routine applications.

6. Populate the database with information.

7. Run the application. Query and update the database as needed.
Of course, reality is more complex than this list implies, and there is feedback between steps.
Often the DBMS platform is chosen first.

The most important and difficult task for many database applications is the database de
sign. The design of the accompanying programming code is usually much easier. You should
design a database for many of the same reasons that you should design any computer pro
gram' careful design of software before coding improves the quality and reduces the cost. A
database design is often referred to as a data model or w he mo

In general there are two approaches to database design The first approach is attribute
driven* Compile a list of attributes relevant to the application and synthcst/c groups of at
tributes that preserve functional dependencies The other approach is entity driven: Discover
entities that are meaningful to the application and describe them In a ty pical design, there
arc ten times fewer entities than attributes, so entity design is much more tractable Object
modeling is a form of entity design.

The three u henui an hitei ture, summarized in figure 17 1, is the standard architecture
for a family of related database applications This architecture was originally proposed by
the ANSI/SPARC committee on DBMS. The basic idea is that a database design should

comprise three layers: the external, conceptual, and internal schemas. Each external schema

is a database design from the perspective of a single application. The external schema is a

view or abstraction of the global, overall conceptual schema. The external schema isolates

applications from most changes in the conceptual schema. To a large extent, future evolution

in the conceptual schema can be resolved within the external-conceptual schema interface.

The conceptual schema is a database design from the perspective of an enterprise. The con

ceptual schema integrates related applications and hides the peculiarities o f the underlying

DBM S. The internal schema deals with the limitations and features of a specific DBM S. The

internal schema level consists of actual DBM S code required to implement the conceptual

schema.

external
schema -<
layer |

i

i

conceptual i
schema -■
layer i

l

internal
schema <
layer

Application 1 Application 2 Application n scope
' of
I Chapter
\ 8 for
. ' database
i applica-
, tions

scope
> of

this
chapter

Figure 17.1 ANS1/SPARC three schema architecture

Object modeling (discussed in Chapter 8) is useful for designing both the external and

conceptual schema. You should construct one object model for each external schema and an

other object model for the conceptual schema. This chapter explains how to translate object

models into DBM S code.

17.2 RELATIONAL DBMS CONCEPTS

The relational dam model was invented by li.l*. Codd and is based on one simple concept —

the table. A relational M IM S (R D B M S) is a computer program lor managing these tables.

A RDBM S, as defined by Codd. has three major parts:

• Data that is presented as tables

• Operators for manipulating tables

• Inteeritv rules on tables

We will consider each of these parts in turn. Readers familiar with RDBM S may skip this

section.

17.2.1 RDBMS Logical Data Structure

A relational database logically appears as simply a collection of tables. Tables have a specific

number of columns and an arbitrary number of rows. The columns of tables are called at-

tributes and directly correspond to attributes in object models. The rows are called tuples and

correspond to object instances and links. A simple value is stored at each table row and col

umn intersection.
Relational database theory dictates that each attribute must be assigned a domain. A do-

•* W

main is a set of legal values. Domains carry more information than just a data format and

permit greater semantic checking. For instance, domains can be used to prevent operations

on incompatible attributes, such as adding a cost to a weight. The concept of domain is sim

ilar to strong typing in a programming language. Unfortunately, most RDBM S do not sup

port domains and only support simple data formats like number, date, and character string.
Each value in a table must belong to the domain of its attribute or be null. N u ll means

that an attribute value is unknown or not applicable for a given row. There are complex the

oretical issues concerning null values that often cause problems for real applications.
RDBMS use various devices for speeding access to tables, as literal tables are much loo

slow for practical needs. These tuning devices are transparent and not visible in the com

mands for reading and writing to tables. The RDBMS decides when tuning information is

helpful in processing a query, and if so, automatically uses it. The RDBM S automatically

updates tuning information whenever the corresponding tables are updated. Indexing, hash

ing. and sorting are common tuning techniques.

17.2.2 RDBMS Operators

S O L has becom e the most popular language for R D B M S , as w e ll as an A N S I and IS O stan

dard. U n fortunate ly . S O I is lar from an ideal language and has many technical Haws, l or

exam ple . S O L v lolates m odern principles o| language theory. The scope o f the S O L standard

is sm all and incom plete; it does not address im portant issues such as perform ance tuning and

program m ing p ro d u cti\ ity tools !See (D a le X7J tor a detailed c iitiq u e ot the S O I lan g uag e .>

Nevertheless, we w ill use S O L m this Im ok. since it is a standard.

S O L provides operators tor m anipu lating tables The S(.)L \ e ln t statement queries ta

bles The syntax nl the w /n / com m and looks som ething like

SELECT r '. ; . :
FP.OM * it. ■■ ■ , 'si
WHERE >:*•:. • • : .<•

Log ica lly tab le -1 . la h |e -2 . and any others are com bined into one lem por.uy table. I he a t

tribute list s|>ecilies w hich colum ns should Iv letam ed in the tem poiary table th e p ie d u a le

expression specifies which rows should l>e retained. I he contents ot the tcm poraiy table ate

returned as the answer to the query. Additional SQL commands create tables, insert rows

into tables, delete rows from tables, and perform other functions.

Interactive SQL commands are set-oriented: they operate on entire tables rather than in

dividual rows or values. SQL provides a similar language for use with application programs

through an awkward, row-at-a-time interface. RDBM S can deal with entire tables, but most

programming languages cannot.

17.2.3 RDBMS Integrity

An important aspect of RDBM S, one that is often overlooked, is support for integrity. Most

RDBMS lack proper support for integrity. The two aspects of integrity in Codd's model are

entity integrity and referential integrity. Entity integrity dictates that each table have exactly

one primary key. A prim ary key is a combination of one or more attributes whose value un

ambiguously locates each row in a table. (The primary key is always a candidate key. Can

didate key was defined in Chapter 4.) In Figure 17.2. person-ID is the primary key of the

Person table: com pany-ID is the primary key of the Company table.

person-ID person-name address company-ID I

Person 1 Jim Smith 314 Olive St. 1001 |
table 5 Moe Brown 722 Short St. 1002 .

999 Jim Smith 1561 Main Dr. 1001
14 Jane Brown 722 Short St. null I

i

Company
table

company-ID company-name address
i

1001
1002
1003

Ajax Widgets
AAA liquors
Win-more Sports

*

33 Industrial Dr.
724 Short St.
1877 Broadway

person-ID is the primary key of Person table.
company-ID is the primary Key of Company table.
company-ID is a foreign key in Person table.

Figure 17.2 Primary key and foreign key

Referential integrity requires that the RDBMS keep each foreign key consistent with its

corresponding primary key. A foreign kc\ is a primary key of one table that is embedded in

another (or the same) table. In Figure 17.2 c iw /v m - / /) is .• foreign key in the Prison table.
It would not be permissible to change Moo Brown's < om panv-ID to 100-5 since HHM is no;

defined in the (omp<iny table. It the row tor Ajax W nlgets w as deleted in the Comj'ans table,
then both Jim Smith rows m (lie Person table must base their t <>n;pan\-IP set to null. The

link between loreign key and piimnry key forms a liequent nusigation path between tables.

I he SOL standard and commercial RDBMS implementations are slow Is nio\unt to-

w.uds support lor ieterenii.il integrity. Referential integrity is usetul when mapping object

models to tables. Figure 17.2 happens to be a one-io-many association that has been convert
ed to table form (see Section 17.3.4).

17.2.4 Normal Forms

S orm al form s are rules developed to avoid logical inconsistencies from table update opera

tions. Each norma) form prohibits a form of redundancy in table organization that could yield

meaningless results if one table were updated independently o f other tables. There are mul

tiple levels of normal form. Each higher level of normal form adds a constraint to the normal

form below it. As the database designer satisfies higher norma) form, tables tend to become

fragmented; norma) forms improve database consistency at the cost of added navigation and

slower query execution. You should not inadvertently violate normal forms but may occa

sionally do so for a good reason, such as performance.

A table is in first norm al fo rm when each attribute value does not contain a repeating

group. Figure 17.3a has a row with two entries under equipment name and thus violates first

normal form. Restating the dual entries as two rows in Figure 17.3b satisfies first normal

form.
A (able is in second norm al form when it satisfies first normal form ami each row has a

primary key. Each nonprimary key field must fully depend on the primary key. Figure 17.3b

violates second normal form because equipment manufacturer and manufacturer address de

pend on the full primary key while plant m anager only depends on part of the primary key.
Figure 17.3c splits off the partial dependency into another table and satisfies second norma)

form.
A table is in third norm al form when it satisfies second normal form ami each nonpri

mary key attribute directly depends on the primary key. Figure 17.3c violates third normal
because there is a transitive dependency; manufacturer address depends on equipment m an

ufacturer which in turn depends on the primary key. Third normal form requires direct de

pendence on the primary key. Once again, splitting into two tables resolves the violation.

Figure 17.3d satisfies third normal form.
There are higher normal forms that are usually not needed. |Kenl-X3| contains a more

thorough explanation **f normal forms. The motivation lor observing normal form becomes

much more compelling w hen there are thousands or millions ol rows, instead o f the few

shown in Figure 17.3. The next section discusses how object models tend to preserve normal

form

17.2.5 Views

A uen is a \ trtu.d table that is dynamically computed as needed. A view does not physically

exist but is derived from one or more underlying tables. In theory, vieves arc the means lot

deriving external schema troni conceptual schema ten the ANSI three schema architecture.
In practice, views are less useful. Commercial KUBM S usually support reading through

views but seldom support writing through v lews. 'Iliere ate subtle semantic issues associated

with writing through views that most K IlH M S avoid (Keller Xb|

(a) Violates 1st norma! form.
plant
name

equipment
name

plant
manager

equipment
manufacturer

manufacturer
address

ethylene
styrene
styrene

final cooler, feed heater
feed pump
feed neater

Jim Smith
Bill Gunn
Bill Gunn

ABC exchanger
XYZ pumps
ABC exchanger

1247 Locust
432 Broadway
1247 Locust

(b) Satisfies 1st normal form. Violates 2nd normal form.
plant
name

equipment
name

plant
manager

equipment
manufacturer

manufacturer
address

ethylene
ethylene
styrene
styrene

final cooler
feed heater
feed pump
feed neater

Jim Smith
Jim Smith
Bill Gunn
Bill Gunn

ABC exchanger
ABC exchanger
XYZ pumps
ABC exchanger

1247 Locust
1247 Locust
432 Broadway
1247 Locust

Primary key: (plant-name, equipment-name)

(c) Satisfies 2nd normal form. Violates 3rd normal form.
plant
name

plant
manager

ethylene
styrene

Jim Smith
Bill Gunn

Primary key:
(plant-name)

plant
name

equipment
name

equipment
manufacturer

manufacturer i
address j

ethylene
ethylene
styrene
styrene

final cooler
feed heater
feed pump
feed neater

ABC exchanger
ABC exchanger
XYZ pumps
ABC exchanger

1247 Locust !
1247 Locust
432 Broadway
1247 Locust !!

Primary key: (plant-name, equipment-name)

(d) Satisfies 3rd normal form.
plant
name

plant
manager

ethylene
styrene

Jim Smith
Bill Gunn

Primary key: (plant-name)

equipment
manufacturer

manufacturer
address

ABC exchanger
XYZ pumps

1247 Locust
432 Broadway

Primary key: (equipment-manufacturer)

plant
name

equipment
name

j equipment i
! manufacturer ;

ethylene
ethylene
styrene
styrene

final cooler
feed heater
feed pump
feed heater

• ABC exchanger j
] ABC exchanger 1
j XYZ pumps ~
j ABC exchanger |

Primary key: (plant-name, equipment-name)

17,3 Ni ' im. i l lornis

17.3 RELATIONAL DATABASE DESIGN

So far this chapter has re\ ieued DBMS in general and RDBMS. We now shill our focus to

wards database design. As stated earlier, we only consider relational database design, prima
rily because RDBMS technology is mature and dominates the marketplace.

17.3.1 Extended Three Schema Architecture for Object Models

Figure 17.4 shows how object modeling relates to the three schema architecture. First, you

should formulate object models for the external and conceptual schema. Then, you should

translate each object model to ideal tables, that is. the table model. Views and/or interface

programs connect external tables to conceptual tables. Conceptual tables convert to internal

schema. We will now study each part of the extended three schema architecture in detail.

/ Family of
related
applications

i External
I table
j models u;
---------1-----

r<3

j views and or i
: interface
i programs

Conceptual _J
table model /

*

I

mapping rules External
object
models

mapping rules Conceptual
object model

Internal
schemas

I inure 17.4 Object modeling and the three schema architecture tor RDBMS

Die object model-, locus mt logical dala structure. Facli object model consists ot many

clashes, associations, gcnerali/aHons, and attributes. Object modeling |>lomotcs deep, a b

stract thinking ,ibout a problem unencumbered b \ implementation details. Object models are

ettecti'. e lor com m unicating w ifh appln. at ion exjKTts and reaching a consensus about the i m

portant aspects ,,j t! problem. < >h|Ci. I models help develo|>ers achiese a coherent, uiuleistand-

able, eft icicnt, ,md correct database design

Each table model consists of many ideal tables. These ideal tables are generic and

DBMS-independent. Ideal tables abstract common characteristics of RDBM S implementa

tions. The table model decouples DBMS idiosyncrasies from object model to table model

mapping rules. This improves documentation and eases porting.

In order to translate from an object model to ideal tables, you must choose among sev

eral mapping alternatives. For example, there are two ways to map an association to tables

and four ways to map a generalization (discussed later in this chapter). You must also supply

details that are missing from the object model, such as the primary key and candidate keys

for each table and whether each attribute can be null. Attributes in candidate keys usually

should not be null: the data modeler may choose to require values for additional attributes.

You must assign a domain to each attribute and list groups of attributes subject to frequent

access.
The internal schema of the three schema architecture consists of SQL commands that

create the tables, attributes, and performance-tuning structures. Indexes are the most popular
performance-tuning device so we will use them in our examples. This level exploits the fea

tures and compensates for the shortcomings and quirks o f DBMS products.
Generation of SQL commands requires that you assign tables to DBM S files and honor

DBMS restrictions on length and legal characters for names. You must define domains if the

RDBM S has the ability or convert domains into data types.
The remainder o f this chapter focuses on converting object models to table models. We

will study various cases and formulate mapping rules. The mapping rules apply equally well

to external and conceptual object models. We deemphasize conversion from the external ta

ble model to conceptual table model to internal schema (left hand side of Figure 17.4) be
cause object modeling introduces nothing new here. The conversion between the various

tabular representations is the same for tables derived from objects as it is for those derived

from more conventional approaches.

17.3.2 The Use of Object IDs

M ost o f our exam ples w ill use ID s for prim ary keys to s im p lify exposition . Each class-de

rived table has an ID for the p rim ary key: one or m ore object ID s form the prim ary key for

association-derived tables. T h is strategy is com patib le w ith the object-oriented language no

tion that objects have iden tity apart from their properties. O b je c t-o r ie n ta l languages im p le

ment iden tity w ith pointers or loo k-u p tables into pointers; an ID is the equivalent database

construct, f ig u re 17.2 uses ID s ; F igure 17.3 does not.

T h e re are benefits to using ID s . ID s are im m u ta b le and com plete ly independent ot

changes in data value and physical location. T h e stability of ID s is particularly im portant tor

associations since they re fer to objects. Contrast this vs ith referring to objects by nam e. I hen

changing a nam e requires update o f many associations. ID s provide a un iform m echanism

for referencing objects.

O n the other hand, ID s have disadvantages. G enerating ID s is a nuisance, lor w h ich

R D B M S provide no inherent support. For exam ple , it is a w k w a id to Hack pieviously a llo

cated ID s and recla im deleted ID s for reuse. O b jec t-o rien ted languages usually avoid ID re

use by giving IDs many bits. Databases cannot be so cavalier, since they are specifically

intended to be long lived.
IDs undermine the original intent of RDBMSs. RDBMS theory emphasizes that data is

located and manipulated based on attribute values. In one sense, it certainly is permissible to

define IDs as attributes and adopt a protocol for handling them. But on the other hand, an ID

really is not a value and is an implementation artifact that RDBMSs are trying to eliminate.

So when should you use IDs? Do not use IDs for applications where users directly ac

cess the database. People think in terms of descriptive properties such as names and not in

terms o f artificial numbers. The advantages o f IDs may prevail when database access is re
stricted via programs. Restricted access often occurs because application software is needed

to compensate for DBM S deficiencies, enforce integrity, and provide a user interface. We

will discuss object-to-table mapping rules that apply, regardless o f whether IDs are used.

17.3.3 Mapping Object Classes to Tables

Each class maps to one or more tables. (Also a table may correspond to more than one class.

See Section 17,3.4.) The objects in a class may be partitioned horizontally and/or vertically.

For instance, if a class has many instances o f which a few tire often referenced, horizontal

partitioning may improve efficiency by placing the frequently accessed objects in one tabic

and the remaining objects in another table. O f course, an application will not benefit from

horizontal partitioning unless it knows which table to search. Similarly, if a class has at

tributes with different access patterns, it may help to partition the objects vertically. Figure

17.5 shows horizontal and vertical partitioning.

Horizontal
partition

person-ID per$on-name address

1
5

Mike Rumrow
Moe Brown

14 Center St.
722 Short St.

{ person-ID person-name address

| 999 Jim Smith 1561 Main Dr.

Vertical
partition

person-ID person-name

t
5

999

Mike Rumrow
Moe Brov/n
Jim Smith

person-ID address

1 14 Center St.
5 722 Short St.

999 1561 Main Dr.

Figure 17.5 Horizontal am! vertical partitioning of tables

In Figure 17.6 an object da.v. converts to one table. Class Person has attributes person

name and address. The table model lists these attributes and adds the implicit object ID . As

part o f formulating the table model, we add details. We specify that person ID cannot be null

since it is a candidate kes, We decide (hat person name should nut be null; a name must be

entered lor every person. {Person name is not a candidate key because two persons may have.

the sam e nam e.) A ttrib u te address m ay be n u ll. W e assign a dom ain to each attribute , specify

the p rim ary key fo r each tab le, and note frequently accessed groups o f attributes.

Object
Model

Person

person name
address

Table
Model

Person
table

Attribute name Nulls? Domain

person-ID N ID
person-name N name
address Y address

Candidate key: (person-ID)
Primary key: (person-ID)
Frequently "accessed: (person-ID) (person-name)

V

SQL
Code

CREATE TABLE P e rs o n
(p e r s o n - I D ' I D n o t n u l l ,

p e rs o n -n a m e c h a r (30) n e t n u l l ,
a d d r e s s c h a r (3 0) ,

PRIMARY KEY (p e r s o n - I D)) ;

CREATE SECONDARY INDEX P e r s o n - i n d e x - n a m e
ON P e rs o n (p e r s o n - n a m e) ;

The SQL code creates the Person table. (The SQL standard currently supports referen

tial integrity. However many commercial products do not vet fully support this aspect of the

standard.) The index on person-mime ensures quick retrieval for this attribute since it is fre
quently accessed. The SQL level also maps domains to data types.

17.3.4 Mapping Binary Associations to Tables

In general, an association may. or may not. map to a table. It depends on the type and multi
plicity of the association and the database designer’s preferences in terms of extensibility,

number of tables, and performance trade-offs.

Figure 17.7 shows that a many-io-many association alwa\s maps to a distinct table. This

schema satisfies third normal form. The primary keys for both related classes and any link

attributes become attributes of the association table. Attributes company IP and person IP

combine to form the only candidate key for the Owns sto< k table. In general, an association

may be traversal starling from either class so both company IP and persim IP could be fre-

qucntly accessed. T h e foreign key clauses o l the S Q L code indicate lhai each O w n s -s io c k

tuple must reference a O w i/n m v and Person that have been defined in the ir respective tables.

A n association table a lw avs sets the foreign k e \s from the related objects to not nu ll; b \

d efin itio n . a link, betw een tw o objects requires that both objects be know n. It a g iven pair o f

objects does not have a lin k , we om it an entrx in the association table.

M a n) R D B M S do not sem antically support p rim aiy keys; the w orkaround is to define

unique indexes. tA R D B M S that e x p lic it ly supports p rim a ry k e \s m ay also generate a

unique index as a side e ffec t.! W e use the prim ary key clause in our exam ples because it is

part o f standard S Q L and w e expect it to eventua lly becom e w idelx adopted. The prim ary

key m ay subsume a secondary index. For exam ple , i f the O w n s -s u n k p rim ary key in Figure

17.7 is im plem ented as a unique index on c o m p a n y - lD , pt'r.um -lD . the secondary index on

company I D w ould be superfluous.

Figures 17.S. 17.9, and 17.10 show tw o options for m apping a one-to -m any association

to tables. You max create a distinct table for the association or burs a foreign kev in the table

for the m a in class. We do not show S Q I. code for this exam ple and some others because

S Q L code is volum inous, and the table m odel already makes the desired point. The advan

tages o f m eri’ inc an ass ix ia tion into a class are:

• Few er tables

• Faster perform ance due to few er tables to navigate

The disadvantages o f m ercim : an association into a class are:
W W S

• Less d e s ig n n g o r. Associations arc betw een independent objects o f equal syntactic

w eight. In general, it seems inappropriate to contam inate objects w ith know ledge of o th

er objects. T h is point is related to the argum ent in favor ol encapsulation lo r o b je c t-o ri

ented laneuaecs.

• R i'iiiu e d e x te n u h th i \ . It is d ill ic u lt to get m u ltip lic ity tight on the lust few design pass

es. O ne-to -one and o n e to m any associations may be externa lized . M any to many asso

ciations must tv externa lized

• 'd u re i n m p le u i \ . A n asym m etrica l representation ol the association com plicates search

and update

Ih e tinal decision on w hether to collapse an association into a related c la s s depends on the

application .

You may also collapse a one-to-one association into an object table m merge c \c n Tut

ihcr and store both < jhjects and the lation all in one table. (hapter * used o i i *unh \ h u \

o * up t (a 11 t ! \ to l i i i j ' i ra te a one to ■ one . iw is lation. (* * un t i \, (\ i p i t i i ! < t t \ . and the assoc la Inn)

could all I v stored in one table M erg ing into ,\ single table unpfoces pcttom iance and ic

duces database storage a! the cost of less extensibility and possible \ ml a lum ol thud tiotinal

form

* Hr c A?r!,j l •a ix\\ votUparv «. y . i:. a\ \ ;.0o o; ■.
u* *'■ : a**• *. iaU\-:\ ■ \ i i fi t .if,,! t *•. a iuA. f ; o-
in: '> i ' i ic t-O-lr 1 t'r r » is j;‘r *>;c tr? , ■-. J •■-} .. i
X « «* 1 trau ! j, .» -.

• •? < * . i! v I r . ‘ - . t .a*’ rel.»iT*f !>■» »*iu*

.til lilt*-.'* v l .v • .D.a . r . 1 * i.tih ?' i\

-Mill • ; r.-Qfiirr «h •’ it ** * .. ?♦; N- A Ufi

Object
Model

V
Table
Model

SQL
Code

Company table (similar to Person table in Figure 1 7 .6)...

Person table from Figure 17.6 ...

Owns-stock
table

Attribute name Nulls? Domain

company-ID N ID
person-ID N ID
number-of-shares Y share-count

Candidate key: (companv-ID, person-ID)
Primary key: (company-1 D. person-ID)
Frequently accessed: (company-lD) (person-ID)

C r e a t e t a b l e and i n d e x e s f o r Company . . .
(s i m i l a r t o t h a t f o r P e rs o n)

C r e a t e t a b l e and i n d e x e s f o r P e rs o n
(F i g u r e 1 7 .6) . . .

C R E A T E T A B L E O w n s - s to c k
{ c o m p a n y - ID ID n o t n u l l ,

p e r s o n - I D ID n o t n u l l ,
n u m b e r - o f - s h a r e s i n t e g e r ,

P R I M A R Y K E Y (c o m p a n y - ID , p e r s o n - I D) ,
F O R E I G N K E Y (c o m p a n y - ID) R E F E R E N C E S Company,
F O R E I G N K E Y (pe r*Son- ID) R E F E R E N C E S P e r s o n) ;

C R E A T E S E C O N D A R Y I N D E X O w n s - s t o c k - i n d e x - c o m p a n y
O N O w n s -s to c k (c o m p a n y - I D) ;

C R E A T E S E C O N D A R Y I N D E X O w n s - s t o c k - i n d e x - p e r s o n
O N O w n s -s to c k (c o r s o n - I D) ;

Figure 17.7 Mapping many-to-many association to tables

Figure 17.8 Object model for one-to-many association

Company table (similar to Person table in Figure 17 .6)...

Person table from Figure 17.6 ...

Works-for
table

Candidate key: tperson-ID)
Primary key: (person-ID)
Frequently accessed: tcompany-IDi l person-ID)

Attribute name Nulls7 Domain

company-ID N ID
person-ID N ID
job-titie Y title

Figure 17.9 Table model for one-to-many association— distinct association table

f - -- — ■

Company table (similar to Person table in Figure 17 .6)...

Attribute name : Nulls? Domain

Person person-ID N ID
table person-name N name

address Y address
company-ID Y ID
job-title Y title

i (cjiJul.itc key (pcrson-IDi
j Primary key ip e o *m l I) i
j frequently .ucev-ed (person I I >> (jv ^ o n n.imci (company - II>i

Figure 17.10 Tabic model lor onsMoinany asMViaiion- buned loroipn key

Note that lor a one-to-many association you may also collapse both classes ami the as*

vociation all into one table However, usually this is undesirable ami may violate sccoml nor

rnal form.
The hollow ball multiplane symbol m Figure I7.K indicates that a person need not be

employed. In f igure 17 11. all |>crM.>u\ v.ithiu the sco|X* ot the model must Ive employed. I Ills
figure illustrates the is\ue of existence dependency that we mentioned m Section d o. Heie.
f 9i 'r\<?n objects Know about l ’*>m{ums objects since cacti r < r \ * * n object requires a (owp</m
object There r> less benefit b» basing a distinct assoc ration table. I he only chance in the ta
hlc mmlel for the buried loreien Key case* is that t o/n/n/m I I) cannot be null

Com pany
W orks-ior

Person

company name person name
address address

Figure 17.11 Object model for association with existence dependency

17.3.5 Mapping Ternary Associations to Tables

Figure 17. i 2 shows an RDBMS implementation fora ternary association. Note that we show

a table for each class participating in the ternary association even for a class that may be triv

ial like Year. Here, if the Year table merely pairs ye ar-ID with year. we could perform a m i
nor optimization: Discard the Year table and replace ye ar-ID by year in the ternary table.

Figure 17 .12 does not exhibit existence dependency. This certainly seems to make sense

for the pitching example. A pitcher, team, and year have independent existence apart from

whether a pitcher happens to pilch for a team in a given year. For a ternary association where

a dependency between an object class and the ternary association is important, it is probably

best to promote the ternary association to an object class (sec Section 3.3.2) and handle the

dependency as in Figure 17 .11. The promotion of the ternary' association to a class gives each

ternary instance an ID that can then be referenced by the dependent object.

Note that the Person table refers to pcrson-ID while the ternary table refers to pitcher-

ID . The ternary table reflects that a person assumes the role of pitcher. Pitcher-10 is a more

meaningful attribute name lor the ternary table than person-1 D . The object model shows that

these two names refer to the same entity and would be expected to share a common naviga
tional path. The role name of a class should be used for attributes buried in association tables.

Figure 17.12 shows how to handle roles with SQL code. (We could have used roles in some

of our earlier examples. For instance, in Figure 17.7 person assumes the role of shareholder.
In Figure 17.8 and Figure 17.11 a company is the employ er and a person is the employee. >

Figures 17.13 and 17.14 discuss one more association construct— qualification. A com
pany has many persons serving as officers. Most offices within a company are held by one

person, such as President and Treasurer. A few offices, such as member of the board of d i
rectors, may be served by many persons. A person may have many company -office combi

nations. For instance, a person may be an officer of more than one company or hold multiple

ollices for the same company .
The Company and Person tables are similar to earlier examples. The association table

is more interesting. The association table has three attributes: the primary key lor (t>mpnn\,

the primary key for Pcrsmi. and the qualifier office. None of these attributes can be null since

they are all an essential part of the quahlied association. All three attributes must appear in

the primary key and candidate key since the association is many-to-many alter qualification.
We have not explicitly discussed aggregations m any of our database examples. Hie de

sign of aggregation tables follows the same mapping rules as for asswiations.

Object
Model

V
Table
Model

i

V

SQL
1 Code
i,

Candidate key: (pitcher-lD. team-ID. year-ID)

Person table ... Team table ... Year table ...

Ternary
table

, - ■■ ——— ■
Attribute name Nulls? Domain

pitcher-ID N ID
team-ID N ID
year-ID N ID
wins Y games
losses' Y games

C andidate key: (pitchcr-ID. tcam -il), year-ID*
Primary key: tpitcher lD . tcam-ID. year-ID)
Frequently accessed: (pitcher-1D> (leam -ID* (year-ID)

CREATE T A B LE P e r s o n

aii-x o i he r
PR IM AR Y KEY

i t ?. r i t \ \

*• c? f ,

T- / . ♦
• • ■ -

l)) ;

r.
4 4

1 ̂
4b ^

r

•j tclL *• i fr.
t ! •

4 ♦
f i r

CREATE T A B LE T o r

y - -. i r — i i
v; . T• ; J

— V * \ •, * — * <• . f r . •, • 1 1

. . • . .

i*'. • i \)
4 4 4 . «

riv: j -

PR IM AR Y KEY (:

FO R EIG N KEY <r

FO R EIG N KEY

FO R EIG N KEY (v

t

7*'s» ;

}
*

REFERENCES

REFERENCES Tv

REFERENCES Y*-.

»«•

r

: >

:•> /
-4 t

I i^un* 17.12 Mapping ternary ulnm b»Sables

Com pany Person
office D-------------------c

company name person name
address address

Figure 17.13 Object model for a qualified association

Company table (similar to Person table in Figure 17 .6)...

Person table from Figure 17.6 ...

Oualifipri
Attribute name Nulls? Domain

association company-ID N ID
table person-ID N ID

office N office-name

Candidate key: (companv-ID. person-ID. office)
Primary key:* (company-ID, person-ID. office)
Frequently'accessed: (person-ID) (company-ID. office)

Figure 17.14 Table model for a qualified association

17.3.6 Mapping Generalizations to Tables

There are four approaches to mapping generalizations to tables. We will use Figure 17.15 as

our basis for exploring these strategies. We begin by discussing single inheritance.

