

Object-Oriented Modeling
and Design with UML

Second Edition

TM

What Others Have Said About Object-Oriented
Modeling and Design with UML, Second Edition

“The first edition of Object-Oriented Modeling and Design by James Rumbaugh, Michael
Blaha, and their colleagues is already a classic. It has influenced me more than any other book
on modeling. I have successfully applied their ideas in large university project courses for
over ten years now, and I am glad to see an updated version of this landmark book. It is bound
to shape the thinking habits of another generation of software designers and modelers.”

— Bernd Bruegge, Technical University Munich

“Blaha & Rumbaugh have done it again. They've updated their classic book for our current
times, showing again that by their simple and straightforward explanations, their precise in-
sights, and their key examples and exercises, that the adoption of object-oriented methodol-
ogy need not be difficult. A must to have, read, and study by any practitioner.”

— Michael J. Chonoles

“Our Master and Doctoral programs in information systems are adopting the Object-Orient-
ed Modeling and Design with UML (OOMD) methodology. The book, written by two of the
leading experts in the field, covers all aspects of OOMD with deep insight, many fine points,
and up to date examples. It offers great value to our programs.”

— Peter H. Chang, Lawrence Technological University

“If you are looking for a book that introduces UML, has a simple and useful object-oriented
analysis and design process, and also includes details about important object-oriented con-
cepts, then I strongly recommend that you study this excellent text.”

— Mikael Berndtsson, University of Skövde

Object-Oriented Modeling
and Design with UML

Second Edition

Michael Blaha

Modelsoft Consulting Corporation

James Rumbaugh

IBM

Upper Saddle River, New Jersey 07458

TM

Library of Congress CataIoging-in-Publication Data

Blaha, Michael.
Object-oriented modeling and desgin with UML /
Michael Blaha, James Rumbaugh.

p. cm.
Rev. ed of Object-oriented modeling and design /
James Rumbaugh. 1991.
Includes bibliographical references and index.
ISBN 0-13-015920-4
1. Object-oriented methods (Computer science) 2. UML (Computer science)
I. Rumbaugh, James. II. Rumbaugh James. Object-oriented modeling and design.
III. Title.

QA76.9.O35B562005
005.1’17--dc22

2004057348

Vice President and Editorial Director, ECS:

Marcia Horton

Publisher:

Alan Apt

Associate Editor:

Toni Holm

Vice President and Director of Production and Manufacturing, ESM:

 David W. Riccardi

Executive Managing Editor:

Vince O’Brien

Managing Editor:

Camille Trentacoste

Production Editor:

Irwin Zucker

Manufacturing Manager:

Trudy Pisciotti

Manufacturing Buyer:

 Lisa McDowell

Director of Creative Services:

Paul Belfanti

Art Director:

Heather Scott

Cover Design:

Marjory Dressler

Executive Marketing Manager:

Pamela Hersperger

Marketing Assistant:

Barrie Reinhold

© 2005, 1991 by Pearson Education, Inc.
Pearson Prentice Hall
Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced. in any format or by any means, without per-
mission in writing from the publisher.

Pearson Prentice Hall

®

 is a trademark of Pearson Education, Inc.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The author
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not be liable in any event for incidental
or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these
programs.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-015920-4

Pearson Education Ltd.,

 London

Pearson Education Australia Pty. Ltd.,

Sydney

Pearson Education Singapore Pte. Ltd.
Pearson Education North Asia Ltd.

Hong Kong

Pearson Education Canada Inc.,

 Toronto

Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan, Inc.,

Tokyo

Pearson Education—Malaysia Pte. Ltd.
Pearson Education Inc.,

Upper Saddle River, New Jersey

v

Contents

Preface
What You Will Find, xiii
Who Should Read This Book?, xiv
Comparison With Other Books, xv
Changes From the First Edition, xvi
Web Site, xvii
Acknowledgements, xvii

Chapter 1 Introduction 1

1.1 What Is Object Orientation?, 1
1.2 What Is OO Development?, 3
1.3 OO Themes, 6
1.4 Evidence for Usefulness of OO Development, 8
1.5 OO Modeling History, 9
1.6 Organization of This Book, 9
Bibliographic Notes, 10
References, 11
Exercises, 11

Part 1: Modeling Concepts 13

Chapter 2 Modeling as a Design Technique 15

2.1 Modeling, 15
2.2 Abstraction, 16
2.3 The Three Models, 16
2.4 Chapter Summary, 18
Bibliographic Notes, 19
Exercises, 19

vi Contents

Chapter 3 Class Modeling 21

3.1 Object and Class Concepts, 21
3.2 Link and Association Concepts, 27
3.3 Generalization and Inheritance, 37
3.4 A Sample Class Model, 41
3.5 Navigation of Class Models, 43
3.6 Practical Tips, 48
3.7 Chapter Summary, 49
Bibliographic Notes, 50
References, 51
Exercises, 52

Chapter 4 Advanced Class Modeling 60

4.1 Advanced Object and Class Concepts, 60
4.2 Association Ends, 63
4.3 N-ary Associations, 64
4.4 Aggregation, 66
4.5 Abstract Classes, 69
4.6 Multiple Inheritance, 70
4.7 Metadata, 75
4.8 Reification, 76
4.9 Constraints, 77
4.10 Derived Data, 79
4.11 Packages, 80
4.12 Practical Tips, 81
4.13 Chapter Summary, 82
Bibliographic Notes, 83
References, 83
Exercises, 83

Chapter 5 State Modeling 90

5.1 Events, 90
5.2 States, 92
5.3 Transitions and Conditions, 94
5.4 State Diagrams, 95
5.5 State Diagram Behavior, 99
5.6 Practical Tips, 103
5.7 Chapter Summary, 103
Bibliographic Notes, 105
References, 106
Exercises, 106

Contents vii

Chapter 6 Advanced State Modeling 110

6.1 Nested State Diagrams, 110
6.2 Nested States, 111
6.3 Signal Generalization, 114
6.4 Concurrency, 114
6.5 A Sample State Model, 118
6.6 Relation of Class and State Models, 123
6.7 Practical Tips, 124
6.8 Chapter Summary, 125
Bibliographic Notes, 126
References, 126
Exercises, 126

Chapter 7 Interaction Modeling 131

7.1 Use Case Models, 131
7.2 Sequence Models, 136
7.3 Activity Models, 140
7.4 Chapter Summary, 144
Bibliographic Notes, 144
References, 145
Exercises, 145

Chapter 8 Advanced Interaction Modeling 147

8.1 Use Case Relationships, 147
8.2 Procedural Sequence Models, 152
8.3 Special Constructs for Activity Models, 154
8.4 Chapter Summary, 157
References, 157
Exercises, 158

Chapter 9 Concepts Summary 161

9.1 Class Model, 161
9.2 State Model, 161
9.3 Interaction Model, 162
9.4 Relationship Among the Models, 162

Part 2: Analysis and Design 165

Chapter 10 Process Overview 167

10.1 Development Stages, 167
10.2 Development Life Cycle, 170
10.3 Chapter Summary, 171
Bibliographic Notes, 172
Exercises, 172

viii Contents

Chapter 11 System Conception 173

11.1 Devising a System Concept, 173
11.2 Elaborating a Concept, 174
11.3 Preparing a Problem Statement, 176
11.4 Chapter Summary, 178
Exercises, 179

Chapter 12 Domain Analysis 181

12.1 Overview of Analysis, 181
12.2 Domain Class Model, 183
12.3 Domain State Model, 201
12.4 Domain Interaction Model, 204
12.5 Iterating the Analysis, 204
12.6 Chapter Summary, 206
Bibliographic Notes, 206
References, 207
Exercises, 207

Chapter 13 Application Analysis 216

13.1 Application Interaction Model, 216
13.2 Application Class Model, 224
13.3 Application State Model, 227
13.4 Adding Operations, 233
13.5 Chapter Summary, 234
Bibliographic Notes, 236
References, 236
Exercises, 236

Chapter 14 System Design 240

14.1 Overview of System Design, 240
14.2 Estimating Performance, 241
14.3 Making a Reuse Plan, 242
14.4 Breaking a System into Subsystems, 244
14.5 Identifying Concurrency, 246
14.6 Allocation of Subsystems, 248
14.7 Management of Data Storage, 250
14.8 Handling Global Resources, 252
14.9 Choosing a Software Control Strategy, 253
14.10 Handling Boundary Conditions, 255
14.11 Setting Trade-off Priorities, 255
14.12 Common Architectural Styles, 256
14.13 Architecture of the ATM System, 261
14.14 Chapter Summary, 262

Contents ix

Bibliographic Notes, 264
References, 264
Exercises, 264

Chapter 15 Class Design 270

15.1 Overview of Class Design, 270
15.2 Bridging the Gap, 271
15.3 Realizing Use Cases, 272
15.4 Designing Algorithms, 274
15.5 Recursing Downward, 279
15.6 Refactoring, 280
15.7 Design Optimization, 280
15.8 Reification of Behavior, 284
15.9 Adjustment of Inheritance, 284
15.10 Organizing a Class Design, 288
15.11 ATM Example, 290
15.12 Chapter Summary, 290
Bibliographic Notes, 292
References, 293
Exercises, 293

Chapter 16 Process Summary 298

16.1 System Conception, 299
16.2 Analysis, 299
16.3 Design, 300

Part 3: Implementation 301

Chapter 17 Implementation Modeling 303

17.1 Overview of Implementation, 303
17.2 Fine-tuning Classes, 303
17.3 Fine-tuning Generalizations, 305
17.4 Realizing Associations, 306
17.5 Testing, 310
17.6 Chapter Summary, 312
Bibliographic Notes, 312
References, 313
Exercises, 313

Chapter 18 OO Languages 314

18.1 Introduction, 314
18.2 Abbreviated ATM Model, 317
18.3 Implementing Structure, 317
18.4 Implementing Functionality, 331
18.5 Practical Tips, 341

x Contents

18.6 Chapter Summary, 342
Bibliographic Notes, 343
References, 343
Exercises, 344

Chapter 19 Databases 348

19.1 Introduction, 348
19.2 Abbreviated ATM Model, 352
19.3 Implementing Structure—Basic, 352
19.4 Implementing Structure—Advanced, 360
19.5 Implementing Structure for the ATM Example, 363
19.6 Implementing Functionality, 366
19.7 Object-Oriented Databases, 370
19.8 Practical Tips, 371
19.9 Chapter Summary, 372
Bibliographic Notes, 373
References, 373
Exercises, 374

Chapter 20 Programming Style 380

20.1 Object-Oriented Style, 380
20.2 Reusability, 380
20.3 Extensibility, 384
20.4 Robustness, 385
20.5 Programming-in-the-Large, 387
20.6 Chapter Summary, 390
Bibliographic Notes, 391
References, 391
Exercises, 391

Part 4: Software Engineering 393

Chapter 21 Iterative Development 395

21.1 Overview of Iterative Development, 395
21.2 Iterative Development vs. Waterfall, 395
21.3 Iterative Development vs. Rapid Prototyping, 396
21.4 Iteration Scope, 397
21.5 Performing an Iteration, 398
21.6 Planning the Next Iteration, 399
21.7 Modeling and Iterative Development, 399
21.8 Identifying Risks, 400
21.9 Chapter Summary, 401
Bibliographic Notes, 402
References, 402

Contents xi

Chapter 22 Managing Models 403

22.1 Overview of Managing Models, 403
22.2 Kinds of Models, 403
22.3 Modeling Pitfalls, 404
22.4 Modeling Sessions, 406
22.5 Organizing Personnel, 409
22.6 Learning Techniques, 410
22.7 Teaching Techniques, 410
22.8 Tools, 411
22.9 Estimating Modeling Effort, 413
22.10 Chapter Summary, 414
Bibliographic Notes, 414
References, 415

Chapter 23 Legacy Systems 416

23.1 Reverse Engineering, 416
23.2 Building the Class Model, 418
23.3 Building the Interaction Model, 419
23.4 Building the State Model, 420
23.5 Reverse Engineering Tips, 420
23.6 Wrapping, 421
23.7 Maintenance, 422
23.8 Chapter Summary, 422
Bibliographic Notes, 423
References, 424

Appendix A UML Graphical Notation 425

Appendix B Glossary 426

Answers to Selected Exercises 441

Index 469

This page intentionally left blank

xiii

Preface

Welcome to the second edition of Object-Oriented Modeling and Design. Much has changed
since we finished the first book (1991). Back then object-oriented (OO) technology was con-
sidered new. Despite the excitement and enthusiasm, there was concern whether OO was re-
ally practical or just a passing fad. Consider all that has changed:

■ OO languages. C++ is now established and Java has also become popular. The domi-
nant programming languages are now OO.

■ OO databases. Somewhat surprisingly, OO databases have faded, but relational data-
bases are now including some OO features.

■ OO modeling. The Unified Modeling Language (UML) standard from the Object Man-
agement Group has consolidated the multiple competing notations.

■ OO methodology. Development methodologies now routinely incorporate OO ideas
and concepts.

OO technology has truly become part of the computing mainstream. OO technology is no
longer the exception; rather it is the usual practice.

What You Will Find
This book presents an object-oriented approach to software development based on modeling
objects from the real world and then using the model to build a language-independent design
organized around those objects. Object-oriented modeling and design promote better under-
standing of requirements, cleaner designs, and more maintainable systems. We describe a set
of object-oriented concepts and a language-independent graphical notation that can be used
to analyze problem requirements, design a solution to the problem, and then implement the
solution in a programming language or database. Our approach allows the same concepts and

xiv Preface

notation to be used throughout the entire software development process. The software devel-
oper does not need to translate into a new notation at each development stage.

We show how to use object-oriented concepts throughout the entire software life cycle,
from analysis through design to implementation. The book is not primarily about object-
oriented languages or coding. Instead we stress that coding is the last stage in a process of
development that includes stating a problem, understanding its requirements, planning a so-
lution, and implementing a program in a particular language. A good design technique defers
implementation details until later stages of design to preserve flexibility. Mistakes in the
front of the development process have a large impact on the ultimate product and on the time
needed to finish. We describe the implementation of object-oriented designs in object-
oriented languages and relational databases.

The book emphasizes that object-oriented technology is more than just a way of pro-
gramming. Most importantly, it is a way of thinking abstractly about a problem using real-
world concepts, rather than computer concepts. We have found this to be a difficult transition
for some people. Books that emphasize object-oriented programming often fail to help the
programmer learn to think abstractly. We have found that a graphical notation helps the soft-
ware developer visualize a problem without prematurely resorting to implementation.

We show that object-oriented technology provides a practical, productive way to devel-
op software for most applications, regardless of the final implementation language. We take
an informal approach in this book; there are no proofs or formal definitions with Greek let-
ters. We attempt to foster a pragmatic approach to problem solving by drawing upon the in-
tuitive sense that object-oriented technology captures and by providing a notation and
methodology for using it systematically on real problems. We provide tips and examples of
good and bad design to help the software developer avoid common pitfalls.

Who Should Read This Book?
This book is intended for both software professionals and students. The reader will learn how
to apply object-oriented concepts to all stages of the software development life cycle. We do
not assume any prior knowledge of object-oriented concepts. We do assume that the reader
is familiar with basic computing concepts, but an extensive formal background is not re-
quired. Even existing object-oriented programmers will benefit from learning how to design
programs systematically; they may be surprised to discover that certain common object-
oriented coding practices violate principles of good design.

The database designer will find much of interest here. Although object-oriented pro-
gramming languages have received the most attention, object-oriented design of databases
is also compelling and immediately practical. We include an entire chapter describing how
to implement an object-oriented model using relational databases.

This book can be used as a textbook for a graduate or advanced undergraduate course
on software engineering or object-oriented technology. It can be used as a supplementary
text for courses on databases or programming languages. Prerequisites include exposure to
modern programming languages and a knowledge of basic computer science terms and con-

Preface xv

cepts, such as syntax, semantics, recursion, set, procedure, graph, and state; a detailed formal
background is not required.

Our emphasis differs from that of some in the object-oriented programming community
but is in accord with the information modeling and design methodology communities. We
emphasize object-oriented constructs as models of real things, rather than as techniques for
programming. We elevate interobject relationships to the same semantic level as classes,
rather than hiding them as pointers inside objects. We place somewhat less emphasis on in-
heritance and methods. We downplay fine details of inheritance mechanisms. We come down
strongly in favor of typing, classes, modeling, and advance planning. We also show how to
apply object-oriented concepts to state machines.

The book contains four parts. Part 1 presents object-oriented concepts in a high-level,
language-independent manner. These concepts are fundamental to the rest of the book, al-
though advanced material can be skipped initially. The UML notation is introduced in Part
1 and used throughout the book. Part 2 describes a step-by-step object-oriented methodology
of software development from problem statement through analysis, system design, and class
design. All but the final stages of the methodology are language independent. Part 3 de-
scribes the implementation of object-oriented designs in object-oriented languages and rela-
tional databases. It describes the considerations applicable to different environments,
although it is not intended to replace books on object-oriented programming. Part 4 de-
scribes software engineering practices needed for successful object-oriented development.

The authors have used object-oriented analysis, design, programming, and database
modeling for many years now on a variety of applications. We are enthusiastic about the ob-
ject-oriented approach and have found it appropriate to almost any kind of application. We
have found that the use of object-oriented concepts, together with a graphical notation and a
development methodology, can greatly increase the quality, flexibility, and understandability
of software. We hope that this book can help get that message across.

The book has a rich variety of exercises that cover a range of application domains and
implementation targets. We suggest that you try working some of them as you go along. Ul-
timately, OO technology is not learned by reading about it, but by trying to practice it. An-
swers to selected exercises are included at the back of the book.

Comparison With Other Books
There are many books on the market that cover object-oriented technology. This book differs
from most in that it teaches how to think about object-oriented modeling, rather than just pre-
senting the mechanics of a programming language or modeling notation.

Many of the available object-oriented books are about programming issues, often from
the point of view of a single language. Some of these books do discuss design issues, but they
are still mainly about programming. Few books focus on object-oriented analysis or design.
We show that object-oriented concepts can and should be applied throughout the entire soft-
ware life cycle.

xvi Preface

In addition there are a number of books that present the concepts of the UML. This book
is different than most in that it not only explains the concepts, but it also explains their fun-
damental purpose and shows how to use them to build software. We do not explain every
concept and nuance, but we do strive to explain the core of UML—enough to help you learn
how to use the UML to build better software.

Changes From the First Edition
It has been fourteen years since we completed the first edition of this book. In the meantime
there have been many advances in technology, leading to many changes in this second edi-
tion.

■ Notation. We have replaced the OMT notation with the UML notation, specifically
UML 2.0. The UML is now the dominant and standard language for OO modeling.

■ Process. The second edition adds more content to the software development process.
We now distinguish between domain analysis and application analysis. We have added
implementation modeling. By intent, we have kept the process simple and lightweight
so that it is approachable to students. This book’s process is a subset of heavyweight
processes, such as IBM Rational’s RUP.

■ The three models. We have carried forward the first edition’s focus on “the three mod-
els” because we believe such an emphasis is helpful for teaching and learning OO mod-
eling. However, we dropped the functional model, because it was not as useful as we
had expected. In its place, we added the interaction model to incorporate use cases and
sequence diagrams and to give a more holistic understanding of behavior among several
objects.

■ Software engineering. Part 4 covers several important software engineering topics: it-
erative development, management of models, and treatment of legacy systems.

■ Programming languages. Programming languages have changed dramatically over the
past decade and a half. Smalltalk has faded, while C and Fortran have diminished in im-
portance. C++ and Java are now the dominant OO programming languages, and we have
focused on them accordingly.

■ Databases. OO models provide a sound basis not only for programming code, but also
for relational databases. This book has an entire chapter that shows how to build effi-
cient, correct, and extensible databases from UML models.

■ Case studies. When the first edition was published, we felt a need to justify OO tech-
nology, so we included several case studies. Today, many case studies are available in
the literature, so we have eliminated them from this book.

In this second edition, we have attempted to carry forward the first edition’s style, emphasis
on practical ideas, many examples, and many exercises.

Preface xvii

Web Site
We are posting materials relevant to this book at www.modelsoftcorp.com.

Acknowledgements
Over the years we have worked with a number of people who have taught us about their busi-
ness, given us the opportunity to try our ideas, and helped us learn in the process. We would
like to thank these many individuals, starting with our former management at the General
Electric R&D Center and continuing to our recent business friends and clients.

Although only two of us have written this second edition, the first edition had three ad-
ditional authors—Bill Premerlani, Fred Eddy, and Bill Lorensen. We thank them for their
past contribution on which this second edition builds. We also thank them for their support
and encouragement in our writing of this second edition.

Chris Kelsey had an important role in the second edition that deserves special mention.
She is the primary author of Chapter 18 on OO programming languages and also was an ac-
tive reviewer.

We are grateful to our other reviewers (Mikael Berndtsson, Peter Chang, Bill Premer-
lani, and John Putnam) for taking the time to read our manuscript and provide thoughtful
criticism.

Finally we wish to thank our families and colleagues for being patient with our many
distractions and diversions during the writing of this book.

Michael Blaha
Chesterfield, Missouri
blaha@computer.org

James Rumbaugh
Cupertino, California

www.modelsoftcorp.com

This page intentionally left blank

1

1

Introduction

Object-oriented modeling and design is a way of thinking about problems using models or-
ganized around real-world concepts. The fundamental construct is the object, which com-
bines both data structure and behavior. Object-oriented models are useful for understanding
problems, communicating with application experts, modeling enterprises, preparing docu-
mentation, and designing programs and databases. This book presents an object-oriented no-
tation and process that extends from analysis through design to implementation. The same
notation applies at all stages of the process as development proceeds.

1.1 What Is Object-Orientation?
Superficially the term object-oriented (OO) means that we organize software as a collection
of discrete objects that incorporate both data structure and behavior. This contrasts with pre-
vious programming approaches in which data structure and behavior are only loosely con-
nected. There is some dispute about exactly what characteristics are required by an OO
approach, but they generally include four aspects: identity, classification, inheritance, and
polymorphism.

Identity means that data is quantized into discrete, distinguishable entities called ob-
jects. The first paragraph in this chapter, my workstation, and the white queen in a chess
game are examples of objects. Figure 1.1 shows some additional objects. Objects can be con-
crete, such as a file in a file system, or conceptual, such as a scheduling policy in a multipro-
cessing operating system. Each object has its own inherent identity. In other words, two
objects are distinct even if all their attribute values (such as name and size) are identical.

In the real world an object simply exists, but within a programming language each object
has a unique handle by which it can be referenced. Languages implement the handle in var-
ious ways, such as an address, array index, or artificial number. Such object references are
uniform and independent of the contents of the objects, permitting mixed collections of ob-
jects to be created, such as a file system directory that contains both files and subdirectories.

2 Chapter 1 / Introduction

Classification means that objects with the same data structure (attributes) and behavior
(operations) are grouped into a class. Paragraph, Monitor, and ChessPiece are examples of
classes. A class is an abstraction that describes properties important to an application and ig-
nores the rest. Any choice of classes is arbitrary and depends on the application.

Each class describes a possibly infinite set of individual objects. Each object is said to
be an instance of its class. An object has its own value for each attribute but shares the at-
tribute names and operations with other instances of the class. Figure 1.2 shows two classes
and some of their respective instances. An object contains an implicit reference to its own
class; it “knows what kind of thing it is.”

Inheritance is the sharing of attributes and operations (features) among classes based
on a hierarchical relationship. A superclass has general information that subclasses refine
and elaborate. Each subclass incorporates, or inherits, all the features of its superclass and
adds its own unique features. Subclasses need not repeat the features of the superclass. For
example, ScrollingWindow and FixedWindow are subclasses of Window. Both subclasses in-
herit the features of Window, such as a visible region on the screen. ScrollingWindow adds a
scroll bar and an offset. The ability to factor out common features of several classes into a
superclass can greatly reduce repetition within designs and programs and is one of the main
advantages of OO technology.

Polymorphism means that the same operation may behave differently for different
classes. The move operation, for example, behaves differently for a pawn than for the queen
in a chess game. An operation is a procedure or transformation that an object performs or is
subject to. RightJustify, display, and move are examples of operations. An implementation of
an operation by a specific class is called a method. Because an OO operator is polymorphic,
it may have more than one method implementing it, each for a different class of object.

In the real world, an operation is simply an abstraction of analogous behavior across dif-
ferent kinds of objects. Each object “knows how” to perform its own operations. In an OO
programming language, however, the language automatically selects the correct method to

Figure 1.1 Objects. Objects lie at the heart of object-oriented technology.

a monitor

a white rookMike’s bicycle Brian’s bicycle

a binary tree

aCredit 10000007

a symbol table

aDebit
anAccount
aSavingsAccount

13537163
56826358
45205128

variable name address

1.2 What Is OO Development? 3

implement an operation based on the name of the operation and the class of the object being
operated on. The user of an operation need not be aware of how many methods exist to im-
plement a given polymorphic operation. Developers can add new classes without changing
existing code, as long as they provide methods for each applicable operation.

1.2 What Is OO Development?
This book is about OO development as a way of thinking about software based on abstrac-
tions that exist in the real world as well as in the program. In this context development refers
to the software life cycle: analysis, design, and implementation. The essence of OO devel-
opment is the identification and organization of application concepts, rather than their final
representation in a programming language. Brooks observes that the hard part of software
development is the manipulation of its essence, owing to the inherent complexity of the prob-
lem, rather than the accidents of its mapping into a particular language [Brooks-95].

This book does not explicitly address integration, maintenance, and enhancement, but a
clean design in a precise notation facilitates the entire software life cycle. The OO concepts
and notation used to express a design also provide useful documentation.

Figure 1.2 Objects and classes. Each class describes a possibly infinite
set of individual objects.

Attributes
vertices
border color
fill color

Operations
draw
erase
move

Bicycle objects
Bicycle class

abstract
into

abstract
into

Attributes
frame size
wheel size
number of gears
material

Operations
shift
move
repair

Polygon objects Polygon class

4 Chapter 1 / Introduction

1.2.1 Modeling Concepts, Not Implementation
In the past, much of the OO community focused on programming languages, with the liter-
ature emphasizing implementation rather than analysis and design. OO programming lan-
guages were first useful in alleviating the inflexibility of traditional programming languages.
In a sense, however, this emphasis was a step backward for software engineering—it focuses
excessively on implementation mechanisms, rather than the underlying thought process that
they support.

The real payoff comes from addressing front-end conceptual issues, rather than back-
end implementation details. Design flaws that surface during implementation are more cost-
ly to fix than those that are found earlier. A premature focus on implementation restricts de-
sign choices and often leads to an inferior product. An OO development approach
encourages software developers to work and think in terms of the application throughout the
software life cycle. It is only when the inherent concepts of the application are identified, or-
ganized, and understood that the details of data structures and functions can be addressed ef-
fectively.

OO development is a conceptual process independent of a programming language until
the final stages. OO development is fundamentally a way of thinking and not a programming
technique. Its greatest benefits come from helping specifiers, developers, and customers ex-
press abstract concepts clearly and communicate them to each other. It can serve as a medi-
um for specification, analysis, documentation, and interfacing, as well as for programming.

1.2.2 OO Methodology
We present a process for OO development and a graphical notation for representing OO con-
cepts. The process consists of building a model of an application and then adding details to
it during design. The same seamless notation is used from analysis to design to implemen-
tation, so that information added in one stage of development need not be lost or translated
for the next stage.The methodology has the following stages.

■ System conception. Software development begins with business analysts or users con-
ceiving an application and formulating tentative requirements.

■ Analysis. The analyst scrutinizes and rigorously restates the requirements from system
conception by constructing models. The analyst must work with the requestor to under-
stand the problem, because problem statements are rarely complete or correct. The anal-
ysis model is a concise, precise abstraction of what the desired system must do, not how
it will be done. The analysis model should not contain implementation decisions. For
example, a Window class in a workstation windowing system would be described in
terms of its visible attributes and operations.

The analysis model has two parts: the domain model, a description of the real-world
objects reflected within the system; and the application model, a description of the parts
of the application system itself that are visible to the user. For example, domain objects
for a stockbroker application might include stock, bond, trade, and commission. Appli-
cation objects might control the execution of trades and present the results. Application
experts who are not programmers can understand and criticize a good model.

1.2 What Is OO Development? 5

■ System design. The development team devise a high-level strategy—the system archi-
tecture—for solving the application problem. They also establish policies that will serve
as a default for the subsequent, more detailed portions of design. The system designer
must decide what performance characteristics to optimize, choose a strategy of attack-
ing the problem, and make tentative resource allocations. For example, the system de-
signer might decide that changes to the workstation screen must be fast and smooth,
even when windows are moved or erased, and choose an appropriate communications
protocol and memory buffering strategy.

■ Class design. The class designer adds details to the analysis model in accordance with
the system design strategy. The class designer elaborates both domain and application
objects using the same OO concepts and notation, although they exist on different con-
ceptual planes. The focus of class design is the data structures and algorithms needed to
implement each class. For example, the class designer now determines data structures
and algorithms for each of the operations of the Window class.

■ Implementation. Implementers translate the classes and relationships developed dur-
ing class design into a particular programming language, database, or hardware. Pro-
gramming should be straightforward, because all of the hard decisions should have al-
ready been made. During implementation, it is important to follow good software engi-
neering practice so that traceability to the design is apparent and so that the system
remains flexible and extensible. For example, implementers would code the Window
class in a programming language, using calls to the underlying graphics system on the
workstation.

OO concepts apply throughout the system development life cycle, from analysis through de-
sign to implementation. You can carry the same classes from stage to stage without a change
of notation, although they gain additional details in the later stages. The analysis and imple-
mentation models of Window are both correct, but they serve different purposes and repre-
sent a different level of abstraction. The same OO concepts of identity, classification,
polymorphism, and inheritance apply throughout development.

Note that we are not suggesting a waterfall development process—first capturing re-
quirements, then analyzing, then designing, and finally implementing. For any particular part
of a system, developers must perform each stage in order, but they need not develop each part
of the system in tandem. We advocate an iterative process—developing part of the system
through several stages and then adding capability.

Some classes are not part of analysis but are introduced during design or implementation.
For example, data structures such as trees, hash tables, and linked lists are rarely present in
the real world and are not visible to users. Designers introduce them to support particular al-
gorithms. Such data structure objects exist within a computer and are not directly observable.

We do not consider testing as a distinct step. Testing is important, but it must be part of
an overall philosophy of quality control that occurs throughout the life cycle. Developers
must check analysis models against reality. They must verify design models against various
kinds of errors, in addition to testing implementations for correctness. Confining quality con-
trol to a separate step is more expensive and less effective.

6 Chapter 1 / Introduction

1.2.3 Three Models
We use three kinds of models to describe a system from different viewpoints: the class model
for the objects in the system and their relationships; the state model for the life history of
objects; and the interaction model for the interactions among objects. Each model applies
during all stages of development and acquires detail as development progresses. A complete
description of a system requires models from all three viewpoints.

The class model describes the static structure of the objects in a system and their rela-
tionships. The class model defines the context for software development—the universe of
discourse. The class model contains class diagrams. A class diagram is a graph whose nodes
are classes and whose arcs are relationships among classes.

The state model describes the aspects of an object that change over time. The state mod-
el specifies and implements control with state diagrams. A state diagram is a graph whose
nodes are states and whose arcs are transitions between states caused by events.

The interaction model describes how the objects in a system cooperate to achieve
broader results. The interaction model starts with use cases that are then elaborated with se-
quence and activity diagrams. A use case focuses on the functionality of a system—that is,
what a system does for users. A sequence diagram shows the objects that interact and the
time sequence of their interactions. An activity diagram elaborates important processing
steps.

The three models are separate parts of the description of a complete system but are
cross-linked. The class model is most fundamental, because it is necessary to describe what
is changing or transforming before describing when or how it changes.

1.3 OO Themes
Several themes pervade OO technology. Although these themes are not unique to OO sys-
tems, they are particularly well supported.

1.3.1 Abstraction
Abstraction lets you focus on essential aspects of an application while ignoring details. This
means focusing on what an object is and does, before deciding how to implement it. Use of
abstraction preserves the freedom to make decisions as long as possible by avoiding prema-
ture commitments to details. Most modern languages provide data abstraction, but inherit-
ance and polymorphism add power. The ability to abstract is probably the most important
skill required for OO development.

1.3.2 Encapsulation
Encapsulation (also information hiding) separates the external aspects of an object, that are
accessible to other objects, from the internal implementation details, that are hidden from
other objects. Encapsulation prevents portions of a program from becoming so interdepen-
dent that a small change has massive ripple effects. You can change an object’s implementa-

1.3 OO Themes 7

tion without affecting the applications that use it. You may want to change the
implementation of an object to improve performance, fix a bug, consolidate code, or support
porting. Encapsulation is not unique to OO languages, but the ability to combine data struc-
ture and behavior in a single entity makes encapsulation cleaner and more powerful than in
prior languages, such as Fortran, Cobol, and C.

1.3.3 Combining Data and Behavior
The caller of an operation need not consider how many implementations exist. Operator
polymorphism shifts the burden of deciding what implementation to use from the calling
code to the class hierarchy. For example, non-OO code to display the contents of a window
must distinguish the type of each figure, such as polygon, circle, or text, and call the appro-
priate procedure to display it. An OO program would simply invoke the draw operation on
each figure; each object implicitly decides which procedure to use, based on its class. Main-
tenance is easier, because the calling code need not be modified when a new class is added.
In an OO system, the data structure hierarchy matches the operation inheritance hierarchy
(Figure 1.3).

1.3.4 Sharing
OO techniques promote sharing at different levels. Inheritance of both data structure and be-
havior lets subclasses share common code. This sharing via inheritance is one of the main
advantages of OO languages. More important than the savings in code is the conceptual clar-
ity from recognizing that different operations are all really the same thing. This reduces the
number of distinct cases that you must understand and analyze.

OO development not only lets you share information within an application, but also of-
fers the prospect of reusing designs and code on future projects. OO development provides
the tools, such as abstraction, encapsulation, and inheritance, to build libraries of reusable

Figure 1.3 OO vs. prior approach. An OO approach has one unified
hierarchy for both data and behavior.

data structure hierarchy

procedure hierarchy

is
replaced

by
class hierarchy

Old approach OO approach

8 Chapter 1 / Introduction

components. Unfortunately, reuse has been overemphasized as a justification for OO tech-
nology. Reuse does not just happen; developers must plan by thinking beyond the immediate
application and investing extra effort in a more general design.

1.3.5 Emphasis on the Essence of an Object
OO technology stresses what an object is, rather than how it is used. The uses of an object
depend on the details of the application and often change during development. As require-
ments evolve, the features supplied by an object are much more stable than the ways it is
used, hence software systems built on object structure are more stable in the long run. OO
development places a greater emphasis on data structure and a lesser emphasis on procedure
structure than functional-decomposition methodologies. In this respect, OO development is
similar to information modeling techniques used in database design, although OO develop-
ment adds the concept of class-dependent behavior.

1.3.6 Synergy
Identity, classification, polymorphism, and inheritance characterize OO languages. Each of
these concepts can be used in isolation, but together they complement each other synergisti-
cally. The benefits of an OO approach are greater than they might seem at first. The emphasis
on the essential properties of an object forces the developer to think more carefully and deep-
ly about what an object is and does. The resulting system tends to be cleaner, more general,
and more robust than it would be if the emphasis were only on the use of data and operations.

1.4 Evidence for Usefulness of OO Development
Our work on OO development began with internal applications at the General Electric Re-
search and Development Center. We used OO techniques for developing compilers, graph-
ics, user interfaces, databases, an OO language, CAD systems, simulations, metamodels,
control systems, and other applications. We used OO models to document programs that are
ill-structured and difficult to understand. Our implementation targets ranged from OO lan-
guages to non-OO languages to databases. We successfully taught this approach to others
and used it to communicate with application experts.

Since the mid 1990s we have expanded our practice of OO technology beyond General
Electric to companies throughout the world. When we wrote the first edition of this book,
object orientation and OO modeling were relatively new approaches without much large-
scale experience. OO technology can no longer be considered a fad or a speculative ap-
proach. It is now part of the computer science and software engineering mainstream.

The annual OOPSLA (Object-Oriented Programming Systems, Languages, and Applica-
tions), ECOOP (European Conference on Object-Oriented Programming), and TOOLS (Tech-
nology of Object-Oriented Languages and Systems) conferences are important forums for
disseminating new OO ideas and application results. The conference proceedings describe
many applications that have benefited from an OO approach. Articles on OO systems have also
appeared in major publications, such as IEEE Computer and Communications of the ACM.

1.5 OO Modeling History 9

1.5 OO Modeling History
Our work at GE R&D led to the development of the Object Modeling Technique (OMT),
which the previous edition of this book introduced in 1991. OMT was a success, but so were
several other approaches. The popularity of OO modeling led to a new problem—a plethora
of alternative notations. The notations expressed similar ideas but had different symbols,
confusing developers and making communication difficult.

As a result, the software community began to focus on consolidating the various nota-
tions. In 1994 Jim Rumbaugh joined Rational (now part of IBM) and began working with
Grady Booch on unifying the OMT and Booch notations. In 1995, Ivar Jacobson also joined
Rational and added Objectory to the unification work.

In 1996 the Object Management Group (OMG) issued a request for proposals for a stan-
dard OO modeling notation. Several companies responded, and eventually the competing
proposals were coalesced into a final proposal. Rational led the final proposal team, with
Booch, Rumbaugh, and Jacobson deeply involved. The OMG unanimously accepted the re-
sulting Unified Modeling Language (UML) as a standard in November 1997. The participat-
ing companies transferred UML rights to the OMG, which owns the trademark and
specification for UML and controls its future development.

The UML was highly successful and replaced the other notations in most publications.
Most of the authors of other methods adopted UML notation, willingly or because of market
pressure. The UML has ended the OO notation wars and is now clearly the accepted OO no-
tation. We have used UML in this book because it is now the standard notation.

In 2001 OMG members started work on a revision to add features missing from the ini-
tial specification and to fix problems that were discovered by experience with UML 1. This
book is based on the UML 2.0 revision approved in 2004. For access to the official specifi-
cation documents, see the OMG Web site at www.omg.org.

1.6 Organization of This Book
The remainder of this book is organized into four parts: modeling concepts, analysis/design,
implementation, and software engineering. Appendices provide a glossary of terms and an-
swer some of the exercises. The inside covers summarize the notation used in the book.

Part 1 explains OO concepts and presents a graphical notation for expressing them.
Chapter 2 introduces modeling and three kinds of models—class, state, and interaction.
Chapters 3 and 4 describe the class model, which deals with the structural “data” aspects of
a system—these chapters are the heart of Part 1, and mastery of the class model is essential
for successful OO development. Chapters 5 and 6 present the state model, which concerns
the control aspects of a system. Chapters 7 and 8 describe the interaction model, which cap-
tures the interactions among different objects in a system. Chapter 9 summarizes the three
models and how they relate to each other. The concepts dealt with in Part 1 permeate the soft-
ware development cycle, applying equally to analysis, design, and implementation. The en-
tire book uses the notation described in Part 1.

www.omg.org

10 Chapter 1 / Introduction

Part 2 shows how to prepare an OO model and use it to analyze and design a system.
Chapter 10 summarizes the process, and then Chapter 11 discusses system conception, the
invention of an application. Chapters 12 and 13 discuss analysis, the process of describing
and understanding the application. Analysis begins with a problem statement from the cus-
tomer. The analyst incorporates customer information and application knowledge to con-
struct domain and application models. Chapter 14 addresses system design, which is
primarily a task of partitioning a system into subsystems and making high-level policy deci-
sions. Chapter 15 presents class design, the augmentation of the analysis model with design
decisions. These decisions include the specification of algorithms, assigning functionality to
objects, and optimization. Chapter 16 summarizes the process.

Part 3 addresses implementation, with Chapter 17 discussing issues apart from the target
language. Chapters 18 and 19 address C++, Java, and databases. Chapter 20 presents guide-
lines for enhancing readability, reusability, and maintainability using good OO programming
style.

Part 4 focuses on software engineering. Although Part 2 presents the stages in a linear
order, as a book must, we do not believe that development should proceed in a waterfall fash-
ion. Chapter 21 describes iterative development, in which the process stages are repeated
multiple times to build the complete system. Chapter 22 provides advice for managing mod-
els. It is easiest to understand and to apply OO development on a new system, but most
projects do not have the luxury of working on a clean slate. Chapter 23 describes issues in-
volved in working with existing systems.

Most chapters contain exercises. Selected answers are included in the back of the book.
We suggest that you try to work the exercises as you read this book, even if you are not a
student. The exercises bring out many subtle points. They provide practice with OO technol-
ogy and serve as a stepping stone to applications.

Bibliographic Notes
[Taylor-98] provides a well-written overview of OO technology. [Meyer-97] is also an infor-
mative source, even though it is primarily an OO language book. [Love-93] presents exam-
ples of industrial projects that have used OO technology.

The purpose of this book is to teach OO concepts and thinking, not serve as a UML ref-
erence manual (see [Rumbaugh-05] for that). A textbook should emphasize important con-

Figure 1.4 Key concepts for Chapter 1

abstraction
analysis
class design
class model
classification

object-oriented (OO)
polymorphism
state model
system design

encapsulation
identity
implementation
inheritance
interaction model

References 11

cepts, not fine details. We therefore present the most useful aspects of the UML, but we do
not try to describe everything. You will learn faster by focusing on core concepts.

We have made a similar condensation of the development process. The process we de-
scribe is simple and aimed at small and medium projects. It contains highlights of the Unified
Process (see [Jacobson-99]).

The UML contains the concept of a classifier, a more general form of a class that ab-
stracts various kinds of modeling entities. For most purposes, there is little difference be-
tween a class and a classifier. In this book, we use the word class in preference to classifier,
because modelers will work mostly with classes.

References
[Brooks-95] Frederick P. Brooks, Jr. The Mythical Man-Month, Anniversary Edition. Boston: Addi-

son-Wesley, 1995.
[Jacobson-99] Ivar Jacobson, Grady Booch, James Rumbaugh. The Unified Software Development

Process. Boston: Addison-Wesley, 1999.
[Love-93] Tom Love. Object Lessons: Lessons Learned in Object-Oriented Development Practices.

New York: SIGS Books, 1993.
[Meyer-97] Bertrand Meyer. Object-Oriented Software Construction, Second Edition. Hertfordshire,

England: Prentice Hall International, 1997.
[Rumbaugh-05] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Ref-

erence Manual, Second Edition. Boston: Addison-Wesley, 2005.
[Taylor-98] David A. Taylor. Object Technology: A Manager’s Guide, Second Edition. Boston: Addi-

son-Wesley, 1998.

Exercises
The number in parentheses next to each exercise indicates the difficulty, from 1 (easy) to 10 (very
difficult).

1.1 (3) What major problems have you encountered during past software projects? Estimate what
percentage of your time you spend on analysis, design, coding, and testing/debugging/fixing.
How do you go about estimating how much effort a project will require?

1.2 (3) Recall a past system that you created. Briefly describe it. What obstacles did you encounter
in the design? What software engineering methodology, if any, did you use? What were your
reasons for choosing or not choosing a methodology? Are you satisfied with the system as it
exists? How difficult is it to add new features to the system? Is it maintainable?

1.3 (3) Describe a recent large software system that was behind schedule, over budget, or failed to
perform as expected. What factors were blamed? How could the failure have been avoided?

1.4 (3) From a user’s point of view, criticize a hardware or software system that has a flaw that es-
pecially annoys you. For example, some cars require the bumper to be removed to replace a tail
light. Describe the system, the flaw, how it was overlooked, and how it could have been avoided
with a bit more thought during design.

12 Chapter 1 / Introduction

1.5 (5) All objects have identity and are distinguishable. However, for large collections of objects,
it may not be a trivial matter to devise a scheme to distinguish them. Furthermore, a scheme may
depend on the purpose of the distinction. For each of the following collections of objects, de-
scribe how they could be distinguished.
a. All persons in the world for the purpose of sending mail
b. All persons in the world for the purpose of criminal investigations
c. All customers with safe deposit boxes in a given bank
d. All telephones in the world for making telephone calls
e. All customers of a telephone company for billing purposes
f. All electronic mail addresses throughout the world
g. All employees of a company to restrict access for security reasons

1.6 (4) Prepare a list of classes that you would expect each of the following systems to handle.
a. A program for laying out a newspaper
b. A program to compute and store bowling scores
c. A telephone voice mail system with delivery options, message forwarding, and group lists
d. A controller for a video cassette recorder
e. A catalog store order entry system

1.7 (6) Classes and operations are listed below. For each class, select the operations that make sense
for objects in that class. You may place an operation in multiple classes. Discuss the behavior
of each operation.

Classes:
variable-length array — ordered collection of objects, indexed by an integer, whose size can

vary at run time
symbol table — a table that maps text keywords into descriptors
set — unordered collection of objects with no duplicates
Operations:
append — add an object to the end of a collection
copy — make a copy of a collection
count — return the number of elements in a collection
delete — remove an element from a collection
index — retrieve an object from a collection at a given position
intersect — determine the common elements of two collections
insert — place an object into a collection at a given position
update — add an element to a collection, writing over whatever is already there

1.8 (4) Discuss what the classes in each of the following lists have in common. You may add more
classes to each list.
a. scanning electron microscope, eyeglasses, telescope, bomb sight, binoculars
b. pipe, check valve, faucet, filter, pressure gauge
c. bicycle, sailboat, car, truck, airplane, glider, motorcycle, horse
d. nail, screw, bolt, rivet
e. tent, cave, shed, garage, barn, house, skyscraper

13

Part 1

Modeling Concepts

Chapter 2 Modeling as a Design Technique 15
Chapter 3 Class Modeling 21
Chapter 4 Advanced Class Modeling 60
Chapter 5 State Modeling 90
Chapter 6 Advanced State Modeling 110
Chapter 7 Interaction Modeling 131
Chapter 8 Advanced Interaction Modeling 147
Chapter 9 Concepts Summary 161

Part 1 describes the concepts and notations involved in object-oriented modeling. The con-
cepts and notation apply to analysis, design, and implementation.

Chapter 2 discusses modeling in general and then introduces the three kinds of object-
oriented models—class, state, and interaction.

Chapter 3 presents the class model which describes the static structure of a system. The
class model provides the context for the other two kinds of models. Chapter 4 covers ad-
vanced class modeling concepts that you can skip upon a first reading of the book.

Chapter 5 explains the state model which describes the aspects of a system that change
over time as well as control behavior. Chapter 6 covers advanced state modeling concepts
that you can also skip upon a first reading.

Chapter 7 presents the interaction model and completes the treatment of the three mod-
els. The interaction model describes how objects collaborate to achieve overall results. Chap-
ter 8 is an advanced chapter on interaction modeling that you can skip upon an initial
reading.

Chapter 9 briefly summarizes the three kinds of models and how they relate to each oth-
er.

After reading Part 1, you will understand object-oriented concepts and the UML nota-
tion for expressing them. You will be ready to apply the concepts to software development
in subsequent parts of the book.

This page intentionally left blank

15

2

Modeling as a Design Technique

A model is an abstraction of something for the purpose of understanding it before building
it. Because a model omits nonessential details, it is easier to manipulate than the original en-
tity. Abstraction is a fundamental human capability that permits us to deal with complexity.
Engineers, artists, and craftsmen have built models for thousands of years to try out designs
before executing them. Development of hardware and software systems is no exception. To
build complex systems, the developer must abstract different views of the system, build mod-
els using precise notations, verify that the models satisfy the requirements of the system, and
gradually add detail to transform the models into an implementation.

2.1 Modeling
Designers build many kinds of models for various purposes before constructing things. Ex-
amples include architectural models to show customers, airplane scale models for wind-tun-
nel tests, pencil sketches for composition of oil paintings, blueprints of machine parts,
storyboards of advertisements, and outlines of books. Models serve several purposes.

■ Testing a physical entity before building it. The medieval masons did not know mod-
ern physics, but they built scale models of the Gothic cathedrals to test the forces on the
structure. Engineers test scale models of airplanes, cars, and boats in wind tunnels and
water tanks to improve their dynamics. Recent advances in computation permit the sim-
ulation of many physical structures without the need to build physical models. Not only
is simulation cheaper, but it provides information that is too fleeting or inaccessible to
be measured from a physical model. Both physical models and computer models are
usually cheaper than building a complete system and enable early correction of flaws.

■ Communication with customers. Architects and product designers build models to
show their customers. Mock-ups are demonstration products that imitate some or all of
the external behavior of a system.

16 Chapter 2 / Modeling as a Design Technique

■ Visualization. Storyboards of movies, television shows, and advertisements let writers
see how their ideas flow. They can modify awkward transitions, dangling ends, and
unnecessary segments before detailed writing begins. Artists’ sketches let them block
out their ideas and make changes before committing them to oil or stone.

■ Reduction of complexity. Perhaps the main reason for modeling, which incorporates
all the previous reasons, is to deal with systems that are too complex to understand di-
rectly. The human mind can cope with only a limited amount of information at one time.
Models reduce complexity by separating out a small number of important things to deal
with at a time.

2.2 Abstraction
Abstraction is the selective examination of certain aspects of a problem. The goal of abstrac-
tion is to isolate those aspects that are important for some purpose and suppress those aspects
that are unimportant. Abstraction must always be for some purpose, because the purpose de-
termines what is, and is not, important. Many different abstractions of the same thing are
possible, depending on the purpose for which they are made.

All abstractions are incomplete and inaccurate. Reality is a seamless web. Anything we
say about it, any description of it, is an abridgement. All human words and language are ab-
stractions—incomplete descriptions of the real world. This does not destroy their usefulness.
The purpose of an abstraction is to limit the universe so we can understand. In building mod-
els, therefore, you must not search for absolute truth but for adequacy for some purpose.
There is no single “correct” model of a situation, only adequate and inadequate ones.

A good model captures the crucial aspects of a problem and omits the others. Most com-
puter languages, for example, are poor vehicles for modeling algorithms because they force
the specification of implementation details that are irrelevant to the algorithm. A model that
contains extraneous detail unnecessarily limits your choice of design decisions and diverts
attention from the real issues.

2.3 The Three Models
We find it useful to model a system from three related but different viewpoints, each capturing
important aspects of the system, but all required for a complete description. The class model
represents the static, structural, “data” aspects of a system. The state model represents the tem-
poral, behavioral, “control” aspects of a system. The interaction model represents the collab-
oration of individual objects, the “interaction” aspects of a system. A typical software
procedure incorporates all three aspects: It uses data structures (class model), it sequences op-
erations in time (state model), and it passes data and control among objects (interaction mod-
el). Each model contains references to entities in other models. For example, the class model
attaches operations to classes, while the state and interaction models elaborate the operations.

2.3 The Three Models 17

The three kinds of models separate a system into distinct views. The different models
are not completely independent—a system is more than a collection of independent parts—
but each model can be examined and understood by itself to a large extent. The different
models have limited and explicit interconnections. Of course, it is always possible to create
bad designs in which the three models are so intertwined that they cannot be separated, but
a good design isolates the different aspects of a system and limits the coupling between them.

Each of the three models evolves during development. First analysts construct a model
of the application without regard for eventual implementation. Then designers add solution
constructs to the model. Implementers code both application and solution constructs. The
word model has two dimensions—a view of a system (class model, state model, or interac-
tion model) and a stage of development (analysis, design, or implementation). The meaning
is generally clear from context.

2.3.1 Class Model
The class model describes the structure of objects in a system—their identity, their relation-
ships to other objects, their attributes, and their operations. The class model provides context
for the state and interaction models. Changes and interactions are meaningless unless there
is something to be changed or with which to interact. Objects are the units into which we
divide the world, the molecules of our models.

Our goal in constructing a class model is to capture those concepts from the real world
that are important to an application. In modeling an engineering problem, the class model
should contain terms familiar to engineers; in modeling a business problem, terms from the
business; in modeling a user interface, terms from the application. An analysis model should
not contain computer constructs unless the application being modeled is inherently a com-
puter problem, such as a compiler or an operating system. The design model describes how
to solve a problem and may contain computer constructs.

Class diagrams express the class model. Generalization lets classes share structure and
behavior, and associations relate the classes. Classes define the attribute values carried by
each object and the operations that each object performs or undergoes.

2.3.2 State Model
The state model describes those aspects of objects concerned with time and the sequencing
of operations—events that mark changes, states that define the context for events, and the
organization of events and states. The state model captures control, the aspect of a system
that describes the sequences of operations that occur, without regard for what the operations
do, what they operate on, or how they are implemented.

State diagrams express the state model. Each state diagram shows the state and event se-
quences permitted in a system for one class of objects. State diagrams refer to the other mod-
els. Actions and events in a state diagram become operations on objects in the class model.
References between state diagrams become interactions in the interaction model.

18 Chapter 2 / Modeling as a Design Technique

2.3.3 Interaction Model
The interaction model describes interactions between objects—how individual objects col-
laborate to achieve the behavior of the system as a whole. The state and interaction models
describe different aspects of behavior, and you need both to describe behavior fully.

Use cases, sequence diagrams, and activity diagrams document the interaction model.
Use cases document major themes for interaction between the system and outside actors. Se-
quence diagrams show the objects that interact and the time sequence of their interactions.
Activity diagrams show the flow of control among the processing steps of a computation.

2.3.4 Relationship Among the Models
Each model describes one aspect of the system but contains references to the other models.
The class model describes data structure on which the state and interaction models operate.
The operations in the class model correspond to events and actions. The state model de-
scribes the control structure of objects. It shows decisions that depend on object values and
causes actions that change object values and state. The interaction model focuses on the ex-
changes between objects and provides a holistic overview of the operation of a system.

There are occasional ambiguities about which model should contain a piece of informa-
tion. This is natural, because any abstraction is only a rough cut at reality; something will
inevitably straddle the boundaries. Some properties of a system may be poorly represented
by the models. This is also normal, because no abstraction is perfect; the goal is to simplify
the system description without loading down the model with so many constructs that it be-
comes a burden and not a help. For those things that the model does not adequately capture,
natural language or application-specific notation is still perfectly acceptable.

2.4 Chapter Summary
Models are abstractions built to understand a problem before implementing a solution. All
abstractions are subsets of reality selected for a particular purpose.

We recommend three kinds of models. The class model describes the static structure of
a system in terms of classes and relationships. The state model describes the control structure
of a system in terms of events and states. The interaction model describes how individual ob-
jects collaborate to achieve the behavior of the system as a whole. Different problems place
different emphasis on the three kinds of models.

abstraction
class model
interaction model

modeling
relationship among models
state model

Figure 2.1 Key concepts for Chapter 2

Bibliographic Notes 19

Bibliographic Notes
The first edition of this book also had three models (object, dynamic, and functional), but
they were organized differently than those in this second edition.

The object model in the first edition is the same as the class model presented here. We
have changed the name to class model to stress that the modeling entities are descriptors
(classes and relationships) rather than instances (objects and links). Our presentation of the
class model in this book also includes constraint modeling, which was missing from the first
edition.

Similarly, the dynamic model in the first edition is the same as the state model in this
book. We changed the name to state model to avoid confusion with other representations of
dynamic behavior. The UML contains multiple kinds of models with various degrees of
overlap—we cover the most important ones in this book.

We have dropped the functional model from the second edition. Certainly, the eventual
software has functionality, but we seldom capture it with data flow diagrams as was shown
in the first edition. We included data flow diagrams in the first edition for continuity with the
structured analysis / structured design approach of the past. The functional model was not as
useful as we envisioned, so we have now dropped it.

In its place, the second edition adds the interaction model. State diagrams do express dy-
namic behavior fully, but often in an inscrutable manner. Each state diagram focuses on a
single class. When many classes have a significant state diagram, it can be difficult to under-
stand an entire system. The interaction model focuses on collaboration and helps a software
developer obtain a more comprehensive understanding than with state diagrams alone.

Exercises
2.1 (1) Some characteristics of an automotive tire are its size, material, internal construction (bias

ply, steel belted, for example), tread design, cost, expected life, and weight. Which factors are
important in deciding whether or not to buy a tire for your car? Which ones might be relevant
to someone simulating the performance of a computerized anti-skid system for cars? Which
ones are important to someone constructing a swing for a child?

2.2 (2) Suppose your bathroom sink is clogged and you have decided to try to unclog it by pushing
a wire into the drain. You have several types of wire available around the house, some insulated
and some not. Which of the following wire characteristics would you need to consider in select-
ing a wire for the job? Explain your answers.
a. Immunity to electrical noise
b. Color of the insulation
c. Resistance of the insulation to salt water
d. Resistance of the insulation to fire
e. Cost
f. Stiffness
g. Ease of stripping the insulation

20 Chapter 2 / Modeling as a Design Technique

h. Weight
i. Availability
j. Strength
k. Resistance to high temperatures
l. Resistance to stretching

2.3 (3) Wire is used in the following applications. For each application, prepare a list of wire char-
acteristics that are relevant and explain why each is important for the application.
a. Selecting wire for a transatlantic cable
b. Choosing wire that you will use to create colorful artwork
c. Designing the electrical system for an airplane
d. Hanging a bird feeder from a tree
e. Designing a piano
f. Designing the filament for a light bulb

2.4 (3) If you were designing a protocol for transferring computer files from one computer to an-
other over telephone lines, which of the following details would you select as relevant? Explain
how they are relevant.
a. Electrical noise on the communication lines
b. The speed at which serial data is transmitted
c. Availability of a database
d. Availability of a good full-screen editor
e. Buffering and flow control, such as an XON/XOFF protocol to regulate an incoming stream

of data
f. Number of tracks and sectors on a disk drive
g. Character interpretation, such as special handling of control characters
h. File organization, linear stream of bytes versus record-oriented, for example
i. Math co-processor

2.5 (2) There are several models used in the analysis and design of electrical motors. An electrical
model involves voltages, currents, electromagnetic fields, inductance, and resistance. A me-
chanical model considers stiffness, density, motion, forces, and torques. A thermal model han-
dles heat dissipation and heat transfer. A fluid model describes the flow of cooling air. Which
model(s) can answer the following questions? Discuss your conclusions.
a. How much power is required to run a motor? How much of it is wasted as heat?
b. How much does a motor weigh?
c. How hot does a motor get?
d. How much vibration does a motor create?
e. How long will it take for the bearings of a motor to wear out?

2.6 (3) Decide which model(s) (class, state, interaction) are relevant for the following aspects of a
computer chess player. A video display will show the board and pieces. A cursor controlled by
a mouse will indicate human moves. Of course, in some cases, more than one model may apply.
Explain your answers.
a. User interface that displays computer moves and accepts human moves
b. Representation of a configuration of pieces on the board
c. Consideration of a sequence of possible legal moves
d. Validation of a move requested by the human player

21

3

Class Modeling

A class model captures the static structure of a system by characterizing the objects in the
system, the relationships between the objects, and the attributes and operations for each class
of objects. The class model is the most important of the three models. We emphasize building
a system around objects rather than around functionality, because an object-oriented system
more closely corresponds to the real world and is consequently more resilient with respect
to change. Class models provide an intuitive graphic representation of a system and are valu-
able for communicating with customers.

Chapter 3 discusses basic class modeling concepts that will be used throughout the
book. We define each concept, present the corresponding UML notation, and provide exam-
ples. Some important concepts that we consider are object, class, link, association, general-
ization, and inheritance. You should master the material in this chapter before proceeding in
the book.

3.1 Object and Class Concepts

3.1.1 Objects
The purpose of class modeling is to describe objects. For example, Joe Smith, Simplex com-
pany, process number 7648, and the top window are objects.

An object is a concept, abstraction, or thing with identity that has meaning for an appli-
cation. Objects often appear as proper nouns or specific references in problem descriptions
and discussions with users. Some objects have real-world counterparts (Albert Einstein and
the General Electric company), while others are conceptual entities (simulation run 1234 and
the formula for solving a quadratic equation). Still others (binary tree 634 and the array
bound to variable a) are introduced for implementation reasons and have no correspondence
to physical reality. The choice of objects depends on judgment and the nature of a problem;
there can be many correct representations.

22 Chapter 3 / Class Modeling

All objects have identity and are distinguishable. Two apples with the same color, shape,
and texture are still individual apples; a person can eat one and then eat the other. Similarly,
identical twins are two distinct persons, even though they may look the same. The term
identity means that objects are distinguished by their inherent existence and not by descrip-
tive properties that they may have.

3.1.2 Classes
An object is an instance—or occurrence—of a class. A class describes a group of objects
with the same properties (attributes), behavior (operations), kinds of relationships, and se-
mantics. Person, company, process, and window are all classes. Each person has name and
birthdate and may work at a job. Each process has an owner, priority, and list of required re-
sources. Classes often appear as common nouns and noun phrases in problem descriptions
and discussions with users.

Objects in a class have the same attributes and forms of behavior. Most objects derive
their individuality from differences in their attribute values and specific relationships to other
objects. However, objects with identical attribute values and relationships are possible. The
choice of classes depends on the nature and scope of an application and is a matter of judg-
ment.

The objects in a class share a common semantic purpose, above and beyond the require-
ment of common attributes and behavior. For example, a barn and a horse may both have a
cost and an age. If barn and horse were regarded as purely financial assets, they could belong
to the same class. If the developer took into consideration that a person paints a barn and
feeds a horse, they would be modeled as distinct classes. The interpretation of semantics de-
pends on the purpose of each application and is a matter of judgment.

Each object “knows” its class. Most OO programming languages can determine an ob-
ject’s class at run time. An object’s class is an implicit property of the object.

If objects are the focus of modeling, why bother with classes? The notion of abstraction
is at the heart of the matter. By grouping objects into classes, we abstract a problem. Abstrac-
tion gives modeling its power and ability to generalize from a few specific cases to a host of
similar cases. Common definitions (such as class name and attribute names) are stored once
per class rather than once per instance. You can write operations once for each class, so that
all the objects in the class benefit from code reuse. For example, all ellipses share the same
procedures to draw them, compute their areas, and test for intersection with a line; polygons
would have a separate set of procedures. Even special cases, such as circles and squares, can
use the general procedures, though more efficient procedures are possible.

3.1.3 Class Diagrams
We began this chapter by discussing some basic modeling concepts, specifically object and
class. We have described these concepts with examples and prose. This approach is vague
and insufficient for dealing with the complexity of applications. We need a means for ex-
pressing models that is coherent, precise, and easy to formulate. There are two kinds of mod-
els of structure—class diagrams and object diagrams.

3.1 Object and Class Concepts 23

Class diagrams provide a graphic notation for modeling classes and their relationships,
thereby describing possible objects. Class diagrams are useful both for abstract modeling
and for designing actual programs. They are concise, easy to understand, and work well in
practice. We will use class diagrams throughout this book to represent the structure of appli-
cations.

We will also occasionally use object diagrams. An object diagram shows individual ob-
jects and their relationships. Object diagrams are helpful for documenting test cases and dis-
cussing examples. A class diagram corresponds to an infinite set of object diagrams.

Figure 3.1 shows a class (left) and instances (right) described by it. Objects JoeSmith,
MarySharp, and an anonymous person are instances of class Person. The UML symbol for
an object is a box with an object name followed by a colon and the class name. The object
name and class name are both underlined. Our convention is to list the object name and class
name in boldface.

The UML symbol for a class also is a box. Our convention is to list the class name in
boldface, center the name in the box, and capitalize the first letter. We use singular nouns for
the names of classes.

Note how we run together multiword names, such as JoeSmith, separating the words
with intervening capital letters. This is the convention we use for referring to objects, classes,
and other constructs. Alternative conventions would be to use intervening spaces (Joe Smith)
or underscores (Joe_Smith). The mixed capitalization convention is popular in the OO liter-
ature but is not a UML requirement.

3.1.4 Values and Attributes
A value is a piece of data. You can find values by examining problem documentation for ex-
amples. An attribute is a named property of a class that describes a value held by each object
of the class. You can find attributes by looking for adjectives or by abstracting typical values.
The following analogy holds: Object is to class as value is to attribute. Structural con-
structs—that is, classes and relationships (to be explained)—dominate class models. At-
tributes are of lesser importance and serve to elaborate classes and relationships.

Name, birthdate, and weight are attributes of Person objects. Color, modelYear, and
weight are attributes of Car objects. Each attribute has a value for each object. For example,
attribute birthdate has value “21 October 1983” for object JoeSmith. Paraphrasing, Joe Smith
was born on 21 October 1983. Different objects may have the same or different values for a
given attribute. Each attribute name is unique within a class (as opposed to being unique
across all classes). Thus class Person and class Car may each have an attribute called weight.

Figure 3.1 A class and objects. Objects and classes are the focus of class modeling.

Person

Class Objects

JoeSmith:Person MarySharp:Person :Person

24 Chapter 3 / Class Modeling

Do not confuse values with objects. An attribute should describe values, not objects. Un-
like objects, values lack identity. For example, all occurrences of the integer “17” are indis-
tinguishable, as are all occurrences of the string “Canada.” The country Canada is an object,
whose name attribute has the value “Canada” (the string).

Figure 3.2 shows modeling notation. Class Person has attributes name and birthdate.
Name is a string and birthdate is a date. One object in class Person has the value “Joe Smith”
for name and the value “21 October 1983” for birthdate. Another object has the value “Mary
Sharp” for name and the value “16 March 1950” for birthdate.

The UML notation lists attributes in the second compartment of the class box. Optional
details, such as type and default value, may follow each attribute. A colon precedes the type.
An equal sign precedes the default value. Our convention is to show the attribute name in
regular face, left align the name in the box, and use a lowercase letter for the first letter.

You may also include attribute values in the second compartment of object boxes. The
notation is to list each attribute name followed by an equal sign and the value. We also left
align attribute values and use regular type face.

Some implementation media require that an object have a unique identifier. These iden-
tifiers are implicit in a class model—you need not and should not list them explicitly. Figure
3.3 emphasizes the point. Most OO languages automatically generate identifiers with which
to reference objects. You can also readily define them for databases. Identifiers are a comput-
er artifact and have no intrinsic meaning.

Do not confuse internal identifiers with real-world attributes. Internal identifiers are
purely an implementation convenience and have no application meaning. In contrast, tax
payer number, license plate number, and telephone number are not internal identifiers be-
cause they have meaning in the real world. Rather they are legitimate attributes.

MarySharp:Person

name=“Mary Sharp”
birthdate=16 March 1950

JoeSmith:Person

name=“Joe Smith”
birthdate=21 October 1983

Figure 3.2 Attributes and values. Attributes elaborate classes.

name: string

Person

birthdate: date

Class with Attributes Objects with Values

Figure 3.3 Object identifiers. Do not list object identifiers; they are implicit in models.

name: string

PersonPerson

personID: ID

Wrong Correct

birthdate: datename: string
birthdate: date
homeTelephoneNumber: string

homeTelephoneNumber:string

3.1 Object and Class Concepts 25

3.1.5 Operations and Methods
An operation is a function or procedure that may be applied to or by objects in a class. Hire,
fire, and payDividend are operations on class Company. Open, close, hide, and redisplay are
operations on class Window. All objects in a class share the same operations.

Each operation has a target object as an implicit argument. The behavior of the operation
depends on the class of its target. An object “knows” its class, and hence the right implemen-
tation of the operation.

The same operation may apply to many different classes. Such an operation is polymor-
phic; that is, the same operation takes on different forms in different classes. A method is
the implementation of an operation for a class. For example, the class File may have an op-
eration print. You could implement different methods to print ASCII files, print binary files,
and print digitized picture files. All these methods logically perform the same task—printing
a file; thus you may refer to them by the generic operation print. However, a different piece
of code may implement each method.

An operation may have arguments in addition to its target object. Such arguments may
be placeholders for values, or for other objects. The choice of a method depends entirely on
the class of the target object and not on any object arguments that an operation may have. (A
few OO languages, notably CLOS, permit the choice of method to depend on any number of
arguments, but such generality leads to considerable semantic complexity, which we shall
not explore.)

When an operation has methods on several classes, it is important that the methods all
have the same signature—the number and types of arguments and the type of result value.
For example, print should not have fileName as an argument for one method and filePointer
for another. The behavior of all methods for an operation should have a consistent intent. It
is best to avoid using the same name for two operations that are semantically different, even
if they apply to distinct sets of classes. For example, it would be unwise to use the name
invert to describe both a matrix inversion and turning a geometric figure upside-down. In a
large project, some form of name scoping may be necessary to accommodate accidental
name clashes, but it is best to avoid any possibility of confusion.

In Figure 3.4, the class Person has attributes name and birthdate and operations change-
Job and changeAddress. Name, birthdate, changeJob, and changeAddress are features of
Person. Feature is a generic word for either an attribute or operation. Similarly, File has a
print operation. GeometricObject has move, select, and rotate operations. Move has argu-
ment delta, which is a Vector; select has one argument p, which is of type Point and returns
a Boolean; and rotate has argument angle, which is an input of type float with a default value
of 0.0.

The UML notation is to list operations in the third compartment of the class box. Our
convention is to list the operation name in regular face, left align the name in the box, and
use a lowercase letter for the first letter. Optional details, such as an argument list and result
type, may follow each operation name. Parentheses enclose an argument list; commas sepa-
rate the arguments. A colon precedes the result type. An empty argument list in parentheses
shows explicitly that there are no arguments; otherwise you cannot draw conclusions. We do
not list operations for objects, because they do not vary among objects of the same class.

26 Chapter 3 / Class Modeling

3.1.6 Summary of Notation for Classes
Figure 3.5 summarizes the notation for classes. A box represents a class and may have as
many as three compartments. The compartments contain, from top to bottom: class name,
list of attributes, and list of operations. Optional details such as type and default value may
follow each attribute name. Optional details such as argument list and result type may follow
each operation name.

Figure 3.6 shows that each argument may have a direction, name, type, and default val-
ue. The direction indicates whether an argument is an input (in), output (out), or an input
argument that can be modified (inout). A colon precedes the type. An equal sign precedes the
default value. The default value is used if no argument is supplied for the argument.

The attribute and operation compartments of class boxes are optional, and you may or
may not show them. A missing attribute compartment means that attributes are unspecified.
Similarly, a missing operation compartment means that operations are unspecified. In contrast,
an empty compartment means that attributes (operations) are specified and that there are none.

Figure 3.4 Operations. An operation is a function or procedure that may
be applied to or by objects in a class.

name

Person

changeJob

fileName

File

print

GeometricObject

color

move (delta : Vector)

sizeInBytes
lastUpdate

birthdate position

changeAddress select (p : Point): Boolean
rotate (in angle : float = 0.0)

Figure 3.5 Summary of modeling notation for classes. A box represents
a class and may have as many as three compartments.

attributeName1 : dataType1 = defaultValue1

ClassName

attributeName2 : dataType2 = defaultValue2

operationName1 (argumentList1) : resultType1
operationName2 (argumentList2) : resultType2

. . .

. . .

Figure 3.6 Notation for an argument of an operation. The direction, type,
and default value are optional. Direction may be in, out, or inout.

direction argumentName : type = defaultValue

3.2 Link and Association Concepts 27

3.2 Link and Association Concepts
Links and associations are the means for establishing relationships among objects and classes.

3.2.1 Links and Associations
A link is a physical or conceptual connection among objects. For example, Joe Smith Works-
For Simplex company. Most links relate two objects, but some links relate three or more ob-
jects. This chapter discusses only binary associations; Chapter 4 discusses n-ary
associations. Mathematically, we define a link as a tuple—that is, a list of objects. A link is
an instance of an association.

An association is a description of a group of links with common structure and common
semantics. For example, a person WorksFor a company. The links of an association connect
objects from the same classes. An association describes a set of potential links in the same
way that a class describes a set of potential objects. Links and associations often appear as
verbs in problem statements.

Figure 3.7 is an excerpt of a model for a financial application. Stock brokerage firms
need to perform tasks such as recording ownership of various stocks, tracking dividends,
alerting customers to changes in the market, and computing margin requirements. The top
portion of the figure shows a class diagram and the bottom shows an object diagram.

Jeff:Person

name=“Jeff”

Figure 3.7 Many-to-many association. An association describes a set of potential
links in the same way that a class describes a set of potential objects.

OwnsStock
Class diagram

Object diagram

*

John:Person

name=“John”

Mary:Person

name=“Mary”

Sue:Person

name=“Sue”

Alice:Person

name=“Alice”

Company

name

Person

name

GE:Company

name=“GE”

IBM:Company

name=“IBM”

*

28 Chapter 3 / Class Modeling

In the class diagram, a person may own stock in zero or more companies; a company
may have multiple persons owning its stock. The object diagram shows some examples.
John, Mary, and Sue own stock in the GE company. Sue and Alice own stock in the IBM
company. Jeff does not own stock in any company and thus has no link. The asterisk is a mul-
tiplicity symbol. Multiplicity specifies the number of instances of one class that may relate
to a single instance of another class and is discussed in the next section.

The UML notation for a link is a line between objects; a line may consist of several line
segments. If the link has a name, it is underlined. For example, John owns stock in the GE
company. An association connects related classes and is also denoted by a line (with possibly
multiple line segments). For example, persons own stock in companies. Our convention is to
show link and association names in italics and to confine line segments to a rectilinear grid.
It is good to arrange the classes in an association to read from left-to-right, if possible.

The association name is optional, if the model is unambiguous. Ambiguity arises when
a model has multiple associations among the same classes (person works for company and
person owns stock in company). When there are multiple associations, you must use associ-
ation names or association end names (Section 3.2.3) to resolve the ambiguity.

Associations are inherently bidirectional. The name of a binary association usually
reads in a particular direction, but the binary association can be traversed in either direction.
For example, WorksFor connects a person to a company. The inverse of WorksFor could be
called Employs, and it connects a company to a person. In reality, both directions of traversal
are equally meaningful and refer to the same underlying association; it is only the names that
establish a direction.

Developers often implement associations in programming languages as references from
one object to another. A reference is an attribute in one object that refers to another object.
For example, a data structure for Person might contain an attribute employer that refers to a
Company object, and a Company object might contain an attribute employees that refers to
a set of Person objects. Implementing associations as references is perfectly acceptable, but
you should not model associations this way.

A link is a relationship among objects. Modeling a link as a reference disguises the fact
that the link is not part of either object by itself, but depends on both of them together. A com-
pany is not part of a person, and a person is not part of a company. Furthermore, using a pair
of matched references, such as the reference from Person to Company and the reference from
Company to a set of Persons, hides the fact that the forward and inverse references depend
on each other. Therefore, you should model all connections among classes as associations,
even in designs for programs.

The OO literature emphasizes encapsulation, that implementation details should be kept
private to a class, and we certainly agree with this. Associations are important, precisely be-
cause they break encapsulation. Associations cannot be private to a class, because they tran-
scend classes. Failure to treat associations on an equal footing with classes can lead to
programs containing hidden assumptions and dependencies. Such programs are difficult to
extend and the classes are difficult to reuse.

Although modeling treats associations as bidirectional, you do not have to implement
them in both directions. You can readily implement associations as references if they are only

3.2 Link and Association Concepts 29

traversed in a single direction. Chapter 17 discusses some trade-offs to consider when imple-
menting associations.

3.2.2 Multiplicity
Multiplicity specifies the number of instances of one class that may relate to a single instance
of an associated class. Multiplicity constrains the number of related objects. The literature
often describes multiplicity as being “one” or “many,” but more generally it is a (possibly
infinite) subset of the nonnegative integers. UML diagrams explicitly list multiplicity at the
ends of association lines. The UML specifies multiplicity with an interval, such as “1” (ex-
actly one), “1..*” (one or more), or “3..5” (three to five, inclusive). The special symbol “*”
is a shorthand notation that denotes “many” (zero or more).

Figure 3.7 illustrates many-to-many multiplicity. A person may own stock in many com-
panies. A company may have multiple persons holding its stock. In this particular case, John
and Mary own stock in the GE company; Alice owns stock in the IBM company; Sue owns
stock in both companies; Jeff does not own any stock. GE stock is owned by three persons;
IBM stock is owned by two persons.

Figure 3.8 shows a one-to-one association and some corresponding links. Each country
has one capital city. A capital city administers one country. (In fact, some countries, such as
The Netherlands and Switzerland, have more than one capital city for different purposes. If
this fact were important, the model could be modified by changing the multiplicity or by pro-
viding a separate association for each kind of capital city.)

Figure 3.9 illustrates zero-or-one multiplicity. A workstation may have one of its win-
dows designated as the console to receive general error messages. It is possible, however,
that no console window exists. (The word “console” on the diagram is an association end
name, discussed in Section 3.2.3.)

Dakar:CapitalCity

name=“Dakar”

Paris:CapitalCity

name=“Paris”

Ottawa:CapitalCity

name=“Ottawa”

Senegal:Country

name=“Senegal”

HasCapital

HasCapital

HasCapital

Figure 3.8 One-to-one association. Multiplicity specifies the number of instances
of one class that may relate to a single instance of an associated class.

Country

name

HasCapital

Class diagram

Object diagram

CapitalCity

name

Canada:Country

name=“Canada”

France:Country

name=“France”

1 1

30 Chapter 3 / Class Modeling

Do not confuse “multiplicity” with “cardinality.” Multiplicity is a constraint on the size
of a collection; cardinality is the count of elements that are actually in a collection. There-
fore, multiplicity is a constraint on the cardinality.

A multiplicity of “many” specifies that an object may be associated with multiple ob-
jects. However, for each association there is at most one link between a given pair of objects
(except for bags and sequences, see Section 3.2.5). As Figure 3.10 and Figure 3.11 show, if
you want two links between the same objects, you must have two associations.

Multiplicity depends on assumptions and how you define the boundaries of a problem.
Vague requirements often make multiplicity uncertain. Do not worry excessively about mul-
tiplicity early in software development. First determine classes and associations, then decide
on multiplicity. If you omit multiplicity notation from a diagram, multiplicity is considered
to be unspecified.

Multiplicity often exposes hidden assumptions built into a model. For example, is the
WorksFor association between Person and Company one-to-many or many-to-many? It de-
pends on the context. A tax collection application would permit a person to work for multiple
companies. On the other hand, the member records for an auto workers’ union may consider
second jobs irrelevant. Class diagrams help to elicit these hidden assumptions, making them
visible and subject to scrutiny.

The most important multiplicity distinction is between “one” and “many.” Underesti-
mating multiplicity can restrict the flexibility of an application. For example, many programs

Figure 3.9 Zero-or-one multiplicity. It may be optional whether an object
is involved in an association.

Workstation Window
console

1 0..1

Figure 3.10 Association vs. link. A pair of objects can be instantiated at
most once per association (except for bags and sequences).

A B
anAssociation

anA:A aB:B
aLink

Class diagram Object diagram

* *

aLink

Figure 3.11 Association vs. link. You can use multiple associations to
model multiple links between the same objects.

A B
anAssociation

anA:A aB:B

Class diagram Object diagram

anotherAssociation anotherLink

* *

**

3.2 Link and Association Concepts 31

cannot accommodate persons with multiple phone numbers. On the other hand, overestimat-
ing multiplicity imposes overhead and requires the application to supply additional informa-
tion to distinguish among the members of a “many” set. In a true hierarchical organization,
for example, it is better to represent “boss” with a multiplicity of “zero or one,” rather than
allow for nonexistent matrix management.

3.2.3 Association End Names
Our discussion of multiplicity implicitly referred to the ends of associations. For example, a
one-to-many association has two ends—an end with a multiplicity of “one” and an end with
a multiplicity of “many.” The notion of an association end is an important concept in the
UML. You can not only assign a multiplicity to an association end, but you can give it a name
as well. (Chapter 4 discusses additional properties of association ends.)

Association end names often appear as nouns in problem descriptions. As Figure 3.12
shows, a name appears next to the association end. In the figure Person and Company par-
ticipate in association WorksFor. A person is an employee with respect to a company; a com-
pany is an employer with respect to a person. Use of association end names is optional, but
it is often easier and less confusing to assign association end names instead of, or in addition
to, association names.

Association end names are especially convenient for traversing associations, because
you can treat each one as a pseudo attribute. Each end of a binary association refers to an
object or set of objects associated with a source object. From the point of view of the source
object, traversal of the association is an operation that yields related objects. Association end
names provide a means of traversing an association, without explicitly mentioning the asso-
ciation. Section 3.5 talks further about traversing class models.

Association end names are necessary for associations between two objects of the same
class. For example, in Figure 3.13 container and contents distinguish the two usages of Di-
rectory in the self-association. A directory may contain many lesser directories and may op-
tionally be contained itself. Association end names can also distinguish multiple associations
between the same pair of classes. In Figure 3.13 each directory has exactly one user who is
an owner and many users who are authorized to use the directory. When there is only a single
association between a pair of distinct classes, the names of the classes often suffice, and you
may omit association end names.

Figure 3.12 Association end names. Each end of an association can have a name.

CompanyPerson
employee employer

WorksFor

Joe Doe Simplex
Mary Brown
Jean Smith

Simplex
United Widgets

employee employer

* 0..1

32 Chapter 3 / Class Modeling

Association end names let you unify multiple references to the same class. When con-
structing class diagrams you should properly use association end names and not introduce a
separate class for each reference, as Figure 3.14 shows. In the wrong model, two instances
represent a person with a child, one for the child and one for the parent. In the correct model,
one person instance participates in two or more links, twice as a parent and zero or more
times as a child. (In the correct model, we must show a child as having an optional parent,
so that the recursion eventually terminates.)

