

 i

Object-Oriented
Design Knowledge:
Principles, Heuristics and

Best Practices

Javier Garzás
Oficina de Cooperación Universitaria (OCU) S.A., Spain

Mario Piattini
University of Castilla - La Mancha, Spain

Hershey • London • Melbourne • Singapore
IDEA GROUP PUBLISHING

http://www.pdfcomplete.com/1002/2001/upgrade.htm

ii

Acquisitions Editor: Michelle Potter
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Sara Reed
Copy Editor: April Schmidt
Typesetter: Marko Primorac
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2007 by Idea Group Inc. All rights reserved. No part of this book may be reproduced, stored or
distributed in any form or by any means, electronic or mechanical, including photocopying, without written
permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the names of the
products or companies does not indicate a claim of ownership by IGI of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data
Library of Congress Cataloging-in-Publication Data

Object-oriented design knowledge : principles, heuristics, and best practices / Javier Garzas and Mario Piattini,
editors.
 p. cm.
 Summary: "The software engineering community has advanced greatly in recent years and we currently have
numerous defined items of knowledge, such as standards, methodologies, methods, metrics, techniques, languages,
patterns, knowledge related to processes, concepts, etc.The main objective of this book is to give a unified and
global vision about Micro-Architectural Design Knowledge, analyzing the main techniques, experiences and
methods"--Provided by publisher.
 ISBN 1-59140-896-2 (hardcover) -- ISBN 1-59140-897-0 (softcover) -- ISBN 1-59140-898-9 (ebook)
 1. Object-oriented methods (Computer science) 2. Object-oriented programming (Computer science) I. Garzas,
Javier, 1975- II. Piattini, Mario, 1966-
 QA76.9.O35.O244 2006
 005.1'17--dc22
 2006010089

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are
those of the authors, but not necessarily of the publisher.

 iii

Object-Oriented
Design Knowledge:

Principles, Heuristics
and Best Practices

Table of Contents

Preface ... vi

Chapter I
The Object-Oriented Design Knowledge ... 1

Javier Garzás, Oficina de Cooperación Universitaria (OCU) S.A.,
 Spain

Mario Piattini, University of Castilla - La Mancha, Spain

Chapter II
The Object-Oriented Design Knowledge Ontology 8

Javier Garzás, Oficina de Cooperación Universitaria (OCU) S.A.,
 Spain

Mario Piattini, University of Castilla - La Mancha, Spain

Chapter III
Using Linguistic Patterns to Model Interactions23

Isabel Díaz, Central University of Venezuela, Venezuela
Oscar Pastor, Technical University of Valencia, Spain
Lidia Moreno, Technical University of Valencia, Spain
Alfredo Matteo, Central University of Venezuela, Venezuela

iv

Chapter IV
A Framework Based on Design Patterns: Implementing UML
Association, Aggregation and Composition Relationships in
the Context of Model-Driven Code Generation56

Manoli Albert, Universidad Politécnica de Valencia, Spain
Marta Ruiz, Universidad Politécnica de Valencia, Spain
Javier Muñoz, Universidad Politécnica de Valencia, Spain
Vincente Pelechano, Universidad Politécnica de Valencia,
 Spain

Chapter V
Design Patterns as Laws of Quality .. 105

Yann-Gaël Guéhéneuc, University of Montreal, Canada
Jean-Yves Guyomarc’h, University of Montreal, Canada
Khashayar Khosravi, University of Montreal, Canada
Houari Sahraoui, University of Montreal, Canada

Chapter VI
Automatic Verification of OOD Pattern Applications 143

Andrés Flores, University of Comahue, Argentina
Alejandra Cechich, University of Comahue, Argentina
Rodrigo Ruiz, University of Comahue, Argentina

Chapter VII
From Bad Smells to Refactoring: Metrics Smoothing the Way 193

Yania Crespo, Universidad de Valladolid, Spain
Carlos López, Universidad de Burgos, Spain
María Esperanza Manso Martínez, Universidad de Valladolid,
 Spain
Raúl Marticorena, Universidad de Burgos, Spain

Chapter VIII
Heuristics and Metrics for OO Refactoring: A Consolidation and
Appraisal of Current Issues ... 250

Steve Counsell, Brunel University, UK
Youssef Hassoun, University of London, UK
Deepak Advani, University of London, UK

Chapter IX
A Survey of Object-Oriented Design Quality Improvement 282

Juan José Olmedilla, Almira Lab, Spain

 v

Chapter X
A Catalog of Design Rules for OO Micro-Architecture 307

Javier Garzás, Oficina de Cooperación Universitaria (OCU) S.A.,
 Spain

Mario Piattini, University of Castilla - La Mancha, Spain

About the Authors ... 349

Index .. 356

vi

Preface

In order to establish itself as a branch of engineering, a profession must under-
stand its accumulated knowledge. In addition, software engineering as a branch
of engineering must take several basic steps in order to become an established
profession, highlighting understanding of the nature of its knowledge.
Software engineering experts always have used proven ideas. Concretely, in
the object-oriented (OO) design knowledge field, the practical experience of it
has been crucial to software engineers, and it is in the last years when these
ideas, materialized in items such as patterns or refactorings have reached their
biggest popularity and diffusion. And in this regard, the software engineering
community has advanced greatly and we currently have numerous and defined
chunks of knowledge, including standards, methodologies, methods, metrics,
techniques, languages, patterns, knowledge related to processes, concepts, and
so forth. Although these different areas of knowledge relate to the construction
of an OO system, there is a lot of work still to be done in order to systematize
and offer this knowledge to designers in such a way that it can be easily used in
practical cases.
A software architecture is a description of the subsystems and components of
a software system and relationships between then.1 Usually, the software ar-
chitecture is subdivided into macro and micro architecture. Whereas macro
architecture describes the metamodel of design, this that provides the high-
level organization, the micro architecture describes details of a design at a lower
level.

 vii

OO design is a software design technique, which is expressed in terms of ob-
jects and relationships between those; at the level of micro architecture it in-
cludes elements such as classes, its relationships, responsibilities, refactorings,
and so on.
OO micro architectural knowledge is built upon design experiences, such as
problem solving, or lessons learned. Therefore, the OO micro architectural de-
sign knowledge has grown with time and the increasing complexity of soft-
ware. This knowledge expands and accumulates when it is stored in books and
other media for the use of designers.
In addition, the major part of OO design knowledge is difficult to identify and
use. The experience has demonstrated that design often omits common prin-
ciples, heuristics, and so on, with a consequent major loss of experience. Con-
sequently, actually, serious difficulties are still encountered when we tackle the
construction of OO systems. Although designers have accumulated a body of
knowledge that they apply during these processes, this is very implicit. Fortu-
nately, it is now being specified and popularized in different forms: principles,
heuristics, patterns, and more recently, refactoring techniques. However, today,
the difference between these concepts is generally unclear and not all of them
have received the same amount of attention or have reached the same degree
of maturity. In addition, a strong knowledge does not exist on items such as
design principles, best practices, or heuristics. The problem confronting the
designer is how to articulate all this explicit knowledge and to apply it in an
orderly and efficient way in the OODA, in such a way that it is really of use to
him or her. In fact, in practice, even such advanced subjects like OO patterns
have this problem
Design knowledge and best practices are stored in individual expert minds, or
implicitly encoded and documented in local organisational processes. It has
always been true that a significant part of design knowledge resides in the
minds of the experts that make it up. However, communities and companies are
beginning to find that it is easy to lose a vital element of their intellectual prop-
erty: corporate design knowledge. Therefore, we can say that the major part of
the design knowledge today is tacit knowledge: it in the form of project experi-
ences, heuristics, or human competencies that are difficult to be captured and
externalised.
The effective management of this knowledge is today a significant challenge.
For knowledge management to be effective, this knowledge should be orga-
nized and classified. In addition, with this purpose, developing unified cata-
logues of knowledge, ontologies, empirical studies, and so on, books and studies
such as those we present here, are very important issues to improve the use of
OO design knowledge.
Therefore, in this context, we present this book whose main objective is to give
a global vision of micro-architectural design knowledge, exposing the main tech-
niques and methods, and analyzing several aspects related to it.

viii

The subject matter in this book is divided into ten chapters. The chapters seek
to provide a critical survey of the fundamental themes, problems, arguments,
theories, and methodologies in the field of OO micro architectural design knowl-
edge. Each chapter has been planned as a self-standing introduction to its sub-
ject.
Therefore, in Chapter I Javier Garzás and Mario Piattini present an introduc-
tion to “The Object-Oriented Design Knowledge,” where they show the main
issues and problems of the field. In OO micro-architectural design knowledge,
design patterns are the most popular example of accumulated knowledge, but
other elements of knowledge exist such as principles, heuristics, best practices,
bad smells, refactorings, and so forth, which are not clearly differentiated; in-
deed, many are synonymous and others are just vague concepts.
An essential issue to building an OO design knowledge discipline is organizing
this knowledge. In Chapter II, titled “The Object-Oriented Design Knowledge
Ontology,” Javier Garzás and Mario Piattini show an ontology that organize and
relation the OO knowledge. The authors propose an ontology in order to struc-
ture and unify such knowledge. The ontology includes rules (principles, heuris-
tic, bad smells, etc.), patterns, and refactorings. They divide the knowledge on
rules, patterns, and refactorings and they show the implications among these.
Moreover, they show an empirical validation of the proposed conclusions.
Chapter III, “Using Linguistic Patterns to Model Interactions,” by Isabel Díaz,
Oscar Pastor Lidia Moreno, and Alfredo Matteo, is a pivotal chapter that changes
the focus of the book to more technical information systems issues. This chap-
ter shows an elegant example of how highly relevant clinical questions can be
addressed in a scientific manner. In this chapter, heuristic-oriented techniques
and linguistics-oriented techniques proposed by several authors to model inter-
actions are analyzed. In addition, a framework to facilitate and to improve the
interaction modeling is described. This framework was conceived to be inte-
grated into automatic software production environments. It uses linguistic pat-
terns to recognize interactions from use case models. The validation process
used and the main results are also presented.
In Chapter IV, Manoli Albert, Marta Ruiz, Javier Muñoz and Vicente Pelechano
show “A Framework Based on Design Patterns: Implementing UML Associa-
tion, Aggregation and Composition Relationships in the Context of Model-Driven
Code Generation.” The chapter proposes a framework based on design pat-
terns to implement UML (Unified Modeling Language) association, aggrega-
tion, and composition relationships, and for it they propose a semantic interpre-
tation of these concepts that avoids the ambiguities introduced by UML.
Therefore, in “Design Patterns as Laws of Quality” Yann-Gaël Guéhéneuc,
Jean-Yves Guyomarc’h, Khashayar Khosravi, and Houari Sahraoui, Chapter
V, show how design patterns can be used as facts to devise a quality model and
they describe the processes of building and of applying such a quality model.

 ix

The chapter highlights the need for principles in software engineering, where
these can be laws or theories formalizing and explaining observations realized
on software.
For the sake of completeness in this book, automatic verification of design
knowledge is addressed in Chapter VI. Andres Flores, Alejandra Cechich, and
Rodrigo Ruiz present “Automatic Verification of OOD Pattern Applications.”
Chapter VII, “From Bad Smells to Refactoring: Metrics Smoothing the Way”,
is authored by Yania Crespo, Carlos López, María Esperanza Manso Martínez,
and Raúl Marticorena. This chapter discusses one of the current trends in
refactorings: when and where we must refactor. From the bad smell concept, it
is possible to discover their existence from an objective viewpoint, using metrics.
The chapter presents a study on the relation of refactorings, bad smells and
metrics, including a case study on the use of metrics in bad smells detection.
The chapter leads to the determination where refactoring is the basis of heuris-
tics and metrics, which is likely to be the single most important factor at the
moment of use refactorings in the maintenance phase.
Therefore, in Chapter VIII, “Heuristics and Metrics for OO Refactoring: A
Consolidation and Appraisal of Current Issues,” Steve Counsell, Youssef
Hassoun, and Deepak Advani cover this topic in great depth. They look at
some of the issues which determine when to refactor (i.e., the heuristics of
refactoring) and, from a metrics perspective, open issues with measuring the
refactoring process. They thus point to emerging trends in the refactoring arena,
some of the problems, controversies, and future challenges the refactoring com-
munity faces.
A key point to building a OO design knowledge field is to understand the sev-
eral contributions to it. Since several OO metrics suites have been proposed to
measure OO properties, such as encapsulation, cohesion, coupling, and abstrac-
tion, both in designs and in code, in Chapter IX, titled “A Survey of Object-
Oriented Design Quality Improvement,” Juan José Olmedilla reviews the lit-
erature to find out to which high level quality properties are mapped and if an
OO design evaluation model has been formally proposed or even is possible.
The chapter is an excellent example of how performing a systematic review of
the estate of art.
At last, in Chapter X, “A Catalog of OOD Knowledge Rules for OO Micro-
Architecture,” by Javier Garzás and Mario Piattini, several types of knowledge
such as principles, heuristics, bad smells, and so on, are unified in a rules cata-
log.
In summary, these chapters constitute an evidence of the importance of micro-
architectural design knowledge, representing important ideas in different soft-
ware design areas. These are intended to be useful to a wide audience, includ-
ing software engineers, designers, project managers, software architects, IS/IT
managers, CIOs, CTOs, consultants, and software students.

x

We hope that the practical vision, scientific evidence and experience presented
in this book will enable the reader to use the design knowledge within the field
of software engineering and to help the field of software engineering answer
how software engineers might acquire its rich and essential accumulated knowl-
edge.

Javier Garzás and Mario Piattini, Editors
Ciudad Real, Spain
January 2006

Endnote

1 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996).
A system of patterns: Pattern-oriented software architecture. Addison-
Wesley.

 xi

Acknowledgments

We would like to thank all the authors, because without their
contribution this book would not have been possible. We would
also like to thank Kristin Roth, our development editor, for her
help and encouragement.

The Object-Oriented Design Knowledge 1

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

The Object-Oriented
Design Knowledge

Javier Garzás, Oficina de Cooperación Universitaria (OCU) S.A., Spain

Mario Piattini, University of Castilla - La Mancha, Spain

Abstract

In order to establish itself as a branch of engineering, a profession must understand
its accumulated knowledge. In this regard, software engineering has advanced
greatly in recent years, but it still suffers from the lack of a structured classification
of its knowledge. In this sense, in the field of object-oriented micro-architectural
design designers have accumulated a large body of knowledge and it is still have
not organized or unified. Therefore, items such as design patterns are the most
popular example of accumulated knowledge, but other elements of knowledge exist
such as principles, heuristics, best practices, bad smells, refactorings, and so on,
which are not clearly differentiated; indeed, many are synonymous and others are
just vague concepts.

2 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

“Chaos is order waiting to be deciphered”
~ José Saramago

Twenty years ago, Redwine (1984) commented that “an expert in a field must
know about 50,000 chunks of information, where a chunk is any cluster of
knowledge sufficiently familiar that it can be remembered rather than derived,”
adding that in mature areas it usually takes about 10 years to acquire this
knowledge. Since then, many authors (Shaw, 1990) have commented on the need
for defined chunks of knowledge in the software engineering field. In this regard,
the software engineering community has advanced greatly in recent years, and
we currently have numerous and defined chunks of knowledge, including
standards, methodologies, methods, metrics, techniques, languages, patterns,
knowledge related to processes, concepts, and so on.
Nevertheless, the field of software engineering is still beset by a lack of
structured and classified chunks of knowledge (McConnell, 2003) and not all
knowledge is transmitted, accessible or studied in the same way. For example,
what and where is the enormous amount of practical knowledge regarding
object-oriented micro-architectural design? We mean knowledge that has been
accumulated from the experience of working with the inherent properties of
software, knowledge which normally comes under what is generally accepted or
“practices which are applicable to most projects, about which there is a
widespread consensus regarding value and usefulness” (Bourque & Dupuis,
2004, p. A-10). Such knowledge may take the form of a source code, compo-
nents, frameworks, and so on, but these are no mechanisms for obtaining designs
throughout the software life cycle.
At this point, many will have already identified one of the essential items of
knowledge based on experience with object-oriented micro-architectural design:
design patterns. These are just the tip of the iceberg. Let us simplify matters and
suppose that we want to specialize as software engineers in object-oriented
design. By means of projects like SWEBOK, we can now ascertain what
“design” is, how it is subdivided, find the main bibliographical references, and so
on, and quite easily acquire a sound theoretical knowledge. If indeed we
concentrate part of our professional activity on design, we find that we need to
study the practical experience of other experts in the area, and at that moment,
the concept of pattern occurs to us. Yet, after examining the main pattern
references in object-oriented design, we still feel that something is missing.
Missing elements for the formulation of a good micro-architectural design
include principles, heuristics, best practices, bad smells, refactorings, and so on.
Table 1 gives an example of each of these.

The Object-Oriented Design Knowledge 3

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Considerable progress has been made in the accumulation of experience-based
knowledge of OO micro-architectural design, but we have advanced consider-
ably less in its exploitation and classification. This could be seen as a case of the
“Feigenbaum Bottleneck”: “as domain complexity grows, it becomes very
difficult for human experts to formulate their knowledge as practical strategies”
(Pescio, 1997).
First, in the following section, we will analyze the maintenance and design
patterns and relationship with analyzability and changeability in more detail.
Later, we will show a measurement of the impact of the patterns used. In the last
sections, we present acknowledgments, our conclusions and future projects, and
references.

The Object-Oriented Design Knowledge

Serious difficulties are still encountered when we tackle the construction of OO
systems, especially in the transition between the analysis processes and the OO
design, an aspect which is very vague in this type of paradigm (Henderson, Seller
& Eduards, 1990). In practice, designers have accumulated a body of knowledge

Table 1. Examples of OO design knowledge

����������	

��	���������	���������	���������	�����
����������	��
������	�����	��	����������	���	�����	�������������������

������
���	

�����	�	���	�����������	�� ��!�����	��	�����������������������"�����	���!	�����!���!� �
�!	������!������	�����	��	�������������	�� ����!� ���������������	� �	��!����� ���#������������

���
	����
����	

�$���	�%���������������	����!�&�	����	���������	��������'��������())*���

��	������	

�� !���	"�#!��$		

$����������!���	��	������!��!� ���!�����+	������,��-��,�����.�� -���/�#	������()))���

��%��
&���'�	

�($�)�$	��$��)��	

�$�&����������������!�������������	���������0������������	���	���������!�&������	��!����
��������������	��	���12����!����������	��������������345���+	������������()))���

��

����	

&"������		
�����6����������	��7	7��� ���������� ��������	�%�����	�!���!���	���	�%����!��"���
���������������������������	�������������������	������� ���8������9�����:	!��	���/�
'�������������;���

4 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that they apply during these processes. Up until a few years ago, this knowledge
was very implicit but fortunately, it is now being specified and popularized in
different forms: principles, heuristics, patterns and more recently, refactoring,
and so on. The difference between these concepts is generally unclear and not
all of them have received the same amount of attention or have reached the same
degree of maturity.
In fact, OO design principles are often confused and few formalized. In this
regard, there are few works about it, with the exception of the contributions of
a few (Gamma et al., 1995; Liskov & Zilles, 1974; Martin, 1995, 1996; Meyer,
1997).
Regarding OO design heuristics the main works to which we can refer are those
of Riel (1996) and Booch (1996).
Patterns, however, are without doubt one of the elements that have undergone
the greatest evolution and proof of this is the existence of numerous publications
on the theme. The application of patterns in OO began at the beginning of this
decade (Coad, 1992) and was consolidated by the work of Gamma et al. (1995),
Buschmann, Meunier, Rohnert, Sommerlad, and Stal (1996), Fowler (1996), and
Rising (1998). Amongst the different types of patterns, we can distinguish,
mainly, although other categories exist (antipatterns, specific domains, etc.):

• Architectural: These focus on the structure of the system, the definition
of subsystems, their responsibilities and rules.

• Object-oriented analysis/design (OOAD): To support the refining of
the subsystems and components as well as the relationships between them.

• Idioms: They help us to implement particular aspects of the design in a
specific programming language.

As we already know, the use of patterns means that we can avoid constant
reinvention, thus reducing costs and saving time. Gamma et al., 1995 point out
that one thing that expert designers do not do is resolve each problem from the
beginning. When they find a good solution, they use it repeatedly. This experi-
ence is what makes them experts. However, at the present time, when patterns
are used, several types of problems can occur (Schmidt, 1995; Wendorff, 2001):
difficult application, difficult learning, temptation to recast everything as a
pattern, pattern overload, ignorance, deficiencies in catalogs, and so forth.
Refactoring techniques are characterized by their immaturity, although it is true
to say that this topic is rapidly gaining acceptance, the main works in this area
are Kent Beck and Fowler’s (2000), Tokuda and Batory (2001), and Opdyke
(1992).

The Object-Oriented Design Knowledge 5

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The problem confronting the designer is how to articulate all this explicit
knowledge and to apply it in an orderly and efficient fashion in the OODA, in such
a way that it is really of use to him or her. In fact, in practice, even such advanced
subjects like patterns have this problem. Ralph Johnson comments in this sense
that “for one thing, the large number of patterns that have been discovered so far
need to be organized. Many of them are competitors; we need to experiment and
find which are best to use. …Analyzing existing patterns, or making tools that use
patterns, or determining the effectiveness of patterns, could all be good topics”
(Johnson, 2000, personal communication). These problems could give rise to
incorrect applications of the patterns (Wendorff, 2001).
The differences between these elements are not clear. Many concern a single
concept with different names, while others on occasions do not contain knowl-
edge gained from experience, and still others are simply vague concepts. This
confusion leads to a less efficient use of knowledge, so concepts such as
principles or heuristics are still unknown to some software engineers, few of
whom understand completely their goals or relationships. This problem has been
brought up at several major congresses, for example the OOPSLA 2001
Workshop: “Beyond Design: Patterns (mis)used,” where such authors as
Schwanninger (2001) say “We got more and more aware that a good description
of the proposed solution is necessary, but useless for the reader if the problem
and the forces that drive the relationship between problem and solution are not
covered properly.”

Conclusion

Expert designers have always used proven ideas. It is in recent years when these
ideas, materialized mainly into the pattern concept, have reached their greatest
popularity and diffusion. However, more knowledge exists apart from that
related to patterns, although it would be true to say that this other knowledge is
frequently “hidden.” We should consider that OO micro architectural design
knowledge is associated with the pattern concept, but other elements exist, such
as principles, heuristics, best practices, bad smells, and so forth. These other
elements show a confused description, unification, definition, and so on.
Therefore, few studies systematize and offer the OO design knowledge to
designers in such a way that it can be easily used in practical cases. In addition,
the different studies published show the elements related to design knowledge in
a disconnected way. There has not been much effort made on empirical studies
about OO design knowledge, and the few works we have found are mainly
focused on design patterns.

6 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As Shaw (1990) states, a branch of engineering must take several basic steps in
order to become an established profession, highlighting understanding of the
nature of knowledge. We as a discipline must ask how software engineers might
acquire this knowledge.

References

Abran, A., Moore, J. W., Bourque, P., & Dupuis, R. (Eds.). (2004). Guide to the
software engineering body of knowledge: SWEBOK. Los Alamos, CA: IEEE
CS Press.

Booch, G. (1996). Object solutions. Managing the object-oriented project. Red-
wood City, CA: Addison-Wesley.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). A
system of patterns: Pattern-oriented software architecture. New York: John
Wiley & Sons.

Coad, P. (1992). Object-oriented patterns. Communications of the ACM, 35(9),
152-159.

Fowler, M. (1996). Analysis patterns: Reusable object models. Boston, MA:
Addison-Wesley.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (2000). Refactoring:
Improving the design of existing code (1st ed.). Boston: Addison-Wesley
Professional.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns.
Reading, MA: Addison-Wesley Professional.

Henderson Seller, B., & Eduards, J. M. (1990). The object-oriented system life
cycle. Communications of the ACM, 33(9), 142-159.

Liskov, B. H., & Zilles, S. N. (1974). Programming with abstract data types.
SIGPLAN Notices, 9(4), 50-59.

Martin, R. C. (1995). Object-oriented design quality metrics: An analysis of
dependencies. ROAD, 2(3).

Martin, R. C. (1996). The dependency inversion principle. C++ Report, 8(6), 61-66.
McConnell, S. (2003). Professional software development. Boston: Addison-

Wesley.
Meyer, B. (1997). Object-oriented software construction (2nd ed.). Upper Saddle

River, NJ: Prentice Hall.

The Object-Oriented Design Knowledge 7

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Opdyke, W. (1992). Refactoring Object Oriented Frameworks. Illinois, Urbana-
Champain.

Pescio, C. (1997). Principles versus patterns. Computer, 30(9), 130-131.
Redwine, S. T. (1984). DOD-related software technology requirements, practices,

and prospects for the future (Tech. Rep. No. P-1788). Alexandria, VA:
Institute of Defense Analyses.

Riel, A. J. (1996). Object-oriented design heuristics. Boston: Addison-
Wesley Professional.

Rising, L. (1998). The patterns handbook: Techniques, strategies, and
applications. Cambridge: Cambridge University Press.

Schmidt, D. C. (1995). Experience using design patterns to develop reusable
object-oriented communication software. Communications of the ACM,
38(10), 65-74.

Schwanninger, C. (2001). Patterns as problem indicators. Paper presented at
the Workshop on Beyond Design Patterns (mis)Used. OOPSLA, Tampa
Bay, FL.

Shaw, M. (1990). Prospects for an engineering discipline of software. IEEE
Software, 7(6), 15-24.

Tokuda, L., & Batory, D. (2001). Evolving object-oriented designs with
refactoring. Automated Software Engineering, 8(1), 89-120.

Venners, B. (2004). Interface design best practices in object-oriented API
design in Java. Retrieved March 25, 2006, from http://www.artima.com/
interfacedesign/contents.html

Wendorff, P. (2001). Assessment of design patterns during software
reengineering: Lessons learned from a large commercial project.
Paper presented at the Proceedings of the 5th European Conference on
Software Maintenance and Reeingineering (CSMR).

8 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

The Object-Oriented
Design Knowledge

Ontology
Javier Garzás, Oficina de Cooperación Universitaria (OCU) S.A., Spain

Mario Piattini, University of Castilla - La Mancha, Spain

Abstract

It has been a long time since the object-oriented (OO) paradigm appeared.
From that moment, designers have accumulated much knowledge in design
and construction of OO systems. Patterns are the most refined OO design
knowledge. However, there are many others kinds of knowledge than are
not yet classified and formalized. Therefore, we feel it necessary to define
ontology in order to structure and unify such knowledge; a good
understanding of practical experience is crucial to software engineers.
Therefore, this chapter proposes an ontology for object-oriented design
knowledge.

The Object-Oriented Design Knowledge Ontology 9

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Since Simula 67 up until the present day, knowledge related to the construction
of object-oriented (OO) systems has evolved significantly. Nowadays, due to
experience acquired during years of investigation and development of OO
systems, numerous techniques and methods that facilitate their design are
available to us.
By the middle of the 1990s the first catalogue of patterns was published by
Gamma, Helm, Johnson, and Vlissides (1995). The application of patterns in OO
design was consolidated, among others, by the work of Coad (1992), Gamma et
al. (1995), Buschmann, Meunier, Rohnert, Sommerlad, and Stal (1996), Fowler
(1996), and Rising (1998).
However, more knowledge exists apart from that related to patterns, and this
other knowledge is frequently “hidden.” Moreover, now the exclusive use of
patterns is not sufficient to guide a design, and the designer’s experience is
necessary to avoid overload, non-application or the wrong use of patterns due to
unawareness, or any other problems that may give rise to faulty and counterac-
tive use of the patterns. In summary, when patterns are used, several types of
problems may occur (Wendorff, 2001): difficult application, difficult learning,
temptation to recast everything as a pattern, pattern overload, deficiencies in
catalogues (search and complex application, high dependence of the program-
ming language, and comparatives), and so on.
In this sense, we need others’ chunks of knowledge such as principles, heuristic,
patterns, best practices, bad smells, refactorings, and so on. Nevertheless, there
is much uncertainty with the previous elements, and these elements have never
been studied as a whole. Its compatibility has been studied nor does a method
based in this knowledge exist.
In order to improve OO designs, using all OO design knowledge in a more
systematic and effective way, we have defined an ontology, which unifies
principles, heuristics, best practices, and so on, under the term of “rule”; the
ontology show the relationship among these “rules” and patterns and refactorings.
We have also defined an improved OOD process, which takes into account this
ontology and the OOD knowledge.
Moreover, we present in this chapter an empirical evaluation of this approach.
The empirical validation is based on Prechelt, Unger, Philippsen, and Tichy
(1997); Prechelt, Unger, Tichy, Bössler, and Votta (2001); and Wohlin, Runeson,
Höst, Ohlson, Regnell, and Wesslen (2000). This controlled experiment is
ascertain if the usage of the ontology for OOD knowledge really improves the
OOD process, helping in the detection of defects (rules violated) and solutions
(patterns).

10 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Ontology

An ontology describes knowledge of a domain in a generic way and provides an
agreed understanding of it.
Ontologies have a number of advantages: structuring and unifying accumulated
knowledge, benefits for communication, teaching concepts and their relation-
ships, sharing of knowledge and resolving terminological incompatibilities. It
would therefore be beneficial to define an ontology for the structuring and
unifying of OO micro-architectural design knowledge (see Figure 2).
Before describing the ontology, we shall explain its field and scope. To this end
and to avoid ambiguity, we start by referring to the SWEBOK (Abran, 2004) to
ascertain where an ontology for OO micro-architectural design knowledge could
fit in, to find that it falls under “software design” (see Figure 1). What is not so
clear, however, is which of the five sub-areas of software design it belongs to
(see Figure 1), although we do find places for two elements of knowledge:
principles within “basic concepts” (“enabling techniques” in the SWEBOK text)
and design patterns in “structure and architecture.” However, the place of such
other concepts as refactorings is not so obvious (it is only briefly touched on in
the maintenance section). As our ontology concentrates on micro-architectures,
after examining the other areas, we consider the best place to be “structure and
architecture,” as this is what the strategies of architectural design are focused
on. Our proposition (see Figure 1) is to include a more generic area within

Figure 1. Context and situation of the ontology of OO micro-architectural
design knowledge according to the SWEBOK

��������	
����

��������	���������	����	��	��������

�����	

��������
���	������	

��	
����

���������	

���	

������������

�������	��������	

���	����������
���������

���������	

�������

�������������	

����������

����������

�������������	

������

��������

�����	

�������������	

��������

!�"�����	���	

!��"����#�

$$	�����	

�������������	
����	

��������

$$	�����	

�������������	
����	

��������

!�������	$�������	

�����	�������������	

��������

The Object-Oriented Design Knowledge Ontology 11

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

“structure and architecture” called “micro-architectural knowledge” and divide
it into OO and functional micro-architectural knowledge. Our ontology struc-
tures the OO part.

Entities

When we start to describe the elements of the ontology, as we mentioned before,
we find many terms related with essential knowledge gained from experience
with object-oriented micro-architectural design, together with others arousing
confusion as to whether they constitute knowledge or not. In order to clarify the
situation, we have grouped the terms in question into two initial groups:

• Declarative knowledge: Concepts describing what to do with a problem:
Heuristics, patterns, bad smells, best practices, and so forth.

• Operative knowledge: Where there is a body of accumulated knowledge
concerning operations or processes for carrying out changes in software
(i.e., parameterized transformation of a program preserving its functional-
ity (Opdyke, 1992) including such concepts as refactoring.) Here we should
stress that we mean design refactoring, not code refactoring, which is more
common. Although we consider it important to group together all knowl-
edge related to OO micro-architectural design, we are naturally aware that

Figure 2. OO Micro-architectural design knowledge ontology

$$	�����	�������������	
����	��������

��"�
������
����	#����	��
"���������
�������%�����

�����&������
#����	����

'���������

"��������

����������

�����%��������
������������

$��������

��"���	�����

())*())*���������	
����

+))*+))*

���
����������

,������

���������	-��	��������.
+))*+))*

������������	������

'���

����"��������	-���	���	���	���������.
+))*+))*

������������	�����

12 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

refactoring could be placed under the maintenance category in the
SWEBOK.

We can thus establish an initial classification of essential experience-based
knowledge of software design with two parts: declarative (what) and operative
(how). The former tells us what to do and the latter how, in both cases according
to experience (see Figure 2, where a UML class diagram is used to express the
ontology).
Considering “declarative knowledge” alone without regard to design patterns,
we have observed that principles, heuristics, bad smells, and so forth, have the
same common structure, there being no substantial difference between them, as
they all have the structure and form of a rule — they posit a condition and offer
a recommendation. It should be stressed that the “recommendation” is not a
solution like that of the pattern. Patterns are more formalized than rules and
pattern descriptions are always broader. They propose solutions to problems,
while rules are recommendations which a design should fulfill. Unlike patterns,
rules are greatly based on using natural language, which can be more ambiguous
(Pescio, 1997).
Lastly, in order to complete the description of the entities, we will concentrate
on their attributes. We based our determination of these on the terms used in
Gamma et al. (1995) to describe a design pattern: name, intent, also known as
motivation, structure, applicability, participants, collaborations, consequences,
implementation, sample code, known uses, and related patterns. It will be
observed that many of these items are common to other elements of knowledge
and these common attributes are located in the top entity (see Figure 2). As to
the other attributes under consideration, the structure attribute is a synonym for
solution in a pattern, while we have created the recommendation attribute for
rules, which would be close to the solution of the pattern (Pescio, 1997) and the
mechanics attribute for refactorings, our choice of name being taken from
Fowler, Beck, Brant, Opdyke, and Roberts’ (2000) refactoring catalogue. The
attributes participants (the classes and/or objects participating in the design
pattern and their responsibilities) and collaborations (how the participants carry
out their responsibilities together) concern declarative knowledge. The sample
design attribute concerns operative knowledge. The implementation attribute is
substituted for mechanics (this is in refactoring, as we are dealing with design
refactoring, not code refactoring). The related patterns attribute has been
generalized and appears in each of the relationships between entities.
In line with our ontology we have developed a unified catalog of rules, which we
see in Chapter X, where in order to improve the detection of rules, these are
named according to their condition.

The Object-Oriented Design Knowledge Ontology 13

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Relationships

We shall now concentrate on the relationships between entities (see Figure 2):

• “To apply a rule implies the use of a pattern.” Often, when we introduce a
rule, we obtain a new design, which needs a pattern. One example of this
situation is the application of the “dependency inversion” rule, a principle
(Martin, 1996) which introduces an abstract class or an interface, which in
turn necessitates a creational pattern (Gamma et al., 1995) to create
instances and associate objects in the new situation. Observe that this does
not always happen (cardinality 0 to n), not all the rules imply the introduction
of a pattern, a clear example of this being when we apply rules which work
only inside a module, for example the “long method” rule, a bad smell
according to Fowler et al. (2000).

• “To apply a pattern implies the use of another pattern.” This relationship
is quite obvious, since it has been featured in catalogs and pattern languages
for some time. An example of this is the map of relationships between
patterns presented in (Gamma et al., 1995). Observe that in this case,
cardinality is from 0 to n (we can see in Gamma et al. (1995) how adapter,
proxy and bridge patterns are isolated).

• “The declarative knowledge is introduced by operative knowledge.” This
relationship expresses that all declarative knowledge (rules and patterns)
is introduced in the design by an element of operative knowledge (a
refactoring); note that cardinality is from 1 to n. This is quite obvious since
it does not make sense for an element of declarative knowledge to exist if
it cannot be introduced.

• The relationship between patterns and refactorings can be observed in an
implicit way by reading some of the refactoring catalogues which concen-
trate on the design level, a good example of this being the Fowler et al.
(2000) catalog. Gamma et al. (1995) state that “design patterns provide the
refactorings with objectives,” and there is a natural relationship between
patterns and refactorings, where the patterns can be the objective and the
refactorings the way of achieving them. In fact, as Fowler et al. (2000) say,
there should be catalogs of refactorings which contemplate all design
patterns. In this way, refactorings, such as “replace type code with state/
strategy” or “form template method,” concentrate on introducing patterns
within a system (again to emphasize that these are design refactorings, not
code refactorings).

• The relationship between rules and refactorings has not been studied as
much as that between patterns and refactorings. Generally, we observe

14 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that rules are introduced in the design, just like patterns, by means of the
refactorings. And in the light of what has been said previously, it becomes
clearer how refactorings store knowledge about how to introduce elements
in designs in a controlled way. Continuing with the example of the
“dependency inversion” rule we see that in order to resolve the violation of
this rule we insert an abstract entity into the design, which would be carried
out with the refactorings.

• “An element of operative knowledge is composed of others.” Examples of
this composition can be found in refactoring catalogs such as Fowler et al.
(2000) where, for example, the refactoring “extract method” is not com-
posed but it is used by others (cardinality 0 to n).

Lastly, we shall explain why other relationships are not included.

• Relationship: “A pattern implies the use of a rule.” The introduction of a
pattern must not allow a rule to be violated (applying a pattern should never
reduce design quality).

• Relationship: “A rule implies the use of a rule.” In a similar way to the
previous case, the introduction of one rule must not allow another rule to be
violated (applying a rule should never reduce design quality).

• Relationship: “An operative knowledge implies a declarative knowl-
edge.” A refactoring does not know what rule or pattern it uses.

An Empirical Validation

In this section, we will present a description of the process followed to carry out
the empirical validation, which is based on Wohlin et al. (2000); Prechelt and
Unger (1998); Prechelt et al. (1997); Prechelt et al. (2001); Kitchenham,
Pfleeger, Pickard, Jones, Hoaglin, El Eman, et al. (2002); and (Kitchenham,
Dybå, and Jorgensen, 2004). The main intention of this controlled experiment
was to compare the effectiveness and efficiency of “traditional” OO design vs.
the use of OO design knowledge. Moreover, we aimed at analyzing if disposing
of a rules catalog that unifies design knowledge as principles, best practices,
heuristics, and so on, and their relations with patterns has influence on the
effectiveness and efficiency in the improving of the quality of OO micro
architectures.
Based on the GQM (goal question metrics) template, the goal definition of our
experiment can be summarized as shown in Table 1.

The Object-Oriented Design Knowledge Ontology 15

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Planning

The experiment is specific since it is focused on one technique applied to one
domain; the ability to generalize from this specific context is further elaborated
below when discussing threats to the experiment. The experiment addresses a
real problem, which is whether the method presented is more effective and
efficient to be used in OO micro architectural quality improvement.
Eighteen professionals of two companies carried out the experiment. The
selected subjects were professionals having extensive experience in OO design.
We classified the subjects into two groups according to their professional
experience. The subjects were asked to fill a questionnaire out about their
expertise, and taking into consideration the collected responses, we formed two
groups of subjects, trying to have the same number of subjects with good marks
and bad marks in each group. Both groups had a patterns catalog (Gamma et al.,
1995), but only one of them had the rules catalog (see Chapter X). In addition to
this, in a previous 30 minutes session, we explained to this group some notions
about rules and their relationships to patterns and how to apply the rules catalog.
For each subject, we had prepared a folder with the experimental material. Each
folder contained one micro-architectural diagram and a questionnaire for an-
swers.
We had to consider what independent variables or factors were likely to have an
impact on the results. These are OO micro-architecture.
We considered two dependent variables (Thelin, Runeson, Wholin, Olsson, &
Andersson, 2004):

• Effectiveness: Number of defects found/total number of defects. This is
the percentage of the true improvements found by a designer with respect
to the total number of defects.

• Efficiency: Number of defects found/inspection time, where inspection
time is related to the time that subjects spent on inspecting the micro
architecture; it is measured in minutes.

Table 1. Definition of experiment

Analyze The improvement method based on the rules catalog
for the purpose of evaluating
with respect to effectiveness and efficiency
from the point of
view of

software engineers

in the context of software companies in Spain

16 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Hypotheses Formulation

Our purpose was to test two groups of hypotheses, one for each dependent
variable.
Effectiveness hypotheses:

• H0,1. There is no difference regarding effectiveness of subjects in
detecting the violation of rules using a rules catalog and their relationship
with patterns as compared to subjects without using the rules catalog.
// H1,1 : ¬ H0,1

• H0,2. There is no difference regarding effectiveness of subjects in detecting
the application of patterns implicated by rules using a rules catalog s and
their relationship with patterns as compared to subjects without using the
rules catalog. // H1,2 : ¬ H0,2

• H0,3. There is no difference regarding effectiveness of subjects in detecting
the application of patterns not implicated by rules using a rules catalog and
their relationship with patterns as compared to subjects without using the
rules catalog. // H1,3 : ¬ H0,3

Efficiency hypotheses:

• H0,4. There is no difference regarding efficiency of subjects in detecting the
violation of rules using a rules catalog and their relationship with patterns
as compared to subjects without using the rules catalog. // H1,4 : ¬ H0,4

• H0,5. There is no difference regarding efficiency of subjects in detecting the
application of patterns implicated by rules using a rules catalog and their
relationship with patterns as compared to subjects without using the rules
catalog. // H1,5 : ¬ H0,5

• H0,6. There is no difference regarding efficiency of subjects in detecting the
application of patterns not implicated by rules using a rules catalog and their
relationship with patterns as compared to subjects without using the rules
catalog. // H1,6 : ¬ H0,6

Operation

In this section, we will describe the preparation, execution, and data validation
of the experiment. Before the day of the experiment execution, we gave a
seminar to the subjects of the group that would use the rules catalog. In this

The Object-Oriented Design Knowledge Ontology 17

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

seminar, we explained to the subjects how to apply the rules catalog. The
subjects had to manually fulfill their proposed solution, writing down the start and
end time of the activity. We collected the forms filled out by the subjects,
checking if they were complete.

Analysis and Interpretation

Figure 3 shows the averages obtained from the experiment. Outliers have not
been identified. In order to decide how to test the validity of the hypotheses, we
evaluated if the data followed a normal distribution. The result was normal; we
decided to perform a t-Student test. In Table 2 the results obtained by means of
t-Student are shown. The first column represents the t-stat and the second
column shows the t critical two-tail.
We have obtained the following results. Firstly, it was confirmed by the t-Student
test that the group with the rules catalog obtained better results in “efficacy and
efficiency in detection of rules” and “efficacy and efficiency in detection of
patterns implicated by rules.” In the second place, the t-Student test could not
confirm that the group with the rules catalog obtained better results in “efficiency
in detection of patterns not implicated by rules.” However, this group obtained
better averages; we have to highlight that “efficiency in detection of patterns not
implicated by rules” is not influenced by the rules catalog, since these patterns
are not in the catalog because they are not implicated by rules, and the application
of these patterns will result in the detection of design problems more than design
recommendations. Lastly, in a similar way, we could not confirm by using the t-
Student test that the group without the rules catalog obtained better results in
“efficacy in detection of patterns not implicated by rules”; however, again, this
result is not influenced by the rules catalog.

Figure 3. Averages obtained from the experiment

0,64 0,64
0,68

0,26

0,08

0,18
0,12

0,71

0,18

0,04 0,07 0,04

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Effi cacy in Detection of
Rules.

Effi cacy in Detection of
Patterns not implicated by

rules.

Efficacy in Detection of
Patterns impl icated by

rules.

Effi ciency in Detection of
Rules.

Effi ciency in Detection of
Patterns not impl icated by

rules.

Effi ciency in Detection of
Patterns impl icated by

rules.

Group with catalog of rules Group without catalog of rules

18 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Threats to Validity

A list of issues that threatens the validity of the empirical study is identified
below.

Conclusion Validity

The results confirmed by means of the t-Student test that there was a significant
difference between the two groups, and that the new approach seems to be more
effective and efficient for carrying out the OO micro architectural quality
improvement. The statistical assumptions of each test were verified, so that the
conclusion validity was fulfilled.

Internal Validity

• Differences among subjects: We formed two groups, and the subjects
were apportioned between these two groups according to their expertise
and skills. For this reason, the subjects were asked to fill out a questionnaire
about their expertise, and taking into account the collected responses, we
formed the two groups of subjects.

• Differences among OOD diagrams: We used only one OOD diagram.
• Precision in the time values: The subjects were responsible for record-

ing the start and finish times of each test, so they could introduce some
imprecision but we think it is not very significant.

• Fatigue effects: The average time for carrying out the experiment was 20
minutes, so fatigue effects were minor.

Table 2. Results obtained by means of t-Student

 t stat t Critical two-tail

Efficacy in Detection of Rules. 5.38887 2.26215

Efficacy in Detection of Patterns not implicated by rules. -0.22360 2.20098

Efficacy in Detection of Patterns implicated by rules. 3.36269 2.20098

Efficiency in Detection of Rules. 7.03868 2.26215

Efficiency in Detection of Patterns not implicated by rules 0.22269 2.26215

Efficiency in Detection of Patterns implicated by rules 4.35678 2.17881

The Object-Oriented Design Knowledge Ontology 19

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Persistence effects: Persistence effects are not present because the
subjects had never participated in a similar experiment.

• Subject motivation: The subjects were very motivated.
• Other factors: For instance, plagiarism and influence among subjects

were controlled.

External Validity

Two threats to validity have been identified which limit the possibility of applying
any such generalization:

• Subjects: We are aware that more experiments with professionals must be
carried out in order to be able to generalize these results. However, the
subjects could be considered “common” OO designers at least in the
context of Spanish software companies.

• Material used: We believe that the documents used might not be
representative of an industrial problem, so more experiments with larger
diagrams are needed.

Works Related with Empirical Studies
About OO Knowledge

There are few empirical studies and related work about this topic. The recent
interest in empirical studies about patterns, mainly, or any other kind of
knowledge has focused on how these factors impact on the software mainte-
nance process. In this regard, the main and more important studies are Prechelt’s
works that are the best example of empirical investigation about patterns.
The Prechelt et al. (1997) empirical study affirms that depending on the
particular program, change task, and personnel, pattern documentation in a
program may considerably reduce the time required for a program change and
may also help improve the quality of the change; and recommends that design
patterns are always explicitly documented in source code.
In Prechelt and Unger (1998), the experiments showed that carefully document-
ing patterns usage is highly recommendable because it works well during
maintenance and that design patterns can be beneficial even when an alternative
solution appears to be simpler but that unsuitable application can also be harmful
in other situations. The resulting practical advice calls to apply common sense

20 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

when using design patterns instead of using them in a cookbook fashion. Prechelt
et al. (2001) state that it is not always useful to apply design patterns if there are
simpler alternatives; they recommend using common sense to find the exceptions
where a simpler solution should be preferred and even where this common sense
suggests that using a patterns might not be a good idea.
On the other hand, there are very few works related to empirical studies about
design knowledge different to patterns. In this sense, we can highlight (Deligiannis,
Shepperd, Roumeliotis, & Stamelos, 2003) work, which investigated the effects
of a single design heuristics (god class) on system design documents (with
respect to understanding and maintainability), where the results showed that
design heuristics can affect maintainability, where designs with heuristics are
easier to understand and modify. According to this study, a design initially
structured under heuristics has a higher probability of continuing to evolve in a
resilient and flexible manner; if heuristics are violated, the probability of
maintenance changes leading to poorer designs increases.

Acknowledgments

This research is partially supported by the ENIGMAS (Entorno Inteligente
para la Gestión del Mantenimiento Avanzado del Software) project, sup-
ported by the Department of Education and Science of the Junta de Comunidades
de Castilla - La Mancha (Regional Government of Castile - La Mancha) (PBI-
05-058).

Conclusion

The motivation of the authors of the first catalog of patterns and of the
community that investigates patterns has been to transfer the OODK accumu-
lated during years of experience. Since then, designers have been reading and
using patterns, reaping benefit from this experience. Nevertheless, more knowl-
edge exits apart from patterns. We need to characterize the OO design
knowledge, and we created an OODK ontology for it. An ontology describes
domain knowledge in a generic way and provides agreed understanding of a
domain. As Gruber (1991) said, “I use the term ontology to mean a specification
of a conceptualization. That is, an ontology is a description of the concepts and
relationships that can exist”.

The Object-Oriented Design Knowledge Ontology 21

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

On the other hand, there are few empirical studies related to OO design
knowledge. We presented a description of the process followed to carry out an
empirical validation, which is based on the use of OO design knowledge. The
main objective of this controlled experiment was to compare the effectiveness
and efficiency of a “traditional” OOD process with the new OOD approach.
Eighteen professionals (selected for convenience) of four Spanish companies
(divided in two groups) carried out the experiment. In a previous session of 30
minutes we trained one group in the using of the new approach. For each
participant, we had prepared a folder with one OO class diagram and one
questionnaire, and for the members of the “new approach” group we included the
OOD ontology with the main OOD “knowledge” (rules, patterns, etc.). The
results confirmed by means of t-Student test that there was a significant
difference between the two groups, and that the new approach seems to be more
effective and efficient for carry out the OOD Process.

References

Abran, A. (Ed.). (2004). Guide to the software engineering body of knowl-
edge: SWEBOK. Los Alamos, CA: IEEE CS Press.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). A
system of patterns: Pattern-oriented software architecture. Addison-
Wesley.

Coad, P. (1992). Object-oriented patterns. Communications of the ACM,
35(9), 152-159.

Deligiannis, I., Shepperd, M., Roumeliotis, M., & Stamelos, I. (2003). An
empirical investigation of an object-oriented design heuristic for maintain-
ability. Journal of Systems and Software, 65(2), 127-139.

Fowler, M. (1996). Analysis patterns: Reusable object models. Boston:
Addison-Wesley.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (2000). Refactoring:
Improving the design of existing code. Boston: Addison-Wesley Profes-
sional.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns.
Reading, MA: Addison-Wesley Professional.

Gruber, T. (1991). The role of a common ontology in achieving sharable,
reusable knowledge bases. Paper presented at the Second International
Conference on Principles of Knowledge Representation and Reasoning,
Cambridge.

22 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jurisica, I., Mylopoulos, J., & Yu, E. (1999, October). Using ontologies for
knowledge management: An information systems perspective knowl-
edge: Creation, organization and use. Paper presented at the 62nd

Annual Meeting of the American Society for Information Science (ASIS
99), Washington, DC.

Kitchenham, B. A., Dybå, T., & Jorgensen, M. (2004). Evidence-based
software engineering. Paper presented at the International Conference
on Software Engineering (ICSE), Edinburgh, Scotland, UK.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L., Jones, P., Hoaglin, D., El Eman, K.,
et al. (2002). Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering, 28(8), 721-734.

Martin, R. C. (1996). The dependency inversion principle. C++ Report, 8(6),
61-66.

Opdyke, W. (1992). Refactoring object-oriented frameworks. Thesis, Com-
puter Science, Urbana-Champain, IL.

Pescio, C. (1997). Principles versus patterns. Computer, 30(9), 130-131.
Prechelt, L., & Unger, B. (1998). A series of controlled experiments on

design patterns: Methodology and results. Paper presented at the
Softwaretechnik 1998 GI Conference (Softwaretechnik-Trends), Paderborn.

Prechelt, L., Unger, B., Philippsen, M., & Tichy, W. (1997). Two controlled
experiments assessing the usefulness of design pattern information during
program maintenance. IEEE Transactions on Software Engineering,
28(6), 595-606.

Prechelt, L., Unger, B., Tichy, W., Bössler, P., & Votta, G. (2001). A controlled
experiment in maintenance comparing design patterns to simpler solutions.
IEEE Transactions on Software Engineering, 27(12), 1134-1144.

Rising, L. (1998). The patterns handbook: Techniques, strategies, and
applications. Cambridge: Cambridge University Press.

Thelin, T., Runeson, P., Wholin, C., Olsson, T., & Andersson, C. (2004).
Evaluation of usage based reading conclusions after three experiments.
Empirical Software Engineering, 9(1-2), 77-110.

Wendorff, P. (2001). Assessment of design patterns during software
reengineering: Lessons learned from a large commercial project.
Paper presented at the Proceedings of the 5th European Conference on
Software Maintenance and Reeingineering (CSMR), Lisbon, Portugal.

Wohlin, C., Runeson, P., Höst, M., Ohlson, M., Regnell, B., & Wesslen, A.
(2000). Experimentation in software engineering: An introduction.
Kluwer Academic Publishers.

Using Linguistic Patterns to Model Interactions 23

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

Using Linguistic
Patterns to Model

Interactions
Isabel Díaz, Central University of Venezuela, Venezuela

Oscar Pastor, Technical University of Valencia, Spain

Lidia Moreno, Technical University of Valencia, Spain

Alfredo Matteo, Central University of Venezuela, Venezuela

Abstract

The dynamic behavior of a system is elicited, specified, and analyzed by
means of interaction modelling. This activity is important for object-
oriented software development because it provides the information that is
required to construct the system conceptual model. Several interaction
modelling techniques have been proposed. However, this activity continues
to be a complex and tedious task for the modellers. These problems arise
from the intrinsic difficulties of interaction modelling and the lack of
effective techniques and tools to support to the modellers. In this chapter,
heuristic-oriented techniques and linguistics-oriented techniques proposed
by several authors to model interactions are analyzed. In addition, a

24 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

framework to facilitate and to improve the interaction modelling is described.
This framework was conceived to be integrated into automatic software
production environments. It uses linguistic patterns to recognize interactions
from use case models. The patterns were validated with expert modellers.
The validation process carried out and the main results are also presented.

Introduction

Dynamic models fulfil an important role in the development of object-oriented
software systems. These describe the behavior of a system in terms of: (1) the
state change of an object, which is due to an event or the execution of an
operation (intraobject dynamic perspective); and (2) how the objects should
interact to provide the system with a determined behavior (inter-object dynamic
perspective). This chapter is based on the study of the interobject dynamic
perspective and, in particular, on the construction process of the object interac-
tion models in order to describe the behavior of a system.
The modelling of interactions is one of the most frequently overlooked practices
in software development. While the structural model is considered to be
fundamental for the analysis and design of the systems, the dynamic model is
considered to be optional (Larman, 2004; Rosenberg & Scott, 1999). Neverthe-
less, both models contribute two complementary views of the system design that,
taken separately, would be insufficient. Our experience, which coincides with
that reported by other authors, has led us to believe that this problem may have
originated in the high level of difficulty of interaction modelling, especially for
inexperienced modellers (Larman, 2004; Rosenberg & Scott, 1999; Song, 2001).
On the one hand, modelling is an inherently complex activity that, in any case,
depends on the experience and the domain knowledge of the modeller. On the
other hand, the difficulty of constructing interaction models is also determined by
other circumstances that are explained below.
The result of a thorough review of the literature has indicated that software
development approaches that describe a technique for interaction modelling are
scarce. The aids offered to the modeller to facilitate the task of identifying and
specifying interactions are very few when compared to the extensive descrip-
tions that are made of the modelling language. The nature of the diagrams that
are used to graphically represent the interaction models, generally sequence
diagrams (SDs) or message sequence charts (MSCs), also constitutes an
obstacle for modelling (ITU, 2000; OMG, 2003). The amount of time that must
be spent on elaborating and troubleshooting these diagrams makes them tedious
activities, which many modellers attempt to avoid. Model editing tools available

Using Linguistic Patterns to Model Interactions 25

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

on the market, such as Rational or Visio, are not very flexible and do not offer
mechanisms that adapt to specific graphical needs. The complexity of interaction
modelling is even greater when the difficulty of maintaining consistency between
this model and other structural and dynamic models of the system is added.
The purpose of this chapter is to establish the basis that a generic framework
created to facilitate interaction modelling and to promote this activity during
system development must have. The strengths and weaknesses of the interaction
modelling techniques that are commonly applied are analyzed in order to
determine the requirements that this framework must fulfil. Thus, the framework
is defined in the context of the contributions that other approaches have made
to interaction modelling.
The goal of this framework (hereafter called metamorphosis) is to provide
support to modellers in the interaction model construction during the first stages
of the development of a system. However, its use can be extended to the
complete life cycle of the software (OMG, 2003; Van Lamsweer, 2000).
Metamorphosis assumes that the system behavior specification is expressed
through use case models (Nuseibeh & Easterbrook, 2000; OMG, 2003). A use
case is a document written in natural language that describes part of the system
functionality from the perspective of its users (Jacobson, Christerson, Jonsson,
& Övergaard, 1992). The analysis or interpretation of the use cases shows
how the system components exchange information so that the system has the
behavior specified by the analysts (OMG, 2003; Van Lamsweer, 2000). The
result of this analysis is represented using interaction models.
In metamorphosis, the analysis process lies in the automatic generation of the
interaction diagrams from the use cases in order to guarantee the following: (1)
consistency of the interaction model itself, as well as its consistency with the
corresponding use case model; (2) ease of use promoting the automatic
generation of the interaction diagrams, so that the modeller can spend more time
on more important tasks such as the resolution of conflicts originated by the
ambiguity inherent in the use of natural language, the incorporation of supple-
mentary information into the interaction diagrams (restrictions, comments, etc.),
or the validation of the model obtained; (3) traceability to establish links that can
be documented, controlled, and maintained, so that the modeller can determine
the part of the use case text from which an interaction was generated and vice-
versa; and (4) representation richness to incorporate relevant semantic
information beyond the basic elements of an interaction (i.e., synchronous/
asynchronous messages, concurrence specification, repetition, or conditioning of
interactions, parameter identification, consultations/updating, etc.).
The metamorphosis framework must reconcile contributions from both compu-
tational linguistics and software engineering to be able to fulfil the requirements
described above. Computational linguistics provides metamorphosis with the

26 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

natural language processing techniques and tools to recognize the elements
participating in an interaction model from the use case text. Software engineer-
ing provides metamorphosis with a system development orientation that is
focused on the construction and the successive transformation of these models.
Thus, text analysis of the use cases is defined at a high level of abstraction,
making it independent from the domain of the system under development and
from specific implementation considerations. In addition, it is convenient to use
patterns to describe the analysis solutions. A pattern can specify the generic
solution to a recurrent problem of use case analysis. The patterns are suitable
resources for storing the knowledge about these solutions so that it can be reused,
shared and communicated whenever this knowledge is necessary (Gamma,
Helm, Johnson, & Vlissides, 1992).
This chapter has been structured in five sections. The next section presents an
overall view of the most representative approaches about interaction modelling
as well as their advantages and disadvantages. The second section explains how
metamorphosis interprets the interaction concept and describes the properties of
the interaction model. The third section explains the process of extracting
information from the use cases, and the strategy followed to transform them into
interactions. It also presents an example of the application of the transformation
framework. The fourth section describes an experiment performed to validate
the transformation patterns as well as some of the results obtained. The last
section presents the lessons learned and future directions.

Interaction Modelling Techniques:
An Overview

In general, approaches that propose interaction modelling as a resource to develop
systems emphasize the description of the syntax and semantics of its elements;
however, they barely explain how this model can be constructed. Some approaches
have attempted to answer this question by formulating procedures to aid modellers
in their work. In this study, the procedures set forth by these approaches will be
referred to by the generic name of interaction modelling techniques regardless of
the scope, formality or level of complexity (Rumbaugh, 1995; Wieringa, 1998).
Interaction modelling techniques can be characterized as being based on: (1) a
heuristic application, using a step-by-step guide in the construction of interaction
models (heuristic-oriented techniques); or (2) the use of linguistic information, as
a way to identify and to specify interactions (linguistics-oriented techniques). The
purpose of this type of classification is to simplify the analysis and to determine the
strengths and weaknesses of these techniques.

Using Linguistic Patterns to Model Interactions 27

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Heuristic-Oriented Techniques

One of the pioneers in the use of interaction models to describe the behavior of
a system was Jacobson, whose object-oriented software engineering (OOSE)
method introduces object interaction diagrams (Jacobson et al., 1992). These
diagrams are prepared for each use case after preparing their robustness
diagrams. A robustness diagram shows the entity classes, interface (or bound-
ary) classes, and control classes of each use case, and the possible dynamic
relations between these object classes, including the participation of the actors.
To construct the object interaction diagrams, the OOSE method suggests going
through the following steps: (1) partitioning the use case text, and placing these
fragments on the left side of the diagram; (2) placing the use case actors; (3)
adding the interface and control objects identified in the robustness diagram; (4)
adding the entity objects of the use case identified in the robustness diagram; and,
(5) identifying the messages exchanged by the classes for each piece of text of
the use case (each piece of text is located on the left side of the diagram, near
the identified messages). The OOSE method transfers the complexity of
elaborating interaction diagrams to the robustness diagrams. However, the
method does not offer further help to construct the robustness and interaction
diagrams; therefore, the identification of the interactions (step 5) remains
unresolved. Furthermore, the interaction diagrams are troublesome to prepare
due to the use of different types of classes and the incorporation of the pieces
of text of the use cases.
Rosenberg and Scott basically follow the same procedure described by the
OOSE method for modelling interactions (Rosenberg & Scott, 1999). In an
attempt to facilitate the recognition of messages, they suggest the use of class-
responsibility-collaboration (CRC) cards (Wirfs-Brock, Wilkerson, & Wiener,
1990). This strategy helps in determining the operations of a class, but it is not
performed in the context of message exchange. Thus, the CRC cards cannot
guarantee the identification of all the necessary operations for the system to
adopt certain behavior.
Another process that proposes the construction of SD as part of the analysis and
design activity of the system use cases is the rational unified process (RUP)
(Jacobson, Booch, & Rumbaugh, 1999). The procedure set forth in the RUP
offers no substantial differences with respect to the techniques described
previously. The Ambler technique formulated to facilitate SD construction is
similar to the RUP technique (Ambler, 2004).
A similar process is carried out during the requirements analysis phase of the OO
method (object-oriented method) (Insfrán, Pastor & Wieringa, 2002; Pastor,
Gómez, Insfrán, & Pelechano, 2001). The main activity of this phase is the
elaboration of SD, which is based on a characterization of the information

28 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

contained in the system use cases. The paths of the use cases describe actor/
system communication actions (actions performed by the actor or the system to
exchange information) or system response actions (system actions that are
potentially capable of changing the system state). The SD of the OO method uses
the Unified Modelling Language (UML) and distinguishes the types of object
classes introduced by Jacobson: entity, boundary and control classes (Jacobson
et al., 1992; Rosenberg & Scott, 1999). The steps that the modeller must perform
are the following: (1) to prepare a SD for each of the use case paths (one for the
basic path and one for each alternate path); (2) the use case actors participate
as classes in the SD; (3) each actor/system communication action of the use case
is represented through one or more messages between an actor class and a
boundary class (which is usually called system); (4) each use case action of the
system response type is represented in the SD by one or more messages between
the boundary class and the entity classes, or by one or more messages between
entity classes. As in the above-mentioned approaches, the OO method provides
no further help to recognize the entity classes or the messages that they
exchange.
The technique proposed by Larman uses system sequence diagrams to
represent the use case scenarios (Larman, 2004). These diagrams show the
interaction between the actor and a generic entity called system. This entity acts
as a black box that hides the system internal structure. Each identified interaction
must later be analyzed using patterns. A pattern explains in detail how this
interaction can be broken down into one or more messages between system
objects. The SD uses the UML and does not distinguish the types of objects in
an explicit way. Larman’s idea based on patterns is novel and seems effective.
Nevertheless, it lacks both a systematic process to be able to apply conveniently
these patterns and a catalog containing the patterns corresponding to the most
representative interactions.
Song sets forth the application of the ten-step heuristic on sequence diagram
development (Song, 2001). The application of this technique requires the prior
preparation of the system object model and the use case model (diagrams and
textual specification). It uses the UML to represent the SD in which the types
of objects (entity, control, and boundary) are distinguished. The steps of this
technique can be summarized as follows: (1) the message initiating the flow of
events is sent by the actor to the system; (2) a primary boundary object and a
primary control object are defined for each use case; if needed, secondary
objects (boundary or control) are created; (3) a secondary control object is
defined for each use case that is included or extended; (4) the problem-solving
operations (creation/destruction, association forming, or attribute modification)
are identified in the use case; and (5) each message is named and supplied with
optional parameters. To identify the types of problem-solving operations, Song
suggests highlighting the verbs in the use case text and selecting those that

Using Linguistic Patterns to Model Interactions 29

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

indicate actions that were formulated to solve the problem. These verbs can be
considered as names of potential problem-solving operations. This technique can
be considered a step forward with respect to other techniques, because it is more
thorough in identifying instances and in recognizing messages (through the
problem-solving operations). However, Song’s technique leaves two questions
unresolved: how to identify the sending and receiving classes of these messages
and how to deduce an interaction composed by more than one message from a
single verb.
Hilsbos and Song have improved their initial proposal with the tabular analysis
method (TAM) (Hilsbos & Song, 2004). The introduction of this method attempts
to answer the two preceding questions. The TAM lies in applying heuristics to
complete a seven-column table before constructing the SD of each use case.
Each column respectively indicates the number of each step of the use case, the
action described in that step, the name of the message, its parameters, its
restrictions, its sender, and its receiver. Initially, messages that are always sent
and received by the actor or the system are obtained from the table. Then, this
information is refined by breaking down each of the messages in terms of other
messages that have been established between the primary control object and
entity objects, or between two or more entity objects. To support the task of
identifying these messages, the guidelines that recognise the problem-solving
operations presented in Song should be followed (Song, 2001). The TAM
facilitates the organization of the information obtained from the use cases.
However, it supplies no further help for the modeller to recognize this informa-
tion. The graphic representation of the SD can be carried out with the information
contained in the table.

Linguistics-Oriented Techniques

In recent decades, many approaches have relied on natural language processing
techniques to facilitate the development of software systems (Boyd, 1999; Chen,
1976; Métais, 2002; Rumbaugh, Blaha, Premerlani, Eddy, & Lorensen, 1991). In
this section, we refer to those approaches that are based on the linguistic
properties of a text to obtain information and that allow the automatic construc-
tion of models (Burg & van de Riet, 1996; Juristo, Moreno, & López, 2000;
Overmyer, Lavoie & Rambow, 2001). More specifically, we study the ap-
proaches that allow dynamic models to be obtained from system behavioral
specifications written in unrestricted natural language (Burg & van de Riet,
1995; Flield, Kop, Mayerthaler, Mayr, & Winkler, 2000). To facilitate this
review, we distinguish two groups. The first group includes first-generation
proposals that do not set forth a procedure to directly derive the system interaction

30 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model. The proposals representing this group are: Color-X (Burg & van de Riet,
1995; Dehne, Steuten, & van de Riet, 2001), NIBA (Kop & Mayr, 2002), and the
behavior model presented in Juristo et al. (2000). These works are very interesting
from the perspective of natural language processing; however, they are not studied
in this chapter, as these approaches do not allow the direct deduction of complete
interaction models. They use intermediate models to give information to the
modellers so that they can later obtain the interaction models.
The second group of linguistic-oriented techniques includes second-generation
proposals. They have been especially created to deduce interactions from use cases,
such as the works of Feijs and Li, which can be considered referential for our
research (Feijs, 2000; Li, 2000). Feijs establishes correspondences between some
types of sentences written in natural language and MSC (ITU, 2000). A use case
is considered as a sequence of sentences, each of which is associated to a
semantically equivalent type of MSC. A sentence has a specific syntactic structure
that contributes information about active and passive objects, values, instance
identities, properties (attributes), methods, and events. This information has a
counterpart in its corresponding MSC.
Sentences are classified as information, action, or state. They describe information
exchange, object handling, or state, respectively. A context-free grammar is
defined, and a set of correspondence rules is proposed between the syntactic
components of each sentence and the elements of an MSC. It assumes the
preexistence of a domain object model to ensure the terminological consistency of
the use cases. The proposal does not address the identification of message
arguments, nor does it study conditional sentences, iterations, or relationships
between use cases (extension and inclusion) and their respective equivalents in an
MSC.
Li also sets forth a semiautomatic process for deriving SD from the textual
descriptions of the use cases. The text of the use case is normalized. The description
can only use sentences with a single subject and a single predicate or action. The
translation partially generates a set of instances and some of the messages that are
exchanged. The SD must then be completed manually by the analyst. This proposal
takes into account conditional sentences and iterations, but it does not address the
relationships between use cases (extension and inclusion).

An Outline of Interaction
Modelling Techniques

Each of the techniques studied reveals the trends followed in areas such as software
engineering, which serves as the framework for heuristic-oriented techniques.

Using Linguistic Patterns to Model Interactions 31

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Therefore, the predominant aspect of the heuristic-oriented techniques is the use
of models that are especially created to both specify and analyze system dynamic
behavior. The information used to generate the interaction diagrams is obtained
from an initial model that describes the system domain. The semantic richness
of the modelling language acquires importance. Thus, most heuristic-oriented
techniques coincide in the following:

1. To differentiate the instances that participate in these diagrams, using
Jacobson’s classification on control, boundary, and entity objects (Jacobson
et al., 1992).

2. To establish close semantic relationships between some of the model
abstractions from which information is extracted and the abstractions of the
obtained model (i.e., the actor in the use case model is an element in the
interaction model having the same meaning).

3. To derive the interactions using information from the use case model. A use
case is considered as an analysis unit to derive interaction diagrams.

4. To use the object model to facilitate the identification of the instances that
participate in a SD and to ensure the consistency of the models.

5. To establish structural correspondences between the elements that de-
scribe both the use case model and the interaction model (i.e., a control
object is created for each use case included or extended).

6. To set up heuristics or rules to obtain the interaction model. The application
of these rules depends exclusively on the modeller’s criterion, personal
experience, and domain knowledge.

7. To facilitate the graphical representation of the interaction models with the
aid of tools. The tools do not support the automatic generation of these
representations or the handling of the model consistency.

Computational linguistics has served as the basis for linguistics-oriented tech-
niques. In particular, the second-generation outline of these techniques has been
adjusted to the most important characteristics of the heuristic-oriented tech-
niques. Thus, second-generation linguistics-oriented techniques synthesize the
properties of all the other techniques, overcoming many of their weaknesses.
They have adopted a model-oriented approach, both to describe the information
extraction source and the interaction representation. Syntactic analysis has been
considered as a fundamental resource for generating the interaction model. The
main characteristics of second-generation linguistics-oriented techniques are
the following:

32 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. The use case model is used to extract information. This model is widely
known and has been developed to specify system behaviors.

2. The dynamic model generated is based on the basic primitives for interac-
tion representation (instances, messages, and parameters).

3. In addition to the information provided by the syntactic analysis of the use
case sentences, the interaction deduction process uses the system struc-
tural information.

4. The second-generation linguistics-oriented techniques presume the support
of a tool that allows the (semi)automatic generation of the interaction
diagrams. The modeller’s participation is then limited to completing the
generated diagrams and validating them.

New Alternatives

In spite of the contributions of the interaction modelling techniques, they have some
weaknesses that should be eliminated in order to improve this activity. The creation
of the metamorphosis framework attempts to fulfil this goal. Therefore, the
metamorphosis definition must: (1) overcome the limitations of the interaction
modelling techniques that have been proposed until now; (2) take into account the
strengths that these techniques have demonstrated; and (3) utilize the current
proposals in software engineering and computational linguistics to enrich the
interaction modelling techniques. These three factors have contributed to determi-
nate an outline for the metamorphosis framework. This outline has the following
characteristics.
Model-centered transformation architecture. Until now, use case information
extraction and interaction diagram generation have been described through a set of
rules that apply the techniques. The information source and the form that it takes
later on are not treated as models when specifying the deduction process. This
produces some inconveniences that affect the efficiency of the systems that
provide support to these techniques; this not only makes maintenance difficult, but
it also makes the code evolution and generation tasks more complex. Great interest
in model-driven approaches that are based on the automatic transformation of
models has recently emerged. In this software development paradigm, the models
and their transformations are specified at a high abstraction level, separating the
system structure and behavior from its implementation and supporting evolution,
refinement, and code generation (Kleppe, Warmer, & Bast, 2003). Following this
approach, metamorphosis proposes the automatic generation of a target model (the
interaction model) from a source model (the use case model). The model definition
is abstract at the metamodel level so that the transformation does not depend on the
technological aspects nor on a specific domain.

Using Linguistic Patterns to Model Interactions 33

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Linguistic orientation. Metamorphosis uses natural language processing to
support information extraction from the text of a use case (Boyd, 1999).
Currently, natural language processing is a mature area of computer science that
provides techniques and tools to perform this task efficiently (Métais, 2002;
Mich, Franch, & Inverardi, 2004).
Based on patterns. Metamorphosis attempts to capture the transformation
knowledge by means of patterns (Gamma et al., 1992). These patterns are going
to describe how each sentence of a use case is transformed into interactions. In
metamorphosis, a pattern is a reusable and generic specification that can be
implemented using any programming language and integrated into several
automatic software production environments.
Role-driven. Metamorphosis provides special meaning to the modelling ele-
ments by means of role definition. The roles contribute to the recognition of these
elements at model-time and facilitate the understanding of the patterns (France,
Kim, Ghosh, & Song, 2004; Gildea & Jurafsky, 2002).
Flexible normalization. The normalization process requires use cases to be
written using only a previously known set of syntactic structures. Imposing such
a restriction facilitates the information extraction process and allows the
elimination of the potential ambiguities generated by the use of natural language
(Ben-Achour, Rolland, Maiden, & Souveyet, 1999; Berry & Kamsties, 2004;
Rolland & Ben-Achour, 1998). Nevertheless, the advantages achieved by
imposing this normalization on the language reduce the expressive capability of
the system specification. Therefore, establishing restrictions could only be
justified as a means to ensure the quality of the use cases, in terms of their
completeness and correctness. Furthermore, this quality could be ensured
through using other resources without overloading the modeller with this
responsibility. Metamorphosis proposes to make the normalization process of
use cases flexible by means of: (a) a tool guiding the modeller in the use case
editing process; or (b) automatically identifying text ambiguities (structural or
semantic) and resolving them (i.e., transforming it; marking it with information
to clarify its semantics; classifying doubtful text; etc.).
UML compliant. Metamorphosis uses UML because this language allows us to
specify models and transformations that can be comprehended and applied by
many modellers and tools. The UML semantics and syntax is currently a de-facto
standard due to its widespread use (OMG, 2003). Furthermore, the UML 2.0
version thoroughly describes the interaction concept taking into account the
necessary semantics and notation to represent both the SD and the MSC.
Interactions in the UML 2.0 version can be represented graphically using:
sequence diagrams (that synthesize the properties of the MSCs), communica-
tion diagrams, or interaction overview diagrams (OMG, 2003). For simplicity,
in this chapter, we use the generic terms sequence or interaction diagram to
refer to the graphic representation of the interactions.

34 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bidirectional transformation. Interaction modelling techniques describe how
to obtain interaction diagrams from use cases. However, nothing has been said
about how use cases can be deduced from interaction diagrams. This would be
useful to determine how use cases change when modifications on interaction
diagrams are performed. Metamorphosis leans towards the bidirectionality of
the transformation in order to ensure the consistency of the models and to
facilitate the tasks of reengineering, maintenance, refinement, validation, and
verification of the system functional requirements.
Simultaneous deduction of the object model. Almost all interaction modelling
techniques assume the prior existence of the system object model. The use of this
representation attempts to guarantee its consistency and that of the interaction
model. However, this model is not always available, and when it is available, it
may not be sufficiently developed. Metamorphosis takes into account the
simultaneous and iterative deduction of both models while maintaining the
linguistic orientation. Thus, the information of one of the models is complemented
by the information of the other model, which keeps the consistency of both
models in a natural way. This also contributes to reducing the gap between the
analysis and the design of the system and to promoting its development based on
the succeeding refinement of models.
Empirical validation of the technique. It is necessary to demonstrate the way
in which the technique responds to quality indicators. Metamorphosis must
establish a validation strategy that allows it to continually improve itself.