Equipm ent

equipment name
cost

equipment type

Figure 17.15 Object model lor generalization

Figure 17.16 shows the normal approach. The superclass and the subclasses each map

to a table. The identity of an object across a generalization is preserved through the use of a

shared II). Thus /f in jin i />unip may have one row in the /-."i/w/'/wrw table with ID 101 anti

Attribute name Nulls? Domain

Equipment equipment-ID N ID
table equipment-name N name

cost Y money
equipment-type N equip-type

Candidate keys: (equipment-ID) (equipment-name)
Primary key: (equipment-ID)
Frequently accessed: (equipment-ID) (equipment-name)

Pump
table

Attribute name Nulls? Domain

equipment-ID N ID
suction-pressure Y pressure
discharge-pressure Y pressure

Candidate key: (equipmem-ID)
Primary key: (equipment-]D)
Frequently accessed: (equipmeni-ID)

Heat Attribute name Nulls? Domain

exchanger
table

equipment-ID N ID
surface-area Y area

Candidate key; (equipment-ID)
Primary key: (equipment-)D)
Frequently accessed: (equipment-ID)

Figure 17.16 Table model for generalization— superclass and subclass tables

another row in the Pump table also w ith ID 101. T h is approach is lo g ica lly d e a n and ex ten

sible. H ow ever, n involves m any tables, and superclass to subclass navigation m ay be slow1.

You could navigate the tables as fo llow s:

1. T he user supplies an equ ipm en t nam e.

2. F ind the Equipment row that corresponds to equipm ent nam e.

3 R etrieve the equipment ID and e<futpment txpe lor this row.

•V G o to the subclass (able indicated by equipment txpe, and find the subclass row' w ith

the same ID as the Equipment row.

For exam ple , the user may specify equipm ent nam e ' ‘product pu m p .” The application looks

in the equipm ent table and hndx that product pum p has I I) 101 and equipm ent type pum p.

The application then searches the Pump table and retrieves additional data lor ID 101.

f igure 17 17 shows SCH. code tor f igure 17 10. Note that S O I. cannot enforce the par

titionm g indicated by the generalization d iscrim in a to r You could store/>/v*(/w tpum p in both

the Pump and Heat e u hunger tables, and S(,)L w ould perm it U Th e basic problem is the

S<Jl. has little support tor integrity constraints. You w ould need to w u tc special application

code to enforce the genera lization partition and use S Q L perm issions to b lock in teractive ac

cess or access through other program s.

C R E A T E T A B L E E q u i p m e n t

(e q u i p m e n t - I D

e q u i p m e n t - n a m e

c o s t

e q u i p m e n t - t y p e

I D

c h a r (3 0)

m o n e y

c h a r (1 0)
P R I M A R Y K E Y (e q u i p m e n t - I D));

n o t n u l l ,

n o t n u l l ,

9

n o t n u l l ,

C R E A T E S E C O N D A R Y I N D E X E q u i p m e n t - i n d e x - n a m e

O N E q u i p m e n t (e q u i p m e n t - n a m e) ;

C R E A T E T A B L E P u m p

(e q u i p m e n t - I D I D n o t n u l l ,

s u c t i o n - p r e s s u r e r e a l ,

d i s c h a r g e - p r e s s u r e r e a l ,

P R I M A R Y K E Y (e q u i p m e n t - I D) ,

F O R E I G N K E Y (e q u i p m e n t - I D) R E F E R E N C E S E q u i p m e n t) ;

C r e a t e t a b l e f o r H e a t e x c h a n g e r . . .

(s i m i l a r t o t h a t f o r P u m p)

Figure 17.17 SQL code for generalization— superclass and subclass tables

Figure 17.18 and Figure 17.19 arc alternate mapping approaches. They are motivated by

the desire to eliminate superclass-to-subclass navigation and thus speed performance. How

ever. the improved performance incurs a price.

Figure 17.18 illustrates the “many subclass approach.” This approach eliminates the su

perclass table and replicates all the superclass attributes in each subclass table. You might
use this approach if a subclass has many attributes, the superclass has lew attributes, and the

application knows what subclass to search. Figure 17.18 observes third normal form but is

less satisfying than the standard approach. You cannot enforce uniqueness of equipment
names across subclass tables since RDBM S do not provide indexes that span tables.

The “one superclass table approach” shown in Figure 17.19 brings all subclass attributes

up to the superclass level. Each record in the superclass table uses attributes pertinent to one

subclass: the other attribute values are null. The table in this figure violates third normal

form: equipm ent-ID or equipment-name is the primary key. but attribute values also depend

on equipment type. This may be a useful approach if there are only two or three subclasses

with few attributes.

The best way to handle generalization relationships that exhibit multiple inheritance

from disjoint classes (see Section 4.4) is to use the standard approach shown in Figure

17.16— one table per superclass, one table per subclass. T h e best w ay to handle m u ltip le in

heritance fro m o verlap p in g classes is to use one table fo r the superclass, one table fo r each

subclass, and one table fo r the genera liza tion re lationship (the fourth approach fo r m apping

genera lizations to tables). M u ltip le inheritance in frequently occurs, so usually it is not w orth

the e ffo rt to try to o p tim ize the m apping.

Pump
table

Candidate keys: (cquipment-lD) (equipment-name)
Primary key: (equipmcnt-lD)
Frequently accessed: (equipment-ID) (equipment-name)

Heat
exchanger
table

Candidate keys: (equipment-ID) (equipment-name)
Primary key: (equipment-ID)
Frequently accessed: (equipment-ID) (equipment-name)

Attribute name Nulls? Domain

equipment-ID N ID
equipment-name N name
cost Y money
surface-area Y area

Attribute name Nulls? Domain

equipment-ID N ID
equipment-name N name
cost Y money
suction-pressure Y pressure
discharge-pressure Y pressure

Figure 17.18 Table model for gencrali/ution—many subclass tables

Equipment
table

Attribute name Nulls? Domain

equipment-ID N ID
equipment-name N name
cost. Y money
equipment-type N equip-type
suction-pressure y pressure
discharge-pressure Y pressure
surface area Y area

c anumate (equipment-! (equipment-name)
Primary key: (equipment-IDj
Frequently accessed: (equipm ent'll)) (equipment-name)

1,1 * - "***«* » ~ i i i i " . * ^ ■ ■ i ■ i ■ - — ■ ■ ------------------ - - I,

Flfcun? 17,19 Table model for generalization — one superct&vt table

17.3.7 Summary of Object Model to Table Mapping Rules

Mapping object classes to tables

• Each class maps to one or more tables. (Similarly, a table may correspond to more than

one class if they are connected with a one-to-one or one-to-many association.) |Figure

I7 .6|

Mapping associations to tables

• Each many-to-many association maps to a distinct table. (Figure 17.7]

• Each one-to-many association maps to a distinct table or may be buried as a foreign key

in the table for the many class. (Figures 17.8 through 17.11J

• Each one-to-one association maps to a distinct table or may be buried as a foreign key

in the table for either class.

• For one-to-many and one-to-one associations, if there are no cycles, you have the addi

tional option of storing the association and both related objects all in one table. Be aware

this mav introduce redundancy and violate normal forms.
* *

• Role names are incorporated as part of the foreign key attribute name. | Figure 17.12]

• N-ary (n>2) associations map to a distinct table. Sometimes, it helps to promote an n-

ary association to a class. (Figure 17.12]

• A qualified association maps to a distinct table with at least three attributes — the pri
mary key of each related class and the qualifier. (Figure 17.l3T*Figurc 17.14]

• Aggregation follows the same rules as association.

Mapping single inheritance generalizations to tables

• The superclass and each subclass map to a table. (Figure 17.16. Figure 17.17]

• No superclass table, superclass attributes are replicated for each subclass. (Figure 17.18]

• No subclass tables, bring all subclass attributes up to the superclass level. (Figure 17.19]

M apping disjoint multiple inheritance to tables

• The superclass and each subclass map to a table. (Figure 17.16. Figure 17.17)

M apping overlapping multiple inheritance to tables

• 'The superclass and each subclass map to a table: the generalization relationship also

maps to a table.

17.3.8 Another Approach for Mapping Object Models to Tables

Our approach to mapping object structures to tables has been to carry forward as much object

model semantics as possible to RDBM S tables. Then we can avail ourselves of inherent
RDBM S query, update, ami integrity facilities. This is the approach that we describe in this

chapter.

Another approach to mapping object models is to store <entity-name, key, attribute-

name. value> tuples. Then, one table can store all classes, associations, and generalizations

for an entire object model. For example, the object “John Smith" would be stored as <person,

123. person-name. "John $m ith”>. <person, 123, address. “45b Ocean D rive”>, and

<pcrson. 123. salary. S250(.U)>. Many knowiedgebase-to-DBMS translators use this ap
proach.

In general, putting all entities in one table is not a good approach to relational database

design. The one table approach subverts an important benefit of databases: a database is

more than just a repository- of data, and is supposed to be self-descriptive. A database not

onlv stores data but also stores the structure of its data (metadata). In a sense, the one table

approach removes metadata from the database and puts it into the application code that must

decipher the one large table.

17.4 ADVANCED RELATIONAL DBMS

Research is currently underway on DBM S more powerful than the conventional SQL

RDBMS described in this chapter. Section 15.X.5 discussed one vein of research: object-ori

ented programming languages with persistent data. This section describes another approach:

advanced RDBMS.
An explicit goal of advanced RDBM S is to make as few changes as possible to the re

lational model. The primary thrust is to extend the relational model with new data types, op

erators. ami access methods. For example, a mathematical application may require complex

numbers as a data type. A decision table application may require new operations that check

a decision table for completeness and consolidate rows for cases where a decision criterion

is irrelevant. Special access methods like a grid search would help spatial applications.
'Hie rationale is that advanced applications demand a wide range of capabilities. No sin

gle DBMS can implement the features needed to satisfy all applications. Thus an advanced

RDBM S must provide a support system that enables application developers to add custom

features. ‘Hie architecture ts ripen as contrasted with the closed architecture of conventional

RDBMS
Some advantages of the advanced RDBMS approach are:

• Di-fituU"l\ iuUl\ to r t i .iim: R D flM S jtuu tumoluw It preserves the traditional strengths of
RDBM S, many simultaneous users, large quantities ol data. reliability, distributed data

management, and programming support tools.

* utes h <7/ H tih H ’lotum al Jittd lutw a. It provides for smooth Jlow of data

between engineering and business applications.

• l)a !ti \hurm\< T he database is truly a central repository and not wedded to any particular

programming language or application.

Some potential disadvantages are*

• R ff/irnruin, r Is even an augmented RDBM S capable ol efficient operations on individ

ual objects*

• Functionality. Does the RDBM S paradigm interfere with the ability to deliver needed

capabilities? I f so. will these limitations cause a problem for real applications?

• Security. An open architecture may make it more difficult to protect data against unau
thorized reading and writing.

POSTGRES is one example of the advanced RDBM S approach. POSTGRES is a prototype

at UC Berkeley and the successor to the INGRES RDBM S. POSTGRES adopts the "one da

tabase approach"— one database that can be extended to serve a variety of applications. Sup

ported data types include variable length data, Q U EL (a query language similar to SQL) que

ries, and procedures. POSTGRES provides facilities for active databases, such as triggers

and inferencing with forward and backward chaining (Stonebrakcr-86].

EXO DUS is a prototype at the University of Wisconsin. EXO DUS adopts the "database

generator approach”— a host of custom DBMS each serving an application niche. EXODUS

provides kernel facilities for use by all applications and a set of tools to aid the database im

plementor in generating the custom portion of each DBM S |Carey-86).

17.5 CHAPTER SUMMARY

A Data Base Management System (D B M S) is a computer program that is designed to pro

vide general purpose functionality for storing, retrieving, and controlling access to perma

nent data. A DBM S protects data against accidental loss and makes it available for sharing.

An entire branch of computer science is devoted to studying DBMS issues and answering

questions such as:

• What paradigm is most conducive to representing database structure?

• What kind of language provides the most natural interaction?

• How can a database capture more of the true meaning of its data?

• How should a database be organized for maximum performance and flexibility?

Several DBMS paradigms are available: hierarchical, network, relational, and object-orient

ed. Hierarchical and network DBMS bring the conceptual DBMS close to the underhing

physical data structures. Thus they arc efficient but difficult to use and fading in the market
place. Relational DBMS dominate today’s marketplace. Relational DBMS present the data

base at a higher level of abstraction than hierarchies and networks and are easier to use.

Relational DBMS implementations are improving in performance as they mature and use

smarter optimization techniques. Object-oriented DBMS and/or advanced relational DBMS

mav be the wave of the future. Much research is underwav that is motivated h\ the lessons

learned from current relational DBMS. Many theoretical, performance, and practical issues

must be resolved before we learn the fate of these new approaches.
Object-oriented concepts provide an excellent basis for modeling hierarchical, netwotk.

relational, and object-oriented DBMS. Object models permit developers to think about a

problem at a high, abstract level and yet rest assured that the lesulting design can be easil\

and practicalh implemented. The following simple rules enable designers to convert an ob

ject mode! to relational DBMS tables.

• An object class maps to a table.

• An association maps to a table.

• A generalization maps to a superclass table plus a series of subclass tables.

We presented various alternatives that deviate from the basic conversion formula. These al

ternatives trade-off performance, integrity, and extensibility.

aggregation (in R D B M S schema)
association (in R D B M S schema!

class (in R D B M S schema)

toreiun kc\

gcr.erali/aiion un R D B M S schema)

micgnt) oi* dam

normal forms

object (in R D B M S schema)

primary ke\
qualified association (m R D B M S schema

schema

table
lernarv association (in R D B M S schema)

9

three schema architecture

Figure 17.20 Key concepts lor Chapter 17

BIBLIOGRAPHIC NOTES

M ans gtHxi books exp la in D B M S and re lational D B M S princip les. C .J. D ate has w ritten nu

m erous books [D a te -S I] [D a te -8 3 | |D ate-S6J |D a te -K 7 |. D ate is a polished w rite r and has

d eep ins igh ts in to re la tio n a l D B M S tec h n o lo g y d e riv e d fro m his past w o rk fo r IB M .

(I.o o m is -S 7 a | is another good D B M S reference.

O u r approach to database design is not a ll that m uch d iffe ren t from other authors. A fte r

a ll. there is o n ly so m uch a person can say about m apping to sim ple tables. C hapter 12 ol this

hook review s other approaches to database design. Part o f |L o o m is -K 7a | discusses database

design but this has been superseded by her m ore recent w o rk {L o o m is -X 7h). O u r w ork im

proves on other approaches w ith : a better m odeling notation, an in term ediate table m odel,

m ore attention paid to integrity, and m ore thorough m apping rules.

O u r treatm ent o f re lational database design is detailed but is not com plete. We m ake no

provision tor handling versions and alternatives; we have not decided how to m odel them .

W e do not address database securit) (S O I. G R A N T com m and) and bow to analyze d u ia m ic

in teraction w ith a database (transaction m odeling). W e have been autom ating the conversion

o! object m odels to re lational D B M S schema, but this w ork is not described here. (A user

in teractive ly draws object m odels on the C R T screen, annotates them w ith database im p le

m entation decisions, and then asks the system to au tom atica lly generate a re lational D B M S

schema defin ition . C’hapter 1X dew.nl>cs some o l our earls w ork in this area. I lO e rtly -X 4)) dis-

cuv-.es evo lu tional v database design how to accom m odate chances in the structure o l a da-

tabase that is a h ead) populated w ith data O ertlv \ treatm ent is com patib le w ith our w ork .

REFERENCES

[BIaha-88] Michael Blaha. W illiam Premerkmi, Janies Rumbaugh. Relational database design using

an object-oriented methodology. Com m unications o f the A C M 3 1 . 4 (April 1988). 4 I4 -4 2 7 .

|Carcy-86] M . Carey, D. DeW itt, D. Frank. G. G rade. M . Muralikrishna. J. Richardson. E. Shekita.

The architecture o f the E X O D U S extensible D B M S. In te rn a tio n a l Workshop on O b jec t-O rien ted

D atabase Systems. Pacific Grove. Calif.. September 1986.

| D ate-81) Chris J. Date. ,-W/ In troduction to D atabase Systems. T h ird E d ition . Reading, Mass.: Addi

son-Wesley, 19 8 1.

|Date-83] Chris J. Date. / \ /j In troduction to D atabase Systems. Volume I I . Reading. Mass.: Addison-

Wesley. 1983.

|Date-86] Chris J. Date. R ela tio n a l D a tab ase : Selected W ritings. Reading, Mass.: Addison-Weslcv.

1986.

[Date-871 Chris J. Date. A G uide to the SQ L Standard. Reading. Mass.: Addison-Wesley, I9S7.

| Keller-86] Arthur M . Keller. The role of semantics in translating view updates. IE E E C om puter 19. 1

(January 1986), 63-73.

(Kent-831 W illiam Kent. A simple guide to live normal forms in relational database theory. C om m u

nications o f the A C M 26, 2 (February 1983), 120-125.

|Loomis-87a] M ary E.S. Loomis. The D atabase B ook . New York: Macmillan. 1987.

[Loomis-87b| M ary E.S. Loomis, Aslnvin V. Shah, James E. Rumbaugh. An object modeling tech

nique for conceptual design. E uropean C onference on O b je c t-O rie n te d P rog ram m ing . Paris.

France, June 15-17, 1987, published as Lecture N ines in C om puter Science. 276. Springer-Verlag.

[Oerily-89) Fredy Oertly. Gerald Schiller. Evolutionary database design. F ifth In te rn a tio n a l C o n fe r

ence on D a ta Eng ineering . Los Angeles, 1989.

(Stonebraker-86) Michael Stonebraker and Lawrence A. Rowe. The design o f POSTGRES. *\CA/ S K i-

M G D '<SV>. Washington. D .C .. Mav 28-30. 1986.

EXERCISES

17 .1 (6) Four different object diagrams for directed graphs arc shown in Figure E l 7 .1 through Figure

E l 7.4. A directed graph is constructed from named edges and vertices. Each directed edge in a

graph is an arrow that starts at one vertex and etuis at another vertex. Any number of edges max

he connected to the same vertex. More than one edge max connect a given pair of vertices, and

an edge may connect a vertex to itself.

Figure E l 7 .1 depicts a graph as a main -to-manx association between xerticos. Directionality

is indicated by the role names fro m and to. Edges are treated as link attributes. Figure E17.2 de

picts a graph as a many-to-inany association betxxeen edges. Vertices are link attributes, lire

qualifier, end. is an enumerated type with possible xallies of to and from indicating which cnd>

o f the edges are connected. Figure E l 7.3 treats both vertices and edges as objects. A graph is

described by connections betxxeen vertices and edges. Tw o named associations. /<• ami T ro w .

arc used to store connections, one for each end of an edge. Figure F I 7.4 depicts connections

with a qualified association. Each end o f an edge connects to exactly one vertex. O m e again.

end is an enumerated type.

Which diagram most accurately models a graph.* Discuss in detail the relative merits or each

diagram. Consider what happens tf more than one edge connects a given pan ol vertices W hat

it an edge connects a vertex w tt)i itself* What happens u only one edge is connected to a vertex *

from Edge
end end

edge name

U

edge name vertex name

Figure K17.1 Object diagram of
directed graphs with edge name as

a link attribute

Figure E17.2 Object diagram of
directed graphs with vertex name

as a link attribute

From
-------^ n

VertexEdge p
, P

edge name j j 0
_____________I

vertex name

Figure K17J Object diagram of
directed graphs with associations

for each end of an edge

Edge Vertex
end

edge name
D--------

vertex name

Figure E l7.4 Object diagram of
directed graphs with tut associa

tion for connections

17.2 (5) Convert each diagram from the previous exercise into ideal tables (the table model described

in the chapter l.

17J (4) Convert the ideal tables for the object diagrams in Figure E l7.3 and Figure E l7.4 into SQL
commands to create empty database tables and indexes. Use your judgement to supply informa
tion that is missing from the object diagrams and needed for the conversion process.

17.4 (4) populate the database tables created by the SQL commands of exercise 17.3 for the directed

graph in Figure EI7.5.

v5 el v4

Figure E l7.5 Sample directed graph

17.5 (6) Fur the diagram in Figure El 7.4, prepare queries for the following. You may express
queries m SQL ,jr ,n >out mvn language In some eases, you may need to embed a query within

a procedure

a. Given the name of an edge, determine the two vertices that it connects.
b. Given the name of a vertex, determine all edges connected to or from it.
c. Given the names of a pair of vertices, determine the name of the edges, if any. that directly

connects the pair in either direction.
d. Given the name of a vertex, determine the names of all vertices that can be visited directly

or indirectly from the given vertex by traversing one or more edges (transitive closure*. Each
edge must be traversed from its "from" end to its “to" end.

17.6 (6) Convert Figure E 17.6 into ideal tables. This is an object diagram of expressions formed from
constants, variables, and arithmetic operators. Unary minus is not allowed. An expression is a
binary tree of terms.

Figure E l 7.6 Object diagram for expressions

17.7

17.8

(4) Convert the ideal tables to R D B M S SQL. commands for the previous exercise.

(5) Indicate the contents of the database tables created by the SQL. commands of the previous
exercise for the expression (.Y + IV 2) / (A'/3 - }') . Consider the parentheses m establishing
the precedence of operators; otherwise, ignore them in populating the database tables.

17.9 (7) Convert the object diagram of a desktop publishing system in Figure E l 7.7 to ideal tables.

A document consists o f numbered pages. Each page contains many draw ing objects, including

ellipses, rectangles, polylines, and (exilities. Ellipses and rectangles are embedded within a

bounding box. A polyline is a sequence of line segments defined by vertex points. Textlines

originate at a point and have a font. A group o f objects is itself an object. Treat all associations

and aggregations as unordered. For this exercise do not consider the ordering of paces in a doc

ument or the ordering o f points in a polygon.

17 .1 ft (6) Revise your ideal tables from the previous exercise to treat the association between /W v/m c

ami /\> /w an d the aggregation between l \w u m c n t and / ’(/ye as ordered That is. g iw n a jv lv line,

it must be possible to query the database to retrieve the points in the coirect oidet. and given a

document it must be possible to scan its pages in order.

17.11 (5 i M odify the ideal tables produced in exercise I7 .‘> to reflect the rev ision to the obicct diagram

shown in Figure E l 7.S. Discuss the relative merits of making the rev ision.
». %

Figure K i7.7 Object diagram of a desktop publishing system

[Polyline

___ a _____

Point

x
y

Toxtllno

aliqnrnont
text

typo / \
----------» □ _ _

(Polyline point; Toxtllno point

tzn n l r.::

>

J-’lgurc (‘>cncr.tli/4ttMn ot {Kuril to climm.itc /cro or one multiplicity

17.12 (5) Convert the ideal tables for exercise 17.9 to RDBMS SQL commands. Develop an indexing
strategy.

17.13 (5) Explore some design trade-offs for exercises 17.9-17.12. For instance, consider the three dif
ferent approaches to mapping the generalization. Look at each one-to-many association, and de
cide whether it should be a distinct table or merged with an object. Consider collapsing one-to-
one associations. Defend your decisions and discuss ramifications.

17.14 (4) Convert the RDBMS SQL commands in Figure E l7.9 into an object diagram. The tables are
used to store the straight line distances between pairs of cities.

C R E A T E T A B L E C i t y
(c i t y - I D ID n o t n u l l ,

c i t y - n a m e c h a r (30) n o t n u l l ,
P R I M A R Y K E Y (c i t y - I D)) ;

C R E A T E S E C O N D A R Y I N D E X C i t y - i n d e x - n a m e
O N C i t y (c i t y - n a m e) ;

C R E A T E T A B L E R ou te
(r o u t e - I D ID n o t n u l l ,

d i s t a n c e r e a l ,
P R I M A R Y K E Y (r o u t e - I D)) ;

C R E A T E T A B L E D i s t a n c e - b e t w e e n - c i t i e s
(c i t y - I D ID n o t n u l l ,

r o u t e - I D ID n o t n u l l ,
P R I M A R Y K E Y (c i t y - I D , r o u t e - I D) ,
F O R E I G N K E Y (c i t y - I D) R E F E R E N C E S C i t y ,
F O R E I G N K E Y (r o u t e - I D) R E F E R E N C E S R o u t e) ;

Figure M17.9 SQ L commands lor creating tables to store distances between cities

17.15 (4) Using the tables in exercise 17.14. formulaic a query using pseudocode or SQ L that w ill de

termine the distance between two cities given the names of the two cities.

17.16 t-1) Convert the R D B M S SQ L commands in Figure 1117.10 into an object diagram. The tables

are used to store the straight line distances between pairs of cities.

17.17 (4) Using the tables in exercise 17 16. lomuilale a query using pseudocode or SQL that w ill de

termine the distance between two cities given the names ol the two cities. Assume that the ills -

lance between a given pair o f cities is stored exactly once in the />;v;.;/,vc- /v.'a <•<•>:•. i:nw table

iThe application must enforce a consti.nnt such as . ; ; > / / /) < <r;v2 I P so that the distance is

only entered once.)

17.IK t.\i Discuss the relative merits ol the two approaches m the previous lour exercises lot storing
distance information

C R E A T E T A B L E C i t y

T(city-IP u nC".
^ i v y - n a n e c h a r (3 0) n o r

PRIMARY KEY (c i t y - ID)) ;

t'. - ■. > 1
1 i u ^ I /

I l Ll * l1 l O i • t

C R E A T E S E C O N D A R Y I N D E X C i t v - i n d e x - n a m e
*

O N C i r v (C i r . v - r . a m e) ;

C R E A T E T A B L E D i s t a n c e - *

(c i r. v : -: d
• 4 • • ^ f ' ‘ _ * * ' •

•» * f» •* \ r . •»

; n
*

t n

'• t V.’ •? T: “ O I t i 5

not: n u i 1

:: oc I ru i i ,

n o r n u i ! ,

. , 1 »

h i #

v V l c i t ; - : DP R I M A R Y K E Y (C : „ ,

F O R E I G N K E Y (c i r. y I —ID) R E F E R E N C E S C i r y ,

F O R E I G N K E Y (o : t y .7 - * I.) R E F E R E N C E S C i y) ;

Figure K 17.10 SQL commands tor creatine tables to st«irc distances between cities

17.19 <5i Discuss the similarities and differences between the database tables used to store edge and

series lfitoriiiatioii in exercises 17.1- 17.5 and the tables used to store distance information be

tween cities in exercises 17.14 -17 . IS. Ilow does lad that there is exacth one straiehl line dis-

lance between .i pair u| cities sirnpht\ the problem? K the problem of storing distances between

uties more ncaris like a directed graph or an undirected graph? Whs ?

I7.2IJ <5) Consert the object diagrams m figure H I7 . I l t hgurc M I7 . I2 , and higure 1:17.13 into ideal

tables and then into SOI. commands Moss does the presence of the /ero-one multiplicity ml!u-

ence the t.on\ersion

f igure fi 17 13 is a portion ol an object model lor a ('A D system. A piece ol equipment ma\

be indicated on the screen with a special icon; minor equipment is not shown on the screen.

Some icon*, are graphic onl\ and do not correspond to any piece ol equipment.

1 Country; - ‘ Capital] Person ___ r Passport Icon > ~ c Equipment
I J f - ------j - • --------------- - — — * *

name l name { name number name name
• > _ .. . _ [_________ - - J

I*igurv I\1 7 .| I (>bject diagram
oj t.spu.d*. ol voti*i!ra*-s

I i^urc 1*117.12 Object diagram
of pa*.sport ow nerslnp

f ig u re K I7 . I 3 < >b|evt diagram
tor C A D ssstem

17.21 (!>■-■.-lop .tn -ihj'.-d di.i.T.un l«u •.ti-rme the -.t.itus ,.t 1.. rV .m d plulosopheis l"i the dimin' pin

hr.oph.r . problem 'So; c '-.-m -.c < 2.2 i ('ciixert ;.*>iir di.uit.tm !«• R D B M S Nnl cmm.ii ids

v.ible t.ojitetit. ol ii;<- il.jt.itu-.e table. ter the situation m which each philosopher h.isShow po
CT.Kflv one fork

17.22 (8) Convert the diagram in Figure E l7.14 into RDBMS SQL commands.

Figure E17.14 Partial object diagram for a scoring system

17.23 (5) What new features should be added to SQL to provide belter support for 0 0 concepts?

PART 4: APPLICATIONS

Object Diagram Compiler

Compilers provide a natural application for the O M T methodology. Most compilers are

hatch programs that consist of one or more passes. Hath pass works towards the goal of

transforming the input to the output, hor example, a C compiler may accept an input lile of

ASCII characters. Successive passes may parse into tokens, abstract the intended semantics,
generate code, and then optimize code. Users expect that a compiler will carefully check its

input during processing; the more errors the compiler can delect, the fewer errors will he en
countered during program execution.

This chapter describes the development of a compile; for object diagrams for hill-of-

matenal application .. The compiler is a batch program that accepts an object diagram as in

put and produce*, relational DBMS schema as output. The compiler input is limited to object
tliagtatns <«! bilbot-material problems because ot the special error checking built into the

compiler. The compiler has .served two purposes; It solved the immediate problems of the

target applications and it was an important milestone in mir continuing work on automating

the O M T m ethodoioev.
♦ * *

The Oh}< t { Dtfj^nsni { 'tmipilt i illustrates several concepts mentioned earlier in the

boo*,. The compiler arehnecture coombs ol tour passes that step through n senes Ol internal
models. There rlfc many relationships ami Junctional dependencies within a model but lew

between models. A'. Chapter{) notes, tins Kind of multipass architecture is common for com

pilers. The design of the compiler also touches upon some database issues discussed m

Chapter P and metadata concepts described in Chapter *5.