Because association end names distinguish objects, all names on the far end of associa-
tions attached to a class must be unique. Although the name appears next to the destination
object on an association, it is really a pseudo attribute of the source class and must be unique
within it. For the same reason, no association end name should be the same as an attribute
name of the source class.

3.2.4 Ordering
Often the objects on a “many” association end have no explicit order, and you can regard
them as a set. Sometimes, however, the objects have an explicit order. For example, Figure
3.15 shows a workstation screen containing a number of overlapping windows. Each win-
dow on a screen occurs at most once. The windows have an explicit order, so only the top-
most window is visible at any point on the screen. The ordering is an inherent part of the
association. You can indicate an ordered set of objects by writing “{ordered}” next to the ap-
propriate association end.

*

1

contents

Figure 3.13 Association end names. Association end names are necessary for
associations between two objects of the same class. They can also
distinguish multiple associations between a pair of classes.

Directory

container

authorizedUser

owner

User

*

*

*

0..1

Figure 3.14 Association end names. Use association end names to model
multiple references to the same class.

Correct modelWrong model

Person
parent

child

0..2Parent Child
2 **

3.2 Link and Association Concepts 33

3.2.5 Bags and Sequences
Ordinarily a binary association has at most one link for a pair of objects. However, you can
permit multiple links for a pair of objects by annotating an association end with {bag} or {se-
quence}. A bag is a collection of elements with duplicates allowed. A sequence is an ordered
collection of elements with duplicates allowed. In Figure 3.16 an itinerary is a sequence of
airports and the same airport can be visited more than once. Like the {ordered} indication,
{bag} and {sequence} are permitted only for binary associations.

UML1 did not permit multiple links for a pair of objects. Some modelers misunderstood
this restriction with ordered association ends and constructed incorrect models, assuming
that there could be multiple links. With UML2 the modeler’s intent is now clear. If you spec-
ify {bag} or {sequence}, then there can be multiple links for a pair of objects. If you omit
these annotations, then the association has at most one link for a pair of objects.

Note that the {ordered} and the {sequence} annotations are the same, except that the first
disallows duplicates and the other allows them. A sequence association is an ordered bag,
while an ordered association is an ordered set.

3.2.6 Association Classes
Just as you can describe the objects of a class with attributes, so too you can describe the
links of an association with attributes. The UML represents such information with an asso-
ciation class. An association class is an association that is also a class. Like the links of an
association, the instances of an association class derive identity from instances of the con-
stituent classes. Like a class, an association class can have attributes and operations and par-
ticipate in associations. You can find association classes by looking for adverbs in a problem
statement or by abstracting known values.

In Figure 3.17, accessPermission is an attribute of AccessibleBy. The sample data at the
bottom of the figure shows the value for each link. The UML notation for an association class
is a box (a class box) attached to the association by a dashed line.

Figure 3.15 Ordering the objects for an association end. Ordering sometimes
occurs for “many” multiplicity.

WIndowScreen
VisibleOn

{ordered}

*1

Figure 3.16 An example of a sequence. An itinerary may visit multiple airports,
so you should use {sequence} and not {ordered}.

AirportItinerary
{sequence}

**

34 Chapter 3 / Class Modeling

Many-to-many associations provide a compelling rationale for association classes. At-
tributes for such associations unmistakably belong to the link and cannot be ascribed to ei-
ther object. In Figure 3.17, accessPermission is a joint property of File and User and cannot
be attached to either File or User alone without losing information.

Figure 3.18 presents attributes for two one-to-many associations. Each person working
for a company receives a salary and has a job title. The boss evaluates the performance of
each worker. Attributes may also occur for one-to-one associations.

Figure 3.19 shows how it is possible to fold attributes for one-to-one and one-to-many
associations into the class opposite a “one” end. This is not possible for many-to-many as-
sociations. As a rule, you should not fold such attributes into a class because the multiplicity
of the association might change. Either form in Figure 3.19 can express a one-to-many asso-
ciation. However, only the association class form remains correct if the multiplicity of
WorksFor is changed to many-to-many.

Figure 3.20 shows an association class participating in an association. Users may be au-
thorized on many workstations. Each authorization carries a priority and access privileges.
A user has a home directory for each authorized workstation, but several workstations and
users can share the same home directory. Association classes are an important aspect of class
modeling because they let you specify identity and navigation paths precisely.

accessPermission

Figure 3.17 An association class. The links of an association can have attributes.

File User* *

/etc/termcap
/etc/termcap

read
read-write

John Doe
Mary Brown

/usr/doe/.login read-write John Doe

AccessibleBy

salary
jobTitle

performanceRating

Figure 3.18 Association classes. Attributes may also occur for one-to-many
and one-to-one associations.

Manages

boss

worker

*

*

name

Company

address

Person

name
birthDate
address0..1

0..1

WorksFor

3.2 Link and Association Concepts 35

Figure 3.19 Proper use of association classes. Do not fold attributes of
an association into a class.

WorksFor

Preferred
form

Discouraged
form

*

*

0..1

0..1

name

Company

address

name

Company

address

Person

name
birthDate
address
salary
jobTitle

Person

name
birthDate
address salary

jobTitle

WorksFor

Figure 3.20 An association class participating in an association. Association
classes let you specify identity and navigation paths precisely.

User Workstation

Directory
homeDirectory

* *

* 1

Authorization

priority
privileges

startSession

Figure 3.21 Association class vs. ordinary class. An association class is
much different than an ordinary class.

*
Company

name

Person

name *

quantity

Association
class

Ordinary
class

*
Company

name

Person

name *
Purchase

quantity
date
cost

11

OwnsStock

36 Chapter 3 / Class Modeling

Do not confuse an association class with an association that has been promoted to a
class. Figure 3.21 highlights the difference. The association class has only one occurrence
for each pairing of Person and Company. In contrast there can be any number of occurrences
of a Purchase for each Person and Company. Each purchase is distinct and has its own quan-
tity, date, and cost.

3.2.7 Qualified Associations
A qualified association is an association in which an attribute called the qualifier disambig-
uates the objects for a “many” association end. It is possible to define qualifiers for one-to-
many and many-to-many associations. A qualifier selects among the target objects, reducing
the effective multiplicity, from “many” to “one.” Qualified associations with a target multi-
plicity of “one” or “zero-or-one” specify a precise path for finding the target object from the
source object.

Figure 3.22 illustrates the most common use of a qualifier— for associations with one-
to-many multiplicity. A bank services multiple accounts. An account belongs to a single
bank. Within the context of a bank, the account number specifies a unique account. Bank and
Account are classes and accountNumber is the qualifier. Qualification reduces the effective
multiplicity of this association from one-to-many to one-to-one.

Both models are acceptable, but the qualified model adds information. The qualified
model adds a multiplicity constraint, that the combination of a bank and an account number
yields at most one account. The qualified model conveys the significance of account number
in traversing the model, as methods will reflect. You first find the bank and then specify the
account number to find the account.

The notation for a qualifier is a small box on the end of the association line near the
source class. The qualifier box may grow out of any side (top, bottom, left, right) of the
source class. The source class plus the qualifier yields the target class. In Figure 3.22 Bank
+ accountNumber yields an Account, therefore accountNumber is listed in a box contiguous
to Bank.

Figure 3.23 provides another example of qualification. A stock exchange lists many
companies. However, a stock exchange lists only one company with a given ticker symbol.
A company may be listed on many stock exchanges, possibly under different symbols. (We
are presuming this is true. If every stock had a single ticker symbol that was invariant across
exchanges, we would make tickerSymbol an attribute of Company.)

Figure 3.22 Qualified association. Qualification increases the precision of a model.

AccountBank accountNumber
0..11

Qualified

Bank
1 * Account

accountNumber

Not qualified

3.3 Generalization and Inheritance 37

3.3 Generalization and Inheritance

3.3.1 Definition
Generalization is the relationship between a class (the superclass) and one or more varia-
tions of the class (the subclasses). Generalization organizes classes by their similarities and
differences, structuring the description of objects. The superclass holds common attributes,
operations, and associations; the subclasses add specific attributes, operations, and associa-
tions. Each subclass is said to inherit the features of its superclass. Generalization is some-
times called the “is-a” relationship, because each instance of a subclass is an instance of the
superclass as well.

Simple generalization organizes classes into a hierarchy; each subclass has a single im-
mediate superclass. (Chapter 4 discusses a more complex form of generalization in which a
subclass may have multiple immediate superclasses.) There can be multiple levels of gener-
alizations.

Figure 3.24 shows several examples of generalization for equipment. Each piece of
equipment is a pump, heat exchanger, or tank. There are several kinds of pumps: centrifugal,
diaphragm, and plunger. There are several kinds of tanks: spherical, pressurized, and floating
roof. The fact that the tank generalization symbol is drawn below the pump generalization
symbol is not significant. Several objects are displayed at the bottom of the figure. Each ob-
ject inherits features from one class at each level of the generalization. Thus P101 embodies
the features of equipment, pump, and diaphragm pump. E302 has the properties of equip-
ment and heat exchanger.

A large hollow arrowhead denotes generalization. The arrowhead points to the super-
class. You may directly connect the superclass to each subclass, but we normally prefer to
group subclasses as a tree. For convenience, you can rotate the triangle and place it on any
side, but if possible you should draw the superclass on top and the subclasses on the bottom.
The curly braces denote a UML comment, indicating that there are additional subclasses that
the diagram does not show.

Figure 3.23 Qualified association. Qualification also facilitates traversal of class models.

StockExchange

Lists

Not qualifiedQualified

Company

StockExchange

Lists

tickerSymbol *

*

*

Company
0..1

tickerSymbol

38 Chapter 3 / Class Modeling

Generalization is transitive across an arbitrary number of levels. The terms ancestor and
descendant refer to generalization of classes across multiple levels. An instance of a subclass
is simultaneously an instance of all its ancestor classes. An instance includes a value for ev-
ery attribute of every ancestor class. An instance can invoke any operation on any ancestor

T111:FloatingRoofTank

name = “T111”
manufacturer = “Simplex”
weight = 10000 kg
cost = $50000
volume = 400000 liter
pressure = 1.1 atm
diameter = 8 m
height = 9 m

P101:DiaphragmPump

name = “P101”
manufacturer = “Simplex”
weight = 100 kg
cost = $5000
suctionPres = 1.1 atm
dischargePres = 3.3 atm
flowRate = 300 l/hr
diaphragmMatl = Teflon

E302:HeatExchanger

name = “E302”
manufacturer = “Brown”
weight = 5000 kg
cost = $20000
surfaceArea = 300 m2
tubeDiameter = 2 cm
tubeLength = 6 m
tubePressure = 15 atm
shellPressure = 1.7 atm

Figure 3.24 A multilevel inheritance hierarchy with instances. Generalization
organizes classes by their similarities and differences, structuring the
description of objects.

Equipment

name
manufacturer
weight
cost

Tank

volume
pressure

HeatExchanger

surfaceArea
tubeDiameter
tubeLength
tubePressure
shellPressure

Pump

suctionPressure
dischargePressure
flowRate

PlungerPump

plungerLength
plungerDiameter
numberOfCylinders

DiaphragmPump

diaphragmMaterial

CentrifugalPump

impellerDiameter
numberOfBlades
axisOfRotation

FloatingRoofTank

diameter
height

PressurizedTank

diameter
height

SphericalTank

diameter

{Note: The listing of equipment,
pumps, and tanks is incomplete.}

3.3 Generalization and Inheritance 39

class. Each subclass not only inherits all the features of its ancestors but adds its own specific
features as well. For example, Pump adds attributes suctionPressure, dischargePressure, and
flowRate, which other kinds of equipment do not share.

Figure 3.25 shows classes of geometric figures. This example has more of a program-
ming flavor and emphasizes inheritance of operations. Move, select, rotate, and display are
operations that all subclasses inherit. Scale applies to one-dimensional and two-dimensional
figures. Fill applies only to two-dimensional figures.

The word written next to the generalization line in the diagram—dimensionality—is a
generalization set name. A generalization set name is an enumerated attribute that indicates
which aspect of an object is being abstracted by a particular generalization. You should gen-
eralize only one aspect at a time. For example, the means of propulsion (wind, fuel, animal,
gravity) and the operating environment (land, air, water, outer space) are two aspects for
class Vehicle. Generalization set values are inherently in one-to-one correspondence with the
subclasses of a generalization. The generalization set name is optional.

Figure 3.25 Inheritance for graphic figures. Each subclass inherits the
attributes, operations, and associations of its superclasses.

dimensionality

TwoDimensional

orientation

scale

fillType

fill

OneDimensional

orientation

scale

ZeroDimensional

color

Figure

move

centerPosition

penType
penThickness

select
rotate
display

Arc

radius
startAngle

display

arcAngle

Polygon

numOfSides

display

vertices

Circle

diameter

rotate
display

Spline

controlPts

display

Line

endPoints

display

Point

display

Diagram

name

1 *

40 Chapter 3 / Class Modeling

Do not nest subclasses too deeply. Deeply nested subclasses can be difficult to under-
stand, much like deeply nested blocks of code in a procedural language. Often, with some
careful thought and a little restructuring, you can reduce the depth of an overextended inher-
itance hierarchy. In practice, whether or not a subclass is “too deeply nested” depends upon
judgment and the particular details of a problem. The following guidelines may help: An in-
heritance hierarchy that is two or three levels deep is certainly acceptable; ten levels deep is
probably excessive; five or six levels may or may not be proper.

3.3.2 Use of Generalization
Generalization has three purposes, one of which is support for polymorphism. You can call
an operation at the superclass level, and the OO language compiler automatically resolves
the call to the method that matches the calling object’s class. Polymorphism increases the
flexibility of software—you add a new subclass and automatically inherit superclass behav-
ior. Furthermore, the new subclass does not disrupt existing code. Contrast the OO situation
with procedural code, where addition of a new type can cause a ripple of changes.

The second purpose of generalization is to structure the description of objects. When
you use generalization, you are making a conceptual statement—you are forming a taxono-
my and organizing objects on the basis of their similarities and differences. This is much
more profound than modeling each class individually and in isolation from other classes.

The third purpose is to enable reuse of code—you can inherit code within your applica-
tion as well as from past work (such as a class library). Reuse is more productive than re-
peatedly writing code from scratch. Generalization also lets you adjust the code, where
necessary, to get the precise desired behavior. Reuse is an important motivator for inherit-
ance, but the benefits are often oversold as Chapter 14 explains.

The terms generalization, specialization, and inheritance all refer to aspects of the same
idea. Generalization and specialization concern a relationship among classes and take oppo-
site perspectives, viewed from the superclass or from the subclasses. The word generaliza-
tion derives from the fact that the superclass generalizes the subclasses. Specialization refers
to the fact that the subclasses refine or specialize the superclass. Inheritance is the mecha-
nism for sharing attributes, operations, and associations via the generalization/specialization
relationship. In practice, there is little danger of confusion between the terms.

3.3.3 Overriding Features
A subclass may override a superclass feature by defining a feature with the same name. The
overriding feature (the subclass feature) refines and replaces the overridden feature (the su-
perclass feature). There are several reasons why you may wish to override a feature: to spec-
ify behavior that depends on the subclass, to tighten the specification of a feature, or to
improve performance. For example, in Figure 3.25, each leaf subclass must implement dis-
play, even though Figure defines it. Class Circle improves performance by overriding oper-
ation rotate to be a null operation.

You may override methods and default values of attributes. You should never override
the signature, or form, of a feature. An override should preserve attribute type, number and

3.4 A Sample Class Model 41

type of arguments to an operation, and operation return type. Tightening the type of an at-
tribute or operation argument to be a subclass of the original type is a form of restriction and
must be done with care. It is common to boost performance by overriding a general method
with a special method that takes advantage of specific information but does not alter the op-
eration semantics (such as Circle.rotate in Figure 3.25).

You should never override a feature so that it is inconsistent with the original inherited
feature. A subclass is a special case of its superclass and should be compatible with it in ev-
ery respect. A common, but unfortunate, practice in OO programming is to “borrow” a class
that is similar to a desired class and then modify it by changing and ignoring some of its fea-
tures, even though the new class is not really a special case of the original class. This practice
can lead to conceptual confusion and hidden assumptions built into programs.

3.4 A Sample Class Model
Figure 3.26 shows a class model of a workstation window management system. This model
is greatly simplified—a real model would require a number of pages—but it illustrates many
class modeling constructs and shows how they fit together.

Class Window defines common parameters of all kinds of windows, including a rectan-
gular boundary defined by the attributes x1, y1, x2, y2, and operations to display and undis-
play a window and to raise it to the top (foreground) or lower it to the bottom (background)
of the entire set of windows.

A canvas is a region for drawing graphics. It inherits the window boundary from Win-
dow and adds the dimensions of the underlying canvas region defined by attributes cx1, cy1,
cx2, cy2. A canvas contains a set of elements, shown by the association to class Shape. All
shapes have color and line width. Shapes can be lines, ellipses, or polygons, each with their
own parameters. A polygon consists of a list of vertices. Ellipses and polygons are both
closed shapes, which have a fill color and a fill pattern. Lines are one dimensional and cannot
be filled. Canvas windows have operations to add and delete elements.

TextWindow is a kind of a ScrollingWindow, which has a two-dimensional scrolling off-
set within its window, as specified by xOffset and yOffset, as well as an operation scroll to
change the scroll value. A text window contains a string and has operations to insert and de-
lete characters. ScrollingCanvas is a special kind of canvas that supports scrolling; it is both
a Canvas and a ScrollingWindow. This is an example of multiple inheritance, to be explained
in Chapter 4.

A Panel contains a set of PanelItem objects, each identified by a unique itemName with-
in a given panel, as shown by the qualified association. Each panel item belongs to a single
panel. A panel item is a predefined icon with which a user can interact on the screen. Panel
items come in three kinds: buttons, choice items, and text items. A button has a string that
appears on the screen; a button can be pushed by the user and has an attribute depressed. A
choice item allows the user to select one of a set of predefined choices, each of which is a
ChoiceEntry containing a string to be displayed and a value to be returned if the entry is se-
lected. There are two associations between ChoiceItem and ChoiceEntry; a one-to-many as-

42 Chapter 3 / Class Modeling

elements

window

choicescurrentChoice

notifyEvent

keyboardEvent

{ordered}

Figure 3.26 Class model of a windowing system

vertices

{subset}

Panel

ChoiceScrolling
Canvas

itemName

*
*

*

*

*

x1

Window

display

y1

y2
x2

undisplay
raise
lower

ScrollingWindow

xOffset

scroll

yOffset
cx1

Canvas

addElement

cy1

cy2
cx2

deleteElement

x

Ellipse

draw

y

b
a

Polygon

draw

Point

x
y

ChoiceEntry

string
value

Event

action

1

0..1

1

1

x1

Line

draw

y1

y2
x2

Shape

color
lineWidth

x

PanelItem

y
label

1

TextItem

maxLength
currentString

Item
Button

string
depressed

Closed

fillColor
fillPattern

Shape
Text

string

insert

Window

delete

1

0..1

1

1

3.5 Navigation of Class Models 43

sociation defines the set of allowable choices, while a one-to-one association identifies the
current choice. The current choice must be one of the allowable choices, so one association
is a subset of the other as shown by the arrow between them labeled “{subset}.” This is an
example of a constraint, to be explained in Chapter 4.

When a panel item is selected by the user, it generates an Event, which is a signal that
something has happened together with an action to be performed. All kinds of panel items
have notifyEvent associations. Each panel item has a single event, but one event can be
shared among many panel items. Text items have a second kind of event, which is generated
when a keyboard character is typed while the text item is selected. The association with end
name keyboardEvent shows these events. Text items also inherit the notifyEvent from super-
class PanelItem; the notifyEvent is generated when the entire text item is selected with a
mouse.

There are many deficiencies in this model. For example, perhaps we should define a type
Rectangle, which can then be used for the window and canvas boundaries, rather than having
two similar sets of four position attributes. Maybe a line should be a special case of a polyline
(a connected series of line segments), in which case both Polyline and Polygon could be sub-
classes of a new superclass that defines a list of points. Many attributes, operations, and
classes are missing from a description of a realistic windowing system. Certainly the win-
dows have associations among themselves, such as overlapping one another. Nevertheless,
this simple model gives a flavor of the use of class modeling. We can criticize its details be-
cause it says something precise. It would serve as the basis for a fuller model.

3.5 Navigation of Class Models
So far we have shown how class models can express the structure of an application. Now we
show how they can also express the behavior of navigating among classes. Navigation is im-
portant because it lets you exercise a model and uncover hidden flaws and omissions so that
you can repair them. You can perform navigation manually (an informal technique) or write
navigation expressions (as we will explain).

Consider the simple model for credit card accounts in Figure 3.27. An institution may
issue many credit card accounts, each identified by an account number. Each account has a
maximum credit limit, a current balance, and a mailing address. The account serves one or
more customers who reside at the mailing address. The institution periodically issues a state-
ment for each account. The statement lists a payment due date, finance charge, and minimum
payment. The statement itemizes various transactions that have occurred throughout the bill-
ing interval: cash advances, interest charges, purchases, fees, and adjustments to the account.
The name of the merchant is printed for each purchase.

We can pose a variety of questions against the model.

■ What transactions occurred for a credit card account within a time interval?

■ What volume of transactions were handled by an institution in the last year?

■ What customers patronized a merchant in the last year by any kind of credit card?

44 Chapter 3 / Class Modeling

■ How many credit card accounts does a customer currently have?

■ What is the total maximum credit for a customer, for all accounts?
The UML incorporates a language that can express these kinds of questions—the Object
Constraint Language (OCL) [Warmer-99]. The next two sections discuss the OCL, and Sec-
tion 3.5.3 then expresses the credit card questions using the OCL. By no means do we cover
the complete OCL; we just cover the portions relevant to traversing class models.

3.5.1 OCL Constructs for Traversing Class Models
The OCL can traverse the constructs in class models.

■ Attributes. You can traverse from an object to an attribute value. The syntax is the
source object, followed by a dot, and then the attribute name. For example, the expres-
sion aCreditCardAccount.maximumCredit takes a CreditCardAccount object and finds
the value of maximumCredit. (We use the convention of preceding a class name by “a”
to refer to an object.) Similarly, you can access an attribute for each object in a collec-
tion, returning a collection of attribute values. In addition, you can find an attribute val-
ue for a link, or a collection of attribute values for a collection of links.

■ Operations. You can also invoke an operation for an object or a collection of objects.
The syntax is the source object or object collection, followed by a dot, and then the op-
eration. An operation must be followed by parentheses, even if it has no arguments, to

Figure 3.27 Class model for managing credit card accounts

name

Institution

address
phoneNumber

maximumCredit

CreditCardAccount

currentBalance

accountNumber

paymentDueDate

Statement

financeCharge
minimumPayment

statementDate

transactionDate

Transaction

explanation

transactionNumber

AdjustmentFeePurchaseInterestCashAdvance

feeType

Merchant

name

address

MailingAddress

phoneNumber

name

Customer

accountHolder

amount

*1

*

*

*

0..1

1

0..1 1

0..11

1

3.5 Navigation of Class Models 45

avoid confusion with attributes. You may invoke operations from your class model or
predefined operations that are built into the OCL.

The OCL has special operations that operate on entire collections (as opposed to op-
erating on each object in a collection). For example, you can count the objects in a col-
lection or sum a collection of numeric values. The syntax for a collection operation is
the source object collection, followed by “->”, and then the operation.

■ Simple associations. A third use of the dot notation is to traverse an association to a tar-
get end. The target end may be indicated by an association end name or, where there is
no ambiguity, a class name. In the example, aCustomer.MailingAddress yields a set of
addresses for a customer (the target end has “many” multiplicity). In contrast, aCredit-
CardAccount.MailingAddress yields a single address (the target end has multiplicity of
one).

■ Qualified associations. A qualifier lets you make a more precise traversal. The expres-
sion aCreditCardAccount.Statement[30 November 1999] finds the statement for a credit
card account with the statement date of 30 November 1999. The syntax is to enclose the
qualifier value in brackets. Alternatively, you can ignore the qualifier and traverse a
qualified association as if it were a simple association. Thus the expression aCredit-
CardAccount.Statement finds the multiple statements for a credit card account. (The
multiplicity is “many” when the qualifier is not used.)

■ Association classes. Given a link of an association class, you can find the constituent
objects. Alternatively, given a constituent object, you can find the multiple links of an
association class.

■ Generalizations. Traversal of a generalization hierarchy is implicit for the OCL notation.

■ Filters. There is often a need to filter the objects in a set. The OCL has several kinds of
filters, the most common of which is the select operation. The select operation applies
a predicate to each element in a collection and returns the elements that satisfy the pred-
icate. For example, aStatement.Transaction->select(amount>$100) finds the transac-
tions for a statement in excess of $100.

3.5.2 Building OCL Expressions
The real power of the OCL comes from combining primitive constructs into expressions. For
example, an OCL expression could chain together several association traversals. There could
be several qualifiers, filters, and operators as well.

With the OCL, a traversal from an object through a single association yields a singleton
or a set (or a bag if the association has the annotation {bag} or {sequence}). In general, a tra-
versal through multiple associations can yield a bag (depending on the multiplicities), so you
must be careful with OCL expressions. A set is a collection of elements without duplicates.
A bag is a collection of elements with duplicates allowed.

The example in Figure 3.28 illustrates how an OCL expression can yield a bag. A com-
pany might want to send a single mailing to each stockholder address. Starting with the GE
company, we traverse the OwnsStock association and get a set of three persons. Starting with

46 Chapter 3 / Class Modeling

these three persons and traversing to mailing address, we get a bag obtaining the address 456
State twice.

[Warmer-99] does not mention null values, since they only discuss the specification of
constraints for a correctly implemented system. (Null is a special value denoting that an at-
tribute value is unknown or not applicable.) Handling of exceptions and run-time errors is
also outside the scope of their book.

In contrast, the purpose in this chapter is not to specify constraints, but rather to discuss
navigation of class models. Nulls do not arise for properly phrased and valid constraints. But
they certainly do arise with model navigation. For example, a person may lack a mailing ad-
dress. We extend the meaning of OCL expressions to accommodate nulls—a traversal may
yield a null value, and an OCL expression evaluates to null if the source object is null.

3.5.3 Examples of OCL Expressions
We can use the OCL to answer the credit card questions.

■ What transactions occurred for a credit card account within a time interval?
aCreditCardAccount.Statement.Transaction->
select(aStartDate <= transactionDate and
transactionDate <= anEndDate)
The expression traverses from a CreditCardAccount object to Statement and then to
Transaction, resulting in a set of transactions. (Traversal of the two associations results
in a set, rather than a bag, because both associations are one-to-many.) Then we use the
OCL select operator (a collection operator) to find the transactions within the time in-
terval bounded by aStartDate and anEndDate.

Figure 3.28 A sample model and examples. Traversal of multiple
associations can yield a bag.

OwnsStockClass

Object

*

John:Person

name=“John”

Mary:Person

name=“Mary”

Sue:Person

name=“Sue”

Company

name

Person

name

GE:Company

name=“GE”

*address

MailingAddress
* *

:Address

address=123 Main

:Address

address=456 State

:Address

address=789 First

:Address

address=234 Olive

diagram

diagram

3.5 Navigation of Class Models 47

■ What volume of transactions were handled by an institution in the last year?
anInstitution.CreditCardAccount.Statement.Transaction->
select(aStartDate <= transactionDate and
transactionDate <= anEndDate).amount->sum()
The expression traverses from an Institution object to CreditCardAccount, then to State-
ment, and then to Transaction. (Traversal results in a set, rather than a bag, because all
three associations are one-to-many.) The OCL select operator finds the transactions
within the time interval bounded by aStartDate and anEndDate. (We choose to make
the time interval more general than last year.) Then we find the amount for each trans-
action and compute the total with the OCL sum operator (a collection operator).

■ What customers patronized a merchant in the last year by any kind of credit card?
aMerchant.Purchase->
select(aStartDate <= transactionDate and
transactionDate <= anEndDate).Statement.
CreditCardAccount.MailingAddress.Customer->asSet()
The expression traverses from a Merchant object to Purchase. The OCL select operator
finds the transactions within the time interval bounded by aStartDate and anEndDate.
(Traversal across a generalization, from Purchase to Transaction, is implicit in the
OCL.) For these transactions, we then traverse to Statement, then to CreditCardAccount,
then to MailingAddress, and finally to Customer. The association from MailingAddress
to Customer is many-to-many, so traversal to Customer yields a bag. The OCL asSet op-
erator converts a bag of customers to a set of customers, resulting in our answer.

■ How many credit card accounts does a customer currently have?
aCustomer.MailingAddress.CreditCardAccount->size()
Given a Customer object, we find a set of MailingAddress objects. Then, given the set
of MailingAddress objects, we find a set of CreditCardAccount objects. (This traversal
yields a set, and not a bag, because each CreditCardAccount pertains to a single Mail-
ingAddress.) For the set of CreditCardAccount objects we apply the OCL size operator,
which returns the cardinality of the set.

■ What is the total maximum credit for a customer, for all accounts?
aCustomer.MailingAddress.CreditCardAccount.
maximumCredit->sum()
The expression traverses from a Customer object to MailingAddress, and then to Credit-
CardAccount, yielding a set of CreditCardAccount objects. For each CreditCard-
Account, we find the value of maximumCredit and compute the total with the OCL sum
operator.

Note that these kinds of questions exercise a model and uncover hidden flaws and omissions
that can then be repaired. For example, the query on the number of credit card accounts sug-
gests that we may need to differentiate past accounts from current accounts.

Keep in mind that the OCL was originally intended as a constraint language (see Chap-
ter 4). However, as we explain here, the OCL is also useful for navigating models.

48 Chapter 3 / Class Modeling

3.6 Practical Tips
We have gleaned the following tips for constructing class models from our application work.
Many of these tips have been mentioned throughout the chapter.

■ Scope. Don’t begin class modeling by merely jotting down classes, associations, and in-
heritance. First, you must understand the problem to be solved. The content of a model
is driven by relevance to the solution. You must exercise judgment in deciding which
objects to show and which objects to ignore. A model represents only the relevant as-
pects of a problem. (Section 3.1.1)

■ Simplicity. Strive to keep your models simple. A simple model is easier to understand
and takes less development effort. Try to use a minimal number of classes that are clear-
ly defined and not redundant. Be suspicious of classes that are difficult to define. You
may need to reconsider such classes and restructure the model.

■ Diagram layout. Draw your diagrams in a manner that elicits symmetry. Often there is
a superstructure to a problem that lies outside the notation. Try to position important
classes so that they are visually prominent on a diagram. Try to avoid crossing lines.

■ Names. Carefully choose names. Names are important and carry powerful connotations.
Names should be descriptive, crisp, and unambiguous. Do not bias names toward one
aspect of an object. Choosing good names is one of the most difficult aspects of model-
ing. You should use singular nouns for the names of classes.

■ References. Do not bury object references inside objects as attributes. Instead, model
these as associations. This is clearer and captures the true intent rather than an imple-
mentation approach. (Section 3.2.1)

■ Multiplicity. Challenge association ends with a multiplicity of one. Often the object on
either end is optional and zero-or-one multiplicity may be more appropriate. Other times
“many” multiplicity is needed. (Section 3.2.2)

■ Association end names. Be alert for multiple uses of the same class. Use association
end names to unify references to the same class. (Section 3.2.3)

■ Bags and sequences. An ordinary binary association has at most one link for a pair of
objects. However, you can permit multiple links for a pair of objects by annotating an
association end with {bag} or {sequence}. (Section 3.2.5)

■ Attributes of associations. During analysis, do not collapse attributes of associations
into one of the related classes. You should directly describe the objects and links in your
models. During design and implementation, you can always combine information for
more efficient execution. (Section 3.2.6)

■ Qualified associations. Challenge association ends with a multiplicity of “many.” A
qualifier can often improve the precision of an association and highlight important nav-
igation paths. (Section 3.2.7)

■ Generalization levels. Try to avoid deeply nested generalizations. (Section 3.3.1)

3.7 Chapter Summary 49

■ Overriding features. You may override methods and default values of attributes. How-
ever, you should never override a feature so that it is inconsistent with the signature or
semantics of the original inherited feature. (Section 3.3.3)

■ Reviews. Try to get others to review your models. Expect that your models will require
revision. Class models require revision to clarify names, improve abstraction, repair er-
rors, add information, and more accurately capture structural constraints. Nearly all of
our models have required several revisions.

■ Documentation. Always document your models. The diagram specifies the structure of
a model but cannot describe the rationale. The written explanation guides the reader and
explains subtle reasons for why the model was constructed a particular way.

3.7 Chapter Summary
Class models describe the static data structure of objects and their relationships to one an-
other. The content of a model is a matter of judgment and is driven by the needs of an appli-
cation. An object is a concept, abstraction, or thing with identity that has meaning for an
application. A class describes a group of objects with the same attributes, behavior, kinds of
relationships, and semantics. An attribute is a named property of a class that describes a value
held by each object of the class. An operation is a function or procedure that may be applied
to or by objects in a class.

A link is a physical or conceptual connection among objects and is an instance of an as-
sociation. An association is a description of a group of links with common structure and se-
mantics. An association describes a set of potential links in the same way that a class
describes a set of potential objects. An association is a logical construct, of which a reference
is an implementation alternative. There are other ways of implementing associations besides
using references.

You can refer to an end of an association and give it a name and multiplicity. Multiplicity
specifies the number of instances of one class that may relate to a single instance of an asso-
ciated class. An association class is an association that is also a class; an association class
may have attributes, operations, and participate in associations. A qualified association is an
association in which the objects in a “many” association end are partially or fully disambig-
uated by an attribute called the qualifier. The qualifier selects among the target objects, re-
ducing the effective multiplicity, often from “many” to “one.” Names are often qualifiers.

Generalization is the relationship between a class (the superclass) and one or more varia-
tions of the class (the subclasses). Generalization organizes classes by their similarities and
differences, structuring the description of objects. A subclass inherits the attributes, opera-
tions, and associations of its superclasses. Through inheritance, a subclass can reuse super-
class properties or override them; a subclass can add new properties.

Generalization is an important construct for both conceptual modeling and implemen-
tation. During conceptual modeling, generalization lets the developer organize classes on the
basis of similarities and differences. During implementation, inheritance facilitates polymor-
phism and code reuse. Inheritance may occur across an arbitrary number of levels, where

50 Chapter 3 / Class Modeling

each level represents one aspect of an object. An object accumulates attributes, operations,
and associations from each level of a generalization hierarchy.

Class models are useful for more than just data structure. In particular, navigation of class
models lets you express certain behavior. Furthermore, navigation exercises a class model
and uncovers hidden flaws and omissions, which you can then repair. The UML incorporates
a language that can be used for navigation, the Object Constraint Language (OCL).

The various class modeling constructs work together to describe a complex system pre-
cisely, as shown by our example of a model for a windowing system. Once a model is avail-
able, even a simplified one, you can compare it against the requirements of an application,
criticize it, and improve it.

Bibliographic Notes
The class modeling approach described in this book builds on the OMT notation originally
proposed in [Loomis-87], which has now been superseded by the UML [Booch-99] [Rum-
baugh-05] [UML]. The UML class model corresponds to the OMT notation discussed in
[Loomis-87]. [Blaha-98] also covers the UML class modeling notation with an emphasis on
the constructs that are relevant to database applications.

The class modeling notation is one of a score of approaches descended from the seminal
entity-relationship (ER) model of [Chen-76]. All the descendants attempt to improve on the
ER approach. Enhancements to the ER model have been pursued for several reasons. The ER
technique has been successful for database modeling and as a result, there has been great de-
mand for additional power. Also, ER modeling addresses only database design and not pro-
gramming. There are too many extensions to ER for us to discuss them here.

A noteworthy aspect of the OMT notation and its successor UML is the emphasis on as-
sociations. As with inheritance, associations are important for conceptual modeling and im-
plementation. [Rumbaugh-87] is the original source of the association ideas. The use of the
term relation in [Rumbaugh-87] is synonymous with our use of association in this book.

In the data modeling notations, such as ER and IDEF1X, a binary association has at
most one link for a pair of objects. UML1 follows the data modeling convention and also

Figure 3.29 Key concepts for Chapter 3

ancestor
association
association class
association end
attribute
bag
class
class diagram
class model

default value
descendant
direction
feature
generalization
generalization set name
identity
inheritance
instance

link
method
multiplicity
navigation
object
object diagram
operation
ordering
override

polymorphism
qualified association
qualifier
sequence
signature
specialization
subclass
superclass
value

References 51

restricts a binary association to at most one link for a pair of objects. Note that UML2 has an
exception to this behavior. In UML2 a binary association with the annotation {bag} or {se-
quence} can have multiple links for a pair of objects.

[Khoshafian-86] defines the concept of object identity and its importance to program-
ming languages and database systems.

[Warmer-99] is the reference for the Object Constraint Language (OCL) that is part of
the UML. We use the OCL in this chapter for navigating class models.

[Rayside-00] compares OO concepts with philosophy. He emphasizes the importance of
crisp names and clear thinking.

[Chonoles-03], [Fowler-00], and [Larman-02] are additional books that you can read to
help you learn about the UML. We thank Michael Chonoles for the example (Figure 3.10,
Figure 3.11) clarifying that each association has at most one link between a given pair of ob-
jects (other than bags and sequences).

References
[Blaha-98] Michael Blaha and William Premerlani. Object-Oriented Modeling and Design for Data-

base Applications. Upper Saddle River, NJ: Prentice Hall, 1998.
[Booch-99] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language

User Guide. Boston: Addison-Wesley, 1999.
[Chen-76] P.P.S. Chen. The Entity-Relationship model—toward a unified view of data. ACM Transac-

tions on Database Systems 1, 1 (March 1976), 9–36.
[Chonoles-03] Michael Jesse Chonoles and James A. Schardt. UML2 for Dummies. New York: Wiley,

2003.
[Fowler-00] Martin Fowler. UML Distilled, Second Edition. Boston: Addison-Wesley, 2000.
[Khoshafian-86] S.N. Khoshafian and G.P. Copeland. Object identity. OOPLSA’86 as ACM SIGPLAN

21, 11 (November 1986), 406–416.
[Larman-02] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and the Unified Process. Upper Saddle River, NJ: Prentice Hall, 2002.
[Loomis-87] Mary E.S. Loomis, Ashwin V. Shah, and James E. Rumbaugh. An object modeling tech-

nique for conceptual design. European Conference on Object-Oriented Programming, Paris,
France, June 15–17, 1987, published as Lecture Notes in Computer Science, 276, Springer-Ver-
lag, 192–202.

[Rayside-00] Derek Rayside and Gerard Campbell. An Aristotelian understanding of object-oriented
programming. OOPLSA’00 as ACM SIGPLAN 35, 10 (October 2000), 337–353.

[Rumbaugh-87] James E. Rumbaugh. Relations as semantic constructs in an object-oriented language.
OOPSLA’87 as ACM SIGPLAN 22, 12 (December1987), 466–481.

[Rumbaugh-05] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Ref-
erence Manual, Second Edition. Boston: Addison-Wesley, 2005.

[UML] www.uml.org
[Warmer-99] Jos Warmer and Anneke Kleppe. The Object Constraint Language. Boston: Addison-

Wesley, 1999.

www.uml.org

52 Chapter 3 / Class Modeling

Exercises
3.1 (3) Prepare a class diagram from the object diagram in Figure E3.1.

3.2 (5) Prepare a class diagram from the object diagram in Figure E3.2. Explain your multiplicity
decisions. Each point has an x coordinate and a y coordinate. What is the smallest number of
points required to construct a polygon? Does it make a difference whether or not a point may
be shared between polygons? Your answer should address the fact that points are ordered.

3.3 (5) Using your class diagram for Exercise 3.2, prepare an object diagram for two triangles with
a common side under the following conditions.
a. A point belongs to exactly one polygon.
b. A point belongs to one or more polygons.

3.4 (5) Prepare a class diagram from the object diagram in Figure E3.3. How does your diagram ex-
press the fact that points are ordered? Assume that a point belongs to at most one polygon.

3.5 (2) Prepare a written description for the class diagrams from Exercise 3.2 and Exercise 3.4.

3.6 (6) Prepare a class diagram from the object diagram in Figure E3.4.

3.7 (5) Prepare a class diagram from the object diagram in Figure E3.5. This particular document
has 4 pages. The first page has a red point and a yellow square displayed on it. The second page
contains a line and an ellipse. An arc, a circle, and a rectangle appear on the last two pages. In
preparing your diagram, use one or more generalizations.

3.8 (4) Figure E3.6 is a partially completed class diagram of an air transportation system. Multiplic-
ity has been omitted. Add multiplicity to the diagram. Demonstrate how multiplicity decisions
depend on your perception of the world.

3.9 (3) Add association names to the unlabeled associations in Figure E3.6.

France:Country

name=“France”

Borders Borders

Figure E3.1 Object diagram for a portion of Europe

Belgium:Country

name=“Belgium”

Spain:Country

name=“Spain”

Has Has

Has Has

Figure E3.2 Object diagram for a polygon that happens to be a square

:Point

xCoord=10
yCoord=10

:Point

xCoord=10
yCoord=-10

:Point

xCoord=-10
yCoord=-10

:Point

xCoord=-10
yCoord=10

:Polygon

Exercises 53

3.10 (3) Add association end names to Figure E3.6. Add only meaningful names that are different
from the class names. You should add at least six association end names to the diagram.

3.11 (2) Add the following operations to the class diagram in Figure E3.6: heat, hire, fire, refuel, re-
serve, clean, de-ice, take off, land, repair, cancel, delay. It is permissible to add an operation to
more than one class.

3.12 (6) Prepare an object diagram for an imaginary round trip you took last weekend to London.
Include at least one instance of each class. Fortunately, direct flights on a hypersonic plane were
available. A friend went with you but decided to stay a while and is still there. Captain Johnson
was your pilot on both flights. You had a different seat each way, but you noticed it was on the
same plane because of a distinctive dent in the tail section. Students should indicate unknown
values with a “?”.

3.13 Prepare a class diagram for each group of classes. Add at least 10 relationships (associations
and generalizations) to each diagram. Use association names and association end names where

Figure E3.3 Object diagram for a polygon that happens to be a square

last first

next

next
next

next

:Point

xCoord=10
yCoord=10

:Point

xCoord=10
yCoord=-10

:Point

xCoord=-10
yCoord=-10

:Point

xCoord=-10
yCoord=10

:Polygon

Figure E3.4 Object diagram for part of your family tree

Mate

child

Mate

child child

child child

Sibling

Cousin

:Person

name=“a grandfather”

:Person

name=“a grandmother”

:Person

name=“an aunt”

:Person

name=“your mother”

:Person

name=“your father”

:Person

name=“a cousin”

:Person

name=“you”

54 Chapter 3 / Class Modeling

needed. Also use qualified associations and show multiplicity. You do not need to show at-
tributes or operations. As you prepare the diagrams, you may add classes. Be sure to explain
your diagrams.
a. (6) school, playground, principal, school board, classroom, book, student, teacher, cafeteria,

restroom, computer, desk, chair, ruler, door, swing
b. (4) automobile, engine, wheel, brake, brake light, door, battery, muffler, tail pipe
c. (4) castle, moat, drawbridge, tower, ghost, stairs, dungeon, floor, corridor, room, window,

stone, lord, lady, cook

Figure E3.5 Object diagram for a geometrical document

:Point

dimensions=0
color=red
position=(5,4)

:Page

pageNumber=1

:Page

pageNumber=2

:Page

pageNumber=3

:Page

pageNumber=4

:Line

dimensions=1
color=blue
position=(12,9)
orientation=36 degrees
length=7

:Arc

dimensions=1
color=green
position=(25,36)
orientation=45 degrees
arcAngle=30 degrees
diameter=13

:Circle

dimensions=2
color=orange
position=(10,78)
width=5
height=5

:Square

dimensions=2
color=yellow
position=(54,88)
orientation=22 degrees
width=10
height=10

:Ellipse

dimensions=2
color=brown
position=(-300,49)
orientation=0 degrees
width=100
height=50

:Rectangle

dimensions=2
color=blue
position=(102,158)
orientation=30 degrees
width=5
height=10

Figure E3.6 Partially completed class model of an air transportation system

Depart

Arrive

City

name

Pilot

name

Airline

name

Airport

name

Seat

locationPassenger

name

Flight

date
flightNum

Plane

model
serialNum
hoursFlown

Exercises 55

d. (8) expression, constant, variable, function, argument list, relational operator, term, factor,
arithmetic operator, statement, computer program

e. (6) file system, file, ASCII file, binary file, directory file, disc, drive, track, sector
f. (4) gas furnace, blower, blower motor, room thermostat, furnace thermostat, humidifier, hu-

midity sensor, gas control, blower control, hot air vent
g. (7) chess piece, rank, file, square, board, move, tree of moves
h. (4) sink, freezer, refrigerator, table, light, switch, window, smoke alarm, burglar alarm, cab-

inet, bread, cheese, ice, door, kitchen

3.14 (4) Add at least 10 attributes and at least 5 methods to each of the class diagrams you prepared
in the previous exercise.

3.15 (6) Figure E3.7 is a portion of a class diagram for a computer program for playing several types
of card games. Deck, hand, discard pile, and draw pile are collections of cards. The initial size
of a hand depends on the type of game. Each card has a suit and rank. Add the following oper-
ations to the diagram: display, shuffle, deal, initialize, sort, topOfPile, bottomOfPile, insert,
draw, and discard. Some operations may appear in more than one class. For each class in which
an operation appears, describe the arguments to the operation and what the operation should do
to an instance of that class.

3.16 (5) Figure E3.8 is a portion of a class diagram for a computer system for laying out a newspaper.
The system handles newspaper pages which may contain, among other things, columns of text.
The user may edit the width and length of a column of text, move it around on a page, or move
it from one page to another. As shown, a column is displayed on exactly one page.

Figure E3.7 Portion of a class diagram for a card-playing system

Deck DiscardPile DrawPile

{ordered}
* Card

suit

CollectionOfCards

visibility
location

Hand

initialSize

1

rank

Figure E3.8 Portion of a class diagram for a newspaper publishing system

* *1 1
Line

text

Column

xLocation
yLocation
width
length

Page

width
length
leftMargin
rightMargin
topMargin
bottomMargin

56 Chapter 3 / Class Modeling

Modify the class diagram so that portions of the same column may appear on more than one
page. If the user edits the text on one page, the changes should appear automatically on other
pages. You should change x location and y location into attributes of an association.

3.17 (6) Figure E3.9 is a class diagram that might be used in developing a system to simplify the
scheduling and scoring of judged athletic competitions such as gymnastics, diving, and figure
skating. There are multiple events and competitors. Each competitor may enter several events
and each event has many competitors.

Each event has several judges who subjectively rate the performance of competitors in that
event. A judge rates every competitor for an event. In some cases, a judge may score more than
one event.

Trials are the focus of the competition. Each trial is an attempt by one competitor to perform
his or her best in one event. A trial is scored by the panel of judges for that event and a net score
determined. Add multiplicity to the diagram.

3.18 (3) Add the following attributes to Figure E3.9: address, age, date, difficulty factor, score, and
name. In some cases, you may wish to use the same attribute in more than one class.

3.19 (3) Add an association to Figure E3.9 to make it possible to determine a competitor’s intended
events before trials are held.

3.20 (6) Prepare a class model to describe undirected graphs. An undirected graph consists of a set
of vertices and a set of edges. Edges connect pairs of vertices. Your model should capture only
the structure of graphs (i.e., connectivity) and need not be concerned with layout such as loca-
tion of vertices or lengths of edges. Figure E3.10 shows a typical undirected graph.

3.21 (4) Prepare an object diagram for Figure E3.10. [Instructor’s note: You may want to give the
students our answer to Exercise 3.20.]

Figure E3.9 Portion of a class diagram for an athletic-event scoring system

Judge

Event

Score

TrialCompetitor

e1

e2

e3e4

e5

e6

v1

v2

v3

v4v5

Figure E3.10 Sample undirected graph

Exercises 57

3.22 (5) Extend the class diagram you prepared in Exercise 3.20 with layout details, including loca-
tions of vertices and thickness and color of edges. Also add names of vertices and edges. [In-
structor’s note: You may want to give the students our answer to Exercise 3.20.]

3.23 (7) Prepare a class model to describe directed graphs. A directed graph is similar to an undirect-
ed graph, except the edges are oriented. Figure E3.11 shows a typical directed graph.

3.24 (4) Prepare an object diagram for Figure E3.11. [Instructor’s note: You may want to give the
students our answer to Exercise 3.23.]

3.25 (7) Several classes shown in Figure E3.12 have attributes that are really references to other
classes and could be replaced with associations. A person may have up to three companies as
employers. Each person has an ID. A car is assigned an ID. Cars may be owned by persons,
companies, or banks. Owner ID refers to the ID of the person, company, or bank who owns the
car. A car loan may be involved in the purchase of a car.

Burying object references as references is the incorrect way to construct a model. Prepare a
class diagram without IDs and using association and generalization. Try to assign multiplicities.
You may need to add one or more classes of your own.

3.26 (4) A problem arises when several independent systems need to identify the same object. For
example, the department of motor vehicles, an insurance company, a bank, and the police may
wish to identify a given motor vehicle. Discuss the relative merits of using the following iden-
tification methods:
a. Identify by its owner
b. Identify by attributes such as manufacturer, model, and year

e1

e2

e3e4

e5

e6

v1

v2

v3

v4v5

Figure E3.11 Sample directed graph

Bank

name
bankID

Company

name
companyID

Figure E3.12 Classes with some attributes that are references.

Car

ownerID
vehicleID
ownerType
model
year

CarLoan

vehicleID
customerType
customerID
accountNumber
bankID
interestRate
currentBalance

Person

name
birthdate
employer1ID
employer2ID
employer3ID
personID
address

58 Chapter 3 / Class Modeling

c. Use the vehicle identification number (VIN) assigned to the car by its manufacturer
d. Use IDs generated internally by each interested agency

3.27 (7) Prepare a class model that might be used to troubleshoot a 4-cycle lawn mower engine. Use
three separate diagrams for the model, with one diagram for each of the following paragraphs.

Power is developed in such an engine by the combustion of a mixture of air and gasoline
against a piston. The piston is attached to a crankshaft via a connecting rod, and it moves up and
down inside a cylinder as the shaft rotates. As the piston moves down, an intake valve opens,
allowing the piston to draw a mixture of fuel and air into the cylinder. At the bottom of the
stroke, the intake valve closes. The piston compresses and heats the mixture as it moves upward.
Rings in grooves around the piston rub against the cylinder wall, providing a seal necessary for
compression and spreading lubricating oil. At the top of the stroke, an electrical spark from a
spark plug detonates the mixture. The expanding gases develop power during the downward
stroke. At the bottom, an exhaust valve is opened. On the next upward stroke, the exhaust gases
are driven out.

Fuel is mixed with air in a carburetor. Dust and dirt in the air, which could cause excessive
mechanical wear, are removed by an air filter. The optimum ratio of fuel to air is set by adjusting
a tapered mixture screw. A throttle plate controls the amount of mixture pulled into the cylinder.
The throttle plate, in turn, is controlled through springs by the operator throttle control and a
governor, a mechanical device which stabilizes the engine speed under varying mechanical
loads. Intake and exhaust valves are normally held closed by springs and are opened at the right
time by a cam shaft, which is gear driven by the crankshaft.

The electrical energy for the spark is provided and timed by a magnet, coil, condenser, and
a normally closed switch called the points. The coil has a low-voltage primary circuit connected
to the points and a high-voltage secondary connected to the spark plug. The magnet is mounted
on a flywheel and as it rotates past the coil, it induces a current in the shorted primary circuit.
The points are driven open at the right instant by a cam on the crankshaft. With the aid of the
condenser, they interrupt the current in the primary circuit, inducing a high-voltage pulse in the
secondary.

3.28 (6) Prepare a class diagram for the dining philosopher problem. There are 5 philosophers and 5
forks around a circular table. Each philosopher has access to 2 forks, one on either side. Each
fork is shared by 2 philosophers. Each fork may be either on the table or in use by one philoso-
pher. A philosopher must have 2 forks to eat.

3.29 (7) The tower of Hanoi is a problem frequently used to teach recursive programming tech-
niques. The goal is to move a stack of disks from one of three long pegs to another, using the
third peg for maneuvering. Each disk is a different size. Disks may be moved from the top of a
stack on a peg to the top of the stack on any other peg, one at a time, provided a disk is never
placed on another disk that is smaller than itself. The details of the algorithm for listing the se-
ries of required moves depend on the structure of the class diagram used. Prepare class diagrams
for each of the following descriptions. Show classes and associations. Do not show attributes or
operations:
a. A tower consists of 3 pegs. Each peg has several disks on it, in a certain order.
b. A tower consists of 3 pegs. Disks on the pegs are organized into subsets called stacks. A

stack is an ordered set of disks. Every disk is in exactly one stack. A peg may have several
stacks on it, in order.

c. A tower consists of 3 pegs. Disks on the pegs are organized into subsets called stacks, as in
(b), with several stacks on a peg. However, the structure of a stack is recursive. A stack con-

Exercises 59

sists of one disk (the disk that is physically on the bottom of the stack) and zero or one stack,
depending on the height of the stack.

d. Similar to (c), except only one stack is associated with a peg. Other stacks on the peg are
associated in a linked list.

3.30 (8) The recursive algorithm for producing the series of moves described in the previous exercise
focuses on a stack of disks. To move a stack of height N, where N > 1, first move the stack of
height N − 1 to the free peg using a recursive call. Then move the bottom disk to the desired
peg. Finally, move the stack on the free peg to the desired peg. The recursion terminates, be-
cause moving a stack of height 1 is trivial. Which one of the several class diagrams that you
prepared in the previous exercise is best suited for this algorithm? Discuss why. Also, add at-
tributes and operations to the diagram. What are the arguments for each operation? Describe
what each operation is supposed to do to each class for which it is defined.

3.31 (6) Consider Figure E3.6. Write an OCL expression to compute the set of names of airlines that
a person flew in a given year. Assume you have a function getYear(date) that extracts the year
given a date. (Instructor’s note: You should give the students our answer to Exercise 3.10 as the
basis for this exercise.)

3.32 (6) Consider Figure E3.6. Write an OCL expression to find the nonstop flights from aCity1 to
aCity2. (Instructor’s note: You should give the students our answer to Exercise 3.10 as the basis
for this exercise.)

3.33 (6) Consider Figure E3.9. Write an OCL expression to find the total score a competitor received
from a judge. (Instructor’s note: You should give the students our answer to Exercise 3.18 as
the basis for this exercise.)

3.34 (6) Compare the class models in Figure E3.13. The left model represents Subscription as an as-
sociation class; the right model treats Subscription as an ordinary class.

A person may have multiple magazine subscriptions. A magazine has multiple subscribers.
For each subscription, it is important to track the date and amount of each payment as well as
the current expiration date.

Figure E3.13 Class diagram for magazine subscriptions

Person

name
address

Magazine

name

subscriber

(a) (b)

phone

Subscription

expirationDate

Payment

date
amount

Person

name
address

Magazine

name

phone

Subscription

expirationDate

Payment

date
amount

subscriber *

1

*
1

1

*

**

*

1

60

4

Advanced Class Modeling

4

Chapter 4 continues our discussion of class modeling concepts with a treatment of advanced
topics. This chapter provides subtleties for improved modeling that you can skip upon a first
reading of this book.

4.1 Advanced Object and Class Concepts

4.1.1 Enumerations
A data type is a description of values. Data types include numbers, strings, and enumera-
tions. An enumeration is a data type that has a finite set of values. For example, the attribute
accessPermission in Figure 3.17 is an enumeration with possible values that include read and
read-write. Figure 3.25 also has some enumerations that Figure 4.1 illustrates. Figure.pen-
Type is an enumeration that includes solid, dashed, and dotted. TwoDimensional.fillType is
an enumeration that includes solid, grey, none, horizontal lines, and vertical lines.

When constructing a model, you should carefully note enumerations, because they often
occur and are important to users. Enumerations are also significant for an implementation;

Figure 4.1 Examples of enumerations. Enumerations often occur and are important
to users. Implementations must enforce the finite set of values.

Figure.penType

TwoDimensional.fillType

4.1 Advanced Object and Class Concepts 61

you may display the possible values with a pick list and you must restrict data to the legiti-
mate values.

Do not use a generalization to capture the values of an enumerated attribute. An enumer-
ation is merely a list of values; generalization is a means for structuring the description of
objects. You should introduce generalization only when at least one subclass has significant
attributes, operations, or associations that do not apply to the superclass. As Figure 4.2
shows, you should not introduce a generalization for Card, because most games do not dif-
ferentiate the behavior of spades, clubs, hearts, and diamonds.

In the UML an enumeration is a data type. You can declare an enumeration by listing the
keyword enumeration in guillemets («») above the enumeration name in the top section of a
box. The second section lists the enumeration values.

4.1.2 Multiplicity
Multiplicity is a constraint on the cardinality of a set. Chapter 3 explained multiplicity for
associations. Multiplicity also applies to attributes.

It is often helpful to specify multiplicity for an attribute, especially for database appli-
cations. Multiplicity for an attribute specifies the number of possible values for each instan-
tiation of an attribute. The most common specifications are a mandatory single value [1], an
optional single value [0..1], and many [*]. Multiplicity specifies whether an attribute is man-
datory or optional (in database terminology whether an attribute can be null). Multiplicity
also indicates if an attribute is single valued or can be a collection. If not specified, an at-
tribute is assumed to be a mandatory single value ([1]). In Figure 4.3 a person has one name,
one or more addresses, zero or more phone numbers, and one birthdate.

Spades Hearts DiamondsClubs

Card

rank

Figure 4.2 Modeling enumerations. Do not use a generalization to
capture the values of an enumerated attribute.

Card

suit : suit
rank : rank

suit

«enumeration»

spades
clubs

Suit

hearts
diamonds

Wrong

Correct

«enumeration»

ace
king

Rank

queen
. . .

62 Chapter 4 / Advanced Class Modeling

4.1.3 Scope
Chapter 3 presented features for individual objects. This is the default usage, but there can
also be features for an entire class. The scope indicates if a feature applies to an object or a
class. An underline distinguishes features with class scope (static) from those with object
scope. Our convention is to list attributes and operations with class scope at the top of the
attribute and operation boxes, respectively.

It is acceptable to use an attribute with class scope to hold the extent of a class (the set
of objects for a class)—this is common with OO databases. Otherwise, you should avoid at-
tributes with class scope because they can lead to an inferior model. It is better to model
groups explicitly and assign attributes to them. For example, the upper model in Figure 4.4
shows a simple model of phone mail. Each message has an owner mailbox, date recorded,
time recorded, priority, message contents, and a flag indicating if it has been received. A mes-
sage may have a mailbox as the source or it may be from an external call. Each mailbox has
a phone number, password, and recorded greeting. For the PhoneMessage class we can store
the maximum duration for a message and the maximum days a message will be retained. For
the PhoneMailbox class we can store the maximum number of messages that can be stored.

The upper model is inferior, however, because the maximum duration, maximum days
retained, and maximum message count have a single value for the entire phone mail system.
In the lower model these limits can vary for different kinds of users, yielding a more flexible
and extensible phone mail system.

In contrast to attributes, it is acceptable to define operations of class scope. The most
common use of class-scoped operations is to create new instances of a class. Sometimes it is
convenient to define class-scoped operations to provide summary data. You should be careful
with the use of class-scoped operations for distributed applications.

4.1.4 Visibility
Visibility refers to the ability of a method to reference a feature from another class and has
the possible values of public, protected, private, and package. The precise meaning depends
on the programming language. (See Chapter 18 for details.) Any method can freely access
public features. Only methods of the containing class and its descendants via inheritance can
access protected features. (Protected features also have package accessibility in Java.) Only
methods of the containing class can access private features. Methods of classes defined in
the same package as the target class can access package features.

Figure 4.3 Multiplicity for attributes. You can specify whether an attribute
is single or multivalued, mandatory or optional.

Person

name : string [1]
address : string [1..*]
phoneNumber : string [*]
birthDate : date [1]

4.2 Association Ends 63

The UML denotes visibility with a prefix. The character “+” precedes public features.
The character “#” precedes protected features. The character “-” precedes private features.
And the character “~” precedes package features. The lack of a prefix reveals no information
about visibility.

There are several issues to consider when choosing visibility.

■ Comprehension. You must understand all public features to understand the capabilities
of a class. In contrast, you can ignore private, protected, and package features—they are
merely an implementation convenience.

■ Extensibility. Many classes can depend on public methods, so it can be highly disrup-
tive to change their signature (number of arguments, types of arguments, type of return
value). Since fewer classes depend on private, protected, and package methods, there is
more latitude to change them.

■ Context. Private, protected, and package methods may rely on preconditions or state in-
formation created by other methods in the class. Applied out of context, a private meth-
od may calculate incorrect results or cause the object to fail.

4.2 Association Ends
As the name implies, an association end is an end of an association. A binary association has
two ends, a ternary association (Section 4.3) has three ends, and so forth. Chapter 3 discussed
the following properties.

Figure 4.4 Attribute scope. Instead of assigning attributes to classes,
model groups explicitly.

Discouraged model

Preferred model

owner{ordered}
source

PhoneMessage

maximumDuration

PhoneMailbox

maxMessageCount owner

Person

name

owner{ordered}
source MailCategory

categoryName

PhoneMailbox

phoneNumber

PhoneMessage

dateRecorded

owner
Person

name

msgMaxDuration
msgMaxDaysRetained
msgMaxCount

password
greeting

timeRecorded
priority
message
hasBeenReceived

maxDaysRetained
dateRecorded
timeRecorded
priority
message
hasBeenReceived

phoneNumber
password
greeting

*

* 1

0..1 * 1

*

*

0..1

1

* 1

*
1

64 Chapter 4 / Advanced Class Modeling

■ Association end name. An association end may have a name. The names disambiguate
multiple references to a class and facilitate navigation. Meaningful names often arise,
and it is useful to place the names within the proper context.

■ Multiplicity. You can specify multiplicity for each association end. The most common
multiplicities are “1” (exactly one), “0..1” (at most one), and “*” (“many”—zero or more).

■ Ordering. The objects for a “many” association end are usually just a set. However,
sometimes the objects have an explicit order.

■ Bags and sequences. The objects for a “many” association end can also be a bag or se-
quence.

■ Qualification. One or more qualifier attributes can disambiguate the objects for a
“many” association end.

Association ends have some additional properties.

■ Aggregation. The association end may be an aggregate or constituent part (Section 4.4).
Only a binary association can be an aggregation; one association end must be an aggre-
gate and the other must be a constituent.

■ Changeability. This property specifies the update status of an association end. The pos-
sibilities are changeable (can be updated) and readonly (can only be initialized).

■ Navigability. Conceptually, an association may be traversed in either direction. How-
ever, an implementation may support only one direction. The UML shows navigability
with an arrowhead on the association end attached to the target class. Arrowheads may
be attached to zero, one, or both ends of an association.

■ Visibility. Similar to attributes and operations (Section 4.1.4), association ends may be
public, protected, private, or package.

4.3 N-ary Associations
Chapter 3 presented binary associations (associations between two classes). However, you
may occasionally encounter n-ary associations (associations among three or more classes.)
You should try to avoid n-ary associations—most of them can be decomposed into binary
associations, with possible qualifiers and attributes. Figure 4.5 shows an association that at
first glance might seem to be an n-ary but can readily be restated as binary associations.

Figure 4.5 Restating an n-ary association. You can decompose most
n-ary associations into binary associations.

A nonatomic n-ary association—a person makes the purchase of stock in a company...

*
Company

name

Person

name *
Purchase

quantity
date
cost

11

stock

Can be restated as...

4.3 N-ary Associations 65

Figure 4.6 shows a genuine n-ary (ternary) association: Programmers use computer lan-
guages on projects. This n-ary association is an atomic unit and cannot be subdivided into
binary associations without losing information. A programmer may know a language and
work on a project, but might not use the language on the project. The UML symbol for n-ary
associations is a diamond with lines connecting to related classes. If the association has a
name, it is written in italics next to the diamond.

As Figure 4.6 illustrates, an n-ary association can have a name for each end just like a
binary association. End names are necessary if a class participates in an n-ary association
more than once. You cannot traverse n-ary associations from one end to another as with bi-
nary associations, so end names do not represent pseudo attributes of the participating class-
es. The OCL [Warmer-99] does not define notation for traversing n-ary associations.

Figure 4.7 shows another ternary association: A professor teaches a listed course during
a semester. The resulting delivered course has a room number and any number of textbooks.

Figure 4.6 Ternary association and links. An n-ary association can have
association end names, just like a binary association.

Project Language

Person

(Project)
CAD program

Class

Instance

diagram

diagram

accountingSystem:Project

name=“accounting system”

CADprogram:Project

name=“CAD program”

C:Language

name=“C”

Cobol:Language

name=“Cobol”

Mary:Person

name=“Mary”

*

*

*
programmer

Semester

Professor

ListedCourse

*

*
*

Figure 4.7 Another ternary association. N-ary associations are full-fledged
associations and can have association classes.

DeliveredCourse

roomNumber
Textbook* *

66 Chapter 4 / Advanced Class Modeling

The typical programming language cannot express n-ary associations. Thus if you are
programming, you will need to promote n-ary associations to classes as Figure 4.8 does for
DeliveredClass. Be aware that you change the meaning of a model, when you promote an n-
ary association to a class. An n-ary association enforces that there is at most one link for each
combination—for each combination of Professor, Semester, and ListedCourse in Figure 4.7
there is one DeliveredCourse. In contrast a promoted class permits any number of links—for
each combination of Professor, Semester, and ListedCourse in Figure 4.8 there can be many
DeliveredCourses. If you were implementing Figure 4.8, special application code would
have to enforce the uniqueness of Professor + Semester + ListedCourse.

4.4 Aggregation
Aggregation is a strong form of association in which an aggregate object is made of constit-
uent parts. Constituents are part of the aggregate. The aggregate is semantically an extended
object that is treated as a unit in many operations, although physically it is made of several
lesser objects.

We define an aggregation as relating an assembly class to one constituent part class. An
assembly with many kinds of constituent parts corresponds to many aggregations. For exam-
ple, a LawnMower consists of a Blade, an Engine, many Wheels, and a Deck. LawnMower
is the assembly and the other parts are constituents. LawnMower to Blade is one aggregation,
LawnMower to Engine is another aggregation, and so on. We define each individual pairing
as an aggregation so that we can specify the multiplicity of each constituent part within the
assembly. This definition emphasizes that aggregation is a special form of binary association.

The most significant property of aggregation is transitivity—that is, if A is part of B and
B is part of C, then A is part of C. Aggregation is also antisymmetric—that is, if A is part of
B, then B is not part of A. Many aggregate operations imply transitive closure* and operate
on both direct and indirect parts.

Figure 4.8 Promoting an n-ary association. Programming languages cannot
express n-ary associations, so you must promote them to classes.

Semester

Professor

ListedCourse

*

*

*
DeliveredCourse

roomNumber
Textbook* *

1

1

1

4.4 Aggregation 67

4.4.1 Aggregation Versus Association
Aggregation is a special form of association, not an independent concept. Aggregation adds
semantic connotations. If two objects are tightly bound by a part-whole relationship, it is an
aggregation. If the two objects are usually considered as independent, even though they may
often be linked, it is an association. Some tests include:

■ Would you use the phrase part of?

■ Do some operations on the whole automatically apply to its parts?

■ Do some attribute values propagate from the whole to all or some parts?

■ Is there an intrinsic asymmetry to the association, where one class is subordinate to the
other?

Aggregations include bill-of-materials, part explosions, and expansions of an object into
constituent parts. Aggregation is drawn like association, except a small diamond indicates
the assembly end. In Figure 4.9 a lawn mower consists of one blade, one engine, many
wheels, and one deck. The manufacturing process is flexible and largely combines standard
parts, so blades, engines, wheels, and decks pertain to multiple lawn mower designs.

The decision to use aggregation is a matter of judgment and can be arbitrary. Often it is
not obvious if an association should be modeled as an aggregation. To a large extent this kind
of uncertainty is typical of modeling; modeling requires seasoned judgment and there are
few hard and fast rules. Our experience has been that if you exercise careful judgment and
are consistent, the imprecise distinction between aggregation and ordinary association does
not cause problems in practice.

4.4.2 Aggregation Versus Composition
The UML has two forms of part-whole relationships: a general form called aggregation and
a more restrictive form called composition.

* Transitive closure is a term from graph theory. If E denotes an edge and N denotes a node and S is the
set of all pairs of nodes connected by an edge, then S+ (the transitive closure of S) is the set of all pairs of nodes
directly or indirectly connected by a sequence of edges. Thus S+ includes all nodes that are directly connected,
nodes connected by two edges, nodes connected by three edges, and so forth.

Figure 4.9 Aggregation. Aggregation is a kind of association in
which an aggregate object is made of constituent parts.

LawnMower

*1

Blade Engine Wheel Deck

1 1
**

* *

68 Chapter 4 / Advanced Class Modeling

Composition is a form of aggregation with two additional constraints. A constituent part
can belong to at most one assembly. Furthermore, once a constituent part has been assigned
an assembly, it has a coincident lifetime with the assembly. Thus composition implies own-
ership of the parts by the whole. This can be convenient for programming: Deletion of an
assembly object triggers deletion of all constituent objects via composition. The notation for
composition is a small solid diamond next to the assembly class (vs. a small hollow diamond
for the general form of aggregation).

In Figure 4.10 a company consists of divisions, which in turn consist of departments; a
company is indirectly a composition of departments. A company is not a composition of its
employees, since company and person are independent objects of equal stature.

4.4.3 Propagation of Operations
Propagation (also called triggering) is the automatic application of an operation to a net-
work of objects when the operation is applied to some starting object [Rumbaugh-88].† For
example, moving an aggregate moves its parts; the move operation propagates to the parts.
Propagation of operations to parts is often a good indicator of aggregation.

Figure 4.11 shows an example of propagation. A person owns multiple documents. Each
document consists of paragraphs that, in turn, consist of characters. The copy operation prop-
agates from documents to paragraphs to characters. Copying a paragraph copies all the char-
acters in it. The operation does not propagate in the reverse direction; a paragraph can be
copied without copying the whole document. Similarly, copying a document copies the own-
er link but does not spawn a copy of the person who is owner.

† The term association as used in this book is synonymous with the term relation used in [Rumbaugh-88].

WorksFor

Figure 4.10 Composition. With composition a constituent part belongs to at
most one assembly and has a coincident lifetime with the assembly.

Person

DepartmentCompany Division* *11

1

*

Document CharacterParagraph

copy copy copy

Figure 4.11 Propagation. You can propagate operations across aggregations
and compositions.

copy copyPerson Owns
* * *1 1 1

4.5 Abstract Classes 69

Most other approaches present an all-or-nothing option: copy an entire network with
deep copy, or copy the starting object and none of the related objects with shallow copy. The
concept of propagation of operations provides a concise and powerful way for specifying a
continuum of behavior. You can think of an operation as starting at some initial object and
flowing from object to object through links according to propagation rules. Propagation is
possible for other operations including save/restore, destroy, print, lock, and display.

You can indicate propagation on class models with a small arrow indicating the direction
and operation name next to the affected association. The notation binds propagation behavior
to an association (or aggregation), direction, and operation. Note that this notation is not part
of the UML and is a special notation.

4.5 Abstract Classes
An abstract class is a class that has no direct instances but whose descendant classes have
direct instances. A concrete class is a class that is instantiable; that is, it can have direct in-
stances. A concrete class may have abstract subclasses (but they, in turn, must have concrete
descendants). Only concrete classes may be leaf classes in an inheritance tree.

All the occupations shown in Figure 4.12 are concrete classes. Butcher, Baker, and Can-
dlestickMaker are concrete classes because they have direct instances. Worker also is a con-
crete class because some occupations may not be specified.

Class Employee in Figure 4.13 is an example of an abstract class. All employees must
be either full-time or part-time. FullTimeEmployee and PartTimeEmployee are concrete
classes because they can be directly instantiated. In the UML notation an abstract class name
is listed in an italic font. Or you may place the keyword {abstract} below or after the name.

You can use abstract classes to define methods that can be inherited by subclasses. Al-
ternatively, an abstract class can define the signature for an operation without supplying a
corresponding method. We call this an abstract operation. (Recall that an operation specifies
the form of a function or procedure; a method is the actual implementation.) An abstract op-
eration defines the signature of an operation for which each concrete subclass must provide
its own implementation. A concrete class may not contain abstract operations, because ob-
jects of the concrete class would have undefined operations.

Figure 4.12 Concrete classes. A concrete class is instantiable; that is, it
can have direct instances.

Butcher CandlestickMakerBaker

Worker {Note: the listing of workers is incomplete.}

70 Chapter 4 / Advanced Class Modeling

Figure 4.13 shows an abstract operation. An abstract operation is designated by italics or
the keyword {abstract}. ComputePay is an abstract operation of class Employee; its signature
but not its implementation is defined. Each subclass must supply a method for this operation.

Note that the abstract nature of a class is always provisional, depending on the point of
view. You can always refine a concrete class into subclasses, making it abstract. Conversely,
an abstract class may become concrete in an application in which the difference among its
subclasses is unimportant.

As a matter of style, it is a good idea to avoid concrete superclasses. Then, abstract and
concrete classes are readily apparent at a glance; all superclasses are abstract and all leaf sub-
classes are concrete. Furthermore, you will avoid awkward situations where a concrete su-
perclass must both specify the signature of an operation for descendant classes and also
provide an implementation for its concrete instances. You can always eliminate concrete su-
perclasses by introducing an Other subclass, as Figure 4.14 shows.

4.6 Multiple Inheritance
Multiple inheritance permits a class to have more than one superclass and to inherit features
from all parents. Then you can mix information from two or more sources. This is a more

Figure 4.13 Abstract class and abstract operation. An abstract class is
a class that has no direct instances

weeklyRate

FullTimeEmployee

computePay

yearToDateEarnings

Employee

computePay

hourlyRate

PartTimeEmployee

computePay

Figure 4.14 Avoiding concrete superclasses. You can always eliminate
concrete superclasses by introducing an Other subclass.

Butcher CandlestickMakerBaker

Worker

Other

4.6 Multiple Inheritance 71

complicated form of generalization than single inheritance, which restricts the class hierar-
chy to a tree. The advantage of multiple inheritance is greater power in specifying classes
and an increased opportunity for reuse. The disadvantage is a loss of conceptual and imple-
mentation simplicity.

The term multiple inheritance is used somewhat imprecisely to mean either the concep-
tual relationship between classes or the language mechanism that implements that relation-
ship. Whenever possible, we try to distinguish between generalization (the conceptual
relationship) and inheritance (the language mechanism), but the term “multiple inheritance”
is more widely used than the term “multiple generalization.”

4.6.1 Kinds of Multiple Inheritance
The most common form of multiple inheritance is from sets of disjoint classes. Each subclass
inherits from one class in each set. In Figure 4.15 FullTimeIndividualContributor is both
FullTimeEmployee and IndividualContributor and combines their features. FullTimeEm-
ployee and PartTimeEmployee are disjoint; each employee must belong to exactly one of
these. Similarly, Manager and IndividualContributor are also disjoint and each employee
must be one or the other. The model does not show it, but we could define three additional
combinations: FullTimeManager, PartTimeIndividualContributor, and PartTimeManager.
The appropriate combinations depend on the needs of an application.

Each generalization should cover a single aspect. You should use multiple generaliza-
tions if a class can be refined on several distinct and independent aspects. In Figure 4.15,
class Employee independently specializes on employment status and managerial status. Con-
sequently the model has two separate generalization sets.

A subclass inherits a feature from the same ancestor class found along more than one
path only once; it is the same feature. For example, in Figure 4.15 FullTimeIndividualCon-
tributor inherits Employee features along two paths, via employmentStatus and managerial-
Status. However, each FullTimeIndividualContributor has only a single copy of Employee
features.

employmentStatus managerialStatus

Figure 4.15 Multiple inheritance from disjoint classes. This is the most
common form of multiple inheritance.

Manager IndividualContributorPartTimeEmployeeFullTimeEmployee

FullTimeIndividualContributor

Employee

72 Chapter 4 / Advanced Class Modeling

Conflicts among parallel definitions create ambiguities that implementations must re-
solve. In practice, you should avoid such conflicts in models or explicitly resolve them, even
if a particular language provides a priority rule for resolving conflicts. For example, suppose
that FullTimeEmployee and IndividualContributor both have an attribute called name. Full-
TimeEmployee.name could refer to the person’s full name while IndividualContributor.name
might refer to the person’s title. In principle, there is no obvious way to resolve such clashes.
The best solution is to try to avoid them by restating the attributes as FullTimeEmploy-
ee.personName and IndividualContributor.title.

Multiple inheritance can also occur with overlapping classes. In Figure 4.16, Amphibi-
ousVehicle is both LandVehicle and WaterVehicle. LandVehicle and WaterVehicle overlap,
because some vehicles travel on both land and water. The UML uses a constraint (see Section
4.9) to indicate an overlapping generalization set; the notation is a dotted line cutting across
the affected generalizations with keywords in braces. In this example, overlapping means
that an individual vehicle may belong to more than one of the subclasses. Incomplete means
that all possible subclasses of vehicle have not been explicitly named.

4.6.2 Multiple Classification
An instance of a class is inherently an instance of all ancestors of the class. For example, an
instructor could be both faculty and student. But what about a Harvard Professor taking
classes at MIT? There is no class to describe the combination (it would be artificial to make
one). This is an example of multiple classification, in which one instance happens to partic-
ipate in two overlapping classes.

The UML permits multiple classification, but most OO languages handle it poorly. As
Figure 4.17 shows, the best approach using conventional languages is to treat Person as an
object composed of multiple UniversityMember objects. This workaround replaces inherit-
ance with delegation (discussed in the next section). This is not totally satisfactory, because
there is a loss of identity between the separate roles, but the alternatives involve radical
changes in many programming languages [McAllester-86].

Vehicle

LandVehicle WaterVehicle

Figure 4.16 Multiple inheritance from overlapping classes. This form of
multiple inheritance occurs less often than with disjoint classes.

AmphibiousVehicleCar Boat

{overlapping, incomplete}

4.6 Multiple Inheritance 73

4.6.3 Workarounds
Dealing with lack of multiple inheritance is really an implementation issue, but early restruc-
turing of a model is often the easiest way to work around its absence. We list some restruc-
turing techniques below. Two of the approaches make use of delegation, which is an
implementation mechanism by which an object forwards an operation to another object for
execution. See Chapter 15 for a further discussion of delegation.

■ Delegation using composition of parts. You can recast a superclass with multiple in-
dependent generalizations as a composition in which each constituent part replaces a
generalization. This approach is similar to that for multiple classification in the previous
section. This approach replaces a single object having a unique ID by a group of related
objects that compose an extended object. Inheritance of operations across the composi-
tion is not automatic. The composite must catch operations and delegate them to the ap-
propriate part.

For example, in Figure 4.18 EmployeeEmployment becomes a superclass of Full-
TimeEmployee and PartTimeEmployee. EmployeeManagement becomes a superclass of
Manager and IndividualContributor. Then you can model Employee as a composition
of EmployeeEmployment and EmployeeManagement. An operation sent to an Employee
object would have to be redirected to the EmployeeEmployment or EmployeeManage-
ment part by the Employee class.

In this approach, you need not create the various combinations (such as FullTimeIn-
dividualContributor) as explicit classes. All combinations of subclasses from the differ-
ent generalizations are possible.

■ Inherit the most important class and delegate the rest. Figure 4.19 preserves identity
and inheritance across the most important generalization. You degrade the remaining
generalizations to composition and delegate their operations as in the previous alterna-
tive.

Figure 4.17 Workaround for multiple classification. OO languages do not
handle this well, so you must use a workaround.

Faculty Student Staff

Instructor

UniversityMemberPerson
*1

{overlapping}

74 Chapter 4 / Advanced Class Modeling

■ Nested generalization. Factor on one generalization first, then the other. This approach
multiplies out all possible combinations. For example, in Figure 4.20 under FullTime-
Employee and PartTimeEmployee, add two subclasses for managers and individual con-
tributors. This preserves inheritance but duplicates declarations and code and violates
the spirit of OO programming.

Any of these workarounds can be made to work, but they all compromise logical structure
and maintainability. There are several issues to consider when selecting the best workaround.

Manager IndividualContributorPartTimeEmployeeFullTimeEmployee

employmentStatus managerialStatus

Figure 4.18 Workaround for multiple inheritance—delegation

EmployeeEmployment EmployeeManagement

Employee
1 1

11

Manager IndividualContributor

managerialStatus

PartTimeEmployeeFullTimeEmployee

employmentStatus

EmployeeManagement

Figure 4.19 Workaround for multiple inheritance—inheritance and delegation

Employee
1 1

PartTime PartTimeFullTime FullTime

employmentStatus

Employee

Figure 4.20 Workaround for multiple inheritance—nested generalization

PartTimeEmployeeFullTimeEmployee

Manager IndividualContributor Manager IndividualContributor

fullTimeEmpStatus partTimeEmpStatus

4.7 Metadata 75

■ Superclasses of equal importance. If a subclass has several superclasses, all of equal
importance, it may be best to use delegation (Figure 4.18) and preserve symmetry in the
model.