Metamorphic Interactions

Metamorphosis is a conceptual framework conceived to facilitate the interaction
modelling of an object-oriented system in an automatic software production
environment. This section explains how metamorphosis understands interaction
modelling. First, some definitions about dynamic behavior of the systems are
established. Second, the models used by metamorphosis to represent this
dynamic behavior are described. These models were defined in order to facilitate
information deduction from the use cases.

Dynamic Behavior

A system consists of a set of components interacting with one another to achieve
one or more goals (Blanchard & Fabrycky, 1990). The way in which these
elements interact over time determines the system’s complete behavior. To

Using Linguistic Patterns to Model Interactions 35

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

facilitate its specification, this behavior is broken down into units so that each of
these units responds to a goal that the system wants to achieve. A behavior unit
is a specific group of interactions that take place between certain system
components in order to achieve a specific goal (Wieringa, 1998). An interaction
shows the data exchange established between the system and the elements in its
environment (external perspective or interaction communication), or be-
tween the different components that integrate the system (internal perspective
or interaction structure).
The specification and analysis of the system behavior are two of the most
important activities in software development. In the first phases of their life
cycle, these activities are determinant in understanding the system functionality.
Behavior specification allows the description of the functional requirements,
according to the needs of the system potential users, emphasizing the external
perspective or interaction communication. Since Jacobson introduced the use
case concept, most object-oriented software development methods are based on
the use case model to specify the system behavior (Jacobson et al., 1992; OMG,
2003). Behavior analysis emphasizes the internal perspective or interaction
structure. The output of this activity is expressed in an interaction model showing
how the system components must exchange data so that it can behave as
previously specified (ITU, 2000; Rosenberg & Scott, 1999).
Like many of the object-oriented software development methods, Metamorpho-
sis uses the use case model and the interaction model as the principal artifacts
to study behavior. The construction of these models relies on the semantics and
syntax given to its elements by the UML. Using the extension mechanisms that
this language provides, the UML metamodel has been enriched with the
information needed to establish connections between its elements. This facili-
tates the automatic derivation of some elements from other elements (OMG,
2003).

Behavior Specification

In metamorphosis, each use case is considered as a behavior unit that is
described by a text written in natural language. The use case model is the
fundamental input to deduce the interaction model. A use case shows the
complete and organized sequence of actions that the system must perform, when
interacting with the actors, to fulfil a certain goal. The complete sequence of
actions make up the basic path of a use case. Some use cases can have one or
more alternative paths that describe optional or exceptional sequences of
actions.
The metamorphosis use case model is based on the UML usecases package
concepts (OMG, 2003). To guarantee the recognition of the linguistic properties

36 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the use case text, the elements in this package have been extended and
described in the metamorphosis use case linguistic profile (Díaz, Moreno, Pastor,
& Matteo, 2005; Rolland & Ben-Achour, 1998). This profile was developed
based on the action concept, which is a fundamental element in the description
of use cases. The action of a use case is studied from three perspectives, which
are orthogonal but supplementary to each other: the conceptual, the syntactic,
and the semantic perspectives. Figure 1 shows the structural relationships
established between some elements of the use case linguistic profile of metamor-
phosis. These elements have been grouped according to the perspective that they
describe. This is explained in the following subsections.

The Conceptual Perspective

The conceptual perspective describes the meaning of a use case action. An
action can express: (1) a communication that is established between the actor
and the system to exchange information; (2) an internal behavior of the system,
which responds to the communication established with the actor. Special actions
can also be distinguished to allow conditioning, restricting, adding, or repeating
communication/internal actions or groups of these. Figure 1 represents the kinds
of actions by means of a generalization relationship. Each action belongs to a use
case path. A path is an action group of a use case that fulfils a specific goal.

Figure 1. Use case linguistic profile (partial view)

Action

Communication Behavior SpecialAct

Path

SimpleSpecialSent

«stereotype»
LinguisticUseCase

Position
Sentence

SemanticRole

SecondaryBasic

Category
Word

head
Phrase

Grammatical
Function

Subject

Predicate

MainVerb

*
1

1

1*

*
2..*

* *

*

*

*

*

1..*
* *

11

*

1

1 111

1 1

isRepresented 1..*

isExpressed

��������
	�
�������

���������
	�
�������

����������
	�
�������

*

1

1
Goal

1
1

<<metaclass>>
::UML::Classes::

CommonBehaviors::
UseCases::
UseCase

*

*

Using Linguistic Patterns to Model Interactions 37

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An action represents an interaction fragment of the system behavior if it
complies with the unidirectional and atomicity properties. An action is unidirec-
tional if the interaction described refers to one, and only one, of the following
three situations: (1) an actor communicates with the system by sending informa-
tion; (2) the system communicates with the actor by providing information; (3)
the system executes an action on itself. Figure 2 shows all the possible directions
of an action.
An action is atomic if it cannot be broken down in two or more unidirectional
actions. Thus, a complex action contains two or more unidirectional actions. An
interaction fragment describes a single atomic action that is performed by the
actor or the system and that has meaning in the context of one of the action’s
three possible situations. For example, the following action: “The customer
introduces her password and the system verifies the identification data” is
complex because it can be broken down into two unidirectional atomic actions:
“The customer introduces her password” and “The system verifies the
identification data.”

The Syntactic Perspective

From the syntactic or grammatical perspective, an action is expressed by means
of a use case sentence (see Figure 1). A use case is a text that consists of a
sequence of sentences that can be either simple or special (Díaz, Losavio,
Matteo & Pastor, 2004). A simple sentence represents a unidirectional atomic
action, which is of the communication or behavior type. Each sentence is
described as a set of words, which can be associated to a syntactic category (i.e.,
adjective, noun, verb, etc.). These words can also form groups, according to the
grammatical function that they fulfil in the sentence, configuring phrase struc-
tures (i.e., noun phrase, prepositional phrase, etc.). Special sentences are
distinguished by having a predefined format that uses key words (for example:
INCLUDE, EXTEND, and REPEAT).

Figure 2. Unidirectional action

� �
actioni

actionii

actioniii

� �
actioni

actionii

actioniii

� �
actioni

actionii

actioniii

38 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In metamorphosis, the syntactic normalization of the use cases has a different
implication to that commonly given in other approaches. The purpose of this
process is to ensure that the use case text is specified in a correct and complete
way (Ben-Achour, 1998; Rolland & Ben-Achour, 1998). Some authors have
proposed applying style and content guidelines indicating how to write a use case
and what type of information it supplies (Ben-Achour, 1998; Cockburn, 2001).
Some experiments have proven the effectiveness of these guidelines to improve
the use case documentation (Ben-Achour et al., 1999). However, because they
are based on the reduction of the syntactic possibilities of the simple sentences,
they also diminish their expressive capability for modelling effects. To achieve
a reasonable balance between documentation and expressiveness, the metamor-
phosis translation strategy assumes the application of only those style and
content guidelines that are mandatory to ensure that the use cases fulfil their
purpose in the system development. These guidelines are the following: (1)
sentences must be edited in a declarative, affirmative, and active way; (2) each
sentence must have a single subject and a single main verb; and (3) the main verb
of the sentence must be transitive, ensuring the presence of a direct object in the
sentence. The following structure describes the components that a sentence can
have:

<subject><main-verb>{<direct-object>{<preposi-phrase>[connector]}*}+|<subor di-
clause>

Based on these elemental guidelines, it is deduced that the function of the subject
of a simple sentence can only be performed by the nominal phrase designating
the actor or the system being developed. The predicate is an expression that
contains the verb action. In general, the predicate function is fulfilled by nominal
and prepositional phrases. For example, the syntactic structure of the sentence
“The system registers the information in the accident report and in the
insurance police” is:

“{ The (system)head }noun-phrase/subject

 { (registers)main-verb [the (information)head]noun-phrase/direct-object

 [in the (accident report)head]place-prepositional-phrase (and)conjunction-connector

 [in the (insurance policy)head]place- prepositional-phrase }predicate”

The Semantic Perspective

From the semantic perspective, a use case action can be represented as a
relationship that is established between one or more semantic or thematic roles

Using Linguistic Patterns to Model Interactions 39

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(see Figure 1). A sentence can be characterized by the semantic roles that it
contains. Each one of these roles denotes an abstract function that is performed
by an element participating in an action. This abstract function is defined
independently from the syntactic structure that it can have in a sentence. These
semantic role properties allow metamorphosis to represent interactions in a
generic way; this is done independently from the language that is used to write
the use cases and from the various grammatical resources that a language offers
to express the same interaction.
Many types of roles have been defined with different grades of specificity
(Guildea & Jurasfsky, 2002). In metamorphosis, roles proposed by different
authors have been selected. The selection was based on the following criteria:
(1) generality or abstraction so that the roles do not depend on a specific verb
or domain; and (2) applicability so that they can be useful in recognizing and
treating the interaction fragments. The roles used by metamorphosis can be: (1)
basic roles if they always participate in a transitive sentence such as agent
(what/who performs an action) and object (what/who undergoes an action); and
(2) secondary roles if they are not required by the verbal action and always
appear linked to a basic role. Some secondary roles are: destination (receiver/
beneficiary of the action), owner (what/who possesses), owned (possessed
entity), instrument (the means used to execute an action), state (entity status/
condition), location (where an action takes place), cause (entity that causes
something) and time (when the action occurs). The identification of roles is
illustrated in the following sentence: “[The salesman]agent registers [the identi-
fication]object/owner [of the buyer]owned.”
A semantic context allows the definition of a family of sentence types in terms
of semantic roles as well as relationships that are established among them. A
semantic context (SC) is specified using a logic formula SC=<a, m, y>, where a
and m are sets of variables and constants, respectively, and y is a set of functions
that are applicable to SC terms. The main objective of this formula is to determine
which semantic roles participate in a sentence.
Table 1 shows a formula that describes the Shared Action Semantic Context,
which has the following characteristics: (1) actions that have an active entity that
initiates or controls the action (the agent), and a passive entity on which such
action falls (the object); (2) the number clause operation determines the number
of clauses in the sentence (in Metamorphosis, a clause represents a unidirec-
tional atomic action that is obtained from a complex action); (3) the sentence can
be decomposed into two or more clauses with the same agent, the same main-
verb and the same object; each clause is associated to a different circumstance;
(4) the object state may or may not change as a consequence of the action
performed; (5) the object can have two or more owner entities at the same time;
otherwise, (6) the object can be placed into two or more locations at the same
time, or (7) the object can be sent to two or more destinations.

40 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For example, the sentence “The system registers the information in the
accident report and in the insurance police” satisfies the formula of the
Shared Action Semantic Context (see Table 1). The roles of this sentence are
the following: “[The system]agent registers [the information]object [in the acci-
dent report]location1 and [in the insurance policy]location2.” The sentence has a
single object (“the information”) and two clauses (“The system registers the
information in the accident report” and “The system registers the informa-
tion in the insurance policy”). The object (“the information”) is registered
by the agent (“the system”) in two entities at the same time (“accident report”
and “insurance policy”). The object state is not explicitly determined in the
sentence.

Behavior Analysis

Interactions are the basic elements to express the results of a system behavior
specification analysis. An interaction describes an information exchange that
can be established between two or more instances to communicate with each
other (OMG, 2003). In metamorphosis, these instances are considered to be
class objects that describe the system internal composition. The information
exchange or messages among these instances represent operations among
these classes. The metamorphosis interaction structure profile describes the
suitability of these concepts based on those presented in the UML interaction
package (OMG, 2003). Figure 3 shows some elements of this profile. In this
figure, the metaclasses distinguished as stereotypes were created by extension
from base metaclasses that belong to the UML interaction package (OMG,
2003). These UML base metaclasses are: Interactions, LifeLine, and Message.
The remaining metaclasses belong to the metamorphosis interaction structure

Table 1. Formula of a semantic context

Semantic Context: Shared Action

∀V,A,O,St,Or,L,D:
∃n>1 / NumberClause(Sentence)=n ∧
(Action(verb:V,agent:A,object:O) ∧
 (State(object:O,state:St) ∨ State(object:O,state:?])) ∧
(∀i=1..n Ownershipi(owned:O,owneri:Or) ∨
 Situatei(agent:A,object:O,locationi:L) ∨
 Movei(agent:A,object:O,destinationi:D)) ;

Using Linguistic Patterns to Model Interactions 41

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

profile. One of the most important concepts in the metamorphosis interaction
structure profile is the one that refers to the granularity of the interactions.
Interaction granules depend on the specification granule that performs the
system behavior analysis. If the analysis is performed based on a unidirectional
and atomic action, the result is an interaction fragment. A fragment is an
interaction that forms part of another interaction (OMG, 2003). It can be formed
by one or more instances that interchange one or more messages (this is shown
by means of the relationship multiplicity). Each lifeline of an instance is
represented by the FragmentLifeLine, and each message is represented by a
FragmentMessage, in Figure 3. In addition, the lifeline of an instance can be an
actor class, a border class, a control class or an entity class. A fragment can
contain one or more lifelines of several types.
If the complete set of use case actions is analyzed, an interaction unit is
obtained. An interaction unit is the combination of all interaction fragments that
are obtained from each of the use case actions. It is also possible to obtain more
than one interaction unit from a use case: an interaction unit corresponds to the
basic path of the use case and another interaction unit exists for each of its
alternate paths. The combination of the fragments can be specified using the
strict-sequence operator, which is defined by the UML (OMG, 2003). This
operator joins the trace of one fragment with that of another, respecting the order

Figure 3. Metamorphosis interaction structure profile (partial view)

«stereotype»
FragmentLifeLine

«stereotype»
FragmentMessage

1..*

ActorLifeLine BorderLifeLine EntityLifeLineControlLifeLine

«stereotype»
InteractionFragment

1..*

1..**

«stereotype»
InteractionUnit

«stereotype»
OverallInteraction

InteractionRole

0..1
1..*

1..*

0..1

**

<<metaclass>>
::UML::Classes::

CommonBehaviors::
Interactions::BasicInteractions::

Interactions

<<metaclass>>
::UML::Classes::CommonBehaviors::

Interactions::BasicInteractions::
LifeLine

<<metaclass>>
::UML::Classes::

CommonBehaviors::
Interactions::BasicInteractions::

Message

42 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of occurrence of the action through time, just as they have been specified in the
use case. When all the use cases have been analyzed, the system Interaction
Model is obtained. This model integrates the information of all the interactions
that were obtained.
In Metamorphosis, the interaction fragments are specified by means of a generic
structure. This structure is described using roles to represent several action
types and to add semantics to improve the comprehension of the interaction
(France et al., 2004). Figure 4 presents the Fountain Interaction Fragment. This
generic fragment has the following characteristics: (1) there are “n” lifelines; (2)
the first lifeline plays the role of initiator (it is the sender of all the fragment
messages); this lifeline can be represented by a boundary instance or a control
instance; (3) the remaining lifelines play the role of performers; these lifelines
are represented by entity instances (4) the messages sent by the initiator
activate the update operations in performer (this operation type changes the
object state); (5) the messages can be sent by the initiator simultaneously (this
is allowed by the UML fragment operator par) (OMG, 2003).
In metamorphosis, the interaction fragments that are specified using roles are
named semantic fragments. When these roles are expressed by means of
syntactic structures, the interaction fragments are named syntactic fragments.

Interaction Linguistic Patterns

Metamorphosis conceives the interaction modelling as the automatic transfor-
mation of the actions of the use cases. An automatic transformation has two
goals: (1) to extract relevant information of the use case sentences; and (2) to

Figure 4. Generic structure of an interaction fragment (Fountain)

 Initiator

Update[1]

:::::::::::

:::::::::::

:::Performer[1] :::

Update[2]

Update[i]

Update[n]

i: 1 .. n
n > 1

Performer[2] Performer[3] Performer[n]

par

Using Linguistic Patterns to Model Interactions 43

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

describe how the extracted information must be interpreted in order to obtain the
interaction fragments. The modeller participation is limited to making design
decisions, to resolving ambiguous situations, and to completing information about
the interactions. Patterns specify the way that actions are transformed. These
transformation patterns are based on linguistic information. This section explains
the Metamorphosis transformation model, which is based on linguistic patterns,
and how these patterns are specified and applied to the interaction modelling.

Action Transformation Model

The most important activity of the Metamorphosis framework is the transforma-
tion of an action. The complete transformation of a use case depends on the
interactions obtained from each action that participates in the use case. Figure
5 describes the transformation model applied by Metamorphosis. This model has
three levels: (1) the definition level; (2) the pattern specification level; and (3) the
application level.

1. The definition level: The transformation definition of an action and the
models that participate in this transformation are specified at metamodel
level. In this level, the modelled elements that participate in the metamor-
phosis use case linguistic profile and in the metamorphosis interaction
structure profile are related (see Figure 1 and Figure 3). Such relations are
also defined.

2. The pattern specification level: This level describes how the semantic
context of an action sentence is converted into a semantic fragment. At
Model Level, the transformation patterns are specified. The roles are used
to describe both the sentence and the fragment. The transformation rules
explain how to obtain a semantic fragment from a semantic context. The
specification of a transformation pattern is generic, domain-independent,
and implementation-independent. The patterns are also independent of the

Figure 5. Transformation model of actions

�������� ���	
���Action

��
�����

������

���������

������

��
�����

���	
���

����������

���	
���

Metamodel
Level

Instance
Level

Model
Level

Source TargetTransformation

Specified
Rules

Instanciated
Rules

<<describe>>

<<describe>>

<<describe>>

<<describe>>

Application
Level

Pattern
Specification

Level

Definition
Level

44 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

language used to write the sentences and their syntactic structures. The
semantic fragments do not depend on the graphic representation styles. The
next subsection describes the specification of a transformation pattern.

3. The pattern application level: To obtain the desired interaction frag-
ment, a transformation pattern must be applied. This application is carried
out by the instantiation of a specified pattern. Thus, a particular sentence
is transformed into a specific interaction fragment. This requires knowing
the syntactic structure associated to the roles that participate in the
sentence.

Transformation Patterns

The purpose of the transformation patterns is to capture transformation knowl-
edge and to reuse them appropriately. Table 2 shows the specification of a
transformation pattern. The description of the elements that were suppressed in
this table can be found in previous sections. Each transformation pattern of
Metamorphosis has been specified using the following elements:

1. Name. It identifies the transformation pattern and distinguishes it from
others.

2. Description. It gives a concise explanation about the transformation
pattern.

3. Semantic context. It is a description of an action that is based on roles.
A transformation pattern is only applicable to actions that fulfil the semantic
context established by this pattern.

4. Transformation rules: They describe how the participants of a semantic
context are turned into elements of an interaction fragment. Each rule is
expressed by means of a formula whose left side corresponds to the
fragment elements. The right side of a rule indicates how to identify these
elements. The transformation rules recognize roles in the semantic context
to identify the interaction elements, using functions applied on the semantic
roles.

5. Semantic fragment: It is a description of an interaction structure that uses
roles.

6. Observations: They describe specific patterns, application examples,
and/or several annotations.

Transformation rules are the key part of a pattern. Table 2 presents the rules that
are applicable to sentences whose semantic context is described in Table 1. By

Using Linguistic Patterns to Model Interactions 45

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

applying these rules, a fragment is obtained that has the generic form shown in
Figure 4. The rules given in the transformation pattern in Table 2 should be
interpreted as follows: the lifeline of the initiator instance is identified by the
agent of the sentence. Each lifeline of a performer instance is deduced from:
(1) the owner contained in each clause of the use case sentence; or (2) the
location contained in each clause of the use case sentence; or (3) the
destination contained in each clause of the use case sentence.
The Head function extracts the most important constituent of the owner,
location, or destination. The normalization function builds the canonical form
of the role heads. The signature of the update operation is deduced by a
sequence function. This function constructs a label with the principal verb, the
object, and the object state of each sentence clause. All the messages received
by each instance are equal.

Applying a Transformation Pattern

Before applying a transformation pattern, it must be instantiated. The instantiation
process moves the action from the model level to the instance level (see Figure
5). This process assumes that: (1) the use case action is syntactically normalized;

Table 2. Transformation pattern (simplified version): An example

Name Shared Fountain

Description This pattern can be applied to an action that represents an internal behavior of the
system. The action is a simple sentence that can be decomposed into two or more
clauses. These clauses have the same subject, the same main verb, and the same
direct object. The only difference among these clauses is their prepositional-phrase.
The obtained interaction contains one message for each sentence clause. The
messages are sent from the same instance of concurrent form. The message order
is irrelevant. They are received by different instances. The message tags are equals.

Semantic Context Shared Action (see Table 1)

initiator agent

performer[i] ∀i=1..n (<Head(owneri)>
NORM ∨

 <Head(locationi)>
NORM

 ∨
 <Head(destinationi)>

NORM);

Transformation
Rules

Update[i]

∀i=1..n (Sequence(verb,<object> NORM,state)
 ∨ Sequence(verb,<object> NORM));

Semantic Fragment Fountain (see Figure 4)

Observations In general, the initiator role is played by a lifeline that represents a boundary
instance. This instance is frequently named as the system in development. However,
the initiator role can be played by a control instance, too.

46 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and (2) the use case action contains the corresponding syntactic and semantic
information (constituents/phrases and semantic roles). The instantiation process
can be performed in fours steps:
First step: to recognize the semantic context. The semantic information of the
action sentence to be analyzed is used to determine the semantic context of the
action. The semantic context of each transformation pattern is evaluated using
the semantic information of the sentence as was described earlier. The sentence:
“The system registers the information in the accident report and in the
insurance policy,” will be considered as an example for the instantiation
process (see Table 1). This sentence satisfies the formula of the shared action
semantic context.
Second step: to identify the transformation rules. This is immediate because
each semantic context defines each action transformation pattern. The pattern
that corresponds to the shared action semantic context has the transformation
rules given in Table 2. When this transformation pattern is applied, a fountain
interaction fragment is obtained.
Third step: to identify the syntactic structure of the sentence. To carry out
the pattern instantiation, the syntactic structure of the roles that participate in the
sentence must be known. The syntactic structure of the example sentence, has
the following characteristics: (1) the agent and object roles are linked to noun-
phrases; and (2) the location roles are expressed by place-prepositional-
phrases. The syntactic and semantic information of the sentence is the following:

“{ The (system)head }noun-phrase/subject(agent)

 { (registers)main-verb [the (information)head]noun-phrase/direct-object(object)

 [in the (accident report)head]place-prepositional-phrase(location1) (and)conjunction-connector

 [in the (insurance policy)head]place- prepositional-phrase(location1)}predicate”

Fourth step: to apply the transformation rules. This consists of obtaining the
interaction elements from the sentence. For example, when the transformation
rules of the pattern given in Table 2 are applied to the example sentence, the
elements identified are the following (Figure 6): (1) a border/control instance
(initiator) whose name is extracted from the noun-phrase head of the agent
(“system”); (2) two domain instances: accident report and insurance policy.
These instances are recognized from the noun-phrase head of each place-
prepositional-phrase (location roles). The canonical form of each head is
verified; and (3) two synchronous and concurrent messages that are sent by the
system instance. These messages are responsible for activating the operation
execution identified as “register the information.” The label of each message is
obtained using the main-verb and the direct-object of the sentence.

Using Linguistic Patterns to Model Interactions 47

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Transformation Strategy

The purpose of the transformation patterns is to recognize the basic elements
that participate in an interaction fragment (i.e., lifelines/instances and mes-
sages). To identify other elements and to verify the consistency of the interaction
model, it is necessary to analyze groups of actions or groups of use cases. The
generated information of each transformed action must be integrated. An
integration activity is, for example, to combine the interaction fragments that are
deduced from each sentence of a use case until the interaction is completed. In
addition, there is information that can only be deduced through either a partial or
a complete analysis of the use case, such as to deduce the candidate parameters
of each message. This information must also be incorporated into the obtained
interactions.
Finally, the integration of the interactions deduced for each use case allows us
to obtain the interaction model of the system. This task must resolve the possible
conflicts that are generated when all partial representations are combined.

A Validation Experiment

An experiment to validate the transformation patterns was designed by OO
method group researchers of the Technical University of Valencia, Spain (Díaz,
Moreno, Fuentes, & Pastor, 2005). Until now, the experiment has been repli-
cated four times to determine whether each pattern generates the expected
interaction fragments from a use case action. The experiment was performed in
four phases, which are outlined as follows:

Figure 6. An interaction fragment obtained by metamorphosis

 ������
 ��������� �����

��	����� ���
����
����

���������� �����

���

��	����� ���
����
����

48 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Phase 1: design of the transformation patterns. This task consisted of
discovering what correspondence could be established between a use case
action and an interaction fragment. This activity was carried out by OOmethod
group researchers, who specified the transformation patterns that would be
validated. The steps followed to design these patterns were: (1) the identification
of interaction fragments by means of the direct observation of a sample of
sequence diagrams that had been deduced from use cases; this sample was
extracted from the use case models and the interaction models of academic and
commercial information systems; (2) the determination of correspondences
between actions and fragments for each sentence; (3) the deduction of a generic
interaction structure based on roles for each action and for each fragment; and
(4) the definition of the corresponding transformation pattern. The transforma-
tion patterns identified were organized in an initial catalog to determine their
validity.
Phase 2: manual deduction of interactions. Five experts in behavior modelling
participated in this phase. They did not know the transformation patterns
designed in Phase 1. These modellers had experience in the application of UML
to develop use case models and sequence diagrams. To obtain the interactions,
the modellers selected the modelling technique proposed by Song (2001). This
technique was applied to construct the interaction model of the systems. The
modellers also constructed the use case models. The use case models and the
corresponding interaction models were extensively revised to reach a consensus
on the results obtained manually.
Phase 3: automatic deduction of interactions. This process consisted of
modelling interactions using the linguistic patterns specified during Phase 1. This
task was performed with the same systems used in Phase 2. The automatic
deduction was supported by a transformation tool that was developed for this
purpose. This tool was integrated into the requirements engineering tool (RETO)
(Insfrán et al., 2002). RETO supports the requirements specification and
analysis activities of OO method, an automatic software production environment
(Pastor et al., 2001). Figure 7 shows the components of the transformation tool
and how this tool was integrated into RETO. It uses a parser to tag sentences
with its constituents. These constituents are grouped in phrases according to a
context-free grammar that had been previously constructed by OO method
group researchers. This grammar allows us to know the syntactic structure of
each use case sentence and to determine its semantic/syntactic context.
Depending on the sentence context, the transformation tool applies a certain
pattern. Later, the transformation tool combines the deduced fragments to obtain
the corresponding SD.
Phase 4: interaction comparison. This task consisted of comparing the SD
generated using the Metamorphosis transformer with the SD obtained manually.
The purpose of this process was to determine the differences and similarities

Using Linguistic Patterns to Model Interactions 49

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

among the interaction fragments. This task was carried out by the modellers that
participated in Phase 2. The manually obtained fragments were individually
compared with the fragments generated automatically for each sentence of the
use cases. The result of this comparison allowed us to determine whether both
fragments were: (1) equal, when the two fragments were composed of the same
instances and the same messages; (2) equivalent, if the two fragments
represented the same interaction, even though the instances and messages were
not the same; and (3) different, when the compared fragments were neither
equal nor equivalent.
To date, this validation strategy has been applied to 280 use cases (3,112 simple
sentences and 412 special sentences). Using the established criteria, 65% of the
transformation patterns were equal, 28% were equivalent, and only 7% were
categorized as different. This strategy allowed us to improve or to reject
transformation patterns. It has also allowed us to identify new transformation
patterns. Currently, the Metamorphosis catalog contains 25 transformation
patterns that have been validated using this strategy.

Conclusion

This chapter has presented metamorphosis, a generic framework whose main
purpose is facilitating the interaction modelling. This framework attempts to
improve the offered possibilities of existing interaction modelling techniques.

 Normalized
Use Case Text

(TXT File)

Action Processor
(PYTHON)

Transformation
Pattern

Application
(PYTHON)

Sequence
Diagrams
(XML File)

PARSER
(MS-ANALIZE)

Use Case
Model

(XML File)

RETO/
OO-Method

Semantic Context
Identification

(PYTHON)

Use Case
Text

(TXT File)

TRANSFORMATION
TOOL

RETO/
OO-Method

Grammar

Normalized
Use Case Text

(TXT File)

Action Processor
(PYTHON)

Transformation
Pattern

Application
(PYTHON)

Sequence
Diagrams
(XML File)

PARSER
(MS-ANALIZE)

Use Case
Model

(XML File)

RETO/
OO-Method

Semantic Context
Identification

(PYTHON)

Use Case
Text

(TXT File)

TRANSFORMATION
TOOL

RETO/
OO-Method

Grammar

Figure 7. The transformation tool architecture

50 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

However, there are still lines of research that continue open. In this sense,
Metamorphosis can be considered as a mean and as a goal. The following issues
describe some conclusions and potential areas of research.
The integration of the contributions from software engineering and compu-
tational linguistics can reinforce interaction modelling. The metamorphosis
framework shows that some current proposals in computational science can
support this activity. The strategic alliance between software engineering and
computational linguistics is an important aspect to be able to overcome the
limitations of interaction modelling. The application of natural language process-
ing facilitates the automatic recognition of interaction model elements and the
establishment of persistent links between these elements and those from which
they are deduced. In addition, use case models can be enriched with information
that is not only useful for the deduction task but also for improving documentation
and comprehension. The transformation architecture based on models promotes
the construction of robust interaction models from use case models. However,
it is necessary to continue working with the purpose of strengthening bonds
between these disciplines.
Interaction modelling can be an easier task and can produce better results.
This can only be achieved with the support of a tool that performs tedious and
troublesome tasks. The modeller can then concentrate on more important
activities such as design decisions and validation of analysis results. A transfor-
mation tool based on metamorphosis was created for OO method, but its
implementation depends on this application. It is necessary to design and to
implement a tool that can be integrated in several automatic software production
environments.
The use case normalization process can be flexible without causing a
decrease in its quality. This can be achieved by establishing automatic controls
that identify the possible problems of a use case text. These problems can then
be solved using the convenient mechanisms according to the circumstances (i.e.,
natural language processing techniques, interaction with the modeller, the
establishment of development-guided strategies, etc.). It is simply a matter of
applying only the natural language restrictions that are strictly necessary and
avoiding the reduction of its potential capability to express the system behavior.
The current tools do not have use case editors in order to facilitate this task.
Pattern definition is a good, centralized way to record the action transfor-
mation knowledge. This resource enables the study of the correctness, com-
pleteness, and consistency of the designed transformations. In addition, it also
facilitates the documentation, creation, understanding, application, and mainte-
nance of this knowledge. However, in order to ensure their correct and
consistent application, it is necessary to determine the best form to express the
transformation patterns (formal/informal, graphic, etc.).

Using Linguistic Patterns to Model Interactions 51

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The definition of an architecture based on model transformation facilitates
the description of the transition between the dynamic behavior specifica-
tion and its analysis, at a high level of abstraction. This architecture must be
independent of implementation considerations to facilitate their maintenance and
extension. It also must control the complexity derived from the transformation
strategy. This strategy can be defined using different levels interrelated by
means of instantiation, integration, and refinement processes. Metamorphosis
has proposed a transformation strategy. However, this must be reinforced and
proved in order to determine its real reach.
It is possible to shorten the gap that traditionally exists between the
specification and the analysis of a system dynamic behavior. This can be
achieved through transformation patterns for which persistent links must be
established between the elements of the use case model and the elements of the
interaction model. These links must be documented, controlled, and maintained.
The transformation strategy must locate the dynamic model at the same level
of priority as the system structural model. With this purpose, the dynamic
model has to be independent on the information provided by the structural model.
This strategy assumes that both models can be constructed simultaneously and
iteratively in a complementary way. Extending the transformation patterns with
structural information associated to the semantic context of an action is a pending
task.
The use of semantic roles allows the specification of the transformation
strategy to be independent from the language that is used to write the use
cases. The semantic roles can be used to describe the actions of a use case
without having to indicate its syntactic structure. Thus, the transformation
patterns can be reused for texts in different languages. Within the same
language, it is also possible to associate different types of syntactic structures to
each role in order to establish variants of the language. The use of roles to define
transformation patterns also facilitates their understanding and application.
However, there is not a tool exclusively created to label the use cases with roles.
A tool of this type should be designed in order to carry out this task efficiently.
The specification of interaction fragments based on roles provides a
generic structure that is applicable to different transformation patterns.
This is of special interest for the different types of actions of a use case that can
be represented using the same type of interaction fragment. Furthermore, these
generic structures facilitate the understanding of the interactions that derive
from the analysis of an action and the definition of the transformation patterns.
Research in this direction is being currently developed (see France et al., 2004).
Validation of transformation patterns can determine whether or not the
interactions deduced are correct. We are currently carrying out more
experiments to reinforce this assumption. We are also defining a strategy to

52 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ensure the continuous validation of the transformation pattern catalog not only
in terms of its correctness but also in terms of its completeness and consistency.

References

Ambler, S. (2004). The object primer: Agile model driven development with
UML 2 (3rd ed.). Cambridge: Cambridge University Press.

Ben-Achour, C. (1998). Guiding use case authoring. In P. Chen & R. P. van de
Riet (Eds.), Proceedings of the Fourth IEEE International Symposium
on Requirements Engineering (RE’98) (pp. 36-43). Colorado Springs,
CO: IEEE Computer Society.

Ben-Achour, C., Rolland, C., Maiden, N. A. M., & Souveyet, C. (1999). Guiding
use case authoring: Results of an empirical study. In Proceedings of the
Fourth IEEE International Symposium on Requirements Engineering
(RE’99) (pp. 36-43). Limerick, Ireland. IEEE Computer Society.

Berry, D., & Kamsties, E. (2004). Ambiguity in requirements specification. In
J. S. do Padro Leite & J. H. Doorn (Eds.), Perspectives on software
requirements (pp. 7-44). Kluwer Academic Publishers.

Blanchard, B., & Fabrycky, W. (1990). Systems engineering and analysis.
Englewood Cliffs, NJ: Prentice Hall.

Boyd, N. (1999). Using natural language in software development. Journal of
Object-oriented Programming, 11(9), 45-55.

Burg, J. F. M., & van de Riet, R. P. (1995). Color-X: Linguistically-based event
modeling. A general approach to dynamic modeling. In J. Iivari, K.
Lyytinen, & M. Rossi (Eds.), Advanced information systems engineer-
ing, 7th International Conference CAiSE’95, 932 (pp. 26-39). Berlin:
Springer-Verlag.

Burg, J. F. M., & van de Riet, R. P. (1996). Analyzing informal requirements
specifications: A first step towards conceptual modeling. In R. P. van de
Riet, J. F. M. Burg, & A. J. van der Vos (Eds.), Proceedings on
applications of natural language to information systems (NLDB).
Amsterdam, The Netherlands: IOS Press.

Chen, P. S. (1976). The entity-relationship model — Towards unified view of
data. ACM Transactions on Database Systems, 1(1), 9-36.

Cockburn, A. (2001). Writing effective use cases (4th ed.). Addison-Wesley.
Dehne, F., Steuten, A., & van de Riet, R. P. (2001). WordNet++: A lexicon for

the Color-X-Method. Data & Knowledge, 38, 3-29.

Using Linguistic Patterns to Model Interactions 53

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Díaz, I., Losavio, F., Matteo, A., & Pastor, O. (2004). A specification pattern for
use cases. Information & Management, 41, 961-975.

Díaz, I., Moreno, L., Fuentes, I., & Pastor, O. (2005). Integrating natural language
techniques in OO-Method. In A. Gelbukh (Ed.), Computational linguistic and
intelligent text processing, 6th International Conference, CICLing 2005 (pp.
560-572). Berlin: Springer-Verlag.

Díaz, I., Moreno, L., Pastor, O., & Matteo, A. (2005). Interaction transformation
patterns based on semantic roles. In A. Montoyo, R. Muñoz, & E. Métais
(Eds.), Proceedings of the 10th International Conference of Applications of
Natural Language to Information Systems, NLDB’05 (pp. 239-250). Berlin:
Springer-Verlag.

Feijs, L. M. G. (2000). Natural language and message sequence chart representa-
tion of use cases. Information and Software Technology, 42, 633-647.

Flield, G., Kop, C., Mayerthaler, W., Mayr H., & Winkler, C. (2000). Linguistic
aspects of dynamics in requirements specifications. IEEE Proceedings of the
11th International Workshop on Databases and Expert Systems Applications
(DEXA) (pp. 83-90). London: IEEE Computer Society.

France, R., Kim, D.K., Ghosh, S., & Song, E. (2004). A UML-based pattern
specification technique. IEEE Transactions on Software Engineering, 30,
193-206.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1992). Design patterns.
Elements of reusable object-oriented software. Addison-Wesley Longman,
Inc.

Guildea, D., & Jurafsky, D. (2002). Automatic labeling of semantic roles.
Computational Linguistics, 28, 245-280.

Hilsbos, M., & Song, I.-Y. (2004). Use of tabular analysis method to construct
UML sequence diagrams. In P. Atzeni, W. Chu, H. Lu, S. Zhou, & T. W. Ling
(Eds.), Proceedings of the 23rd International Conference on Conceptual
Modeling, RE’04 (pp. 740-752). Berlin: Springer-Verlag.

Insfrán, E., Pastor, O., & Wieringa, R. (2002). Requirements engineering-based
conceptual modeling. Requirements Engineering, 7, 61-72.

ITU: International Telecommunication Union. (2000). International recommenda-
tion Z.120. Message Sequence Chart (MSC). Geneva: ITU.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software develop-
ment process. Addison Wesley Longman, Inc.

Jacobson, I., Christerson, M., Jonsson, P., & Övergaard, G. (1992). Object-
oriented software engineering. A use case driven approach. Addison Wesley
Longman, Inc.

Juristo, N., Moreno, A. M., & López, M. (2000). How to use linguistic instruments
for object-oriented analysis. IEEE Software, 17(3), 80-89.

54 Díaz, Pastor, Moreno, & Matteo

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA explained. The model driven
architecture: Practice and promise. Addison-Wesley.

Kop, C., & Mayr, H. (2002). Mapping functional requirements: From natural
language to conceptual schemata. In Proceedings of the 6th International
Conference Software Engineering and Applications (SEA). Cam-
bridge: IASTED.

Larman, C. (2004). Applying UML and patterns: An introduction to object-
oriented analysis and design and iterative development (3rd ed.).
Prentice Hall.

Li, L. (2000). Translating use cases to sequence diagrams. In Proceedings of
the Fifteenth IEEE International Conference on Automated Software
Engineering ASE (pp. 293-296), Grenoble, France. IEEE Computer
Society.

Métais, E. (2002). Enhancing information systems management with natural
language processing techniques. Data & Knowledge Engineering, 41,
247-272.

Mich, L., Franch, M., & Inverardi, N. (2004). Market research for requirements
analysis using linguistic tools. Requirements Engineering, 9(1), 40-56.

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: A roadmap.
In Proceedings of the 22nd International Conference on Software
Engineering: ICSE’2000 (pp. 37-46), Limerick, Ireland. ACM Press.

OMG: Object Management Group. (2003). Unified modeling language:
Superstructure specification. Version 2.0. Retrieved April 10, 2006,
from http://www.omg.org/uml

Overmyer, S., Lavoie, B., & Rambow, O. (2001). Conceptual modeling through
linguistic analysis using LIDA. In Proceedings of the Conference on
Software Engineering, ICSE (pp. 401-410), Toronto, Ontario, Canada.
IEEE Computer Society.

Pastor, O., Gómez, J., Insfrán, E., & Pelechano, V. (2001). The OO-method
approach for information systems modeling: From object-oriented concep-
tual modeling to automated programming. Information Systems, 26, 507-
534.

Rolland, C., & Ben-Achour, C. (1998). Guiding the construction of textual use
case specifications. Data & Knowledge Engineering, 25, 125-160.

Rosenberg, D., & Scott, K. (1999). Use case driven object modeling with
UML: A practical approach. Addison-Wesley Longman, Inc.

Rumbaugh, J. (1995). What is a method? Journal of Object-Oriented Pro-
gramming, Modeling & Design Section, 8(6), 10/16-26.

Using Linguistic Patterns to Model Interactions 55

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991).
Object-oriented modeling and design. Englewood Cliffs, NJ: Prentice
Hall International Inc.

Song, I. Y. (2001). Developing sequence diagrams in UML. In A. R. Tawil, N.
J. Fiddian, & W. A. Gray (Eds.), Proceedings of the 20th International
Conference on Conceptual Modeling: ER’2001 (pp. 368-382). Berlin:
Springer-Verlag.

Van Lamsweerde, A. (2000). Requirements engineering in the year 2000: A
research perspective. In Proceedings of the 22nd International Confer-
ence on Software Engineering: ICSE’2000 (pp. 5-19). ACM Press.

Wieringa, R. (1998). A survey of structured and object-oriented software
specification methods and techniques. ACM Computing Surveys, 30(4),
459-527.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing object-
oriented software. Englewood Cliffs, NJ: Prentice Hall International Inc.

56 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

A Framework Based
on Design Patterns:

Implementing UML Association,
Aggregation and Composition
Relationships in the Context of
Model-Driven Code Generation

Manoli Albert, Universidad Politécnica de Valencia, Spain

Marta Ruiz, Universidad Politécnica de Valencia, Spain

Javier Muñoz, Universidad Politécnica de Valencia, Spain

Vincente Pelechano, Universidad Politécnica de Valencia, Spain

Abstract

This chapter proposes a framework based on design patterns to implement
UML association, aggregation, and composition relationships. To build the
framework, we propose a semantic interpretation of these concepts that
avoids the ambiguities introduced by UML. This interpretation is achieved

A Framework Based on Design Patterns 57

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

by using a set of properties that allows us to characterize these kinds of
relationships. Once the semantics of the relationships have been defined,
we propose a framework based on design patterns for the systematic
generation of a software representation. The framework is based on the
properties that characterize the relationships. It provides a high-quality
solution and introduces important benefits with regard to other existing
implementation approaches. This work proposes an implementation strategy
that defines a set of mappings between the conceptual abstractions and the
proposed framework. This strategy enables the automatic instantiation of
the framework. Finally, to validate the proposal, we present a C#
implementation of a collaboration pattern. Collaboration patterns are
analysis patterns constituted by two classes that are related by an association,
an aggregation or a composition relationship.

Introduction

Current development methods and tools are focused on model-driven software
development (MDSD) processes. In particular, the model-driven architecture
(MDA) proposal of the object management group (OMG) constitutes an approach
for the development of software systems that is based on a clear separation between
the specification of the essential system functionalities and the implementation of
this specification through the use of specific implementation platforms. MDA tries
to raise the abstraction level in software development by giving more relevance to
conceptual modeling. Models with a high level of abstraction (platform independent
models, PIM) are translated into models that are expressed in terms of specific
implementation technologies (platform specific models, PSM). The PSM can be
used to generate automatically the application code. A practical application of MDA
requires more mature techniques and tools than those that are currently available.
In order to achieve the MDA goals, we consider that it is necessary to provide:

• Conceptual modeling abstractions with a precise semantics: The preci-
sion of the modeling abstractions is a key characteristic in building appropriate
PIM. Rich conceptual models are needed to define transformations that
guarantee that the generated code is functionally equivalent to the specifica-
tion.

• Implementation techniques: Frameworks and design patterns facilitate the
implementation of the modeling abstractions in target implementation lan-
guages, the definition of transformations, and the production of high-quality
solutions.

58 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The goal of this chapter is to provide solutions for these requirements, taking the
association relationship as the target conceptual modeling abstraction. The
association relationships include the aggregation and composition UML con-
cepts.
The association relationship is one of the most widely used abstractions in OO
conceptual modeling. Several authors (Civello, 1993; Guéhéneuc & Albin-
Amiot, 2004; Henderson-Sellers & Barbier, 1999a, 1999b; Odell, 1994; Opdahl,
Henderson-Sellers & Barbier, 2001; Saksena, France, & Larrondo-Petrie, 1998;
Snoeck & Dedene, 2001; Wand, Storey, & Weber, 1999; Winston, Chan, &
Herrmann, 1987) have studied the semantics of these relationships for many
years. They have identified structural and behavioral properties that character-
ize this abstraction. Nevertheless, a consensus has not yet been achieved. UML
does not provide a complete solution for this problem: The proposed semantics
introduces many ambiguities, as recognized in Henderson-Sellers and Barbier
(1999a); Genova, Llorens, and Palacios (2002); and Guéhéneuc and Albin-Amiot
(2004). This lack of consensus leaves the association relationship without a
precise and clear semantics. Modelers cannot use this relationship without
ambiguities during the conceptual modeling step. Therefore, automatic code
generation that takes the association relationship as input is very difficult.
With regard to design and implementation techniques, the current techniques for
implementing association relationships (for object relation, see Graham, Bischof,
& Henderson-Sellers, 1997; for metaclasses, see Dahchour, 2001; Klas &
Schrefl, 1995; for genericity, see Kolp & Pirotte, 1997) only provide partial
solutions. These solutions are either too difficult to apply (in the case of
metaclasses and genericity due to the lack of support of the majority of
programming languages) or too simple (references) to give support to the
complex behavior of an association relationship. These drawbacks indicate the
need for a high-quality implementation proposal. This proposal should enable the
CASE tools that support model-driven development to provide code generation
of the association relationship through a precise framework instantiation. This is
the strategy that is recommended by the new development approach Software
Factories (Greenfield, Short, Cook, & Kent, 2004).
The present chapter introduces four clear contributions:

• To present an association model with a well-defined semantics: This
goal is achieved by providing a precise definition for the UML association,
aggregation, and composition concepts, and removing the ambiguities
introduced by the UML. This chapter proposes a semantic interpretation
for these concepts. This interpretation is based on a conceptual framework

A Framework Based on Design Patterns 59

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that identifies a set of essential properties that allows the precise charac-
terization of the association relationships.

• To propose a framework based on a set of design patterns: (Gamma,
Helm, Johnson, & Vlissides, 1994) to improve the association relationship
implementation. This framework provides a high-quality implementation of
the association, aggregation, and composition relationships. This implemen-
tation is based on the properties that characterize the relationships.

• To define a complete methodological approach for automatic code
generation: This chapter proposes an implementation strategy that de-
fines a set of mappings between the conceptual abstraction and the
proposed framework. The mappings permit the instantiation of the frame-
work to obtain a fully operative association implementation. This implemen-
tation can be used to build industrial code generators. This approach
improves the productivity and the quality of the final software product.

• To validate our framework implementation proposal: This chapter
presents a C# implementation of the framework. We have used collabora-
tion patterns (CP) (from Bolloju, 2004) to check the correctness of the
implementation. The CP define the common association relationships
identified in business applications. We have implemented these patterns
using our framework. This chapter presents an instance of the implemen-
tation.

The rest of the chapter is structured as follows: the second section provides
definitions and discussions of the topic and presents a review of the literature.
The third section presents a conceptual framework that identifies a set of
properties that characterize the UML association relationships. The framework
is used to provide a precise interpretation for the semantics of the UML
association, aggregation, and composition concepts. The fourth section presents
a framework that is based on the Mediator, Decorator and Template Method design
patterns. This framework provides a high-quality implementation for the associa-
tion relationship within MDSD. The fifth section presents a code generation
strategy that specifies how to instantiate the framework to implement the
association relationship. This strategy defines how to obtain the structure and
behavior of the classes that belong to the framework to give complete support
to the implementation of the full functionality of the association relationship. To
validate our proposal, the sixth section presents a C# implementation of a
collaboration pattern. The seventh section presents further works, and the last
section presents conclusions.

60 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Background

Code generation is currently a leading topic in software engineering. The goal of
code generation is to obtain automatic mechanisms to improve the quality and the
productivity of the software production process. Several methods and tools have
been developed to give support to these requirements. Tools like ArchStyler
(www.arcstyler.com) or OptimalJ (www.compuware.com/products/optimalj)
provide powerful code generation techniques.
One of the most recent contributions in the software engineering field is the
MDA approach. The MDA proposal constitutes a suitable approach for carrying
out the code generation process in a structured and documented way, following
a strategy based on models. MDA promotes the separation between the
specification of the essential functionalities of the system and the implementation
of this functionality, thus allowing for the definition of transformations towards
the implementation of the system independently of technological aspects. The
main contribution of the MDA proposal is the emphasis on the use of conceptual
models for code generation and the proposal of several OMG languages for
performing that task.
Currently, the main efforts in the MDA are focused on the transformations
between models. Some methods claim to give support to MDA, but actually there
are few proposals that provide precise guidelines for the automatic transforma-
tion between models. Moreover, there does not exist a standardized way for
specifying and applying model transformations. Currently, the OMG is working
in the QVT (Object Management Group, 2002) standard for filling this important
lack.
Following the MDA approach, we provide a precise definition for the association
abstraction in an OO conceptual model. Once the association abstraction is
precisely defined, we provide a framework that enables the definition of
mappings for the translation of the conceptual model specification (PIM) into a
platform specific model (PSM) based on a generic OO language. This proposal
is being applied in OLIVA NOVA model execution (www.care-t.com), an
industrial CASE tool that generates completely functional and executable
software applications from models.
A recent trend in software engineering is to define and to use software patterns
at several abstraction levels (requirements elicitation, analysis, design, etc.)
during the development process. In this chapter, we use a set of design patterns
for the construction of the proposed framework. Those design patterns enable
the definition of mappings between the conceptual model and it software
representation.

A Framework Based on Design Patterns 61

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Association Relationships in Conceptual Models

The meaning of the association concept, central to and widely used in the OO
paradigm, is problematic. The definitions provided in the literature for this
construct are often imprecise and incomplete. Conceptual modeling languages
and methods, such as Syntropy (Cook & Daniels, 1994), UML (Object Manage-
ment Group, 2003), OML (Firesmith, Henderson-Sellers & Graham, 1997) or
Catalysis (D’Souza, & Wills, 1998), include partial association definitions that do
not achieve a consensus for an unified semantic definition. Several works have
appeared highlighting the drawbacks of the proposals and answering many
important questions regarding associations.
Henderson-Sellers has presented different works searching for answers to some
relevant questions, such as the directionality of associations (Henderson-
Sellers & Barbier, 1999), the special meaning of aggregation and composition
(Henderson-Sellers & Barbier, 1999), and other interesting aspects. Genova
presented a PhD thesis (Genova, 2001) which makes an intensive analysis of
some problematic properties of associations: multiplicity, navigability and
visibility. Other authors work specifically on the aggregation constructor.
Saksena (Saksena et al., 1998) proposes a set of primary and secondary
characteristics that allow determining when a relationship is an aggregation. In
Henderson-Sellers and Barbier (1999), the authors refine Saksena’s work,
proposing different sets of primary and secondary characteristics. In Snoeck and
Dedene (2001), the authors propose a single property, existent dependency, to
characterize aggregation relationships (although these works do not focus on
defining mappings to software representations, their studies are useful in the
definition of the association concept). Guéhéneuc et al. in a recent work
(Guéhéneuc & Albin-Amiot, 2004) try to bridge the gap between the conceptual
specification of an association and its implementation. The authors identify four
properties for characterizing associations and propose a set of detection
algorithms to bring continuity between the implementation and the design. These
algorithms are validated using reverse-engineering.
In summary, there are several proposals for the definition of association, but a
consensus has not yet been reached. The analysis of the most relevant works can
be used for the definition of a set of properties that allows the precise and
complete definition of the association construct. In this chapter, we use this
knowledge to build a conceptual framework that identifies a set of properties that
can characterize the association relationships.

62 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Implementation Techniques for
Association Relationships

Most object-oriented programming languages do not provide a specific construct
to deal with associations as first level constructs. Users of these languages
should use reference attributes to implement associations between objects.
Following this approach, an association is relegated to a second-class status. To
improve this situation, several approaches have been proposed to implement
association relationships (Dahchour, 2001).

• The most widely used approach implements associations as references
(Graham et al., 1997; Rumbaugh, 1987). Participating classes hold refer-
ences or pointers to their associated classes. The properties of the
association are implemented in the participating classes. This approach
provides a straightforward access to the relationship, but presents several
limitations: Participating classes become more complex, the properties of
the relationship are not implemented in a centralized way, and consistency
must be maintained by hand within the business logic.

• Another well-known approach is the use of relationship objects. In this
approach, association instances are represented by objects (relationship
objects) with two references that are used to link two related objects. To
support this approach, relationship classes are defined to describe the
relationship objects. The properties of the association are implemented in
the relationship classes. This approach permits the reuse of participating
classes (no modifications to the data structure are required). Properties are
implemented in a centralized way, and space is used only when relation-
ships are needed. However, the problem of dangling references (during
deleting operations) is an important limitation of this approach.

• A more complex technique is the use of built-in primitives (Díaz & Paton,
1994: Rumbaugh, 1987). The central idea of this approach is to supply a
built-in primitive which helps to declare explicitly and specify a large variety
of specific relationships. Based on these specifications, the underlying
system automatically enforces and maintains the semantics of relation-
ships. In this approach, properties are implemented in one class and
relationships are reusable. However, some properties of the association
cannot be captured by built-in primitives.

• The genericity approach (Kolp & Pirotte, 1997) is specifically used for
implementing generic relationships (Pirotte, Zimanyi, & Dahchour, 1998).
These relationships are implemented through parameterized classes. The
genericity approach consists in defining one parameterized class that

A Framework Based on Design Patterns 63

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

abstracts a set of specific relationships. One advantage of this approach is
the reusability of the relationship; however a disadvantage is that it is not
possible to deal with the class properties of the associations.

• Metaclasses (Dahchour, 2001; Klas & Schrefl, 1995) are also used to
implement associations. This approach consists in defining the semantics of
an association only once within a metaclass structure. This structure
permits defining and querying the association at the class level. The related
classes are instances of the metaclasses that represent the association.
This approach permits the reusability of the associations, and facilitates the
maintainability and the dynamicity of the associations. Nevertheless, it is a
complex strategy, which is difficult to implement and which is not easily
supported by most programming languages.

We conclude that implementing associations with current techniques may lead
to reduced cohesion and increased coupling as well as difficulties with referential
integrity. All the techniques have benefits and drawbacks; therefore, the context
of use determines which of the presented strategies is selected.
Within the context of MDSD (and following an OO perspective), we provide an
implementation for associations in OO languages. The implementation, based in
the technique of relationship objects, is a high-quality mechanism for supporting
the association properties while maintaining the most relevant quality factors of
the software (reusability, maintainability, extensibility, complexity). Current
techniques do not satisfy all these requirements, so we need a new proposal to
achieve our goals.
We have found patterns in the design pattern literature that can be applied to
implement association relationships (particularly the decorator, mediator, and
template method presented in Gamma, Helm, Johnson & Vlissides, 1994). These
design patterns provide quality and tested solutions. In this chapter, we use these
design patterns to build a framework for the implementation of associations.

A Conceptual Framework
for Characterizing UML

Association Concepts

In the context of code generation, a precise semantics for the association
concept must be defined to obtain a correct software representation. The
definition of a precise semantics guarantees that the generated code is function-
ally equivalent to the specification.

64 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To define a precise semantics for the association concept, we present a
conceptual framework that identifies a set of properties that have been adapted
from different OO modeling methods. These properties allow to characterize
precisely association relationships in a conceptual model. The semantics pro-
posed is based on the basic definitions of association, aggregation, and compo-
sition concepts in the UML.
The conceptual framework is based on a process in which we have studied
several approaches that analyze the association relationships (the Olivé analysis
in Olivé, 2001; the works of Henderson-Sellers et al. where the aggregation is
analyzed: Opdahl, Henderson-Sellers, & Barbier (2001), and Henderson-Sellers
& Barbier, 1999a, 1999b; Civello’s proposal in Civello, 1993; Odell’s composition
study in Odell, 1994; Saksena et al. proposal for aggregations in Saksena, France
& Larrondo-Petrie, 1998; Snoeck et al. arguments about existent dependency in
Snoeck & Dedene, 2001; and Wand’s ontological analysis in Wand et al., 1999).
We have selected some properties from these approaches taking into account a
set of quality characteristics that are identified for evaluating the association
properties. These quality characteristics are oriented to facilitate the construc-
tion of expressive conceptual models, taking into account that the goal of our
models is to be transformed into design structures of an OO programming
language. The quality characteristics that the properties must fulfil are simplic-
ity, precision and implementability (influential on the software representation
of the relationship). These characteristics allow us to select those properties of
the association that help us to define an appropriate conceptual framework for
the characterization of the associations. This framework should provide a well-
balanced solution between expressiveness and implementability.
In the literature, we find some of the properties describing the association
concept under different terms. For instance, the properties delete propagation
and multiplicity, which are defined in this work, have an interpretation which is
similar to the existence dependency from (Snoeck & Dedene, 2001). Also, the
property multiplicity that we define (similar to the way in which the UML (object
management group, 2003) defines it) is used to represent the semantics of the
property mandatory/optional which appears in other approaches (Henderson-
Sellers & Barbier, 1999a; Kolp & Pirotte, 1997).

The Association Relationship

To introduce the properties of the conceptual framework, we present some basic
definitions that form the core semantics of an association relationship.
A commonly agreed upon categorization of relationships in OO conceptual
modeling is the following (Dahchour, 2001):

A Framework Based on Design Patterns 65

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Classification: It associates a class with a set of objects that hold the same
properties.

• Specialization: It allows the definition of new classes (subclasses) as a
specialization of previously defined ones (superclasses).

• Association/Aggregation: It is a relationship between classes that
defines structural or semantic connections between the instances of the
classes.

In UML, an aggregation relationship is considered to be a special kind of the
ordinary association, whereas in other models (as OML), an aggregation
acquires its own status and comes with specific features. We use the term
association to refer to the ordinary association, aggregation, and composition
relationships. These relationships can be categorized using the proposed concep-
tual framework.
When the relationship is an aggregation, the class that plays the role of whole
is the aggregate class, while the other class is the part class. If the relationship is
a composition, the class that plays the role of whole is the composite class, and
the other class is the component class.
Once the term association is introduced, we present the components of the
conceptual model involved in an association:

• Participating classes: The domain classes that are connected through the
association.

• Association ends: The endpoints of an association that connect the
association to a class. We work only with binary associations; therefore, an
association has two association ends. An association end is characterized
by its own properties (such as the maximum number of objects of the class
that can be connected to an object of the opposite end).

• Relationship: The connection between the classes. The relationship is
characterized by its own properties (such as the possibility of connecting an
object to itself).

A link is an instance of an association. It connects two participating objects.

Properties of the Conceptual Framework

This section presents the properties of the conceptual framework for character-
izing association relationships. To present briefly the properties, we have created

66 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 1. Properties of the conceptual framework

Temporal Behaviour
Description Specifies whether an instance of a class can be dynamically connected or

disconnected (creating or destroying a link) with one or more instances of a
related class (through an association relationship) throughout its life-time.

Type Association End property
Values • Dynamic: Connecting or disconnecting a link to an object of the opposite

end is possible throughout the life of the object.
• Static: Creating or destroying a link is not possible (it is only possible

during its creation process).
UML Attribute changeability of the association-end: “specifies whether an instance

of the Association may be modified by an instance of the class on the other
end (the source end).” (Object Management Group, 2003, p. 2-22)

Multiplicity (maximum and minimum)

Description Specifies the maximum/minimum number of objects of a class that must/can
be connected to one object of its associated class.

Type Association End property
Values Nonnegative integers.
UML Attribute multiplicity of the association-end: “specifies the number of target

instances that may be associated with a single source instance across the
given Association.” (Object Management Group, 2003, p. 2-23)

Delete Propagation

Description Indicates which actions must be performed when an object is destroyed.
Type Association End property
Values • Restrictive: The object cannot be destroyed if it has links (an exception

is raised if an attempt is made); otherwise it is destroyed.
• Cascade: The links and the associated objects must also be deleted.
• Link: The links must also be deleted (not the associated objects).

UML Propagation semantics. “A consequence of these rules is that a composite
implies propagation semantics; that is, some of the dynamic semantics of the
whole is propagated to its parts. For example, if the whole is copied or
destroyed, then the parts so are (because a part may belong to at most one
composite).” (Object Management Group, 2003, p. 2-66)

Navigability

Description Specifies whether an object can be accessed only by its associated object/s.
Type Association End property
Values • Navigable: The objects of the opposite end can access the objects of the

associated class.
• Not Navigable: The access is not possible.

UML Attribute navigability of the association-end: “specifies the navigability of the
association end from the viewpoint of the classifier on the other end.”
(Object Management Group, 2003, p. 2-23)

A Framework Based on Design Patterns 67

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a table with four rows that contains: The intended semantics in an intuitive way;
the property type, which identifies the element of the association that the
property is applied to; the possible values of the property; and the UML attributes
that have a semantics which is the closest to our proposed properties.
The presented properties are used in the next section to define a semantics of
the association, aggregation, and composition relationships.

Table 1. (continued)

Identity Projection
Description Specifies whether the objects of a participating class project their identity

onto their associated objects. These objects are then identified by their
attributes and by the attributes of their associated objects.

Type Association End property
Values • Projected: The class of the opposite end projects its identity.

• Not Projected: The class of the opposite end does not project its identity.
UML The identity projection of a composite: “composite [...] projects its identity

onto the parts in the relationship. In other words, each part in an object
model can be identified with a unique composite object. It keeps its own
identity as its primary identity. The point is that it can also be identified as
being part of a unique composite.” (Object Management Group, 2003, p.
3-81)

Reflexivity

Description Specifies whether an object can be connected to itself.
Type Relationship property
Values • Reflexive: The connection is possible

• Not Reflexive: The connection is not possible.
UML A characteristic of aggregation and composition relationships. “[...] the

instances form a directed, non-cyclic graph.” (Object Management Group,
2003, p. 2-67).

Symmetry

Description Specifies whether a b object can be connected to a a object, when the a
object is already connected to the b object.

Type Relationship property
Values • Symmetric: The connection is possible (not mandatory)

• Antisymmetric: The connection is not possible.
UML The antisymmetry property. “Both kinds of aggregations define a transitive,

antisymmetric relationship; that is, the instances form a directed, non-cyclic
graph. Composition instances form a strict tree (or rather a forest).” (Object
Management Group, 2003, p. 2-67)

68 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A Particular Semantic Interpretation

Due to the lack of a precise and clear semantics for the association relationship,
we propose a specific semantic interpretation for the association, aggregation,
and composition concepts. To define this semantics, we adopt only the basic
definitions for the UML concepts, completing them with our own definitions. The
following basic assertions have been adopted:

• Association: An association declares a connection (link) between
instances of the associated classifiers (classes). (Object Management
Group, 2003, p. 2-64)

• Aggregation: A whole-part relationship. In this case, the association-
end attached to the whole element is designated, and the other
association-end of the association represents the parts of the aggre-
gation. (Object Management Group, 2003, p. 2-66)

• Composition: Is a strong form of aggregation. (Object Management
Group, 2003, p. 2-66)

Although we adopt these assertions, we must fix the semantics of these concepts
to avoid the ambiguities (Genova, Llorens, & Palacios, 2002; Henderson-Sellers
& Barbier, 1999b) introduced by the UML. One way to define the precise
semantics of these concepts is to determine the value of the properties of the
conceptual framework for each concept.
The values of the properties for the association, aggregation, and composition
concepts are presented in Table 2. For each concept (columns), this table shows
the value of the proposed properties. We use the symbol 1 to show that a property
can be set to any of its possible values:

Table 2. The values of the properties for the association, aggregation, and
composition

Property/Concept Association Aggregation Composition
Composite, Component

Temporal Behaviour * * Static, *
Multiplicity * * (1,1) , (*,*)
Delete Propagation * * *, Cascade
Navigability * * Navigable, Not Navigable
Identification Projection * * Not Projected, Projected
Reflexivity * Not Reflexive Not Reflexive
Symmetry * Antisymmetric Antisymmetric

A Framework Based on Design Patterns 69

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Association does not have fixed properties in our model because there are
no constraints in the relationship between the related classes.

• Aggregation has two fixed properties because, in our model, it is:
° Not reflexive (an object cannot be whole and part at the same time).
° Antisymmetric (if an object is a part of a whole, then the whole cannot

be part of its own part).
• Composition has a fixed value for each property. Traditionally, in the

literature, the composition concept appears as a strong aggregation. We
have fixed the values of the properties assuming that the composition
concept implies that the components are totally subject to their composites:
° The maximum and minimum multiplicities of the composite are 1 (a

part must be included in one and only one composite).
° The temporal behavior of the composite is static (a part cannot change

its composite).
° The delete propagation of the component is cascade (when a compos-

ite is destroyed, its parts are also destroyed).
° The navigability of the composite is not navigable (a part cannot

access its composite).
° The identity projection of the composite is projected (a composite

projects its identity onto its parts).
° The reflexivity is not reflexive and thesymmetry is antisymmetric

(composition is a type of aggregation, composition fulfils the con-
straints of aggregation).

Now that we have proposed a semantics for the association, aggregation, and
composition concepts, we present a systematic method that obtains the software
representation from an association relationship that is characterized by the
framework properties.

Framework Definition

Our proposal for implementing associations provides a software framework that
combines a set of design patterns. The instantiation of the framework allows the
implementation of associations in an OO programming language, thereby obtain-
ing software solution that implements all the properties identified in the concep-
tual framework. The use of design patterns in the construction of the framework,
allows guaranteeing the high quality of the obtained implementation.

70 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this section, we present the design patterns that constitute the framework
structure. To decide which design patterns should be selected, we first identify
the software quality factors that our implementation must satisfy. Second, we
present the design patterns that we have selected to implement the associations
and to satisfy the identified quality factors.

Quality Factors

We have identified three quality factors (besides the traditional quality factors of
the software, such as cohesion, modularity, maintainability, or complexity) that
the final software implementation of the association must have:

• Loose coupling: An association constitutes a conceptual abstraction that
adds some kind of knowledge to the participating classes of the conceptual
model. Most of the implementation proposals introduce explicit dependen-
cies (references, attributes, methods) whose result is a tight coupling
between classes. In this sense, it is important for the implementation of the
relationship and the implementation of the participating classes to be as
independent (orthogonal) as possible.

• Separation of concerns: The objects of the participating classes could
have additional behavior and structure to those specified in the domain
class. It is important to implement this additional behavior and structure in
an isolated and clear way. Following this strategy the maintenance degree
of the software increases, since it is easy to identify which parts of the
source code should be modified when a change has to be made.

• Reusability and genericity: Most of the association behavior and struc-
ture can be generalized. The genericity of code (for example, defining
abstract classes, methods and common execution strategies for the cre-
ation and destruction of links) provide more reusable implementation
solutions.

Design patterns for building the software framework are selected to give support
to these quality factors.

Selected Design Patterns

The first step in applying design patterns to the construction of the framework
is to select appropriate ones. These patterns must be applicable to the association
abstraction, and the proposed solution must give support to the three quality

A Framework Based on Design Patterns 71

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

factors. Taking the specification of an association in a conceptual model as an
input, these design patterns propose a structure of design classes that implements
the association. We have selected the following design patterns:

• Mediator: This pattern defines a mediator class that encapsulates the
interaction of a set of objects of colleague classes. This pattern gives support
to loose coupling by avoiding explicit references between colleague objects.

• Decorator: This pattern defines a decorator class that wraps/decorates
another existing class. The application of this pattern extends the structure
and behavior of objects by wrapping those objects with another object that
provides an implementation of a new aspect. The application of this pattern
gives support to the separation of concerns.

• Template method: This pattern defines template methods in abstract classes
with execution strategies whose steps are implemented in subclasses. The
application of this pattern provides support for the reuse of generic
behavior.

The application of these three patterns also guarantees the reusability and the
genericity of the implementation. This is due to the disciplined use of polymor-
phism, abstract classes, dynamic binding and method overriding.

Framework Structure

We combine the design patterns selected to obtain a more complex structure of
design classes that implements an association relationship. Taking into account
the association relationship and the participating classes, in this section, we
present the design classes and the design patterns that are applied to build the
framework.
First, we implement in a traditional way the domain classes that participate in an
association. For each participating class defined in the conceptual model,
we define a design class that implements the structure and the behavior
specified in the conceptual model. We call these design classes domain
classes.
The decorator pattern is applied to implement the association ends independently
from the participating classes. For each association end, we define a
decorator design class (called decorator class), which implements the
additional structure and behavior of the participating objects as a result of
participating in an association relationship. The decorator classes wrap/deco-
rate the related domain classes, thus, the domain classes are totally independent
from their associations.

72 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The mediator pattern is applied to implement the relationship. The application of
the mediator pattern implies the definition of a mediator design class (called
mediator class), which implements the structure and behavior of the associa-
tion relationship. The class connects the decorator classes (since the domain
classes are independent from the association in which they participate). Follow-
ing the nomenclature proposed by the pattern, we rename the decorator classes
as decorator colleague classes.
Finally, we apply the Template Method pattern on the mediator and decorator
classes. Then, we define two abstract classes that implement the common
structure and behavior of associations, that is the structure and behavior of
generic associations: (1) The superclass of the mediator class (called abstract
mediator class), which declares the structure and behavior of a generic
association. This class defines template methods for link creation and destruc-
tion and includes two references to the participating objects; and (2) the
superclass of the decorator classes (called abstract colleague decorator
class), which declares the structure and behavior of a generic association end.
This class defines template methods for connecting and disconnecting links to/
from the decorator objects. It also includes references to the decorated object

Figure 1. The structure of the design classes obtained by applying the
selected patterns

2 1

Implement a specific
relationship

Implement a generic
relationship

ParticipatingClass

DecoratorColleague Mediator

AbstractDecorator
AbstractMediator

1
1

A Framework Based on Design Patterns 73

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and to the mediator objects. Figure 1 shows the obtained structure of design
classes.
The application of the Mediator and Decorator patterns allows the generation of a
software solution that is characterized by the reusability of the participating
classes and the improvement of its maintainability. This solution allows the
implementation of:

• The properties and operations of the links in the mediator class;
• The properties and operations specific to participating objects (association

ends) in the decorator classes; and
• The properties and operations inherent to the participating classes in their

corresponding design classes.

The application of the Template Method pattern allows the definition of template
methods that implement common execution strategies for all relationships.
Figure 2 shows an intuitive example of objects that were created following the
proposed framework structure. Assume a WorkFor association between the
Employer and Company classes. In the example, Joan, which is an object of the
Employer class, is associated to the IBM object of the Company class through the
JoanIBM link object. Joan and IBM objects are decorated by the decorator objects,
JoanDecorator and IBMDecorator, which reference the JoanIBM object.

Mapping Association Relationships into Design Classes

Now that the framework is introduced, we define the mappings between the
association abstraction and the framework. These mappings are the source of
the association implementation.

Figure 2. An example of associated objects through a WorkFor relationship

JoanIBM

Joan

JoanDecorator

IBM

IBMDecorator

JoanIBM

JoanDecorator IBMDecorator

Joan IBM

74 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The definition of the mappings can be divided into two sections depending on the
implementation aspect that is affected:

• The structural view: We define mappings between the conceptual
structures and the design classes (design classes, their attributes and
relationships).

• The behavioral view: We define mappings between the properties that
define the association behavior and the methods that implement the specific
behavior of the association relationships.

Although most of the mappings can be generalized for all the associations, the
final implementation is dependent on the values of the conceptual framework
properties. These properties define functional and structural constraints that:

• allow or forbid the existence of attributes or methods in a design class, or
• imply checking or other actions when the functionality that affects the

association is executed.

In the following sections, we present the mapping of conceptual structures into
design classes (the structural view of the framework), and the mapping of
properties into method implementations (the behavioral view of the framework).

The Structural View

This section presents the mappings between the elements of the association in
the conceptual model and the elements of its software representation. The
definition of the mappings makes it possible to obtain a structure of the design
classes that represents an association from its specification in the conceptual
model. To define the mappings, we specify (1) how the elements of an
association construct (participant classes, association ends, etc.) are imple-
mented and (2) how the properties of an association (multiplicity, reflexivity,
etc.) are implemented into design attributes and methods.

Mapping Association Elements to Design Classes

The proposed model for associations distinguishes three basic elements in an
association: the participating classes, the relationship, and the association
ends. In Table 3, we present how these elements are represented through design

A Framework Based on Design Patterns 75

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 3. The mapping of the components of an association to the elements
of the software solution

classes. These mappings are defined using the framework structure introduced
in section.
Figure 3 shows an example of the mappings between the elements of an
association in the conceptual model and the design classes of the implementation.

Figure 3. An example of an application of the framework to an association
relationship

 Publication Signersign

Problem Space

Publication SignerMediatorsign

1*

Solution Space

Mediator

* 1

DecoratorColleaguePublication DecoratorColleagueSigner

DecoratorColleague

* 2

11

1 1

Element Design Class Description
Participating Class Domain Class

Implements the structure and
behaviour of the associated class,
independently from the association in
which the class participates.

Association
Relationship

Mediator class This class is a mediator class of the
decorator classes.

Association End Decorator class This class decorates a participating
class and is a colleague class of the
mediator class.

76 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 5. Mapping association properties to design attributes and methods

Table 4. An implementation of the design classes using the C# language

Domain/Participating Class Description
public DomainClassName{
 ...

}

• Implements the structure and behaviour of
the associated classes independently from
the association in which the class
participates

• Is accessible only by its decorator class
(other client classes cannot access to it)

Abstract Decorator Class Description

public abstract DecoratorColleague
{
 object DecoratedObject;
 MediatorCollection
 LinkCollection;

 ...

}

• Defines a reference to the decorated
object

• Defines a reference to a link collection,
which allows the decorator objects to
access their links

Decorator Class Description

public DecoratorColleagueClassName
 : Decoratorcolleague{

 ...

}

• Declares the interface of the decorated
class

• Provides the public services of the
decorated class

Abstract Mediator Class Description
public abstract Mediator{

private DecoratorColleague source;
private DecoratorColleague target;

DecoratorColleague getSource(){
 return source;
}
DecoratorColleague getTarget(){
 return target;
}
...
}

• Defines a private reference to the
decorator objects that participate in the
link. We use the source and target names
for the references to distinguish the two
participating objects in a generic way.

• Defines a get method for each
participating object

Mediator Class Description

public MediatorAssociationName :
Mediator{
...
}

• Is accessible only by its colleague classes,
decorator classes (other client classes
cannot access to it)

A Framework Based on Design Patterns 77

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Mapping Association Properties to Design Attributes and Methods

In this section, we analyze the implication of the structural properties of the
conceptual framework into the design of attributes and methods. We also
propose a representation of this implication in the implementation.
Temporal behavior specifies whether an object of a class can be dynamically
connected or disconnected (creating or destroying a link) with one or more
objects of a related class (through an association relationship) during its life-time.
The property values are:

• Dynamic: Links can be added or destroyed to or from the objects of the
opposite end without any temporal restriction. This situation implies that
methods for providing this functionality should be added to the design class
that manages the links of the life cycle, which is the decorator class that
implements the opposite end. The methods are the insertLink and deleteLink.