18.1 BACKGROUND

G e n e ra l E le c tr ic has several in te rn a l a p p lica tio n s that co n fig u re p roduct assem blies . T h e

business practice fo r these ap p lica tions is that the custom er specifies product function ; the

m a n u fa c tu rer m ust devise a correspond ing product. F o r e x a m p le , a custom er m ig h t o rd e r a

la w n m o w e r that is lig h tw e ig h t, in expens ive , and energy e ffic ie n t. T h e m a n u fa c tu re r m a y fill

the o rder w ith a m o w e r that has a l ho rsep ow er g aso lin e -p o w ered en g in e . 4 5 cm d ia m e te r

a lu m in u m deck, and n o n m u lc h in g b lade. (G E does not m an u factu re la w n m ow ers; w e use

the la w n m o w e r e xa m p le fo r c o n ven ien ce .)

T h e list o f parts chosen by a m a n u fa c tu re r to b u ild a product is c a lle d a b ill-o f-m a te r ia l

(B O M) . A B O M is a tree o f the d irect and in d irec t parts that com pose an assem bly. T h e l i t

erature o ften refers to B O M as parts exp lo s io n prob lem s. B O M are o ften p rin ted out as in

dented parts lists, w h ere the in d en ta tio n corresponds to the depth in the h ierarchy. F ig u re

18 . 1 shows a sam ple B O M fo r a la w n m ow er. T h e first va lue listed a fte r each part type is the

part num ber. T h u s la w n m o w e r L M I6 C has eng ine E l . deck D I6 . and so fo rth . Part p ro p er

ties fo llo w the part num ber.

lawn mower: LM16G

engine: E 1 , 1 HP. gas powered

piston: P1 , 5 cm length, .5 cm diameter

carburetor: CARB9

wires: W I5, quantity 4, oil resistant

I • «

deck: D16, 45 cm diameter, aluminum

blade: B16, 40 cm long, non-mulching

wheels: W H 3. solid rubber, 8 cm diameter

• I «

Figure 18.1 A portion of a bill-of-material (BOM)

In the past, most product assemblies have been manually designed by human exports.

Blaha-90| describes a new. automated approach to generating BOMs. The new approach

uses a relational database to reverse engineer past product designs and extracts the implicit

design rules for mapping specifications to choices of parts. The details o f the new approach

are beyond the scope of this book.
This chapter describes a portion of the new BOM configuration system: a subsystem

called the Object D iag ram Com piler. First, we draw an object diagram of a BOM parts ex

plosion with an ordinary graphics editor by carefully placing many lines, triangles, boxes,

text strings, and other primitives. The Object D iag ram C<>mpi!cr then processes the object

diagram and ultimately generates DBM S commands that create tables and indexes. When-

ever we change the object diagram, we rerun the compiler and generate new DBM S com

mands. Thus the object diagram is a living document. The O bject D ia g ra m (,'.>mpiler

simplifies documentation and DBM S schema generation In using the same souice document

for both. Our success with the Object D iag ram C om piler has motivated further work to

wards developing more comprehensive tools for automating the O M T methodology

18.2 PROBLEM STATEMENT

As shown in Figure IS .2. the objective o f the Object D iagram C om piler is to translate BOM

object diagrams into database commands and check for input errors.

BOM object
diagram drawn
with graphics

editor

Error messages

graphics
editor
statements

Object
Diagram
Compiler database

commands

Data
dictionary

Figure IS.2 Functional model of Object Diagram Compiler

18.2.1 Com piler Input

The compiler must read an A SC II description of a BOM object diagram produced by a gen

eral purpose graphics editor. We used Frame Maker, but others such as MacDraw and Inter

leaf are also suitable. The graphics editor must be geometric-shape-based and not pixel-

based. The compiler input is analogous to the source code o f a conventional programming

language compiler.
Figure IS .3 is a sample BOM object diagram. A lawn mower has a blade and engine.

Each blade and engine may be associated with several lawn mowers. (Figure IS.3 refers to

catalog descriptions of parts and not the physical parts. See Section 4.5. M etadata, for de

tails.) Lawn mower. Blade, and Engine are described by attributes. Figure IS.4 show's some

of the corresponding Frarnemaker language for the image of the Blade class.

Lawn mower

mower number
mower width

? F
i Blade
i _______ _ ^

j olado number
j blade lonqth
! mulching"*

Engine

engine number
motive power
horsepower

fig u re IX..1 Sample B O M object diagram

The O b je c t D ia g r a m C o m p ile r must support basic object m odeling constructs: classes,

attributes, binary associations, binary aggregations, and generah/.attons. T h e c o m p ile r does

riot need to support object m odeling constructs that are not needed (or our B O M applica

tion-i. such as q u a lified associations, n ary relationships, and operations.

• f-;arne MaVrr i*. a <lc-«.t«•;» p.iblidii.'ig v. ■.tern ih.it integrate*, ••sord processing. %. page la}
(•&.'! (ealtifc. We orils cs«r*l the graphic '•dittn/ capabilities tu the n h :n l th iis r.im I K'rijulrr

vout. and

<Rectangle

<BRect 3.06" 5.65" 1.06" 0.28">

> # end of Rectangle

<TextLine
<TLOrigin 3.58" 5.83"> <TLAIignment Center >

<Font <FBold Yes > > # end of Font

<String ‘Blade‘>

> # end of TextLme

<Rectangle

<BRect 3.06" 5.93" 1.06" 0.49">

> # end of Rectangle

<TextLine
cTLOrigin 3 .14"6 .08"> <TLAIignment Left >

<Font <FPIain Yes > > # end of Font

<String ‘blade number‘>

> # end of TextLine

<TextLine
<TLOrigin 3 .14"6 .22"> <TLAIignment Left > <String ‘blade lengths

> # end of TextLine

<TextLine
<TLOrigin 3.14" 6.36*> cTLAIignment Left > <Strmg mulchmg? >

> # end of TextLine

Figure 18.4 Sample input for Object Diagram Compiler

18.2.2 Compiler Output

T h e c o m p ile r m ust produce a series o f database com m ands. T h is output is executed as a

script file to load a data d ic tionary . W e used the O ra c le D B M S , but any re la tio n a l D B M S that

supports the S Q L language is su itab le. T h e c o m p ile r m ust generate association nam es and

d eterm in e how to im p lem e n t re la tionsh ips. F igure IK .5 shows som e output that corresponds

to F ig u re IK .3. T h e c o m p ile r output is analogous to the object a x le o f a co n ven tio n a l p ro

g ra m m in g language co m p ile r.

T h e Object Diagram Compiler stores its output in a data d ic tionary custom designed for

B O M app lica tions . (S e ve ra l do w n stream program s co m p le te the process o f creating the ta

bles and indexes that store in d iv id u a l B O M s .) W e used th is custom d ic tionary rather than the

D B M S d ic tionary because w e requ ired B O M specific extensions. S ection IK..Vf> describes

our data d ic tio n ary .

18.2.3 Miscellaneous Requirements

D ie Obiect Diagram ('ompiler was subject to fu rth er requ irem ents on d eve lo p m en t lim e and

p erfo rm ance The c o m p ile r had to be deve loped q u ick ly in four m onths or less It was part

of the larger B O M generation pro ject, and w e d id not w ant to d ivert our a ttention O u r re

qu irem ents on execu tion tim e w ere m ore lax A n execu tio n tim e o f tw o hours or levs is ad-

REMARK Load object class ID. object class name, table name

Insert into meta_object_tab!e Values (1000 , ‘Lawn m o w er'. 'Law n_m ow er');

Insert into meta_object_table Values (1001 . 'B la d e '. ‘Blade’);

Insert into meta_object_table Values (1002 . 'E n g in e '. ‘Engine’);

REMARK Load relationship ID. relationship name, type
Insert into meta_relationship Values (2000 . ‘Lawn_mower#Engine’ , ’aggregation');

Insert into meta ..relationship Values (2001 . ‘Lawn_mower#Blade’ , ‘aggregation’);

REMARK Load relationship ID. assembly class ID, part class ID, part min and max

multiplicity
Insert into meta_aggregation Values (2 0 0 0 ,1 0 0 0 , 1002, 1 . 1) ;

Insert into meta_aggregation Values (2001, 1000, 1001, 1, 1);

Figure 18.5 Sample output from Object Diagram Compiler

equate because the compiler is a batch program that is only run at system set-up time. The

compiler is not used for the day-to-day generation o f BOMs. (As it turned out, because o f

skillful software engineering, performance was much better than required!)

The compiler must detect input errors but need not correct the errors. For instance, class

names must be unique, have less than 31 characters, and begin with an alphabetic character.

The compiler must not abort when it encounters user errors. The compiler must accept bad

input and keep running so that the user can detect multiple errors from a single run.

The compiler must tolerate imperfect connections. Since object diagrams are prepared

with a general purpose graphics editor, it is difficult to align and precisely connect every

thing. The compiler must accept input that looks correct when printed on paper. Also the

compiler must detect mistakes that are not visible, such as superimposed drawing compo

nents.

The compiler must isolate dependencies on graphic editors and relational DBM S within

one or two modules. Then the compiler can lx* ported without major rewriting.

18.3 ANALYSIS

Analysis is the tirst step towards solving the problem statement. It quickly became apparent

that the difference in level of abstraction between input and output was loo great to span in

a single step. Wc decided that it would lx best to use several passes. 'Ihis conclusion is not

surprising, since many compilers require multiple passes.

The disadvantage of a multipass approach is that the developer must prepare multiple

object models and design multiple compilation phases. 'Hie advantage of multiple passes is

that complexity is addressed in a divide and conquer fashion. 'Hie resulting code is easier to

port since graphic editor and DBM S dependencies are isolated m small portions of code.

Figure 18.6 elaborates the functional model o f the Object D iag ram C om piler shown in

Figure 18.2. Each ellipse represents a compiler pass. The three data stores at the bottom of

the figure denote intermediate object models. The remainder of this section describes the

compiler passes and intermediate object models. There is no significant dynamic model for

the compiler, since it is a batch transformation.

INPUT:
A S C II
description of
object diagram

OUTPUT:
commands to
load database
data dictionary ♦

Figure 18.6 Functional model of Object Diagram Compiler

18.3.1 Parse Graphics Editor Language

The first pass reads in the raw diagram Framemaker file generated by the graphics editor (a

sample is shown in Figure 18.4) and builds the geometry model. The lirst pass corresponds

to lexical analysis in a conventional programming language compiler. This pass required lit

tle analysis effort beyond figuring out a correct B NF syntax for the graphics editor language.

Our development of a B N F grammar for the graphics editor was aided by vendor documen

tation.

18.3.2 G eom etry Object Model

Figure 18.7 summarizes the geometry model. We have omitted some classes, associations,
W V* •

and attributes in order to conserve space and simplify explanation. The geometry model rep

resents a diagram as a series o f graphic primitives and is a convenient form for further pro

cessing. The geometry model regards an object diagram as simply a picture. The graphical

objects (ellipses, rectangles, polylines, polygons, and textlines) coexist but have no interre

lationships. We derived the geometry model directly from the B NF grammar ot the graphics

editor language.
The graphics editor that we used organizes components by page. A Te\thne is a single

line of text that may be placed anywhere on a page. A Textline has a font and alignment and

originates at a point. Each T<mt describes text size and special Icaiures such as italics, bold,

and underlining. The geometry model includes pane number for use in error messages.

__ 0___
Ellipse R e c ta n g le

fill

v " * S r -

f Boundary
I

i top location
! left location
■ width
j height

Page

page number

6
Polyline

U

_ L _
Polygon

u
(ordered)

(ordered) ^ ̂̂ __

Point

x location
y location

6

Textline

alignment
text

0 9

Font

size
italic
bold
underline

Figure 18.7 Geometry object model

Llltp.se, Rectangle. Polyline, and Polygon capture graphical information in the object di
agram. Ellipses have a location and a bounding rectangle. An ellipse may have a hollow fill

or solid till. Rectangles have a location, width, anil height. Polylines and polygons are com

posed of straight line segments that connect a sequence of points. A polyline is an arbitrary

sequence of lines; a polygon is a closed geometric figure.

Hie geometric model for our lawn mower example (Figure IX J) contains the following

objects;

• 6 rectangles,V *

• 11 textlines (3 bold font, N normal font).

• 2 polygons (diamondsi.

• 2 ellipses (which happen to be circles) with solid fill, and

• 2 polylines (vertical lines between Law n-m ower and /Hade, Law n m ower and

Rugate).

18.3.3 Extract Connectivity

The second pass consolidates raw geometry, classifies si/es and shapes, and detects intersec

tions and attachments of geometrical primitives. We call the output from the second pass the

connection model.
Figure l X.X presents part of the data flow diagram tor this pass. Ellipses. U n tangles.

Poisbnes. Pols go/r.. and lexthnes from the geometry model are input data stores in the func

tional model. Every class and association in the connection model is the output of one or

Textlines Polylines Rectangles Ellipses

Figure 18.8 Connectivity extraction functional model

more functional model processes. Recall that during analysis we do not specify algorithms

but specify the effects o f processes.
In Figure 18.8. groups o f contiguous rectangles are recognized as blocks. Groups of in

tersecting lines are recognized as nets. Each block and net intersection is found and stored
^ V-

as a node. Ellipses are classified into multiplicity balls or sheet cross references. Each m ul

tiplicity ball is associated with a node: each reference is associated with a Mock. Each text-

line is bound to its nearest block or net.

18.3.4 Connection Object Model

The connection model, summarized in Figure IS .1), bridges the eeometrx model and the in-
W *• k . •

ternal meta model. Classes that are shaded are carried forward from the geometrx model.

The connection model regards an object diagram as a topology, a collection of hUvks con

nected with nets. Blocks and nets have attached geometry and text.

The Block. S et. and Node classes form the core of the connectivity model. Each block
9

has a name; each net has a name. A node corresponds to exactly one block and one net. Each

block n m ha\e main nodes; each net may have main nodes. A node may be connected to
a m • w a'

a ball or a diamond. A net mav be connected to a triangle. A block may have several cross
* W ♦

reference circles pointing to other pages. Both blocks and nets have text.

l im in ' IX.9 (‘onnecuon object model

The connection model tor our lawn mower example contains the follow ing objects:

• 3 blocks named l . o w n - m o w e r . B l a d e , and B u x in e .

• 2 nets named l.own moweri-'Blade ami Lawn /nonerd Undine.

• 4 nodes.

• 2 diamonds each associated with a node, and

• 2 solid balls each associated with a node

The L i«-« rum-. f t block is associated with two texthnes: m o w e r m t m h e r and m o w e r - w id t h .

Similar associations occur lor B u u le and l in;tnc.

18.3.5 Abstract BOM Entities

The third pass raises the lex el o! abstraction. The graphical symbols m a BOM diagram base

more meaning than their mere shajv A block denotes a class, a net represents a generali/a

lion or association. Bass t coalesces cross reteiences to classes, verities uniqueness ot

names, and classifies relationship types. Pass 3 applies hard coded rules lor mapping rela

tionships to tables (see Chapter 17). The second and third passes correspond to semantic

analysis in a conventional programming language compiler.

The functional model for this pass is complicated by extensive error checking. Much of

this error checking derives from using a general purpose graphics editor to construct the in

put object diagrams. In general, the user can make many diagramming errors, such as dan
gling association lines, duplicate class names, and class blocks without a name. The Object

D iagram Com piler also checks for errors peculiar to BOM generation. The Pass 3 functional

model is too large and complex to display here.

18.3.6 Internal Meta Object Model

Figure 18.10 summarizes the internal mcia model that captures the meaning of BOM dia

grams. A BOM database has many class and association tables. Each class table has many

attributes. An attribute may be a role or a nonrole attribute. Nonrole attributes belong to ex
actly one class or association table. Role attributes appear in many class ami association ta

bles. Role attributes connect together the various tables. A class associates with all blocks

that refer to it. Each relationship associates with one net.
A BOM database also has many relationships. Each relationship is either a generaliza

tion or an association. Association may be further refined into aggregation. Each generaliza

tion has one role attribute that denotes the superclass and many role attributes that denote the

subclasses. (We did not need multiple inheritance for our BOM applications.) A discrimina
tor indicates which subclass pertains to each superclass instance. Since BOM generation

only uses binary associations, each association has exactly two role attributes. An associa

tion may have zero or more nonrole attributes.
The internal meta model for our lawn mower example contains the lollowing objects:

• 3 class tables named Lawn-mow er. Blade. and Cngine.

• 0 association tables. (O u r hard coded rules burv both a s s o c ia t io n s in the lawn-

mower example. See Section 18.4.).

• 3 role attributes: mower-number, blade-number, and engine-number.

• 5 nonrole attributes.

• 2 auurcuations (Both associations are aeureuations.). and
k. k S » . t .

• 0 uenerali/alions. and 0 link values.

18.3.7 Generate Database Commands

The fourth and final pass transforms the internal meta model into the database meta model

This process is simple because the internal meta model is similar to the database meta model

The last pass is analogous to code generation in a conventional p io e ra m m m e laneuatie com

pi let and produces the desiied output ol H U M S commands,

Block Class table b

| biock name .— q class name
'------------- ------- ■ I j primary key name

Attribute

attribute name

I
JBl

A

Association table

association name
o

Role attribute

> l

Nonrole attrib @
Link value

D iscrim inator

1 Superclass^.

/ \
n

Generalization

Subclass

1 _d

Association

J A
I

•Nose [hsi each association may be an aggregation
Thus Association ctass is concrete } Aggregation

Figure IS. 10 Iriicmal mci.i itunicl

18.4 S Y S TE M D ESIG N

The choice of system architecture lor the O b je c t O i o v j o m ('o t n p i lc i was straightforward and

directi’, fo llo w s from the o ’. er.ill functional model in Figure IS.6. We chose to implement

the program as a hatch OanstonnaUnn a\ discussed m Chaplet *.h
T?nr OhjK' i 1 i U u ^ n m : (consists o f a sequence of passes chal transform between

layers. W e chose a closed architecture where each layer can onl;» access the objects »u itself

and the immediate prcvedinp layer. ‘I he advantage ol a d osed architecture in increased ns

fornuiuon hiding which simplifies debu^em e, eMension. and porting, In general, the d isad

vantage of a closed . i fvhHcUurc ! relative to art open afchsiecliiu*) in loss o f e lf ie ienc \. hoi

the. O h m i i J n t v m n ; i ' o m t n i e r . d h u e m v is euod bet.arise of the carclul design of each pass.

On? object model*. mov- these hrd.av'es between object models as shadei.1 leetangles. thus

C hir. i in the internal mcla model refers lo 1$1*h h in the connection model

Each pass of the Object D iag ram C om piler completes in full before proceeding to the

next pass. This is because there is little locality o f reference in our B O M diagrams. For ex

ample. a Law n m ow er class on Sheet 1 can refer to a Blade class on Sheet 27. In contrast

most programming language code has more locality, and compiler processes can operate

with some degree o f parallelism. For ordinary compilers, once enough characters have been

read to recognize a lexical token, the token can be passed to semantic analysis; semantic

analysis need not wait for completion of lexical analysis.

The Object D iag ram C om piler manages all data in memory. Input is a file; output is a

file. There is no need to make intermediate data visible outside the program. Since the pro

gram has a closed architecture, we considered deallocating objects from earlier passes that

are no longer needed to recover memory space. We did not deallocate objects because of the

extra logic required and fear of dangling pointer bugs. (The language used to implement the

Object D ia g ra m C om piler does not have garbage collection.) Memory consumption has not

caused us any problems to dale.

Implementation of control is not an issue. The Object D iag ram C om piler is a batch pro

gram. The user has no interaction with the program after starting it; there is no interactive

debugger. A ll error messages are printed to a file. Once again, our approach was dictated by

simplicity. It was simpler not to provide an interactive debugger; the batch approach has

worked well in practice.

18.5 O BJECT DESIGN

Most o f the work remaining after analysis was to implement associations, prepare pseudo

code, and then write actual code. The process o f writing pseudocode uncovered several anal

ysis Haws. We revised the analysis as needed. Design was a straightforward application of

object-oriented programming and mostly a matter o f adding detail.

18.5.1 Functional Models

In this problem, as in many batch transformations, functional dependencies can be expressed

as an acyclic directed graph amonu data stores containing sets of objects. Each data store

contains all the objects o f a given class, such as Rectangles and Nodes, or all the links ot a

given association, such as B all-N ode Bairs. The data How diagram can be constructed by ex

amining each class and association in the output model and determining the input classes and

associations that it depends on.

In many cases the final algorithm can be written down directly without actually drawing

a data How diagram. We found that a “marking” approach aids formulation of functional a l

gorithms. A mark represents a class, association, or attribute that has been computed at a g iv

en point in the algorithm. First all input classes and associations are marked on the object

diagram. Then all classes and associations in subsequent stages of the batch transformation

are examined. Pseudocode for each attribute and association is u rilten in terms ot previous!)

marked classes ami associations, and the corresponding output attribute or association is

marked. When all the attributes of a class are marked, then the entne class is marked. When

the entire output object model is marked, the functional algorithm is complete. This marking

technique works because the dependencies form a partial order.
In Figure 18.8. Blocks can be computed front Rectangles. Balls can be computed from

Ellipses. Nets can be computed from Polylines. Nodes can be computed from Nets and

Blocks. After these computations. B all-N ode Pairs can be computed from Balls and Nodes.

Wc did not actually draw the data How diagram because the functional algorithm is so di-
« V c -

rectly derivable from the object model.
The first pass (parse graphics editor language) reads the A SCII file that contains a BOM

diagram and loads the geometry' model. We used U N IX compiler generation tools for this

pass to improve our productivity. This pass required little design effort and no pseudocode.

The second pass (extract connectivity) scans the geometry' model and produces the con

nection model. Most of our design effort for this pass was concerned with devising graph

traversal algorithms. As an example. Section 18.5.3 describes our algorithm for linding con

nections.

The third pass (abstract BOM entities) scans the connection model and generates the in

ternal meta model. Like the second pass, most of the design effort for this pass concerned

choice of algorithms.
The fourth pass (generate database commands) scans the internal meta model and writes

DBM S commands to a file. A ll generalizations are implemented with distinct superclass and

subclass tables. Some associations arc represented by distinct tables; others are captured

through buried foreign keys. (See Chapter 17.) Hard coded rules in the Object D iagram

Com piler determine how to implement each association.

18.5.2 Interm ediate Object Models

An important design decision was the choice of programming language. Based on past fa

vorable experience, we decided to use an in-house object-oriented programming language

called DSM [Shah-89}. DSM 's class library provider! us with several convenient choices for

handling associations. DSM can implement associations with foreign keys, sets, arrays, ta

bles. and a built-in generic association type. Our choice of technique was determined by the

type of access required. We frequently used foreign keys and arrays. For example. Figure

IS. 11 shov/s a common way of implementing a one-to many association.

A Polygon object may access points through the array of points stored in the points at

tribute. A Point object may access a polygon through the parent attribute. Since points may

belong to exactly one of several different types of objects, the data type of parent is “object.”

“Object" indicates that the value t.s an object but does not specify the class.

Polygon

! groopid : int
numpoint.s : int
points : array oi point

b
parent

Point

fx>inti
--------a X

V
parent

int
int
object

Fijjurc Ik.11 Implementation of a onc-fu-mauy association

The internal meta model captures the intended meaning of object diagrams. Initially,
this model was similar to Figure 18.10. However, much of the internal meta model was not

needed for implementation, so we simplified it during design. In the end, the internal meta

model was a simple mapping of blocks and nets into classes and relationships, as shown in

Figure 18.12.

Figure 18.12 Internal meta object model

The structure of the database meta model is similar to Figure 18.10. We hand converted

the database meta model into database tables to bootstrap the system. The Object D iagram

Com piler was only intended to compile BOM diagrams, thus it cannot compile itself.

18.5.3 Connectivity Algorithm

A commonly occurring theme in the Object D iagram Com piler is determining connections.

Lines connect to rectangles, ellipses, and each other. Text is contained in rectangles and is

adjacent to lines. Rectangles are adjacent to each other. During design we observed that each

of these separate problems could be reduced to a special case of a more general problem:

Find the intersection of a bounding box with a bag of points.
For each page and element type, we construct bags of points as follows. (A bag is the

same as a mathematical set. except it may have duplicates.) For each rectangle, we add the

four comer points to the rectangle bag: each comer point is an object that contains a pointer

to its parent rectangle. Each line adds two point objects to the line bag: a line ot text adds

one point object to the text bag; and similarly for other graphical primitives. Then for exam
ple. we find all rectangles intersecting a line by constructing a bounding box around the line

and checking the intersection of the bounding box with the rectangle bag ot points.

We used a doubly sorted dictionary to efficiently search a bag of points for intersections

with a bounding box. Each bag ol points is first sorted on the x-coordinate and then on the

v-coordinalc. Figure 18.13 shows an object model of our point access structure, three im

portant operations are: Insert a point, delete a point, and find points.

Figure 18.13 Object model of point access structure

To insert a point, first find the strip to which the point belongs, 'fry for an exact match

on the \-coordinate in the qualified association between lhii> and Strip. If none is found, cre
ate a new strip and add it to the association. Next, find the tile to which the point belongs by

trying for an exact match on the y-coordinate in the qualified association between Strip and

Tile. I f none is found, create a new tile. Finally, associate the point with the tile.

T iles are not o f u n ifo rm size. F igure IK . 14 lias tw e lve points, seven strips, and seventeen

tiles. (E ach tile has a point at the low er left hand corner; when points co incide, one tile cor

responds to m u ltip le points.) A tile is m erely a useful abstraction fo r organ izing points in a

search space for effic ient in terval searches.

Figure 18.14 .Strips ami tiles for rectangle bag of {minis

D e le tio n is s im ilar, except tiles and strips are deleted as they becom e em pty.

Searching starts w ith the >.-va!ues o f the bounding box. We im plem ented a special o p

eration on the qualified association that returns all strips Ik tw een the m in im u m and m a x i

m um values. Then, we queried the y -q u a lified association to determ ine all tiles in the strip

betw een the y -va lues o f the bounding box. F ina lly , all points associated w ith the tiles were

added to the c o llec tio n o f points found . W e convert the c o llec tio n o f points in to a set o f

graphical p r im it iv e , by traversing the association betw een point and graphical p rim itive .

We had several reasons for constructing a general purpose connectivity routine. First of

all. we expected that finding connections would be a common operation, and we wanted ef
ficiency. The naive algorithm o f checking all possible combinations of elements on a page

yields an execution time proportional to the square of the number of elements. In contrast,
our algorithm is linear with the number of elements and connections. (Our problems have a

limited number of connections, so in practice the order o f the execution time was effectively

reduced from n2 to n. where n is the number of elements.) Our algorithm has the disadvan

tage of added complexity: thus we wanted to design a general purpose routine once and reuse

it for all the special cases: Line intersect line, line intersect rectangle, and so forth.

18.6 IMPLEMENTATION

We implemented the Object D iagram C om piler with the DSM language. (D S M is an in-
house object-oriented programming language that is implemented on top of C .) The final

code was 13,000 lines long. It took one person three months to develop the diagram compil

er. Six weeks were consumed by analysis and design and six weeks bv coding and debug-

ging. About twenty bugs were found, each o f which took only a few minutes to find and

correct.
The compiler is presently being used for several BOM generation applications. One ap

plication has a current input o f more than 100 classes and 150 associations yielding a graph

ics editor file with over 13.000 lines. The compiler runs fast, compiling 5.000 lines per

minute. This was a pleasant surprise because we initially feared that using an object-oriented

language might degrade performance. The Object D iagram Com piler fully satisfied its re

quirements. Our success with the compiler has motivated work on more comprehensive soft

ware to support the O M T methodology.

18.7 LESSONS LEARNED

We draw the following conclusions from our experiences in developing the Object D iagram

Com piler.

• Slick to the object-association paradigm and avoid the temptation to use stacks, point
ers. and other data structures. In most cases, the use o f associations eliminates the need

for complex data structures.

• Use of a limited number of paradigms and a rich library of container classes greatly cut

the number of bugs and increased our software development productivity.

• When making enhancements, don't just patch the design, rethink the anal> sis. Where* er

we violated this rule, we wasted time and made errors. 1'hink through the consequences

of your “enhancement" deeply and not superficially.

• Batch software is much easier to write than interactive software: batch sottware does not

need to contend with user interface and dialogue considerations.

18.8 CHAPTER SUMMARY

The Object D iagram Com piler accepts as input a textual description o f an object diagram.

The compiler produces DBM S commands that can be executed to load data dictionary ta

bles. We call this program a compiler because it must not only transform its input, but it must
also detect errors. A general purpose graphics editor provides no inherent support for object
diagramming, so the compiler must detect many error conditions.

We chose a multipass architecture with intermediate object models: each pass gradually

raises the level o f abstraction. Pass l recognizes that the ASCII characters in the input lile

denote graphical primitives. Pass 2 detects graphical connectivity. Pass 3 abstracts a graphic

picture into an object model. The fourth and final pass converts the internal format of the O b

ject D iagram Com piler into that required by the application data dictionary tables.

Both the object and functional models were important for the Object D iagram Com pil

er. as there is much data to handle and substantial processing to convert the data from pass

to pass, l l te dynamic model was relatively unimportant because the compiler is batch soft

ware and has no user interaction.

The design and implementation of the Object D iagram Com piler proceeded rapidly and

were simply a matter of detail. The most significant tasks were to implement associations, pre

pare pseudocode, w rite the actual code, and then debug. Probably, our most important design

decision was choosing the DSM object-oriented programming language. DSM has a rich class

library that simplifies programming. We also decided to use U N IX compiler generation tools

to parse the input. 'Hie Object D iagram Compiler completely satisfied its requirements. The

compiler had excellent performance, despite the lax requirement in this area.

BIBLIOGRAPHIC NOTES

The first pass in our Object D iagram Com piler was implemented with U N IX compiler con

struction tools. |Schreiner-85] describes how to use these tools. {Alio-79) describes the the
oretical basis of compiler design. [Shah-891 describes the DSM language that was used to

implement the Object D iagram Compiler. [Blaha-90] describes the larger BOM configura

tion generation application that was briefly summarized in Section 18.1.

REFERENCES

(Aho*?9j A .V . Aho. J.P. t lim an. Princ ip le* o f C o m pile r Design. Thin! Edition. Reading, Mass.: Ad-

«Jivon-Wcdcy, 1979.
(fJlaiw-901 M R. BLih.i, W.J. F’remcrtam. A.R. bender, R .M , Salemmc. M .M . Kmitloin. C .K . Harkins.

R ill-o fM a te ria l Configuration (iciH-rntum. Sixth I r t t e n u m o n n l C o n f e r e n c e o n D i t t o E n g i n e e r i n g .