■ Dominant superclass. If one superclass clearly dominates and the others are less im-
portant, preserve inheritance through this path (Figure 4.19 or Figure 4.20).

■ Few subclasses. If the number of combinations is small, consider nested generalization
(Figure 4.20). If the number of combinations is large, avoid it.

■ Sequencing generalization sets. If you use nested generalization (Figure 4.20), factor
on the most important criterion first, the next most important second, and so forth.

■ Large quantities of code. Try to avoid nested generalization (Figure 4.20) if you must
duplicate large quantities of code.

■ Identity. Consider the importance of maintaining strict identity. Only nested generali-
zation (Figure 4.20) preserves this.

4.7 Metadata
Metadata is data that describes other data. For example, a class definition is metadata. Mod-
els are inherently metadata, since they describe the things being modeled (rather than being
the things). Many real-world applications have metadata, such as parts catalogs, blueprints,
and dictionaries. Computer-language implementations also use metadata heavily.

Figure 4.21 shows an example of metadata and data. A car model has a model name,
year, base price, and a manufacturer. Some examples of car models are a 1969 Ford Mustang
and a 1975 Volkswagen Rabbit. A physical car has a serial number, color, options, and an
owner. As an example of physical cars, John Doe may own a blue Ford with serial number
1FABP and a red Volkswagen with serial number 7E81F. A car model describes many phys-
ical cars and holds common data. A car model is metadata relative to a physical car, which
is data.

You can also consider classes as objects, but classes are meta-objects and not real-world
objects. Class descriptor objects have features, and they in turn have their own classes, which

PersonCompany

ownermanufacturer

Figure 4.21 Example of metadata. Metadata often arises in applications.

Describes
1

1 1

*

* *

PhysicalCar

serialNumber
color
options

CarModel

modelName
year
basePrice

76 Chapter 4 / Advanced Class Modeling

are called metaclasses. Treating everything as an object provides a more uniform implemen-
tation and greater functionality for solving complex problems. Languages vary in their ac-
cessibility for metadata. Some languages, like Lisp and Smalltalk, let metadata be inspected
and altered by programs at run time. In contrast, languages like C++ and Java deal with meta-
data at compile time but do not make the metadata explicitly available at run time.

4.8 Reification
Reification is the promotion of something that is not an object into an object. Reification is
a helpful technique for meta applications because it lets you shift the level of abstraction. On
occasion it is useful to promote attributes, methods, constraints, and control information into
objects so you can describe and manipulate them as data.

As an example of reification, consider a database manager. A developer could write code
for each application so that it can read and write from files. Instead, for many applications,
it is a better idea to reify the notion of data services and use a database manager. A database
manager has abstract functionality that provides a general-purpose solution to accessing data
reliably and quickly for multiple users.

For another example, consider state-transition diagrams (see the next two chapters). You
can use a state-transition diagram to specify control and then implement it by writing the cor-
responding code. Alternatively, you can prepare a metamodel and store a state-transition
model as data. A general-purpose interpreter reads the contents of the metamodel and exe-
cutes the intent.

Figure 4.22 promotes the substanceName attribute to a class to capture the many-to-
many relationship between Substance and SubstanceName. A chemical substance may have
multiple aliases. For example, propylene may be referred to as propylene and C3H6. Also, an
alias may pertain to multiple chemical substances. Various mixtures of ethylene glycol and
automotive additives may have the alias of antifreeze.

Figure 4.22 Reification. Reification is the promotion of something that is not
an object into an object and can be helpful for meta applications.

SubstanceName

substanceName

alias
Substance

1..*

Reification:
Promote attribute
to a class

Substance

substanceName

*

4.9 Constraints 77

4.9 Constraints
A constraint is a boolean condition involving model elements, such as objects, classes, at-
tributes, links, associations, and generalization sets. A constraint restricts the values that el-
ements can assume. You can express constraints with natural language or a formal language
such as the Object Constraint Language (OCL) [Warmer-99].

4.9.1 Constraints on Objects
Figure 4.23 shows several examples of constraints. No employee’s salary can exceed the sal-
ary of the employee’s boss (a constraint between two things at the same time). No window
can have an aspect ratio (length/width) of less than 0.8 or greater than 1.5 (a constraint be-
tween attributes of a single object). The priority of a job may not increase (constraint on the
same object over time). You may place simple constraints in class models.

4.9.2 Constraints on Generalization Sets
Class models capture many constraints through their very structure. For example, the seman-
tics of generalization imply certain structural constraints. With single inheritance the sub-
classes are mutually exclusive. Furthermore, each instance of an abstract superclass
corresponds to exactly one subclass instance. Each instance of a concrete superclass corre-
sponds to at most one subclass instance.

Figure 4.16 and Figure 4.17 use a constraint to help express multiple inheritance. The
UML defines the following keywords for generalization sets.

■ Disjoint. The subclasses are mutually exclusive. Each object belongs to exactly one of
the subclasses.

■ Overlapping. The subclasses can share some objects. An object may belong to more
than one subclass.

■ Complete. The generalization lists all the possible subclasses.

■ Incomplete. The generalization may be missing some subclasses.

boss

{salary ≤ boss.salary} {0.8 ≤ length/width ≤ 1.5} {priority never increases}

Figure 4.23 Constraints on objects. The structure of a model expresses many
constraints, but sometimes it is helpful to add explicit constraints.

0..1

*

Employee

salary

Job

priority

Window

length
width

78 Chapter 4 / Advanced Class Modeling

4.9.3 Constraints on Links
Multiplicity is a constraint on the cardinality of a set. Multiplicity for an association restricts
the number of objects related to a given object. Multiplicity for an attribute specifies the
number of values that are possible for each instantiation of an attribute.

Qualification also constrains an association. A qualifier attribute does not merely de-
scribe the links of an association but is also significant in resolving the “many” objects at an
association end.

An association class implies a constraint. An association class is a class in every right;
for example, it can have attributes and operations, participate in associations, and participate
in generalizations. But an association class has a constraint that an ordinary class does not;
it derives identity from instances of the related classes.

An ordinary association presumes no particular order on the objects of a “many” end.
The constraint {ordered} indicates that the elements of a “many” association end have an ex-
plicit order that must be preserved.

Figure 4.24 shows an explicit constraint that is not part of the model’s structure. The
chair of a committee must be a member of the committee; the ChairOf association is a subset
of the MemberOf association.

4.9.4 Use of Constraints
We favor expressing constraints in a declarative manner. Declaration lets you express a con-
straint’s intent, without supposing an implementation. Typically, you will need to convert
constraints to procedural form before you can implement them in a programming language,
but this conversion is usually straightforward.

Constraints provide one criterion for measuring the quality of a class model; a “good”
class model captures many constraints through its structure. It often requires several itera-
tions to get the structure of a model right from the perspective of constraints. Also, in prac-
tice, you cannot enforce every constraint with a model’s structure, but you should try to
enforce the important ones.

The UML has two alternative notations for constraints. You can either delimit a con-
straint with braces or place it in a “dog-eared” comment box (Figure 4.26). Either way, you
should try to position constraints near the affected elements. You can use dashed lines to con-
nect constrained elements. A dashed arrow can connect a constrained element to the element
on which it depends.

MemberOf

ChairOf

{subset}

Figure 4.24 Subset constraint between associations.

Person Committee
* *

*1

4.10 Derived Data 79

4.10 Derived Data
A derived element is a function of one or more elements, which in turn may be derived. A
derived element is redundant, because the other elements completely determine it. Ultimate-
ly, the derivation tree terminates with base elements. Classes, associations, and attributes
may be derived. The notation for a derived element is a slash in front of the element name.
You should also show the constraint that determines the derivation.

Figure 4.25 shows a derived attribute. Age can be derived from birthdate and the current
date.

In Figure 4.26, a machine consists of several assemblies that in turn consist of parts. An
assembly has a geometrical offset with respect to machine coordinates; each part has an off-
set with respect to assembly coordinates. We can define a coordinate system for each part
that is derived from machine coordinates, assembly offset, and part offset. This coordinate
system can be represented as a derived class called Offset related to each part by a derived
association called NetOffset.

It is useful to distinguish operations with side effects from those that merely compute a
functional value without modifying any objects. The latter kind of operation is called a que-
ry. You can regard queries with no arguments except the target object as derived attributes.
For example, you can compute the width of a box from the positions of its sides. In many
cases, an object has a set of attributes with interrelated values, of which only a fixed number
of values can be chosen independently. A class model should generally distinguish indepen-
dent base attributes from dependent derived attributes. The choice of base attributes is arbi-
trary but should be made to avoid overspecifying the state of the object.

Figure 4.25 Derived attribute. A derived attribute is a function of one or more elements.

CurrentDate

{age = currentDate − birthdate}

Person

birthdate
/ age

Machine

/ Offset

/ NetOffset

offset =

Figure 4.26 Derived object and association. Derived data can complicate im-
plementation, so only use derived data where it truly is compelling.

PartAssembly

MachineAssembly.offset ×
PartAssembly.offset

* *1 1

1

1

offset offset

80 Chapter 4 / Advanced Class Modeling

Some developers tend to include many derived elements. Generally, this is not helpful
and clutters a model. You should only include derived elements when they are important ap-
plication concepts or substantially ease implementation. It can be quite difficult to keep de-
rived elements consistent with the base data, so only use derived elements for
implementation where they are clearly compelling.

4.11 Packages
You can fit a class model on a single page for many small and medium-sized problems. How-
ever, it is often difficult to grasp the entirety of a large model. We recommend that you par-
tition large models so that people can understand them.

A package is a group of elements (classes, associations, generalizations, and lesser
packages) with a common theme. A package partitions a model, making it easier to under-
stand and manage. Large applications may require several tiers of packages. Packages form
a tree with increasing abstraction toward the root, which is the application, the top-level
package. As Figure 4.27 shows, the notation for a package is a box with a tab. The purpose
of the tab is to suggest the enclosed contents, like a tabbed folder.

There are various themes for forming packages: dominant classes, dominant relation-
ships, major aspects of functionality, and symmetry. For example, many business systems
have a Customer package or a Part package; Customer and Part are dominant classes that are
important to the business of a corporation and appear in many applications. In an engineering
application we used a dominant relationship, a large generalization for many kinds of equip-
ment, to divide a class model into packages. Equipment was the focus of the model, and the
attributes and relationships varied greatly across types of equipment. You could divide the
class model of a compiler into packages for lexical analysis, parsing, semantic analysis, code
generation, and optimization. Once some packages have been established, symmetry may sug-
gest additional packages.

We can offer the following tips for devising packages.

■ Carefully delineate each package’s scope. The precise boundaries of a package are a
matter of judgment. Like other aspects of modeling, defining the scope of a package re-
quires planning and organization. Make sure that class and association names are unique
within each package, and use consistent names across packages as much as possible.

■ Define each class in a single package. The defining package should show the class
name, attributes, and operations. Other packages that refer to a class can use a class icon,

Figure 4.27 Notation for a package. Packages let you organize large
models so that persons can more readily understand them.

PackageName

4.12 Practical Tips 81

a box that contains only the class name. This convention makes it easier to read class
models, because a class is prominent in its defining package. Readers are not distracted
by definitions that may be inconsistent or misled by forgetting a prior class definition.
This convention also makes it easier to develop packages concurrently.

■ Make packages cohesive. Associations and generalizations should normally appear in
a single package, but classes can appear in multiple packages, helping to bind them. Try
to limit appearances of classes in multiple packages. Typically no more than 20–30% of
classes should appear in multiple packages.

4.12 Practical Tips
Here are tips for constructing class models in addition to those from Chapter 3.

■ Enumerations. When constructing a model, you should declare enumerations and their
values, because they often occur and are important to users. Do not create unnecessary
generalizations for attributes that are enumerations. Only specialize a class when the
subclasses have distinct attributes, operations, or associations. (Section 4.1.1)

■ Class-scoped (static) attributes. It is acceptable to use an attribute with class scope to
hold the extent of a class. Otherwise, you should avoid attributes with class scope be-
cause they can lead to an inferior model. You can improve a model by explicitly mod-
eling groups and assigning attributes to them. (Section 4.1.3)

■ N-ary associations. Try to avoid n-ary associations. Most n-ary associations can be de-
composed into binary associations. (Section 4.3)

■ Concrete superclasses. As a matter of style, it is best to avoid concrete superclasses.
Then, abstract and concrete classes are readily apparent at a glance—all superclasses are
abstract and all leaf subclasses are concrete. You can always eliminate concrete super-
classes by introducing an Other subclass. (Section 4.5)

■ Multiple inheritance. Limit your use of multiple inheritance to that which is essential
for a model. (Section 4.6)

■ Constraints. You may be able to restructure a class model to improve clarity and cap-
ture additional constraints. (Section 4.9)

■ Derived elements. You should always indicate when an element is derived. Use derived
elements sparingly. (Section 4.10)

■ Large models. Use packages to organize large models so that the reader can understand
portions of the model at a time, rather than having to deal with the whole model at once.
(Section 4.11)

■ Defining classes. Define each class in a single package and show its features there. Oth-
er packages that refer to the class should use a class icon, a box that contains only the
class name. This convention makes it easier to read class models and facilitates concur-
rent development. (Section 4.11)

82 Chapter 4 / Advanced Class Modeling

4.13 Chapter Summary
This chapter covers several diverse topics that explain subtleties of class modeling. You will
not need these concepts for simple models, but they can be important for complex applica-
tions. Remember, application needs should drive the content of any model. Only use the ad-
vanced concepts in this chapter if they truly add to your application, either by improving
clarity, tightening structural constraints, or permitting expression of a difficult concept.

A data type is a description of values; you must assign every attribute a data type before
a model can be implemented. Enumerations are a special data type that constrains the per-
missible values; enumerated values are often prominent in user interfaces.

Multiplicity is a constraint on the cardinality of a set. It applies to attributes as well as
associations. Multiplicity for an association restricts the number of objects related to a given
object. Multiplicity for an attribute specifies the number of values that are possible for each
attribute instantiation.

You should try to avoid n-ary associations—you can decompose most of them into bi-
nary associations. Only use n-ary associations that are atomic and cannot be decomposed.
Be aware that most programming languages will force you to promote n-ary associations to
classes.

Aggregation is a strong form of association in which an aggregate object is made of con-
stituent parts. Aggregation has the properties of transitivity and antisymmetry that differen-
tiate it from association. Operations on an aggregate often propagate to the constituent parts.

Composition is a form of aggregation with two additional constraints. A constituent part
can belong to at most one assembly. Furthermore, once a constituent part has been assigned
an assembly, it has a coincident lifetime with the assembly. Composition implies ownership
of a part by an assembly.

An abstract class has no direct instances. A concrete class may have direct instances.
Abstract classes can define methods in one place for use by several subclasses. You can also
use abstract classes to define the signature of an operation, leaving the implementation to
each subclass.

Multiple inheritance permits a subclass to inherit features from more than one super-
class. Each generalization should discriminate a single aspect You should arrange subclasses
into more than one generalization if their superclass specializes on more than one aspect. A
subclass may combine classes from different generalizations, or it may combine classes from
an overlapping generalization, but it may not combine classes from the same disjoint gener-
alization.

Metadata is data that describes other data. Classes are metadata, since they describe ob-
jects. Metadata is a useful concept for two reasons: It occurs in the real world and it is a pow-
erful tool for implementing complex systems. Metadata can be confusing to model, because
it blurs the distinction between descriptor and referent. Reification, the promotion of some-
thing that is not an object into an object, can be a helpful technique for meta applications.

Explicit constraints on classes, associations, and attributes can increase the precision of a
model. Generalization and multiplicity are examples of constraints built into the fabric of class
modeling. Derived elements may appear in a model but do not add fundamental information.

Bibliographic Notes 83

A package is a group of classes, associations, generalizations, and lesser packages with
a common theme. A package partitions a large model, making it easier to understand and
manage.

Bibliographic Notes
[Rumbaugh-05] explains many subtleties of the UML, some of which we cover in this chap-
ter. [Warmer-99] is the authoritative reference for the Object Constraint Language (OCL).

The previous edition of this book used candidate keys to specify multiplicity for n-ary
associations. In this context, a candidate key is a minimal set of association ends that unique-
ly identifies a link. This edition omits discussion of candidate keys because they are seldom
needed for programming. Also, the notion of a scope subsumes the terms class attribute and
class operation in the previous edition.

References
[McAllester-86] David McAllester, Ramin Zabih. Boolean classes. OOPSLA’87 as SIGPLAN 22, 12

(December 1987), 417–424.
[Rumbaugh-88] James E. Rumbaugh. Controlling propagation of operations using attributes on rela-

tions. OOPSLA’88 as ACM SIGPLAN 23, 11 (November 1988), 285–296.
[Rumbaugh-05] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Ref-

erence Manual, Second Edition. Boston: Addison-Wesley, 2005.
[Warmer-99] Jos Warmer and Anneke Kleppe. The Object Constraint Language. Boston: Addison-

Wesley, 1999.

Exercises
4.1 (3) The class diagram in Figure E4.1 is a partial representation of the structure of an automobile.

Improve it by changing some of the associations to aggregations.

4.2 (4) Figure E4.2 is a partially completed class diagram for an interactive diagram editor. A sheet
is a collection of lines and boxes. A line is a series of line segments that connect two boxes. Each
line segment is specified by two points. A point may be shared by a vertical and a horizontal
line segment in the same line. A selection is a collection of lines and boxes that have been high-

Figure 4.28 Key concepts for Chapter 4

abstract class
abstract operation
aggregation
association end
composition

concrete class
constraint
delegation
derived element
enumeration

generalization
metadata
multiple inheritance
multiplicity (of an attribute)
n-ary association

package
propagation
reification
scope
visibility

84 Chapter 4 / Advanced Class Modeling

lighted in anticipation of an editing operation. A buffer is a collection of lines and boxes that
have been cut or copied from the sheet.

As it stands, the diagram does not express the constraint that a line or a box belongs to ex-
actly one buffer or one selection or one sheet. Revise the class diagram and use generalization
to express the constraint by creating a superclass for the classes Buffer, Selection, and Sheet. Dis-
cuss the merits of the revision.

4.3 (3) Categorize the following relationships into generalization, aggregation, or association. Be-
ware, there may be n-ary associations in the list, so do not assume every relationship involving
three or more classes is a generalization. Explain your answers.
a. A country has a capital city.
b. A dining philosopher uses a fork.
c. A file is an ordinary file or a directory file.

Figure E4.1 Portion of a class diagram of the assembly hierarchy of an automobile

Body GasTankDoor

Wheel

BrakeLight

ElectricalSystem

BrakeSwitchBrake

PipeMuffler Battery AlternatorStarter

TransmissionEngine

ExhaustSystem

BrakingSystemPowerTrain SteeringSystem

Automobile

* 1

1
1 1

1

1

11

1

1
11 1

1 1 1 1 1 1
1

1 1 1* * *

*

**
1

1

1 1

1
1

1

1 1 1 1

1
11

1

*

1 1

1

*

1

*

Point
Sheet

Figure E4.2 Portion of a class diagram for a simple diagram editor

2
21..2

SelectionBuffer
Box

Line

LineSegment

**

**

**

1

*

*0..1

0..10..10..1

0..1 0..1

Exercises 85

d. Files contain records.
e. A polygon is composed of an ordered set of points.
f. A drawing object is text, a geometrical object, or a group.
g. A person uses a computer language on a project.
h. Modems and keyboards are input/output devices.
i. Classes may have several attributes.
j. A person plays for a team in a certain year.
k. A route connects two cities.
l. A student takes a course from a professor.

4.4 (7) Prepare a class diagram for a graphical document editor that supports grouping. Assume that
a document consists of several sheets. Each sheet contains drawing objects, including text, geo-
metrical objects, and groups. A group is simply a set of drawing objects, possibly including oth-
er groups. A group must contain at least two drawing objects. A drawing object can be a direct
member of at most one group. Geometrical objects include circles, ellipses, rectangles, lines,
and squares.

4.5 (7) The following is a partial taxonomy of rotating electrical machines. Electrical machines may
be categorized for analysis purposes into alternating current (ac) or direct current (dc). Some
machines run on ac, some on dc, and some will run on either. A few examples of electrical ma-
chines include large synchronous motors, small induction motors, universal motors, and perma-
nent magnet motors. Most motors found in the home are usually induction or universal.

An ac machine may be synchronous or induction. Universal motors are typically used where
high speed is needed, such as in blenders or vacuum cleaners. They will run on either ac or dc.
Permanent-magnet motors are frequently used in toys and will work only on dc.

Prepare a class diagram showing how the categories and the machines just described relate
to one another. Use multiple inheritance where it is appropriate to do so.

4.6 (7) Revise the class diagram that you prepared for the previous exercise to eliminate use of mul-
tiple inheritance.

4.7 (8) Prepare a metamodel that supports only the following UML concepts: class, attribute, asso-
ciation, association end, multiplicity, class name, and attribute name. Use only these constructs
to build your metamodel.

4.8 (8) Prepare an object diagram of the metamodel you prepared in the previous diagram. Treat the
metamodel as a class diagram that can be represented by instances of the classes of the meta-
model.

4.9 (5) Use generalization to revise your answer from Exercise 4.7 so that an attribute belongs to
either a class or an association, but not both at the same time.

4.10 (7) Figure E4.3 is a portion of a metamodel that describes generalization. A generalization is
associated with several generalization roles, which are the roles that classes play in generaliza-
tions. Role type is either subclass or superclass. Does this model support multiple inheritance?
Explain your answer.

4.11 (8) Describe how to find which class is the superclass of a generalization using the metamodel
in Figure E4.3. Revise the metamodel to simplify the query. Describe how to determine the su-
perclass of a generalization using your revised metamodel. Make sure that your revised meta-
model supports multiple inheritance. Write OCL queries for Figure E4.3 and your model to find
a superclass, given a generalization.

86 Chapter 4 / Advanced Class Modeling

4.12 (7) How well does the metamodel in Figure E4.3 enforce the constraint that every generalization
has exactly one superclass? Revise it to improve the enforcement of the constraint.

4.13 (7) Figure E4.3 is a metamodel that describes class models such as in Figure E4.4. Prepare an
object diagram using the classes from the metamodel to describe the model in Figure E4.4.

4.14 (6) Prepare a portion of a class diagram for a library book checkout system that shows the late
charges for an overdue book as a derived attribute.

4.15 (10) Prepare a metamodel of Backus-Naur (BNF) representations of computer languages. A
compiler-compiler (such as the UNIX program YACC) could use the model. The compiler-
compiler accepts these representations in graphical form as input and produces a compiler for
the represented language.

Figure E4.5 shows an example of a Backus-Naur form that the compiler-compiler will ac-
cept. Rectangles denote nonterminals, and circles or rectangles with rounded corners denote ter-
minals. Single characters are in circles, and sequences of several characters are in rounded rect-
angles. Arrows indicate the direction of flow through the diagram. Where several directed paths
diverge, it is permissible to take any one of them. The name of the nonterminal being described
appears at the beginning of its representation.

4.16 (7) Prepare a simple class model, sufficient for representing recipes. Use the recipe in Figure
E4.6 as a basis. This exercise is an example of reification. In one sense the tasks of a recipe
could be operations; in another sense they could be data in a class model.

4.17 (9) Extend your class model of recipes to handle alternate ingredients. For example, some lasa-
gna recipes allow cottage cheese to be substituted for ricotta cheese.

4.18 (8) The North American Securities Administrators Association (NASAA, www.nasaa.org)
seeks to protect investors and educate them about trading in securities. NASAA recommends

Figure E4.3 Metamodel of generalization

Generalization

generalizSetName

GeneralizationRole

roleType

Class

className
*1 * 1

HumanPoweredVehicle

a

Figure E4.4 Class diagram with multiple inheritance

b

c

d

LandPoweredVehicle

Bicycle

Vehicle

www.nasaa.org

Exercises 87

that investors take notes when talking to a broker using the form in Figure E4.7. (Use multiple
forms when the broker makes multiple recommendations in a call.) Suppose that it is desirable
to automate this form with software. Prepare a class model for the form.

4.19 (9) Prepare a model for words in a dictionary. Include the following: alternative spellings, ant-
onyms, dictionary, grammar type (noun, verb, adjective, adverb), historical derivation, hyphen-
ation, meanings, miscellaneous comments, prioritization by frequency of use, pronunciation,
and synonyms.

Some sample definitions are as follows (from Webster’s New World Dictionary):

■ been (bin; also, chiefly Brit., ben &, esp. if unstressed, ben), pp. of be.

■ kum⋅quat (kum′kwot), n. [< Chin. chin-chü, golden orange], 1. a small, orange-colored,
oval fruit, with a sour pulp and a sweet rind, used in preserves, 2. the tree that it grows on.
Also sp. cumquat.

■ lac⋅y (las′i), adj. [-IER, -IEST], 1. of lace. 2. like lace; having a delicate open pattern. —
lac′i⋅ly, adv. —lac′i⋅ness, n.

■ Span⋅ish (span′ish), adj. of Spain, its people, their language, etc. n. 1. the Romance lan-
guage of Spain and Spanish America. 2. the Spanish people.

Figure E4.8 shows a partial answer to the problem showing classes and relationships. Add at-
tributes and ordering to the associations where appropriate.

The RelatedWord, Synonym, and Antonym associations are not quite right and have a prob-
lem. Comment on them.

Figure E4.5 Portion of a BNF diagram

)string

"

character

(

"

name

string

NAME

Figure E4.6 A simple recipe

2.5 tbsp. salad oil for browning
1 cup minced onion
1 clove garlic
1 lb. ground beef
2 tsp. salt
3.5 cups whole tomatoes (large can)

1 tsp. oregano
.5 box lasagna noodles
1 lb. ricotta cheese
1 cup grated mozzarella cheese
.5 cup parmesan cheese
2 cans tomato paste

Lasagna

Cook onion, clove garlic, ground beef, 1 tsp. salt in salad oil until meat is browned. Add
tomatoes, tomato paste, 1 tsp salt, oregano, and simmer, covered, 1 hour until thick.
Cook noodles 15 minutes in water until tender. Drain and blanch. Butter 12×8 inch pan
and place in layers of noodles, sauce, mozzarella, ricotta cheese, and parmesan. Bake
at 350 degrees for 45 to 60 minutes.

88 Chapter 4 / Advanced Class Modeling

Figure E4.7 NASAA form for broker calls

Date Time

Call made Call received Meeting

Name of Broker Phone

Broker’s Firm Phone

Broker’s CRD No. Obtained CRD Report

Location

Investment Recommendation

Buy Sell

Name of Security

Reasons for recommendation

How does this meet my investment objectives?

What are the risks?

I asked to receive written information
about the investment before making
a decision.

Yes No

I will get:

a prospectus

an offering memorandum

most recent Annual Report

most recent quarterly or

other information

research reports

interim reports

Proposed Trade

Number of shares/units

Price per share $

Total cost $

commission

My instructions

Do nothing Buy Sell

Number Price

$

Notes

Notes made by:

Exercises 89

WordSpelling

WordPronunciation

WordMeaning

Dictionary

Word

GrammarType

Synonym

Antonym

RelatedWord

* * *
*
*

*
*

1

1

1

*

*

* *

*

1

Figure E4.8 Partial model for words in a dictionary

«enumeration»

noun
verb

GrammarType

adjective
adverb

90

5

State Modeling

You can best understand a system by first examining its static structure—that is, the structure
of its objects and their relationships to each other at a single moment in time (the class mod-
el). Then you should examine changes to the objects and their relationships over time (the
state model). The state model describes the sequences of operations that occur in response
to external stimuli, as opposed to what the operations do, what they operate on, or how they
are implemented.

The state model consists of multiple state diagrams, one for each class with temporal
behavior that is important to an application. The state diagram is a standard computer science
concept (a graphical representation of finite state machines) that relates events and states.
Events represent external stimuli and states represent values of objects. You should master
the material in this chapter before proceeding in the book.

5.1 Events
An event is an occurrence at a point in time, such as user depresses left button or flight 123
departs from Chicago. Events often correspond to verbs in the past tense (power turned on,
alarm set) or to the onset of some condition (paper tray becomes empty, temperature be-
comes lower than freezing). By definition, an event happens instantaneously with regard to
the time scale of an application. Of course, nothing is really instantaneous; an event is simply
an occurrence that an application considers atomic and fleeting. The time at which an event
occurs is an implicit attribute of the event. Temporal phenomena that occur over an interval
of time are properly modeled with a state.

One event may logically precede or follow another, or the two events may be unrelated.
Flight 123 must depart Chicago before it can arrive in San Francisco; the two events are caus-
ally related. Flight 123 may depart before or after flight 456 departs Rome; the two events
are causally unrelated. Two events that are causally unrelated are said to be concurrent; they

5.1 Events 91

have no effect on each other. If the communications delay between two locations exceeds the
difference in event times, then the events must be concurrent because they cannot influence
each other. Even if the physical locations of two events are not distant, we consider the events
concurrent if they do not affect each other. In modeling a system we do not try to establish
an ordering between concurrent events because they can occur in any order.

Events include error conditions as well as normal occurrences. For example, motor
jammed, transaction aborted, and timeout are typical error events. There is nothing different
about an error event; only our interpretation makes it an “error.”

The term event is often used ambiguously. Sometimes it refers to an instance, at other
times to a class. In practice, this ambiguity is usually not a problem and the precise meaning
is apparent from the context. If necessary, you can say event occurrence or event type to be
precise.

There are several kinds of events. The most common are the signal event, the change
event, and the time event.

5.1.1 Signal Event
A signal is an explicit one-way transmission of information from one object to another. It is
different from a subroutine call that returns a value. An object sending a signal to another
object may expect a reply, but the reply is a separate signal under the control of the second
object, which may or may not choose to send it.

A signal event is the event of sending or receiving a signal. Usually we are more con-
cerned about the receipt of a signal, because it causes effects in the receiving object. Note
the difference between signal and signal event—a signal is a message between objects while
a signal event is an occurrence in time.

Every signal transmission is a unique occurrence, but we group them into signal classes
and give each signal class a name to indicate common structure and behavior. For example,
UA flight 123 departs from Chicago on January 10, 1991 is an instance of signal class Flight-
Departure. Some signals are simple occurrences, but most signal classes have attributes in-
dicating the values they convey. For example, as Figure 5.1 shows, FlightDeparture has
attributes airline, flightNumber, city, and date. The UML notation is the keyword signal in
guillemets («») above the signal class name in the top section of a box. The second section
lists the signal attributes.

Figure 5.1 Signal classes and attributes. A signal is an explicit one-way
transmission of information from one object to another.

«signal»

airline
flightNumber

FlightDeparture

city
date

«signal»

button
location

MouseButtonPushed
«signal»

text

StringEntered
«signal»

ReceiverLifted

«signal»

digit

DigitDialed

92 Chapter 5 / State Modeling

5.1.2 Change Event
A change event is an event that is caused by the satisfaction of a boolean expression. The
intent of a change event is that the expression is continually tested—whenever the expression
changes from false to true, the event happens. Of course, an implementation would not con-
tinuously check a change event, but it must check often enough so that it seems continuous
from an application perspective.

The UML notation for a change event is the keyword when followed by a parenthesized
boolean expression. Figure 5.2 shows several examples of change events.

5.1.3 Time Event
A time event is an event caused by the occurrence of an absolute time or the elapse of a time
interval. As Figure 5.3 shows, the UML notation for an absolute time is the keyword when
followed by a parenthesized expression involving time. The notation for a time interval is the
keyword after followed by a parenthesized expression that evaluates to a time duration.

5.2 States
A state is an abstraction of the values and links of an object. Sets of values and links are
grouped together into a state according to the gross behavior of objects. For example, the
state of a bank is either solvent or insolvent, depending on whether its assets exceed its lia-
bilities. States often correspond to verbs with a suffix of “ing” (Waiting, Dialing) or the du-
ration of some condition (Powered, BelowFreezing).

Figure 5.4 shows the UML notation for a state—a rounded box containing an optional
state name. Our convention is to list the state name in boldface, center the name near the top
of the box, and capitalize the first letter.

■ when (room temperature < heating set point)
■ when (room temperature > cooling set point)
■ when (battery power < lower limit)
■ when (tire pressure < minimum pressure)

Figure 5.2 Change events. A change event is an event that is caused by the
satisfaction of a boolean expression.

■ when (date = January 1, 2000)
■ after (10 seconds)

Figure 5.3 Time events. A time event is an event caused by the occurrence of
an absolute time or the elapse of a time interval.

5.2 States 93

In defining states, we ignore attributes that do not affect the behavior of the object, and
lump together in a single state all combinations of values and links with the same response
to events. Of course, every attribute has some effect on behavior or it would be meaningless,
but often some attributes do not affect the sequence of control and you can regard them as
simple parameter values within a state. Recall that the purpose of modeling is to focus on
qualities that are relevant to the solution of an application problem and abstract away those
that are irrelevant. The three UML models (class, state, and interaction) present different
views of a system for which the particular choice of attributes and values are not equally im-
portant. For example, except for leading 0s and 1s, the exact digits dialed do not affect the
control of the phone line, so we can summarize them all with state Dialing and track the
phone number as a parameter. Sometimes, all possible values of an attribute are important,
but usually only when the number of possible values is small.

The objects in a class have a finite number of possible states—one or possibly some larg-
er number. Each object can only be in one state at a time. Objects may parade through one
or more states during their lifetime. At a given moment of time, the various objects for a class
can exist in a multitude of states.

A state specifies the response of an object to input events. All events are ignored in a
state, except those for which behavior is explicitly prescribed. The response may include the
invocation of behavior or a change of state. For example, if a digit is dialed in state Dial tone,
the phone line drops the dial tone and enters state Dialing; if the receiver is replaced in state
Dial tone, the phone line goes dead and enters state Idle.

There is a certain symmetry between events and states as Figure 5.5 illustrates. Events
represent points in time; states represent intervals of time. A state corresponds to the interval
between two events received by an object. For example, after the receiver is lifted and before
the first digit is dialed, the phone line is in state Dial tone. The state of an object depends on
past events, which in most cases are eventually hidden by subsequent events. For example,
events that happened before the phone is hung up do not affect future behavior; the Idle state
“forgets” events received prior to the receipt of the hang up signal.

Both events and states depend on the level of abstraction. For example, a travel agent
planning an itinerary would treat each segment of a journey as a single event; a flight status

Figure 5.4 States. A state is an abstraction of the values and links of an object.

Solvent Insolvent Waiting PoweredDialing BelowFreezing

Figure 5.5 Event vs. state. Events represent points in time; states represent
intervals of time.

time

power turned on power turned off

Powered

power turned on

Not powered

94 Chapter 5 / State Modeling

board in an airport would distinguish departures and arrivals; an air traffic control system
would break each flight into many geographical legs.

You can characterize a state in various ways, as Figure 5.6 shows for the state Alarm
ringing on a watch. The state has a suggestive name and a natural-language description of its
purpose. The event sequence that leads to the state consists of setting the alarm, doing any-
thing that doesn’t clear the alarm, and then having the target time occur. A declarative con-
dition for the state is given in terms of parameters, such as current and target time; the alarm
stops ringing after 20 seconds. Finally, a stimulus-response table shows the effect of events
current time and button pushed, including the response that occurs and the next state. The
different descriptions of a state may overlap.

Can links have state? In as much as they can be considered objects, links can have state.
As a practical matter, it is generally sufficient to associate state only with objects.

5.3 Transitions and Conditions
A transition is an instantaneous change from one state to another. For example, when a
called phone is answered, the phone line transitions from the Ringing state to the Connected
state. The transition is said to fire upon the change from the source state to the target state.
The origin and target of a transition usually are different states, but may be the same. A tran-
sition fires when its event occurs (unless an optional guard condition causes the event to be
ignored). The choice of next state depends on both the original state and the event received.

State: AlarmRinging

Description: alarm on watch is ringing to indicate target time

Event sequence that produces the state:
setAlarm (targetTime)
any sequence not including clearAlarm
when (currentTime = targetTime)

Condition that characterizes the state:
alarm = on, alarm set to targetTime, targetTime ≤ currentTime ≤
targetTime + 20 seconds, and no button has been pushed since targetTime

Events accepted in the state:
event response next state

when (currentTime = targetTime + 20) resetAlarm normal

buttonPushed (any button) resetAlarm normal

Figure 5.6 Various characterizations of a state. A state specifies the
response of an object to input events.

5.4 State Diagrams 95

An event may cause multiple objects to transition; from a conceptual point of view such tran-
sitions occur concurrently.

A guard condition is a boolean expression that must be true in order for a transition to
occur. For example, a traffic light at an intersection may change only if a road has cars wait-
ing. A guarded transition fires when its event occurs, but only if the guard condition is true.
For example, “when you go out in the morning (event), if the temperature is below freezing
(condition), then put on your gloves (next state).” A guard condition is checked only once,
at the time the event occurs, and the transition fires if the condition is true. If the condition
becomes true later, the transition does not then fire. Note that a guard condition is different
from a change event—a guard condition is checked only once while a change event is, in ef-
fect, checked continuously.

Figure 5.7 shows guarded transitions for traffic lights at an intersection. One pair of elec-
tric eyes checks the north-south left turn lanes; another pair checks the east-west turn lanes.
If no car is in the north-south and/or east-west turn lanes, then the traffic light control logic
is smart enough to skip the left turn portion of the cycle.

The UML notation for a transition is a line from the origin state to the target state. An
arrowhead points to the target state. The line may consist of several line segments. An event
may label the transition and be followed by an optional guard condition in square brackets.
By convention, we usually confine line segments to a rectilinear grid. We italicize the event
name and show the condition in normal font.

5.4 State Diagrams
A state diagram is a graph whose nodes are states and whose directed arcs are transitions
between states. A state diagram specifies the state sequences caused by event sequences.
State names must be unique within the scope of a state diagram. All objects in a class execute
the state diagram for that class, which models their common behavior. You can implement

Figure 5.7 Guarded transitions. A transition is an instantaneous change
from one state to another. A guard condition is a boolean ex-
pression that must be true in order for a transition to occur.

North/south
may go straight

North/south
may turn left

East/west
may turn left

East/west
may go straight

timeout [cars in N/S left lanes]

timeout [cars in E/W left lanes]

timeouttimeout

timeout [no cars
in N/S left lanes]

timeout [no cars
in E/W left lanes]

96 Chapter 5 / State Modeling

state diagrams by direct interpretation or by converting the semantics into equivalent pro-
gramming code.

The state model consists of multiple state diagrams, one state diagram for each class
with important temporal behavior. The state diagrams must match on their interfaces—
events and guard conditions. The individual state diagrams interact by passing events and
through the side effects of guard conditions. Some events and guard conditions appear in a
single state diagram; others appear in multiple state diagrams for the purpose of coordina-
tion. This chapter covers only individual state diagrams; Chapter 6 discusses state models of
interacting diagrams.

A class with more than one state has important temporal behavior. Similarly, a class is
temporally important if it has a single state with multiple responses to events. You can rep-
resent state diagrams with a single state in a simple nongraphical form—a stimulus–response
table listing events and guard conditions and the ensuing behavior.

5.4.1 Sample State Diagram
Figure 5.8 shows a state diagram for a telephone line. The diagram concerns a phone line and
not the caller nor callee. The diagram contains sequences associated with normal calls as
well as some abnormal sequences, such as timing out while dialing or getting busy lines. The
UML notation for a state diagram is a rectangle with its name in a small pentagonal tag in
the upper left corner. The constituent states and transitions lie within the rectangle.

At the start of a call, the telephone line is idle. When the phone is removed from the
hook, it emits a dial tone and can accept the dialing of digits. Upon entry of a valid number,
the phone system tries to connect the call and route it to the proper destination. The connec-
tion can fail if the number or trunk are busy. If the connection is successful, the called phone
begins ringing. If the called party answers the phone, a conversation can occur. When the
called party hangs up, the phone disconnects and reverts to idle when put on hook again.

Note that the receipt of the signal onHook causes a transition from any state to Idle (the
bundle of transitions leading to Idle). Chapter 6 will show a more general notation that rep-
resents events applicable to groups of states with a single transition.

States do not totally define all values of an object. For example, state Dialing includes
all sequences of incomplete phone numbers. It is not necessary to distinguish between dif-
ferent numbers as separate states, since they all have the same behavior, but the actual num-
ber dialed must of course be saved as an attribute.

If more than one transition leaves a state, then the first event to occur causes the corre-
sponding transition to fire. If an event occurs and no transition matches it, then the event is
ignored. If more than one transition matches an event, only one transition will fire, but the
choice is nondeterministic.

5.4.2 One-shot State Diagrams
State diagrams can represent continuous loops or one-shot life cycles. The diagram for the
phone line is a continuous loop. In describing ordinary usage of the phone, we do not know
or care how the loop is started. (If we were describing installation of new lines, the initial
state would be important.)

5.4 State Diagrams 97

One-shot state diagrams represent objects with finite lives and have initial and final
states. The initial state is entered on creation of an object; entry of the final state implies de-
struction of the object. Figure 5.9 shows a simplified life cycle of a chess game with a default
initial state (solid circle) and a default final state (bull’s eye).

As an alternate notation, you can indicate initial and final states via entry and exit points.
In Figure 5.10 the start entry point leads to white’s first turn, and the chess game eventually
ends with one of three possible outcomes. Entry points (hollow circles) and exit points (cir-
cles enclosing an “x”) appear on the state diagram’s perimeter and may be named.

timeout

invalidNumber

offHook

digit(n)

digit(n)

messageDone

onHook

numberBusy

calledPhoneAnswers

trunkBusy

validNumber

routed

calledPhoneHangsUp

Figure 5.8 State diagram for a telephone line. A state diagram specifies
the state sequences caused by event sequences.

timeout

onHook
Idle

DialTone

Dialing

Connecting

Ringing

Connected

BusyTone

Fast
BusyTone

Disconnected

Timeout

Recorded
Message

Warning

PhoneLine

98 Chapter 5 / State Modeling

5.4.3 Summary of Basic State Diagram Notation
Figure 5.11 summarizes the basic UML syntax for state diagrams.

■ State. Drawn as a rounded box containing an optional name. A special notation is avail-
able for initial states (a solid circle) and final states (a bull’s-eye or encircled “x”).

whiteblack

checkmate

checkmate

stalemate
stalemate

Figure 5.9 State diagram for chess game. One-shot diagrams represent
objects with finite lives.

movesmoves

White’s turn

Black’s turn

Chess

checkmate

checkmate
White wins

stalemate
stalemate

Figure 5.10 State diagram for chess game. You can also show one-shot
diagrams by using entry and exit points.

Draw

Black wins

whiteblack
movesmoves

White’s turn

Black’s turn

Chess

Start

Figure 5.11 Summary of basic notation for state diagrams.

State1 event (attribs) [condition] / effect
do / activity

State2
. . .

event / effect

State diagram name

5.5 State Diagram Behavior 99

■ Transition. Drawn as a line from the origin state to the target state. An arrowhead points
to the target state. The line may consist of several line segments.

■ Event. A signal event is shown as a label on a transition and may be followed by paren-
thesized attributes. A change event is shown with the keyword when followed by a pa-
renthesized boolean expression. A time event is shown with the keyword when followed
by a parenthesized expression involving time or the keyword after followed by a paren-
thesized expression that evaluates to a time duration.

■ State diagram. Enclosed in a rectangular frame with the diagram name in a small pen-
tagonal tag in the upper left corner.

■ Guard condition. Optionally listed in square brackets after an event.

■ Effects (to be explained in next section). Can be attached to a transition or state and are
listed after a slash (“/”). Multiple effects are separated with a comma and are performed
concurrently. (You can create intervening states if you want multiple effects to be per-
formed in sequence.)

We also recommend some style conventions. We list the state name in boldface with the first
letter capitalized. We italicize event names with the initial letter in lower case. Guard condi-
tions and effects are in normal font and also have the initial letter in lower case. We try to
confine transition line segments to a rectilinear grid.

5.5 State Diagram Behavior
State diagrams would be of little use if they just described events. A full description of an
object must specify what the object does in response to events.

5.5.1 Activity Effects
An effect is a reference to a behavior that is executed in response to an event. An activity is
the actual behavior that can be invoked by any number of effects. For example, disconnect-
PhoneLine might be an activity that is executed in response to an onHook event for Figure
5.8. An activity may be performed upon a transition, upon the entry to or exit from a state,
or upon some other event within a state.

Activities can also represent internal control operations, such as setting attributes or gen-
erating other events. Such activities have no real-world counterparts but instead are mecha-
nisms for structuring control within an implementation. For example, a program might
increment an internal counter every time a particular event occurs.

The notation for an activity is a slash (“/”) and the name (or description) of the activity,
following the event that causes it. The keyword do is reserved for indicating an ongoing ac-
tivity (to be explained) and may not be used as an event name. Figure 5.12 shows the state
diagram for a pop-up menu on a workstation.When the right button is depressed, the menu
is displayed; when the right button is released, the menu is erased. While the menu is visible,
the highlighted menu item is updated whenever the cursor moves.

100 Chapter 5 / State Modeling

5.5.2 Do-Activities
A do-activity is an activity that continues for an extended time. By definition, a do-activity
can only occur within a state and cannot be attached to a transition. For example, the warning
light may flash during the Paper jam state for a copy machine (Figure 5.13). Do-activities
include continuous operations, such as displaying a picture on a television screen, as well as
sequential operations that terminate by themselves after an interval of time, such as closing
a valve.

The notation “do /” denotes a do-activity that may be performed for all or part of the
duration that an object is in a state. A do-activity may be interrupted by an event that is re-
ceived during its execution; such an event may or may not cause a transition out of the state
containing the do-activity. For example, a robot moving a part may encounter resistance,
causing it to cease moving.

5.5.3 Entry and Exit Activities
As an alternative to showing activities on transitions, you can bind activities to entry or to
exit from a state. There is no difference in expressive power between the two notations, but
frequently all transitions into a state perform the same activity, in which case it is more con-
cise to attach the activity to the state.

For example, Figure 5.14 shows the control of a garage door opener. The user generates
depress events with a pushbutton to open and close the door. Each event reverses the direc-
tion of the door, but for safety the door must open fully before it can be closed. The control
generates motor up and motor down activities for the motor. The motor generates door open
and door closed events when the motion has been completed. Both transitions entering state
Opening cause the door to open.

Idle Menu visible
right button down / display pop-up menu

Figure 5.12 Activities for pop-up menu. An activity is behavior that can be
executed in response to an event.

right button up / erase pop-up menu

cursor moved / highlight menu item

Figure 5.13 Do-activity for a copy machine. A do-activity is an activity
that continues for an extended time.

Paper jam
do / flash warning light

5.5 State Diagram Behavior 101

Figure 5.15 shows the same model using activities on entry to states. An entry activity
is shown inside the state box following the keyword entry and a “/” character. Whenever the
state is entered, by any incoming transition, the entry activity is performed. An entry activity
is equivalent to attaching the activity to every incoming transition. If an incoming transition
already has an activity, its activity is performed first.

Exit activities are less common than entry activities, but they are occasionally useful. An
exit activity is shown inside the state box following the keyword exit and a “/” character.
Whenever the state is exited, by any outgoing transition, the exit activity is performed first.

If a state has multiple activities, they are performed in the following order: activities on
the incoming transition, entry activities, do-activities, exit activities, activities on the outgo-
ing transition. Events that cause transitions out of the state can interrupt do-activities. If a do-
activity is interrupted, the exit activity is still performed.

In general, any event can occur within a state and cause an activity to be performed. En-
try and exit are only two examples of events that can occur. As Figure 5.16 shows, there is a
difference between an event within a state and a self-transition; only the self-transition caus-
es the entry and exit activities to be executed.

Figure 5.14 Activities on transitions. An activity may be bound to an
event that causes a transition.

depress / motor up

door closed / motor off depress / motor down

depress / motor up

door open / motor off

Closing

OpenClosed

Opening

Figure 5.15 Activities on entry to states. An activity may also be bound
to an event that occurs within a state.

depress

door closed depress

depress

door open
Opening

Closing

OpenClosed

entry / motor up

entry / motor down

entry / motor off entry / motor off

102 Chapter 5 / State Modeling

5.5.4 Completion Transition
Often the sole purpose of a state is to perform a sequential activity. When the activity is com-
pleted, a transition to another state fires. An arrow without an event name indicates an auto-
matic transition that fires when the activity associated with the source state is completed.
Such unlabeled transitions are called completion transitions because they are triggered by
the completion of activity in the source state.

A guard condition is tested only once, when the event occurs. If a state has one or more
completion transitions, but none of the guard conditions are satisfied, then the state remains
active and may become “stuck”—the completion event does not occur a second time, there-
fore no completion transition will fire later to change the state. If a state has completion tran-
sitions leaving it, normally the guard conditions should cover every possible outcome. You
can use the special condition else to apply if all the other conditions are false. Do not use a
guard condition on a completion transition to model waiting for a change of value. Instead
model the waiting as a change event.

5.5.5 Sending Signals
An object can perform the activity of sending a signal to another object. A system of objects
interacts by exchanging signals.

The activity “send target.S(attributes)” sends signal S with the given attributes to the
target object or objects. For example, the phone line sends a connect(phone number) signal
to the switcher when a complete phone number has been dialed. A signal can be directed at
a set of objects or a single object. If the target is a set of objects, each of them receives a sep-
arate copy of the signal concurrently, and each of them independently processes the signal
and determines whether to fire a transition. If the signal is always directed to the same object,
the diagram can omit the target (but it must be supplied eventually in an implementation, of
course).

If an object can receive signals from more than one object, the order in which concurrent
signals are received may affect the final state; this is called a race condition. For example,
in Figure 5.15 the door may or may not remain open if the button is pressed at about the time
the door becomes fully open. A race condition is not necessarily a design error, but concur-

Figure 5.16 Event within a state vs. self-transition. A self-transition causes entry
and exit activities to be executed. An event within a state does not.

Closed
shutdown / motor off Menu visible

cursor moved / highlight menu item

Self-transitionEvent within a state

5.6 Practical Tips 103

rent systems frequently contain unwanted race conditions that must be avoided by careful
design. A requirement of two signals being received simultaneously is never a meaningful
condition in the real world, as slight variations in transmission speed are inherent in any dis-
tributed system.

5.5.6 Sample State Diagram with Activities
Figure 5.17 adds activities to the state diagram from Figure 5.8.

5.6 Practical Tips
The precise content of all models depends on application needs. The chapter has already
mentioned the following practical tips, and we summarize them here for your convenience.

■ Abstracting values into states. Consider only relevant attributes when defining a state.
State diagrams need not use all attributes shown in a class model. (Section 5.2)

■ Parameters. Parameterize events for incidental data that do not affect the flow of con-
trol. (Section 5.2)

■ Granularity of events and states. Consider application needs when deciding on the
granularity of events and states. (Section 5.2)

■ When to use state diagrams. Construct state diagrams only for classes with meaningful
temporal behavior. A class has important temporal behavior if it responds differently to
various events or has more than one state. Not all classes require a state diagram. (Sec-
tion 5.4)

■ Entry and exit activities. When a state has multiple incoming transitions, and all tran-
sitions cause the same activity to occur, use an entry activity within the state rather than
repeatedly listing the activity on transition arcs. Do likewise for exit activities. (Section
5.5.3)

■ Guard conditions. Be careful with guard conditions so that an object does not become
“stuck” in a state. (Section 5.5.4)

■ Race conditions. Beware of unwanted race conditions in state diagrams. Race condi-
tions may occur when a state can accept events from more than one object. (Section
5.5.5)

5.7 Chapter Summary
Event and state are the two elementary concepts in state modeling. An event is an occurrence
at a point in time. A state is an abstraction of the values and links of an object. Events repre-
sent points in time; states represent intervals of time. An object may respond to certain events
when it is in certain states. All events are ignored in a state, except those for which behavior
is explicitly prescribed. The same event can have different effects (or no effect) in different
states.

104 Chapter 5 / State Modeling

There are several kinds of events, such as a signal event, a change event, and a time
event. A signal event is the sending or receipt of information communicated among objects.
A change event is an event that is caused by the satisfaction of a boolean expression. A time
event is an event caused by the occurrence of an absolute time or the elapse of a relative time.

timeout

invalidNumber

offHook

digit(n)

digit(n)

messageDone

onHook / disconnectLine

numberBusy

calledPhoneAnswers / connectLine

trunkBusy

validNumber

routed

calledPhoneHangsUp / disconnectLine

timeout

onHook / disconnectLine
Idle

Dialing

Connecting

Ringing

Connected

BusyTone

FastBusyTone

Disconnected

Timeout

Recorded
Message

DialTone
do / soundDialTone

Figure 5.17 State diagram for phone line with activities. State diagrams let
you express what objects do in response to events.

do / soundLoudBeep

do / playMessage

do / slowBusyTone

do / findConnection

do / fastBusyTone

do / ringBell

Warning
do / playMessage

PhoneLine

Bibliographic Notes 105

A transition is an instantaneous change from one state to another and is caused by the
occurrence of an event. An optional guard condition can cause the event to be ignored. A
guard condition is a boolean expression that must be true in order for a transition to occur.

An effect is a reference to a behavior that is executed by objects in response to an event.
An activity is the actual behavior that can be invoked by any number of effects. An activity
may be performed upon a transition or upon an event within a state. A do-activity is an in-
terruptible behavior that continues for an extended time. Consequently, a do-activity can oc-
cur only within a state and cannot be attached to a transition.

A state diagram is a graph whose nodes are states and whose directed arcs are transitions
between states. A state diagram specifies the possible states, what transitions are allowed be-
tween states, what events cause the transitions to occur, and what behavior is executed in
response to events. A state diagram describes the common behavior for the objects in a class;
as each object has its own values and links, so too each object has its own state or position
in the state diagram. The state model consists of multiple state diagrams, one state diagram
for each class with important temporal behavior. The state diagrams must match on their in-
terfaces—events and guard conditions.

Bibliographic Notes
[Wieringa-98] has a thorough comparison of various ways for specifying software, including
specification of the dynamic behavior of systems.

Finite state machines are a basic computer science concept and are described in any
standard text on automata theory, such as [Hopcroft-01]. They are often described as recog-
nizers or generators of formal languages. Basic finite state machines have limited expressive
power. They have been extended with local variables and recursion as Augmented Transition
Networks [Woods-70] and Recursive Transition Networks. These extensions expand the
range of formal languages they can express but do little to address the combinatorial explo-
sion that makes them unwieldy for practical control problems. (Chapter 6 addresses this.)

Traditional finite automata have been approached from a synchronous viewpoint. Petri
nets [Reisig-92] formalize concurrency and synchronization of systems with distributed ac-
tivity without resort to any notion of global time. Although they succeed well as an abstract
conceptual model, they are too low-level and inexpressive to be useful for specifying large
systems.

activity
change event
completion transition
concurrency
control

Figure 5.18 Key concepts for Chapter 5

state model
time event
transition

do-activity
effect
event
fire (a transition)
guard condition

race condition
signal
signal event
state
state diagram

106 Chapter 5 / State Modeling

The need to specify interactive user interfaces has created several techniques for speci-
fying control. This work is directed toward finding notations that clearly express powerful
kinds of interactions while also being easily implementable. See [Green-86] for a compari-
son of some of these techniques.

The first edition of this book distinguished between actions (instantaneous behavior)
and activities (lengthy behavior). UML2 has redefined both of these terms, and we have
modified our explanation accordingly. UML2 now defines an activity as a specification of
executable behavior and an action as a predefined primitive activity. In effect, the new defi-
nition of activity in UML2 subsumes the action and activity of the old book.

References
[Green-86] Mark Green. A survey of three dialogue models. ACM Transactions on Graphics 5, 3 (July

1986), 244–275.
[Hopcroft-01] J.E. Hopcroft, Rejeev Motwani, and J.D. Ullman. Introduction to Automata Theory,

Languages, and Computation., Second Edition, Boston: Addison-Wesley, 2001.
[Reisig-92]. Wolfgang Reisig. A Primer in Petri Net Design. New York: Springer-Verlag, 1992.
[Wieringa-98] Roel Wieringa. A survey of structured and object-oriented software specification meth-

ods and techniques. ACM Computing Surveys 30, 4 (December 1998), 459–527.
[Woods-70] W.A. Woods. Transition network grammars for natural language analysis. Communica-

tions of ACM 13, 10 (October 1970), 591–606.

Exercises
5.1 (6) An extension ladder has a rope, pulley, and latch for raising, lowering, and locking the ex-

tension. When the latch is locked, the extension is mechanically supported and you may safely
climb the ladder. To release the latch, you raise the extension slightly with the rope. You may
then freely raise or lower the extension. The latch produces a clacking sound as it passes over
rungs of the ladder. The latch may be reengaged while raising the extension by reversing direc-
tion just as the latch is passing a rung. Prepare a state diagram of an extension ladder.

5.2 (4) A simple digital watch has a display and two buttons to set it, the A button and the B button.
The watch has two modes of operation, display time and set time. In the display time mode, the
watch displays hours and minutes, separated by a flashing colon.

The set time mode has two submodes, set hours and set minutes. The A button selects modes.
Each time it is pressed, the mode advances in the sequence: display, set hours, set minutes, dis-
play, etc. Within the submodes, the B button advances the hours or minutes once each time it is
pressed. Buttons must be released before they can generate another event. Prepare a state dia-
gram of the watch.

5.3 (4) Figure E5.1 is a partially completed and simplified state diagram for the control of a tele-
phone answering machine. The machine detects an incoming call on the first ring and answers
the call with a prerecorded announcement. When the announcement is complete, the machine
records the caller’s message. When the caller hangs up, the machine hangs up and shuts off.
Place the following in the diagram: call detected, answer call, play announcement, record mes-
sage, caller hangs up, announcement complete.

Exercises 107

5.4 (7) The telephone answering machine in the previous exercise activates on the first ring. Revise
the state diagram so that the machine answers after five rings. If someone answers the telephone
before five rings, the machine should do nothing. Be careful to distinguish between five calls in
which the telephone is answered on the first ring and one call that rings five times.

5.5 (3) In a personal computer, a disk controller is typically used to transfer a stream of bytes from
a floppy disk drive to a memory buffer with the help of a host such as the central processing unit
(CPU) or a direct memory access (DMA) controller. Figure E5.2 shows a partially completed
and simplified state diagram for the control of the data transfer.

The controller signals the host each time a new byte is available. The data must then be read
and stored before another byte is ready. When the disk controller senses the data has been read,
it indicates that data is not available, in preparation for the next byte. If any byte is not read be-
fore the next one comes along, the disk controller asserts a data lost error signal until the disk
controller is reset. Add the following to the diagram: reset, indicate data not available, indicate
data available, data read by host, new data ready, indicate data lost.

5.6 (5) Figure E5.3 is a partially completed state diagram for one kind of motor control that is com-
monly used in household appliances. A separate appliance control determines when the motor
should be on and continuously asserts on as an input to the motor control when the motor should
be running.

When on is asserted, the motor control should start and run the motor. The motor starts by
applying power to both the start and the run windings. A sensor, called a starting relay, deter-
mines when the motor has started, at which point the start winding is turned off, leaving only
the run winding powered. Both windings are shut off when on is not asserted.

Appliance motors could be damaged by overheating if they are overloaded or fail to start. To
protect against thermal damage, the motor control often includes an over-temperature sensor. If

Figure E5.1 Partial state diagram for an answering machine

RecordingAnnouncingHung up

AnsweringMachine

Data available

Figure E5.2 Partially completed state diagram of a data transfer protocol

Data not available

Data lost

DataTransferProtocol

108 Chapter 5 / State Modeling

the motor becomes too hot, the motor control removes power from both windings and ignores
any on assertion until a reset button is pressed and the motor has cooled off.

Add the following to the diagram. Activities: apply power to run winding, apply power to
start winding. Events: motor is overheated, on is asserted, on is no longer asserted, motor is run-
ning, reset. Condition: motor is not overheated.

5.7 (6) There was a single, continuously active input to the control in Exercise 5.6. In another com-
mon motor control, there are two pushbuttons, one for start and one for stop. To start the motor,
the user presses the start button. The motor continues to run after the start button is released.To
stop the motor, the user presses the stop button. The stop button takes precedence over the start
button, so that the motor does not run while both buttons are pressed.

If both buttons are pressed and released, whether or not the motor starts depends on the order
in which the buttons are released. If the stop button is released first, the motor starts. Otherwise
the motor does not start. Modify the state diagram that you prepared in Exercise 5.6 to accom-
modate start and stop buttons.

5.8 (5) Prepare a state diagram for selecting and dragging objects with the diagram editor described
in Exercise 4.2.

A cursor on the diagram tracks a two-button mouse. If the left button is pressed with the cur-
sor on an object (a box or a line), the object is selected, replacing any previously selected object.
If the left button is pressed with the cursor not on an object, the selection is set to null. Moving
the mouse with the left button held down drags any selected object.

5.9 (6) Extend the diagram editor from Exercise 5.8. If the user left clicks on an object and holds
the shift key, the object is added to the selection. Moving the mouse with the left button held
down drags any selected objects.

5.10 (5) Figure E5.4 shows a state diagram for a copy machine. Initially the copy machine is off.
When power is turned on, the machine reverts to a default state—one copy, automatic contrast,
and normal size. While the machine is warming, it flashes the ready light. When the machine
completes internal testing, the ready light stops flashing and remains on. Then the machine is
ready for copying.

The operator may change any of the parameters when the machine is ready. The operator
may increment or decrement the number of copies, change the size, toggle between automatic
and manual contrast, and change the contrast when auto contrast is disabled. When the param-
eters are properly set, the operator pushes the start button to begin making copies. Ordinarily,
copying proceeds until all copies are made. Occasionally the machine may jam or run out of

Too hot

Off

Figure E5.3 Partially completed state diagram for a motor control

Starting Running

MotorControl

Exercises 109

paper. When the machine jams, the operator may clear the blockage and the machine will re-
sume making copies. Adding paper allows the machine to proceed after running out of paper.

Extend the diagram for the following observations. The copy machine does not work quite
right. When it jams, the operator must first remove the jammed paper and then turn the machine
off and on before it will operate correctly again. If the machine is turned off and on without first
removing the offending paper, the machine stays jammed.

5.11 (7) While exploring an old castle, you and a friend discovered a bookcase that you suspected to
be the entrance to a secret passageway. While you examined the bookcase, your friend removed
a candle from its holder, only to discover that the candle holder was the entrance control. The
bookcase rotated a half turn, pushing you along, separating you from your friend. Your friend
put the candle back. This time the bookcase rotated a full turn, still leaving you behind it.

Your friend took the candle out. The bookcase started to rotate a full turn again, but this time
you stopped it just shy of a full turn by blocking it with your body. Your friend handed you the
candle and together you managed to force the bookcase back a half turn, but this left your friend
behind it and you in front of it. You put the candle back. As the bookcase began to rotate, you
took out the candle, and the bookcase stopped after a quarter turn. You and your friend then en-
tered to explore further.

Prepare a state diagram for the control of the bookcase that is consistent with the previous
scenario. What should you have done at first to gain entry with the least fuss?

decrement
[numCopies>1]
/ numCopies--

paperPathBecomesBlocked

paperPathCleared PaperJam

paperAdded

MakingCopies
do / printCopies

OutOfPaper

increment /

Off

startPressed

powerTurnedOff / turnReadyLightOff

paperTrayBecomesEmpty AND NOT allCopiesMade

allCopiesMade

changeSize /
size:=newValue

changeContrast [NOT isAutoContrast] /
contrast:=newValue

toggleAutoContrast /
isAutoContrast:=NOT isAutoContrast

Ready
entry / turnReady

Warming
do / internalTesting,

flashReadyLight

internal
Test
Finished

powerTurnedOn /
numCopies:=1,
isAutoContrast:=TRUE,
size:=normal

Figure E5.4 State diagram for a copy machine

numCopies++

LightOn

do / flashWarningLight

CopyMachine

110

6

Advanced State Modeling

Conventional state diagrams are sufficient for describing simple systems but need additional
power to handle large problems. You can more richly model complex systems by using nest-
ed state diagrams, nested states, signal generalization, and concurrency.

This is an advanced chapter and you can skip it upon a first reading of the book.

6.1 Nested State Diagrams

6.1.1 Problems with Flat State Diagrams
State diagrams have often been criticized because they allegedly are impractical for large
problems. This problem is true of flat, unstructured state diagrams. Consider an object with
n independent Boolean attributes that affect control. Representing such an object with a sin-
gle flat state diagram would require 2n states. By partitioning the state into n independent
state diagrams, however, only 2n states are required.

Or consider the state diagram in Figure 6.1 in which n2 transitions are needed to connect
every state to every other state. If this model can be reformulated using structure, the number
of transitions could be reduced as low as n. Complex systems typically contain much redun-
dancy that structuring mechanisms can simplify.

6.1.2 Expanding States
One way to organize a model is by having a high-level diagram with subdiagrams expanding
certain states. This is like a macro substitution in a programming language. Figure 6.2 shows
such a state diagram for a vending machine. Initially, the vending machine is idle. When a
person inserts coins, the machine adds the amount to the cumulative balance. After adding
some coins, a person can select an item. If the item is empty or the balance is insufficient,
the machine waits for another selection. Otherwise, the machine dispenses the item and re-
turns the appropriate change.

6.2 Nested States 111

Figure 6.3 elaborates the dispense state with a lower-level state diagram called a subma-
chine. A submachine is a state diagram that may be invoked as part of another state diagram.
The UML notation for invoking a submachine is to list a local state name followed by a colon
and the submachine name. Conceptually, the submachine state diagram replaces the local
state. Effectively, a submachine is a state diagram “subroutine.”

6.2 Nested States
You can structure states more deeply than just replacing a state with a submachine. As a
deeper alternative, you can nest states to show their commonality and share behavior. (In ac-
cordance with UML2 we avoid using generalization in conjunction with states. See the Bib-
liographic Notes for an explanation.)

Figure 6.1 Combinatorial explosion of transitions in flat state diagrams.
Flat state diagrams are impractical for large problems.

Figure 6.2 Vending machine state diagram. You can simplify state dia-
grams by using subdiagrams.

Idle
coins in(amount) / set balance

Collecting money

cancel / refund coins

select(item)

do / test item and compute change

[change=0]

do / make changedispense: DispenseItem

[change<0]

[change>0]

[item empty]

coins in(amount) / add to balance

VendingMachine

112 Chapter 6 / Advanced State Modeling

Figure 6.4 simplifies the phone line model from Chapter 5; a single transition from Ac-
tive to Idle replaces the transitions from each state to Idle. All the original states except Idle
are nested states of Active. The occurrence of event onHook in any nested state causes a tran-
sition to state Idle.

The composite state name labels the outer contour that entirely encloses the nested
states. Thus Active is a composite state with regard to nested states DialTone, Timeout, Dial-
ing, and so forth. You may nest states to an arbitrary depth. A nested state receives the out-
going transitions of its composite state. (By necessity, only ingoing transitions with a
specified nested state can be shared, or there would be ambiguity.)

Figure 6.5 shows a state diagram for an automobile automatic transmission. The trans-
mission can be in reverse, neutral, or forward; if it is in forward, it can be in first, second, or
third gear. States First, Second, and Third are nested states of state Forward.

Each of the nested states receives the outgoing transitions of its composite state. Select-
ing “N” in any forward gear shifts a transition to neutral. The transition from Forward to
Neutral implies three transitions, one from each forward gear to neutral. Selecting “F” in
neutral causes a transition to forward. Within state Forward, nested state First is the default
initial state, shown by the unlabeled transition from the solid circle within the Forward con-
tour. Forward is just an abstract state; control must be in a real state, such as First.

All three nested states share the transition on event stop from the Forward contour to
state First. In any forward gear, stopping the car causes a transition to First.

It is possible to represent more complicated situations, such as an explicit transition
from a nested state to a state outside the contour, or an explicit transition into the contour. In
such cases, all the states must appear on one diagram. In simpler cases where there is no in-
teraction except for initiation and termination, you can draw the nested states as separate di-
agrams and reference them by including a submachine, as in the vending machine example
of Figure 6.2.

For simple problems you can implement nested states by degradation into “flat” state di-
agrams. Another option is to promote each state to a class, but then you must take special
care to avoid loss of object identity. The becomes operation of Smalltalk lets an object
change class without a loss of identity, facilitating promotion of a state to a class. However,
the performance overhead of the becomes operation may become an issue with many state
changes. Promotion of a state to a class is impractical with C++, unless you use advanced
techniques, such as those discussed in [Coplien-92]. Java is similar to C++ in this regard.

do / push item off shelf
pushed arm ready

do / move arm to correct row do / move arm to correct column
arm ready

Figure 6.3 Dispense item submachine of vending machine. A lower-level
state diagram can elaborate a state.

DispenseItem

6.2 Nested States 113

Entry and exit activities are particularly useful in nested state diagrams because they
permit a state (possibly an entire subdiagram) to be expressed in terms of matched entry-exit
activities without regard for what happens before or after the state is active. Transitioning
into or out of a nested state can cause execution of several entry or exit activities, if the tran-
sition reaches across several levels of nesting. The entry activities are executed from the out-
side in and the exit activities from the inside out. This permits behavior similar to nested
subroutine calls.

offHook

messageDone

onHook / disconnectLine

numberBusy

calledPhoneAnswers / connectLine

trunkBusy

validNumber

routed

calledPhoneHangsUp / disconnectLine

Idle

Connecting

Ringing

Connected

BusyTone

FastBusyTone

Disconnected

do / slowBusyTone

do / findConnection

do / fastBusyTone

do / ringBell

Figure 6.4 Nested states for a phone line. A nested state receives the
outgoing transitions of its enclosing state.

Active

timeout

invalidNumber

digit(n)

digit(n)

timeout

Dialing

Timeout

Recorded
Message

DialTone
do / soundDialTone do / soundLoudBeep

do / playMessage

Warning
do / play message

PhoneLine

114 Chapter 6 / Advanced State Modeling

6.3 Signal Generalization
You can organize signals into a generalization hierarchy with inheritance of signal attributes.
Figure 6.6 shows part of a tree of input signals for a workstation. Signals MouseButton and
KeyboardCharacter are two kinds of user input. Both signals inherit attribute device from
signal UserInput (the root of the hierarchy). MouseButtonDown and MouseButtonUp inherit
location from MouseButton. KeyboardCharacters can be divided into Control and Graphic
characters. Ultimately you can view every actual signal as a leaf on a generalization tree of
signals. In a state diagram, a received signal triggers transitions that are defined for any an-
cestor signal type. For example, typing an ‘a’ would trigger a transition on signal Alphanu-
meric as well as signal KeyboardCharacter. Analogous to generalization of classes, we
recommend that all supersignals be abstract.

A signal hierarchy permits different levels of abstraction to be used in a model. For ex-
ample, some states might handle all input characters the same; other states might treat con-
trol characters differently from printing characters; still others might have different activities
on individual characters.

6.4 Concurrency
The state model implicitly supports concurrency among objects. In general, objects are au-
tonomous entities that can act and change state independent of one another. However, objects
need not be completely independent and may be subject to shared constraints that cause
some correspondence among their state changes.

6.4.1 Aggregation Concurrency
A state diagram for an assembly is a collection of state diagrams, one for each part. The ag-
gregate state corresponds to the combined states of all the parts. Aggregation is the “and-re-
lationship.” The aggregate state is one state from the first diagram, and a state from the
second diagram, and a state from each other diagram. In the more interesting cases, the part

Figure 6.5 Nested states. You can nest states to an arbitrary depth.

push N

push R

push N

push F

upshift upshift

downshift downshift

stop

ReverseNeutral

Forward

First Second Third

CarTransmission

6.4 Concurrency 115

states interact. Transitions for one object can depend on another object being in a given state.
This allows interaction between the state diagrams, while preserving modularity.

Figure 6.7 shows the state of a Car as an aggregation of part states: Ignition, Transmis-
sion, Accelerator, and Brake (plus other unmentioned objects). The state of the car includes
one state from each part. Each part undergoes transitions in parallel with all the others. The
state diagrams of the parts are almost, but not quite, independent—the car will not start un-
less the transmission is in neutral. This is shown by the guard expression Transmission in
Neutral on the transition from Ignition-Off to Ignition-Starting.

6.4.2 Concurrency within an Object
You can partition some objects into subsets of attributes or links, each of which has its own
subdiagram. The state of the object comprises one state from each subdiagram. The subdia-
grams need not be independent; the same event can cause transitions in more than one sub-
diagram. The UML shows concurrency within an object by partitioning the composite state
into regions with dotted lines. You should place the name of the composite state in a separate
tab so that it does not become confused with the concurrent regions.

Figure 6.8 shows the state diagram for the play of a bridge rubber. When a side wins a
game, it becomes “vulnerable”; the first side to win two games wins the rubber. During the
play of the rubber, the state of the rubber consists of one state from each subdiagram. When
the Playing rubber composite state is entered, both regions are initially in their respective
default states Not vulnerable. Each region can independently advance to state Vulnerable

Figure 6.6 Partial hierarchy for keyboard signals. You can organize
signals using generalization.

«signal»

device

UserInput

«signal»
Space

«signal»
Alphanumeric

«signal»
Punctuation

«signal»
Graphic

«signal»
Control

«signal»
MouseButtonDown

«signal»
MouseButtonUp

«signal»

location

MouseButton
«signal»

character

KeyboardCharacter

116 Chapter 6 / Advanced State Modeling

when its side wins a game. When one side wins a second game, a transition occurs to the
corresponding Wins rubber state. This transition terminates both concurrent regions, because
they are part of the same composite state Playing rubber and are active only when the top-
level state diagram is in that state.

Most programming languages lack intrinsic support for concurrency. You can use a li-
brary, operating system primitives, or a DBMS to provide concurrency. During analysis you
should regard all objects as concurrent. During design you devise the best accommodation;
many implementations do not require concurrency, and a single thread of control suffices.

6.4.3 Synchronization of Concurrent Activities
Sometimes one object must perform two (or more) activities concurrently. The object does not
synchronize the internal steps of the activities but must complete both activities before it can

Off OnOff On

turn key to start
release key

turn key off

depress brake

release brake

depress accelerator

release accelerator

Figure 6.7 An aggregation and its concurrent state diagrams. The state diagram
for an assembly is a collection of state diagrams, one for each part.

Car

Starting On
[Transmission in Neutral]

Off

1

1 1 1 1

Ignition Transmission BrakeAccelerator

push N

push R

push N

push F

upshift upshift

downshift downshift

stop

ReverseNeutral

Forward

First Second Third

Transmission

Ignition

BrakeAccelerator

6.4 Concurrency 117

progress to its next state. For example, a cash dispensing machine dispenses cash and returns
the user’s card at the end of a transaction. The machine must not reset itself until the user takes
both the cash and the card, but the user may take them in either order or even simultaneously.
The order in which they are taken is irrelevant, only the fact that both of them have been taken.
This is an example of splitting control into concurrent activities and later merging control.

Figure 6.9 shows a concurrent state diagram for the emitting activity. The number of
concurrently active states varies during execution from one to two and back to one again. The
UML shows concurrent activities within a single composite activity by partitioning a state
into regions with dotted lines, as explained previously. Each region is a subdiagram that rep-
resents a concurrent activity within the composite activity. The composite activity consists
of exactly one state from each subdiagram.

A transition that forks indicates splitting of control into concurrent parts. A small heavy
bar with one input arrow and two or more output arrows denotes the fork. The event and an
optional guard condition label the input arrow. The output arrows have no labels. Each output

Not vulnerable Vulnerable

N-S vulnerability

Not vulnerable Vulnerable

E-W vulnerability

N-S game

E-W game

N-S game

E-W game

N-S wins rubber

E-W wins rubber

Playing rubber

Figure 6.8 Bridge game with concurrent states. You can partition some objects into
subsets of attributes or links, each of which has its own subdiagram.

Bridge

Figure 6.9 Synchronization of control. Control can split into concurrent
activities that subsequently merge.

Ready to resetready
do / dispense cash

do / eject card

Setting up

Emitting
CashDispenser

118 Chapter 6 / Advanced State Modeling

arrow selects a state from a different concurrent subdiagram. In the example, the transition
on event ready splits into two concurrent parts, one to each concurrent subdiagram. When
this transition fires, two concurrent substates become active and execute independently.

Any transition into a state with concurrent subdiagrams activates each of the subdia-
grams. If the transition omits any subdiagrams, the subdiagrams start in their default initial
states. In this example, a forked arrow is not actually necessary. You could draw a transition
to the Emitting state, with each subdiagram having a default initial state.

The UML shows explicit merging of concurrent control by a transition with two or more
input arrows and one output arrow, all connected to a small heavy bar (not shown in Figure
6.9). The trigger event and optional guard condition are placed near the bar. The target state
becomes active when all of the source states are active and the trigger event occurs. Note that
the transition involves a single event, not one event per input arrow. If any subdiagrams in
the composite state are not part of the merge, they automatically terminate when the merge
transition fires. As a consequence, a transition from a single concurrent substate to a state
outside the composite state causes the other concurrent substates to terminate. You can re-
gard this as a degenerate merge involving a single state.

An unlabeled (completion) transition from the outer composite state to another state in-
dicates implicit merging of concurrent control (Figure 6.9). A completion transition fires
when activity in the source state is complete. A composite concurrent state is complete when
each of its concurrent substates is complete—that is, when each of them has reached its final
state. All substates must complete before the completion transition fires and the composite
state terminates. In the example, when both activities have been performed, both substates
are in their final states, the merge transition fires, and state Ready to reset becomes active.
Drawing a separate transition from each substate to the target state would have a different
meaning; either transition would terminate the other subdiagram without waiting for the oth-
er. The firing of a merge transition causes a state diagram to perform the exit activities (if
any) of all subdiagrams, in the case of both explicit and implicit merges.

6.5 A Sample State Model
We present a sample state model of a real device (a Sears “Weekender” Programmable Ther-
mostat) to show how the various modeling constructs fit together. We constructed this model
by reading the instruction manual and experimenting with the actual device. The device con-
trols a furnace and air conditioner according to time-dependent attributes that the owner en-
ters using a pad of buttons.

While running, the thermostat operates the furnace or air conditioner to keep the current
temperature equal to the target temperature. The target temperature is taken from a table of
values at the beginning of each program period. The table specifies the target temperature and
start time for eight different time periods, four on weekdays and four on weekends. The user
can override the target temperature.

The user programs the thermostat using a pad of ten pushbuttons and three switches and
sees parameters on an alphanumeric display. Each pushbutton generates an event every time
it is pushed. We assign one input event per button:

6.5 A Sample State Model 119

TEMP UP raises target temperature or program temperature
TEMP DOWN lowers target temperature or program temperature
TIME FWD advances clock time or program time
TIME BACK retards clock time or program time
SET CLOCK sets current time of day
SET DAY sets current day of the week
RUN PRGM leaves setup or program mode and runs the program
VIEW PRGM enters program mode to examine and modify eight program time

and program temperature settings
HOLD TEMP holds current target temperature in spite of the program
F-C BUTTON alternates temperature display between Fahrenheit and Celsius

Each switch supplies a parameter value chosen from two or three possibilities. We model
each switch as an independent concurrent subdiagram with one state per switch setting. Al-
though we assign event names to a change in state, it is the state of each switch that is of
interest. The switches and their settings are:

NIGHT LIGHT Lights the alphanumeric display. Values: light off, light on.
SEASON Specifies which device the thermostat controls. Values: heat (fur-

nace), cool (air conditioner), off (none).
FAN Specifies when the ventilation fan operates. Values: fan on (fan

runs continuously), fan auto (fan runs only when furnace or air
conditioner is operating).

The thermostat controls the furnace, air conditioner, and fan power relays. We model this
control by activities run furnace, run air conditioner, and run fan.

The thermostat has a sensor for air temperature that it reads continuously, which we mod-
el by an external parameter temp. The thermostat also has an internal clock that it reads and
displays continuously. We model the clock as another external parameter time, since we are
not interested in building a state model of the clock. In building a state model, it is important
to include only states that affect the flow of control and to model other information as param-
eters or variables. We introduce an internal state variable target temp to represent the current
temperature that the thermostat is trying to maintain. Some activities read this state variable
and others set it; the state variable permits communication among parts of the state model.

Figure 6.10 shows the top-level state diagram of the programmable thermostat. It con-
tains seven concurrent subdiagrams. The user interface is too large to show and is expanded
separately (Figure 6.11). The diagram includes trivial subdiagrams for the season switch and
the fan switch. The other four subdiagrams show the output of the thermostat: the furnace,
air conditioner, the run indicator light, and fan relays. Each of these subdiagrams contains an
Off and an On substate. The state of each subdiagram is totally determined by input param-
eters and the state of other subdiagrams, such as the season switch or the fan switch. The state
of the four subdiagrams on the right is totally derived and contains no additional information.