• Static: Links should not be modified after the creation of the object, so
these methods are not included.

Example. Let us consider the example of a Professor class associated to a
Department class through a belongsTo relationship. In this example, the Professor
end is dynamic because a Department can hire or fire professors throughout its
existence. Nevertheless, the Department end is Static, because a Professor must
always be in the same department. In the definition of the Department decorator
class, the following methods are implemented:

public DecoratorColleagueDepartment: DecoratorColleague{
 public Mediator insertLink(...){
 ...
 }
 public void deleteLink(...){
 ...
 }

}

The implementation of the insertLink and deleteLink methods is presented in
following sections.

78 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Identification projection specifies whether a participating class projects its
identification mechanism to its associated class. The property values are:

• Projected: The design class that implements the opposite association end
(a decorator class) adds the identification attributes of its associated class
to identify its instances.

• Not projected: Nothing has to be added.

Example. Let us consider the example of a City class associated to a State class
through a belongsTo relationship. In the example, the City class projects its
identity to the State class (PI = Projected). In the definition of the State decorator
class, the following attributes are implemented:

public DecoratorColleagueCity: DecoratorColleague
{
 private char[5] codCity;

 public getCodCity(){
 return codCity;
 }
}

public DecoratorColleagueState: DecoratorColleague
{
 private char[5] codState;
 private char[50] name;

 public getCodState(){
return concat(getCodCity(), codState);

 }

}

Navigability specifies whether an object of a participating class can access its
associated objects. The property values are:

• Navigable: The design class that represents the opposite association end
(a decorator class) contains references to its links. The mediator class

A Framework Based on Design Patterns 79

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that represents the links must contain a reference to the participating object
of the end (a get method allows access to this object). Thus, the participat-
ing object of the opposite end can access its associated objects through the
link.

• Not navigable: The decorator class that represents the opposite end
contains references to its links, but these do not provide access to the
participating object of the end that is not navigable. In order to do this, the
get method of the abstract mediator class, which returns the participating
object of the not navigable end, does not have to be accessible. Overriding
this method in the mediator subclass as a private method prevents objects
of other classes from accessing it.

Example: Let us consider the example of an Employer class related to a Company
class through a WorksFor association. In this example, the Company end is Not
Navigable. Thus, in the mediator class, we have the following code (supposing
the objects of the not navigable end are represented by the target reference):

public MediatorWorksFor: Mediator{
 override private DecoratorColleague getTarget(){
 return target;
 }

}

The Behavioral View

An association between two classes requires the implementation of additional
functionality to the one provided by the participating classes. This additional
functionality is the following:

• Link creation and destruction: This allows the creation and destruction
of links between objects of the participating classes.

• Associated object creation and destruction: This allows the creation
and destruction of objects of the participating classes.

Mapping association properties to design methods. Before presenting the
implementation of the functionality, we analyze the implication of the behavioral

80 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

properties in the design methods and propose a representation of this implication
in the implementation.
Multiplicity is a constraint that must be satisfied by the association. The
condition that the constraint establishes is defined over the LinkCollection attribute,
which maintains the links of the decorator objects. The OCL condition is:

context od: DecoratorColleagueClassName inv:

Min ≤ od.LinkCollection.size() ≥ Max

Maximum multiplicity:

• If the maximum multiplicity is bounded, the system must ensure that the
constraint is satisfied before creating a link.

• If it is not bounded, no checking is necessary, since the condition is always
true.

Minimum multiplicity:

• If the minimum multiplicity is greater than zero, the system must ensure (1)
that the object is associated to the minimum number of objects when it is
created, and (2) that deleting a link does not violate the restriction.

• If it is not greater than 0, no checking is necessary, since the condition is
always true.

In summary, since the link creation and destruction and the associated object
creation update the LinkCollection attribute, the value of the attribute must be
checked during the execution of these functionalities, carrying out the necessary
actions to guarantee the fulfilment of the condition.
Reflexivity specifies whether or not a link between an object and itself is
allowed.

• Not Reflexive: The reflexivity constraint is a condition that must be
fulfilled by the system. The condition is defined over the source and target
attributes of the links (that represent the participating objects). The OCL
condition that must be satisfied is:

A Framework Based on Design Patterns 81

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

context e: MediatorAssociationName inv:

e.source <> e.target

• Reflexive: No testing needs to be done.

Since the link creation updates the source and target attributes, the value of the
attributes must be checked during the execution of this functionality, carrying out
the necessary actions to guarantee the fulfilment of the condition.
Symmetry specifies whether or not there can be a link between a and b if there
already exist a link between b and a. The property values are:

• Antysymmetric: The constraint is a condition that must be fulfilled by the
system. The OCL condition that must be satisfied is:

context e1,e2: MediatorAssociationName inv:
e1.source <> e2.target or

e2.source <> e1.target

• Symmetric: No testing needs to be done.

Since the link creation updates the source and target attributes, the value of the
attributes must be checked during the execution of this functionality, carrying out
the necessary actions to guarantee the fulfilment of the condition.
Delete Propagation specifies the actions that should be performed when an
object is destroyed. The property values are:

• Restrictive: The object can only be destroyed if it does not have any link
(if a link exists and exception is thrown).

• Link: All the links of the object must be deleted when it is destroyed.
• Cascade: Both the links of the objects and the related objects must be

destroyed.

In summary, we can conclude that the delete propagation property determines
the behavior of the associated object destruction.

82 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Implementation Strategy

The following sections describe the details of the link creation and destruction as
well as the associated object creation and destruction implementation. To clearly
present how to implement this functionality, we provide the following strategy:

1. Definition of the sequence of calls: Since the framework provides
several design classes that implement the functionality of the association
relationship, for each specific functionality we should identify the classes,
the methods and the sequence of method calls (interaction) among objects.

2. Application of the Template Method pattern: As presented above, the
properties of reflexivity, symmetry and multiplicity are conditions/constraints that
the association must fulfil every time a link is created or deleted. An
implementation that provides complete support to the semantics of the
association must check the fulfilment of these properties each time this
functionality is required. The process of checking these properties defines
a specific algorithm or execution strategy that can be implemented using the
Template Method pattern. In this way, the abstract classes of the framework
specify the steps (methods) of the execution strategy. The subclasses of
these abstract classes implement the steps (methods). The responsibility of
checking the properties is distributed among the classes of the framework
depending on which elements of the association relationship are applied:
a. Properties of the relationship: The Mediator classes are responsible

for guaranteeing the fulfilment of the reflexivity and symmetry properties,
since these classes implement the structure and behavior of the
relationships.

b. Properties of the association end: The Decorator classes are re-
sponsible for guarantying the fulfilment of the multiplicity and delete
propagation properties, since these classes implement the structure and
behavior of the association ends.

3. Definition of the implementations that depend on the value proper-
ties: The delete propagation and multiplicity properties determine the behavior
of the associated object creation and destruction. Thus, the implementation
of these functionalities depends on the value of the properties. The
framework should provide an implementation for each meaningful value of
the properties.
To clearly introduce how to implement these functionalities, each one is
documented as follows:
a. Goal: Description of the behavior provided by the functionality.

A Framework Based on Design Patterns 83

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

b. Affected properties: The properties of the conceptual frame work
that (1) should be checked to ensure that the execution of the
functionality does not violate the constraints that the properties define
or (2) determine the actions that should be performed to ensure that the
execution of the functionality fulfils the property specification.

c. Classes and methods: Identification of both the classes and the
methods of these classes that implement the functionality. The detailed
implementation of each method is presented in the collaboration
patterns implementation section.

d. Interactions: The sequence of method calls (represented by a UML
sequence diagram) that is necessary to achieve the expected function-
ality.

Link Creation Implementation

Goal: To provide functionality for creating links between objects of associated
classes. It implies the creation of the link object and the associated references
(between the link and the objects and vice versa).
Affected properties: Reflexivity, symmetry, and multiplicity.
Classes and methods: The classes and methods that implement the link
creation are the following:

• Class: DecoratorColleagueClassName

° Method: insertLink starts the creation of a link from one of the
participating objects. The method is overloaded, providing two kinds of
link insertion:
� insertLink(DecoratorColleague): connects the object to another

object that is provided by the argument
� insertLink(DecoratorColleagueAttributeList): connects the object

to another object that is created using the attribute list provided by
the argument

• Class: Mediator

° Method:Mediator(DecoratorColleague, DecoratorColleague) Constructor method.
It is a template method. Defines the strategy for creating a link. The
method creates the link object and connects it to its participating
objects. The strategy defines the steps necessary to guarantee that the
relationship properties involved in the link creation (reflexivity and
symmetry) are fulfilled.

84 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Class: DecoratorColleague:

° Method: connectLink(Mediator) It is a template method. Defines the
strategy for connecting a link to a decorator object. The method
connects the object that executes the method to the link argument. The
strategy defines the steps necessary that guarantee that the associa-
tion end properties involved in the link creation (maximum multiplicity) are
fulfilled by the system.

Interactions: The interaction sequence is the following:

1. Call to the insertLink method of a decorator object.
2. The insertLink method calls to the constructor method of the mediator class.
3. The constructor method creates the link object and calls to the connectLink

method of the participating objects.
4. The connectLink method connects a participating object to the new link.

Figure 4 shows an example of the interaction sequence that is produced when
a link creation is required to connect the Joan employer to the IBM company.

Link Destruction Implementation

Goal: To provide functionality for destroying links between objects of associated
classes. It implies the destruction of the link objects and the associated
references.

client

insertLink(DecoratorIBM)

DecoratorJoan JoanIBM:MediatorWorkFor

new MediatorWorkFor(DecoratorJoan,DecoratorIBM)

return()

return()

DecoratorIBM

connectLink(JoanIBM)

connectLink(JoanIBM)

Figure 4. The interaction sequence of a link creation

A Framework Based on Design Patterns 85

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Affected properties: Multiplicity.

Classes and methods: The classes and methods that implement the link
destruction are the following:

• Class: DecoratorColleagueClassName

° Method: deleteLink triggers the link destruction from a participating
object.

• Class: Mediator

° Method: destroyLink(String). Destructor method. It is a template method.
Defines the strategy for destroying a link object. It destroys a link
object and the connections between the link and its participating
objects. The method’s argument indicates the origin of the method call
to avoid an exception caused by the minimum multiplicity during the
destruction of a participating object.

• Class: DecoratorColleague

° Method: disconnectLink(Mediator, String). It is a template method. De-
fines the strategy for disconnecting a link from a decorator object.
The method deletes the reference between the object that executes the
method and the link object. The strategy defines the steps necessary
to guarantee that the association end properties involved in the link
destruction (minimum multiplicity) are fulfilled.

Interactions: The interaction sequence is the following:

1. Call to the deleteLink method of a decorator object.
2. The deleteLink method calls to the destroyLink method (destructor) of the

mediator class.
3. The destroyLink method calls to the disconnectLink method of the participating

objects.
4. The disconnectLink disconnects a participating object from the link.
5. The destroyLink method destroys the link object.

Figure 5 shows an example of the interaction sequence that is produced when
a delete creation is required to disconnect the IBM company from the Joan
employer.

86 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Associated Object Creation Implementation

Goal: To provide functionality for creating objects that participate in an
association (associated objects). It implies the creation of an object of a
participating class and the creation of its decorator object. The code for the
creation of objects of participating classes is implemented in the participating
classes, while the code for the creation of decorator objects is implemented in
the decorator classes. It improves reusability and code maintainability.
Affected properties: Multiplicity

Classes and methods: The classes and methods that implement the associated
object creation are the following:

• Class: DecoratorColleagueClassName:

° Method: constructor builds a decorator object. The method is over-
loaded, providing two kinds of object creation:
� When the minimum multiplicity is 0: DecoratorColleagueClassName

(AttributeList) creates the decorator object.
� When the minimum multiplicity is greater than 0: Decorator

ColleagueClassName(AttributeList, DecoratorColleagueClass NameCollection)

creates the decorator object and associates it to the objects of the
collection provided by the second argument.

• Class: DomainClassName:

° Method: constructor builds an object of a participating class.

Interactions: The interaction sequence is the following:

client

deleteLink(DecoratorIBM)

DecoratorJoan JoanIBM

destroy()

return()

return()

DecoratorIBM

disconnectLink (JoanIBM)

disconnectLink(JoanIBM)

Figure 5. The interaction sequence of a link destruction

A Framework Based on Design Patterns 87

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• When the minimum multiplicity is 0:
1. Call to the constructor method of the decorator class.
2. The constructor method of the decorator class calls to the

constructor method of its decorated class.

Figure 6 shows an example of the interaction sequence that is produced when
an employer is created (without any connection).

• When the minimum multiplicity is greater than 0:
1. Call to the constructor method of the decorator class.
2. The constructor method of the decorator class calls to the constructor

method of its decorated class.
3. The constructor method of the decorator class calls to the constructor of

the mediator class.

Figure 7 shows an example of the interaction sequence that is produced when
an employer is created with an associated company (IBM).

Associated Object Destruction Implementation

Goal: To provide functionality for destroying objects that participate in a
relationship. It implies the destruction of an object of a participating class and the
destruction of its decorator object. In spite of the garbage collector provided by
some languages, appropriate actions must be performed in order to guarantee the

client

new DecoratorEmployer('Joan','Smith',35,...)

DecoratorJoan

new Employer('Joan','Smith',35,...)

Joan

return()

return()

Figure 6. The interaction sequence of an associated object creation when
the minimum multiplicity is 0

88 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

suitable destruction of associated objects. The code for the destruction of objects
of the participating classes is implemented in the participating classes, while the
code for the destruction of decorator objects is implemented in the decorator
classes. It improves reusability and code maintainability.
Affected properties: Delete propagation

Classes and methods: The classes and methods that implement the associated
object creation are the following:

• Class: DecoratorColleagueClassName:

° Method: destroy destroys a decorator object.
• Class: DomainClassName:

° Method: destroy destroys an object of a participating class.

Interactions: The interaction sequence is the following:

• When the delete propagation is link:
1. Call to the destructor method of the decorator object.
2. The destructor method of the decorator object calls to the deleteLink

method of its links.
3. The destructor method of the decorator object calls to the destructor

method of its decorated object.

Figure 7. The interaction sequence of an associated object creation when
the minimum multiplicity is > 0

client

new DecoratorColleagueEmployer('Joan','Smith',32,..., DecoratorIBM)

DecoratorJoan

new Employer('Joan','Smith',32,...)

Joan

return()

return()

MediatorWorkfor

new MediatorWorkFor(DecoratorJoan, DecoratorIBM)

return()

A Framework Based on Design Patterns 89

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• When the delete propagation is restrictive:
1. Call to the destructor method of the decorator object.
2. The destructor method of the decorator object throws an exception if

the decorator object has any link; Otherwise it callsto the destructor
method of its decorated object.

• When the delete propagation is cascade:
1. Call to the destructor method of the decorator object.
2. The destructor method of the decorator object calls to the destructor

method of its associated objects.
3. The destructor method of the decorator object calls to the destructor

method of its decorated object.

Figure 8, 9, and 10 show examples of interaction sequences that are produced
when an employer is destroyed with the values for delete propagation: link,
restrictive and cascade.
To illustrate how the operations of employers and companies are accessed, let
us consider the example of Figure 11. Consider the employee class is the source
and the company class the target.
Other classes of the system (clients) access the public operations of the Company
and Employee classes through their decorator classes. For example, given a
DecoratorIBM object of the DecoratorCompany class, and a DecoratorJoan object of the
DecoratorEmployee class, these objects allow the accessing to the public operations
of the Company and Employee class respectively:

DecoratorIBM.getName()

DecoratorJoan.sellUnit().

As the association ends are navigable, it is possible to access the public
operations of the Company class through a decorator employee; and to the public
operations of the Employee class through a decorator company. In this case, it
is necessary to use the attribute LinkCollection of the decorator objects, indicating
with a variable which link is referred:

DecoratorIBM.LinkCollection[i].source.updateSalary()

DecoratorJoan.Link Collection[i].target.getNumberEmployers()

90 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

client

destroy()

DecoratorIBM

return()

return()

IBM

destroy()

Figure 9. The interaction sequence of an associated object destruction
when delete propagation is restrictive

client

destroy()

DecoratorJoan

return()

return()

Joan

deleteLink(DecoratorIBM)
destroy()

Figure 8. The interaction sequence of an associated object destruction
when delete propagation is link

client

destroy()

DecoratorMathsDepartment

return()

return()

MathsDepartament

deleteLink(DecoratorDrSmith)

destroy()

DecoratorDrSmith

destroy()

return()

Figure 10. The interaction sequence of an associated object destruction
when delete propagation is cascade

A Framework Based on Design Patterns 91

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Validation of the Proposal

To validate the framework proposal, we have implemented the patterns pre-
sented by the Nicola et al. study (Bolloju, 2004). This work identifies 12 primary
analysis patterns that are mainly present in business applications. These patterns
are the collaboration patterns (CP). The CP are constituted of two classes that
are related by an association, an aggregation, or a composition relationship. They
present different values in the properties of the relationship. The definition of
these patterns is based on the experience in consulting and development work for
business applications. The CP represent a set of irreducible patterns (which have
been identified in most business object models). All other patterns can be derived
from them. We have used these CP since they are useful for validating the
completeness of our framework proposal. If our framework can implement all
these patterns, it can be considered valid for implementing any relevant associa-
tion relationship.
In this section, we present the implementation of only one of the twelve CP due to
the space constraints. Since our intention is to implement a collaboration pattern
using the proposed framework, we must first model the collaboration pattern
adapting it to our own model. Then, we can implement the modeled association by
instantiating the framework with the property values of the relationship.
The selected collaboration pattern models an association (there are also some
CP that model aggregations). We present an example for the pattern by
determining the value of the properties of the conceptual framework. Then, we
present a detailed implementation of the framework using the C# language. This
example completes the implementation proposed in the previous section. It
shows the implementation of all the methods introduced by the framework.
Following the nomenclature of Bolloju (2004), the pattern that we use is the T1
Pattern: Item - SpecificItem. We instantiate the framework with the following
example: a Video class is related to a VideoTape class through a hasCopies
relationship. The property values are presented in Table 3.

Figure 11. Example of operations in classes Employee and Company

+updateSalary()
+sellUnit ()
-beHired()

Employee

+getName()
+getNumberEmployers()
+hire()

Company

0..1

+employedIn

1..*

worksFor

92 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 Mediator

MediatorhasCopies

DecoratorColleague

DecoratorColleagueVideo DecoratorColleagueVideoTape

Video VideoTape

1

1

1

1

* 1
* 1

* 2

Figure 12. The design classes obtained by applying the framework on the
pattern example

Figure 12 shows the design classes of the software representation.
Figure 13 and 14 show the implementation of the abstract decorator class and
the abstract mediator class. The code presented is generic for the all the
associations.
Figures 15 and 16 show the implementation of the participating classes, Video
and VideoTape. The implementation is completely independent from the associa-
tions hasCopies in which they participate.
The implementation of the DecoratorColleagueVideo class is characterized by the
value of the properties Multiplicity, Temporal Behavior, Identity Projection and Delete
Propagation. Figure 17 shows the basic structure of the class. No attributes are

Property Video VideoTape
Temporal Behaviour Static Dynamic
Multiplicity (1,1) (0,*)
Delete Propagation Link Cascade
Navigability Not Navigable Navigable
Identity Projection Not Projected Projected
Reflexivity -
Symmetry -

Table 3. The property values for the pattern example

A Framework Based on Design Patterns 93

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 13. The implementation of the abstract decorator class

Figure 14. The implementation of the abstract mediator class

public abstract DecoratorColleague{
object DecoratedObject;
MediatorCollection LinkCollection;

public void connectLink(Mediator objLink) {
 checkMaximumMultiplicity();
 addLink(objLink);
}
public void disconnectLink(Mediator objLink, String org){
 checkMinimumMultiplicity(org);
 eliminateLink(objLink);
}

}

public abstract Mediator{
 private DecoratorColleague source;

private DecoratorColleague target;

protected Mediator(DecoratorColleague objectSource,

DecoratorColleague objectTarget)
{

 checkReflexivity(objectSource, objectTarget);
 checkSymmetry(objectSource, objectTarget);
 checkIdentity(objectSource, objectTarget);
 objectSource.connectLink(this);
 objectTarget.connectLink(this);
 source = objectSource;
 target = objectTarget;
 }

 DecoratorColleague getObject1(){

 return source;
 }

 DecoratorColleague getObject2(){

 return target;
 }

 public void destroyLink(String origin)
 {

 source.disconnectLink(this, origin);
 target.disconnectLink(this, origin);

 }
 }

94 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 17. The structure of the DecoratorColleagueVideo class

Figure 16. The implementation of the VideoTape class

added to the decorator class since the Identity Projection is Not Projected in the
Video end.
Figure 18 shows the implementation of the constructor method in the
DecoratorColleagueVideo class. The implementation of the constructor in the

Figure 15. The implementation of the Video class

public Video {
 String title;
 int year;
 String summary;
 int time;
 ...
 //Video attributes
 public Video(String nTitle, int nYear, String nSum, int nTime){
 title = nTitle;
 year= nYear;
 summary = nSum;
 time = nTime;
 }
 ...
 //Video methods
}

public VideoTape{
 String code;
 int year;
 ...
 //VideoTape attributes
 public VideoTape(String nCode, int nYear){
 code = nCode;
 year= nYear;
 }
 ...
 //VideoTape methods
}

public DecoratorColleagueVideo : DecoratorColleague{
 ...
}

A Framework Based on Design Patterns 95

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 18. The implementation of the constructor method of the
DecoratorColleagueVideo class

decorator classes depends on the value of the Minimum Multiplicity. In the VideoTape
end, the Minimum Multiplicity is 0, so the constructor only creates the decorated object.
Figure 19 shows the implementation of the get methods in the DecoratorColleagueVideo
class. There is a get method for each attribute of the decorated domain class.

Figure 19. The implementation of the get methods of the DecoratorColleagueVideo
class

Figure 20. The implementation of the insertLink and deleteLink methods

public DecoratorColleagueVideo(AttributeList Al){
 DecoratedObject = new Video(Al.title, Al.year,
 Al.summary, Al.time);

 }

public String getTitle(){
 return DecoratedObject.title;
}
public int getYear(){
 return DecoratedObject.year;
}
public int getSummary(){
 return DecoratedObject.summary;
}
public String getTime(){
 return DecoratedObject.time;
}

public Mediator insertLink (DecoratorColleagueAttributeList DCaL){
 DecoratorColleagueVideoTape DCvT = new

 DecoratorColleagueVideoTape(this, DCaL);
int index = DCvT.findDecoratorColleague(this);
return DCvT.linkCollection.item(index);

}

public void deleteLink(DecoratorCollegue DC){
 int index = findDecoratorColleague(DC);
 LinkCollection.Item(index).destroyLink(DEL)
}

96 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The VideoTape end is Dynamic; this means that the decorator class of the
opposite end, DecoratorColleagueVideo, must implement the insertLink and deleteLink
methods. Figure 20 shows the implementation of these methods.
Figure 21 shows the implementation of the steps of the template methods of the
abstract decorator class. The value of the Maximum Multiplicity in the VideoTape end

Figure 22. The implementation of the destroy method in the
DecoratorColleagueVideo class

Figure 23. The structure of the of the VideoTape class

Figure 21. The implementation of the template methods in the
DecoratorColleagueVideo class

public void checkMaximumMultiplicity(){
 //No testing
}
public void checkMinimumMultiplicity(){
 //No testing
}

public void addLink(Mediator objLink){
 LinkCollection.Add(objLink);
}
public void deleteLink(Mediator objLink){
 int index = findMediator(objLink);
 LinkCollection.Remove(index);
}

public void destroy(){
 for (int i=LinkCollection.Count; i>0; i--){
 LinkCollection.item(i).getTarget().destroy();

}
 DecoratedObject.destroy();
}

public DecoratorColleagueVideoTape : DecoratorColleague{

 String title;
 int year;
 ...

}

A Framework Based on Design Patterns 97

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is not bounded and the value of the Minimum Multiplicity is 0; therefore, no constrains
have to be fulfilled.
Figure 22 shows the implementation of the destroy method in the
DecoratorColleagueVideo class. The implementation is determined by the value of
the Delete Propagation property; In the VideoTape end the value is cascade.
The implementation of the DecoratorColleagueVideoTape class is characterized by
the value of the properties Multiplicity, Temporal Behavior, Identity Projection and Delete
Propagation. Figure 23 shows the basic structure of the class. Since the Identity
Projection is Projected in the VideoTape end, its decorator class adds the
identification attributes of the Video class (title and year).
Figure 24 shows the implementation of the constructor method in the
DecoratorColleagueVideoTape class. Since the Minimum Multiplicity is 1 in the Video end,
the method must create the decorated object and connect the new object to the
collection of objects of the second argument.
Figure 25 shows the get methods implemented in the DecoratorColleague VideoTape.
The insertLink and deleteLink methods are not implemented in the
DecoratorColleagueVideoTape since the Video end is static.
Figure 26 shows the implementation of the methods that implement the steps of
the template methods of the abstract decorator class. The value of the Maximum

Figure 24. The implementation of the constructor in the Decorator ColleagueVideo
Tape class

Figure 25. The implementation of the get methods in the Decorator
ColleagueVideoTape class

 public DecoratorColleagueVideoTape(AttributeList Al,
 DecoratorColleagueVideoCollection DCvC){

 DecoratedObject = new VideoTape(Al.code, Al.year);
 for (int i=0; i<DCvC.Count; i++)

 new MediatorhasCopies (DCvC.item(i), this);
 }

 public String getCode(){
return DecoratedObject.code;

}
public int getYear(){

return DecoratedObject.year;
}

98 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 27. The implementation of the destroy method of the
DecoratorColleagueVideoTape class

Figure 28. The structure of the MediatorhasCopies class

Figure 26. The implementation of the steps methods in the
DecoratorColleagueVideoTape class

public void checkMaximumMultiplicity(){
if ((LinkCollection.Count) == 1)

 throws new Exception(“Max Multiplicity Violation”);
}
public void addLink(Mediator objLink){

LinkCollection.add(objLink);
}
public void deleteLink(DecoratorCollegue DC){

int index = findDecoratorColleague(DC);
LinkCollection.item(index).destroyLink(DEL)

}
public void checkMinimumMultiplicity(){

if ((LinkCollection.Count) == 1)
 throws new Exception(“Max Multiplicity Violation”);
}
public void eliminateLink(Mediator objLink){

int index = findMediator(objLink);
LinkCollection.remove(index);

}

public void destroy(){
for (int i=LinkCollection.Count; i>0; i--){
 LinkCollection.item(i).destroy();
}
DecoratedObject.destroy();

}

public MediatorhasCopies: Mediator{
 ...
}

A Framework Based on Design Patterns 99

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and Minimum Multiplicity in the Video end is 1; therefore, the methods verify that the
association fulfils the conditions.
Figure 27 shows the implementation of the destroy method in the
DecoratorColleagueVideoTape class. The implementation is determined by the value
of the Delete Propagation property. In the Video end, the value is link.
The implementation of the MediatorhasCopies class is characterized by the value of
the properties Navigability, Reflexivity and Symmetry. Figure 28 shows the basic
structure of the class.

Figure 29. The steps methods of the MediatorhasCopies class

Figure 30. The overriding of the getTarget method in the MediatorhasCopies
subclass

public void checkReflexivity(DecoratorColleague objectSource,
 DecoratorColleague objectTarget){

}
public void checkSymmetry(DecoratorColleague objectSource,

 DecoratorColleague objectTarget){
}
public void checkUnicity(DecoratorColleague objectSource,

DecoratorColleague objectTarget){
 for (int i=0; i<objectSource.LinkCollection.Count;i++){
 MediatorhasCopies mhC =
 (MediatorhasCopies)objectSource.LinkCollection.item(i);

 DecoratorColleagueVideoTape DCvT =
 (DecoratorColleagueVideoTape)mhC.target;

 DecoratorColleagueVideoTape DCvT2 =
 (DecoratorColleagueVideoTape).objectTarget;

 if (DCvT.gsOid==(DCvT2.gsOid))
 throw new Exception(“Existent Link”);
 }
}

override private DecoratorColleague getTarget(){
 return target;
}

100 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 29 shows the implementation of the steps of the Template Methods of the
abstract mediator class. The Reflexivity and Symmetry properties are not meaning-
ful in this relationship; therefore, no testing is needed.
As the Navigability property is Not Navigable in the VideoTape end, the getTarget
method must be overridden in order to avoid the access of objects of the opposite
end to objects of the VideoTape class, as shown in Figure 30.
In this example, the framework has been instantiated by a collaboration pattern.
Thus, an implementation for this pattern has been obtained. This implementation
fulfils the identified quality factors and fulfils the specified requirements of the
collaboration pattern. Then, the goals of the implementation proposal have been
achieved.

Future Work

The proposed conceptual framework can be improved by capturing additional
properties of the association relationship in the application domain (such as the
mutability or transitivity properties). It could improve the expressiveness of the
framework. Moreover, as this framework has allowed providing an interpreta-
tion for the association concept, it is possible to develop a wizard that helps the
analyst in the specification of the association relationship during the modeling
task. The wizard collects information through questions, which allows it to
determine the kind of relationship (association, aggregation or composition) that
is being modeled. These questions determine the value of the association
properties. This future work is oriented to provide support to a methodology for
the complete modeling of association relationships. Currently, it is necessary to
propose methodological guides that help the analysts in the modeling task.
Regarding the implementation framework, an interesting work is the search for
other design patterns to be used in the construction of the implementation
framework. It could improve the quality of the generated software product.
Patterns constitute a tool that has been recently taken into account in the
Software Factories and MDA approaches. They provide a perfect mechanism
to support the construction of transformation engines and they contribute in the
production of high quality software in an automated way. Research in the area
of model driven code generation that is based on design patterns and software
frameworks can be considered a hot topic in which this work is positioned.
Following the MDA approach, this framework can also be applied in automatic
code generators. We are currently specifying a graph grammar that implements
the proposed mapping automatically (Muñoz, Ruiz, Albert, & Pelechano, 2004).
This grammar transforms models that are built using our conceptual framework

A Framework Based on Design Patterns 101

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

into models that extend and instantiate the design classes of the implementation
framework. The investigation of techniques for the implementation of transfor-
mations between models is an actual trend in the MDA approach, where it is a
great activity.
The proposal can be extended to n-ary associations. Currently, binary associa-
tions are the most typical ones. Moreover, modelers usually transform n-ary
associations into binary associations. The extension to n-ary association does not
require too much effort. One of these modifications is regarding graphical
notation for the properties of the conceptual framework.

Conclusion

This work presents a framework for the implementation of association, aggre-
gation, and composition relationships. We have presented a specific interpreta-
tion of the association, aggregation, and composition concepts introduced by
UML. For the definition of these concepts, we have built a conceptual frame-
work that is based on a study of the different approaches that deal with
association constructs in conceptual modeling. The conceptual framework
identifies the essential properties of associations and provides precise interpre-
tations for the association, aggregation, and composition abstractions.
The selection of the properties is based on a set of quality characteristics that are
identified for evaluating the association properties. These characteristics allow
us to select those properties of the association that help us to define an
appropriate conceptual framework for the characterization of the associations.
The interpretation provided for the association concepts (association, aggrega-
tion and composition) is based on most well-accepted notions that are present in
different methodological approaches.
Once the semantics of these abstractions has been defined, we have proposed
a framework that allows obtaining the implementation of an association. This
framework determines the mappings between the specification of a relationship
in the conceptual model and the software elements of its implementation. The
framework is based on the use of design patterns for implementing these
abstractions. We have selected three patterns that can be applied in the
implementation of associations. The selected patterns provide an operational
solution to the implementation of the association relationships and its properties.
As we have commented in the chapter, those design patterns provide a
framework with loose coupling, separation of concerns, and reusability. The
application of design patterns during the software development provides inter-
esting advantages since it allows the structuring of the code generation process

102 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and provides reusable and tested solutions that are abstract enough to be used
in any programming language.
We have developed an example of a collaboration pattern to illustrate the
instantiation of the framework. We have also implemented a set of automatic test
cases using the csUnit testing tool to verify that the framework implementation
gives support to the functionality that is required by the collaboration patterns.
For reasons of brevity these test cases were not included.
The proposal presented has been extended for classes with n relationships. In
this case the framework structure is the same, but some implementation details
have been updated (for example some object attributes become to object
collections). This chapter includes a reduced version of the proposal, since the
main goal of the chapter is introducing the framework and the process for
building it. The proposal of this chapter is being applied in an industrial CASE tool,
OLIVA NOVA model execution.
The framework is centered in the business tier; the complete managing of the
associations is made in this tier. We do not deal with the presentation and
persistent tiers, where a basic management for associations should be proposed
in order to provide a complete support for an application design.

Acknowledgment

This work has been developed with the support of MEC under the project
DESTINO with reference TIN2004-03534 and co-financed by FEDER.

References

Bolloju, N. (2004, July). Improving the quality of business object models using
collaboration patterns. Communications of the ACM, 47(7), 81-86.

Civello, F. (1993). Roles for composite objects in object-oriented analysis and
design. In Proceedings of The Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA’93), Wash-
ington, DC (pp. 376-393). ACM Press.

Cook, S., & Daniels, J. (1994). Designing objects systems. Object-oriented
modeling with syntropy. Upper Saddle River, NJ: Prentice Hall.

A Framework Based on Design Patterns 103

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Dahchour, M. (2001). Integrating generic relationships into object models
using metaclasses. PhD thesis, Université Catholique de Louvain, Bel-
gium, Department of Computing Science and Engineering.

D’Souza, D. F., & Wills, A. C. (1998). Objects, components and frameworks
with UML. Boston: Addison-Wesley.

Díaz, O., & Paton, N. W. (1994). Extending ODBMSs using metaclasses. IEEE
Software, 11(3), 40–47.

Firesmith, D. G., Henderson-Sellers, B., & Graham, I. (1997). OPEN modeling
language (OML) reference manual. New York: SIGS Books.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns:
Elements of reusable object-oriented software. Boston: Addison-Wesley.

Genova, G. (2001). Entrelazamiento de los aspectos estático y dinámico en
las asociaciones UML. PhD thesis, Department of Informática, Universidad
Carlos III de Madrid, Spain.

Genova, G., Llorens, J., & Palacios, V. (2002). Sending messages in UML.
Journal of Object Technology, 2(1), 99-115.

Graham, I., Bischof, J., & Henderson-Sellers, B. (1997). Associations consid-
ered a bad thing. Journal of Object-oriented Programming, 9(9), 41-48.

Greenfield, J., Short, K., Cook, S., & Kent, S. (2004). Software factories.
Indianapolis, IN: Wiley Publishing.

Guéhéneuc, Y., & Albin-Amiot, H. (2004). Recovering binary class relation-
ships: Putting icing on the UML cake. In Proceedings of The Conference
on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’04), Vancouver, B.C., Canada (pp. 301-314).

Henderson-Sellers, B., & Barbier, F. (1999a). What is this thing called aggre-
gation? In A. C. Wills, J. Bosch, R. Mitchell, & B. Meyer (Eds.),
Proceedings of the Conference on Technology of Object-Oriented
Languages and Systems (TOOLS 29), Nancy, France (pp. 216-230).
IEEE Computer Society.

Henderson-Sellers, B., & Barbier, F. (1999b). Black and white diamonds. In R.
France & B. Rumpe (Eds.), Proceedings of UML’99. The Unified
Modeling Language Beyond the Standard (pp. 550-565). Fort Collins,
CO: Springer-Verlag.

Klas, W., & Schrefl, M. (1995). Metaclasses and their application: Data
model tailoring and database integration. New York: Springer-Verlag.

Kolp, M., & Pirotte, A. (1997). An aggregation model and its C++ implementa-
tion. In M. E. Orlowska & R. Zicari (Eds.), Proceedings of The Interna-

104 Albert, Ruiz, Muñoz, & Pelechano

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tional Conference on Object-Oriented Information Systems (OOIS’97),
Brisbane, Australia (pp. 211–224).

Muñoz, J., Ruiz, M., Albert, M., & Pelechano, V. (2004). MDA aplicado: Una
gramática de grafos para la transformación de relaciones de asociación. In
Proceedings of the IX Jornadas en Ingeniería Software y Bases de
datos (JISBD’04), Malaga, Spain (pp. 539-546).

Object Management Group. (2002). OMG MOF 2.0 query, views, transforma-
tions request for proposals. Retrieved from http://www.omg.org

Object Management Group. (2003). Unified Modeling Language, Version
1.5.

Odell, J. J. (1994). Six different kinds of composition. Journal of Object-
Oriented Programming, 5(8), 10-15.

Olivé, A. (2001). Modelitzacio conceptual de sistemes de informacio.
L’estructura. Barcelona, Spain: Edicions UPC.

Opdahl, A. L., Henderson-Sellers, B., & Barbier, F. (2001). Ontological analysis
of whole-part relationships in OO-models. Information and Software
Technology, 43, 387-399.

Pirotte, A., Zimanyi, E., & Dahchour, M. (1998). Generic relationships in
information modeling (Tech. Rep. No. YEROSS TR-98/09). Universite
Catholique de Louvain, Belgium.

Rumbaugh, J. (1987). Relations as semantic constructs in an object-oriented
language. In Meyrowitz. (Ed.), ACM SIGPLAN Notices, 12(22), 466-481.

Saksena, M., France, R. B., & Larrondo-Petrie, M. M. (1998). A characteriza-
tion of aggregation. In C. Rolland & G. Grosz (Eds.), Proceedings of 5th

International Conference on Object-Oriented Information Systems
(OOIS’98), Paris, France (pp. 11-19). Springer.

Snoeck, M., & Dedene, G. (2001). Core modeling concepts to define agreggation.
L’objet, 7(3), 281-306.

Wand, Y., Storey, V. C., & Weber, R. (1999). An ontological analysis of the
relationship construct in conceptual modeling. ACM Transactions on
Database Systems, 24(4), 494-528.

Winston, M., Chan, R., & Herrmann, D. (1987). A taxonomy of part-whole
relations. Cognitive Science, 11, 417-444.

Design Patterns as Laws of Quality 105

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

Design Patterns as
Laws of Quality

Yann-Gaël Guéhéneuc, University of Montreal, Canada

Jean-Yves Guyomarc’h, University of Montreal, Canada

Khashayar Khosravi, University of Montreal, Canada

Hourari Sahraoui, Unviersity of Montreal, Canada

Abstract

Software quality models link internal attributes of programs with external
quality characteristics. They help in understanding relationships among
internal attributes and between internal attributes and quality characteristics.
Object-oriented software quality models usually use metrics on classes
(such as number of methods) or on relationships between classes (for
example coupling) to measure internal attributes of programs. However,
the quality of object-oriented programs does not depend on classes solely:
it depends on the organisation of classes also. We propose an approach to
build quality models using patterns to consider program architectures. We
justify the use of patterns to build quality models, describe the advantages

106 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and limitations of such an approach, and introduce a first case study in
building and in applying a quality model using design patterns on the
JHotDraw, JUnit, and Lexi programs. We conclude on the advantages of
using patterns to build software quality models and on the difficulty of
doing so.

Introduction

This chapter is a complete coverage of our current work on software quality
models and on design pattern identification. In this chapter, we explore the idea
of facts in science in relation with software quality models. We show how design
patterns can be used as facts to devise a quality model and we describe the
processes of building and of applying such a quality model.
In science, facts are the subject of observations by the scientists, who hypoth-
esize laws to formalize recurring observations and theories to frame and to
explain the laws. To the best of the authors’ knowledge, many facts have been
recorded and published but only few laws and theories have been developed
(Endres & Rombach, 2003). This lack of laws and theories impedes the
successful development of software and reduces our trust in software and in
software science.
The lack of laws and theories is particularly visible in software quality. There do
not yet exist general software quality models that could be applied to any
software. It is indeed difficult to build quality models without concrete laws on
software and software quality. Thus, existing quality models attempt to link
internal attributes of classes and external quality characteristics with little regard
for actual facts on software quality and without taking into account some
dimensions of the evaluated software, such as its architecture.
In the following, we use design patterns (Gamma, Helm, Johnson, & Vlissides,
1994) as general laws to build a software quality model. We choose design
patterns because they are now well-known constructs and have been studied
extensively. Design patterns provide “good” solutions to recurring design
problems. They define a problem in the form of an intent and motivations and
provide a solution in the form of a design motif, a prototypical micro-architecture
that developers use in their design to solve the problem. Design patterns are said
to promote software elegancy through flexibility, reusability, and understandabil-
ity (Gamma et al., 1994).
We assume that the design motifs provided by design patterns show flexibility,
reusability, and understandability. Also, we assume that we can use design
motifs as laws on software quality, as their authors intended, if not explicitly:

Design Patterns as Laws of Quality 107

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

whenever developers use design motifs, they want to promote flexibility,
reusability, and understandability in their design. Thus, whenever we find a
micro-architecture similar to a design motif in a program architecture, we
assume that this micro-architecture promotes (or was an attempt to promote)
flexibility, reusability, and understandability.
We make the following parallels: a micro-architecture from a program architec-
ture is a fact. That a micro-architecture displays flexibility, reusability, and
understandability is an observation. A design motif defines some laws on the
quality characteristics of the observed micro-architecture: it formalizes recur-
ring micro-architectures that display flexibility, reusability, and understandabil-
ity. We use these laws to assess the quality characteristics of software, that is,
we use design motifs to build a software quality model to assess the quality of
micro-architectures, identified in a program architecture.

Definition of the Problem

We want to build a quality model that considers quality characteristics covering
software elegancy. Software elegancy is highly important during software
maintenance to reduce the effort (time and cost) of maintainers. We need to
choose external quality characteristics related to software elegancy and to find
software metrics to fill the space between characteristics and software artifacts.
We use design motifs as a basis to choose quality characteristics.
Existing quality models attempt to link internal attributes of classes and external
quality characteristics with little regard for the actual architectures of the
programs. Thus, these quality models can hardly distinguish between well-
structured programs and programs with poor architectures. We use design
motifs to assess programs’ quality characteristics using both programs’ internal
attributes and their architectures as a mean to capture the quality of program
architectures in a quality model.

Figure 1. A woman’s profile: Cubist (left) and realist versions (right)

108 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If we were in art rather than in informatics, we would say that identical quality
models are used to compare a cubist painting, such as “Femme Profile” by Pablo
Picasso (1939), with a realist picture, as shown in Figure 1. The two faces
possess two eyes, one nose, two ears, and one mouth but with very different
organizations, none being more beautiful, only more beautiful according to
different laws.

Underlying Assumptions

In building a quality model using design motifs we make the following underlying
assumptions.
Human factor. Some existing quality models can predict fault-proneness with
reasonable accuracy in certain contexts. Other quality models attempt at
evaluating several quality characteristics but fail at providing reasonable accu-
racy, from lack of data mainly.
We believe that quality models must evaluate high-level quality characteristics
with great accuracy in terms well-known to maintainers to help these in
assessing programs and thus in predicting maintenance effort.
 Such quality models can also help developers in building better quality programs
by exposing the relationships between internal attributes and external quality
characteristics clearly.
We take a less “quantitative” approach than quality models counting, for
example, numbers of errors per classes and linking these numbers with internal
attributes. We favor a more “qualitative” approach linking quality characteristics
related to the maintainers’ perceptions and work directly.
Quality theory. Unfortunately, software engineering is known for its lack of
laws and theories. Software engineers do not have theories to support their work
on development, maintenance, and to explain quality yet.
Thus, it is important to gather as many facts and laws as possible. Design motifs
are an interesting bridge between internal attributes of programs, external quality
characteristics, and software engineers. We use motifs as laws to link internal
attributes (concrete implementation of programs) on the one hand and subjective
quality characteristics (subjective perceptions on programs) on the other hand.
Program architecture. Pair wise dependencies among classes and internal
attributes of classes are not enough to evaluate the quality of a program: the
organisations of classes, the program architectures, are important because they
are the first things software engineers see and deal with.
A large body of work exists on program architecture, in particular on architec-
tural drift or decay (Tran, Godfrey, Lee & Holt, 2000), which aims at analyzing,

Design Patterns as Laws of Quality 109

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

organizing, and tracking the modifications that architectures must undergo to
keep them easy to understand and to modify, and thus to reduce maintenance
effort (Kerievsky, 2004).
However, to the best of our knowledge, no work attempted to develop quality
models using programs internal attributes while considering their architectures
explicitly. We try to build such a quality model using design motifs as laws of
architectural quality.

Process of Building a Quality Model

The general process of building a quality model decomposes in three main tasks:

• Choosing and organizing quality characteristics.
• Choosing internal attributes that are computable with metrics.
• Linking quality characteristics with internal attributes to produce evaluation

rules.

The process of building a quality model decomposes in the following tasks when
using design motifs to consider program architectures:

1. Identifying the quality characteristics shared by a set of design
motifs, which make programs more maintainable: This task consists
in identifying quality characteristics and subcharacteristics related to some
motifs of interest. Among all possible characteristics, we focus on charac-
teristics for program maintenance.

2. Organizing the quality characteristics identified for the design
motifs: This task consists in organising quality characteristics and
subcharacteristics hierarchically (Fenton & Pfleeger, 1997) to build a
quality model, which can be linked with software artifacts using metrics.

3. Choosing internal attributes relevant to design motifs and their
quality characteristics: This task consists of choosing internal attributes
which can be measured with metrics. The internal attributes must relate to
the quality model from Task 2, to link software artefacts with quality
characteristics.

4. Identifying programs implementing the design motifs: This task
consists in identifying a set of programs in which developers used the design
motifs of interest. We name this set of base programs BP.

110 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5. Assessing the quality of design motifs using the quality model built
in task 2: This task consists in assessing the quality of design motifs in the
set of base programs BP manually, with the characteristics and subcharac-
teristics of the quality model.

6. Computing the metrics identified in task 3 on the design motifs in
the base programs identified in task 4: This task consists in computing
metric values for the design motifs of interest identified in BP. If class-
based metrics are used, then we can compute the metric values of the
design motifs as the average or as the variance of the class-based metric
values.

7. Linking the metric values computed in task 6 and the evaluation
of the quality subcharacteristics and characteristics performed in
task 5: This task consists in applying a machine learning technique to link
internal attributes of programs measured with metric values computed in
task 6 and the evaluation of the quality subcharacteristics and character-
istics from task 5.

8. Validating the obtained quality model on other well-known uses of
design motifs: This task consists in applying the evaluation rules from task
7 on other well-known programs to assess the evaluative power of the
quality model. Using design motifs, we must apply our quality model on
design motifs with known quality characteristics.

The result of the eight previous tasks is a quality model that can evaluate the
quality characteristics of programs while considering the program architectures
through the assessment of the quality of design motifs. The quality model
decomposes in several rules for each quality subcharacteristics and character-
istics. These rules depend on different metrics to assess quality.

Figure 2. Simplified process of building a quality model considering
program architectures through design motifs

Programs Patterns Sub-characteristicsFind Find� �

�

�

�

�

Metric
values

Characteristics

Evaluate
Compute

Evaluate

Link with
machine
learning

techniques

�1 2
3

4

5

Design Patterns as Laws of Quality 111

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2 displays a simplified version of our process. First, we identify programs
implementing design motifs. Second, we identify in these programs the design
motifs used. Third, we evaluate the quality subcharacteristics and characteris-
tics of the design motifs manually. Fourth, we compute metrics for each
identified design motifs (by averaging class-based metrics, for example). Fifth,
we use machine learning techniques to link metric values with the quality
subcharacteristics and characteristics of design motifs.

Process of Applying a Quality Model

Once we built a quality model using design motifs to consider the quality of
program architectures in addition to internal attributes of classes or couple
thereof, applying such a quality model requires to consider micro-architectures
in a program architecture and to apply the quality model on these micro-
architectures to assess their quality.
Again, if we were in art, we could say that existing quality models assess the
quality characteristics of paintings by looking at many tiny parts of the painting
(for example, classes in program architectures) rather than by looking at larger
pieces of the painting (micro-architectures in program architectures), such as
sketched in Figure 3.
Thus, applying our quality model requires the four following tasks:

1. Identifying micro-architectures similar to design motifs in the
architecture of the program P under evaluation: There are many
techniques existing to identify design motifs in programs, for examples logic
programming (Wuyts, 1998) or constraint programming (Guéhéneuc,
Sahraoui, & Zaidi, 2004). In the following, we present our technique using
explanation-based constraint programming.

Figure 3. Level of details considered in existing software quality model
(left) vs. in quality models based on design motifs (right)

112 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. Measuring the internal attributes of each class of the micro-archi-
tectures with metrics and averaging class-based metric values, if
needed: This task is straightforward, many tools existing to compute
metrics from programs.

3. Adapting the rules built from BP to P by computing the ratio
between the metric values from BP and the metric values from P:
This task consists of adapting the rules associated with the quality model
built from BP. Indeed, the rules are built from metric values with a certain
minimum and maximum value depending on BP, these values differ from the
minimum and maximum values for P. We compute the ratio between minBP
and maxBP, on the one hand, and minP and maxP, on the other hand. Figure
4 illustrates rule adaptation.
Yet again, if we were in art and we would like to compare the eyes in two
different paintings, we would adapt the scales of the eyes before making
any comparison.

4. Applying our quality model on the identified micro-architectures:
This task consists in applying the rules adapted from the quality model on
the metric values computed for the micro-architectures found in program
P.

Discussion

The use of design motifs as laws of software quality brings an extra level of
abstraction to the building of our quality model with respect to existing quality
models. Indeed, we use design motifs for three purposes: first, we survey quality
characteristics of design motifs theoretically to define and to organize the quality

Figure 4. Adapting the rules of the quality model, ratio between minimum
and maximum metric values of BP and P

Design Patterns as Laws of Quality 113

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

characteristics of our quality model; second, we validate our quality model on
well-known uses of design motifs; third, we apply our quality model on micro-
architectures similar to design motifs.
We can use our quality model on any micro-architecture, independently of their
sizes and organizations, and thus potentially on complete program architectures.
This use is similar to the use of existing quality models which are built using
internal attributes and quality characteristics of given programs but applied on
similar yet sometimes very differing programs.
The use of design motifs as a basis to build a quality model results in our choice
to study qualitative quality characteristics over quantitative characteristics, such
as fault-proneness. Thus, we want to build a quality model tailored for maintainers,
evaluating “qualitative” characteristics with which maintainers can predict
maintenance effort.
We choose design motifs and design patterns because developers always use
patterns. Indeed, developers always use recurring solutions to solve design
problems. Thus, design patterns are an integral part of any reasonably well-
developed program (Gamma et al., 1994).
However, the use of design motifs is but a step towards quality models that can
evaluate software quality while considering the architectures of programs.
Indeed, a quality model built using design motifs assesses the quality of programs
through larger parts than existing quality models because it uses micro-
architectures instead of classes. Yet, it does not consider the overall architec-
tures of the programs. It is similar in art to assessing the quality of a painting using
parts rather than looking at the whole picture, such as in the right-hand side of
Figure 3.

Background

Our work is at the conjunction of two fields of study: quality models on the one
hand, design motif identification on the other hand. We present some major work
in both fields of study. We show that none of the existing work attempts to build
a quality model based on micro-architectures of the program architectures, using
design motif identification.

Quality Models

Briand and Wüst (2002) present a detailed and extensive survey of quality
models. They classify quality models in two categories: co-relational studies and
experiments. Co-relational studies use univariate and multivariate analyzes,

114 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

while experiments use, for examples, analysis of variance between groups
(ANOVA). To the best of our knowledge, none of the presented quality models
attempts to assess the architectural quality of programs directly. They all use
class-based metrics or metrics on class couples.
Wood, Daly, Miller, and Roper (1999) study the structure of object-oriented C++
programs to assess the relation between program architectures and software
maintenance. The authors use three different methods (structured interviews,
survey, and controlled experiments) to conclude that the use of inheritance in
object-oriented programs may inhibit software maintenance.
Harrison, Counsell, and Nithi (2000) investigate the structure of object-oriented
programs to relate modifiability and understandability with levels of inheritance.
Modifiability and understandability cover only partially the quality characteristics
in which we are interested. Levels of inheritance are but one architectural
characteristic of programs related to software maintenance.
Wydaeghe et al. (1998) assess the quality characteristics of the architecture of
an OMT editor through the study of seven design patterns (bridge, chain of
responsibility, facade, iterator, MVC, observer, and visitor). They conclude on
flexibility, modularity, reusability, and understandability of the architecture and
of the patterns. However, they do not link their assessment with any evaluative
or predictive quality model.
Wendorff (2001) evaluates the use of design patterns in a large commercial
software product. The author concludes that design patterns do not improve a
program architecture necessarily. Indeed, architecture can be over-engineered
(Kerievsky, 2004) and the cost of removing design patterns is high. The author
does not link this study with any quality model.

Design Motif Identification

Most approaches to the identification of occurrences of design motifs are
structural. They require a structural matching between a design motif and
candidate micro-architectures. Different techniques have been used to perform
the structural matching: rule inference and unification (Krämer & Prechelt,
1996; Wuyts, 1998), queries (Ciupke, 1999; Keller, Schauer, Robitaille, & Page,
1999), constraints resolution (Guéhéneuc & Albin-Amiot, 2001; Quilici, Yang, &
Woods, 1997), and fuzzy reasoning (Jahnke & Zundorf, 1997).
Unification. Wuyts developed the SOUL environment in which design motifs
are described as Prolog predicates and programs constituents as Prolog facts
(classes, methods, fields, etc.) (Wuyts, 1998). A Prolog inference algorithm
unifies predicates and facts to identify classes playing roles in design motifs. The

Design Patterns as Laws of Quality 115

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

main limitation of such a structural approach is the inherent combinatorial
complexity of identifying subsets of all classes matching design motifs, which
corresponds to a problem of subgraph isomorphism (Eppstein, 1995).
Constraint resolution. Quilici et al. (1997) used constraint programming to
identify design motifs. Their approach consists in translating the problem of
design motif identification in a problem of constraint satisfaction. Design motifs
are described as constraint systems, which variables have for domain the entities
(classes and interfaces) of a program. The resolution of a constraint system
provides micro-architectures composed of entities respecting the constraints
among the roles of a design motif. As with the unification approach, the
combinatorial complexity of the resolution proves to be prohibitive.
Quantitative evaluation. Antoniol, Fiutem, and Cristoforetti (1998) used con-
straint programming extended with metrics to reduce the search space during
design pattern identification. They designed a multi-stage filtering process to
identify micro-architectures identical to design motifs. For each class of a
program, they compute some metrics (for example, numbers of inheritance, of
association, and of aggregation relationships) and they compare the metric
values with expected values for a design motif to reduce search space. Then,
they apply a constraint-based approach to identify micro-architectures. The
expected values of metrics are derived from the theoretical descriptions of
design motifs. The main limitation of their work lies in the assumption that
implementation (micro-architectures) accurately reflects theory (design motifs),
which is often not the case. Moreover, the theoretical characterization of roles,
when possible, does not reduce the search space significantly.
Fuzzy reasoning. In an original work, Jahnke and Zundorf (1997) introduced
fuzzy reasoning nets to identify design motifs. Design motifs are described as
fuzzy reasoning nets, expressing rules of identification of micro-architectures
similar but not identical to design motifs. They exemplify their approach with the
identification of poor implementations of the Singleton design motif in legacy C++
code. They express identification rules with the formalism of fuzzy reasoning
nets and then compute the certainty of a variable being a Singleton starting from
a user’s assumption. The main advantage of their approach is that fuzzy
reasoning nets deal with inconsistent and incomplete knowledge. However, their
approach requires description of all possible rules of approximation for a design
motif and a user’s assumption.

Building a Quality Model

We use design motifs from design patterns as a basis to build a quality model.
Design patterns provide good solutions to architectural design problems, which

116 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

maintainers can use in the assessment of the quality characteristics of program
architectures naturally. Indeed, as Grady Booch says in his Foreword in Design
Patterns Elements of Reusable Object-Oriented Software, “all well-struc-
tured object-oriented architectures are full of patterns” (Gamma et al., 1994).
Also, design patterns provide a basis for choosing and for organizing external
quality characteristics related to the maintenance effort.

Overview

The following general information offers a synthetic view on our quality model.
Dependent variables. The dependent variables in our quality model are quality
characteristics. We choose these quality characteristics by studying the quality
characteristics of the 23 design patterns in Gamma et al.’s (1994) book. We
study the literature on design patterns and identify five quality characteristics
which decompose in seven quality subcharacteristics, which we consider as
external attributes.
Independent variables. The independent variables in our quality model are the
internal attributes which we measure on programs. These internal attributes are
similar to those in other quality models from the literature: size, filiation, cohesion,
coupling, and complexity.
Analysis technique. We use a propositional rule learner algorithm, JRip. JRip is
Weka — an open-source program collecting machine learning algorithms for
data mining tasks (Witten & Frank, 1999) — implementation of the Ripper rule
learner. It is a fast algorithm for learning “If — Then” rules. Like decision trees,
rule learning algorithms are popular because the knowledge representation is
easy to interpret.

Building a Quality Model

We perform the eight tasks identified previously to build a quality model
considering program architectures based on design motifs.

1. Identifying the quality characteristics: We consider a hierarchical
model, because such model is more understandable (Fenton & Pfleeger,
1997) and because most of standard models are hierarchical, for examples
(ISO/IEC, 1991) and (McCall, 2001).
• Design patterns claim to bring reusability, understandability, flexibility,

and modularity (Gamma et al., 1994). So, we add these quality

Design Patterns as Laws of Quality 117

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

characteristics to our quality model. Also, through our past experience,
we add robustness and scalability (which together define software
elegancy (Ciupke, 1999) to our quality model.

2. Organising the quality characteristics: We organize the quality charac-
teristics and decompose these in subcharacteristics using definitions from
IEEE, ISO/IEC, and several other models (such as McCall, 2001; CBR
Online, 2002; Smith & Williams, 2001; Firesmith, 2003; Khosravi &
Guéhéneuc, 2004; Smith & Williams, 2001).
Figure 5 presents our quality model to evaluate software quality related to
software maintenance based on design motifs.

3. Choosing internal attributes: We choose size, filiation, coupling, cohe-
sion, and complexity as internal attributes. We use the metrics from
Chidamber and Kemerer’s (1993) study mainly to measure these internal
attributes, with additions from other metrics by Briand, Devanbu, and Melo
(1997a), by Hitz and Montazeri (1995), by Lorenz and Kidd (1994), and by
Tegarden, Sheetz, and Monarchi (1995).
The complete list of metrics used to measure internal attributes is: ACAIC,
ACMIC, AID, CBO, CLD, cohesionAttributes, connectivity, DCAEC, DCMEC,
DIT, ICHClass, LCOM1, LCOM2, LCOM5, NCM, NMA, NMI, NMO,
NOA, NOC, NOD, NOP, SIX, and WMC.

Figure 5. A quality model based on design motifs quality characteristics

118 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4. Identifying programs with motifs: We use the set of programs imple-
menting design patterns from Kuchana’s (2004) book. Each program in this
set implements design patterns from Gamma et al.’s book (Gamma et al.,
1994). This set of programs forms our base programs BP.

5. Assessing the quality of motifs: We assess the quality characteristics of
design patterns manually, using our quality model and the set BP. Table 1
summarizes our evaluation of the quality characteristics of the 23 design
motifs.

6. Computing metrics: The metrics we chose in task 3 to measure the
internal attributes of programs are all class-based metrics. Thus, we need
first to compute the metric values and second to adapt the metric values to
the micro-architectures.
• We analyze the base programs and their micro-architectures using

PADL, a metamodel to represent programs. Then, we apply POM, a
framework for metrics definition and computation based on PADL
(Guéhéneuc et al., 2004), on the program models to compute the metric
values.

• Then, we adapt the class-based metric values to the micro-architec-
tures. For a given metric, we use the average of its values on all the
classes forming a micro-architecture. However, average is not a good
representative of the metric values for the micro-architecture. Indeed,
we should compute and study the variance of the metric values to get
a better understanding of the distribution of the metric values. Vari-
ance indicates how much each of the metric values of the classes in
the micro-architecture deviates from the mean. However, for the
current exploratory study, we keep the average to allow a better
analysis of the resulting rules.

7. Linking internal attributes and quality characteristics: We use a
machine learning technique to infer rules linking the quality characteristics
of the quality model and the metric values.
• We use the JRip algorithm to find the rules between quality character-

istics and values of the metrics. The rule in Table 2 is the rule
associated with the learnability quality characteristics, when applying
JRip on the metric values and on the base programs from tasks 3, 4, and
5. It shows that learnability is related to the NMI and NOP metrics
more than to any other metrics.

• We do not introduce here all the rules found for the different quality
subcharacteristics and characteristics in our model for lack of space.

Design Patterns as Laws of Quality 119

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The rules are specific to the current case study but help in illustrating
the advantages and limitations of our approach.

8. Validating the quality model: We use the leave-one-out method (Stone,
1974) for cross-validating the rules built for our quality model by JRip.

Table 1. Design patterns quality characteristics in the base programs (E =
Excellent, G = Good, F = Fair, P = Poor, and B = Bad)

 Quality Sub-characteristics and Characteristics

Design patterns

Ex
pa

nd
ab

ili
ty

Si
m

pl
ic

ity

G
en

er
al

ity

M
od

ul
ar

ity

Le
ar

na
bi

lit
y

U
nd

er
st

an
da

bi
lit

y

O
pe

ra
bi

lit
y

Sc
al

ab
ili

ty

R
ob

us
tn

es
s

Abstract Factory E E G G G G G G G
Builder G G F F F G F G G
Factory Method P P F G G G G G G
Prototype E G F G F G F E G
Singleton P B F E F F F G G
Adapter F F P G G F F G F
Bridge G F G G F F G G G
Composite F F F F F G F F G
Decorator E E G F G G G G G
Façade G G G G F G F F F
Flyweight P P F G G P F G G
Proxy G P F G F P G G F
Chain of Responsibility G G G P F F G G F
Command G P F F P B G G G
Interpreter G F G F F F G G F
Iterator E E G F G F F G G
Mediator G F G G F F G G F
Memento G F F B P F G F P
Observer E G E F F G G G G
State G G F P F B G G F
Strategy G F P F P P F P F
Template Method E G F F G G G G G
Visitor E G G F G P F G F

120 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Applying the Quality Model

We apply the quality model built in the previous section to the JHotDraw (for
clarity, we apply our quality model on a subset of the micro-architectures in
JHotDraw only), JUnit, and Lexi programs. We apply the learnability rule of the
quality model in particular, because this rule represents a good trade-off between
simplicity and expressiveness. The learnability rule has been built in task 7 with
minLCOM5=0.75, maxLCOM5=1.82, minNOA=1.00, and maxNOA=86.00.
JHotDraw is a Java GUI framework for technical and structured graphics. It has
been developed originally by Erich Gamma and Thomas Eggenschwiler as a
“design exercise” but is now a full-fledge framework. Its design relies heavily
on some well-known design patterns. JUnit is a regression testing framework
written by Erich Gamma and Kent Beck. It is used to implements unit tests in
Java. Lexi is a Java-based word processor. It has been developed by Matthew
Schmidt and Brill Pappin originally. These programs are open-source and most
are available on SourceForge.
Applying our quality model requires to identify in a program the micro-architec-
tures similar to some design motifs. We consider micro-architectures as our
“unit” of measurement rather than classes, as presented earlier. We decompose
the task 1 of identifying micro-architectures similar to design motifs in the
architecture of a program P under evaluation in two subtasks to improve the
performance of the identification:

1. A task of role identification, in which we identify classes that could play a
role in a design motif potentially.

2. A task of design motif identification, in which we identify classes which
structural organization is similar to that of a design motif. In this subtask,
we only consider classes identified in the previous subtask to reduce the
search space and, thus, to improve performance, recall, and precision.

Table 2: Rule for learnability

 if (LCOM5 ? 1:1) ^ (NOA ? 33:25)
 then (Learnability = Good)
 else (Learnability = Fair)

Design Patterns as Laws of Quality 121

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Identifying Roles

We associate numerical signatures with roles in design motifs to characterize
classes that could play one of these roles and exclude classes that obviously
could not. We seek to characterize classes playing roles in design motifs using
their internal attributes. The most consensual attributes for classes in object-
oriented programming languages are:

• Size/complexity: For example, number of methods, of fields.
• Filiation: For example number of parents, number of children, depth of the

inheritance tree.
• Cohesion: For example, degree to which methods and attributes of a class

belong together.
• Coupling: Strength of the association created by a link from one class to

another.

Two or more classes may have identical values for a given set of internal
attributes. Indeed, two or more classes may play a same role in different uses
of a design motif and a same class may play two or more roles in one or more
design motifs. Thus, internal attributes cannot be used to distinguish uniquely a
class among classes playing roles in design motifs.
Yet, internal attributes can be used to reduce the search space of micro-
architectures. We can use internal attributes to eliminate true negatives from the
search space efficiently, that is, classes that obviously do not play a role in a
design motif. Moreover, no thorough empirical studies have so far validated the
impossibility to identify classes uniquely with their internal attributes, or at-
tempted to find quantifiable commonalities among classes playing a given role
in a design motif experimentally.
Therefore, we study the use of internal attributes of classes to quantify design
motif roles: we devise numerical signatures for design motifs roles using
internal attributes of classes. We group these numerical signatures in rules to
identify classes playing a given role. For example, a rule for the role of Singleton
in the Singleton design motif could be:

 Rule for “Singleton” role:
 Filiation: Number of parents low,

number of children low.

122 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

because a class playing the role of Singleton is high in the inheritance tree
normally and has no (or a few) subclass usually. A rule for the role of Observer
in the Observer design motif could be

 Rule for “Observer” role:
 Coupling: Coupling with other classes low.

because the purpose of the observer design motif is to reduce the coupling
between the classes playing the roles of observer and the rest of the program.

Building Numerical Signatures

Overview. Figure 6 presents an overview of the process of assigning numerical
signature to design motifs roles. First, we build a repository of classes forming
micro-architectures similar to design motifs in different programs. We identified
the roles played by these classes in design motifs manually. Then, we extract
metrics from the programs in which we found micro-architectures to associate
a set of values for the internal attributes with each class in the repository. We
feed a propositional rule learner algorithm with the sets of metric values. The
rule learner returns a set of rules characterizing design motif roles with the metric
values of the classes playing these roles. We cross-validate the rules using the
leave-one-out method. Finally, we interpret the rules obtained (or the lack
thereof) for roles in design motifs. The following subsections detail each step of
the process.
Repository creation. We need a repository of classes forming micro-
archi-tec-tures similar to design motifs to analyze these classes quantitatively.
We investigate several programs manually to identify micro-architectures
similar to design motifs and to build a repository of these micro-architectures, the
P-MARt (pattern-like micro-architecture repository). We create this repository
using different sources:

• Studies in the literature, such as the original study from Bieman, Straw,
Wang, Willard, and Alexander (2003), which record classes playing roles
in design motifs from several different C++, Java, and Smalltalk programs.

• Our tool suite for the identification of design motifs, Ptidej (pattern trace
identification, detection, and enhancement in Java) (Albin-Amiot,
Cointe, Guéhéneuc & Jussien, 2001; Guéhéneuc & Albin-Amiot, 2001),
which implements PtidejSolver, an explanation-based constraint solver to
identify design motifs.

Design Patterns as Laws of Quality 123

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Assignments in an undergraduate course and in a graduate course, during
which students performed analyzes of Java programs.

The repository of micro-architectures similar to design motifs surveys:

• For each program, motifs for which we found similar micro-architectures.
• For each motif, similar micro-architectures that we found in the program.
• For each micro-architectures, roles played by their classes in the design

motif.

We validate all the micro-architectures manually before their inclusion in the
repository; however, we do not claim that we identified all micro-architectures
similar to design motifs in a given program.
So far, the P-MARt contains data from nine programs, for a total of 4,376 classes
and 138 micro-architectures representing 19 different design motifs. We exclude
inner classes because no inner class appears in a micro-architecture so far.
Table 3 summarizes the data in the P-MARt. The two first rows give the names
and number of classes (and interfaces) of the surveyed programs. The following
rows indicates, for a given design pattern (per row), the number of micro-
architectures found similar to its design motif in each program (per column). The
table summarizes also the number of roles defined by a design motif and the
number of classes playing a role in a design motif for all the programs (two last
columns). The number of classes playing roles in design motifs shows that only
a fraction of all the classes of the programs plays a role in a design motif.
Moreover, some classes are counted more than once because they play different
roles in different design motifs. Design motifs for which we did not identify
similar micro-architectures are: chain of responsibility, interpreter, and mediator.
We record this data in an XML file, which allows us to traverse the data to
compute metrics and various statistics automatically.
Metric extraction. We parse the programs surveyed in the P-MARt and
calculate metrics on their classes automatically. Parsing and calculation are
performed in a three-step process: first, we build a model of a program using the
PADL (pattern and abstract-level description language) meta-model and its

Figure 6. Process of assigning numerical signatures to design motifs roles

Repository
Creation

Metric
Extraction

Rule
Learning

Rule
Validation

Interpretation� � � �

124 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

parsers; second, we compute metrics using POM (primitives, operators,
metrics), an extensible framework for metric calculation based on PADL; third,
we store the results of the metric calculation, names and values, in the P-MARt,
by adding specific attributes and nodes to the XML tree representation.
We use metrics from the literature to associate values with internal attributes of
classes playing a role in a design motif. Table 4 presents the metrics computed
on classes related to the internal attributes that we consider: size/complexity,
filiation, cohesion, and coupling. For size/complexity, we use the metrics by
Lorenz and Kidd (1994) on new, inherited, and overridden methods and on the

Table 3. Overview of the data set: Programs, design motifs, micro-
architectures, and roles

JH
ot

D
ra

w
 v

5.
1

JR

ef
ac

to
ry

 v
2.

6.
24

JU

ni
t v

3.
7

Le

xi
 v

0.
0.

1α

M

ap
pe

rX
M

L
v1

.9

N

et
Be

an
s v

1.
0.

x

N

ut
ch

 v
0.

4

PM

D
 v

1.
8

Q

ui
ck

U
M

L
20

01

 T
ot

al

Number of
classes

173 575 157 127 172 5812 2558 447 224 7 068

N

um
be

r
of

 r
ol

es

N

um
be

r
of

 c
la

ss
es

pl
ay

in
g

a
ro

le

Design
Motifs

Number of micro-architecture similar to the design motifs
per program

Abstract
Factory

 1 12 1 14 5 242

Adapter 1 17 2 8 2 1 31 4 252
Bridge 2 2 4 25
Builder 2 1 2 1 6 4 44
Command 1 1 2 1 5 5 85
Composite 1 1 1 2 2 7 4 147
Decorator 1 1 2 4 64
Façade 1 1 2 11
Factory
Method

3 1 1 3 8 4 111

Iterator 1 5 1 1 8 5 41
Memento 2 2 3 15
Observer 2 3 2 1 2 1 11 4 135
Prototype 2 2 3 32
Proxy 1 1 3 3
Singleton 2 2 2 2 3 1 1 13 1 13
State 2 2 4 3 32
Strategy 4 1 2 7 3 47
Template
Method

2 4 3 1 10 2 102

Visitor 2 1 3 5 143
 Total 138 40 1552

Design Patterns as Laws of Quality 125

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

total number of methods and the count of methods weighted with their numbers
of method invocations by Chidamber and Kemerer (1993). We do not use metrics
related to fields because no design motif role is characterized by fields specifi-
cally: only the Flyweight, Memento, Observer, and Singleton design motifs (5 out
of 23) expose the internal structures of some roles to exemplify typical
implementation choices. Moreover, fields should always be private to their
classes with respect to the principle of encapsulation. For filiation, we use the
depth of the inheritance tree and the number of children by Chidamber and
Kemerer (1993) and the number of hierarchical levels below a class, class-to-
leaf depth, by Tegarden et al. (1995). For cohesion, we use the metric “C”
measuring the connectivity of a class with the rest of a program by Hitz and
Montazeri (1995) and the fifth metric of lack of cohesion in methods by Briand,
Daly, and Wüst (1997b). Finally, for coupling, we use two metrics on class-
method import and export coupling by Briand et al. (1997a) and the metric on
coupling between objects by Chidamber and Kemerer (1993).
Rule learning and validation. The P-MARt contains a wealth of data to
analyze. We use a machine learning algorithm to find commonalities among
classes playing a same role in a design motif. We supply the data to a
propositional rule learner algorithm, JRip, implemented in Weka, an open-source
program collecting machine learning algorithms for data mining tasks (Witten &
Frank, 1999).
We do not provide JRip with all the data in the P-MARt; this would lead to
uninteresting results because of the disparities among roles, classes, and metric
values. We provide JRip with subsets of the data related to each role. A subset
ó of the data related to a role contains the metric values for the n classes playing

Table 4. External attributes for classes and corresponding metrics

 Acronyms Descriptions References
NM Number of Methods (Lorenz & Kidd, 1994)
NMA Number of new methods (Lorenz & Kidd, 1994)
NMI Number of inherited methods (Lorenz & Kidd, 1994)
NMO Number of overridden methods (Lorenz & Kidd, 1994)

Size/complexity

WMC Weighted methods count (Chidamber & Kemerer, 1993)
CLD Class-to-leaf depth (Tegarden et al., 1995)
DIT Depth of inheritance tree (Chidamber & Kemerer, 1993) Filiation
NOC Number of children (Chidamber & Kemerer, 1993)
C Connectivity (Hitz & Montazeri, 1995) Cohesion LCOM5 Lack of cohesion in method 5 (Briand et al., 1997b)
ACMIC Accessor class-method import (Briand et al., 1997a)
CBO Coupling between objects (Chidamber & Kemerer, 1993) Coupling
DCMEC Descendants class-method export (Briand et al., 1997a)

126 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the role in all the micro-architectures similar to a design motif. We add to this
subset σ the metric values of 3 × n classes not playing the role, chosen randomly
in the rest of the data. We make sure the classes chosen randomly have the
expected structure for the role that is, whether the role is defined to be played
by a class or by an abstract class (Gamma et al., 1994), to increase their likeliness
with the classes playing the role. The rule learner infers rules related to each role
from the subsets σ. We validate the rules using the leave-one-out method with
each set of metric values in the subsets σ (Stone, 1974).
Interpretation. The rule learner infers rules that express the experimental
relationships among metric values, on the one hand, and roles in design motifs,
on the other hand. Typically, a rule inferred by the rule learner for a role ROLE
has the form:

 Rule for “ROLE” role:

 - Numerical signature 1, confidence 1,
 - Numerical signature 2, confidence 2,
 - ...
 - Numerical signature N, confidence N.

where:

 Numerical signature 1 { }1111 ,..., mm VmetricVmetric ∈∈=

 ...

 Numerical signature N { }mnmn VmetricVmetric ∈∈= ,...,11

and the values of a metric metrici computed on classes playing the role ROLE
belong to a set Ν⊂Vij . The degree of confidence K is the proportion of classes
concerned by a numerical signature in a subset σ, which we use to compute error
and recall ratios.
We collect all the rules inferred from the rule learner and process the rules with
the following criteria to remove uncharacteristic rules:

• We remove rules with a recall ratio less than 75%.
• We remove rules inferred from small subsets σ that is, when not enough

classes play a given role.