February 5-9, 1990. [.«$ Angeles. (A.
f.Schreiiicr-H.s] A.’.el T. Schreiner, H. George Friedman. In in c i te tom to Compiler ((instruction with

C S IX . Englewood Cliffs, New icr.scv. Prentice Mall. I'W s

[Sbai)-X9[A-.b’-vin -Shah. James Rumb.uigti. Jung i lamed. Rena': liursari, D SM : an object-relationship

modeling language (t O T S l A S * / .u. A C M S I C P l A N 2-1. I ! {Nov, 1989), 191-210.

E X E R C IS E S

18.1 (3) An objeci model compiler that supports a subset o f the O M T notation uses the meta model

in Figure E1X. I . The compiler reads objeci models and generates instances of classes and asso

ciations (objects and links). Which o f the following constructs does the meta model support: ob

ject classes, methods, object attributes, generalization, aggregation, binary association, lernarx

association, link attributes, qualified associations, role names, association names? If a construct

requires something that is missing from the meta model, the construct is not supported.

Figure E18.1 Meta model for an object model compiler

18.2 (5) Figure F IS .2 is an input to the compiler described in exercise IX .!. The output of the com

piler can be thought o f as an instance diagram. A partially completed instance diagram corre

sponding to Figure E l8.2 is shown in Figure F IS .3 . The links are correct, but some names and

values arc missing. Fill them in.

Figure K I8 .2 Compiler input object model

i»

X

a
(Attribute)

J V

Figure K IS.3 Partaallx completed compiler output instance diagram

18.3 17iThe meta model itself is tan game as input to the compiler. Figme F I S * is the corresponding

partial!) completed output instance diagiam. The links aic correct. Finish tilling in names and

\ allies.

18.4 io t Extend the meta model liom Figure F IS I to include gcneiali/ation and aggiegaiion tcia

tioiislups ,»s well as relationship names Make sine the meta model H w li is valid input to; the

v ompilei

15.5 I'O Prepare an instance diagram tor the output of the compile! using the object diagram voit pre

pared lot the piev ions exercise as input

Figure K18.4 Partially completed compiler output instance diagram

Computer Animation

Computer animation systems create sequences of images, which when shown one after the

other, create the illusion of motion. Computer animation systems require an extensible de
sign so that new applications and new graphics hardware can be easily added.

This chapter describes a three-dimensional computer animation system. The system,
O SCA R . the Object-oriented SCene /inimato/?, produces high quality film and video se

quences of the results of scientific and engineering calculations and experiments. OSCAR au
tomates the creation, control, and management o f 3-D computer-generated animation

sequences. Using an object-oriented script language as its user interface, OSCAR controls

analysis, modeling, rendering, display, and filming. Interfaces have been developed for sci
entific analysis programs in the areas of molecular modeling, robotics, mechanisms analysis,
and lluid mechanics. The object-oriented design has produced a system that lends itself to

interfacing with existing and future applications.
The OSCAR application demonstrates how an object-oriented design can be successful

ly implemented with a non-object-oriented language. OSCAR is written in C using an object-
oriented development environment that includes macros and run-time support for inherit

ance, instancing, and message passing. OSCAR includes an inteqjreter that permits users to

create instances from the animation classes in the system and to control these instances by

sending messages. Computer animation systems have a dynamic simulation architecture as

discussed in Chapter 9.

19.1 BACKGROUND

OSCAR is the result of research, started in 1984. on the application of object-oriented tech

nology to industrial applications. Because we expected computer graphics systems to in

crease performance dramatically throughout the 1980s. we proposed developing a 3-D

computer graphics animation system that would allow scientists and engineers to study the

results of their experiments and analyses. At the time, no C-based object-oriented systems

were generally available, so we developed our own object-oriented interpreter to support the

animation research. This interpreter, called L Y M li, includes a run-time library for creating

objects and communicating with them using commands and run-time message passing. The

interpreter has no dependencies on computer animation; animation knowledge is held with

the animation-specific classes.

19.1.1 The Animation Process

OSCAR simulates the steps in the traditional, manual animation process. As in all disci
plines. animation has its own terminology. We briefly describe the animation process, defin

ing enough jargon for the reader to understand the OSCAR system.
Tile user o f a computer animation system acts as the producer, writer, and director of the

final animation sequence. 'Hus sequence may be played back on a computer graphics termi

nal or recorded onto movie film or video tape. The producer manages the overall film pro
duction. keeping schedules, assigning tasks, and organizing resources. The writer creates a

script based on the requirements of the customer. The director controls the animation, posi
tioning the props, actors, cameras, and lights.

‘ITic animation process proceeds as follows:

1. Story. The writer, working with a customer, develops a narrative story that describes the

actors and their roles, including their appearance, dialog, and actions. Writing is an ar
tistic process and is difficult to assist with the computer. The actors may include inani

mate objects.

2. Story board. A story board is a graphic synopsis of the animation, illustrating the ap

pearance of the animation and the flow of the story. The story board contains a represen
tative drawing for each major point in the story. The art director normally produces the

store board.

3. Script The script contains the detailed positioning and movement of the actots, camer
as, and lights in the animation Some computer animation systems provide scripting lan

guages Since the script mas change over the course of production, a good language

allows the script to lv easily modified when minor animation changes are required.

4. SutntUt!ion\ h.xpcriments and simulations often provide the motions of the animation

for scientific applications. Scientists and engineers familiar with I he application domain

set up and execute these s im u la t io n s . Simulations van b e compulation intensive

5. Models. Each prop and actor in an animation must have a geometric model that de

scribes its appearance. This model is translated, during the rendering process, from a

mathematical description into a portion of a 2-D image.

6. Preview. Before committing the animation sequence to film, a fast preview of the ani

mation helps establish critical timing and the overall look of the final product. Producing

high quality film output is usually costly, so changes to the simulation should be made

as early as possible.

7. Render. Rendering produces shaded images for later display by applying algorithms to

the geometric model, surface properties, and lighting. The render operation corresponds

to assembling a single frame o f a conventional animation. Rendering realistic effects

such as multiple light sources, texture, shadows, translucency, and refraction can be

computation-intensive.

8. Recording. After rendering, the images are recorded on either film or video, one frame

at a time.

A typical animation application is three-dimensional molecular modeling. First a batch sim

ulation is run on a supercomputer to compute the position of each atom in a vibrating mole

cule over a period of time. The actors are the atoms in the molecules and their chemical

bonds. The animator prepares a script viewing the molecule from interesting angles. Rapid

previewing is essential because it is hard to choose the right viewing angles without seeing

the results. The final animation is run at full resolution, and a film is produced. Actually ex

posing a film of several minutes' duration can take a full day o f computer time.

19.2 PROBLEM STATEMENT

The goal of the graphics animation system is to provide an automated system for the efficient
creation, control, and management of 3-D computer generated animation sequences. The

system provides facilities to record animation sequences on 16mm film or video. The system

also provides interfaces between diverse simulation, modeling, and rendering systems. Re

alizing that the application of computer animation is broad, the system must adapt to new

applications with a minimal amount of new software.

The following requirements were derived from knowledge of the conventional movie

making process and the scientific and engineering analysis process. The movie animation

metaphor used is that of stop-frame animation. In a stop-frame animation system, frames are

recorded one at a time. All participants in the animation are changed slightl> and another
frame is exposed.

The user input consists of text tiles that contain animation scripts. Scripts can reference

a library of complex actions, as well as define new actions. The scripting language serves as

a base for animation description and documentation of an animation.

Each animation consists ol'one or more scenes. Within a given scene, the script can con
trol any participant in the animation including actors, cameras, and lights. Control is provid

ed through lists of actions that the director groups into cues. Cues are active for a user-

specified duration and specify actions applied to objects in the animation. Any valid state

ment in the animation language can be an action. For example, an actor might be told to

move at a constant velocity during the scene. Each scene specifies the Tenderer that produces

its frame images.

Actors are the active participants in the animation. They have shape, position, orienta

tion. and appearance properties, such as color and texture. For example, in a planetary ex
ploration animation, actors would include planets, rings, satellites, rockets, stars, and the

sun. The specification of actor motions must be flexible enough to allow rotations and scal

ing about arbitrary axes and origins. The visibility of individual actors must also be control

lable, Often, it is useful to group actors together, so the system must provide a mechanism

to allow actors to be collected and controlled enrnas.se.

The geometry of an actor is kept in a geometric model. Models range from rigid motions

of simple geometric shapes to complicated deformations of complex objects. Since model

ing is a complicated and tedious task, the system must be able to use models that already ex
ist. Also, users may have invested large amounts o f training in the use o f specific modelers.

Modelers should quickly produce low-resolution models during previewing so that the com

putation lime to produce a high-resolution model is only be required for the detailed film.

Ail animation is viewed through a camera. Multiple cameras can exist, but only one is

active in a scene at one time. The user can place the camera in the environment and control

its aim and orientation. Different camera movement effects like panning, zooming, and

tracking are required,

Multiple lights can be used to illuminate the animation. Lights can be turned on and ofT

and their intensity can be controlled. Lights also have geometry— spherical, cylindrical,
point, or flood.

Engineers and scientists who use the system will rely on their own analysis programs to

provide much of the physics of the animation. Therefore, the animation system must provide

a way to interface to these external programs. These programs should not be modified just

to interface with the animation system, so the interface burden must be borne by the anima
tion system.

The system must provide a facility to track completion of frames and where they reside.

A frame is one image in an animation sequence, A frame can be built from one rendered

frame or a combination of tendered frames. A post-production capability allows the user to

recall frames, combine them with other frames, and manipulate them on a recoding device.
It is too time consuming to specify die incremental motion of each actor in an animation

for each frame, so the system must provide a way to move objects along easily specified

paths. Kcyframiug is an animation technique that lets an animator specify complex motion

by giving a few key frame;, am! leuing a junior animator fill in the intervening frames. A

computerized animation system should have a keyframiug capability in which the system in
terpolates site animation.

19.3 ANALYSIS

19.3.1 Object Model

Now. following the analysis steps in Chapter 8. we extract objects from the requirements and

our knowledge of computer animation and computer graphics. Notice that the terminology

from the problem statement is used in the object model. Many of the properties we specify

for the objects come from our intuitive feeling for what an object should look like and how

it should behave.

Identifying Object Classes

We start by listing candidate object classes:

• actor

• camera

• light

• scene

cue

renderer

sequence

frame

We follow four classes through analysis: actors, cues. Tenderers, and .scenes.

• Actors are the participants in our animation. Our actors can represent a variety of objects

we wish to model, so we have try to determine what properties are important to all ac

tors. regardless of the application. In a Unite element analysis, an actor could be an ele

ment mesh of a turbine blade. For molecular modeling, both atoms and bonds are actors.

• Cues control the actors, cameras, and lights in the animation. Cues are temporal objects,

changing the stale of the animation with lime. Each cue is a series of events. For exam

ple, a cue might tell a ball to start rolling across the room or pan a camera across the

stage. Any time dependent action can be affected by a cue.

• Renderers produce the individual frames in the animation. Rendering is still an active

research area in computer graphics, so we must take care not to restrict ourselves to a

particular renderer. such as scan line, ray trace, radiosity. or wire frame. The challenge

is to characterize the properties of renderers that we expect all renderers to have. Ren

derer is an abstract class meant to be overridden by subclasses.

• Scenes control the animation process, bringing together cues and renderers. They usu-

allv describe a coherent set of actions within the animation.

Identifying Assnciati<>ns and Attributes

Here we define associations and attributes m the model:

• Each actor lias a model lhat describes its geometry. Modeling is an active research area,

and there is no one modeling technique that can be used in all situations. Also, the re
quirements state that existing modelers have to be supported, so M odel is an open-ended

abstract class.

Actors also have position, orientation, color, and visibility. An actor's orientation is

with respect to some origin. We group positional properties, such as translate, rotate,

and scale, under a general 3-D transform. Actors also have light transmission properties

which we break out as a separate object as new variations may be invented.

• Cues are lime sensitive. Each cue has a time interval during which it is active. Usually,

the user wants to do something special when an interval is entered and when it is exiled.

We call actions that should be executed at the start of the interval start actions and those

that should be executed when the interval expires end actions. While a cue is active, it
executes tick actions at the time resolution of its enclosing scene.

• Renderers need to know what actors, cameras, and lights are in a given scene so lhat

they can create images. A user may not want to render every frame of an animation and

should be able to specify a rendering resolution. The user also must be able to specify a

spatial resolution that tells the renderer how big an image to create, and where that image

lies in the camera’s view space. Graphics people call this spatial resolution the viewport

of a rendering. The background color of the rendered image is also a property o f render

ers.

• A scene must know what cues and renderers are required to create the animation se

quence. Like a cue. a scene also has starting and ending actions that perform initializa
tion and termination.

Identifying Operations

Most classes in the OSCAR animation system have interesting operations.

• Actors. We certainly will want to translate, rotate, and turn an actor on and off.

• Cues. We invoke a cue with a tick operation that includes the current time within the

scene. The cue performs all its tick actions.

• Renderers. A render operation causes a renderer to create one frame of animation.

• Scenes A start operation begins a scene’s execution. The scene in turn steps through its

time interval, invoking cues and rendering frames.

Identifying lalternant e

Scenes and cues both have time intervals during which they are active, as well as start, tick,

and end actions. We group Scene and Cue under the abstract superclass Sequencer. Scenes

also have a clock and a tune resolution; cues do not need these attributes as they are driven

by scenes.
Lights, cameras, and actors ail liavc position, orientation, and graphical transformation

operations which we group under the abstract superclass Transformable rthject.

Figure I ‘L I shows the Itnal object model for the O St'AR system.

Figure I *>. I Object model tor < >S(Wf\ system

19.3.2 Dynamic Mode!

The dynamics ol'an animation arc specified by a scene, which encapsulates a seiies o! user
deli nod events. Figure I‘>.2 and Figure 19..1 show the dynamic model lor Si c u r and < A

scene repeatedly enters the l i c k state, eaclt time inciementiin: the cm rent time ami sending

l i t k events to its cues and rau lc r c\cnts to its remlercrs. A cue is similar, but it icceiws tick

events liom the scene.

0

V V

(
S ' Start

V
time:=start time

do: stan actions

[time<end time]

Tick ^ [time>end time)
.time:=lime+resolution
do: tick actions

tick render

End
do: end actions

Figure* 19.2 Stale model for.SYrru'

tick [time>start time]
V■*

Start \
^ co' sian actions J do tick actions j (time>end time)

f
End

do: end actions

Figure 193 State model for Cue

19.3.3 Functional Model

Tlte most computation-intensive functional model is that for the Tenderer. A functional
model tor a Tenderer is shown in Figure 19 .4 .

viewpoint
..---------- . polygons __

r r , ~ ~ ! camofa parameters / " transform ^ h.drjon"
Camera >— - — - polygons } —' / surface)

— --------- ------ ^ to viowpomjy ...rem oval./
visible ”\
polygons--*

/"quantize onto v \
\ viowplanopixels/

, Actors - **• polygons : J polygons
!,_______ !. .to surfaces/ \

-------- - ' r rayuaco s " 7 < r— * -------1
i Lights •— - - -■ - i<ghts :o i . . - V shading •. » Frame
l -------------- J light p a ram ete r riolvcnMe / ** \ . and smoothing y [_____„

i° *7 .,- hghtcd * - ■ _______—
m «r. 1 . . a m

shaded \ pixels
polygons

f

polygons
f igure 19.4 i uiution.il uindrl <>t .j srnde rrr

19.4 SYSTEM DESIGN

19.4.1 Subsystems

The system architecture groups objects in the system according to the steps in the animation

process. The anthropomorphic flavor o f the model descriptions helps to maintain the corre

spondence with the animation process. Figure 19.5 shows the architecture of the animation

system.

f ig u re 19,5 Architecture ol O S C A R svstem

The interactive script generator permits the user to generate scripts using a graphical in

terlace. With the script generator, the user can position cameras, lights, and objects interac
tively. Other script generators provide easy specification of complex camera and actor

movements. T he script generator is built on the director and the windowing sxstem.
I Ik * director controls the animation using a variety o f predefined tools. The director

reads a script, prepared by the user or a script generator, and sends messages to objects in the

animation. I he director is built on the interactive OO interpreter, modeless, and .simulators.

My implementing a powerlul. oasv-u>-use interpreter and a library ol useful animation oper
alions. we avoid the need to provide a special animation language.

Simulators are the external analysis programs. Typically, simulators are run separately

from the animation process. They provide the physics for the animation sequences. Often, a

simulator controls a complete animation, with OSCAR doing little more than positioning a

camera and turning on a light.
Modelers create the geometries for actors. They are loosely related to Tenderers, since

some Tenderers can only process models from specific modelers. Often the models are made

from polygons, but the system must be able to handle other modeling primitives.

Frame editor objects do post-production editing, combining frames and creating special

effects like wipes, dissolves, and fades.
A frame clerk tracks where each frame came from and where it is stored. It is a data store

accessed by other modules.
Renderers take actor, camera, and light information to produce a single frame of anima

tion. External renderers run in batch mode, producing their images from command files cre

ated bv O SCAR. Other renderers are built within the animation system itself, but all
* W

renderers respond to the same protocol.

Recorder objects take finished frames and commit them to film or video. They also re
spond to a specific recording protocol, converting these messages into device-specilic con

trol functions.

19.4.2 Concurrency and Control

OSCAR is run as a sequential, batch job. so concurrency is not an issue, nor is allocation of

tasks to processors. Control is implemented procedural!)* by explicitly sending messages to

objects within iterative loops simulating scenes.

19.4.3 Data Formats

Scripts are written as sequences of operations in the 0 0 interpreter language, rather than in

any special format. The format of the frame clerk must be given, but we omit it here. The

format o f the simulators, modelers, and renderers is specified by their suppliers and is be

yond our control, so we must accept them as they are.

19.4.4 Trade-offs

The director and the interpretive language must lx* easy to use and flexible, but they will not
consume much run time, as most of the execution time is spent in predefined simulators,

modelers, and renderers. Thus we chose to make the interpretive language highly symbolic.
Operations are encoded as text strings which are interpreted at run time using an explicit

search of the class hierarch) for methods. Operands are passed using variable-length argu
ment lists and text keywords for flexibility. Set-up operations use several levels ot induce -

tmn for flexib ility We also incorporated several debugging aids. The efficiency of the

director is less than 5<>'y hut does not matter because the director consumes a small portion

of the overall OSCAR execution tunc.

19.5 OBJECT DESIGN

During object design, we begin to shift our focus from the external requirements to the com

puter implementation. We extend the object models we derived during analysis to include

associations and attributes that objects require for internal processing. Most of the design,

however, is a simple and direct implementation of the analysis model.

19.5.1 Actors

To retain the state of an actor's position and orientation, we introduce a new class: the M a

trix. Cam era and Light also implement much of their behavior with M atrix . Each instance

of M a trix is a 4-bv-4 transformation matrix that captures the geometry of a Transformable

object and provides an efficient basis for implementing motion. Translate, rotate, and scale

are simply special cases o f matrix multiplications on the 4-by-4 matrix. Successive transfor

mations can be combined by multiplying their respective matrices. Each Transformable ob

jec t delegates its behavior to a M a trix object.

19.5.2 Cues

The only external operation on a cue is tick. The operation is a direct implementation of the
dvnamic model:

*

1. I f clock has just entered the active interval for a cue. execute start actions.

2. I f clock is within the active interval for a cue. execute tick actions.

3. If clock has just left the active interval for a cue. execute end actions.

This simple algorithm gives the animation system control over any object in the svstem. The

power comes from the ability to use any statement in the language as an action. Later, in

some examples, we show how the cue appears to the user.

19.5.3 Scenes

The only external operation on a scene is start, which steps through a scene as follows:

1. Execute start actions.

2. Set current time to start time.

As lone as current time is less than end tim e:

3. Increment current time by resolution.

•4. Hxecute scene tick actions.

5. Send tick operation to each cue in the scene.

6. Send render operation to each tenderer in the scene.

Once the scene's < urrent time exceeds its end time:

7. Hxecute scene end m (tons.

19.5.4 Renderers

In the Renderer class, the render operation is the only complicated external operation. OS

CAR supports many renderers. but ail rendering is controlled by a uniform protocol. The ren

der protocol determines whether a frame should be rendered, based on the renderers time

resolution property. Then it positions the cameras, lights, and actors; the frame is built; and

an expose operation requested. Finally, the lime of the render operation is noted and the

frame counter incremented. An abstract class, called Renderer, executes the rendering pro

tocol. Specific renderers are subclasses of this abstract class and must implement any oper

ations not implemented by the abstract class (noted as subclass responsibility).
The render protocol is as follow s;

Render operation

1. If the frame counter is not a multiple o f the rendering lime resolution, just increment the

frame counter and return.

2. If this is the first frame to render, perform the start operation (subclass responsibility).

3. Perform cameras operation.

4. Perform lights operation.

5. Perform actors operation.

6. Perform fram e operation (subclass responsibility).

Perform expose operation.

Update render time.

Increment frame counter.

Operations fo r Cameras. Lights, and Actors

These operations check their list of objects to see if any have been changed since the last ren
der operation. For each changed object, they perform update cam era, update J ijih t , or up

date actor operations with the object name as an argument. Unmodified objects use the im

age from the previous frame. It is necessary to store the current image for each object as an

optimization to avoid recomputation.
Next we describe the subclass responsibility operations for a typical Tenderer called

Plugs*. Phigs-f is a graphics standard for three-dimensional displays that have a hierarchical

display structure.

1. S tan If the system is not initialized, open it. create a workstation, and set its update

mode to deferred.

2. Update camera queries the named camera for its viewing parameters and converts the

OSCAR camera parameters into Phigs+ parameters to form a view orientation matrix. It

inserts this matrix into the workstations view table.

3. Update hi;lit calculates the light direction vector by asking the named light for its focal
point and position. It also gels the color of the light and stores the direction and color in

the lieht table for the workstation.

/.

8.
9.

4. Update _actor checks to see whether its model has changed since the named actor has

changed. IT the model has changed, it applies a load operation to the model. I f this actor

is not in a Phigs+ actor group, the actor is added to the group and a segment is opened.

Then update_actor queries the status o f the actor’s position, color, orientation, and cre

ates the appropriate structure elements. Finally, the segment is closed and posted to the

workstation.

5. Fram e sets the background for the workstation, and tells the workstation to render all

segments.

These five operations are all that are required to add a new Tenderer to the system. Each op

eration performs one task that does not interact with the other tasks. The order of the opera

tions is enforced by the abstract Tenderer class.

19.6 IMPLEMENTATION

OSCAR is implemented using an object-oriented interpreter based on the C language. Tire

interpreter implements creation o f classes and objects, single inheritance, and operations

coded as text strings. Its syntax is similar to Smalltalk, with some extensions. The user in

terface consists of a parser that interprets operations o f the form:

object j ia m e message _seqttence

A message sequence consists of messages with optional arguments. The suftix of the mes

sage determines whether a message requires arguments. The following suffixes illustrate

message semantics:

? requests the value of an instance variable

= sets an instance variable

: has arguments but does not set an instance variable

@ defines an index

+. -. /. and * terminate arithmetic operations

Messages to one object can be concatenated on a statement. A typical statement is:

A c t o r r.ew : a B o p o s i t i or \ = (0, 5, 0)
r o t a t e : 3 0 c o 1 o : - [\ , C , 1) o n ! ;

Actor is a class that responds to the new: message by creating an instance of itsell with the

name aBox. Classes, when they receive new: messages, return a pointer to the new instance

that will receive the rest of the messages in the statement. This new actor receives ihe/v.v:-

tion= message, causing its position instance variable it) be set to (0.5,0). The remaining mes

sages rotate aiiox .30 degrees about its x axis, set its color to magenta (red = l. green=0.

b lue-1). and turn it on.
The system's knowledge of the problem domain, here computer animation, is kept w nh-

in the classes and not in the laneuacc.

19.6.1 Sam ple AmomalSl@in)

A simple animation illustrates the power of the animation system and the language. This

short animation shows a bouncing ball that starts at rest and moves along a path that simu

lates gravity. Here, we do not use an accurate scientific simulation of gravity but rather use
a sine curve to simulate the motion.

First we need an actor for the ball. We start it at (0.0,0). make it red. and give it a model
called ball_model.

& c z c r r;e v :: fea 1 i p o s i t : i o n * (0 , 0 , 0)

c o l o r - (1 , 0 , 0) model-* b a i i _ m o d e l ;

Now we need a modeler to describe the physical model o f the ball. For this example, we use

a Phigs* modeling primitive for a sphere.

? h ; g s _ s p h e r e new: b a i l model r a d i u s * . 5;

Phigs_sphere is a predefined class that creates a Phigs+ compatible representation o f a
i

An OSCAR camera is similar to a physical camera. We give it a position, a focal point,
an up direction, angle for the lens (view angle), and turn it on.

c a m e r a n e w : c a m e r a p o s i t i o n * (1 0 , 0 , 8 0) f o c a l _ p o i n r = (1 0 , 0 , 0)

v Lewj.ip- (0, i , 0) v i e w _ a n g 1 e ~ 3 0 o n !;

Wc also need lights to illuminate the scene. We place a light at the camera with the following

statement:

l i g h t n e w : l i g h t _ l p o s i t i o n * (e a m e r a _ - i p o s i t i o n ?)

f o c a i _ p o i r ; t - ' i c a m e r a _ l £ o c a l _ p o i . n t ?] i n t e n s i t y - - . 8 o n ! ;

Here wc used a message sequence with square brackets to take the results of one message.
position?, to use as an argument for another, p o s itio n -. This powerful construct is used

throughout computer animation. Even though the light object does not know about cameras,

the parser provides a simple mechanism to communicate state information from one object
to another.

Nov. we create a renderer, an object that will take the actors, cameras, and lights and

create one frame o f animation.

P h i $ 8 . n e w : l i g h t s ” l i g h t 1 c a m e r a s -■»c a m e r a 1

Next we define the cue that controls the motion o f the ball. !n this animation, the ball will
bounce once in six seconds. Although there are many ways to do this, we use half a sine

curve to simulate the effects o f gravity. To make the action more interesting We add a bit of
horizontal motion. The cue will start at time 0 and last for 6 seconds,

now: f.-iunpti
«f?vd t &!&£<» 6

i l j f t 1st fttiw: x ; s c a l a r n o w : y; *’

* i nk M i - f x * ?Jj / ‘i * { t b u ; : e o i f e ? : ; - * ,

* t V i ♦ ‘ V - r ' 4\ f~- £* t “* fT . *-• *f- •• * * V- f *• T A * M

W ..? x y /• * + t , Jf • i $ b ‘ / I t

.

»*

Scalar is a scalar number class. The message ”= ” sets the scalar instance's value, while the

message *7” divides the current value by its argument. Likewise, the sin! message changes

the scalar’s current value to the sine of its value. To set the value of the scalar, we send a “?”

message. Here, using our simple message passing parser, we have added an arithmetic capa

bility to the animation system. Remember, a cue sends messages to the parser whenever the

cue receives a message and the time is within the cue’s start and end times.

The last part of our script defines the scene.

sce n e new: s c e n e _ l
s t a r t _ a c t i o n s = " ! Scene 1 S t a r t s "
r e n d e r e r s = a R e n d e r e r c u e s “ bounce
end a c t i o n s = " ! Scene 1 C o m p le te "

The scene starts when it receives a start! message and runs until its clock reaches its dura

tion.

s c e n e _ l s t a r t ! ;

An interesting variation of the script places the camera’s focal point at the ball’s position, a

"follow the bouncing ball” effect. This will keep the ball in the center o f the frame. To ap

preciate this, we should place a few' balls o f varying size around on the floor of the room,

which we add as follows:

a c t o r new: room m o d e l= ro o m _ m c d e l ;
a c t o r new: b a l l l m o d e l = b a l i _ m o d e l p o s i t i o n s (5 , 2 , 0)

s c a l e ® (. 5 , . 5 , . 5) ;
a c t o r new: b a l l 2 m o d e l = b a l l _ m o d e i p o s i t i o n ® (5 , ” , 0)

s c a l e ® (. 2 , . 2 , . 2) ;
a c t o r new: b a l l 3 m o d e i = b a i l _ m o d e l p o s i t i o n ® (3 , 5 , 0)

s c a l e ® (1 . 7 , 1 . 7 , 1 . 7) ;
a R e n d e re r a c to r s * - (room, b a l l l , b a ! 1 2 , b a l l 3) ?

The fo llo w cue keeps the camera’s focal point on the ball:

cue new: f o l l o w d u r a t i o n ® [b o u n c e d u r a t i o n]
t i c k _ a c t i o n s = " a C a m e r a f o c a l _ p o i n t = [a B a l l p o s i t i o n ?] ; "

Then we add this cue to the scene:

scene 1 cues+ f o l l o w t im e = 0 s t a r t ! ;

Animations often evolve this way: one cue at a time. We might get more sophisticated and

simulate the ball squashing against the floor by changing its z scale factor. Another cue might

pan the camera around the room while the ball bounces.

19.7 LESSONS LEARNED

OSCAR made its first film in December of l l)84 when it consisted ol twenty live classes in

cluding actors, cameras, lights, cues, and Tenderers. Since its initial implementation. DSC AR

has grown to contain over ninety classes, fifty eight of which are subclasses ol the original

classes. Thus over half the classes share code w ith other classes.

During this project, we made several observations:

• Apply ing object modeling to animation produces a natural user interlace with terminol

ogy that is familiar to experts in the application domain.

The abstraction step of the design is critical and requires the most effort.

The object-oriented approach partitions a complex system into manageable pieces.

The system is less fragile than others we have written. We make changes and additions

without fear of breaking OSCAR.

19.8 CHAPTER SUMMARY

OSCAR is a three-dimensional computer animation system which produces high quality (ilm

and video sequences of the results of scientific calculations and experiments. OSCAR is ex

tensible and able to accommodate new applications and advances in graphics technology.
OSCAR was designed using the object-oriented paradigm and implemented in the C lan

guage. 'Hie jargon used in constructing OSCAR mimics that used in the traditional, manual
animation process: scene, cue. light, camera, and actor. Since the structure of OSCAR paral

lels the application domain, the resulting software is straightforward to use and understand.