Figure 6.11 shows the subdiagram for the user interface. The diagram contains three
concurrent subdiagrams, one for the interactive display, one for the temperature mode, and

120 Chapter 6 / Advanced State Modeling

one for the night light. The night light is controlled by a physical switch, so the default initial
state is irrelevant; its value can be determined directly. The temperature display mode is con-
trolled by a single pushbutton that toggles the temperature units between Fahrenheit and Cel-
sius. The default initial state is necessary; when the device is powered on, the initial
temperature mode is Fahrenheit.

The subdiagram for the interactive display is more interesting. The device is either op-
erating or being set up. State Operate has three concurrent substates—one includes Run and
Hold, another controls the target temperature display, and the third controls the time and
temperature display. Every two seconds the display alternates between the current time and
current temperature. The target temperature is displayed continuously and is modified by the
temp up and temp down buttons, as well as the set target event that is generated only in the
Run state. Note that the target temp parameter set by this subdiagram is the same parameter
that controls the output relays.

After every second in the Run state, the current time is compared to the stored program
times in the program table; if they are equal, then the program advances to the next program
period, and the Run state is reentered. The run state is also entered whenever the run program
button is pressed in any state, as shown by the transition from the contour to the Operate state
and the default initial transition to Run. Whenever the Run state is entered, the entry activity
on the state resets the target temperature from the program table.

While the program is in the Hold state, the program temperature cannot be advanced au-
tomatically, but the temperature can still be modified directly by the temp up and temp down
buttons. If the interface is in one of the setup states for 90 seconds without any input, the
system enters the Hold state. Entering the Hold substate also forces entry to the default initial
states of the other two concurrent subdiagrams of Operate. The Setup state was included in
the model just to group the three setup nested states for the 90-second timeout transition.
Note a small anomaly of the device: The hold button has no effect within the Setup state,
although the Hold state can be entered by waiting for 90 seconds.

The three setup subdiagrams are shown in Figure 6.12. Pressing set clock enters the Set
minutes nested state as initial default. Subsequent set clock presses toggle between the Set
hours and the Set minutes nested states. The time fwd and time back buttons modify the pro-
gram time. Pressing set day enters the Set day nested state and shows the day of the week.
Subsequent presses increment the day directly.

Pressing view program enters the Set program nested state, which has three concurrent
subdiagrams, one each controlling the display of the program time, program temperature,
and program period. The Set program state always starts with the first program period, while
subsequent view program events cycle through the 8 program periods. The view program
event is shown on all three subdiagrams, each diagram advancing the setting that it controls.
Note that the time fwd and time back events modify time in 15-minute increments, unlike the
same events in the set clock state. Note also that the temp up and temp down transitions have
guard conditions to keep the temperature in a fixed range.

None of the Interactive display nested states has an explicit exit transition. Each nested
state is implicitly terminated by a transition into another nested state from the main Interac-
tive display contour.

6.5 A Sample State Model 121

Furnace on

when (temp < target and Season switch in Heat)

when (temp > target + d or Season switch not in Heat

Furnace relay

AC off
AC on

when (temp > target and Season switch in Cool)

when (temp < target − d or Season switch not in Cool)

Air conditioner relay

Fan off
Fan on

when (Run indicator in Something on

Fan relay

when (Run indicator in Everything off and

Heat

Off

Cool

cool

off

off

heat

Season switch

Fan switch on

Fan switch auto

fan fan

Fan switch

do / run furnace

do / run AC

do / run fan

autoon

ui: User Interface

Something on
do / light indicator

when (Furnace in on or AC in on)

when (Furnace in off and AC in off)

Run indicator

Figure 6.10 State diagram for programmable thermostat

Everything off

Furnace off

 or Fan switch in on)

Fan switch in auto)

ProgrammableThermostat

122 Chapter 6 / Advanced State Modeling

Display time Display temp
after (2 sec)

after (2 sec)

Display target temp

temp up / increment
target temp

temp down / decrement target temp

run program

Run

Hold

entry / set target
(temp from program)

after (1 sec) [time=program time]
/ advance program

set target (temp) / reset target temp

do / show time do / show temp

do / show target temp

sc: Set clock sd: Set day sp: Set program

Setup

Interactive display

set clock set day view program

run program

after (90 sec without input)

Temp in Fahrenheit Temp in Celsius
F-C button

F-C button

Light off
Light on

touch button up

touch button down

Night light switch

do / shine light

entry / convert temp to Centry / convert temp to F

power on
/ load standard program

hold

Temperature mode

Figure 6.11 Subdiagram for thermostat user interface

Operate

User interface

6.6 Relation of Class and State Models 123

6.6 Relation of Class and State Models
The state model specifies allowable sequences of changes to objects from the class model. A
state diagram describes all or part of the behavior of the objects of a given class. States are
equivalence classes of values and links for an object.

State structure is related to and constrained by class structure. A nested state refines the
values and links that an object can have. Both generalization of classes and nesting of states
partition the set of possible object values. A single object can have different states over
time—the object preserves its identity—but it cannot have different classes. Inherent differ-

do / display program time
view program / advance

time fwd / add 15 minutes to program time

time back / subtract 15 minutes from program time

do / display program temp
view program / advance
to next program temp

temp up[temp<90F] / increment program temp

temp down[temp>40F] / decrement program temp

do / display program period
view program / advance
to next program period

/ set to first program time

/ set to first program temp

/ set to first program period

Set minutes
do / show minutes

time fwd / increment minutes

time back / decrement minutes

Set hours
do / show hours

time fwd / increment hours

time back / decrement hours

set clock

set clock
do / show day

set day
/ increment day

Figure 6.12 Subdiagrams for thermostat user interface setup

to next program time

Set clock Set day

Set program

124 Chapter 6 / Advanced State Modeling

ences among objects are therefore properly modeled as different classes, while temporary
differences are properly modeled as different states of the same class.

A composite state is the aggregation of more than one concurrent substate. There are
three sources of concurrency within the class model. The first is aggregation of objects: Each
part of an aggregation has its own independent state, so the assembly can be considered to
have a state that is the combination of the states of all its parts. The second source is aggre-
gation within an object: The values and links of an object are its parts, and groups of them
taken together define concurrent substates of the composite object state. The third source is
concurrent behavior of an object, such as found in Figure 6.9. The three sources of concur-
rency are usually interchangeable. For example, an object could contain an attribute to indi-
cate that it was performing a certain activity.

The state model of a class is inherited by its subclasses. The subclasses inherit both the
states of the ancestor and the transitions. The subclasses can have their own state diagrams.
But how do the state diagrams of the superclass and the subclass interact? If the superclass
state diagrams and the subclass state diagrams deal with disjoint sets of attributes, there is
no problem—the subclass has a composite state composed of concurrent state diagrams.

If, however, the state diagram of the subclass involves some of the same attributes as the
state diagram of the superclass, a potential conflict exists. The state diagram of the subclass
must be a refinement of the state diagram of the superclass. Any state from the parent state
diagram can be elaborated with nesting or split into concurrent parts, but new states or tran-
sitions cannot be introduced into the parent diagram directly, because the parent diagram
must be a projection of the child diagram. Although refinement of inherited state diagrams
is possible, usually the state diagram of a subclass should be an independent, orthogonal,
concurrent addition to the state diagram inherited from a superclass, defined on a different
set of attributes (usually the ones added in the subclass).

The signal hierarchy is independent of the class hierarchy for the classes exchanging
signals, in practice if not in theory. Signals can be defined across different classes of objects.
Signals are more fundamental than states and more parallel to classes. States are defined by
the interaction of objects and events. Transitions can often be implemented as operations on
objects, with the operation name corresponding to the signal name. Signals are more expres-
sive than operations, however, because the effect of a signal depends not only on the class of
an object but also on its state.

6.7 Practical Tips
The following practical tips have been mentioned throughout the chapter but are summarized
here for convenience.

■ Structured state diagrams. Use structure to organize models with more than 10–15
states. (Section 6.1)

■ State nesting. Use nesting when the same transition applies to many states. (Section
6.2)

6.8 Chapter Summary 125

■ Concrete supersignals. Analogous to generalization of classes, it is best to avoid con-
crete supersignals. Then, abstract and concrete signals are readily apparent at a glance—
all supersignals are abstract and all leaf subsignals are concrete. You can always elimi-
nate concrete supersignals by introducing an Other subsignal. (Section 6.3)

■ Concurrency. Most concurrency arises from object aggregation and need not be shown
explicitly in the state diagram. Use composite states to show independent facets of the
behavior of a single object. (Section 6.4)

■ Consistency of diagrams. Check the various state diagrams for consistency on shared
events so that the full state model will be correct. (Section 6.5)

■ State modeling and class inheritance. Try to make the state diagrams of subclasses in-
dependent of the state diagrams of their superclasses. Subclass state diagrams should
concentrate on attributes unique to the subclasses. (Section 6.6)

6.8 Chapter Summary
A class model describes the objects, values, and links that can exist in a system. The values
and links held by an object are called its state. Over time, the objects stimulate each other,
resulting in a series of changes to their states. Objects respond to events, which are occur-
rences at a point in time. The response to an event depends on the state of the object receiving
it, and can include a change of state or the sending of a signal to the original sender or to a
third object.

The combinations of events, states, and state transitions for a given class can be abstract-
ed and represented as a state diagram. A state diagram is a network of states and events, just
as a class diagram is a network of classes and relationships. The state model consists of mul-
tiple state diagrams, one state diagram for each class with important dynamic behavior, and
shows the possible behavior for an entire system. Each object independently executes the
state diagram for its class. The state diagrams for the various classes communicate via shared
events.

States and events can both be expanded to show greater detail. Nested states share the
transitions of their composite states. Signals can be organized into inheritance hierarchies.
Subsignals trigger the same transitions as their supersignals.

Objects are inherently concurrent, and each object has its own state. State diagrams
show concurrency as an aggregation of concurrent states, each operating independently.
Concurrent objects interact by exchanging events and by testing conditions of other objects,
including states. Transitions can split or merge flow of control.

Entry and exit activities permit activities to cover all the transitions entering or exiting
the state. They make self-contained state diagrams possible for use in multiple contexts. In-
ternal activities represent transitions that do not leave the state.

A subclass inherits the state diagrams of its ancestors, to be concurrent with any state
diagram that it defines. It is also possible to refine an inherited state diagram by expanding
states into nested states or concurrent subdiagrams.

126 Chapter 6 / Advanced State Modeling

A realistic model of a programmable thermostat takes three pages and illustrates subtle-
ties of behavior that are not apparent from the instruction manual or from everyday operation.

Bibliographic Notes
Much of this chapter follows the work of David Harel, who has formalized his concepts in a
notation called state charts [Harel-87]. Harel’s treatment is the most successful attempt to
date to structure finite state diagrams and avoid the combinatorial explosion that has plagued
them. Harel describes a contour-based notation for state diagrams as a special case of a gen-
eral diagram notation that he calls higraphs [Harel-88].

The first edition of this book included state generalization, but the second edition omits
the concept in accordance with its omission in UML2. The UML2 metamodel restricts gen-
eralization to classifiers and a state is not a classifier. There are similarities between gener-
alization of classes and nesting of states, but strictly speaking, in UML2 there is no state
generalization.

There are many fine points of state modeling with UML2. See [Rumbaugh-05] for more
information.

We thank Mikael Berndtsson for suggesting Exercise 6.12.

References
[Coplien-92] James O. Coplien. Advanced C++: Programming Styles and Idioms. Boston: Addison-

Wesley, 1992.
[Harel-87] David Harel. Statecharts: a visual formalism for complex systems. Science of Computer

Programming 8 (1987), 231–274.
[Harel-88] David Harel. On visual formalisms. Communications of ACM 31, 5 (May 1988), 514–530.
[Rumbaugh-05] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Ref-

erence Manual, Second Edition. Boston: Addison-Wesley, 2005.

Exercises
6.1 (3) The direction control for some of the first toy electric trains was accomplished by interrupt-

ing the power to the train. Prepare state diagrams for the headlight and wheels of the train, cor-
responding to the following sequence of events:

composite state
concurrency
control
nested state

Figure 6.13 Key concepts for Chapter 6

nested state diagram
region
signal generalization
state aggregation

state model
synchronization
submachine

Exercises 127

Power is off, train is not moving.
Power is turned on, train runs forward with its headlight shining.
Power is turned off, train stops and headlight goes out.
Power is turned on, headlight shines and train does not move.
Power is turned off, headlight goes out.
Power is turned on, train runs backward with its headlight shining.
Power is turned off, train stops and headlight goes out.
Power is turned on, headlight shines and train does not move.
Power is turned off, headlight goes out.
Power is turned on, train runs forward with its headlight shining.

6.2 (6) Revise the state diagram from Exercise 5.2 to provide for more rapid setting of the time by
pressing and holding the B button. If the B button is pressed and held for more than 5 seconds
in set time mode, the hours or minutes (depending on the submode) increment once every 1/2
second. (Instructor’s note: You may want to give the students a copy of our answer to Exercise
5.2 as the basis for this exercise.)

6.3 (5) Revise the state diagram from your answer to Exercise 5.6 by noting the commonality of the
starting and running states. There is a transition from either the starting or the running state to
the off state when “on” is not wanted. (Instructor’s note: You may want to give the students a
copy of our answer to Exercise 5.6 as the basis for this exercise.)

6.4 (6) Three-phase induction motors will spin either clockwise or counterclockwise, depending on
the connection to the power lines. In applications requiring motor operation in both directions,
two separate contactors (power relays) might be used to make the connections, one for each di-
rection. Also, in some applications of large motors, the motor starts through a transformer that
reduces the impact on the power supply. The transformer is bypassed by a third contactor after
the motor has been given enough time to come up to speed. There are three momentary control
inputs: requests for forward, reverse, or off. When the motor is off, forward or reverse requests
cause the motor to start up and run in the requested direction. A reverse request is ignored if the
motor is starting or running in the forward direction. and vice versa. An off request at any time
shuts the motor off.

Figure E6.1 is a state diagram for one possible motor control. Convert it from a single state
diagram into two concurrent state diagrams, one to control the direction of the motor and one
for starting control.

6.5 (3) The control in the previous exercise does not provide for thermal protection.
a. Modify the state diagram in Figure E6.1 to shut the motor off if an overheating condition is

detected at any time.
b. Modify the concurrent state diagrams that you produced in Exercise 6.4 to shut the motor off

if an overheating condition is detected at any time.

6.6 (2) Place the following signal classes into a generalization hierarchy: pick, character input, line
pick, circle pick, box pick, text pick, input signal.

6.7 (7) A gas-fired, forced hot-air, home heating system maintains room temperature and humidity
in the winter using distributed controls. The comfort of separate rooms may be controlled some-
what independently. Heat is requested from the furnace for each room based on its measured
temperature and the desired temperature for that room. When one or more rooms require heat,
the furnace is turned on. When the temperature in the furnace is high enough, a blower on the

128 Chapter 6 / Advanced State Modeling

furnace is turned on to send hot air through heating ducts. If the temperature in the furnace ex-
ceeds a safety limit, the furnace is shut off and the blower continues to run. Flappers in the ducts
are controlled by the system to deliver heat only to those rooms that need it. When the room(s)
no longer require heat, the furnace is shut off, but the blower continues to deliver hot air until
the furnace has cooled off.

Humidity is also maintained based on a strategy involving desired humidity, measured hu-
midity, and outside temperature. The desired humidity is set by the user for the entire home. Hu-
midity of the cool air returning to the blower is measured. When the system determines that the
humidity is too low, a humidifier in the furnace is turned on, whenever the blower is on, to inject
moisture into the air leaving the blower.

 Partition the control of this system into concurrent state diagrams. Describe the functioning
of each state diagram without actually going into the details of states or activities.

6.8 Figure E6.2 is a portion of the state diagram for the control of a video cassette recorder (VCR).
The VCR has several buttons, including select, on/off, and set for setting the clock and automatic
start–stop timers, auto for enabling automatic recording, vcr for bypassing the VCR, and timed
for recording for 15-minute increments. Many of the events in Figure E6.2 correspond to press-
ing the button with the same name. Several buttons have a toggling behavior. For example,
pressing vcr toggles between VCR and TV mode. Several buttons used for manual control of
the VCR are not accounted for in Figure E6.2, such as play, record, fast forward, rewind, pause,
and eject. These buttons are enabled only in the Manual state. Do the following:
a. (2) Prepare lists of events and activities along with a brief definition.
b. (7) Prepare a user’s manual explaining how to operate the VCR.

Figure E6.1 State diagram for an induction motor control

Off
do / energize forward contactor

do / energize reverse contactor

Starting forward
entry / start timer

Running forward

do / energize running contactor,
energize forward contactor

Starting reverse

entry / start timer
Running reverse

do / energize running contactor,
energize reverse contactor

forward request

off request

off request

off request

timeout

timeout

reverse request

off request

InductionMotorControl

Exercises 129

select

Figure E6.2 Portion of a state diagram for a video cassette recorder

select

do / record
Auto record

Auto off

do / tv outputdo / vcr output

set / next channelset / next hour

do / display time
Set clock

Start day
do / flash day
set / next day

Automatic
do / display time, update time, display “auto”

Manual

do / display time,
update time

Timed record

do / record
timed / more time

Set start timer
entry / initialize start time

do / display start time

VCR TV

Day
do / flash day
set / next day

Hour
do / flash hour
set / next hour

Minutes
do / flash minutes
set / next minute

Start minutes
do / flash minutes
set / next minute

Start hour
do / flash hour

Set stop timer
entry / initialize stop time

do / display stop time

Channel
do / flash channel

Stop minutes
do / flash minutes
set / next minute

Stop hour
do / flash hour
set / next hour

select

vcr

select

vcr

when (time = stop time)

selectselect

when (time = start time)auto

auto

on/off

select

on/off

on/off select

timed

timeout

selectselect

VideoCassetteRecorder

130 Chapter 6 / Advanced State Modeling

c. (7) By adding states, extend the state diagram to accommodate another start–stop timer for
a second channel.

d. (7) There is a great deal of commonality in your answer to the previous part. For example,
setting the hour may be done in several contexts with similar results. Discuss how duplica-
tion of effort could be reduced.

6.9 (6) The diagram in Figure E5.4 has a major omission. The power can be turned off at any time,
and the machine should transition to the off state. We could add a transition from each state to
the off state, but this would clutter the diagram. Remedy this defect by using nested states.

6.10 (6) Figure E6.3 contains a class diagram for two persons playing a game of table tennis. Con-
struct a state model corresponding to the class model.

The rules of table tennis are as follows. At the beginning of a game, the two players ‘ping’
for serve—that is, they bounce the ball over the net and hit it back and forth several times. The
winner of the ‘ping’ serves first.

The winner of the ‘ping’ serves five times. Then the other player serves five times. Then the
winner of the ‘ping’ serves five times again. This alternation of serve continues until either play-
er wins the game.

A game may be won upon shutout (11-0) or when a player reaches 21 with at least a 2-point
margin. If the score becomes tied at 20-20, the players then begin alternating individual serves
until a player has a 2-point margin of victory.

6.11 (10) Sometimes it is helpful to use reification—to promote something that is not an object into
an object. Reification is a helpful technique for meta applications because it lets you shift the
level of abstraction. On occasion it is useful to promote attributes, methods, constraints, and
control information into objects so you can describe and manipulate them as data.

Construct a class model that reifies and supports the following state modeling concepts:
event, state, transition, condition, activity, signal event, change event, and signal attribute.

6.12 (7) Take the model in Figure 6.5 and remove state nesting. That is, construct a flat state diagram
with equivalent semantics.

Figure E6.3 Class model for game of table tennis

winner

loser
2

Player

name
volleyNumber

server receiver

Volley

/ isExtraVolley

PlayerGame

hasInitialServe
/ gameScore

TableTennisGame 1

1

0..1

1 1

* *
*

*

1

*

131

7

Interaction Modeling

The interaction model is the third leg of the modeling tripod and describes interactions with-
in a system. The class model describes the objects in a system and their relationships, the
state model describes the life cycles of the objects, and the interaction model describes how
the objects interact.

The interaction model describes how objects interact to produce useful results. It is a ho-
listic view of behavior across many objects, whereas the state model is a reductionist view
of behavior that examines each object individually. Both the state model and the interaction
model are needed to describe behavior fully. They complement each other by viewing be-
havior from two different perspectives.

Interactions can be modeled at different levels of abstraction. At a high level, use cases
describe how a system interacts with outside actors. Each use case represents a piece of func-
tionality that a system provides to its users. Use cases are helpful for capturing informal re-
quirements.

Sequence diagrams provide more detail and show the messages exchanged among a set
of objects over time. Messages include both asynchronous signals and procedure calls. Se-
quence diagrams are good for showing the behavior sequences seen by users of a system.

And finally, activity diagrams provide further detail and show the flow of control among
the steps of a computation. Activity diagrams can show data flows as well as control flows.
Activity diagrams document the steps necessary to implement an operation or a business
process referenced in a sequence diagram.

7.1 Use Case Models

7.1.1 Actors
An actor is a direct external user of a system—an object or set of objects that communicates
directly with the system but that is not part of the system. Each actor represents those objects

132 Chapter 7 / Interaction Modeling

that behave in a particular way toward the system. For example, customer and repair techni-
cian are different actors of a vending machine. For a travel agency system, actors might in-
clude traveler, agent, and airline. For a computer database system, actors might include user
and administrator. Actors can be persons, devices, and other systems—anything that inter-
acts directly with the system.

An object can be bound to multiple actors if it has different facets to its behavior. For
example, the objects Mary, Frank, and Paul may be customers of a vending machine. Paul
may also be a repair technician for the vending machine.

An actor has a single well-defined purpose. In contrast, objects and classes often com-
bine many different purposes. An actor represents a particular facet of objects in its interac-
tion with a system. The same actor can represent objects of different classes that interact
similarly toward a system. For example, even though many different individual persons use
a vending machine, their behavior toward the vending machine can all be summarized by the
actors customer and repair technician. Each actor represents a coherent set of capabilities
for its objects.

Modeling the actors helps to define a system by identifying the objects within the system
and those on its boundary. An actor is directly connected to the system—an indirectly con-
nected object is not an actor and should not be included as part of the system model. Any
interactions with an indirectly connected object must pass through the actors. For example,
the dispatcher of repair technicians from a service bureau is not an actor of a vending ma-
chine—only the repair technician interacts directly with the machine. If it is necessary to
model the interactions among such indirect objects, then a model should be constructed of
the environment itself as a larger system. For example, it might be useful to build a model of
a repair service that includes dispatchers, repair technicians, and vending machines as actors,
but that is a different model from the vending machine model.

7.1.2 Use Cases
The various interactions of actors with a system are quantized into use cases. A use case is
a coherent piece of functionality that a system can provide by interacting with actors. For
example, a customer actor can buy a beverage from a vending machine. The customer inserts
money into the machine, makes a selection, and ultimately receives a beverage. Similarly, a
repair technician can perform scheduled maintenance on a vending machine. Figure 7.1
summarizes several use cases for a vending machine.

Each use case involves one or more actors as well as the system itself. The use case buy
a beverage involves the customer actor and the use case perform scheduled maintenance in-
volves the repair technician actor. In a telephone system, the use case make a call involves
two actors, a caller and a receiver. The actors need not all be persons. The use case make a
trade on an online stock broker involves a customer actor and a stock exchange actor. The
stock broker system needs to communicate with both actors to execute a trade.

A use case involves a sequence of messages among the system and its actors. For exam-
ple, in the buy a beverage use case, the customer first inserts a coin and the vending machine
displays the amount deposited. This can be repeated several times. Then the customer pushes

7.1 Use Case Models 133

a button to indicate a selection; the vending machine dispenses the beverage and issues
change, if necessary.

Some use cases have a fixed sequence of messages. More often, however, the message
sequence may have some variations. For example, a customer can deposit a variable number
of coins in the buy a beverage use case. Depending on the money inserted and the item se-
lected, the machine may, or may not, return change. You can represent such variability by
showing several examples of distinct behavior sequences. Typically you should first define a
mainline behavior sequence, then define optional subsequences, repetitions, and other vari-
ations.

Error conditions are also part of a use case. For example, if the customer selects a bev-
erage whose supply is exhausted, the vending machine displays a warning message. Similar-
ly, the vending transaction can be cancelled. For example, the customer can push the coin
return on the vending machine at any time before a selection has been accepted; the machine
returns the coins, and the behavior sequence for the use case is complete. From the user’s
point of view, some kinds of behavior may be thought of as errors. The designer, however,
should plan for all possible behavior sequences. From the system’s point of view, user errors
or resource failures are just additional kinds of behavior that a robust system can accommo-
date.

A use case brings together all of the behavior relevant to a slice of system functionality.
This includes normal mainline behavior, variations on normal behavior, exception condi-
tions, error conditions, and cancellations of a request. Figure 7.2 explains the buy a beverage
use case in detail. Grouping normal and abnormal behavior under a single use case helps to
ensure that all the consequences of an interaction are considered together.

In a complete model, the use cases partition the functionality of the system. They should
preferably all be at a comparable level of abstraction. For example, the use cases make tele-
phone call and record voice mail message are at comparable levels. The use case set external
speaker volume to high is too narrow. It would be better as set speaker volume (with the vol-
ume level selection as part of the use case) or maybe even just set telephone parameters, un-
der which we might group setting volume, display pad settings, setting the clock, and so on.

Figure 7.1 Use case summaries for a vending machine. A use case is a coherent
piece of functionality that a system can provide by interacting with actors.

■ Buy a beverage. The vending machine delivers a beverage after a customer se-
lects and pays for it.

■ Perform scheduled maintenance. A repair technician performs the periodic
service on the vending machine necessary to keep it in good working condition.

■ Make repairs. A repair technician performs the unexpected service on the vend-
ing machine necessary to repair a problem in its operation.

■ Load items. A stock clerk adds items into the vending machine to replenish its
stock of beverages.

134 Chapter 7 / Interaction Modeling

7.1.3 Use Case Diagrams
A system involves a set of use cases and a set of actors. Each use case represents a slice of
the functionality the system provides. The set of use cases shows the complete functionality
of the system at some level of detail. Similarly, each actor represents one kind of object for
which the system can perform behavior. The set of actors represents the complete set of ob-
jects that the system can serve. Objects accumulate behavior from all the systems with which
they interact as actors.

The UML has a graphical notation for summarizing use cases and Figure 7.3 shows an
example. A rectangle contains the use cases for a system with the actors listed on the outside.
The name of the system may be written near a side of the rectangle. A name within an ellipse

Figure 7.2 Use case description. A use case brings together all of the
behavior relevant to a slice of system functionality.

Use Case: Buy a beverage
Summary: The vending machine delivers a beverage after a customer selects and
pays for it.
Actors: Customer
Preconditions: The machine is waiting for money to be inserted.
Description: The machine starts in the waiting state in which it displays the message
“Enter coins.” A customer inserts coins into the machine. The machine displays the
total value of money entered and lights up the buttons for the items that can be pur-
chased for the money inserted. The customer pushes a button. The machine dispenses
the corresponding item and makes change, if the cost of the item is less than the mon-
ey inserted.
Exceptions:
Canceled: If the customer presses the cancel button before an item has been selected,
the customer’s money is returned and the machine resets to the waiting state.
Out of stock: If the customer presses a button for an out-of-stock item, the message
“That item is out of stock” is displayed. The machine continues to accept coins or a
selection.
Insufficient money: If the customer presses a button for an item that costs more than
the money inserted, the message “You must insert $nn.nn more for that item” is dis-
played, where nn.nn is the amount of additional money needed. The machine contin-
ues to accept coins or a selection.
No change: If the customer has inserted enough money to buy the item but the ma-
chine cannot make the correct change, the message “Cannot make correct change” is
displayed and the machine continues to accept coins or a selection.
Postconditions: The machine is waiting for money to be inserted.

7.1 Use Case Models 135

denotes a use case. A “stick man” icon denotes an actor, with the name being placed below
or adjacent to the icon. Solid lines connect use cases to participating actors.

In the figure, the actor Repair technician participates in two use cases, the others in one
each. Multiple actors can participate in a use case, even though the example has only one
actor per use case.

7.1.4 Guidelines for Use Case Models
Use cases identify the functionality of a system and organize it according to the perspective
of users. In contrast, traditional requirements lists can include functionality that is vague to
users, as well as overlook supporting functionality, such as initialization and termination.
Use cases describe complete transactions and are therefore less likely to omit necessary
steps. There is still a place for traditional requirements lists in describing global constraints
and other nonlocalized functionality, such as mean time to failure and overall throughput, but
you should capture most user interactions with use cases. The main purpose of a system is
almost always found in the use cases, with requirements lists supplying additional imple-
mentation constraints. Here are some guidelines for constructing use case models.

■ First determine the system boundary. It is impossible to identify use cases or actors
if the system boundary is unclear.

■ Ensure that actors are focused. Each actor should have a single, coherent purpose. If
a real-world object embodies multiple purposes, capture them with separate actors. For
example, the owner of a personal computer may install software, set up a database, and
send email. These functions differ greatly in their impact on the computer system and
the potential for system damage. They might be broken into three actors: system admin-

Figure 7.3 Use case diagram for a vending machine. A system involves a
set of use cases and a set of actors.

Stock clerk

perform
scheduled

load items

buy
beverage

Vending Machine

make Repair technician

Customer

repairs

maintenance

136 Chapter 7 / Interaction Modeling

istrator, database administrator, and computer user. Remember that an actor is defined
with respect to a system, not as a free-standing concept.

■ Each use case must provide value to users. A use case should represent a complete
transaction that provides value to users and should not be defined too narrowly. For ex-
ample, dial a telephone number is not a good use case for a telephone system. It does not
represent a complete transaction of value by itself; it is merely part of the use case make
telephone call. The latter use case involves placing the call, talking, and terminating the
call. By dealing with complete use cases, we focus on the purpose of the functionality
provided by the system, rather than jumping into implementation decisions. The details
come later. Often there is more than one way to implement desired functionality.

■ Relate use cases and actors. Every use case should have at least one actor, and every
actor should participate in at least one use case. A use case may involve several actors,
and an actor may participate in several use cases.

■ Remember that use cases are informal. It is important not to be obsessed by formal-
ism in specifying use cases. They are not intended as a formal mechanism but as a way
to identify and organize system functionality from a user-centered point of view. It is
acceptable if use cases are a bit loose at first. Detail can come later as use cases are ex-
panded and mapped into implementations.

■ Use cases can be structured. For many applications, the individual use cases are com-
pletely distinct. For large systems, use cases can be built out of smaller fragments using
relationships (see Chapter 8).

7.2 Sequence Models
The sequence model elaborates the themes of use cases. There are two kinds of sequence
models: scenarios and a more structured format called sequence diagrams.

7.2.1 Scenarios
A scenario is a sequence of events that occurs during one particular execution of a system,
such as for a use case. The scope of a scenario can vary; it may include all events in the sys-
tem, or it may include only those events impinging on or generated by certain objects. A sce-
nario can be the historical record of executing an actual system or a thought experiment of
executing a proposed system.

A scenario can be displayed as a list of text statements, as Figure 7.4 illustrates. In this
example, John Doe logs on with an online stock broker system, places an order for GE stock,
and then logs off. Sometime later, after the order is executed, the securities exchange reports
the results of the trade to the broker system. John Doe will see the results on the next login,
but that is not part of this scenario.

The example expresses interaction at a high level. For example, the step John Doe logs
in might require several messages between John Doe and the system. The essential purpose
of the step, however, is the request to enter the system and providing the necessary identifi-

7.2 Sequence Models 137

cation—the details can be shown separately. At early stages of development, you should ex-
press scenarios at a high level. At later stages, you can show the exact messages. Determining
the detailed messages is part of development.

A scenario contains messages between objects as well as activities performed by ob-
jects. Each message transmits information from one object to another. For example, John
Doe logs in transmits a message from John Doe to the broker system. The first step of writing
a scenario is to identify the objects exchanging messages. Then you must determine the
sender and receiver of each message, as well as the sequence of the messages. Finally, you
can add activities for internal computations as scenarios are reduced to code.

7.2.2 Sequence Diagrams
A text format is convenient for writing, but it does not clearly show the sender and receiver
of each message, especially if there are more than two objects. A sequence diagram shows
the participants in an interaction and the sequence of messages among them. A sequence di-
agram shows the interaction of a system with its actors to perform all or part of a use case.

Figure 7.5 shows a sequence diagram corresponding to the previous stock broker sce-
nario. Each actor as well as the system is represented by a vertical line called a lifeline and
each message by a horizontal arrow from the sender to the receiver. Time proceeds from top
to bottom, but the spacing is irrelevant; the diagram shows only the sequence of messages,
not their exact timing. (Real-time systems impose time constraints on event sequences, but
that requires extra notation.) Note that sequence diagrams can show concurrent signals—
stock broker system sends messages to customer and securities exchange concurrently—and
signals between participants need not alternate—stock broker system sends secure commu-
nication followed by display portfolio.

Each use case requires one or more sequence diagrams to describe its behavior. Each se-
quence diagram shows a particular behavior sequence of the use case. It is best to show a
specific portion of a use case and not attempt to be too general. Although it is possible to

John Doe logs in.
System establishes secure communications.
System displays portfolio information.
John Doe enters a buy order for 100 shares of GE at the market price.
System verifies sufficient funds for purchase.
System displays confirmation screen with estimated cost.
John Doe confirms purchase.
System places order on securities exchange.
System displays transaction tracking number.
John Doe logs out.
System establishes insecure communication.
System displays good-bye screen.
Securities exchange reports results of trade.

Figure 7.4 Scenario for a session with an online stock broker. A scenario is a se-
quence of events that occurs during one particular execution of a system.

138 Chapter 7 / Interaction Modeling

show conditionals within a sequence diagram, usually it is clearer to prepare one sequence
diagram for each major flow of control.

Sequence diagrams can show large-scale interactions, such as an entire session with the
stock broker system, but often such interactions contain many independent tasks that can be
combined in various ways. Rather than repeating information, you can draw a separate se-
quence diagram for each task. For example, Figure 7.6 and Figure 7.7 show an order to pur-
chase a stock and a request for a quote on a stock. These and various other tasks (not shown)
would fit within an entire stock trading session.

You should also prepare a sequence diagram for each exception condition within the use
case. For example, Figure 7.8 shows a variation in which the customer does not have suffi-
cient funds to place the order. In this example, the customer cancels the order. In another
variation (not shown), the customer would reduce the number of shares purchased and the
order would be accepted.

In most systems, there are an unlimited number of scenarios, so it is not possible to show
them all. However, you should try to elaborate all the use cases and cover the basic kinds of
behavior with sequence diagrams. For example, a stock broker system can interleave pur-
chases, sales, and inquiries arbitrarily. It is unnecessary to show all combinations of activi-
ties, once the basic pattern is established.

Figure 7.5 Sequence diagram for a session with an online stock broker.
A sequence diagram shows the participants in an interaction and
the sequence of messages among them.

log in

display portfolio

enter purchase data

request confirmation

confirm purchase

display order number place order

report results of trade

logout

display good bye

{execute order}

{verify funds}

{verify customer}secure communication

insecure communication

:Customer :StockBrokerSystem :SecuritiesExchange

7.2 Sequence Models 139

Figure 7.6 Sequence diagram for a stock purchase. Sequence diagrams can
show large-scale interactions as well as smaller, constituent tasks.

enter purchase data

request confirmation

confirm purchase

display order number place order

report results of trade {execute order}

{verify funds}

:Customer :StockBrokerSystem :SecuritiesExchange

Figure 7.7 Sequence diagram for a stock quote

enter stock symbol

display quote

request stock data

report stock data

:Customer :StockBrokerSystem :SecuritiesExchange

Figure 7.8 Sequence diagram for a stock purchase that fails

enter purchase data

reject purchase

cancel purchase

{verify funds:
 insufficient}

:Customer :StockBrokerSystem :SecuritiesExchange

140 Chapter 7 / Interaction Modeling

7.2.3 Guidelines for Sequence Models
The sequence model adds detail and elaborates the informal themes of use cases. There are
two kinds of sequence models. Scenarios document a sequence of events with prose. Se-
quence diagrams also document the sequence of events but more clearly show the actors in-
volved. The following guidelines will help you with sequence models.

■ Prepare at least one scenario per use case. The steps in the scenario should be logical
commands, not individual button clicks. Later, during implementation, you can specify
the exact syntax of input. Start with the simplest mainline interaction—no repetitions,
one main activity, and typical values for all parameters. If there are substantially differ-
ent mainline interactions, write a scenario for each.

■ Abstract the scenarios into sequence diagrams. The sequence diagrams clearly show
the contribution of each actor. It is important to separate the contribution of each actor
as a prelude to organizing behavior about objects.

■ Divide complex interactions. Break large interactions into their constituent tasks and
prepare a sequence diagram for each of them.

■ Prepare a sequence diagram for each error condition. Show the system response to
the error condition.

7.3 Activity Models
An activity diagram shows the sequence of steps that make up a complex process, such as
an algorithm or workflow. An activity diagram shows flow of control, similar to a sequence
diagram, but focuses on operations rather than on objects. Activity diagrams are most useful
during the early stages of designing algorithms and workflows.

Figure 7.9 shows an activity diagram for the processing of a stock trade order that has
been received by an online stock broker. The elongated ovals show activities and the arrows
show their sequencing. The diamond shows a decision point and the heavy bar shows split-
ting or merging of concurrent threads.

The online stock broker first verifies the order against the customer’s account, then ex-
ecutes it with the stock exchange. If the order executes successfully, the system does three
things concurrently: mails trade confirmation to the customer, updates the online portfolio to
reflect the results of the trade, and settles the trade with the other party by debiting the ac-
count and transferring cash or securities. When all three concurrent threads have been com-
pleted, the system merges control into a single thread and closes the order. If the order
execution fails, then the system sends a failure notice to the customer and closes the order.

An activity diagram is like a traditional flowchart in that it shows the flow of control
from step to step. Unlike a traditional flowchart, however, an activity diagram can show both
sequential and concurrent flow of control. This distinction is important for a distributed sys-
tem. Activity diagrams are often used for modeling human organizations because they in-
volve many objects—persons and organizational units—that perform operations
concurrently.

7.3 Activity Models 141

7.3.1 Activities
The steps of an activity diagram are operations, specifically activities from the state model.
The purpose of an activity diagram is to show the steps within a complex process and the
sequencing constraints among them.

Some activities run forever until an outside event interrupts them, but most activities
eventually complete their work and terminate by themselves. The completion of an activity
is a completion event and usually indicates that the next activity can be started. An unlabeled
arrow from one activity to another in an activity diagram indicates that the first activity must
complete before the second activity can begin.

An activity may be decomposed into finer activities. For example, Figure 7.10 expands
the execute order activity of Figure 7.9. It is important that the activities on a diagram be at
the same level of detail. For example, in Figure 7.9 execute order and settle trade are similar
in detail; they both express a high-level operation without showing the underlying mecha-
nisms. If one of these activities were replaced in the activity diagram by its more detailed
steps, the other activities should be replaced as well to maintain balance. Alternatively, bal-
ance can be preserved by elaborating the activities in separate diagrams.

verify order

execute order

send
confirmation

debit account update online
portfolio

settle trade

close order

Figure 7.9 Activity diagram for stock trade processing. An activity diagram
shows the sequence of steps that make up a complex process.

send
failure notice

[failure]

[success]

142 Chapter 7 / Interaction Modeling

7.3.2 Branches
If there is more than one successor to an activity, each arrow may be labeled with a condition
in square brackets, for example, [failure]. All subsequent conditions are tested when an ac-
tivity completes. If one condition is satisfied, its arrow indicates the next activity to perform.
If no condition is satisfied, the diagram is badly formed and the system will hang unless it is
interrupted at some higher level. To avoid this danger, you can use the else condition; it is
satisfied in case no other condition is satisfied. If multiple conditions are satisfied, only one
successor activity executes, but there is no guarantee which one it will be. Sometimes this
kind of nondeterminism is desirable, but often it indicates an error, so the modeler should
determine whether any overlap of conditions can occur and whether it is correct.

As a notational convenience, a diamond shows a branch into multiple successors, but it
means the same thing as arrows leaving an activity symbol directly. In Figure 7.9 the dia-
mond has one incoming arrow and two outgoing arrows, each with a condition. A particular
execution chooses only one path of control.

If several arrows enter an activity, the alternate execution paths merge. Alternatively,
several arrows may enter a diamond and one may exit to indicate a merge.

7.3.3 Initiation and Termination
A solid circle with an outgoing arrow shows the starting point of an activity diagram. When
an activity diagram is activated, control starts at the solid circle and proceeds via the outgoing

Figure 7.10 Activity diagram for execute order. An activity may be de-
composed into finer activities.

find buyer
at market price

[market order]

[limit order]

[price not available]

[price available]

find buyer at limit
price or better

[timeout]

[order still active]

find seller
at market price

[selling] [buying]

[selling] [buying]

find seller at limit
price or better

7.3 Activity Models 143

arrow toward the first activities. A bull’s-eye (a solid circle surrounded by a hollow circle)
shows the termination point—this symbol only has incoming arrows. When control reaches
a bull’s-eye, the overall activity is complete and execution of the activity diagram ends.

7.3.4 Concurrent Activities
Unlike traditional flow charts, organizations and computer systems can perform more than
one activity at a time. The pace of activity can also change over time. For example, one ac-
tivity may be followed by another activity (sequential control), then split into several con-
current activities (a fork of control), and finally be combined into a single activity (a merge
of control). A fork or merge is shown by a synchronization bar—a heavy line with one or
more input arrows and one or more output arrows. On a synchronization, control must be
present on all of the incoming activities, and control passes to all of the outgoing activities.

Figure 7.9 illustrates both a fork and merge of control. Once an order is executed, there
is a fork—several tasks need to occur and they can occur in any order. The stock trade system
must send confirmation to the customer, debit the customer’s account, and update the cus-
tomer’s online portfolio. After the three concurrent tasks complete and the trade is settled,
there is a merge, and execution proceeds to the activity of closing the order.

7.3.5 Executable Activity Diagrams
Activity diagrams are not only useful for defining the steps in a complex process, but they
can also be used to show the progression of control during execution. An activity token can
be placed on an activity symbol to indicate that it is executing. When an activity completes,
the token is removed and placed on the outgoing arrow. In the simplest case, the token then
moves to the next activity.

If there are multiple outgoing arrows with conditions, the conditions are examined to de-
termine the successor activity. Only one successor activity can receive the token, even if
more than one condition is true. If no condition is satisfied, the activity diagram is ill formed.

Multiple tokens can arise through concurrency. If an executing activity is followed by a
concurrent split of control, completion causes an increase in the number of tokens—a token
is placed on each of the concurrent activities. Similarly, a merge of control causes a decrease
in the number of tokens as tokens migrate from the input activities to the output activities.
All the input activities must complete before the merge can actually occur.

7.3.6 Guidelines for Activity Models
Activity diagrams elaborate the details of computation, thus documenting the steps needed
to implement an operation or a business process. In addition, activity diagrams can help de-
velopers understand complex computations by graphically displaying the progression
through intermediate execution steps. Here is some advice for activity models.

■ Don’t misuse activity diagrams. Activity diagrams are intended to elaborate use case
and sequence models so that a developer can study algorithms and workflow. Activity
diagrams supplement the object-oriented focus of UML models and should not be used
as an excuse to develop software via flowcharts.

144 Chapter 7 / Interaction Modeling

■ Level diagrams. Activities on a diagram should be at a consistent level of detail. Place
additional detail for an activity in a separate diagram.

■ Be careful with branches and conditions. If there are conditions, at least one must be
satisfied when an activity completes—consider using an else condition. In undetermin-
istic models, it is possible for multiple conditions to be satisfied—otherwise this is an
error condition.

■ Be careful with concurrent activities. Concurrency means that the activities can com-
plete in any order and still yield an acceptable result. Before a merge can happen, all
inputs must first complete.

■ Consider executable activity diagrams. Executable activity diagrams can help devel-
opers understand their systems better. Sometimes they can even be helpful for end users
who want to follow the progression of a process.

7.4 Chapter Summary
The interaction model provides a holistic view of behavior—how objects interact and ex-
change messages. At a high level, use cases partition the functionality of a system into dis-
crete pieces meaningful to external actors. You can elaborate the behavior of use cases with
scenarios and sequence diagrams. Sequence diagrams clearly show the objects in an interac-
tion and the messages among them. Activity diagrams specify the details of a computation.

The class, state, and interaction models all involve the same concepts, namely data, se-
quencing, and operations, but each model focuses on a particular aspect and leaves the other
aspects uninterpreted. All three models are necessary for a full understanding of a problem,
although the balance of importance among the models varies according to the kind of appli-
cation. The three models come together in the implementation of methods, which involve
data (target object, arguments, and variables), control (sequencing constructs), and interac-
tions (messages, calls, and sequences).

Bibliographic Notes
Jacobson first introduced use cases [Jacobson-92]. The first edition of this book included
scenarios and event trace diagrams. The latter are equivalent to simple sequence diagrams.

activity
activity diagram
activity token
actor

concurrency
interaction model
lifeline
message

scenario
sequence diagram
system boundary
thread

Figure 7.11 Key concepts for Chapter 7

use case
use case diagram

References 145

References
[Jacobson-92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard. Object-

Oriented Software Engineering: A Use Case Driven Approach. Wokingham, England: Addison-
Wesley, 1992.

Exercises
7.1 Consider a physical bookstore, such as in a shopping mall.

a. (2) List three actors that are involved in the design of a checkout system. Explain the rele-
vance of each actor.

b. (2) One use case is the purchase of items. Take the perspective of a customer and list another
use case at a comparable level of abstraction. Summarize the purpose of each use case with
a sentence.

c. (4) Prepare a use case diagram for a physical bookstore checkout system.
d. (3) Prepare a normal scenario for each use case. Remember that a scenario is an example,

and need not exercise all functionality of the use case.
e. (3) Prepare an exception scenario for each use case.
f. (5) Prepare a sequence diagram corresponding to each scenario in (d).

7.2 Consider a computer email system.
a. (2) List three actors. Explain the relevance of each actor.
b. (2) One use case is to get email. List four additional use cases at a comparable level of ab-

straction. Summarize the purpose of each use case with a sentence.
c. (4) Prepare a use case diagram for a computer email system.
d. (3) Prepare a normal scenario for each use case. Remember that a scenario is an example,

and need not exercise all functionality of the use case.
e. (3) Prepare an exception scenario for each use case.
f. (5) Prepare a sequence diagram corresponding to each scenario in (d).

7.3 Consider an online airline reservation system. You may want to check airline Web sites to give
you ideas.
a. (2) List two actors. Explain the relevance of each actor.
b. (2) One use case is to make a flight reservation. List four additional use cases at a comparable

level of abstraction. Summarize the purpose of each use case with a sentence.
c. (4) Prepare a use case diagram for an online airline reservation system.

7.4 Consider a software system for supporting checkout of materials at a public library.
a. (2) List four actors. Explain the relevance of each actor.
b. (2) One use case is to borrow a library item. List three additional use cases at a comparable

level of abstraction. Summarize the purpose of each use case with a sentence.
c. (4) Prepare a use case diagram for a library checkout system.

7.5 (3) Identify at least 10 use cases for the Windows Explorer. Just list them textually and summa-
rize the purpose of each use case in one or two sentences.

7.6 (3) Write scenarios for the following situations:
a. Moving a bag of corn, a goose, and a fox across a river in a boat. Only one thing may be

carried in the boat at a time. If the goose is left alone with the corn, the corn will be eaten. If

146 Chapter 7 / Interaction Modeling

the goose is left alone with the fox, the goose will be eaten. Prepare two scenarios, one in
which something gets eaten and one in which everything is safely transported across the riv-
er.

b. Getting ready to take a trip in your car. Assume an automatic transmission. Don’t forget your
seat belt and emergency brake.

c. An elevator ride to the top floor.
d. Operation of a car cruise control. Include an encounter with slow-moving traffic that re-

quires you to disengage and then resume control.

7.7 (4) Some combined bath–showers have two faucets and a lever for controlling the flow of the
water. The lever controls whether the water flows from the shower head or directly into the tub.
When the water is first turned on, it flows directly into the tub. When the lever is pulled, a valve
closes and latches, diverting the flow of water to the shower head. To switch from shower to
bath with the water running, one must push the lever. Shutting off the water releases the lever,
so that the next time the water is turned on, it flows directly into the tub. Write a scenario for a
shower that is interrupted by a telephone call.

7.8 (4) Prepare an activity diagram for computing a restaurant bill. There should be a charge for
each delivered item. The total amount should be subject to tax and a service charge of 18% for
groups of six of more. For smaller groups, there should be a blank entry for a gratuity according
to the customer’s discretion. Any coupons or gift certificates submitted by the customer should
be subtracted.

7.9 (4) Prepare an activity diagram for awarding frequent flyer credits. In the past, TWA awarded
a minimum of 750 miles for each flight. Gold and red card holders received a minimum of 1000
miles per flight. Gold card holders received a 25% bonus for any flight. Red card holders re-
ceived a 50% bonus for any flight.

7.10 (5) Prepare an activity diagram that elaborates the details of logging into an email system. Note
that entry of the user name and the password can occur in any order.

147

8

Advanced Interaction Modeling

The interaction model has several advanced features that can be helpful. You can skip this
chapter on a first reading of the book.

8.1 Use Case Relationships
Independent use cases suffice for simple applications. However, it can be helpful to structure
use cases for large applications. Complex use cases can be built from smaller pieces with the
include, extend, and generalization relationships.

8.1.1 Include Relationship
The include relationship incorporates one use case within the behavior sequence of another
use case. An included use case is like a subroutine—it represents behavior that would other-
wise have to be described repeatedly. Often the fragment is a meaningful unit of behavior for
the actors, although this is not required. The included use case may or may not be usable on
its own.

The UML notation for an include relationship is a dashed arrow from the source (includ-
ing) use case to the target (included) use case. The keyword «include» annotates the arrow.
Figure 8.1 shows an example from an online stock brokerage system. Part of establishing a
secure session is validating the user password. In addition, the stock brokerage system vali-
dates the password for each stock trade. Use cases secure session and make trade both in-
clude use case validate password.

A use case can also be inserted within a textual description with the notation include
use-case-name. An included use case is inserted at a specific location within the behavior se-
quence of the larger use case, just as a subroutine is called from a specific location within
another subroutine.

148 Chapter 8 / Advanced Interaction Modeling

You should not use include relationships to structure fine details of behavior. The pur-
pose of use case modeling is to identify the functionality of the system and the general flow
of control among actors and the system. Factoring a use case into pieces is appropriate when
the pieces represent significant behavior units.

8.1.2 Extend Relationship
The extend relationship adds incremental behavior to a use case. It is like an include rela-
tionship looked at from the opposite direction, in which the extension adds itself to the base,
rather than the base explicitly incorporating the extension. It represents the frequent situation
in which some initial capability is defined, and later features are added modularly. The in-
clude and extend relationships both add behavior to a base use case.

For example, a stock brokerage system might have the base use case trade stocks, which
permits a customer to purchase stocks for cash on hand in the account. The extension use
case margin trading would add the ability to make a loan to purchase stocks when the ac-
count does not contain enough cash. It is still possible to buy stocks for cash, but if there is
insufficient cash, then the system offers to proceed with the transaction after verifying that
the customer is willing to make a margin purchase. The additional behavior is inserted at the
point where the purchase cost is checked against the account balance.

Figure 8.2 shows the base use case trade stocks for a stock brokerage system. The UML
notation for an extend relationship is a dashed arrow from the extension use case to the base
use case. The keyword «extend» annotates the arrow. The base use case permits simple pur-
chases and sales of a stock at the market price. The brokerage system adds three capabilities:
buying a stock on margin, selling a stock short, and placing a limit on the transaction price.
The use case trade options also has an extension for placing a limit on the transaction price.

The extend relationship connects an extension use case to a base use case. The extension
use case often is a fragment—that is, it cannot appear alone as a behavior sequence. The base
use case, however, must be a valid use case in the absence of any extensions. The extend re-
lationship can specify an insert location within the behavior sequence of the base use case;
the location can be a single step in the base sequence or a range of steps. The behavior se-
quence of the extension use case occurs at the given point in the sequence. In most cases, an
extend relationship has a condition attached. The extension behavior occurs only if the con-
dition is true when control reaches the insert location.

secure session

Figure 8.1 Use case inclusion. The include relationship lets a base use
case incorporate behavior from another use case.

«include»

«include»

make trade

validate password

8.1 Use Case Relationships 149

8.1.3 Generalization
Generalization can show specific variations on a general use case, analogous to generaliza-
tion among classes. A parent use case represents a general behavior sequence. Child use cas-
es specialize the parent by inserting additional steps or by refining steps. The UML indicates
generalization by an arrow with its tail on the child use case and a triangular arrowhead on
the parent use case, the same notation that is used for classes.

For example, an online stock brokerage system (Figure 8.3) might specialize the general
use case make trade into the child use cases trade bonds, trade stocks, and trade options. The
parent use case contains steps that are performed for any kind of trade, such as entering the
trading password. Each child use case contains the additional steps particular to a specific
kind of trade, such as entering the expiration date of an option.

A parent use case may be abstract or concrete—an abstract use case cannot be used di-
rectly. As with the class model, we recommend that you consider only abstract parents and
forego concrete ones. Then a model is more symmetric and a parent use case is not cluttered
with the handling of special cases. Use cases also exhibit polymorphism—a child use case
can freely substitute for a parent use case, for example, as an inclusion in another use case.
In all these respects, generalization is the same for use cases and for classes.

In one respect, use case generalization is more complicated than class generalization. A
subclass adds attributes to the parent class, but their order is unimportant. A child use case
adds behavior steps, but they must appear in the proper locations within the behavior se-

trade stocks

margin trading short sale

Figure 8.2 Use case extension. The extend relationship is like an include relationship
looked at from the opposite direction. The extension adds itself to the base.

«extend»«extend»

limit order

«extend»

trade options

«extend»

make trade

Figure 8.3 Use case generalization. A parent use case has common behavior and
child use cases add variations, analogous to generalization among classes.

trade bonds trade stocks trade options

150 Chapter 8 / Advanced Interaction Modeling

quence of the parent. This is similar to overriding a method that is inherited by a subclass, in
which new statements may be inserted at various locations in the parent’s method. The sim-
plest approach is to simply list the entire behavior sequence of the child use case, including
the steps inherited from the parent. A more general approach is to assign symbolic locations
within the parent’s sequence and to indicate where additions and replacements go. In general,
a child may revise behavior subsequences at several different points in the parent’s sequence.

With classes there can be multiple inheritance, but we do not allow such complexity with
use cases. In practice, the include and extend relationships obviate the need for multiple in-
heritance with use cases.

8.1.4 Combinations of Use Case Relationships
A single diagram may combine several kinds of use case relationships. Figure 8.4 shows a
use case diagram from a stock brokerage system. The secure session use case includes the
behavior of the validate password, make trade, and manage account use cases. Make trade
is an abstract parent with the children—trade bonds, trade stocks, and trade options. Use
case make trade also includes the behavior of validate password. The brokerage system val-
idates the password once per session and additionally for every trade.

The use case margin trading extends both trade bonds and trade stocks—a customer
may purchase stocks and bonds on margin, but not options. Use case limit order extends ab-
stract use case make trade—limit orders apply to trading bonds, stocks, and options. We as-
sume that a short sale is only permitted for stocks and not for bonds or options.

Note that the Customer actor connects only to the secure session use case. The broker-
age system invokes all the other use cases indirectly by inclusion, specialization, or exten-
sion. The Securities exchange actor connects to the make trade use case. This actor does not
initiate a use case but it is invoked during execution.

8.1.5 Guidelines for Use Case Relationships
Don’t carry use case relationships to extremes and lapse into programming. Use cases are
intended to clarify requirements. There can be many ways to implement requirements and
you should not commit to an approach before you fully understand a problem. Here are some
additional guidelines.

■ Use case generalization. If a use case comes in several variations, model the common
behavior with an abstract use case and then specialize each of the variations. Do not use
generalization simply to share a behavior fragment; use the include relationship for that
purpose.

■ Use case inclusion. If a use case includes a well-defined behavior fragment that is likely
to be useful in other situations, define a use case for the behavior fragment and include
it in the original use case. In most cases, you should think of the included use case as a
meaningful activity but not as an end in itself. For example, validating a password is
meaningful to users but has a purpose only within a broader context.

8.1 Use Case Relationships 151

■ Use case extension. If you can define a meaningful use case with optional features, then
model the base behavior as a use case and add features with the extend relationship. This
permits the system to be tested and debugged without the extensions, which can be add-
ed later. Use the extend relationship when a system might be deployed in different con-
figurations, some with the additional features and some without them.

■ Include relationship vs. extend relationship. The include relationship and the extend
relationship can both factor behavior into smaller pieces. The include relationship, how-
ever, implies that the included behavior is a necessary part of a configured system (even
if the behavior is not executed every time), whereas the extend relationship implies that
a system without the added behavior would be meaningful (even if there is no intention
to configure it that way).

trade stocks

margin trading short sale

Figure 8.4 Use case relationships. A single use case diagram may combine
several kinds of relationships.

«extend»

«extend»

limit order

«extend»

trade options

make trade

trade bonds

secure session

«include»«include»

validate password
«include»

manage account

«include»

«extend»

Customer
Securities
exchange

Stock Brokerage System

152 Chapter 8 / Advanced Interaction Modeling

8.2 Procedural Sequence Models
In Chapter 7, we saw sequence diagrams containing independent objects, all of which are
active concurrently. An object remains active after sending a message and can respond to
other messages without waiting for a response. This is appropriate for high-level models.
However, most implementations are procedural and limit the number of objects that can ex-
ecute at a time. The UML has elaborations for sequence diagrams to show procedure calls.

8.2.1 Sequence Diagrams with Passive Objects
With procedural code all objects are not constantly active. Most objects are passive and do
not have their own threads of control. A passive object is not activated until it has been called.
Once the execution of an operation completes and control returns to the caller, the passive
object becomes inactive.

Figure 8.5 computes the commission for a stock brokerage transaction. The transaction
object receives a request to compute its commission. It obtains the customer’s service level
from the customer table, then asks the rate table to compute the commission based on the
service level, after which it returns the commission value to the caller.

The UML shows the period of time for an object’s execution as a thin rectangle. This is
called the activation or focus of control. An activation shows the time period during which
a call of a method is being processed, including the time when the called method has invoked
another operation. The period of time when an object exists but is not active is shown as a
dashed line. The entire period during which the object exists is called the lifeline, as it shows
the lifetime of the object.

Figure 8.5 Sequence diagram with passive objects. Sequence diagrams
can show the implementation of operations.

service level (customer)

level

calculate commission (level, transaction)

commission

compute
commission ()

commission

:Transaction :CustomerTable :RateTable

8.2 Procedural Sequence Models 153

8.2.2 Sequence Diagrams with Transient Objects
Figure 8.6 shows further notation. ObjectA is an active object that initiates an operation. Be-
cause it is active, its activation rectangle spans the entire time shown in the diagram. ObjectB
is a passive object that exists during the entire time shown in the diagram, but it is not active
for the whole time. The UML shows its existence by the dashed line (the lifeline) that covers
the entire time period. ObjectB’s lifeline broadens into an activation rectangle when it is pro-
cessing a call. During part of the time, it performs a recursive operation, as shown by the dou-
bled activation rectangle between the call by objectC on operationE and the return of the
result value. ObjectC is created and destroyed during the time shown on the diagram, so its
lifeline does not span the whole diagram.

The notation for a call is an arrow from the calling activation to the activation created
by the call. The tail of the arrow is somewhere along the rectangle of the calling activation.
The arrowhead aligns with the top of the rectangle of the newly created activation, because
the call creates the activation. The filled arrowhead indicates a call (as opposed to the stick
arrowhead for an asynchronous signal in Chapter 7).

The UML shows a return by a dashed arrow from the bottom of the called activation to
the calling activation. Not all return arrows have result values—for example, the return from
objectC to objectB. An activation, therefore, has a call arrow coming into its top and a return
arrow leaving its bottom. In between, it may have arrows to and from subordinate activations

Figure 8.6 Sequence diagram with a transient object. Many applications have
a mix of active and passive objects. They create and destroy objects.

operationE (c, d)

resultV

createC (arg)

{execute order}

operationE (m, n)

resultT

objectC

objectA objectB

154 Chapter 8 / Advanced Interaction Modeling

that it calls. You can suppress return arrows, because their location is implicit at the bottom
of the activation, but for clarity it is better to show them.

If an object does not exist at the beginning of a sequence diagram, then it must be created
during the sequence diagram. The UML shows creation by placing the object symbol at the
head of the arrow for the call that creates the object. For example, the createC call creates
objectC. The new object may or may not retain control after it is created. In the example,
objectC does retain control, as shown by the activation rectangle that begins immediately be-
low the object rectangle.

Similarly, a large ‘X’ marks the end of the life of an object that is destroyed during the
sequence diagram. The ‘X’ is placed at the head of the call arrow that destroys the object. If
the object destroys itself and returns control to another object, the ‘X’ is placed at the tail of
the return arrow. In the example, objectC destroys itself and returns control to objectB. The
lifeline of the object does not extend before its creation or after its destruction.

The UML shows a call to a second method on the same object (including a recursive call
to the same method) with an arrow from the activation rectangle to the top of an additional
rectangle superimposed on the first. For example, the second call to operationE on objectB
is a recursive call nested within the first call to operationE. The second rectangle is shifted
horizontally slightly so that both rectangles can be seen. The number of superimposed rect-
angles shows the number of activations of the same object.

You can also show conditionals on a sequence diagram, but this is more complex than
we wish to include in this book. For further information, see [Rumbaugh-05].

8.2.3 Guidelines for Procedural Sequence Models
There are additional guidelines that apply to procedural sequence models beyond those men-
tioned in Chapter 7.

■ Active vs. passive objects. Differentiate between active and passive objects. Most ob-
jects are passive and lack their own thread of control. By definition, active objects are
always activated and have their own focus of control.

■ Advanced features. Advanced features can show the implementation of sequence dia-
grams. Be selective in using these advanced features. Only show implementation details
for difficult or especially important sequence diagrams.

8.3 Special Constructs for Activity Models
Activity diagrams have additional notation that is useful for large and complex applications.

8.3.1 Sending and Receiving Signals
Consider a workstation that is turned on. It goes through a boot sequence and then requests
that the user log in. After entry of a name and password, the workstation queries the network
to validate the user. Upon validation, the workstation then finishes its startup process. Figure
8.7 shows the corresponding activity diagram.

8.3 Special Constructs for Activity Models 155

The UML shows the sending of a signal as a convex pentagon. When the preceding ac-
tivity completes, the signal is sent, then the next activity is started. The UML shows the re-
ceiving of a signal as a concave pentagon. When the preceding activity completes, the receipt
construct waits until the signal is received, then the next activity starts.

8.3.2 Swimlanes
In a business model, it is often useful to know which human organization is responsible for
an activity. Sales, finance, marketing, and purchasing are examples of organizations. When
the design of the system is complete, the activity will be assigned to a person, but at a high
level it is sufficient to partition the activities among organizations.

You can show such a partitioning with an activity diagram by dividing it into columns
and lines. Each column is called a swimlane by analogy to a swimming pool. Placing an ac-
tivity within a particular swimlane indicates that it is performed by a person or persons with-
in the organization. Lines across swimlane boundaries indicate interactions among different
organizations, which must usually be treated with more care than interactions within an or-
ganization. The horizontal arrangement of swimlanes has no inherent meaning, although
there may be situations in which the order has meaning.

Figure 8.8 shows a simple example for servicing an airplane. The flight attendants must
clean the trash, the ground crew must add fuel, and catering must load food and drink before
a plane is serviced and ready for its next flight.

Figure 8.7 Activity diagram with signals. Activity diagrams can show
fine control via sending and receiving events.

execute boot sequence

accept user login

request validation

networkwait for response

receive confirmation

ready

156 Chapter 8 / Advanced Interaction Modeling

8.3.3 Object Flows
Sometimes it is helpful to see the relationships between an operation and the objects that are
its argument values or results. An activity diagram can show objects that are inputs to or out-
puts from the activities. An input or output arrow implies a control flow, therefore it is unnec-
essary to draw a control flow arrow where there is an object flow.

Frequently the same object goes through several states during the execution of an activ-
ity diagram. The same object may be an input to or an output from several activities, but on
closer examination an activity usually produces or uses an object in a particular state. The
UML shows an object value in a particular state by placing the state name in square brackets
following the object name. If the objects have state names, the activity diagram shows both
the flow of control and the progression of an object from state to state as activities act on it.
In Figure 8.9 an airplane goes through several states as it leaves the gate, flies, and then lands
again.

Figure 8.8 Activity diagram with swimlanes. Swimlanes can show
organizational responsibility for activities.

Flight attendant Ground crew Catering

clean trash add fuel
load food
and drinks

Figure 8.9 Activity diagram with object flows. An activity diagram can
show the objects that are inputs or outputs of activities.

:Airplane
[at gate] leave gate

:Airplane
[taxiing] take off

:Airplane
[in flight]

landing
:Airplane
[taxiing]park at gate

:Airplane
[at gate]

8.4 Chapter Summary 157

An activity diagram showing object flows among different object states has most of the
advantages of a data flow diagram without most of their disadvantages. In particular, it uni-
fies data flow and control flow, whereas data flow diagrams often separate them.

8.4 Chapter Summary
Independent use cases suffice for simple applications. However, it can be helpful to structure
use cases for large applications using the include, extend, and generalization relationships.
The include relationship incorporates one use case within the behavior sequence of another
use case, like a subroutine call. The extend relationship adds incremental behavior to a base
use case. Generalization can show specific variations on a general use case, analogous to
generalization among classes. Don’t use these relationships to excess. Remember that use
cases are intended to be informal—use case relationships should only be used to structure
major behavior units.

Sequence models are not only useful for fleshing out the interactions behind use cases,
but they are also helpful for showing details of implementation. Not all objects in a sequence
model need be active and exist for the entire computation. Some objects are passive and lack
their own flow of control. Other objects are transient and may exist for only part of the du-
ration of an operation.

Activity models also have additional notation that is helpful for large and complex ap-
plications. You can show fine controls via the sending and receiving of events that may in-
teract with other objects that are not the focus of an activity diagram. You can augment
activity diagrams with swimlanes to show the organizations that are responsible for different
activities. And you can show the evolution of states of an object and how the states interleave
with the flow of activities.

References
[Rumbaugh-05] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Ref-

erence Manual, Second Edition. Boston: Addison-Wesley, 2005.

activation
activity diagram
focus of control
interaction model
lifeline

passive object
sequence diagram
swimlane
transient object
use case

use case extension
use case generalization
use case inclusion

Figure 8.10 Key concepts for Chapter 8

158 Chapter 8 / Advanced Interaction Modeling

Exercises
8.1 Consider the purchase of gasoline from an electronic gasoline pump.

a. (4) Prepare a use case diagram. Normally the customer pays cash for a gas purchase. Add
extend relationships to handle the incremental behavior of paying by credit card outside or
paying by credit card inside. Add an include relationship to represent the optional purchase
of a car wash.

b. (2) List and explain the relevance of each actor.
c. (2) Summarize the purpose of each use case with a sentence.

8.2 (5) You are interacting with an online travel agent and encounter the following use cases. Pre-
pare a use case diagram, using the generalization and include relationships.

■ Purchase a flight. Reserve a flight and provide payment and address information.

■ Provide payment information. Provide a credit card to pay for the incurred charges.

■ Provide address. Provide mailing and residence addresses.

■ Purchase car rental. Reserve a rental car and provide payment and address information.

■ Purchase a hotel stay. Reserve a hotel room and provide payment and address information.

■ Make a purchase. Make a travel purchase and provide payment and address information.

8.3 (7) Consider an online frequent flyer program. Some use cases are listed below. Prepare a use
case diagram and include the appropriate relationships for the use cases. You can add an abstract
parent for each use case generalization.

■ View credits. View the frequent flyer points currently available in the account.

■ Submit missing credit. Request credit for an activity that was not credited.

■ Change address. Submit a new mailing address.

■ Change user name. Change the user name for the account.

■ Change password. Change the password for the account.

■ Book a free flight. Use frequent flyer credits to obtain a free flight.

■ Book a free hotel. Use frequent flyer credits to obtain a free hotel.

■ Book a free rental car. Use frequent flyer credits to obtain a free rental car.

■ Request a frequent flyer credit card. Fill out an application for a credit card that gives fre-
quent flyer points as a bonus for purchases.

■ Check prices and routes. Find possible routings and corresponding prices for a paid flight.

■ Check availability for a free flight. Check availability of free travel for a specified flight.

8.4 (8) Consider software that manages electronic music files. Some use cases are listed below. Pre-
pare a use case diagram and include the appropriate relationships for the use cases. You can add
an abstract parent for each use case generalization.

■ Play a song. Add the song to the end of the play queue.

■ Play a library. Add the songs in the library to the play queue.

■ Randomize order. Randomly reorder the songs in the play queue.

■ Delete a song. Delete a song from a music library.

■ Destroy a song. Delete a song from all music libraries and delete the underlying file.

■ Add a song. Add a music file to a music library.

Exercises 159

■ Create a music library. Create a new music library that contains no songs.

■ Delete a music library. Delete the music library.

■ Destroy a music library. Destroy all songs in the music library and then delete the music
library.

■ Rip a CD. Digitize the music on an analog CD.

■ Create a CD. Burn an analog CD from a list of digital songs.

■ View songs by title. Display the songs in a music library sorted by title.

■ View songs by artist. Display the songs in a music library sorted by artist.

■ View songs by album. Display the songs in a music library sorted by album.

■ View songs by genre. Display the songs in a music library sorted by genre.

■ Start play. Start playing songs from the queue. If previously stopped, resume playing from
the last position, otherwise start playing at the start of the queue.

■ Stop play. Suspend playing of music.

8.5 (8) Consider a simple payroll system. Prepare a use case diagram and include the appropriate
relationships for the following use cases. You can add an abstract parent for each use case gen-
eralization.

■ Add deduction. Add another deduction type for the employee and incorporate the deduction
in subsequent paychecks.

■ Drop deduction. Remove the deduction type for the employee.

■ Sum income. Total all income for a paycheck.

■ Sum deductions. Total all deductions for a paycheck.

■ Compute net take-home pay. Compute the total income less the total deductions for a pay-
check.

■ Compute charitable contributions. Total all contributions to charity for a paycheck.

■ Compute taxes. Compute all taxes paid for a paycheck.

■ Compute retirement savings. Compute all contributions to retirement funds for a pay-
check.

■ Compute other deductions. Compute the total of all deductions, other than charity, taxes,
and retirement for a paycheck.

■ Change employee name. Change the name of the employee that is on record.

■ Change employee address. Change the mailing address of the employee that is on record.

■ Compute base pay. Compute the base pay of the employee for the paycheck.

■ Compute overtime pay. Compute the overtime pay of the employee for the paycheck.

■ Compute other pay. Compute all other income (other than base pay and overtime) of the
employee for the paycheck.

■ Change method of payment. Change the method of disbursing the paycheck, such as cash,
direct deposit, and check.

8.6 (4) Consider stock management software that records all transactions that occur for a portfolio.
For example, stocks may be purchased and sold. Dividend payments may be received. Complex
situations can occur, such as stock splits.

The current contents of a portfolio can be determined by replaying the transaction log. The
portfolio has some initial contents, and all subsequent changes are captured via the transaction

160 Chapter 8 / Advanced Interaction Modeling

log. The changes in the transaction log are then applied through the target date to determine the
current contents.

Construct a procedural sequence diagram to show the calculation of the contents of a port-
folio as of some date. Limit the detail in your diagram to four message flows.

8.7 (5) Compute the value of a stock portfolio as of a specified date. First compute the contents of
the portfolio (the previous exercise) and then multiply the quantity of each stock by its value on
the specified date to determine the overall value of the portfolio.

8.8 (7) Once again compute the value of a stock portfolio as of a specified date. However, for this
exercise a portfolio may contain stock and lesser portfolios. For simplicity, assume that a port-
folio is at most three levels deep.

For example, portfolio net worth may contain portfolios retirement funds and taxable ac-
count. Portfolios retirement funds and taxable account contain only stocks.

8.9 (6) A customer decides to upgrade her PC and purchase a DVD player. She begins by calling
the sales department of the PC vendor and they tell her to talk to customer support. She then
calls customer support and they put her on hold while talking to engineering. Finally, customer
support tells the customer about several supported DVD options. The customer chooses a DVD
and it is shipped by the mail department. The customer receives the DVD, installs it satisfacto-
rily, and then mails her payment to accounting.

Construct an activity diagram for this process. Use swimlanes to show the various interac-
tions.

8.10 (6) A company is manufacturing a new product and must coordinate several departments. The
product starts out as a raw marketing idea that goes to engineering. Engineering simulates the
function of the product and prepares a design. Manufacturing reviews the design and adjusts it
to conform to existing machinery. Engineering approves the revisions and customer service
then looks at the design—a good design must enable ready repair. Engineering approves the
customer service proposals and ensures that the resulting design still meets the target function-
ality.

Construct an activity diagram for this process. Use swimlanes to show the various interac-
tions. Show the changes in the state of the design as the activity diagram proceeds.

161

9

Concepts Summary

We find it useful to model a system from three related but different viewpoints: the class
model, describing the objects in the system and their relationships; the state model, describ-
ing the life history of objects; and the interaction model, describing the interactions among
objects. A complete description requires all three models, but different problems place dif-
ferent emphasis. Each model applies during all stages of development and acquires detail as
development progresses.

9.1 Class Model
The class model describes the static structure of objects in a system—their identity, their re-
lationships to other objects, their attributes, and their operations. The class model provides
the essential framework into which the state and interaction models can be placed. Changes
and interactions are meaningless unless there is something to be changed or with which to
interact. Objects are the units into which we divide the world, the molecules of our models.

The most important concepts in class models are classes, associations, and generaliza-
tions. A class describes a group of similar objects. An association describes a group of sim-
ilar connections between objects. Generalization structures the description of objects by
organizing classes by their similarities and differences. Attributes and operations are second-
ary and serve to elaborate the fundamental structure provided by classes, associations, and
generalizations.

9.2 State Model
The state model describes those aspects of an object concerned with time—events that mark
changes and states that define the context for events. Events represent external stimuli and
states represent values of objects. Over time, the objects stimulate each other, resulting in a

162 Chapter 9 / Concepts Summary

series of changes to their states. The state model consists of multiple state diagrams, one state
diagram for each class with important temporal behavior. The state diagrams must match on
their interfaces—events and guard conditions. Each state diagram shows the state and event
sequences permitted for one class of objects.

A state diagram specifies the possible states, which transitions are allowed between
states, what stimuli cause the transitions to occur, and what operations are executed in
response to stimuli. A state diagram describes the collective behavior for the objects in a
class. As each object has its own values and links, so too each object has its own state or po-
sition in the state diagram.

9.3 Interaction Model
The interaction model describes how objects collaborate to achieve results. It is a holistic
view of behavior across many objects, whereas the state model is a reductionist view of be-
havior that examines each object individually. Both the state model and the interaction model
are needed to describe behavior fully. They complement each other by viewing behavior
from two different perspectives.

Interactions can be modeled at different levels of abstraction. At a high level, use cases
describe how a system interacts with outside actors. Use cases represent pieces of function-
ality and are helpful for capturing informal requirements. Sequence diagrams provide more
detail and show the objects that interact and the time sequence of their interactions. Activity
diagrams provide the finest detail and show the flow of control among the processing steps
of a computation.

9.4 Relationship Among the Models
The class, state, and interaction models all involve the same concepts—data, sequencing,
and operations—but each model focuses on a particular aspect and leaves the other aspects
uninterpreted. All three models are necessary for a full understanding of a problem, although
the balance of importance among the models varies according to the kind of application. The
three models come together in the implementation of methods, which involve data (target ob-
ject, arguments, and variables), control (sequencing constructs), and interactions (messages
and calls).

Each model describes one aspect of the system but contains references to the other mod-
els. The class model describes data structure on which the state and interaction models op-
erate. The operations in the class model correspond to events, conditions, and activities. The
state model describes the control structure of objects. It shows decisions that depend on ob-
ject values; the decisions cause changes in object values and subsequent states. The interac-
tion model focuses on the exchanges between objects and provides a holistic overview of the
operation of a system.

Generalization and aggregation are relationships that cut across the models, and we will
now examine their usage.

9.4 Relationship Among the Models 163

9.4.1 Generalization
Generalization appears in all three models. Generalization is the “or-relationship” and can
show specific variations on a general situation. In UML 2.0, inheritance applies to classifiers,
and classes, signals, and use cases are all classifiers.

■ Class generalization. Generalization organizes classes by their similarities and differ-
ences. A subclass inherits the attributes, operations, associations, and state diagrams of
its superclasses. Subclasses can reuse inherited properties from a superclass or override
them; subclasses can add new properties.

A subclass inherits the state diagrams of its ancestors, to be concurrent with any
state diagram that it defines. A subclass inherits both the states of its ancestors and the
transitions. To avoid confusion, subclass state diagrams should normally be an orthog-
onal addition to the state diagram from the superclass.

The class model supports multiple inheritance—a class may inherit from more than
one superclass. For simplicity, we normally disallow multiple inheritance for signals
and use cases.

■ Signal generalization. A generalization hierarchy can also organize signals with inher-
itance of signal attributes. Ultimately you can regard every actual signal as a leaf on a
generalization tree of signals. An input signal triggers transitions on any ancestor signal
type.

■ Use case generalization. Generalization also applies to use cases. A parent use case
represents a general behavior sequence. Child use cases specialize the parent by insert-
ing additional steps or by refining steps. In one respect, use case generalization is more
complicated than class generalization. A subclass adds attributes to the parent class, but
their order is unimportant. A child use case adds behavior steps, but they must appear
in the proper locations within the behavior sequence of the parent.

With inheritance a parent classifier may be abstract or concrete. However, we recommend
that you consider only abstract parents and forego concrete ones. Then abstract and concrete
classifiers are readily apparent at a glance; all superclassifiers are abstract and all leaf sub-
classifiers are concrete. Classifiers also exhibit polymorphism—a child classifier can freely
substitute for a parent classifier.

The first edition of this book also supported inheritance of states, but this has been dis-
allowed in UML2 because a state is not a classifier. There are similarities between generali-
zation of classifiers and nesting of states, but strictly speaking, in UML2 there is no state
generalization.

9.4.24 Aggregation
Aggregation is the “and-relationship” and breaks an assembly into orthogonal parts that have
limited interaction.

■ Object aggregation. Aggregation is a special form of association with additional prop-
erties, most notably transitivity and antisymmetry. The UML has two forms of object
aggregation: a general form called aggregation (a constituent part is reusable and may

164 Chapter 9 / Concepts Summary

exist apart from an assembly) and a more restrictive form called composition (the con-
stituent part can belong to at most one assembly and has a coincident lifetime).

A state diagram for an assembly is a collection of state diagrams, one for each part.
The aggregate state corresponds to the combined states of all the parts. The aggregate
state is one state from the first diagram, and a state from the second diagram, and a state
from each other diagram. In the more interesting cases, the part states interact.

■ State aggregation. Some states can be partitioned into lesser states, each operating in-
dependently and each having its own subdiagram. The state of the object comprises one
state from each subdiagram.

This completes our treatment of concepts and notation for object-oriented modeling.

165

Part 2

Analysis and Design

Chapter 10 Process Overview 167
Chapter 11 System Conception 173
Chapter 12 Domain Analysis 181
Chapter 13 Application Analysis 216
Chapter 14 System Design 240
Chapter 15 Class Design 270
Chapter 16 Process Summary 298

Part 1 covers concepts, specifically the concepts and notation for the class, state, and inter-
action models. We now shift our focus in Parts 2 and 3 and present a process for devising the
models. Part 1 discusses what constitutes a model; Parts 2 and 3 explain how to formulate a
model. Our treatment of process is language independent and applies equally well to OO lan-
guages, non-OO languages, and databases.

Chapter 10 provides an overview of the process for building models and emphasizes that
development is normally iterative and seldom a rigid sequence of steps.

Chapter 11 presents the first stage of development—system conception—during which
a visionary conceives an application and sells the idea to an organization.

Once you have a concept for an application, you elaborate and refine the concept by
building models as Chapters 12 and 13 explain. First build a domain model that focuses on
the real-world things that carry the semantics of the application. Then build an application
model that addresses the computer aspects of the application that are visible to users.

The analysis models give you a thorough understanding of an application. The next
stage is to address the practicalities of realizing the models. Chapter 14 covers system de-
sign, in which you devise a high-level strategy for building a solution. Chapter 15 covers
class design, in which you flesh out the details for classes, associations, and operations.

Chapter 16 concludes Part 2 by summarizing the analysis and design portion of the de-
velopment process.

After reading Part 2, you will understand the basics of how to prepare OO models. You
will not be an expert, but you will have a good start on learning a valuable software devel-
opment skill. You will be ready to study implementation and software engineering in the final
two parts.