Design Patterns as Laws of Quality 127

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Then, we interpret the remaining rules in two ways: qualitatively, we explain rules
with respect to their corresponding roles; quantitatively, we assess the quality of
classes playing roles in design motifs. Practically, we show that numerical
signatures reduce the search space for micro-architectures similar to design
motifs efficiently.

Discussion

We decompose the data in the P-MARt in 56 subsets σ and infer as many rules
with the rule learner, which decompose in 78 numerical signatures. The two first
steps in the analysis process are quantitative and aim at eliminating roles that do
not have a sufficient number of examples for mining numerical signatures and
that do not have a high enough recall ratio. In the first step, we remove 20 over
the 56 rules from all the rules inferred by the rule learner. The removed rules
correspond to:

• Design motif roles with few corresponding micro-architectures and with a
unique (or a few) classes in the micro-architectures. Some examples are
the roles of Decorator in the Decorator design motif and of Prototype in
Prototype.

• Design motifs roles played by “ghost” classes in many cases that is, classes
known only from import references, such as classes in standard libraries.
Some examples are the classes playing the roles of Command in the
Command design motif and of Builder in Builder.

In the second step, we select 20 rules with a recall ratio greater than 75%, shown
in Table 5, from the 36 remaining rules. All these rules have an error rate less
than 10% (less than 5% for 16). Most of the rules removed because of their low
recall ratio are associated with roles known to be non-key roles in design motifs
and which, thus, do not have a particular numerical signature theoretically. For
example, any class may play the role of client in the composite design motif.
Similarly, any class may play the role of Invoker in the Command design motif.
(Some researchers argue that client, invoker are not “real” roles and should not
appear in most design motifs.)
We notice that, in many cases, we obtain a unique numerical signature for a given
role in a design motif. Classes playing a same role have similar structures and
organizations generally. For example, all the classes playing the role of target in
the adapter design motif have a low complexity, represented by low values of
WMC, as shown in the Rule for "Target" role (the degree of confidence is less
than 1 because this numerical signature misclassifies one class, its error rate is

128 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4%, as shown in Table 5). Such a low complexity is actually expected because
of the architecture and of the behavior suggested by the adapter design motif.
Likewise, many other numerical signatures confirm claims from and beliefs on
design motifs. For examples, classes playing the role of Observer in the Observer
design motif have a low coupling that is, a low CBO. Classes playing the roles
of Singleton in the Singleton design motif have low coupling and belong to the
upper part of the inheritance tree generally.
In a few cases, we obtain more that one numerical signature for a role. An
example is the role of Concrete Visitor in the Visitor design motif. On the one
hand, the most frequent numerical signature is characteristic of classes with a
low coupling (low CBO) and a large number of methods (high NM), as expected
from the problem dealt with by the Visitor design pattern. On the other hand, the

Figure 7. Rules inferred for the role of Target in the Adapter design motif

 Rule for “Target” role:

 - WMC <= 2, 24/25.

Table 5: Roles with inferred rules with recall ratio greater than 75%

Design Motifs Roles Error (in %) Recall (in %)
Iterator Client 0.00 100.00
Observer Subject 0.00 100.00
Observer Observer 2.38 100.00
Template Method Concrete Class 0.00 97.60
Prototype Concrete Prototype 0.00 96.30
Decorator Concrete Component 4.17 89.58
Visitor Concrete Visitor 0.00 88.89
Strategy Context 3.70 88.89
Visitor Concrete Element 2.04 88.78
Singleton Singleton 8.33 87.50
Factory Method Concrete Creator 4.30 87.10
Factory Method Concrete Product 3.45 86.21
Adapter Target 4.00 84.00
Composite Leaf 6.47 82.09
Decorator Concrete Decorator 0.00 80.00
Iterator Iterator 0.00 80.00
Command Receiver 6.67 80.00
State Concrete State 6.67 80.00
Strategy Concrete Strategy 2.38 78.57
Command Concrete Command 3.23 77.42

Design Patterns as Laws of Quality 129

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

second numerical signature states that the number of inherited methods is low
(low NMI) for some classes playing the role of Concrete Visitor. When exploring
the micro-architectures similar to the Visitor design motif in our repository, we
notice that in JRefactory some classes play the roles of both Concrete Visitor and
Visitor, which thus limits the number of inherited methods. This second numeri-
cal signature is particular to JRefactory and unveils design choices specific to the
program or to a coding style.

Identifying Design Motifs

After identifying classes which could play roles in design motifs, we perform a
structural search among these classes to identify those which structures and
organizations are similar to the structures and organisations advocated by some
design motifs.
We use explanation-based constraint programming to identify both complete and
approximate forms of design motifs, that is, groups of classes which structures
and organizations are similar to the motifs, while providing explanations and
allowing user-interactions.
Explanation-based constraint programming. Explanation-based constraint
programming proved its interest (Jussien & Barichard, 2000) in many applica-
tions already. We recall fundamentals on explanation-based constraint program-
ming and some of its uses.

• Contradiction explanations: We consider a constraint satisfaction prob-
lem (CSP) (V, D, C): V is the set of variables, D is the set of domains for
the variables, and C is the set of constraints among variables. Decisions
made during enumeration — variable assignments — are represented by
unary constraints added to or removed from the current constraint system.
These unary constraints are called decision constraints because they are
not defined in the constraint satisfaction problem but are generated by the
solver to represent decisions taken during the resolution. A contradiction
explanation [also known as no-good (Schiex & Verfaillie, 1994)] is a
subset of the current constraint system that, left alone, leads to a contra-
diction — no solution. A contradiction explanation divides in two parts: a
subset of the original set of constraints (CC ⊂' in Equation 1) and a subset
of the decision constraints introduced during the search.

)...(| 11 kk avavCC =∧∧=∧′¬− (1)

130 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A contradiction explanation without decision constraint denotes an
overconstrained problem. In a contradiction explanation containing at least
one decision constraint, we choose a variable vj and rewrite Equation 1 in
2.

jjii
ki

avavCC ≠→=∧′− ∧
∈

)(|
j\]..1[

(2)

The left hand side of the implication is an eliminating explanation for the
removal of value aj from the domain of variable vj. The eliminating
explanation is noted:

)(expl jj av ≠

Classical solvers use domain-reduction techniques to solve constraint
satisfaction problems by removing values from the domains of variables.
Thus, recording eliminating explanations is sufficient to compute contradic-
tion explanations. Indeed, a contradiction is identified when the solver
empties the domain of a variable vj. A contradiction explanation can be
computed with the eliminating explanations associated with each removed
value, as shown in Equation 3.

))(exp(|
)(

avlC j
vda j

≠¬− ∧
∉ (3)

Several eliminating explanations exist for the removal of a given value
generally. Recording all eliminating explanations would lead to an exponen-
tial space complexity. Thus, we must forget (erase) eliminating explana-
tions that are no longer relevant to the current variable assignments. An
eliminating explanation is said to be relevant if all its decision constraints are
valid in the current search state (Bayardo & Miranker, 1996). We keep only
one explanation at a time for any value removal and the space complexity
remains polynomial.

• Computing contradiction explanations: Minimal contradiction expla-
nations (with respect to inclusion) are the most interesting. They provide
precise information on dependencies among variables and constraints
identified during the search. Unfortunately, computing such explanations is
time-consuming (Junker, 2001). A compromise between size and comput-
ability consists in using the knowledge inside the solver. Indeed, CSP

Design Patterns as Laws of Quality 131

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

solvers always know why they remove values from the domains of
variables, although not often explicitly. They can compute minimal contra-
diction explanations with this knowledge explicitly. We must alter the
source code of a CSP solver to make such knowledge explicit. The PaLM
solver (Jussien & Barichard, 2000) is a reference implementation of an
explanation-based constraint solver.

• Using contradiction explanations: We can use contradiction explana-
tions for many different purposes (Jussien & Barichard, 2000; Jussien,
Debruyne & Boizumault, 2000; Jussien & Lhomme, 2000). For example,
we can use explanations to debug constraint resolution by explaining
contradictions clearly and by explaining differences between intended and
observed behavior (answering question such as “why is x not assigned to
value 4?” explicitly).
Also, we can use contradiction explanations to assess the impact of a
constraint on domains of variables and to handle, for example, dynamic
constraint removals. Thus, Bessière’s justification system (Bessière, 1991)
for solving dynamic CSP is actually a partial explanation-based constraint
solver.
Finally, we can use contradiction explanations to improve standard back-
tracking algorithms and to improve the search: to provide intelligent
backtracking (Guéret, Jussien & Prins, 2000), to replace standard back-
tracking with jump-based approaches à la dynamic backtracking (Ginsberg,
1993; Jussien et al., 2000), to develop new local searches on partial
instantiations (Jussien & Lhomme, 2000), and to guide the search dynami-
cally.

Application to design motif identification. Design motif identification consists:

1. In modeling a set of design motifs as CSP. A variable is associated with
each class defined by a design motif. The variables of our model are
integer-valued. The domain of a variable is a set of existing classes in the
source code. Each class is identified by a unique integer. Relationships
among classes (inheritance, association) are represented by constraints
among variables.

2. In modeling the maintainers’ source code to keep only the information
needed to apply the constraints: class names — forming the domain of the
variables and the relationships among classes — verifying or not the
constraints.

3. In resolving the CSP to search both approximate and complete micro-
architectures: when all solutions to the CSP are found, that is, when all

132 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

micro-architectures identical to a design motif are identified, the search is
guided by the maintainers to find approximate micro-architectures dynami-
cally. Contradiction explanations provided by the constraint solver help the
maintainers in guiding the search.

We build a library of specialized constraints from the relationships among classes
used to describe design motifs. Specialized constraints express the inheritance,
creation, association relationships among classes. Our library offers constraints
covering a broad range of design motifs. However, some design motifs are
difficult to express as CSP and require additional relationships or the decompo-
sition of existing relationships into subrelationships. We provide the following
constraints:

• Strict inheritance establishes a strict inheritance relationship between
classes. A strict inheritance relationship links two classes in a parent-child-
like relationship that is, superclass-subclass. When considering single
inheritance, the strict inheritance relationship is a partial order, denoted <,
on the set of classes E. For any pair of distinct classes A and B in E, if B
inherits from A then: A < B. The constraint associated with the strict
inheritance relationship is a binary constraint between variables A and B.
The operational semantics of the constraint is:

BABAA ccddC <∃∈∀ ,,

BAABB ccddC <∃∈∀ ,,

where dX represents the domains of variable X. From this definition of strict
inheritance, we derive an inheritance relationship, and its associated
constraint, such that the variables may represent a same class: A < B or A
= B.

• Use establishes a use relationship (Guéhéneuc, 2004) between classes. A
class A knows about a class B if methods defined in A invoke methods of
B. This relationship is binary, oriented and intransitive. We denote this
relationship by A > B.

• Association, aggregation, and composition enforce that two classes
are associated, aggregated, or composed with one another (Guéhéneuc &

Design Patterns as Laws of Quality 133

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Albin-Amiot, 2004), respectively. For example, a class A is composed with
instances of a class B if the A class defines one or more fields of type B.
We write A A ⊃ B. This relationship is binary, oriented, and intransitive.

Behavior of the CSP solver. The library of specialized constraints is not
sufficient in itself to allow design motif identification. Indeed, micro-architec-
tures that fit exactly in the modeling of a design motif as a CSP are of no use to
identify area with poor quality characteristics. We need to find approximate
micro-architectures that is, micro-architectures that do not verify all constraints
from a design motif. Explanation-based constraint programming allows to
identify approximate and complete forms.
First, a specialized CSP solver computes complete forms. The resolution ends by
a contradiction, there are no more micro-architectures. Explanation-based
constraint programming provides a contradiction explanation for this contradic-
tion: the set of constraints justifying that other combinations of classes do not
verify the constraints describing the searched design motif. We do not need to
relax other constraints than the constraints provided by the contradiction
explanation: we would find no other micro-architecture. The explanation contra-
diction provides knowledge on which approximate forms are available. This
knowledge allows maintainers to lead the search towards interesting approxi-
mate forms, from their viewpoints, by exhibiting constraints to relax. Removing
a constraint suggested by a contradiction explanation does not necessarily lead
to new micro-architectures but the removal is applied recursively.
Preferences are assigned to the constraints of a CSP to ease maintainers’
interactions with the specialized CSP solver. They reflect a hierarchy among
constraints a priori, but they are not mandatory in our CSP solver. We derive
a metric from the preferences, with which we measure the quality of a micro-
architecture in terms of its distance with the search design motif; that is, the
number of constraints relaxed to obtain this micro-architecture. The metric
allows the automation of the CSP solver to identify all approximate micro-
architectures.
The maintainer-driven version of our CSP solver is of great interest when a
priori preferences are hard to determine, which is often the case. Moreover,
maintainers can restrict the search to a subset of interesting approximate forms
interactively. Explanation-based constraint programming gives a complete con-
trol to the maintainers: this is important in an intellectual activity such as design
motif identification.
Discussion. The use of explanation-based constraint programming to identify
micro-architec-tures similar to design motifs provides three interesting proper-
ties:

134 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Identification of both complete and approximate forms of design motifs
• Explanations about the identified micro-architectures
• Interactions with the maintainers

We describe design motifs as constraint systems: each role is represented as a
variable and relationships among roles are represented as constraints among
variables. Variables had identical domains: all the classes in a program in which
to identify design motifs. For example, the identification of micro-architectures
similar to the composite design motif, shown in Figure 8, in JHotDraw translates
to the constraint system:

 Variables:
 client
 component
 composite
 leaf
 Constraints:
 association(client, component)
 inheritance(component, composite)
 inheritance(component, leaf)
 composition(composite, component)

where the four variables client, component, composite, and leaf have identical
domains, which contains all the 155 classes (and interfaces) composing JHotDraw,
and the four constraints represent the association, inheritance, and composition
relationships suggested by the Composite design motif.
However, as other structural approaches, our approach with explanation-based
constraint programming has limited performance and a low recall. Indeed, the
Composite design motif describes four roles, which are expressed as four
variables. Thus, the search of micro-architectures similar to the Composite
design motif in the JHotDraw framework, which contains 155 classes, has
potentially 625,200,5771554 = solutions.

We use the numerical signatures associated with roles in design motifs to reduce
the search space and to improve both performance and recall. We apply
numerical signatures on the domain of each variable to remove from its domain
the classes that obviously cannot play the design motif role associated with this
variable.

Design Patterns as Laws of Quality 135

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Applying the Quality Model

We have now identified micro-architectures similar design motifs. We follow the
four tasks from Subsection 1.4 to apply the quality model on these micro-
architectures.

1. Identifying micro-architectures: JHotDraw uses 11 different design
motifs in 21 micro-architectures: Adapter, Command, Composite, Decora-
tor, Factory Method, Observer, Prototype, Singleton, State, Strategy, and
Template Method. JUnit contains 8 micro-architectures similar to 5 differ-
ent design motifs: Composite, Decorator, Iterator, Observers, and Single-
tons. Lexi contains 5 micro-architectures similar to the Builder, Observer,
and Singleton design motifs. Table 6 summarizes these micro-architec-
tures.

2. Measuring internal attributes: For each micro-architecture identified in
JHotDraw, in JUnit, or in Lexi, we use PADL and POM to compute the
class-based metric values and Etiquette to compute the micro-architecture-
based metric values (using average). Table 6 presents the data for each
micro-architecture for the LCOM5 and NOA metrics.

3. Adapting the rules: We adapt the metric values in the rule in Table 2 by
computing the ratio between the minimum and maximum values of the
LCOM5 and NOA metrics for the base programs, on the one hand, and
each micro-architecture, on the other hand. Table 6 also displays the
adapted rules for all the micro-architectures.

Figure 8. Composite design motif

 Component

operation()

Composite

add(Component)
remove(Component)
getComponent(int)
operation()

operation()

Leaf

Client

for each component
component.operation()

1.n

component

136 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4. Applying the rules: We compare the expected metric values in the
adapted rules with the metric values computed for each micro-architecture.

Discussion. Table 6 presents the results for adapting the learnability rule in
Table 2. We computed the average, the minimum, and the maximum values of
the LCOM5 and NOA metrics for each program, JHotDraw, JUnit, and Lexi.
We adapted the rule from the minimum and maximum values of the base
programs and of JHotDraw, JUnit, and Lexi. The last column shows the adapted
rules and the results of applying the rules.
The first line of the table shows an example of applying the learnability rule to
a micro-architecture similar to the Command design pattern. The outcome of the
rule states that this particular implementation of the Command design pattern has
a Good learnability.
However, the quality model obtained is unsatisfactory for many reasons. First,
the size of the base programs used to create the quality model renders the rule
uninteresting in many cases. In particular, we do not have sufficient data yet but
to assess the learnability of JUnit and of Lexi as Fair.

Table 6. Data and rules when applying the quality model to a subset of
JHotDraw, JUnit, and Lexi

M
ic

ro
-

ar
ch

ite
ct

ur
es

D
es

ig
n

M
ot

ifs

 L
C

O
M

5

m
in

L
C

O
M

5

m
ax

L
C

O
M

5

 N
O

A

m
in

N
O

A

m
ax

N
O

A

 R
ul

e
fo

r
L

ea
rn

ab
ili

ty

Subset of the micro-architectures in JHotDraw
MA74 Command 1.07 0.50 1.63 29.35 1.00 164.00 Good
MA85 Singleton 0.67 0.67 0.67 1.00 1.00 1.00 Fair
MA91 Strategy 0.95 0.80 1.0 553.88 221.00 792.00 Fair
Subset of the micro-architectures in JUnit
MA65 Composite 0.65 0.25 0.95 70.10 4.00 148.00 Fair
MA66 Decorator 0.65 0.25 0.90 135.41 49.00 176.00 Fair
MA67 Iterator 0.92 0.83 0.99 30.67 1.00 48.00 Fair
MA68 Observer 0.60 0.66 1.03 112.43 1.00 191.00 Fair
MA69 Observer 0.83 0.83 0.83 1.00 1.00 1.00 Fair
MA70 Observer 0.83 0.83 0.83 11.00 11.00 11.00 Fair
MA71 Singleton 0.00 0.00 0.00 1.00 1.00 1.00 Fair
MA72 Singleton 0.00 0.00 0.00 1.00 1.00 1.00 Fair
Subset of the micro-architectures in Lexi
MA8 Builder 0.95 0.93 0.97 7.75 1.00 12.00 Fair
MA9 Observer 0.95 0.94 0.97 9.50 1.00 18.00 Fair
MA10 Observer 0.95 0.94 0.97 61.67 35.00 94.00 Fair
MA11 Singleton 1.01 1.01 1.01 1.00 1.00 1.00 Fair
MA12 Singleton 0.99 0.99 0.99 2.00 2.00 2.00 Fair

Design Patterns as Laws of Quality 137

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Second, adapting the rule when there is one metric value only, see for example
the micro-architecture MA5 in JUnit, does not provide interesting information
because the adapted threshold of the learnability rule is always inferior to the
maximum (and unique) value. Adaptation requires a range or more accurate
rules (based on a minimum and a maximum thresholds) to be efficient.
Third, we do not distinguish in the micro-architectures between code which plays
a role in the design motif and code which does not. Considering all the metric
values, potentially including “dead” code, has an impact on the results certainly.
Moreover, learnability is a human-related quality characteristic. It is difficult to
assess this characteristic intrinsically because it depends on the individuals
performing the assessment. Thus, we need to perform more evaluations to obtain
an accurate rule.

Conclusion

In this chapter, we presented a global coverage of our work on software quality
models and on design motif identification. We used design patterns as laws of
software quality and we used these laws to observe micro-architectures similar to
design motifs and to assess their quality.
We described the process of building a quality model using motifs to link metrics
and quality characteristics with a learning algorithm. We also described the process
of applying the quality model on software, using explanation-based constraint
programming to identify micro-architectures similar to design motifs and metrics
to improve the performance, recall, and precision of the identification.
This chapter highlights the need for principles in software engineering. These
principles can be laws or theories formalizing and explaining observations realized
on software. Our contribution is the use of design patterns and of their solutions,
design motifs, as laws of software quality to build quality models.
In the future, we believe that the software engineering community must develop
its understanding of design patterns and their applications to solve problems, such
as traceability and maintainability. Indeed, patterns are more and more recog-
nized as important concepts in software engineering, in particular in conjunction
with cognition during software development (Floyd, 1992; Miller, 1956), and they
both require and deserve a more thorough and systematic study.
Also, the software engineering community must strive to identify concepts on
which to build laws and theories. We strongly believe that design motifs can be
considered as laws of quality. However, our belief requires further studies and
analyzes.

138 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Acknowledgments

We thank James Bieman, Greg Straw, Huxia Wang, P. Willard, and Roger T.
Alexander (Bieman et al., 2003) for kindly sharing their data. We are grateful to
our students, Saliha Bouden, Janice Ka-Yee Ng, Nawfal Chraibi, Duc-Loc
Huynh, and Taleb Ikbal, who helped in the creation of the repository. “Femme
Profile” by Pablo Picasso is from rogallery.com, we are currently in contact with
its director regarding copyrights.
All the data and programs used to perform the case study are available on the
Internet at http://ptidej.iro.umontreal.ca/downloads/pmart/.

References

Albin-Amiot, H., Cointe, P., Guéhéneuc, Y.-G., & Jussien, N. (2001). Instantiating
and detecting design patterns: Putting bits and pieces together. In D.
Richardson, M. Feather, & M. Goedicke, (Eds.), Proceedings of the 16th

Conference on Automated Software Engineering (pp. 166-173). IEEE Com-
puter Society Press.

Antoniol, G., Fiutem, R., & Cristoforetti, L. (1998). Design pattern recovery in
object-oriented software. In S. Tilley & G. Visaggio (Eds.), Proceedings of
the 6th International Workshop on Program Comprehension (pp. 153-160).
IEEE Computer Society Press.

Bayardo, R. J., Jr., & Miranker, D. P. (1996). A complexity analysis of space-
bounded learning algorithms for the constraint satisfaction problem. In D.
Weld & B. Clancey (Eds.), Proceedings of the 13th National Conference on
Artificial Intelligence (pp. 298-304). AAAI Press/The MIT Press.

Bessière, C. (1991). Arc-consistency in dynamic constraint satisfaction problems.
In T. L. Dean & K. McKeown (Eds.), Proceedings of the 9th National
Conference on Artificial Intelligence (pp. 221-226). AAAI Press/The MIT
Press.

Bieman, J., Straw, G., Wang, H., Willard, P., & Alexander, R. T. (2003). Design
patterns and change proneness: An examination of five evolving systems. In
M. Berry & W. Harrison (Eds.), Proceedings of the 9th International Software
Metrics Symposium (pp. 40-49). IEEE Computer Society Press.

Briand, L., Devanbu, P., & Melo, W. (1997a). An investigation into coupling
measures for C++. In W. R. Adrion (Ed.), Proceedings of the 19th
International Conference on Software Engineering (pp. 412-421).
ACM Press.

Design Patterns as Laws of Quality 139

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Briand, L. C., Daly, J. W., & Wüst, J. K. (1997). A unified framework for
cohesion measurement. In S. L. Peeger & L. Ott (Eds.), Proceedings of
the 4th International Software Metrics Symposium (pp. 43-53). IEEE
Computer Society Press.

Briand, L. C., & Wüst, J. (2002). Empirical studies of quality models in object-
oriented systems. Advances in Computers, 59, 97-166.

Chidamber, S. R., & Kemerer, C. F. (1993). A metrics suite for object-
oriented design (Tech. Rep. No. E53-315). MIT Sloan School of Manage-
ment.

Ciupke, O. (1999). Automatic detection of design problems in object-oriented
reengineering. In D. Firesmith (Ed.), Proceeding of 30th Conference on
Technology of Object-Oriented Languages and Systems (pp. 18-32).
IEEE Computer Society Press.

Endres, A., & Rombach, D. (2003). A handbook of software and systems
engineering. Addison-Wesley.

Eppstein, D. (1995). Subgraph isomorphism in planar graphs and related
problems. In K. Clarkson (Ed.), Proceedings of the 6th Annual Sympo-
sium On Discrete Algorithms (pp. 632-640). ACM Press.

Fenton, N. E., & Pfleeger, S. L. (1997). Software metrics: A rigorous and
practical approach. PWS Publishing Company.

Firesmith, D. G. (2003). Common concepts underlying safety, security, and
survivability engineering (Technical Note CMU/SEI-2003-TN-033).
Carnegie Mellon Software Engineering Institute.

Floyd, C. (1992). Human questions in computer science. Springer-Verlag.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns

elements of reusable object-oriented software. Addison-Wesley.
Ginsberg, M. (1993). Dynamic backtracking. Journal of Artificial Intelligence

Research, 1, 25-46.
Guéhéneuc, Y. G. (2004). A reverse engineering tool for precise class diagrams.

In J. Singer & H. Lutya (Eds.), Proceedings of the 14th IBM Centers for
Advanced Studies Conference. ACM Press.

Guéhéneuc, Y. G., & Albin-Amiot, H. (2001). Using design patterns and
constraints to automate the detection and correction of inter-class design
defects. In Q. Li, R. Riehle, G. Pour, & B. Meyer (Eds.), Proceedings of
the 39th Conference on the Technology of Object-Oriented Languages
and Systems (pp. 296-305). IEEE Computer Society Press.

Guéhéneuc, Y. G., & Albin-Amiot, H. (2004). Recovering binary class relation-
ships: Putting icing on the UML cake. In D. C. Schmidt (Ed.), Proceedings

140 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the 19th Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM Press.

Guéhéneuc, Y.-G., & Jussien, N. (2001). Using explanations for design-patterns
identification. In C. Bessière (Ed.), Proceedings of the 1st IJCAI work-
shop on Modeling and Solving Problems with Constraints (pp. 57-64).
AAAI Press.

Guéhéneuc, Y. G., Sahraoui, H., & Zaidi, F. (2004). Fingerprinting design
patterns. In E. Stroulia & A. de Lucia (Eds.), Proceedings of the 11th

Working Conference on Reverse Engineering (pp. 172-181). IEEE
Computer Society Press.

Guéret, C., Jussien, N., & Prins, C. (2000). Using intelligent backtracking to
improve branch and bound methods: An application to open-shop problems.
European Journal of Operational Research, 127(2), 344-354.

Harrison, R., Counsell, S. J., & Nithi, R. V. (2000). Experimental assessment of
the effect of inheritance on the maintainability of object-oriented systems.
Journal of Systems and Software, 52(2-3), 173-179.

Hitz, M., & Montazeri, B. (1995). Measuring coupling and cohesion in object-
oriented systems. In Proceedings of the 3rd International Symposium on
Applied Corporate Computing (pp. 25-27). Texas A&M University.

ISO/IEC 9126:1991(E). (1991). Information technology software product
evaluation quality characteristics and guidelines for their use.

Jahnke, J. H., & Zundorf, A. (1997). Rewriting poor design patterns by good
design patterns. In S. Demeyer & H. Gall (Eds.), Proceedings of the 1st

ESEC/FSE Workshop on Object-Oriented Reengineering. Distributed
Systems Group, Technical University of Vienna, TUV-1841-97-10.

Junker, U. (2001). QUICKXPLAIN: Conflict detection for arbitrary con-
straint propagation algorithms (Technical Report). Ilog SA.

Jussien, N., & Barichard, V. (2000). The PaLM system: Explanation-based
constraint programming. In N. Beldiceanu, W. Harvey, M. Henz, F.
Laburthe, E. Monfroy, T. Muller, L. Perron, & C. Schulte (Eds.), Proceed-
ings of TRICS: Techniques for Implementing Constraint Programming
Systems (pp. 118-133). School of Computing, National University of
Singapore, Singapore.

Jussien, N., Debruyne, R., & Boizumault, P. (2000). Maintaining arc-consis-
tency within dynamic backtracking. In R. Dechter (Ed.), Proceedings of
the 6th Conference on Principles and Practice of Constraint Program-
ming (pp. 249-261). Springer-Verlag.

Jussien, N., & Lhomme, O. (2000). Local search with constraint propagation and
conflict-based heuristics. In H. A. Kautz & B. Porter (Eds.), Proceedings

Design Patterns as Laws of Quality 141

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the 17th National Conference on Artificial Intelligence (pp. 169-174).
AAAI Press/The MIT Press.

Keller, R. K., Schauer, R., Robitaille, S., & Page, P. (1999). Pattern-based
reverse-engineering of design components. In D. Garlan & J. Krämer
(Eds.), Proceedings of the 21st International Conference on Software
Engineering (pp. 226-235). ACM Press.

Kerievsky, J. (2004). Refactoring to patterns. Addison-Wesley Professional.
Khosravi, K., & Guéhéneuc, Y.-G. (2004). A quality model for design patterns

(Tech. Rep. No. 1249). University of Montreal.
Krämer, C., & Prechelt, L. (1996). Design recovery by automated search for

structural design patterns in object-oriented software. In L. M. Wills & I.
Baxter (Eds.), Proceedings of the 3rd Working Conference on Reverse
Engineering (pp. 208-215). IEEE Computer Society Press.

Kuchana, P. (2004). Software architecture design patterns in Java. Auerbach
Publications.

Lorenz, M., & Kidd, J. (1994). Object-oriented software metrics: A practical
approach. Prentice Hall.

McCall, J. A. (2001). Quality factors. Encyclopedia of Software Engineering,
1-2, 958.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. The Psychological Review,
63(2), 81-97.

Quilici, A., Yang, Q., & Woods, S. (1997). Applying plan recognition algorithms
to program understanding. Journal of Automated Software Engineering,
5(3), 347-372.

Schiex, T., & Verfaillie, G. (1994). No good recording for static and dynamic
constraint satisfaction problems. International Journal of Artificial
Intelligence Tools, 3(2), 187-207.

Smith, C. U., & Williams, L. G. (2001). Introduction to software performance
engineering. Addison-Wesley. Retrieved from http://www.awprofessional.
com/articles/article.asp?p=24009

Stone, M. (1974). Cross-validatory choice and assessment of statistical predic-
tions. Journal of the Royal Statistical Society (Series B: Statistical
Methodology), 36, 111-147.

Tegarden, D. P., Sheetz, S. D., & Monarchi, D. E. (1995). A software
complexity model of object-oriented systems. Decision Support Systems,
13(3-4), 241-262.

Tran, J. B., Godfrey, M. W., Lee, E. H., & Holt, R. C. (2000). Architectural
repair of open source software. In Proceedings of the 8th International

142 Guéhéneuc, Guyomarc’h, Khosravi, & Sahraoui

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Workshop on Program Comprehension (pp. 48-57). IEEE Computer
Society Press.

Wendorff, P. (2001). Assessment of design patterns during software
reengineering: Lessons learned from a large commercial project. In P.
Sousa & J. Ebert (Eds.), Proceedings of 5th Conference on Software
Maintenance and Reengineering (pp. 77-84). IEEE Computer Society
Press.

Witten, I. H., & Frank, E. (1999). Data mining: Practical machine learning
tools and techniques with Java implementations, (1st ed.). Morgan
Kaufmann.

Wood, M., Daly, J., Miller, J., & Roper, M. (1999). Multimethod research: An
empirical investigation of object-oriented technology. Journal of Systems
and Software, 48(1), 13-26.

Wuyts, R. (1998). Declarative reasoning about the structure of object-oriented
systems. In J. Gil (Ed.), Proceedings of the 26th Conference on the
Technology of Object-Oriented Languages and Systems (pp. 112-124).
IEEE Computer Society Press.

Wydaeghe, B., Verschaeve, K., Michiels, B., Damme, B. V., Arckens, E., &
Jonckers, V. (1998). Building an OMT-editor using design patterns: An
experience report. In Proceedings of the 26th Technology of Object-
Oriented Languages and Systems Conference (pp. 20-32). IEEE Com-
puter Society Press.

Automatic Verification of OOD Pattern Applications 143

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

Automatic Verification
of OOD Pattern

Applications
Andrés Flores, University of Comahue, Argentina

Alejandra Cechich, University of Comahue, Argentina

Rodrigo Ruiz, University of Comahue, Argentina

Abstract

Object-oriented patterns condense experimental knowledge from developers.
Their pragmatic benefits may involve a reduction on the effort impact of the
maintenance stage. However, some common problems can be distinguished
as well. For instance, some design patterns are simply too difficult for the
average OO designer to learn. A pattern-based design process could be
enhanced by the provision of an automatic support for modeling and
verification with a proper formal foundation. In this chapter we show how
formal specifications of GoF patterns have been helpful to develop that tool
support, where we have adopted the well-known Java language upon its
portability facet. Thus, we are changing the object-oriented design process

144 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

by the inclusion of pattern-based modeling and verification steps. The
latter involving checking design correctness and appropriate pattern
application through the use of the supporting tool, called DePMoVe
(Design and Pattern Modeling and Verification).

Introduction

Object-oriented patterns represent an important source of knowledge by con-
densing years of experience from developers. They certainly became a useful
technical vocabulary which helps for developers to discuss and communicate
ideas. Particular design problems, for example, can be easily described by
“using an observer” or “separated by a bridge.” The abstractness of patterns
description allows cutting across traditional boundaries of system development
and business engineering. At any stage of a development project, knowledge
upon business processes can be practically shared when patterns are properly
applied on the supporting systems.
The pragmatic benefits of using design patterns may involve the possibility to
reduce the impact on cost — time + effort — of the maintenance stage, which
usually may rise to 80% of the overall cost of the project (Polo, Piattini, & Ruiz,
2002). Design patterns address the concern of the evolutionary nature of the
software, since they may allow software to be flexibly accommodated to
constant changes. Hence, they are considered as a technique for design to
change, thus satisfying the design principle of anticipation to change (Gamma,
Helm, Johnson, & Vlissides, 1995; Ghezzi, Jazayeri, & Mandrioli, 2002).
However, a number of common problems can be distinguished as well. For
example, some design patterns are simply too difficult for the average OO
designer to learn. In some cases, the pattern is inherently complex; in other cases
the pattern involves an explanation and a name that are not obvious. Hence,
pattern understanding could be a serious problem for being skeptic when they will
be adopted by an organization. In practice, an OO designer needs personal time
and personal initiative to become skilful in design patterns. This could be
approached by firstly experimenting with the use of a pattern in a toy example
before it can be used in the real case. Thus, the main issue implies OO designers
with an imperative need of learning how to apply design patterns.
Such a misunderstanding problem on patterns applications has been distinguished
as a consequence of the provided description on current patterns catalogues
(Alagar, & Lämmel, 2002; Eden, 2000; Lauder, & Kent, 1998). Patterns are
invariably described informally in the literature (Buschmann, Meunier, Rohnert,
Sommerland, & Stal, 1996; Cooper, 2000; Coplien, 1996; Fowler, 1997; Gamma,

Automatic Verification of OOD Pattern Applications 145

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

et al., 1995; Grand, 1998a, 1998b; Pree, 1995), generally using natural language
narrative together with a sort of graphical notation, which makes it difficult to
give any meaningful certification of a pattern-based software. Particularly,
patterns in the GoF catalogue (Gamma, et al, 1995) are described using a
consistent format which is based on an extension of the object modeling
technique (OMT) (Rumbaugh, Blaha, Premerlani, Eddy, & Lorensen, 1991).
This form of presentation gives a very good intuitive picture of the patterns, but
it is not sufficiently precise to allow a designer to conclusively demonstrate that
a particular problem matches a specific pattern or that a proposed solution is
consistent with a particular pattern. Moreover, it is difficult to be certain that
patterns themselves are meaningful and contain no inconsistencies. In some
cases, descriptions of patterns are intentionally left loose and incomplete to
ensure that they are applicable in a range as wide as possible. This reduces
understanding and interpretation upon appropriate patterns usage. Nevertheless,
the availability of a more formal description could help alleviate these problems.
In a previous work (Moore, Cechich, Reynoso, Flores, & Aranda, 2002), we have
presented a formal model of a generic object-oriented design that was developed
in RSL — the RAISE Specification Language (RAISE Group, 1992, 1995) —
and based upon the extended OMT notation given on the GoF catalog. We have
shown how designs can be formally linked with patterns in this model, and how
properties of individual patterns can be specified in the model, thus giving a basis
for formally checking whether a given design and a given pattern are consistent
with each other. Although we have limited our attention to GoF patterns in this
work, the whole model is general enough to be applied in a similar way to
formalize other design patterns based on object-oriented notations, such as those
in (Buschmann, et al, 1996; Cooper, 2000; Coplien, 1996; Fowler, 1997; Grand,
1998a, 1998b; Pree, 1995) based on the Unified Modeling Language (UML).
In order to understand the characteristics that need to be present on a formal
basis for improving patterns application, we have developed an evaluation
framework consisting of two parts. One part focuses on patterns themselves and
the other on the formal languages that were used to specify the patterns. This
gives a good picture of the involved aspects that are necessary to improve the
so-called Pattern-based Design Process.
Such a process could be enhanced even more whether an automatic support for
modeling and verification is provided. This has been our project’s target and in
this chapter we show how the specifications of individual GoF patterns have been
a useful basis to carry out the development of the tool support. On such a
development we have adopted the well-known Java language which allows an
easy portability to different working environments. We are then, updating the
design process by the inclusion of a pattern-based modeling and verification
steps. The latter involving checking design correctness and appropriate pattern
application.

146 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The usage of this tool is also focused on the learning process about pattern
applications. This may let designers gain a useful insight into design principles
and also learn about diverse pattern properties. Through a better understanding
of patterns, a designer may certify when and how a pattern is being appropriately
applied to solve a specific design problem. Furthermore, the design process may
be improved with a precise technique supported by this tool: any error detected
during verification can help designers to improve their designs and reason about
information that can be vital to correctly apply a particular pattern.
We have organized this chapter in the following way. In the next section we
present definitions of the pattern-based design process and show some examples
of design patterns descriptions which could make a designer feel insecure on how
to carry out a pattern application. We also present considerations about the likely
benefits of a more rigorous description and a collection of features that could
enhance a formal model for pattern-based design. The third section introduces
the formal basis that we have developed in RSL, where we also highlight features
and considerations from the second section, for a better understanding. The
fourth section describes how the formalization was applied to build a tool support
for modeling and verification, and the process of translation from the RSL formal
basis to the Java language. The fifth section presents the corresponding change
on the design process, and illustrates the process by a case study. Conclusions
are presented afterwards.

Pattern-Based Design

A design process which is based on the application of patterns involves a binding
of elements from a pattern description (roles) to elements of the design (classes,
methods, relations, and so on). A subset of the classes and other elements in a
design then conforms to a specific pattern if they satisfy the properties of their
counterparts in the pattern (Flores, Moore, & Reynoso, 2001; Flores, & More,
2001). Figure 1 shows a schema for a design-pattern linkage (Meijers, 1996) to
explain the concept of patterns application. Such a binding is also called pattern
instantiation for which one of the following three approaches could be used on
a design process:

• Top-down: given a pattern, generate its appropriate components at the
design level;

• Bottom-up: given a (subset of a) design and a pattern, perform the binding
or verify the matching;

• Mixed: given a pattern and a (subset of a) design that only partly matches
it, generate the missing pattern components at the design level.

Automatic Verification of OOD Pattern Applications 147

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For a design to be really enhanced by the application of a pattern, there should
not be any doubt at reading its documentation -like for any software engineering
artifact. However, different circumstances have been distinguished, where a
designer may find it difficult to be sure if the working instantiation does not
introduce side effects as, for example, violating an important pattern feature that
in the worst case could change the pattern intent or even deteriorate the design
quality. Some of these situations are reported in the following section.

Analysis of Patterns Descriptions

When a designer intends to actually use patterns could discover that it is
necessary a pretty brilliant mind to recognize how to adjust the provided template
and description on the design under development. The intent section on a pattern
description format, for example, does not give an a priori needed “help,” but it
may be gradually understood after reading the rest of the description format.
Then, the structure section is quite generic so to reason about all the possible
concrete situations where such pattern could be used. Hence, it is “reinforced”
with textual descriptions on other different sections, which far from supplying the
required “help,” actually produces quite a big confusion on several aspects.
In Eden (1998) there is a simple analysis of the description format for patterns
in the GoF catalog (Gamma, et al, 1995), where six categories of textual
sentences have been identified with respect to their exactitude at describing the

Figure 1. Design-pattern levels linkage

UserDesignClass1

UDOperation()

PatternClass1

POperation()

PatternClass2

UDesignClass4

UDesignClass2

UDesignClass3

PatternRelation

UDRelation1 UDRelation2

PatternClass3

PatternClass4

Pattern Level

User Design Level

148 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

promised solution. Table 1 shows that three categories concern quite precise
statements while the three others present less accurate or elusive statements.
Table 1 shows the situations that a designer can discover when intends to use a
pattern. Therefore, the requirement is on the provision of a more accurate
description of patterns, which could be achieved by the use of formalisms.
However, there is certain general denial on the use of formal languages, as we
report in the following section.

Can Patterns Be Formalized?

Developers and even scientists may have a certain skepticism concerning the
use of formalisms to describe patterns. Some objections that were identified in
Eden (2000) are expressed along the following lines:

• Formal specifications: Formal specifications contribute little or nothing to
the understanding when and how to use a pattern. “Formalizing the solution
makes it harder to grasp the key ideas of the pattern. … Programmers need
concrete information that they can understand, not an impressive formula”
(Buschmann, 1996, p. 427).

Table 1: Fairly accurate and elusive ‘extracts’ from the GoF catalogue

Interpretation Category Textual Statements
(DECORATOR) “maintains a reference to a Component object”

1. Precise, singular (VISITOR’s ConcreteElement) “implements an Accept operation that takes a visitor as
an argument”
(FACTORY METHOD’s Creator) “may call the factory method to create a Product object”
(STRATEGY, Collaborations) “Alternatively, the context can pass itself as an argument
to Strategy operations”

2. Enumerated alternatives

(DECORATOR, Collaborations) “It may optionally perform additional operations before
and/or after forwarding the operations”
(VISITOR) “declares a Visit operation for each class of ConcreteElement in the object
structure” 3. Precise generalization
(Decorator) “defines an interface that conforms to Component’s interface”
(PROXY) “Virtual proxies … cache additional information about the real subject so
they can postpone accessing to it”
(PROTOTYPE) “implements an operation for cloning itself”

4. Technical terms,
yet open to various
interpretations

(MEMENTO) “stores internal state of the Originator object.”
(ADAPTER’s Adaptee) “defines an existing interface that needs adapting”
(COMPOSITE’s Component) “implements default behavior for the interface common to
all classes, as appropriate”

5. Fuzzy, informal, or
theological description

(OBSERVER’s Collaborations) “ConcreteObserver uses this information to reconcile its
state with that of the subject.”

6. Deliberate omission
of detail

(STATE) “The State pattern does not specify which participant defines the criteria for
state transitions”

Automatic Verification of OOD Pattern Applications 149

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Patterns: Patterns are abstractions, or generalizations, and therefore are
meant to be vague, ambiguous, and imprecise. If they were specified in a
precise form, or expressed in mathematical terms, they would no longer be
patterns. “Formalizing the solution makes it harder … to create valid
variants. A formalized solution may thus narrow the applicability of the
pattern unnecessarily. … Formalisms tend to describe particular issues
very precisely, but do not allow for the variation that is inherently embedded
into every pattern” (Buschmann, 1996, p. 427).

• There is no fixed element in patterns:, Everything can be changed
about them. In other words, if “the basic structure is fixed … this isn’t
patterns any more” (Coplien, 1996).

Such concerns seem to be valid on many approaches which apply formality
without a previous planning of needed and achievable objectives. This has been
our concern as well, and we had the intention not only to properly cover all of
them, but also to solve other issues that contribute to a poor understanding on
patterns application. In the next section we give other specific reasons for
seriously consider the application of formality on the description of a pattern
instantiation model.

Some Concrete Reasons to Formalize Patterns

In order to implement a pattern instantiation approach, the need for an adequate
notation is essential. Current object notations are inappropriate as languages for
pattern description. Each of the common object notations considers symbols
which are mapped to concrete constructors on Object-Oriented Programming
Languages (OOPL). The typical example is OMT used in the Structure section
of each pattern in the GoF catalog. The purpose of a notation should be to allow
a designer to transcend a pattern description in order to understand benefits and
risks of its application. In particular we are trying to avoid the following aspects
that are inherent of an informal notation (Flores, & Fillottrani, 2003), and also
attending on one side the analyzed aspects discovered from a textual description
of patterns, and on the other the objections on the use of formalisms — see
previous sections.

Precision

• Ambiguity: different interpretations from a poor structural description that
is even worsened by adding natural language narrative with the purpose to
clear some information.

150 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Incompleteness and vagueness: poor documentation to guide certain
pattern uses, by a confusing or undefined aspect, its complete absence or
the addition of undesirable aspects.

• Inconsistency: contradictory description which if not immediately clear,
become perfectly evident upon certain contexts.

Pattern Structure

• Meaningless entity relations: interrelations between design entities not
only should involve the syntactic part but most importantly a semantic
aspect. They describe a behavior of communication and cooperation
between entities.

• Deficient abstraction: OO generalizations give one of the reuse mecha-
nisms that help for a flexible development process, which together with
composition allow the variation of aspects described by patterns.

Pattern Model

• Benefit of patterns: a model of patterns may give a similar result with its
description, but should not worsen the application of patterns upon the intent
to provide precision.

• Object orientation: notations without object orientation must be carefully
analyzed since certain aspects described on patterns belong exclusively to
such a paradigm. Analogies of OO characteristics on a language may inject
an undesirable imprecision aspect.

These issues may deliver a more clear understanding on the need of applying
formality on a model of pattern instantiation, as an approach to approximate
the solution of appropriate pattern usage. However, this knowledge must be
properly used when such a model is actually developed. In the next section, a
collection of features is distilled from all the concerns detailed from the beginning
of this section, which could be used to evaluate different existing models.

Characterizing Patterns Models

A formal basis for a model of pattern instantiation should present certain
aspects to actually improve the process of pattern-based design. Some of these
aspects, however, could be either successfully achieved or deteriorated, depend-

Automatic Verification of OOD Pattern Applications 151

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Characteristic Description

01 – Mathematical Foundation Mathematical theory. Expressiveness. Concise set of symbols.
02 – Style Modeling mechanisms according to specification style.
03 – Visual Notation To easy modeling a solution to a problem.
04 – Structural Static description to abstract out environmental aspects.
05 – Behavioral Scenario-based description to represent dynamic aspects.
06 – OO Support Not loosing object orientation from OO patterns.
07 – Refinement Generalization, classification, specialization, abstraction. Static Reuse.
08 – Constraints To set conditions or requisites for different scenarios.
09 – Design-level Implementation Pseudo-code analogies at design level. Not losing abstraction.
10 – Understandability Easy to write and read specifications. Easy to communicate ideas.
11 – Extensibility Adding new aspects of the environment. Anticipation to change.
12 – Usability Concise formal apparatus to remember. Affects modeling, productivity.
13 – Multi-level Description at different levels of abstraction.
14 – Repository Management Easy to reuse and integrate specifications.

Table 2. Characteristics of formal languages

 Characteristic Description

01 – Model Type Kind of instantiation approach. Affects over a pattern-based design.
02 – Precision Not deteriorating pattern semantics. Try to give improvements.
03 – Completeness Solving ambiguities and incompleteness to understand patterns use.
04 – Design Heuristics Addition of design heuristics, principles and criteria. An improvement.
05 – Flexibility Capacity to precisely apply variations to patterns.
06 – Design-level Implementation Pseudo-code annotations to help describing entities collaborations.
07 – Extensibility Adding new pattern specifications or properties to existing specifications.
08 – Usability Learning curve to use the model.
09 – Repository Management Needed for pattern instantiation.

Table 3. Characteristics of formal models of patterns

ing on the selected formal language. Hence, on Tables 2 and 3, we present a
framework describing useful characteristics from both a pattern model and the
used language.
For these characteristics to be evaluated, we assume in general a not supported,
poorly supported, to very well supported value. Such linguistic values are
mapped to numerical values for easy of understanding, when generating graphics
for comparison, as can be seen on Table 4. From Table 2, however, character-
istics 01 and 02 describe general information and a numerical value. Character-
istic 03 assumes the values yes or no whether there is a visual notation or not,

152 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and they are mapped to values 5 and 3 respectively. Similarly, characteristic 01
on Table 3 describes the type of approach for pattern instantiation, and the value
is 3 for a top-down (T-D) approach and 5 for the two others.
We have carried out an evaluation from seven formal models of patterns, where
seven different languages were applied on their construction. Tables 5 and 6
show the results of the analysis, and Figures 3 and 4 presents a graphical
comparison based on the numerical-valued characteristics. As can be seen,
RAISE is one of such languages under evaluation since it was the language we
have used to build our model of pattern instantiation. Thus, we have compared
our model and the used language in order to understand benefits and drawbacks
by observing different other viewpoints. For a complete explanation behind the
analysis, we refer the reader to Flores and Fillottrani (2003).
From Table 5 and Figure 2 we can see that the languages satisfying the
characteristics with an acceptable degree are LePUS, RAISE, VDM++ and
UML. If a visual notation is a prerequisite, then the choice is centered around
LePUS and UML. However, whether the formal foundation must be rigorous,
we must take into account that UML presents serious lack on semantics. Indeed
RAISE is not a language with object-orientation characteristics, though its
formal apparatus allows both to easily develop an OO design meta-model and to
accurately represent such object-orientation aspects, as we have experienced.

Linguistic Values No Very

Poor Poor Regular Good Very
Good

Numerical Values 0 1 2 3 4 5

Table 4. Linguistic and numerical values for characteristics

Figure 2. Graphical comparison of formal languages

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

DisCo LePUS RAISE VDM++ S+R-Calculus UML Contracts

Automatic Verification of OOD Pattern Applications 153

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 5. Results from the analysis of formal languages

Table 6. Results from the analysis of formal models of patterns

N° DisCo LePUS RAISE VDM++ ς+ρ-Calculus UML Contracts
01 [3] T-D [3] T-D [5] B-U [3] T-D [3] T-D [5] B-U [3] T-D
02 3 5 5 4 4 4 3
03 3 4 5 4 4 4 3
04 2 3 5 2 2 2 2
05 2 4 5 2 2 5 2
06 2 2 4 4 2 4 2
07 4 3 4 4 4 4 4
08 4 5 4 4 3 5 4
09 3 4 4 4 2 4 4

N° DisCo LePUS RAISE VDM++ ς+ρ-
Calculus UML Contracts

01

[3] Strong
Math. basis.
For reactive

systems.
(TLA)

[5] Sound
Math. basis.

Formulae
on subset of

HOML

[5]
Rigorous,
based on
VDM-SL
and others
(ASL, ML,
OBJ, Larch,

etc)

[5]
Rigorous,

OO version
based on

VDM-SL.
Discrete

Math., Set
theory.

[4] OO
analogy of
�-Calculus.
Sound and
complete

[2] Not very
rigorous.

Useful Set
theory

[3] Specific.
based on
invariants

02

[3]
Imperative

[4]
Based on
predicates

[5]
Property

and model
based

[4]
Model-
based

[3]
Imperative

[3]
Imperative

[3]
Imperative

03 No Yes No No No Yes No
04 2 5 4 5 4 5 2
05 5 3 4 5 3 3 5
06 3 4 3 5 4 5 3
07 4 4 4 4 4 4 3
08 2 4 5 3 3 3 5
09 4 3 4 5 4 5 5
10 3 5 4 5 2 5 4
11 4 1 4 4 4 4 4
12 3 4 3 4 2 5 3
13 4 0 5 0 0 5 4
14 4 4 4 4 2 4 2

154 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

From Table 6 and Figure 3, it can be seen that our formal basis for pattern
application satisfies the characteristics with a high degree. Its level of complete-
ness on solving problems of imprecision is much higher than the other models.
This has been achieved at the design level by remarking principles and heuristics,
and also at the pattern level by precisely describing their deeply analyzed
properties.
In the next section, we present our formalization of a pattern instantiation model
where the characteristics of the framework will be remarked. In this way, the
reader may understand the requirements for an approach of pattern instantiation
and its likely benefits when applied to a design process.

A Formal Basis of OOD and Patterns

We have developed our approach based on a previously developed model
(Cechich, & Moore, 1999a, 1999b), which uses RSL — the RAISE Specifica-
tion Language (RAISE Group, 1992) — to formally specify properties of
patterns, in particular the responsibilities and collaborations of the pattern
participants. However, we significantly extended the scope of the model used
therein. Firstly, we have generalized the model so that it can describe an arbitrary
object-oriented design and not just the patterns as the previous model does.
Hence, our model can be characterized as a bottom-up approach, while the
previous model is considered a top-down approach for pattern instantiation.
Secondly, we include in our model specifications of the behavioral properties of
the design, specifically the actions that are to be performed by methods, which
were not specified in the previous model. And thirdly, we formally specify how

Figure 3. Graphical comparison of formal models of patterns

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

DisCo LePUS RAISE VDM++ S+R-Calculus UML Contracts

Automatic Verification of OOD Pattern Applications 155

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to match the design against a pattern. This allows us to formally specify the
patterns in such a way that their consistency and completeness can be checked.
We are also able to formally verify that a given subset of a design corresponds
to a given pattern.
There is also an important difference between the two models in the way the
dynamic aspects of the patterns are specified. In the previous model the
structural aspects are specified statically while the collaborations are specified
in terms of sequences of interactions. Now, both the structural properties and the
collaborations are represented statically, the collaborations being modeled partly
by the relations between the classes and partly by the requests the operations
make to other classes. The latter is incorporated by specifically modeling the
bodies of the methods.

OOD Metamodel

Our work of formalization has been organized in the form of seven main RSL
schemas, which describe a metamodel of a generic object-oriented design with
the addition of a mechanism to link pattern descriptions to elements of a design.
Those schemas are briefly described in Table 7, and details of the main aspects
of the whole specification are given afterwards.

Design Structure

A design is composed of a collection of classes and a collection of relations
between those classes. This is formalized as follows:

DDeessiiggnn__SSttrruuccttuurree = C.Classes × R.Wf_Relations

Table 7. RSL schemas forming the whole formal basis

Scheme Description
Types general definitions to the model.
Methods operations or methods that form a class’ interface.
Design_Class the structure and behavior of classes in a OO design.
Design_Relations set of valid relations that link classes on a design.
Design_Structure consistent link between classes and their inter-relations.

Renaming correspondence between names from design elements to those at a pattern level
— this helps to set the pattern roles that are played by design entities.

Design_Pattern set of generic functions that help to formally describe any design pattern.

156 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We assure a consistence on the link between classes and also include heuristics
on a design. To do this, the Design_Structure type is constrained to establish a
well-formed type by the function is_wf_design_structure, which is composed
of different sub-functions, each addressing a particular design aspect.

 WWff__DDeessiiggnn__SSttrruuccttuurree = {| ds : Design_Structure • is_wf_design_structure(ds) |}

is_wf_design_structure : Design_Structure → Bool
is_wf_design_structure(ds) ≡
 is_correct_design_class(ds) ∧ is_defined_class(ds) ∧ is_correct_name_relation(ds) ∧
 is_correct_name_rel_in_subclass(ds) ∧ correct_state_hierarchy(ds) ∧ not_allowed(ds) ∧
 correct_multiple_inheritance(ds) ∧ is_correct_invocation(ds) ∧ is_rqst_instantiation(ds) ∧
 is_implemented_signature(ds) ∧ is_impl_error_interf_inherited(ds) ∧ is_correct_res_f_param(ds)

A design class is composed of a set of methods that form its interface, a set of
properties that represent its state, and a type which can be “concrete” or
“abstract.” Every design class has a name that is unique on the entire design.
Thus we use the RSL map type to describe the correspondence between a class
name and its definition.

WWff__DDeessiiggnn__CCllaassss =
 G.Class_Name Design_Class, →

m

DDeessiiggnn__CCllaassss ::
 class_state : G.State
 class_methods : M.Class_Method
 class_type : G.Class_Type

Methods

Every method has a unique name into the interface of a class which together with
a list of parameters and a result forms the method’s signature. A method may
be only defined by its signature or may express a concrete functionality, that is,
being implemented. A special case is a method which describes a situation of
error.

 CCllaassss__MMeetthhoodd = {| m : Map_Methods •
 is_wf_class_method(m) |}

MMaapp__MMeetthhooddss = G.Method_Name Wf_Method →
m

MMeetthhoodd ::
 f_params : G.Wf_Formal_Parameters
 meth_res : Result
 body : Method_Body

An implemented method helps describing collaborations between classes.
Changes on the state of a class (by its variables) and some assignments for
returning results are described by the mapping variable_change. They are

Automatic Verification of OOD Pattern Applications 157

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

mainly produced by specific request’s, such as invocation of methods (belong-
ing to a given class) or instantiation to create objects. A request-list describes
the order of their occurrence into the body of an implemented method.

 MMeetthhoodd__BBooddyy == defined | error |
 implemented(variable_change : Variable Change,
 request_list : Request*)

VVaarriiaabbllee__CChhaannggee = {| m : G.Wf Vble Name-set Request_or_Var •
 is_wf_vchange(m) |}

RReeqquueesstt = Invocation | Instantiation | _

→
m

Design_Relation

A relation is described by the classes it connects, which are identified by means
of their class names. The relation has a specific type that may be inheritance,
association, aggregation, or instantiation. All relations are represented in the
model as binary relations, by identifying source and sink classes. We have
applied constraints to the definition of a relation as well as to the set of possible
relations that can be modeled in a design.

 WWff__RReellaattiioonnss = {| rs : Wf_Relation-set • wf_relations(rs) |}

DDeessiiggnn__RReellaattiioonn ::
 relation_type : Relation_Type
 source_class : G.Class_Name
 sink_class : G.Class_Name,

RReellaattiioonn__TTyyppee ==
 inheritance | association(as_ref: Ref) |
 instantiation | aggregation(ag_ref : Ref),
RReeff :: relation_name : G.Wf_Vble_Name ..,.

Renaming

The link from design elements (classes, variables, methods and parameters) with
corresponding elements of a pattern is defined by means of a mapping of names.
A design class may play more than one pattern role, and so can do the rest of the
design elements. A method or a variable (a relation name or a state variable) may
play pattern roles depending on a given class role —similarly for parameters with
respect to methods. Then a design matches a particular pattern if all the elements
in a design playing a pattern role satisfy its properties.

158 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 RReennaammiinngg = G.Class_Name ClassRenaming-set, →
m

CCllaassssRReennaammiinngg :: classname : G.Class_Name
 methodRenaming : Method_and_Parameter_Renaming
 varRenaming : VariableRenaming,

Then a design together with a renaming map which defines its correspondences
to a given pattern is described by the simple cartesian product type
Design_Renaming. This type is properly constrained in order to complement the
model with some consistency conditions.

DDeessiiggnn__RReennaammiinngg = DS.Wf_Design_Structure × Wf_Renaming

This has been so far a brief summary of the formalization concerning a generic
design and a mechanism for pattern applications. However, we still require a
precise description of patterns in order to actually achieve a solution on patterns
understanding. Thus, next section is focused on such a formal description for
design patterns.

Formalization of Patterns

Our model of patterns was separated into three working units according to the
purpose classification given by the GoF catalog. Thus the Formal Metamodel for OO
design was used to formalize creational, structural, and behavioral design
patterns from the GoF catalog. The reader may see the complete formalization
of patterns in (Aranda, & Moore, 2000; Flores, & Moore, 2000; Reynoso, &
Moore, 2000). In this section, we illustrate such a formalization through the
definition of the Decorator Pattern.

The Decorator Design Pattern

Sometimes requirements of a system include the addition of responsibilities to
individual objects instead of to an entire class. Perhaps the primary way of
achieving this is by inheritance: inheriting a responsibility from another class can
decorate every subclass instance. However, this is inflexible since the respon-
sibility is allocated statically, which means that a client is not able to control how
and when to decorate the component.
The Decorator pattern embodies another approach, where the component is
enclosed inside another object taking care to add the responsibility. The enclosing

Automatic Verification of OOD Pattern Applications 159

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

object, called decorator, conforms to the interface of the component it decorates
so that its presence is transparent to the component’s clients. In addition, it
forwards requests to the component and may perform additional actions (related
with the new responsibility) before or after forwarding. Decorators may be
recursively nested, which effectively allows an unlimited number of added
responsibilities. Figure 4 shows the structure of Decorator pattern.

Component, ConcreteComponent, Decorator, ConcreteDecorator, Client : GG..CCllaassss__NNaammee,
Operation, AddedBehaviour: GG..MMeetthhoodd__NNaammee,
component, addedState : GG..VVaarriiaabbllee__NNaammee

From Figure 4, the names of the classes in the pattern together with the names
of their methods and state variables, are defined as RSL constants as follows.
The formalization of the Decorator pattern is represented by the function
is_decorator_pattern, which collects all of the properties that were recognized
and properly analyzed. This helps to distinguish whether or not a design matches
this pattern.

is_decorator_pattern: Wf_Design_Renaming → Bool
is_decorator_pattern(dr) ≡
 one_component_in_hierarchy(dr) ∧ one_decorator_in_hierarchy(dr) ∧
 is_abstract_decorator(dr) ∧ has_parent_component(dr) ∧ decorator_client(dr) ∧
 decorator_relation(dr) ∧ store_unique_component(dr) ∧
 exist_concrete_component(dr) ∧ is_concrete_component(dr) ∧
 exist_concrete_decorator(dr) ∧ is_concrete_decorator(dr) ∧
 Ct_has_operation_defined(dr) ∧ CCt_has_impl_operation(dr) ∧ Dec_has_impl_operation(dr) ∧
 CDec_has_impl_operation(dr) ∧ CDec_has_extended_interface(dr)

Figure 4. Structure of decorator design pattern

Component

Operation ()

component
ConcreteComponent

Operation () Operation () component->Operation ()

Decorator

ConcreteDecoratorA ConcreteDecoratorB

Operation ()

addedState

Operation ()

AddedBehaviour()

Decorator::Operation;
AddedBehaviour()

http://www.pdfcomplete.com/1002/2001/upgrade.htm

160 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For example the function one_component_in_hierarchy constraints that the
Component role is played once in the pattern and stands for the root of a hierarchy
in which the leaves play either the ConcreteComponent or the ConcreteDecorator role.
Every class in this hierarchy can play only one role in the pattern (because they
have different properties) and no class in the hierarchy can play the Client role.
In a particular design, we may have a class playing the ConcreteComponent role that
has subclasses (specializations) which also may play the same role. That is, the
design heuristic which encourages to “factor out” common behavior and proper-
ties from related classes into a superclass — the process of generalization or
classification (Martin, & Odell, 1995; Rumbaugh et al, 1991). Hence, we allow
intermediate additional classes between the root and the leaves, which may play
the same roles as the leaves, that is ConcreteComponent or ConcreteDecorator. These
properties are specified using the generic function hierarchy from the
Design_Pattern scheme:

 one_component_in_hierarchy(dr) ≡
 hierarchy(Component, {ConcreteComponent, ConcreteDecorator}, {Client}, dr),

The Decorator class also forms the root of a hierarchy, where the leaves and
possible intermediate classes may only play the ConcreteDecorator role. However,
since Decorator is an abstract superclass which factors out the common interface
of its subclasses, it should be a direct subclass of Component (i.e., without
intermediate classes). We explicitly specify that Decorator class is abstract
whereas this is not needed for Component. Since Component contains an abstract
method (Operation) in its interface, then the class is abstract as well — this
property is built into our general model of object-oriented design; see (Flores, &
Moore, 2000, 2001).

 has_parent_component(dr) ≡ has_parent_direct(Decorator, Component, dr)
is_abstract_decorator(dr) ≡ is_abstract_class(Decorator, dr)

When a class role must be represented at the design level, we state this explicitly.
This is the case for the ConcreteComponent and ConcreteDecorator roles where we use
the function exists_role. As these classes represent actual components and
decorators in the system, they must be concrete. The function is_concrete
checks if a class is a concrete subclass of a given class — in this case Component
and Decorator respectively.

 exist_concrete_component(dr) ≡ exists_role(ConcreteComponent, dr),
is_concrete_component(dr) ≡ is_concrete(Component, ConcreteComponent, dr),

Automatic Verification of OOD Pattern Applications 161

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Decorator pattern provides a structure which allows a Client to refer to objects
without knowing whether they are decorated or not — all objects are accessed
uniformly through Operation methods in the Component interface. Clients should
therefore be linked to the Component class by either an aggregation or an
association relation.

 decorator_client(dr) ≡
 has_assoc_aggr_reltype(Client, Component, AssAggr, G.one, dr) ∧
 use_interface(Client, Component, Operation, dr)

For the previous interaction, one abstract method (defined) is needed playing the
Operation role in the Component class. Operation methods must be implemented in
ConcreteComponent, Decorator and ConcreteDecorator classes. Decorator class has a
specific implementation that simply forwards the method call to its component
state variable — specified by the function deleg_with_var.

 Ct_has_operation_defined(dr) ≡
 has_def_method(Component, Operation, dr) ∧ has_all_def_method(Component, Operation, dr),
Dec_has_impl_operation(dr) ≡
 deleg_with_var(Decorator, Operation, component, Component, Operation, dr),
 CCt_has_impl_operation(dr) ≡ has_all_impl_method(ConcreteComponent, Operation, dr),

The unique relation between the Decorator and Component classes is an aggregation
(Martin, & Odell, 1995). It has cardinality one-one since its purpose is to add one
and not many responsibilities at a time (Gamma et al, 1995). The name of this
relation, component, is a unique state variable which refers to the object that is
being decorated.

 decorator_relation(dr) ≡
 has_unique_assoc_aggr_relation(Decorator, Component ,dr) ∧
 has_assoc_aggr_var_ren(Decorator, Component, Aggregation, component, one, dr),
store_unique_component(dr) ≡ store_unique_vble(Decorator, component, dr)

Finally, we refer to the Operation methods in ConcreteDecorator classes. These
classes provide the “decoration” to ConcreteComponent classes, which can be done
either by adding new state variables or by adding new methods. In the first case,
an Operation in ConcreteDecorator might override a corresponding method in a
superclass, making an invocation to that method and additionally invoking other

162 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

methods on the addedState variables. In the second case, an Operation in the
ConcreteDecorator class might invoke a corresponding method in a superclass and
additionally invoke local AddedBehavior methods — as is shown on Figure 5. This
requires at least one implemented (concrete) AddedBehavior method, and to
describe both the invocation to the superclass (super) and the local invocation
(self) to AddedBehavior methods.

 CDec_has_extended_interface(dr) ≡
 (CDec_has_impl_added_behaviour(dr) ∨ CDec_stores_added_state(dr)) ∧
 (CDec_has_impl_added_behaviour(dr) ⇒ CDec_has_super_self_operation(dr)) ∧
 (CDec_stores_added_state(dr) ⇒ CDec_has_super_operation(dr)),

In the same way that Decorator pattern has been described formally in this section,
the rest of the patterns in the GoF catalogue has been properly specified as well.
We do not explain other specifications along this chapter so to hold the reader
mainly focused on the importance concerning formality instead all the details.
Thus, its application to solve impreciseness will be clearly understood, and it will
help to evaluate its usage as a back-end for an automatic tool support.
In the next section, we also provide some specific issues that a designer may find
useful to become skilled at the use of patterns, and help to clean any doubt from
the use of formalisms.

Rigorous Does Not Mean Inflexible

Along this section we have presented a more accurate description of a general
object-oriented design and patterns, based on the use of the RSL formal
language. However, one of the concerns presented in the second section
expresses that a formal description of design patterns could make too inflexible
the usage of patterns. As patterns were defined to be general enough for a wide
application on different contexts, the doubt is whether to apply formality could
narrow this scope. Nevertheless, we can positively claim that far from reducing
the range of use, we have achieved a model which precisely allows and describes
valid variations of pattern applications. Thus, we following present remarks of
different variants on the use of patterns — generically depicted in Figure 5 —
which are possible to be performed by means of our formal basis.
The list may help designers to learn possibilities which could be poorly described
in the consistent format description. Each item on the following list is presented
without a specific order, and references some specific sections from the
consistent format description given in the GoF catalog (Gamma et al, 1995).

Automatic Verification of OOD Pattern Applications 163

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6. Composite — Pattern and design levels

Hierarchy

A pattern structure usually shows an inheritance relationship between two
classes, however it does not mean there are only two levels in the hierarchy. In
fact, it usually means an inheritance hierarchy. Figure 5 depicts this issue in a
generic way.

Figure 5. Different generic applications of patterns on a design

164 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example:

• Composite: In Figure 6 we can see the Sample section of this pattern. In
such structure is depicted an instantiation where there is an intermediate
class between the Component class and the Composite leaf-classes. Further
explanations in Flores and Moore (2000).

• Prototype: The ConcretePrototype classes showed in the Motivation section
of this pattern (Figure 7), are not connected directly to the Graphic class, but
through the MusicalNote class.

Association vs. Aggregation

In some cases, an association relationship between two participant classes, can
be replaced by an aggregation relationship in a particular design, without
changing the intent of the pattern.

Example:

• Prototype: Following the example of Figure 7, the Client asks Prototype to
clone itself. This request is modeled by one association relationship
between Client and Prototype classes. Notice that GraphicTool is connected to

Figure 7. Prototype — Pattern and design levels

Automatic Verification of OOD Pattern Applications 165

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Graphic using an aggregation relationship, which is stronger than association.
This is not contradictory with respect to the pattern intent since Client can
manage with its responsibility, and collaborations can be carried out as well.

• Note: In the application of the formal general basis to the specification of
each pattern we have analyzed when it is possible to change a relation type
(full details can be seen in Aranda, & Moore, 2000; Flores, & Moore, 2000;
Reynoso, & Moore, 2000).

Additional Design Methods

It is always possible to include methods in the design that have not counterparts
in the pattern. They are important to the domain in which the pattern is being
applied but they do not change the behavior of the pattern participants.
Example:

• Prototype: in the Motivation of this pattern (Figure 7), the Draw method
does not play any method role in the pattern, but it represents an added
method in design which is related to the specific-domain of the graphical
editor.

Minimal Set of Methods

Although the set of methods represented in a pattern structure seems to be the
minimal set that a design should include, it is possible to omit few of them.
Example:

• Singleton: SingletonOperation and GetSingletonData are specific methods which
may or may not have a representative in design, without loosing the features
of a Singleton class. Further details in Aranda and Moore (2000).

• Observer and composite: those methods related to the management of
an object collection (Attach, Dettach in Observer; Add, Remove, GetChild in
Composite), are not completely necessary when there is another class in
charge of building their object structure.

Additional Design Parameters

If no parameters are included in a method definition of any class in a pattern
structure, it does not mean they are not allowed in a correct design. The fact they

166 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are not shown only means they are not significant for the family of designs the
pattern represents.
Example:

• Builder: The Sample section of this pattern presents an implementation of
the Maze problem. Although the method BuildPart is showed without param-
eters in the pattern, its counterparts in design: BuildRoom and BuildWall
methods, have some parameters. For a precise description, see Aranda and
Moore (2000).

Additional Design Hierarchy

Although a particular concrete participant could be shown in a pattern structure
as a “stand-alone” class (a class not included in a hierarchy), in a design it can
be part of a hierarchy. In other words, hierarchies in the structure of a pattern
are shown when the aspect that varies in the pattern can only be designed using
inheritance; however it does not mean that other participant can be included in
specific-domain hierarchies.
Example:

• Prototype: Can be seen in Figure 7 of this pattern, that GraphicalTool
representing the Client is in fact a leaf in the hierarchy with root Tool.

Note: our formal model includes this possibility, as can be seen in Aranda and
Moore (2000), Flores and Moore (2000), and Reynoso and Moore (2000).

Implicit Relations

In some patterns, the name of some methods and classes reveals relations
between classes involving semantic aspects.
Example:

• Visitor: The way each method of the Visi tor class is named
(VisitConcreteElementA, VisitConcreteElementB) indicates that each one is related
to a particular ConcreteElement (Reynoso, & Moore, 2000).

• Abstract factory: It is shown a more complex situation that establishes a
relation between ConcreteFactory and Product using two different indexes

Automatic Verification of OOD Pattern Applications 167

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(numbers and letters). For instance, the CreateProductA method of
ConcreteFactory1 class instantiates the ProductA1 (Aranda and Moore, 2000).

• Note: Our model does not implement this feature by restricting the names
of the methods. Instead, we constrain the way classes playing these roles
are related.

Inherited Methods

A method is shown as part of a given participant class in the pattern structure.
Though that method in design can be either defined in the owned interface of the
design class playing that participant role, or inherited from a superclass. This
feature is shown in a general way in Figure 5.
Example:

• Composite: in Figure 6, the methods Add and Remove in the leaves classes
(e.g., Chassis) playing the Composite role are inherited from the design
CompositeEquipment class where they are implemented (Flores, & Moore,
2000).

Factorized Relations

An association, aggregation or instantiation relation between two classes in the
pattern structure, may be modeled in design by means of a factorization. Let us
define PA and PB pattern participants, and DA and DB their counterparts in design.
If there is a relation from PA to PB in a pattern, in design the relation can be from
DA to DB as well as from a superclass of DA to DB. See a generic draw in Figure 5.
Example:

• Composite: in Figure 6, the relation with variable name children in the
pattern, is factored out in design to the CompositeEquipment class.

Brief Discussion

All of the third section has been intended to present a solution to the problem of
imprecision about the consistent format used to describe patterns. It has
uncovered not only an accurate description but also the variations of patterns
uses. So far it has gone beyond this objective by also providing an instrument to

168 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

identify good design practices by means of design principles inserted into the
formal basis core. Nevertheless, our intent is not to replace the original format
of patterns descriptions, but to provide a useful complementing mechanism.
We are still concerned with certain dislike of using formal languages to model and
communicate ideas — mostly on nonacademic or controlled working environ-
ments. Modeling is not a trivial task and the use of a visual notation may certainly
provide a practical way to capture aspects of a situation. Hence, we have been
also focused on the achievement of an agile design process without losing the
precision of our formal basis as we will see in the next section.

The Supporting Tool

We have developed a tool for graphical modeling, where the formal model serves
as an instrument to verify whether patterns are properly applied and the design
satisfies the required modeling principles. The importance of implementing a
supporting tool comes from the fact that successfully applying formal notations
strongly depends on its acceptance by a wide community of developers. This tool
allows developers to introduce verification into the development process without
requiring high investments in learning formalisms or dramatically changing the
process itself.
Basically the tool is divided into two layers. The Modeling layer, whose result is a
specification of an OO design model provided by a graphical component; and the
Verification layer, which carries out the process of checking the correctness of the
design model. It also matches part of a design to a specific pattern by satisfying
the pattern properties (Aranda, Flores, Buccella, & Reynoso, 2002; Reynoso,
Aranda, Buccella, & Flores, 2002). The following sections describe the main
components of the two tool’s levels as well as some design decisions and details
of the documentation.