OSCAR adopts the 'Mop-frame" metaphor. Each frame is constructed and recorded one at a

time: the resulting frames are played rapidly in succession to create the illusion o f motion.
The object, dynamic, and functional models are all significant for OSCAR. However,

most of O SCA R's development effort dealt not with the static data structure but with design

ing and programming various operations. OSC'AR's architecture closely follows that ol the

object model; most classes in OSCAR arc autonomous and correspond to entities in the real

world. To a large extent, the object design phase just added detail to the analysis models.
Nevertheless there w as some conversion o f application concepts to computer concepts, such

as the introduction of class M atri x to implement Cam era and /./g/ir behavior.

BIBLIOGRAPHIC NOTES

Computer animation is an active research area in the computer graphics community. |U iv*

bournc-7XJ describes the conventional animation process including topics on stop-frame an

imation. cartiKin animation, and Disney animation [Magnenal-Thalmann-KS) describes the

animation process and several computer animation systems. The A C M Special Interest
Group on Computer Graphics. SIGGKAPH. holds an annual technical conference on com
puter graphics and publishes proceedings each year in the summer. (R«»gers-K5) describe**

various rendering algorithms. [Wcinstock-Kb) show s how to do computer animation on per

sonal computers. (Hay ward-K-t J dehnes common computer animation terminology and tech

niques (Gaskill-XS) describes techniques that help make a good movie, whether it >s

computer generated or shot in your back yard with a portable video camera

REFERENCES

[Gaskill-85] A. L. Gaskill, D. A. Englander. How to Shoot a Movie unci Video Story. Dobbs Ferry. New
York: Morgan and Morgan. 1985.

| Hayward-84] S. Hayward. Computers fo r Animation. Boston. Mass.: Focal Press. 1984.
(Layboume-78] K. Laybourne. The Animation Book. New York: Crown. I978.
[Lorensen-89] W.E. Lorcnsen. B. Yamrom. Object-Oriented computer animation. Proceedings o f

IEEE NAECON. Dayton. Ohio, May I989. Volume 2,588-595.
[Magnenal-Thalmann-S5] N. Magnenat-Thalmann. D. Thalmann. Computer Animation: Theory and

Practice. Berlin: Springer Verlag, 1985.
[Rogers-85] D.F. Rogers. Procedural Elements fo r Computer Graphics. New York: McGraw-Hill.

1985.
|Weinsiock-86] N. Weinstock. Computer Animation. Reading. Mass.: Addison-Wesley. 1986.

EXERCISES

19.1 (7) Discuss the feasibility of using the object-oriented approach to extend OSCAR to the follow
ing applications. In each case, extend the object model and describe any operations that you add.
a. A system to add color to existing black and white movies. Input to the system is a digitized

movie. The user colors objects in selected frames and the system colors the same objects in
other frames.

b. A display for a flight simulator for training pilots. The system displays the view from the
cockpit of an airplane based on the position and orientation of the plane and a landscape da
tabase.

c. A video games display system. The system displays a background and several moving ob
jects under the control of the game.

19.2 (4) Identify the actors in the following animation domains:
a. Depiction of structure and transformations of molecules during chemical interactions. Mol

ecules are represented by ball and stick figures, where colored balls represent atoms.
b. Animated television network logos, shown on television during station breaks. Combining

the best of art and computer science, these animations are visually pleasing.
c. Analysis of mechanisms. Mechanical components, such as gears, cams, and pistons are mod

eled in motion.

19.3 (5) Describe how OSCAR could be used to simulate the glider described in exercise 12.2.

19.4 (4) Compare the design of OSCAR with that of the system described in chapter IS. Be sure to
discuss the differences in use of methods, global/local scope of operations. s\ stem architecture,
and relative importance of object modeling, functional modeling, and dynamic modeling.

19.5 (7) Using the syntax defined in this chapter, animate a scene in which you are viewing a bowling
alley from the perspective of a bug sitting at the bottom of a finger hole in a Km ling ball as it
rolls down an allev.

Electrical Distribution Design System

A computer-aided design (C A D) tool is a software system specifically designed to automate

all or pan of a design activity. C A D tools typically have an interactive user interface and are

graphics intensive. C A D tools are currently used in applications such as drafting, chemical
process design, mechanical design and analysis. HVAC (healing, ventilation, and air condi

tioning). integrated circuit chip design, printed circuit hoard layout, and piping and instru
mentation desien.

Hus chapter describes the O nc-IJnc diagram /-Alitor (O l.lli) , a C A D tool for designing

electrical power distribution systems. The system permits an engineer to lay out a power dis
tribution system as a network of components connected by buses and circuits. The editor is

controlled by li ved menus, pop up menus, and direct input to the diagram.
As w ith most user interlace applications. O l.lli is dominated by the dynamic model. The

object model is also significant. but the functional model is relatively unimportant. The most

difficult aspect of developing O l.lli was the requirement to integrate with several existing

subsystems, a graphics system, a database manager, and a menu system. These subsystems

had various quirks, (law s, and performance overheads, which O l.lli had to overcome in or

der to provide lively and natural user interaction. O U li illustrates the interactive interface

architecture descried in Chapter V.

20.1 B A C K G R O U N D

A "on e-lin e d iag ram " (Russell 7K| is a schem ata d raw in g of an e lectrical pow er system that

uses a concise, standard notation accepter! bv a ll pow er engineers. O n e -lin e diagram s get

their nam e Iro tn the tact that only one phase o f a three phase s\ stem is shown Standard sy in

b o h arc used to represent com ponents of a pow er system , such as transform ers , c ircu it

breakers, generators, fuses, and v.v itc lies [A N S I -75) ('ireu ils and buses connect the standard

sym bo l-.. H ie d istinction betw een circuits and buses is based m i e lectrical voltage drop. C ir

cuits are connections w ith m easurable voltage drop (especia lly il there is a short c ircu it on

the power system) and are typically implemented with wires, cables, or transmission lines.

Buses are connections with no appreciable voltage drop and are usually implemented with

large cross section aluminum, copper bars, or pipes.

A sample portion of a one-line diagram is shown in Figure 20.1. Two high voltage < 138

K V) buses are shown. Arrows at the top of the diagram indicate sources of power, such as a

utility. Arrows at the bottom indicate loads. Circuit breakers are shown as squares: trans

formers are indicated by zig-zag lines. The small solid dots distinguish connecting lines from

overlapping lines. Four separate sources are connected to the two high voltage buses through

nine circuit breakers. By selecting which circuit breakers are open and which ones are

closed, the power system operator can configure the power supply to the three transformers

in several ways. This would allow one bus to be disconnected during construction of addi

tional circuits, for example. The loads on transformer 1 and transformer 2 can be served by

either transformer by closing the breaker that connects the two secondary buses.

T h e m o tiva tio n fo r d eve lo p in g 01.11: derives Iro m recent advance'' in com puting tech

no logy. H m ’ incers o l various d iscip lines w ou ld like to replace the old analvsi^ >o ltw .itc do-

veloped tw enty years a no that operates in hatch m ode and requires that input he subm itted

as card im aues. A m ore natu ia l approach to spec it \ inn a s im ulation is to draw a d ia e ta m on

the screen atul annotate the draw ini: w ith desired design conditions. I Ins now appioach pet

nuts menu d riven interaction and possihh interaction w ith the s im ulation p ro inam dm m e its

execution. l ;or exam ple , an engineer can check on (lie convergence ol a s im u lation oi vbanco

desnm conditions as a com putation proceeds.

20.2 PROBLEM STATEMENT

Several sources were used to determine functional requirements, including marketing stud

ies. customer requests, examination of other graphics editors, and the experience of the

O LIE software designer as an electric power engineer. Marketing studies envisioned that
O LIE would integrate with other computer-aided design and engineering software tools used

m architecture, engineering, and construction (A EC) applications through common project

databases, as shown in future 20.2.

1 I
i One-Line Editor Electrical

(OLIE) Analysis

'i'

V

; Project ;
1 Database1

/ 1» i
\ l rJT-

Other Engineering
| and Design j
i Interfaces

/ \

Electrical
Applications File
Generator

N .

Flat
Files

V J

fig u re 20.2 Integration ol O l. l l i with other applications

20.2.1 Functional Requirements

O I.tE must store its data in a database to be managed In a database management system

tOH.MSi. At first, this nuv seem to lv an improper "requirement” and appear to he a possible

decision that could result from anal) sis of the "true" requirements. However, the O U E soft
ware is not intended to iv an end in itself hut merely one of a suite ol tools that electrical

power engineers would use to perlomi their work. I Inis O l.lli must interface toother power
enginecrim: programs The requirements analysis tor this larger system lead to the conclu

sion that O f If. must use a database
B% defin ition . O l . l f . must provide basic com m ands for ed iting one-line d iagram s, M id i

a.s create, pan. /m in i. drae. m ove. copy. p ick, and pul O K IE must have a liv e ly response so

(fiat it does not interrupt the it er's tram of thought. The user interface tmisi he natural lo r n

gingers who are not com puter experts.

O l . l f - must perm it data to Iv sh.ucd am ong users, app lication program s, and projects

T h e s v stem must perm it porttotis of a design to t v locked tor periods of extended w ork

Ih e se extended duration lode- jv rrm t work that mas !a-.t tor dav s ot weeks, m contiast to

the ord inary database transactions (hat com plete in a matter of seconds. A typ ica l O l . l l i user

has several active projects at a tim e: m u ltip le engineers m ay w o rk on each project. L ib raries

o f in fo rm atio n , such as d raw in g sym bols, span m any projects.

O L IE must recover from storage m edia fa ilures, com puter fa ilures, and softw are errors.

T h e so ftw are m ust be portab le to o th er h ard w are , o p era tin g system s, and so ftw are sub

systems. inc lud ing new graphics hardw are. O L IE m ust be extensib le to include new func

tions and n ew ap p lica tio n program s and be eas ily m ain ta ined . Engineers m ust be able to

generate repons about a po w er d is tribution system in several form ats.

20.2.2 Architectural Requirements

M anagem ent required that O L IE be b u ilt on several in-house softw are packages:

• a graphics system for creating , selecting, and ed itin g sym bols, text, and straight lines.

• an interface fo r inserting, de le ting , updating, and query ing the database,

• a user interface system fo r d isp lay ing form s and m enus and recogn izing user input, and

• an in-house ob ject-orien ted program m ing language.

20.3 ANALYSIS

20.3.1 Object Model

The object model comprises live modules: packaging, electrical properties, geometry,
grouping, and connectivity. The packaging module contains the high level structure for a

project: A project consists of multiple one-line diagram draw ings, each of which is further

organized into one or more sheets. The electrical properties module defines attributes for

each electrical component. Geometry describes the appearance of electrical items on the

screen. Grouping describes the construction of composite items from simple items. The con

nectivity module captures the correspondence between a diagram and an electrical network.

The actual modules have much detail that is not shown; here we just show the basic

structure. We have shaded classes that are shared between modules.

Pocko^in^ M i nitric

The packaging module (Figure 20.3) hierarchically organizes data for user access. The class

O LIE root has a single instance that provides a context for library and project names. A cus
tomer may have one or more projects active at the same lime, each identified by project

name. Within each project there are several drawings, each qualilicd by a drawing name. A

drawing name is unique w ithin a project but max be reused in other projects. A drawing has

multiple sheets that are also named.

l hete may be several symbol and macro libraiies. Each project is assigned one symbol

librarv and one m acro librarx. A svm bol is an icon that has m eaning w ith in the context ot a • * *
one-line d iagram : thus for instance, paralle l /n : - /a n lines denote a transform er. A m acro is a

usei delined grouping ol sym bols. buses, and circuits. A m acro or a sxm bol is quah lied by

Figure 20.3 Packaging module

name within us library, so the same name mav he used in several different libraries. A library
* *

may be used m several projects.
A section is a rectangular region of a one-line diagram containing a collection of items,

such as symbols, buses, and circuits. A section is the smallest unit of access control to a di

agram. as different sections can be edited by different engineers concurrently. Sheets, buff
ers, and macros are all sections. A sheet is the lowest level in the project hierarchy containing

a portion of a one-line diagram. A buffer contains a portion of a one-line diagram involved

in an editing operation. Since sheets, buffers, and composites all contain the same type of

items, generalizing them into a section permits code reuse.

lit a tric iil l Jropcrtic\ Module

The electrical properties module (Figure 20.4) defines electrical properties for components

in a power distribution system. The purpose of this module is to define attributes of classes;
this module contains no associations. Circuits come in two varieties, cables (underground)

and transmission lines ialx>ve ground I. each inheriting common attributes from circuit. Bus

segments have simple structure tin ts come in many different varieties, such as transformers

and circuit breakers. The attributes m this module do not appear on the one-line diagram;

their values are entered by the engineer on pop-up forms.

G e o m e t r y M o d u l e

The geometrs module (Figure 20.5> describes the layout of a onc-lmc diagram on the screen.
Circuits and bus segments, collectively called path items, are drawn as polylines (connected

line segments) with user set width Units arc represented with arbitrary symbols chosen from

Figure 20.4 Electrical properties module

Figure 20.5 Geometry module

the symbol library. Each symbol is constructed from geometrical shapes. Each symbol has a

fixed number of predefined connection points, or pins, which can be connected to pins of oth

er symbols on the diagram. Each path item has two pins, one at each end o! the polyline.

O nce (w o pins are connected, they rem ain connected as the item s are m oved on the screen;

the d iagram is adjusted as necessary to m ain ta in the connection.

Grouping M odule

O L IK supports tw o types o f grouping o f item s, equipm ent and bus sets (F ig u re 2 0 .6). E q u ip

m ent is a group o f e lectrical com ponents purchased as a single unit, genera lly in a m etal cab

inet. and is shown on a one-line d iagram as a dashed rectangle enclosing the corresponding

units, c ircu its , and buses. A bus- set is a group o f bus segments in a o n e -lin e d iagram that

constitute a single physical un it. E quipm ent and bus sets are s im ila r in that each is a set o f

one or m ore item s. Item s nutv be lone to at most one set.

Connectivity Moduli

Figure 20.6 Grouping module

Fheconnectivity module (Figure 20.7} relates the physical connections in the diagram to the

electrical connections in the power system, rjtt* one-line diagram editor and electrical anal
ysis programs each have a slightly dilierent view of a power system. The. editor regards a

one-line diagram as consisting ut an interconnected network of symbols, buses, and circuits,
Editing operations such as move, copy, and cut must quickly determine broken connections

ami buses and circuits that are stretched or CuntpresMxl, Electrical analysis programs view a

power s>stem as an electrical circuit: a btanch and equipotential representation, similar to

r ->

[Item j pm » \
! I" -- - -

f ’-----V jl

I

. . A . , ,

Equipotential

,--------& -----

{ P in id . _ — a| C onnection^
* 1

J
! I k--- —

an edge-vertex graph. A branch is a tw o port c ircu it e lem ent that relates e lec trica l current

through the branch to the vo ltage d iffe rence across the branch. Ports o f branches are con

nected together in an equ ipo ten tia l. A ll ports connected in an equ ipotentia l are at the same

voltage. T h e sum o f the currents entering an equ ipotentia l is zero.

T h e m apping from sym bols, buses, and c ircu its in on e-lin e d iagram s to branches and

equipotentia ls as an equ iva len t e lectrica l c ircu it is not tr iv ia l. A s im p le exam ple is shown in

Figure 2 0 .8 . W ith the c ircu it breakers closed, the tw o buses are equ ipotentia l.

Electrical equivalent

Figure 20.8 Mapping a onc-linc diagram to an electrical equivalent circuit

O ne com plication is the nam ing o f branches and equipotentia ls . In order to interpret the

results o f analysis program s, it is necessary to un iquely id e n tify branches and equipotentials.

A t first g lance it w ou ld seem that this could be done by s im p ly nam ing sym bols, c ircu its , and

buses. H o w ever, several com plications arise. T h e e lectrical m odel o f a sym bol depends on

w hat it represents. S o m e sym b o ls , such as tran s fo rm ers and c irc u its , represent c irc u it

branches, w h ile others, such as sw itches and buses, represent connections. H ie user could

inadverten tly assign m ore than one nam e to an eq u ipo ten tia l. by nam ing the buses on e ither

side o f a sw itch , as show n in F igure 2 0 .9 .

A
Bus 1 —O

- o

Bus 2

Figure 20.9 Ambiguity in assignment of names to buses

Ideally, C U E should check the uniqueness of names in the electrical model any time a

name is created in the one-line diagram. At the worst, there should be a graceful way of cor

recting the situation when the input liles for the electrical applications are created.
In the geometry module in Figure 20.5. symbols, bus segments, and circuits have pins

for making connections. Pins that are electrically joined together are associated with a com
mon connection. l:quipotentials, pins, and connections map between the representation of

the one-line diagram as symbols, buses, and circuits and the branches and nodes. Branches

are not explicitly shown in the model, because they ate easy to determine.

20.3.2 Dynamic Model

Since O L IE is an interactive editor, the dynamic model and the user interface are essentially

the same thing. After revisions to the object model became infrequent, we began designing

the user interface. We examined other graphic editors and selected the features with the best

"look and feel.” We grouped user interactions by function, such as display control, editing,

traversing the project hierarchy, and so on. and developed scenarios.
Then we designed menus and specified mouse behavior. The left mouse button selects

items from the diagram or commands from fixed menus. The middle button extends selec
tions. The right button select commands from pop-up menus. Sometimes, selecting a menu

item would raise another menu. The depth of menu nesting was limited to three, as we fell

that deep nesting would be confusing to users.
We culled the scenarios for atomic operations, such as select, move. copy, delete, mirror,

and display text. We constructed dynamic models for each operation, some of which are dis

cussed below.

Adding Bus Segments and Circuits

The user creates a series of alternating horizontal and vertical line segments with a series of

mouse operations. O LIE automatically connects to symbols and other circuits or buses. Fig

ure 20.10 shows the dynamic model for adding bus segments and circuits. The two differ

slightly because bus segments can “dangle" without being connected to anything, while each

circuit runs between a pair of pins.

Add bus\
segment l

comman^

point

Horizontal

do. draw horizontal fino and

(connected)

i i J w i / i / f i i i f 1 oo. vjf<iw nonzon ia i uno point (|dx| jid y l] V jeS{ connection to pins
V

^ First

| point (|dy|<|dxH (Vertical

do draw vertical imo and 1 (connected)
\ t e s t connceiton to pms J

C

Horizontal ■\
M do draw horizontal lino and

(conncctod)
I a i t i, i. . t - i + i if" l wv uMV/ Horizontal iin v
■ point (Jd x j' Id y j j \ je s t connect-on to p-nr.

\ (connected)
circuit

v.

.command
--------First j pant

T
| point (o)

Vertical

* /
_ t____

\ point (' W,MVW1 \
->j ^ d raw w h e a t Itm? *irvd Yc

\ toM coonoct-on to pn'. J Iconnoctoa]

Adding hems

Items can be symbols or macros. They are identified by name from the library, followed by

a location at which the image of the item is drawn on the diagram as shown in Figure 20.11.

Multiple copies of a symbol can be added by clicking on a series o f points. The user must

indicate when to stop adding items by choosing done.

Selection o f Geom etry

In Figure 20.12, buses, circuits, symbols, and text are selected individually or in groups for

further operations. The left mouse button starts a new selection while the middle button adds

items to an existing selection. I f either button is pressed and released, then an item (if any)

near the mouse point is selected. I f either button is pressed, held, slid, and released, all items

(if any) enclosed in the rectangle between the down point and up point are selected. The de

tails of press-hold-slide-release are not shown on the dynamic model. Such details belong to

the model of the graphics driver that captures mouse events. Instead, the diagram shows left

and left region as distinct logical events.

I he lunctional model lor the Ol.lF. system is shown in Figure 20.1 As with main interac

tive editors, the lunctions in the system are mostly trivial, since the purpose of the s\ stem i»

to interact with the user to build data structures. It is not usetul to prepare lower-level data

How diagrams for the editor or project control. The electrical analysis is the only significant

pan of the functional model. Electrical analysis is performed by external stand-alone pro

grams. so their internal functional models are generally inaccessible (it is useful to prepare

a list of the inputs to each one. however). The extract connectivity process is the only part of

the analysis that is part of the OL1E system proper.

Figure 20.13 Functional model of OLIE system

(tmnee livity E x ira iiu m

M om of the cHort in preparing input files for application programs derives from converting

symbols, buses, circuits, pins, and connections to branches and ec|uipoientials as shown in

Figure 20.14. The conversion algorithm starts by assigning an ec|uipotenliai to each pin. All
puis ol a given bus are assigned the same equipotential, which is given the same name as the

bus. Symbol and circuit pins are given their own unnamed equipotentials. The next step is

to stan all connections, merging the set ol equipotentials for each connection into one equi-

potentml. I he name given to the merged cquipoientinl depends on how many names are be
ing merged. It there are no names, the merged equipotential is not given a name. If there is

exactly one name, the merged equipotential is given that name. If there are several names,
thv merged equipotential is given one ol the names, and a warning is issued.

pms -- .

0:

■y assign equipotentials m e r g e ' ' .
- / e q u ip o te n t ia ls / ' c o n n e c tio n s)

connections /

merged
^ equtpoieniials

H tfurc 20.14 ('ttiuicf, (n i(\ cxtr.ictmn

20.4 SYSTEM DESIGN

We feared that it would not be possible to simultaneously satisfy the requirements that we

store one-line diagrams in a database, support data sharing, and provide a fast, lively user

interface. We considered the possibility of OL1E directly interacting with the database, but
benchmark testing revealed that response would be too slow to support a lively user

interface.
A related problem was that of database synchronization and rollback. The graphics sub

system stored its data in flat files apart from the database. This raised issues o f how to syn

chronize the flat files with the database, taking into account the problem of database rollback.

We considered several system architectures. The final solution, shown in Figure 20.15.

used a database shadowing subsystem (Premerlani-90|. The shadowing subsystem intercepts

all database operations and converts them into memory operations when possible, accessing

the relational database at limited intervals. The shadowing system requires that chunks of

data must be checked out of the database, manipulated at memory speed, and then checked

into the database again. In this application, database checkout is not a handicap because it is

undesirable to allow two engineers to edit the same part of the design simultaneously.

Operations access stored data through the shadowing module. Since the relational data

base maintains concurrency control, each O L IE execution can operate as a single-user pro

gram without having to worry' about concurrency.
Operations access the graphics display through the graphics subsystem, which displays

the one-line diagram and stores graphical information in flat files. The editing module main-

Arrows show dependence ol client module on supplier module.

tains the consistency of the database and the Hat files. Graphical information is stored redun
dantly in the database and the Hat Hies to boost performance. Normally, the graphics system

stores graphical information in the flat tiles and the shadowing system stores graphical and

other information in the database. In the event that the information in the Hat tiles becomes

inconsistent with the database, the shadowing system rebuilds the Hat liles through the

graphics system.

We w ere willing to trade-off additional memory and storage space for performance and

functionality. Users of this system require high-performance workstations anyway, so this

trade-off is reasonable.
The names in a diagram must be unique. We decided to defer checking uniqueness of

names until the user is done editing. Incremental checking o f names would have greatly

complicated the concurrency constraints among multiple users, and a survey of users showed

that they were satisfied with deferred check inn.
Database checkout also permits OL1E to support the notion of a /one transaction, (hat

is a transaction that lasts for days or weeks, in contrast to the usual database activity that tran
spires in a matter of seconds. An engineer's work may be internally inconsistent during a

long transaction; thus engineers can freely pursue their work and at the same time O W E can

satisfy database integrity requirements.

Our implementation of control adopts the event driven paradigm and is based on an ex
plicit state diagram organized into a tree, called a state tree (see Chapter 5 and Section 20.5).

All input events cause state transitions within the tree. Menus are enabled and disabled by

the state tree control; in turn, user menu selections generate input events interpreted by the

control. Transitions in the tree force the execution of actions, such as cut. paste, and move.
We implemented control u uh state trees, instead of 1 larel's statecharts (we regard statecharts

as a superior approach) for historical reasons. We had an implementation of state trees avail
able in-house: OW E was developed lx;lore we became aware of I larel's work.

20.5 OBJECT DESIGN

Object design was straightforward, given the analysis and architecture decisions. The graph

ics, database, slate tree, menuing. lorms editing, and electrical analysis subsystems were all
predefined. Hie mam work with these subsystems was to properly set up input parameters.

Considerable effort went into the layout of menus, forms, and item attributes, but we will not

reproduce the details here. The hulk of the work involved the editor: the high-level interac
tive llou of contro l (|mlicy > and the low level opeialions (implementation).

20.5.1 State Tree Control

Because o f the im portance of the user interface, w e paid particular attention to the dynam ic

m odel W c used a san atio n of the state-event m odel called a stale tree lo c o n tio l the user in-

lertacc. (See C hapter 5 .i S late Wees are a technique for organizing states into trees and a t

taching events to tree n o d e , to share com m on structure and behavior, perm itting a layered

decom position o f contro l structure-, and the e lim in a tio n or redundant in h u m a tio n Events at

(ached to slates specify how events are interpreted and can be inherited by substates. just like

attributes and operations on object classes. Entry and exit actions attached to states specify

the effect of entering and leaving a state. Because states are organized into a tree, a substate

cannot be entered without its superstate being entered so that the entry (and exit) actions are

inherited as well.

A state tree is equivalent to a H ard state diagram in which subtrees are nested states

within the superstate representing a tree node. The entry and exit actions on the tree nodes

are equivalent to entry and exit actions on the nested state contours.
State trees naturally support a menu driven interface. Each menu entry causes a transi

tion to a given state. Any menu entry can be selected in any state because the exit actions of
the current state allow it to be cleaned up regardless of the user command.

The state tree used in OL1E consists of two separate trees: a main tree and an auxiliary

tree. The main tree contains states normally encountered during user interaction. A ll main

states are mutually exclusive; the user can only execute one main command at a time. The

auxiliary tree handles user interrupts without losing the context of the main tree. For exam

ple, OL1E has pan and zoom commands that can be picked at any time, even in the middle

of other operations. Pan and zoom commands retain control until the user exits from them,

at which time control returns to the main tree.

One feature o f state trees that O L IE exploited is that menu organization does not have

to reflect the state structure. This eliminates the problem frequently encountered in other ap
proaches in which a series of "quit" or “exit” commands are needed in changing context.

20.5.2 Main Tree

A portion of OLIE's main tree is shown in 1-igure 20.16. The tree is organized according to

command functionality with subdivisions within each kind of command.
r

Only some states arc shown. When the program starts, it enters the In itia lize state, w hich

displays the fixed menus, performs initialization, and transfers control to the Select sheet

state, which allows the user to select an initial sheet for editing. Utilities substates create re
ports. composites, plots, or the liles needed by electrical analysis programs. Aila geometry

substates create items in one-line diagrams. The Exit state queries the user to save any chang
es that have been made. The exit command can be picked by the user at any time, because

any command in progress is cleaned up by the exit functions on the state tree path from the

current state to the Exit state. Layout substates perform editing operations such as pick. put.

move, and copy. Annotate substates pop-up text forms to enter electrical parameter values.

20.5.3 Auxiliary Tree

The auxiliary tree, shown in Figure 20.17. contains states for commands that can interrupt

other commands. Pan-zoom is used for chaneine the viewpoint of the one-line diaeram. Dis-

p in v unntm l changes displa\ options such as the visibility ol a end or text. .sY/*v; v

provides control for selecting elements of the one-line diagram. is used to

chance the orientation or si/e of selected elements.

Initialize

Exil

Select
Sheet

Add
Geometry Circuits

Symbols

Figure 20.16 Main Male tree

Figure 20.17 Auxiliary state ticc

20.5.4 Low-level Operations

Objects v.erc implemented directly from the analysis model m an object-oriented language

using association objects to directls implement associations. The same objects are stored in

memory and in the database (tile shadowing subsystem uses memory to cache the database!.

EXERCISES

20.1 (8) Relational database operations (insert, delete, update) in OLIE are buffered in memory with
a checkout/check-in scheme. When a user wishes to edit a sheet. OLIE locks the sheet and reads
all records from the database belonging to the sheet. Each record is converted into an object in
stance in memory and tagged with a state that is used to determine what should be done to update
the database when the user saves editing changes or checks the sheet back in. As the user edits
the sheet, OLIE updates the tags. Possible states are Same, Different, Not Inserted Yet, and Not
Deleted Yet. Same indicates that the object instance in memory contains the same data as the
record in the database. Different means the instance has different data than the corresponding
record. Not Inserted Yet indicates the instance is due to be inserted into the database. Not Deleted

Yet means the instance is due for deletion from the database. When objects are copied from the
database, they are placed in the Same state and remain in that state unless they arc updated or
deleted. Newly created objects are in the Not Inserted Yet stale. Objects that need to be deleted
are placed in the Not Deleted Yet state. Each time an object is accessed, its new state is deter
mined from the operation and the old state. The operations arc inscn(new data). </e/er<’(object).
updateiobject). ,w/ve(set of objects), and /w«/(portion of database). Some operations may undo
others. For example, an insertion can be elided with a subsequent deletion.

Figure E20.I is a partially completed state diagram for updating tags. Initial and final states
arc missing as well as activities, actions, events, and so forth. (Refer to Chapter 5 for a discus
sion of initial and final states, which in this case are used to allocate and deallocate memory used
for objects.) Complete the diagram. Be sure to show what needs to be done for a save operation.
Some helpful hints: objects in the Same state do not require any action during a save operation,
since the data in memory is the same as that in the database. Certain operations are illegal on
objects in certain states and need not be shown. An update operation on an object in the Not In
serted Yet state leaves it in the same slate, since the database docs not yet know about the object.
The only legal operation on an object in the Not Deleted Yet state is save, which requires the
corresponding record in the database to be deleted and the object to be terminated.

Figure E20.1 Partially completed state diagram for a system to buffer database operations by
shadowing records with object instances

20.2 (7) A commonly occurring problem in the design ol graphical diagram editors which preserve

connectivity is that of detecting bridging networks. For example, if some symbols in a network

are moved, some lines in the network may require adjustment to accommodate the relative dis

placement between symbols that are being moved and those which are not. Three ways of mod

eling connectivity are show n in F'igure E20.2. Figure E20.3, and Figure E20.-J. In each case, net

works may connect many symbols, and symbols mav be connected to many networks. A gixett

network may be connected several times to a given symbol, ami more than one network nu> be

connected to a symbol at the same place. In bijnire 1:20.2. the object class, /V * ; . the place on

a symbol where a connection is made or the end ol a branch ol a network where it is connected

to a symbol. Figure E20.3 shows the result of eliminating the Port class. A connection is the at
tachment point of a network to a symbol. Figure E20.4 is a Iurther simplification.