This page intentionally left blank

167

10

Process Overview

A software development process provides a basis for the organized production of software,
using a collection of predefined techniques and notations. The process in this book starts
with formulation of the problem, then continues through analysis, design, and implementa-
tion. The presentation of the stages is linear, but the actual process is seldom linear.

10.1 Development Stages
Software development has a sequence of well-defined stages, each with a distinct purpose,
input, and output.

■ System conception. Conceive an application and formulate tentative requirements.

■ Analysis. Deeply understand the requirements by constructing models. The goal of
analysis is to specify what needs to be done, not how it is done. You must understand a
problem before attempting a solution.

■ System design. Devise a high-level strategy—the architecture—for solving the appli-
cation problem. Establish policies to guide the subsequent class design.

■ Class design. Augment and adjust the real-world models from analysis so that they are
amenable to computer implementation. Determine algorithms for realizing the operations.

■ Implementation. Translate the design into programming code and database structures.

■ Testing. Ensure that the application is suitable for actual use and that it truly satisfies
the requirements.

■ Training. Help users master the new application.

■ Deployment. Place the application in the field and gracefully cut over from legacy ap-
plications.

■ Maintenance. Preserve the long-term viability of the application.

168 Chapter 10 / Process Overview

The entire process is seamless. You continually elaborate and optimize models as your focus
shifts from analysis to design to implementation. Throughout development the same con-
cepts and notation apply; the only difference is the shift in perspective from the initial em-
phasis on business needs to the later emphasis on computer resources.

An OO approach moves much of the software development effort up to analysis and de-
sign. It is sometimes disconcerting to spend more time during analysis and design, but this
extra effort is more than compensated by faster and simpler implementation. Because the re-
sulting design is cleaner and more adaptable, future changes are much easier.

Part 2 covers the first four topics and Part 3 covers implementation. In this book we em-
phasize development and only briefly consider testing, training, deployment, and mainte-
nance. These last four topics are important, but are not the focus of this book.

10.1.1 System Conception
System conception deals with the genesis of an application. Initially somebody thinks of an
idea for an application, prepares a business case, and sells the idea to the organization. The
innovator must understand both business needs and technological capabilities.

10.1.2 Analysis
Analysis focuses on creation of models. Analysts capture and scrutinize requirements by
constructing models. They specify what must be done, not how it should be done. Analysis
is a difficult task in its own right, and developers must fully understand the problem before
addressing the additional complexities of design. Sound models are a prerequisite for an ex-
tensible, efficient, reliable, and correct application. No amount of implementation patches
can repair an incoherent application and compensate for a lack of forethought.

During analysis, developers consider the available sources of information (documents,
business interviews, related applications) and resolve ambiguities. Often business experts are
not sure of the precise requirements and must refine them in tandem with software develop-
ment. Modeling quickens the convergence between developers and business experts, because
it is much faster to work with multiple iterations of models than with multiple implementa-
tions of code. Models highlight omissions and inconsistencies so that they can be resolved.
As developers elaborate and refine a model, it gradually becomes coherent.

There are two substages of analysis: domain analysis and application analysis. Domain
analysis focuses on real-world things whose semantics the application captures. For exam-
ple, an airplane flight is a real-world object that a flight reservation system must represent.
Domain objects exist independently of any application and are meaningful to business ex-
perts. You find them during domain analysis or by prior knowledge. Domain objects carry
information about real-world objects and are generally passive—domain analysis emphasiz-
es concepts and relationships, with much of the functionality being implicit in the class mod-
el. The job of constructing a domain model is mainly to decide which information to capture
and how to represent it.

Domain analysis is then followed by application analysis that addresses the computer
aspects of the application that are visible to users. For example, a flight reservation screen is

10.1 Development Stages 169

part of a flight reservation system. Application objects do not exist in the problem domain
and are meaningful only in the context of an application. Application objects, however, are
not merely internal design decisions, because the users see them and must agree with them.
The application model does not prescribe the implementation of the application. It describes
how the application appears from the outside—the black-box view of it. You cannot find ap-
plication classes with domain analysis, but you can often reuse them from previous applica-
tions. Otherwise, you must devise application objects during analysis as you think about
interfaces with other systems and how your application interacts with users.

10.1.3 System Design
During system design, the developer makes strategic decisions with broad consequences.
You must formulate an architecture and choose global strategies and policies to guide the
subsequent, more detailed portion of design. The architecture is the high-level plan or strat-
egy for solving the application problem. The choice of architecture is based on the require-
ments as well as past experience. If possible, the architecture should include an executable
skeleton that can be tested. The system designer must understand how a new system interacts
with other systems. The architecture must also support future modification of the applica-
tion.

For straightforward problems, preparation of the architecture follows analysis. Howev-
er, for large and complex problems their preparation must be interleaved. The architecture
helps to establish a model’s scope. In turn, modeling reveals important issues of strategy to
resolve. For large and complex problems, there is much interplay between the construction
of a model and the model’s architecture, and they must be built together.

10.1.4 Class Design
During class design, the developer expands and optimizes analysis models; there is a shift
in emphasis from application concepts toward computer concepts. Developers choose algo-
rithms to implement major system functions, but they should continue to defer the idiosyn-
crasies of particular programming languages.

10.1.5 Implementation
Implementation is the stage for writing the actual code. Developers map design elements to
programming language and database code. Often, tools can generate some of the code from
the design model.

10.1.6 Testing
After implementation, the system is complete, but it must be carefully tested before being
commissioned for actual use. The ideas that inspired the original project should have been
nurtured through the previous stages by the use of models. Testers once again revisit the orig-
inal business requirements and verify that the system delivers the proper functionality. Test-
ing can also uncover accidental errors (bugs) that have been introduced. If an application
runs on multiple hardware and operating system platforms, it should be tested on all of them.

170 Chapter 10 / Process Overview

Developers should check a program at several levels. Unit tests exercise small portions
of code, such as methods or possibly entire classes. Unit tests discover local problems and
often require that extra instrumentation be built into the code. System tests exercise a major
subsystem or the entire application. In contrast to unit tests, system tests can discover broad
failures to meet specifications. Both unit and system tests are necessary. Testing should not
wait until the entire application is coded. It must be planned from the beginning, and many
tests can be performed during implementation.

10.1.7 Training
An organization must train users so that they can fully benefit from an application. Training
accelerates users on the software learning curve. A separate team should prepare user docu-
mentation in parallel to the development effort. Quality control can then check the software
against the user documentation to ensure that the software meets its original goals.

10.1.8 Deployment
The eventual system must work in the field, on various platforms and in various configura-
tions. Unexpected interactions can occur when a system is deployed in a customer environ-
ment. Developers must tune the system under various loads and write scripts and install
procedures. Some customers will require software customizations. Staff must also localize
the product to different spoken languages and locales. The result is a usable product release.

10.1.9 Maintenance
Once development is complete and a system has been deployed, it must be maintained for con-
tinued success. There are several kinds of maintenance. Bugs that remain in the original system
will gradually appear during use and must be fixed. A successful application will also lead to
enhancement requests and a long-lived application will occasionally have to be restructured.

Models ease maintenance and transitions across staff changes. A model expresses the
business intent for an application that has been driven into the programming code, user in-
terface, and database structure.

10.2 Development Life Cycle
An OO approach to software development supports multiple life-cycle styles. You can use a
waterfall approach performing the phases of analysis, design, and implementation in strict
sequence for the entire system. However, we typically recommend an iterative development
strategy. We summarize the distinction here and elaborate in Chapter 21.

10.2.1 Waterfall Development
The waterfall approach dictates that developers perform the software development stages in
a rigid linear sequence with no backtracking. Developers first capture requirements, then
construct an analysis model, then perform a system design, then prepare a class design, fol-

10.3 Chapter Summary 171

lowed by implementation, testing, and deployment. Each stage is completed in its entirety
before the next stage is begun.

The waterfall approach is suitable for well-understood applications with predictable
outputs from analysis and design, but such applications seldom occur. Too many organiza-
tions attempt to follow a waterfall when requirements are fluid. This leads to the familiar sit-
uation where developers complain about changing requirements, and the business complains
about inflexible software development. A waterfall approach also does not deliver a useful
system until completion. This makes it difficult to assess progress and correct a project that
has gone awry.

10.2.2 Iterative Development
Iterative development is more flexible. First you develop the nucleus of a system—analyz-
ing, designing, implementing, and delivering working code. Then you grow the scope of the
system, adding properties and behavior to existing objects, as well as adding new kinds of
objects. There are multiple iterations as the system evolves to the final deliverable.

Each iteration includes a full complement of stages: analysis, design, implementation,
and testing. Unlike the strict sequence of the waterfall method, iterative development can in-
terleave the different stages and need not construct the entire system in lock step. Some parts
may be completed early, while other, less crucial parts are completed later. Each iteration ul-
timately yields an executable system that can be integrated and tested. You can accurately
gauge progress and make adjustments to your plans based on feedback from the early itera-
tions. If there is a problem, you can move backward to an earlier stage for rework.

Iterative development is the best choice for most applications because it gracefully re-
sponds to change and minimizes risk of failure. Management and business users get early
feedback about progress.

10.3 Chapter Summary
A software engineering process provides a basis for the organized production of software.
There is a sequence of well-defined stages that you can apply to each of the pieces of a sys-
tem. For example, parallel development teams might develop a database design, key algo-
rithms, and a user interface. An iterative development of software is flexible and responsive
to evolving requirements. First you prepare a nucleus of a system, and then you successively
grow its scope until you realize the final desired software.

analysis
application analysis
architecture
class design
deployment

domain analysis
implementation
iterative development
life cycle
maintenance

Figure 10.1 Key concepts for Chapter 10

system conception
system design
testing
training
waterfall development

172 Chapter 10 / Process Overview

Bibliographic Notes
The class design stage is renamed from object design in the first edition of this book.

Exercises
10.1 (2) It seems there is never enough time to do a job right the first time, but there is always time

to do it over. Discuss how the approach presented in this chapter overcomes this tendency of
human behavior. What kinds of errors do you make if you rush into the implementation phase
of a software project? Compare the effort required to prevent errors with that needed to detect
and correct them.

10.2 (4) This book explains how to use OO techniques to implement programs and databases. Dis-
cuss how OO techniques could be applied in other areas, such as language design, knowledge
representation, and hardware design.

173

11

System Conception

System conception deals with the genesis of an application. Initially some person, who un-
derstands both business needs and technology, thinks of an idea for an application. Develop-
ers must then explore the idea to understand the needs and devise possible solutions. The
purpose of system conception is to defer details and understand the big picture—what need
does the proposed system meet, can it be developed at a reasonable cost, and will the demand
for the result justify the cost of building it?

This chapter introduces the automated teller machine (ATM) case study that threads
throughout the remainder of the book.

11.1 Devising a System Concept
Most ideas for new systems are extensions of existing ideas. For example, a human relations
department may have a database of employee benefit choices and require that a clerk enter
changes. An obvious extension is to allow employees to view and enter their own changes.
There are many issues to resolve (security, reliability, privacy, and so on), but the new idea
is a straightforward extension of an existing concept.

Occasionally a new system is a radical departure from the past. For example, an online
auction automates the ancient idea of buyers bidding against each other for products, but the
first online auction systems were brand new software. The concept became feasible when
several enabling technologies came into place: the Internet, widespread personal computer
access, and reliable servers. The large customer base and low unit cost due to automation
changed the nature of auctions—an online auction can sell inexpensive items and still make
a profit. In addition, online systems have made the auction process concurrent and distribut-
ed.

Here are some ways to find new system concepts.

■ New functionality. Add functionality to an existing system.

174 Chapter 11 / System Conception

■ Streamlining. Remove restrictions or generalize the way a system works.

■ Simplification. Let ordinary persons perform tasks previously assigned to specialists.

■ Automation. Automate manual processes.

■ Integration. Combine functionality from different systems.

■ Analogies. Look for analogies in other problem domains and see if they have useful
ideas.

■ Globalization. Travel to other countries and observe their cultural and business practic-
es.

11.2 Elaborating a Concept
Most systems start as vague ideas that need more substance. A good system concept must
answer the following questions.

■ Who is the application for? You should clearly understand which persons and organi-
zations are stakeholders of the new system. Two of the most important kinds of stake-
holders are the financial sponsors and the end users.

The financial sponsor are important because they are paying for the new system.
They expect the project to be on schedule and within budget. You should get the finan-
cial sponsors to agree to some measure of success. You need to know when the system
is complete and meets their expectations.

The users are also stakeholders, but in another sense. The users will ultimately de-
termine the success of the new system by an increase (or decrease) in their productivity
or effectiveness. Users can help you if they are receptive and provide critical comments.
They can improve your system by telling you what is missing and what could be im-
proved. In general, users will not consider new software unless they have a compelling
interest—either personal or business. You should try to help them find a vested interest
in your project so that you can obtain their buy-in. If you cannot get their buy-in, you
should question the need for the project and reconsider doing it.

■ What problems will it solve? You must clearly bound the size of the effort and estab-
lish its scope. You should determine which features will be in the new system and which
will not. You must reach various kinds of users in different organizations with their own
viewpoints and political motivations. You must not only decide which features are ap-
propriate, but you must also obtain the agreement of influential persons.

■ Where will it be used? At this early stage, it is helpful to get a general idea of where
the new system might be used. You should determine if the new system is mission-crit-
ical software for the organization, experimental software, or a new capability that you
can deploy without disrupting the workflow. You should have a rough idea about how
the new system will complement the existing systems. It is important to know if the soft-
ware will be used locally or will be distributed via a network. For a commercial product,
you should characterize the customer base.

11.2 Elaborating a Concept 175

■ When is it needed? Two aspects of time are important. The first is the feasible time, the
time in which the system can be developed within the constraints of cost and available
resources. The other is the required time, when the system is needed to meet business
goals. You must make sure that the timing expectations driven by technical feasibility
are consistent with the timing the business requires. If there is a disconnect, you must
initiate a dialogue between technologists and business experts to reach a solution.

■ Why is it needed? You may need to prepare a business case for the new system if some-
one has not already done so. The business case contains the financial justification for
the new system, including the cost, tangible benefits, intangible benefits, risk, and alter-
natives. You must be sure that you clearly understand the motivation for the new sys-
tem. The business case will give you insight into what stakeholders expect, roughly in-
dicate the scope, and may even provide information for seeding your models. For a com-
mercial product, you should estimate the number of units that can be sold and determine
a reasonable selling price; the revenue must cover costs and a profit.

■ How will it work? You should brainstorm about the feasibility of the problem. For large
systems you should consider the merits of different architectures. The purpose of this
speculation is not to choose a solution, but to increase confidence that the problem can
be solved reasonably. You might need some prototyping and experimentation.

11.2.1 The ATM Case Study
Figure 11.1 lists our original system concept for an Automated Teller Machine (ATM). We
ask high-level questions to elaborate the initial concept.

■ Who is the application for? A number of companies provide ATM products. Conse-
quently, only a vendor or a large financial company could possibly justify the cost and
effort of building ATM software.

A vendor would be competing for customers in an established market. A large ven-
dor could certainly enter such a market, but might find it advantageous to partner with
or acquire an existing supplier. A small vendor would need some special feature to dif-
ferentiate itself from the crowd and attract attention.

It is unlikely that a financial company could justify developing ATM software just
for its own use, because it would probably be more expensive than purchasing a product.
If a financial company wanted special features, it could partner with a vendor. Or it
might decide to create a separate organization that would build the software, sell it to
the sponsoring company, and then market it to others.

Figure 11.1 System concept for an automated teller machine

Develop software so that customers can access a bank’s computers and carry out their own
financial transactions without the mediation of a bank employee.

176 Chapter 11 / System Conception

For the ATM case study, we will assume that we are a vendor building the software.
We will assume that we are developing an ordinary product, since deep complexities of
the ATM problem domain are beyond the scope of this book.

■ What problems will it solve? The ATM software is intended to serve both the bank and
the customer. For the bank, ATM software increases automation and reduces manual
handling of routine paperwork. For the customer, the ATM is ubiquitous and always
available, handling routine transactions whenever and wherever the customer desires.
ATM software must be easy to use and convenient so that customers will use it in pref-
erence to bank tellers. It must be reliable and secure since it will be handling money.

■ Where will it be used? ATM software has become essential to financial institutions.
Customers take it for granted that a bank will have an ATM machine. ATM machines
are available at many stores, sporting events, and other locations throughout the world.

■ When is it needed? Any software development effort is a financial proposition. The in-
vestment in development ultimately leads to a revenue stream. From an economic per-
spective, it is desirable to minimize the investment, maximize the revenue, and realize
revenue as soon as possible. Thoughtful modeling and OO techniques are conducive to
this goal.

■ Why is it needed? There are many reasons why a vendor might decide to build a soft-
ware product. If other companies are making money with similar products, there is an
economic incentive to participate. A novel product could outflank competitors and lead
to premium pricing. Businesses commission internal efforts for technology that is diffi-
cult to buy and critical to them. We have no real motivation to develop ATM software,
other than to demonstrate the techniques in this book.

■ How will it work? We will adopt a three-tier architecture to separate the user interface
from programming logic, and programming logic from the database. In reality, the ar-
chitecture is n-tier, because there can be any number of intermediate programming lev-
els communicating with each other. We will discuss architecture further in the System
Design chapter.

11.3 Preparing a Problem Statement
Once you have fleshed out the raw idea by answering the high-level questions, you are ready
to write a requirements statement that outlines the goals and general approach of the desired
system.

Throughout development, you should distinguish among requirements, design, and im-
plementation. Requirements describe how a system behaves from the user’s point of view.
The system is considered as a black box—all we care about is its external behavior. For ex-
ample, some requirements for a car are that when you press on the accelerator pedal, the car
goes faster, and when you step on the brake, the car slows down. Design decisions are engi-
neering choices that provide the behavior specified by the requirements. For example, some
design decisions are how the internal linkages are routed, how the engine is controlled, and

11.3 Preparing a Problem Statement 177

what kinds of brake pads are on the wheels. Implementation deals with the ultimate realiza-
tion in programming code.

Frequently customers mix true requirements with design decisions. Usually this is a bad
idea. If you separate requirements from design decisions, you preserve the freedom to
change a design. Typically there are many possible ways to design a system, and you should
defer a solution until you fully understand a problem.

A system concept document may include an example implementation. The purpose of
the example is to show how the system could be implemented using current technology at a
reasonable cost. It is a “proof of existence” statement. However, make it clear that the sample
implementation could be done differently in the final system. The sample implementation is
merely proposed as a possibility.

For example, when the Apollo program to put a man on the moon in the 1960s was first
proposed, the plan was to place a rocket in earth orbit, then launch a landing vehicle directly
to the moon’s surface. In the final successful program, the rocket was launched directly into
a lunar orbit, from which the lander was launched to the moon’s surface. It was not a bad thing
to make the first proposal, however, as this gave confidence that there was a feasible approach.

As Figure 11.2 shows, the problem statement should state what is to be done and not
how it is to be implemented. It should be a statement of needs, not a proposal for a system
architecture. The requestor should avoid describing system internals, as this restricts devel-
opment flexibility. Performance specifications and protocols for interaction with external
systems are legitimate requirements. Software engineering standards, such as modular con-
struction, design for testability, and provision for future extensions, are also proper.

A problem statement may have more or less detail. A requirement for a conventional
product, such as a payroll program or a billing system, may have considerable detail. A re-
quirement for a research effort in a new area may lack details, but presumably the research
has some objective that should be clearly stated.

Most problem statements are ambiguous, incomplete, or even inconsistent. Some re-
quirements are just plain wrong. Some requirements, although precisely stated, have un-
pleasant consequences on the system behavior or impose unreasonable implementation
costs. Some requirements do not work out as well as the requestor thought. The problem

Figure 11.2 Kinds of requirements. Do not make early design and implementation
decisions or you will compromise development.

Requirements
Statement

■ Problem scope
■ What is needed
■ Application context
■ Assumptions
■ Performance needs

Design
■ General approach
■ Algorithms
■ Data structures
■ Architecture
■ Optimizations
■ Capacity planning

Implementation
■ Platforms
■ Hardware specs
■ Software libraries
■ Interface standards

178 Chapter 11 / System Conception

statement is just a starting point for understanding the problem, not an immutable document.
The purpose of the subsequent analysis (next chapter) is to fully understand the problem and
its implications. There is no reason to expect that a problem statement prepared without a
full analysis will be correct.

11.3.1 The ATM Case Study
Figure 11.3 shows a problem statement for an automated teller machine (ATM) network.

Design the software to support a computerized banking network including both human cash-
iers and automatic teller machines (ATMs) to be shared by a consortium of banks. Each bank
provides its own computer to maintain its own accounts and process transactions against
them. Cashier stations are owned by individual banks and communicate directly with their
own bank’s computers. Human cashiers enter account and transaction data.

Automatic teller machines communicate with a central computer that clears transac-
tions with the appropriate banks. An automatic teller machine accepts a cash card, interacts
with the user, communicates with the central system to carry out the transaction, dispenses
cash, and prints receipts. The system requires appropriate recordkeeping and security provi-
sions. The system must handle concurrent accesses to the same account correctly.

The banks will provide their own software for their own computers; you are to design
the software for the ATMs and the network. The cost of the shared system will be appor-
tioned to the banks according to the number of customers with cash cards.

11.4 Chapter Summary
The first stage of a project is to devise a new idea. The idea can involve a new system or an
improvement to an existing system. Before investing time and money into development, it is

Central
Computer

Account

Account

Account

Account

Figure 11.3 ATM network. The ATM case study threads throughout the
remainder of this book.

Bank
Computer

Bank
Computer

Cashier
Station

ATM

ATM

ATM

Exercises 179

necessary to evaluate the feasibility of the system, the difficulty and risk of developing it, the
demand for the system, and the cost-benefit ratio. This process should consider the view-
points of all the stakeholders of the system and should make the trade-offs necessary to pro-
vide a good chance of success, not just technical success, but also business success. This
process usually results in some adjustments to the original idea. When the system conception
stage is complete, write a problem statement that serves as the starting point for analysis. The
problem statement need not be complete, and it will change during development, but the
writing of the statement helps to focus the attention of the project.

Exercises
11.1 (3) Consider a new antilock braking system for crash avoidance in an automobile. Elaborate the

following high-level questions and explain your answers.
a. Who is the application for? Who are the stakeholders? Estimate how many persons in your

country are potential customers.
b. Identify three features that should be included and three features that should be omitted.
c. Identify three systems with which it must work.
d. What are two of the largest risks?

11.2 (3) Repeat Exercise 11.1 for software that supports Internet selling of books.

11.3 (3) Repeat Exercise 11.1 for software that supports the remodeling of kitchens.

11.4 (3) Repeat Exercise 11.1 for an online auction system.

11.5 (4) Prepare a problem statement, similar to that for the ATM system, for each of the following
systems. You may limit the scope of the system, but be precise and avoid making implementa-
tion decisions. Use 75–150 words per specification.
a. bridge player
b. change-making machine
c. car cruise control
d. electronic typewriter
e. spelling checker
f. telephone answering machine

11.6 (3) Rephrase the following requirements to make them more precise. Remove any design deci-
sions posing as requirements:
a. A system to transfer data from one computer to another over a telecommunication line. The

system should transmit data reliably over noisy channels. Data must not be lost if the receiv-

Figure 11.4 Key concepts for Chapter 11

business case
cost-benefit trade-off
design decision
implementation constraint

problem statement
requirement
stakeholder
system conception

180 Chapter 11 / System Conception

ing end cannot keep up or if the line drops out. Data should be transmitted in packets, using
a master–slave protocol in which the receiving end acknowledges or negatively acknowl-
edges all exchanges.

b. A system for automating the production of complex machined parts. The parts will be de-
signed using a three–dimensional drafting editor that is part of the system. The system will
produce tapes that can be used by numerical control (N/C) machines to actually produce the
parts.

c. A desktop publishing system, based on a what-you-see-is-what-you-get philosophy. The
system will support text and graphics. Graphics include lines, squares, rectangles, polygons,
circles, and ellipses. Internally, a circle is represented as a special case of an ellipse and a
square as a special case of a rectangle. The system should support interactive, graphical ed-
iting of documents.

d. A system for generating nonsense. The input is a sample document. The output is random
text that mimics the input text by imitating the frequencies of combinations of letters of the
input. The user specifies the order of the imitation and the length of the desired output. For
order N, every output sequence of N characters is found in the input and at approximately
the same frequency. As the order increases, the style of the output more closely matches the
input.

The system should generate its output with the following method: Select a position at ran-
dom in the document being imitated. Scan forward in the input text until a sequence of char-
acters is found that exactly matches the last N − 1 characters of the output. If you reach the
end of the input, continue scanning from the beginning. When a match is found, copy the
letter that follows the matched sequence from the input to the output. Repeat until the desired
amount of text is generated.

e. A system for distributing electronic mail over a network. Each user of the system should be
able to send mail from any computer account and receive mail on one designated account.
There should be provisions for answering or forwarding mail, as well as saving messages in
files or printing them. Also, users should be able to send messages to several other users at
once through distribution lists. Each computer on the net should hold any messages destined
for computers that are down.

181

12

Domain Analysis

Domain analysis, the next stage of development, is concerned with devising a precise, con-
cise, understandable, and correct model of the real world. Before building anything complex,
the builder must understand the requirements. Requirements can be stated in words, but these
are often imprecise and ambiguous. During analysis, we build models and begin to under-
stand the requirements deeply.

To build a domain model, you must interview business experts, examine requirements
statements, and scrutinize related artifacts. You must analyze the implications of the require-
ments and restate them rigorously. It is important to abstract important features first and de-
fer small details until later. The successful analysis model states what must be done, without
restricting how it is done, and avoids implementation decisions.

In this chapter you will learn how to take OO concepts and apply them to construct a
domain model. The model serves several purposes: It clarifies the requirements, it provides
a basis for agreement between the stakeholders and the developers, and it becomes the start-
ing point for design and implementation.

12.1 Overview of Analysis
As Figure 12.1 shows, analysis begins with a problem statement generated during system
conception. The statement may be incomplete or informal; analysis makes it more precise
and exposes ambiguities and inconsistencies. The problem statement should not be taken as
immutable but should serve as a basis for refining the real requirements.

Next, you must understand the real-world system described by the problem statement,
and abstract its essential features into a model. Statements in natural language are often am-
biguous, incomplete, and inconsistent. The analysis model is a precise, concise representa-
tion of the problem that permits answering questions and building a solution. Subsequent
design steps refer to the analysis model, rather than the original vague problem statement.

182 Chapter 12 / Domain Analysis

Perhaps even more important, the process of constructing a rigorous model of the problem
domain forces the developer to confront misunderstandings early in the development process
while they are still easy to correct.

The analysis model addresses the three aspects of objects: static structure of objects
(class model), interactions among objects (interaction model), and life-cycle histories of ob-
jects (state model). All three submodels are not equally important in every problem. Almost
all problems have useful class models derived from real-world entities. Problems concerning
reactive control and timing, such as user interfaces and process control, have important state
models. Problems containing significant computation as well as systems that interact with
other systems and different kinds of users have important interaction models.

Analysis is not a mechanical process. The exact representations involve judgment and
in many regards are a matter of art. Most problem statements lack essential information,
which must be obtained from the requestor or from the analyst’s knowledge of the real-world
problem domain. Also there is a choice in the level of abstraction for the model. The analyst
must communicate with the requestor to clarify ambiguities and misconceptions. The anal-
ysis models enable precise communication.

We have divided analysis into two substages. The first, domain analysis, is covered in
this chapter and focuses on understanding the real-world essence of a problem. The second,
application analysis, is covered in the next chapter and builds on the domain model—incor-
porating major application artifacts that are seen by users and must be approved by them.

Class Model
State Model
Interaction Model

Real-world experience

Domain knowledge

User interviews

Users

Developers

Managers

Figure 12.1 Overview of analysis. The problem statement should not be taken as im-
mutable, but rather as a basis for refining the requirements.

Analysis:

Design

System Conception

Domain Analysis
Application Analysis

Problem
Statement

Related systems

Generate
requests

Build
models

12.2 Domain Class Model 183

12.2 Domain Class Model
The first step in analyzing the requirements is to construct a domain model. The domain
model shows the static structure of the real-world system and organizes it into workable piec-
es. The domain model describes real-world classes and their relationships to each other. Dur-
ing analysis, the class model precedes the state and interaction models because static
structure tends to be better defined, less dependent on application details, and more stable as
the solution evolves. Information for the domain model comes from the problem statement,
artifacts from related systems, expert knowledge of the application domain, and general
knowledge of the real world. Make sure you consider all information that is available and do
not rely on a single source.

Find classes and associations first, as they provide the overall structure and approach to
the problem. Next add attributes to describe the basic network of classes and associations.
Then combine and organize classes using inheritance. Attempts to specify inheritance direct-
ly without first understanding classes and their attributes can distort the class structure to
match preconceived notions. Operations are usually unimportant in a domain model. The
main purpose of a domain model is to capture the information content of a domain.

It is best to get ideas down on paper before trying to organize them too much, even
though they may be redundant and inconsistent, so as not to lose important details. An initial
analysis model is likely to contain flaws that must be corrected by later iterations. The entire
model need not be constructed uniformly. Some aspects of the problem can be analyzed in
depth through several iterations while other aspects are still sketchy.

You must perform the following steps to construct a domain class model.

■ Find classes. [12.2.1–12.2.2]

■ Prepare a data dictionary. [12.2.3]

■ Find associations. [12.2.4–12.2.5]

■ Find attributes of objects and links. [12.2.6–12.2.7]

■ Organize and simplify classes using inheritance. [12.2.8]

■ Verify that access paths exist for likely queries. [12.2.9]

■ Iterate and refine the model. [12.2.10]

■ Reconsider the level of abstraction. [12.2.11]

■ Group classes into packages. [12.2.12]

12.2.1 Finding Classes
The first step in constructing a class model is to find relevant classes for objects from the ap-
plication domain. Objects include physical entities, such as houses, persons, and machines,
as well as concepts, such as trajectories, seating assignments, and payment schedules. All
classes must make sense in the application domain; avoid computer implementation con-
structs, such as linked lists and subroutines. Not all classes are explicit in the problem state-
ment; some are implicit in the application domain or general knowledge.

184 Chapter 12 / Domain Analysis

As Figure 12.2 shows, begin by listing candidate classes found in the written description
of the problem. Don’t be too selective; write down every class that comes to mind. Classes
often correspond to nouns. For example, in the statement “a reservation system to sell tickets
to performances at various theaters” tentative classes would be Reservation, System, Ticket,
Performance, and Theater. Don’t operate blindly, however. The idea to is capture concepts;
not all nouns are concepts, and concepts are also expressed in other parts of speech.

Don’t worry much about inheritance or high-level classes; first get specific classes right
so that you don’t subconsciously suppress detail in an attempt to fit a preconceived struc-
ture. For example, if you are building a cataloging and checkout system for a library, iden-
tify different kinds of materials, such as books, magazines, newspapers, records, videos,
and so on. You can organize them into broad categories later, by looking for similarities and
differences.

ATM example. Examination of the concepts in the ATM problem statement from Chap-
ter 11 yields the tentative classes shown in Figure 12.3. Figure 12.4 shows additional classes
that do not appear directly in the statement but can be identified from our knowledge of the
problem domain.

Requirements
sources

Tentative
classes

Extract nouns

Figure 12.2 Finding classes. You can find many classes by considering nouns.

Classes Eliminate
spurious classes

network
Software Banking Cashier ATM

Cash

Bank

Account Transaction

User Receipt System

Network
Consortium

Bank
Computer

Cashier
Station

Account
Data

Transaction
Data

Central
Computer network

Cash
Card

Recordkeeping
Provision

Security
Provision

Access Cost

Figure 12.3 ATM classes extracted from problem statement nouns

Customer

Figure 12.4 ATM classes identified from knowledge of problem domain

Communications
Line

Transaction
Log

12.2 Domain Class Model 185

12.2.2 Keeping the Right Classes
Now discard unnecessary and incorrect classes according to the following criteria. Figure
12.5 shows the classes eliminated from the ATM example.

■ Redundant classes. If two classes express the same concept, you should keep the most
descriptive name. For example, although Customer might describe a person taking an
airline flight, Passenger is more descriptive. On the other hand, if the problem concerns
contracts for a charter airline, Customer is also an appropriate word, since a contract
might involve several passengers.

ATM example. Customer and User are redundant; we retain Customer because it
is more descriptive.

■ Irrelevant classes. If a class has little or nothing to do with the problem, eliminate it.
This involves judgment, because in another context the class could be important. For ex-
ample, in a theater ticket reservation system, the occupations of the ticket holders are
irrelevant, but the occupations of the theater personnel may be important.

ATM example. Apportioning Cost is outside the scope of the ATM software.

■ Vague classes. A class should be specific. Some tentative classes may have ill-defined
boundaries or be too broad in scope.

Banking
Network

CashierATM BankAccount

Transaction

User

System

Bank
Computer

Cashier
Station

Central
Computer

Cash
Card

Recordkeeping
Provision

Security
Provision

Figure 12.5 Eliminating unnecessary classes from ATM problem

vague

redundant

irrelevant

CustomerConsortium

Cost

Transaction
Log

Transaction
Data

Communications
Line

Access

Software

implementation

Bad Classes

Good Classes

Cash

Receipt

attribute

Account
Data

186 Chapter 12 / Domain Analysis

ATM example. RecordkeepingProvision is vague and is handled by Transaction.
In other applications, this might be included in other classes, such as StockSales, Tele-
phoneCalls, or MachineFailures.

■ Attributes. Names that primarily describe individual objects should be restated as at-
tributes. For example, name, birthdate, and weight are usually attributes. If the indepen-
dent existence of a property is important, then make it a class and not an attribute. For
example, an employee’s office would be a class in an application to reassign offices af-
ter a reorganization.

ATM example. AccountData is underspecified but in any case probably describes
an account. An ATM dispenses cash and receipts, but beyond that cash and receipts are
peripheral to the problem, so they should be treated as attributes.

■ Operations. If a name describes an operation that is applied to objects and not manip-
ulated in its own right, then it is not a class. For example, a telephone call is a sequence
of actions involving a caller and the telephone network. If we are simply building tele-
phones, then Call is part of the state model and not a class.

An operation that has features of its own should be modeled as a class, however.
For example, in a billing system for telephone calls a Call would be an important class
with attributes such as date, time, origin, and destination.

■ Roles. The name of a class should reflect its intrinsic nature and not a role that it plays
in an association. For example, Owner would be a poor name for a class in a car manu-
facturer’s database. What if a list of drivers is added later? What about persons who
lease cars? The proper class is Person (or possibly Customer), which assumes various
different roles, such as owner, driver, and lessee.

One physical entity sometimes corresponds to several classes. For example, Person
and Employee may be distinct classes in some circumstances and redundant in others.
From the viewpoint of a company database of employees, the two may be identical. In
a government tax database, a person may hold more than one job, so it is important to
distinguish Person from Employee; each person can correspond to zero or more instanc-
es of employee information.

■ Implementation constructs. Eliminate constructs from the analysis model that are ex-
traneous to the real world. You may need them later during design, but not now. For ex-
ample, CPU, subroutine, process, algorithm, and interrupt are implementation con-
structs for most applications, although they are legitimate classes for an operating sys-
tem. Data structures, such as linked lists, trees, arrays, and tables, are almost always
implementation constructs.

ATM example. Some tentative classes are really implementation constructs.
TransactionLog is simply the set of transactions; its exact representation is a design is-
sue. Communication links can be shown as associations; CommunicationsLine is simply
the physical implementation of such a link.

■ Derived classes. As a general rule, omit classes that can be derived from other classes.
If a derived class is especially important, you can include it, but do so only sparingly.
Mark all derived classes with a preceding slash (‘/’) in the class name.

12.2 Domain Class Model 187

12.2.3 Preparing a Data Dictionary
Isolated words have too many interpretations, so prepare a data dictionary for all modeling
elements. Write a paragraph precisely describing each class. Describe the scope of the class
within the current problem, including any assumptions or restrictions on its use. The data
dictionary also describes associations, attributes, operations, and enumeration values. Figure
12.6 shows a data dictionary for the classes in the ATM problem.

12.2.4 Finding Associations
Next, find associations between classes. A structural relationship between two or more class-
es is an association. A reference from one class to another is an association. As we discussed
in Chapter 3, attributes should not refer to classes; use an association instead. For example,
class Person should not have an attribute employer; relate class Person and class Company
with association WorksFor. Associations show relationships between classes at the same lev-
el of abstraction as the classes themselves, while object-valued attributes hide dependencies
and obscure their two-way nature. Associations can be implemented in various ways, but
such implementation decisions should be kept out of the analysis model to preserve design
freedom.

Associations often correspond to stative verbs or verb phrases. These include physical
location (NextTo, PartOf, ContainedIn), directed actions (Drives), communication (TalksTo),
ownership (Has, PartOf), or satisfaction of some condition (WorksFor, MarriedTo, Manag-
es). Extract all the candidates from the problem statement and get them down on paper first;
don’t try to refine things too early. Again, don’t treat grammatical forms blindly; the idea is
to capture relationships, however they are expressed in natural language.

ATM example. Figure 12.7 shows associations. The majority are taken directly from
verb phrases in the problem statement. For some associations the verb phrase is implicit in
the statement. Finally, some associations depend on real-world knowledge or assumptions.
These must be verified with the requestor, as they are not in the problem statement.

12.2.5 Keeping the Right Associations
Now discard unnecessary and incorrect associations, using the following criteria.

■ Associations between eliminated classes. If you have eliminated one of the classes
in the association, you must eliminate the association or restate it in terms of other
classes.

ATM example. We can eliminate Banking network includes cashier stations and
ATMs, ATM dispenses cash, ATM prints receipts, Banks provide software, Cost appor-
tioned to banks, System provides recordkeeping, and System provides security.

■ Irrelevant or implementation associations. Eliminate any associations that are out-
side the problem domain or deal with implementation constructs.

ATM example. For example, System handles concurrent access is an implementa-
tion concept. Real-world objects are inherently concurrent; it is the implementation of
the access algorithm that must be concurrent.

188 Chapter 12 / Domain Analysis

Figure 12.6 Data dictionary for ATM classes. Prepare a data dictionary
for all modeling elements.

Account—a single account at a bank against which transactions can be applied. Ac-
counts may be of various types, such as checking or savings. A customer can hold
more than one account.

ATM—a station that allows customers to enter their own transactions using cash
cards as identification. The ATM interacts with the customer to gather transaction in-
formation, sends the transaction information to the central computer for validation
and processing, and dispenses cash to the user. We assume that an ATM need not
operate independently of the network.

Bank—a financial institution that holds accounts for customers and issues cash
cards authorizing access to accounts over the ATM network.

BankComputer—the computer owned by a bank that interfaces with the ATM net-
work and the bank’s own cashier stations. A bank may have its own internal comput-
ers to process accounts, but we are concerned only with the one that talks to the ATM
network.

CashCard—a card assigned to a bank customer that authorizes access of accounts
using an ATM machine. Each card contains a bank code and a card number. The
bank code uniquely identifies the bank within the consortium. The card number de-
termines the accounts that the card can access. A card does not necessarily access
all of a customer’s accounts. Each cash card is owned by a single customer, but mul-
tiple copies of it may exist, so the possibility of simultaneous use of the same card
from different machines must be considered.

Cashier—an employee of a bank who is authorized to enter transactions into cashier
stations and accept and dispense cash and checks to customers. Transactions,
cash, and checks handled by each cashier must be logged and properly accounted
for.

CashierStation—a station on which cashiers enter transactions for customers.
Cashiers dispense and accept cash and checks; the station prints receipts. The cash-
ier station communicates with the bank computer to validate and process the trans-
actions.

CentralComputer—a computer operated by the consortium that dispatches transac-
tions between the ATMs and the bank computers. The central computer validates
bank codes but does not process transactions directly.

Consortium—an organization of banks that commissions and operates the ATM net-
work. The network handles transactions only for banks in the consortium.

Customer—the holder of one or more accounts in a bank. A customer can consist of
one or more persons or corporations; the correspondence is not relevant to this prob-
lem. The same person holding an account at a different bank is considered a different
customer.

Transaction—a single integral request for operations on the accounts of a single
customer. We specified only that ATMs must dispense cash, but we should not pre-
clude the possibility of printing checks or accepting cash or checks. We may also
want to provide the flexibility to operate on accounts of different customers, although
it is not required yet.

12.2 Domain Class Model 189

■ Actions. An association should describe a structural property of the application domain,
not a transient event. Sometimes, a requirement expressed as an action implies an un-
derlying structural relationship and you should rephrase it accordingly.

ATM example. ATM accepts cash card describes part of the interaction cycle be-
tween an ATM and a customer, not a permanent relationship between ATMs and cash
cards. We can also eliminate ATM interacts with user. Central computer clears transac-
tion with bank describes an action that implies the structural relationship Central com-
puter communicates with bank.

■ Ternary associations. You can decompose most associations among three or more
classes into binary associations or phrase them as qualified associations. If a term in a
ternary association is purely descriptive and has no identity of its own, then the term is
an attribute on a binary association. Association Company pays salary to person can be
rephrased as binary association Company employs person with a salary value for each
Company-Person link.

Occasionally, an application will require a general ternary association. Professor
teaches course in room cannot be decomposed without losing information. We have not
encountered associations with four or more classes in our work.

Figure 12.7 Associations from ATM problem statement

Verb phrases
Banking network includes cashier stations and ATMs
Consortium shares ATMs
Bank provides bank computer
Bank computer maintains accounts
Bank computer processes transaction against account
Bank owns cashier station
Cashier station communicates with bank computer
Cashier enters transaction for account
ATMs communicate with central computer about transaction
Central computer clears transaction with bank
ATM accepts cash card
ATM interacts with user
ATM dispenses cash
ATM prints receipts
System handles concurrent access
Banks provide software
Cost apportioned to banks

Implicit verb phrases
Consortium consists of banks
Bank holds account
Consortium owns central computer
System provides recordkeeping
System provides security
Customers have cash cards

Knowledge of problem domain
Cash card accesses accounts
Bank employs cashiers

190 Chapter 12 / Domain Analysis

ATM example. Bank computer processes transaction against account can be bro-
ken into Bank computer processes transaction and Transaction concerns account. Cash-
ier enters transaction for account can be broken similarly. ATMs communicate with cen-
tral computer about transaction is really the binary associations ATMs communicate
with central computer and Transaction entered on ATM.

■ Derived associations. Omit associations that can be defined in terms of other associa-
tions, because they are redundant. For example, GrandparentOf can be defined in terms
of a pair of ParentOf associations. Also omit associations defined by conditions on at-
tributes. For example, youngerThan expresses a condition on the birth dates of two per-
sons, not additional information.

As much as possible, classes, attributes, and associations in the class model should
represent independent information. Multiple paths between classes sometimes indicate
derived associations that are compositions of primitive associations. Consortium shares
ATMs is a composition of the associations Consortium owns central computer and Cen-
tral computer communicates with ATMs.

Be careful, because not all associations that form multiple paths between classes in-
dicate redundancy. Sometimes the existence of an association can be derived from two
or more primitive associations and the multiplicity can not. Keep the extra association
if the additional multiplicity constraint is important. For example, in Figure 12.8 a com-
pany employs many persons and owns many computers. Each employee is assigned
zero or more computers for the employee’s personal use; some computers are for public
use and are not assigned to anyone. The multiplicity of the AssignedTo association can-
not be deduced from the Employs and Owns associations.

Although derived associations do not add information, they are useful in the real
world and in design. For example, kinship relationships such as Uncle, MotherInLaw,
and Cousin have names because they describe common relationships considered impor-
tant within our society. If they are especially important, you may show derived associ-
ations in class diagrams, but put a slash in front of their names to indicate their depen-
dent status and to distinguish them from fundamental associations.

Further specify the semantics of associations as follows:

■ Misnamed associations. Don’t say how or why a situation came about, say what it is.
Names are important to understanding and should be chosen with great care.

AssignedTo

Employs

Figure 12.8 Nonredundant associations. Not all associations that form
multiple paths between classes indicate redundancy.

PersonCompany

Computer
Owns

*1
1 0..1

**

12.2 Domain Class Model 191

ATM example. Bank computer maintains accounts is a statement of action; re-
phrase as Bank holds account.

■ Association end names. Add association end names where appropriate. For example,
in the WorksFor association a Company is an employer with respect to a Person and a
Person is an employee with respect to a Company. If there is only one association be-
tween a pair of classes and the meaning of the association is clear, you may omit asso-
ciation end names. For example, the meaning of ATMs communicate with central com-
puter is clear from the class names. An association between two instances of the same
class requires association end names to distinguish the instances. For example, the as-
sociation Person manages person would have the end names boss and worker.

■ Qualified associations. Usually a name identifies an object within some context; most
names are not globally unique. The context combines with the name to uniquely identify
the object. For example, the name of a company must be unique within the chartering
state but may be duplicated in other states (there once was a Standard Oil Company in
Ohio, Indiana, California, and New Jersey). The name of a company qualifies the asso-
ciation State charters company; State and company name uniquely identify Company.
A qualifier distinguishes objects on the “many” side of an association.

ATM example. The qualifier bankCode distinguishes the different banks in a con-
sortium. Each cash card needs a bank code so that transactions can be directed to the
appropriate bank.

■ Multiplicity. Specify multiplicity, but don’t put too much effort into getting it right, as
multiplicity often changes during analysis. Challenge multiplicity values of “one.” For
example, the association one Manager manages many employees precludes matrix man-
agement or an employee with divided responsibilities. For multiplicity values of
“many” consider whether a qualifier is needed; also ask if the objects need to be ordered
in some way.

■ Missing associations. Add any missing associations that are discovered.
ATM example. We overlooked Transaction entered on cashier station, Customers

have accounts, and Transaction authorized by cash card. If cashiers are restricted to spe-
cific stations, then the association Cashier authorized on cashier station would be need-
ed.

■ Aggregation. Aggregation is important for certain kinds of applications, especially for
those involving mechanical parts and bills of material. For other applications aggrega-
tion is relatively minor and it can be unclear whether to use aggregation or ordinary as-
sociation. For these other applications, don’t spend much time trying to distinguish be-
tween association and aggregation. Aggregation is just an association with extra conno-
tations. Use whichever seems more natural at the time and move on.

ATM example. We decide that a Bank is a part of a Consortium and indicate the
relationship with aggregation.

ATM example. Figure 12.9 shows a class diagram with the remaining associations. We have
included only significant association names. Note that we have split Transaction into Re-

192 Chapter 12 / Domain Analysis

moteTransaction and CashierTransaction to accommodate different associations. The dia-
gram shows multiplicity values. We could have made some analysis decisions differently.
Don’t worry; there are many possible correct models of a problem. We have shown the anal-
ysis process in small steps; with practice, you can elide several steps together in your mind.

12.2.6 Finding Attributes
Next find attributes. Attributes are data properties of individual objects, such as weight, ve-
locity, or color. Attribute values should not be objects; use an association to show any rela-
tionship between two objects.

Attributes usually correspond to nouns followed by possessive phrases, such as “the col-
or of the car” or “the position of the cursor.” Adjectives often represent specific enumerated
attribute values, such as red, on, or expired. Unlike classes and associations, attributes are
less likely to be fully described in the problem statement. You must draw on your knowledge
of the application domain and the real world to find them. You can also find attributes in the
artifacts of related systems. Fortunately, attributes seldom affect the basic structure of the
problem.

Do not carry discovery of attributes to excess. Only consider attributes directly relevant
to the application. Get the most important attributes first; you can add fine details later. Dur-

CommunicatesWith

Employs

EnteredBy

EnteredOn

EnteredOn

Communicates
With

Communicates
With

Figure 12.9 Initial class diagram for ATM system

CustomerAccountBankConsortium bankCode

Central
Computer

ATM Remote
Transaction CashCard

Cashier
Transaction

Cashier
Station

Bank
Computer Cashier

AuthorizedBy

*

1

1

1

1

1

0..1

1

1 * * 1

1 *

1 1

*

1 1 * 1

**

*1

11

* *

1 *

*

* 1

*

*

12.2 Domain Class Model 193

ing analysis, avoid attributes that are solely for implementation. Be sure to give each attribute
a meaningful name.

Normally, you should omit derived attributes. For example, age is derived from birth-
date and currentTime (which is a property of the environment). Do not express derived at-
tributes as operations, such as getAge, although you may eventually implement them that
way.

Also look for attributes on associations. Such an attribute is a property of the link be-
tween two objects, rather than being a property of an individual object. For example, the
many-to-many association between Stockholder and Company has an attribute of numberOf-
Shares.

12.2.7 Keeping the Right Attributes
Eliminate unnecessary and incorrect attributes with the following criteria.

■ Objects. If the independent existence of an element is important, rather than just its val-
ue, then it is an object. For example, boss refers to a class and salary is an attribute. The
distinction often depends on the application. For example, in a mailing list city might be
considered as an attribute, while in a census City would be a class with many attributes
and relationships of its own. An element that has features of its own within the given
application is a class.

■ Qualifiers. If the value of an attribute depends on a particular context, then consider re-
stating the attribute as a qualifier. For example, employeeNumber is not a unique prop-
erty of a person with two jobs; it qualifies the association Company employs person.

■ Names. Names are often better modeled as qualifiers rather than attributes. Test: Does the
name select unique objects from a set? Can an object in the set have more than one name?
If so, the name qualifies a qualified association. If a name appears to be unique in the
world, you may have missed the class that is being qualified. For example, department-
Name may be unique within a company, but eventually the program may need to deal with
more than one company. It is better to use a qualified association immediately.

A name is an attribute when its use does not depend on context, especially when it
need not be unique within some set. Names of persons, unlike names of companies, may
be duplicated and are therefore attributes.

■ Identifiers. OO languages incorporate the notion of an object identifier for unambigu-
ously referencing an object. Do not include an attribute whose only purpose is to iden-
tify an object, as object identifiers are implicit in class models. Only list attributes that
exist in the application domain. For example, accountCode is a genuine attribute; Banks
assign accountCodes and customers see them. In contrast, you should not list an internal
transactionID as an attribute, although it may be convenient to generate one during im-
plementation.

■ Attributes on associations. If a value requires the presence of a link, then the property
is an attribute of the association and not of a related class. Attributes are usually obvious
on many-to-many associations; they cannot be attached to either class because of their

194 Chapter 12 / Domain Analysis

multiplicity. For example, in an association between Person and Club the attribute mem-
bershipDate belongs to the association, because a person can belong to many clubs and
a club can have many members. Attributes are more subtle on one-to-many associations
because they could be attached to the “many” class without losing information. Resist
the urge to attach them to classes, as they would be invalid if multiplicity changed. At-
tributes are also subtle on one-to-one associations.

■ Internal values. If an attribute describes the internal state of an object that is invisible
outside the object, then eliminate it from the analysis.

■ Fine detail. Omit minor attributes that are unlikely to affect most operations.

■ Discordant attributes. An attribute that seems completely different from and unrelated
to all other attributes may indicate a class that should be split into two distinct classes.
A class should be simple and coherent. Mixing together distinct classes is one of the ma-
jor causes of troublesome models. Unfocused classes frequently result from premature
consideration of implementation decisions during analysis.

■ Boolean attributes. Reconsider all boolean attributes. Often you can broaden a boolean
attribute and restate it as an enumeration [Coad-95].

ATM example. We apply these criteria to obtain attributes for each class (Figure 12.10).
Some tentative attributes are actually qualifiers on associations. We consider several aspects
of the model.

■ BankCode and cardCode are present on the card. Their format is an implementation de-
tail, but we must add a new association Bank issues CashCard. CardCode is a qualifier
on this association; bankCode is the qualifier of Bank with respect to Consortium.

■ The computers do not have state relevant to this problem. Whether the machine is up or
down is a transient attribute that is part of implementation.

■ Avoid the temptation to omit Consortium, even though it is currently unique. It provides
the context for the bankCode qualifier and may be useful for future expansion.

Keep in mind that the ATM problem is just an example. Real applications, when fleshed out,
tend to have many more attributes per class than Figure 12.10 shows.

12.2.8 Refining with Inheritance
The next step is to organize classes by using inheritance to share common structure. Inheritance
can be added in two directions: by generalizing common aspects of existing classes into a su-
perclass (bottom up) or by specializing existing classes into multiple subclasses (top down).

■ Bottom-up generalization. You can discover inheritance from the bottom up by
searching for classes with similar attributes, associations, and operations. For each gen-
eralization, define a superclass to share common features. You may have to slightly re-
define some attributes or classes to fit in. This is acceptable, but don’t push too hard if
it doesn’t fit; you may have the wrong generalization. Some generalizations will suggest
themselves based on an existing taxonomy in the real world; use existing concepts
whenever possible. Symmetry will suggest missing classes.

12.2 Domain Class Model 195

ATM example. RemoteTransaction and CashierTransaction are similar, except in
their initiation, and can be generalized by Transaction. On the other hand, CentralCom-
puter and BankComputer have little in common for purposes of the ATM example.

■ Top-down specialization. Top-down specializations are often apparent from the appli-
cation domain. Look for noun phrases composed of various adjectives on the class
name: fluorescent lamp, incandescent lamp; fixed menu, pop-up menu, sliding menu.
Avoid excessive refinement. If proposed specializations are incompatible with an exist-
ing class, the existing class may be improperly formulated.

■ Generalization vs. enumeration. Enumerated subcases in the application domain are
the most frequent source of specializations. Often, it is sufficient to note that a set of
enumerated subcases exists, without actually listing them. For example, an ATM ac-
count could be refined into CheckingAccount and SavingsAccount. While undoubtedly
useful in some banking applications, this distinction does not affect behavior within the
ATM application; type can be made a simple attribute of Account.

CommunicatesWith

Employs

EnteredBy

EnteredOn

EnteredOn

Communicates
With

Figure 12.10 ATM class model with attributes

Code
bank

Code
card

Issues

Code
account

Code
employee

Code
station

Code
station

Code
bank

Code
station

AuthorizedBy

Communicates
With

CashCard

password

RemoteTransaction

kind
dateTime
amount

cashOnHand

ATM

name

Customer

address

Account

balance
creditLimit
type

Bank

name

Consortium

CashierStation
CashierTransaction

kind
dateTime
amount

Cashier

name

Bank
Computer

Central
Computer

* 1

1
*11

0..11

0..1

1

1 0..1
1

*
*

1

1

1

0..10..1

1

1 0..1

1 0..1

0..1

1

1

* *

*1

1 * *

*
1

1

196 Chapter 12 / Domain Analysis

■ Multiple inheritance. You can use multiple inheritance to increase sharing, but only if
necessary, because it increases both conceptual and implementation complexity.

■ Similar associations. When the same association name appears more than once with
substantially the same meaning, try to generalize the associated classes. Sometimes the
classes have nothing in common but the association, but more often you will uncover an
underlying generality that you have overlooked.

ATM example. Transaction is entered on both CashierStation and ATM; EntrySta-
tion generalizes CashierStation and ATM.

■ Adjusting the inheritance level. You must assign attributes and associations to specific
classes in the class hierarchy. Assign each one to the most general class for which it is
appropriate. You may need some adjustment to get everything right. Symmetry may
suggest additional attributes to distinguish among subclasses more clearly.

Figure 12.11 shows the ATM class model after adding inheritance.

12.2.9 Testing Access Paths
Trace access paths through the class model to see if they yield sensible results. Where a
unique value is expected, is there a path yielding a unique result? For multiplicity “many” is
there a way to pick out unique values when needed? Think of questions you might like to
ask. Are there useful questions that cannot be answered? They indicate missing information.
If something that seems simple in the real world appears complex in the model, you may
have missed something (but make sure that the complexity is not inherent in the real world).

It can be acceptable to have classes that are “disconnected” from other classes. This usu-
ally occurs when the relationship between a disconnected class and the remainder of the
model is diffuse. However, check disconnected classes to make sure you have not overlooked
any associations.

ATM example. A cash card itself does not uniquely identify an account, so the user
must choose an account somehow. If the user supplies an account type (savings or checking),
each card can access at most one savings and one checking account. This is probably reason-
able, and many cash cards actually work this way, but it limits the system. The alternative is
to require customers to remember account numbers. If a cash card accesses a single account,
then transfers between accounts are impossible.

We have assumed that the ATM network serves a single consortium of banks. Real cash
machines today often serve overlapping networks of banks and accept credit cards as well as
cash cards. The model would have to be extended to handle that situation. We will assume
that the customer is satisfied with this limitation on the system.

12.2.10 Iterating a Class Model
A class model is rarely correct after a single pass. The entire software development process
is one of continual iteration; different parts of a model are often at different stages of com-
pletion. If you find a deficiency, go back to an earlier stage if necessary to correct it. Some
refinements can come only after completing the state and interaction models.

There are several signs of missing classes.

12.2 Domain Class Model 197

■ Asymmetries in associations and generalizations. Add new classes by analogy.

■ Disparate attributes and operations on a class. Split a class so that each part is coher-
ent.

■ Difficulty in generalizing cleanly. One class may be playing two roles. Split it up and
one part may then fit in cleanly.

■ Duplicate associations with the same name and purpose. Generalize to create the
missing superclass that unites them.

■ A role that substantially shapes the semantics of a class. Maybe it should be a sepa-
rate class. This often means converting an association into a class. For example, a person

EnteredOn

EnteredBy

AuthorizedBy

Employs

Issues

Communicates
With

CommunicatesWith CommunicatesWith

Figure 12.11 ATM class model with attributes and inheritance

stationCodestationCode

bankCode

Code
station

Code
account

Code
employee

Code
cardbankCode

CashierStation

Cashier
Transaction

Remote
Transaction

Transaction

kind
dateTime
amount

EntryStation

cashOnHand

ATM

Cashier

name

*1

*

Central
Computer

Bank
Computer

1 1

0..1
0..1

1 0..1

**

1

1

Account

balance
creditLimit
type

CashCard

password

Consortium

1

1 Bank

name

name

Customer

address

1

*

*

*

1

*1

1

1

1 0..1

0..1

0..1

0..1

0..1

1

1

1

1

198 Chapter 12 / Domain Analysis

can be employed by several companies with different conditions of employment at each;
Employee is then a class denoting a person working for a particular company, in addition
to class Person and Company.

Also look out for missing associations.

■ Missing access paths for operations. Add new associations so that you can answer
queries.

Another concern is superfluous model elements.

■ Lack of attributes, operations, and associations on a class. Why is the class needed?
Avoid inventing subclasses merely to indicate an enumeration. If proposed subclasses
are otherwise identical, mark the distinction using an attribute.

■ Redundant information. Remove associations that do not add new information or
mark them as derived.

And finally you may adjust the placement of attributes and associations.

■ Association end names that are too broad or too narrow for their classes. Move the
association up or down in the class hierarchy.

■ Need to access an object by one of its attribute values. Consider a qualified associa-
tion.

In practice, model building is not as rigidly ordered as we have shown. You can combine sev-
eral steps, once you are experienced. For example, you can find candidate classes, reject the
incorrect ones without writing them down, and add them to the class diagram together with
their associations. You can take some parts of the model through several steps and develop
them in some detail, while other parts are still sketchy. You can interchange the order of steps
when appropriate. If you are just learning class modeling, however, we recommend that you
follow the steps in full detail the first few times.

ATM example. CashCard really has a split personality—it is both an authorization unit
within the bank allowing access to the customer’s accounts and also a piece of plastic data that
the ATM reads to obtain coded IDs. In this case, the codes are actually part of the real world,
not just computer artifacts; the codes, not the cash card, are communicated to the central com-
puter. We should split cash card into two classes: CardAuthorization, an access right to one
or more customer accounts; and CashCard, a piece of plastic that contains a bank code and a
cash card number meaningful to the bank. Each card authorization may have several cash
cards, each containing a serial number for security reasons. The card code, present on the
physical card, identifies the card authorization within the bank. Each card authorization iden-
tifies one or more accounts—for example, one checking account and one savings account.

Transaction is not general enough to permit transfers between accounts because it con-
cerns only a single account. In general, a Transaction consists of one or more updates on in-
dividual accounts. An update is a single action (withdrawal, deposit, or query) on a single
account. All updates in a single transaction must be processed together as an atomic unit; if
any one fails, then they all are canceled.

The distinction between Bank and BankComputer and between Consortium and Cen-
tralComputer doesn’t seem to affect the analysis. The fact that communications are pro-

12.2 Domain Class Model 199

cessed by computers is actually an implementation artifact. Merge BankComputer into Bank
and CentralComputer into Consortium.

Customer doesn’t seem to enter into the analysis so far. However, when we consider op-
erations to open new accounts, it may be an important concept, so leave it alone for now.

Figure 12.12 shows a revised class diagram that is simpler and cleaner.

12.2.11 Shifting the Level of Abstraction
So far in analysis, we have taken the problem statement quite literally. We have regarded
nouns and verbs in the problem description as direct analogs of classes and associations. This
is a good way to begin analysis, but it does not always suffice. Sometimes you must raise the
level of abstraction to solve a problem. You should be doing this throughout as you build a
model, but we put in an explicit step to make sure you do not overlook abstraction.

Figure 12.12 ATM class model after further revision

EnteredOn

EnteredBy

AuthorizedBy

Employs Issues

Code
station

Code
bank

Transaction

dateTime

Cashier
Transaction

Remote
Transaction

EntryStation
amount

Update

kind

1

*

1

*

cashOnHand

ATM CashierStation

Cashier

name

*

1

*

1

Code
station

Code
account

Code
employee

Code
card

Bank

name

1

1

1

*

Consortium 1 0..1

name

Customer

address
Account

balance
creditLimit
type

CashCard

serialNumber
* 1

1
*

1*

Card

password
limit

Authorization

0..1
0..1

1

1

0..1

0..1

0..1

*

*
1

200 Chapter 12 / Domain Analysis

For example, we encountered one application in which the developers had separate
classes for IndividualContributor, Supervisor, and Manager. IndividualContributors report
to Supervisors and Supervisors report to Managers. This model certainly is correct, but it
suffers from some problems. There is much commonality between the three classes—the
only difference is the reporting hierarchy. For example, they all have phone numbers and ad-
dresses. We could handle the commonality with a superclass, but that only makes the model
larger. An additional problem arose when we talked to the developers and they said they
wanted to add another class for the persons to whom managers reported.

Figure 12.13 shows the original model and an improved model that is more abstract. In-
stead of “hard coding” the management hierarchy in the model, we can “soft code” it with
an association between boss and worker. A person who has an employeeType of “individual-
Contributor” is a worker who reports to another person with an employeeType of “supervi-
sor.” Similarly, a person who is a supervisor reports to a person who is a manager. In the
improved model a worker has an optional boss, because the reporting hierarchy eventually
stops. The improved model is smaller and more flexible. An additional reporting level does
not change the model’s structure; it merely alters the data that is stored.

One way that you can take advantage of abstraction is by thinking in terms of patterns.
Different kinds of patterns apply to the different development stages, but here we are inter-
ested in patterns for analysis. A pattern distills the knowledge of experts and provides a prov-
en solution to a general problem. For example, the right side of Figure 12.13 is a pattern for
modeling a management hierarchy. Whenever we encounter the need for a management hi-
erarchy, we immediately think in terms of the pattern and place it in our application model.
The use of tried and tested patterns gives us the confidence of a sound approach and boosts
our productivity in building models.

ATM example. We have already included some abstractions in the ATM model. We dis-
tinguished between a CashCard and a CardAuthorization. Furthermore, we included the no-
tion of transactions rather than trying to list each possible kind of interaction.

Figure 12.13 Shifting the level of abstraction. Abstraction makes a model more
complex but can increase flexibility and reduce the number of classes.

Supervisor

IndividualContributor

*
1

Manager

*
1

Original model

*

Improved model that is more abstract

0..1
boss

worker

Person

employeeType
/ reportingLevel

12.3 Domain State Model 201

12.2.12 Grouping Classes into Packages
The last step of class modeling is to group classes into packages. A package is a group of
elements (classes, associations, generalizations, and lesser packages) with a common theme.
Packages organize a model for convenience in drawing, printing, and viewing. Furthermore,
when you place classes and associations in a package, you are making a semantic statement.
Generally speaking, classes in the same package are more closely related than classes in dif-
ferent packages.

Normally you should restrict each association to a single package, but you can repeat
some classes in different packages. To assign classes to packages, look for cut points— a cut
point is a class that is the sole connection between two otherwise disconnected parts of a
model. Such a class forms the bridge between two packages. For example, in a file manage-
ment system, a File is the cut point between the directory structure and the file contents. Try
to choose packages to reduce the number of crossovers in the class diagrams. With a little
care, you can draw most class diagrams as planar graphs, without crossing lines.

Reuse a package from a previous design if possible, but avoid forcing a fit. Reuse is eas-
iest when part of the problem domain matches a previous problem. If the new problem is
similar to a previous problem but different, you may have to extend the original model to en-
compass both problems. Use your judgment about whether this is better than building a new
model.

ATM example. The current model is small and would not require breakdown into pack-
ages, but it could serve as a core for a more detailed model. The packages might be:

■ tellers—cashier, entry station, cashier station, ATM

■ accounts—account, cash card, card authorization, customer, transaction, update, cashier
transaction, remote transaction

■ banks—consortium, bank

Each package could add details. The account package could contain varieties of transactions,
information about customers, interest payments, and fees. The bank package could contain
information about branches, addresses, and cost allocations.

12.3 Domain State Model
Some domain objects pass through qualitatively distinct states during their lifetime. There
may be different constraints on attribute values, different associations or multiplicities in the
various states, different operations that may be invoked, different behavior of the operations,
and so on. It is often useful to construct a state diagram of such a domain class. The state
diagram describes the various states the object can assume, the properties and constraints of
the object in various states, and the events that take an object from one state to another.

Most domain classes do not require state diagrams and can be adequately described by
a list of operations. For the minority of classes that do exhibit distinct states, however, a state
model can help in understanding their behavior.

202 Chapter 12 / Domain Analysis

First identify the domain classes with significant states and note the states of each class.
Then determine the events that take an object from one state to another. Given the states and
the events, you can build state diagrams for the affected objects. Finally, evaluate the state
diagrams to make sure they are complete and correct.

The following steps are performed in constructing a domain state model.

■ Identify domain classes with states. [12.3.1]

■ Find states. [12.3.2]

■ Find events. [12.3.3]

■ Build state diagrams. [12.3.4]

■ Evaluate state diagrams. [12.3.5]

12.3.1 Identifying Classes with States
Examine the list of domain classes for those that have a distinct life cycle. Look for classes
that can be characterized by a progressive history or that exhibit cyclic behavior. Identify the
significant states in the life cycle of an object. For example, a scientific paper for a journal
goes from Being written to Under consideration to Accepted or Rejected. There can be some
cycles, for example, if the reviewers ask for revisions, but basically the life of this object is
progressive. On the other hand, an airplane owned by an airline cycles through the states of
Maintenance, Loading, Flying, and Unloading. Not every state occurs in every cycle, and
there are probably other states, but the life of this object is cyclic. There are also classes
whose life cycle is chaotic, but most classes with states are either progressive or cyclic.

ATM example. Account is an important business concept, and the appropriate behavior
for an ATM depends on the state of an Account. The life cycle for Account is a mix of pro-
gressive and cycling to and from problem states. No other ATM classes have a significant
domain state model.

12.3.2 Finding States
List the states for each class. Characterize the objects in each class—the attribute values that
an object may have, the associations that it may participate in and their multiplicities, at-
tributes and associations that are meaningful only in certain states, and so on. Give each state
a meaningful name. Avoid names that indicate how the state came about; try to directly de-
scribe the state.

Don’t focus on fine distinctions among states, particularly quantitative differences, such
as small, medium, or large. States should be based on qualitative differences in behavior, at-
tributes, or associations.

It is unnecessary to determine all the states before examining events. By looking at
events and considering transitions among states, missing states will become clear.

ATM example. Here are some states for an Account: Normal (ready for normal access),
Closed (closed by the customer but still on file in the bank records), Overdrawn (customer
withdrawals exceed the balance in the account), and Suspended (access to the account is
blocked for some reason).

12.3 Domain State Model 203

12.3.3 Finding Events
Once you have a preliminary set of states, find the events that cause transitions among states.
Think about the stimuli that cause a state to change. In many cases, you can regard an event
as completing a do-activity. For example, if a technical paper is in the state Under consider-
ation, then the state terminates when a decision on the paper is reached. In this case, the de-
cision can be positive (Accept paper) or negative (Reject paper). In cases of completing a do-
activity, other possibilities are often possible and may be added in the future—for example,
Conditionally accept with revisions.

You can find other events by thinking about taking the object into a specific state. For
example, if you lift the receiver on a telephone, it enters the Dialing state. Many telephones
have pushbuttons that invoke specific functions. If you press the redial button, the phone
transmits the number and enters the Calling state. If you press the program button, it enters
the Programming state.

There are additional events that occur within a state and do not cause a transition. For
the domain state model you should focus on events that cause transitions among states. When
you discover an event, capture any information that it conveys as a list of parameters.

ATM example. Important events include: close account, withdraw excess funds, re-
peated incorrect PIN, suspected fraud, and administrative action.

12.3.4 Building State Diagrams
Note the states to which each event applies. Add transitions to show the change in state
caused by the occurrence of an event when an object is in a particular state. If an event ter-
minates a state, it will usually have a single transition from that state to another state. If an
event initiates a target state, then consider where it can occur, and add transitions from those
states to the target state. Consider the possibility of using a transition on an enclosing state
rather than adding a transition from each substate to the target state. If an event has different
effects in different states, add a transition for each state.

Once you have specified the transitions, consider the meaning of an event in states for
which there is no transition on the event. Is it ignored? Then everything is fine. Does it rep-
resent an error? Then add a transition to an error state. Does it have some effect that you for-
got? Then add another transition. Sometimes you will discover new states.

It is usually not important to consider effects when building a state diagram for a domain
class. If the objects in the class perform activities on transitions, however, add them to the
state diagram.

ATM example. Figure 12.14 shows the domain state model for the Account class.

12.3.5 Evaluating State Diagrams
Examine each state model. Are all the states connected? Pay particular attention to paths
through it. If it represents a progressive class, is there a path from the initial state to the final
state? Are the expected variations present? If it represents a cyclic class, is the main loop
present? Are there any dead states that terminate the cycle?

204 Chapter 12 / Domain Analysis

Use your knowledge of the domain to look for missing paths. Sometimes missing paths
indicate missing states. When a state model is complete, it should accurately represent the
life cycle of the class.

ATM example. Our state model for Account is simplistic but we are satisfied with it.
We would require substantial banking knowledge to construct a deeper model.

12.4 Domain Interaction Model
The interaction model is seldom important for domain analysis. During domain analysis the
emphasis is on key concepts and deep structural relationships and not the users’ view of
them. The interaction model, however, is an important aspect of application modeling and
we will cover it in the next chapter.

12.5 Iterating the Analysis
Most analysis models require more than one pass to complete. Problem statements often
contain circularities, and most applications cannot be approached in a completely linear way,
because different parts of the problem interact. To understand a problem with all its implica-
tions, you must attack the analysis iteratively, preparing a first approximation to the model
and then iterating the analysis as your understanding increases. There is no firm line between
analysis and design, so don’t overdo it. Verify the final analysis with the requestor and appli-
cation domain experts.

Figure 12.14 Domain state model. The domain state model documents important
classes that change state in the real world.

open account
Normal Overdrawn

withdraw excess funds

deposit sufficient funds

Closed

close account

Suspended

release hold

repeated incorrect PIN

administrative action

suspected fraud

Account

12.5 Iterating the Analysis 205

12.5.1 Refining the Analysis Model
The overall analysis model may show inconsistencies and imbalances within and across
models. Iterate the different portions to produce a cleaner, more coherent model. Try to refine
classes to increase sharing and improve structure. Add details that you glossed over during
the first pass.

Some constructs will feel awkward and won’t seem to fit in right. Reexamine them care-
fully; you may have the wrong concepts. Sometimes major restructuring in the model is
needed as your understanding increases. It is easier to do now than it will ever be, so don’t
avoid changes just because you already have a model in place. When there are many con-
structs that appear similar but don’t quite fit together, you have probably missed or miscast
a more general concept. Watch out for generalizations factored on the wrong aspects.

A common difficulty is a physical object that has two logically distinct aspects. Each as-
pect should be modeled with a distinct object. An indication of this problem is a class that
doesn’t fit in cleanly and seems to have two sets of unrelated attributes, associations, and op-
erations.

Other indications to watch for include exceptions, many special cases, and lack of ex-
pected symmetry. Consider restructuring your model to capture constraints better within its
structure.

Be wary of codifying arbitrary business practices in your model. Software should facil-
itate operation of the business and not inhibit reasonable changes. Often you can introduce
abstractions that increase business flexibility without substantially complicating a model.

Remove classes or associations that seemed useful at first but now appear extraneous.
Often two classes in the analysis can be combined, because the distinction between them
doesn’t affect the rest of the model in any meaningful way. There is a tendency for models
to grow as analysis proceeds. This is a concern, since the amount of development work es-
calates as a model becomes larger in size. Take a close look at your model for minor concepts
to cut or abstractions that can simplify the model.

A good model feels right and does not appear to have extraneous detail. Don’t worry if
it doesn’t seem perfect; even a good model will often have a few small areas where the design
is adequate but never feels quite right.

12.5.2 Restating the Requirements
When the analysis is complete, the model serves as the basis for the requirements and defines
the scope of future discourse. Most of the real requirements will be part of the model. In ad-
dition you may have some performance constraints; these should be stated clearly, together
with optimization criteria. Other requirements specify the method of solution and should be
separated and challenged, if possible.

You should verify the final model with the requestor. During analysis some requirements
may appear to be incorrect or impractical; confirm corrections to the requirements. Also
business experts should verify the analysis model to make sure that it correctly models the
real world. We have found analysis models to be an effective means of communication with
business experts who are not computer experts.

206 Chapter 12 / Domain Analysis

The final verified analysis model serves as the basis for system architecture, design, and
implementation. You should revise the original problem statement to incorporate corrections
and understanding discovered during analysis.

12.5.3 Analysis and Design
The goal of analysis is to specify the problem fully without introducing a bias to any partic-
ular implementation, but it is impossible in practice to avoid all taints of implementation.
There is no absolute line between the various development stages, nor is there any such thing
as a perfect analysis. Don’t treat the rules we have given too rigidly. The purpose of the rules
is to preserve flexibility and permit changes later, but remember that the goal of modeling is
to accomplish the total job, and flexibility is just a means to an end.

ATM example. We have no further changes to the ATM model at this time. A true ap-
plication is more likely to incur revision than a textbook example, because you have review-
ers who are passionate about the application and have a vested interest in it.

12.6 Chapter Summary
The domain model captures general knowledge about an application—concepts and rela-
tionships known to experts in the domain. The domain model has class models and some-
times state models, but seldom has an interaction model. The purpose of analysis is to
understand the problem and the application so that a correct design can be constructed. A
good analysis captures the essential features of the problem without introducing implemen-
tation artifacts that prematurely restrict design decisions.

The domain class model shows the static structure of the real world. First find classes.
Then find associations between classes. Note attributes, though you can defer minor ones.
You can use generalization to organize and simplify the class structure. Group tightly cou-
pled classes and associations into packages. Supplement the class models with a data dictio-
nary—brief textual descriptions, including the purpose and scope of each element.

If a domain class has several qualitatively different states during its life cycle, make a
state diagram for it, but most domain classes will not require state diagrams.

Methodologies are never as linear as they appear in books. This one is no exception. Any
complex analysis is constructed by iteration on multiple levels. You need not prepare all parts
of the model at the same pace. The result of analysis replaces the original problem statement
and serves as the basis for design.

Bibliographic Notes
Abbott explains how to use nouns and verbs in the problem statement to seed thinking about
an application [Abbott-83]. [Coad-95] is a good book with some examples of analysis pat-
terns.

References 207

References
[Abbott-83] Russell J. Abbott. Program Design by Informal English Descriptions. Communications of

the ACM 26, 11 (November 1983), 882–894.
[Coad-95] Peter Coad, David North, and Mark Mayfield. Object Models: Strategies, Patterns, and Ap-

plications. Upper Saddle River, NJ: Yourdon Press, 1995.

Exercises
12.1 (3) For each of the following systems, identify the relative importance of the three aspects of

modeling: 1) class modeling, 2) state modeling, 3) interaction modeling. Explain your answers.
For example, for a compiler, the answer might be 3, 1, and 2. Interaction modeling is most im-
portant for a compiler because it is dominated by data transformation concerns.
a. bridge player
b. change-making machine
c. car cruise control
d. electronic typewriter
e. spelling checker
f. telephone answering machine

12.2 (7) Create a class diagram for each system from Exercise 11.6. Note that the requirements are
incomplete, so your class models will also be incomplete.

Exercises 12.3–12.8 are related. Do the exercises in sequence. The following are tentative specifica-
tions for a simple diagram editor that could be used as the core of a variety of applications.

The editor will be used interactively to create and modify drawings. A drawing contains several
sheets. Drawings are saved to and loaded from named ASCII files. Sheets contain boxes and links.
Each box may optionally contain a single line of text. Text is allowed only in boxes. The editor must
automatically adjust the size of a box to fit any enclosed text. The font size of the text is not adjustable.
Any pair of boxes on the same sheet may be linked by a series of alternating horizontal and vertical
lines. Figure E12.1 shows a simple, one sheet drawing.

The editor will be menu driven, with pop-up menus. A three-button mouse will be used for menu,
object, and link selections. The following are some operations the editor should provide: create sheet,
delete sheet, next sheet, previous sheet, create box, link boxes, enter text, group selection, cut selec-
tions, move selections, copy selections, paste, edit text, save drawing, and load drawing. Copy, cut,

Figure 12.15 Key concepts for Chapter 12

building the domain class model
building the domain state model
data dictionary
domain analysis
finding associations
finding attributes

finding classes
finding events
finding states
refining a model with inheritance
shifting the level of abstraction
testing the model

208 Chapter 12 / Domain Analysis

and paste will work through a buffer. Copy will create a copy of selections from a sheet to the buffer.
Cut will remove selections to the buffer. Paste will copy the contents of the buffer to the sheet. Each
copy and cut operation overwrites the previous contents of the buffer. Pan and zoom will not be al-
lowed; sheets will have fixed size. When boxes are moved, enclosed text should move with them and
links should be stretched.

12.3 (3) The following is a list of candidate classes. Prepare a list of classes that should be eliminated
for any of the reasons given in this chapter. Give a reason for each elimination. If there is more
than one reason, give the main one.

character, line, x coordinate, y coordinate, link, position, length, width, collection, selection,
menu, mouse, button, computer, drawing, drawing file, sheet, pop-up, point, menu item, se-
lected object, selected line, selected box, selected text, file name, box, buffer, line segment
coordinate, connection, text, name, origin, scale factor, corner point, end point, graphics ob-
ject.

12.4 (3) Prepare a data dictionary for proper classes from the previous exercise.

12.5 (3) The following is a list of candidate associations and generalizations for the diagram editor.
Prepare a list of associations and generalizations that should be eliminated or renamed for any
of the reasons given in this chapter. Give a reason for each elimination or renaming. If there is
more than one reason, give the main one.

a box has text, a box has a position, a link logically associates two boxes, a box is moved, a
link has points, a link is defined by a sequence of points, a selection or a buffer or a sheet is
a collection, a character string has a location, a box has a character string, a character string
has characters, a line has length, a collection is composed of links and boxes, a link is delet-
ed, a line is moved, a line is a graphical object, a point is a graphical object, a line has two
points, a point has an x coordinate, a point has a y coordinate

12.6 Figure E12.2 is a partially completed class diagram for the diagram editor. Show how could it
be used for each of the following queries. Use a combination of the OCL (see Chapter 3) and
pseudocode to express your queries.
a. (2) Find all selected boxes and links.
b. (4) Given a box, determine all other boxes that are directly linked to it.
c. (8) Given a box, find all other boxes that are directly or indirectly linked to it.
d. (2) Given a box and a link, determine if the link involves the box.
e. (3) Given a box and a link, find the other box logically connected to the given box through

the other end of the link.
f. (4) Given two boxes, determine all links between them.
g. (6) Given a selection, determine which links are “bridging” links. If a selection does not in-

clude all boxes on a sheet, “bridging” links may result. A “bridging” link is a link that con-

x

y

+
x + y

Figure E12.1 A sample drawing

Exercises 209

nects a box that has been selected to a box that has not. A link that connects two boxes that
are selected or two boxes that are not selected is not a “bridging” link. “Bridging” links re-
quire special handling during a cut or a move operation on a selection.

12.7 (6) Figure E12.3 is a variation of the class diagram in which the class Connection explicitly rep-
resents the connection of a link to a box. Redo the queries from the previous exercise using this
representation.

12.8 (5) What classes require state diagrams? Describe some relevant states and events.