The Modeling Layer

Many tools providing a graphical component for modeling object-oriented
designs have already been developed with a proved success. Thus, we have
decided to choose one of them and thus concentrate our major effort on the field
where less work has been done so far. We have selected a non-commercial tool
called Fujaba (Fujaba, 1998; Klein, Nickel, Niere, & Zündorf, 2000; Nickel,
Niere, Wadsack, & Zündorf, 2000), which was developed in the Java language.
After modeling a particular object-oriented design solution, the tool may produce
a Java specification of such a design.

Automatic Verification of OOD Pattern Applications 169

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The functionality of Fujaba is close to our expectations. However, according to
our formal basis, a new behavior needs to be developed in order to be able to
represent an entire object-oriented model in which a pattern has been applied.
The extended functionality is related, for example, to the annotations attached to
methods of classes, which help to describe collaborations between classes.
Other important behavior concerns the possibility of selecting a particular pattern
from a pattern repository and setting which pattern roles are played by different
entities at the design level.
Figure 8 shows the graphical user interface (GUI) of Fujaba, with the added
functionality: a specific menu item for selecting a pattern to be applied, and a tool
bar consisting of three parts. The first part, which was also added to the Class
menu item, concerns the setting of roles from the selected pattern to a class
(yellow*), a relation (green*), an attribute (light blue*), and a method (pink*).
The second part, which was also included into the Pattern menu item, involves
the selection of a design pattern. The third part, which was also added to the
Tools menu item, concerns the possibility of exporting an extended Java
specification (which is explained in the next paragraph) from the visual diagram,
and also checking correctness of a design and the applied pattern.
Some other necessary changes, mainly concern the notation of the object-
oriented model given by a Java specification. Thus, our particular extended Java
specification includes, for example, a simplification in the representation of an
aggregation relation, as can be seen in Figure 9. This helps reducing the
complexity of the grammar for the Parser involved in the verification step —
explained in the next section. Pattern roles and other design or pattern elements
are expressed adding “comments” in the Java specification.
We must say that we did not change but extended the existing functionality of
Fujaba. Thus, its back-end continues unaffected and only the GUI was updated
to incorporate the front-end of the new behavior. For example, the regular Java
code can still be generated for other purposes but the verification of appropriate-
ness on a pattern usage.

Figure 8. Fujaba’s GUI with menu and tool bar extensions for pattern
verification

To Set Roles from a chosen Pattern To Select a Pattern To Export and Check Design&Pattern

170 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Next we explain the layer concerning the verification process, its internal
components, and a diagrammatic view of the whole process of verification.

The Verification Layer

The Verification Layer is composed of four main components as can be seen in
Figure 10, where a component diagram showing the components of and their
interdependencies, is presented. Each component, the interfaces and depen-
dency relationships are described below. Some of them are described in terms
of their interfaces and subcomponents, and others are informally mentioned for
brevity reasons.

The Coordinator Component

The intent of this component is to coordinate the verification process accordingly
using each component at a time. Once the Java specification from the graphical
component is produced, the coordinator calls the Java parser and instantiation
component to obtain an object structure (representing an instantiation of the

Figure 9. Aggregation relation on a regular exported Java code and an
extended Java specification

 /**
 * UMLClass: 'DesignClassA'.
 */
abstract public class DesignClassA
{
/**
 * <pre>
 * /\ 0..1 aggrRel_ab 0..n
 * DesignClassA < >----------------------------
DesignClassB
 * \/ designClassA designClassB
 * </pre>
 */
 private DesignClassB designClassB;

Regular Java Code

/**
 * UMLClass: 'DesignClassA'.
 */
abstract public class DesignClassA
{
/*@
 @Aggregation aggrRel_ab DesignClassA @One
DesignClassB @Many
 @*/

 private DesignClassB designClassB;

Extended Java Specification

Automatic Verification of OOD Pattern Applications 171

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OOD and pattern metamodel component) as a result. Then the coordinator
invokes different functions of the object structure in order to verify design
constraints. If the result is successful, the coordinator will invoke the pattern
metamodel component to check the pattern constraints with the aim to assure the
correct use of a specific pattern.

The Java Parser and Instantiation Component

This component should parse the Java code generated by the graphical compo-
nent in order to create an object structure which represents a valid instantiation
of the OOD metamodel and pattern metamodel. The way the component uses
services of the last two mentioned components are described later in this section.
In addition, error codes are returned to the coordinator component, generated
during the parse process or the creation of an instance of any metamodel.

The OOD Metamodel Component

This component corresponds to the Java translation of the OOD formal model
presented in the third section. It will be referred in this chapter using its acronym
OOD-M. The schemes division presented in that section allowed making a useful
partitioning of working units during the translation process. Thus, we have
decomposed the OOD-M component into four subcomponents where
meta_methods involves functionality of the scheme method, a meta_class
involves functionality of the design_class scheme, and so on. Figure 11 shows a
detailed diagram of this component.

 Design _Elements_
Constructors

OOD
Metamodel
Component Well-formedness_

 Design_Properties

Public_Design _
Properties_
Dependecy_
Relationship

Execution_
Management

Java Parser and
Instantiation
Component

Coordinator
Component

Pattern_Element_
Constructors

 Well-formedness_
 Pattern_Properties

Patterns
Metamodel
Component

Figure 10. Component diagram of the verification layer

172 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Two different kinds of interfaces and a dependency relationship were identified
in the OOD-M Component, as is shown in Figure 10. Following we present a
short description of them:

• Design_Elements_Constructor Interface
Used by: Java Parser Component,
Intent: Provides an interface for constructing elements of the OOD
metamodel in order to generate a possible metamodel instantiation. The
parser and instantiation component could access directly to the class
constructor of the metamodel. If it does so, it might also access the behavior
of the created object, which should not be allowed. That is why the
instantiation component should only see a narrow interface, which provides
a service of creating an object structure to represent an instantiation of the
metamodel.
Data returned: According to the method being invoked, an instance of an
element or composed element of the metamodel is returned.

• Well-formedness_Design_Properties Interface
Used by: Coordinator component
Intent: Provides an interface for verifying correctness of design properties.
Data returned: Whenever a constraint is violated, an appropriate error code
is generated. Other facilities of error management are provided as well.

• Public design properties dependency relationship
Used by: Pattern metamodel component.

The pattern metamodel component is dependent on the OOD-M compo-
nent, since it calls specific methods on the component. Although the
communication is two-way (since the OOD-M component returns data),

Meta_
Methods

Meta_
Class

Meta_
Relation

Meta_
Design_
Structure

Figure 11: Component diagram of OOD-M Component

Automatic Verification of OOD Pattern Applications 173

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Renaming General Pattern
Properties

Properties of a
Specific Pattern OOD

Metamodel
Component

Public_Design
_ Properties_
Dependecy_
Relationship

Figure 12. Component diagram of pattern metamodel component

the OOD-M component is not aware of who is calling it and it does not
depend on the pattern metamodel component.
Intent: Provides a set of design properties which must be of public access
for defining pattern properties.
Data returned: A boolean condition of the invoked property and error
codes.

The Pattern Metamodel Component

This component represents the Java translation of the renaming scheme and
design_pattern scheme presented in the third section and the formal specifica-
tion of GoF patterns have been described (Aranda, & Moore, 2000; Flores et al,
2000; Reynoso, & Moore, 2000). Thus, it is conformed by three subcomponents:
renaming, general pattern properties and properties of a specific pattern. It calls
specific methods of the OOD-M component in order to accomplish verification
activities of pattern properties. This is shown through a dependency relationship
in Figure 12. This component has two interfaces: patterns element constructor
interface and well-formedness pattern properties; their intent and data results
are analogous to those described in the OOD-M component.
The next section shows how the components of tool participate in a modeling and
verification process when a designer applies a pattern on a particular design.

The Process of Verification

Figure 13 shows, in a diagrammatic way, the whole process for correctness
verification when modeling a design by means of the tool support. Briefly, the
process involves a designer drawing the design elements (classes, methods, and
so on), and also selecting a specific pattern from which the setting of roles could
be carried out. After that, the designer may choose to export an extended Java
specification from where the verification tasks could be initiated.

174 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The designer may choose to check only the design for correctness on design
principles and heuristics that should be exhibited by the design. The other option
also includes checking whether the pattern has been correctly applied. For both
options, the first step is to generate an object structure from the extended Java
specification — task of the parser and instantiation component. Then the
verification of design is carried out by invoking the ad-hoc services. If no error
occurs this step is considered successful; otherwise, a set of errors is returned
to be showed in the Fujaba’s GUI. If the selected option includes the verification
of a pattern application, the next step (in case the design checking has been
successful) is to instantiate the objects representing the selected pattern. Then
the checking is initiated by invoking the ad-hoc services on the previously
generated objects. The results are shown in the Fujaba’s GUI. Thus, the designer
may correct what is needed (in case of error).
The following is a brief summary of the procedure of translation of different RSL
aspects to the Java language (Flanagan, 1997; Grand, 1997).

Translation of RSL Structures into Java

As we have pointed out in the second section, RSL is a language of a wide
spectrum which is property and model oriented. Thus, specifications generated

Figure 13. Internal process of design and pattern verification

3. Generating the object structure,
representing each design element
as an object, from the OOD
Meta-Model

.jar

:Design
Structure

Class Class Class :Class

Relation Relation Relation :Relation

Methods Methods Methods :Methods

Variable Variable Variable :Variable

Variable Variable Variable :Variable :Design
Renaming

:Renaming :ClassRenaming
:ClassRenaming
:ClassRenaming

:MethodRenaming :MethodRenaming
:MethodRenaming

:VariableRenaming
:VariableRenaming :VariableRenaming

1. Modeling a Design, and
setting the pattern roles.

2. Exporting an Extended
Java Specification for
Verification

:Design
Pattern

:Specific
Pattern

5. Generating the objects with properties
from the selected pattern

6. Checking the pattern properties:
 Return results (success or errors)

4. Checking the design correctness:
 If no error then proceed

Automatic Verification of OOD Pattern Applications 175

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

from this language may be quite abstract with respect to what can be developed
on a programming language. In fact, on the RAISE method (RAISE Group, 1995)
there is a particular set of conditions and tools to assure an appropriate transition
from abstract to imperative specifications. However, we have done this process
manually, but at the same time with a very rigorous analysis of structures and
data types on the involving languages to maintain the semantic exhibited by the
RSL specification (Hoang, & George, 2000). Hence, following we list some
aspects to be considered on a translation from RSL to any programming
language.

• RSL structures that help to describe aspects from an abstract viewpoint,
such as axioms, pre- and post-conditions, quantifiers, and so forth.

• RSL structures with a direct translation. This involves many algorithmic
pieces of an RSL specification.

• Some particular structures on a programming language that are necessary
to be used, but for which there is no immediate correlation on RSL
structures. They include some data structures like arrays and lists, and
special mechanisms like exceptions.

• RSL specifications may contain data types whose range of values could be
arbitrarily large or infinite — for example, int. Similarly for the real data
type that has a property of arbitrarily precise values. Whether precision and
range of values is not a critical aspect, they could be represented by the data
types float or double.

The following are the details of the performed procedure of translation. We
expose the reasons of different decisions made under the purpose of providing
a rigorous equivalence between the two languages.

Some Translation Details

In our model, modules in RSL correspond to Java classes; although the formal
specification consists of a list of modules defined in any order, while Java
imposes a particular order for creating and instantiating classes. To build a
component, we use the package specification-classes. It creates a reference
space for all component’s classes and represents a code distribution unit.
Following we describe some issues distinguished during the translation process:

• Type equivalence: In RSL, two types are structurally equivalent if and
only if they are the same basic type, or they are produced by the application

176 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the same constructor to structurally equivalent types. Rather, in Java two
different type definitions produce two different and not compatible types,
even though their structures might be the same.

• Equality: both RSL and Java languages supply similar equality operators.
They only differ in implementation preserving their meanings.

• Schema declaration: There is no correspondence between an RSL
scheme and structures in Java. However, the class definition is the closest
option when comparing functionality and the possibility of parameteriza-
tion.

• Object declaration: Although RSL is not an object-oriented language, its
expressiveness allows us to represent objects, though it does not have the
same visibility of a definition (public/private).

Some examples of translation are given as follows:

• Type declaration: The name of an RSL type corresponds to the name of
a Java class, and the state variables on the formal specification represent
the variables in the state of Java classes

• Functions: Parameters on RSL represent a cartesian product of types. In
the formal model, some parameters represent an important aspect, and as
such in Java they may represent the object which will receive the
corresponding function (in the form of a method) as a message. That is,
such parameter is represented as a class containing such function as a
method into its interface.

 RSL:
 type
 Actual_Signature ::
 meth_name : G.Method_Name
 a_params : G.Actual_Parameters

Java:
 public class ActualSignature
 {
 private String meth_name;
 private Vector a_params; }

• Structured expressions: the let expression allows introducing local
names into an RSL proposition. The translation is in the form of local
variables into a method. The RSL if expression involves the same definition
as in the Java language.

• Quantified expressions: RSL quantified expressions are emulated by
means of Java conditional sentences while and if.

Automatic Verification of OOD Pattern Applications 177

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 RSL:
 value
 is_wf_formal_parameters :
 Parameter → Bool

Java:
 public class Parameter
 {
 public boolean is_wf_formal_parameters(); }

• Recursion: both RSL and Java, allow recursive functions.

Documentation of Components

We have used a standardized documentation to components of the tool, since
they must support interoperability with other components and also to ease the
composition. Thus we have used the specification provided by OMG (2004)
(Jacobson, Christeron, & Overgaard; SUN), which exposes a detailed profile to
model technologic artifacts according to the development stage. Such profiles
are briefly summarized as follows:

• Component collaboration architecture (CCA): details how UML
diagrams (UML Consortium) (classes, collaboration and activity) could be
used to model structure and behavior of components.

• Entity profile: describes a set of UML extensions that may help modeling
domain concepts as objects, which can also be combined.

• Business process profile: specializes the CCA and describes a set of
UML extensions to conform business rules for a domain context.

• Relation profile: describes extensions in the UML core in order to allow
a rigorous specification of relations.

In the following sections, we exemplify the whole documentation of the
components comprising the tool support, by means of the OOD-M component.

Design Structure Component

We base the documentation of this component on the entity profile, and we use
the UML diagrams of classes and collaboration to represent its elements.
This component provides functionality to instantiate objects for composing the
representation of a design that is graphically modeled by a user. It also allows to
verify the object structure and delete some of the comprising objects. As we
have shown at the beginning of this section, the component provides such
functionality by means of particular interface access points. Thus, we have

178 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

created a Java interface, called OOD_M_Interface, which allows encapsulat-
ing the inner classes comprising the component. Figure 14 shows the interrelation
of classes comprising the component.
The OOD_M_Interface interface is actually an application of the Facade design
pattern (Gamma et al, 1995), and it involves the following responsibilities:

• Providing the glue for classes which are truly responsible of handling
external requests.

• Delegating requests from external entities to proper inner objects.
• To hold the instantiated objects inside its structure.
• Implement the logic associated to management of inner objects.

Figure 15 shows the class implementing the interface OOD_M_Interface,
including the signature of its methods and its state variables. State variables are

Figure 14. Class diagram of classes from the pattern metamodel component

Variable
s variables : HashSet

Invocation
call_vble : String

Paramete
r

ParamType
d className : String

paramName : Vble_Name Var

Method_Body_Implemented
request_list : Vector

Instantiation
a_params : Vector
class_name : String ActualSignature

a_params : Vector
meth_name : String +call_si

g

Design_Structure
classes : Classes Classes

classes : HashMap 1..
* 1 +classe
s

Clas
s class_state : HashSet

class_type : String
1

1
Class_Method
s map_methods : HashMap

0..
* 1 +class_method

s

Method
meth_res : HashSet 1..

*
1

Formal_Parameter
s parameters : Vector

1..
* 1 1 1 +f_param

s Vble_Name
variable_name : :String

1
1

+param_nam
e

*
1

+var
Method_Body

tipo : String
1

1
+body 1..

*

1
0..
* 1 +variable_name

Request
1 0..

*
1

1..
* 1

1..
* * Variable_Name

variable_name : String

1

Request_or_Var 1..
*

1
1..
*

OOD_M_Interface

Variable_Change
vchange : HashMap

Automatic Verification of OOD Pattern Applications 179

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in charge of keeping the component’s configuration during an instantiation
procedure. The component’s services can be classified according to their
functionality into four groups as follows:

• Component initialisation: Represents actions performed by the con-
structors methods upon requirements of new instances of the component.

• Design structure load: information to be created from the
Design_Structure Metamodel, is stored using instances which form the
inner structure of the component.

• Design structure verification: objects holding information from an
instantiated OOD-M structure are verified.

• Deletion of instantiated objects: objects that comprise the OOD-M
structure may be eliminated either during the load of the structure or after
the structure is completely instantiated.

Figure 15. Interface of the OOD metamodel component

OOD_M_Interface
- ds: Design_Structure
- class_methods: Class_Methods
- _classes: Classes
- _class: Class
- m: Method
- method_body: Method_Body
- method_body_implemented: Method_Body_Implemented
- instantiation: Instantiation
- invocation: Invocation
- vector_method_result: Vector

+ OOD_M_Interface() : Design Class

+ delete_class(String) : boolean
+ delete_method(String) : void
+ delete_ formal_Parameter (String) : void

+ load_domain_Variable_Change(Vector) : void
+ load_Variable_Change_Instantiation(Vector, String, Vector) : void
+ load_Variable_Change_Invocation(Vector, String, String, Vector) : void

+ create_Class(Vector, String, String) : void
+ create_method_with_body(String, Vector) : void
+ create_method_no_body(String, Vector, String) : void
+ create_Variable_Change() : void

+ is_wf_class(String) : boolean
+ is_wf_class_methods() : boolean
+ is_wf_design_structure() : boolean
+ is_wf_formal_parameter(String, String) : boolean
+ is_wf_method(String) : boolean
+ is_wf_vble_change() : boolean
+ is_wf_method(String, String) : boolean
+ is_wf_vble_change(String, String) : boolean
+ is_wf_formal_parameters() : boolean
+ is_wf_class_methods(String) : void

- . . .

+ . . .

Initialisation

Loading

Verification

Deletion

180 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this section we have seen the internal pieces of the tool support, the design
decisions during their construction, and the way these pieces operate on the
modeling and verification steps. In the next section, we focus on the design as
a process of modeling and verification by means of the application of patterns and
the use of the tool support.

Pattern-based Design Process

There are clear benefits of applying patterns to a design concerning the flexibility
to face different changes — for example, user requirements, data structures or
algorithms, platforms, social environment, and so on (Gamma et al, 1995; Ghezzi,
Jazayeri, & Mandrioli, 2002; Prechelt, Unger, Tichy, Brössle, & Votta, 2001).
However, the application of patterns as well as modeling a design, does not
concern simple tasks. OO designers should be capable of building models with
certain quality properties, which have been considered relevant for the project.
This lead a developer to analyze, for example, how to make a design easier to be
modeled, modified, understood, and so on. We refer here to the well-known
design principles, criteria, and heuristics, which indeed useful are not so easily
satisfied in a particular model solution.
Nevertheless, a designer would be highly benefited by utilizing a supporting
media, which may identify the missing desire aspects. Therefore, the usefulness
of our tool relies not only in providing some help to verify a correct pattern usage,
but also in assisting on the application of such design fundamentals into the user
design solution.
In this section we present some changes that the application of patterns induces
to an OO design process. In addition, the presence of the tool support for
modeling and verification has been incorporated into such a pattern-based design
process. In the following, we make explicit the changes suggested to the design
process. After this, we will illustrate such a process by means of a simple but
consistent case study, which involves the application of patterns.

A Changed Process

In previous subsections we have described the internal steps which are per-
formed by the tool support to carry out the verification of correctness of a design
and patterns. Now, we present the changes realized on the design process in
order to include the application of patterns and both phases of verification —
design and patterns. Thus, Figure 16 depicts the changed pattern-based design

Automatic Verification of OOD Pattern Applications 181

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

process where modeling and verifications are supported by the automatic tool.
We describe both the comprising steps and the sequences of involving actions in
the following:

1. This action receives the collection of requirements to create the initial
design model. The graphical component of the tool is used.

2. This action is performed after an initial model has been created. It intends
to verify the current state of the design model. In this step it is not possible
to choose the verification of both design & pattern, since no pattern has been
applied yet. Before verifying the design, an extended Java specification
is exported.

3. This action is performed after the initial step. It intends to apply a pattern.
For this, the designer selects a specific pattern and sets their roles on each
of the corresponding design elements. The tool includes menu items, tool
bars and dialog boxes to perform this step.

4. This action produces a return to the initial step for the addition/update of
design elements.

5. Idem action 2, and after the application of a particular pattern. Here the
designer may choose to verify only the design or execute the verification
of design&pattern.

Figure 16. Pattern-based design process with automatic design&pattern
verification

Requirements Specification

Design
Verification

Pattern
Verification

.jar

Design
Modeling

Pattern
 Application

1

2

4

5

7

6

8

3

182 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

6. This action could be initiated after actions 2 or 5, and produces a return to
the initial step. Here an erroneous result is returned from the verification
of design. This is done from the internal process of verification located into
the tool, and then showed to the designer by means of a dialog box.

7. This action is initiated after action 5 where the designer has chosen the
verification of design but also the applied pattern. Since the previous step
has been successful (verification of design), the verification of the applied
pattern is carried out.

8. This action produces a return to the second step. It returns the results from
the verification of an applied pattern. The result, which can be successful
or a set of errors, is shown to the designer on a dialog box.

The whole pattern-based design process with the inclusion of automatic verifi-
cation for design and patterns could be seen as iterative cycles of modeling and
verification as Figure 16 and Figure 17 describe. Such cycles are not only
meaningful to the achievement of a successful pattern-based design as a
resulting product, but also to the learning process that a designer would certainly
realize. Initially, the learning process may involve several of those cycles until
designers produce the necessary insight into their minds. Nevertheless, we might
suppose that the usual phenomenon of “internalization” of every learning process
would significantly reduce the number of cycles on a certain interval of time.
In the next section we illustrate this updated process by means of a simple case
study.

Figure 17. Modeling and verification cycle in the pattern-based design
process

Design & Pattern
Verification

Design Modeling
&

Pattern Application

Automatic Verification of OOD Pattern Applications 183

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Case Study

Let us suppose we have to develop a management system for a library. The
library contains books and magazines which correspond to printed items. In
addition, recorded material is available as video and DVD. All these items can
be lent to people in two ways: being accessible only to be managed into the
library, or being able to take them outside the library for some days. Such ways
of lending library items are dynamically defined according to decisions made by
librarians on different moments. In such way, items can sometimes exhibit one
or even the two lending forms. Information from borrowers is recorded in order
to keep track of destination of items. From this domain description, the software
system should provide information to be properly displayed on a user interface.
For example, the number of items currently available in the library; those that
have been lent inside the library; and those that have been lent to be taken away
for few days.
We could start modeling our design by considering only the library items, without
taking into account lending procedures on them. Figure 18 shows a possible
hierarchy of items classified according to the source of the material (printed/
recorded). Objects in this hierarchy should include the number of copies of each
library item and the responsibilities to display their stored information.
On a second step, we can focus on the conditions that make an item available to
be lent. Here, we could think that the responsibility to manage the information
concerning the current number of copies, and the destination of lent items,
corresponds particularly to those items.
However, an item can be borrowed in two different ways, so two different
responsibilities should be added to the representative classes. Additionally,
librarians may dynamically assign one lending way on one time, and then change
to the other on another time, or even make the item to be lending on the two ways
as well. Hence, such responsibilities should be incorporated to the objects in a
dynamic form too, and this make us think about the application of a “pattern.”

Figure 18. Initial hierarchy of library items

LibraryItem

Printed Recorded

Book Magazine Video DVD

184 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Thus, we start searching the appropriate pattern and we decide that the right
choice should be the “decorator” pattern.
Thus, we update the diagram in Figure 18 to include considerations from the
previous discussion and also representing borrowers, as shown in Figure 19.
Items from this model can be managed to store the available number of copies,
and also to dynamically receive a particular condition for being borrowed, which
is assigned and changed by librarians.
Since we would like to know whether this pattern has been properly applied, we
use our tool to select the use of this pattern and then set their roles on the
corresponding design elements. Figure 20 shows menu items or tool bar items
that could be used to select the pattern.

Figure 20. Establishing the use of decorator pattern by means of the tool

Selecting the Decorator Pattern

 LibraryItem

 Display()

Printed

Recorded

Book

 Display()

Magazine

 Display()

Video

 Display()

DVD

 Display()

Decorator

 Display()

Borrowable

 Display()
 BorrowedBy()

Accessible

 Display()
 AccessedBy()

Borrower

 GetData()

libraryItem

borrowers

Figure 19. Model of library with application of decorator pattern

Automatic Verification of OOD Pattern Applications 185

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 22. The whole library model displayed by the tool

Figure 21. Setting the component role on the LibraryItem class by the tool

In addition, Figure 21 shows the setting of the component role on the libraryitem
class by using menu items and dialog boxes. All pattern’s roles are instantiated
in a similar way by using the appropriate tool bar or menu items, and the
corresponding dialog boxes. Figure 22 shows the display screen displayed to a
designer when modeling the current case study.

186 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Now, we must check whether the design model and the applied pattern exhibit
the expected adequacy. To do so, we select the option to “Export and Check
Design&Pattern” (as shown in Figure 23). This selection triggers the whole
process of verification described in the previous subsection.
In this case, we have correctly satisfied the required aspects both at the design
and at the pattern level, so the two phases of verification produce a successful
result, though in case any kind of error is generated during one of such phases,
they are explicitly showed to the designer by means of a window message. It
helps the designer to understand situations where a variation of a pattern
produces a bias from the pattern intent. Even when the selection of the pattern
is still a task to be performed by the designer, the accuracy on the pattern usage
might be fairly satisfied.

Conclusion

Design patterns are a valuable tool for OO designers. There are a number of
pragmatic benefits from using design patterns, and of course, there are also a
number of common problems. For example, some design patterns are simply too
difficult for the average OO designer to learn. In some cases, the pattern is
inherently complex; in other cases, it is given a name and a description that are
not obvious. Whatever the cause, pattern understanding is a practical problem
when they are adopted by an organization.

Figure 23. Initiating the process of verification on the tool

Automatic Verification of OOD Pattern Applications 187

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In practice, an OO designer needs personal time and personal initiative to
become skilful in design patterns. For example, a design pattern may be used in
a toy example before it can be used in the real case; a real case may be verified
against the application of pattern’s properties; and so forth. The main issue here
is that every OO designer should learn how to apply design patterns.
Learning processes might be facilitated through improving understanding of
semantics behind the patterns. Several reasons to formalize patterns were
discussed in the second section; however, current formal notations for charac-
terizing pattern models mainly rely on descriptive concerns — that is, the formal
notation suggests a more specific meaning of pattern’s elements as modeling
building blocks.
Verification of pattern’s properties adds another exploiting dimension to formal
notations. Patterns can be used to build robust designs with design-level parts
that have well-understood trade-offs. Using our supporting tool for the learning
process might facilitate pattern understanding, and hence improve the whole
design process. By means of a graphical user interface, an OO designer may
model a particular design allowing the tool to check properties and different
circumstances of application. Thus, designers with regular skills on both OO
graphical modeling and design patterns may now take advantage of a rigorous
back-end derived from our formal basis for OO design and pattern application.
They do not need to have a background on formal languages and still may be
benefited by a formally described Metamodel.
Besides, our supporting tool may facilitate learning by allowing experimentation,
which identifies semantics of applications according to the formal model behind
the tool. It allows us to compare different situations on several different contexts
and detect whether a pattern is appropriately used to solve a specific design
problem (Reynoso et al, 2002). As a consequence, the design process as a whole
is improved by using a reuse technique — patterns — supported by automatic
verification of their properties.
Since we are aware of the current running projects using the Fujaba tool (Fujaba
Home Page), we expect to move forward to produce a transformation of our
deployed product into a plug-in, which any current Fujaba’s user could
download to improve the tool he/she already uses. For identification purposes,
the plug-in is named DePMoVe (Design and Pattern Modeling and Verifica-
tion).
Diversity on contexts of use is quite outstanding for experimentation. Naïve OO
designers may test different aspects of patterns through systematically using our
supporting tool during their training period. Then, trainees will iteratively learn
and check new knowledge, which facilitate understanding. Expert OO designers
might take advantage of this process too. They could use the tool to improve
current designs by experimenting “what-if” situations on different alternatives.

188 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Information collected from experiences in the different cases will increase
knowledge on the use of patterns, which in turn improve future uses of the tool.
Patterns and their variations are stored for future analysis; hence sharing
knowledge among OO designers is also possible.
So far, the tool has been used in the context of training students. Results show
a time reduction in learning, compared to similar courses without using the tool.
Additionally, the number of errors introduced in the design highly decreases.
However, we are aware that more empirical evaluation is needed to quantify
advantages on the use of the tool. To do so, the tool is currently being checked
on academic as well as industrial environments. Firstly, we have grouped
designers according to their profile — beginners and advanced — to reduce
effects of different backgrounds on the same sample. Beginners designers are
those who initiate using patterns, thought they are already skilled in object-
oriented practices. Advanced designers are those who regularly use design
patterns, but they show some difficulties at dealing with variations of particular
patterns. Both groups of designers come from different organizations —
academic and industry. For each of them, a domain problem has been selected
to be solved by applying patterns. Secondly, domains have been evaluated to
select cases where complexity is similar, hence the working domain is considered
uniform among the different cases (reducing influences on future conclusions).
Beginners were split into two sub-groups and only one of them is currently using
our process and tool (the other group is solving the problem domain by using
patterns through traditional learning processes). In a similar way, advanced
designers were split into two groups — one of them using our process and the
other traditional object-oriented design practices.
Results will be analyzed in terms of learning time for beginners, development
time for advanced designers, and number of errors introduced in the design
(considering an error as a wrongly use of a pattern).
Experiments and results will be available at http://giisco.uncoma.edu.ar.

Acknowledgments

Our work was developed under the GIISCo/UNComa research projects 04/
E032, 04/E048, and 04/E059 (http://giisco.uncoma.edu.ar/); and the UNU/IIST
research project “Formalization of GoF patterns using RSL” (http://
www.iist.unu.edu/home/Unuiist/newrh/II/1/2/11/page.html).

Automatic Verification of OOD Pattern Applications 189

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Alagar, V., & Lämmel, R. (2002, October 22-25). Three-tiered specification of
micro-architectures. In Proceedings of the 4th International Conference
on Formal Engineering Methods (LNCS 2495), Shanghai, China. Springer-
Verlag.

Aranda, G., Flores, A., Buccella, A., & Reynoso, L. (2002, May 16-17). Tool
support for verifying applications using object-oriented patterns. In Pro-
ceedings of the 4th Argentinean Workshop of Researchers on Com-
puter Science (pp. 253-257). Bahia Blanca, Argentina: RedUNCI.

Aranda, G., & Moore, R. (2000, August). GoF creational patterns: A formal
specification (Tech. Rep. No. 224). Macau, China: UNU/IIST. Retrieved
from http://www.iist.unu.edu

Booch, G. (1994). Object oriented analysis and design with applications.
Benjamin/Cummings.

Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P., & Stal, M. (1996).
Pattern-oriented software architecture: A system of patterns. Chichester,
UK: John Wiley & Sons Ltd.

Cechich, A., & Moore, R. (1999a, January). A specification of GoF design
patterns (Tech. Rep. No. 151). Macau, China: UNU/IIST. Retrieved from
http://www.iist.unu.edu

Cechich, A., & Moore, R. (1999b, December 7-10). A formal specification of
GoF design patterns. In Proceedings of the Asia Pacific Software
Engineering Conference (APSEC ’99) (pp. 248-291), Takamatsu, Japan.

Cooper, J. (2000). W. JavaTM design patterns: A tutorial. Boston: Addison-
Wesley Longman Publishing Co., Inc.

Coplien, J. O. (1996, October). Code patterns. The Smalltalk Report. New
York: SIGS Publications.

Crossroads Student Magazine. (1998). FUJABA (from UML to Java and back
again). Software Engineering Group, University of Paderborn, Germany.
Retrieved April 14, 2006, from http://www.uni-paderborn.de/cs/fujaba

Eden, A. H. (1998). Giving the quality a name. Journal of Object-oriented
Programming, 11(3). Retrieved April 14, 2006, from http://www.edenstudy.
org/publications.html

Eden, A. H. (2000, May). Precise specification of design patterns and tool
support in their application. PhD thesis, Tel Aviv University, Depart-
ment of Computer Science, Tel Aviv, Israel.

190 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Flanagan, D. (1997). Java in a nutshell (2rd ed.). Sebastopol, CA: O’Reilly &
Associates, Inc.

Flores, A., & Fillottrani, P. (2003, October 6-10). Evaluation framework for
design pattern formal models. In Proceedings of the IX Argentinean
Conference on Computer Science (CACIC ’03), La Plata, Argentina (pp.
1024-1036). RedUNCI.

Flores, A., & Moore, R. (2001, February 19-22). Analysis and specification of
GoF structural patterns. In Proceedings of the 19th IASTED, Interna-
tional Conference on Applied Informatics (AI2001), Innsbruck, Austria
(pp. 625-630).

Flores, A., & Moore, R. (2000, August). GoF structural patterns: A formal
specification (Tech. Rep. No. 207). China: UNU/IIST. Retrieved from
http://www.iist.unu.edu

Flores, A., Moore, R., & Reynoso, L. (2001, March 14-15). A Formal model of
object-oriented design and GoF design patterns. In Proceedings of the
Formal Methods Europe (FME’01) (pp. 223-241). Berlin, Germany:
Springer Verlag. Retrieved from http://www.iist.unu.edu

Flores, A., Reynoso, L., & Moore, R. (2000, July). A formal model of object
oriented design and GoF design patterns (Tech. Rep. No. 200). Macau,
China: UNU/IIST.

Fowler, M. (1997). Analysis patterns. Menlo-Park, CA: Addison-Wesley Longman
Publishing Co., Inc.

Fujaba Home Page. University of Paderborn, Software Engineering Group.
Retrieved April 14, 2006, from http://wwwcs.uni-paderborn.de/cs/fujaba/

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:
Elements of reusable object-oriented software. Boston: Addison-Wesley.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2002). Fundamentals of software
engineering (2nd ed.). Englewood Cliff, NJ: Prentice Hall.

Grand, M. (1997). Java language Reference (2nd ed.). Sepastopol, CA: O'Reilly &
Associates, Inc.

Grand, M. (1998). Patterns in Java-Volume 1. NY: Wiley.
Grand, M. (1998). Patterns in Java-Volume 2. NY: Wiley.
Hoang T. T. L., & George, C. (2000, August). Translation for a subset of RSL into

Java (Tech. Rep. No. 210). Macau, China: UNU/IIST. Retrieved from http:/
/www.iist.unu.edu

Jacobson, I. Object-oriented software engineering: A use case driven approach..
Boston: Addison-Wesley.

Automatic Verification of OOD Pattern Applications 191

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Klein, T., Nickel, U., Niere, J., & Zündorf, A. (2000, September). From UML to
Java and back again (Tech. Rep. No. TR-RI-00-216). Germany: University
of Paderborn.

Lauder, A., & Kent, S. (1998, July 20-24). Precise visual specification of design
patterns. In E. Jul (Ed.), Proceedings of the 12th European Conference on
Object-Oriented Programming (ECOOP’98), Brussels, Belgium (LNCS
1445pp. 230-236). Berlin: Springer-Verlag.

Martin, J., & Odell, J. (1995). Object oriented methods: A foundation. Englewood
Cliffs, NJ: Prentice Hall.

Meijers, M. (1996, August). Tool support for object-oriented design patterns.
Master’s thesis, Utrecht University, The Netherlands.

Moore, R., Cechich, A., Reynoso, L., Flores, A., & Aranda, G. (2002). Object-
oriented design patterns. In H. Dang Van, C. George, T. Janowski, & R.
Moore (Eds.), Specification case studies in RAISE (pp. 287-314). Springer
FACIT (Formal Approaches to Computing and Information Technology)
series.

Nickel, U., Niere, J., Wadsack, J., & Zündorf, A. (2000, May 11-12). Roundtrip
engineering with FUJABA. In Proceedings of the WSR’00, 2nd Workshop on
Software Re-engineering, Bad Honnef, Germany.

OMG. (2004). UML profile for enterprise distributed object computing (EDOC).
Object Management Group. Retrieved from http://www.omg.org

Polo, M., Piattini, M., & Ruiz, F. (2002). Advances in software maintenance
management: Technologies and solutions. Hershey, PA: Idea Group Inc.

Prechelt, L., Unger, B., Tichy, W. F., Brössler, P., & Votta, L. G. (2001,
December). A controlled experiment in maintenance comparing design
patterns to simpler solutions. IEEE Transactions on Software Engineer-
ing, 27(12), 1134-1144.

Pree, W. (1995). Design patterns for object-oriented software development.
Boston: Addison-Wesley Longman Publishing Co., Inc.

RAISE Language Group. (1992). The RAISE specification language (BCS
Practitioner Series). Hemel Hempstead, UK: Prentice Hall International Ltd.

RAISE Method Group. (1995). The RAISE development method (BCS Prac-
titioner Series). Hemel Hempstead, UK: Prentice Hall International Ltd.

Reynoso, L., Aranda, G., Buccella, A., & Flores, A. (2002, October). Compo-
nent-based tool for verifying applications using object-oriented patterns.
Journal of Computer Science and Technology, 2(7), 42-48. Retrieved
April 14, 2006, from http://journal.info.unlp.edu.ar/default.html

192 Flores, Cechich, & Ruiz

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Reynoso, L., & Moore, R. (2000, May). GoF behavioural patterns: A formal
specification (Tech. Rep. No. 201). Macau, China: UNU/IIST. Retrieved
from http://www.iist.unu.edu

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991).
Object-oriented modeling and design. Englewood Cliffs, NJ: Prentice
Hall.

SUN. (n.d.). The source for developers. Sun Developer Network. Retrieved
April 14, 2006, from http://java.sun.com/

UML Consortium. (n.d.). UML home page. Retrieved April 14, 2006, from http:/
/www.rational.com/uml

From Bad Smells to Refactoring 193

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

From Bad Smells
to Refactoring:

Metrics Smoothing the Way
Yania Crespo, Universidad de Valladolid, Spain

Carlos López, Universidad de Burgos, Spain

 María Esperanza Manso Martínez, Universidad deValladolid, Spain

Raúl Marticorena, Universidad de Burgos, Spain

Abstract

This chapter presents a study on the relation of refactoring, bad smells, and
metrics. The notions of refactoring and bad smells are revised as well as
metrics that can be used as guides in the refactoring process. Connection
among those metrics, the usual flaws that could be suggested by them, and
the required corrective actions to reduce or erase these flaws are analyzed.
The usual flaws can be described in terms of bad smells and the corrective
actions, in terms of the refactoring operations suggested by each bad smell.
Then, we can go from metrics to bad smells and from this, to refactoring. The
chapter also describes solutions for tool support in a language independent
manner. In this sense, it describes the tool architecture which can be
defined as metamodel-centered. A metamodel representing a family of
languages is defined as well as framework based solutions for collecting
metrics, as well as for a refactoring engine and repository. These solutions
allow reusing the effort on a wide family of object-oriented languages. The

194 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

developed frameworks were instantiated to work on instances of our own
metamodel. In addition to this, it also describes how to use the approach
and its support, with other metamodels. Finally, a case study on the use of
metrics in bad smells detection is presented.

Introduction

One of the key subjects in code refactoring process is: when and where do we
perform refactorings? In Fowler (2000) he proposes a list of clues or symptoms
that suggest refactorings. These symptoms or stinks are named “bad smells”
and their detection must be achieved from “the programmer intuition and
experience.”
Currently, there are a big number of integrated development environments
(Eclipse, NetBeans, Visual Studio .NET, Refactoring Browser, etc.) which
include refactoring. These environments contain or allow adding plug-ins for
obtaining metrics. The programmer is also able to customize the warning
messages and corrections for every metric over the threshold.
However, there are common points between these concepts not connected until
now. Although we have metrics, they are not used to determine refactorings.
There is not a direct connection among these metrics, the usual flaws that could
be suggested by them, and the required corrective actions to reduce or erase
these flaws. The usual flaws can be described in terms of bad smells and the
corrective actions, in terms of the refactoring operations suggested by each bad
smell. Then, we can go from metrics to bad smells and from this to refactoring.
On the other hand, metrics should be implemented for each object-oriented
environment/language that we use. Nevertheless, one of the intrinsic properties
of most of them, especially in object-oriented metrics, is their language indepen-
dence.
Therefore, starting from the current state of the question, we can go forward in
two directions:

• Use the metrics as bad smells clues, to hint or suggest the suitable
refactorings.

• Define a language independent metric collection support. The main issue
when defining this support must be to fit solution for reuse in most of
integrated development environments or in a multi-language environment.

This complements a language independent approach to software refactoring.

From Bad Smells to Refactoring 195

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The chapter is organized according to the following structure. First, in the second
section the notion of refactoring is revised. Some refactoring catalogs and tools
are presented and surveys and taxonomies (classifications) on the theme are
briefly described. According to these works, open issues and trends on refactoring
are shown. One of these open issues rests in bad smells detection. So, the third
section deals with the bad smell notion. Bad smells were defined in a subjective
viewpoint. We state here that it is possible to discover their existence, not only
from an objective viewpoint, using metrics. The fourth section is devoted to
presenting the role of metrics in maintainability and reusability, and then, in
refactoring. In the base of this background, the fifth section presents the
rationale and requirements for metrics acting as the link from bad smells to
refactoring. Work done in this sense is also revised. The requirements presented
in these sections are developed in the sixth section. The problems are tackled
from a language independent manner. A metamodel based solution is presented,
as well as its architecture and modules such as the metric collector and the
refactoring engine and repository. Finally, a case study on the use of metrics in
bad smells detection is presented. The last section concludes and precedes a
large set of references in the topics mentioned in the chapter.

Refactoring

On The Notion of Refactoring

The word refactoring was first used by Opdyke (1992), who defined refactoring
as a kind of behavior-preserving program transformation that raises program
editing to a higher level and is not dependent on the semantics of a program.
Opdyke also said refactoring designates a special form of program restructur-
ing. It is called restructuring to the direct modification of software elements.
When restructuring involves a set of related software elements and transforming
the way in which they are related, this can be called reorganizing. Summarizing
Opdyke statements we could say that refactoring are transformations on object-
oriented software elements that, restructuring and reorganizing it, preserve
behavior.
The introduction of a new term is intended also to make notice that in the scope
of object-oriented systems the main purpose when restructuring is not to endow
poorly structured systems with structure. In object-oriented systems the main
purpose is to refine. This is because some structural information is always
present by means of classes, inheritance, and so forth. It is also because of
historical reasons. The history of restructuring has included from the very

196 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

beginning transformation of non-structured (“spaghetti”) programs to structured
programs, from structured programs to object-oriented programs, and so on. The
reader can find in Arnold (1986) a large introduction to the restructuring area
from the first stages.
There was also a seminal work, Chikofsky and Cross (1990), which established
terminology and definitions such as reverse and forward engineering, reengineering
… and restructuring. Restructuring was defined in that work as the transforma-
tion from one representation form to another at the same level, while preserving
the subject system’s external behavior (functionality and semantics). Authors
described that a restructuring transformation is often one of appearance, such
as altering code to improve its structure in the traditional sense of structured
design. In addition to code transformations, the definition, in its broader meaning,
includes other software artifacts such as reshaping data models, design, require-
ment structures, and so forth.
On the basis of all this we can state that refactoring is an evolution of the old
concept of restructuring in the current context of object-oriented software
development.
Recent definitions say that refactoring is a disciplined way to clean up code. Or,
in a broader sense, that refactoring consists of changing a software system in
such a way that does not alter the external behavior of the elements involved
(Fowler, 2000). We prefer the last one because it spreads the definition to
different software elements instead of focusing just on the program code, in the
same line of the previous restructuring definition.
It is also said that the word refactoring has two definitions depending on the
context, as a noun form and as a verb. Refactoring as the noun form refers to
the transforming operation. Refactoring as the verb form refers to the process
of transforming (applying refactorings).
Refactoring, as well as restructuring, is an important issue in software evolution,
reengineering (Mens & Tourwé, 2004), reuse (Crespo, 2000), and incremental
development (Arévalo et al., 2002). In software evolution, refactorings are used
to improve the quality of the software. In reengineering, it is important in order
to convert legacy (or deteriorated) code into a better shape. In software reuse
activities refactoring means adapting software to be reused in new contexts as
well as improving software structure for better reuse. On the other side, any
modern development methodology considers some kind of cycle in the process.
Maybe the extreme, redundantly speaking, position can be found at extreme
programming (XP) (Beck, 1999) in which the central idea is organizing the
project work concentrating on just one use case at the same time. The software
is designed to manage the use case in progress. When moving to consider the
next use case, if it does not fit smoothly in the current design, then design is
refactored until the use case solution could be reasonably implemented. One of

From Bad Smells to Refactoring 197

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the key aspects of XP is continuous and aggressive refactoring (see also Beck,
2000).
It is clear that refactoring is a particular form of software transformation. This
makes evident that not all kind of software transformation is a refactoring. But
refactoring can be seen (and it is desirable to be) as previous steps for any other
kind of software transformation in order to better prepare software structure for
changes.
Recently, examined in Mens and Tourwé (2004) is a list of the distinct activities
in which the refactoring process consists:

1. Identify where the software should be refactored.
2. Determine which refactoring(s) should be applied to the identified places.
3. Guarantee that the applied refactoring preserves behavior.
4. Apply the refactoring.
5. Assess the effect of the refactoring on quality characteristics of the

software or the process.
6. Maintain the consistency between the refactored elements and the rest of

the related software artifacts.

According to the identified activities in the refactoring process, the current state
of the art in refactoring is mainly devoted, on one hand, to defining refactoring
operations and refactoring catalogs. On the other hand, intense progress is on
building tools to automatically support refactoring activities. There is also work
on introducing refactoring in the life cycle of development methods as well as
incorporating results from other related areas such as: program slicing (Tip,
1995), formal concept analysis (FCA) (Ganter & Wille, 1999), and knowledge
management and artificial intelligence techniques, in order to assist refactoring
inference tasks.
Most of the work done in refactoring has been dependent on the language which
defines the elements target of the transformation. This tendency is justified
because refactoring must guarantee that, starting from correct elements, it
obtains correct elements. It is necessary to know in a precise way the element
structure and its validity rules. Nevertheless, there is a living work line to
achieved (some) language independence in the refactoring process. In this
sense, in Crespo (2000) it was defined as a model language to analyze and define
refactorings. This was also one of the main goals in the FAMOOS project (see
Tichelaar et al., 2000a).
This chapter is devoted to link, via metrics and bad smells, activities 1 and 2. It
also describes a solution for activity 4 (refactoring application) which includes

198 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

an inference mechanism (supporting activities 1 and 2 in a smooth way), all this
under the notion of language independent refactoring.
Undoubtedly, the boom and importance gained by the works on refactoring and
software transformation in general have become significant. There are even
those who maintain that either with tools or by using the own experience, we
should refactor and optimize applications continuously, and this is not only good
for applications but also for developers (Deugo, 2000).

Refactoring Catalogs

 In Fowler (2000) we found a refactoring catalog which is ordered from low to
greater levels. The catalog is arranged into a classification according to the
criterion of the kind of elements the refactoring operates with. Each refactoring
definition, in the same way (Opdyke, 1992), is structured as:

• Description
• Motivation
• Mechanics
• Examples

Examples are given in Java code, but refactoring definitions are supposed to be
valid to any object-oriented language, statically typed, including Java like
concepts. Definitions are given using a kind of UML graphical notation.
The main problem in this refactoring catalog is informality of definitions.
Operations are described in a free way, as recommended actions to be achieved
on source code. The approach is similar to the so called “cook books” as is the
case of Gamma et al. (1995) where problem description and solutions are
formulated in a non-formal manner.
Nevertheless, Fowler’s refactoring catalog is the main reference in this matter
and it is maintained and frequently updated in the www.refactoring.com Web
site. Table 1 lists refactoring in Fowler’s catalog and their classification.
Figure 1 shows an example of a refactoring defined in Fowler’s catalog.
In Tichelaar (2001), refactoring definition is tackled with certain language
independence. The author worked with a subset of the Fowler’s catalog. Each
refactoring definition is structured as:

• Description and motivation
• Preconditions

From Bad Smells to Refactoring 199

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 1. Refactorings in Fowler’s (2000) catalog

Composing methods • Extract Method
• Inline Method
• Inline Temp
• Replace Temp with Query
• Introduce Explaining Variable
• Split Temporary Variable
• Remove Assignments to Parameters
• Replace Method with Method Object
• Substitute Algorithm

Moving features between objects • Move Field
• Move Method
• Extract Class
• Inline Class
• Hide Delegate
• Remove Middle Man
• Introduce Foreign Method
• Introduce Local Extension

Organizing data • Self Encapsulate Field
• Replace Data Value with Object
• Change Value to Reference
• Change Reference to Value
• Replace Array with Object
• Duplicate Observed Data
• Change Unidirectional Association to Bidirectional
• Change Bidirectional Association to Unidirectional
• Replace Magic Number with Symbolic Constant
• Encapsulate Field
• Encapsulate Collection
• Replace Record with Data Class
• Replace Type Code with Class
• Replace Type Code with State/Strategy
• Replace Type Code with Subclasses
• Replace Subclass with Fields

Simplifying conditional expressions • Decompose Conditional
• Consolidate Conditional Expression
• Consolidate Duplicate Conditional Fragments
• Remove Control Flag
• Replace Nested Conditional with Guard Clauses
• Replace Conditional with Polymorphism
• Introduce Null Object
• Introduce Assertion

Making method calls simpler • Rename Method
• Add Parameter
• Remove Parameter
• Separate Query from Modifier
• Parameterize Method
• Replace Parameter with Explicit Methods
• Preserve Whole Object
• Replace Parameter with Method
• Introduce Parameter Object
• Remove Setting Method
• Hide Method
• Replace Constructor with Factory Method
• Encapsulate Downcast
• Replace Error Code with Exception
• Replace Exception with Test

200 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 1. Rename method: An example of the Fowler’s catalog (adapted
from Fowler 2000)

Dealing with generalization • Extract Subclass
• Extract Superclass
• Extract Interface
• Pull Up Constructor Body
• Pull Up Field
• Pull Up Method
• Push Down Field
• Push Down Method
• Collapse Hierarchy
• Form Template Method
• Replace Inheritance with Delegation
• Replace Delegation with Inheritance

Big refactorings • Tease Apart Inheritance
• Convert Procedural Design to Objects
• Separate Domain from Presentation
• Extract Hierarchy

Table 1. (continued)

Rename Method
Description
The name of a method does not reveal its purpose.
Change the name of the method.

Motivation
.... – omitted for brevity (see page 273 of [Fowler, 2000])
Mechanics
• Check to see whether the method signature is implemented by a superclass or subclass. If it

is, perm these steps for each implementation.
• Declare a new method with the new name. Copy the old body of code to the new name and

make any alterations to fit.
• Compile
• Change the body of the old method so that it calls the new on.
• Compile and test
• Find all references to the old method name and change them to refer to the new one.

Compile and test after each change.
• Remove the old method (if the old method is part of the interface and you cannot remove it,

leave it in place and mark it as deprecated
• Compile and test
Examples
… – omitted for brevity

Customer

 getinvcdtlmt

Customer

getInvoiceableCreditLimit

http://www.pdfcomplete.com/1002/2001/upgrade.htm

From Bad Smells to Refactoring 201

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Preconditions analysis
• Examples
• Related works
• Discussion

When defining preconditions for each refactoring it deals with distinctions
between language independent preconditions (general preconditions) and those
which are particular to a concrete language. Concrete languages analyzed are
Smalltalk and Java. Since both languages lack parametric types and generic
classes as well as multiple subclassing, these topics are not taken into account
in the analysis.
Figure 2 shows the same refactoring as Figure 1 as is defined in this catalog.
In Marticorena and Crespo (2003) refactorings are defined in a similar way as
Fowler (2000) and Tichelaar (2001), using a template. The template is composed
by a name, a brief refactoring description, motivation, inputs, preconditions,
actions, postconditions. The catalog is devoted to deal with specialization
refactoring in a language-independent way. Specialization refactorings stand for
removing structural elements from software which make its comprehension
difficult, and increases its complexity, while always preserving its external

Figure 2. The Rename method refactoring as in the Tichelaar’s catalog

Rename Method (method, new name)
Renames method and all method definitions with the same signature in the same hierarchy. All
invocations to all changed methods are changed to refer to the new name.
...
Preconditions
Language-independent preconditions
1. The subclass hierarchies of the classes highest up in the superclass hierarchies of the class
containing method do not already contain a method with a signature implied by the new name
and the parameters of method.
Language-dependent preconditions
2. New name is a valid method name.
Smalltalk-specific preconditions
3. There exists no method with the same signature as method outside of the inheritance
hierarchy of the class that contains method.
Java-specific preconditions
4. When method is a constructor, the refactoring cannot be applied unless in the context of a
rename class refactoring.
Precondition discussion
...
Related work
...

202 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

behavior. Language independence is achieved by means of defining a metamodel
describing a family of programming languages and set of predicate, functions,
and edition primitives on the metamodel. Pre-y and post-conditions are defined
in terms of these predicate and functions, while actions are defined in terms of
edition primitives. Detailed discussion and examples can be found in the sixth
section.
One of the current trends in refactoring is the relation of refactoring and design
patterns. There are interesting proposals for introducing patterns by transform-
ing source code through refactoring. In this sense, we can find some refactoring
catalogs describing refactoring operations to introduce design patterns in code
(Kerievsky, 2004; Tokuda, 1999).

Surveys and Taxonomies

As the interest in refactoring grows, revision works on the topic emerge. We can
find surveys and taxonomies or classification works. The knowledge collected
in refactoring specific taxonomies and classification can benefit also from those
developed in related areas such as reengineering (Chikofsky & Cross, 1990) and
Evolution (Mens et al., 2003a). There are also interesting points to be taken into
account when analyzing refactoring works at surveys on inheritance hierarchies
manipulation (Godin et al., 2002; Arévalo et al., 2002) or database schema
evolution (Li, 1999).
Specifically on the refactoring topic, we can find (Crespo, 2000; Crespo &
Marqués, 2001) a taxonomy (classification) of refactoring operations which also
serve as a vehicle for analyzing tendencies and open issues in the area. A very
good survey on refactoring can be found in Mens and Tourwé (2004). The survey
defines the main activities in the refactoring process and makes a review of the
work done to the moment related to each one of these activities.
From the revision of both works, one from the viewpoint of refactoring
operations (as a noun) and the other from the viewpoint of refactoring activities
(as a verb), we can verify the intense activity in the refactoring field. We also
can state that there are a lack of inference mechanisms associated to refactoring
operations in order to determine or help to determine when to refactor. We can
also discover that, although the majority of the refactoring operations are
centered in source code, there are more and more works in the aim of raising the
level of abstraction of the refactoring target elements.

From Bad Smells to Refactoring 203

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Refactoring Support

One of the most important pieces in the refactoring puzzle is automatic support.
Without automatic support, time spent in refactoring tasks as well as insecurity
on results (because manual refactoring is error prone) is very high. Fowler
(2000) includes (technical and practical) criteria for a refactoring tool. Some of
these criteria are accuracy, speed, “undo” capabilities, tool integration, and
extensibility.
In www.refactoring.com we can found an updated list of refactoring tools.
There are refactoring tools as parts of integrated development environments
such as IntelliJ, Eclipse, and Together. There are also plug-ins to be connected
into other environments such as JRefactor. Refactoring tools are available for
a wide variety of programming languages: Java, Delphi, C#, Visual Basic,
Smalltalk, and so forth. We have evaluated some of these tools and conclude that
they keep a reduced set of refactorings, mainly from the Fowler’s catalog, and
the refactoring operations as well as the functionalities they offer are basically
the same.
Being the same refactoring operations and functionality, there is a lack of reuse,
not just from one tool to another, but inside tools themselves. Some tools are
related with multilanguage development environments. A rational approach here
is to take advantage of working on refactoring from a language-independent
point of view. In addition to this, as we mentioned earlier in the section, there is
no inference support in these tool to discover or help to discover refactoring
opportunities.

Bad Smell Refactorings
Alternative classes with
different interfaces

Rename method, Move method

Comments Extract method, Introduce assertion
Data class Move method, Encapsulate field, Encapsulate collection
Data clumps Extract class, Introduce parameter object, Preserve whole

object
Divergent change Extract class
Duplicate code Extract method, Extract class, Pull up method, Form

template method
Feature envy Move method, Move field, Extract method
Inappropriate intimacy Move method, Move field, Change bi-directional association

to unidirectional, Replace inheritance with delegation, Hide
delegate

Table 2. Bad smells and refactoring relation

204 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bad Smells

If It Stinks, Change It

In order to help in deciding when to refactor, Fowler (2000) proposes, in a chapter
written in conjunction with Kent Beck, a list of situations that “suggest (some
times scream for) the possibility of refactoring.” They name these situations bad
smells. Bad smells are informal descriptions, with a meaningful name. As
refactoring is a software change process, they compare the situation with a
newborn baby. When do you know that you have to change the baby’s nappy?
That’s easy. You smell the baby’s rear: if it stinks, change it.

Incomplete library class Introduce foreign method, introduce local extension
Large class Extract class, Extract subclass, Extract interface, Replace

data value with object
Lazy class Inline class, Collapse hierarchy
Long method Extract method, Replace temp with query, Replace method

with method object, Decompose conditional
Long parameter list Replace parameter with method, Introduce parameter object,

Preserve whole object
Message chains Hide delegate
Middle man Remove middle man, Inline method, Replace delegation

with inheritance
Parallel inheritance
hierarchies

Move method, move field

Primitive obsession Replace data value with object, Extract class, Introduce
parameter object, Replace array with object, Replace type
code with class, Replace type code with subclasses, Replace
type code with State/Strategy

Refused bequest Replace inheritance with delegation
Shotgun surgery Move method, Move field, Inline class
Speculative generality Collapse hierarchy, Inline class
Switch statements Replace conditional with polymorphism, Replace type code

with subclasses, Replace type code with State/Strategy,
Replace parameter with explicit methods, Introduce null
object

Temporary field Extract class, Introduce null object

Table 2. (continued)

From Bad Smells to Refactoring 205

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

They define 22 bad smells. Each bad smells description is accompanied by the
refactoring operations that must be applied in order to eliminate or decrease the
smell. These bad smells are listed in Table 2.
Also, Brown et al. (1998) describe situations that will lead a project to fail. These
situations are named antipatterns and they are also described informally
according to a template similar to patterns description. Antipatterns describe not
just situations in code but even in project organization and management.

Taxonomies

In Mäntylä (2003) a taxonomy for bad smells is defined. The taxonomy intends
to make bad smells more understandable and to recognize the relationship
between bad smells. It proposes six classes of bad smells: bloaters, object-
oriented abusers, change preventers, dispensables, encapsulators, couplers, and
others.
• Bloaters: represent something in the code that has grown so large that it

cannot be effectively handled. The bad smells in the bloaters’ category are
Long method, Large class, Primitive obsession, Long parameter list and
Data clumps.

• Object-oriented abusers: represent bad smells describing cases where
the solution does not fully exploit the possibilities of OO design. The bad
smells in this category are Switch statements, temporary field, Refused
bequest, Alternative classes with different interfaces and Parallel inherit-
ance hierarchies.

• Change preventers: refer to code structures that considerably hinder the
modification of the software. The bad smells in this category are Divergent
change and Shotgun surgery.

• Dispensables: represent bad smells describing something unnecessary
that should be removed from the code. The bad smells in this category are
Lazy class, Data class, Duplicate code and Speculative generality.

• Encapsulators: deal with data communication mechanisms or encapsula-
tion. Two opposite bad smells belong to this category; decreasing one will
cause the other to increase. Bad smells in this category are Message chain
and Middle man.

• Couplers: refer to bad smells representing high coupling such as: Feature
envy and Inappropriate intimacy.

• Others: is a class containing the two remaining bad smells: Incomplete
library class and Comments which do not fit into any of the five other
categories.

206 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Metrics for Refactoring

As we have said before, refactoring, to a large extent, is a way to improve some
aspects or attributes of software quality. The quality of software is not a
universal concept, but rather “it is very much in the eyes of the beholder” (Fenton
& Pfleeger, 1997, p. 337). Software quality is really composed of many
attributes, so the quality is modeled through different characteristics and their
relationships. There are many quality models such as McCall, Boehm, GQM,
ISO, and so forth (Fenton & Pfleeger, 1997), which permit the performance of
software quality through metrics, which is not an easy problem. So we need to
use software quality metrics to evaluate if refactoring improves the quality or
not. Furthermore, the metrics can be used as guides in the refactoring process.

Quality Models and Metrics

Quality Models

The more generalized pattern to design an empirical software quality model is
based in three principal elements: factors, criteria and metrics (FCM) (Fenton &
Pfleeger, 1997). These elements come from the more external point of view
(user) to the more internal point of view (developer). McCall and Boehm define
early models to describe quality using this pattern. The ISO 9126 standard (ISO/
IEC, 1991), derived from the McCall model, defines the software quality as:
“The totality of features and characteristics of a software product that bear on
its ability to satisfy stated or implied needs.”
The standard decomposes the software quality into six factors and, any
component of software quality depends on one or more of these six attributes.
It could be used in refactoring studies, to evaluate the software quality before or
after the refactoring, such as used in other areas, for example to qualify legacy
software (Etzkorn et al., 2001).
The goal, question, metrics (GQM) (Basili & Rombach, 1988) is a paradigm
(GQM) that we can use to measure an external quality attribute (goal), for
example, software reusability, identifying questions, and finally analyzing what
measurements (metrics) can help us to decide the answer to each question.
In this way the refactoring process could be part of the maintaining or reusing
processes, so we have focused on two quality attributes: maintainability and
reusability. Table 3 and Figure 3 show these attributes modeled by ISO 9126
standard and REBOOT model, respectively.

From Bad Smells to Refactoring 207

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 3. ISO 9126 standard maintainability model

Analyzability Attributes of software that bear on the effort needed for diagnosis of
deficiencies or causes of failures, or for identification of parts to be modified.

Changeability Attributes of software that bear on the effort needed for modification, fault
removal, or for environmental change.

Stability Attributes of software that bear on the risk of unexpected effect of
modifications.

Testability Attributes of software that bear on the effort needed for validating the modified
software.

Figure 3. Karlsson reusability model

Reusability

Portability

Adaptability

Understand
ability

Confidence

Environment
independence

Modularity

Generality

Self description

Documentation
Level

Structure
Complexity

Inheritance
complexity

Reliability

Fault tolerance

Dependents LOC rate...

Comments Percentage...

Documentation Percentage
and Accessibility

Fan-in / fan-out of
members...

Depth of Inheritance...

External Complexity Class
Inheritance...
Inheritance Generality...

Mean Time between
failures...

The reused based on object-oriented techniques (REBOOT) project (Karlsson,
1995) developed a reusability model using the FCM method (Figure 3), as part
of a quality model. Following this model, they found that component reusability
was strongly related to reliability, understandability, and portability.
In the OO paradigm there are other approaches to reusability measurement. In
Price and Demurjian (1997) we can find a frame which permits us to decide what
classes are reusable and what are not, after classifying them. And in Bunge
(2000) there is a summary about metrics and models of software reuse.
As we have said before, useful models on reusability and maintainability were
designed by the standard ISO 9126. Table 3 shows the ISO 9126 maintainability

208 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model. This standard is used, for example, in legacy software to assess the
existing software for reusability (Etzkorn et al., 2001) or in maintainability studies
(Genero et al., 2005).

Metrics and Validation

Fenton and Pfleeger (1997) propose a classification of software engineering
measures based on the element selected (entity) and the characteristic of this
element we want to measure (attribute), as shown in Table 4. The principal aim
of the quality models is to connect the external software attributes (user’s point
of view) such as maintainability, reusability, and so forth, with the internal
attributes (developer’s point of view) such as size, complexity and so forth. But
relatively few of the metrics are based on explicit empirical models as is
recommended by measurement theory, and an even smaller number of measures
has been empirically validated. Thus, they are pending more experimental studies
to validate the usefulness of many measures or to validate models. As Basili et
al. (1999) suggest: “Experimentation in software engineering is necessary but
difficult. It requires a community of researchers that can replicate studies, vary
context variables and build models...”
The replication’s role in software engineering is presented by Brooks et al.
(1994) as a useful tool that will permit us to generalize about the empirical results.
In a similar way, the use of meta-analysis is recommended (Pickard et al., 1998).
From the point of view of traditional software development, there are a lot of
software metrics and prediction models that have been used in different
contexts:

• The lines of code (LOC), the Halstead’s software science (Fenton &
Pfleeger, 1997) or the McCabe complexity V(G) (McCabe, 1976) are
traditional code measures.

• The Albrecht Functional Points (AFP) (Dreger, 1989) to measure the
software functionality from early phases.

Table 4. Classification of software measures

Entities: Process (Pr), Product (Pd), Resources (Rs)
Internal Attributes of Pr, Pd or Rs:
Those that can be measured purely in terms of Pr, Pd or Rs themselves
External Attributes of Pr, Pd or Rs:
Those that can be measured only through the behavior of Pr, Pd or Rs.

From Bad Smells to Refactoring 209

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Coupling and Cohesion metrics that measure the structural properties of a
modular system (Page-Jones, 1988).

• Models to predict costs (COCOMO, PUTNAM etc) or efforts to develop
a software product, which use some size metrics (LOC or PFA) as
independent variables (Boehm & Papaccio, 1988; Putnam & Myers, 1992).

• Reliability models based on software failures (Musa et al., 1990), and so
forth.

Furthermore, the product metrics can be classified depending on the level of
granularity: system, program, or module.

Object-Oriented Metrics

The object-oriented (OO) paradigm presents particular characteristics. Many of
the traditional metrics can be adapted easily in the new OO context, such as size,
coupling, or cohesion. But other metrics have been developed specifically for this
paradigm, such as metrics that capture concepts as inheritance or polymorphism.
We can use the same metric classification used for traditional metrics (Table 4).
In OO paradigm the product metric classification looking at granularity level
would be system, class, or method.

Table 5. Chidamber and Kemerer metric suite

Metric Measure Meaning and Relations
WMC: Weighted Methods
per Class.

ΣWi, Wi is the method i
complexity (for example
V(G))

Related with the complexity of
a class.

CBO: Coupling Between
Object Classes.

Number of other classes that
are coupled with the class.

Related with class modularity,
reusability and encapsulation.
It indicates the complexity of
the conceptual functionality.

RFC: Response For a
Class.

Number of methods called by
local methods, plus number of
local methods.

Related with class complexity.
It indicates the vulnerability to
change propagations of the
class.

DIT: Depth of Inheritance
Tree.

The length of the maximum
path from the class to the root
of the inheritance tree.

It measures how many
ancestor classes can potentially
affect the class. It is related
with the properties scope and
design complexity.

NOC: Number Of Children. Number of immediate
descendents of the class.

It indicates the generality of a
class. It is related with class
reusability and complexity.

LCOM: Lack of Cohesion
of Methods.

Number of disjoint sets of
local methods.

Related with encapsulation and
complexity.

210 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The OO metric suites of Chidamber and Kemerer (1994) have been used as a
reference in OO contexts (Table 5): WMC, CBO, RFC, DIT, NOC and LCOM,
and their definitions are based in the Bunge set of ontological principles (Bunge,
1979). The LCOM metric tries to measure how closely the local methods are
related to the local instance variables in the class, but its definition presents
problems (Li & Henry, 1993). There are other authors that criticize these metrics
(Churcher & Shepperd, 1995). Nevertheless, these measures have been used in
many empirical researches. For example:

• Lorentz (Lorenz & Kidd, 1994) proposes several recommendations in
design phase, based on analysis of these metrics and other examples appear
in Genero et al. (2005).

• The Constantine's Law “A structure is stable if cohesion is strong and
coupling low”, introduces two factors that have become a base when
talking about system structure: cohesion and coupling, measuring in OO by
LCOM and CBO (Endres & Rombach, 2003), etc.

Li and Henry (1993) redefine LCOM to improve it, and adding other simple size
metrics. These metrics were used in an empirical study to investigate whether
metrics could predict maintenance effort. As a result, they conclude that these
metrics are indeed useful. Briand (Briand et al., 1996, Briand et al., 1998) defines
a unified framework for cohesion and coupling measurement in OO systems.
Furthermore, he summarizes the empirical studies that validate these coupling
and cohesion measures. Brito et al. (1996) define an interesting bounded metric
suite for different granularity levels, together with recommended limits. Further-
more, they develop some empirical studies to investigate the relation between
these metrics and software quality attributes such as maintainability.
In Genero et al. (2005), there is a good summary of the most relevant metrics that
can be applied to UML class diagrams at the conceptual level. This study
includes a classification related to the theoretical and the empirical validation of
these metrics. Furthermore, it includes new metrics of the system because the
majority of the OO metrics are of class and methods granularity level. These
metrics have been theoretically and empirically validated as maintainability
metrics. From the point of view of the refactoring process, they could be useful,
because many of the metrics used in refactoring have been used to evaluate
quality factors such as maintainability (Du Bois & Mens, 2003).

Using Metrics in Software Refactoring

We can consider three principal steps into the process of software refactoring:
detect when to refactor, identify which refactorings to apply and perform these

From Bad Smells to Refactoring 211

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

refactorings. If we consider this process in the time (Figure 4) we can use the
metrics as guides before refactoring or after the refactoring to evaluate the
software improvement. Following this idea, Mens and Demeyer (2001) have
classified the metrics depending on their use:

• Predictive metrics that are used before the evolution has occurred, so they
are useful to guide the refactoring process

• Retrospective metrics that are used after the evolution process

The predictive metrics can be used to study (Table 6):

• What software parts need to be evolved, evolution-critical, that
is, parts with lack of quality so refactoring is often appropriate. In this case
are the studies of Simon (Simon et al., 2001) and Du Bois (Du Bois & Mens,
2003).

Figure 4. Metrics usage in refactoring process

 Predictive (or prospective) Metrics

 Retrospective Metrics Currently Time

Table 6. Predictive metrics in refactoring

 Metrics Pending Research ways

Evolution-critical
(Simon et al., 2001;
Du Bois & Mens, 2003)

Quality OO metrics,
Chidamber & Kemerer
Lorentz & Kidd, and so forth

Metrics as guides to
identify the kind of
refactoring

Evolution-prone
(Lanza, 2001)

Number of times a change
has been made in a software
element

Tool and Metrics to detect
software unstable parts
and empirical validation

Evolution-sensitive
(Hitz & Montazeri,
1996;
 Li & Henry, 1993;
 Chimdaber & Kemerer,
1994)

Coupling metrics (CBO,
RFC, etc)
Cohesion metrics

Metrics that detect
evolution-sensitive parts

212 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Which parts are likely to be evolved, evolution-prone, that is, parts with
good quality but with highly volatile software requirements. So, it is
necessary to have access to previous software versions. The metrics can
help to detect which part is unstable and likely evolves, and there are studies
that use a visualization of the metrics values (Lanza, 2001).

• Which parts can suffer from evolution, evolution-sensitive, that means
parts that could cause problems upon evolution or the estimated cost of
changes is very high. Typically, these are parts of the software in which
evolution may have a high impact on many other parts (see Table 7).

The retrospective metrics (Table 7) can be used to find out whether quality has
improved after the reengineering process, but in the majority of the refactoring
studies there is not a quality model. Additionally, one could study the evolution
process: what has been changed and how, or to identify where the most
substantial changes appear.

(Gall et al., 1998)

Coupling metrics used to
better estimate maintenance
activities.

(Demeyer et al., 2000)

Size and Inheritance metrics
that confirm restructuring
evolution

Find out which metrics
detect the kind of
evolution that take place.

(Du Bois et al., 2004) The impact of some
particular refactoring on a
particular class quality metric
that measures an internal
attribute.

Empirical validation.
Study the impact of
refactoring on external
quality metrics.

Table 7. Retrospective metrics in refactoring

Figure 5. Elements of an empirical study

Observations

Law

Theory

Confirmed by Predicts

Is repeatable

Is not repeatable Explained by

From Bad Smells to Refactoring 213

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Refactoring and Empirical Studies

The principal methods to do empirical investigation are experiments (controlled
experiments), case studies (or quasi-experiments), and surveys. We can work
with different levels in the experimentation and systematic methods guiding
experiments (Dolado & Fernández, 2000; Juristo & Moreno, 2003). Further-
more, Wohlin et al. (2000) propose the experimentation as a process, a set of
guidelines of how to perform experiments to evaluate methods, techniques and
tools in software engineering. This process has been used in many empirical
studies in software engineering.
As Basili says “Experimentation in software engineering is necessary but
difficult. Common wisdom, intuition, speculation, and proofs of concepts are not
reliable sources of credible knowledge” (Basili et al., 1999).

Table 8. Refactoring studies summary

Empirical Study
Subject

Empirical Study
Method

(Demeyer et al., 2000) Heuristics based on metrics to conduct
refactoring.

Retrospective case
studies.

(Du Bois et al., 2004) Practical guidelines for use of refactoring
to improve internal structure (coupling
and cohesion).

Case study.

(Mens et al., 2003b) Tool that links bad smells and refactoring. Case studies.

(Marinescu, 2001)

Metrics-based approach that detects two
well-known design-flaws (bad smells).

An industrial case
study.

(Mäntylä, 2004)

Relation between code metrics and
subjective evaluations of three bad smells.

Case study.

(S imon et al., 2001) Tool that use metrics (distance based
cohesion) that support the subjective
perceptions (bad-smells) and so, they can
help to identify special anomalies for
certain refactorings.

Case studies.

(S troulia & Kapoor, 2001) Lehman’s law. Case study.

(T rifu & Dragos , 2003) 1. Mapping from bad smells to refactoring
 activities
2. Methodology that, using the mapping,
 leads to the successful elimination of
 detected bad-smells.

Pending

214 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The empirical studies in the area of software engineering help to match the ideas
with reality, so a new approach is needed if we want to close the gap between
theory and practice in this area (Endres & Rombach, 2003). There are three
important elements in empirical studies (Figure 5):

• The observations (facts or simply subjective impressions)
• The laws as consequence of repeatable observations; they explain how

things occur, not why. So we like to have a theory
• The theories which explain and order our observations

Some of the laws affecting the refactoring area, those about evolution, reuse or
maintainability, for example, are Lehman’s law or McCabe’s hypothesis. So,
they are a way to investigate. For example, in Stroulia and Kapoor (2001) we find
a study which hypothesis is that refactorings decrease size (LOC and state-
ments), complexity (methods), and coupling (collaborator) of each class (Lehman’s
law).
Looking at refactoring studies, we have found case studies in the majority of
them without empirical validation. All checked documents (Table 8) had pending
more empirical validation and extensions of their hypothesis. As a result, there
is a long way to search in this area from this point of view. More specifically,
there are open lines of research about the links between:

• Metrics of quality attributes and bad smells: The hypothesis will try to
answer the questions: Which values or range of values of the metrics Mi
detect the bad smell Sj?