S ym b o l

Figure E20.3 Connectivity object diagram

Figure E20.4 Connectivity object diagram

For each diacram. describe how you would accomplish the following operations. If an oper
ation cannot l>e earned out using one of the diagrams, explain w hy not.
a. Two vet.% of symbols arc given, a set of all symbols and a set of symbols that have been sc-

keted for a moving, cutting, or copying. The output of the operation will be three sets that
partition the set of all networks: The set of networks that are connected only to selected sym
bols. the set of networks that are connected only to unselcctcd symbols, and the set of bridg
ing networks that arc connected to both selected and imsclectcd symbols.

b. Given a symbol, fmd any networks that form more than one connection with the symbol,
c. Given a network, find all symbols that are connected to it.
d. Make a copy of a vet of selected symbols. Also copy networks which are connected entirely

to symbols which arc selected. Ignore bridging networks.
e [X'tcnnmc all symbols that arc connected directly or indirectly to it given set of symbols

(transitive closure)

20-3 <f>‘) Hie dilemma of how 1 0 make copies frequently arises in the design of graphics editors.
Methods can be broadly categorized into shallow copy and deep copy. Shallow copy melhtxJs
simply create a reference in (he objcctiM being copied.. Deep copy involves copyiitg the contents
of the obpxtKi bemg copied, including any ohject.MM that it refers to. Hie choice depends cm
the application ho; c;u.h of the following cops operations, discuss the relative merits of the two
approve lies

a. Copy oi a library object, such as symbols or macro',, mto a sheet (see Figure 20.3).
b f op) O-J sheet from an old project into a new one After the sheet is copied, tt will Ik edited.

ivdttmg change* to ifte new sheet should not affect the old sheet
c. 0 opy of selected amts from one place on a sheet to another.

EXERCISES

20.1 (8) Relational database operations (insert, delete, update) in OLIE are buffered in memory with
a checkout/check-in scheme. When a user wishes to edit a sheet. OLIE locks the sheet and reads
all records from the database belonging to the sheet. Each record is convened into an object in
stance in memory' and lagged with a state that is used to determine what should be done to update
the database when the user saves editing changes or checks the sheet back in. As the user edits
the sheet. OLIE updates the tags. Possible states are Same. Different. Not Inserted Yet. and Not
Deleted Yet. Same indicates that the object instance in memory contains the same data as the
record in the database. Different means the instance has different data than the corresponding
record. Not Inserted Yet indicates the instance is due to be inserted into the database. Not Deleted

Yet means the instance is due for deletion from the database. When objects are copied from the
database, they are placed in the Same state and remain in that state unless they are updated or
deleted. Newly created objects are in the Not Inserted Yet state. Objects that need to be deleted
arc placed in the Not Deleted Yet state. Each time an object is accessed, its new state is deter
mined from the operation and the old state. The operations are inserdnew data), deleteiobject).
updatei object). .v«vc(set of objects), and load(port ion of database). Some operations may undo
others. For example, an insertion can be elided with a subsequent deletion.

Figure E20.I is a partially completed state diagram for updating tags. Initial and final states
are missing as well as activities, actions, events, and so forth. (Refer to Chapter 5 for a discus
sion of initial and final states, which in this case are used to allocate and deallocate memory used
for objects.) Complete the diagram. Be sure to show what needs to be done for a save operation.
Some helpful hints: objects in the Same state do not require any action during a save operation,
since the data in memory is the same as that in the database. Certain operations are illegal on
objects in certain states and need not be shown. An update operation on an object in the Not In
serted Yet state leaves it in the same state, since the database docs not yet know about the object.
The only legal operation on an object in the Not Deleted Yet state is save, which requires the
corresponding record in the database to be deleted and the object to be terminated.

Figure E20.1 Partially completed state diagram for a system to buffer database operations by
shadowing records with object instances

20.2 (7) A commonly occurring problem in the design of graphical diagram editors which preserve
connectivity is that of delecting bridging networks. For example, if some symbols in a network
are moved, some lines in the network may require adjustment to accommodate the relative dis
placement between symbols that are being moved and those which are not. Three ways of mod
eling connectivity are shown in Figure E20.2. Figure H20..L and Figure K20.4. In each case, net
works mav connect mam- symbols, and svmbols mav be connected to mans networks. A civen

• • • * • < V

network mav be connected several times to a given svmbol. and more than one network max be « *■ < •
connected to a symbol at the same place. In l*igure H20.2. the object class. Port, is the place on
a s\ inlxi! where a connection is made or the end ot a branch of a network where it i\ connected *

to a >\mbol. Figuie E20.3 shows the result oi eliminating the Port class. A connection is the at

tachment point o f a network to a sunbol. Figure 1:20.4 is a further simplification.

Symbol Network

Figure E20.3 Conncctivit\ object diagram

I------------- 1 I
| Symbol D---------------------------------a Network

Figure K20.4 Connectivity object diagram

For each diagram, describe how you would accomplish the following operations. I f an oper

ation cannot Iv carried out using one of the diagrams, explain why not.

a Tw o vets id symbols arc invert, a set of all symbols and a set of symbols that have been se-
/ •« . *

lected tor a m m mg. cutting, or copying. The output of the operation w ill be three sets that

partition the set of all networks: The set o f networks that arc connected only to selected sym

bols. the set of networks that are connected only to unselecicd s> mbols, and the set of bridg

ing networks that are connected to both selected and unselectcd symbols.

b (m e n a swnhol. find am networks that form more than one connection with the symbol.
• * •

c (m e n a network, find all ss mbols that are connected to it.

d Make a copy oi a set of selected symbols. Also copy networks which are connected entirely

to symbols which are selected. Ignore bridging networks,

c Determine all symbols that are connected directly or indirectly to a given set of symbols

(transitive closure;

20J i.h; Ihc dilemma of how to make copies frequently arises m the design of graphics editors.

Methods can be broadly catcgori/cd into shallow copy and deep copy. Shallow copy methods

•amply create a rclercnie to the objeett m bang copied. Deep copy involves copying the contents

of the ohtccKs; bring copied, including any objccls(s; that it relers to. The choice depends on

the application for each of the pillow mg copy operations, discuss the* relative merits ol the two

appftMche-s

a (opy of a library objcii. -null as symbols or macros, into a sheel (see Figure 2<M).

b Copy of sheet from an old project into a new one After the sheet is copied, it w ill Ik* edited

Id itm g changes to the new sheet should not aflcvt the old sheet,

c Copy ot selected tt?m\ from one pkuc on a sheet to another

20.4 (5) Modify the state trees in Figure 20.16 and Figure 20.17 so that the pick, put, move, and copy
operations can be performed at any time, including in the middle of adding geometry to a sheet.

20.5 (6) Prepare a list of types of diagrams in which connectivity is important, such as electrical sche
matics, data flow diagrams, and decision trees. Include as many as you can think of from a wide
range of disciplines. Discuss similarities and differences in connectivity rules. For example, are
networks binary or n-ary? Are edges directed or undirected? Are connections allowed anywhere
on symbols? Does the location of a connection on a symbol convey any meaning? May networks
be connected directly to other networks? Can networks be connected together? Does it make any
sense to allow ends of networks to be unconnected? Are there any restrictions concerning how
many networks may be connected at the same point?

20.6 (7) The system described in this chapter was built on top of 6 existing software subsystems: a
relational database, an object-oriented language with a container class library, a windowing sys
tem, a menuing system, a graphics system, and a C run-time library. The object-oriented lan
guage was a C preprocessor. For various reasons, none of the subsystems could be modified in
any wav. Several problems arose because the subsystems were developed independently. Dis
cuss workarounds for each problem:
a. Name clashes. During software development, the linker frequently complained about multi

ply defined symbols caused by the same name being used in two or more of the subsystem
libraries, including the C run-lime library'.

b. Preprocessor incompatibilities. Some subsystems used preprocessor constructs that were il
legal for the other preprocessors.

c. Mcmorv allocation. Each subsystem used dynamic memory allocation. There were several
* • •

different strategies used. Some of them did not check to see if memory was actually allocated

successfully, resulting in momon fault errors.
0 W w

d. Interrupt processing. Some subsystems performed input/output synchronously, others asyn
chronously. Two subsystems intercepted keyboard interrupts.

20.7 (7) Repeat the previous exercise, this time assuming that you have a free hand to change any of
the subsystems.

Appendix A

OMT Graphical Notation

All of the graphical notations that arc used to build the object model, dynamic model, and

functional model have been summarized on the inside covers of the book. Those four pages

should be useful as a quick reference while constructing or reading diagrams. We caution

you not to simply give those four pages to a novice and expect that person to understand

them. To understand the concepts being represented, refer to the chapters o f Part I. To learn

how to apply the notation and concepts within the software development life cycle, the chap

ters in Part 2 should be consulted. If you find you need to review any of the concepts repre
sented graphically here, use the index to locate the explanation in the book.

With the exception of the label for each construct and a few descriptive comments, all

of the diagram elements, text names, and punctuation symbols shown are intended to be part

of the notation itself. The names in these diagrams (such as Class, attribute- / , operation, and

t'trm -2) have been chosen to indicate what kind of element they are examples of. You may
wish to modify the syntax of names and the declarations of attributes and sienatures to make • » •*
them consistent with the syntax of your implementation language.

Most of the items shown are optional, especially during early stages of modeling, liven

»n design, it is unw isc to overspecify by including names and notations that are not needed.
f;or example, when an association is labeled by Us role names, it is usually not necessary to

give the association itself a name. Wc have not indicated which elements are optional be

cause we wanted to show only the actual O M T notation wherever possible, without obscur

ing it w ith an additional meta-notation.
Similarly, there arc a few constructs that you may never need to use. We have placed the

more important constructs toward the top of each page. In most of our work we use only

about one third of the notation, but the additional constructs are occasionally necessary.

Appendix B

Glossary

abstract class a class that cannot have direct instances but whose descendants can have

instances.

abstract operation an operation defined but not implemented by an abstract class. The

operation must be implemented by all concrete descendent classes.

abstraction a mental facility that permits humans to view real-world problems with varying

degrees of detail depending on the current context of the problem.

action (in dynamic modeling) an instantaneous operation. Actions are associated with

events and are usually formal in nature.

activity (in dynamic modeling) an operation that takes time to complete. Activities are asso

ciated with slates and represent real-world accomplishments.

actor object (in a D FD) an active object that drives the data flow graph by producing or

consuming values.

aggregation a special form of association, between a whole and its parts, in which the whole

is composed of the parts.

analysis a stage in the development cycle in which a real-world problem is examined to

understand its requirements without planning the implementation.

ancestor class a class that is a direct or indirect superclass of a given class.

architecture the overall structure of a system, including its partitioning into subsystems and

their allocation to tasks and processors.

assertion a statement about some condition or relationship that can be cither true or talse at

the time that it is tested. (Contrast with constraint and in \arn tttt^

association a relationship among instances of two or more classes describing a group o!

links with common structure and common semantics.

attribute a named property of a class describing a data value held by each object of the

class.

automatic transition (in dynamic modeling) an unlabeled transition that automatically lires

when the activity associated with the source state is completed.

batch transformation a sequential input-to-output transformation, in which inputs are

supplied at the start and the goal is to compute an answer; there is no ongoing interaction

with the outside world. (Contrast with continuous transform ation.)

cached data data that is redundant because it can be derived from other data.

call-by-reference a language mechanism that passes arguments to a procedure by passing

the address of each argument rather than its value. (Contrast with call-hv-vaiue.)
♦

call-by-vnlue a language mechanism that passes arguments to a procedure by passing a

copy of the data values. If an argument is modified, the new value will not take eftect

outside of the subroutine that modifies it. (Contrast with call-by-rcferencc.)

candidate key a minimal set of attributes that uniquely identities an instance or link.

class a description of a group of objects with similar properties, common behavior, common

relationships, and common semantics.

class attribute an attribute whose value is common to a class of objects rather than a value

peculiar to each instance.

class descriptor an object representing a class itself, containing a list o f attributes and

methods as well as the values of am class attributes. Class descriptors are implemented

in some, but not all. languages. A class descriptor is an instance of a mctaclass.

class diagram an object diagram that describes classes as a schema, pattern, or template for

mans possible instances of data. (Contrast with instance diagram .)

class operation an operation on a class, rather than on instances of the class. An instance

creation operation is a common example.

clavs variable <m Smalltalk) an attribute of a class descriptor object; a class attribute.

classification a grouping of objects with the same data structure and behavior.

client a system component that calls upon the services provided by another component, 'file

component providing the service is a supplier.

coherence a property of an entity, such as a class, an operation, or a module, such that it is

organized on a consistent plan and all its pails lit together toward a common goal.

c o n c e p t u a l schema iin a relational database) a design from the perspective of an entire

enterprise

concrete class a class that can have direct instances.

concurrent two or more tasks, activities, or events whose execution may overlap in time,

condition (in dynamic modeling) a Boolean function of object values valid over an interval

of tune

constraint a functional relationship between objects, classes, attributes, links, and associa

tions; a statement about some condition or relationship that must be maintained as true.

(Contrast with assertion and invariant.)

constructor (in C++) an operation that initializes a newly created instance of a class.

(Contrast with destructor.)

container class a class of container objects. Examples include sets, arrays, dictionaries, and

associations.

container object an object that stores a collection of other objects and provides various

operations to access or iterate over its contents.

continuous transformation a system in which the outputs actively depend on changing

inputs and must be periodically updated. (Contrast with batch transformation.)

contour (in a state diagram) picture of a state that can contain substates. The contour for a

state totally encloses the contours of its substates.

control the aspect of a system that describes the sequences of operations that occur in

response to stimuli.

control flow (in a D FD) a Boolean value that affects whether a process is executed.

database a permanent, self-descriptive repository of data that is managed by a DBMS.

database management system (D B M S) a computer program that manages a permanent,

self-descriptive repository o f data.

data dictionary a textual description of each class, its associations, attributes, and opera

tions.

data flow (in a DFD) the connection between the output of one object or process and the

input to another.

data flow diagram a graphical representation of the functional model, showing dependen

cies between values and the computation of output values from input values without

regard for when or if the functions are executed.

data store (in a DFD) a passive object that stores data for later access.

DBM S (acronym) database management system.

delegation an implementation mechanism in which an object, responding to an operation

on itself, forwards the operation to another object: (in object-oriented languages) a

mechanism in which methods mav be attached directlv to instances and where the

method resolution is performed by searching a chain of instance pointers, rather than by

searching a class hierarchy.

derived association an association that is dclincd in terms of other associations.

derived attribute an attribute that is computed from other attributes,

descendent class a class that is a direct or indirect subclass of a given class.

destructor (in C++) an operation that cleans up an existing instance of a class that is no

longer needed. (Contrast with constructor.)

DFD (acronym) dam flow diagram.

dictionary a class of container object that maps a value ol' one type into a value of another

type, possibly the same type; a lookup table. Mathematically, a discrete function from a

domain to a ranee.

direct instance an object that is an instance of a class but not an instance of any subclass of
the class.

discriminator an attribute of enumeration type that indicates which property of a class is

being abstracted by a particular generalization.

domain tin a database) the set of legal values for an attribute in a database; (mathematics)
the set over which a function or relation is defined.

dynamic binding a form of method resolution that associates a method with an operation at
run time, depending on the class of one or more target objects.

dynamic model a description of aspects of a system concerned with control, including time,
sequencing of operations, and interaction of objects.

dynamic simulation a system that models or tracks objects in the real world.

encapsulation a modeling and implementation technique that separates the external aspects

of an object from the internal, implementation details of the object (also called inform a

tion hiding).

entity-relationship tKKl diagram a graphical representation that shows entities and the

relationships between them.

entity integrity (in a relational database) a property of a database such that each table has

exactly one primary key.

event (in dynamic modeling) something that happens instantaneously at a point in time,

event attribute data ’.allies conveyed by an event from one object to another.

event trace a diagram that shows the sender and receiver of events and the sequence ol
events.

e x t e n s i b i l i t y a properly o(sottw are such that new kinds ol objects or functiona lity can be

added to it w ith little or no m od ification to existing code.

extension * in e e n c ra h /a tio n i the addition of ncv*. teaUncs In a subclass.
V 4

e x te rn a l schem a tin .1 fcLstnin.il database) a dcsipn (nun the perspective ol a single a p p li

cation

fe a tu re either an attribute or an operation ol a 1 lass

lire * in d snarn ti m ^ Ic iu u :»to cause a transition to o u u i .4 »

first n o rm a l fo rm w u a re lational databasel a property ot a schema such that an attribute

cannot contain a repeating er»»up

fixed aggregate an aggregate with a predefined number and types of components. (Contrast

with variable aggregate.)

foreign key (in a relational database) a primary key of one table that is embedded in another

(or the same) table.

functional model description of aspects of a system that transform values using functions,

mappings, constraints, and functional dependencies.

garbage collection a language mechanism for automatically deallocating data structures

which can no longer be accessed and are therefore not needed.

generalization the relationship between a class and one or more refined or specialized

versions of it.

generics (see param eterized classes)

guard condition (in dynamic modeling) a Boolean expression that must be true in order for

a transition to occur.

guarded transition (in dynamic modeling) a transition that fires only if a guard condition

is true.

hybrid object-oriented language a language that has both object-oriented types (classes)

and non-object-oriented types (primitive types).

identity a distinguishing characteristic of an object that denotes a separate existence of the

object even though the object may have the same data values as another object.

implementation a stage in the development cycle in which a design is realized in an execut

able form, such as a programming lanauaac or hardware.
I ^ C* C W

implementation method (style) a method that implements specific computations on fully-

specified arguments, but does not make context-dependent decisions. (Contrast with

policy method.)

index a data structure that maps one or more attribute values into the objects or database

table rows that hold the values, usually for optimization purposes.

indirect instance an object that is an instance of a class and also an instance of a subclass

of the class.

information hiding (see encapsulation)

inherently concurrent two objects that can receive events at the same time without inter

act inu.
w

inheritance an object-oriented mechanism that permits classes to share attributes and oper
ations based on a relationship, usually generalization.

instance an object described by a class.

instance diagram an object diagram that describes how a particular set of object instance'

relate to each other. (Contrast with c/«/.v.\ diagram .)

instance variable (in Smalltalk) an attribute.

instantiation the process of creating instances from classes.

integrity (in a relational database: see entity integrity and referential integrity)

interactive interface a system that is dominated bv interactions between the system and• # m

agents, such as humans, devices, or other programs.

internal schema tin a relational database) the actual code required to implement the

conceptual schema.

invariant a statement about some condition or relationship that must always be true.
(Contrast with assertion and constraint.)

iterator a language construct that controls iteration over a range of values or a collection of
objects.

join class (in multiple inheritance! a class with more than one superclass.

lambda transition (see automatic transition)

layer a subsystem that provides multiple services, all of which are at the same level of

abstraction, built on subsystems at a lower level of abstraction. (Contrast with partition .)

leaf class a class with no subclasses. It must be a concrete class.

link an instance of an association: a physical or conceptual connection between objects.

link attribute a named data value held bv each link in an association.
*

message on Smalltalki invocation of an operation on an object, comprising an operation

name and a list of argument values.

metaclass a class describ ing other classes.

m etada ta data that describes other data.

m ethod the imp lementa t ion ot an operation lo r a specific class.

method caching an optimization of method searching in which the address of a method is

found the lirst tune an operation is applied to an object of a class and then stored in a

table attached to the class.

m ethod reso lu t ion i i n a p rogram m ing language) the process oi matching an operation on

an object to the method appropriate lo the object 's class.

m e lh o d o lo g) < \ u software engineering! a pnreess lor the organized product ion of software

using a co l lec t ion of predefined techniques and uniat innai cons cut ions

m ode l an abstraction oi something for the purpose oi understanding it belore budd ing it.

m odu le a coherent subset o f a s\ stem conta in ing a t igh t ly bound group of t lasses and then

relationships.

m u l t ip le in h e r i ta n c e a type ot inheritance that permits a class to have more than one super

class and to inherit feature*, f rom all ancestors

multiplicity she number n!
ass»ys fated v lav.

instances o| one class that m a\ relate to at single mst.un c of an

normal form (in a relational database) a set of rules that reduce consistency problems from

table updates,

null (in a relational database) a special value that denotes an attribute value which is

unknown or not applicable for a given row.

object a concept, abstraction, or thing with crisp boundaries and meanings for the problem

at hand; an instance o f a class.

object design a stage of the development cycle during which the implementation of each

class, association, attribute, and operation is determined.

object diagram a graphical representation o f the object model showing relationships,

attributes, and operations. (See instance diagram and class diagram , which are the usual

special cases. However, models with metadata do not permit such a dichotomy.)

object model a description o f the structure of the objects in a system including their identity,

relationships to other objects, attributes, and operations.

Object Modeling Technique an object-oriented development methodology that uses

object, dynamic, and functional models throughout the development life cycle. Abbre

viated O M T.

object-oriented a software development strategy that organizes software as a collection ot

objects that contain both data structure and behavior. Abbreviated 0 0 .

object-oriented development a software development technique that uses objects as a basis

for analysis, design, and implementation.

object-oriented programming language a language that supports objects (combining iden

tity. data, and operations), method resolution, and inheritance.

O M T (acronym) Object Xhkleling Technique.

OO (acronym) object-oriented.

O O -D B M S (acronym) object-oriented database management system.

O O P L (acronym) object-oriented program m ing language.

operation a function or transformation that may be applied to o b je c t s m a c la s s .

origin class the topmost class that defines an attribute or operation.

overloading (in a language) binding the same name to multiple operations whose signa

tures differ in number or types of arguments. A call to an oxerloaded operation is

resolved at compile time based on the types of the calling arguments.

override to deline a method for an operation that replaces an inherited method tor the same

operation.

package (in a programming language such as Ada) a syntactic block with a well detined

interlace used to control vjsibilitv of its contents.

parameterized classes a template for creating real classes that may differ in well-delined

ways as specified by parameters at the time of creation. The parameters are often data

types or classes, but may include other attributes, such as the size o f a collection. (Also

called generic classes.)

partition a subsystem that provides a particular kind o f service. A partition may itself be

built from lower level subsystems. (Contrast with layer.)

peer two or more system components that are mutually interdependent for sendees.
(Contrast w ith client and supplier.)

persistent data data that outlasts the execution of a particular program.

pointer an attribute in one object that contains an explicit reference to another object.

Pointers are implementation constructs corresponding to associations.

po lio the making of context-dependent decisions.

policy method (style; a method that makes context-dependent decisions, switches control

among other methods, combines and parameterizes calls to low'er-level methods, and

checks for status and error, but which calls on other methods for detailed compulations,

(Contrast with implementation method.)

polymorphism takes on many forms: the property that an operation may behave differently

on different classes.

postcondition a condition that the operation itself agrees to achieve.

precondition a condition that the caller of an operation agrees to satisfy.

prim ary key (in a relational database) a combination of one or more attributes whose value

unambiguous!) locates each row in a table.

private (referring to an attribute or operation ol a class) accessible by methods ol the current

class onl). (Contrast with public.)

process (in a D P I)) something that transforms data values.

programming-in-the-large the creation of large, complex programs with teams ol

program m ers.

propagation the automatic application ol an operation to selected objects in a network

when the operation is applied to some starting object in the network.

protected (referring to an attribute or operation of a class in C V+•) accessible by methods ol

arts descendent ot the current class. (Contrast w ithpuhln ami private.)* *

protocol specification of the semantics ot an operation, imltuhn*.* its signature, a description

ot the Junction performed by the operation, and any preconditions or postconditions.

p u b lic (fe te rrm e to an attribute or operation ot a classi accessible In m ethods ot any class.

t (’onirast v. \ th p t i x a t r . i

qualified association an association that relates two classes and a qualifier; a binary associ

ation in which the first part is a composite comprising a class and a qualifier, and the

second part is a class.

qualifier an attribute of an object that distinguishes among the set of objects at the “many"

end of an association.

query operation an operation that returns or computes a value without modifying any

objects.

range (mathematics) the set over which the results o f a function are defined.

real-tim e system an interactive system for which time constraints on actions are particu

larly light or in which the slightest timing failure cannot be tolerated.

recursive aggregate an aggregate that contains, directly or indirectly, an instance of the

same kind of aggregate.

referential integrity (in a relational database) a property o f a database such that each

foreign key is consistent with its corresponding primary key.

reflective a properly of a system such that it can examine its own structure dynamically and

reason about its own stale.

relation (mathematics) a set of tuples, usually from a list of specified domains: (relational

database) a table in the database.

relational database a database managed by a relational DBM S.

relational D B M S a computer program that provides an abstraction o f relational tables to the

user. It must provide three kinds of functionality; present data in the form of tables,

provide operators for manipulating the tables, and support integrity rules on tables.

restriction (in generalization) a constraint that a subclass places on the value of an attribute

contained in a superclass.

robust a property of software such that it docs not fail catastrophically when some o f its

design assumptions are violated.

role one end of an association.

role name a name that uniquely identities one end o f an association.

scenario (in dynamic modeling) a sequence of events that occur during one particular

execution of a system.

schema the structure or template of the data in a database.

second normal form (in a relational database) property of a schema such that tt is m tiist

normal form and each row has a primary key.

self (in Smalltalk) the default name of the target object of a method. (Corresponds to x

in C++ and (' i m c n t m l-iffel.)

sen ice a group of related functions tor opetationsi that woik togethei to ptoude a tunc

lional capability

sheet (in an object model) the mechanism for breaking large object models into a series of

pages.

signature (for an attribute) the attribute's type; (for an operation) the number and types of

its arguments and the type of ius result.

single inheritance a type o f inheritance in which a class may have only a single superclass.

specialization the creation o f subclasses from a superclass by relining the superclass.

SQ L a standard language for interacting with relational DBM S.

state the values of the attributes and links o f an object at a particular time.

state diagram a directed graph in which nodes represent system states and arcs represent

transitions between states.

strong typing a property o f a programming language such that the type o f each variable

must be declared. (Contrast with weuk typing.)

structure chart a tree-shaped graph in which the nodes represent procedures and the arcs

represent caller/callee relationships.

subclass (in generalization) a refined version o f another class, the superclass. An instance

of the subclass is also an instance of the superclass.

subsystem a major component of a system organized around some coherent theme. A

system may be divided into subsystems using either partitions or layers.

superclass (in generalization) a more abstract version of another class, the subclass.

supplier a system component that provides a service to another component. The component
requesting the service is a client.

system an organized collection of components that interact.

system design the first stage of design, during which high-level decisions are made about

the overall structure of the system, its architecture, and the strategies used to implement
the system.

system development life cycle the process of creating a hardwarc/softwarc system from its

conception, through analysis, design, implementation, testing, and maintenance.

table (in a relational database.) an organization o f data that has a specific number of columns

and an arbitrary number of rows. Often called a relation.

ternary association an association between three classes.

third normal form Cm a relational database) property of a schema such that it is in second

normal form and each nonprimary-key field depends on the primary key.

this (in C * 4*1 the default name of the target object of a method. (Corresponds to.ir// in Small
talk and Current in Hifs'ei.j

thread of control a single path of execution through a program, a dynamic model, or some

other representation of control flow.

transaction manager a database system whose main function is to store and access infor
mation.

transition a change of state caused by an event,

triggering (see propagation)

tuple an ordered list o f data values.

type a set of objects or values with similar behavior, usually expressed by the operations

defined on the type, without regard for the potential implementation o f the type. A type

is a semantic properly.

variable aggregate an aggregate with a finite number o f levels but a varying number of

parts. (Contrast with fix e d aggregate.)

view (in a relational database) a virtual table that is derived from one or more underlying

tables.

virtual something that has conceptual but not actual existence: (in C++) an operation that

can be overridden by a descendent class.

weak typing a property of a programming language such that the type of each variable need

not be declared. (Contrast with strong typing.)

wrapper a class or operation that encapsulates a call to library routines or some other code

that is beina reused.W

Answers to Selected Exercises

Criteria for selecting exercises to be answered include: exercises w ith short answers in the core chap*
ten>; exercises that extend chapters by introducing new material: key exercises in a series of questions;
answ ers that clarify subtle or difficult points: and prototypes for real problems that are commonly en
countered. Most exercises have multiple correct answers so the answers given here should be used as
a guide and not as a test of correctness.

1.5b. Criminal investigations use combinations of photographs, fingerprinting, bloodtyping, DNA
analyse, and dental records to identify people, living and/or deceased, who are involved in. or
the subject of. a criminal investigation.

d. Telephone numbers arc adequate for identifying almost any telephone in the world. In general
a telephone number consists of a country code plus a province, city, or area code, plus a local
number plus an optional extension number. Businesses may have their own telephone systems
w ith other conventions. Depending on the relative location of the telephone that you arc calling,
parts of the number may be unplied and can he left out, but extra access digits may be required
to cal! outside the local region. In North America local calls require 7 digits. Long distance calls
use an access digit t'Oor I) -r area code (3 digits) -f U>cal number (7 digits). Dialing Pans requires
an access code *011 j * country code (3,Vi city axle (I H local number (S digits). The access
code is not part of the identifier. Dialing is an example of navigation, not identity.

g. One way shat employees arc given restricted, after-hours access to a company is through the use
of a special, clectromcally-fcadable card. Of course. if an employee loses a card and docs not
report it. someone who finds if could use *t tor unauthorized entry Another approach is a picture
ID which requires inspection by a guard.

L8a. These arc all dev ices that enhance vision m some way. W ith the exception of the scanning dec

iron microscope, all the devices listed work by reflecting or rclracting light. Lycgiasscs and bin*

oculars are designed for use with two eyes, the rest of the objects on the list are designed fur use
with one eye Telescopes, ixunb sights, am! binoculars arc uv/d to view ihmgs far away. A mi*

ermeope is sr*cd to magnify -something that is very small, hycglusscs may enlarge or reduce, tie

pending on whether the pre â. option is for a near sighted or a far-sighted person. Some other

chtsvc* that could be included in tins list arc optical microscopes, cameras, and magnifying

ghr-ve*.