Exercises 12.9–12.13 are related. Do the exercises in sequence. These exercises concern a computer-
ized scoring system that you have volunteered to create for the benefit of a local children’s synchro-
nized swimming league. Teams get together for competitions called meets during which the children
perform in two types of events: figures and routines. Figure events, which are performed individually,
are particular water ballet maneuvers such as swimming on your back with one leg raised straight up.
Routines, which are performed by the entire team, are water ballets. Both figures and routines are
scored, but your system need only address figures.

Each child must provide his or her name, age, address, and team name to register prior to the meet.
To simplify scoring, each contestant is assigned a number.

During a meet, figure events are held simultaneously at several stations that are set up around a
swimming pool, usually one at each corner. There are volunteer judges and scorekeepers. Scorekeep-
ers tend to tire, so there is often turnover in their ranks. Several judges and scorekeepers are assigned
to each station during a meet. Over the course of a season each judge and scorekeeper may serve sev-

Figure E12.2 Partially completed class diagram for a diagram editor

2

Collection

*

**10..1
Text Box

1
Link

1

Selection Buffer Sheet

2

Figure E12.3 Alternative partially completed class diagram for a diagram editor

Collection
**10..1

Text Box
1

Link
1

Selection Buffer Sheet

Connection

11

*

210 Chapter 12 / Domain Analysis

eral stations. For scoring consistency, each figure is held at exactly one station with the same judges.
A station may process several figure events in the course of a meet.

Contestants are organized into groups, with each group starting at a different station. When a child
is finished at one station, he or she proceeds to another station for another event. When everyone has
been processed at a station for a given event, the station switches to the next event assigned to it.

Each competitor gets one try at each event, called a trial. Just before a trial, the child’s number is
announced to the child and to the scorekeepers. Sometimes the children get out of order or the score-
keepers become confused and the station stops while the problem is fixed. Each judge indicates a raw
score for each observed trial by holding up numbered cards. The raw scores are read to the scorekeep-
ers, who record them and compute a net score for the trial. The highest and lowest raw scores are dis-
carded, and the average of the remaining scores is multiplied by a difficulty factor for the figure.

Individual and team prizes are awarded at the conclusion of a meet based on top individual and
team scores. There are several age categories, with separate prizes for each category. Individual prizes
are based on figures only. Team prizes are based on figures and routines.

Your system will be used to store all information needed for scheduling, registering, and scoring.
At the beginning of a season, all swimmers will be entered into the system and a season schedule will
be prepared, including deciding which figures will be judged at which meets. Prior to a meet, the sys-
tem will be used to process registrations. During a meet, it will record scores and determine winners.

12.9 (3) The following is a list of candidate classes for the scoring system. Prepare a list of classes
that should be eliminated for any of the reasons given in this chapter. Give a reason for each
elimination. If there is more than one reason, give the main one.

address, age, age category, average score, back, card, child, child’s name, competitor, com-
pute average, conclusion, contestant, corner, date, difficulty factor, event, figure, file of team
member data, group, individual, individual prize, judge, league, leg, list of scheduled meets,
meet, net score, number, person, pool, prize, register, registrant, raw score, routine, score,
scorekeeper, season, station, team, team prize, team name, trial, try, water ballet.

12.10 (3) Prepare a data dictionary for proper classes from the previous exercise.

12.11 (4) The following is a list of candidate associations and generalizations for the scoring system.
Prepare a list of associations and generalizations that should be eliminated or renamed for any
of the reasons given in this chapter. Give a reason for each elimination or renaming. If there is
more than one reason, give the main one.

a season consists of several meets, a competitor registers, a competitor is assigned a number,
a number is announced, competitors are split into groups, a meet consists of several events,
several stations are set up at a meet, several events are processed at a station, several judges
are assigned to a station, routines and figures are events, raw scores are read, highest score
is discarded, lowest score is discarded, figures are processed, a league consists of several
teams, a team consists of several competitors, a trial of a figure is made by a competitor, a
trial receives several scores from the judges, prizes are based on scores.

12.12 Figure E12.4 is a partially completed class diagram for the scoring system. The association be-
tween meet and event is not derived, because an event may be determined for a meet before a
station is assigned to it. Show how it could be used for each of the following queries. Use a com-
bination of the OCL (see Chapter 3) and pseudocode to express your queries.
a. (2) Find all the members of a given team.
b. (6) Find which figures were held more than once in a given season.

Exercises 211

c. (6) Find the net score of a competitor for a given figure at a given meet.
d. (6) Find the team average over all figures in a given season.
e. (6) Find the average score of a competitor over all figures in a given meet.
f. (6) Find the team average in a given figure at a given meet.
g. (4) Find the set of all individuals who competed in any events in a given season.
h. (7) Find the set of all individuals who competed in all of the events held in a given season.
i. (6) Find all the judges who judged a given figure in a given season.
j. (6) Find the judge who awarded the lowest score during a given event.
k. (6) Find the judge who awarded the lowest score for a given figure.
l. (7) Modify the diagram so that the competitors registered for an event can be determined.

12.13 (5) What classes require state diagrams? Describe some relevant states and events.

12.14 (7) Revise the diagrams in Figure E12.5, Figure E12.6, Figure E12.7, and Figure E12.8 to elim-
inate ternary associations. In some cases you will have to promote the association to a class.

Figure E12.5 is a relationship between Doctor, Patient, and DateTime that might be encoun-
tered in a system used by a clinic with several doctors on the staff. The combination of DateTime
+ Patient is unique as well as DateTime + Doctor.

Figure E12.6 is a relationship between Student, Professor, and University that might be used
to express the contacts between students attending and professors teaching at several universi-
ties. There is one link in the relationship for a student that takes one or more classes from a pro-
fessor at a university. The combination of Student + Professor + University is unique.

Figure E12.7 shows the relationship expressing the seating arrangement at a concert.
Concert + Seat is unique.

Figure E12.8 expresses the connectivity of a directed graph. Each edge of a directed graph
is connected in a specific order to exactly two vertices. More than one edge can be connected
between a given pair of vertices. The attribute Edge is unique for the relationship.

In each case, try to come as close as possible to the original intent and compare the merits of
the original and the revised models.

Figure E12.4 Partially completed class diagram for a scoring system

Scorekeeper

name

Trial

netScore

Event

startingTime

Station

location

Team

name

Season

startingDate
endingDate

Meet

date
location

Figure

figureTitle
difficultyFactor
description

Competitor

name
age
address
telephoneNumber

League

rawScore

*1 1 * * *

Judge

name

**

*0..1

*

*

1

1
*

*
*

1

*11 *

*

1

212 Chapter 12 / Domain Analysis

12.15 (9) Figure E12.9 lists requirements for a document manager. We then prepared the initial model
in Figure E12.10. Note some flaws in the model.

Doctor DateTime

Patient

Figure E12.5 Ternary association for Doctor, Patient, and DateTime

* *

*

Student University

Professor

Figure E12.6 Ternary association for Student, Professor, and University

* *

*

Seat Concert

Person

Figure E12.7 Ternary association for Seat, Person, and Concert

**

*

Edge Vertex

Figure E12.8 Ternary association for directed graphs

toVertex

fromVertex

*
*

*

Develop software for managing professional records of papers, books, journals, notes, and
computer files. The system must be able to record authors of published works in the appro-
priate order, name of work, date of publication, publisher, publisher city, an abstract, as well
as a comment. The software must be able to group published works into various categories
that are defined by the user to facilitate searching. The user must be able to assign a quality
indicator of the perceived value of each work.

Only some of the papers in each issue of a journal may be of interest. It would also be
helpful to be able to attach comments to sections or even individual pages of a work.

Figure E12.9 Requirements for a document manager

Exercises 213

■ There is little difference between subclasses. Is an outline of a paper a “paper” or a “note”?
How should we handle a paper that is in both an electronic file and a binder? How should
we represent information about slides for talks?

■ We would like to handle both standard comments (applicable to many documents and cho-
sen by point and click in a user interface) and custom comments (applicable to one document
and specifically typed by the user).

■ We should be able to comment on a numbered page without having sections.

Improve the model by making it more abstract. (Hint: You should have generic classes for lo-
cation, document properties, and comments. It is adequate to represent document composition
with a hierarchy.)

Exercises 12.16–12.19 are related. Do the exercises in sequence. The following are tentative specifi-
cations for scheduling software.

The scheduling software must support the following functions: arranges meetings, schedules ap-
pointments, plans tasks, and tracks holidays (including vacations).

The scheduler runs on a network that many users share. Each user may have a schedule. A schedule
contains multiple entries. Most entries belong to a single schedule; however, a meeting entry may ap-
pear in many schedules.

There are four kinds of entries: meetings, appointments, tasks, and holidays. Meetings and ap-
pointments both occur within a single day and have a start time and end time. In contrast, tasks and
holidays may extend over several days and just have a start date and end date. Any entry may be
repeated. Repeat information includes how often the entry should be repeated, when it starts, and
when it ends.

12.16 (3) The following is a list of candidate classes. Prepare a list of classes that should be eliminated
for any of the reasons given in this chapter. Give a reason for each elimination. If there is more
than one reason, give the main one.

sectionName
Document

name
date
abstract
qualityScore
comment

Author

name

Publisher

publisherName
publisherCity

DocumentCategory

categoryName

Section
comment

pageNumber

Page

comment

{ordered}

Paper Note File FilePath

pathName

Journal

journalVolume

Book

journalNumber

*

*

*

*

*

0..1
1 0..1

1

0..1

* 0..1 * *

Figure E12.10 Initial model for a document manager

214 Chapter 12 / Domain Analysis

scheduling software, function, meeting, appointment, task, holiday, vacation, scheduler, net-
work, user, schedule, entry, meeting entry, day, start time, end time, start date, end date, re-
peat information.

12.17 (3) Prepare a data dictionary for proper classes from the previous exercise.

12.18 (4) The following is a list of candidate associations and generalizations for the scoring system.
Prepare a list of associations and generalizations that should be eliminated or renamed for any
of the reasons given in this chapter. Give a reason for each elimination or renaming. If there is
more than one reason, give the main one.

■ scheduling software that supports the following functions

■ the scheduler runs on a network that many users share

■ user may have a schedule

■ a schedule contains multiple entries

■ entries pertain to a single schedule

■ a meeting entry may appear in many schedules

■ meetings and appointments both occur within a single day and have a start time and end time

■ tasks and holidays may extend over several days and just have a start date and end date.

12.19 (5) Construct a class model for the scheduling software.

Exercises 12.20–12.23 are related. Do the exercises in sequence. The following provides requirements
for meetings and extends the scheduling software from Exercises 12.16–12.19.

The scheduling software facilitates meetings. When a user (the chairperson) arranges a meeting,
the software places a meeting entry in the schedule of each attendee. The chairperson uses the sched-
uler to reserve a room for the meeting, to identify the attendees, and to find time on their schedules
when everyone is available. The chairperson can indicate whether the attendance for each attendee is
required or optional. The system tracks the acceptance status for each attendee—whether an attendee
has accepted or declined.

The scheduler manages meeting notices. When a meeting is set up, the scheduler sends invitations
to all attendees, who are able to view meeting information. Each invitee can accept or refuse as well
as possibly cancel later on. The system also manages notices in case the meeting is rescheduled or can-
celled.

12.20 (3) The following is a list of candidate classes. Prepare a list of classes that should be eliminated
for any of the reasons given in this chapter. Give a reason for each elimination. If there is more
than one reason, give the main one.

scheduling software, meeting, user, chairperson, software, meeting entry, schedule, attend-
ee, scheduler, room, time, everyone, attendance, acceptance status, meeting notice, invita-
tion, meeting information, invitee, notice.

12.21 (3) Prepare a data dictionary for proper classes from the previous exercise.

12.22 (4) The following is a list of candidate associations and generalizations. Prepare a list of asso-
ciations and generalizations that should be eliminated or renamed for any of the reasons given
in this chapter. Give a reason for each elimination or renaming. If there is more than one reason,
give the main one.

■ scheduling software facilitates meetings

Exercises 215

■ user (the chairperson) arranges a meeting

■ software places a meeting entry in the schedule of each attendee

■ chairperson uses the scheduler to reserve a room for the meeting, to identify the attendees,
and to find time on their schedules when everyone is available

■ chairperson can indicate whether the attendance for each attendee is required or optional

■ system tracks the acceptance status for each attendee—whether an attendee has accepted or
declined

■ scheduler manages meeting notices

■ scheduler sends invitations to all attendees, who are able to view meeting information

■ system also manages notices in case the meeting is rescheduled or cancelled.

12.23 (7) Construct a class model for the extension to the scheduling software. Your answer should
resolve a problem from Exercise 12.19. In the class model for our answer to Exercise 12.19, we
cannot tell which user owns an entry. (Hint: You should reconcile the chairperson and attendee
associations from the extended requirements with the association between Schedule and Entry
from the Exercise 12.16–12.19 requirements.)

216

13

Application Analysis

This chapter completes our treatment of analysis by adding major application artifacts to the
domain model from the prior chapter. We include these application artifacts in analysis, be-
cause they are important, visible to users, and must be approved by them. In general, you
cannot find the application classes in the domain itself, but must find them in use cases.

13.1 Application Interaction Model
Most domain models are static and operations are unimportant, because a domain as a whole
usually doesn’t do anything. The focus of domain modeling is on building a model of intrin-
sic concepts. After completing the domain model we then shift our attention to the details of
an application and consider interaction.

Begin interaction modeling by determining the overall boundary of the system. Then
identify use cases and flesh them out with scenarios and sequence diagrams. You should also
prepare activity diagrams for use cases that are complex or have subtleties. Once you fully
understand the use cases, you can organize them with relationships. And finally check
against the domain class model to ensure that there are no inconsistencies.

You can construct an application interaction model with the following steps.

■ Determine the system boundary. [13.1.1]

■ Find actors. [13.1.2]

■ Find use cases. [13.1.3]

■ Find initial and final events. [13.1.4]

■ Prepare normal scenarios. [13.1.5]

■ Add variation and exception scenarios. [13.1.6]

■ Find external events. [13.1.7]

■ Prepare activity diagrams for complex use cases. [13.1.8]

13.1 Application Interaction Model 217

■ Organize actors and use cases. [13.1.9]

■ Check against the domain class model. [13.1.10]

13.1.1 Determining the System Boundary
You must know the precise scope of an application—the boundary of the system—in order
to specify functionality. This means that you must decide what the system includes and, more
importantly, what it omits. If the system boundary is drawn correctly, you can treat the sys-
tem as a black box in its interactions with the outside world—you can regard the system as
a single object, whose internal details are hidden and changeable. During analysis, you de-
termine the purpose of the system and the view that it presents to its actors. During design,
you can change the internal implementation of the system as long as you maintain the exter-
nal behavior.

Usually, you should not consider humans as part of a system, unless you are modeling
a human organization, such as a business or a government department. Humans are actors
that must interact with the system, but their actions are not under the control of the system.
However, you must allow for human error in your system.

ATM example. The original problem statement from Chapter 11 says to “design the
software to support a computerized banking network including both human cashiers and au-
tomatic teller machines...” Now it is important that cashier transactions and ATM transac-
tions be seamless—from the customer’s perspective either method of conducting business
should yield the same effect on a bank account. However, in commercial practice an ATM
application would be separate from a cashier application—an ATM application spans banks
while a cashier application is internal to a bank. Both applications would share the same un-
derlying domain model, but each would have its own distinct application model. For this
chapter we focus on ATM behavior and ignore cashier details.

13.1.2 Finding Actors
Once you determine the system boundary, you must identify the external objects that interact
directly with the system. These are its actors. Actors include humans, external devices, and
other software systems. The important thing about actors is that they are not under control
of the application, and you must consider them to be somewhat unpredictable. That is, even
though there may be an expected sequence of behavior by the actors, an application’s design
should be robust so that it does not crash if an actor fails to behave as expected.

In finding actors, we are not searching for individuals but for archetypical behavior.
Each actor represents an idealized user that exercises some subset of the system functional-
ity. Examine each external object to see if it has several distinct faces. An actor is a coherent
face presented to the system, and an external object may have more than one actor. It is also
possible for different kinds of external objects to play the part of the same actor.

ATM example. A particular person may be both a bank teller and a customer of the
same bank. This is an interesting but usually unimportant coincidence—a person approaches
the bank in one or the other role at a time. For the ATM application, the actors are Customer,
Bank, and Consortium.

218 Chapter 13 / Application Analysis

13.1.3 Finding Use Cases
For each actor, list the fundamentally different ways in which the actor uses the system. Each
of these ways is a use case. The use cases partition the functionality of a system into a small
number of discrete units, and all system behavior must fall under some use case. You may
have trouble deciding where to place some piece of marginal behavior. Keep in mind that
there are always borderline cases when making partitions; just make a decision even if it is
somewhat arbitrary.

Each use case should represent a kind of service that the system provides—something
that provides value to the actor. Try to keep all of the use cases at a similar level of detail.
For example, if one use case in a bank is “apply for loan,” then another use case should not
be “withdraw cash from savings account using ATM.” The latter description is much more
detailed than the former; a better match would be “make withdrawal.” Try to focus on the
main goal of the use case and defer implementation choices.

At this point you can draw a preliminary use case diagram. Show the actors and the use
cases, and connect actors to use cases. Usually you can associate a use case with the actor
that initiates it, but other actors may be involved as well. Don’t worry if you overlook some
participating actors. They will become apparent when you elaborate the use cases. You
should also write a one or two sentence summary for each use case.

ATM example. Figure 13.1 shows the use cases, and the bullets summarize them.

■ Initiate session. The ATM establishes the identity of the user and makes available a list
of accounts and actions.

■ Query account. The system provides general data for an account, such as the current
balance, date of last transaction, and date of mailing for last statement.

Figure 13.1 Use case diagram for the ATM. Use cases partition the functionality of
a system into a small number of discrete units that cover its behavior.

initiate
session

ATM

process
Consortium

Customer
transaction

query
account

transmit
data

Bank

13.1 Application Interaction Model 219

■ Process transaction. The ATM system performs an action that affects an account’s bal-
ance, such as deposit, withdraw, and transfer. The ATM ensures that all completed
transactions are ultimately written to the bank’s database.

■ Transmit data. The ATM uses the consortium’s facilities to communicate with the ap-
propriate bank computers.

13.1.4 Finding Initial and Final Events
Use cases partition system functionality into discrete pieces and show the actors that are in-
volved with each piece, but they do not show the behavior clearly. To understand behavior,
you must understand the execution sequences that cover each use case. You can start by find-
ing the events that initiate each use case. Determine which actor initiates the use case and
define the event that it sends to the system. In many cases, the initial event is a request for
the service that the use case provides. In other cases, the initial event is an occurrence that
triggers a chain of activity. Give this event a meaningful name, but don’t try to determine its
exact parameter list at this point.

You should also determine the final event or events and how much to include in each use
case. For example, the use case of applying for a loan could continue until the application is
submitted, until the loan is granted or rejected, until the money from the loan is delivered, or
until the loan is finally paid off and closed. All of these could be reasonable choices. The
modeler must define the scope of the use case by defining when it terminates.

ATM example. Here are initial and final events for each use case.

■ Initiate session. The initial event is the customer’s insertion of a cash card. There are
two final events: the system keeps the cash card or the system returns the cash card.

■ Query account. The initial event is a customer’s request for account data. The final
event is the system’s delivery of account data to the customer.

■ Process transaction. The initial event is the customer’s initiation of a transaction.
There are two final events: committing or aborting the transaction.

■ Transmit data. The initial event could be triggered by a customer’s request for account
data. Another possible initial event could be recovery from a network, power, or another
kind of failure. The final event is successful transmission of data.

13.1.5 Preparing Normal Scenarios
For each use case, prepare one or more typical dialogs to get a feel for expected system be-
havior. These scenarios illustrate the major interactions, external display formats, and infor-
mation exchanges. A scenario is a sequence of events among a set of interacting objects.
Think in terms of sample interactions, rather than trying to write down the general case di-
rectly. This will help you ensure that important steps are not overlooked and that the overall
flow of interaction is smooth and correct.

For most problems, logical correctness depends on the sequences of interactions and not
their exact times. (Real-time systems, however, do have specific timing requirements on in-
teractions, but we do not address real-time systems in this book.)

220 Chapter 13 / Application Analysis

Sometimes the problem statement describes the full interaction sequence, but most of
the time you will have to invent (or at least flesh out) the interaction sequence. For example,
the ATM problem statement indicates the need to obtain transaction data from the user but is
vague about exactly what parameters are needed and in what order to ask for them. During
analysis, try to avoid such details. For many applications, the order of gathering input is not
crucial and can be deferred to design.

Prepare scenarios for “normal” cases—interactions without any unusual inputs or error
conditions. An event occurs whenever information is exchanged between an object in the
system and an outside agent, such as a user, a sensor, or another task. The information values
exchanged are event parameters. For example, the event password entered has the password
value as a parameter. Events with no parameters are meaningful and even common. The in-
formation in such an event is the fact that it has occurred. For each event, identify the actor
(system, user, or other external agent) that caused the event and the parameters of the event.

ATM example. Figure 13.2 shows a normal scenario for each use case.

13.1.6 Adding Variation and Exception Scenarios
After you have prepared typical scenarios, consider “special” cases, such as omitted input,
maximum and minimum values, and repeated values. Then consider error cases, including
invalid values and failures to respond. For many interactive applications, error handling is
the most difficult part of development. If possible, allow the user to abort an operation or roll
back to a well-defined starting point at each step. Finally consider various other kinds of in-
teractions that can be overlaid on basic interactions, such as help requests and status queries.

ATM example. Some variations and exceptions follow. We could prepare scenarios for
each of these but will not go through the details here. (See the exercises.)

■ The ATM can’t read the card.

■ The card has expired.

■ The ATM times out waiting for a response.

■ The amount is invalid.

■ The machine is out of cash or paper.

■ The communication lines are down.

■ The transaction is rejected because of suspicious patterns of card usage.
There are additional scenarios for administrative parts of the ATM system, such as authoriz-
ing new cards, adding banks to the consortium, and obtaining transaction logs. We will not
explore these aspects.

13.1.7 Finding External Events
Examine the scenarios to find all external events—include all inputs, decisions, interrupts,
and interactions to or from users or external devices. An event can trigger effects for a target
object. Internal computation steps are not events, except for computations that interact with

13.1 Application Interaction Model 221

the external world. Use scenarios to find normal events, but don’t forget unusual events and
error conditions.

A transmittal of information to an object is an event. For example, enter password is a
message sent from external agent User to application object ATM. Some information flows
are implicit. Many events have parameters.

Group together under a single name events that have the same effect on flow of control,
even if their parameter values differ. For example, enter password should be an event, whose
parameter is the password value. The choice of password value does not affect the flow of

Figure 13.2 Normal ATM scenarios. Prepare one or more scenarios for each use case.

The ATM asks the user to insert a card.
The user inserts a cash card.
The ATM accepts the card and reads its serial number.
The ATM requests the password.
The user enters “1234.”
The ATM verifies the password by contacting the consortium and bank.
The ATM displays a menu of accounts and commands.
. . .
The user chooses the command to terminate the session.
The ATM prints a receipt, ejects the card, and asks the user to take them.
The user takes the receipt and the card.
The ATM asks the user to insert a card

Initiate
session

The ATM displays a menu of accounts and commands.
The user chooses to query an account.
The ATM contacts the consortium and bank which return the data.
The ATM displays account data for the user.
The ATM displays a menu of accounts and commands.

Query
account

The ATM displays a menu of accounts and commands.
The user selects an account withdrawal.
The ATM asks for the amount of cash.
The user enters $100.
The ATM verifies that the withdrawal satisfies its policy limits.
The ATM contacts the consortium and bank and verifies that the account

has sufficient funds.
The ATM dispenses the cash and asks the user to take it.
The user takes the cash.
The ATM displays a menu of accounts and commands.

Process
transaction

The ATM requests account data from the consortium.
The consortium accepts the request and forwards it to the appropriate bank.
The bank receives the request and retrieves the desired data.
The bank sends the data to the consortium.
The consortium routes the data to the ATM.

Transmit
data

222 Chapter 13 / Application Analysis

control; therefore events with different password values are all instances of the same kind of
event. Similarly, dispense cash is also an event, since the amount of cash dispensed does not
affect the flow of control. Event instances whose values affect the flow of control should be
distinguished as different kinds of events. Account OK, bad account, and bad password are
all different events; don’t group them under card status.

You must decide when differences in quantitative values are important enough to distin-
guish as distinct events. For example, the different digits from a keyboard would usually be
considered the same event, since the high-level control does not depend on numerical values.
Pushing the “enter” key, however, might be considered a distinct event, since an application
could treat it differently. The distinction among events depends on the application.

Prepare a sequence diagram for each scenario. A sequence diagram shows the partici-
pants in an interaction and the sequence of messages among them; each participant is as-
signed a column in a table. The sequence diagram clearly shows the sender and receiver of
each event. If more than one object of the same class participates in the scenario, assign a
separate column to each object. By scanning a particular column in the diagram, you can see
the events that directly affect a particular object. From the sequence diagrams you can then
summarize the events that each class sends and receives.

ATM example. Figure 13.3 shows a sequence diagram for the process transaction sce-
nario. Figure 13.4 summarizes events with the arrows indicating the sender and receiver. For
brevity, we do not show event parameters in Figure 13.4.

Figure 13.3 Sequence diagram for the process transaction scenario. A sequence
diagram clearly shows the sender and receiver of each event.

display menu

request amount

enter amount

verify funds

dispense cash

select withdrawal

:User :ATM :Consortium :Bank

verify funds

confirm funds

confirm funds

take cash

select account

13.1 Application Interaction Model 223

13.1.8 Preparing Activity Diagrams for Complex Use Cases
Sequence diagrams capture the dialog and interplay between actors, but they do not clearly
show alternatives and decisions. For example, you need one sequence diagram for the main
flow of interaction and additional sequence diagrams for each error and decision point. Ac-
tivity diagrams let you consolidate all this behavior by documenting forks and merges in the
control flow. It is certainly appropriate to use activity diagrams to document business logic
during analysis, but do not use them as an excuse to begin implementation.

ATM example. As Figure 13.5 shows, when the user inserts a card, there are many pos-
sible responses. Some responses indicate a possible problem with the card or account; hence
the ATM retains the card. Only the successful completion of the tests allows ATM processing
to proceed.

13.1.9 Organizing Actors and Use Cases
The next step is to organize use cases with relationships (include, extend, and generaliza-
tion—see Chapter 8). This is especially helpful for large and complex systems. As with the
class and state models, we defer organization until the base use cases are in place. Otherwise,
there is too much of a risk of distorting the structure to match preconceived notions.

Similarly, you can also organize actors with generalization. For example, an Adminis-
trator might be an Operator with additional privileges.

ATM example. Figure 13.6 organizes the use cases with the include relationship.

User ATM

ConsortiumBank

insert card, enter password, select account, select deposit
select withdrawal, transfer funds, query account
enter amount, take cash, take card

display main screen
unreadable card message, canceled message
request password, request amount
eject card, failure message
dispense cash, request take cash
request continuation
print receipt, request take card
bad account message
bad bank code message

verify account
process transaction

bank transaction succeeded, confirm funds
bank transaction failed, bank account OK
bad bank account, bad bank password

transaction succeeded
transaction failed
account OK
bad account
bad password

Figure 13.4 Events for the ATM case study. Tally the events in the sce-
narios and note the classes that send and receive each event.

bad bank code

verify card with bank, verify funds

display transaction menu

cancel, terminate, continue

verify funds

confirm funds

process bank transaction

224 Chapter 13 / Application Analysis

13.1.10 Checking Against the Domain Class Model
At this point, the application and domain models should be mostly consistent. The actors,
use cases, and scenarios are all based on classes and concepts from the domain model. Recall
that one of the steps in constructing the domain class model is to test access paths. In reality,
such testing is a first attempt at use cases.

Cross check the application and domain models to ensure that there are no inconsisten-
cies. Examine the scenarios and make sure that the domain model has all the necessary data.
Also make sure that the domain model covers all event parameters.

13.2 Application Class Model
Application classes define the application itself, rather than the real-world objects that the ap-
plication acts on. Most application classes are computer-oriented and define the way that users
perceive the application. You can construct an application class model with the following steps.

Figure 13.5 Activity diagram for card verification. You can use activity
diagrams to document business logic, but do not use them as
an excuse to begin premature implementation.

request password

keep card

[unreadable]
[readable]

insert card

[communications down]

return card

[card OK]

[bad bank code or bad account]

[account fraud alert]

[good account]

[multiple password failures]

[correct password]

[communications down]

[communications down]

[communications down]

13.2 Application Class Model 225

■ Specify user interfaces. [13.2.1]

■ Define boundary classes. [13.2.2]

■ Determine controllers. [13.2.3]

■ Check against the interaction model. [13.2.4]

13.2.1 Specifying User Interfaces
Most interactions can be separated into two parts: application logic and the user interface. A
user interface is an object or group of objects that provides the user of a system with a co-
herent way to access its domain objects, commands, and application options. During analysis
the emphasis is on the information flow and control, rather than the presentation format. The
same program logic can accept input from command lines, files, mouse buttons, touch pan-
els, physical push buttons, or remote links, if the surface details are carefully isolated.

During analysis treat the user interface at a coarse level of detail. Don’t worry about how
to input individual pieces of data. Instead, try to determine the commands that the user can
perform—a command is a large-scale request for a service. For example, “make a flight res-
ervation” and “find matches for a phrase in a database” would be commands. The format of
inputting the information for the commands and invoking them is relatively easy to change,
so work on defining the commands first.

Nevertheless, it is acceptable to sketch out a sample interface to help you visualize the
operation of an application and see if anything important has been forgotten. You may also

Figure 13.6 Organizing use cases. Once the basic use cases are identified,
you can organize them with relationships.

process transaction

initiate session

«include»

query account

«include»

Customer

ATM

BankConsortium

transmit data

«include»

«include»

226 Chapter 13 / Application Analysis

want to mock up the interface so that users can try it. Dummy procedures can simulate ap-
plication logic. Decoupling application logic from the user interface lets you evaluate the
“look and feel” of the user interface while the application is under development.

ATM example. Figure 13.7 shows a possible ATM layout. Its exact details are not im-
portant at this point. The important thing is the information exchanged.

13.2.2 Defining Boundary Classes
A system must be able to operate with and accept information from external sources, but it
should not have its internal structure dictated by them. It is often helpful to define boundary
classes to isolate the inside of a system from the external world. A boundary class is a class
that provides a staging area for communications between a system and an external source. A
boundary class understands the format of one or more external sources and converts infor-
mation for transmission to and from the internal system.

ATM example. It would be helpful to define boundary classes (CashCardBoundary,
AccountBoundary) to encapsulate the communication between the ATM and the consortium.
This interface will increase flexibility and make it easier to support additional consortiums.

13.2.3 Determining Controllers
A controller is an active object that manages control within an application. It receives signals
from the outside world or from objects within the system, reacts to them, invokes operations

Messages to user

0

1 2 3

4 5 6

7 8 9 ENTER

CLEAR

CANCEL

receipts cash slot

Figure 13.7 Format of ATM interface. Sometimes a sample interface
can help you visualize the operation of an application.

13.3 Application State Model 227

on the objects in the system, and sends signals to the outside world. A controller is a piece
of reified behavior captured in the form of an object—behavior that can be manipulated and
transformed more easily than plain code. At the heart of most applications are one or more
controllers that sequence the behavior of the application.

Most of the work in designing a controller is in modeling its state diagram. In the appli-
cation class model, however, you should capture the existence of the controllers in a system,
the control information that each one maintains, and the associations from the controllers to
other objects in the system.

ATM example. It is apparent from the scenarios in Figure 13.2 that the ATM has two
major control loops. The outer loop verifies customers and accounts. The inner loop services
transactions. Each of these loops could most naturally be handled with a controller.

13.2.4 Checking Against the Interaction Model
As you build the application class model, go over the use cases and think about how they
would work. For example, if a user sends a command to the application, the parameters of
the command must come from some user-interface object. The requesting of the command
itself must come from some controller object. When the domain and application class models
are in place, you should be able to simulate a use case with the classes. Think in terms of
navigation of the models, as we discussed in Chapter 3. This manual simulation helps to es-
tablish that all the pieces are in place.

ATM example. Figure 13.8 shows a preliminary application class model and the do-
main classes with which it interacts. There are two interfaces—one for users and the other
for communicating with the consortium. The application model just has stubs for these class-
es, because it is not clear how to elaborate them at this time.

Note that the boundary classes “flatten” the data structure and combine information
from multiple domain classes. For simplicity, it is desirable to minimize the number of
boundary classes and their relationships.

The TransactionController handles both queries on accounts and the processing of
transactions. The SessionController manages ATMsessions, each of which services a cus-
tomer. Each ATMsession may or may not have a valid CashCard and Account. The Session-
Controller has a status of ready, impaired (such as out of paper or cash but still able to
operate for some functions), or down (such as a communications failure). There is a log of
ControllerProblems and the specific problem type (bad card reader, out of paper, out of cash,
communication lines down, etc.).

13.3 Application State Model
The application state model focuses on application classes and augments the domain state
model. Application classes are more likely to have important temporal behavior than domain
classes.

First identify application classes with multiple states and use the interaction model to
find events for these classes. Then organize permissible event sequences for each class with

228 Chapter 13 / Application Analysis

a state diagram. Next, check the various state diagrams to make sure that common events
match. And finally check the state diagrams against the class and interaction models to en-
sure consistency.

You can construct an application state model with the following steps.

■ Determine application classes with states. [13.3.1]

■ Find events. [13.3.2]

■ Build state diagrams. [13.3.3]

■ Check against other state diagrams. [13.3.4]

■ Check against the class model. [13.3.5]

■ Check against the interaction model. [13.3.6]

13.3.1 Determining Application Classes with States
The application class model adds computer-oriented classes that are prominent to users and
important to the operation of an application. Consider each application class and determine
which ones have multiple states. User interface classes and controller classes are good can-
didates for state models. In contrast, boundary classes tend to be static and used for staging
data import and export—consequently they are less likely to involve a state model.

ATM example. The user interface classes do not seem to have any substance. This is
probably because our understanding of the user interface is incomplete at this point in devel-

Figure 13.8 ATM application class model. Application classes augment the domain
classes and are necessary for development.

AccountBoundary

bankCode
accountCode
balance

CashCardBoundary

bankCode
cardCode
serialNumber
password
limit
bankName

* *

creditLimit
accountType
bankName
customerName
customerAddress

SessionController

TransactionController

UserInterface ConsortiumInterface

Remote
Transaction * 0..1

activeTransaction

Account

CashCard activeCard

activeAccount
*

0..1
0..1

ATMsession0..1
0..1 1

startDateTime

startDateTime

status

ProblemType

name

ControllerProblem

startDateTime
stopDateTime

*
1

1

*

13.3 Application State Model 229

opment. The boundary classes also lack state behavior. However, the controllers do have im-
portant states that we will elaborate.

13.3.2 Finding Events
For the application interaction model, you prepared a number of scenarios. Now study those
scenarios and extract events. Even though the scenarios may not cover every contingency, they
ensure that you do not overlook common interactions and they highlight the major events.

Note the contrast between the domain and application processes for state models. With
the domain model, first we find states and then we find events. That is because the domain
model focuses on data—significant groupings of data form states that are subject to events.
With the application model, in contrast, first we find events and then we determine states.
The application model’s early attention to events is a consequence of the emphasis on behav-
ior— use cases are elaborated with scenarios that reveal events.

ATM example. We revisit the scenarios from the application interaction model. Some
events are: insert card, enter password, end session, and take card.

13.3.3 Building State Diagrams
The next step is to build a state diagram for each application class with temporal behavior.
Choose one of these classes and consider a sequence diagram. Arrange the events involving
the class into a path whose arcs are labeled by the events. The interval between any two
events is a state. Give each state a name, if a name is meaningful, but don’t bother if it is not.
Now merge other sequence diagrams into the state diagram. The initial state diagram will be
a sequence of events and states. Every scenario or sequence diagram corresponds to a path
through the state diagram.

Now find loops within the diagram. If a sequence of events can be repeated indefinitely,
then they form a loop. In a loop, the first state and the last state are identical. If the object
“remembers” that it has traversed a loop, then the two states are not really identical, and a
simple loop is incorrect. At least one state in a loop must have multiple transactions leaving
it or the loop will never terminate.

Once you have found the loops, merge other sequence diagrams into the state diagram.
Find the point in each sequence diagram where it diverges from previous ones. This point
corresponds to an existing state in the diagram. Attach the new event sequence to the existing
state as an alternative path. While examining sequence diagrams, you may think of other pos-
sible events that can occur at each state; add them to the state diagram as well.

The hardest thing is deciding at which state an alternate path rejoins the existing dia-
gram. Two paths join at a state if the object “forgets” which one was taken. In many cases,
it is obvious from knowledge of the application that two states are identical. For example,
inserting two nickels into a vending machine is equivalent to inserting one dime.

Beware of two paths that appear identical but can be distinguished under some circum-
stances. For example, some systems repeat the input sequence if the user makes an error en-
tering information but give up after a certain number of failures. The repeat sequence is
almost the same except that it remembers the past failures. The difference can be glossed

230 Chapter 13 / Application Analysis

over by adding a parameter, such as number of failures, to remember information. At least
one transition must depend on the parameter.

The judicious use of parameters and conditional transitions can simplify state diagrams
considerably but at the cost of mixing together state information and data. State diagrams
with too much data dependency can be confusing and counterintuitive. Another alternative
is to partition a state diagram into two concurrent subdiagrams, using one subdiagram for the
main line and the other for the distinguishing information. For example, a subdiagram to al-
low for one user failure might have states No error and One error.

After normal events have been considered, add variation and exception cases. Consider
events that occur at awkward times—for example, a request to cancel a transaction after it
has been submitted for processing. In cases when the user (or other external agent) may fail
to respond promptly and some resource must be reclaimed, a time-out event can be generated
after a given interval. Handling user errors cleanly often requires more thought and code than
the normal case. Error handling often complicates an otherwise clean and compact program
structure, but it must be done.

You are finished with the state diagram of a class when the diagram covers all scenarios
and the diagram handles all events that can affect a state. You can use the state diagram to
suggest new scenarios by considering how some event not already handled should affect a
state. Posing “what if” questions is a good way to test for completeness and error-handling
capabilities.

If there are complex interactions with independent inputs, you can use a nested state di-
agram, as Chapter 6 describes. Otherwise a flat state diagram suffices. Repeat the above pro-
cess of building state diagrams for each class that has time-dependent behavior.

ATM example. Figure 13.9 shows the state diagram for the SessionController. The
middle of the diagram has the main behavior of processing the card and password. A com-
munications failure can interrupt processing at any time. The ATM returns the card upon a
communications failure, but keeps it if there are any suspicious circumstances. After finish-
ing transactions, receipt printing occurs in parallel to card ejection, and the user can take the
receipt and card in any order.

Figure 13.10 and Figure 13.11 show the state diagram for the TransactionController that
is spawned by the SessionController. (See the exercises for the other subdiagrams of Figure
13.10.) We have separated the TransactionController and the SessionController because
their purposes are much different—the SessionController focuses on verifying users, while
the TransactionController services account inquiries and balance changes.

13.3.4 Checking Against Other State Diagrams
Check the state diagrams of each class for completeness and consistency. Every event should
have a sender and a receiver, occasionally the same object. States without predecessors or
successors are suspicious; make sure they represent starting or termination points of the in-
teraction sequence. Follow the effects of an input event from object to object through the sys-
tem to make sure that they match the scenarios. Objects are inherently concurrent; beware of
synchronization errors where an input occurs at an awkward time. Make sure that corre-
sponding events on different state diagrams are consistent.

13.3 Application State Model 231

Main screen
do / display main screen

Figure 13.9 State diagram for SessionController. Build a state diagram
for each application class with temporal behavior.

Getting password
do / request password

Verifying account
do / verify account

Servicing transactions

insert card [no problem]

enter password bad password

account OK

Ejecting card
do / eject card

transactions finished OR comm down

Printing receipt
do / print receipt

Taking card
do / request take card

Taking receipt
do / request take receipt

card taken

receipt taken

insert card

Problem card
do / error message

/ keep card

Ejecting card
do / eject card

Taking card
do / request take card

comm down [has card]

Disabled
card taken

comm up comm down [no card]

[count<n] / count++

/ new TransactionController

bad password
[count>=n]

[problem]
/ count:=0

Emitting

SessionController

232 Chapter 13 / Application Analysis

Figure 13.10 State diagram for TransactionController. Obtain informa-
tion from the scenarios of the interaction model.

Main screen

continue

deposit

w:Withdrawal

withdrawal query

do / display commands

finished

comm down

q:Queryd:Deposit t:Transfer

cancel

transfer

/ clear receipt log

TransactionController

Figure 13.11 State diagram for Transfer. This diagram elaborates the
Transfer state in Figure 13.10.

Getting amount
do / query amount

Getting source account
do / query source account

enter amount(amount)

Getting target account
do / query target account

enter account (source)

Perform transfer
do / perform transfer

enter account (target)

OK / add to receipt log

Bad transfer
do / complain

not OK

Good transfer
do / display confirm

Transfer

13.4 Adding Operations 233

ATM example. The SessionController initiates the TransactionController, and the ter-
mination of the TransactionController causes the SessionController to resume.

13.3.5 Checking Against the Class Model
Similarly, make sure that the state diagrams are consistent with the domain and application
class models.

ATM example. Multiple ATMs can potentially concurrently access an account. Ac-
count access needs to be controlled to ensure that only one update at a time is applied. We
will not resolve the details here.

13.3.6 Checking Against the Interaction Model
When the state model is ready, go back and check it against the scenarios of the interaction
model. Simulate each behavior sequence by hand and verify that the state diagram gives the
correct behavior. If an error is discovered, change either the state diagram or the scenarios.
Sometimes a state diagram will uncover irregularities in the scenarios, so don’t assume that
the scenarios are always correct.

Then take the state model and trace out legitimate paths. These represent additional sce-
narios. Ask yourself whether they make sense. If not, then modify the state diagram. Often,
however, you will discover useful behavior that you had not considered before. The mark of
a good design is the discovery of unexpected information that follows from the design, prop-
erties that appear meaningful (and often seem obvious) once they are observed.

ATM example. As best as we can tell right now, the state diagrams are sound and con-
sistent with the scenarios.

13.4 Adding Operations
Our style of object-oriented analysis places much less emphasis on defining operations than
the traditional programming-based methodologies. We de-emphasize operations because the
list of potentially useful operations is open-ended and it is difficult to know when to stop add-
ing them. Operations arise from the following sources, and you should add major operations
now. Chapter 15 discusses detailed operations.

13.4.1 Operations from the Class Model
The reading and writing of attribute values and association links are implied by the class
model, and you need not show them explicitly. During analysis all attributes and associations
are assumed to be accessible.

13.4.2 Operations from Use Cases
Most of the complex functionality of a system comes from its use cases. During the construc-
tion of the interaction model, use cases lead to activities. Many of these correspond to oper-
ations on the class model.

234 Chapter 13 / Application Analysis

ATM example. Consortium has the activity verifyBankCode, and Bank has the activity
verifyPassword. You could implement Figure 13.5 with the operation verifyCashCard on
class ATM.

13.4.3 Shopping-List Operations
Sometimes the real-world behavior of classes suggests operations. Meyer [Meyer-97] calls
this a “shopping list,” because the operations are not dependent on a particular application
but are meaningful in their own right. Shopping-list operations provide an opportunity to
broaden a class definition beyond the narrow needs of the immediate problem.

ATM example. Shopping-list operations include:

■ account.close()

■ bank.createSavingsAccount(customer): account

■ bank.createCheckingAccount(customer): account

■ bank.createCashCardAuth(customer): cashCardAuthorization

■ cashCardAuthorization.addAccount (account)

■ cashCardAuthorization.removeAccount (account)

■ cashCardAuthorization.close()

13.4.4 Simplifying Operations
Examine the class model for similar operations and variations in form on a single operation.
Try to broaden the definition of an operation to encompass such variations and special cases.
Use inheritance where possible to reduce the number of distinct operations. Introduce new
superclasses as needed to simplify the operations, provided that the new superclasses are not
forced and unnatural. Locate each operation at the correct level within the class hierarchy. A
result of this refinement is often fewer, more powerful operations that are nevertheless sim-
pler to specify than the original operations, because they are more uniform and general.

ATM example. The ATM example does not require simplification. Figure 13.12 adds
some operations to the ATM domain class model from Chapter 12.

13.5 Chapter Summary
The purpose of analysis is to understand the problem so that a correct design can be con-
structed. A good analysis captures the essential features of the problem without introducing
implementation artifacts that prematurely restrict design decisions.

There are two phases of analysis—domain and application. Domain analysis captures
general knowledge about an application. Domain analysis involves class models and some-
times state models but seldom has an interaction model. In contrast, application analysis fo-
cuses on major application artifacts that are important, visible to users, and must be approved
by them. The interaction model dominates application analysis, but the class and state mod-
els are also important.

13.5 Chapter Summary 235

The application interaction model shows the interactions between the system and the
outside world. First determine the precise scope—the system boundary. Then, define actors
for external objects that communicate directly with the system. Also, define use cases for ex-
ternally visible functionality. For each use case, make up scenarios for normal cases, varia-
tions, extreme cases, and exceptions. You can clarify complex use cases with activity
diagrams and organize the use cases and actors with relationships. Finally, check the use cas-
es against the domain class model to ensure that there are no inconsistencies.

Next augment the domain classes with application classes. Application classes arise
from user interfaces, boundary classes, and controllers. Carefully check the use cases and
scenarios to find them.

EnteredOn

EnteredBy

AuthorizedBy

Employs

Issues

Code
station

bankCode

Transaction

dateTime

Cashier
Transaction

Remote
Transaction

EntryStation

amount

Update

kind

1

*

1

*

cashOnHand

ATM CashierStation

Cashier

name

*

1

*

1

Code
station

accountCode

Code
employee

Code
card

Bank

name

1

1

1

*

Consortium

1
0..1

name

Customer

address
Account

balance
creditLimit
type

*

1

1

*

1*

Card

password
limit

Authorization

0..1

0..1

1
1

0..1

0..1

0..1

*

*
1close

verifyPassword

verifyCashCard

CashCard

serialNumber

verifyBankCode

createCashCardAuth
createCheckingAccount
createSavingsAccount

addAccount
removeAccount
close

Figure 13.12 ATM domain class model with some operations

236 Chapter 13 / Application Analysis

The last phase of application analysis is to build an application state model. This state
model tends to be richer and reveals more behavior than does the domain state model. First
identify application classes with multiple states and study the interaction scenarios to find
events for these classes. The most difficult aspect is to reconcile the various scenarios and
detect overlap and closure of loops. As you complete the state model, check the state dia-
grams for consistency with each other, as well as the class and interaction models.

We emphasized the need for abstraction during domain analysis, and it is also important
for application analysis. Try to think expansively as you construct your models. Do not com-
mit an application to arbitrary business practices that may change over time. Instead, try to
build in flexibility that will anticipate and accommodate future changes.

Bibliographic Notes
Meyer [Meyer-97] provides many useful insights into the principles underlying a good de-
sign. He advocates the use of data-directed bottom-up design, discovery of “shopping-list
operations,” and the lack of any “main program” in a system. He makes effective use of as-
sertions, preconditions, and postconditions for specifying operations.

References
[Meyer-97] Bertrand Meyer. Object-Oriented Software Construction, Second Edition. Upper Saddle

River, NJ: Prentice Hall, 1997.

Exercises
13.1 (4) Prepare scenarios for the variations and exception bullets in Section 13.1.6.

13.2 (6) Complete the Deposit, Withdrawal, and Query subdiagrams from Figure 13.10.

13.3 (4) Figure E13.1 is a class diagram for Exercise 11.6a. Sender and Receiver are the only classes
with important temporal behavior. Construct a sequence diagram for the following scenario:
Sender tries to establish a connection to the receiver by sending a start-of-transaction packet.

Figure 13.13 Key concepts for Chapter 13

activity diagram
actor
application analysis
boundary class
building the application class model
building the application interaction model
building the application state model

controller
scenario
sequence diagram
shopping-list operation
system boundary
use case
user interface

Exercises 237

The receiver successfully reads the packet and replies with an acknowledgment. The sender
then transmits a start-of-file packet, which is acknowledged. Then, the file data is transmitted
in three acknowledged packets, followed by end of file and end of transaction, which are also
acknowledged.

13.4 (3) Prepare additional sequence diagrams for the previous example to include errors caused by
noise corruption of each type of sender packet. Revise your previous answer.

13.5 (5) Prepare a state diagram for a file transfer system from the sequence diagrams prepared in
Exercises 13.3 and 13.4.

13.6 (8) Prepare a state diagram for a bike odometer from the given scenarios.

■ The user turns on the odometer on a bike that is moving.
The odometer displays the current time. The user presses the mode button.
The odometer displays the distance biked today. The user presses the mode button.
The odometer displays the high speed since reset. The user presses the mode button.
The odometer displays the riding time since reset. The user presses the mode button.
The odometer displays the distance since reset. The user presses the mode button.
The odometer displays the average speed since reset. The user presses the mode button.
The odometer displays the current time...

■ The user turns on the odometer on a bike that is stationary.
The odometer displays the current time. The user presses the mode button.
The odometer displays the total distance biked. The user presses the mode button.
The odometer displays the total time biked. The user presses the mode button.
The odometer displays the distance biked today. The user presses the mode button.
The odometer displays the high speed since reset. The user presses the mode button.
The odometer displays the riding time since reset. The user presses the mode button.
The odometer displays the distance since reset. The user presses the mode button.

AcknowledgeFileData

Figure E13.1 A class diagram for a file transfer system

Packet

length
packetID
packetType
data
checksum

Sender Receiver

StartOfFile EndOfFile

SenderPacket

EndOfTransactionStartOfTransaction

ReceiverPacket

NotAcknowledge

238 Chapter 13 / Application Analysis

The odometer displays the average speed since reset. The user presses the mode button.
The odometer displays the current time...

■ The odometer displays the distance biked today.
The clock rolls over past midnight and begins a new day.
The odometer sets the distance biked today to zero.

■ The user stops biking.
Four minutes elapse.
The odometer display dims.
The user presses the mode button.
The odometer lights up.

■ The user holds the mode button.
The odometer sets all variables computed since reset to zero.

Consider the simple diagram editor from Exercises 12.3–12.8.

13.7 (2) Describe the system boundary for this application in a few sentences.

13.8 (2) Identify two actors for the application.

13.9 (4) List at least four use cases and define them with a one- or two-sentence bullet. Construct a
use case diagram.

13.10 (6) Organize commonality in the use cases with use case relationships. You can create new use
cases for common behavior. (Instructor’s note: You should give the students the answer to the
previous exercise.)

13.11 (4) Prepare a normal scenario for making the drawing in Figure E12.1. Include at least ten editor
operations from the problem description in Chapter 12. Do not worry about error conditions.

13.12 (3) Prepare three error scenarios, starting from the previous exercise.

13.13 (4) Prepare sequence diagrams for the scenarios you prepared in the previous exercise.

Consider the computerized scoring system from Exercises 12.9–12.13.

13.14 (2) Describe the system boundary for this application in a few sentences.

13.15 (2) Identify four actors for the application.

13.16 (5) Here are some use cases: register child, schedule meet, schedule season, score figure, judge
figure, and compute statistics. Define each one with a one- or two-sentence bullet. Construct a
use case diagram.

13.17 (3) Prepare a scenario for setting up the scoring system at the beginning of a season. Enter data
on teams, competitors, and judges. Prepare a schedule of meets for the season and select events
for each meet. Enter difficulty factors for figures. Include at least 2 teams, 6 competitors, 3 judg-
es, 3 meets, and 12 events. Do not worry about error conditions.

13.18 (3) Prepare three error scenarios, starting from Exercise 13.17.

Exercises 239

13.19 (3) Prepare a scenario for printing and processing preregistration forms for the scoring system.
In the scenario two children should change their address and another two children should indi-
cate that they are unable to attend. Assign a number to each contestant.

13.20 (6) Prepare an activity diagram for the following computation. Show swim lanes for competitor,
computer operator, judge, and scorekeeper.

The computer operator calls the competitor’s number as it appears on the display. The com-
petitor verifies her number and then performs the figure. The three judges hold up their scores.
A scorekeeper reads the scores. As they are read, the computer operator enters them into the
computer.

13.21 (3) Prepare a shopping list of operations for the scoring system and place them in a class dia-
gram.

13.22 (5) For each method listed in the previous exercise, summarize what the method should do.

240

14

System Design

After you have analyzed a problem, you must decide how to approach the design. During
system design you devise the high-level strategy—the system architecture—for solving the
problem and building a solution. You make decisions about the organization of the system
into subsystems, the allocation of subsystems to hardware and software, and major policy
decisions that form the basis for class design.

In this chapter you will learn about the many aspects that you should consider when for-
mulating a system design. We also list several common architectural styles that you can use
as a starting point. This list is not meant to be complete; new architectures can always be in-
vented. The treatment in this chapter is intended for small to medium software development
efforts; large complex systems, involving more than about ten developers, are limited by hu-
man communication issues and require a much greater emphasis on logistics. Most of the
suggestions in this chapter are suitable for non-OO as well as OO systems.

14.1 Overview of System Design
During analysis, the focus is on what needs to be done, independent of how it is done. During
design, developers make decisions about how the problem will be solved, first at a high level
and then with more detail.

System design is the first design stage for devising the basic approach to solving the
problem. During system design, developers decide the overall structure and style. The sys-
tem architecture determines the organization of the system into subsystems. In addition, the
architecture provides the context for the detailed decisions that are made in later stages. You
must make the following decisions.

■ Estimate system performance. [14.2]

■ Make a reuse plan. [14.3]

14.2 Estimating Performance 241

■ Organize the system into subsystems. [14.4]

■ Identify concurrency inherent in the problem. [14.5]

■ Allocate subsystems to hardware. [14.6]

■ Manage data stores. [14.7]

■ Handle global resources. [14.8]

■ Choose a software control strategy. [14.9]

■ Handle boundary conditions. [14.10]

■ Set trade-off priorities. [14.11]

■ Select an architectural style. [14.12]
You can often choose the architecture of a system by analogy to previous systems. Certain
kinds of architecture pertain to broad classes of problems. Section 14.12 surveys several
common architectures and describes their corresponding problems. Not all problems can be
solved by one of these architectures, but many can. You can construct additional architec-
tures by combining these forms.

14.2 Estimating Performance
Early in the planning for a new system you should prepare a rough performance estimate.
Engineers call this a “back of the envelope” calculation. The purpose is not to achieve high
accuracy, but merely to determine if the system is feasible. Getting within a factor of two is
usually sufficient, although what you can achieve depends on the problem. The calculation
should be fast and involve common sense. You will have to make simplifying assumptions.
Don’t worry about details—just approximate, estimate, and guess, if necessary.

ATM example. Suppose we are planning an ATM network for a bank. We might pro-
ceed as follows. The bank has 40 branches. Suppose there are an equal number of terminals
in supermarkets and other stores. Suppose on a busy day half the terminals are busy at once.
(We could assume all of the terminals are busy without changing the results much. The point
is to establish reasonable performance limits.) Suppose that each customer takes one minute
to perform a session, and that most transactions involve a single deposit or withdrawal. So
we estimate a peak requirement of about 40 transactions a minute, or about one per second.
This may not be precise, but it shows that we do not require unusually fast computer hard-
ware. The situation would be much different if we were estimating for an online bookseller
or stockbroker, in which case the computer hardware would become a big issue.

You can perform similar estimates for data storage. Count the number of customers, es-
timate the amount of data for each one, and multiply. In the case of a bank, the requirements
for data storage are more severe than for ATM computing power, but they are hardly enor-
mous. Again, the situation would be different for a satellite-based ground imaging system,
in which both data storage and access bandwidth would be key architectural issues.

242 Chapter 14 / System Design

14.3 Making a Reuse Plan
Reuse is often cited as an advantage of OO technology, but reuse does not happen automat-
ically. There are two very different aspects of reuse—using existing things and creating re-
usable new things. It is much easier to reuse existing things than to design new things for
uncertain uses to come. Of course, someone must have designed things in the past in order
for us to reuse them now. The point is that most developers reuse existing things, and only a
small fraction of developers create new things. Don’t feel that you should start with OO tech-
nology by building reusable things—that takes a great deal of experience.

Reusable things include models, libraries, frameworks, and patterns. Reuse of models is
often the most practical form of reuse. The logic in a model can apply to multiple problems.

14.3.1 Libraries
A library is a collection of classes that are useful in many contexts. The collection of classes
must be carefully organized, so that users can find them. Good organization takes a lot of
work, and it can be difficult to decide where to place everything. Online searching can help,
but is no substitute for careful organization. In addition, the classes must have accurate and
thorough descriptions to help users determine their relevance. [Korson-92] notes several
qualities of “good” class libraries.

■ Coherence. A class library should be organized about a few, well-focused themes.

■ Completeness. A class library should provide complete behavior for the chosen themes.

■ Consistency. Polymorphic operations should have consistent names and signatures
across classes.

■ Efficiency. A library should provide alternative implementations of algorithms (such as
various sort algorithms) that trade time and space.

■ Extensibility. The user should be able to define subclasses for library classes.

■ Genericity. A library should use parameterized class definitions where appropriate.

Unfortunately, problems can arise when integrating class libraries from multiple sources, as
shown below [Berlin-90]. Developers often disperse pragmatic decisions across classes and
inheritance hierarchies. Class libraries may adopt policies that are individually sensible, but
fundamentally incompatible with those of other class libraries. You cannot fix such pragmat-
ic inconsistencies by specializing a class or adding code. Instead, you must break encapsu-
lation and rework the source code. These problems are so severe that they will effectively
limit your ability to reuse code from class libraries.

■ Argument validation. An application may validate arguments as a collection or indi-
vidually as entered. Collective validation is appropriate for command interfaces; the
user enters all arguments, and only then are they checked. In contrast, responsive user
interfaces validate each argument or interdependent group of arguments as it is entered.
A combination of class libraries, some that validate by collection and others that vali-
date by individual, would yield an awkward user interface.

14.3 Making a Reuse Plan 243

■ Error handling. Class libraries use different error-handling techniques. Methods in one
library may return error codes to the calling routine, for example, while methods in an-
other library may directly deal with errors.

■ Control paradigms. Applications may adopt event-driven or procedure-driven control.
With event-driven control the user interface invokes application methods. With proce-
dure-driven control the application calls user interface methods. It is difficult to com-
bine both kinds of user interface within an application.

■ Group operations. Group operations are often inefficient and incomplete. For exam-
ple, an object-delete primitive may acquire database locks, make the deletion, and then
commit the transaction. If you want to delete a group of objects as a transaction, the class
library must have a group-delete function.

■ Garbage collection. Class libraries use different strategies to manage memory alloca-
tion and avoid memory leaks. A library may manage memory for strings by returning a
pointer to the actual string, returning a copy of the string, or returning a pointer with
read-only access. Garbage collection strategies may also differ: mark and sweep, refer-
ence counting, or letting the application handle garbage collection (in C++, for exam-
ple).

■ Name collisions. Class names, public attributes, and public methods lie within a global
name space, so you must hope they do not collide for different class libraries. Most class
libraries add a distinguishing prefix to names to reduce the likelihood of collisions.

14.3.2 Frameworks
A framework [Johnson-88] is a skeletal structure of a program that must be elaborated to
build a complete application. This elaboration often consists of specializing abstract classes
with behavior specific to an individual application. A class library may accompany a frame-
work, so that the user can perform much of the specialization by choosing the appropriate
subclasses rather than programming subclass behavior from scratch. Frameworks consist of
more than just the classes involved and include a paradigm for flow of control and shared
invariants. Frameworks tend to be specific to a category of applications; framework class li-
braries are typically application specific and not suitable for general use.

14.3.3 Patterns
A pattern is a proven solution to a general problem. Various patterns target different phases
of the software development lifecycle. There are patterns for analysis, architecture, design,
and implementation. You can achieve reuse by using existing patterns, rather than reinvent-
ing solutions from scratch. A pattern comes with guidelines on when to use it, as well as
trade-offs on its use.

There are many benefits of patterns. One advantage is that a pattern has been carefully
considered by others and has already been applied to past problems. Consequently, a pattern
is more likely to be correct and robust than an untested, custom solution. Also when you use
patterns, you tap into a language that is familiar to many developers. A body of literature is

244 Chapter 14 / System Design

available that documents patterns, explaining their subtleties and nuances. You can regard
patterns as extending a modeling language—you need not think only in terms of primitives;
you can also think in terms of recurring combinations. Patterns are prototypical model frag-
ments that distill some of the knowledge of experts.

A pattern is different from a framework. A pattern is typically a small number of classes
and relationships. In contrast, a framework is much broader in scope (typically at least an
order of magnitude larger) and covers an entire subsystem or application.

ATM example. The notion of a transaction offers some possibility of reuse—transac-
tions are a frequent occurrence in computer systems, and there is commercial software to
support them. There may also be an opportunity for reuse with the communications infra-
structure that connects the consortium to ATMs and bank computers.

14.4 Breaking a System into Subsystems
For all but the smallest applications, the first step in system design is to divide the system
into pieces. Each major piece of a system is called a subsystem. Each subsystem is based on
some common theme, such as similar functionality, the same physical location, or execution
on the same kind of hardware. For example, a spaceship computer might include subsystems
for life support, navigation, engine control, and running scientific experiments.

A subsystem is not an object nor a function but a group of classes, associations, opera-
tions, events, and constraints that are interrelated and have a well-defined and (hopefully)
small interface with other subsystems. A subsystem is usually identified by the services it
provides. A service is a group of related functions that share some common purpose, such as
processing I/O, drawing pictures, or performing arithmetic. A subsystem defines a coherent
way of looking at part of the problem. For example, the file system within an operating sys-
tem is a subsystem; it comprises a set of related abstractions that are largely independent of
abstractions in other subsystems, such as memory management and process control.

Each subsystem has a well-defined interface to the rest of the system. The interface spec-
ifies the form of all interactions and the information flow across subsystem boundaries but
does not specify how the subsystem is implemented internally. Each subsystem can then be
designed independently without affecting the others.

You should define subsystems so that most interactions are internal, rather than across
subsystem boundaries. This reduces the dependencies among subsystems. A system should
be divided into a small number of subsystems; 20 is probably too many. Each subsystem may
in turn be decomposed into smaller subsystems of its own.

The relationship between two subsystems can be client-server or peer-to-peer. In a cli-
ent-server relationship, the client calls on the server, which performs some service and re-
plies with a result. The client must know the server’s interface, but the server need not know
its clients’ interfaces because clients initiate all interactions.

In a peer-to-peer relationship, each subsystem may call on the others. A communication
from one subsystem to another is not necessarily followed by an immediate response. Peer-
to-peer interactions are more complicated, because the subsystems must know each other’s

14.4 Breaking a System into Subsystems 245

interfaces. Communications cycles can occur that are hard to understand and liable to subtle
design errors. Look for client-server decompositions whenever possible, because a one-way
interaction is much easier to build, understand, and change than a two-way interaction.

The decomposition of systems into subsystems may be organized as a sequence of hor-
izontal layers or vertical partitions.

14.4.1 Layers
A layered system is an ordered set of virtual worlds (a set of tiers), each built in terms of the
ones below it and providing the implementation basis for the ones above it. The objects in
each layer can be independent, although there is often some correspondence between objects
in different layers. Knowledge is one-way only—a subsystem knows about the layers below
it, but has no knowledge of the layers above it. A client-server relationship exists between
upper layers (users of services) and lower layers (providers of services).

In an interactive graphics system, for example, windows are made from screen opera-
tions, which are implemented using pixel operations, which execute as device I/O opera-
tions. Each layer may have its own set of classes and operations. Each layer is implemented
in terms of the classes and operations of lower layers.

Layered architectures come in two forms: closed and open. In a closed architecture,
each layer is built only in terms of the immediate lower layer. This reduces the dependencies
between layers and allows changes to be made most easily, because a layer’s interface affects
only the next layer. In an open architecture, a layer can use features of any lower layer to
any depth. This reduces the need to redefine operations at each level, which can result in a
more efficient and compact code. However, an open architecture does not observe the prin-
ciple of information hiding. Changes to a subsystem can affect any higher subsystem, so an
open architecture is less robust than a closed architecture. Both kinds of architectures are
useful; the designer must weigh the relative value of efficiency and modularity.

Usually the problem statement specifies only the top and bottom layers: The top is the
desired system and the bottom is the available resources (hardware, operating system, exist-
ing libraries). If the disparity between the two is too great (as it often is), then you must in-
troduce intermediate layers to reduce the conceptual gap between adjoining layers.

You can port a system constructed in layers to other hardware/software platforms by re-
writing one layer. It is a good practice to introduce at least one layer of abstraction between
the application and any services provided by the operating system or hardware. Define a lay-
er of interface classes providing logical services and map them onto the concrete services
that are system dependent.

14.4.2 Partitions
Partitions vertically divide a system into several independent or weakly coupled sub-
systems, each providing one kind of service. For example, a computer operating system in-
cludes a file system, process control, virtual memory management, and device control. The
subsystems may have some knowledge of each other, but this knowledge is not deep and
avoids major design dependencies.

246 Chapter 14 / System Design

One difference between layers and partitions is that layers vary in their level of abstrac-
tion. In contrast, partitions merely divide a system into pieces, all of which have a similar
level of abstraction. Another difference is that layers ultimately depend on each other, usu-
ally in a client-server relationship through an open or closed architecture. In contrast, parti-
tions are peers that are independent or mutually dependent (peer-to-peer relationship).

14.4.3 Combining Layers and Partitions
You can decompose a system into subsystems by combining layers and partitions. Layers
can be partitioned, and partitions can be layered. Figure 14.1 shows a block diagram of a typ-
ical application, which involves simulation and interactive graphics. Most large systems re-
quire a mixture of layers and partitions.

Once you have identified the top-level subsystems, you should show their information
flow. Sometimes, all subsystems interact with all other subsystems, but often the flow is sim-
pler. For example, many computations have the form of a pipeline; a compiler is an example.
Other systems are arranged as a star, in which a master subsystem controls all interactions
with other subsystems. Use simple topologies when possible to reduce the number of inter-
actions among subsystems.

ATM example. Figure 14.2 shows the architecture of the ATM system. There are three
major subsystems: the ATM stations, the consortium computer, and the bank computers. The
topology is a simple star; the consortium computer communicates with all the ATM stations
and with all the bank computers (comm links). The architecture uses the station code and the
bank code to distinguish the phone lines to the consortium computer.

14.5 Identifying Concurrency
In the analysis model, as in the real world and in hardware, all objects are concurrent. In an
implementation, however, not all software objects are concurrent, because one processor

operating system

window graphics

screen graphics

pixel graphics

simulation
package

user
dialog
control

application package

Figure 14.1 Block diagram of a typical application. Most large systems
mix layers and partitions.

computer hardware

14.5 Identifying Concurrency 247

may support many objects. In practice, you can implement many objects on a single proces-
sor if the objects cannot be active together. One important goal of system design is to identify
the objects that must be active concurrently and the objects that have mutually exclusive ac-
tivity. You can fold the latter objects onto a single thread of control, or task.

14.5.1 Identifying Inherent Concurrency
The state model is the guide to identifying concurrency. Two objects are inherently concur-
rent if they can receive events at the same time without interacting. If the events are unsyn-
chronized, you cannot fold the objects onto a single thread of control. For example, the
engine and the wing controls on an airplane must operate concurrently (if not completely in-
dependently). Independent subsystems are desirable, because you can assign them to differ-
ent hardware units without any communication cost.

You need not implement two subsystems that are inherently concurrent as separate hard-
ware units. The purpose of hardware interrupts, operating systems, and tasking mechanisms
is to simulate logical concurrency in a uniprocessor. Separate sensors must, of course, pro-
cess physically concurrent input, but if there are no timing constraints on response, then a
multitasking operating system can handle the computation. Often the problem statement
specifies that distinct hardware units must implement the objects.

ATM example. If the ATM statement from Chapter 11 contained the requirement that
each machine should continue to operate locally in the event of a central system failure (per-
haps with reduced transaction limits), then we would have no choice but to include a CPU
in each ATM machine with a full control program.

ATM

Cash
Card

Consortium

User

Cashier
Station

Card
Authorization

Account

Customer

station
code

comm
link

bank
code

comm
link

Cashier

Consortium
computer

 Bank
computers

ATM
stations

user
interface

Transaction

Figure 14.2 Architecture of ATM system. It is often helpful to make an informal
diagram showing the organization of a system into subsystems.

Database

TransactionTransaction

248 Chapter 14 / System Design

14.5.2 Defining Concurrent Tasks
Although all objects are conceptually concurrent, in practice many objects in a system are
interdependent. By examining the state diagrams of individual objects and the exchange of
events among them, you can often fold many objects onto a single thread of control. A thread
of control is a path through a set of state diagrams on which only a single object at a time is
active. A thread remains within a state diagram until an object sends an event to another ob-
ject and waits for another event. The thread passes to the receiver of the event until it even-
tually returns to the original object. The thread splits if the object sends an event and
continues executing.

On each thread of control, only a single object at a time is active. You can implement
threads of control as tasks in computer systems.

ATM example. While the bank is verifying an account or processing a bank transaction,
the ATM machine is idle. If a central computer directly controls the ATM, we can combine
the ATM object with the bank transaction object as a single task.

14.6 Allocation of Subsystems
You must allocate each concurrent subsystem to a hardware unit, either a general-purpose
processor or a specialized functional unit as follows.

■ Estimate performance needs and the resources needed to satisfy them.

■ Choose hardware or software implementation for subsystems.

■ Allocate software subsystems to processors to satisfy performance needs and minimize
interprocessor communication.

■ Determine the connectivity of the physical units that implement the subsystems.

14.6.1 Estimating Hardware Resource Requirements
The decision to use multiple processors or hardware functional units is based on a need for
higher performance than a single CPU can provide. The number of processors required de-
pends on the volume of computations and the speed of the machine. For example, a military
radar system generates too much data in too short a time to handle in a single CPU, even a
very large one. Many parallel machines must digest the data before analyzing a threat.

The system designer must estimate the required CPU processing power by computing
the steady-state load as the product of the number of transactions per second and the time
required to process a transaction. The estimate will usually be imprecise. Often some exper-
imentation is useful. You should increase the estimate to allow for transient effects, due to
random variations in load as well as to synchronized bursts of activity. The amount of excess
capacity needed depends on the acceptable rate of failure due to insufficient resources. Both
the steady-state load and the peak load are important.

ATM example. The ATM machine itself is relatively simple—all it must do is to pro-
vide a user interface and, possibly some local processing. At most a single CPU would suf-
fice for each ATM. The consortium computer is essentially just a routing machine—it

14.6 Allocation of Subsystems 249

receives ATM requests and dispatches them to the appropriate bank computer. A large net-
work might need to be partitioned in some way and involve multiple CPUs, so that the con-
sortium computer does not become a bottleneck. The bank computers perform data
processing and involve relatively straightforward database applications. The database ven-
dors have single-processor and multiprocessor versions of their products, and the appropriate
choice depends on the needed throughput and reliability.

14.6.2 Making Hardware-Software Trade-offs
Object orientation provides a good way for thinking about hardware. Each device is an object
that operates concurrently with other objects (other devices or software). You must decide
which subsystems will be implemented in hardware and which in software. There are two
main reasons for implementing subsystems in hardware.

■ Cost. Existing hardware provides exactly the functionality required. Today it is easier
to buy a floating-point chip than to implement floating point in software. Sensors and
actuators must be hardware, of course.

■ Performance. The system requires a higher performance than a general-purpose CPU
can provide, and more efficient hardware is available. For example, chips that perform
the fast Fourier transform (FFT) are widely used in signal-processing applications.

Much of the difficulty of designing a system comes from meeting externally imposed hard-
ware and software constraints. OO design provides no magic solution, but the external pack-
ages can be modeled nicely as objects. You must consider compatibility, cost, and
performance issues. You should also think about flexibility for future changes, both design
changes and future product enhancements. Providing flexibility costs something; the archi-
tect must decide how much it is worth.

ATM example. There are no pressing performance issues for the ATM application.
Hence general-purpose computers should suffice for the ATMs, consortium, and banks.

14.6.3 Allocating Tasks to Processors
The system design must allocate tasks for the various software subsystems to processors.
There are several reasons for assigning tasks to processors.

■ Logistics. Certain tasks are required at specific physical locations, to control hardware,
or to permit independent operation. For example, an engineering workstation needs its
own operating system to permit operation when the interprocessor network is down.

■ Communication limits. The response time or data flow rate exceeds the available com-
munication bandwidth between a task and a piece of hardware. For example, high per-
formance graphics devices require tightly coupled controllers because of their high in-
ternal data generation rates.

■ Computation limits. Computation rates are too great for a single processor, so several
processors must support the tasks. You can minimize communication costs by assigning
highly interactive subsystems to the same processor. You should assign independent
subsystems to separate processors.

250 Chapter 14 / System Design

ATM example. The ATM does not have any issues with communication and computation
limits. The communication traffic and computation that an ATM user initiates are relatively
minor. However, there may be an issue with logistics. If the ATM must have autonomy and
operate when the communications network is down, then it must have its own CPU and pro-
gramming. Otherwise, if the ATM is just a dumb terminal that accesses the network and per-
forms all computation via the network, we can simplify ATM logic.

14.6.4 Determining Physical Connectivity
After determining the kinds and relative numbers of physical units, you must determine the
arrangement and form of the connections among the physical units.

■ Connection topology. Choose the topology for connecting the physical units. Associa-
tions in the class model often correspond to physical connections. Client-server relation-
ships also correspond to physical connections. Some connections may be indirect; you
should try to minimize the connection cost of important relationships.

■ Repeated units. Choose the topology of repeated units. If you have boosted perfor-
mance by including several copies of a particular kind of unit or group of units, you must
specify their topology. The class model is not a useful guide, because the use of multiple
units is primarily a design optimization not required by analysis. The topology of repeat-
ed units usually has a regular pattern, such as a linear sequence, a matrix, a tree, or a star.
You must consider the expected arrival patterns of data and the proposed parallel algo-
rithm for processing it.

■ Communications. Choose the form of the connection channels and the communication
protocols. The system design phase may be too soon to specify the exact interfaces
among units, but often it is appropriate to choose the general interaction mechanisms
and protocols. For example, interactions may be asynchronous, synchronous, or block-
ing. You must estimate the bandwidth and latency of the communication channels and
choose the correct kind of connection channels.

Even when the connections are logical and not physical, you must consider them. For exam-
ple, the units may be tasks within a single operating system connected by interprocess com-
munication (IPC) calls. On most operating systems, such IPC calls are much slower than
subroutine calls within the same program and may be impractical for certain time-critical
connections. In that case, you must combine the tightly linked tasks into a single task and
make the connections by simple subroutine calls.

ATM example. Figure 14.2 summarizes physical connectivity. Multiple ATMs connect
to the consortium computer and then are routed to the appropriate bank computer. The topol-
ogy is a star where the consortium computer mediates communication.

14.7 Management of Data Storage
There are several alternatives for data storage that you can use separately or in combination:
data structures, files, and databases. Different kinds of data stores provide trade-offs among
cost, access time, capacity, and reliability. For example, a personal computer application

14.7 Management of Data Storage 251

may use memory data structures and files. An accounting system may use a database to con-
nect subsystems.

Files are cheap, simple, and permanent. However, file operations are low level, and ap-
plications must include additional code to provide a suitable level of abstraction. File imple-
mentations vary for different computer systems, so portable applications must carefully
isolate file-system dependencies. Implementations for sequential files are mostly standard,
but commands and storage formats for random-access files and indexed files vary. Figure
14.3 characterizes the kind of data that belongs in files.

Databases, managed by database management systems (DBMSs), are another kind of
data store. Various types of DBMSs are available from vendors, including relational and OO.
DBMSs cache frequently accessed data in memory in order to achieve the best combination
of cost and performance from memory and disk storage. Databases make applications easier
to port to different hardware and operating system platforms, since the vendor ports the
DBMS code. One disadvantage of DBMSs is their complex interface—many database lan-
guages integrate awkwardly with programming languages. Figure 14.4 characterizes the
kinds of data that belong in a database.

OO-DBMSs have not become popular in the mass market. Consequently you should
consider them only for specialty applications that have a wide variety of data types or that

Figure 14.3 Data suitable for files. Files provide a low-tech solution to data
management and should not be overlooked.

■ Data with high volume and low information density (such as archival files or his-
torical records).

■ Modest quantities of data with simple structure.

■ Data that are accessed sequentially.

■ Data that can be fully read into memory.

Figure 14.4 Data suitable for databases. Databases provide heavyweight data manage-
ment and are used for most important business applications.

■ Data that require updates at fine levels of detail by multiple users.

■ Data that must be accessed by multiple application programs.

■ Data that require coordinated updates via transactions.

■ Large quantities of data that must be handled efficiently.

■ Data that are long-lived and highly valuable to an organization.

■ Data that must be secured against unauthorized and malicious access.

252 Chapter 14 / System Design

must access low-level data management primitives. These applications include engineering
applications, multimedia applications, knowledge bases, and electronic devices with embed-
ded software. For most applications that need a database, you should use a relational DBMS
(RDBMS). RDBMSs dominate the marketplace, and their features are sufficient for most ap-
plications. RDBMSs can also provide a very good implementation of an OO model, if they
are used properly—Chapter 19 presents the details.

ATM example. The typical bank computer would use a relational DBMS—they are
fast, readily available, and cost-effective for these kinds of financial applications.

The ATM might also use a database, but the paradigm for that is less obvious. Relational
and OO-DBMSs would both be possibilities. Many OO-DBMSs permit access to low-level
primitives, and a stripped-down database might enable mass production of ATM software at
a low cost. A stripped-down database might also simplify ATM operation. Alternatively,
RDBMSs are mature products with many features that might reduce development effort.

14.8 Handling Global Resources
The system designer must identify global resources and determine mechanisms for control-
ling access to them. There are several kinds of global resources.

■ Physical units. Examples include processors, tape drives, and communication satellites.

■ Space. Examples include disk space, a workstation screen, and the buttons on a mouse.

■ Logical names. Examples include object IDs, filenames, and class names.

■ Access to shared data. Databases are an example.
If the resource is a physical object, then it can control itself by establishing a protocol for
obtaining access. If the resource is a logical entity, such as an object ID or a database, then
there is danger of conflicting access in a shared environment. Independent tasks could simul-
taneously use the same object ID, for example.

You can avoid conflict by having a “guardian object” own each global resource and con-
trol access to it. One guardian object can control several resources. All access to the resource
must pass through the guardian object. Allocating each shared global resource to a single ob-
ject is a recognition that the resource has identity.

You can also partition a resource logically, assigning subsets to different guardian ob-
jects for independent control. For example, one strategy for object ID generation in a parallel
distributed environment is to preallocate a range of possible IDs to each processor in a net-
work; each processor allocates the IDs within its preallocated range without the need for glo-
bal synchronization.

In a time-critical application, the cost of passing all access to a resource through a guard-
ian object is sometimes too high, and clients must access the resource directly. In this case,
locks can be placed on subsets of the resource. A lock is a logical object associated with some
defined subset of a resource that gives the lock holder the right to access the resource direct-
ly. A guardian object must still exist to allocate the locks, but after one interaction with the
guardian to obtain a lock the user of the resource can access the resource directly. This ap-
proach is more dangerous, because each resource user must be trusted to behave itself in its

14.9 Choosing a Software Control Strategy 253

access to the resource. Do not use direct access to shared resources unless it is absolutely
necessary.

ATM example. Bank codes and account numbers are global resources. Bank codes
must be unique within the context of a consortium. Account codes must be unique within the
context of a bank.

14.9 Choosing a Software Control Strategy
The analysis model shows interactions as events between objects. Hardware control closely
matches the analysis model, but there are several ways for implementing control in software.
Although all subsystems need not use the same implementation, it is best to choose a single
control style for the whole system. There are two kinds of control flows in a software system:
external control and internal control.

External control concerns the flow of externally visible events among the objects in the
system. There are three kinds of control for external events: procedure-driven sequential,
event-driven sequential, and concurrent. The appropriate control style depends on the avail-
able resources (language, operating system) and on the kind of interactions in the application.

Internal control refers to the flow of control within a process. It exists only in the imple-
mentation and therefore is neither inherently concurrent nor sequential. The designer may
choose to decompose a process into several tasks for logical clarity or for performance (if
multiple processors are available). Unlike external events, internal transfers of control, such
as procedure calls or intertask calls, are under the direction of the program and can be struc-
tured for convenience. Three kinds of control flow are common: procedure calls, quasi-con-
current intertask calls, and concurrent intertask calls. Quasi-concurrent intertask calls, such
as coroutines or lightweight processes, are programming conveniences in which multiple ad-
dress spaces or call stacks exist but only a single thread of control can be active at once.

14.9.1 Procedure-driven Control
In a procedure-driven sequential system, control resides within the program code. Proce-
dures request external input and then wait for it; when input arrives, control resumes within
the procedure that made the call. The location of the program counter and the stack of pro-
cedure calls and local variables define the system state.