• Refactoring and metrics of quality attributes: Now the questions to
answer are: When we do the refactoring Rj? How must we change the
quality attribute metrics Mi? and Which is the direction of the change?

Metrics as the Link from
Bad Smells to Refactoring

Rationale

We have formerly stated in the chapter that one of the key subjects in the code
refactoring process is when and where do we accomplish refactoring? As we have

From Bad Smells to Refactoring 215

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

explained previously in the third section, in Fowler (2000), he proposes a list of
clues or symptoms that suggest refactorings be named “Bad Smells.” It is stated that
bad smells detection must be achieved from “the programmer intuition and
experience.” We claim that the use of metrics as signs of software flaws, lead to
“Bad Smell” detection based on an objective point of view.
Modern integrated development environments include refactoring capabilities (see
the second section) and also contain or allow adding plug-ins for obtaining metrics.
Although we have metrics, they are not used to determine refactorings (see the first
and third sections). On the other hand, metrics must be implemented for each
object-oriented environment/language that we use. Nevertheless, one of the
intrinsic properties of most of them, especially object-oriented metrics, is their
language independence: for example, number of methods, number of attributes,
depth of inheritance tree, and so forth (Hitz & Montazeri, 1996).
Therefore, current proposals can be improved. The next improvement must bring
the use of metrics as bad smells clues to hint or suggest the suitable refactorings.
Due, on one side, to the independence of metrics from source language and, on
other side, to the current trend on language independent refactoring support,
solutions in this sense must be conditioned to satisfy language independence to a
large extent.

Requirements

From this approach, it seems necessary to enumerate the different requirements
which allow us to link metrics and refactoring in a natural way.

Metric Collector

Most of the current solutions about metric calculation are proposed to work on
a particular language. They usually use particular syntax knowledge as solution,
such as abstract syntax trees (AST) (Dudziak & Wloka, 2002). Although it is a
correct solution, there is an outstanding issue to be taken into account. Most of
the metrics, especially object-oriented metrics, are language independent.
Even if it seems to be worth the trouble, in practice, it does not take advantage
of this opportunity. The same definition and implementation effort is achieved
from the scratch to obtain metrics, for each development environment and
programming language.
One of the possible solutions to this problem consists in abstracting object-
oriented languages statements into a metamodel. Metamodels must describe
commonalities as well as variations of the abstract syntax (concepts) of a family

216 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of languages.
In addition to this, a wide set of metamodels can be defined, depending, for
instance, on the kind of languages gathered in the family each metamodel
describes. In order to bring a global solution, frameworks appear as a suitable
foundation. Frameworks as sets of abstract and concrete classes defining an
easily extensible behavior (Fayad et al., 1999) allow supporting, on one side, a
solution to different metamodels, and on the other side, allow us to reuse and
extend the metric support with classical and new metrics. We will explain later
(see the sixth section) an OO detailed design of such a framework as well as a
particular implementation and instantiation to our own metamodel. Instructions
for adapting the solution to deal with different metamodels are also given.

Metric Collection Using Frameworks on a Metamodel
MOOSE (an extensible language-independent environment for reengineering
object-oriented systems) includes a metric engine for the computation and
storage of metric measurements. These metrics are used to assess the size and,
in some cases, the quality and complexity of software. The current implemen-
tation of the metrics engine includes language-independent as well as language-
specific metrics. The language-independent metrics are computed based on the
core FAMIX metamodel (see the sixth section).
Other tools have been developed on the FAMIX metamodel. By example,
CodeCrawler supports reverse engineering through the combination of metrics
and visualization. Through simple visualizations which make extensive use of
metrics, it enables the user to gain insights in large systems in a short time
(Tichelaar, 2001).
However, the metric engine is an additional module or subsystem in MOOSE
architecture (see http://www.iam.unibe.ch/~scg/Research/Moose/
description.html). There is not implication from metrics to refactoring or any
similar inference engine, so metric calculation is isolated from the refactoring
process.
Although Lanza and Ducasse (2002) propose the need of a metamodel for the
design of independent language object-oriented metrics, there is not a clear
description of the metric engine design so it is not evident to extend the current
solution with new metrics.

Metric Collection Using Logic Metaprogramming
Another solution for reasoning about code is using logic metaprogramming
(Muñoz, 2003). Authors use SOUL as Logic Metaprogramming language on top
of Smalltalk, which used with the library LiCoR, allows to reason over Smalltalk

From Bad Smells to Refactoring 217

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

code at a high level of abstraction. In this work, even if most of the logic
predicates are language independent, some of them describe language specific
relation.
In order to apply the proposed refactorings, they integrate their framework with
the refactoring browser which provides a number of useful but rather primitive
refactoring implementations.
Authors also use a set of rules that describe basic characteristics and relation-
ships between classes, methods, interfaces, variables, symbols, and other code
entities. All of them are language independent but the meta level interface (MLI)
implementation is language dependent. The solution also provides logic queries
that compute object-oriented metrics. They completely cover eight bad smells
and partially, five of them. They do not deal with bad smells that are too fuzzy
to be defined in automated means, smells related to maintenance, smells that
need static typing information and smells that need runtime information. The
process is similar in establishing a threshold for each bad smell.
Although this proposal suggests refactoring from heuristics and metrics, its
solution is only applicable for an object-oriented language, Smalltalk. Therefore,
this solution, in its current state, is not directly reusable due to the use of the base
language as repository. This means that their “Prolog” is reasoning about the real
Smalltalk code base, and not about an imported logic representation of the code.
If you want to reuse this architecture, you must implement all the LiCoR
predicates for a new base language. For example, a Java migration is available
at http://prog2.vub.ac.be:8080/ which includes the NewLiCoR library.

Metamodel for a Family of Languages
Solutions to these problems are based on metamodels. The metamodel must
collect the basic elements of any object-oriented language: classes, attributes,
methods, client-provider relations between classes, inheritance, and genericity.
In particular, it would be necessary to include information about flow-control
instructions, assignment instruction, and expressions. All these instructions are
needed to calculate metrics like V(G) (McCabe, 1976), WMC (Chimdaber &
Kemerer, 1994), and so forth.
The UML metamodel (OMG, 2004) does not contain information about instruc-
tions. Although Actions are included in version 1.5, they are not a “de facto”
standard yet. This information must be contained in order to be a suitable
metamodel. As we will present in the sixth section, evaluating new versions of
UML metamodel as a suitable solution is future work.
We defined in previous works (López & Crespo, 2003; López et al., 2003) a
metamodel for abstracting a family of languages, in the same line of other similar

218 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

metamodels such as FAMIX (Demeyer et al., 1999). On the basis of this, we
propose a solution based on frameworks to collect metrics with language
independence. Metric analysis is used to infer refactoring opportunities in the line
of bad smells detection.
The relation between metrics and bad smells is studied in Mäntylä (2004).
Starting from the results presented in that work, we establish what metrics should
be used to point out bad smells. Refactoring a big scale project for which we have
source codes available but not experience about the project domain, brings us
some problems: Where do we begin to refactor? How much time do we need to
detect bad smells? Are we applying an objective process? Metrics could be an
answer to all of these problems.
We establish several stages detecting bad smells:

• Metric analysis detecting those over thresholds.
• Combining data mining techniques to manage the large amount of data.
• Software evolution studies.
• Other “stinks” using heuristics

Metrics Analysis
Each defined metric usually has an associated threshold. Although the definition
of each threshold is language dependent, it could be a good sign to reveal the bad
smells existence.
Usually, we establish a minimum and maximum value for a metric. All the values
out of this threshold could be marked as suspects. If we can contribute with a
metric automatic collector, the process is simplified.

Data Mining Techniques
The problem using metrics is the large amount of data that we must manage.
Taking a medium size project, we can find more than a hundred classes, each one
of them with an approximate number of ten or 20 metrics associated. If we repeat
this with methods, the numbers become greater still.
Obviously, if we try to manage this amount of data in a manual way to find bad
smells, it turns almost impossible. However, we can use data mining tools and
techniques to help us to detect bad smells. For example, the use of clustering
techniques helps to group classes with similar features. This avoids inspecting all
the classes with a great saving of time. This kind of solution has been used
successfully by Xing and Stroulia (2004) in detection of class co-evolution.

From Bad Smells to Refactoring 219

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Evolution Studies
Metrics can be used together with software evolution studies. Using different
versions and studying the changes in metric values, we could be able to infer a
kind of bad smells which can be classified as “dynamically identifiable” such as
divergent changes, shotgun surgery and parallel hierarchy.
In this case, we will need several versions of a system to calculate metrics of
each version and compare the differences among the values. From these
comparisons, there are works (Gîrba et al., 2004; Ratiu, 2003) detecting those
“bad smells” though the concept of “evolution matrix.” Trying to identify the
“dynamically identifiable” bad smells without snapshots of the system evolution,
could be quite difficult.

Other “Stinks” Using Heuristics
Although the use of metrics, data mining, and evolution studies are all objective
methods, there are always other problems not directly detected with well-known
metrics. Wake (2003) claims that many bad smells are detected not only using
metrics but other symptoms, such as name convention, comment lines, and so
forth. Currently, we find many tools and studies that allow detecting these other
signs. However, as usual, they are language dependent.

Language Independent Bad Smell
Detection and Correction

A Metamodel Based Solution

As we previously stated (see the fifth section), there are integrated development
environments (Eclipse, IntelliJ Idea, Together-J, JBuilder, Visual Studio VS.NET,
etc.) that incorporate refactoring tools. Refactoring definition in a language
independent way offers a solution to the reuse possibilities in the development of
refactoring tools when they are adapted to new source languages. In this
solution, the effort of defining refactorings in a general way guarantees a
recovery of the initial effort and its future application in new languages. Some
approaches to the problem of language independence are based on metamodel
solutions.
FAMIX is defined as a metamodel storing information (see the fifth section) with
the aim of integrating several CASE environments (Tichelaar, 2001; Tichelaar
et al., 2000b). One of these CASE environments was a refactoring assistant tool
denominated MOOSE (Ducasse et al., 2000). Trying to cover in the metamodel

220 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

statically typed languages as well as dynamically typed, FAMIX does not
consider advanced inheritance and genericity features.
The FAMIX core model (see http://www.iam.unibe.ch/~famoos/FAMIX/
Famix20/Html/famix20.html) specifies the entities and relations that can (and
should) be extracted immediately from source code. The core model consists of
the main OO entities, namely Class, Method, Attribute and InheritanceDefinition. For
reengineering purposes, it needs another two entities, the associations: Invocation
and Access. An Invocation represents the definition of a Method calling another
Method, and an Access represents a Method accessing an Attribute. These abstrac-

Figure 6. MOON CORE model

CLASS_DEF
generic : Boolean
language : String

0..*

11

has_property

CLASS_TYPE 11 11 has_type

TYPE

0..*
1

0..*
1

static_type

ATT_DEC
(from Class)

METH_DEC
deferred : Boolean

PROPERTY

0..*

ENTITY
<<abstract>>

Figure 7. MOON method description

ROUTINE_DEC FUNCTION_DEC

ENTITY
<<abstract>> TYPE

1

0..*

1

0..*

return

0..* 10..* 1

static_type

FORMAL_ARGUMENTLOCAL_DEC

INSTR METH_DEC
deferred : Boolean

0..*

1

0..*

1

arguments
{ordered}

0..*

1

0..*

1

local_variables

0..* 10..* 1

instructions

{ordered}

From Bad Smells to Refactoring 221

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tions are needed for reengineering tasks such as dependency analysis, metrics
computation, and reengineering operations.
Another work in the problem of language independence is based on the definition
of a model language named MOON (minimal object-oriented notation) (Crespo,
2000; Crespo et al., 2001; López & Crespo, 2003). MOON, like FAMIX,
represents the necessary abstract constructions in the refactoring definition and
analysis. The MOON abstractions are common to a family of programming
languages: object-oriented programming languages (OOPL), statically typed
with or without genericity. The model language is the base for a metamodel-
centered solution to the reusability in development and adaptation of refactoring
tools.
The MOON definition includes an abstract and concrete syntax for a language
and a metamodel to store classes, relationships, variants on the type system, a
set of correctness rules to govern inheritance, and the type system in general.
The main difference with FAMIX is the type system. Figure 6 shows the core of
MOON metamodel. Entity represents anything in source code that has a Type
(self reference, super reference, local variable, method formal argument, class
attribute, and function result). Figure 7 presents the method body description:
local variables, formal arguments, and instructions. The instructions are classi-
fied in the following way: creation, assignment, call, and compound instructions.
Figure 8 outlines the MOON metamodel classes related with genericity and their
semantics rules expressed in OCL (object constraint language) (OMG, 2004).
One of the principal abstractions in the model is the type concept. Types are
classified into formal parameters (FORMAL_PAR) and types derived from
class definitions (CLASS_TYPE). Non-generic class definitions lead to a 1-1
association between class (CLASS_DEF) and type (CLASS_TYPE). When
class definition is generic, it is said that is the “determining class” of a potentially
infinite set of types (Crespo, 2000). Each generic instantiation corresponds to a
different type (CLASS_TYPE). A generic class definition contains a list of
formal parameters. MOON model language supports three variants regarding
bounds of formal parameter. Since the first two variants are structurally the
same, in terms of the framework, we have two kind of bounds in genericity: on
the one hand, we have bounds by subtyping (Cardelli, 1984; Cardelli & Wegner,
1985) or by conformance (Meyer, 1997) (variant S) and on the other hand, by
where clauses (Liskov, 1977; Liskov et al., 1995) (variant W). Both variants, S
and W, intend to constraint the features that can be used by entities typed with
formal parameters, in order to guarantee type correctness in generic instantiations.
They determine a set of valid substitutions for the formal parameters.
The kind of generic bounding named where clauses associates a method
signature set to the formal parameter that must be defined by any type that is
intended to be used as real parameter. In general, if a formal parameter is not

222 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

bounded, the type of the real parameter in a substitution will be bounded to the
universal type Object.
Within the set of types obtained from the generic instantiations, we distinguish
two subgroups: complete (or completely instantiated) types, and noncomplete (or
noncompletely instantiated) types:

• Complete types, coming from complete generic instantiations (completed =
true), are those whose set of real parameters does not contain any formal
parameter (FORMAL_PAR), that is, the set of real parameters remains
fixed.

• Non-complete types, coming from noncomplete generic instantiations,
(completed= false) are those whose set of real parameters contains at least
one formal parameter (FORMAL_PAR), that is, the set of real parameters
remains variable depending on the context.

Figure 8. MOON type system

BOUNDED_S

BOUNDED_F

BOUNDED

PROPERTY

BOUNDED_W

1..*1..*

signature_list

FORMAL_PAR

TYPE

CLASS_DEF
generic : Boolean
language : String 1 0..*1 0..*

formal_parameters

{ordered}

CLASS_TYPE
completed : Boolean1

0..*

1

0..*bound_s_type

0..*

0..*

0..*

0..*

real_parameters

{ordered}

0..1

0..n

0..1

0..n

generic_instantation

1

1

1

1

has_type

context CLASS_DEF
 inv:
 self.gCLASS_TYPE->notEmpty() implies self.generic =True
 inv:
 self.fFORMAL_PAR->notEmpty() implies self.generic =True

context CLASS_TYPE
 inv:
 self.completed =False implies
 self.rType->exist(t : TYPE | t .oclIsTypeOf(FORMAL_PAR))
...

From Bad Smells to Refactoring 223

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Types derived from noncomplete generic instantiations are necessarily con-
tained within generic classes, so they use a formal parameter in the instantiation.
Whether a type is a formal parameter or is a type derived from noncomplete
generic instantiations, it has a local scope in the definition of the class that
contains it. Types derived from complete generic instantiations have a global
scope.

A Refactoring Framework Based on the MOON Metamodel

There is also a MOON-based framework to define and execute refactoring in
a language independent way. Figure 9 shows the main modules that compose the
framework architecture. We present a brief description of them.
Module A (Crespo, 2000) is responsible for picking up source code information
and transforming in metamodel extension instances, as well as for retrieving
source code from metamodel instances. Each supported language has its parser
and its code regenerator.
Module B (López et al., 2003) stores the particular features of the concrete
languages. They are represented as different extension points from the metamodel
core (JAVA EXTENSION, EIFFEL EXTENSION, etc.). In an ideal case, if the
metamodel can represent all the features of a language family, a projection of its

Figure 9. Language independent refactoring framework

224 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

abstractions as metamodel instances could be enough. Thus, parsing source code
written in a statically typed language with or without genericity and with multiple
or single inheritance could produce a direct instantiation of the metamodel
classes. Although a metamodel can represent commonalities and general
variants, it does not include all the features of the language families. Then, it is
necessary to deal with common abstractions as well as variability and extension
points for peculiarities and new features.
Module C (López & Crespo, 2003) represents the metamodel itself. It makes it
possible to store source code information. The metamodel is the base of the
solution.
Module D (Crespo, 2000; Crespo et al., 2004; Marticorena et al., 2003) defines
the refactoring engine. It is composed of a core and a repository. The engine core
contains the abstract classes necessary to define the refactorings by composing
their inputs, pre-, postconditions and actions. The engine framework core
establishes how to execute any concrete refactoring, once their components are
known. Refactoring repository contains concrete refactorings previously de-
fined. All the actions (transforming metamodel instances), predicates, and
concrete functions (querying metamodel instances) are extensions of the
common abstractions defined within the engine core. In order to define new
concrete refactoring operation, it is necessary to introduce, in the worst case,
new predicates, functions, and actions or, in the best case, can be defined by
reusing the ones already defined in the repository. Usually a mixed solution
applies.
Module E isolates the queries on metamodel elements. These queries are
necessary in refactoring repository, as in metrics collector. So this module is
reused, avoiding duplicated code in modules D and F.
Module F (Crespo et al., 2005) is composed of two submodules: metrics
collector and bad smells inference. It is responsible from detecting bad smells
using metrics. To eliminate the detected bad smells, it is possible to suggest a
refactoring set. Fowler (2000) has studied relations between bad smells and
refactoring.

Future: A UML Based Metamodel

In the future, framework can evolve to fit for a standard metamodel. UML
(OMG, 2004) is currently embraced as “the” standard in object-oriented
modeling languages. The recent work of OMG on the meta object facility (MOF)
is the most noteworthy example. The progress in CASE technology has reached
a high stage of maturity. Indeed, the consensus on a common notation helps both
tool vendors and program designers to concentrate on more relevant issues.

From Bad Smells to Refactoring 225

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 10 outlines the core modeling concepts of the MOF, including classes and
its features. Many of these concepts are the same as those that are used in UML
models.
One of the most relevant issues is the notion of round-trip engineering: the
seamless integration between design diagrams and source code, between
modeling and implementation. With round-trip engineering, a programmer gen-
erates code from a design diagram, changes that code in a separate development
environment and recreates the adapted design diagram back from the source
code. Object-oriented development processes, with their emphasis on iterative
development, undoubtedly make round-trip engineering a relevant issue.
A second related issue that has become quite relevant is the tool interoperability.
While many of the early CASE tools tried to cover the whole development
process, practice has shown that such a generic approach has trouble competing
with a series of concrete specialized tools. Consequently, CASE tools are
becoming more and more open, permitting developers to assemble their favorite
development environment from different tools purchased from different vendors
yet co-operating via a single interoperability standard.
Regarded the requirements for a metamodel of languages in the refactoring
context, a question is missing: can the method body (instruction, local variable…)
be stored with UML? Action concept, defined in UML 2.0 (OMG, 2004), is the
fundamental unit of behavior specification. An action takes a set of inputs and
converts then into a set of outputs. Basics actions include those that perform

Figure 10. MOF 2.0 features and classifiers

ModelElement

Namespace
Feature

scope : ScopeKind
visibility : VisibilityKind

StructuralFeature
multiplicity : MultiplicityType
isChangeable : Boolean

BehavioralFeature

Reference
<<reference>> exposedEnd : AssociationEnd
<<reference>> referencedEnd : AssociationEnd

Operation
isQuery : Boolean
<<reference>> exceptions : Exception

Attribute
isDerived : Boolean

Exception

0..*0..*

+except

0..*

{ordered}

+operation

0..* CanRaise

ClassClassifier

TypedElement

226 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

operations calls, signals send, and direct behavior invocation. Actions could store
method body information and can become metamodel candidates as the module
C framework (see Figure 9). Furthermore, UML 2.0 includes mechanisms for
template, which provide support for a generic type available from programming
language.
Dependencies between module B and module C could be solved with UML
profiles (OMG, 2004). The profiles are mechanisms that allow metaclasses from
existing metamodels to be extended to adapt them for different purposes. This
includes the ability to tailor the UML metamodel for different language features
such as Java, C#, C++, Eiffel. The profile mechanism is consistent with the OMG
meta object facility (MOF). Currently, this approach was only explored with
some case studies.

Language Independent Refactoring Definition

In the trend of language independence, it is always necessary to validate the
refactoring definition on the selected representation. More concretely, the
repository or metamodel plays a basic role, because all the refactoring elements
must work on the available information. Next, we analyze two different
approaches that define refactoring with language independence on a metamodel.

The MOOSE Approach

Ducasse et al. (2000) define a language independent support for refactoring.
Using a refactoring template, they present a template with name, short descrip-
tion, preconditions, precondition analysis, related work, and discussion (see the
second section).
Analyzing fifteen refactorings, they give a non-formal description for each one
of them. The discussion about language independence is reduced to Java and
Smalltalk. They separate the language independent preconditions and language
dependant preconditions.
From this theoretical work, they implement the MOOSE refactoring engine that
provides code transformation support (see Figure 11). The analysis performed
by the refactoring engine, that is, checking preconditions, and determining what
pieces of code need to be changed is completely based on the Moose Repository,
and thus on the information available in FAMIX metamodel and its language
extensions.
The refactoring analysis module checks that preconditions are fulfilled. The
engine uses the gathered information to trigger the actual code transformers.
Code transformers work directly on the source code, so they are language

From Bad Smells to Refactoring 227

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specific. They cannot work on the level of the model, because it does not contain
enough information to regenerate source code. Instead they use source anchor
information in the model to determine where a specific transformation must take
place.
Although the precondition analysis is reusable and language independent, the
transformations on the source code are language dependant, and therefore are
not reusable. The metamodel and extensions are well-defined but the refactoring
engine design is not shown from a point of view of reuse. The sixth section
presents how we solve this problem.

Refactoring Definition on the MOON Metamodel

As was introduced in the second section, we accomplished the definition of
refactorings on the model language according to a template (Fowler, 2000;
Tokuda & Batory, 2001). The template is composed by a name, a brief
description, motivation, inputs, preconditions, actions, and postconditions. The
preconditions and postconditions are defined on the basis of a set of logical
predicates and functions — see the sixth section. Concrete actions which
transform classes are presented below — see the sixth section. Precondition,
function, action and postcondition definitions should be expressed on the basis of
the information represented in the metamodel. If some feature depends on a
concrete language peculiarity, then hot spots in the framework are analyzed and
extended if possible. In other case, they are classified as “not possible to be
defined.” Once this process is finished, we can discover which refactoring
operations can be performed with language independence. Later on in the
section, the set of definable predicates, functions, and actions analyzed to
describe some refactoring operations are presented.

Figure 11. Partial architecture of MOOSE refactoring engine

Refactoring Analysis

Common Front-end
interface

Smalltalk
front-end

Java front-
end

Moose Repository

228 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Predicate and Function Definitions

In the refactoring definition, we establish a basic set of predicates and functions
that gather most of the concepts handled in the MOON model language and the
associated metamodel. They allow expressing the conditions to be fulfilled as
pre- or postconditions in refactoring execution.
The definition of these functions and predicates is semiformal (not specified in
a language with precise semantics) and based on query functions on the model
language syntax (queries on the metamodel). The complete definition of all the
predicates and functions can be consulted in Marticorena and Crespo (2003).
Predicates and functions have been classified in the following categories:

• Basics: on languages that support the concept of “class”.
• Inheritance relations: express the inheritance relations between classes.
• Client relations: express the use relations.
• Types and generic instantiations: describe the parametric types, com-

pletely and non-completely instantiated.
• Generic parameters: describe information on the generic parameters.
• Bounds: describe the different bounded types according to the three

variants supported by MOON.

Action Definitions

Actions operate on the syntax of MOON code, whose grammar is defined in
previous works (Crespo, 2000; Crespo et al., 2001). Depending on the abstrac-
tion they transform, we are able to classify actions into several categories. One
example of this is shown in Table 9: actions that modify classes in general and
actions focused on manipulate generic classes.

Table 9. Action set

Simple Transformations Transformations on Generic Classes
AddAttribut(a,C) DeleteFormalParameter(C,G)
AddMethod(m,C) DeleteRealParameter(C,G,B)
RemoveAttribute(a,C) SubstituteFormalParameter(C,G,T)
RemoveClass(C) ReplaceBoundType(C,G,T)
RemoveMethod(m,C) AddWhereClause(C,G,W)
RemoveRedefineClause(m,C) AddSignatureInWhereClause(C,G,F)

From Bad Smells to Refactoring 229

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In actions listed in Table 9, C and B represent classes, m methods, a attributes,
G formal generic parameters, T types, W where clauses and F method signa-
tures. The complete definition of actions on the MOON grammar can be
consulted in Marticorena and Crespo (2003).

Refactoring Definition Using the Template: An Example

A set of refactorings has been implemented following this template. Next, we
present an example, using it. In this case, we have taken one of the refactorings

Description move the attribute to the direct descendants
Motivation the attribute is only used by some of the direct descendants
Inputs attribute (a) and class (C)

1. The attribute must not be referenced by other classes or the C
class itself.
ReferenceAttribute (C,a) = ∅
2. Direct subclasses do not contain an attribute with the same name
(in languages with name hiding)

Precondition

),(/)(),(baeIsEqualNamDAttributesbCDDescD ∈¬∃∈∀

1. RemoveAttribute(C,a) Actions
2.),()(aDteAddAttribuCDDescD ⇒∈∀
1. The current attribute does not belong to C class.

)(CAttributesa ∉

2. The attribute is essential/intrinsic property in all of the direct
descendants of C class.

Postconditions

)(/)(DEPaCDDescD ∈∈∀

Table 10. Example of refactoring moving member variable to subclasses

Figure 12. Refactoring engine architecture

230 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

named “moving member variable to subclasses” (Opdyke, 1992). The refactoring
moves an attribute from a class to the direct descendants because it does not use
this attribute, but their direct descendants do.
Table 10 shows all the elements of the refactoring. The complete definition of
the rest of refactoring operations is available in Marticorena and Crespo (2003).
From the study of predicates and functions, when accomplishing the definition of
several refactorings, we classify them in three groups:

• Generals: the basic predicates and functions on which they are defined
must be completely included in the model language, and could be incorpo-
rated in the framework core that supports the metamodel (and the model
language).

• Language dependent: the predicates and functions can be defined,
although their implementations will have to be deferred to the concrete
extensions of the framework when they are instantiated to a particular
programming language.

• No verifiable: the predicates and functions cannot be verified through the
model language (metamodel).

If refactoring preconditions and functions can be classified as “language
independent,” and even “language dependent,” refactoring could be supported
by the framework or its extensions, and therefore, it would be smoothly reused.

Refactoring Engine

Refactoring engine design is intended to manage separation from the metamodel
core. Figure 12 is the basic architecture of the refactoring engine. The engine.core
package contains the abstract classes necessary to define the refactorings by
composing their inputs, pre-, postconditions and actions. The engine framework
core establishes how to execute any concrete refactoring, once their compo-
nents are known.
Method isValid():boolean, in pre- and postconditions, encapsulates queries to the
class repository which captures the structure of the software system being
refactored. Method run() in actions, encapsulates insert, delete, and modify
operations on the same structure. Queries and operations are based in the
metamodel.
In Figure 12, an association between predicates and functions occurs to
represent how some predicates lean on functions in order to be evaluated. This
improves the degree of reusability in predicate definitions, since they can share
the same functions.

From Bad Smells to Refactoring 231

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The refactoring engine structure (according to the solution of the Template
Method design pattern) allows establishing common refactoring execution
environments. The outline of the run() method of the class Refactoring, is shown
in Listing 1. In order to be able to guarantee the correct execution of the
refactoring, a hierarchy of exceptions is designed to be thrown in case of pre-
and postconditions violations. Pre- and postconditions guarantee the external
behavior.

Listing 1 run method

public void run() throws
PreconditionException,PostconditionException {
try{

validatePreconditions();
runActions();
validatePostconditions();

}
catch (PostconditionException postconditionEx) {
// Policy of organized panic.
undoActions();
throw postconditionEx;
} // catch

} // run (Template Method PD)

All associated preconditions are checked calling abstract method isValid():boolean
from validatePreconditions(). Concrete preconditions define the body of the
validation. Later, these preconditions can be reused i when defining another
refactoring. Just in the case that all the preconditions are correctly validated, the
method does not throw an exception. The structure of validatePostconditions()
method is just like the previous validatePreconditions() method, but working on the
postcondition set.
Regarding the methods related to the actions of the Refactoring class, runActions()
and undoActions(), the structure is similar to the method validatePreconditions
varying the hook methods defined in the class Action, run() and undo(),and without
throwing any exception.

Refactoring Repository

The repository stores all the necessary specific information for refactoring
definition shown in the sixth section, through extensions of the classes in core
package. The repository structure is organized storing each element involved in a
concrete refactoring definition to be reused in an independent manner. The main
refactoring repository has three repositories of smaller levels: to store concrete

232 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

predicates, other for concrete actions, and other for concrete functions as is shown
in Figure 12. Concrete refactorings definitions are based on the associations
between concrete predicates, functions, and actions; their constructors instantiate
the different elements.

Engine Framework Extension

A process of engine.core extension is performed for each one of the refactorings.
The elements (predicates, functions, and actions) are implemented through
classes and are stored in different repositories.
By means of this process, the definition of new refactorings from the elements
already stored is allowed, increasing reusability. The general functionality is
defined in the package engine.core. The algorithm in class refactoring (package
engine.repository) executes, by dynamic binding, the concrete hot spots exten-
sions.
Figure 14 shows an example of the extension process of the classes of the
engine.core package. The refactoring moving member variable to subclasses,
already analyzed earlier is selected to illustrate it.
Then, when defining other refactoring as, for example, create member variable
(Opdyke, 1992) reuse is achieved by choosing already defined elements from the
repository. In this refactoring, we can reuse the definition of predicates
(IsEqualName), functions, (Attributes) and action (AddAttribute) (see Figure
14), coming from previous refactoring definition efforts. This iterative process
leads to complete new refactorings reusing the elements in the engine.repository
package.

Figure 14. Concrete repositories: An example

From Bad Smells to Refactoring 233

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Metrics Collector Module

In this section, we show the metric calculation support in the aim of obtaining an
assisted refactoring process. In order to bring a global solution, frameworks
appear as a suitable foundation. A framework design that allows it to support, on
one side, a solution to different metamodels, and on the other side, to reuse and
extend the metric support with classical and new metrics is presented. We will
explain an OO detailed design of such a framework as well as a particular
implementation and instantiation to our own metamodel. Instructions for adapting
the solution to deal with different metamodels are also given.

Metamodel Traversal

To avoid modifications on every class representing metamodel instances which
contain information to be collected when measuring, we apply the visitor
(Gamma et al., 1995) design pattern. The aim of this design pattern is to avoid
including a new method in all the elements each time we need to make a new
operation with all of them. In this particular case, the necessity emerges from
measuring different element properties. This is also important in a metamodel
solution based in order to preserve the metamodel definition.
The pattern indicates that accept methods must be introduced in each element
to visit. In a metamodel with unique hierarchy, this is reduced to introduce an
accept method in the root of hierarchy. On the other side, we define a Visitor
interface which must include visit methods for each one of the measurable
elements (see Figure 15).

Figure 15. Collection traversal with visitor and strategy

234 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The traversal algorithm is defined independently of the visitor, allowing the use
of a strategy (Gamma et al., 1995) design pattern. We choose dynamically the
concrete algorithm to access each metamodel instance.

Runnable Metric Hierarchy

Metrics have been classified in several ways. As related earlier, in Lamb and
Abounader (1997) we find different taxonomies more or less complex. Particu-
larly, we only focus in the granularity level: system, class, and methods.
Metrics related on attributes are linked to classes as containers. For example,
metric NOA (number of attributes, also known as NOF — number of fields —
) (Lorenz & Kidd,1994) measures the number of encapsulated attributes in the
class context.
Depending on the information the metamodel describes, some metrics could have
problems being defined. Metamodels, as abstractions in general, lose some
information from the elements they describe. In our metamodel, the loss is
reduced to branching instructions (conditional and loop sentences). They are
stored without semantic content.
This does not allow us to define metrics related with McCabe ciclomatic
complexity (McCabe, 1976) in a language-independent way. However, we
calculate those using key words stored in concrete extensions (with language
dependence). Their executions are still supported by the framework.
The framework inheritance hierarchy for metrics is presented in Figure 16.
Metric abstract class plays the template method (Gamma et al., 1995) role.
Before running it, it is checked (check method) to verify that the metric is related
with the type element to measure. If it is possible, the metric is calculated through
run method. While checks are defined in the framework core, concrete execu-
tions are defined in the framework extension, following the command (Gamma
et al., 1995) design pattern. Both methods, check and run, build the template
method calculate.
To collect the metrics, we use the collecting parameters design pattern
defined in Beck (1997). A MetricResult (see Figure 17) implements the pattern.
The object collects the measures each time the calculate method is called on an
object which implements the IMetric interface. This solution is similar to a
blackboard where everyone writes their results.

Profiles: Metric Customization

Metrics suggest certain problems for their application and interpretation. We
observe that, depending on the context, minimum and maximum values can

From Bad Smells to Refactoring 235

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 16. Metric core hierarchy

Figure 17. Metric profiles

236 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

change. Therefore, the framework must support the customization of these
values. Initially, metrics are instantiated with recommended default values.
These values are subjective and must be fitted by means of empiric observation,
tuning and adjusting the values.
With this aim, we define a wrapper class MetricConfiguration (see Figure 17),
that allows us to change the initial metric definition, rewriting the default values
and adjusting the metrics to a particular context or domain.
By means of a configuration profile in MetricProfile class (see Figure 17),
programmers can define different profiles. They can tune the values, on the basis
of previous observations or depending on the domain. We do not focus, by the
moment, on aspects related to profile persistence and recovery.

Metric Calculation

Bringing together all the pieces, the metric calculation process begin visiting the
elements, and obtaining the measures, following a concrete strategy. It uses a
visit method for each one of the metamodel elements to be visited. A metric
profile is linked to the visitor.
On each element we apply metric as pre-configured in the current profile.
Results for each metamodel object are collected as a measure that allows
navigability to the metric using MetricConfiguration class, on one side, and to the
object where the metric has been calculated, on the other side. Measures are
grouped in which we name a MetricResult to allow the result analysis and later
presentation.

Framework Instantiation: An Example

We have implemented some metrics such as DIT (depth inheritance tree), NOC
(number of children) (Hitz & Montazeri, 1996), and so forth.

Figure 18. Framework extension with concrete metrics

From Bad Smells to Refactoring 237

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Both metrics are defined as class metrics, so we can define them as extensions
of ClassMetric class (see Figure 18). Body of method run is redefined using the
information extracted from the metamodel and represented as instances of
Measure. The entry point to calculate the metric value is, in this case, a class of
the analyzed code. From this class, we navigate through its inheritance relations
to determine its deep and number of children.
To run on a particular example, all the effort rests on the framework. The
programmer must simply include these metrics in a profile to apply. The
implementation of the metamodel and the metric framework has been validated
in Java, but the open design allows it to be implemented in any other object-
oriented language. The main benefit of this approach is the reuse of the
framework. We have a tool to obtain metrics for a wide set of object-oriented
languages so many as parsers from language to metamodel. The tool is
implemented on the MOON metamodel and parsers for Java and Eiffel are
available. Nevertheless, as we said before, the metamodel can be smoothly
replaced by other metamodels.
Improvements to the current version of the framework could be:

• Include the observer (Gamma et al., 1995) to update and recalculate only
metrics associated to modified elements.

• Include additional filters to point out that certain metrics are not suited to
certain kind of elements. By example, in those languages that define
constructors, the NOP (number of parameter) (Page-Jones, 1988) metric
could be relaxed in its maximum values.

• Add a graphical representation tier to help in the measures interpretation.

Detecting Bad Smells and Applying Refactoring:
Case Study

From the work (Mäntylä, 2004) where the relation between metrics and bad
smells is not closed, we establish a particular case study to show the bad smells
detection usefulness based on metrics, in the aim to propose refactorings.
Refactoring a big scale system from which we have source codes, but not
experience about the project, creates a problem: where do we begin to refactor?
Next, we present a case study with an open source project. We do not know
anything about this project; however, using metrics we are able to propose
refactorings.
We choose the open source project JFreeChart (www.jfree.org). It is a library
of Java classes to draw graphics. The metrics results are calculated on the last

238 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

version (1.0.0-pre2). The case studied is constrained to bad smells that can be
found with widely accepted metrics and language independence (according to
solutions presented former in this section).
We take four bad smells: Data Class and Lazy Class in the Dispensable category
(Mäntylä, 2004), parallel inheritance hierarchy in the vhange preventers cat-
egory, and finally, switch statements in the object-oriented abusers category.
The goal is to determine which classes in this library present these symptoms.
The case study focuses on class and method metrics. We have selected size
metrics as NOA, NOM, and so forth (Lorenz & Kidd, 1994), and other object-
oriented metrics as (Chimdaber & Kemerer, 1994): WMC, NOC, DIT, LCOM,
CBO, and RFC. Also, we use method metrics as V(G) (McCabe, 1976), LOC
(Lines Of Code) and NBD (Nested Block Depth) (Lorenz & Kidd, 1994).

Bad Smell: Data Class

This bad smell appears in classes with a high number of attributes (NOA) and
methods (NOM), usually get and set methods. Their complexity and cohesion are
low.
Using this filter, taking the five classes with higher values using clustering
techniques, we are able to detect: AbstractRenderer, ChartPanel, PiePlot,
XYPlot and CategoryPlot. If we observe their codes, all of them are classes with
a big number of accessor (get) and mutator (set) methods, and their complexities
are low.
Refactoring to be applied (Fowler, 2000) (See the third section): Move Method
to add more functionality to these classes.

Bad Smell: Lazy Class

Lazy classes are classes with a low number of attributes (NOA) and methods
(NOM). Their complexities are low. Their DIT values are also low, so they do
not add any functionality directly or indirectly by inheritance. Cohesion among
methods is usually low.
Using this filter we obtain:

• If we set a DIT value of 1:
° We find classes merely functional, without state, which do not accom-

plish any tasks (i.e., CountourPlotUtilities, DataSetReader).
° Some of the selected classes by this filter also implement the Factory

Method design pattern (Gamma et al., 1995) (i.e., ChartFactory).

From Bad Smells to Refactoring 239

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• DIT higher values are in classes with low functionality. The class names
begin with Default which suggests a default behavior (i .e. ,
Default-KeyedValues2DDataSet, DefaultKeyedValuesDataSet).

All these classes, although they have been discovered with different filters, are
grouped into the same set (cluster). Their role in the system is to provide low
functionality so they should be refactored.
Refactorings to be applied (Fowler, 2000) (See the third section): Move Method,
Remove Class, Collapse Hierarchy and Inline Class to increase or decrease
the class complexity.

Bad Smell: Switch Statements

Applying V(G) metric, we find the executeQuery method in JDBCXYDataset
class with a value of V(G) = 54. Usually, this value should not be greater than
10. We find also two other values over threshold: LOC = 153 and NBD = 7.
Inspecting the source code of this method, we observe three switch control
statements, with 12, 3, and 13 case clauses. The remainder of the methods in
classes maintains the metrics in the recommended thresholds.
Refactorings to be applied (see the third section): Replace Conditionals with
Polymorphism and Replace Type Code with Subclass or Replace Type Code
with State/Strategy. Besides, we must apply Extract Method refactoring to
reduce the complexity of long methods and high density of statements.

Bad Smell: Parallel Inheritance Hierarchy

We establish the use of the two metrics (DIT and NOC) to detect this bad smell.
Depending on the depth of the inheritance tree and the number of children, we
use these values as indicators of parallel inheritance hierarchies’ existence.
More concretely, we choose classes with a number of children greater than 1,
so the inheritance hierarchies are obviously complex. Collecting the metric
values and applying clustering techniques with the Weka tool (http://
www.cs.waikato.ac.nz/~ml/index.html), we found four clusters (see Table 11).
Studying the different mean values and standard deviation for each cluster, we
only focus on classes taking into account the mean values of DIT and NOC. We
are looking for classes at the top of the inheritance hierarchy (DIT between 1
and 3) with a medium number of children (NOC greater than 4 in this case).
The rest of the clusters contain classes with high depth and without children
(Cluster 0), very deep with few children (Cluster 1), or low deep with few
children (Cluster 2). These three last clusters do not seem suitable in order to find

240 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

parallel hierarchies. Therefore, we take Cluster 3 with its 27 classes. To find
parallel inheritance hierarchies we establish that classes must have values of
DIT and NOC very similar. Also we added the criterion that class names must
have similar prefixes as Fowler (2000) suggests. By means of this process, we
have detected three parallel hierarchies. We show the root classes and their
metric values:

Hierarchy 1:

• Tick (DIT=1, NOC=2)
• TickUnit (DIT=1, NOC=2)

Hierarchy 2:

• AbstractCategoryItemLabelGenerator (DIT=1, NOC=4)

• AbstractPieItemLabelGenerator (DIT=1, NOC=2)

• AbstractXYItemLabelGenerator (DIT=1, NOC=2)

Hierarchy 3:

• RenderederState (DIT=1, NOC=3)

• Plot (DIT=1, NOC=12)

Hierarchy 1 does not need any explanation about the metric values. In Hierarchy
2, the NOC value includes two inner classes that must not be considered to find
the bad smell. In Hierarchy 3, similarity has been obtained by similar prefixes.
Besides, the other nine child classes of Plot have not descendants; the other three
classes have an association one to one with descendants of the RendererState
class.

Table 11. JFreeChart — 1.0.0_pre2 — clusters

Cluster Num.Classes % Mean DIT St.Dev Mean NOC St.Dev
0 410 65% 2.8592 0.5164 0 1.4839
1 64 10% 5.1989 0.7940 0.1642 0.3704
2 128 20% 1.0478 0.2198 0.0921 0.3133
3 27 4% 1.9991 0.9162 4.0688 3.4295

From Bad Smells to Refactoring 241

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Through this process, we point out a set of parallel inheritance hierarchies that
follow a similar pattern. They must be observed manually by the programmer to
decide the suitable refactoring set to apply.
Refactorings to be applied (see the third section): Move Method and Move
Field.

Conclusion

Metrics and quality models must be considered as inseparable from refactoring
processes. One of the most important goals of refactoring is to improve software
quality. Recent refactoring studies start to mention the ISO 9126 quality model.
Refactoring inference, as well as refactoring opportunities detection, is one of
the main tasks in the refactoring activities. This is also a key open issue. It is
important in order to make the most of a refactoring tool power and to make
efficient use of it in software development.
The notion of bad smell appears as an organized way of relating, on the one hand,
situations where something is not going well with, on the other hand, the suitable
refactoring operations to make things correct. Bad smells definitions are
subjective and informal. They are not directly usable in decision support tools to
point out refactoring opportunities.
Nevertheless, if we connect the subjective description of refactoring-prone
situations with objective criteria given by metrics, we can use these (metrics) as
a bridge between the bad smells definitions and automation of inference
mechanisms in refactoring tools.
In this chapter we have relied on the notions of refactoring, bad smells and
metrics for refactoring and evolution processes. It was presented how to link
both bad smells and refactoring through metrics in a smooth way. The rationale
for it, as well as the requirements for tool support, was discussed. Different
solutions to the problem were described. In particular, a language independent
solution was presented. It was shown that the use of frameworks in metrics
collection, refactoring inference, and execution enable a rapid construction and
validation of tools supporting these features for different languages.
Taking a metamodel (of a family of languages) as the solution cornerstone, we
give a complete support to the whole process from source code with flaws to
refactored code. Refactoring inference is supported by a bad smell detection
module, tightly integrated with a metric collector and a refactoring repository, as
we have described. One of the main goals achieved with the described solution
is the continuous reuse of previous developed elements.

242 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The case study sets a process of refactoring detection based on metrics.
Obviously, the number of case studies must be increased to validate the accuracy
in bad smell detection due to the subjective starting point in their detection. But
improving and tuning of this iterative process must lead to a precise determination
of refactorings to be applied.

Open Issues and Trends

Refactoring definitions evolve continuously. New catalogs appear including
advanced aspects such as dealing with genericity (recently included in some
mainstream languages) and design patterns.
At the moment the majority of the available refactoring operations are focused on
source code. Nevertheless, a lot of them can be adapted to apply to other software
artifacts (UML diagrams — activity, sequence, state, etc.) from different stages of
software processes development. It is expected new refactoring will come out,
focused on these and other software artifacts.
On the other hand, metrics usage in refactoring process and tool support must
evolve to be part of a quality model such as the former mentioned ISO 9126. Another
possibility lies in flexible tools allowing configuring the link metrics-quality model.
Each quality aspect that refactoring is supposed to improve, must be associated
with a metric set.
The solution to the problem of language independent refactoring inference and
execution we have presented in this chapter is prepared to assimilate these
progresses. Furthermore, there remains a lot of work to do in the construction of
extensions for each supported language, facing their particular features and
measuring the reuse and language independence rate reached as well as the precision
and correction of refactoring results. As future work, it remains also to add new
metrics into the tool support and carry on empirical validation of links “metrics-bad
smells” and “refactoring-quality improving.”
Relevant open issues in this matter are behavior preserving verification and dealing
with side effects of refactoring in unit tests.
We have mentioned in several sections the existent relation between the concepts
involved in this chapter and design patterns. Although the relation has been briefly
pointed, recent works have begun to relate patterns directly with metrics, bad
smells, and refactoring. This is an important open issue to be taken into account.
In order to complement the aspects mentioned here, in Mens and van Deursen
(2003) can be found a statement of emerging trends and open problems in
refactoring.

From Bad Smells to Refactoring 243

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Arnold, R. (Ed.). (1986). An introduction to software restructuring. Tutorial on
Software Restructuring. Washington, DC: Society Press (IEEE).

Arévalo, G., Black, A., Crespo, Y., Dao, M., Ernst, E., Grogono, P., Huchard, M.,
& Sakkinen, M. (2002). The inheritance workshop (LNCS 2548). Malaga,
Spain: Springer.

Basili, V. & Rombach, H. (1988). The tame project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engineer-
ing, 14(6), 758-773.

Basili, V., Shull, F., & Lanubile, F. (1999). Building knowledge trough families
of experiments. IEEE Transactions on Software Engineering, 25(4),
456-73.

Beck, K. (1997). Smalltalk: Best practice patterns. Upper Saddle River, NJ:
Prentice-Hall.

Beck, K. (1999). Extreme programming explained: Embrace change. Upper
Saddle River, NJ: Addison-Wesley.

Beck, K. (2000). Extreme programming and reuse. Keynote Presentation at
the 6th International Conference on Software Reuse (ICSR’2000).

Boehm, B. & Papaccio, P. (1988). Understanding and controlling software
costs. IEEE Transactions on Software Engineering, 14(10), 1463-1477.

Briand, L., Daly, J., & Wüst, J. (1996). A unified framework for coupling
measurement in object-oriented systems (Technical Report 14).
Kaiserslautern, Germany: ISERN.

Briand, L., Daly, J., & Wüst, J. (1998). A unified framework for cohesion
measurement in object-oriented systems. Empirical Software Engineer-
ing, 3, 65-117. Boston: Kluwer Academic Press Publishers.

Brito e Abreu, F. & Melo, W. (1996). Evaluating the impact of object-oriented
design on software quality. In Proceedings of the IEEE Symposium on
Software Metrics (pp. 90-99). Berlin, Germany: IEEE Computer Society.

Brooks, A., Daly, J., Miller, J., Roper, M., & Wood, M. (1994). Replications
role in experimental computer science (Tech. Rep. No. RR/172/94).
Glasgow, UK: EFoCS.

Brown, W., Malveau, R., Brown, W., McCormick, H., & Mowbray, T. (1998).
AntiPatterns: Refactoring software, architectures, and projects in
crisis. New York: John Wiley & Sons.

Bunge, M. (1979). Treatise on basic philosophy: Ontology II, the World of
Systems. Boston: Riedel.

244 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bunge, M. (2000). Medición para la gestión en la Ingeniería del Software.
Ra-MA. Madrid, Spain: Editorial Ra-Ma.

Cardelli, L. (1984). A semantics of multiple inheritance. In Semantics of Data
Types (LNCS 173, pp. 51-68).

Cardelli, L., & Wegner, P. (1985). On understanding types, data abstraction and
polymorphism. Computing Surveys, 17(4), 471-523.

Chikofsky, E., & Cross, J. I. (1990). Reverse engineering and design recovery:
a taxonomy. IEEE Software, 7(1).

Chimdaber, S., & Kemerer, C. (1994). A metrics suite for object oriented design.
IEEE Transactions On Software Engineering, 20, 476-493.

Churcher, N., & Shepperd, M. (1995). “Comments on a metrics suite for object
oriented design”. JIEEE Transactions on Software Engineeering, 21(3),
263-265.

Crespo, Y. (2000). Incremento del potencial de reutilización del software
mediante refactorizaciones. PhD thesis, Universidad de Valladolid.
Available at http://giro.infor.uva.es/docpub/crespo-phd.ps

Crespo, Y., Cardeñoso, V., & Marqués, J. (2001). Un lenguaje modelo para la
definición y análisis de refactorizaciones. In Actas PROLE’01, Almagro,
España. Available at http://giro.infor.uva.es/docpub/crespo-prole2001.pdf

Crespo, Y., López, C., & Marticorena, R. (2004). Un framework para la
reutilización de la definición de refactorizaciones. In Actas JISBD’04,
Málaga, Spain.

Crespo, Y., López, C., & Marticorena, R. (2005). Soporte de métricas con
independencia del lenguaje para la inferencia de refactorizaciones. In
Actas JISBD’05, Granada, Spain.

Crespo, Y. & Marqués, J. (2001). Definición de un marco de trabajo para el
análisis de refactorizaciones de software. In Actas JISBD’01, Almagro,
España.

Demeyer, S., Ducasse, S., & Nierstrasz, O. (2000). Finding refactorings via
change metrics. In OOPSLA’2000 (pp. 166-177). Minneapolis, MN: ACM
Press.

Demeyer, S., Tichelaar, S., & Steyaert, P. (1999). FAMIX 2.0 — The FAMOOS
information exchange model. Technical report, Institute of Computer
Science and Applied Mathematic. University of Bern.

Deugo, D. (2000). Refactoring and optimization. Java Report, 5(1), 6.
Dolado, J. J., & Fernández, L. (2000). Medición para la gestión en la

Ingeniería del Software. Madrid, España: RAMA.
Dreger, J. (1989). Function point analysis. Prentice Hall.

From Bad Smells to Refactoring 245

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Du Bois, B., & Mens, T. (2003). Describing the impact of refactoring on internal
program quality. In International Workshop on Evolution of Large-
scale Industrial Software Applications (pp. 37-48). Brussel: Vrije
Universiteit.

Du Bois, B., Verelst, J., & Demeyer, S. (2004). Refactoring — Improving
coupling and cohesion of existing code. In 11th IEEE Working Conference
on Reverse Engineering (pp. 144-151).

Ducasse, S., Lanza, M., & Tichelaar, S. (2000). MOOSE: an extensible
language-independent environment for reengineering object-oriented sys-
tems. In Proceedings of the Second International Symposium on
Constructing Software Engineering Tools (CoSET 2000).

Dudziak, T., & Wloka, J. (2002). Tool-supported discovery and refactoring
of structural weaknesses in code. PhD thesis, Technical University of
Berlin, Department of Software Engineering.

Endres, A., & Rombach, D. (2003). A handbook of software and Systems
Engineering. Empirical observations laws and theories. Pearson
Addison Wesley.

Etzkorn, L., Hughes, W., & Davis, C. (2001). Automated reusability quality
analysis of OO legacy software. Information and Software Technology,
43, 295-308.

Fayad, M., Schmidt, G., & Johnson, R. (1999). Building applications frame-
works: Object-oriented foundations of framework design. Danvers,
MA: Wiley Computer Publishing.

Fenton, N., & Pfleeger, S. (Eds.). (1997). Software metrics. A rigorous and
practical approach. Boston: PWS Publishing Company.

Fowler, M. (2000). Refactoring. Improving the design of existing code.
Upper Saddle River, NJ: Addison Wesley.

Gall, H., Hajek, K., & Jazayeri, M. (1998). Detection of logical coupling based
on product release history. In Proceedings of International Conference
on Software Maintenance (ICSM98).

Gamma, E., Helm, R., Johnson, R., & Vlissides, J.(1995). Design patterns.
Elements of reusable object-oriented software. Reading, MA: Addison
Wesley.

Ganter, B., & Wille, R. (1999). Formal concept analysis: Mathematical
foundations. Secaucus, NJ: Springer-Verlag.

Genero, M., Piattini, M., & Calero, C., (Eds.) (2005). Metrics for software
conceptual models. UK: Imperial College Press.

Gîrba, T., Ducasse, S., Marinescu, R., & Ratiu, D. (2004). Identifying entities
that change together. In The 9th IEEE Workshop on Empirical Studies of
Software Maintenance. Chicago, IL: IEEE CS Press.

246 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Godin, R., Huchard, M., Roume, C., & Valtchev, P. (2002). Inheritance and
automation: where are we now? In Black, A., Ernst, E., Grogono, P., &
Sakkinen, M., (Eds.), Proceedings of the Inheritance Workshop at
ECOOP 2002. Helsinki, Finland: Jyväskylä University.

Hitz, M., & Montazeri, B. (1996). Chidamber and Kemerer’s metrics suite: A
measurement theory perspective. Software Engineering, 22(4), 267-271.

ISO/IEC. (1991). ISO/IEC 9126: Information technology—Software product
evaluation—Quality characteristics and guidelines for their use. Retrieved
from http://www.cse.dcu.ie/essiscope/sm2/9126ref.html

Juristo, N., & Moreno, A. (2003). Basics of software enginnering experimen-
tation. Boston: Kluwer Academic Publisher.

Karlsson, E. (1995). Software reuse. A holistic approach. Chichester, UK:
John Wiley & Son Ltd.

Kerievsky, J. (2004). Refactoring to patterns. Boston: Addison-Wesley Pro-
fessional.

Lamb, D., & Abounader, J. (1997). Data model for object-oriented design
metrics. Technical report, Department of Computing and Information
Science. Queens’s University.

Lanza, M. (2001). The evolution matrix: recovering software evolution using
software visualization techniques. In Proceedings of International Work-
shop on Principles of Software Evolution (IWPSE2001).

Lanza, M., & Ducasse, S. (2002). Beyond language independent object-oriented
metrics: Model independent metrics. In QAOOSE 2002, pp. 77-84.

Li, W., & Henry, S. (1993). Object oriented metrics that predict maintainability.
Journal of Systems and Software, 23, 111-122.

Li, X. (1999). A survey of schema evolution in object-oriented databases. In
Chen, J., Lu, J., & Meyer, B., (Eds.), Proceedings of TOOLS 31st,
Asia’99. IEEE CS Press.

Liskov, B. (1977). Programming methodology group progress report. Technical
report, Laboratory for Computer Science Progress Report XIV. Cam-
bridge, MA: MIT Laboratory for Computer Science.

Liskov, B., Curtis, D., Day, M., & Ghemawat, S. (1995). Theta reference
manual. Programming Methodology group Memo 88. Cambridge, MA:
MIT Laboratory for Computer.

López, C. & Crespo, Y. (2003). Definición de un soporte estructural para
abordar el problema de la indepedencia del lenguaje en la definición
de refactorizaciones (Tech. Rep. No. DI-2003-03). Departamento de
Informática, Universidad de Valladolid. Retrieved from http://
giro.infor.uva.es/docpub/lopeznozal-tr2003-03.pdf

From Bad Smells to Refactoring 247

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

López, C., Marticorena, R., & Crespo, Y. (2003). Hacia una solución basada en
frameworks para la definición de refactorizaciones con independencia del
lenguaje. In Actas JISBD’03, Alicante, España.

Lorenz, M. & Kidd, J. (1994). Object-oriented software metrics: A practical
guide. Upper Saddle River, NJ: Prentice-Hall, Inc.

Mäntylä, M. (2004). Developing new approaches for software design quality
improvement based on subjective evaluations. In Proceedings of ICSE'04,
(pp. 48-50). Edinburgh, UK: IEEE Computer Society.

Mäntylä, M., Vanhanen, J., & Lassenius, C. (2004). Bad smells — humans as
code critics. In Proceedings of ICSM (pp. 399-408). Edinburgh, UK:
IEEE Computer Society.

Marinescu, R. (2001). Detecting design flaws via metrics in object-oriented
systems. In Proceedings of the TOOLS USA 39, Santa Barbara, CA.

Marinescu, R. (2002). Measurement and quality in object-oriented design.
PhD thesis, Faculty of Automatics and Computer Science of the Politehnica
University of Timiçoara.

Marticorena, R. & Crespo, Y. (2003). Refactorizaciones de especialización
sobre el lenguaje modelo MOON (Tech. Rep. No. DI-2003-02).
Departamento de Informática, Universidad de Valladolid. Retrieved from
http://giro.infor.uv a.es/docpub/marticorena-tr2003-02.pdf

Marticorena, R., López, C., & Crespo, Y. (2003). Refactorizaciones de
especialización en cuanto a genericidad. Definición para una familia de
lenguajes y soporte basado en frameworks. In Actas PROLE’03, Alicante,
España.

McCabe, T. (1976). A complexity measure. IEEE Transactions on Software
Engineering, 2, 308-320.

Mens, T., Buckley, J., Zenger, M., & Rashid, A. (2003a). Towards a taxonomy
of software evolution. In Proceedings of the Workshop on Unantici-
pated Software Evolution.Technical report, University Warsaw, Poland.

Mens, T. & Demeyer, S. (2001). Evolution metrics. In Proceedings of IWPSE.
New York: ACM Press.

Mens, T. & Tourwé, T. (2004). A survey of software refactoring. IEEE Trans.
Softw. Eng., 30(2), 126-139.

Mens, T., Tourwé, T., & Muñoz, F. (2003b). Beyond the Refactoring Browser:
Advanced Tool Support for Software Refactoring. In Proceedings of the
International Workshop on Principles of Software Evolution.

Mens, T. & van Deursen, A. (2003). Refactoring: Emerging trends and open
problems. In Proceedings of the 1st International Workshop on

248 Crespo, López, Manso Martinez, & Marticorena

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

REFaCtoring: Achievements, Challenges, Effects (REFACE03). Uni-
versity of Waterloo, Canada.

Meyer, B. (1997). Object-oriented software construction (2nd ed.). Upper
Saddle River, NJ: McGraw Hill.

Muñoz, F. (2003). A logic meta-programming framework for supporting the
refactoring process. PhD thesis, Vrije Universiteit Brussel, Belgium.

Musa, J., Iannino, A., & Okumoto, K. (1990). Software reliability. New York:
McGraw Hill.

Mäntylä, M. (2003). Bad smells in software — A taxonomy and an empirical
study. PhD thesis, Helsinki University of Technology.

OMG (2004). Unified modeling language: Superstructure version 2.0.
Retrieved May 10, 2006, from http://www.uml.org

Opdyke, W. (1992). Refactoring object-oriented frameworks (Tech. Rep.
No. UIUCDCS-R-92-1759). PhD thesis, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign.

Page-Jones, M. (1988). The practical guide to structured systems design (2nd

ed.). Upper Saddle River, NJ: Yourdon Press.
Pickard, L., Kitchenham, B., & Jones, P. (1998). Use of meta-analysis in

software engineering (Tech. Rep. No. TR98-06). Department of Com-
puter Science, University of Keele Staffordshire.

Price, M. & Demurjian, S. (1997). Analyzing and measuring reusability in object
oriented designs. In Proceedings of 1997 OOPSLA Conference, Atlanta,
GA.

Putnam, H. & Myers, W. (1992). Measures for excellence. Upper Saddle
River, NJ: Yourdon Press Computing Series.

Ratiu, D. (2003). Time-based detection strategies. PhD thesis, Faculty of
Automatics and Computer Science of the Polithecnica University of
Timiçoara.

Simon, F., Steinbrückner, F., & Lewerentz, C. (2001). Metrics based refactoring.
In Proceedings of CSMR, Lisbon, Portugal (pp. 30-38).

Stroulia, E. & Kapoor, R. V. (2001). Metrics of refactoring-based development:
An experience report. In The 7th International Conference on Object-
Oriented Information Systems (OOIS'2001) (pp. 113-122). Calgary,
Canada: Springer.

Tichelaar, S. (2001). Modeling object-oriented software for reverse engi-
neering and refactoring. PhD thesis, University of Bern.

From Bad Smells to Refactoring 249

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Tichelaar, S., Ducasse, S., Demeyer, S., & Nierstrasz, O. (2000a). A meta-
model for language-independent refactoring. In Proceedings ISPSE 2000
(pp. 157-167). Kanazawa, Japan: IEEE.

Tichelaar, S., Ducasse, S., Demeyer, S., & Nierstrasz, O. (2000b). A meta-
model for language-independent refactoring. In Proceedings ISPSE 2000
(pp.157-167). IEEE.

Tip, F. (1995). A survey of program slicing techniques. Journal of Program-
ming Languages, 3(3), 121-189.

Tokuda, L. (1999). Evolving object-oriented designs with refactorings. PhD
thesis, University of Texas in Austin, Department of Computer Sciences.

Tokuda, L. & Batory, D. (2001). Evolving object-oriented designs with
refactorings. Journal of Automated Software Engineering, 8, 89-120.
This is an enlarged version of ASE Conference paper, October 1999.

Tourwé, T. & Mens, T. (2003). Identifying refactoring opportunities using logic
meta programming. In Proceedings of 7th European Conference on
Software Maintenance and Reengineering, Benvento, Italy (pp. 91-
100). IEEE Computer Society.

Trifu, A. & Dragos, I. (2003). Strategy based elimination of design flaws in
object-oriented systems. In Proceedings of ECOOP Workshop on
Reengineering, Darmstadt, Germany.

van Emden, E. & Moonen, L. (2002). Java quality assurance by detecting code
smells. In Proceedings of the 9th Working Conference on Reverse
Engineering. Richmond, VA: IEEE Computer Society Press.

Wake, W. (2003). Refactoring workbook. Boston: Addison-Wesley.
Wohlin, C., Runeson, P., H¨ost, M., Ohlsson, M., Regnell, B., & Wesslén, A.

(2000). Experimentation in software engineering. An introduction.
Norwell, MA: Kluwer Academic Publisher.

Xing, Z. & Stroulia, E. (2004, June 20-24). Data-mining in support of detecting
class co-evolution. In The 16th International Conference on Software
Engineering and Knowledge Engineering, Banff, Alberta, Canada (pp.
123-128).

250 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

Heuristics and Metrics
for OO Refactoring:

A Consolidation and
Appraisal of Current Issues

Steve Counsell, Brunel University, UK
Youssef Hassoun, University of London, UK

Deepak Advani, University of London, UK

Abstract

Refactoring, as a software engineering discipline, has emerged over recent
years to become an important aspect of maintaining software. Refactoring
refers to the restructuring of software according to specific mechanics and
principles. While in theory there is no doubt of the benefits of refactoring
in terms of reduced complexity and increased comprehensibility of software,
there are numerous empirical aspects of refactoring which have yet to be
addressed and many research questions which remain unanswered. In this
chapter, we look at some of the issues which determine when to refactor
(i.e., the heuristics of refactoring) and, from a metrics perspective, open
issues with measuring the refactoring process. We thus point to emerging
trends in the refactoring arena, some of the problems, controversies, and
future challenges the refactoring community faces. We hence investigate
future ideas and research potential in this area.

Heuristics and Metrics for OO Refactoring 251

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

One of the key software engineering disciplines to emerge over recent years is
that of refactoring (Foote & Opdyke, 1995; Fowler, 1999; Hitz & Montazeri,
1996; Opdyke, 1992). Broadly speaking, refactoring can be defined as a change
made to software in order to improve its structure. The potential benefits of
undertaking refactoring include reduced complexity and increased comprehen-
sibility of the code. Improved comprehensibility makes maintenance of that
software relatively easy and thus provides both short-term and long-term
benefits. In the seminal text on the area, Fowler (1999) suggests that the process
of refactoring is the reversal of software decay and, in this sense, any refactoring
effort is worthwhile. Ironically, Fowler also suggests that one reason why
developers do not tend to undertake refactoring is because the perceived
benefits are too “long term.” Despite the attention that refactoring has recently
received, a number of open refactoring issues have yet to be tackled and, as such,
are open research concerns. In this chapter, we look at refactoring from two
perspectives.
This first perspective relates to the heuristics by which refactoring decisions can
be made. Given that a software system is in need of restructuring effort (i.e., it
is showing signs of deteriorating reliability), IS project staff are faced with a
number of competing choices. To illustrate the dilemma, consider the question of
whether completion of a large number of small refactorings is more beneficial
than completion of a small number of large refactorings. A good example of the
former type of refactoring would be a simple “rename method,” where the name
of a method is changed to makes its purpose more obvious. This type of
refactoring is easily done. An example of the latter, more involved refactoring,
would be an “extract class” refactoring where a single class is divided to become
two. This type of refactoring may be more problematic because of the depen-
dencies of the original class features.
As well as the decision as to “what” to refactor, we also look at the equally
important decision as to “when” we should refactor. Throughout all of our
analysis, we need to bear in mind that refactoring offers only a very small subset
of the possible changes a system may undergo at any point in its lifetime. We
return to this theme later on.
Combined with the need to choose refactorings and the timing of those
refactorings, the need to be able to measure the refactoring process is also
important. Software metrics (Fenton, 1996) provide a mechanism by which this
can be achieved. A metric can defined as any quantifiable or qualitative value
assigned to an attribute of a software artefact. The second perspective thus
relates to the type of metric applicable for determining firstly, whether a
refactoring is feasible, which of competing refactorings are most beneficial and

252 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

how the effects of carrying out refactoring have impacted on the software after
it has been completed. In terms of “when” to refactor, a metrics program
implemented by an organization may provide information on the most appropriate
timing of certain refactorings according to metric indicators as, for example, a
rapid and unexplained rise in change requests.
For both perspectives investigated, there are a large number of issues which
could possibly influence their role in the refactoring process. For example, most
refactorings can at best only be achieved through a semi-automated process. For
example, the decision on how to split one class into two can only be made by a
developer (and aided by tool support once that decision has been made). Some
metrics are subject to certain threats to their validity and are thus are largely
inappropriate for judging the effect of a refactoring; the lines of code (LOC)
metric is a good example of such a metric because of the unclear definition of
exactly what a line of code is (Rosenberg, 1997). In our analysis, we need to
consider these issues.
The objectives of the chapter are three-fold. Firstly, to highlight the current open
issues in the refactoring field. In particular, some of the associated problems that
may hamper or influence any refactoring decision. Secondly, to highlight the role
that software metrics of different types can play in the refactoring process and
the interplay between refactoring mechanics and the measurement of refactoring.
Throughout this chapter we appeal to a number of previous empirical studies to
inform and support our ideas and opinions. A final objective of the chapter is to
identify potential future research possibilities and concerns considering some of
the problems and issues outlined.
The strategy we adopt for our analysis is as follows. We believe strongly that past
and ongoing empirical evidence from a range of different systems provides the
best mechanism for analyzing and achieving the goals of the chapter. Those goals
are firstly, to distill from current empirical thinking (studies and metrics) the
elements which impact on the theoretical and practical aspects of refactoring;
secondly, to present that evidence in a relevant, interesting and meaningful way.
Finally, to propose a set of heuristics from that evidence which we feel will be
of value to refactoring practitioners, project managers, and researchers alike.
We also feel that the results will be of interest to the wider software engineering
community in terms of informing our understanding of change patterns and
trends.
The chapter is arranged as follows. In the next section, we describe background
and related work in the field of refactoring and discuss our viewpoint in a broad
sense. Next, we focus on the “what” aspects of refactoring, drawing on previous
empirical studies in the area to decide what refactorings to apply. We then look
at the “when” of refactoring; when should we apply refactorings? Next, we
summarize the heuristics presented in the chapter (in particular, those in previous

Heuristics and Metrics for OO Refactoring 253

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sections) and then we describe some future research directions in the refactoring
field. Finally, we draw some conclusions.

Background

We view three interrelated areas as particularly relevant to our analysis; theory
and the mechanics of refactoring, practical application and motivation of
empirical studies of refactoring and finally, work in the metrics field. By
“mechanics” of refactoring we mean the prescribed steps that need to be applied
to complete a refactoring (Fowler, 1999).

Refactoring Theory and Mechanics

There are a number of works relevant specifically to refactoring that have
contributed to the field and which could be said to be seminal. In terms of early
work in the area, the main text and from which we will draw significantly in this
chapter is that of Fowler (1999). In this text, Fowler describes the mechanics of
72 different refactorings and assorted “bad smells” in code. Bad smells in code
have a special significance to the work in this chapter. According to Fowler, the
key indicator of when refactoring is overdue is when code starts to “smell.” An
example of a bad smell is an inordinately long method and is thus an obvious
candidate for splitting in two.
In the same text, Fowler categorizes the 72 refactorings according to four areas.
These are whether a refactoring: makes method calls simpler, organizes data,
moves features amongst objects, or deals with generalization. The Ph.D. work
of Opdyke (1992), work by Johnson and Foote (1988) and Foote and Opdyke
(1995) has also been instrumental in promoting refactoring as a discipline and
demonstrating the viability of the refactoring approach. As well as investigating
the “what” and “when” of refactoring, we also illustrate potential areas for novel
empirical research to build on these foundations.
Most of the early refactoring literature focused on Java and Smalltalk as the
target languages. The unique features of object-oriented (OO) languages (e.g.,
encapsulation and inheritance) make refactoring a particularly interesting chal-
lenge for the developer. For example, encapsulation issues and the need to
conform to sound OO principles means that there is frequently a need to apply
relatively simple refactorings. For example, the “encapsulate field” refactoring
modifies the declaration of a field from public to private. The motivation
according to Fowler (1998) is that:

254 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

One of the principal tenets of object-orientation is encapsulation, or data
hiding. This says that you should never make your data public. (p. 206)

In the next section, we provide evidence that shows developers (for the C++
language) do not seem to attach importance to getting encapsulation “right”; the
key (and worrying) point is that refactoring may require the breaking down of
“bad developer habits.”
In terms of the OO inheritance feature, there are a number of challenges for the
developer. For example, ensuring that methods and fields are declared and used
in the most appropriate place of an inheritance hierarchy. The “pull up field”
refactoring for example requires that a field in a subclass is moved up to its
superclass. According to Fowler, the motivation for this refactoring is that “two
subclasses have the same field”. In this case, the field in question should be
moved to the superclass to avoid duplication of that field. This is a relatively
simple refactoring related to inheritance. A less simple refactoring is the “pull up
method” refactoring, where two identical methods are moved from subclasses
to their superclass (again to avoid duplication of behaviour). Both the mechanics
and testing effort required is significantly greater for the latter type of refactoring.

Empirical Studies

The benefits of refactoring are therefore clear in terms of qualitative (subjective)
values. In terms of empirical studies, recent work by Najjar, Counsell, Loizou,
and Mannock (2003) has shown that refactoring can deliver both quantitative and
qualitative benefits; the refactoring “replacing constructors with factory meth-
ods” of Kerievsky (2002) was analyzed. The mechanics of the refactoring
require a class to have its multiple constructors converted to normal methods,
thus eliminating the code “bloat” which tends to occur around constructors. The
moved methods thus have new, more meaningful names. Results showed
quantitative benefits in terms of reduced lines of code due to the removal of
duplicated assignments in the constructors as well as potential qualitative
benefits in terms of improved class comprehension.
In Najjar, Counsell, and Loizou (2005), the problems associated with a simple
refactoring such as the encapsulate field (EF) was studied. To investigate the EF
refactoring, samples of classes were chosen from five different Java systems
and the potential for applying the mechanics of the refactoring investigated.
Results showed certain potential for applying the refactoring per se. In other
words, no shortage of opportunity was found for applying the refactoring; public
attributes were found in a number of classes in each system. However, three
features exhibited by the five systems suggest that applying the EF refactoring

Heuristics and Metrics for OO Refactoring 255

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is not as straightforward or applicable as it first seems. Firstly, the number of
dependent classes requiring changes as a result of applying the refactoring may
prohibit the refactoring; secondly, the large number of classes with zero
attributes would seem to render the refactoring almost redundant. Finally, the
features of the inheritance hierarchy in each system pose a dilemma with the use
of the protected declaration (as opposed to private). A final finding was the
practical trade-off and applicability of the EF refactoring when considering
different application domains. Some of the systems studied were more amenable
to the EF refactoring than others.
Recent work by Advani, Hassoun, and Counsell (2005b) describes the results of
an empirical study of the trends across multiple versions of open source Java
software. A specially developed software tool extracted data related to each of
fifteen refactorings from multiple versions of seven Java systems according to
specific criteria. Results showed that, firstly, the large majority of refactorings
identified in each system were the simpler, less involved refactorings. Very few
refactorings related to structural change involving an inheritance relationship
were found. Secondly, and surprisingly, no pattern in terms of refactorings
across different versions of the software was found. Results thus suggested that
developers tend to carry out simple “core” refactorings at the method and field
level, but not as part of larger structural changes to the code (i.e., at the class
level). The research in the same paper highlights an important refactoring issue.
It is unlikely that we will be able to identify whether those “core” refactorings
were done in a conscious effort by the developer to refactor, or as simply run-
of-the-mill changes as part of the usual maintenance process. In other words, the
question, “do developers refactor without realising it?” needs to be addressed.
This then raises the question as to whether refactoring is subsumed by usual
changes typically made by developers. Despite these issues, we feel that
identification of the major refactoring categories is a starting point for under-
standing the types of change typically made by developers and the inter-
relationships between changes typically made by developers. The same paper
identified refactorings according to specific rules and heuristics. Developing
heuristics for undertaking refactorings based on system change data has also
been investigated by Demeyer, Ducasse, and Nierstrasz (2000).