I). Pipes, check valves, faucets, filters, and pressure gauges are all plumbing supplies with certain
temperature and pressure ratings. Compatibility with various types of fluids is also a consider
ation. Check valves and faucets may be used to control flow. With the exception of the pressure
gauge, all of the items listed have two ends and have a pressure-flow characteristic for a given
fluid. All of the items are passive. Some other classes include pumps, tanks, and connectors.

f. Square root, exponential, sine, and cosine arc all functions of a single variable. Both real and
complex definitions are commonly used. As real functions, each maps a real input to a real out
put. As a real function, square root is defined only for nonnegative numbers. As complex func
tions, each maps a complex input to a complex output.

2.3a. For a Trans-Atlantic cable, resistance to saltwater is the main consideration. The cable must lie
unmaintained at the bottom of the ocean fora long time. The ratio of strength/weight is impor
tant to avoid breakage while the cable is being installed. Cost is an important economic factor.

c. Weight is important for wire that is to be used in the electrical system of an airplane, because it
affects the total weight of the plane. Toughness of the insulation is important to resist chafing
due to vibration. Resistance of the insulat ion to fire is also important to avoid starting or feeding
electrical fires in flight.

3.2 A class diagram is shown in Figure A3.2. The smallest number of points required to construct a
polygon is three. One way to express the fact that points are in a sequence is to indicate that the
association is ordered. The multiplicity of the association depends on how points are identified.
If a point is identified by its location, then points are shared and the association is manv-to-
many. On the other hand, if each point belongs to exactly one polygon, as shown in the diagram,
then several points may have the same coordinates. The difference between the two situations
is clarified in the next answer.

Polygon 3+
— H

Point

x coordinate
yxoordinate(ordered) ~

Figure A3.2 Class diagram for polygon and points

3.3a. An instance diagram for two triangles with a common side in which a point belongs to exactly
one polygon is shown in Figure A3.3a.

f (Point) ̂

IaiJ
((Point)

1^-1.0 i
(Polygon)}

f (Point)}

} 1.0 J

(Point)''*

- 1.0
j

S' V
----- -((Polygon) }--------

;■"(Point)}

l TO J

(Point))

v 0 . -1
V _______ /

Figure A 3 .3a instance diagram \Oictc each point belongs lo t-\a c il\ one polygon

b.

3.8a.

A n instance d iagram to r tw o inan ities w ith a com m on side in w h ich points m ay he shared is

shown in Fiuure A 3 .3b.

(P o in t)

- 1,0

-̂ (P o ly g o n)^ -

{V o ly g o n)^

(P o in t)

1 .0

(P o ln l)

0. -1 j

Figure A3.3I) Instance diagram where each point can belong to multiple polygons

An instance diagram lor the expression f.\ + is shown in Hgure A 3 .8a. I he object

diagram in the exercise is actually a mclamodel for binary expressions. Parentheses are required

for an infix representation but are not needed in the mclamodel. There are other representations,

such as fw is t f ix , m which parentheses also are not needed. For example, the same expression be

comes X Y 2 <■ X J)' + m a postfix representation.

IS!

(E xp re ss io n)^

’ J
(X «Y*>

!$1

of(E xp ress ion)

<X«-Y2)'(X3*Y)

O

~-0 (((E x p re s s io n)

J
X 3

1S! \ } 1 5*

(Variable)

X

2nd

i

((C onstan t) j

< ?_.J

2nd

(E xp ress ion)

(X 3 * Y)

2nd

(E xp ress ion)

Y2 r
2nd

(C onston l)

s__________

1 s’ /Iv e r la b lo A 2nd

"" t /
H j*u re Irv-taiue d ig ra m r the c\pu'v.urn t X * Y /? .j/rX /l ♦ Y*

M*rC diagram m thn coercive contain*. rctur-vum J.nptcwMom* arc formed front tennv whuh

ihrnnehc-* mas expressions Vcf> complex ciprcv*nni% mav l\- represented leading in coin*
p !*■'*- ifh!,in-x.c diaerajm

Figure E3.6 indicates that terms may be shared by expressions. The situation is analogous to

sharing o f points discussed in exercise 3.3. I f the direction o f the links in the corresponding in

stance diagrams are taken into account, then instance diagrams are directed acyclic graphs.

The instance diagram shown in Figure A3.8a treats Term as an abstract class, since only d i

rect instances o f the classes Expression, Variable. and Constant are shown.

The partial expressions in the instance diagram are shown for clarity. To save space. I si and

2nd have been substituted for the role names first operand and second operand. In reading the

instance diagram, remember that the role names are on the Term end o f the associations.

b. The extensions to not share terms and to handle unary minus are shown in Figure A3.8b. Note

that because o f the possibility o f a unary operator, the multiplicity o f the second operand is zero-

one. Also the diagram does not express very well the fact that every term must belong to exactly

one expression. The diagram could be further improved by replacing the tu o associations be

tween Term and Expression with a single, qualified association with the qualifier operand. This

would result in a multiplicity o f exactly one on the Expression end o f the association. Several

other variations are possible.

Figure A 3.8I) Extended class diagram for simple arithmetic expressions

2 An object diagram for the dining philosopher's problem is shown in Figure A3.22. I he one-to-

one associations describe the relative locations o f philosophers and forks, fhc h: use association

describes who is using which forks. Other representations are possible, depending on your vsev. -

point. An instance diagram may help you better understand this problem.

right diner

In use

left diner

left utensil

U-2 I I
----- G Fork i

nohf utensil

Figure A3.22 Object diagram for the dining philosopher problem

3.23 This is an important exercise, because graphs occur in many applications. Several variations are
possible, depending on your viewpoint. Figure A3.23a accurately represents undirected graphs
as described in the exercise. Although not quite as accurate, your answer could omit the class
Undirected graph.

O U nd irected graph

Vertex ©■

vertex name

Edge

edge name

Figure A3.23a Object diagram for undirected graphs

We have found it useful for some graph related queries to elevate the association between
vertices and edges to the status of an object class as shown in Figure A3.23b.

Figure A3.231) Object diagram for undirected graphs m which the incidence between
vertices and edges is treated as an object class

3.26 One object diagram describing directed graphs is shown m Figure A3.26a.The distinction be
tween the two end-, os an edge is accomplished with a qualified association. Values of the qua!-
iftcr end are front and U>

O-i D irected g raph ------- i

____ a. i
Edge Vertex

edge name j___ _
i

“ I p -------- ------
vtffUj* narr,£

f ig u re A.t.26a Objcci iJutgium for directed graph* ur.iivg a qualified avuiciatinn

Figure A3.26b shows another representation of directed graphs. The distinction between the
two ends of an edge is accomplished with separate associations for the two ends of an edge.

Figure A3.26b Object diagram for directed graphs using two associations

The advantage of the qualified association is that only one association must be queried to
find one or both vertices that a given edge is connected to. If the qualifier is not specified, both
vertices can be found. By specifying//ww or to for the end qualifier, the vertex that is connected
to an edge at the given end can be found.

The advantage of using two separate associations is that the need to manage enumerated val
ues for the qualifier end is eliminated.

3.28 An object diagram for car loans in which pointers are replaced with relationships is shown in
Figure A3.28.

Figure A3.28 Proper object model for car loans

In this form, the arguably artificial restriction that a person luxe no mote than three employ

ers has been eliminated. Note that in this model an owner can oxxn sexcrul carv A car can luxe

several loans against it. Banks loan money to persons, companies, and other hank-

4.2 The object diagram in Figure A4.2 abstracts the classes Buffer, Selection, and Sheet into the su
perclass Collection. Overall, this revision is recommended. Using the generalization relation
ship promotes code reuse because many operations apply equally well to the subclasses. Six ag
gregation relationships in the original diagram, which shared similar characteristics, have been
reduced to two. Finally, the constraint that each Box and Link should belong to exactly one
Buffer, Selection, or Sheet has been captured by the structure of the diagram.

Figure A4.2 Abstraction of the classes Selection, Buffer, and Sheet into the class Collection

4.4 An object diagram for a graphical document editor is shown in Figure A4.4. The requirement
that a Group contains 2 or more Drawing objects is expressed as a multiplicity of 2+ on Drawing

object in its aggregation relationship with Group. The fact that a Drawing object need not be in
a Group is expressed by the zero-one multiplicity.

It is possible to revise this diagram to make a Circle a special case of an Ellipse and to make
a Square a special ease of a Rectangle.

Figure A4.4 Object diagram (or a graphical document editor that supports grouping

4*8 An object diagram showing the relationships among several classes of electrical machines is
shown in Figure A4.S. We have included attributes that were not requested.

Figure A4.8 Partial taxonomy for electrical machines

4.9 One way to eliminate the multiple inheritance in to convert the overlapping combination of
classes into a class of its own as shown in Figure A4».

Figure A4.9 F.lnmnatinn ot multiple inhenutue

4.10 '1'Ik- object diagram in Figure A*FM» i \ a metamodcl ot the following subset ol the O M T nota

tion object classes, attnbutes. and biuai\ associations

Association Role 0----- Object — 0 Attribute

multiplicity class name attribute name

Figure A4.10 Metamodc) for a subset of the OMT notation

4*13 The object diagram given in the exercise does support multiple inheritance. If an instance ofO/>-
ject class is a subclass in more than one generalization relationship, there is an instance of Gen
eralization role* with role type equal to subclass for each generalization relationship.

4*14 To find the superclass of a generalization using the mctamodcl given in the exercise, first query
the association between Generalization and Generalization role to get a set of all roles of the
given instance of Generalization. Then sequentially search this set of instances of Generaliza

tion role to find the one with role type equal to superclass. (Hopefully only one instance will be
found with role type equal to superclass* which is a constraint (hat is not enforced by the model.)
Finally, scan the association between Generalization role and Object class to gel the superclass.

One possible revision which simplifies superclass lookup is shown in Figure A4.14a. To find
the superclass of a generalization, first query the association between Generalization and Super
class role. Then query* the association between Superclass role and Object class to find the cor
responding instance of Object class.

Figure A4.14a Mctamodcl of generalization relationships with separate
subclass and superclass roles

Another mctamodcl of generalization which supports multiple inheritance is shown in Figure
A4.|4b. To find the superclass of a generalization using this inetanuKlcl. simply query the,V«*
pen lass association.

I

G onorn llZ fltlon fc>

1C-tcnm.na?Of
J

Superclass r ~ .
--------------------- 1 O bject Cl033

------------------- e j class name
Subclass 1___________

Figure A4,l4b Simplified mctamodcl of generalization relationships

Wc do not imply that the mctamodcl in Figure A4.ISb the best model of generalization,
on!) that it simplifies the query given in the cscrusc The choice of which model to use will
depend on other factors as well

5.3 The state diagram for the control of the headlight and wheels of an electric train is shown in Fig
ure A5.3. The event power o ff on is the sequence of the two events power off fo] lowed by power
on. Strictly speaking, there should four more unlabelcd states in the state diagram for the wheels
that we have eliminated by introducing the event power o ff on.

5.5

Figure A5.3 State diagram for the control of an electric train

The inspiration for this exercise was an actual electromechanical control which contained a
wheel with contacts. Each time the power was pulsed a solenoid driven ratchet advanced the
wheel one quarter of a turn. The stationary state allowed the train to be stopped with power still
applied to the track. If the train was running forward before you shut it off and put it away, it
would be stationary the next lime you turned it on.

The control also had a switch to disable it that left the control in whatever state it w as in when
it was shut off. You might want to modify the diagram to add this feature. You also might pre
pare a state diagram with 8 states, showing how the control works if separate events power on

and power off are used instead of power off-on.

A state diagram for a simple digital watch is shown in Figure A5.5. We assume that pressing a
button is an event and that we may ignore the release of a button. We use A in the diagram to
refer to pressing the A button and B to refer to pressing the B button.

5.10 The completed state diagram for the motor control described in the exercise is shown in Figure
A5.I0.

Jl.

O ff

A ~ K

(on is asserted]

(on is not asserted]

S tarting

do: apply power to
run winding and
apply power to
start winding

(motor is running]

(on is not asserted] (motor is overheated)

reset (motor is not overheated)

R unning

do: apply power
to run winding

.x.

(motor is
overheated]

Too Hot

Figure AS. 10 State diagram for a simple motor control

5.20 This exercise demonstrates that even simple state diagrams can lead to complex behavior. A
state diagram that will explain the scenario given in the exercise is shown in Figure A5.20. A
change event occurs whenever the candle is taken out of its holder or whenever it is put back.
The condition at north is satisfied whenever the bookcase is behind the wall. The condition at
north, east, south, or west is satisfied whenever the bookcase is facing front, back, or to the side.

When you first discovered the bookcase, it was in the Stopped slate pointing south. When
your friend removed the candle, a change event drove the bookcase into the Rotating state.
When the bookcase was pointing north, the condition at ninth put the bookcase back into the
Stopped state. When your friend reinserted the candle, another change event put the bookcase
into the Rotatmg state until it again pointed north. Pulling the candle out generated another
change event and would have caused the bookcase to rotate a full turn if you had not blocked it
with your body. Forcing the bookcase back is outside the scope of the control and does not have
to be explained.

When you put the candle back again another change event was generated, putting the book
case into the Rotating state once again. Taking the candle back out resulted in yet another
change event, putting the bookcase into the Stopping state. After 1/4 turn, the condition at north,
cast, south or west was satisfied, putting the bookcase into the Stopped state.

What you should have done at first 1 0 gain entry was to take the candle out and quickly put
it back before the bookcase completed 1/4 turn.

(at north, oast, south, or v/ost]

S topped

7C J
char,go

V

R otating

do rotato boofccaco.

(at norm]

change / Stopping \

\do: rotata bookcaso/

6.4 Figure A6.4 conlains the data flow diagram for computing cylinder geometry.

Figure A6.4 Data flow diagram for computing cylinder volume and surface area

Some different ways to compute volume and surface area for a cylinder are:

• A formula. Volume = jrrh. Surface area = 2irrh. (r= radius, h=height)

• A lookup table. Volume and surface area are listed for standard values of radius and height.

• Numerical methods. Calculate volume and surface area from differential equations.

6.5 Figure A6.5 shows the data flow diagram for computing the mean for a sequence of input values.

adjust mean process
(Note: n+1=new count, xn=n,h input value, xn=average alter n values)

6 .7a . U s in g c o n d it io n a l s ta tem ents , the a lg o r ith m fo r T tx) can

if (s > -3) and (>: < -2) then T = 3 + x
else if tx < -I) then T - ->:-i
else if tx < 0) then T -
else if (>;<!> then T » 1 —
else if lx < 2) then 7 “ x-i
else if (x < 3) then T * 3-x
end if
The above pseudo code can be simplified to the following.

t r ix mod 2} - l

if (t*. C) then T “ -C
else 7 ~ _
end if

c. T h e data f lo w d ia g ra m fo r T (x) in F ig u re A 6 .7 o n ly uses fu n c tio n s and a r ith m e tic .

Figure A6.7 Data flow diagram for 7*(.v>

6 .1 0 a . a bso lu te va lu e : if \ > 0 then Ixl = x. e lse Ixl = *x

b. tr ig o n o m e tr ic s ine ; s in 0 = y / r

Figure A6.10 Definition of trigonometric sine

c. natural logarithm: tnfxi = V (I/H dt

d. square tool: v = sqrt <\) such that x = y * v

6.1 la. pseudo code for absolute value

i f / £ ' then r e t u r n x
o lo o r e tu r n -x
end i f

b, Ct d. Two ways of implementing trigonometric sine, natural logarithm, ami square r<x>t arc by
power series and fixed point iteration.

Mathematics can b e used to derive ;ui infinite power senev (,\tx° * â v* n : \ : 4 that is

equivalent to the desired function. The function can then he approximated by evaluating the first

portion of the power series and truncating the remainder. The sine, logarithm, and square root
functions have an infinite number of power series; a desirable power scries would converge
quickly for the arguments of interest and bound the maximum error. Before computing a power
series, the argument value is usually normalized to lie within a standard range. Thus for in
stance. the following property can be used to transform the sine argument to an equivalent ar
gument that lies in the range of 0° to 360°

s in (0) = s in (0 mod 360°)

One could normalize the argument of the sin function even further by recognizing that

s in (0) = - s in (0 - 180°)

and thus transform the sin argument to lie in the range of 03 to 180°.
Another way of implementing these functions is by fixed point iteration: Guess an initial val

ue and then repeatedly apply an identity formula, until you are close enough to the correct an
swer. For example, an initial estimate of y = sqrt(x) is y = (l+x)/2; in fact this is a very good
estimate of the square root for values of x close to 1. A new value of x can be computed with
the following formula:

v
* n* (yn + :</yn) / 2

8.1 Do not worry' if your answers do not exactly match ours since you had to make assumptions
about the functional specifications. The point of the exercise is to make you think about the ex
amples in terms of the three aspects of modeling.

a. Functional modeling, object modeling, and dynamic modeling, in that order, are important for
a bridge playing program because good algorithms are needed to yield intelligent playing. The
same involves a great deal of strategy. Close attention to inheritance and method design can re-
suit in significant code reuse. The interface is not complicated, so the dynamic model is simple
and could be omitted.

c. The order of importance of aspects of modeling for a car cruise control is dynamic modeling,
object modeling, and functional modeling. Because this is a control application you can expect
the dynamic model to be important. There is a need to thoroughly understand scenarios and pro
tocols for interaction. The functional model is simple because there are not many calculations.

e. For a spelling checker the order of importance of aspects of modeling is object modeling, func
tional modeling, dynamic modeling. Object modeling is important because of (he need to store
a great deal of data and to able to access it quickly. Functional modeling is important because
an efficient algorithm is needed to check spelling quickly. The dynamic model is simple because
the user interface is simple. All that is needed is to give the user a chance to correct each mis
spelled word that is found.

8.8a. We assume there is exactly one instance of the class Selection. Declare an error if them is not
exactly one instance. Ascend the class hierarchy to the class Col Let ion. Scan the association be- # •
tween the classes Collection and liox to obtain a set of boxes. Scan the association between the
classes Collection and Link to obtain a set of links.

c. We assume that bines is a global variable that contains a set. Initialise boxes to be cmpt\. To
determine all boxes that are linked directly or indirectly to a given box, call the following recur
sive procedure with the given box as the argument:

•5- * - r : e v e _ b c x e s i c : v e r . ^ b o x >

?.v i r : v*v*> sec or 11 r.ks 5soc i aceci w i ch a i ver;_box
f o r each l : r . k

f o r each b o x a s s o e i s c e c i w i t h c r . e l : r . k

i f r o x i s no t i n b c x e s then
A ' i d :)o> : t. •; b o x e s

r . e c r : e v e _ b c x e s (b o x)

end i f
end f o r each b o x

end f o r each l : ; \ k

e. Take advantage o! the tact that a link is associated with exactly 2 boxes, {(given box and
gnenJtnL are not associated then declare an error. Otherwise place the 2 boxes associated with
aivt’n ttrJ. into a set and delete given box from the set.

K* ^ e assume that seleenon is a global variable that contains an instance of SeU-cnoti, We assume
that bruises is a global variable in which the set of bridging links is to be placed.

a - ̂ •• • - * a s s ?; ; *_* i a r c h y i ro r r . f

2 o 1 1 c- c c : o r. f c r c h «?

c l a s s S e l e c t i o n t o t h e

- <;
x r; s t a n c e £ e 1 e c t i c n .

£ ; ; ; : ' ; a t ; ; r ; t o t h e c l a s ? o b t a i n -a r e t o ! a l l

v X*j ^ ; r. t h e r - e l e c t i j r . .

I r . i t : r: l i ^ e b r i d g e : ? t j b e u r . e c i c t y r e t .

f o r each b ■'x i n the r e t .
f o r each . i r v k - i S * > c : c i a t e c i w i t h t h e b o x .

S e t b o x o r . t h e o t h e r e n d o : t h e l i n k ,

. .s : .V 3 t h e ;a ; : r w e r t o p a r * . e) .

i f t h e r - c x : .n t h e o t h e r o r . a : s n o t i n t h e e l e c t i o n .

A a c t ; . v l i n k •; •: b ; : : i - a e r .

ond i f
ond f o r oach l i n k

ond f o r oach box

8.9 There is more than one way of satisfying the given queries. Some readers max find Figure E8.3

easier to understand than Figure FS.2 and w ill consequently arrive at simpler queries by using

it. Others max find ihc reverse to be true. However, (he two are nearly equivalent from the point

of view of the given queries For some o f (he queries Figure FIX J requires an extra step. The

reader may find that one of the approaches has advantages during implementation in a particular

language (or database) depending on the features of the language.

8.16 Ihc following candidate classes arc really attributes or redundant attubutev

address, age. average score, child ’s name. date, difficulty factor, net score, team name

The following arc redundant.

child, contestant, individual, person, registrar)!

These arc vague or irrelevant

b a d . card, conclusion, corner, mdis tdual pri/c, leg. pool, prize, team prize, trv. water ballcl

'Ihc following are implementation details.

file of (earn member data, list of scheduled meets. numK*r. group

These candidates are really operations:

compute average, register

The astute reader will notice some of the candidate classes that arc not eliminated here do not
appear in Figure E8.4. That is because Figure E8.4 is only a partially completed object diagram.

8.19a. Scan the association between the classes Team and Competitor using the given team to get the
set of its members.

c. There are several ways to find the net score of a competitor for a given figure at a given meet.
One way is the following:

Find the set of all events held at the given meet from the association between Meet and Event.
Find the set of all events associated with the given figure. Intersect the two sets. Given the way
that meets are conducted, there should be exactly one event in the intersection. Use a similar
process using the event and competitor as input to find the trial for the competitor in chat event.
The net score is contained in the trial.

e. Use the association between Meet and Event to find all events held at the given meet. Use the
association between Event and Trial to find all trials of all events at the given meet. Use the as
sociation between Competitor and Trial to find all trials by the given competitor. Intersect the
set of all trials of all events at the given meet with the set of all trials by the given competitor.
The result is the set of all trials by the given competitor at the given meet. Compute the average
score from net scores of the trials by the given competitor at the given meet.

g. The object diagram in Figure E8.4 does not support this query very well. Find all meets in the
given season. From all meets find all events in the given season. From all events find all trials
in the given season. For each trial merge the associated competitor into the answer set.

8.23 The 2 teams were the Dolphins and the Whales. The 4 competitors were Heather Martin. Elissa
Martin. Cathy Lewis, and Christine Brown. Stations were set up on the northwest and southeast
corners of the pool with three judges each. The 4 events were the Ballet Leg. the Dolphin, the
Front Pike Somersault, and the Back Pike Somersault. Heather was number 3. In this scenario
we assume that there is a personal computer at each station. There are other possible scenarios,
depending on the system architecture. When Heather approached the station to try the Ballet Leg
the computer operator called her number as it appeared on the display. When Heather verified
her number the operator confirmed it with the computer which was then ready to accept scores.
After Heather performed the Ballet Leg the 3 judges held up the scores 3.8. 3.6. and 3.7. A score-
keeper read the scores. As they were read the computer operator entered them into the computer.
Another scorekccper wrote them down and checked the numbers on the computer display after
they were entered. In this case the operator made a mistake and the judges were asked to repeat
the scores. When everyone w as satisfied the operator verified the scores and the computer stored
them in a database.

When all o f the events were over a batch program was nut to merge the data from the two

stations into a single database. 1'hen another batch program was run to convert the raw scores

into net scores for each tria l, to compute the overall scores for each competitor, to son the com

petitors by ov erall score, and to print out the results. The print outs included an ordered listing

o f the winners and summary sheets for each competitor. The summary sheet for each competitor

included raw scores, degree o f d iff icu lty . and net scores for each event.

8*26 A partial shopping lisi of operations is shown in Figure A8.26.

Figure AX.26 Partial object diagram lor a scoring sW em including operations

X,2X The fcs ise tj diagrams are shoun m Figures AS 2Sa AS 2Sd Note that Figure AX.28a could lx

s im p lifie d In com b in ing Apptnnttnvnt and t hue- tune and treating P u tr n w r as an attribute. I ig-

urc AH.2Sd sou ld be s im p lified by com bin ing t-.dve and hu idem e. In general a ternais associ-

ation can alwav s he c o m e n e d in to a class Some thought ma> lx* required to get the m u lt ip lic i

ties right

: D octor r
l_______ >

l •
-C A ppo in tm en t O

" $ 1

----------{ Date-timo

Patient
t

Figure A8.28b Object diagram for classes

Figure A8.28c Object diagram for reservations

Figure A8.28d Object diagram for graphs

8.33a. Candidate keys are Flight + Seat and Flight + Person.

b.The only candidate key is Flight + Scat.

9.6 Figure A9.6 shows one possible partitioning.

command processing

user interface construct expression file interface

line semantics

line syntax

apply
operation substitute rationalize evaluate save load

operating system

Figure A9.6 Block diagram for an interactive polynomial symbolic manipulation system

9.7 A single program provides faster detection and correction o f errors ami eliminates the need to

implement an interface between two programs. W ith a single program, any errors that (he s\s-

ten) detects in the process of convening the object diagram to a database schema can be quickly
communicated to the user for correction. Also, the editing and the conversion portions of the
program can share the same data, eliminating the need for an interface such as a Hie to transfer
the object diagram from one program to another.

Splitting the functionality into two programs reduces memory requirements and decouples
program development. The total memory requirement of a single program would be approxi
mately equal to the sum of the requirements of two separate programs. Since both programs are
likely to use a great deal of memory, performance problems could arise if they are combined.
Using two separate programs also simplifies program development. The two programs can be
developed independently, so that changes made in one are less likely to impact the other. Also,
two programs are easier to debug than one monolithic program. If the interface between the two
programs is well defined, problems in the overall system can be quickly identified within one
program or the other.

9.11 The reader should note that this problem does not give an exhaustive list of solutions.

a J)o not worry about it at all. Reset all data every time (he system is turned on. This is the cheap
est, simplest approach. It is relatively easy to program, since all that is needed is an initialization
routine on power up to allow the user to enter parameters. However, this approach cannot be
taken for systems which must provide continuous service or which must not lose data during
power loss.

c. Keep critical information on a magnetic disk drive. Periodically make fu ll and/or incremental

copies on magnetic tape. This approach is moderately expensive and bulky. In the event of a
power failure, the system stops running. An operating system is required to cope with the disk
and tape drive. A operator is required to manage the tapes, which would preclude applications
where unattended operation is required.

e* (w* a special memory component This approach is relatively cheap and is automatic. However,
the system cannot run when power is off. Some restrictions may apply such as a limit on the
number of times data can be saved or on the amount of data that can be saved. A program may
be required to save important parameters as power is failing.

9.12 a ./o u r fum non pocket < a h u la to r Do not worry* about permanent data storage at all. All of the
other options arc too expensive to consider. ‘Hus type of calculator sells for a few* dollars and is
typically used to balance checkbooks. Memory* requirements arc on the order of 10 bytes.

c. S\ item clock fo r a per sonal < i»mputer. Only a few bytes are required, but the clock must contin
ue to run with the mam power off. Battery backup is an inexpensive solution. Clock circuits can
b- designed that will run for 5 years from a battery.

v ,D ig i t a l t to u ro l and thermal p ro te i tu m unit for a motor On the order of 10 to UK) bytes arc

needed This application is sensitise to price An uninterruptible power supply is it hi expensive

to consider. 'Iape and disk drives arc too fragile for the harsh environment of the application.

Use a combination of switches, special memory components, and battery backup. Switches arc

a good way to enter parameters, since an interface is required anyway. Special memory com|H>-

ncnis K*it\ store computed data A battery can be used to continue operation with power removed

hut prevent’- a maintenance problem in this application We would question this requirement,

seeking alternatives such as assuming that the motor is hot when it is first turner! on or using a

venvn: to measure the temperature nf the motor

9.13a. A description of the diagram, assuming that labs, spaces, and line feeds are ignored, is:

(DIAGRAM
(CLASS

(NAME " P o l y g o n "))
(CLASS

(NAME " P o i n t : ")
(A TTR IB U TE

y))
(ASSCs, i .M, i i oN

(ROLE (NAME " P o l y g o n ") ONE)
(ROLE (NAME " P o i n t ") M A N Y)))

9.14 The hardware approach is fastest, but incurs the cost of the hardware. The software approach is
cheapest and most flexible, but may not be fast enough. Use the software approach whenever it
is fast enough. General purpose systems favor the software approach, because of us flexibility.
Special purpose systems can usually integrate the added circuitry with other hardware.

Actually, there is another approach, firmware, that may be used in hardware architectures.
Typically, in this approach a hardware controller calculates the CRC under the direction of a
microcoded program that is stored in a permanent memory that is totally invisible externally.
We will count this approach as hardware.

a.Use a hardware approach for a floppy disk controller. Flexibility is not needed, since a floppy
disk controller is a special purpose system. Speed is needed because of the high data rate.

c. Use hardware to check memory. This is an example of a very specific application, where the
function can probably be integrated with the circuitry in the memor> chips. The data rate is very
high.

e. Use a software approach to validate an account number. The data rate is very low. The system
handling the account number is probably running on a general purpose computer.

10.5 Retire A 10.5 enforces a constraint that is missine in Retire F10.1: Rich boundarx corresponds
to exactly one ellipse or rectangle. One measure of the quality of an object diagram is how well
its structure captures constraints.

Graphics r
primitive i Boundary

Rectangle

Figure A 10.5 Improved object diagram toi part of a (’A O s w a n

10.11 A domed association supports direct traversal horn / ’we* to / r/.v. In general domed ent

present a Hade oil: They speed execution ot scitain queries but incur an update cost to kcej

redundant data consistent with the base data

Ute

Mh
s

The line-page association is derived by composing the line-column and column-page asso
ciations. Since it is present for optimization, it would probably be traversed only from lines to
pages and could therefore be implemented as a pointer attribute within class Line.