The major advantage of procedure-driven control is that it is easy to implement with
conventional languages; the disadvantage is that it requires the concurrency inherent in ob-
jects to be mapped into a sequential flow of control. The designer must convert events into
operations between objects. A typical operation corresponds to a pair of events: an output
event that performs output and requests input and an input event that delivers the new values.
This paradigm cannot easily accommodate asynchronous input, because the program must
explicitly request input. The procedure-driven paradigm is suitable only if the state model
shows a regular alternation of input and output events. Flexible user interfaces and control
systems are hard to build with this style.

Note that all major OO languages, such as C++ and Java, are procedural languages. Do
not be fooled by the OO phrase message passing. A message is a procedure call with a built-

254 Chapter 14 / System Design

in case statement that depends on the class of the target object. A major drawback of conven-
tional OO languages is that they fail to support the concurrency inherent in objects. Some
concurrent OO languages have been designed, but they are not yet widely used.

14.9.2 Event-driven Control
In an event-driven sequential system, control resides within a dispatcher or monitor that the
language, subsystem, or operating system provides. Developers attach application proce-
dures to events, and the dispatcher calls the procedures when the corresponding events occur
(“callback”). Procedure calls to the dispatcher send output or enable input but do not wait for
it in-line. All procedures return control to the dispatcher, rather than retaining control until
input arrives. Consequently, the program counter and stack cannot preserve state. Procedures
must use global variables to maintain state, or the dispatcher must maintain local state for
them. Event-driven control is more difficult to implement with standard languages than pro-
cedure-driven control but is often worth the extra effort.

Event-driven systems permit more flexible control than procedure-driven systems.
Event-driven systems simulate cooperating processes within a single multithreaded task; an
errant procedure can block the entire application, so you must be careful. Event-driven user
interface subsystems are particularly useful.

Use an event-driven system for external control in preference to a procedure-driven sys-
tem whenever possible, because the mapping from events to program constructs is simpler
and more powerful. Event-driven systems are also more modular and can handle error con-
ditions better than procedure-driven systems.

14.9.3 Concurrent Control
In a concurrent system, control resides concurrently in several independent objects, each a
separate task. Such a system implements events directly as one-way messages (not OO lan-
guage “messages”) between objects. A task can wait for input, but other tasks continue exe-
cution. The operating system resolves scheduling conflicts among tasks and usually supplies
a queuing mechanism, so that events are not lost if a task is executing when they arrive. If
there are multiple CPUs, then different tasks can actually execute concurrently.

14.9.4 Internal Control
During design, the developer expands operations on objects into lower-level operations on
the same or other objects. Internal object interactions are similar to external object interac-
tions, because you can use the same implementation mechanisms. However, there is an im-
portant difference—external interactions inherently involve waiting for events, because
objects are independent and cannot force other objects to respond; objects generate internal
operations as part of the implementation algorithm, so their form of response is predictable.
Consequently, you can think of most internal operations as procedure calls, in which the call-
er issues a request and waits for the response. There are algorithms for parallel processing,
but many computations are well represented sequentially and can easily be folded onto a sin-
gle thread of control.

14.10 Handling Boundary Conditions 255

14.9.5 Other Paradigms
We assume that the reader is primarily interested in procedural programming, but other par-
adigms are possible, such as rule-based systems, logic programming systems, and other
forms of nonprocedural programs. These constitute another control style in which explicit
control is replaced by declarative specification with implicit evaluation rules, possibly non-
deterministic or highly convoluted. Developers currently use such languages in limited ar-
eas, such as artificial intelligence and knowledge-based programming, but we expect their
use to grow in the future. Because these languages are totally different from procedural lan-
guages (including OO languages), the remainder of this book has little to say about them.

ATM example. Event-driven control is the appropriate paradigm for the ATM station.
The ATM services a single user, so there is little need for concurrent control. The ATM must
be responsive in its user interactions, and event-driven control is much better at that than pro-
cedure-driven control.

14.10 Handling Boundary Conditions
Although most of system design concerns steady-state behavior, you must consider bound-
ary conditions as well and address the following kinds of issues.

■ Initialization. The system must proceed from a quiescent initial state to a sustainable
steady state. The system must initialize constant data, parameters, global variables,
tasks, guardian objects, and possibly the class hierarchy itself. During initialization only
a subset of the functionality of the system is usually available. Initializing a system con-
taining concurrent tasks is most difficult, because independent objects must not get ei-
ther too far ahead or too far behind other independent objects during initialization.

■ Termination. Termination is usually simpler than initialization, because many internal
objects can simply be abandoned. The task must release any external resources that it
had reserved. In a concurrent system, one task must notify other tasks of its termination.

■ Failure. Failure is the unplanned termination of a system. Failure can arise from user
errors, from the exhaustion of system resources, or from an external breakdown. The
good system designer plans for orderly failure. Failure can also arise from bugs in the
system and is often detected as an “impossible” inconsistency. In a perfect design, such
errors would never happen, but the good designer plans for a graceful exit on fatal bugs
by leaving the remaining environment as clean as possible and recording or printing as
much information about the failure as possible before terminating.

14.11 Setting Trade-off Priorities
The system designer must set priorities that will be used to guide trade-offs for the rest of
design. These priorities reconcile desirable but incompatible goals. For example, a system
can often be made faster by using extra memory, but that increases power consumption and
costs more. Design trade-offs involve not only the software itself but also the process of de-
veloping it. Sometimes it is necessary to sacrifice complete functionality to get a piece of

256 Chapter 14 / System Design

software into use (or into the marketplace) earlier. Sometimes the problem statement speci-
fies priority, but often the burden falls on the designer to reconcile the incompatible desires
of the client and decide how to make trade-offs.

The system designer must determine the relative importance of the various criteria as a
guide to making design trade-offs. The system designer does not make all the trade-offs, but
establishes the priorities for making them. For example, the first video games ran on proces-
sors with limited memory. Conserving memory was the highest priority, followed by fast ex-
ecution. Designers had to use every programming trick in the book, at the expense of
maintainability, portability, and understandability. As another example, mathematical sub-
routine packages run on a wide range of machines. Well-conditioned numerical behavior is
crucial to such packages, as well as portability and understandability. These cannot be sac-
rificed for fast development.

Design trade-offs affect the entire character of a system. The success or failure of the
final product may depend on how well its goals are chosen. Even worse, if no system-wide
priorities are established, then the various parts of the system may optimize opposing goals
(“suboptimization”), resulting in a system that wastes resources. Even on small projects, pro-
grammers often forget the real goals and become obsessed with “efficiency” when it is really
unimportant.

Setting trade-off priorities is at best vague. You cannot expect numerical accuracy
(“speed 53%, memory 31%, portability 15%, cost 1%”). Priorities are rarely absolute; for
example, trading memory for speed does not mean that any increase in speed, no matter how
small, is worth any increase in memory, no matter how large. We cannot even give a full list
of design criteria that might be subject to trade-offs. Instead, the priorities are a statement of
design philosophy. Subsequent design will still require judgment and interpretation when
trade-offs are actually made.

ATM example. The ATM station is a mass-market product. Consequently, the manu-
facturing cost is a concern, and the resulting product must have a polished user interface. The
software must be robust and resilient in the face of failure. Development cost is a lesser con-
cern, since the cost can be amortized across numerous copies.

14.12 Common Architectural Styles
Several prototypical architectural styles are common in existing systems. Each of these is
well suited to a certain kind of system. If you have an application with similar characteristics,
you can save effort by using the corresponding architecture, or at least using it as a starting
point for your design. Some kinds of systems are listed below.

■ Batch transformation—a data transformation executed once on an entire input set.
[14.12.1]

■ Continuous transformation—a data transformation performed continuously as inputs
change. [14.12.2]

■ Interactive interface—a system dominated by external interactions. [14.12.3]

14.12 Common Architectural Styles 257

■ Dynamic simulation—a system that simulates evolving real-world objects. [14.12.4]

■ Real-time system—a system dominated by strict timing constraints. [14.12.5]

■ Transaction manager—a system concerned with storing and updating data, often in-
cluding concurrent access from different physical locations. [14.12.6]

This is not meant to be a complete list of known systems and architectures but a list of com-
mon forms. Some problems require a new kind of architecture, but most can use an existing
style or at least a variation on it. Many problems combine aspects of these architectures.

14.12.1 Batch Transformation
A batch transformation performs sequential computations. The application receives the in-
puts, and the goal is to compute an answer; there is no ongoing interaction with the outside
world. Examples include standard computational problems such as compilers, payroll pro-
cessing, VLSI automatic layout, stress analysis of a bridge, and many others. The state model
is trivial or nonexistent for batch transformation problems. The class model is important—
there are class models for the input, output, and the intervening stages. The interaction model
documents the computation and couples the class models. The most important aspect of a
batch transformation is to define a clean series of steps.

In the past, when we worked at GE R&D, one of our colleagues (Bill Premerlani) built
a compiler that received an ASCII file of graphical pictures as input and generated relational
database definition code as output. This work preceded the availability of commercial OO
modeling tools. Figure 14.5 shows the sequence of steps. The compiler had five class mod-
els—one for the input, one for the output, and three for intermediate representations.

The steps in designing a batch transformation are as follows.

■ Break the overall transformation into stages, with each stage performing one part of the
transformation.

■ Prepare class models for the input, output, and between each pair of successive stages.
Each stage knows only about the models on either side of it.

■ Expand each stage in turn until the operations are straightforward to implement.

■ Restructure the final pipeline for optimization.

Figure 14.5 Sequence of steps for a compiler. A batch transformation is a sequential
input-to-output transformation that does not interact with the outside world.

ASCII
File

Graphics
Model

Connectivity
Model

Class
Model

determine
connectivity

abstract to
OO model

generate
db code

parse
text

Database
Code

258 Chapter 14 / System Design

14.12.2 Continuous Transformation
A continuous transformation is a system in which the outputs actively depend on changing
inputs. Unlike a batch transformation that computes the outputs only once, a continuous
transformation updates outputs frequently (in theory continuously, although in practice they
are computed discretely at a fine time scale). Because of severe time constraints, the system
cannot recompute the entire set of outputs each time an input changes (otherwise the appli-
cation would be a batch transformation). Instead, the system must compute outputs incre-
mentally. Typical applications include signal processing, windowing systems, incremental
compilers, and process monitoring systems. The class, state, and interaction models have
similar purposes as with the batch transformation.

One way to implement a continuous transformation is with a pipeline of functions. The
pipeline propagates the effect of each input change. Developers can define intermediate and
redundant objects to improve the performance of the pipeline. Some high-performance sys-
tems, such as signal processing, need to synchronize values within the pipeline. Such sys-
tems perform operations at well-defined times and carefully balance the flow path of
operations so that values arrive at the right place at the right time without bottlenecks.

Figure 14.6 shows the example of a graphics application. The application first maps
geometric figures in user-defined coordinates to window coordinates. Then it clips the fig-
ures to fit the window bounds. Finally it offsets each figure by its window position to yield
its screen position.

The steps in designing a pipeline for a continuous transformation are as follows.

■ Break the overall transformation into stages, with each stage performing one part of the
transformation.

■ Define input, output, and intermediate models between each pair of successive stages,
as for the batch transformation.

■ Differentiate each operation to obtain incremental changes to each stage. That is, prop-
agate the incremental effects of each change to an input through the pipeline as a series
of incremental updates.

■ Add additional intermediate objects for optimization.

Figure 14.6 Sequence of steps for a graphics application. A continuous
transformation repeatedly propagates input changes to the output.

Graphic
Model

Viewspace
Model

Window
Model

Screen
Image

map clip offset

14.12 Common Architectural Styles 259

14.12.3 Interactive Interface
An interactive interface is a system that is dominated by interactions between the system and
external agents, such as humans or devices. The external agents are independent of the system,
so the system cannot control the agents, although it may solicit responses from them. An in-
teractive interface usually includes only part of an entire application, one that can often be han-
dled independently from computations. Examples of interactive systems include a forms-
based query interface, a workstation windowing system, and the control panel for a simulation.

The major concerns of an interactive interface are the communications protocol between
the system and the external agents, the syntax of possible interactions, the presentation of
output (the appearance on the screen, for instance), the flow of control within the system,
performance, and error handling. Interactive interfaces are dominated by the state model.
The class model represents interaction elements, such as input and output tokens and presen-
tation formats. The interaction model shows how the state diagrams interact.

The steps in designing an interactive interface are as follows.

■ Isolate interface classes from the application classes.

■ Use predefined classes to interact with external agents, if possible. For example, win-
dowing systems have extensive collections of predefined windows, menus, buttons,
forms, and other kinds of classes ready to be adapted to applications.

■ Use the state model as the structure of the program. Interactive interfaces are best im-
plemented using concurrent control (multitasking) or event-driven control (interrupts or
call-backs). Procedure-driven control (writing output and then waiting for input in-line)
is awkward for anything but rigid control sequences.

■ Isolate physical events from logical events. Often a logical event corresponds to multi-
ple physical events. For example, a graphical interface can take input from a form, from
a pop-up menu, from a function button on the keyboard, from a typed-in command se-
quence, or from an indirect command file.

■ Fully specify the application functions that are invoked by the interface. Make sure that
the information to implement them is present.

14.12.4 Dynamic Simulation
A dynamic simulation models or tracks real-world objects. Examples include molecular mo-
tion modeling, spacecraft trajectory computation, economic models, and video games. Sim-
ulations are perhaps the simplest system to design using an OO approach. The objects and
operations come directly from the application. There are two ways for implementing control:
an explicit controller external to the application objects can simulate a state machine, or ob-
jects can exchange messages among themselves, similar to the real-world situation.

Unlike an interactive system, the internal objects in a dynamic simulation do correspond
to real-world objects, so the class model is usually important and often complex. Like an in-
teractive system, the state and interaction models are also important.

The steps in designing a dynamic simulation are as follows.

260 Chapter 14 / System Design

■ Identify active real-world objects from the class model. These objects have attributes
that are periodically updated.

■ Identify discrete events. Discrete events correspond to discrete interactions with the ob-
ject, such as turning power on or applying the brakes. Discrete events can be implement-
ed as operations on the object.

■ Identify continuous dependencies. Real-world attributes may be dependent on other
real-world attributes or vary continuously with time, altitude, velocity, or steering wheel
position, for example. These attributes must be updated at periodic intervals, using nu-
merical approximation techniques to minimize quantization error.

■ Generally a simulation is driven by a timing loop at a fine time scale. Discrete events
between objects can often be exchanged as part of the timing loop.

Usually, the hardest problem with simulations is providing adequate performance. In an ide-
al world, an arbitrary number of parallel processors would execute the simulation in an exact
analogy to the real-world situation. In practice, the system designer must estimate the com-
putational cost of each update cycle and provide adequate resources. Discrete steps must ap-
proximate continuous processes.

14.12.5 Real-time System
A real-time system is an interactive system with tight time constraints on actions. Hard real-
time software involves critical applications that require a guaranteed response within the
time constraints. In contrast, soft real-time software must also be highly reliable, but can oc-
casionally violate time constraints. Typical real-time applications include process control,
data acquisition, communications devices, device control, and overload relays.

Real-time design is complex and involves issues such as interrupt handling, prioritiza-
tion of tasks, and coordinating multiple CPUs. Unfortunately, real-time systems are fre-
quently designed to operate close to their resource limits, so that severe, nonlogical
restructuring of the design is often needed to achieve the necessary performance. Such con-
tortions come at the cost of portability and maintainability. Real-time design is a specialized
topic that we do not cover in this book.

14.12.6 Transaction Manager
A transaction manager is a system whose main function is to store and retrieve data. Most
transaction managers deal with multiple users who read and write data at the same time.
They also must secure their data to protect it from unauthorized access as well as accidental
loss. Transaction managers are often built on top of a database management system
(DBMS)—this is a form of reuse. A DBMS has generic functionality for managing data that
you can reuse and need not implement. Examples of transaction managers include airline
reservations, inventory control, and order fulfillment.

The class model is dominant. The state model is occasionally important, especially for
specifying the evolution of an object as well as constraints and methods that apply at differ-
ent points in time. The interaction model is seldom significant.

14.13 Architecture of the ATM System 261

The steps in designing an information system are as follows.

■ Map the class model to database structures. See Chapter 19 for advice.

■ Determine the units of concurrency—that is, the resources that inherently or by specifi-
cation cannot be shared. Introduce new classes as needed.

■ Determine the unit of transaction—that is, the set of resources that must be accessed to-
gether during a transaction. A transaction succeeds or fails in its entirety.

■ Design concurrency control for transactions. Most database management systems pro-
vide this. The system may need to retry failed transactions several times before giving
up.

14.13 Architecture of the ATM System
The ATM system is a hybrid of an interactive interface and a transaction management sys-
tem. The entry stations are interactive interfaces—their purpose is to interact with a human
to gather information needed to formulate a transaction. Specifying the entry stations con-
sists of constructing a class model and a state model. The consortium and banks are primarily
a distributed transaction management system. Their purpose is to maintain data and allow it
to be updated over a distributed network under controlled conditions. Specifying the trans-
action management part of the system consists primarily of constructing a class model. Fig-
ure 14.2 shows the architecture of the ATM system.

The only permanent data stores are in the bank computers. A database ensures that data
is consistent and available for concurrent access. The ATM system processes each transac-
tion as a single batch operation, locking an account until the transaction is complete.

Concurrency arises because there are many ATM stations, each of which can be active
at any time. There can be only one transaction per ATM station, but each transaction requires
the assistance of the consortium computer and a bank computer. As Figure 14.2 shows, a
transaction cuts across physical units; the diagram shows each transaction as three connected
pieces. During design, each piece will become a separate implementation class. Although
there is only one transaction per ATM station, there may be many concurrent transactions per
consortium computer or bank computer. This does not pose any special problem, because the
database synchronizes access to any one account.

The consortium computer and bank computers will be event driven. Each of them
queues input events but processes them one at a time in the order received. The consortium
computer has minimal functionality. It simply forwards a message from an ATM station to a
bank computer and from a bank computer to an ATM station. The consortium computer must
be large enough to handle the transaction load. It may be acceptable to block an occasional
transaction, provided the user receives an appropriate message.

The bank computer is the only unit with any nontrivial procedures, but even those are
mostly just database updates. The only complexity might come from failure handling. The
bank computers must have capacity to handle the expected worst-case load, and they must
have enough disk storage to record all transactions.

262 Chapter 14 / System Design

The system must contain operations for adding and deleting ATM stations and bank com-
puters. Each physical unit must protect itself against the failure or disconnection from the rest
of the network. A database protects against loss of data. However, special attention must be
paid to failure during a transaction so that neither the user nor the bank loses money—this
may require a complicated acknowledgment protocol before committing the transaction. The
ATM station should display an appropriate message if the connection is down. The ATM must
handle other kinds of failure as well, such as exhaustion of cash or paper for receipts.

On a financial system such as this, fail-safe transactions are the highest priority. If there
is any doubt about the integrity of a transaction, then the ATM must abort the transaction with
an appropriate message to the user.

14.14 Chapter Summary
After analyzing an application and before beginning the class design, the system designer
must decide on the basic approach to the solution. The form of the high-level strategy for
building the system is called the system architecture.

Early in the planning for a new system you should estimate the performance. The inten-
tion is to have a rough idea of what to expect. You want to make sure that it is reasonable and
that there are no big surprises as development proceeds.

Next, prepare a reuse plan. Reuse is often cited as a benefit of OO technology, but it does
not happen automatically. There are two different aspects of reuse. Most developers should
focus on reusing existing models, libraries, frameworks, and patterns that are relevant to their
applications. In addition, elite developers can create artifacts for reuse by others.

A system can be divided into horizontal layers and vertical partitions. Each layer defines
a different abstract world that may differ completely from other layers. Each layer is a client
of services of the layer or layers below it and a server of services for the layer or layers above
it. Systems can also have partitions, each performing a general kind of service. Simple sys-
tem topologies, such as pipelines or stars, reduce complexity. Most systems are a mixture of
layers and partitions.

Inherently concurrent objects execute in parallel, and a single thread of control cannot
combine them; they require separate hardware devices or separate tasks in a processor. You
can combine nonconcurrent objects onto a single thread of control and implement them as a
single task.

A system must have enough processors and special-purpose hardware units to meet per-
formance goals. You should assign objects to hardware so that hardware use is balanced and
meets concurrency constraints. You can do this by estimating computational throughput and
allowing for queuing effects in configuring the hardware. You may want to use special-pur-
pose hardware for compute-intensive computations. One goal in partitioning a hardware net-
work is to minimize communications traffic between physically distinct modules.

Data stores can cleanly separate subsystems within an architecture and give application
data some degree of permanence. In general, memory data structures, files, and databases
can implement data stores. Files are simple, cheap, and permanent but may provide too low
a level of abstraction for an application and necessitate much additional programming. Da-

Bibliographic Notes 263

tabases provide a higher level of abstraction than files, but they too involve compromises in
terms of overhead costs and complexity.

The system designer must identify global resources and determine mechanisms for con-
trolling access to them. Some common mechanisms are: establishing a “guardian” object
that serializes all access, partitioning global resources into disjoint subsets which are man-
aged at a lower level, and locking.

Hardware control is inherently concurrent, but software control can be procedure driven,
event driven, and concurrent. Control for a procedure-driven system resides within the pro-
gram code; the location of the program counter and the stack of procedure calls and local
variables define the system state. In an event-driven system control resides within a dispatch-
er or monitor; application procedures are attached to events and are called by the dispatcher
when the corresponding events occur. In a concurrent system, control resides concurrently
in multiple independent objects. Event-driven and concurrent implementations are much
more flexible than procedure-driven control.

Most of system design is concerned with steady-state behavior, but boundary conditions
(initialization, termination, and failure) are also important.

An essential aspect of system architecture is making trade-offs between time and space,
hardware and software, simplicity and generality, and efficiency and maintainability. These
trade-offs depend on the goals of the application. The system designer must state the priori-
ties, so that trade-off decisions during subsequent design will be consistent.

Several kinds of systems are frequently encountered for which standard architectural
styles exist. These include two kinds of functional transformations: batch computation and
continuous transformation; three kinds of time-dependent systems: interactive interface, dy-
namic simulation, and real-time; and a database system: transaction manager. Most applica-
tion systems are usually a hybrid of several forms, possibly one for each major subsystem.
Other kinds of architecture are possible.

Bibliographic Notes
Simple software applications do not require much systems engineering, but complex systems
must be decomposed and the parts assigned to the appropriate specialists. [Clements-02] pre-
sents a process for evaluating software architectures. Essentially a group of stakeholders
meet and prioritize criteria that the architecture should satisfy; they quantify the criteria with

Figure 14.7 Key concepts for Chapter 14

architecture
client-server
concurrency
data management
event-driven system
framework

hardware requirements
inherent concurrency
layer
partition
peer-to-peer
reuse plan

service
subsystem
system design
system topology
thread of control
trade-off priorities

264 Chapter 14 / System Design

specific scenarios. Then they analyze the architecture to determine its compliance with the
high-priority scenarios.

Patterns are a popular topic in the literature and the subject of a number of books. There
are patterns for analysis [Coad-95], architecture [Buschmann-96] [Shaw-96], design [Gam-
ma-95], and implementation [Coplien-92]. There have also been a number of conferences
over the years that have focused on patterns, many of which have been sponsored by the Pat-
tern Languages of Programming [PLoP].

References
[Berlin-90] Lucy Berlin. When objects collide: Experiences with reusing multiple class hierarchies.

ECOOP/OOPSLA 1990 Proceedings, October 21–25, 1990, Ottawa, Ontario, Canada, 181–193.
[Buschmann-96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal. Pattern-Oriented Software Architecture: A System of Patterns. Chichester, UK: Wiley, 1996.
[Clements-02] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures.

Boston: Addison-Wesley, 2002.
[Coad-95] Peter Coad, David North, and Mark Mayfield. Object Models: Strategies, Patterns, and Ap-

plications. Upper Saddle River, NJ: Yourdon Press, 1995.
[Coplien-92] James O. Coplien. Advanced C++ Programming Styles and Idioms. Boston: Addison-

Wesley, 1992.
[Gamma-95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Ele-

ments of Reusable Object-Oriented Software. Boston: Addison-Wesley, 1995.
[Johnson-88] Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Ori-

ented Programming 1, 3 (June/July 1988), 22–35.
[Korson-92] Tim Korson and John D. McGregor. Technical criteria for the specification and evaluation

of object-oriented libraries. Software Engineering Journal (March 1992), 85–94.
[PLoP] jerry.cs.uiuc.edu/~plop
[Shaw-96] Mary Shaw and David Garlan. Software Architecture. Upper Saddle River, NJ: Prentice

Hall, 1996.

Exercises
14.1 (4) For each of the following systems, list the applicable style(s) of system architecture: batch

transformation, continuous transformation, interactive interface, dynamic simulation, real-time
system, and transaction manager. Explain your selection(s). For systems that fit more than one
style, group features of the system by style.
a. An electronic chess companion. The system consists of a chess board with a built-in com-

puter, lights, and membrane switches. The human player registers moves by pressing chess
pieces on the board, activating membrane switches mounted under each square. The com-
puter indicates moves through lights also mounted under each square. The human moves the
chess pieces for the computer. The computer should make only legal moves, should reject
attempted illegal human moves, and should try to win.

b. An airplane flight simulator for a video game system. The video game system has already
been implemented and consists of a computer with joystick and pushbutton inputs and an
output interface for a color television. Your job is to develop the software for the computer

Exercises 265

to display the view from the cockpit of an airplane. The joystick and pushbutton control the
airplane. The display should be based on a terrain description stored in memory. When your
program is complete, it will be sold on cartridges that plug into the video game system.

c. A floppy disk controller chip. The chip is going to use a microprogram for internal control.
You are concerned with the microprogram. The chip bridges the gap between a computer
and a floppy disk drive. Your portion of the control will be responsible for positioning the
read/write head and reading the data. Information on the diskette is organized into tracks and
sectors. Tracks are equally spaced circles of data on the diskette. Data within a track is or-
ganized into sectors. Your architecture will need to support the following operations: Find
track 0, find a given track, read a track, read a sector, write a track, and write a sector.

d. A sonar system. You are concerned with the portion of the system that detects undersea ob-
jects and computes how far away they are (range). This is done by transmitting an acoustic
pulse and analyzing any resulting echo. A technique called correlation is used to perform the
analysis, in which a time-delayed copy of the transmitted pulse is multiplied by the returned
echo and integrated for many values of time delay. If the result is large for a particular value
of time delay, it is an indication that there is an object with a range that corresponds to that
delay.

14.2 (3) Discuss how you would implement control for the applications described in the previous ex-
ercise.

14.3 (7) As the system architect for a new signal-processing product, you must decide how to store
data in real time. The product uses analog to digital convertors to sample an analog input signal
at the rate of 16,000 bytes/second (128,000 bits/second) for 10 seconds. Unfortunately, the
needed calculations are too time consuming to do as the samples are received, so you are going
to have to store the samples temporarily. The decision has already been made to limit the
amount of memory used for buffers to 64,000 bytes. The system has a floppy disk drive that
uses diskettes organized into 77 tracks for a total of 243,000 bytes of storage per diskette. It
takes 10 milliseconds to move the disk drive read/write head from one track to another and 83
milliseconds, on average, to find the beginning of a track once the head is positioned. The disk
drive will be positioned at the correct track prior to the start of data acquisition.

Two solutions to the problem are being considered: (1) Simply write the data samples on the
diskette as they become available. Why doesn’t this work? (2) Use memory as a buffer. Data
samples are placed in memory as they are acquired and written to the floppy disk as fast as pos-
sible on sequential tracks. Will this method work? Describe the method in more detail. How
much memory is needed for the buffer? How many tracks will be used on the diskette? Prepare
a few scenarios. Describe how the control might work.

14.4 (6) Consider a system for automating the drilling of holes in rectangular metal plates. The size
and location of holes are described interactively, using a graphical editor on a personal computer.
When the user is satisfied with a particular drawing, a peripheral device on the personal comput-
er punches a numerical control (N/C) tape. The tape can then be used on a variety of commer-
cially available N/C drilling machines that have moving drill heads and can change drill sizes.

You are concerned only with the editing of the drawings and the punching of the N/C tapes.
The tapes contain sequences of instructions to move the drill head, change drills, and drill. Since
it takes some time to move the drill between holes, and even longer to change drills, the system
should determine a reasonably efficient drilling sequence. It is not necessary to achieve the ab-
solute minimum time, but the system should not be grossly inefficient either. The drill head is
controlled independently in the x and y directions, so the time it takes to move between holes is

266 Chapter 14 / System Design

proportional to the larger of the required displacements in the x and the y direction. Prepare a
system architecture. How would you characterize the style of the system?

14.5 (5) Consider a system for interactive symbolic manipulation of polynomials. The basic idea is
to allow a mathematician to be more accurate and productive in developing formulas. The user
enters mathematical expressions and commands a line at a time. Expressions are ratios of poly-
nomials, which are constructed from constants and variables. Intermediate expressions may be
assigned to variables for later recall. Operations include addition, subtraction, multiplication,
division, and differentiation with respect to a variable.

Develop an architecture for the system. How would you characterize the style of the system?
How would you save work in progress to resume at a future time?

14.6 (4) An architecture for the system described in the previous exercise could involve the following
subsystems. Organize them into partitions and layers.
a. line syntax—scan a line of user input for tokens
b. line semantics—determine the meaning of a line of input
c. command processing—execute user input, error checking
d. construct expression—build an internal representation of an input expression
e. apply operation—carry out an operation on one or more expressions
f. save work—save the current context
g. load work—read in previously saved context
h. substitute—substitute one expression for a variable in another expression
i. rationalize—convert an expression to canonical form
j. evaluate—replace a variable in an expression with a constant and simplify the expression

14.7 (6) Consider a system for editing, saving, and printing class diagrams and generating relational
database schema. The system supports only a limited subset of the class modeling notation—
classes with attributes and binary associations with multiplicity. The system also includes edit-
ing functions such as create class, create association, cut, copy, and paste. The editor must un-
derstand the semantics of class diagrams. For example, when a class rectangle is moved, the
lines representing any attached associations are stretched. If a class is deleted, attached associ-
ations are also deleted. When the user is satisfied with the diagram, the system will generate the
corresponding relational database schema. Discuss the relative advantages of a single program
that performs all functions versus two programs, one that edits class diagrams and the other that
generates database schema from class diagrams.

14.8 (6) In the previous exercise, both physical and logical aspects of class diagrams must be con-
sidered. Physical aspects include location and sizes of lines, boxes, and text. Logical aspects in-
clude connectivity, classes, attributes, and associations. Discuss basing your architecture on the
following strategies. Consider the issues involved in editing and saving class diagrams as well
as generating database schema.
a. Model only the geometrical aspects of class diagrams. Treat logical aspects as derived.
b. Model both the geometrical and logical aspects of class diagrams.

14.9 (5) Another approach to the system described in Exercise 14.7 is to use a commercially avail-
able desktop publishing system for class diagram preparation instead of implementing your own
class diagram editor. The desktop editor can dump its output in an ASCII markup language. The
vendor supplies the grammar for the markup language.

Compare the two approaches. One approach is to build your own editor that understands the
semantics of class diagrams. The other is to use a commercially available desktop publishing

Exercises 267

system to edit class diagrams. What happens if new versions of the desktop publishing system
become available? Can you assume that the user prepares a diagram using a notation that your
database generator will understand? Is it worth the effort to implement functions such as cut,
copy, and paste that commercial systems already do so well? Who is going to help the users if
they run into problems? How is your system going to be supported and maintained? How soon
can you get the system completed?

14.10 (6) A common issue in many systems is how to store data so it is preserved in the event of power
loss or hardware failure. The ideal solution should be reliable, low-cost, small, fast, mainte-
nance free, and simple to incorporate into a system. Also, it should be immune to heat, dirt, and
humidity. Compromises in the available technology often influence the functional require-
ments. Compare each of the following solutions in terms of the ideal. Note that this is not an
exhaustive list of solutions.
a. Do not worry about it at all. Reset all data every time the system is turned on.
b. Never turn the power off if it can be helped. Use a special power supply, including backup

generators, if necessary.
c. Keep critical information on a magnetic disk drive. Periodically make full and/or incremen-

tal copies on magnetic tape.
d. Use a battery to maintain power to the system memory when the rest of the system is off. It

might even be possible to continue to provide limited functionality.
e. Use a special memory component, such as a magnetic bubble memory or an electronically

erasable programmable read-only memory.
f. Critical parameters are entered by the user through switches. Several types of switches are

commercially available for this use, including several toggle switches in a package that con-
nects the same way as an integrated circuit.

14.11 (7) For each of the following systems, select one or more of the strategies for data storage from
the previous exercise. In each case explain your reasoning and give an estimate (order of mag-
nitude) of how much memory, in bytes, is required:
a. Four-function pocket calculator. Main source of power is light. Performs basic arithmetic.
b. Electronic typewriter. Main source of power is either rechargeable batteries or alternating

current. Operates in two modes. In one mode, documents are typed a line at a time. Editing
may be performed on a line before it is typed. A liquid crystal display will display up to 16
characters for editing purposes. In the other mode, an entire document can be entered and
edited before printing. The typewriter should be able to save the working document for up
to a year with the main power off.

c. System clock for a personal computer. Main power is direct current supplied by the per-
sonal computer when it is on. Provides time and date information to the computer. Must
maintain the correct date and time for at least five years with the main power off.

d. Airline reservation system. Main power is alternating current. Used to reserve seats on air-
line flights. The system must be kept running at all times, at all costs. If, for some reason,
the system must be shut off, no data should be lost.

e. Digital control and thermal protection unit for a motor. The device provides thermal pro-
tection for motors over a wide range of horsepower ratings by calculating motor temperature
based on measured current and a simulation of motor heat dissipation. If the calculated motor
temperature exceeds safe limits, the motor is shut off and not allowed to be restarted until it
cools down. The main source of power is alternating current, which may be interrupted. The
system must provide protection as soon as it is turned on. Parameters needed for thermal

268 Chapter 14 / System Design

simulation are initially set at the factory, but provision must be made to change them, if nec-
essary, after the system is installed. Because the motor temperature is not measured directly,
it is necessary to continue to simulate the motor temperature for at least an hour after loss of
main power, in case power is restored before the motor cools.

14.12 (9) The design of file formats is a common task for system design. A BNF diagram is a conve-
nient way to express file formats. Figure E14.1 is a portion of a BNF diagram of a language for
describing classes and binary associations. Nonterminal symbols are shown in rectangles, and
terminal symbols are shown in circles or rectangles with rounded corners. With the exception
of character, the diagram defines all nonterminals. A diagram consists of classes and associa-
tions. A class has a unique name and many attributes. An association has an optional name and
two ends. An association end contains the name one of the classes being associated and multi-
plicity information. Textual information is described by quoted strings. A character is any
ASCII character except quote.

(

DIAGRAM

class

association

)

name

attribute

ASSOCIATION name end

NAME string

ATTRIBUTE

END

ZERO-ONE

ONE

MANY

"

character

(

(

(

(

(

)

)

)

)

)

end

name

string

"

diagram

class

association

name

attribute

end

string

Figure E14.1 BNF diagram for a language that describes classes and associations

CLASS

Exercises 269

a. Use the language in Figure E14.1 to describe the class diagram in Figure E14.2.
b. Discuss similarities and differences between data in storage and data in motion. For exam-

ple, the description you prepared in the previous part could be used to store a class diagram
in a file or to transmit a diagram from one location to another.

c. The language in this problem is used to describe the structure of class diagrams. Invent a lan-
guage to describe two-dimensional polygons. Use BNF to describe your language. Describe
a square and a triangle in your language.

14.13 (6) A common problem encountered in digital systems is data corruption due to noise or hard-
ware failure. One solution is to use a cyclic redundancy code (CRC). When data is stored or
transmitted, a code is computed from the data and appended to it. When data is retrieved or re-
ceived, the code is recomputed and compared with the value that was appended to the data. A
match is necessary but not sufficient to indicate that the data is correct. The probability that er-
rors will be detected depends on the sophistication of the function used to compute the CRC.
Some functions can be used for error correction as well as detection. Parity is an example of a
simple function that detects single-bit errors.

The function to compute a CRC can be implemented in hardware or software. The choice
for a given problem is a compromise involving speed, cost, flexibility, and complexity. The
hardware solution is fast, but may add unnecessary complexity and cost to the system hardware.
The software solution is cheaper and more flexible, but may not be fast enough and may make
the system software more complex.

For each of the following subsystems, decide whether or not a CRC is needed. If so, decide
whether to implement the CRC in hardware or software. Explain your choices.
a. floppy disk controller
b. system to transmit data files from one computer to another over telephone lines
c. memory board on a computer board in the space shuttle
d. magnetic tape drive
e. validation of an account number (a CRC can be used to distinguish between valid accounts

and those generated at random)

14.14 (6) Consider the scheduler software in Exercises 12.16–12.19 and 12.20–12.23.
With scheduling software it is also important to manage security—that is, the schedules that

each user is permitted to read and write.
An obvious way to maintain security is to maintain a list of access permissions for each com-

bination of user and schedule. However, this can become tedious to monitor and maintain.
Another solution is to allow permissions to be entered also for a group. A user can belong to

multiple groups; each group may have multiple users and lesser groups. The users may access
schedules for which they have permission or for which their groups have permission.

Extend the class models from Exercises 12.19 and 12.23 for this model of security. (Instruc-
tor’s note: You should give the students our answers to Exercises 12.19 and 12.23.)

Figure E14.2 Class diagram of polygons

Polygon
x

Point

y

1 *

270

15

Class Design

The analysis phase determines what the implementation must do, and the system design
phase determines the plan of attack. The purpose of class design is to complete the defini-
tions of the classes and associations and choose algorithms for operations.

This chapter shows how to take the analysis model and flesh it out to provide a basis for
implementation. The system design strategy guides your decisions, but during class design,
you must now resolve the details. There is no need to change from one model to another, as
the OO paradigm spans analysis, design, and implementation. The OO paradigm applies
equally well in describing the real-world specification and computer-based implementation.

15.1 Overview of Class Design
The analysis model describes the information that the system must contain and the high-level
operations that it must perform. You could prepare the design model in a completely different
manner, with entirely new classes. Most of the time, however, the simplest and best approach
is to carry the analysis classes directly into design. Class design then becomes a process of
adding detail and making fine decisions. Moreover, if you incorporate the analysis model
during design, it is easier to keep the analysis and design models consistent as they evolve.

During design, you choose among different ways to realize the analysis classes with an
eye toward minimizing execution time, memory, and other cost measures. In particular, you
must flesh out operations, choosing algorithms and breaking complex operations into sim-
pler operations. This decomposition is an iterative process that is repeated at successively
lower levels of abstraction. You may decide to introduce new classes to store intermediate
results during program execution and avoid recomputation. However, it is important to avoid
overoptimization, as ease of implementation, maintainability, and extensibility are also im-
portant concerns.

OO design is an iterative process. When you think that the class design is complete at
one level of abstraction, you should consider the next lower level of abstraction. For each

15.2 Bridging the Gap 271

level, you may need to add new operations, attributes, and classes. You may even need to re-
vise the relationships between objects (including changes to the inheritance hierarchy). Do
not be surprised if you find yourself iterating several times.

Class design involves the following steps.

■ Bridge the gap from high-level requirements to low-level services. [15.2]

■ Realize use cases with operations. [15.3]

■ Formulate an algorithm for each operation. [15.4]

■ Recurse downward to design operations that support higher-level operations. [15.5]

■ Refactor the model for a cleaner design. [15.6]

■ Optimize access paths to data. [15.7]

■ Reify behavior that must be manipulated. [15.8]

■ Adjust class structure to increase inheritance. [15.9]

■ Organize classes and associations. [15.10]

15.2 Bridging the Gap
Figure 15.1 summarizes the essence of design. There is a set of features that you want your
system to achieve. You have a set of available resources. Think of the distance between them
as a gap. Your job is to build a bridge across the gap. There are several sources of high-level
needs: use cases, application commands, and system operations and services. Resources in-
clude the operating system infrastructure, class libraries, and previous applications.

If you can directly construct each feature from the resources, you are done. For example,
a salesman can use a spreadsheet to construct a formula for his commission based on various
assumptions. The resources are a good match for the task.

But usually it’s not so easy. Suppose you want to build a Web-based ordering system.
Now you cannot readily build the system from a spreadsheet or a programming language,
because there is too big a gap between the features and the resources. You must invent some
intermediate elements, so that each element can be expressed in terms of a few elements at

?

Figure 15.1 The design gap. There is often a disconnect between the desired
features and the available resources.

Desired features

Available resources

The gap

272 Chapter 15 / Class Design

the next lower level (Figure 15.2). Furthermore, if the gap is large you will need to organize
the intermediate elements into multiple levels. The intermediate elements may be operations,
classes, or other UML constructs. Inventing good intermediate elements is the essence of
successful design.

Often the intermediate elements are not obvious. There can be many ways to decompose
a high-level operation. You must guess at a likely set of intermediate operations, then try to
build them. Be alert to intermediate operations that are similar but not identical. You can re-
duce the size of your code and increase its clarity by folding these similar operations into a
smaller number of common operations. These reworked operations may be less than ideal
for some of the higher-level operations. You may have to compromise, because a good design
optimizes an entire system and not each separate decision.

If the intermediate elements have already been built, you can just use them, but the prin-
ciple of bridging the gap is the same. You still have to find the elements in a framework or a
class library, select them, and fit them together. The problem isn’t making up individual el-
ements—anybody can do that well. The problem is to fit the entire system together cleanly.

Design is difficult because it is not a pure analytic task. You cannot merely study system
requirements and derive the ideal system. There are far too many choices of intermediate el-
ements to try them all, so you must apply heuristics. Design requires synthesis: You have to
invent new intermediate elements and try to fit them together. It is a creative task, like solving
puzzles, proving theorems, playing chess, building bridges, or writing symphonies. You
can’t expect to push a button or follow a recipe and automatically get a design. A develop-
ment process provides guidance, just as chess books and engineering handbooks and music
theory courses help, but eventually it takes an act of creativity to produce a design.

15.3 Realizing Use Cases
In Chapter 13 we added major operations to the class model. Now during class design we
elaborate the complex operations, most of which come from use cases.

Figure 15.2 Bridging the gap. You must invent intermediate elements to bridge
the gap between the desired features and the available resources.

Desired features

Intermediate elements

Available resources

15.3 Realizing Use Cases 273

Use cases define the required behavior, but they do not define its realization. That is the
purpose of design—to choose among the options and prepare for implementation. Each
choice has advantages and disadvantages. It is not sufficient merely to deliver the behavior,
although that is a primary goal. You must also consider the consequences of each choice on
performance, reliability, ease of future enhancement, and many other “ilities”. Design is the
process of realizing functionality while balancing conflicting needs.

Use cases define system-level behavior. During design you must invent new operations
and new objects that provide this behavior. Then, in turn, you must define each of these new
operations in terms of lower-level operations involving more objects. Eventually you can im-
plement operations directly in terms of existing operations. Inventing the right intermediate
operations is what we have called “bridging the gap.”

To start, list the responsibilities of a use case or operation. A responsibility is something
that an object knows or something it must do [Wirfs-Brock-90]. A responsibility is not a pre-
cise concept; it is meant to get the thought process going. For example, in an online theater
ticket system, making a reservation has the responsibility of finding unoccupied seats to the
desired show, marking the seats as occupied, obtaining payment from the customer, arrang-
ing delivery of the tickets, and crediting payment to the proper account. The theater system
itself must track which seats are occupied, know the prices of various seats, and so on.

Each operation will have various responsibilities. Some of these may be shared by other
operations, and others may be reused in the future. Group the responsibilities into clusters
and try to make each cluster coherent. That is, each cluster should consist of related respon-
sibilities that can be serviced by a single lower-level operation. Sometimes, if the responsi-
bilities are broad and independent, each responsibility is in its own cluster.

Now define an operation for each responsibility cluster. Define the operation so that is
not restricted to special circumstances, but don’t make it so general that it is unfocused. The
goal is to anticipate future uses of the new operation. If the operation can be used in several
different places in the current design, you probably don’t have to make it more general, ex-
cept to cover the existing uses.

Finally, assign the new lower-level operations to classes. If there is no good class to hold
an operation, you may need to invent a new lower-level class.

ATM example. One of the use cases from Chapter 13 is process transaction. Recall that
a Transaction is a set of Updates and that the logic varies according to withdrawal, deposit,
and transfer.

■ Withdrawal. A withdrawal involves a number of responsibilities: get amount from cus-
tomer, verify that amount is covered by the account balance, verify that amount is within
the bank’s policies, verify that ATM has sufficient cash, disburse funds, debit bank ac-
count, and post entry on the customer’s receipt. Note that some of these responsibilities
must be performed within the context of a database transaction. A database transaction
ensures all-or-nothing behavior—all operations within the scope of a transaction happen
or none of the operations happen. For example, the disbursement of funds and debiting
of the bank account must both happen together.

■ Deposit. A deposit involves several responsibilities: get amount from customer, accept
funds envelope from customer, time-stamp envelope, credit bank account, and post en-

274 Chapter 15 / Class Design

try on the customer’s receipt. Some of these responsibilities must also be performed
within the context of a database transaction.

■ Transfer. Responsibilities include: get source account, get target account, get amount,
verify that source account covers amount, verify that the amount is within the bank’s
policies, debit the source account, credit the target account, and post an entry on the cus-
tomer’s receipt. Once again some of the responsibilities must happen within a database
transaction.

You can see that there is some overlap between the operations. For example, withdrawal, de-
posit, and transfer all request the amount from the customer. Transfer and withdrawal both
verify that the source account has sufficient funds. A reasonable design would coalesce this
behavior and build it once.

15.4 Designing Algorithms
Now formulate an algorithm for each operation. The analysis specification tells what the op-
eration does for its clients, but the algorithm shows how it is done. Perform the following
steps to design algorithms.

■ Choose algorithms that minimize the cost of implementing operations.

■ Select data structures appropriate to the algorithms.

■ Define new internal classes and operations as necessary.

■ Assign operations to appropriate classes.

15.4.1 Choosing Algorithms
Many operations are straightforward because they simply traverse the class model to retrieve
or change attributes or links. The OCL (see Chapter 3) provides a convenient notation for
expressing such traversals.

However, a class-model traversal cannot fully express some operations. We often use
pseudocode to handle these situations. Pseudocode helps us think about the algorithm while
deferring programming details. For example, many applications involve graphs and the use
of transitive closure. (The transitive closure is the set of nodes that can be reached, directly
or indirectly, from some starting node.) Figure 15.3 shows a simple model for an undirected
graph and pseudocode for computing the transitive closure.

When efficiency is not an issue, you should use simple algorithms. In practice, only a
few operations tend to be application bottlenecks. Typically, 20% of the operations consume
80% of execution time. For the remaining operations, it is better to have a design that is sim-
ple, understandable, and easy to program than to wring out minor improvements. You can
focus your creativity on the algorithms for the operations that are a bottleneck. For example,
scanning a set of size n for a value requires an average of n/2 operations, whereas a binary
search takes log n operations and a hash search takes less than 2 operations on average. Here
are some considerations for choosing among alternative algorithms.

15.4 Designing Algorithms 275

■ Computational complexity. How does processor time increase as a function of data
structure size? Don’t worry about small factors in efficiency. For example, an extra level
of indirection is insignificant if it improves clarity. It is essential, however, to think about
algorithm complexity—that is, how the execution time (or memory) grows with the
number of input values: constant time, linear, quadratic, or exponential. For example, the
infamous “bubble sort” algorithm requires time proportional to n2, where n is the size of
the list, while most alternative sort algorithms require time proportional to n log n.

■ Ease of implementation and understandability. It is worth giving up some perfor-
mance on noncritical operations if you can use a simple algorithm. For precisely this
reason you should try to carry the analysis class model forward to design and make min-
imal adjustments. Unless you have a performance problem, it is not worth doing a lot of
optimizing, because you make a model harder to understand and more difficult to pro-
gram against.

■ Flexibility. You will find yourself extending most programs, sooner or later. A highly
optimized algorithm often sacrifices ease of change. One possibility is to provide two
versions of critical operations—a simple but inefficient algorithm that you can imple-
ment quickly and use to validate the system, and a complicated but efficient algorithm,
that you can check against the simple one.

ATM example. Interactions between the consortium computer and bank computers could
be complex. One issue is distributed computing; the consortium computer is at one location
and the bank computers are at many other locations. Also it would be important for the con-
sortium computer to be scalable; the ATM system cannot afford the cost of an oversized con-
sortium computer, but the consortium computer must be able to service new banks as they

Figure 15.3 Pseudocode example. You can express difficult algorithms with pseudocode.
The top method initiates computation and the bottom method recurses for
nodes that are one edge away and have not been visited before.

Node::computeTransitiveClosure () returns NodeSet
nodes:= createEmptySet;
return self.TCloop (nodes);

Node::TCloop (nodes:NodeSet) returns NodeSet
add self to nodes;
for each edge in self.Edge

for each node in edge.Node
/* 2 nodes are associated with an edge */
if node is not in nodes then node.TCloop(nodes);
end if

end for each node
end for each edge

2 *Node Edge

276 Chapter 15 / Class Design

join the network. A third concern is that the bank systems are separate applications from the
ATM system; there would be the inevitable conversions and compromises in coordinating
the various data formats. All these issues make the choice of algorithms for coordinating the
consortium and the banks important.

Many banks have sophisticated systems for reducing losses. Then a decision to approve
or reject an ATM withdrawal may not be a simple formula, but could involve elaborate logic.
The decision may depend on the customer’s credit rating, past activity patterns, and account
balance relative to the withdrawal amount. Good algorithms could reduce bank losses, much
in excess of the development cost.

15.4.2 Choosing Data Structures
Algorithms require data structures on which to work. During analysis, you focused on the
logical structure of system information, but during design you must devise data structures
that will permit efficient algorithms. The data structures do not add information to the anal-
ysis model, but they organize it in a form convenient for algorithms. Many of these data
structures are instances of container classes. Such data structures include arrays, lists,
queues, stacks, sets, bags, dictionaries, trees, and many variations, such as priority queues
and binary trees. Most OO languages provide an assortment of generic data structures as part
of their predefined class libraries.

ATM example. A Transaction consists of a set of Updates. We should revise the class
model—there is a sequence of updates that occurs within a transaction. Hence a Transaction
should have an ordered list of Updates. By thinking about algorithms and working through
the logic of an application, you can find flaws and improve a class model.

15.4.3 Defining Internal Classes and Operations
You may need to invent new, low-level operations during the decomposition of high-level op-
erations. Some of the low-level operations may be in the “shopping list” of operations (see
Chapter 13) from analysis. But usually you will need to add new internal operations as you
expand high-level operations.

The expansion of algorithms may lead you to create new classes of objects to hold in-
termediate results. Typically, the client’s description of the problem will not mention these
low-level classes because they are artifacts.

ATM example. The design details for the process transaction use case involves a cus-
tomer receipt. The ATM should post each update to a receipt so that customers can remember
what they did. The analysis class model did not include a Receipt class, so we will add it.

15.4.4 Assigning Operations to Classes
When a class is meaningful in the real world, the operations on it are usually clear. During
design, however, you introduce internal classes that do not correspond to real-world objects
but merely some aspect of them. Since the internal classes are invented, they are somewhat
arbitrary, and their boundaries are more a matter of convenience than of logical necessity.

How do you decide what class owns an operation? When only one object is involved in
the operation, the decision is easy: Ask (or tell) that object to perform the operation. The de-

15.4 Designing Algorithms 277

cision is more difficult when more than one object is involved in an operation. You must de-
cide which object plays the lead role in the operation. Ask yourself the following questions.

■ Receiver of action. Is one object acted on while the other object performs the action?
In general, it is best to associate the operation with the target of the operation, rather than
the initiator.

■ Query vs. update. Is one object modified by the operation, while other objects are only
queried for their information? The object that is changed is the target of the operation.

■ Focal class. Looking at the classes and associations that are involved in the operation,
which class is the most centrally located in this subnetwork of the class model? If the
classes and associations form a star about a single central class, it is the operation’s target.

■ Analogy to real world. If the objects were not software, but were the real-world ob-
jects, what real object would you push, move, activate, or otherwise manipulate to ini-
tiate the operation?

Sometimes it is difficult to assign an operation to a class within a generalization hierarchy.
It is common to move operations up and down in the hierarchy during design, as their scope
is adjusted. Furthermore, the definitions of the subclasses within the hierarchy are often fluid
and can be adjusted during design.

ATM example. Let us consider the internal operations for process transaction from
Section 15.3 and assign a class for each of them.

■ Customer.getAmount()—get amount from customer. Eventually amount will be stored
as an attribute of Update objects, but we presume that these objects are not available
when the customer specifies the amount and are created after some checking. We will
store the amount for a customer in a temporary attribute.

■ Account.verifyAmount(amount)—verify that amount is covered by the account balance.

■ Bank.verifyAmount(amount)—verify that amount is within the bank’s policies.

■ ATM.verifyAmount(amount)—verify that the ATM has sufficient cash. Note that there
are several verifyAmount methods, each belonging to a different class. This is a conve-
nient way to organize the various ways of checking an amount. These methods should
all have the same signature.

■ ATM.disburseFunds(amount)—disburse funds.

■ Account.debit(amount)—debit bank account.

■ Receipt.postTransaction()—add a transaction to a customer’s receipt. It might seem that
we should relate Customer to Receipt, but the model will be more precise if we instead
relate CashCard to Receipt. By traversing the model, a CashCard does imply one
Customer, but now we can also track the precise CardAuthorization and CashCard used
for the ATM session.

■ ATM.receiveFunds(amount)—accept funds envelope from the customer. The proper
class for this method is not obvious. We could assign it to ATM or to Customer. We de-
cided to assign it to ATM for symmetry with ATM.disburseFunds. We will consider
time-stamping the envelope to be part of receiving the funds.

278 Chapter 15 / Class Design

■ Account.credit(amount)—credit bank account.

■ Customer.getAccount()—handles both get source account and get target account. There
is an implicit constraint that this method must satisfy. A customer owns many accounts
and the customer can provide only an account that he or she owns. A user interface
would typically satisfy this constraint by providing a list of the accounts that a customer
owns and letting the customer pick one of them.

Figure 15.4 elaborates the ATM domain class model from Chapter 13 with our progress.

Figure 15.4 ATM domain class model with some class design elaborations

EnteredOn

EnteredBy

AuthorizedBy

Employs

Issues

Code
station

Transaction

dateTime

Cashier
Transaction

Remote
Transaction

EntryStation

amount

Update

kind

1

*

1

*

cashOnHand

ATM CashierStation

Cashier

name

*

1

*

1

Code
station

accountCode

Code
employee

Code
card

Bank

name

1

1

1

*

Consortium

1 0..1

name

Customer

address

Account

balance
creditLimit
type

* 1

1

*

1*

CardAuthorization

password
limit

0..1

0..1

1 1

0..1

0..1

0..1

*

*
1

{ordered}

getAmount
close

verifyPassword

verifyCashCard
verifyAmount

verifyAmount

disburseFunds

debit

getAccount

*

0..1

CashCard

serialNumber

Receipt

postTransaction

1

*

tempAmount

receiveFunds

verifyBankCode

createSavingsAccount
createCheckingAccount
createCashCard
verifyAmount

bankCode

credit

addAccount
removeAccount
close

15.5 Recursing Downward 279

15.5 Recursing Downward
We recommend that you organize operations as layers—operations in higher layers invoke
operations in lower layers. The design process generally works top down—you start with the
higher-level operations and proceed to define lower-level operations. You can also work bot-
tom up, but you risk designing operations that are never needed. Downward recursion pro-
ceeds in two main ways: by functionality and by mechanism.

15.5.1 Functionality Layers
Functionality recursion means that you take the required high-level functionality and break
it into lesser operations. This is a natural way to proceed, but you can get into trouble if you
perform the decomposition arbitrarily and the pieces do not relate well to classes. To avoid
this, make sure you combine similar operations and attach the operations to classes.

The other danger of functionality recursion is that it may depend too much on the exact
statement of top-level functionality. Then a small change can radically change the decompo-
sition. To guard against this, you must attach operations to classes and broaden them for re-
use. An operation should be coherent, meaningful, and not an arbitrary portion of code.
Operations that are carefully attached to classes have much less risk than free-floating func-
tionality. This approach to functionality makes sense, because you must implement the re-
sponsibilities of the system somewhere.

ATM example. In Section 15.3 we took a use case and decomposed it into responsibil-
ities. In Section 15.4.4 we assigned the resulting operations to classes. We are satisfied with
our operations, but would have had to rework them if they did not fit against the class model.

15.5.2 Mechanism Layers
Mechanism recursion means that you build the system out of layers of needed support mech-
anisms. In providing functionality, you need various mechanisms to store information, se-
quence control, coordinate objects, transmit information, perform computations, and
provide other kinds of computing infrastructure. These mechanisms don’t show up explicitly
in the high-level responsibilities of a system, but they are needed to make it all work. For
example, in constructing a tall building you need an infrastructure of support girders, utility
conduits, and building control devices. These are not directly part of the users’ needs for
space, but they are needed to enable the chosen architecture. Similarly, computing architec-
ture includes various kinds of general-purpose mechanisms, such as data structures, algo-
rithms, and control patterns. These are not particular to a single application domain, but they
may be associated with a particular software architectural style.

For example, a subject-view pattern associates many views with each subject object. A
subject object contains the semantic information about some entity, and a view presents it to
the user in a particular format. There are mechanisms to update subjects and broadcast the
changes to all the views, and to update a view and propagate its changes into the subject. This
infrastructure can serve many kinds of applications. However, as a piece of software, it is
built in terms of other, more primitive mechanisms than itself.

280 Chapter 15 / Class Design

Any large system mixes functionality layers and mechanism layers. A system designed
entirely with functionality recursion is brittle and supersensitive to changes in requirements.
A system designed entirely with mechanisms doesn’t actually do anything useful. Part of the
design process is to select the appropriate mix of the two approaches.

ATM example. We have already noted some important mechanisms. There is a need for
both communications and distribution infrastructure. The bank and ATM computers are at
different locations and must quickly and efficiently communicate with each other. Further-
more, the architecture must be resistant to errors and communications outages.

15.6 Refactoring
The initial design of a set of operations will contain inconsistencies, redundancies, and inef-
ficiencies. This is natural, because it is impossible to get a large design correct in one pass.
You must make decisions that are ultimately linked to other decisions. No matter in which
order you make the decisions, some of them will be suboptimal.

Furthermore, as a design evolves, it also degrades. It is good to use an operation or class
for multiple purposes. But it is inevitable that an operation or class conceived for one purpose
will not fully fit additional purposes. You must revisit your design and rework the classes and
operations so that they cleanly satisfy all their uses and are conceptually sound. Otherwise
your application will become brittle, difficult to understand, and awkward to extend and
maintain, and eventually it will collapse under its own weight.

Martin Fowler [Fowler-99] defines refactoring as changes to the internal structure of
software to improve its design without altering its external functionality. It means that you
step back, look across many different classes and operations, and reorganize them to support
further development better. Refactoring may seem like a waste of time, but it is an essential
part of any good engineering process. It is not enough to deliver functionality. If you expect
to maintain a design, then you must keep the design clean, modular, and understandable. Re-
factoring keeps a design viable for continued development.

ATM example. In Section 15.4.4 we considered operations of the process transaction
use case. An obvious revision is to combine Account.credit(amount) and Account.deb-
it(amount) into a single operation Account.post(amount). We would expect more opportuni-
ties for refactoring as we flesh out operations for additional use cases.

15.7 Design Optimization
A good way to design a system is to first get the logic correct and then optimize it. That is
because it is difficult to optimize a design at the same time as you create it. Furthermore, a
premature concern with efficiency often leads to a contorted and inferior design. Once you
have the logic in place, you can run the application, measure its performance, and then fine
tune it. Often a small part of the code is responsible for most of the time or space costs. It is
better to focus optimization on the critical areas, than to spread effort evenly.

15.7 Design Optimization 281

This does not mean that you should totally ignore efficiency during initial design. Some
approaches are so obviously inefficient that you would not consider them. If there is a clean,
simple, efficient way to design something, use it. But don’t do something in a complicated,
unnatural way just because of fears about performance. First get a clean design working.
Then you can optimize it. You might find that your concern was misplaced.

The design model builds on the analysis model. The analysis model captures the logic
of a system, while the design model adds development details. You can optimize the ineffi-
cient but semantically correct analysis model to improve performance, but an optimized sys-
tem is more obscure and less likely to be reusable. You must strike an appropriate balance
between efficiency and clarity. Design optimization involves the following tasks.

■ Provide efficient access paths.

■ Rearrange the computation for greater efficiency.

■ Save intermediate results to avoid recomputation.

15.7.1 Adding Redundant Associations for Efficient Access
Redundant associations are undesirable during analysis because they do not add information.
Design, however, has different motivations and focuses on the viability of a model for im-
plementation. Can the associations be rearranged to optimize critical aspects of the system?
Should new associations be added? Can existing associations be omitted? The associations
from analysis may not form the most efficient network, when you consider access patterns
and relative frequencies.

For an example, consider the design of a company’s employee skills database. Figure
15.5 shows a portion of the analysis class model. The operation Company.findSkill() returns
a set of persons in the company with a given skill. For example, an application might need
all the employees who speak Japanese.

For this example, suppose that the company has 1000 employees, each of whom has 10
skills on average. A simple nested loop would traverse Employs 1000 times and HasSkill
10,000 times. If only 5 employees actually speak Japanese, then the test-to-hit ratio is 2000.

Several improvements are possible. First, you could use a hashed set for HasSkill rather
than an unordered list. An operation can perform hashing in constant time, so the cost of test-
ing whether a person speaks Japanese is constant, provided that there is a unique Skill object
for speaks Japanese. This rearrangement reduces the number of tests from 10,000 to 1000—
one per employee.

In cases where the number of hits from a query is low because few objects satisfy the
test, an index can improve access to frequently retrieved objects. For example, Figure 15.6

Employs

Figure 15.5 Analysis model for person skills. Derived data is undesirable
during analysis because it does not add information.

Person Skill
HasSkill

Company
1 * * *

282 Chapter 15 / Class Design

adds the derived association SpeaksLanguage from Company to Person, where the qualifier
is the language spoken. The derived association does not add any information but permits
fast access to employees who speak a particular language. Indexes incur a cost: They require
additional memory and must be updated whenever the base associations are updated. As the
designer, you decide when it is worthwhile to build indexes. Note that if most queries return
a high fraction of the objects in the search path, then an index really does not save much.

Start by examining each operation and see what associations it must traverse to obtain
its information. Next, for each operation, note the following.

■ Frequency of access. How often is the operation called?

■ Fan-out. What is the “fan-out” along a path through the model? Estimate the average
count of each “many” association encountered along the path. Multiply the individual
fan-outs to obtain the fan-out of the entire path, which represents the number of accesses
on the last class in the path. “One” links do not increase the fan-out, although they in-
crease the cost of each operation slightly; don’t worry about such small effects.

■ Selectivity. What is the fraction of “hits” on the final class—that is, objects that meet
selection criteria and are operated on? If the traversal rejects most objects, then a simple
nested loop may be inefficient at finding target objects.

You should provide indexes for frequent operations with a low hit ratio, because such oper-
ations are inefficient when using nested loops to traverse a path in the network.

ATM example. In our discussion of the postTransaction() operation in Section 15.4.4
we decided to relate Receipt to CashCard for precision. However, we may still need to quick-
ly find the customer for a receipt. Given that the tracing from CashCard to CardAuthoriza-
tion to Customer has no fan-out, traversal will be fast and a derived association is not needed.

In the United States, banks must report cash deposits and withdrawals greater than
$10,000 to the government. We could traverse from Bank to Account, then from Account to
Update, and then filter out the Updates that are cash and greater than $10,000. Note that we
would need to elaborate the class model; we could extend kind to distinguish between cash
and noncash. A derived association from Bank to Update would speed this operation.

15.7.2 Rearranging Execution Order for Efficiency
After adjusting the structure of the class model to optimize frequent traversals, the next thing
to optimize is the algorithm itself. One key to algorithm optimization is to eliminate dead

language

/ SpeaksLanguage

Figure 15.6 Design model for person skills. Derived data is acceptable during
design for operations that are significant performance bottlenecks.

*
*

Employs
Person Skill

HasSkill
Company

1 * * *

15.7 Design Optimization 283

paths as early as possible. For example, suppose an application must find all employees who
speak both Japanese and French. Suppose 5 employees speak Japanese and 100 speak
French; it is better to test and find the Japanese speakers first, then test if they speak French.
In general, it pays to narrow the search as soon as possible. Sometimes you must invert the
execution order of a loop from the original specification.

ATM example. U.S. law requires that a bank not only report individual updates that are
greater than $10,000 but also report “suspicious” activities that appear to be an attempt to evade
the limit. For example, two withdrawals of $5000 in quick succession would be suspicious.

Suppose we not only check for large cash deposits and withdrawals, but also treat
commercial and individual customers differently. We might trust individuals less and have
a lower threshold for suspicious activities. We could get all suspicious Updates from a de-
rived association (“suspicious” replaces “greater than $10,000” in the derived association
in Section 15.7.1) and then traverse back to Account to distinguish between commercial
and individual accounts. Special logic could then study the updates and determine the ones
to report.

Alternately we could maintain two different derived associations between Bank and Up-
date, one for individuals and the other for businesses. Then would not need to traverse back
to Account to differentiate them.

15.7.3 Saving Derived Values to Avoid Recomputation
Sometimes it is helpful to define new classes to cache derived attributes and avoid recompu-
tation. You must update the cache if any of the objects on which it depends are changed.
There are three ways to handle updates.

■ Explicit update. The designer inserts code into the update operation of source attributes
to explicitly update the derived attributes that depend on it.

■ Periodic recomputation. Applications often update values in bunches. You could re-
compute all the derived attributes periodically, instead of after each source change. Pe-
riodic recomputation is simpler than explicit update and less prone to bugs. On the other
hand, if the data changes incrementally a few objects at a time, full recomputation can
be inefficient.

■ Active values. An active value is a value that is automatically kept consistent with its
source values. A special registration mechanism records the dependency of derived at-
tributes on source attributes. The mechanism monitors the values of source attributes
and updates the values of the derived attributes whenever there is a change. Some pro-
gramming languages provide active values.

ATM example. For convenience, we might add the class SuspiciousUpdateGroup. A Suspi-
ciousUpdateGroup could have many Updates and an Update could belong to many Suspi-
ciousUpdateGroups. This new class would store derived attributes to facilitate the study of
suspicious behavior. In addition it would provide a convenient place to store comments and
observations. A SuspiciousUpdateGroup would be a set of Update records that were suspect-
ed of trying to circumvent the $10,000 reporting limit.

284 Chapter 15 / Class Design

15.8 Reification of Behavior
Behavior written in code is rigid. You can execute it, but cannot manipulate it at run time.
Most of the time this is fine, because all you want to do is execute it. But if you need to store,
pass, or modify the behavior at run time, you should reify it.

Reification is the promotion of something that is not an object into an object. Behavior
usually meets this description. It isn’t usually something that you would normally manipu-
late. If you reify behavior, you can store it, pass it to other operations, and transform it. Re-
ification adds complexity but can dramatically expand the flexibility of a system.

You reify behavior by encoding it into an object and decoding it when it is run. The re-
sulting run-time cost may or may not be significant. If the encoding invokes high-level pro-
cedures, the cost is only a few indirections. If the entire behavior is encoded in a different
language, however, it must be interpreted, which can be an order of magnitude slower than
direct execution of code. If the encoded behavior constitutes a small part of the run-time ex-
ecution time, the performance overhead may not matter.

Exercise 4.16 in Chapter 4 illustrates reification. In one sense you can regard the tasks
of a recipe as operations; in another sense they could be data in a class model.

[Gamma-95] lists a number of behavioral patterns that reify behavior. These include en-
coding a state machine as a table with a run-time interpreter (State), encoding a sequence of
requests as parameterized command objects (Command), and parameterizing a procedure in
terms of an operation that it uses (Strategy). These techniques have been around for a long
time, but the language of patterns is convenient for describing them and weighing their ben-
efits and costs. For example, the Strategy pattern was used in Fortran days for purposes such
as passing a function to a mathematical integration routine. However, in Fortran there was
no way to ensure correct matching of passed functions, and errors were easy to make. By
encoding the passed function as an instance of a function class, you get extensibility via
polymorphism, yet can enforce the signatures of an entire family of functions. In this case,
OO technology permits a cleaner solution than previous techniques.

ATM example. We have already used reification in the case study. In one sense a trans-
action is an action—withdrawing, depositing, and transferring funds. We promoted transac-
tion to a class so that we could describe it. The functionality that we need is routine and can
readily be obtained by traversing the class model.

15.9 Adjustment of Inheritance
As class design progresses, you can often adjust the definitions of classes and operations to
increase inheritance by performing the following steps.

■ Rearrange classes and operations to increase inheritance.

■ Abstract common behavior out of groups of classes.

■ Use delegation to share behavior when inheritance is semantically invalid.

15.9 Adjustment of Inheritance 285

15.9.1 Rearranging Classes and Operations
Sometimes several classes define the same operation and can easily inherit it from a common
ancestor, but more often operations in different classes are similar but not identical. By ad-
justing the definitions of the operations, you may be able to cover them with a single inher-
ited operation.

Before using inheritance, the operations must match. All operations must have the same
signature—that is, the same number and types of arguments and results. In addition, the op-
erations must have the same semantics. You can use the following kinds of adjustments to
increase the chance of inheritance.

■ Operations with optional arguments. You may be able to align signatures by adding
optional arguments that can be ignored. For example, a draw operation on a monochro-
matic display does not need a color parameter, but it can accept the parameter and ignore
it for consistency with color displays.

■ Operations that are special cases. Some operations may have fewer arguments be-
cause they are special cases of more general operations. Implement the special opera-
tions by calling the general operation with appropriate parameter values. For example,
appending an element to a list is a special case of inserting an element into list; the insert
point simply follows the last element.

■ Inconsistent names. Similar attributes in different classes may have different names.
Give the attributes the same name and move them to a common ancestor class. Then op-
erations that access the attributes will match better. Also watch for similar operations
with different names. A consistent naming strategy is important.

■ Irrelevant operations. Several classes in a group may define an operation, but some
others may not. Define the operation on the common ancestor class and declare it as a
no-op on the classes that don’t care about it. For example, rotation is meaningful for
geometric figures, but is unimportant for circles.

ATM example. An ATM can post remote transactions on a receipt. It would seem that we
should also be able to issue a receipt for cashier transactions. However, a receipt for a Re-
moteTransaction involves a CashCard, while a receipt for a CashierTransaction directly in-
volves a Customer. Furthermore, the cashier software is apart from the ATM software. We
will have two different kinds of receipts, a RemoteReceipt and a CashierReceipt.

15.9.2 Abstracting Out Common Behavior
You will not recognize all opportunities for inheritance during analysis, so it is worthwhile
to reexamine the class model looking for commonality. In addition, you will be adding new
classes and operations during design. If two classes seem to repeat several operations and
attributes, it is possible that the two classes are really specializations of the same thing, when
viewed at a higher level of abstraction.

When there is common behavior, you can create a common superclass for the shared
features, leaving only the specialized features in the subclasses. This transformation of the
class model is called abstracting out a common superclass or common behavior. We advise

286 Chapter 15 / Class Design

you to make only abstract superclasses, meaning that there are no direct instances of it, but
the behavior it defines belongs to all instances of its subclasses. (You can always do this by
adding an Other subclass.) For example, a draw() operation of a geometric figure on a dis-
play screen requires setup and rendering of the geometry. The rendering varies among dif-
ferent figures, such as circles, lines, and splines, but the figures can inherit the setup, such as
setting the color, line thickness, and other parameters, from the abstract class Figure.

Sometimes it is worthwhile to abstract out a superclass even when your application has
only one subclass that inherits from it. Although this does not yield any immediate sharing
of behavior, the abstract superclass may be reusable in future projects. It may even be a
worthwhile addition to your class library. When you complete a project, you should consider
the potentially reusable classes for future applications.

Abstract superclasses have benefits beyond sharing and reuse. The splitting of a class into
two classes that separate the specific aspects from the more general aspects is a form of mod-
ularity. Each class is a separately maintained component with a well-documented interface.

The creation of abstract superclasses also improves the extensibility of a software prod-
uct. Imagine that you are developing a temperature-sensing module for a large computerized
control system. You must use a specific type of sensor (Model J55) with a particular way of
reading the temperature, and a formula for converting the raw numeric reading into degrees
Celsius. You could place all this behavior in a single class, with one instance for each sensor
in the system. But realizing that the J55 sensor is not the only type available, you create an
abstract Sensor superclass that defines the general behavior common to all sensors. A partic-
ular subclass called SensorJ55 provides reading and conversion that is particular to J55.

Now, when your control system converts to a new sensor model, you need only prepare
a subclass that has the specialized behavior for the new model. The superclass already has
the common behavior. Perhaps best of all, you will not have to change a single line of code
in the large control system that uses these sensors, because the interface is the same, as de-
fined by the Sensor superclass.

There is a subtle but important way that abstract superclasses improve configuration
management for software maintenance and distribution. Suppose that you must distribute
your control system software to many plants throughout the country, each having a different
configuration that involves (among other things) a different mix of temperature sensors.
Some plants still use the old J55 model, while others have converted to the newer K99 model,
and some plants may have a mixture of both types. Generating customized versions of your
software to match each different configuration could be tedious.

Instead, you distribute one version of software that contains a subclass for each known
sensor model. When the software starts up, it reads the customer’s configuration file that tells
it which sensor model is used in which location and creates instances of the particular sub-
classes for the relevant sensors. All the rest of the code treats the sensors as if they were all
the same as defined by the Sensor superclass. It is even possible to change from one type of
sensor to another on-the-fly (while the system is running) if the software creates a new object
for the new type of sensor.

ATM example. We did pay attention to inheritance during analysis when we construct-
ed the class model. We do not see any additional inheritance at this time. In a full-fledged

15.9 Adjustment of Inheritance 287

application there would be much more design detail and increased opportunities for inherit-
ance.

15.9.3 Using Delegation to Share Behavior
Inheritance is a mechanism for implementing generalization, in which the behavior of a su-
perclass is shared by all its subclasses. Sharing of behavior is justifiable only when a true
generalization relationship occurs—that is, only when it can be said that the subclass is a
form of the superclass. Operations of the subclass that override the corresponding operation
of the superclass must provide the same services as the superclass. When class B inherits the
specification of class A, you can assume that every instance of class B is an instance of class
A because it behaves the same.

Sometimes programmers use inheritance as an implementation technique with no inten-
tion of guaranteeing the same behavior. It often happens that an existing class already imple-
ments some of the behavior that you want to provide in a newly defined class, although in
other respects the two classes differ. The programmer is then tempted to inherit from the ex-
isting class to achieve part of the implementation of the new class. This can lead to problems
if other inherited operations provide unwanted behavior. We discourage this inheritance of
implementation because it can lead to incorrect behavior.

As an example of implementation inheritance, suppose that you need a Stack class and
a List class is available. You may be tempted to make Stack inherit from List. You can push
an element onto a stack by adding an element to the end of the list. Similarly, you can pop
an element from a stack by removing an element from the end of the list. But you will also
inherit unwanted operations that add or remove elements from arbitrary positions in the list.
If these are ever used (by mistake or as a “short-cut”), then the Stack class will not behave as
expected.

Often when you are tempted to use inheritance as an implementation technique, you
could achieve the same goal in a safer way by making one class an associate of the other
class. Then, one object can selectively invoke the desired operations of another class, using
delegation rather than inheritance. Delegation consists of catching an operation on one ob-
ject and sending it to a related object. You delegate only meaningful operations, so there is
no danger of inheriting meaningless operations by accident.

A safer design of Stack would delegate to List, as Figure 15.7 shows. Every Stack in-
stance contains a private List instance. (You could optimize the actual implementation of the
aggregation by using an embedded object or a pointer attribute.) The Stack.push() operation
delegates to List by calling its last() and add() operations to add an element at the end. The
pop() operation has a similar implementation using the last() and remove() operations. The
ability to corrupt the stack by adding or removing arbitrary elements is hidden from the client
of the Stack class.

Some languages, such as C++ and Java, permit a subclass to inherit the form of a super-
class but to selectively inherit operations from ancestors and selectively export operations to
clients. This is tantamount to the use of delegation, because the subclass is not a form of the
superclass in all respects and is not confused with it.

288 Chapter 15 / Class Design

ATM example. Our use of inheritance is deep and structural. That is the only way we
ever use inheritance.

15.10 Organizing a Class Design
Programs consist of discrete physical units that can be edited, compiled, imported, or other-
wise manipulated. In some languages, such as C and Fortran, the units are source files. In
Ada and Java, the package is an explicit language construct. [Coplien-92] shows how to use
a C++ class to group static member functions, lesser classes, enumerations, and constants.
You can improve the organization of a class design with the following steps.

■ Hide internal information from outside view.

■ Maintain coherence of entities.

■ Fine-tune definition of packages.

15.10.1 Information Hiding
During analysis we did not consider information visibility—rather our focus was on under-
standing the application. The goals of design are different. During design we adjust the anal-
ysis model so that it is practical to implement and maintain. One way to improve the viability
of a design is by carefully separating external specification from internal implementation.
This is called information hiding. Then you can change the implementation of a class with-
out requiring that clients of the class modify code. In addition, the resulting “firewalls”
around classes limit the effects of changes so that you can better understand them.

There are several ways to hide information.

Figure 15.7 Alternative designs. Do not use implementation inheritance.

Discouraged designRecommended design

Stack

push
pop

List

add
remove
first
last

List

add
remove
first
last

1
body:list {private}

Stack

push
pop

*

(with delegation) (with implementation inheritance)

15.10 Organizing a Class Design 289

■ Limit the scope of class-model traversals. Taken to an extreme, a method could
traverse all associations of the class model to locate and access an object. Such uncon-
strained visibility is appropriate during analysis, when you are trying to understand a
problem, but methods that know too much about a model are fragile and easily invali-
dated by changes. During design you should try to limit the scope of any one method
[Lieberherr-88]. An object should access only objects that are directly related (directly
connected by an association). An object can access indirectly related objects via the
methods of intervening objects.

■ Do not directly access foreign attributes. Generally speaking, it is acceptable for sub-
classes to access the attributes of their superclasses. However, classes should not access
the attributes of an associated class. Instead, call an operation to access the attributes of
an associated class.

■ Define interfaces at a high a level of abstraction. It is desirable to minimize class cou-
plings. One way to do this is by raising the level of abstraction of interfaces. It is fine to
call a method on another class for a meaningful task, but you should avoid doing so for
minutia.

■ Hide external objects. Use boundary objects to isolate the interior of a system from its
external environment. A boundary object is an object whose purpose is to mediate re-
quests and responses between the inside and the outside. It accepts external requests in
a client-friendly form and transforms them into a form convenient for the internal im-
plementation.

■ Avoid cascading method calls. Avoid applying a method to the result of another meth-
od, unless the result class is already a supplier of methods to the caller. Instead consider
writing a method to combine the two operations.

15.10.2 Coherence of Entities
Coherence is another important design principle. An entity, such as a class, an operation, or
a package, is coherent if it is organized on a consistent plan and all its parts fit together to-
ward a common goal. An entity should have a single major theme; it should not be a collec-
tion of unrelated parts.

A method should do one thing well. A single method should not contain both policy and
implementation. Policy is the making of context-dependent decisions. Implementation is the
execution of fully-specified algorithms. Policy involves making decisions, gathering global
information, interacting with the outside world, and interpreting special cases. A policy
method contains I/O statements, conditionals, and accesses data stores. A policy method
does not contain complicated algorithms but instead calls the appropriate implementation
methods. An implementation method encodes exactly one algorithm, without making any
decisions, assumptions, defaults, or deviations. All its information is supplied as arguments,
so the argument list may be long.

Separating policy and implementation greatly increases the possibility of reuse. The im-
plementation methods do not contain any context dependencies, so they are likely to be re-

290 Chapter 15 / Class Design

usable. Usually you must rewrite policy methods in a new application, but they are often
simple and consist mostly of high-level decisions and low-level calls.

For example, consider an operation to credit interest on a checking account. Interest is
compounded daily based on the balance, but all interest for a month is lost if the account is
closed. The interest logic consists of two parts: an implementation method that computes the
interest due between a pair of days, without regard to any forfeitures or other provisions; and
a policy method that decides whether and for what interval the implementation method is
called. The implementation method is complex, but likely to be reused. Policy methods are
less likely to be reusable, but simpler to write.

A class should not serve too many purposes at once. If it is too complicated, you can
break it up using either generalization or aggregation. Smaller pieces are more likely to be
reusable than large complicated pieces. Exact numbers are somewhat risky, but as a rule of
thumb consider breaking up a class if it contains more than about 10 attributes, 10 associa-
tions, or 20 operations. Always break a class if the attributes, associations, or operations
sharply divide into two or more unrelated groups.