Strategy Used for Empirical Studies

The empirical studies described as part of this chapter and from which we draw
data were all undertaken over the past seven years. For each study, there was
at least one underlying objective and/or hypothesis; as we describe each study,
we point out what these were. This chapter represents an interleaving and
distillation of these studies in a purely refactoring context. For one or two studies,

256 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the hypotheses were not stated from the outset. For example, it is difficult to
reason about when most refactorings are likely to occur. On the other hand,
hypotheses about cohesion and how human subjects would rate class cohesion
are far easier to compose.
Many of the metrics used in the studies were collected manually and, wherever
possible, collected automatically using tailored software. For example, the study
described in the fourth section used human subjects as a basis and data from that
study could only be collected from hand-written scripts. Data such as number of
class attributes and methods, on the other hand, can easily be collected
automatically. Where data was collected automatically, it was always verified
afterwards through human inspection.
The threats to the validity of each study were also considered. For example, we
tried to choose systems for each study that gave as wide a cross-section of
application types as possible. We also tried to choose systems which were
industrial-sized and which were developed by professional software engineers.
Of course, we can never study too many systems and so many of results need
to be supported by other studies in other research using other systems to build
up a knowledge base in the area concerned. We have also provided evidence
from both Java and C++ systems as a way of reflecting trends in different OO
languages. Finally, we have included a variety of statistical techniques in this
chapter; we chose different techniques for different studies as a way of
highlighting the salient features we were trying to demonstrate.

Automation and Metrics

In terms of related work on automating the search for refactoring trends,
research by Tokuda and Batory (2001) has shown that three types of design
evolution, including that of hot-spot identification, are possible. A key result of
their work was the automatic (as opposed to hand-coded) refactoring of fourteen
thousand lines of code. Finally, the principles of refactoring are not limited to
object-oriented languages. Other languages have also been the subject of
refactoring effort including that of visual basic (Arsenovski, 2004).
A central feature of our analysis is the use of metrics to quantitatively capture
the features of the system under study. Many metrics have been proposed and
used for analyzing object-oriented and procedurally-based software both theo-
retically and empirically (Bieman & Ott., 1994; Briand, Devanbu, & Melo, 1997;
Chidamber & Kemerer, 1994; Hitz & Montazeri, 1996). In most previous studies,
we have used simple counts of the number of the class feature “number of
attributes.” Metrics play a central role in allowing us to measure features of
systems at different levels of abstraction whether at the class or method level).

Heuristics and Metrics for OO Refactoring 257

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In all the studies previously mentioned and studies we draw on in this chapter,
metrics play a part.
Finally, as well as the need to understand “what” and “when” to refactor, it is also
important to point to one other key motivation for our analysis of refactoring in
this chapter. An earlier investigation by some of the authors to identify suitable
candidates for refactoring failed for one simple reason. It highlighted obvious
candidates for refactoring according to obvious criteria such as large numbers
of class methods and attributes. Inspection of the same classes revealed very
few opportunities for refactoring, because classes with large numbers of
features often have those features for a good reason. For example, we found one
class with several hundred attributes, a class called PageAttribute.MediaType.
This class contained an attribute for each type of paper and other form of media
(e.g., A4, A3, etc.). Refactoring this class would have been counterproductive
in terms of benefits obtained, even it though it was identified according to specific
refactorings and bad smells therein (e.g., large method, large class, and primitive
obsession (Fowler, 1999). In the next section, we investigate the issue of “what”
should be refactored and in the section following that the question of “when”
refactoring should be done. We use results from previous empirical studies to
support our arguments.

The “What” of Refactoring

One of the most fruitful research areas in recent years has been that of an
empirical study. Carrying out empirical studies helps us to understand more in a
quantitative and qualitative sense about how systems and the people using those
behave (Bieman, Straw, Wang, Munger, & Alexander, 2003; Briand, Bunse &
Daly, 2001; Counsell, Swift & Mendes, 2002; Harrison, Counsell & Nithi, 2000;
Ostrand, Weyuker, & Bell, 2004). A multitude of empirical studies have thus
been carried out covering all aspects of software engineering and related
computer science fields. A particularly interesting area of empirical studies have
been those which shed light on or which show how well stated theory stands up
in practice. In this section we describe empirical experiences from which we can
learn about rules and heuristics of what to refactor. In particular, we highlight
some of the problems associated with refactoring observed through some of
these empirical studies. More specifically, we highlight separately the empirical
reality or refactoring and the applicability of refactorings thereof.
To facilitate an understanding of code features which the empirical studies try
to evaluate, the following is a definition of a class APoint that models the
operations of two coordinates x and y and two further attributes a and z. The

258 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

class has a single attribute of each type of declaration (public, private and
protected) and inherits from a class called BasePoint. It has a single constructor
called APoint and a single method CalcDistance. It is coupled to BasePoint
through inheritance and to MathType via the return type in the method
CalcDistance. We could also say that this class is reasonably cohesive because
the methods are meaningful, operate on the same data and are named meaning-
fully. Although a simple class, the features demonstrate some of the major
elements which empirical studies in later sections tackle in an empirical sense.

public class APoint extends BasePoint {
 public int x, y;
 private int a;
 protected int z;

 // constructor
 public APoint (int a, int x, int y, int z) {
 this.a = a;
 this.x = x;
 this.y = y;
 this.z = z;
 }

 public MathType CalcDistance() {
 return((x* y * a) + z);
 }

}

In the next section we investigate how the empirical reality is often different to
the perceived reality with evidence to support the claims. We look at each study
from a refactoring perspective.

The Empirical Reality

The applicability of certain refactorings relies, to a large extent, on the features
of the application in question being present in that application. In the study where

Heuristics and Metrics for OO Refactoring 259

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

we replaced multiple constructors with a catchall constructor (Najjar, Counsell,
Loizou, & Mannock, 2003), the study would have been impossible had every
class had just a single constructor. The “what” to refactor is therefore dependent
on the features of the refactoring being present in the systems under consider-
ation. In subsequent sections, we use the terms “attribute” and “field” inter-
changeably.

Zero Attribute Classes

Figure 1 shows one of the results from the analysis of the “encapsulate field”
refactoring (Fowler, 1999). The purpose of the study from which the data is
taken was to empirically investigate the potential for simple refactorings. We
wanted to show that even perceived trivial refactorings posed certain problems.
Figure 1 shows the percentage of classes with zero attributes in samples taken
from five Java systems.
One of the key impediments to this refactoring was thus the high percentage of
zero-attribute classes found from the samples taken from each system. The
applications ranged from a graph drawing package with the lowest proportion of
zero-attribute classes (System 1) to the Swing class library (System 5) with the
largest.
Table 1 shows summary data for the largest of the five systems investigated in
the same research. It also shows the number of public features from the same
sample. It shows that 52 of the classes from the sample size of 63 had zero
attributes. Only 11 classes had more than one public attribute. Opportunities for
the encapsulate field refactoring are thus limited to those 11 classes. The study
thus cast doubt on the viability of even simple refactorings such as EF.

0

10

20

30

40

50

60

1 2 3 4 5

System

Pe
rc

en
ta

ge

Figure 1. Five systems and the percentage of zero-attribute classes

260 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Another feature of the systems investigated in Najjar, Counsell, and Loizou
(2005) is the existence of certain key classes (Counsell, Swift & Tucker, 2005).
One obstacle to a decision as to what to refactor is the existence of certain class
features which on the face of it, are excellent candidates for refactoring. One
key indicator of a class which suggests it needs refactoring is a class with a large
number of attributes. However, inspection of the class revealed it to require each
of those attributes as part of its essential functionality. The other problem with
key classes is that they tend to have a large number of dependent classes. The
purpose and underlying hypothesis of the investigation in Najjar et al. (2005) was
to establish the problems associated with dependent classes; we believe that the
larger the number of dependent classes, the harder it is, generally speaking, to
refactor.
Inspection of the samples of classes chosen from System 3 (another library
system) showed it to comprise a class called StrictMath, with 112 attributes and
38 methods. Equally, System 1 (GraphDraw) has a class called GraphCanvas
with 66 attributes and 63 methods.
Table 3 shows the summary data for the Swing system and shows that one class
has 14 dependent classes. The important point about key classes is that while
they may be eminently suitable for refactoring, the problem of dependent classes
renders the process as problematic.
The conclusions we can draw from the data in Tables 1 and 2 relevant to the
refactoring theme are that firstly, in many cases, the decision about refactoring
is made for us by nature of the system itself. Deciding what to refactor is a
decision aided partly by features of the systems themselves. If there are no
attributes, then the number of potential refactorings is reduced significantly. In
fact, the following are some of the refactorings which become impossible as a
result:

• Encapsulate field: The declaration of a field is changed from public to
private.

• Move field: “A field is, or will be, used by another class more than the class
on which it is defined.”

Table 1. Summary data for the Swing library

Sample Size 63
Classes with >= 1 public attr. 11
Classes with zero attributes 14
Classes with zero public attrs. 52
Max number of public attrs. 80

Heuristics and Metrics for OO Refactoring 261

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Rename field: A field is renamed to make its purpose more obvious.
• Push Down field: “A field is used only by some subclasses.” The field is

moved to those subclasses.
• Pull Up field: “Two subclasses have the same field.” In this case, the field

in question should be moved to the superclass.

Secondly, the problem is more acute that the five refactorings above would
suggest. The first three refactorings of the five listed are often part of larger
refactorings (we will return to this principle in detail later). For example, the
move field is part of the mechanics of the move method refactoring; if there are
no attributes, then this is likely to make the move method process simpler.
Absence of class features eliminates one refactoring and thus makes others
simpler. Finally, in the existence of certain key classes may present a false
impression of refactoring potential.

Ease of Automation

In a previous study described in Advani, Hassoun, and Counsell (2005b), we
automatically extracted data about refactorings from seven Java systems of
different types using a software tool (Advani, Hassoun, & Counsell, 2005a). The
purpose of the study was to investigate the potential for identifying refactorings
automatically using a tool and some of what we perceived was common, popular
refactorings. To do this, we developed rules for extracting refactoring data from
the source code. For example, to detect whether the “Move Field” refactoring
had taken place in the transition from one release to the next, the tool checked
whether:

1. A field (name, type) that appeared in a class type (belonging to older
version) appeared to be missing, that is, dropped from the corresponding
type of a later version.

Table 2. Summary of dependencies for the Swing library

Sample Size 63
Median no. of dependencies 1
Max. no. of dependencies 14
Mean no. of dependencies 2.73

262 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. The field (name, type) did not appear in any superclass or subclass of the
original type.

3. A similar field (name, type) appeared to have been added to another type
(belonging to later version).

The mechanics of this refactoring are quite straightforward, and, therefore, we
could easily automate it. According to Fowler, moving state and behaviour
between classes is the essence of refactoring. However, certain refactorings
can only be achieved through manual means and at best a tool can only assist.
Consider the case of the “substitute algorithm” (SA) refactoring. The SA
refactoring substitutes an algorithm for one which is clearer. The example given
by Fowler is a series of “if” statements which can simply be replaced with a loop
and an array. In the same way that the EF refactoring was relatively straight-
forward, the SA requires only that the code is changed and then run against a set
of tests to ensure that the change has worked. However, changing code to meet
the same requirements cannot be achieved by an automated process alone.
There needs to be a manual component to the process.
In previous work (Counsell, Hassoun, Johnson, Mannock, & Mendes, 2003), it
has been shown that the majority of the changes made to a Java Library system
were to “if” conditions (yet interestingly not to “while” or “for” loops). The
changes made to a set of fifty-two Java library classes over a three year period
were investigated. The research attempted to support the hypothesis that certain
types of changes made to Java code fall into distinct trends and, furthermore, are
likely to be made at a high level of abstraction (i.e., at the method signature and
parameter level).
Table 3 shows the distribution of changes categorized as part of the study in
Counsell et al. (2003). The 67 additions or modifications to “if” statements were
attributable to just fourteen classes. The maximum value in this table denotes the
greatest number of changes of that type found for any single class. It shows that
32 new methods were added over the period to the classes studied. Interestingly,
these 32 new methods were accounted for by only seven classes of the 52.
The problem from a refactoring point of view comes from two sources. Firstly,
it is impossible for a tool to decide whether one section of code is functionally the
same as another section of code unless it knows about the semantics of what
each section of code does. Syntactically, we can make a wide range of
observations about two sections of code. However, it would be virtually
impossible to trace an instance of an SA refactoring (whether manually or
automatically). This is particularly true if the change to the algorithm was
complex in nature. In other words, and very much a topical refactoring issue, is
that the most popular refactorings in the study described seem to be those which
we cannot automate very easily. Secondly, the SA algorithm is likely to

Heuristics and Metrics for OO Refactoring 263

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

incorporate other refactorings; for example, the add parameter refactoring
which may mask the SA refactoring even further. The lesson in terms of
heuristics and relevant to the chapter is therefore that for convenience and speed
(since developer time and resources are valuable and limited), refactorings
which can be supported by a tool are likely to be a better investment of a
developer's time. Some refactorings have no mechanics and this in turn make
those refactorings difficult to apply.

The Role of Inheritance

Inheritance is claimed to be a fundamental principle of the OO paradigm. It is
supposed to bring benefits in terms of reuse and inheritance hierarchy models
information in a way which is easily understood and maintained. Despite the
potential benefits of using inheritance, a number of studies have shown that the
claims about ease of maintenance can be questioned (Briand et al., 2001;
Counsell, Loizou, et al., 2002a).
In another recent study by the authors, it has been observed that the number of
refactorings related to the category “dealing with generalization” were a very
small part of the total overall number of refactorings. A tool was used to extract
refactoring information from multiple versions of seven Java systems. The
purpose of the study was to identify trends in core refactorings across a wide
range of systems. Table 4 illustrates the number of refactorings extracted across
the seven systems and n versions categorised according to the “dealing with
generalization” type identified by Fowler.
It also shows the totals for that refactoring/version in the final row. Between
versions 3-4, only 41 of the 236 refactorings were attributed to this category.
Only 6 occurrences of the extract subclass were found in all versions of the
systems (looking across the row). Clearly, the lack of inheritance-based
refactorings is evident from Table 4. The large number of zero values suggests
that across versions, inheritance-based refactorings are not common. The

Table 3. Categorization of changes made to 52 Java classes

Change Type Total Distribution Max. Mean
New method added 32 7 14 0.62
Method call added 45 9 32 0.85
Parameter in method call
added or modified

32 19 9 0.62

Method signature modified 51 26 14 0.98
“If” added or modified 67 14 11 1.26

264 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

worrying trend is that the result suggests that developers avoid complex
refactorings in favour of simpler refactorings (which accounted for the majority
of the values in the final row of Table 4).
Evidence of the limited role that inheritance can play in the determination of
refactorings can be found in Table 5. It shows that for the same five systems
analyzed in Najjar et al. (2005), a high proportion of classes (except those for the
drawing tool) are leaf classes, that is, have no subclasses. This feature should
make the classes at leaves easier to refactor since, in theory they have less
dependencies than classes with their own subclasses.
This would certainly apply to the encapsulate field refactoring where there are
no subclasses dependent on the field in question. The same however could not
be said of any refactoring which requires parts of the class to be moved — the
methods of the class may use inherited features and this may cause problems.
The key lesson in terms of the chapter is that in certain circumstances, some
refactorings may be trivial and easily completed. The same situation may
however make other refactorings prohibitively expensive in terms of developer

Table 4. Inheritance-based refactorings across multiple versions of seven
Java systems

Table 5. Location of Java classes in the inheritance hierarchy

Refactoring Type 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Push Down Method 0 0 1 0 1 0 0 0 4
Extract Subclass 0 2 3 0 1 0 0 0 0
Pull Up Field 0 1 7 0 2 4 0 0 0
Extract Superclass 0 2 10 0 8 1 0 0 2
Push Down Field 0 16 3 0 7 0 0 0 0
Pull Up Method 0 9 17 0 24 5 0 0 10
Total 89 151 23

6
8 67 61 17 7 51

System Leaf Classes % of Total

Drawing
Tool

5 2.45

Framework 34 20.06
Java Library 44 38.72
Compiler 73 32.59
Swing 577 54.59

Heuristics and Metrics for OO Refactoring 265

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

time and effort. Generally speaking, it seems that inheritance refactorings are so
involved that they are avoided by developers. In the next section, we discuss the
related issues of coupling and cohesion.

Cohesion and Coupling

We have seen already that one of the key impediments to refactoring for even
a simple refactoring is the role that dependencies between classes plays. An
accepted software engineering principle is that developers should try to make
classes as cohesive as possible and that those classes should contain minimal
coupling (Pressman, 2005). In the metrics community, cohesion is often associ-
ated with ease of comprehension. If a class is cohesive, then in theory it should
be easy to understand. If a class is uncohesive then the purpose of the class is
not obvious and it is difficult to understand what the purpose of that class is.
The best known of the cohesion metrics is that proposed by Chidamber and
Kemerer (C&K) — the lack of cohesion of the methods of a class LCOM
(Chidamber et al., 1994). The LCOM metric views a class as cohesive if the
instance variables are distributed in such a way that all methods use all instance
variables. Equally, a class is viewed as uncohesive if the use of instance variables
amongst the methods of a class are disjoint. Various other metrics have been
proposed to measure cohesion, but, as of yet, there is no general consensus on
cohesion metric. In other words, we have no accepted way of measuring the
benefit of a refactoring such as “extract class” whose purpose is to remove code
from one class to make the source class more cohesive.
In terms of other related work, a number of attempts have been made to capture
cohesion through software metrics. As well as the C&K LCOM metric, the
cohesion amongst the methods of a class metric (CAMC) by Bansiya, Etzkorn,
Davis, and Li (1999) based on the overlap of parameters used by a class was
found to correlate with LCOM and the views of three developers on what
constituted cohesion. Hitz and Montazeri (1996) also propose metrics for
measuring cohesion (as well as coupling). Bieman and Ott (1994) demonstrated
the measurement of functional cohesion in C software. Finally, Briand et al.
(1998) propose a framework for measurement of OO cohesion and conclude that
many of the cohesion metrics proposed are in most cases not validated
theoretically and even fewer validated empirically.
In terms of refactoring, high cohesion would seem to be a synonym for high
comprehensibility. If a class is cohesive, then the class will be easier to
understand and modify. We note that any measure of cohesion based on the
attributes of a class cannot be assessed if the class has no attributes. In this
chapter, we adopt the stance that coupling is a far better indicator of comprehen-

266 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sibility than any measure of cohesion. High coupling will make refactorings more
difficult to apply. Lower coupling will make them easier to apply. This brings into
question the whole issue of the coupling and cohesion interplay.
As part of an earlier study into OO (C++) cohesion, the correlation between
coupling given by the number of associations metric (NAS) metric and a
component of a metric called normalised hamming distance (NHD) metric was
analyzed. The NAS represents the number of couplings of a class and can be
counted as the number of lines emerging from a class on a UML class diagram.
The NHD is based around the inter-relationship between the parameters of the
methods of a class in a similar vein to the CAMC metric. The purpose of the study
was to investigate the hypothesis that, in an OO sense, cohesion and coupling
were so interrelated that one could be substituted for another.
Table 6 shows the strong relationship between the key component of our
cohesion metric P (number of unique object “P”arameters in the class as a
whole) and NAS metric; the results are a summary of the results from the study
in Counsell, Swift, et al. (2002). Correlation at the 1% level is asterisked by the
value in each case. We thus adopt the stance that firstly, coupling has a strong
relationship with cohesion (where method parameters are assumed to be a key
component of class cohesion). Secondly, that unlike coupling, cohesion is a
subjective issue and cannot be measured objectively.
Reduced coupling has also been a claim of certain refactorings. For example, the
motivation behind the “move field” refactoring is that “a field is, or will be, used
by another class more than the class on which it is defined. It therefore makes
sense to move that field to the class which needs to most and eliminate the
coupling. Various metrics have been defined to measure coupling (Briand et al.,
1997; Chidamber et al., 1994). The difficulty arises when the decision as to what
represents too much coupling has to be made. For certain applications, a high
level of coupling may be necessary. There is also the problem that certain types
of coupling are more of a feature in some applications than others. A GUI-based
system (with a high dependence on inheritance) lends itself well to a structure
incorporating frames, panels and dialog boxes, all of which share certain generic
properties. Although some amount of work has been done on finding an optimal
level of coupling (El Emam, Benlarbi, Goel, Melo, Lounis & Rai, 2002), further
empirical studies need to be carried out before a consensus can be reached.
When making refactoring decisions, we therefore suggest that coupling should
be the prime determinant of which refactorings to carry out. We should choose
refactorings which can be measured in reduced levels of coupling rather than
aiming for high cohesion. Furthermore, in assessing the post-impact of any
refactoring, coupling not cohesion should be used where possible. We accept that
many refactorings involve no coupling issues and for these refactorings, the
decision amongst competing refactorings may require subjective judgements.

Heuristics and Metrics for OO Refactoring 267

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Another point in terms of the overall chapter is that we should always look for
refactorings which provide quantifiable benefits. In the next section, we address
the issue of when to refactor; that is, we have looked at “what” to refactor, but
the “when” is equally important.

The “When” of Refactoring

The decision as to when to refactor is as important a decision as to what to
refactor. Fowler suggests that rather than being one large concerted effort,
refactoring should be done in little bursts. He also suggests that a developer does
not decide to refactor; the developer refactors because he/she wants to achieve
something else and doing that “something else” requires that they refactor first.
Similarly, Beck (2000) urges developers to refactor when the system tells them
to, not through speculation alone. Very little research has empirically tackled the
issue of when we should refactor.
To support the arguments about when to refactor, we return to the study of the
seven open source Java systems analyzed in Advani et al. (2005b). The first
question which arises is whether there any patterns within the systems studied
as to “when” refactoring is carried out. Figure 2 shows that for the Antlr system,
the majority of refactorings happen at versions 2-3 and 3-4. It is noticeable that
some refactorings (particularly inheritance-based refactorings) are few and far
between. Figure 3 for the same system shows the same trend for the HSQLDB
system and similarly for the JasperReports system in Figure 4. In each of the
figures, there seems to be a trend of refactoring being undertaken at earlier
stages of the system’s life rather than at later versions.
Figure 5 shows the cumulative values of refactorings across time for all seven
systems studied. It supports the results for the individual systems and shows that

Table 6. Pearson, Kendall and Spearman’s correlation coefficients (NAS
vs. P)

System Pearson’s Kendall’s Spearman’s

Framework 0.59* 0.61* 0.69*
Compiler 0.41 0.28 0.30
Graph
Editor

0.83* 0.62* 0.79*

268 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2. Refactorings for the Antlr system across five versions

Figure 3. Refactorings for the HSQLDB system across four versions

0

1

2

3

4

5

6

7

Add
Meth

od
Para

mete
r

Enc
ap

su
lat

eD
ow

nc
as

t

Hide
Meth

od

Pull
UpF

iel
d

Pull
UpM

eth
od

Pus
hD

ow
nF

iel
d

Pus
hD

ow
nM

eth
od

Rem
ov

eM
eth

od
Param

ete
r

Ren
am

eFiel
d

Ren
am

eMeth
od

Enc
ap

su
lat

eFiel
d

Mov
eField

Mov
eMeth

od

Extr
ac

tS
up

erC
las

s

Extr
ac

tS
ub

Clas
s

Antlr

Antlr270VS271.xml
Antlr271VS272.xml
Antlr272VS273.xml
Antlr273VS274.xml
Antlr274VS275rc1.xml

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Add
Meth

od
Para

mete
r

Enc
ap

su
lat

eD
ow

nc
as

t

Hide
Meth

od

Pull
UpF

iel
d

Pull
UpM

eth
od

Pus
hD

ow
nF

iel
d

Pus
hD

ow
nM

eth
od

Rem
ov

eM
etho

dP
ara

mete
r

Ren
am

eF
iel

d

Ren
am

eMeth
od

Enc
ap

su
lat

eF
ield

Mov
eField

Mov
eMeth

od

Extr
ac

tS
up

erC
las

s

Extr
ac

tS
ub

Clas
s

HSQLDB

HSQLDB161VS170.xml
HSQLDB170VS171.xml
HSQLDB171VS17211.xml
HSQLDB17211VS1731.xml

Heuristics and Metrics for OO Refactoring 269

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4. Refactorings for the JasperReports system across four versions

Figure 5. Refactorings across versions of the seven systems

0

1

2

3

4

5

6

Add
Meth

od
Para

meter

Enc
ap

su
lat

eD
ow

nc
as

t

Hide
Meth

od

Pull
UpF

iel
d

Pull
UpM

eth
od

Pus
hD

ow
nF

iel
d

Pus
hD

ow
nM

eth
od

Rem
ov

eM
eth

od
Param

ete
r

Ren
am

eF
iel

d

Ren
am

eM
eth

od

Enc
ap

su
lat

eF
iel

d

Mov
eField

Mov
eMeth

od

Extr
ac

tS
up

erC
las

s

Extr
ac

tS
ub

Clas
s

JasperReports

JasperReports060VS061.xml
JasperReports061VS062.xml
JasperReports062VS063.xml

Total refactorings (all versions)

0

50

100

150

200

250

Versions (1-2, 2-3...)

To
ta

l

270 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the bulk of refactorings tend to occur not at the earliest stages of a system, but
around versions 2-3 and 3-4.
The evidence from Figures 2, 3, and 4 therefore supports the view that in terms
of the need for refactoring, a system starts to degrade or decay after 3 or 4
versions.
The conclusion we can draw from the evidence in Figures 2, 3, 4, and 5 is that
contrary to what Fowler states would be the best time to refactor (at constant
intervals), there seems to be a peak around versions 3-4 for the systems studied
in terms of when refactoring takes place. From Figure 5, it is also noticeable that
after version 3-4, there is a dramatic drop in the number of refactorings. Although
the study described relates to only seven systems, we feel that the results give
useful evidence of the type of refactoring trends in systems.
Of course, we have no means of predicting the trend in refactoring beyond the
versions studied, and it would be as unreasonable to suggest that there would not
be any more peaks. Although the empirical evidence suggests that we need to
devote refactoring efforts at early stages of the system’s lifetime, we would urge
consistent refactoring throughout the period of a system's life. Of course, more
empirical studies need to be undertaken before we can draw any concrete
conclusions.

Monitoring Growth

One of the key benefits of carrying out refactoring is reduced class complexity.
For example, the motivation behind the “extract class” refactoring is that a class
should be split into two classes because it is becoming too large to understand
easily. In other words, the class is becoming too complex. One current issue is
therefore that as a result of carrying out refactoring, we may well attain improved
comprehension, but the difficulty arises when we try to measure that benefit.
One conclusion is thus that if a class has zero attributes, then it affects the
number of refactorings which can be carried out and also the means by which
we can measure the outcome of any refactoring. One of the other key potential
benefits of refactoring is a reduction post-refactoring in the number of lines of
code. However, the lines of code added to a class together with the number of
changes that have been applied to a class may give a good indication of the
potential for refactoring.
A previous study by Bieman et al. (2003) investigated the hypothesis that large,
object-oriented classes were more susceptible to change than smaller classes.
The measure of change used in the study was the frequency with which the
features of a class had been changed over a specific period of time. From a
refactoring perspective, the frequency of class change in terms of its versions

Heuristics and Metrics for OO Refactoring 271

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is of real value. However, since for any relatively simple refactoring, multiple
classes may be changed without any net increase in class (and hence overall
system) size, we contest that including number of added lines of code in the
assessment gives a better impression of which classes are most volatile and
hence more suitable candidates for refactoring.
We thus support the view that refactoring should be applied to classes with a high
growth rate as well as a high change frequency. To support our investigation,
data relating to changes from 161 Java classes were used as an empirical basis.
Our results supported the conclusion of Bieman et al. (2003) relating to the
change-proneness of large classes. Finally, we believe refactoring effort is most
economically applied to classes which have both a high number of versions and
a large increase in added lines of code over their lifetime. The “when” to refactor
should be informed by sudden changes to the system.
A high frequency of changes made to an object-oriented class may suggest that
the class was poorly written and hence required a large amount of maintenance
effort applied to it. In a refactoring sense, frequency of change takes on a
different meaning. It is thus likely that refactoring will not significantly increase
the number of physical lines of code in the system since most refactorings require
either modifications to current code or corresponding deletions for each insertion
required by the refactoring. The extract class refactoring is one example where
code is removed from one class to become a class in its own right without any
significant net increase in system size. In the recent study by Bieman et al.,
number of class changes was used as the measure of change-proneness for five
C++ systems. While we believe that there is merit in using number of changes
as a measure of class volatility, we believe that classes which have had a large
number of changes made to them (i.e., have many versions) and which have had
significant numbers of lines of code added to them are better potential candidates
for refactoring. A previous study by some of the authors collected the change
data and growth in class size from one hundred and sixty one Java classes. It was
found that much more information about the growth f the system could be
gleaned by using both number of changes and changes in the lines of code in those
classes. Basing the choice of classes for refactoring on alarming increases in
class size supports the dictum of Beck which urges developers to refactor when
the system tells them to, not through speculation alone.

Experimental Evidence

The obvious experimental means of establishing whether comprehension has
improved is to carry out a formal experiment using developers, but any
experiment is subject to certain threats to validity. For example, the level of

272 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

experience of the subjects used may influence the results. The measurement of
experience is also itself subject to a range of criticisms.
Often, a refactoring is accompanied by a reduction in the number of lines of code.
This was a feature of the refactoring undertaken as part of Najjar et al. (2003).
The “replace constructors with factory methods refactoring” removed duplicate
lines in constructors which had arisen due to code “bloat” (Fowler, 1999).
However, the lines of code (LOC) metric has been subject to a range of
criticisms (Rosenberg, 1997) and so any refactoring which reduces the number
of LOC is subject to the same criticism.
Table 7 illustrates the role that size and, in this case, comment lines can have on
the perception of cohesion by subjects taking part in a controlled experiment
(Counsell et al., 2005). Twenty-four subjects with varying levels of experience
were asked to rate on a scale 1-10 how cohesive they thought a set of ten C++
classes (10 represents the most cohesive class, and 1 the least cohesive). The
24 subjects were each given a set of the ten C++ class header files being
analyzed. The ten classes were chosen at random from two industrial-sized C++
systems. The only restriction placed on the choice of these classes was that there
had to be a relatively broad range of class size and make-up, but at the same time
not too wide a range as to bias the outcome of the study.
Table 7 shows the “Position” of the classes in terms of the rating of cohesion by
experienced subjects. Class ApplnDialog was thus rated the least cohesive and
class ArcList the most cohesive. The Number of Comment Lines (NCL) in the
class is followed by the position rated by subjects without experience. For
example, class ApplnDialog was ranked the seventh most cohesive class. Class
BagItem was rated most cohesive by subjects without experience. The number
of methods in the class (NMC) also included in the table is a measure of the size
of the class.

Table 7. Summary data for an empirical cohesion study

Position Class Name NCL Position
(Inexp,)

NMC

1. ApplnDialog 0 7 5
2. Alert 0 5 7
3. Dialog 2 8 4
4. CycleItem 0 2 14
5. Arc 29 10 5
6. Bitmap 0 3 22
7. BagItem 3 1 11
8. Assoc 3 4 11
9. ArcList 47 9 9

10. DDGNodePtrList 54 5 9

Heuristics and Metrics for OO Refactoring 273

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 7 also shows that classes with relatively larger numbers of comment lines
were generally considered by the experienced subjects to be cohesive. The same
is true of the inexperienced group. Clearly, the top two classes in terms of
comment lines were ranked relatively highly in terms of their cohesion values (by
the inexperienced group). This would seem to indicate that comment lines are an
aid to the assessment of cohesion. However, in saying this, an allied factor (or
even the critical factor) may be the low NAS values found for those classes.
In other words, on the one hand, size and growth are important in our determi-
nation of when to refactor, but there may be features which do not contribute to
size necessarily, but yet are crucial to the mechanics of most refactorings (i.e.,
coupling). In the next section we describe a previous analysis carried out to see
if, in an empirical sense, one refactoring triggers other refactorings.

A Dependency Analysis

As part of our refactoring research, we developed a dependency diagram which
showed the inter-relationships between the 72 refactorings originally stated by
Fowler. The diagram was developed by hand using Fowler’s text as a basis. As
a result of producing this graph, it becomes possible to see the likely implications
of undertaking a specific refactoring in terms of how many other potential
refactorings either must be carried out or may be carried out at the same time.
In terms of the question about “when” and “what” to refactor, we must accept
the possibility that one refactoring may embrace n other refactorings, and this
would be an important consideration in the choice of both what and when to
refactor.
For example, for the “Encapsulate Field” refactoring, Fowler (1998) himself
suggests that one possible implication of the refactoring is that once he had
completed encapsulate field he would look for methods that use the new methods
(i.e., accessors needed for the encapsulated field) “to see whether they fancy
packing their bags and moving to the new object with a quick Move Method” (p.
206).
The encapsulate field refactoring thus has only one possible “dependency.”
From a developer’s point of view, the encapsulate field is an attractive and
relatively easy refactoring to complete. The “add parameter” refactoring falls
into the same category as the encapsulate field refactoring. It does not need to
use any other refactorings. The only other refactoring that it may consider using
is the “introduce parameter object” refactoring where groups of parameters
which naturally go together are replaced by an object.
The extract subclass refactoring, on the other hand, requires the use of six
(possible) other refactorings, two of which are mandatory. It has to use “push

274 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

down method” and “push down field” as part of its mechanics. It may (under
certain conditions) also need to use the “rename method,” “self encapsulate
field,” “replace constructor with factory method,” and “replace conditional with
polymorphism” refactorings. The extract superclass refactoring requires a
similar number of refactorings to be considered. In fact, for most of the
refactorings involving a restructuring of the inheritance hierarchy, the mechanics
are lengthy (requiring many steps and testing along the way).

Connections Between Refactorings

One explanation for the result found in Advani et al. (2005b) (i.e., the high values
for simple refactorings and the low values for more “complex” refactorings)
could be attributed to the relative effort required in terms of activities required
to complete the refactoring. The testing effort of more complex refactorings has
also to be considered; the more changes made as part of the refactoring then
other things remaining equal, the more testing would be required.
In terms of whether refactorings are somehow linked, we can see from Table 8
that when the extract superclass refactoring is evident, the pull up method is also
a feature for those versions. The mechanics of the extract superclass refactoring
insist that pull up method is part of that refactoring. Equally, there seems to be
evidence of pull up field for the same refactoring, also a part of the extract
superclass refactoring. Rename field and method also seem to feature when
extract superclass is carried out; rename method (but not rename field) play an
important role in the extract superclass refactoring. The rename field refactoring
is not specified in Fowler’s text. This is interesting since it suggests that may be
some effects of refactoring which aren’t covered by the refactoring according
to Fowler.

Table 8. Breakdown of related refactorings from study in Advani et al.
(2005b)

Refactoring Type 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Pull Up Field 0 1 7 0 2 4 0 0 0
Extract Superclass 0 2 10 0 8 1 0 0 2
Extract Subclass 0 2 3 0 1 0 0 0 0
Pull Up Method 0 9 17 0 24 5 0 0 10
Rename Method 19 15 71 6 16 21 1 2 16
Rename Field 31 22 13

7
0 2 5 1 1 10

Heuristics and Metrics for OO Refactoring 275

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Extract subclass also requires use of the rename method refactoring, which may
explain the high numbers for that refactoring. To try and explain the high numbers
of rename field refactoring, one theory may be that developers automatically
change the name of fields when methods are “pulled up” (in keeping with the
corresponding change of method name). A conclusion that we can draw is that
there may well be relationships between some of the fifteen refactorings in line
with the mechanics specified by (Fowler, 1999). However, we suggest that most
of the simple refactorings were not as part of any larger refactoring, based on
the very low number of “larger” refactorings. When considering refactoring, we
have to understand the implications of carrying out what may appear to be a
straightforward refactoring. In the next section, we summarize and distill the
heuristics that the previous two sections have presented.

Summary of Heuristics

In the third and fourth sections, we identified a number of experiments and
empirical studies as a means of demonstrating firstly, what should be refactored
and secondly, when refactoring should be undertaken. A number of key
indicators were identified as a result, most based on data from those studies. In
this section, we summarize and distill the heuristics and metrics identified in the
third and fourth sections. We begin by proposing six heuristics which we feel
could be applied in a refactoring sense.

Heuristics

The first heuristic that we propose is Look at the trends in class features and
class dependencies of your system before you attempt any refactoring.
Many systems have evolved to contain very few of the features that lend
themselves to refactoring. For example, the relatively low number of attributes,
severely restricting the possibility of refactorings related to attributes. The same
can be said of key classes, that is, those classes which have many dependencies.
Care should be exercised in any refactoring because of the potential for
mistakes.
The second heuristic that we propose is Accept that automation is realistic for
a relatively small subset of refactorings. Many of the more complex
refactorings can only be achieved manually with tool support. The example
which we used was that of the Substitute Algorithm refactoring. Identifying what
code has been changed and how is best undertaken manually. Tools can help, but
only as support.

276 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The third heuristic that we propose is Within an inheritance hierarchy,
dependencies of descendent class should be a prime consideration in
making any refactoring decision. Many of the relatively simple refactorings
proposed by Fowler are complicated by the need to account for affected classes
in the inheritance hierarchy.
The fourth heuristic that we propose is Coupling (rather than cohesion)
should be the feature of a class we aim to optimise. Cohesion is a subjective
concept and for any refactoring, we should try to eliminate where possible any
subjectivity.
The fifth heuristic that we propose is Consistent effort should be applied to
the refactoring process whenever possible; growth of the system should
also be monitored. Despite the fact that empirical evidence suggests a surge in
refactorings at version 3-4 of a system, we would encourage a smooth and
consistent use of refactoring techniques.
Finally, we propose that: When considering any refactoring, we need to
appreciate that other refactorings may also be necessary due to a depen-
dency between refactorings. There is some empirical evidence of a nesting of
refactorings; this may have implications for the cost both in time and financially
of making a refactoring change.

Metrics

From the analysis of the different empirical studies, and in the same sense that
we proposed heuristics for refactoring, we can propose six metrics which would
provide the refactorer with an indication of “what” to refactor and “when” to
refactor. These can be summarized as:

1. The number of attributes (public, private and protected)
2. The number of methods (public, private and protected)
3. Number of descendents of a class in the inheritance hierarchy
4. Number of classes to which a particular class is coupled
5. Changes in LOC to classes
6. Changes in “the number of changes” applied to a class

Interestingly, the set of six metrics include both product metrics, aimed at the
static program code (metrics 1-4) and process metrics, aimed at what happens
to the program over its lifetime (metrics 5-6). We note also that the metrics

Heuristics and Metrics for OO Refactoring 277

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

should be used in combination and not in isolation. For example, metrics 1 and 2
are very often related in terms of refactoring mechanics. Metric 4 includes
inheritance coupling (metric 3), and as we suggested in the fourth section,
metrics 5 and 6 should both be used to target classes growing at a relatively
higher rate than other classes. Finally, the existence of key classes (the third
section) embraces and requires the monitoring of all six metrics. (It is noteworthy
that metrics 2-4 have corresponding equivalents in the C&K set of metrics and
metric 1 is used in the computation of the LCOM metric, also of C&K.) In the
next section, we point to future directions in the refactoring sense.

Future Directions

Some of the issues outlined in previous sections have tended to cast doubt on the
viability of certain refactorings. Some have shown how quantitative and quali-
tative benefits can accrue from undertaking refactorings. Some of the issues
have shown that we should focus on the coupling levels of the classes as a
mechanism for deciding whether to refactor or not. The first area which the
refactoring area could benefit from is a series of tools to guide the refactoring
process. These tools should indicate the quantitative and qualitative effects of
carrying out that refactoring in terms of other refactorings also applicable;
simulating the effect and mechanics would provide the developer with valuable
information about the structure and state of the application being considered.
Software metrics could be used at each stage of the refactoring mechanics to
inform any such decision. This may help in the quest for “what” to refactor. The
metrics which guide this process would need to be chosen carefully, however.
In terms of when to refactor, we would envisage that useful future research
would be to investigate the key indicators which would help the development
staff to know that refactoring is overdue. For example, if a subset of classes
appears to require a disproportionate amount of maintenance effort then this
should be a warning signal to the development staff.
In terms of whether to refactor (are the costs outweighed by the benefits?), a
significant piece of research, already started by the authors, and a relatively
short-term future direction would be to identify the relationships between the
different refactorings (including those herein) and the occurrence of faults. In
other words, is there a correlation between, let us say, the changes made to
method signatures and consequent occurrence of faults directly related to that
change? This research could lead to a refactoring order which states the relative
possibility of faults arising should a particular refactoring be made. On the other

278 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hand, it may also indicate typical areas for refactoring effort to be directed and
invested.
A further future direction would be use of appropriate intelligent data analysis
techniques for simplifying computationally difficult problems. Identification of
many of the more complex refactorings, for example, the Substitute Algorithm
refactoring (third section) are very difficult to automate; they would require
some form of heuristic search to be tackled effectively. Future research could
investigate the potential for applying the different algorithms in a refactoring
sense. Such techniques may also be able to provide predictive features for
estimating the likely impact of undertaking a single or combination of refactorings.
Use of simulation techniques may also be a fruitful research topic in this context
for demonstrating the benefits of refactoring. Software metrics could play a key
role in this sense.
This chapter has used a series of ongoing experiments and empirical studies as
a basis of many of its claims. Finally, an important direction which the empirical
research community should take in the future is thus to build up a body of
experimental knowledge from which we can learn about refactoring (in general),
the possibilities for applying new refactorings and the dissemination of informa-
tion about refactoring. This knowledge should form a freely-available repository
of data and other resources to inform the process of what and when to refactor.

Conclusion

In this chapter, we have tried to show how empirical studies have informed our
understanding of refactoring. More empirical studies of various types need to be
undertaken to build up a body of knowledge about refactoring before any
conclusions can be drawn. We have also not included in this chapter any discussion
about the role and relationship that refactoring has with the occurrence of faults.
In other words, does not undertaking certain types of refactoring cause faults to
arise? Equally, does refactoring uncover faults through the extra testing necessary
as part of the refactoring mechanics?
In this chapter, we have also hypothesized on a number of occasions that developer
habits may cause systems to deteriorate such that refactoring is then necessary.
Future research directions may also include an analysis of developer habits as a
good indication of where systems are beginning to decay. We have also described
some of the current open issues in the field of refactoring. We have investigated the
features of refactoring and looked at the area from two perspectives. Firstly, we
attempted to answer the question of “what” to refactor and looked at a number of
issues from an empirical viewpoint which either lend themselves or do not lend

Heuristics and Metrics for OO Refactoring 279

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

themselves to refactoring. We have also investigated the question of “when” to
refactor. Secondly, we have shown that empirical evidence suggests that refactoring
is done in bursts towards the start of the system’s lifetime, rather than as Fowler
suggests that refactoring needs constant and consistent effort.
Finally, the question which we haven’t been able to answer in this chapter is the
relationship between refactorings as we’ve described them and the wide range of
other changes made to software as part of the run-of-the-mill maintenance process.
This could be an interesting area of potential research, not least because of the
discussion on the link between certain refactorings in the previous section.
The key conclusions from this chapter are that we need a good understanding of
the features and trends in systems at different levels of detail before we should
attempt refactoring. The decision on which refactorings to carry out also needs
to be planned carefully since they will require significant effort both in their
mechanics and subsequent testing effort. We also feel that development staff
should “listen” to the system and use metrics to provide information on what is
happening to a system and hence inform the refactoring process. Ultimately, we
would want to minimize the amount of time developers spend carrying out
maintenance. Although refactoring takes time and effort, the general consensus
is that effort expended in the short-term will provide real benefits in the long-
term.

References

Advani, D., Hassoun, Y., & Counsell, S. (2005a). Heurac: A heuristic-based
tool for extracting refactoring data from open-source software
versions (Tech. Rep. No. BBKCS-05-03-01). SCSIS-Birkbeck, Univer-
sity of London.

Advani, D., Hassoun, Y., & Counsell, S. (2005b). Refactoring trends across
N versions of N Java open source systems: An empirical study (Tech.
Rep. No. BBKCS-05-03-02). SCSIS-Birkbeck, University of London.

Arsenovski, D. (2004). Refactoring — elixir of youth for legacy VB code.
Retrieved April 15, 2006, from http://www.codeproject.com/vb/net/
Refactoring_elixir.asp

Bansiya, J., Etzkorn, L., Davis, C., & Li, W. (1999, January) A class cohesion
metric for object-oriented designs. Journal of Object-Oriented Pro-
gramming, 47-52.

Beck, K. (2000). Extreme programming explained: Embrace change. Bos-
ton: Addison-Wesley.

280 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bieman, J., Straw, G., Wang, H., Munger, P. W., & Alexander, R. (2003,
September 3-5). Design patterns and change proneness: An examination of
five evolving systems. In Proceedings of the 9th International Software
Metrics Symposium (Metrics 2003), Sydney, Australia (pp. 40-49).

Bieman, J., & Ott., L. (1994). Measuring functional cohesion. IEEE Transac-
tions on Software Engineering, 20(8), 644-657.

Briand, L., Bunse, C., & Daly, J. (2001). A controlled experiment for evaluating
quality guidelines on the maintainability of object-oriented designs. IEEE
Transactions on Software Engineering, 27(6), 513-530.

Briand, L., Daly, J., & Wust, J. (1998). A unified framework for cohesion
measurement in object-oriented systems. Empirical Software Engineer-
ing Journal, 3(1), 65-117.

Briand, L., Devanbu, P., & Melo, W. (1997, May 17-23). An investigation into
coupling measures for C++. In Proceedings of the 19th International
Conference on Software Engineering (ICSE 97), Boston (pp. 412-421).

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object-oriented
design. IEEE Transactions on Software Engineering, 20(6), 467-493.

Counsell, S., Hassoun, Y., Johnson, R., Mannock, K., & Mendes, E. (2003,
June16-18). Trends in Java code changes: The key identification of
refactorings. In Proceedings of the ACM 2nd International Conference
on the Principles and Practice of Programming in Java, Kilkenny,
Ireland (pp. 45-48).

Counsell, S., Loizou, G., Najjar, R., & Mannock, K. (2002a). On the relationship
between encapsulation, inheritance and friends in C++ software. In Pro-
ceedings of the International Conference on Software System Engi-
neering and Its Applications (ICSSEA’02), Paris.

Counsell, S., Swift, S., & Mendes, E. (2002b). Comprehension of object-oriented
software cohesion: The empirical quagmire. In Proceedings of the IEEE
International Workshop on Program Comprehension (pp. 27-29), Paris,
France.

Counsell, S., Swift, S., & Tucker, A. (2005). Subject perceptions of object-
oriented cohesion: An empirical study (Tech. Rep. No. BBKCS-05-03-
03). SCSIS-Birkbeck, University of London.

Demeyer, S., Ducasse, S., & Nierstrasz, O. (2000, Ocotober 15-19). Finding
refactorings via change metrics. In Proceedings of the ACM Conference
on Object-oriented Programming Systems Languages and Applica-
tions (OOPSLA), Minneapolis, MN (pp. 166-177).

El Emam, K., Benlarbi, S., Goel, N., Melo, W., Lounis, H., & Rai, S. N. (2002).
The optimal class size for object-oriented software. IEEE Transactions on
Software Engineering, 28(5), 494-509.

Heuristics and Metrics for OO Refactoring 281

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Fenton, N., & Pfleeger, S. (1996). Software metrics: A rigorous and practical
approach. London: Thomson International Publishing.

Foote, B., & Opdyke, W. (1995). Life cycle and refactoring patterns that support
evolution and reuse. In J. O. Coplien & D. C. Schmidt (Eds.), Pattern
languages of programs. Boston: Addison-Wesley.

Fowler, M. (1999). Refactoring (improving the design of existing code).
Addison-Wesley.

Harrison, R., Counsell, S., & Nithi, R. (2000). Experimental assessment of the
effect of inheritance on the maintainability of object-oriented systems.
Journal of Systems and Software, 52, 173-179.

Hitz, M., & Montazeri, B. (1996). Chidamber and Kemerer’s metrics suite: A
measurement theory perspective. IEEE Transactions on Software Engi-
neering, 11(4), 267-271.

Johnson, R., & Foote, B. (1998, June-July). Designing reusable classes. Journal
of Object-Oriented Programming, 1(2), 22-35.

Kerievsky, J. (2002). Refactoring to patterns, industrial logic. Retrieved April
15, 2006, from http://www.industriallogic.com

Najjar, R., Counsell, S., & Loizou, G. (2005). Encapsulation and the vagaries
of a simple refactoring: An empirical study (Tech. Rep. No. BBKCS-
05-03-02). SCSIS-Birkbeck, University of London.

Najjar, R., Counsell, S., Loizou, G., & Mannock, K. (2003, March 26-28). The
role of constructors in the context of refactoring object-oriented software.
In Proceedings of the Seventh European Conference on Software
Maintenance and Reengineering (CSMR ’03), Benevento, Italy (pp.
111-129).

Opdyke, W. (1992). Refactoring object-oriented frameworks. PhD thesis,
University of Illinois.

Ostrand, T., Weyuker, E., & Bell, R. (2004, July 11-14). Where the bugs are. In
Proceedings of the ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (pp. 86-96), Boston.

Pressman, R. (2005). Software engineering: A practitioner’s approach (6th

ed.). Maidenhead, UK: McGraw-Hill.
Rosenberg, J. (1997, November 5-7). Some misconceptions about lines of code.

In Proceedings of the 4th IEEE International Software Metrics Sympo-
sium, Albuquerque, New Mexico (pp. 137-142).

Tokuda, L., & Batory, D. (2001). Evolving object-oriented designs with
refactorings. Automated Software Engineering, 8, 89-120.

282 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

A Survey of
Object-Oriented
Design Quality
Improvement
Juan José Olmedilla, Almira Lab, Spain

Abstract

The use of object-oriented (OO) architecture knowledge such as patterns,
heuristics, principles, refactorings and bad smells improve the quality of
designs, as Garzás and Piattini (2005) state in their study; according to it,
the application of those elements impact on the quality of an OO design and
can serve as basis to establish some kind of software design improvement
(SDI) method. But how can we measure the level of improvement? Is there
a set of accepted internal attributes to measure the quality of a design?
Furthermore, if such a set exists will it be possible to use a measurement
model to guide the SDI in the same way software processimprovement
models (Humphrey, 1989; Paulk, Curtis, Chrissis, & Weber, 1993) are

A Survey of Object-Oriented Design Quality Improvement 283

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

guided by process metrics (Fenton & Pfleeger, 1998)? Since (Chidamber &
Kemerer, 1991) several OO metrics suites have been proposed to measure
OO properties, such as encapsulation, cohesion, coupling and abstraction,
both in designs and in code, in this chapter we review the literature to find
out to which high level quality properties are mapped and if an OO design
evaluation model has been formally proposed or even is possible.

Introduction

In the last two decades there has been a growing interest and effort put after the
idea of improving the quality of the software processes (Humphrey, 1989). This
increasing trend had it origin in the application of statistical process control
techniques (Oakland, 1990) from the manufacturing industry to our sector, thus
creating a new discipline that has been called software process improvement
(SPI) (Humphrey, Snyder & Willis, 1991). This discipline aids organisations to
improve their software producing processes by, firstly, identifying all the broad
areas of the process, their goals and the activities and sub-activities needed to
achieve them and secondly by establishing a path through which the process can
be incrementally improved, this path is a set of quality levels, each of them
defined by the areas and their associated goals to be accomplished. Fundamental
to the SPI are the associated metrics (Fenton & Pfleeger, 1998) that are the tool
by which the organisation can tell at each moment where it is in the path, each
of the aforementioned goals has an associated set of metrics that help to tell if
it has been achieved and to what extent. Although there are alternative SPI
models and methods, like CMMI (Paulk et al., 1993) or SPICE (ISO/IEC, 1999),
an organisation can always adhere to a concrete definition of process quality and
a way to measure it and improve it.
However the product arena does not seem to be so established in terms of quality
improvement models. A fundamental question that managers and developers
often face is when it is worth to improve a software product by reegineering it
or on the contrary start it all over from scratch. Fowler (2000) states that

There are times when the existing code is such a mess that although you
could refactor it, it would be easier to start from the beginning ... I admit
that I don’t really have good guidelines for it. (p. 66)

In this case Fowler was talking about the refactoring technique but something
similar can be said about other OO design knowledge elements. There is plenty
of knowledge, more or less formalised, about identifying situations in which to

284 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

apply an specific design improvement (Brown, Malveau, Brown, McCormick &
Mowbray, 1998; Fowler, 2000; Gamma, Helm, Johnson & Vlissides, 1995; Riel,
1996), but is there a formal method to know which design transformations should
be applied first or are more important? Is it possible to establish which design
transformations, pattern applications, refactorings, and so forth, are more
important in a certain quality level?
An organisation or a project could be interested in attaining only a moderate
quality level that is acceptable for the time being and it is foreseeable that will
consume only a limited amount of resources. Such an organisation could be
interested in a guide that tells what quality indicators are really crucial to that
quality level, to what extent, in terms of a measurable quantity, how to measure
them and which design transformation affect the properties object of the
measurements.
First of all it would be necessary to define what is design quality, by identifying
what general properties or high level indicators comprise it; second, to organise
those indicators in sets that constitute an incremental ladder of quality, so that
depending on the situations, the (non-functional requirements and the resources
a designer can choose the target level for his or her design; thirdly, choose the
metrics that help in the assessment of the goals accomplishment; and finally,
define the OO knowledge elements that apply in each case. We are talking here
about something that we could call an OO design maturity model that would
help designers to assess and improve a design before having to implement it.
Product quality has been defined in ISO 9126 (ISO/IEC, 2001) by external and
internal attributes that describe the quality of the final software product and its
intermediate subproducts, such as design; according to that, design quality should
be measured through internal attributes that will predict, somehow, the final
outcome of the external attributes. Some authors (Bansiya & Davis, 2002; Basili,
Briand & Melo, 1996) have proposed numerical relations between some internal
quality attributes and general OO properties, such as coupling or cohesion, for
which there are already defined metrics. Other authors (Miller, Hsia & Kung)
have proposed directly to measure the levels of accomplishment of certain OO
knowledge elements like design principles, using some of the existing OO metrics
and map them to internal quality attributes. If the first approach was used then
it would be necessary to establish how much each OO knowledge element
impacts each OO property or, at least, know what design transformations are
directed to which properties and re-measure after applying them and repeat the
process until the level of quality is reached (see Figure 1). This chapter will
review the state of the art to see whether there is an accepted set of internal
quality properties as high level indicators or goals for the assessment of OO
micro architecture design quality and if there are already assessment models that
map metrics, OO properties and these high level indicators. A secondary
objective of the review is the identification of what role the OO knowledge

A Survey of Object-Oriented Design Quality Improvement 285

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

elements play in the assessment. There might be evaluation models based on the
detection of the elements in the design so that they will not only be part of the
improvement model but also of the appraisal. The sources of review will be
journals, transactions, conference proceedings, and other periodicals published
in the main areas of knowledge affected by this study which are object
orientation design, metrics, and software maintenance.
In the next section a background on software product quality and OO metrics and
OO knowledge will be presented, the method followed to perform the review will
be explained one section later and the results exposed along with critical
comments on the most relevant studies, and conclusions will be drawn in the
closing section.

Background

Software Product Quality

Quality can be measured at a process or product level, although there are obvious
relationships among them, as Figure 2 illustrates. There are other quality aspects
besides those two but are not of interest to us. ISO/IEC has issued two standards
that refer to software product and process quality respectively, ISO 14598 (ISO/
IEC, 1999) and ISO 9126. As is usual with these kind of standards the authors
do not give an explicit assessment methodology nor do they give guidelines to

Figure 1. Measurement and improvement model for object-oriented design

Quality Attributes Assess Assess Measure
Object Oriented

Design Properties

O
bj

ec
t O

rie
nt

ed
M

et
ric

s

O
O

 D
es

ig
n

C
om

po
ne

nt
s

Id
en

tit
y

al
re

ad
y

ap
pl

ie
d

Im
pr

ov
eP
rio

rit
iz

e

Id
en

tif
y

w
hi

ch
ar

e
ap

pl
ic

ab
le

Object Oriented Architecture Knowledge

286 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

achieve quality through specific software processes or development methodolo-
gies. Rather they simply put in places what is understood by quality, in terms of
attributes that must be measured, in each of the cases. The CMMI model
connects with ISO 14598 in being a classification of maturity levels in the
software process and giving a set of specific guidelines to assess and evaluate
the quality of a software process.
ISO 9126 states that software product quality can be evaluated by measuring
internal attributes, or by measuring external attributes; the former are obtained
through metrics defined on intermediate products, such as design, and the latter
are based on the behavior of the final executing code. It also takes in account
“quality in use” which deals with the perspective of behavioral quality of the
finished product in a speciûc environment under a user’s perspective. In both
cases, internal and external, quality is defined as a set of six characteristics:

• Functionality: The capability of the software product to provide functions
which meet stated and implied needs when the software is used under
specified conditions.

• Reliability: The capability of the software product to maintain a specified
level of performance when used under specified conditions.

• Usability: The capability of the software product to be understood,
learned, used, and attractive to the user, when used under specified
condition.

• Efficiency: The capability of the software product to provide appropriate
performance, relative to the amount of resources used, under stated
conditions.

Figure 2. Quality in the software lifecycle

A Survey of Object-Oriented Design Quality Improvement 287

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Maintainability: The capability of the software product to be modified.
Modifications may include corrections, improvements or adaptation of the
software to changes in environment, and in requirements and functional
specifications.

• Portability: The capability of the software product to be transferred from
one environment to another.

These characteristics are general for any kind of software product and being
object-oriented or structured does not affect the choice of characteristics,
although it will affect the way to measure them. These characteristics are further
divided in subcharacteristics as shown in Figure 3. But we are centered in the
design quality in early stages of the development cycle and certain attributes in
that list, apparently, should not be addressed yet. Let us see which of them are
addressable at the design stage and which are not:

• The correct coverage of all user requirements should be addressed in
previous phases of the life cycle, such as analysis, and verified during
testing; therefore, it is logical to suppose that the quality of a design should

Figure 3. ISO 9126 Quality characteristics and sub-characteristics

288 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

not be measured by the functionality attribute, as defined in ISO 9126. In
fact the OO design improvement techniques always state that to apply
them, first the current design must behave “mostly” correctly (Fowler,
2000) (in terms of functionality and in terms of reliability). But how can we
decide if a design is better than another, for the same requirements? If one
of them does not implement the full set of requirements as described in the
corresponding specifications then the design is not “worse” than the other,
it is simply not correct or incomplete.

• Again we tend to suppose that reliability should not be one of the internal
attributes that define design quality, given that reliability has been tradition-
ally measured during testing; however, McCabe (1976) introduced the
cyclomatic complexity (CC) metric which has been used to calculate, for
a given, software program, the minimum set of tests that are necessary to
ensure a certain level of test coverage and therefore a prediction of the ratio
of defects yet uncovered. Later works (Chidamber & Kemerer, 1991)
created equivalent metrics for OO software and there are certain studies
that try to predict reliability (Basili et al., 1996; Briand, Wust, Daly, & Victor
Porter, 2000; Brito e Abreu & Melo, 1996) from design. These and other
works1 establish a relationship between the complexity, as an OO property,
and the defect density or fault prone-ness, which we interpret as synonyms
for reliability.

• Usability deals with the way the final user feels about the finished product.
No evidence was found in the sense of establishing usability as an internal
attribute for design quality. Understandability is mentioned in the literature
(Bansiya & Davis, 2002; Deligiannis, Shepperd, Roumeliotis, & Stamelos,
2003; Dumke & Kuhrau, 1994) as a desired property to have in a design.
However, it is more than arguable that it refers to the ISO 9126 sub-
characteristic of usability, and it must be understood as “analysability.”
However, other voices (Fowler, 2000) claim that the “user” of a design is
not the same as the user of the ûnal product. He or she could be the
developer that has to implement the specified design, or that same designer
(or other) in the future when a new feature has to be introduced in the
system or the design must be modified for whatever reason, the latter case
is already contained under “maintainability,” but the former is not so clear.

• Efficiency is divided into “time behavior” and “resource utilisation” which
has made this attribute a clear measuring target in the testing phases;
however, there are proposals, mostly in the real-time systems area, to
measure efficiency, usually addressed as “performance,” early in the
design stage. This could be a good candidate quality attribute for a higher
level of design quality and not for a basic one. Making an OO design more
understandable by, for instance, introducing patterns, introduces indirec-

A Survey of Object-Oriented Design Quality Improvement 289

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tions which in turn penalises performance, so it looks like they are opposite.
However if a design is more understandable thanks to being decomposed
in more entities, that allows a better isolation and identification of those
spots where most of the performance issues tend to be (Fowler, 2000).

• Maintainability is a clear focus of most of the OO knowledge dedicated to
improve designs as we will see, this is intuitive since most design efforts in
OO paradigm are centred around ideas such as data hiding, encapsulation
and abstraction which enhance a better understand ability (analysability)
through domain concept representation, separation of components in
testable units, and so forth.

• Portability looks completely out of the scope of the design stage since the
design must remain conceptually separated from the actual implementation
environment. In any case, we have not found sufficient evidence to support
that this attribute is important, quality wise, during early design phases.

In Bansiya & Davis (2002), a set of six design quality attributes are derived from
ISO 9126 quality characteristics, although they are not taken exactly but rather
adapted to the particularity of design. Two are discarded as not measurable in
design, two are changed for equivalent ones, and two are added from general
concepts present in software design literature.
These quality attributes are abstract concepts and, therefore, not directly
observable, so we need some properties that can be observed and quantified and
that are particular of object-oriented design. In many of the OO metrics suites
the speciûc metrics are implicitly mapped to general design properties as
cohesion, coupling, encapsulation, complexity, and inheritance, although not all of
them are specific to OO design and could be applied to modular design as well.
Measurements are proposed in different works for those properties and in some
cases there is an explicit mapping from the former to the latter, as in Bansiya &
Davis (2002) where each design property is measured by a single metric. In
Miller et al. (1999), 11 properties were chosen. In fact, object-oriented design
principles, which according to Garzás and Piattini (2005) are part of the OO
architecture knowledge, as we previously said, and five measurements, all of
them at class level, are used to assess their degree of fulfillment. On the contrary,
Bansiya and Davis (2002) choose not only classes but also class attributes,
methods, and packages.
A very sound set of object-oriented design properties could be:

• Design size
• Hierarchies
• Abstraction

290 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 1. Measurable entities in design and their attributes

Entity Attribute

Association Size
Attribute Position
Class Abstractness
 Behavior
 Comments

 Effort

 Interaction

 Interface

 Performance

 Position

 Reuse

 Size

 Structure

Hierarchy Structure

Link Arity

Method Abstractness

 Effort

 Interaction

 Interface

 Performance

 Position

 Reuse

 Size

 Structure

Package Abstractness

 Interaction

 Size

 Structure

Parameter Size

Scenario Size

System Behavior

 Change

 Comments

 Dynamics

 Effort

 Interface

 Performance

 Requirements

 Reuse

 Size

 Structure

Use case Interface

 Size

 structure

A Survey of Object-Oriented Design Quality Improvement 291

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Encapsulation
• Coupling
• Cohesion
• Composition
• Inheritance
• Polymorphism
• Messaging
• Complexity

But these quality attributes and OO design properties must be measured on
specific components or entities of the design (see Figure1), thus it is important
to define what a design is or what components are in a design susceptible to be
measured. Purao and Vaishnavi (2003) survey product metrics for OO systems
and propose a framework and a formalism, according to which, the product goes
through different “states” during the development process and in each of them
different components that he calls “entities,” are produced or modified. In his
work, Purao, reviewed all the different metrics suites to see what entities where
measured in each state and gathered an extensive set of which we only recall
here those in the design state, along with the their attributes (see Table 1).

Object-Oriented Metrics

We are going to present a summary of the most important object-oriented metrics
and identify which OO properties they can measure.

Chidamber and Kemerer’s Metrics Suite

Chidamber and Kemerer (C&K henceforth) first proposed in 1991a suite of six
metrics. All except one were applied to the class entity and measured complex-
ity, coupling, cohesion, inheritance, and messaging (see Table 2).

Henderson-Sellers Metrics

Another important suite was given by Henderson-Sellers, Constantine, and
Graham (1996) but it was related to coupling and cohesion. Only AID (average

292 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Metric Definition Properties

Weighted methods per class
(WMC)

Consider a class 1C with methods nMMM ,...,, 21 . Let

nccc ,...,, 21 be the static complexity of the methods.

Then: ∑ =
= n

i icWMC
1

The static complexity can be

measured in many ways, one of them being CC(McCabe,
1976).

Complexity

Depth of inheritance tree
(DIT)

The DIT metric of a class A is its depth in the inheritance
tree. If A is involved in a multiple inheritance the maximum
length to the root of the tree will be the DIT.

Inheritance

Number of chi ldren (NOC) NOC of a class is the number of immediate subclasses
subordinated to a class in the class hierarchy.

Inheritance

Coupling betw een object
classes (CBO)

CBO for a class is a count of the number of other classes
to which is coupled. One class is coupled to another if it
uses its methods or instance variables, excluding inheritance
related couples.

Coupling

Response for a class (RFC) RSRFC = where RS is the response set for the

class, given by { } { }� iall iRMRS = wh ere { }=iR set

of methods called by method i and { }M is the set of
all methods in the class. The response set of a class is
the set of all methods that can potentially be executed
in response to a message received by an object of that
class.

Messaging

Lack of cohesion in methods
(LCOM) Consider a Class iC with n methods nMMM ,...,, 21 . Let

{ }jI be the set of instance variables used by method iM .

There are n such sets{ } { }nII ,...,1 .

Let (){ }Ø, == jiji IIIIP �

and (){ }Ø, ≠= jiji IIIIQ � . If all n sets

{ } { }nII ,...,1 are Ø then let

Ø=P . QPLCOM −= , if QP > or 0

otherwise.

Cohesion

Metric Definition Properties

Message passing coupling
(MPC)

MPC= the number of method invocations in a clas.s Coupling/ Messaging

Data abstraction coupling
(DAC)

The number of attributes in a class that have as their type
another class.

Coupling/ Abstraction

SIZE1 It is a variation of traditional LOC (Lines of Code) defined
specifically for the Ada language. We obviate its definition.

Design size

SIZE2 SIZE2 = number of attributes + number of local methods. Design size

Table 3. Li and Henry’s metrics

Table 2. Metrics of the C&K suite

A Survey of Object-Oriented Design Quality Improvement 293

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

inheritance depth of a class) was an Inheritance measure. AID was defined as
zero, for a class without ancestors and the average AID of its parent classes
increased by one.

Conclusion on Metrics

In Purao and Vaishnavi (2003) and Briand et al. (2000), a detailed listing of metrics
is presented. An important conclusion drawn after reviewing these metrics is that,
although they claim, in many cases, to be OO design metrics they are not since they
need source code to be analysed or measure code size. Another important
conclusion is that most metrics suites focus just in a very constrained set of
properties, namely, coupling, cohesion and inheritance. There are some exceptions
like Briand et al. (2000), which gives a set of metrics taken partly from previous
suites that cover all properties considered in their assessment model.

Table 4. Bansiya and Davis metric model

Metric Definition Properties

Design size of classes (DSC) Total number of classes in the design Design size
Number of hierarchies (NOH) Number of class Hi erarchies
Average number of ancestors
(ANA)

Average number of ancestors Abstraction

Data access metric (DAM) Ratio of the number of private (protected) attributes to the
total number of attributes declared in the class

Encapsulation

Direct class coupling (DCC) Count of different number of classes that a class is directly
related to. The metric includes classes that are directly related
by attribute declarations and message passing (parameters) in
methods

Coupling

Cohesion among methods of
class (CAM)

This metric computes the relatedness methods of a class
based upon the parameter list of the methods. The metric is
computed using the summation of the intersection of
parameters of a method with the maximum independent set of
all parameter types in the class.

Cohesion

Measure of aggregation (MOA) This metric measures the extent of the part-whole relationship,
realised by using attributes. The metric is a count of the
number of data declarations whose types are user de?ned
classes.

Composit ion

Measure of functional
abstraction (MFA)

Ratio of the number of methods inherited by a class to the
total number of methods accessible by member methods of
the class

Inheritance

Number of polymorphic meth-
ods (NPM)

Number of methods that can exhibit polymorphic behaviour
(virtual in C++ and non ?nal in Java)

Polymorphism

Class interface size (CIS) Count of the number of public methods in a class Messaging

Number of methods (NOM) Count of methods de?ned in a class. Complexity

294 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Current State of the Art in Design
Quality Assessment Models

Review Questions

The objective behind this review is to find out if there is any solid research to relate
software design high level indicators with OO design knowledge (patterns,
heuristics, bad smells, best practices, rules, and principles). The future trend of
research, on the one hand, is to relate current (or new) OO metrics with ISO 9126
internal characteristics, or establish a new set if necessary, and see if they can be
measured through them. On the other hand, we are after the relation between the
application of OO knowledge and the impact of those metrics, and therefore, the
quality characteristics.
The review tries to determine if this gap exists or not in the OO area of knowledge.
We are constrained exclusively to the design phase and more specifically to OO
micro architecture.2 We are not interested in metrics or models for process quality,
effort, estimation, or project tracking metrics. The area of research is always
focused on metrics intended for design improvement.
The primary question of research is:
Research Question 1: Are there object-oriented design quality assessment models
that use a set of metrics, based only in design entities,3 to measure levels of
accomplishment in internal product quality attributes (as those in ISO 9126)? And
what are those attributes or high level indicators?
Needless to say, we are interested in quantified models, so that those metrics are
numerically related to the characteristics, directly or through other numerical
relations with intermediate elements, such as OO properties, which, on the other
hand, is what is found in all cases as we have advanced in the Background section.
The secondary question of research is:
Research Question 2: Do those models use any of the OO knowledge elements in
Garzás & Piattini (2005) as part of that assessment model and how?
This secondary question leads necessarily to models where there is a detection of
those elements in the design by using speciûc metrics. Since the future work will
establish a way to improve the design through the application of design transfor-
mations based on those knowledge elements, it is very useful to know in advance
how much that will impact the desired quality attributes and if those transformations
are already present in the design.

A Survey of Object-Oriented Design Quality Improvement 295

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Review Methods

A systematic review protocol following Kitchenham (2004) was used. The
sources consulted were all digital, and the intention was to cover as many
periodicals and conference proceedings related with metrics, software quality,
OO knowledge, and software maintenance as possible. The sources chosen
were IEEE Digital Library, ACM Digital Library, Journal of Systems and
Software (Elsevier), Journal of Software Maintenance and Evolution (Wiley)
and Software Practice and experience (Wiley).
Our search strategy was to compose queries that included in different Boolean
expressions the following terms:

• Object-oriented design
• Metrics
• Quality
• High level indicators
• Assessment
• Method
• Patterns
• Heuristics
• Bad smells
• Principles
• Rules
• Refactoring
• Lessons learned
• Best practice

Different synonyms were chosen for some of the above terms like assessment for
which we chose “assess,” “assessing,” “evaluation,” “evaluate,” and “evaluating”;
also, “method” had different synonyms. The singular was chosen as in “pattern”
instead of “patterns” in order to obtain expressions that included both variations,
since the first is a substring of the second. Different queries were created with these
terms and executed in the search engines. However, some of them had to be
expanded, like in the case of the Journal of Systems and Software given to obtain
a decent set of results and afterwards the selection had to be manually reviewed to
exclude publications that were completely out of the scope. Several different
queries were tried in both engines and the search was broaden more than initially

296 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

thought given the initial low number of results, for instance in IEEE Digital Library
the following query was executed:

“(metrics<in>metadata)<and>(object-oriented design<in>metadata).”
Surprisingly enough, this query threw only 62 results (in IEEE Digital
Library) which was less than other more restrictive ones. One first conclusion
of the first round of searches was that, although there are many metrics
suites for OO systems there are very few centered exclusively in the design
phase and using only design entities as the measurable elements.

Repetitions were taken out since there were references to the same study from
different sources (i.e., from IEEE and ACM Digital Libraries), the same can be
said about those studies that were different publications of the same work, where
we always took the most recent one, as Kitchenham (2004) advises. Once
repetitions were taken out 481 studies remained. After obtaining this initial list
of results we did a quick review of abstracts when available or the introduction
of the paper and directly discarded those elements not having to do with object-
oriented metrics. After that initial review we did a more thorough review by
reading one by one the publications and using the exclusion criteria explained in
section “Included and excluded studies” to discard those not interesting to us. We
recorded the reason for each discard whether it was in the first quick review or
in the thorough one.
For the ones not discarded, that is, the primary sources object of our review, we
recorded its type according to a set quality assessment levels suggested by
Kitchenham (2004) according to the experimental data they included. The set of
quality levels is given in Table 5.

Table 5. Quality levels for primary sources, as in Kitchenham (2004)

Level Name Description

1 Randomised trial Evidence obtained from at least one properly-designed randomised
controlled trial

2 Pseudo-randomised trial Evidence obtained from well-designed pseudo-randomised controlled trials
3 Concurrent cohort Evidence obtained from comparative studies with concurrent controls and

allocation not randomised, cohort studies, case-control studies or
interrupted time series with a control group.

4 Historical control Evidence obtained from comparative studies with historical control, two
or more single arm studies, or interrupted time series without a parallel
control group

5 Randomised experiment Evidence obtained from a randomised experiment performed in an
artificial setting

6 Case series Evidence obtained from case series, either post-test or pre-test/post-test

7 Pseudo-randomised experiment Evidence obtained from a quasi-random experiment performed in an
artificial setting

8 Expert opinion Evidence obtained from expert opinion based on theory or consensus

A Survey of Object-Oriented Design Quality Improvement 297

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

After the review we could verify that all primary sources were below three
(concurrent cohort). We decided not to establish a quality threshold and take into
account all studies that passed the exclusion criteria regardless of their experi-
mental (quality) level.

Included and Excluded Studies

The exclusion criteria used in the more thorough review were:
Exclusion criterion 1: Study not focused on metrics for design improve-
ment, like those too general and including effort and quality assurance.
Exclusion criterion 2: It does not propose an assessment model with quality
attributes as target of the metrics
Given the low number of studies (only 23) that passed the exclusion criteria we
decided to record as well those studies that, not proposing a general assessment
model, were focused on prediction of one or two quality attributes, recording
those attributes as well.

Data Extraction

We were interested primarily in obtaining the high level indicators or internal
quality attributes that could be utilised in a design improvement methodology, so
we recorded all those indicators in the primary studies. We also recorded which
of these studies, or “primary sources,” were proposing an explicit model of
assessment with a full mapping of metrics to intermediate properties and from
there to high level indicators or attributes. Although the selected studies
proposed a method for quality evaluation based on high level indicators and their
associated metrics, only four of them proposed formally a complete mapping with
explicit mappings or relations to the high level indicators, we called them “full
models” (see Table 6). Later on we also recorded attributes for those discarded
studies that were focused only on the prediction of one or two attributes, that we
have indicated in Table 7 as “secondary sources”; in that table we can see all the
indicators or attributes collected from both sources.

Table 6. Summary of data collected

Number of Studies Accepted Studies Primary Sources

Total Accepted Discarded Primary Sources Secondary Sources Full Model Basic

481 58 423 23 35 4 19

298 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

It can be observed that there are many attributes that are really synonyms, as for
example analysability, comprehensibility, and understand ability. As we ex-
pected, maintainability is the most referred in both kinds of studies by itself or
adding their subcharacteristics, analysability, comprehensibility, changeability,
stability, and testability. On the other hand, it must be taken into account that all
these attributes refer to design and that, for instance, “understandability” means
in this context that the design is easily understandable by a software developer
other than its author; therefore it must not be taken as the sub-characteristic
beneath “usability” in ISO 9126.