4
C olum n /-I 1 InnCJ Lino

*7
z_

Figure A 10.11 Object diagram for a newspaper with a derived association

10.12 Type Rank is an enumeration of |Ace. King. Queen. 10, 9, S, 7, 6. 5, 4. 3, 2|. The ranks are
ordered but the order varies from game to game (some games rank the ace highest, some lowest).
Depending on the games to be supported, the enumeration could be ordered or unordered. If the
enumeration is unordered, then an ordering function must be provided for rank values in a par
ticular game. It would be possible to implement a rank value as an integer. Type Suit is an enu
meration of |Spade, Club, Heart. Diamond). For many games, suits are unordered; the order of
suits varies in other games, so an ordering function on suit values is probably best. Suit and rank
could also be implemented as objects rather than pure values, given the complexity of the order
ing functions and other peculiarities of real card games.

i <
i Deck !

rt

i
shuffle I
deal j

Collection of cards

visibility: Boolean
location Point

j initialize
delete
insert
boitom-otpile
top-of-ptie

A
Hand

| initial size integer

(ordered)

______]_______

Discard pile

draw

Cord

suit: Suit
rank- Rank

display
discard

___ !___

Draw pilo

draw

Figure A 10.12 Portion of an object diagram for a card playing program

10,19 The code luted below sketches out a solution. I his code lacks internal assert ions that would nor

malls be included tocheck the correctness ol the metadata For example, error code should Iv

included to handle the case vs here the role is a suKlass and the ici.iimnship is m>i (icnrialtsu-

tion In code that interacts with users or external data sources, it is uuialh ^ H>1| ulc.i to add an

error check as an else clause tor conditionals that "must t*e true.'*

t r a c e _ in h e r i ta n c e _ p a th (c l a s s l , c l a s s 2) : Path
{

path := new Path of Class;
/ / t r y t o f i n d a pa th from c la s s l as descendent o f c la s s 2
c la s s x := c l a s s l ;
w h i le c la s s x i s no t n u l l do:

add c la s s x to f r o n t o f p a th ;
i f c la s s x = c la ss2 then r e tu r n p a th ;
c la s s x := c l a s s x . g e t_ s u p e rc la s s

/ / t r y t o f i n d a pa th from c la ss2 as descendent o f c la s s 1
p a t h . c le a r ;
c la s s x := c la s s 2 ;
w h i le c la s s x i s no t n u l l do:

add c la s s x to f r o n t o f p a th ;
i f c la s s x = c l a s s l then r e tu r n p a th ;
c la s s x := c la s s x .g e t_ s u p e rc la s s

/ / the two c la sse s are no t d i r e c t l y r e la t e d
/ / r e t u r n an empty pa th
p a t h . c le a r
r e tu r n path

Class::get_superclass : Class
{

for each role in self.connection do:
if the role is a Subclass then:

relationship := role.relationship;
if relationship is a Generalization then:

other_roles := relationship.end;
for each other_role in ocher_roles do:

if other_role is a Superclass then:
return other role.class

)

10.22 Political party membership is not an inherent property of a voter but a changeable association.
The revised model better represents voters with no party affiliation and permits changes in party
membership. If voters could belong to more than one party, then the multiplicity could easily be
changed. Parties arc instances of class Political party and need not be explicitly listed in the
model; new panics can be added without changing the model and attributes can be attached to
parties.

Voter
member registered in

r- Political
party

Figure A 10.22 Improved object diagram for representing voter membership in a political party

10.24 The left figure shows an index on points using a doubly-qualified association. The association
is sorted first on the .v qualifier and then on the y qualifier. Because the index is an optimization,
it contains redundant information also stored in the point objects. The right figure shows the
same diagram using singly-qualified associations. We had to introduce a dummy class Strip to
represent all points having a given x-coordinate. The second model would be easier to imple
ment on most systems because a data structure for a single sort key is more likely to be available.
The actual implementation could use B-trees. linked lists, or arrays to represent the association.

Figure A 10.24 Object diagram for fast two-dimensional searching

The code listed below specifies search, add. and delete methods.

Pointed lee: ior.: rsearch (region: Rectangle) : Set of Point

make a new empty set o: points;
scan the x values in the association unti

• * i u r h r* v qua!dier £ region.xmax ri •*', •MS. .
sc an the v values for * r» v • */t 1 \ \ ,'a Wilt,• 1 « *

4m +

w h 1 1 *•* t h,ri y qua!i f■or < region.yma v do:
add (x, y) to the set of points;
advance• to the next y value;

aavar.ee \o the next x value;

1 x > r e g i o n .x m in ;

v > re o io n .

f #t « *.* •” f j A <5 1
. ■ . w . . I > 4 . s . * • — . V . . t I

« v ♦ ^ %. •# * • • v • 4 » • r j ' . ♦ w t i • » i . • ^ v * • » }

ues i n the assoc i at i on ur;t i 1 x > roi:
* >*. *.
w ♦ $.•) «

■-i.uer :or the x value until y > noir;
r • r » j . the us so•:*; a V : o: *;

%

Note that the s o n operation should l>- implemented by a binary search to achieve logarithmic

rather than linear tunc* A scan tails through to the next statement it it runs out o| values

10.27 Pseudo code for a garage door opener is listed below.

<closed>
<opening>

<open>
<closing>

wait for depress event
start opening door
wait for door open event
wait for depress event
start closing door
wait for either depress or door closed event:

if depress event then goto opening
if door closed event then goto closed

Don’t be afraid to use gotos! They have a legitimate use in representing exceptional flow of con
trol, such as exceptions and interrupts.

14.3a.This is an example of poor programming style. The assumption that the arguments are legal and
the functions called are well behaved will cause trouble during program test and integration. The
following statements will cause the program to crash if the argument to strlen is zero:

root_length = strlen(root_name);
suffix_length = strlen(suffix);

The following statement will assign zero to sheet jtam e if the program runs out of memory',
causing a program crash during the call to strepy later in the function:

sheet_name = malioc (root_lenath suf f ix_lenath 1);

The following statements will cause the program to crash if any of the arguments are zero:

sheet_name = strepy(sheet_name, root_name);
sneet_name = streae (sheet_nair.e, suffix);

If sheet jy p e is invalid the switch statement will fall through leaving.sheet without an assigned
value. Also, it is possible that the call to vert sheet j ie w or the call to hori: sheet new could
return zero for some reason. Either condition would make it possible for the following statement
to crash:

sheet->name = sheet name;

15.5a. An interpreter provides a convenient way to quickly find out how a subroutine in a library be
haves, bypassing the edit, compile, link, and execute cycle encountered in compiled languages.
Some languages have both a compiler and an interpreter. The interpreter is used for rapid pro
gram development and the compiler is used to produce an efficient final version of the program.

b. A system builders is recommended to avoid this kind of error. It assures that all of the required
steps and only the required steps are executed to rebuild an application after you modify one or
more source files. Otherwise you are faced with the choice of rebuilding everything, which is
time consuming, or trying to remember which steps are affected by your changes, which is error
prone.

c. A symbolic debugger is a convenient tool for diagnosing this type of problem. It allows you to
run your program until the fault condition occurs and then see the line where the fault is occur
ring as well as the values of program variables. This particular problem is likely to show up in
the function described in Exercise 14.3. It appears that the program is running out of memory .

d. A change control system is an excellent way of coordinating a team software project.

c. A system builder solves this problem.

f. Some languages provide a solution to this problem. In C. for example, there is a #line construct
that a preprocessor could insert into its output to point to a line in another tile.

15.6a, Because of light memory requirements a text segment should be deallocated when it is no longer
needed. The problem is to develop a uniform policy that determines when segments are no long
er needed. Classes and methods provide a convenient framework for a solution. One set of
guidelines is to place the responsibility lor memory' reclamation with the methods which modify
text segments. Access to text segments outside of the object which owns them should be read
only. Temporary text segments should be deallocated as soon as possible.

One wav to combine text segments follows:
f« _V v tiT&rrun* trie o: the seaments chat are to be combined.

w i l - t-* T- • » ? V r ̂ ** * 1 1 f-
(1 . * »•> . . ! • J . * . V . . ■ \ — . • , * J * U «

the c-r i-jir.a I text segments into the a 11 oca ted memory.
ocate the memory assigned to the original text segments

b. For a multipass compiler it is a good strategy to simply let the operating system allocate a large
amount of virtual memory. The amount of memory needed depends on the size of the source
code being compiled. Because programs are partitioned into modest sized modules it is possible
to place a reasonable upper bound on the amount of memory needed.

c. You cannot let the operating system allocate a large amount of virtual memory and forget about
garbage collection in systems that run indefinitely. Eventually all memory will be consumed.
Memory must be deallocated when objects are no longer referenced.

d. The first approach, deallocating memory within the subroutine that allocated it in the first place,
guarantees that memory is reclaimed without burdening other routines with the responsibility of
determining when a block of memory is no longer needed. However, doing so complicates re
cursive procedures.

17.14 Object diagram for Figure E l7.9.

Figure A 17.14 Object diagram for distance between cities

17.15 'Hie following SQL code determines the distance between two cities for Figure El 7.9.

ooloct s

h * t, -K. - »*T /*.'»_*•* :V:»kS :>1 , ! * 1 t . i r i C « * * b o i t . i <*:■

whoro . r v :’«*-It.- ond
: . ; • r *• - ; l.» and

: i . - :l. :Vy-:i and
r;. . ■ y -;: - : . ; r y-: and
" 1 ; * y * :.*i~ *- - ; ; : * / » » : , \ and

... ->rf •- - -r.ar**.';

r .4 * •

17.16 Object diagram for Figure E l7.10.

between cities

Figure A 17.16 Object diagram for distance between cities

17.17 The following SQL code determines the distance between two cities for Figure E l7.10.

s e le c t d is ta n c e
from C ity C l, C ity C2, D is ta n c e -b e tw e e n -c ir ie s 2
where D . c i t y l - I D = C l . c i t y - I D and

D .c i t y 2 - ID = C 2 .c i t y - ID and
C l . c ity -n a m e = :giv e n - n a m e l and
C2 . c ity -n a m e = : gi ven-name.?;

17.18 We make the following observations about Figure A17.I4 and Figure A17.16.

• Figure A 17.16 is awkward because of the symmetry between city 1 and ciiy2. Either data
must be stored twice with waste of storage, update time, and possible integrity problems, or
special application logic must enforce an arbitrary constraint.

• Figure A 17.14 has an additional table.

All in all. Figure A 17.14 is a much better approach. With a self association it is frequently help
ful to promote the association to a class in order to break the symmetry.

20.3 Shallow copy methods use less space than deep copy methods. Subsequent changes to the orig
inal are automatically inherited by a shallow copy. A deep copy is independent of the original.

a. For librarŷ objects a shallow copy has the advantage of saving a great deal of space since it is
likely there will be many copies of the original. We assume there are two types of applications
that will access library objects. A librarian will have read and write access to the original. AH
other applications will have read only access. With a shallow copy a change in the original is
automatically reflected in the copies. This may be desirable in some applications and undesir
able in others, A danger of the shallow copy is that a mistake while using the librarian program
could have disastrous results.

b. Because changes in the new sheet should not affect the old sheet a deep copy must tv used.

c. Either a shallow copy or a deep copy is suitable for copying selected items from one place on a
sheet to another, depending on the desired behavior. Use a shallow copy if the copies should
inherit changes made to the original. Use a deep copy if it is desired to change the copies inde
pendently.

Index

A

abstract class 61-62
in animation case study 427

abstract operation 62
abstracting out a common superclass 243
abstraction 7. 16
access operation 131
access to attributes 321. See also private, pro

tected. public
action 92-93. 131-132

entry and exit 101-102
4

internal 102
notation for 93
on a state 101
on a transition 93

active values 23K
activity 92. I 32

notation for 92
actor object I in a DH.)> 126
Ada language 324

associations 357
class definitions 343
encapsulation 322. 360
implementation in 341
inheritance 349
instantiation 346
methods 345
metluxl resolution 354

aggregate:
fixed 59
propagation of an operation upon 60
recursive 59
variable 59

aggregation 36-38, 57-61
versus association 58
and concurrency 99
in database schema 380
versus generalization 58
notation for 38
tree 38

algorithms 254
design of 230-235

allocation:
of operations to classes 234 -235
of subsystems to processors 203-204

analysis 5, 145, 148-188, 260-262
of access paths 236
in animation case studv 420-423

4

of association traversal 245
in compiler ease study 401-406
document 262
iteration of 1S5
model 149
in OIJH ease study 436 443

4

summary of 261 -262
transformation into design 228

ancestor class 39

animation case study 416-431
architectural frameworks 211-216
architecture 198,211-216

in the ATM example 217
multiple processor 203
result of system design 198
three schema 367-368

assertion 324, 328
association 27-38, 156-161

in Ada 357
analyzing traversal of 245
in C 356"
in C++313
as a class 33
in database schema 376-382
derived 159
design of 245-248
directionality 27
in Eiffel 315
in Fortran 358
identi lying 156-161
importance of 31
modeled as a class 33
multiplicity of 30. 160
in non-00 language 355-358
notation for 28
in an 0 0 language 312-313
ordered 35
qualified 35, 160, 162
redundancy to improve speed 235
role names 34-35
in Smalltalk 317
ternary' 28. 159
traversal of 34, 246

ATM example 15 1 - 185
architecture 217
implementation of control 240
problem statement 151

attribute 23-25. 161-163
access to 321
class 71

derived 26. 34, 35, 75
event attribute 85
ideniifvme 161-163 * \
link attribute 31-32. 163
notation lor 24

private 249
automatic transition 103

e

base attribute 26, 131
batch transformation 212-213

in object diagram compiler 407
boundary conditions 210 *
browser 323
building tools 323

c
C language:

in animation case studv 428
*

association 356
class definitions 342
encapsulation 359
implementation in 341
inheritance 348
instantiation 346
method 344
method resolution 351

C++ language 324. 326
association 313
calling operations 305
class definitions 299
creating objects 301
encapsulation 322
inheritance 308-309

candidate key 71-72
case statements, avoidance of 286
case studies:

computer animation 416-431
electrical distribution design system

448
object diagram compiler 3u7-4l.>

chance control tools 323
class 2, 22, 153-156

abstract 61 -62
in Ada 343
ancestor 39
in C 342
in Ct-’* 290
concrete 61
m database schema 375-376
vlesceiulent 3 0

m i-ilfol 3<30
in fortran 343
uienntvme 15 * !5o

9 %

> 4-

class:

in n o n -0 0 language 342-344

notation tor 23

as an object unciaobject) 71

in Smalltalk 300

class attribute 71

class descriptors 71

class diagram 23

class feature 7 1

class library 3 IK -3 1 9

Eiffel 315. 327

H T t t i C V i 326

Interviews (0 - t * > 326

N IH i (> -) 314, 326

Smalltalk 317 .325

class method (Smalltalk!. $«v class operation

class operation 71. 304

class variable (Smalltalk). .SV<* class attribute

classification 2

client 138. 230
client-supplier relationship 2(H)

CLOS 25. 3 IS. 320. 321 .322 . 328, 332

clustering 79

coherence ol entities 250

Common Lisp Object System. 5V<* CLO S

comnlexitv. analvsts of 254
r # #

concrete class 61

concurrency 202. 241

and aggregation 99

implementation of 35K

among objects 99

within an object 99

synchronization 104

concurrent system 209

condition 9i-'.#2

notation lor 9 1

configuration problems, solution of 24 3

constraint 73 75. 132. 324

idcntrfvine 1X2
4 t

on links 74

notation lor 7*1

container class 233. Mw

c o n t o u r 9 7

contractual nxwjel of programming 328

control 18.84

implementation of 207 211', 239 241

in A T M c» ample 240

control flow 129

D

data diet ionurv 156
0

data (low 126

data flow diagram <DFD> IK. 124-129

construction o f IXO-182

nesting o f 129

data management 205-206

data model 367

data store 127-128

data structures 254

selection o f 233

database (D B M S) 366 -389

advanced relational 387-3XX

design o f schema 373-3X7

versus files 205 -206

integrity o f information 370-371

object-oriented 329 -330

relational 368-371

debugger 323

debugging code 288

declaration o f types for efficient code 320

decomposition 168. 199-201

delegation 284-2X5

in animation case study 426

to avoid improper inheritance 244

as a substitute for multiple inheritance 67

Demeter. Law o f 286

derived association 159

derived attribute 26. 34. 35, 75. 131

in O M Tool example 237

derived entity 75
9

derived link 75

derived object 75

in O M fool example 237

derived values, update o| 238

dcsceiulent class 39

design 227 254

conversion into D O language 296 }] \

of database schema 373- 387

ol database systems 329

derivation from analysis model 228

document 2 6 5*

documentation ol 251 252

implementation of 278 -2X0

object dcMgn phase 227 >^4

optimization ol 235 238

trade offs, prioritizing 210

DFD. See data flow diagram
diagram:

class 23
data flow 180-182
event flow 173
instance 23
object 23
state 85,89-91. 173-179

directionality of association 27
discriminator 39
documentation:

of analysis 186, 262
of code 289
of design 251-252, 263
of system design 262

DSM language 313, 318, 320, 323. 332
in compiler case study 412

dynamic binding. See method resolution
dynamic model 6, 17, 18,84-113, 261

in animation case study 422
completeness and consistency of 179
and concurrency 202
construction of 169-179
implementation of 207-210, 239-241
in OL1E case study 441
relationship to other models 110

E
edge triggered event 103
efficiency:

of design 235-238
of OO languages 319. 327
periodic recompulation of derived at

tributes 238
rearranging execution order 237
saving attributes to avoid recompulation

237
setting trade-off priorities 210
trade-offs versus flexibility 232
using an index 236-237

Eiffel language 318. 324.327
association 315
calling operations 306
class definitions 300
class library 315. 327
creating objects 303
encapsulation 321

encapsulation 7, 3 1.285. See also information
hiding

in Ada 360
in C 359
in Fortran 361
language support for 321

entity integrity 370
Entity-Relationship (ER) diagram 267.271
environment for program development 322
ET++ class library 326
event 85-86, 169-179

identifying 173
notation for 89
sending 101, 103

event flow diagram 173
event generalization 98

notation for 98
event trace 86

construction and use of 173
event-driven system 208
EXODUS (DBMS) 388
extensibility:

improved by use of inheritance 243
programming tips for 285-286

extension 63-65

F

factoring out common code 283-284
feature 26

class feature 7 1
in Eiffel 300

finite state machine. See state diagram
firing of transition 89
fixed aggregate 59
flight simulator example 13 3 -137
foreign key 370
Fortran:

association 358
class definitions 343
encapsulation 361
implementation in 341
inheritance 350
instantiation 347
method 345
method resolution 355

frameworks, architectural 211-21 o
friend function (C+ +) 312, 322

funciion:
describing during analysis 182
as an operation on an object 184

functional model 6. 17. 18.123-140. 261
in animation case study 423
in compiler case study 402
construction of 179-183
in OLIE case studv 442

*

relationship to other models 137

G
garbage collection 320-321
GcmStone 330
generalization 38—13. See also inheritance

in database schema 382-385
event generalization 98
as extension and restriction 63-65
notation for 39
state generalization 96-98
uses of 41 -42

generics. See parameterized class
guarded transition 91

notation for 9 1
guardian object 207
guidelines for programming 281-292

H

hardware requirements, estimation of 203
higraph 114
homomorphism 76-77

i

identifying

associations 156-161

attributes 161-163

classes 153-156

identity 2, 22, 48

impact of OG rncthodologs 146

implementation 5, 27 ft-280

in animation case study 428 -430

in compiler case study 4 12

in a database sy stem 279-2KO

in O L IK case studs 448
*

implementation method 250

index, improving efficiency by uve of 216 -237

information hiding 7. 249-250. 321 See also

encapsulation

information modeling notations 271
inherent concurrency 202
inheritance 3. 38-43. See also generalization

abstracting out common behavior 242-244
in Ada 349
during analysis 163-165
avoiding improper use of 244.284-285
in C 348
in C++ 308

limitations on 326
in database schema 382-385
in Eiffel 310
of events 98
in Fortran 350
increasing during design 242-244
multiple inheritance 65-69, 164
notation for 39
rearranging classes and operations 242
in Smalltalk 311
of states 97

instance 2.22
notation for 70

instance diagram 23
instance variable (Smalltalk). See attribute
instantiation 69

in Ada 346
in C 346
in Fortran 347
in non-00 language 345
notation for (in a DFD) 128

integrity of data in DBMS 370-371
interactive interface 214-215
interface class 319
Interviews 326
invariant 133,324.328
is-a. See generalization
iteration during modeling 166

J
Jackson Structured Development (JSD) 26X-

271
join class 65

K

key. foreign or primary 370
a-kmd of. Set generalization

L
lambda transition 103
language:

Ada 34!
C 341

C++ 326
CLOS 328
comparison of 0 0 330
database 329-330,366-389
DSM 409
Eiffel 327
Fortran 341
Lisp 342
non-objcct-orionicd 340-363
object-oriented 296-333
Pascal 342
Smalltalk 325
SQL 369,400
Trellis-Owl 332

layer 200
leveling 129
life cycle 6, 144

analysis 145. 148-188. 260-262
for database applications 367
impact of OO approach 146
maintenance 144
object design 145, 227-254, 263
system design 145, 198-219, 263
testing 144

link 27
constraints on 74
derived 75
notation for 2S

link attribute 31-32, 163
implementation of 248
notation for 32

Lisp, implementation in 342. Srr til so CLOS
lock 207

M

maintenance 144
make (sysiem-hmidmu tool) 323 *
member (C++) 290. ,SVr <ilso feature
member function (C+ +). Si r method
memory management 320-321. 327

metaclass 7 1
metadata 69-71

meta-infonnation 323
metamodel in compiler case study 406
method 3. 25

in Ada 345
in C 344
in Fortran 345
in non-00 language 344-345

method caching 319

method resolution 230. 319
in Ada 354
in C 351
in C++, limitation of 326
in Fortran 355
in non-00 language 351-355
optimization of 3 19

methodology 144
comparison of 266-274

model 15-19
dynamic model 18.84-113. 169-179
functional model IS. 123-140. 1 7 9 - 1 8 3

object model 17.21—18, 152-169
relationship between 18. 137-139

ModelA'iew/Controller (Smalltalk) 325
modes, avoidance of 283
module 43. 200. 251

notation for 43
partitioning during analysis 168

multiple inheritance 65-69. 164
accidental 66
in database schema 384
language support for 3 18
substitutes for 67-6°

u orkarounds 67
multiplicity 30-31. 160

notation for 30

N

name
importance of 46. 28K-289
as an object attribute 162

nested state diagram l)4 -4>S
N il! class libr.tr> (O ♦ > 314
normal forms 3? I

notation for.
action 93

entry and exit 101
internal 102

activity 92 *
actor object (in a DFD) 127
aggregation 38
argument list 25
association 28

as a class 33
attribute 24
class 23. 26
condition 91
constraint 74
control flow 129
data flow 126
data store 127
default value 24
derived entitv 75 ♦
event 89

sending 103
event generalization 98
generalization 39
guarded transition 91

inheritance 39
instance 70
link 28
link attribute 32
module -13
multiplicity 30
no arguments 23
object instance 23
operation 25

m pseudocode 184
process On a DFD) 125
qualified association 36

in pseudocode 184
qualifier 36
result type 25

role name 34
‘•election or creation of a DFD object 128
sheet 4.3

state 89. 93

concurrency m 99, 104

initial or final 91

nested 95-97

notation for:
slate diagram 93
slate generalization 97
synchronization 104
ternary association 2S *
transition 89

automatic 103
type 24
visibility of attributes 249 *

o
object 21-22

allocation in non-00 language 345
in database schema 375-376
derived 75
design of 248
identifying classes of 153-156
in non-00 language 342-344

object design 5. 145, 227-254. 263
in animation ease study 426—128
in compiler case study 408-412
in OLIE ease study 445-448
summary of 263

object diagram 17. 23
object diagram compiler 397-413
object ID:

in database design 374
unnecessary in object model 24

object instance:
notation for 23

object model 6. 17, 21-48. 261
advanced concepts 57-79
in animation ease studv 421
avoiding assumptions about 249, 285
in compiler ease study 402. 404
completeness and consistency of 166
concepts and notation 21—18
construction of 152-169
conversion to database schema 373-387,

397-413

in O IJF ease study 436. 437
relationship to entity-relationship < UR) 48

relationship to other models MO. 136

object modeling:
practical tips 46

Object Mixlclmg Technique. See OMT

Objcctive-C language 323, 332
object-oriented, meaning of 1
object-oriented development 4

impact on life cycle 146
object-oriented language 296-333

comparison chart 331
features of 318-325

object-oriented methodologies 273
OM T (Object Modeling Technique) I, 5 ,1 6 -

18
OM T methodology:

comparison with others 266-274
preview of 144-147
summary of 260-264

OMTool example 229-234
0 0 . See object-oriented
operation 2. 25-26

abstract 62
in C++ 305
in a DFD 130-132
in Eiffel 306
identifying 183-185
notation for 25

overriding 64-65
query 26
shopping list 185
in Smalltalk 307
specification of 130-132

in a state diagram 92
optimization:

avoiding excessive 287
of design 235-238
specifying criteria for 183

ordering one-lo-manv associations 35
W *

origin class 62

O R IO N 330

O S C A R case study 416-431

overriding an operation 42—43. (>4-65

p
package 322

parameterized class 324

partition 201

partitioning loS. 199 201. 251

a-pari-of. See aggregation

part-whole relationship. See aggregation

Pascal language, implementation in 342

peer-to-peer relationship 200
persistence of data 324
Petri nets 114
pointer 27, 31
policy method 250
policy versus implementation 250, 282-283
polymorphism 2. 25, 328
POSTGRES (DBMS) 388
preconditions and postconditions 324, 328
primary key 370
priorities for design trade-offs 210
private access 297-301
private operations 286. 322
problem statement 150-151
procedure-driven system 20S
process:

in a DFD 124
implementation of 138

program structure chart 230
programming language:

non-object-oriented 340-363
object-oriented 296-333

programming style 281-292
programming-in-ihe-large 288-291
propagation of operations 60
protected access (C++) 309
protocol 62

in animation case study 427—J2S
public access 297-301
public operations 286

Q
qualification 35-36
qualified association 35. 160. 162

in database schema 380
notation for 36

qualifier, notation for 36
query operation 26. 131
query to a database system 32^

R
race condition 103
real-time system 216
recursive aggregate 5°
redundancy to improve speed

aswiations 235
data 237

referential integrity 370W »

requirements 150-151, 1S6

restriction 42. 6 3 -6 5

reusability:

during analysis 169

programming lips for 282 -285

robustness, programming tips lor 286 -288

role 3 4 -35

role name 3 4 -3 5 , 160

notation lor 34

uniqueness of 35

s
scenario 86. 170-172

schema:

for a database 367 -368

generation from object model 3 7 3 -3 8 7 ,

397-413

selection:

as a data How 128

notation for on a D F D) I2S

self <Smalltalk.) 307

self reference 307

service 199

sheet 43

notation tor 43

partitioning during analysis 168

shopping list operations 185

signature 25, 42. 130

simulation, dynamic 2 15

Smalltalk 3 is . *2 3 .3 2 5 . 332

association 317

ta iling operations *07

class definitions 31X)

class library 3 17

creating objects 304

encapsulation 321

specialization 42

specification

of interfaces 289

t >M'l used for 280

stale 84 | 12

toncurrenc;. in 9v |<>4 |05

genera lization 9r> 98

im plem enta tion o f 239 -2 4 1

in itia l and final 91

no-anon tor K9. •* o?

state:

substate 97

superstate 97

state diagram 18, 85. 89-91, 267

construction o f 173-179

conversion to code 239

level o f abstraction 88

nested 9 4 -9 8

one shot versus continuous 91

state machine engine 241

slate tree 114

in O U R case study 4 4 5 -4 4 6

statechurt 113

static binding 319

strong typing 320

structure chart 230. 267

Structured Analvsis/Structurcd Design

(S A /S D) 2 6 6 -2 6 8

subclass 3, 39

substate 97

subsystem 199-201 #
superclass 3. 39
superstate 97

supplier 138, 230

system architecture 198, 211-216
system design 5, 145. 198-219, 262

in animation case study 4 2 4 -4 2 5

m compiler case study 4 0 7 -4 0 8

document 262

in O U l* ease stud) 4 44 -4 45

summary of 262

system topology 201. 204, 217

T

lablc (in R D B M S)

terminator 127

ternary association 28, 159

in database schema 380 382

notation for 28

testing lor completeness ami consistency:

ul d\ n.imic model I 79

ol object model 166

testing phase ol development 144

this (("*♦ *) 9)5

thread of control 202. 230

three models, combining 2?9

three schema architecture 367 368, *73 374

trade-offs:

database versus flat files 205-206

efficiency versus flexibility 203, 232

hardware versus software 203

objects versus primitive types 248

setting priorities for 210

transaction manager 216

transformation:

continuous 213-214

transition 89

automatic 103

guarded 91

lambda 103

notation for 89

Trellis-O w l language 318, 3 21 .332

triggering operations 60

u
user interface:

design o f 214

specification o f 172

V
variable aggregate 59

view in D B M S 371

virtual function (C + +) 326

visibility:

of associations 249, 285

of attributes 321

of classes 322

of operations 286. 322

w
weak typing 320

Event causes Transition between States: Event with Attribute:

^State-1^
event

•^ S ta te -2 ^ State-i
"X event iattnoutet

J < State-2)
V J

Initial and Final States:

IntermediateX /T \
State y — 1

r e s u l t

Action on a Transition:

event action
State-1

J

f \
\ State-2 ,
V _ _ / z

Guarded Transition:

event (guard
State-1 ■H State-2

Output Event on a Transition:

evenn event?
(^State-1 ' y ^State-2 ' j

Actions and Activity while in a State:

State Name
entry entry-action
00: activiiy-A
event-1 action-1

exit exit-action j

Sending an event to another object:

\ eventt
State-1 ;------------

_______ s
event'

{ Class-3
i__________ I

State-2)

State Generalization (Nesting): Concurrent Subdiagrams:

Superstate

I O™ ►{Substate-1>;
i V_________ /

even:?

�

X

Substate-3v

— r ' y i
-v

VSubstote-2) ^Substate-4'

• evO'WT

Splitting of control:

t»; en:0

(/ N
Substate-1}-

 ̂ “n
Subr«tate-2V

\ ^-------------^

oven: •

tn en:2

Synchronization of control

-

Data S tore or File O bject: Oata F low that R esu lts in a Data S tore :

Name of
data store

Name of
data store

A cto r O bjects (as Source or S ink o f Data): C on tro l F low :

Access o f Data S tore Value:

Data store

U pdate o f Data S tore Value:

Data store

I
dt

A ccess and Update o f Data S tore Value:

Data otore

i
1 d?
i
f

v.

\

D up lica tion o f Data Value;

C om po s ition o f Data Voluc:

COr̂ tfOS*

C?

D ecom position o f Data Value:

CO'VJJOS'tO

a? *•