Results: Description of Primary Studies and Findings

From the data obtained in Table 7 we can conclude that, for the so called full
models, maintainability, counting its subcharacteristics, was the highest scoring
quality attribute with a total of eight appearances. Maintainability is comprised
of analysability, changeability, stability, and testability, and, in this context, an

Property Name Full
Model Primary Sources Secondary Sources

Adaptability 0 1 0
Analysability 1 1 0
Change proneness 0 0 1
Changeability 1 2 3
Completeness 0 2 0
Complexity 0 3 0
Comprehensibility 1 1 0
Consistency 0 2 0
Correctness 0 2 0
Effectiveness 1 1 0
Efficiency 0 0 1
Extensibility 1 4 3
Flexibility 1 1 2
Functionality 1 1 0
Maintainability 1 10 10
Performance 1 2 0
Realisability 0 1 0
Reliability 0 4 9
Reusability 2 5 5
Security 0 1 0
Stability 1 1 2
Testability 1 5 2
Traceability 0 1 0
Unambiguity 0 1 0
Understandability 1 4 3
Usability 0 1 0
Verifiability 0 0 1

Table 7. Collected high level indicators

A Survey of Object-Oriented Design Quality Improvement 299

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

analysability, comprehensibility, and understandability are synonyms, or at least
that was the semantic behind the word in the selected studies, and the same can
be said about changeability, flexibility, and extensibility. Another important
attribute or high level indicator is reusability.
In primary studies, those not stating explicit relation between OO properties and
quality attributes, maintainability and reusability were the two most important
indicators and reliability appears as the next one. In the secondary studies,
reliability outperforms reusability. Apparently reliability and, in decreasing
importance, performance and efficiency (and effectiveness as its synonym) take
more importance as the studies try to predict a specific quality attribute instead
of evaluating the overall quality.
Apparently, when trying to establish a quality evaluation method, reliability,
defect proneness, and functional correctness and consistency are way less
important than maintainability. On the other hand, there are many studies that try
to predict and decrease defects early in the design phases. One possible
interpretation is that quality evaluation methods, as we said before, are not seen
as a replacement for software quality assurance and try to establish a way to
measure and compare different designs that are semantically equivalent, that is,
built for the same functional requirements, and mostly correct (defect-free).
Given the resulting figures, a statistical analysis was not considered relevant.
Only four studies were considered relevant to our study and they will be
summarised. In Table 8, a brief summary is shown about the use these studies
make of the OO micro architecture knowledge; only those elements that have
appeared in at least one of the studies is listed.

Bansiya and Davis’s QMOOD

Bansiya and Davis (2002) propose a model for the assessment of high level
design quality attributes in object-oriented designs called quality model for
object-oriented design (QMOOD). It is decomposed in four levels, OO design

Table 8. Use of OO knowledge in the four full models

 Principles Patterns Heuristics Bad smells

Bansiya & Davis No No No No
Miller, Hsia & Kung Yes No No No

Barber & Graser No Indirectly Yes No

Marinescu & Ratiu No Partially No Yes

300 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

components (level 4 or L4), OO design metrics (level 3 or L3), OO design
properties (level 2 or L2) and finally design quality attributes (level 1 or L1), and
links between adjacent levels, L34 (from L3 to L4), L23 (from L3 to L2) and L12 (from
L2 to L1). This model is very similar to that depicted in Figure 1 and the quality
attributes are taken partly from the ISO 9126 quality attributes: reusability,
flexibility, understandability, functionality, extendability, and effectiveness.
In each of the links, Bansiya and Davis identify explicit relation between
components of both levels, for L23 the mapping is exactly one to one, one metric
for each of the properties (design size, hierarchies, abstraction, encapsulation,
coupling, cohesion, composition, inheritance, polymorphism, messaging, and
complexity), and in L12 the mapping is even more explicit because each quality
attribute (from ISO 9126) is the result of the sum of each of the calculated
metrics multiplied by its weight, for instance, Reusability equals 0.25*Coupling
+0.25*Cohesion+ 0.5*Messaging +0.5*Design Size.
The weights can be positive or negative and were calculated somehow intu-
itively; in fact, the study states that the weights, as well as other mappings, can
be changed to reflect the goals of the organisation.
On the other hand, relative importance of each quality attribute is not stated and
is left to the designer’s decision.
Finally, there is no use in the model of OO knowledge such as design patterns,
principles, refactorings, or other such elements.

Miller, Hsia and Kung OO Architecture Measures

Miller, Hsia, and Kung (1999) define an OO architecture quality measurement
method that fills, in a way, the gap that Bansiya and Davis had. They use
quantitatively OO architecture knowledge, in the form of well known principles.
Again there are defined design components, metrics (they call them measure-
ments) and OO principles; they substitute the OO properties for these latter.
Unfortunately, they stop there, not quantifying the impact of those principles in
general quality attributes; in fact, they do not identify quality attributes or refer
to ISO 9126, although they give high importance to the extendability, flexibility,
and maintainability of the architecture.
The design components they use are hierarchies, relationship, classes, methods,
and attributes (they call the operations) but in defining how to obtain the
measures, they give a high importance to operations, and the impact on all of the
measures. Their measurements are class abstractness, hierarchy chain brittle-
ness, class abstraction cohesion, pure inheritance index, and relationship ab-
straction index. As for the principles used: open-closed, Liskov substitution,

A Survey of Object-Oriented Design Quality Improvement 301

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

dependency inversion, interface segregation, reuse/release equivalency, com-
mon closure, common reuse, stable abstractions, least astonishment, deep
abstract hierarchies, and Demeter (see Miller et al., 1999 for references).
In summary, this study is not really a quality evaluation model since it does not
calculate (explicitly) internal or external software quality attributes. It does not
use general OO properties either but it is interesting because it uses some OO
knowledge in a quantitative way.

Barber and Graser’s RARE

Barber and Graser’s (2000) study is not, strictly speaking, a quality evaluation
model or method but a tool for creating evaluation models by specifying which
quality attributes are the target for the designer. This tool is called RARE
(Reference Architecture Representation Environment). Barber and Graser
state that quality attributes have an impact on each other and that not all of them
can be maximised at the same time and, therefore, the designer must explicitly
solve the conflicts that arise. The idea behind this study is that no single quality
model can be established given that, for instance, flexibility or extensibility will
negatively impact on performance and there are application domains where one
or the other can be more important. As a matter of example, the study mentions
reusability, extensibility, comprehensibility, and performance as the main quality
attributes to work with, although it does not imply that others cannot be added.
As in the other models there are mappings that drive calculations from OO design
metrics to quality attributes, but in this case the intermediate elements are OO
knowledge elements: heuristics and strategies (as refactorings and design
transformations that guide the application of heuristics). Thus, Barber and
Graser incorporate OO knowledge not as a goal, as in Miller et al. (1999), but
rather as a tool to achieve quality attribute enhancement. The quality attributes
chosen by the designer and their associated importance weights are quality
goals; the metrics calculate the degree of achievement of the heuristics, which
are used to calculate the level of achievement of the goals. This tool uses
strategies to help the designer to change design in order to increase certain
heuristics, and the order in which they are suggested to the designer is driven by
the goals.
Unfortunately the study talks about a tool still under construction and, in our
searches, we have not seen further notice of it. No quantitative measures are
given in the paper about the calculation of each heuristic, nor a list of heuristics
and strategies is given for it; although promising, we must discard this study as
incomplete.

302 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Marinescu and Ratiu’s Factor Strategy Model

In Marinescu and Ratiu (2004),yet another perspective is given, this time an
indirect measurement of the quality is proposed, instead of measuring the quality
of the design, Marinescu and Ratiu measure the lack of quality by detecting
common design flaws. The model is comprised of OO metrics, design flaws and,
finally, quality factors and goals. The first two set of elements are tied together
through principles, rules, and heuristics and with them design flaws are quantified
through detection strategies. Each quality factor has an associated formula for
calculating its level from the set of design flaws (quantified from metrics through
detection strategies) and the total quality is given by the quality goals chosen
(ISO 9126 quality attributes such as maintainability or reliability) and the weight
given to each one. Quality goals are divided into factors exactly as in ISO 9126,
and the study refers to it and gives two example formulae for maintainability from
its sub-factors (changeability, testability, analysability, and stability) exemplify-
ing that different weights could be used for each subfactor according to
experience. There are similar formulae to associate factors and detection
strategies and the relative weights must be provided by the designers.
This is probably the most promising of all the selected studies since it takes into
account OO knowledge as a tool for improvement and measurement of the
design quality and establishes that quality is decomposed in general software
quality attributes that can be derived from those knowledge elements. OO
properties are not quantitatively present in the model, although there is a table
identifying which design flaws impact on what properties (only coupling,
cohesion, complexity, and encapsulation are listed).
We see that, on the one hand, quantification of the different mappings must be
provided by the developer and, on the other hand, the design flaws (and detection
strategies) are categorised according to the design component they are tied to;
however, we see that OO knowledge is not properly classified and there are
missing elements (only “bad smells” and some “patterns” are used). Probably a
better ontology could be used as rules used instead of detection strategies, for
that Garzás and Piattini (2005) could be used.

Conclusion and Future Work

With all the sources, primary, secondary, and discarded ones, we can conclude
that studies dealing with OO quality evaluation and metrics can be classified as
follows:

A Survey of Object-Oriented Design Quality Improvement 303

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• True quality evaluation models based on quality attributes quantification
• Prediction models for a single or few OO properties or quality factors
• Design flaw detection methods and their associated refactorings or design

transformations
• OO metrics suites

The first set is the one that interests us and can be further subdivided in models
that favor specific quality indicators or those that propose a flexible model in
which the user (i.e., designer or other stakeholder) must set the quality factors
and their weights.
One important conclusion of our review is that maintainability is the most used
high-level quality indicator, which is logical given that Object Orientation has
been seen as a paradigm that favors flexibility and reuse. Other quality indicators
or attributes, such as efficiency or portability are missing in the full models, which
can be due to the fact that all the studies are biased by the fact that different
application domains are not considered.
Surprisingly reliability is also very important in those studies that are just
prediction models.
Only four studies establish a full quality evaluation model and, of them, no one
establishes an explicit hierarchy between the high-level indicators. Two of the
four studies are flexible models and three of the four use, partially, OO micro
architecture knowledge.
In future works two main objective can be targeted, on the one hand, by trying
to establish hierarchies between quality attributes, which may be according to
different hierarchy sets corresponding to application domains, and on the other
hand a better application of OO micro architecture knowledge in the construction
of the evaluation methods through the use of ontologies.

References

Abran, A., James, W. M., Bourque, P., & Dupuis, R. (2004). Guide to the
software engineering body of knowledge. 2004 version. SWEBOK:
IEEE Press.

ACM Digital Library. (2005). Retrieved from http://portal.acm.org

304 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented
design quality assessment. IEEE Transaction on Software Engineering,
28(1), 4.

Barber, K. S., & Graser, T. J. (2000). Tool support for systematic class
identification in object-oriented software architectures. Paper pre-
sented at the 37th International Conference on Technology of Object-
Oriented Languages and Systems, Sydney, NSW, Australia.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software
Engineering, 22(10), 751.

Briand, L. C., Wust, J., Daly, J. W., & Porter, D. (2000). Exploring the
relationships between design measures and software quality in object-
oriented systems. Journal of Systems and Software, 51(3), 245.

Brito e Abreu, F., & Melo, W. (1996). Evaluating the impact of object-
oriented design on software quality. Paper presented at the Software
Metrics Symposium, Berlin, Germany.

Brown, W. J., Malveau, R. C., Brown, W. H., McCormick, H. W., & Mowbray,
T. J. (1998). Antipatterns: Refactoring software, architectures and
projects in crisis. NY: John Wiley & Sons.

Chidamber, S. R., & Kemerer, C. F. (1991). Towards a metrics suite for
object-oriented design. Paper presented at the OOPSLA ’91, Confer-
ence Proceedings on Object-orientedProgramming Systems, Languages,
and Applications, New York.

Deligiannis, I., Shepperd, M., Roumeliotis, M., & Stamelos, I. (2003). An
empirical investigation of an object-oriented design heuristic for maintain-
ability. Journal of Systems and Software, 65(2), 127.

Dumke, R. R., & Kuhrau, I. (1994). Tool-based quality management in
object-oriented software development. Paper presented at the Sympo-
sium Assessment of Quality Software Development Tools, Washington,
DC.

Fenton, N. E., & Pfleeger, S. L. (1998). Software metrics: A rigorous and
practical approach. Boston: PWS Publishing Co.

Fowler, M. (2000). Refactoring: Improving the design of existing code:
Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:
Elements of reusable object-oriented software. Boston: Addison-Wesley
Longman Publishing.

Garzás, J., & Piattini, M. (2005). An ontology for microarchitectural design
knowledge. IEEE Software, 22(2), 28.

A Survey of Object-Oriented Design Quality Improvement 305

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Henderson-Sellers, B., Constantine, L. L., & Graham, I. M. (1996). Coupling
and cohesion (towards a valid metrics suite for object-oriented analysis and
design). Object-oriented Systems, 3, 142-158.

Humphrey, W. S. (1989). Managing the software process. Boston: Addison-
Wesley Longman Publishing.

Humphrey, W. S., Snyder, T. R., & Willis, R. R. (1991). Software process
improvement at hughes aircraft. IEEE Software, 8(4), 11-23.

IEEE Digital Library. (2005). Retrieved from http://ieeexplore.ieee.org
ISO/IEC. (1999). Information technology — software product evaluatiom —

part 1: General overview. Geneva, Switzerland: ISO/IEC.
ISO/IEC. (2001). Software engineering — product quality — part 1: Quality

model. Geneva, Switzerland: ISO/IEC.
Journal of Systems and Software. (2005). Retrieved from http://ees.elsevier.com/

jss/
Journal of Software Maintenance and Evolution. (2005). Retrieved from http:/

/www3.interscience.wiley.com/cgi-bin/jhome/77004487
Kitchenham, B. (2004). Procedures for performing systematic reviews (Joint

Tech. Rep. No. 0400011T.1): Keele University and Empirical Software
Engineering National ICT Australia, Software Engineering Group, Depart-
ment of Computer Science.

Li, W., & Henry, S. (1993). Maintenance metrics for the object-oriented
paradigm. Paper presented at the Software Metrics Symposium, Balti-
more, MD.

Marinescu, R., & Ratiu, D. (2004). Quantifying the quality of object-oriented
design: The factor-strategy model. Paper presented at the 11th Working
Conference on Reverse Engineering.

McCabe, T. J. (1976). A software complexity measure. IEEE Transactions on
Software Engineering, 2, 308-320.

Miller, B. K., Hsia, P., & Kung, C. (1999). Object-oriented architecture
measures. Paper presented at the Hawaii International Conference on
System Sciences.

Oakland, J. S. (1990). Statistical process control: A practical guide. Oxford:
Butterworth-Heineman.

Paulk, M., Curtis, B., Chrissis, M., & Weber, C. (1993). Capability maturity
model for software (version 1.1) (Tech. Rep. No. CMU/SEI-93-TR-
024). Carnegie Mellon University, Software Engineering Institute.

Purao, S., & Vaishnavi, V. (2003). Product metrics for object-oriented systems.
ACM Computer Survey, 35(2), 191-221.

306 Olmedilla

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Riel, A. J. (1996). Object-oriented design heuristics. Reading, MA: Addison-
Wesley.

Software design, part 2. (2004) IEEE Software, 21(6), c3.
Software: Practice and Experience. (2005). Retrieved from http://www3.intersci

ence.wiley.com/cgi-bin/jhome/1752
Subramanyam, R., & Krishnan, M. S. (2003). Empirical analysis of ck metrics

for object-oriented design complexity: Implications for software defects.
IEEE Transactions on Software Engineering, 29(4), 297.

A Catalog of Design Rules for OO Micro-Architecture 307

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

A Catalog of
Design Rules for OO
Micro-Architecture

Javier Garzás, Oficina de Cooperación Universitaria (OCU) S.A., Spain
Mario Piattini, University of Castilla - La Mancha, Spain

Abstract

This chapter presents a catalog of different rules for help to design object-
oriented micro-architectures. These rules form an important part of the
object-oriented design knowledge. Rules, like patterns, or accumulated
knowledge, are discovered, not invented.

Introduction

This catalog unifies, completes, and formats under the term “rule”: principles,
bad smells, best practices, and so on. These rules are applicable to object-
oriented (OO) micro-architectural design, according to the OO design knowl-
edge ontology presented in Chapter II.

308 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For the description of a rule, the catalog takes as a base the sections which
Gamma, Helm, Johnson & Vlissides (1995) use to describe a pattern, general-
izing and detailing these sections (see Chapter II).
The relationships of rules with patterns and refactorings come under the
following categories:

• Implies the use of [patterns]: Patterns that are necessary in a design
resulting from the application of a rule. These patterns solve design
problems of the new micro-architecture.

• Is introduced by [refactorings]: Refactorings or operations, which place
the rule on the micro- architecture.

On the other hand, another important issue is that each rule is identified by a
meaningful name. We have been careful in the choice of these names, in order
to help the designer to identify speedily where and when a rule is violated. So,
we have avoided names which may be attention-catching but which are not very
meaningful (as happens, for instance with bad smells (Fowler, Beck, Brant,
Opdyke, & Roberts, 2000) with names such as Lazy Class or Shotgun Surgery.
Therefore, the rules are named according to their antecedent.

If There are Dependencies
on Concrete Classes

Intent

Depends on interfaces or abstract classes rather than on concrete elements.

Also Known As

Dependency inversion principle (DIP) (Martin, 1996)
Program to an interface, not an implementation (Gamma, Helm, Johnson, &
Vlissides, 1995).

A Catalog of Design Rules for OO Micro-Architecture 309

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Motivation

This rule is set out by Martin (1996), and in a shorter version by Gamma et al.
(1995).
It recommends the strategy of depending on interfaces or abstract classes more
than on concrete elements.
The structured design shows a particular type of dependency. As Figure 1
shows, the structures go from a high level of detail down to a low level of detail.
The high-level modules depend on those of a lower level, and these in turn depend
on others even lower, and so on. This type of dependence makes the structures
weak. The high-level modules deal with policies with a low level of application.
In general, these policies have little to do with details of how they are
implemented. Therefore, why do modules at a high level depend directly on
implementation modules?
An OO architecture shows a structure in which the greater part of dependencies
point to abstractions. Moreover, the modules that contain implementation details
depend on abstractions and these are not depended on themselves. The
dependency has been inverted (see Figure 2).
This rule implies that each dependency should have an interface or an abstract
class as its objective, avoiding dependencies on concrete classes. Concrete
elements change a lot, while abstract elements change to a much lesser degree.
Therefore, abstractions are “hinges,” and they represent places where the
design may curve or extend without being modified.
Even though, sometimes the use of this rule may be excessive; for example, the
class Array is very concrete and not volatile, and we do not need to apply this
rule.

Figure 1. Procedural architecture

Main

M3 M 2 M 1

M3 M 2 M 1 M3

Abstraction

310 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Recommendation

IF there are dependencies on concrete classes
THEN these dependencies should be on abstractions.

Applicability

Use this rule when:

• You find dependencies (associations) on concrete classes, which could
change.

Do not use this rule when:

• Even if there is a dependency on a concrete class, this class could seldom
change (for example, class libraries from the programming environment,
such as Array or Integer)

Structure

See Figure 3.

Figure 2. Dependency in OO micro-architecture

Hi gh Level Policy

Ab stract
In terf ace

Detail ed
Implementation

Ab stract
In terf ace

Ab stract
In terf ace

Detail ed
Implementation

Detail ed
Implementation

A Catalog of Design Rules for OO Micro-Architecture 311

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Participants

Client class, initially associated with the concrete provider class, dependent on
the abstract provider class.
Abstract provider, an abstract entity with the interface of the concrete provider
class.
Concrete provider, a concrete class with the services and methods that the client
uses.

Collaborations

The client class depends on the abstract entity and the provider class has the task
of implementing the services of the abstract provider class.

Consequences

This rule has the following consequences:

• The introduction of abstractions by which the design may be extended
without being modified.

• The limiting of the impact of the variations in the design.
• All the subclasses can thus respond to the requests from the interface,

making all of these subtypes of the abstract class.
• Clients are not aware of the specific types of the objects they use, as long

as the objects are in line with the interface that the clients expect.

Figure 3. Structures of if there are dependencies on concrete classes

Cli ent << Abstract >>
Ab stract
Provi der

Concrete
Provi der

Cli ent Concrete Provider

312 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Clients are not aware of the classes that these objects implement, they only
know about the abstract classes that define the interface.

• This greatly reduces the implementation dependencies between sub-
systems.

Known Uses

This rule is used on several models of components (COM, CORBA, EJB, and
so on). It may also be observed in many design patterns and frameworks.

Implies the Use of Patterns

One of the most common places where design depends on concrete classes is
when instances are created. By definition, instances cannot be made from
abstract classes. Creating instances, therefore, means depending on concrete
classes. The concrete classes have to be instantiated (that is, a particular
implementation must be specified) in some part of the system and the creational
patterns (such as abstract factory, builder, factory method, prototype, and
Singleton [Gamma et al., 1995]) allow just this. The creational patterns ensure
that the system is designed according to interfaces and not according to
implementations.

Introduced by Refactorings

As seen in the Fowler et al. (2000) catalog, this rule can be introduced with the
following refactoring: Extract Interface.

If an Object Has Different Behavior
According to Its Internal State

Intent

To avoid classes with behavior depending on the internal state of the class.

A Catalog of Design Rules for OO Micro-Architecture 313

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Also Known As

No other names have been found for this rule, although there is a “bad smell”
known as “switch statements” (Fowler et al., 2000) with a similar objective.

Motivation

Riel (1996) talks about it in one of his heuristics: be sure that the abstractions that
you model are classes and not simply the roles; the objects may change their role
in run-time, and the state may indicate the role.
Sometimes, a class has different behavior (methods) according to its internal
state (attribute values). In this situation it is characteristic to see a complex
conditional logic, a lot of “if” or “switch” sentences, complex state diagrams, and
so on. Therefore, to add new states and their transitions is complex, the
transitions are not explicit, states are not localized, and so on. It is tedious to read
and harder to maintain
A preferable option for dealing with these behaviors dependent on internal state
is to place each one of these in a class, create an abstraction for these new
classes, and make an association form the original class to the new abstract
class. Hence, through polymorphism and in run-time the necessary behavior will
be chosen.

Recommendation

If an object has different behavior according to its internal state
Then Place each one of these behaviors in a separate class.

Applicability

Use this rule when:

• A class has different behavior according to its internal state.

Structure

Does not apply.

314 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences

This rule has the following consequences:

• Adding a new state and their transitions is easy.
• The transitions between states are explicit.
• The states can be shared.
• It increases the maintainability as it increases the analyzability and stability.
• The class population is increased.

Known Uses

This rule can be seen in many patterns, frameworks, and software systems.

Implies the Use of [Patterns]

The patterns state and strategy (Gamma et al., 1995) are ideal for solving the
violation of this rule.

Is Introduced by [Refactorings]

Does not apply.

A Catalog of Design Rules for OO Micro-Architecture 315

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If a Hierarchy of Classes
Has Too Many Levels

Intent

To avoid large hierarchies which are difficult to maintain.

Also Known As

No other names for this rule were found.

Motivation

Riel (1996) comments that inheritance hierarchies should not have a depth that
is greater than the number of classes that a person can hold in his or her short-
term memory, where a typical value is around six. Gamma et al. (1995)
recommend using solutions based on composition as opposed to inheritance.
The two most common techniques for re-using functionality in OO systems are
the inheritance of classes and the composition of objects. Re-use through
inheritance (it is also known as “white box” reuse) is characterized by visibility,
since many internal aspects of parent classes are visible to the subclasses. The
composition of objects is an alternative to the inheritance of classes, where new
functionalities are obtained by composing objects. This other style of re-use is
also known as “black box,” since no internal aspects are visible.
Inheritance of classes is defined at compilation time, and it has the following
disadvantages:

• The inheritance relationships cannot be changed in run time, since this
relationship is static and it is defined at compilation time.

• The inheritance can break the encapsulation. Many languages provide a
protected level of visibility (in addition to public and private). Attributes and
methods that are marked as protected are hidden from a client class but,
however, are available from sub classes, and these sub classes have access
to implementation details. This is another kind of hard dependency.

316 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If inheritance is over used, flexibility and reusability can be reduced (this is one
of the reasons because it is recommended only to inherit from abstract classes
or interfaces, since these give little, or never, implementation details).
The composition of objects is defined in run-time; if an object implements a
specific interface, it can be replaced in run-time by any compatible type. Any
compatible type can be replaced in run-time. Adding new responsibilities to an
object dynamically is an alternative to creating too many subclasses by inherit-
ance.

Recommendation

If a hierarchy of classes has too many levels
Then

Reduce the level of inheritance using composition or redesign

Applicability

Use this rule when:

• An overuse of inheritance is observed.
• There are hierarchies with too many levels.

Structure

Does not apply.

Participants

Does not apply.

Collaborations

Does not apply.

A Catalog of Design Rules for OO Micro-Architecture 317

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Consequences

This rule has the following consequences:

• Using composition as opposed to inheritance increases the number of
objects, thereby reducing the number of classes.

• It avoids rigidity in design.

Known Uses

This practice is common in any quality software system.

Implies the Use of [Patterns]

Composite and decorator (Gamma et al., 1995) are typical patterns for reducing
and controlling inheritance hierarchies. Both patterns have similar structure
diagrams based on composition, in order to organize an open and recurring
number of objects.

Is Introduced by [Refactorings]

According to Fowler et al.’s (2000) catalog, this rule can be introduced, mainly,
with the following refactoring: Collapse Hierarchy.

If There are Unused or
Little Used Items

Intent

To avoid the existence of elements neither use nor usefulness.

318 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Also Known As

No other names are known for this rule.

Motivation

The main reference to this rule is by Fowler et al. (2000); it is commented in a
few lines in several of his bad smells (“lazy class,” “middle man,” and
“speculative generality”).
On many occasions, designs contain unused elements (such as attributes,
classes, and so on). An example are the hierarchies with unused classes, these
has been inserted for the future, classes that do nothing. These elements often
appear subsequent to a process of refactoring or reengineering. On other
occasions, it may also happen that there are elements in the design of low-level
usability, such as classes which work as intermediaries.
These elements make it hard to maintain and understand the design. These
elements make the design more complicated to understand, less easy to analyze,
and thus less maintainable. We should not forget that every class has its
development cost and its maintenance cost.

Recommendation

If there are unused or little used items
Then

Eliminate them.

Applicability

Use this rule when:

• A design contains unused elements.

Structure

Does not apply.

A Catalog of Design Rules for OO Micro-Architecture 319

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences

This rule has the following consequences:

• Elements with no usability in the design disappear.
• The class population decreases.
• The design becomes easier to analyze and to understand —
• The design is more maintainable.

Known Uses

This practice is common in several software systems.

Implies the Use of [Patterns]

Does not apply.

Is Introduced by [Refactorings]

This rule can be introduced with any of the refactorings whose goal it is to
eliminate elements. Fowler et al.’s (2000) catalog shows one of the refactorings
most widely used to keep this rule: remove middle man.

320 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If a Superclass Knows
Any of Its Subclasses

Intent

To avoid that a superclass knows any of its subclasses.

Also Known As

No other names are known for this rule.

Motivation

In this sense, (Riel, 1996) comments on his heuristic 5.2: Derived classes must have
knowledge about their base class by definition, but base classes should not know
anything about their derived classes.

This is a basic rule for a good application of OO, since if it is broken it has a direct
impact on the polymorphism, and thus on the flexibility of the system.
By definition, a child class knows its parent class by the inheritance type
association, and the subclass has access to the public or protected services defined
in the superclass. When we have this structure, we have the basic scheme for the
application of polymorphism, that is, clients on the superclass will be able to obtain
the behavior of its subclasses without knowing any of these subclasses. For that
reason, these subclasses may be easily substituted freely, even in run-time, without
affecting to the client class of the superclass. This allows the behavior of the system
to be changed in a flexible way. However, if a superclass knows its subclass the
aforementioned advantages disappear, since these child class could not be substi-
tuted.

Recommendation

If a Superclass knows any of its subclasses
Then Eliminate it.

A Catalog of Design Rules for OO Micro-Architecture 321

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Applicability

Use this rule when:

• An association exists from a parent class to a child class.

Structure

Does not apply.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences

This rule has the following consequences:

• It permits a flexible and scalable design.
• It allows the behavior of the services to be changed easily, by associating

any subclass to the client class that requires the services.
• It increases the maintainability by increasing the ability of the system to

change.

Known Uses

This rule can be observed in many design patterns, frameworks, and software
systems.

322 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Implies the Use of [Patterns]

If a class parent needs the services of a child class this can be done through
strategies such as those presented by the state andstrategy patterns (Gamma et
al., 1995). These introduce a level of indirection and apply delegation.

Is Introduced by [Refactorings]

Does not apply.

If a Class Collaborates with
Too Many Others

Intent

To avoid classes with a high level of collaboration.

Also Known As

No other names are known for this rule.

Motivation

This is a typical rule, described by several authors and applied to various different
levels of abstraction.
When a class has associations with many others, the maintenance of it in a
change has a high cost. Any change will affect the associated class, which will
need to be compiled again. A common solution to this problem is to put in an
intermediary class.

Recommendation

If a class collaborates with too many others
Then reduce the number of collaborations.

A Catalog of Design Rules for OO Micro-Architecture 323

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Applicability

Use this rule when:

• A class has associations with a large number of others class.

Structure

Does not apply.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences

This rule has the following consequences:

• It limits the impact caused when changes occur.
• Coupling and collaborations are reduced.

Known Uses

This practice is common in any quality software system.

Implies the Use of [Patterns]

The facade pattern is a typical solution to this problem.

324 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Is Introduced by [Refactorings]

Does not apply.

If a Change in an Interface
Has an Impact on Many Clients

Intent

To avoid using interfaces which provide support for many clients with different
needs.

Also Known As

Interface segregation principle (ISP) (Martin, 1996).

Motivation

Some pieces of work refer to this rule, such as of those of Meyer (1997) and
Martin (1996).
The general picture of the rule is the following: if there is an interface with
various clients then make specific interfaces for each client. It is better to have
many specific interfaces than to have a single general-purpose one.

Figure 4. Many dependencies in a single interface

Class A

Class C

Class B
Server Class

Class A’s methods
Class A’s methods
Class A’s methods

Interface
 Class A’ s
services
Class B’s
services
Class C’s
services

A Catalog of Design Rules for OO Micro-Architecture 325

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4 shows a class with many clients and a large interface to serve them. If
a change is produced in one of the methods called up by client A, clients B and
client C will be affected. This will mean the inevitable recompilation.
One technique for improving this situation is as shown in Figure 5. The methods
that each client needs are placed in interfaces specific to that client. If client A’s
interfaces change, there is no need to touch client B and client C.
When the OO applications are maintained, the interfaces frequently change.
When the modification of an interface may have a great impact, new interfaces
should be added.

Recommendation

If a change in an interface has an impact on many clients
Then create specific interfaces for each client.

Applicability

Use this rule when:

• There is an interface with various clients, then, create specific interfaces for
each client.

Do not use this rule when:

• This rule is not recommended for the purpose that each service have its own
interface. Low cohesion might be detected if this principle had to be used

Figure 5. Application of ISP

Class A

Class C

Interface A Class A’s services

Interface B
Class B’s services

Interface C
Class C’s services

Server Class
Class A’s methods
Class B’s methods
Class C’s methods

Class B

326 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

widely. In the case that clients should be categorized by type the interfaces
should be created for each type of client.

Structure

Does not apply.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences

This rule has the following consequences:

• This rule allows classes and components to be more portable and useful.
• This rule reduces the impact of changes, by increasing quality due to the

higher level of maintainability by the increasing of system stability.

Known Uses

This rule can be observed in many patterns, frameworks and software systems.

Implies the Use of [Patterns]

Does not apply.

Is Introduced by [Refactorings]

According to Fowler et al. (2000) catalog, this rule may be introduced with the
following refactorings: extract interface.

A Catalog of Design Rules for OO Micro-Architecture 327

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If There is Not an Abstract Class
Between an Interface and

Its Implementation

Intent

To use implementations by default.

Also Known As

No other names are known for this rule.

Motivation

No references to this rule were found.
Interfaces contain a subset of operations without implementation. The differ-
ence between an interface and an abstract class is that the first one has no any
operations with implementation or method.
If there is not an abstract class between an interface and its implementation
classes, then it will occur that each one of the implementation classes will make
the implementation of the services defined in the interface. In addition, if two or
more implementation classes need the same implementation both will make
duplicate code. This is usually solved by placing an abstract class, which
implements by default the majority of the operations of the interface.
We could think about eliminating the interface and leaving only the abstract class.
However, if future concrete subclasses not to want a default behavior, then it
overwriting the abstract class’s methods and it is not a good solution (see IF a
Class Rejects Something that it Inherited).

Recommendation

If there is not an Abstract class between an interface and its implementa-
tion, Then create an abstract class with an implementation by default
between the interface and the class that implements it.

328 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Applicability

Use this rule when:

Between an Interface and its implementation there is not an abstraction by
default.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences

This rule has the following consequences:

• It eliminates the possibility of a duplicate code: all subclasses have a default
implementation, such that each class does not need to create one.

• It avoids concrete classes implementing services that are not their whole
responsibility.

Figure 6. Structure of abstraction by default

Concrete

Interface

Concrete

Abstract

Interface

A Catalog of Design Rules for OO Micro-Architecture 329

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Known Uses

This rule can be observed in many patterns, frameworks, and software systems.

Implies the Use of [Patterns]

Does not apply.

Is Introduced by [Refactorings]

According to (Fowler et al., 2000)’s catalog states this rule can be introduced,
mainly, with the following refactorings: extract interface, extract subclass,
extract superclass, pull up field, pull up method, push down field, and push down
method.

If a Superclass is a Concrete Class

Intent

To avoid the existence of concrete superclasses.

Also Known As

No other names are known for this rule.

Motivation

This rule is described briefly in Riel (1996) and in a somewhat broader form by
Priestley (2001).
Let us look at an example to show the outworking and advantages of this rule.
We take as our supposition the diagram of classes in Figure 7. In this Figure both
classes are concrete (all their services have implementation or method) and the
class “savings account” inherits and uses the operation “account maintenance
charge.”

330 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

However, let us imagine that we need to make a change in the functionality that
the “current account” class is giving and this implies a change in “account
maintenance charge.” The following solutions could be envisaged.
“Account maintenance charge” could be modified directly, but this is inherited
by “savings account” and the savings account should not possess the new
functionality.
We could overwrite the “account maintenance charge” operation, in “savings
account” but this would be an artificial solution. It would result in a code
replication and such a phenomenon is usually seen as a symptom of a failure in
design (the “IF a class rejects something that it inherited” would be broken).
 “Account maintenance charge” could be designed to perform in different ways
(in one way for the objects of “current account” and in another for those of
“savings account”). But this would make explicit reference to a subclass, so that,
when adding or eliminating subclasses, the code of “current account” should be
modified [the class is not closed (open - closed) property (Meyer, 1997), and the
violations of “IF a superclass” and “if an object has different behavior according
to its internal state”].
The problem is that the superclass is performing two roles:

• It is a superclass and is, therefore, defining an interface that all classes have
to fulfill.

• It is providing an interface implementation by default.

Figure 7. Example of the “ IF a superclass is a concrete class”

Current A ccount

+ Account Mai ntenance Charge

Savings Account

+ AddCharge

A Catalog of Design Rules for OO Micro-Architecture 331

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This conflict of roles happens when functionality (a method or behavior) is
associated with objects of the superclass. The solution is to apply the “IF a
superclass is a concrete class,” thereby obtaining the following scheme, (to
which a default abstraction should be added for it to be complete).
As Gamma et al. (1995) say, the inheritance of class is only a mechanism for
extending the functionality of an application, re using the functionality of the
parent classes. It allows the rapid defining of a new type of object, using a
previous one. It permits us to achieve new applications. Nevertheless, the reuse
of implementation is just a part. The ability of inheritance to define families of
objects with identical interfaces (usually inheriting from an abstract class), is also
important. Why? Because polymorphism is based on it.
 When the inheritance is used appropriately, all classes derived from an abstract
class share its interface. This implies that a subclass does not hide operations
from a superclass.

Recommendation

If a superclass is a concrete class
Then re-structure to eliminate it.

Applicability

Use this rule when:

Figure 8. Solution to the conflict of roles

Curr ent A ccount

+

Savin g Account

+ addCharge

<< Abstract >>
Account

addChargeMaintenace Account

332 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• You find concrete superclasses or (see consequences) an abstract class
that is a child of a concrete one.

Structure

Does not apply.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences

This rule has the following consequences:

• An abstract class can never be a child of a concrete one.
• The scalability of the system is not limited.

Known Uses

This rule can be observed in many patterns, frameworks and software systems,
in essence in any design of quality.

Implies the Use of [Patterns]

Does not apply.

A Catalog of Design Rules for OO Micro-Architecture 333

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Is Introduced by [Refactorings]

According to Fowler et al.’s (2000) catalog this rule can be introduced, mainly,
with the following refactorings: extract interface, extract subclass, extract
superclass, pull up field, pull up method, push down field, and push down method.

IF a Service Has Many Parameters

Intent

To avoid services that have a large number of parameters which are not easy to
understand and which increase the coupling.

Also Known As

Long parameter list (bad smell) (Fowler et al., 2000).
Minimize the number of messages in the protocol of a class (heuristic) (Riel,
1996).
Principle of Small Interfaces (Meyer, 1997).

Motivation

Regarding this area of problems, Fowler et al. (2000) give some brief remarks
on how long lists of parameters are not necessary when working in OO.
This type of violation is frequently observed. It occurs when a set of data has to
be passed to a class and it is decided to get a single method.
The main problem with these long lists of parameters is that they increase re-
coupling and that they are hard to understand.
The solution to the problem is usually:

• Instead of having just a few services with lot of parameters, the tendency
should be to have many services with few parameters.

• If it is not possible to separate this data, it is preferable to get a class with
all of these.

334 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Recommendation

If a service has many parameters
Then create various methods, reducing the list or put these into an object.

Applicability

Use this rule when:

• You come across a long list of parameters. There should not be more than
four parameters in one service.

Structure

Does not apply.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences

This rule has the following consequences:

• A reduction of the coupling of the client class with the provider class.
• A reduction of the lists of parameters and calls to methods.
• It increases quality because it raises maintainability, in the sense that it

makes the system more stable when it faces changes.

A Catalog of Design Rules for OO Micro-Architecture 335

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Known Uses

The use of this rule can be seen in the library classes of popular platforms such
as Java.

Implies the Use of [Patterns]

Does not apply.

Is Introduced by [Refactorings]

According to Fowler et al.’s (2000) catalog, this rule can be introduced with the
following refactorings: replace parameter with method, introduce parameter
object, and preserve whole object.

IF a Class is Too Large

Intent

To avoid large classes which have little cohesion.

Also Known As

Large class (bad smell) (Fowler et al., 2000).
The single responsibility principle (Martin, 1996)

Motivation

This rule is one of the earliest. It was described a long time ago by DeMarco
(1979) and Page-Jones (1998) and more recently by Fowler et al. (2000), Riel
(1996), and Martin (1996).
The non-fulfilling of this rule may be detected when classes with many services
and which have a low level of cohesion are observed, or ones which have a lot
of instance variables.

336 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

It also tends to be a product of functional design, in which a main class with an
important responsibility appears.
The problem with this is the complicated maintainability. Martin (1996) highlights
how a class should change for just one single reason. If a change of business or
domain makes a class change, then changes in the BBDD scheme, the user
interface, and so on, should not imply a change for the class. Each responsibility
should be in a separate class, since each responsibility can be a change.

Recommendation

If a class is too large
Then reduce its size by sharing out functionality over other classes.

Applicability

Use this rule when:

• Others use a class with a large number of services.
• There are services with little cohesion.

Structure

Does not apply.

Participants

Does not apply.

Collaborations

Does not apply.

A Catalog of Design Rules for OO Micro-Architecture 337

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Consequences

This rule has the following consequences:

• The number of system classes increases.
• The classes have greater cohesion.
• The system is more maintainable, since changes are localized. The system

is more stable.

Known Uses

This practice is common in any quality software system.

Implies the Use of [Patterns]

Does not apply.

Is Introduced by [Refactorings]

According to Fowler et al.’s (2000) catalog, this rule can be introduced with the
following refactorings: extract class, extract subclass, extract superclass,
extractinterface, and replace data value with object.

If Any Element of the User Interface
are in Domain Entities

Intent

To avoid that domain classes having elements whose objective is how the
information is represented.

338 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Also Known As

No other names are known for this rule.

Motivation

There are many reference works that discuss this rule; the brevity of these texts
have encouraged us to produce a description of this rule.
This is a rule that was formulated quite some time ago and is well known. It is,
moreover, one of the most important. It is usually dealt with in nearly all the levels
of abstraction in the design; it is even at the heart of technologies such as XML
(which aims to separate content from presentation).
The business elements belong to a different domain from that of the elements of
the user interface. Both domains work together but they should be as indepen-
dent of each other as possible, to such an extent that they are at times even
developed as paradigms and technologies that are very different. Thus, for
example, the business domain can be based on OO and the presentation or
interface of the user of the same can be developed with html type technology or
by voice recognition. In general, in an information system, the most important
part of the design and development is the one that models the business rules, that
is, how a system works and how it behaves. If we fuse the presentation domain
with business, we create a high level of dependency in both. Thus, if a change
in the presentation should affect the business logic, it would be complicated to
include another way of presentation, and so forth. Any design-code that works
with a user interface should only involve the code of the user interface. The user
interface could take an input from the user space and show the information, but
it ought not to handle more information than is necessary for making the
transformations in the information.
The point is that business rules have nothing to do with how the results are shown
or how data is given to them.
When the domain presentation is separated, you have to ensure that no part of
the domain refers to the presentation code. If an application is being written with
a graphical user interface (GUI), you should be able to write an interface in
character mode.

A Catalog of Design Rules for OO Micro-Architecture 339

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Recommendation

If any element of the user interface are in domain entities
Then place these elements in a separate entity.

Applicability

Use this rule when:

• Elements (services, attributes, etc.) which correspond to the user interface
(views or presentation) are in domain elements.

Structure

Does not apply.

Participants

User interface elements whose main responsibility must be the interaction with
the users.
New class or modules, which take up the responsibility of everything that has to
do with the user interface.

Collaborations

When removing elements from the class that contains them and passing them to
another, collaboration between these two should be established. This collabora-
tion should be done with as little re-coupling as possible since a domain class
should never possess knowledge about the layer of the user interface. To ensure
this, the strategies described in the section “implies the use of patterns” will be
employed.

Consequences

This rule has the following consequences:

340 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Introduction of specific modules which save, and are responsible for,
whatever relates to user interface.

• Separation of design into various areas of complexity. A large amount of
presentations mean complex programming, a set of particular libraries, and
so forth. The changes demanded for presentation normally happen at a rate
that is different from that occurring in the domain.

• Availability of a number of presentations for the same domain. The domain
is usually more platform-portable while the presentation tends to depend
more on the operative system or on the hardware.

• Avoiding of code duplication, since, for example, different screens require
a similar validation logic which should not be duplicated.

• Maintainability is increased.

Known Uses

This rule can be seen in many patterns, frameworks and software systems.

Implies the Use of [Patterns]

The application of this rule will require the use of design patterns, which make
a decoupling between the class that did contain user interface elements and the
class that now contains elements of the user interface. The patterns that are
normally used are the observer, command, mediator, and chain of responsibility
(Gamma et al., 1995).

Is Introduced by [Refactorings]

According to Fowler et al.’s (2000) catalog, this rule can be introduced, mainly,
with the following refactorings: move method, extract method, and duplicate
observer data. Fowler et al.’s (2000) catalog shows a refactorings known as
“separate domain from presentation,” which is also applicable in this rule, and the
refactoring “hide presentation tier-specific details from business tier” by Alur,
Malks & Crupi (2003).

A Catalog of Design Rules for OO Micro-Architecture 341

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If a Class Uses More Things from
Another Class Than from Itself

Intent

To avoid that the intelligence of one class is distributed.

Also Known As

Feature envy (bad smell) (Fowler et al., 2000).

Motivation

This rule is described in part and briefly in (Fowler et al., 2000).
It sometimes happens that a method in a class uses a greater quantity of things
from another than from itself. This increases the number of calls and the impact
of the changes. The violation of this rule indicates that the method is not correctly
placed. When this occurs, the solution is to pass the method to the class from
which it takes the greatest part of the things that it needs to work.

Intent

If a class uses more things from another class than from itself
Then pass these things to the class that uses them most.

Applicability

Use this rule when:

You see a method that uses or needs more things from another class than
from the one to which it belongs.

342 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Structure

Does not apply.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences (Consequences)

This rule has the following consequences:

It raises the quality of maintenance, increasing the stability of the system,
since the impact of the changes will be less.
Increasing the cohesion.

Known Uses

This practice is common in any quality software system and can be observed in
design patterns.

(Implies the Use of Patterns)

Does not apply.

Is Introduced by [Refactorings]

According to Fowler et al.’s (2000) catalog, this rule can be introduced with the
following refactorings: move method and extract method.

A Catalog of Design Rules for OO Micro-Architecture 343

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If a Class Rejects Something
That It Inherited

Intent

To avoid rejecting what the classes inherit from the superclasses.

Also Known As

Refused bequest (bad smell) (Fowler et al., 2000).

Motivation

No explicit reference to this rule has been found in the literature. Riel (1996) in
one of his heuristics says: “it should be illegal for a derived class to invalidate the
method of a base class, for example, with a method that doesn’t do anything”;
and the brief description given by Fowler et al. (2000) in their “bad smell”
“refused bequest”; and the mention of Liskov and Zilles (1974).
This rule can be observed in subclasses which only use a little of what their parent
classes offer them, or even have to reject it. Generally, this means that the
inheritance is badly applied. The violation of this rule produces an overload in the
classes, designs that are hard to understand (maintenance costs), and classes
that present services with no concrete answer.

Recommendation

If a class rejects something that it inherited
Then avoid it, generally for delegation.

Applicability

Use this rule when:

A subclass inherits a service for which it cannot give an answer, and it has
to annul it or rewrite it.

344 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Structure

Does not apply.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences

This rule has the following consequences:

• A more compressible design.
• Smaller classes.

Known Uses

This practice is common in any quality software system.

Implies the Use of [Patterns]

Does not apply.

Is Introduced by [Refactorings]

Fowler et al.’s (2000) catalog says that this rule can be introduced with any of
the refactorings whose objective is to restructure inheritance relationship:
extract interface, extract class, extract superclass, replace inheritance with
delegation, pull up method, and so on.

A Catalog of Design Rules for OO Micro-Architecture 345

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If the Attributes of a Class are Public or Protected

Intent

To avoid access to the attributes of an object.

Also Known As

No other concrete names are known for this rule.

Motivation

Many authors have quoted this rule, but the justification is not always clearly
described. Riel (1996) gives some brief comments in his heuristic 2.1 “all data
should be hidden within its class”, heuristic 5.3 “all data in a base class should
be private, i.e. do not use protected data”, and heuristic 9.2 “do not change the
state of an object without going through its public interface.”
Why should there be no access to the attributes of an object? The attributes
should not know the attributes for various reasons:
If a client class accedes to the internal data structure of a provider class, this last
one will never be able to change this data structure. For example, if age is stored
in a simple structure (for example, an integer) and if in the future we wish to store
the last 10 ages, with an array being the best option, we will have to change and
look for all the clients, who in addition will have to change the way they access
the piece of data.
The way to obtain information is known only by the provider class. An object can
give us out the age and yet not have it calculated. If there is an age attribute and
we read it, nobody takes responsibility for its being updated. For example, only
the date of birth might be stored. Not using methods of access to attributes
implies knowing what information the object stores. There is information stored
by the object and there is other information that it calculates when it is required.
Making attributes private also avoids the appearance of centralized structures of
data from which everything depends. This is one of the problems of structured
programming.
We cannot forget that one thing is object attributes and another is the information
that objects may give:

346 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Information that the object may provide = attributes and calculations with
the attributes.

Recommendation

If the attributes of a vlass are public or protected
Then make them private and access to them through services.

Applicability

Use this rule when:

• There are public or protected attributes.

Structure

Does not apply.

Participants

Does not apply.

Collaborations

Does not apply.

Consequences

This rule has the following consequences:

• Dependencies on attributes are eliminated.
• All access should be done through services.
• Maintainability is increased as the system stability becomes greater.

A Catalog of Design Rules for OO Micro-Architecture 347

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Known Uses

This practice is common in any quality software system.

Implies the Use of [Patterns]

Does not apply.

Is Introduced by [Refactorings]

This rule can be introduced by restructuring how attributes are accessed.
Besides, according to Fowler et al.’s (2000) catalog, the following refactorings
could be applied: hide method, encapsulate field, encapsulate collection, move
method, move field, change bi-directional association to unidirectional, replace
inheritance with delegation, and hide delegate.

References

Alur, D., Malks, D., & Crupi, J. (2003). Core J2EE™ patterns: Best practices
and design strategies (2nd ed.). Saddle River, NJ: Prentice Hall.

DeMarco, T. (1979). Structured analysis and system specification. Englewood
Cliffs, NJ: Yourdon Press.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (2000). Refactoring:
Improving the design of existing code. Boston: Addison-Wesley Profes-
sional.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns.
Addison-Wesley Professional.

Liskov, B. H., & Zilles, S. N. (1974). Programming with abstract data types.
SIGPLAN Notices, 9(4), 50-59.

Martin, R. C. (1996). The dependency inversion principle. C++ Report, 8(6),
61-66.

Meyer, B. (1997). Object-oriented software construction (2nd ed.). NJ:
Prentice Hall.

Page-Jones, M. (1998). The practical guide to structured systems design (2nd

ed.). Englewood Cliffs, NJ: Yourdon Press.

348 Garzás & Piattini

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Priestley, M. (2001). Practical object-oriented design with UML. London:
McGraw-Hill.

Riel, A. J. (1996). Object-oriented design heuristic. Boston: Addison-Wesley
Professional.

About the Authors 349

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Authors

Javier Garzás (javierg@ocu.es * or jgarzas@gmail.com) is the chief technol-
ogy officer (CTO) at Oficina de Cooperación Universitaria (OCU) S.A., Madrid,
Spain. Additionally, he is a lecturer at Rey Juan Carlos University. Due to his
experiences at several important companies, his research and software engi-
neering skills cover areas such as OO design, CMM, software process, and
project management. He earned his MSc and PhD degrees in computer science
from the University of Castilla - La Mancha, Spain. He also has a master’s
degree in enterprise application integration.

Mario Piattini (Mario.Piattini@uclm.es) is a full professor at the University of
Castilla - La Mancha, Spain, where he leads the Alarcos Research Group. His
research interests include advanced database design, database quality, software
metrics, object-oriented metrics, and software maintenance. He earned his MSc
and the PhD degrees in computer science from the Polytechnic University of
Madrid, an MSc in psychology at UNED, and CISA and CISM by the ISACA.

* * *

350 About the Authors

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Deepak Advani earned a master’s degree in advanced information systems
from Birkbeck, London, UK (2004). He is currently an independent researcher
attached to the School of Computer Science and Information Systems at
Birkbeck. Advani has previously worked as a developer in the software industry.
His research interests are in the Java programming language, refactoring, and
software tools.

Manoli Albert is a PhD student in the Department of Information Systems and
Computation (DISC) at the Valencia University of Technology, Spain, where she
is also an assistant professor of advanced software design. She is a member of
the OO-Method Research Group (http:\\oomethod.dsic.upv.es). Her main re-
search subject is the study of the association abstraction in analysis and design
levels. She has published several works on this topic in different conferences and
workshops. Other research interests are model-driven development, design
patterns and Web engineering.

Alejandra Cechich is an adjunct professor and head of the Research Group on
Software Engineering (GIISCO: http://giisco.uncoma.edu.ar) at the University
of Comahue, Argentina. Her interests are centered on object and component
technology and their use in the systematic development of software systems. She
received an MSc in computer science from the University of South Argentina,
and a PhD in informatics from the University of Castilla - La Mancha, Spain.

Steve Counsell is a lecturer in the School of Computing, Information Systems,
and Mathematics at Brunel University, UK, which he joined in November 2004.
Dr. Counsell earned a PhD in software engineering from Birkbeck, London
(2002) where he was a lecturer. Between 1996 and 1998, Dr. Counsell worked
as a research fellow at Southampton University. Dr. Counsell’s research
interests focus on metrics, refactoring, and empirical studies.

Yania Crespo is a lecturer at the Universidad de Valladolid, Spain. She received
a BS and an MSc in computer science at the University of Havana (Cuba) in 1995
and a PhD at University of Valladolid in 2000. She is currently leading the GIRO
(software reuse and object-orientation) research group at this university. Her
research interest is focused on software refactoring, refactoring opportunities
detection, refactoring inference, refactoring operation definition, formal and tool
support for refactoring, and language independency. She is the author and co-
author of works published in the Journal of Object-Oriented Programming,
LNCS, as well as presented at conferences such as TOOLS, OOIS, and so forth.

About the Authors 351

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Isabel Díaz is an associate professor of the Central University of Venezuela,
Venezuela. She earned an MSc degree in computer science and a specialist
degree in information systems from this university. Her research interests
include requirements engineering, natural language processing, knowledge man-
agement, ontology engineering, information systems, and software automatic
production. She is a candidate for a PhD in computer science at the Technical
University of Valencia, Spain. She is a member of the Logic Programming &
Software Engineering Research Group of this university and of the TOOLS
Research Laboratory of the Central University of Venezuela.

Andrés Flores is an assistant professor and a member of the GIISCO Group
at the University of Comahue, Argentina. His interests are centered on verifi-
cation, component-based system, software architectures, and object-oriented
applications. He received an MSc in computer science from the University of
South, Argentina, and he is currently a PhD candidate at the University of
Castilla - La Mancha, Spain.

Yann-Gaël Guéhéneuc is an assistant professor with the Department of
Computer Science and Operations Research (software engineering group) of
the University of Montreal, Canada. He holds a PhD in software engineering
from the University of Nantes, France (under Professor Pierre Cointe’s
supervision) since 2003 and an Engineering Diploma from Ecole des Mines of
Nantes since 1998. His PhD thesis was funded by Object Technology Interna-
tional, Inc. (now IBM OTI Labs), where he worked in 1999 and 2000. His
research interests are program understanding and program quality during
development and maintenance, in particular through the use and the identification
of recurring patterns. He is interested also in empirical software engineering and
in software laws and theories. He has published many papers at international
conferences and leads the Ptidej project, a tool suite to evaluate and enhance the
quality of object-oriented programs by promoting the use of patterns.

Jean-Yves Guyomarc’h graduated from the EPUNSA (École Polytechnique
de l’Université de Nice Sophia-Antipolis, France) in 2004, where he received an
engineer degree in computer science. He is currently a master’s student in
software engineering at the Department of Informatics and Operations Re-
search, University of Montreal, Canada. His research focuses on aspect-
oriented programming and quality.

Youssef Hassoun earned a PhD from Birkbeck, London (2005) investigating
the reflection model in Java. He is currently a researcher in the School of

352 About the Authors

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Computer Science and Information Systems at Birkbeck. Previously, Dr.
Hassoun has worked in the software industry as a developer and project
manager. His research interests are Java and programming paradigms. Dr.
Hassoun also holds a PhD in mathematical physics from King’s College, London,
UK.

Khashayar Khosravi received his bachelor’s degree and is currently a a
master’s student in software engineering in the Department of Informatics and
Operations Research of the University of Montreal, Canada. His research
focuses on the quality of object-oriented programs and the use of patterns to
assess the architectural quality of programs. He has published articles on the use
of design patterns and metrics to assess the quality of program architectures.

Carlos López received his BS from Universidad de Valladolid, Spain, in 2000.
He has been a lecturer at the Universidad de Burgos, Spain, since 1999. He is
a PhD student and has been a member of the GIRO Research Group (Universidad
de Valladolid) since 2003. This group is focused on systematic reuse in software
system development. His research is focused on defining a refactoring engine
and repository which executes refactoring by transforming instances of a
metamodel. He is validating UML as a metamodel to store the programming
language characteristics.

Raúl Marticorena received his BS degree from the Universidad de Valladolid,
Spain, in 2000. He has been a lecturer at the Universidad de Burgos, Spain, since
2002. He is a PhD student and has been a member of the GIRO Research Group
(University of Valladolid) since 2003. This group is focused on systematic reuse
in software system development. His research is focused on refactoring,
language independence, and refactoring inference. Currently, he is working on
the relations between metrics and bad smells to infer refactoring opportunities.

María Esperanza Manso Martínez is TEU professor with the Department of
Computer Language and Systems Universidad de Valladolid, Spain. She has a
major in mathematics from the Universidad de Valladolid. She is currently
working toward her PhD. She is especially interested in the software mainte-
nance and reuse experimentation. Her works have been accepted in several
international congresses (OOIS, CAISE, METRICS,ISESE).

Alfredo Matteo is a full professor in the School of Computer Science, Faculty
of Science, Central University of Venezuela (UCV), Venezuela. He received his
PhD in computer science from the Paul Sabatier University (Toulouse, France).

About the Authors 353

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

He coordinates the TOOLS Research Laboratory of the Science Faculty of the
UCV. His research includes software engineering environments and architec-
tures, methodologies and standards for software development, requirements
specification, and model driven development. Dr. Matteo has participated in
numerous international and national research projects and he has been included
in scientific committees of several journals, conferences, and workshops.

Lidia Moreno is an associate professor of the Department of Information
Systems and Computation of the Technical University of Valencia, Spain. She
holds a PhD in computer science of this university (1993) and an MSc in
computer science of the Deusto University, Bilbao-Spain (1982). She is the
leader of the Natural Language Processing Group of the Technical University
of Valencia, and of several research projects of the Spanish Research Funding
Agency, and other European foundations. Research activities include question
answering, information retrieval, semantic-syntactic-lexical ambiguity, and the
application of natural language processing (NLP) to the information systems.
She has published numerous papers in international conference proceedings,
books, and international journals including Computational Linguistics Journal,
Machine Translation, Recent Advances in Natural Language Processing,
and Proceedings of ACL, Colling and of the others international events. She has
been secretary of SEPLN, the Spain association of NLP (2005-2006).

Javier Muñoz is a PhD student in the Department of Informations Systems and
Computation (DSIC) at the Valencia University of Technology, Spain. His
research interests are model driven development, pervasive systems, model
transformations, and software factories. He is a member of the OO-Method
Research Group, and he has published contributions to international events like
CAiSE and MOMPES. His PhD presents a method based on the MDA and the
Software Factories proposals for the development of pervasive systems.

Juan José Olmedilla received an MSc in computer science from the Polytech-
nic University of Madrid, Spain, and is working toward a PhD. He is currently
a technical director with Almira Labs (Spain). He has been working for nine
years developing software for the telecommunications sector of different
companies (Spain and UK), using object oriented languages and patterns.
Among his current interests are CMMi and distributed systems programming.

Oscar Pastor is the head of the Department of Information Systems and
Computation of the Technical University of Valencia, Spain. He obtained a PhD
in computer science from this university (1992). He is the author of over 100

354 About the Authors

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

research papers in conference proceedings, journals, and books, and he has
received numerous research grants from public institutions and private industry.
His research activities focus on Web engineering, object-oriented conceptual
modeling, requirements engineering, information systems and model-based
software production. Dr. Pastor is leader of the project, undertaken since 1996
by the Valencia University of Technology and CONSOFT S.A., that has
originated the Oliva Nova Model Execution, an advanced MDA-based tool that
produces a final software product starting from a conceptual schema where the
system requirements are captured. Within this tool scope, he is responsible for
the research team working from the university on the improvement of the
underlying framework. He is a member of over 50 scientific committees of well-
known international conferences and workshops, a member of several editorial
boards of journals and book series, and he has been a participant researcher in
national and international research projects and has been invited to give
conferences in different universities and research centers.

Vicente Pelechano is an associate professor in the Department of Information
Systems and Computation (DISC) at the Valencia University of Technology,
Spain. His research interests are Web engineering, conceptual modeling, re-
quirements engineering, software patterns, Web services, pervasive systems
and model driven development. He received his PhD from the Valencia
University of Technology in 2001. He is currently teaching software engineering,
design and implementation of Web services, component-based software devel-
opment, and design patterns at the Valencia University of Technology. He is a
member of the OO-Method Research Group at the DISC. He has published in
several well-known scientific journals (Information Systems, Data & Knowl-
edge Engineering, Information and Software Technology, etc.), and inter-
national conferences (ER, CAiSE, WWW, ICWE, DEXA, etc.). He is a member
of scientific committees of well-known international conferences and work-
shops such as as CAiSE, ICWE, ICEIS, ACM MT and IADIS.

Marta Ruiz is a PhD student in the Department of Information Systems and
Computation (DISC) at the Valencia University of Technology, Spain. Her
research interests are Web engineering, Web services, conceptual modeling and
model-driven development. She is a member of the OO-Method Research group,
and she has published several contributions to international conferences. Her
PhD is presenting a methodological guide to design Web services from concep-
tual models.

Rodrigo Ruiz is an assistant professor and a member of the GIISCO group at
the University of Comahue, Argentina. His interests are centered on object and

About the Authors 355

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

component development. He is currently a postgraduate student at University of
Comahue, Argentina.

Houari Sahraoui has been a professor of software engineering at DIRO,
University of Montreal, Canada, since 1999. Previously, he worked as principal
researcher and team leader of the software engineering group at CRIM,
Montreal. His interests are the use of AI techniques to software engineering,
metrics and software quality, and reengineering. He wrote more than 60
conference and workshop papers and published two books. He was on the
program committees of many prestigious conferences (ASE, ECOOP, METRICS),
a member of the reading committee of two journals, and the organizers of many
workshops, including the annual Quantitative Approches in Object-Oriented
Software Engineering” workshop since 1998. He was general chair of the IEEE
Automated Software Engineering Conference, 2003.

356 Index

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Index

A

abstract class 71, 82, 234, 309, 332
abstract colleague decorator class 72
abstract mediator class 72
abstract syntax tree (AST) 215
abstraction 289
abstraction by default 328
account maintenance charge 330
ACM Digital Library 295
action definitions 228
action transformation model 43
adapting the rules 136
affected properties 83
aggregation 65, 38, 164
analysis 16, 17
analysis of pattern descriptions 147
analysis or interpretation 25
antipatterns 205
antisymmetric 67, 68, 81
application of the template method

pattern 82
applying a quality model 111
applying the rules 136
assessing the quality of motifs 118
assessment 113, 137, 293, 295
associated object creation 79, 80
associated object creation implementa-

tion 86

associated object destruction 81
association 62, 68, 74, 164
association ends 65, 71, 73, 74
association relationships 61, 64
association/aggregation 65
automatic deduction of interactions 48
automatic verification 143
automation 133, 241, 256, 261

B

bad smells 5, 193, 204, 295, 318,
341, 343

Bansiya and Davis’s QMOOD 299
basics 228
BBDD scheme 336
behavior 24, 31, 36, 41, 58, 70, 72
behavior analysis 40
behavior specification 25, 35
behavioral view 74, 79
best practices 5, 9, 11, 294
black box 315
bloaters 205
bounds 228
building a quality model 109, 115
building numerical signatures 122
built-in primitives 62
business elements 338
business process profile 177

Index 357

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

C

calls to methods 334
cascade 68, 69, 81, 89, 92, 97
case study 183, 237
catalog of design rules 307
change in an interface 324
changed process 180
chaos 2
characterizing pattern models 150
choosing internal attributes 117
classes and methods 83
classification 26, 65, 160, 202
client relations 228
CMMI 283, 286
cohesion 265, 291
collaborations 311
collapse hierarchy 317
collecting parameters 234
COM 312
command 124, 127, 234
communication 10, 36, 172
complex programming 340
complexity 291
component collaboration architecture

(CCA) 177
component initialisation 179
composite 134, 135, 163, 167, 317
composition 65, 291
computational linguistics 31
computing metrics 118
conceptual framework 59, 63, 65, 77,

101
conceptual models 60, 61, 64, 74,

75, 101
conceptual perspective 36
conclusion validity 18
concrete class 329
concrete elements 308
concrete superclasses 332
conflict of roles 331
consistency 25

constraint resolution 115, 131
coordinator component 170, 172
CORBA 312
correction 219
coupling 265, 291
creating instances 312

D

data class 238
data extraction 297
data mining techniques 218
declarative knowledge 11
decorator 59, 71, 82, 317
decorator class 71
decorator colleague class 72
decorator design pattern 158, 159
definition level 43
definition of the sequence of calls 82
delete propagation 81
deletion of instantiated objects 179
dependencies 308, 310
dependency analysis 273
dependency inversion principle (DIP)

308
DePMoVe (Design and Pattern

Modeling and Verification) 144
depth inheritance tree (DIT) 236
description 44, 198
design 2, 9, 10, 13, 24, 56, 63, 72,

101, 106, 120, 125, 144, 233,
284, 288, 307

design classes 74
design motif identification 114
design patterns 70, 144
design quality assessment models 294
design size 289
design structure 155
design structure component 177
design structure load 179
design structure verification 179
destination 45
destruction 79, 80

358 Index

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

detection strategies 302
different behavior 312
directionality of associations 61
discussion 112, 136, 201
documentation of components 177
domain classes 71
domain entities 337
dynamic 77
dynamic behavior 31, 34, 54

E

ease of use 25
effectiveness hypotheses 16
efficiency 286
EJB 312
empirical reality 258
empirical studies 19, 254, 255
empirical validation 14
encapsulate field (EF) 253, 254,

260, 273
encapsulation 291
engine framework extension 232
entities 11
entity profile 177
equality 49, 176
equivalent 49
evolution studies 219
evolution-sensitive 212
examples 77, 198, 201
experimental evidence 271
external validity 19

F

family of languages 217
form template method 13
formal basis of OOD 154
formal languages 151, 153
formal models of patterns 153
formal specifications 148
formalization of patterns 158
Fowler’s catalog 198
frameworks 69, 71, 216, 236

functionality 286
functions 176
fuzzy reasoning 115

G

generic parameters 228
genericity 62, 70
goal 82, 283, 301
goal, question, metrics (GQM) 206
graphical user interface (GUI) 338

H

Henderson-Sellers metrics 291
heuristic-oriented techniques 27
heuristics 5, 250, 251, 275, 295, 301
hierarchies 163, 289
hierarchy of classes 315
high level indicators 295
human factor 108
hypotheses formulation 16

I

identification projection 78
identifying micro-architectures 135
identifying programs with motifs 118
identifying roles 121
idiom 4
IEEE Digital Library 295
IF a superclass is a concrete class 330
impact 324
implementability 64
implementation strategy 82
implementation techniques 57, 62
independent variables 116, 209
inheritance 291
inheritance relationships 228, 315
initiator 45
instantiation component 171
interaction comparison 48
interaction fragment 37, 41
interaction linguistic patterns 42
interaction modelling techniques 26,

Index 359

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

30, 32, 34
interaction unit 41
interactions 83
internal state 312, 313
internal validity 18
interpretation 17
introduction of abstractions 311

J

Java Parser 171

K

knowledge 2

L

Lack of Cohesion of the Methods of a
class LCOM 265

language dependent 230
language independent bad smell

detection 219
language independent refactoring 198,

226
large class 335
lazy class 238, 308, 318
lessons learned 295
lines of code (LOC) 208
linguistic patterns 23
linguistics-oriented techniques 29
link 81
link creation 79, 80, 81, 83
link destruction 84
lists of parameters 334
little used items 317
location 45
logic metaprogramming 216
loose coupling 70

M

manual deduction of interactions 48
mapping association elements 74
MDSD 63
measuring internal attributes 135

mechanics 198, 253
mediator 59, 71, 82
messaging 291
meta level interface (MLI) 217
metaclasses 63
metamodel traversal 233
metamorphic interactions 34
metamorphosis interaction 41
method 295
metric calculation 236
metric collection 216
metric customization 234
metric extraction 123
metrics 206, 250, 251, 256, 276,

293, 295
metrics analysis 218
metrics in software refactoring 210
metrics smoothing 193
micro-architecture 307
middle man 318
minimal object-oriented notation

(MOON) 221
minimal set of methods 165
model interactions 23
model of actions 43
model-driven architecture (MDA) 57
model-driven software development

(MDSD) 57
modelling techniques 26
monitoring growth 270
MOOSE 216, 226, 227
motivation 198, 309
move field 260
moving member variable to subclasses

230
multiplicity 80

N

name 44
navigability 61, 66, 78
new alternatives 32
no verifiable 230

360 Index

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

normalization function 45
not navigable 79
not reflexive 69, 80
number of attributes (NOA) 215, 238,

256
number of children (NOC) 125, 236,

237, 292
number of methods (NOM) 125, 238,

272

O

object declaration 176
Object Management Group (OMG) 57
object-orientated design knowledge 1,

8
object-oriented design quality improve-

ment 282
object state 45
object-oriented (OO) 3, 4, 10, 205,

253, 287, 289, 295
object-oriented analysis/design

(OOAD) 4
object-oriented programming languages

(OOPL) 149
observations 44
ontology 10
OO abusers 205
OO design 3, 4, 295, 307
OO design maturity model 284
OO knowledge
OO metrics 209, 291
OOD metamodel 155
OOD metamodel component 171
OO micro-architectural design 1, 10
OO micro-architectural design knowl-

edge 10
OO micro-architectures 307
OO refactoring 250
OO software development 196
OOD pattern applications 143
OOPSLA 2001 Workshop 5
operative knowledge 11

OptimalJ 60
owner 45

P

parallel inheritance hierarchy 239
participating classes 74
particular semantic interpretation 68
pattern application level 44
Pattern and Abstract-level Description

Language (PADL) 124
pattern instantiation approach 149
pattern metamodel component 173
pattern specification level 43
pattern-based design 143, 146, 180
patterns 4, 13, 149, 154, 295, 308,

326, 335
performer 45
platform independent models (PIM) 57
polymorphism 71, 274, 291
portability 287
precision 64
preconditions 198
preconditions analysis 201
primitives, operators, metrics (POM)

118, 124, 135
principal verb 45
principles 5, 295
process of verification 173
program architecture 108
program slicing 197
program transformation 195
pull up field 261, 264
push down field 261, 329

Q

quality 295
quality characteristics 116
quality factors 70
quality model 107, 113, 116, 135, 206
quality model for object-oriented design

(QMOOD) 299
quality theory 108

Index 361

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

quantified expressions 176
quantitative evaluation 115

R

recursion 177
refactor 251
refactoring 4, 193, 195, 206, 251,

267, 295, 308, 326, 335
refactoring engine 230
refactoring framework 223
refactoring repository 231
refactoring support 203
refactoring theory 253
references 62
reflexivity 80
refused bequest 343
relation profile 177
relationship 13, 74
relationship objects 62
reliability 286
rename field 261, 274, 275
renaming 157
reorganizing 195
repository creation 122
representation richness 25
restrictive 81
reusability 70
reused based on object-oriented

techniques (REBOOT) 207
review methods 295
rule learning 125
rules 13, 295

S

scalability 332
schema declaration 176
selected design patterns 70
semantic context 40, 44
semantic fragment 44
semantic perspective 38
separate domain from presentation 340
separated by a bridge 144

separation of concerns 70
shotgun surgery 308
simplicity 64
single responsibility principle 335
software elegancy 107
software product quality 285
software quality assurance 299
special sentences 37
specialization 65
specific modules 340
speculative generality 318
SPICE 283
static 77
strategies 301
structural view 74
structured expressions 176
subclasses 160, 230, 254, 264, 320
subjects 19
superclass 320, 329
surveys 202
SWEBOK 2, 10
swing class library 259
switch statements 239
symmetry 69, 81
syntactic normalization 38
syntactic perspective 37
system classes 337
system sequence diagrams 28

T

tabular analysis method (TAM) 29
taxonomies 202
template method 59, 71, 234
temporal behavior 77
threats to validity 18
Tichelaar, S. 198
traceability 25, 137
transformation patterns 48
transformation rules 44
transformation strategy 47
translation of RSL structures into Java

174

362 Index

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

type declaration 176
type equivalence 175
types and generic instantiations 228

U

UML association concepts 63
UML based metamodel 224
unidirectional 37
unidirectional action 37
unification 5, 114
usability 286
user interface 183, 187, 337, 339
using an observer 144

V

validating the quality model 119
validation 125, 208
validation experiment 47
variations 311
verification layer 170

W

“what” of refactoring 257
white box 315
WorkFor relationship 73

Z

zero attribute classes 259

InfoSci-Online
Experience the latest full-text research in the fields
of Information Science, Technology & Management

infosci-online.comA PRODUCT OF

Publishers of Idea Group Publishing, Information Science Publishing, CyberTech Publishing, and IRM Press

“…The theoretical bent
of many of the titles
covered, and the ease
of adding chapters to
reading lists, makes it
particularly good for
institutions with strong
information science
curricula.”

— Issues in Science and
Technology Librarianship

To receive your free 30-day trial access subscription contact:
Andrew Bundy

Email: abundy@idea-group.com • Phone: 717/533-8845 x29
Web Address: www.infosci-online.com

InfoSci-Online is available to libraries to help keep students,
faculty and researchers up-to-date with the latest research in
the ever-growing field of information science, technology, and
management.

The InfoSci-Online collection includes:
� Scholarly and scientific book chapters
� Peer-reviewed journal articles
� Comprehensive teaching cases
� Conference proceeding papers
� All entries have abstracts and citation information
� The full text of every entry is downloadable in .pdf format

Some topics covered:
� Business Management
� Computer Science
� Education Technologies
� Electronic Commerce
� Environmental IS
� Healthcare Information Systems
� Information Systems
� Library Science
� Multimedia Information Systems
� Public Information Systems
� Social Science and Technologies

InfoSci-Online
features:
� Easy-to-use
� 6,000+ full-text

entries
� Aggregated
� Multi-user access

Introducing
Introducing

The new IGI Teaching Case Collection is a full-text database contain-
ing hundreds of teaching cases related to the fields of information science,
technology, and management.

Key Features
• Project background

information
• Searches by keywords and

categories
• Abstracts and citation

information
• Full-text copies available for

each case
• All cases are available in PDF

format with instructor files
• Cases are written by IT

educators, researchers, and
professionals worldwide

The Benefits of the IGI Teaching Case Collection
• Frequent updates as new cases are available
• Instant access to all full-text articles saves research time
• No longer necessary to purchase individual cases
• Password-protected case instructor files included in the database

A Product Of

www.igi-online.com
For More Information Visit

www.igi-online.com

IGI Teaching Case Collection

Recommend to your librarian today!

View each case in full-text, PDF form.
Hundreds of cases provide a real-world
edge in information technology classes or
research!