15.10.3 Fine-Tuning Packages
During analysis you partitioned the class model into packages. This initial organization may
not be suitable or optimal for implementation. You should define packages so that their in-
terfaces are minimal and well defined. The interface between two packages consists of the
associations that relate classes in one package to classes in the other and operations that ac-
cess classes across package boundaries.

You can use the connectivity of the class model as a guide for forming packages. As a
rough rule of thumb, classes that are closely connected by associations should be in the same
package, while classes that are unconnected, or loosely connected, may be in separate pack-
ages. Of course there are other aspects to consider. Packages should have some theme, func-
tional cohesiveness, or unity of purpose.

The number of different operations that traverse a given association is a good measure
of its coupling strength. We are referring to the number of different ways that the association
is used, not the frequency of traversal. Try to keep strong coupling within a single package.

15.11 ATM Example
Figure 15.8 shows our final ATM domain class model after class design. (Keep in mind that
the full class model also includes the application class model from Figure 13.8.)

15.12 Chapter Summary
Class design does not begin from scratch but rather elaborates the previous stages of analysis
and system design. Class design adds details, such as designing algorithms, refactoring op-
erations, optimizing classes, adjusting inheritance, and refining packages.

15.12 Chapter Summary 291

The first step of class design is to add operations according to the use cases. Use cases
define the required behavior but not its realization. The class designer invents operations that
will deliver the behavior specified by the use cases.

Next, you must devise an algorithm for each operation. Class design focuses on compu-
tational complexity, but you should sacrifice small amounts of performance for greater clar-
ity. You will need to recurse to define low-level operations to realize high-level operations.
Recursion stops when you have operations that are already available or that are straightfor-
ward to implement.

Figure 15.8 Final ATM domain class model after class design

EnteredOn

EnteredBy

AuthorizedBy

Employs

Issues

Code
station

Transaction

dateTime

Cashier
Transaction

Remote
Transaction

EntryStation

amount

Update

kind

1

*

1

*

cashOnHand

ATM
CashierStation

Cashier

name

*

1

*

1

Code
station

accountCode

Code
employee

Code
cardBank

name

1

1

1

*

Consortium

1 0..1
name

Customer

address
Account

balance
creditLimit
type

* 1

1
*

1*

CardAuthorization

password
limit

0..1

0..1

1 1

0..1

0..1

0..1

*

*
1

{ordered}

getAmount

close

verifyPassword

verifyCashCard
verifyAmount

verifyAmount

disburseFunds

post

getAccount

*

0..1

CashCard

serialNumber

RemoteReceipt

postTransaction

1
*

tempAmount

receiveFunds

verifyBankCode

createSavingsAccount
createCheckingAccount
createCashCard
verifyAmount

bankCode

addAccount
removeAccount
close

CashierReceipt

postTransaction
0..1

*

Customer

1
*

292 Chapter 15 / Class Design

The initial design of a set of operations will contain inconsistencies, redundancies, and
inefficiencies. This is natural, because it is impossible to get a large design correct in one
pass. Furthermore, as a design evolves, it also degrades. It is inevitable that an operation or
class conceived for one purpose will not fully fit additional purposes. As you proceed with a
design, you should occasionally refactor operations to improve their clarity and resilience.

During design, you may need to rework the analysis model for efficiency. Optimization
does not discard the original information but adds new redundant information to speed ac-
cess paths and preserve intermediate results. It can be helpful to rearrange algorithms and
reduce the number of operations that need to be executed.

You should consider reification—the promotion of something that is not an object into
an object. For example, a deposit, withdrawal, or transfer of funds would normally be an op-
eration—it is something that someone does. However, for the ATM case study we promoted
transaction to a class so that we could describe it.

As class design progresses, you can often adjust the definitions of classes and operations
to increase inheritance. These adjustments include modifying the argument list of a method,
moving attributes and operations from a class into a superclass, defining an abstract super-
class to cover the shared behavior of several classes, and splitting an operation into an inher-
ited part and a specific part. You should use delegation rather than inheritance when a class
is similar to another class but not truly a subclass.

You must organize programs into physical units for editors and compilers as well as for
the convenience of programming teams. Information hiding is a primary goal to ensure that
future changes affect limited amounts of code. Packages should be coherent and organized
about a common theme.

Bibliographic Notes
Algorithms and data structures are part of the basic computer science curriculum. [Aho-83]
and [Sedgewick-95] are well-written books about algorithms.

Adding indexes and rearranging access order to improve performance is a mature tech-
nique in database optimization. See [Ullman-02] for examples.

[Lieberherr-88] is an early attempt to provide visibility guidelines (the law of Demeter)
that preserve OO modularity. [Meyer-97] suggests style rules for using classes and operations.

The class design stage is renamed from object design in the first edition of this book.

Figure 15.9 Key concepts for Chapter 15

abstracting out a superclass
adjusting inheritance
algorithm
data structure
delegation
derived associations

derived attributes
implementation inheritance
index
information hiding
optimization
package

policy vs. implementation
recursing
refactoring
reification
responsibility
use case

References 293

References
[Aho-83] Alfred Aho, John Hopcroft, and Jeffrey Ullman. Data Structures and Algorithms. Boston:

Addison-Wesley, 1983.
[Coplien-92] James O. Coplien. Advanced C++: Programming Styles and Idiom. Boston: Addison-

Wesley, 1992.
[Fowler-99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Boston: Addison-

Wesley, 1999.
[Gamma-95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-

ements of Reusable Object-Oriented Software. Boston: Addison-Wesley, 1995.
[Lieberherr-88] K. Lieberherr, I. Holland, A. Riel. Object-oriented programming: an objective sense

of style. OOPSLA’88 as ACM SIGPLAN 23, 11 (November 1988), 323–334.
[Meyer-97] Bertrand Meyer. Object-Oriented Software Construction, Second Edition. Upper Saddle

River, NJ: Prentice Hall, 1997.
[Sedgewick-95] Robert Sedgewick, Philippe Flajolet, and Peter Gordon. An Introduction to the Anal-

ysis of Algorithms. Boston: Addison-Wesley, 1995.
[Ullman-02] Jeffrey Ullman and Jennifer Widom. A First Course in Database Systems. Upper Saddle

River, NJ: Prentice Hall, 2002.
[Wirfs-Brock-90] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Ori-

ented Software. Upper Saddle River, NJ: Prentice Hall, 1990.

Exercises

15.1 (6) Take the use cases from Exercise 13.9 and list at least four responsibilities for each one. [In-
structor’s note: You may want to give the students our answer to Exercise 13.9.]

15.2 (6) Take the first three use cases from Exercise 13.16 and list at least four responsibilities for
each one. [Instructor’s note: You may want to give the students our answer to Exercise 13.16.]

15.3 (4) Write algorithms to draw the following figures on a graphics terminal. The figures are not
filled. Assume pixel-based graphics. State any assumptions that you make.
a. circle
b. ellipse
c. square
d. rectangle

15.4 (3) Discuss whether or not the algorithm that you wrote in the previous exercise to draw an el-
lipse is suitable for drawing circles and whether or not the rectangle algorithm is suitable for
squares.

15.5 (3) By careful ordering of multiplications and additions, the total number of arithmetic steps
needed to evaluate a polynomial can be minimized. For example, one way to evaluate the poly-
nomial is to compute each term separately, adding each term to
the total as it is computed, which requires 10 multiplications and 4 additions. Another way is to
rearrange the order of the arithmetic to , which requires
only 4 multiplications and 4 additions. How many multiplications and additions are required by
each method for an nth-order polynomial? Discuss the relative merits of each approach.

a4x4 a3x3 a2x2 a1x a0+ + + +

x x x x a4⋅ a3+() a2+⋅() a1+⋅()⋅ a0+

294 Chapter 15 / Class Design

15.6 (4) Improve the class diagram in Figure E15.1 by generalizing the classes Ellipse and Rectangle
to the class GraphicsPrimitive, transforming the class diagram so that there is only a single one-
to-one association to the object class BoundingBox. In effect, you will be changing the 0..1 mul-
tiplicity to exactly-one multiplicity. As it stands, the class BoundingBox is shared between El-
lipse and Rectangle. A BoundingBox is the smallest rectangular region that will contain the as-
sociated Ellipse or Rectangle.

15.7 (5) Which class(es) for the previous exercise must supply a delete operation visible to the out-
side world? To delete means to destroy an object and remove it from the application. Explain
your answer.

15.8 (4) Modify the class diagram in Figure E15.2 so that a separate class provides margins. Differ-
ent categories of pages may have a default margin, and specific pages may override the default.

15.9 (3) Modify Figure E15.2 to make it possible to be able to determine what Page a Line is on with-
out first determining the Column.

15.10 (7) Write pseudocode for each method in Figure E15.3. Initialize causes a deck to start with 52
cards and anything else to become empty. Insert and delete take a card as a single argument and
insert or delete the card into a collection, forcing the collection to redisplay itself. Delete is al-
lowed only on the top card of a pile. Sort is used to sort a hand by suit and rank.

Pile is an abstract class. TopOfPile and bottomOfPile are queries. Draw deletes the top card
from a pile and inserts the card into a hand, which is passed as an argument.

Shuffle mixes a deck. Deal selects cards from the top of the deck one at a time, deleting them
from the deck and inserting them into hands that are created and returned as an array of hands.
Display displays a card. Compare determines which of two cards has the largest value. Discard
deletes a card from the collection that contains it and places it on top of the draw pile that is
passed as an argument.

Figure E15.1 Portion of a class diagram with a shared class

RectangleEllipse

BoundingBox

11

0..10..1

Figure E15.2 Portion of a class diagram of a newspaper

* *1 1
Line

text

Column

xLocation
yLocation
width
length

Page

width
length
leftMargin
rightMargin
topMargin
bottomMargin

Exercises 295

15.11 (5) Write pseudocode for computing the net score for a trial in Figure E12.4.
Each attempt of a competitor in an event (a Trial) is observed by several judges. Each judge

rates the attempt and holds up a score. A reader assigned to the group of judges announces the
scores one at a time to a panel of scorekeepers. Three scorekeepers write the scores down, cross
off the highest and the lowest scores, and total the rest. They check each other’s total to detect
recording and arithmetic errors. In some cases, they may ask the reader to repeat the scores.
When they are satisfied, they hand their figures to three other scorekeepers, who multiply the
total score by a difficulty factor for the event and take the average to determine a net score. The
net scores are compared to detect and correct scoring errors.

15.12 Prepare pseudocode for the following operations to classes in Figure E12.4. You will need to
add a many-to-many association RegisteredFor between a set of Events and an ordered list of
Competitors to track who is registered for which Events. Use the registration order in scheduling
trials.
a. (3) Find the event for a figure and meet.
b. (3) Register a competitor for an event.
c. (3) Register a competitor for all events at a meet.
d. (5) Select and schedule events for a meet.
e. (3) Schedule meets in a season.
f. (4) Assign judges and scorekeepers to stations.

Card

suit:Suit
rank:Rank

display
compare

Figure E15.3 Portion of a class diagram of a card-playing program

{ordered}

CardCollection

visibility:Visibility
location:Point

initialize
insert {abstract}
delete {abstract}

1 *

Hand

initialSize:integer

insert

DrawPileDiscardPileDeck

shuffle
deal

delete
sort

Pile

topOfPile
bottomOfPile
draw
insert
delete

initialize

discard

296 Chapter 15 / Class Design

15.13 (8) Figure E15.4 is a portion of a class diagram metamodel that might be used in a compiler of
an OO language. Write pseudocode for the traceInheritancePath method that traces an inherit-
ance hierarchy as follows. Input to the method is a pair of classes. The method returns an or-
dered list of classes on the path from the more general class to the more specific class. Tracing
is only through generalizations; aggregations and associations are ignored. If tracing fails, an
empty list is returned. You may assume that multiple inheritance is not allowed.

15.14 (8) Refine Figure E15.4 by eliminating the associations to the classes End and Relationship, re-
placing them with associations to the subclasses of End and Relationship. This is an example of
a transformation on a class diagram. Write pseudocode for the traceInheritancePath method for
the new diagram.

15.15 (7) Referring to Figure E15.4, prepare an algorithm for an operation that will generate a name
for an association that does not already have one. Input to the operation is an instance of Asso-
ciation. The operation must return a globally unique relationshipName. If the association al-
ready has a name, the operation should return it. Otherwise the operation should generate a
name using a strategy that you must devise.

The precise strategy is not critical, but the generated names must be unique, and anyone
reading the names should be able to determine which association the name refers to. Assume all
associations are binary. You may assume that a similar operation on the class End already has
been designed that will return an endName unique within the context of a relationship. If the
name that would be formed collides with an existing name, modify the name in some way to
make it unique. If you feel you need to modify the diagram or use additional data structures, go
ahead, but be sure to describe them.

15.16 (7) Improve the class diagram in Figure E15.5 by transforming it, adding the class PoliticalPar-
ty. Associate Voter with a party. Discuss why the transformation is an improvement.

15.17 (7) Sometimes an airline will substitute a smaller aircraft for a larger one for a flight with few
passengers. Write an algorithm for reassigning seats so that passengers with low row numbers
do not have to be reassigned. Assume both aircraft have the same number of seats per row.

15.18 (8) The need for implementation efficiency may force you to create classes that are not in the
original problem statement. For example, a two-dimensional CAD system may use specialized
data structures to determine which points fall within a rectangular window specified by the user.

Figure E15.4 Portion of a class diagram metamodel

SuperclassPart AssociationEnd Generalization

SubclassAssembly AssociationAggregation

connection

Class

className

Relationship

relationshipName

End

endName
multiplicity

1 1* *

Exercises 297

One technique is to maintain a collection of points sorted on x and then y. Points that fall within
a rectangular window can usually be found without having to check all points.

Prepare a class diagram that describes collections of points sorted on x and y. Write
pseudocode for the operations search, add, and delete. The input to search is a description of a
rectangular region and a collection of points. The output of search is a set of points from the
input collection that fall within the region. Inputs to both add and delete are a point and a col-
lection of points. The input point is added or deleted from the collection.

15.19 (8) Determine how the time required by the search operation in the previous exercise depends
on the number of points in a collection. Explicitly state any assumptions you make.

15.20 (3) In selecting an algorithm, it may be important to evaluate its resource requirements. How
does the time required to execute the following algorithms depend on the following parameters?
a. The algorithm in Exercise 15.13 on the depth of the inheritance hierarchy.
b. The algorithm in Exercise 15.17 on the number of passengers.

Figure E15.5 Class diagram representing voter membership in a political party

Republican Libertarian

politicalParty

Democrat

Voter {Note: Voter is concrete.}
{Only some political parties are listed.}

298

16

Process Summary

As Figure 16.1 shows, a development process provides a basis for the organized production
of software. We advocate that a process be based on OO concepts and the UML notation.

Note that there is no need to change from one model to another, as the OO paradigm
spans analysis, design, and implementation. The OO paradigm applies equally well in de-
scribing the real-world specification and computer-based implementation.

This book’s presentation of the stages is linear (an artifact of presentation), but in prac-
tice OO development is an iterative process, as Figure 16.1 emphasizes. When you think that

Users

Figure 16.1 Summary of development process. A development process provides
a basis for the organized production of software.

Analysis:

Design:

System Conception

Domain Analysis
Application Analysis

Problem
Statement

Generate
requests

Build
models

Developers
Managers

User interviews
Experience
Related systems

System Design
Class Design

Elaborate
models

Architecture
Use cases
Algorithms
Optimization

Class Model
State Model
Interaction Model

Business experts

16.1 System Conception 299

a model is complete at one level of abstraction, you should consider the next lower level of
abstraction. For each level, you may need to add new operations, attributes, and classes. You
may even need to revise the relationships between objects (including changes to the inherit-
ance hierarchy). Do not be surprised if you find yourself iterating several times. Chapter 21
explains more about iterative development.

16.1 System Conception
System conception deals with the genesis of an application. Initially some person, who un-
derstands both technology and business needs, thinks of an idea for an application. The pur-
pose of system conception is to understand the big picture—what need does the proposed
system meet, can it be developed at a reasonable cost, and will the demand for the result jus-
tify the cost of building it? The input to system conception is the raw idea for a new applica-
tion. The output is a problem statement that is the starting point for careful analysis.

16.2 Analysis
Analysis focuses on preparing models to get a deep understanding of the requirements. The
goal of analysis is to specify what needs to be done, not how it is done. You must understand
a problem before attempting a solution. It is important to consider all available inputs, in-
cluding requirements statements, user interviews, real-world experience, and artifacts from
related systems. The output from analysis is a set of models that specify a system in a rigor-
ous and complete manner. There are two substages to analysis: domain analysis and appli-
cation analysis.

16.2.1 Domain Analysis
Domain analysis captures general knowledge about an application—concepts and relation-
ships known to experts in the domain. The concern is with devising a precise, concise, un-
derstandable, and correct model of the real world. Before building anything complex, the
builder must understand the requirements. Domain analysis leads to class models and some-
times state models, but seldom interaction models. The job of constructing a domain model
is mainly to decide which information to capture (determine the application’s scope) and
how to represent it (the level of abstraction).

16.2.2 Application Analysis
Application analysis follows and addresses the computer aspects of the application (applica-
tion objects) that are visible to users. Application objects are not merely internal design de-
cisions, because the users see them and must agree with them. Application classes include
controllers, devices, and boundary objects. The interaction model dominates application
analysis, but the class and state models are also important.

300 Chapter 16 / Process Summary

16.3 Design
Analysis addresses the what of an application; design addresses the how. Once you have a
thorough understanding of an application from analysis, you are ready to deal with the de-
tails of building a practical and maintainable solution. You could prepare the design model
in a completely different manner than analysis, but most of the time, the simplest and best
approach is to carry the analysis classes forward into design. Design then becomes a process
of adding detail and making fine decisions. There are two substages to design: system design
and class design.

16.3.1 System Design
The purpose of system design is to devise a high-level strategy—the architecture—for solv-
ing the application problem. The choice of architecture is an important decision with broad
consequences and is based on the requirements as well as past experience. The system de-
signer must also establish policies to guide the subsequent class design.

16.3.2 Class Design
Class design augments and adjusts the real-world models from analysis so that they are ready
for implementation. Class designers complete the definitions of the classes and associations
and choose algorithms for operations.

301

Part 3

Implementation

Chapter 17 Implementation Modeling 303
Chapter 18 OO Languages 314
Chapter 19 Databases 348
Chapter 20 Programming Style 380

Parts 1 and 2 have presented OO concepts and an analysis and design process for applying
the concepts. Part 3 covers the remainder of software development and discusses the specific
details for implementing a system with C++, Java, and databases. OO models are also help-
ful with non-OO languages, but we do not cover non-OO languages in this book, because
most developers now days are using OO languages.

Chapter 17 discusses implementation issues that transcend the choice of language. The
focus is on techniques for realizing associations, since few languages have intrinsic support.

Chapter 18 explains the principles of how to implement an OO design with C++ and Ja-
va. We cover C++ and Java because they are the most popular OO programming languages.

Chapter 19 shows how to implement an OO design with a database. Our focus is on re-
lational databases, because they dominate the marketplace. As you would expect, OO de-
signs can also be implemented with OO databases, but OO databases have but a small market
share and are only used in specialty situations.

Chapter 20 concludes with style recommendations for programming in any language or
database. The programming code is the ultimate embodiment of the solution to the problem,
so the way in which it is written is important for maintainability and extensibility.

Part 3 completes our explanation of how to take OO concepts and use them to develop
applications. Part 4 deals with software engineering issues that are especially important for
large and complex applications.

This page intentionally left blank

303

17

Implementation Modeling

Implementation is the final development stage that addresses the specifics of programming
languages. Implementation should be straightforward and almost mechanical, because you
should have made all the difficult decisions during design. To a large extent, your program-
ming code should simply translate design decisions. You must add details while writing
code, but each one should affect only a small part of the program.

17.1 Overview of Implementation
It is now, during implementation, that you finally capitalize on your careful preparation from
analysis and design. First you should address implementation issues that transcend languag-
es. This is what we call implementation modeling and involves the following steps.

■ Fine-tune classes. [17.2]

■ Fine-tune generalizations. [17.3]

■ Realize associations. [17.4]

■ Prepare for testing [17.5]
The first two steps are motivated by the theory of transformations. A transformation is a map-
ping from the domain of models to the range of models. When modeling, it is important not
only to focus on customer requirements, but to also take an abstract mathematical perspective.

17.2 Fine-tuning Classes
Sometimes it is helpful to fine-tune classes before writing code in order to simplify develop-
ment or to improve performance. Keep in mind that the purpose of implementation is to re-
alize the models from analysis and design. Do not alter the design model unless there is a
compelling reason. If there is, consider the following possibilities.

304 Chapter 17 / Implementation Modeling

■ Partition a class. In Figure 17.1, we can represent home and office information for a
person with a single class or we can split the information into two classes. Both ap-
proaches are correct. If we have much home and office data, it would be better to sepa-
rate them. If we have a modest amount of data, it may be easier to combine them.

The partitioning of a class can be complicated by generalization and association.
For example, if Person was a superclass and we split it into home and office classes, it
would be less convenient for the subclasses to obtain both kinds of information. The
subclasses would have to multiply inherit, or we would have to introduce an association
between the home and office classes. Furthermore, if there were associations to Person,
you would need to decide how to associate to the partitioned classes.

■ Merge classes. The converse to partitioning a class is to merge classes. If we had started
with PersonHomeInfo and PersonOfficeInfo in Figure 17.1, we could combine them.
Figure 17.2 shows another example with intervening associations. Neither representa-
tion is inherently superior, because both are mathematically correct. Once again, you
must consider the effects of generalization and association in your decisions.

■ Partition / merge attributes. You can also adjust attributes by partitioning and merg-
ing, as Figure 17.3 illustrates.

■ Promote an attribute / demote a class. As Figure 17.4 shows, we can represent address
as an attribute, as one class, or as several related classes. The bottom model would be
helpful if we were preloading address data for an application.

ATM example. We may want to split Customer address into several classes if we are pre-
populating address data. For example, we may preload city, stateProvice, and postalCode

Figure 17.1 Partitioning a class. Sometimes it is helpful to fine-tune a
model by partitioning or merging classes.

Person

personName
homeAddress
homePhone
officeAddress

PersonHomeInfo

personName
homeAddress
homePhone

PersonOfficeInfo

personName
officeAddress
officePhone

officePhone

Figure 17.2 Merging classes. It is acceptable to rework your definitions of classes,
but only do so for compelling development or performance reasons.

p1

p2

Line

x1 : real
y1 : real
x2 : real
y2 : real

Line
Point

x : real
y : real

0..1
0..1

1
1

17.3 Fine-tuning Generalizations 305

data for the convenience of customer service representatives when creating a new Customer
record.

We may also want to place Account type in its own class. Then it would be easier to pro-
gram special behavior. For example, the screens may look different for checking accounts
than for savings accounts.

All in all, the ATM model is small in size and carefully prepared, so we are not inclined
to make many changes.

17.3 Fine-tuning Generalizations
As you can reconsider classes, so too you can reconsider generalizations. Sometimes it is
helpful to remove a generalization or to add one prior to coding.

Figure 17.5 shows a translation model from one of our recent applications. A language
translation service converts a TranslationConcept into a Phrase in the desired language. A
MajorLanguage is a language such as English, French, or Japanese. A MinorLanguage is a

Figure 17.3 Partitioning / merging attributes

PhoneNumber

phoneNumber

PhoneNumber

countryCode
areaCode
localNumber

Figure 17.4 Promoting an attribute / demoting a class

Person

name

Person

name
phoneNumberphoneNumber

address

Address

streetAddress
city
stateProvince
postalCode

* 0..1

Person

name
phoneNumber

Address

streetAddress
* 0..1

City

cityName
0..1

StateProvince

stateProvinceName

PostalCode

postalCode

*

*
0..1

*

0..1

1
*

*

*

*

1

306 Chapter 17 / Implementation Modeling

dialect such as American English, British English, or Australian English. All entries in the
application database that must be translated store a translationConceptID. The translator
first tries to find the phrase for a concept in the specified MinorLanguage and then, if that is
not found, looks for the concept in the corresponding MajorLanguage.

For implementation simplicity, we removed the generalization and used the right model.
Since the translation service is separate from the application model, there were no additional
generalizations or associations to consider, and it was easy to make the simplification.

ATM example. Back in Section 13.1.1 we mentioned that the ATM domain class model
encompassed two applications—ATM and cashier. We did not concern ourselves with this
during analysis—the purpose of analysis is to understand business requirements, and the
eventual customer does not care how services are structured. Furthermore, we wanted to
make sure that both applications had similar behavior. However, now that we are implement-
ing, we must separate the applications and limit the scope to what we will actually build. Fig-
ure 17.6 deletes cashier information from the domain class model, leading to a removal of
both generalizations.

Figure 17.6 is the full ATM class model. The top half (Account and above) presents the
domain class model; the bottom half (UserInterface, ConsortiumInterface, and below) pre-
sents the application class model. The operations are representative, but only some are listed.

17.4 Realizing Associations
Associations are the “glue” of the class model, providing access paths between objects. Now
we must formulate a strategy for implementing them. Either we can choose a global strategy
for implementing all associations uniformly, or we can select a particular technique for each
association, taking into account the way the application will use it. We will start by analyzing
how associations are traversed.

*1

Figure 17.5 Removing / adding generalization. Sometimes it can simplify
implementation to remove or add a generalization.

Language

name

MajorLanguage MinorLanguage

Phrase

string

TranslationConcept

*
1

*1

*1
Language

name

Phrase

string

TranslationConcept

*
1

*0..1
parent child

17.4 Realizing Associations 307

Figure 17.6 Full ATM implementation class model

EnteredOn

AuthorizedBy

Issues

Code
station

Remote
Transaction

amount

Update

kind

1 *

1 *

cashOnHand

ATM

*

1

accountCode

Code
cardBank

name 1

1

*

Consortium

1 0..1
name

Customer

address
Account

balance
creditLimit
type

* 1

1

*

1*

CardAuthorization

password
limit

0..1

1

0..1

0..1

*

*
1

{ordered}

getAmount

close

verifyPassword

verifyCashCard
verifyAmount

verifyAmount

disburseFunds

post

getAccount

*

0..1

CashCard

serialNumber

RemoteReceipt

postTransaction

1*

tempAmount

receiveFunds

verifyBankCode

createSavingsAccount
createCheckingAccount
createCashCard
verifyAmount

bankCode

addAccount
removeAccount
close

dateTime

AccountBoundary

bankCode
accountCode
balance

CashCardBoundary

bankCode
cardCode
serialNumber
password
limit
bankName

* *

creditLimit
accountType
bankName
customerName
customerAddress

SessionController

TransactionController

UserInterface ConsortiumInterface

Remote
Transaction * 0..1

activeTransaction

Account

CashCard activeCard

activeAccount
*

0..1
0..1

ATMsession0..1
0..1 1

startDateTime

startDateTime

status

ProblemType

name

ControllerProblem

startDateTime
stopDateTime

*
1

1

*

308 Chapter 17 / Implementation Modeling

17.4.1 Analyzing Association Traversal
We have assumed until now that associations are inherently bidirectional, which is certainly
true in an abstract sense. But if your application has some associations that are traversed in
only one direction, their implementation can be simplified. Be aware, however, that future
requirements may change, and you may need to add a new operation later that traverses the
association in the reverse direction.

For prototype work we always use bidirectional associations, so that we can add new
behavior and modify the application quickly. For production work we optimize some asso-
ciations. In any case, you should hide the implementation, using access methods to traverse
and update the association. Then you can change your decision more easily.

17.4.2 One-way Associations
If an association is traversed only in one direction, you can implement it as a pointer—an
attribute that contains an object reference. (Note that this chapter uses the word pointer in
the logical sense. The actual implementation could be a programming-language pointer, a
programming-language reference, or even a database foreign key.) If the multiplicity is
“one,” as Figure 17.7 shows, then it is a simple pointer; if the multiplicity is “many,” then it
is a set of pointers.

17.4.3 Two-way Associations
Many associations are traversed in both directions, although not usually with equal frequen-
cy. There are three approaches to their implementation.

■ Implement one-way. Implement as a pointer in one direction only and perform a search
when backward traversal is required. This approach is useful only if there is a great dis-
parity in traversal frequency in the two directions and minimizing both the storage and
update costs is important. The rare backward traversal will be expensive.

■ Implement two-way. Implement with pointers in both directions as Figure 17.8 shows.
This approach permits fast access, but if either direction is updated, then the other must
also be updated to keep the link consistent. This approach is useful if accesses outnum-
ber updates.

employer

Person

CompanyPerson
WorksFor

Figure 17.7 Implementing a one-way association with pointers. If an association
is traversed only in one direction, you can implement it as a pointer.

* 1

Company

Class model:

Implementation:

17.4 Realizing Associations 309

■ Implement with an association object. Implement with a distinct association object,
independent of either class, as Figure 17.9 shows [Rumbaugh-87]. An association object
is a set of pairs of associated objects (triples for qualified associations) stored in a single
variable-size object. For efficiency, you can implement an association object using two
dictionary objects, one for the forward direction and one for the backward direction. Ac-
cess is slightly slower than with pointers, but if hashing is used, then access is still con-
stant time. This approach is useful for extending predefined classes from a library that
cannot be modified, because the association object does not add any attributes to the
original classes. Distinct association objects are also useful for sparse associations, in
which most objects of the classes do not participate, because space is used only for ac-
tual links.

17.4.4 Advanced Associations
The appropriate techniques for implementing advanced associations vary.

Set

employer

Person

employees

Company

Figure 17.8 Implementing a two-way association with pointers. Dual pointers
enable fast traversal of an association in either direction, but introduce
redundancy, complicating maintenance.

:Company

:Company

:Person

:Person

:Person

:Person

:Person

Figure 17.9 Implementing an association as an object. This is the most
general approach for implementing associations but requires
the most programming skill.

WorksFor

310 Chapter 17 / Implementation Modeling

■ Association classes. The usual approach is to promote the association to a class. This
handles any attributes of the association as well as associations of the association class.
Note that promotion changes the meaning of the model; the promoted association has
identity of its own, and methods must compensate to enforce the dependency of the as-
sociation class on the constituent classes.

Alternatively, if the association is one-to-one and has no further associations, you
can implement the association with pointers and store any attributes for the association
as attributes of either class. Similarly, if the association is one-to-many and has no fur-
ther associations, you can implement the association with pointers and store attributes
for the association as attributes of the “many” class, since each “many” class appears
only once for the association.

■ Ordered associations. Use an ordered set of pointers similar to Figure 17.8 or a dictio-
nary with an ordered set of pairs similar to Figure 17.9.

■ Sequences. Same as ordered association, but use a list of pointers.

■ Bags. Same as ordered association, but use an array of pointers.

■ Qualified associations. Implement a qualified association with multiplicity “one” as a
dictionary object. using the techniques of Figure 17.9. Qualified associations with mul-
tiplicity “many” are rare, but you can implement them as a dictionary of object sets.

■ N-ary associations. Promote the association to a class. Note that there is a change in
identity and that you must compensate with additional programming, similar to that for
association classes.

■ Aggregation. Treat aggregation like an ordinary association.

■ Composition. You can treat composition like an ordinary association. You will need to
do some additional programming to enforce the dependency of the part on the assembly.

17.4.5 ATM Example
Exercise 17.1 addresses the implementation of associations from the ATM model.

17.5 Testing
If you have carefully modeled your application, as we advise, you will reduce errors in your
software and need less testing. Nevertheless, testing is still important. Testing is a quality-
assurance mechanism for catching residual errors. Furthermore, testing provides an indepen-
dent measure of the quality of your software. The number of bugs found for a given testing
effort is an indicator of software quality, and you should find fewer bugs as you become pro-
ficient at modeling. You should keep careful records of the bugs that you find, as well as cus-
tomer complaints.

If your software is sound, the primary difficulty for developers is in finding the occasion-
al, odd error. Fixing the errors is a much easier problem. (In contrast, if your software is hap-
hazard, it can also be difficult to fix the errors.)

17.5 Testing 311

You need to test at every stage of development, not just during implementation. The na-
ture of the testing changes, however, as you proceed. During analysis, you test the model
against user expectations by asking questions and seeing if the model answers them. During
design, you test the architecture and can simulate its performance. During implementation,
you test the actual code—the model serves as a guide for paths to traverse.

Testing should progress from small pieces to ultimately the entire application. Develop-
ers should begin by testing their own code, their classes and methods—this is called unit
testing. The next step is integration testing—that is, how the classes and methods fit togeth-
er. You do integration testing in successive waves, putting code together in increasing chunks
of scope and behavior. It is important to do integration testing early and often to ensure that
the pieces of code cleanly fit together (see Chapter 21). The final step is system testing,
where you check the entire application.

17.5.1 Unit Testing
Developers normally check their own code and do the unit and integration testing, because
they understand the detailed logic and likely sources of error. Unit testing follows the same
principles as in pre-OO days: developers should try to cover all paths and cases, use special
values of arguments, and try extreme and “off-by-one” values for arguments. If your meth-
ods and classes are simple and focused, it will be easier to prepare unit tests.

It is a good idea to instrument objects and methods. You can place assertions (precondi-
tions, postconditions, invariants) in your code to trap errors. You should try to detect prob-
lems near the source (where they are easier to understand) rather than downstream (where
they can be confusing).

We agree with the use of paired programmers and aggressive code inspection that is part
of the agile programming movement. Along the same lines, we also recommend formal soft-
ware reviews (see Chapter 22), where developers present their work to others and receive
comments.

17.5.2 System Testing
Ideally, a separate team apart from the developers should carry out system testing—this is a
natural role for a quality assurance (QA) organization. QA should derive their testing from
the analysis model of the original requirements and prepare their test suite in parallel to other
development activities. Then the system testers are not distracted by the details of develop-
ment and can provide an independent assessment of an application, reducing the chance of
oversights. Once alpha testing is complete, customers perform beta tests, and then if the soft-
ware looks good, it is ready for general release.

The scenarios of the interaction model define system-level test cases. You can generate
additional scenarios from the use cases or state machines. Pick some typical test cases, but
also consider atypical situations: zero iterations, the maximum number of iterations, coinci-
dence of events if permitted by the model, and so on. Strange paths though the state machine
make good test cases, because they check default assumptions. Also pay attention to perfor-
mance and stress the software with multiuser and distributed access, if that is appropriate.

312 Chapter 17 / Implementation Modeling

As much as possible, use a test suite. The test suite is helpful for rechecking code after
bug fixes and detecting errors that creep into future software releases. It can be difficult to
automate testing when you have an application with an interactive user interface, but even
then you can still document your test scripts for later use.

ATM example. We have carefully and methodically prepared the ATM model. Conse-
quently we would be in a good position for testing, if we were to build a production applica-
tion.

17.6 Chapter Summary
Implementation is the final development stage that addresses the specifics of programming
languages. First you should address implementation issues that transcend languages—we
call this implementation modeling. Sometimes it is helpful to fine-tune classes and general-
izations before writing code in order to simplify development or to improve performance.
Do this only if you have a compelling reason.

Associations are a key concept in UML class modeling, but are poorly supported by
most programming languages. Nevertheless, you should keep your thinking clear by using
associations as you study requirements and then necessarily degrade them once you reach
implementation. There are two primary ways of implementing associations with program-
ming languages—with pointers (for one or both directions) or with association objects. An
association object is a pair of dictionary objects, one for the forward direction and one for
the backward direction.

Even though careful modeling reduces errors, it does not eliminate the need for testing.
You will need unit, integration, and system tests. For unit testing, developers check the class-
es and methods of their own code. Integration testing combines multiple classes and methods
and subjects them to additional tests. System testing exercises the overall application and en-
sures that it actually delivers the requirements originally uncovered during analysis.

Bibliographic Notes
Transformations provide the motivation for Section 17.2 and Section 17.3. [Batini-92] pre-
sents a comprehensive list of transformations. [Blaha-96] and [Blaha-98] present additional
transformations.

Figure 17.10 Key concepts for Chapter 17

association object
association traversal
dictionary object
fine-tuning classes
fine-tuning generalizations

implementation modeling
integration testing
one-way association
pointer
system testing

transformation
two-way association
unit testing

References 313

References
[Batini-92] Carlo Batini, Stefano Ceri, and Shamkant B. Navathe. Conceptual Database Design: An

Entity-Relationship Approach. Redwood City, CA: Benjamin Cummings, 1992.
[Blaha-96] Michael Blaha and William Premerlani. A catalog of object model transformations. Third

Working Conference on Reverse Engineering, November 1996, Monterey, CA, 87–96.
[Blaha-98] Michael Blaha and William Premerlani. Object-Oriented Modeling and Design for Data-

base Applications. Upper Saddle River, NJ: Prentice Hall, 1998.
[Rumbaugh-87] James E. Rumbaugh. Relations as semantic constructs in an object-oriented language.

OOPSLA’87 as ACM SIGPLAN 22, 12 (December1987), 466–481.

Exercises
17.1 (7) Implement each association in Figure 17.6. Use one-way or two-way pointers as the seman-

tics of the problem dictates. Explain your answers.

17.2 (5) Implement each association in Figure E12.3. Use one-way pointers wherever possible.
Should any of the association ends be ordered? Explain your answers.

17.3 (4) Implement each association in Figure E15.2. Use one-way or two-way pointers as the se-
mantics of the problem dictates. Should any of the association ends be ordered? Explain your
answers.

17.4 (3) Implement the association in Figure E15.3. Use one-way or two-way pointers as the seman-
tics of the problem dictates. Explain your answer.

17.5 (7) Implement each association in Figure E12.4. Use one-way or two-way pointers as the se-
mantics of the problem dictates. Should any of the association ends be ordered? Explain your
answers.

314

18

OO Languages

This chapter discusses how to take a generic design and make the final implementation de-
cisions that are required to realize the design in C++ or Java. These are the two dominant
languages used in OO implementation. The goal of this chapter is to produce code for a pro-
gram. We do not intend to give a C++ or Java tutorial, but to highlight language features and
explain their use with models.

Chris Kelsey was the primary author of this chapter and we thank her for her help.

18.1 Introduction
It is relatively easy to implement an OO design with an OO language, since language con-
structs are similar to design constructs. In this book we will focus on C++ and Java, since
they are the dominant OO languages. Even if you are using another language, many of the
principles will be the same and the discussion here will be relevant.

C++ and Java have much in common. Java is younger than C++ and borrows heavily
from C++ syntax. Both are strongly typed languages, where variables and values must be
known to belong to a particular native or user-defined type. Strong typing can improve reli-
ability by detecting mismatched method arguments and assignments, and it increases oppor-
tunities for optimization.

18.1.1 Introduction to C++
C++ was developed by Bjarne Stroustrup at AT&T Bell Laboratories in the 1980s, with the
intent of extending the widely used, procedural C language to include OO capabilities. It re-
tains the “close to the machine” characteristics that are the hallmark of its C heritage, while
adding the “close to the problem” capabilities of more direct expression of OO concepts.

Bell Labs originally implemented C++ as a preprocessor that translated C++ into stan-
dard C. As C++ came into mainstream use in the 1990s, direct compilers with symbolic de-

18.1 Introduction 315

buggers and other development tools appeared. ISO/ANSI standardized the language and its
libraries in 1998. C++ compilers for various operating systems are widely available from
several major vendors, as well as from the Free Software Foundation.

C++ language syntax is a superset of C. Thus, C++ is a hybrid language, in which some
entities are object types and some are traditional primitive types. Because of its origins, it
retains features that are inconsistent with “pure” OO programming, such as free-standing
functions that are not methods of a class. However, syntax and semantics remain consistent
across native and object data types.

C++ supports generalization with inheritance and run-time method resolution (polymor-
phism). Classes may include a mix of polymorphic and nonpolymorphic methods. To enable
run-time resolution for a method, a superclass must explicitly declare that method as virtual.
The implementation is efficient, typically achieved by having each object contain a pointer
to a table of methods for its class. There is no shared basic Object type as characterizes other
OO languages. C++ permits multiple inheritance.

In addition to overriding methods via inheritance, C++ allows overloading—methods
and functions may share the same name but have parameters that vary in number or type.
Upon invocation, the language chooses the method or function with the appropriate param-
eters. Similarly, C++ operators may be overloaded, allowing a method to be expressed intu-
itively [such as a + b instead of a.add(b), where a and b are of type ComplexNumber].

Access specifiers promote encapsulation by restricting the availability of class members
(methods or data) to methods of the class itself (private), the class and its subclasses (pro-
tected), or any class/method/function (public). A class may grant selective access to other-
wise private members with a friend declaration. C++ performs all access restriction on a
class, not object, basis—which means there is no access restriction among same-class ob-
jects. C++ namespaces provide a semantic scope for symbols but do not affect accessibility
of visible entities. Namespaces were introduced in part to alleviate name conflicts among ex-
ternal libraries.

C++ exposes its memory management to the programmer, who may customize memory
allocation strategies. The compiler statically allocates storage for objects (primitive or class
types) declared at compile time. An application may also dynamically obtain storage from
the heap at run time by using the new operation. A dynamically created object persists in
memory until a delete operation explicitly destroys it.

Memory addresses remain fixed for the lifetime of an object and identify it. The pro-
grammer can get the address of a statically allocated object (using operator &), as well as
obtain an address as a handle for a dynamically allocated one. To access the target of a point-
er, the pointer is dereferenced with the operator *, such that for any object O at address A, it
is true that &O == A and *A == O. As with C, the programmer is generally not protected
from memory-based errors at compile time or run time. C++ offers no run-time error-detec-
tion facilities; errors generally result in undefined program behavior.

In addition to the C-style pointers used as operands in memory operations, C++ includes
references that syntactically appear as object aliases. References must be bound to an exist-
ing object at their creation. They are constant in their binding and so cannot be null. Other-
wise, references behave much as permanently dereferenced pointers.

316 Chapter 18 / OO Languages

Classes have constructors and destructors, methods that C++ automatically invokes
upon creation and destruction of objects. These are typically used for initialization and any
operations that must occur upon termination (often deallocation), respectively.

In summary, C++ is a flexible language characterized by a concern for run-time efficien-
cy, the ability to form broad type hierarchies, and uniform semantics. It provides a platform
for fine granularity of expression and control at the expense of some simplicity.

18.1.2 Introduction to Java
Java came into being as a by-product of an early 1990s Sun Microsystems, Inc. exploration
into programming consumer devices, a project that required a portable and device-indepen-
dent language. It made its public debut in 1995 as a download on the then-infant World Wide
Web, and the ability to run restricted Java programs was soon thereafter incorporated into Web
browsers to allow dynamic and interactive content on Web pages. Within a few years, with the
explosion of the Internet and distributed application architectures, Java became a staple of
commercial development. Commercial, shareware, and free Java tools are widely available,
as the language continues to evolve and its libraries grow. Sun maintains control over lan-
guage releases and makes basic tools available at no charge for most computing platforms.

Java’s popularity comes not so much from the core language itself as from its portability
and its huge library of associated classes. Java source code compiles to an intermediate byte-
code, which in turn runs on a platform-specific Java Virtual Machine. JVMs are available for
nearly all operating systems and are readily substitutable with JVMs from other vendors. Na-
tive Java compilers are also available.

Just as C++ leveraged the experience of large numbers of C programmers, so Java lever-
aged the large base of C/C++ speakers. Java syntax is quite similar to C++, although its ob-
ject and memory models differ significantly.

Java is a strongly typed language, with distinct primitive and object types. The usage of
the two differs significantly: Java statically allocates primitives and treats them as value-
based variables (i = j assigns j’s value to variable i), but dynamically allocates object types
at run time and manipulates them only through reference variables (i = j assigns the physical
object referred to by j to an alternative reference i). Java has no reference syntax for primi-
tives but does provide tools for conversion between primitives and corresponding object
types, such as int and Integer. Java version 1.5 adds autoboxing, the automatic conversion
between primitives and their corresponding wrappers in common circumstances such as pa-
rameter passing and use in collections.

All Java object types share a single Object ancestor and so are, at the most abstract level,
type compatible. Run-time type checking throws exceptions if invalid downcasts (treating an
object as a subtype) are used. Polymorphism is automatic, and a programmer can prevent it
only by explicitly prohibiting the definition of overriding methods. Java supports only single
inheritance, although interfaces (uninstantiable class specifications containing only con-
stants and method declarations) can emulate multiple superclasses.

Packages organize classes and provide a scope for identifiers. Each source-code com-
pilation unit (file) in Java can contain at most one public class and must bear the name of that
class, although the file may define other supporting classes. A declaration at the top of the

18.2 Abbreviated ATM Model 317

file identifies the package. Files using public symbols from a different package use an import
directive to access the public elements of that package (such as import java.io.* to use class-
es in Java’s i/o package/library).

Similar to C++’s access specifiers, Java’s access modifiers restrict the availability of at-
tributes and methods. Without explicit specification, an attribute or method has by default
package accessibility and may be used by all other methods defined within the package. Ex-
plicit options are private (intraclass access), public (universal access) and protected (extends
access to subclasses defined outside their parent class’s package). Thus the Java meaning of
protected is a bit different than C++.

Memory management is the province of the JVM. All Java code—data and methods—
exists within the context of a class. The system loads and unloads classes as needed and re-
locates code within memory during run time. The programmer need not, and cannot, know
the location of objects—they must be addressed through their corresponding references that
syntactically appear as object variables.

Object deallocation is done through garbage collection—when all references to an ob-
ject have been retired, the system will return object memory to its pool. Although the pro-
grammer can suggest object destruction, the system cannot be forced to collect garbage on
demand. Java also offers run-time memory error detection (such as array out of bounds and
attempted use of null references) and throws appropriate exceptions on detection.

In summary, Java emphasizes run-time portability and code safety at the cost of some
efficiency and flexibility. Java provides abstract interfaces to emulate multiple inheritance,
distinguishes between object and primitive type semantics, and offers a rich library of objects
for both general implementation and for system-level integration on distributed platforms.

18.1.3 Comparison of C++ and Java
Table 18.1 compares C++ and Java.

18.2 Abbreviated ATM Model
Figure 18.1 shows a portion of the ATM model that we will use as an example. We have add-
ed CheckingAccount and SavingsAccount so that we can discuss generalization.

18.3 Implementing Structure
The first step in implementing an OO design is to implement the structure specified by the
class model. You should perform the following tasks.

■ Implement data types. [18.3.1]

■ Implement classes. [18.3.2]

■ Implement access control. [18.3.3]

■ Implement generalizations. [18.3.4]

■ Implement associations [18.3.5]

318 Chapter 18 / OO Languages

18.3.1 Data Types
If you have not already assigned data types to attributes, you must do so now. Certain data
types merit special consideration.

Primitives

Floating-point numbers, integer types, characters, and booleans can express simple values.
Where possible, use numeric values instead of strings. Numeric types typically allow better
storage and processing efficiency, as well as easier maintenance of attribute integrity. (See
subsequent section on enumerations.)

Table 18.1 C++ vs. Java. Both are powerful languages with different trade-offs.

C++ Java

Memory
management

Accessible to programmer. Ob-
jects at fixed address.

System controlled. Objects relo-
catable in memory.

Inheritance
model

Single and multiple inheritance.
Polymorphism explicit per meth-
od. No universal base class. En-
courages mix-in hierarchies.

Single inheritance with abstract in-
terfaces. Polymorphism automat-
ic. Universal Object ancestor.

Access control
and object
protection

Thorough and flexible model with
const protection available.

Cumbersome model encourages
weak encapsulation.

Type
semantics

Consistent between primitive and
object types

Differs for primitive and object
types.

Program
organization

Functions and data may exist ex-
ternal to any class. Global (file)
and namespace scopes available.

All functions and data exist within
classes. Package scope available.

Libraries

Predominantly low-level functional-
ity. Rich generic (template) con-
tainer (data structures) and
algorithm library.

Massive. Classes for high-level
services and system integration in-
cluded.

Run-time error
detection

Programmer responsibility. Results
in undefined behavior at run time.

System responsibility. Results in
compile-time or run-time termina-
tion.

Portability
Source must be recompiled for
platform. Native code runs on
CPU.

Bytecode classes portable to plat-
form-specific JVMs. JVM must be
available.

Efficiency Excellent.
Good. Can vary with JVM imple-
mentation.

18.3 Implementing Structure 319

Object Types

You can use objects to collect and organize attribute values into richer types. C++ supports
the physical nesting of objects, where an instance of one object is physically created within
the memory space of another during object construction. Java supports only the referencing
of objects as members, so a Java object within another object is analogous to a C++ pointer
or reference member that must be explicitly bound to another object.

C++ structs are technically no different than classes except that all members are public
by default. They are conventionally used as “POD”—that is, “Plain Old Data”—to bind val-
ues together in a logical grouping with no methods. A constructor may be added to initialize
data members. Although all members are public, the host object encapsulates access to the
struct members.

struct address {
string street;
string city;
string state;
address() : street(""), city(""),state("") {}

};

class Customer {
string name;
address addr; // object attribute
float tempAmount;

public :
// ...

Figure 18.1 Abbreviated ATM implementation class model used in this chapter

Issues

accountCode

Code
card

Bank

name 1

1

Account

balance
creditLimit

*1

1

* 1*

CardAuthorization

password
limit

0..1

0..1

*

*

close

verifyPassword

verifyAmount
post

CashCard

serialNumber

createSavingsAccount
createCheckingAccount
createCashCard
verifyAmount

addAccount
removeAccount
close

CheckingAccount

protectFromOverdraft

SavingsAccount

name

Customer

address

getAmount
getAccount

tempAmount

activeCard

activeAccount

0..10..1

ATMsession

0..1

0..1

sessionStartTime

rate

320 Chapter 18 / OO Languages

string City() { return addr.city; } // use
};

You can follow a similar strategy with Java, although the host object’s initialization or con-
structor must explicitly create the object-attribute instance. Default package access yields ac-
cess to object-attribute members within the using class.

class Address {
String street = "";
String city = "";
String state = "";

}

public class Customer {
private String name;

// note explicit construction of attribute
private address addr = new Address(); // object attribute
private float tempAmount;
// ...
String city() { return addr.city; } // use

}

Reference Types

You can use Java object references, and C++ pointers and references, to implement associa-
tions. In Java, all class-type variables represent references to objects, while in C++ a variable
may directly represent an object. C++ requires extra care that objects are not mistakenly used
where a reference type is intended.

Object Identifiers

OO languages have built-in mechanisms for identifying objects, and ways to test object iden-
tity. There is typically no need to create explicit object identifier types. If you need a unique
object identifier, you can obtain it at run time from the system.

In C++ an object’s actual memory address serves as a unique identifier and can be ob-
tained by applying the & (address of) operator to an object or object reference. Object iden-
tity can be tested by pointer (address) comparison. Java’s == operator provides run-time
identity comparison. If a run-time identifier is needed, the universal Object superclass con-
tains hashCode() and toString() methods that, if not indiscriminately overridden, yield
unique integer and string identifiers. Although memory addresses are not available in Java,
most systems implement these methods based on internal object location.

Do not confuse a unique domain identifier, such as a bank account code or taxpayer
number, with an object identifier. A domain identifier describes a domain-dependent proper-
ty, while an object identifier describes a system-based attribute.

Enumerations

Enumerations provide two advantages—a value domain constraint and symbolic representa-
tion of values. For example, CLUB, DIAMOND, HEART, SPADE can express the range of
playing-card suits.

18.3 Implementing Structure 321

C++ can directly implement enumerations. Each enumeration is a discrete type, for
which you can define methods and operators. Members that are not explicitly assigned a val-
ue take on sequential integral values, starting at 0 if not otherwise specified.

enum Card = { CLUB, DIAMOND, HEART, SPADE };

There is an implicit conversion from an enumerated type value to integral type, but not vice
versa. C++ guarantees that the sizes of objects of enumerated type are large enough to hold
the domain’s largest value. For example, a variable of the enum {FALSE,TRUE} could be
sized as a single bit. Enumerations may appear at global scope or may be class members.

In practice, it can be cumbersome to use C++ enumerations, owing to conversion issues
and the burden of redefining operations that are natively available for ints. Enums are best
used to clarify code by providing symbolic constants. Encapsulated attribute values may be
internally stored and manipulated as ints, while the public interface uses the constants to re-
strict parameter values, and method implementations may use the constants as bounds.

class Car {
public: // make enum public so clients can use it

enum direction {N,E,S,W};
private:

int mph; // car speed
int nesw; // car direction

public:
// require enum type parameter

Car(int speed,direction dir) : mph(speed), nesw(dir) {}
// int allows ++, -- without overloading for enum type

Car& TurnRight() {if (++nesw >W) nesw = N; return *this;}
Car& TurnLeft() {if (--nesw <N) nesw = W; return *this;}

// ...
};

int main()
{

Car (15,Car::E): // client uses public enum value
// ...

}

Java versions prior to 1.5 do not include the ability to create enumerated types. Java enums
are similar to those in C++. In the absence of enumerations, you can use interfaces (see Sec-
tion 18.3.4) to group and share constants. The explicit field modifiers public, static, and final
are optional here, as they apply by default to all int fields specified within an interface. (Note
that the “Enumeration” found in the Java class library is a deprecated interface providing ru-
dimentary iteration operations and is unrelated to enumerated types.)

public interface Card {
public static final int CLUB = 0;
public static final int DIAMOND = 1;
public static final int HEART = 2;
public static final int SPADE = 3;

322 Chapter 18 / OO Languages

...
}

18.3.2 Classes
OO programming languages provide direct support for implementing objects. You must de-
clare each attribute and method in a class model as part of its corresponding C++ or Java
class. You will also need to add attributes and methods for implementing associations (see
Section 18.3.5). It is good practice to carry forward the names from the design model.

You can regard objects as entities that provide service to client objects that make re-
quests. Services appear as public methods of a class. Methods provide the protocol for ob-
taining services. In general, method parameters represent information that an object needs to
perform a service, and the return value of the method represents the object’s response to the
client requesting the service.

Because the public interface describes the class’s services, it is best to work “outside in”
when defining classes. Start with the public interface—methods intended to provide services
to others—and add internal methods and attributes as needed to support the public interface
methods.

Because the public methods document class behavior, they typically appear at the be-
ginning of a class declaration for easy visibility, although there is no requirement that they
do so. Both C++ and Java resolve symbols only after reading an entire class definition, so
members can refer to each other in any order.

18.3.3 Access Control
A class should define public methods for services that clients can request or invoke. A class
may also specify data that is immutable as public. All other members of the class—attributes
and methods used internally to implement public functionality—should be rendered invisi-
ble and inaccessible to other objects and functions.

Both Java and C++ rely on access specifiers (called access modifiers in Java) to control
clients’ access to methods and data. The most basic specifiers, applied to attributes and meth-
ods, are the same for both languages. Only methods of the class can access private attributes
or methods. Any client can access public members of the class.

Access Control in Java

Strong encapsulation in Java requires detailed attention to packages as well as access speci-
fiers. A Java package provides a scope that extends access privileges to other entities within
that scope. Packages are indicated by a package declaration at the top of a source file; mul-
tiple files can thus be grouped into the same package. Unless the private access specifier ex-
plicitly qualifies an attribute or method, other methods of classes defined in the same
package can freely access it. If no package is specified, a class is considered to be in a global
default package where all but its explicitly private members are available to all other clients
residing in any other source file without package specification.

We recommend that you avoid the default package and instead name packages to man-
age access control. Furthermore, you should declare all attributes and nonpublic methods as

18.3 Implementing Structure 323

private—package access alone provides only weak encapsulation. You should guard access
to all attributes by wrapping them with appropriate methods.

In addition to attributes and methods, Java classes have explicit access control. A Java
class itself must be declared public to allow its public methods to be accessed by clients out-
side its package. See Visibility and access to classes below.

Access Control in C++

C++ access specifiers apply to sections of the class declaration. All members are assumed
private until the compiler encounters an access specifier. Specifiers can appear anywhere in
the declaration and apply until another specifier is encountered. Again, you should guard all
attributes and methods other than the known public interface as private and relax access only
with sound justification. Access specification within C++ structs is the same, with the excep-
tion that members are by default public until a more restrictive specifier is encountered (see
Section 18.3.1).

C++ allows selective access to private members through a friend declaration. The class
containing the declaration grants access to a named function, method, or class and in doing
so allows the named entity full access to its private members. Friendship is best used spar-
ingly, as it provides additional paths to encapsulated members.

Visibility and Access to Classes

For a class type to be recognized and its public members available, it must be visible to its
potential clients. For both C++ and Java, the basic compilation unit is the file. Classes in a
single file are visible to each other, but in practice it is best to place no more than a single
class, along with incidental support classes, in a single file. Thus, class types from outside
the file must explicitly be made visible to the compilation unit.

In Java, the package structure governs visibility and access. Classes in files declared to
be in the same package are always visible to one another. Packages are dependent on disk
file structure—all files declared to be in a package must reside in a directory named with the
package name in order to be located by the Java system. For both compilation and execution,
Java uses the environmental variable CLASSPATH, which gives a relative starting point for
the system to search for packages and classes.

Although a package can contain many classes, each Java source file can have at most
one public class, and the file must have the same name as the sole public class within. Classes
outside the package can use only public methods of public classes. For a public class to be
visible to a class in a different package, the client class’s source file must include an import
directive: import packagename.classname or import packagename.*. The system locates
classes by prepending the classpath to the package and optional file name.

For the ATM case study, we would place each of the classes in a separate file. For exam-
ple, the source file Bank.java would contain:

package bankInfo
public class Bank { ... }

and the file Customer.java would contain:
package bankInfo
public class Customer { ... }

324 Chapter 18 / OO Languages

The files Bank.java, Customer.java, and other classes in the bankInfo package must reside in a
disk directory named bankInfo. For Bank and Customer to be visible to the ATMsession class,
which is not part of the bankInfo package, the ATMsession.java source file must first declare:

import bankInfo.*
public class ATMsession { ... }

The import statement lets the ATMsession implementation see and use the public methods
of the public classes found in the bankInfo package.

The rules and naming requirements of packages are somewhat onerous, but do not be
tempted to simplify by using a global package. Without controlling the visibility and access
of the classes themselves, you abandon much of access control. Although private attributes
are still respected as private, without packages, methods designed for internal access to those
private attributes effectively become public, and nonpublic classes intended for restricted use
also become publicly available.

C++ has no language-specified dependence on the location of source code or compiled
code. C++ programs divide code into header files, which contain declarations (including
classes), and implementation files, which contain the actual code for all but the most simple
methods (very small methods are typically implemented within class declarations). To intro-
duce symbols from one file that are needed in another, the #include<filename> (when the
source resides on a system-specified search path) or #include “filename” (when the full path
is specified within the quotes) directive is placed at the top of the client file. The directive
incorporates the header file containing the declarations of the desired class into the client’s
compilation unit by substitution, so that the symbols contained in the header are effectively
placed into the file at the directive’s location.

C++ has a namespace feature that serves as a scoping mechanism for program names
but does not affect access control. A class is placed into a namespace if it is declared within
a namespace declaration in a file and has the fully qualified name of namespace::classname.
A namespace can span source files, and a source file can contain multiple namespaces. To
avoid cumbersome syntax, the symbols of one namespace can be introduced into another
with a using directive. C++ standard library names exist within the namespace std.

When no namespace is specified, symbols are in the global namespace. Because
namespaces impact visibility but not access control, they are used primarily to prevent or dis-
ambiguate coincident symbol names as might be found when utilizing multiple libraries.

Access Control in Inheritance Hierarchies

Both languages include the protected access specifier, but it works differently in C++ and Ja-
va. In C++, a protected member is accessible only by methods of the class and its subclasses.

In Java, protected attributes and methods have package access, which is further extended
to methods of subclasses that are defined outside the package where the superclass is defined.
Java does not have the equivalent of C++’s more restrictive protected access.

Applying Access Control

A UML model may have annotations—{public}, {private}, {protected}, {package} or +, –,
#, ~—indicating access specifiers for class members (called visibility in the UML). The lack

18.3 Implementing Structure 325

of an explicit indication implies that a method is part of the public interface. A thorough im-
plementation should include access specifiers and make attributes private.

18.3.4 Generalization
OO languages provide robust support for generalization through inheritance. A class can
serve as the parent superclass to one or more child subclasses. A subclass inherits all the
members of its parent and may add attributes and methods of its own. The subclass may also
override superclass methods to let the child express a behavior of the same name and signa-
ture (parameters and return) differently. Subclasses in turn may act as superclasses to suc-
cessive generations of subclasses, allowing the creation of hierarchies of classes, with each
level expressing extended and/or more specific behaviors.

Beyond the convenience of making subclasses easy to specify, the inheritance mecha-
nism lets objects be utilized more abstractly. Inheritance enables polymorphism (from the
Greek “many faces”), where a child type can be addressed as if it were any of its ancestral
types. At run time, the system resolves which kind of child is in use, and invokes that sub-
class’s variation of a behavior specified more generally by the ancestor. In a sound hierarchy,
each subclass should be able to sensibly perform all superclass behaviors, such that any-
where the parent type might appear, the child type can fulfill the parent’s behavioral expec-
tations. [Liskov-88]

You need not fully specify all classes in an inheritance hierarchy. You can simply declare
higher-level abstractions, deferring implementation detail to subclasses. These are abstract
classes—classes that are described but remain partially or wholly unimplemented. Abstract
classes describe types at a level where there is insufficient knowledge to implement a con-
crete behavior, but the general specification is known. For example, any Shape may be
drawn, but until the type of Shape is specified, it is impossible to know how it is drawn.

Because they are incompletely implemented, you cannot create objects of abstract types.
Instead, you create concrete objects of their subclass types—ones that fully implement the
parent’s specified behavior—and assign a superclass-type reference. The subclass objects
are referred to as if they were of the more generic type. For example, a Square or Circle—
concrete subclasses of an abstract Shape—might be assigned to a Shape-type reference vari-
able. Although both would appear as Shapes, when their draw() method is invoked, each will
polymorphically manifest its proper behavior. In Java,

Shape s1 = new Circle();
Shape s2 = new Square();
s1.draw(); s2.draw();

will result in drawings of different shapes.
C++ and Java implement somewhat different models of inheritance.

Inheritance in Java

All Java objects share a common ancestor, the Object class. Object contains minimal meth-
ods and fields to support programming concerns such as object identity, equivalence, and
concurrency. The common basis also allows the manipulation of objects at an entirely gener-
ic level, such as forming collections of otherwise unrelated types. Using objects at an “un-

326 Chapter 18 / OO Languages

typed” level of abstraction avoids some of the constraints imposed by a strongly typed
language.

Inheritance is implemented with the extends keyword.
class Account {

private float balance;
public void Post(float amount) { ... }
public float Balance() { return balance; }

}
class SavingsAccount extends Account {

private float rate; // add interest rate attribute
float CalcInterest() {

// calculate unpaid interest due
}

}
A Java class can extend at most one class. However, Java provides some of the benefits of
multiple inheritance through interfaces. A Java interface is a class specification with no im-
plementation. It consists of method declarations without implementations and may also con-
tain constant fields that are allocated per class, not per object. Like classes, interfaces can be
extended to create subinterfaces.

To use an interface, a class must declare that it implements the interface, and provide
code for all of the interface’s methods. A class may extend at most one class and in addition
may implement any number of interfaces, allowing a simulation of multiple inheritance.
When multiple interfaces are implemented, an object may be referred to through the type of
any of its interfaces. Here, methods required for interest-bearing accounts are abstracted into
a separate interface, which in turn is implemented by a SavingsAccount. This can ensure a
uniformity of interest-bearing methods across all classes that implement the interface, be
they SavingsAccount, InterestBearingCheckingAccount, or some other type.

interface InterestBearingAcct {
float CalcInterest();

}
class SavingsAccount extends Account

implements InterestBearingAcct {
private float rate;
public float CalcInterest() {

// implement interest calculation
}

}
A SavingsAccount can now participate in programs as an Account, a SavingsAccount, or an
InterestBearingAcct.

Besides concrete classes and interfaces, Java allows abstract classes—incompletely im-
plemented classes that cannot be instantiated, but serve as parents to concrete subtypes. Both
the class itself and any unimplemented methods must be specified as abstract.

public abstract class AbstractExample {
void method1() { /* ... */ }

18.3 Implementing Structure 327

abstract void method2 ();
}

A public class, because it is accessible to any client that has imported the package in which it
resides, can serve as a superclass to a subclass defined in a different package. Subclasses de-
fined outside their superclass’s package can access protected, as well as public, members of
their parent. Private members of a superclass are not visible to subclasses. (See Section 18.3.3.)

To prevent further subclassing of a type, a class can be declared final. Similarly, a final
qualifier applied to a method prevents that method from being overridden.

Inheritance in C++

C++ classes share no common parent; class hierarchies can start arbitrarily with any class.
A superclass is called a base, and a subclass is called a derived class. A direct base is an im-
mediate parent of a derived class, while an indirect base is a more remote ancestor.

In C++, unlike Java, polymorphism is not automatic. A class may mix methods that are
automatically resolved by type at run time with those that are not. To activate polymorphism,
a method must be declared as virtual. Those that are not declared as virtual will be invoked
according to the type by which the object is referenced, not the actual type of the derived
class, even if the derived class overrides the method.

class Hello { //...
public:

void method1() { cout << "hello\n"; }
virtual void method2() { cout << "hello\n"; }

};

class Goodbye : public Hello { //...
public:

void method1() { cout << "goodbye\n" ; }
void method2() { cout << "goodbye\n"; }

};

int main() {
Goodbye g;
Hello& h = g; // same object through base type

g.method1(); g.method2(); h.method1(); h.method2();
}

The output is:
goodbye // method1 not virtual; called via derived
goodbye // method2 is virtual; called via derived
hello // method1 -- not virtual! -- via base
goodbye // method2 via base

C++ does not provide a way to prohibit overriding of methods, but in a hierarchy where some
methods are overridden and others are not, a nonvirtual method may indicate the authors’
intent that the base implementation should be inherited intact and left unmodified.

328 Chapter 18 / OO Languages

C++ incorporates access specification in inheritance syntax. A derived class may be
specified as public, protected, or private. Public inheritance specifies that all public methods
inherited from the base remain public in the derived class.

class SavingsAccount : public Account { ...}
In private inheritance, all methods become private to the derived class. Private inheritance is
used to indicate that a derived class is implemented in terms of its base, but it is not intended
to describe a logical is-a relationship where the base should be considered an abstraction of
the derived class. In practice, encapsulating the base type as a member of the (would-be) de-
rived class (using delegation, see Section 15.9.3) is often the better strategy. Protected inher-
itance dictates that public methods in the base become accessible only to further derivations.
In practice, this is rarely used.

Abstract classes are created by the inclusion of at least one pure virtual method, which
is a virtual method that uses “initialization to 0” syntax at declaration: void fn() = 0. Such
classes cannot be instantiated, and their derived classes are inherently abstract unless they
implement all pure virtual functions inherited from their base.

C++ supports multiple inheritance, although in practice the best combinations of parent
classes are mixes of concrete types and predominantly abstract classes that represent behav-
ior specifications. The latter perform somewhat like Java interfaces, with the significant con-
venience that default implementations for methods may be written where appropriate and be
maintained at a base level instead of requiring maintenance across derivations.

class Account { // nonabstract
public:

// assume Post implementation may be
// specific to derived account types;
// base implementation is default way.

virtual void Post(float amount) { ... }
float Balance() { return balance; }

private:
float balance;

};

class InterestBearingAcct { // abstract class
public:

virtual float CalcInterest() = 0; // "pure virtual"
float Rate() { return rate; }

private:
float rate;

};

class SavingsAccount : public Account,
public InterestBearingAcct {

public:
virtual float CalcInterest() {
// calculate unpaid interest

18.3 Implementing Structure 329

}
};

18.3.5 Associations
OO languages lack direct support for associations. However, you can readily implement
links with object references or distinct association objects. (See Section 17.4.) You should
promote the association to a class if there are attributes describing the association itself. We
also recommend promotion for n-ary and qualified associations.

One-Way Associations

One-way associations reduce interdependencies among classes. When one class references
another, the referenced class must be visible and accessible to the hosting class. The refer-
encing class must enforce and maintain the association, and typically utilizes the interface
of the referenced class. To the extent these dependencies can be reduced to one side of an
association, maintenance is reduced and reusability may be enhanced.

For example, in Figure 17.7, if we do not need to retrieve the collection of employees
for a company, a pointer from Person to Company will suffice. In Java, the Person class can
simply contain a Company field.

public class Company { ... }
public class Person {

private Company employer;
...

}
C++ offers two options for implementing referencing attributes. Most commonly, a pointer
may be used, which allows a link to be changed. Assuming a Person may change employers
leads to the following C++ code. (This C++ code also permits a null employer, which is in-
consistent with the multiplicity in Figure 17.7. Update methods would have to prevent a null
employer to enforce the multiplicity.)

class Company { ... }
class Person {

Company* employer;
...

}
A C++ reference member implies a permanent link in which the containing object has a de-
pendency on the attribute object. References must be bound at initialization. They cannot be
null, nor can they be assigned (changed), so the language enforces the preexistence of the
link target. Assuming that an Account is issued for a particular Bank and is not transferable,
and that no Account may be issued without a Bank,

class Bank { ... }
class Account {

Bank& bank;
...

}

330 Chapter 18 / OO Languages

This reference-binding requirement of C++ necessitates the existence of a Bank prior to the
construction of an Account (see Section 18.4.1). You can achieve a partial constraint in Java
by declaring an object-type attribute as final, which ensures that a reference variable cannot
be reassigned to a different object, although it does not entail the preexistence requirement.

When implementing associations through referencing attributes, take care not to subject
the objects involved to inadvertent changes. An object that hosts a referencing attribute can
potentially open a back door by inappropriately exposing the referenced object itself or its
attributes. It is particularly important that attributes representing links should be well encap-
sulated and be modified or reported only through intentional and safe methods. C++ offers
an added level of security with the ability to apply the const qualifier to referenced objects
in situations where they may be intentionally exposed, but are not intended to be modified in
the context of the association. Java does not distinguish between constant and mutable ob-
jects.

Two-Way Associations

Two-way associations entail link maintenance for both association ends. You can implement
a one-to-one association with either a single reference on each end or an association object.
Similarly, a one-to-many association requires a single reference on one end and a collection
of pointers on the other end or an association object. For example, a customer may have sev-
eral accounts and we want to be able to navigate this association in both directions. Both Java
and C++ have collection object types available from their libraries that can represent the
“many” side of the link. In Java,

public class Account {
private Customer customer; // the 1 side of one-to-many

...
}

import java.util.* // to access HashSet class
public class Customer {

// list of account ref's
private HashSet accounts = new HashSet();

...
}

Association Classes

Association classes can increase independence of the objects involved by removing direct
references to related classes, but they do so at some loss of efficiency and increase in com-
plexity of implementing operations. Independent association classes decouple linked objects
but require the overhead of navigating through the link.

An explicit association object is conceptually a set of tuples, each tuple containing one
value from each associated class. A binary association object can be implemented as two dic-
tionary objects, each dictionary mapping in one direction across the association. Both Java
and C++ have library support for map objects. To encapsulate links and make link mainte-
nance more intuitive, the maps may be wrapped into an application class that serves as a
manager for construction or use of the objects involved.

18.4 Implementing Functionality 331

Choosing an Implementation

If the model has not already prescribed implementation of an association, your choice may
depend more on the scale, architecture, or enterprise environment of an application than on
the nature of the association itself. If you are constrained from modifying existing classes,
an association class may be preferable. Association classes often best implement one-to-
many associations where the “many” side can be quite large, or is sparse, and can provide
independent and extensible management operations where required.

For simple associations, referencing attributes provide navigation across links. Where
possible, one-way associations provide more efficient and safer implementations. Care
should be taken to encapsulate links and to prevent inadvertent exposure of a referent’s in-
formation or interface through a host object.

18.4 Implementing Functionality
Once you have the structure in place, you can start implementing methods. For each class,
specify methods by signature (method name, parameters, return type). The class model im-
plies many methods. Obviously, you can create and destroy objects and links as well as ac-
cess attribute values. More subtly, you can traverse a class model leading to additional
methods. Methods also arise from derived attributes, the state model, and the interaction
model.

■ Object creation. [18.4.1]

■ Object lifetime. [18.4.2]

■ Object destruction. [18.4.3]

■ Link creation. [18.4.4]

■ Link destruction. [18.4.5]

■ Derived attributes. [18.4.6]
Objects have state, behavior, and identity. This is reflected in the object life cycle. Objects
are created by the system and should be initialized in a valid state. C++ has facilities for de-
struction of objects on demand, while Java can only suggest destruction to its garbage col-
lector. Both have special methods that run at object creation, and both can specify behavior
at the termination of an object’s lifetime.

Object can request services or information from one another. They do so by invoking
other objects’ methods. In both Java and C++, object behaviors are invoked using a member-
ship operator ‘.’ to indicate that the right-hand operand—a method of the object’s class—
should be invoked on the named target object. The same membership syntax accesses at-
tributes—X.y names the y attribute of the object X, though normally attributes are encapsu-
lated and so not reachable from another object.

Within the context of a class, objects have an implicit reference to self, called this in
both Java and C++. You need not explicitly qualify member names within class definitions:
In Java, fn() means this.fn() and y=10 means this.y=10. In C++, this is a pointer, and so the
pointer membership operator “->” would be used, this->fn().

332 Chapter 18 / OO Languages

For an object to call upon another object for services or information, it must have a name
by which it can access its target. This handle may be provided in the form of a link, where
the requesting object has a pointer or reference to another, or through a parameter, where one
object receives a handle to another at method call. Any invocation of the target objects’ meth-
ods (or, rarely, the use of target objects’ attributes) takes place through the target handle and
is governed by the target’s members’ access specifications.

Both C++ and Java allow static class members that are shared by all objects of a class
type. Although they are subject to access specification, as any other data or method of a class
might be, these static elements have entirely different life cycles than conventional objects
and can be accessed through the class itself, apart from any particular instances that may ex-
ist. (See Section 18.4.2.)

18.4.1 Object Creation
In OO languages, objects are typically created dynamically (during run time), through a re-
quest to the system to create an object of a particular type. In Java, this is a requirement for
nonprimitive types, while primitive types are statically (at compile time) allocated simply by
declaration. In C++, both object and primitive types can be either statically or dynamically
allocated, and the results are considered as objects in either case. Both Java and C++ use the
new operator to create objects. In C++,

// static allocation -- creates a single account
Account acct1;

// statically allocate an array of 10 accounts;
Account accounts1[10];

// dynamic allocation: define a pointer,
// initialize with result of new operation

Account* acct2 = new Account;

// dynamically create array of 10 accounts
Account* accounts2 = new Account[10];

In Java,
// create a reference variable,
// initialize with result of new operation

Account acct = new Account();

// create array of 10 references -- no accounts are made!
Account accounts = new Account[10];

// now create the accounts for the array:
for (int i = 0; i < 10; i++) accounts[i] = new Account();

When a new object is created, the system allocates storage for its attribute values and per-
forms other chores involved with the start of the object life cycle. OO languages free the pro-
grammer from having to understand technical details of object implementation such as

18.4 Implementing Functionality 333

object layout and internal identifiers. Java and C++ also let the programmer specify opera-
tions to occur at the time of object creation, so that you can ensure that objects come into
existence in a valid logical state. Once the system has completed its creation chores, a special
method, called a constructor, is automatically invoked. The constructor takes the form of a
method, with no return value, that shares the class name. It may have any number of param-
eters and may be overloaded. For example, in Java, the following code specifies that Account
has two constructors, one requiring an opening balance and one that takes no arguments.

public class Account {
...

public Account(float OpeningBalance) {
balance = OpeningBalance;

}
public Account() { balance = 0; }
...

}
Constructors may be used to assign values to members, to create member objects, or perform
other start-of-life processing on an object. Constructors run after the object is fully formed,
so they may call other methods and in general have the same capabilities, privileges, and con-
straints of other methods. If no constructor is defined for an object, a constructor of the form
X(){} is presumed to exist. Though it performs nothing, it allows creation expressions match-
ing its imaginary declaration. Once you create a parameterized constructor, the system will
no longer provide the no-argument form for you. If you need one, you will have to overload
X(...) with X() , as done above for Account.

Understanding constructors in subclasses is not difficult, if you consider object con-
struction. Subclass-type objects inherit their attributes and methods because they contain
their parent type, plus any members they add at the subclass level. You can think of it as if
their parent type is created, and then their own piece is added on, and so while constructors
are not inherited, they run sequentially from the most general through the most specific level.
In the case of C++, where objects can be statically allocated, member objects get constructed
recursively—including the invocation of their respective constructors—before the host ob-
ject can be fully constructed. Only after the host object is complete does its own constructor
run. You can see this in action (here in C++).

class X {
public:

X() { cout << "X!"; }
};

class Y : public X {
public:

Y() { cout << "Y!"; }
};

class Z : public Y {
public:

334 Chapter 18 / OO Languages

Z() { cout << "Z!"; }
};

int main() {
Z z; // simply make a Z...
return 0;

}
Running the code produces the result: X!Y!Z!

It is very poor practice to define no constructors for a class. By default, C++ performs
no default initialization of object members, while Java initializes members to 0 or null ac-
cording to type. Neither provides a valid-state object for most classes. The purpose of the
constructor is to have a way to perform initialization and operations on an object so that, at
the time of its entry into the program domain, it is a fully formed, logically intact, safe-to-
operate-on instance of its type.

If there are no start-of-life operations to be performed by a newly constructed object,
Java allows nonzero default initializations to be performed within the class definition. In
C++, initialization take place within a member initialization list that specifies initial values
for members before entry into the constructor code block. Both languages allow assignment
to members within the body of the constructor, although initialization should be preferred
over assignment wherever possible.

In Java,
public class Account {

private float balance = 0; // initialization
...
public Account() {} // constructor need not assign

}
In C++,

class Account {
float balance; // values not allowed
...

public:
Account() : balance(0) {} // initialization via list

}
In C++, the system also supplies a copy constructor, that specifies the semantics of copying
by assignment. Like the default (no-argument) constructor, if one is not written for the class,
a constructor of the form X(const X& x) is provided, with the default value-based meaning
of shallow (memberwise) copying. Java discourages object copying by requiring the pro-
grammer to specify that a class implements the Cloneable interface and override Object’s
clone() method.

18.4.2 Object Lifetime
Statically allocated (created at compile time) objects, which may be any type in C++ and
primitive types and reference variables in Java, exist within the scope of a code block, indi-
cated by { }. They are automatically destroyed when program control passes out of their

18.4 Implementing Functionality 335

scope. Dynamically allocated (new’d) objects persist in memory from the time of their cre-
ation until they are explicitly destroyed in C++, or no longer in use by the program in Java
(see object destruction below).

Both C++ and Java allow class members to be qualified as static. Static members belong
not to an instance of a class, but to the class itself, and (if public) can be accessed in the ab-
sence of any instance of the class: (C++) X::StaticMethod() or (Java) X.StaticMethod(). As
a convenience, both static data and methods can be addressed through a particular object, but
neither are instance members of that object.

Static data members come into existence before any particular object of the class type is
created—at program entry in C++ or at class loading in Java—and remain in existence
throughout the program. In C++, static members exist as independent objects (memory allo-
cations), while in Java each class itself has an independent instantiation (the class instance),
of which statics are considered members. Although statics may also be accessed within the
scope of their class during method definition or through particular object instances, there is
only one instance of a static data member per class, and its life cycle is entirely independent
of any object through which it is accessed. Because static methods are not members of a par-
ticular object, the notion of this (and super in Java) has no meaning within the context of a
static method, and regular instance data cannot be referenced without qualification with a
specific object reference.

In C++, variables defined at global scope (not within a function, including main, meth-
od, or as a member of another object) have a life cycle much like class-based statics. They
are created before the program starts, and are destroyed at program termination. While glo-
bal data is discouraged as poor practice, global functions are commonly used in C++. Al-
though Java does not allow free-standing functions to be defined at global scope, global
functions are regularly emulated in utility library classes that contain groups of static meth-
ods. Several of Java’s library classes, such as Integer or Collections, are predominantly or
wholly composed of static methods.

Because static members and class instances are created apart from object instances, the
initialization of statics occurs independently. Statics in C++ are declared within, but defined
and initialized outside, the class, while Java static fields may be initialized conventionally or
within a static initialization block. Both C++ and Java statics are guaranteed to be initialized
only at some point before use in a program, but neither language specifies a relative instan-
tiation or initialization order.

18.4.3 Object Destruction
When an object is no longer needed, it may be destroyed and its storage returned to the mem-
ory pool. With statically allocated (compile-time) objects, this happens as they fall out of
scope. If, for some reason, you retain a handle to an object that has fallen out of scope, using
it would be an error, somewhat analogous to calling the telephone number for someone who
has moved and is no longer available at the number you called.

 For dynamically allocated objects, with their potentially unconstrained lifetimes, the
problem becomes one of eliminating objects that are no longer of interest, or whose exist-
ence is no longer logically valid, and recycling their space in memory. For this, C++ and Java

336 Chapter 18 / OO Languages

each pursue one of two basic strategies: Either the programmer takes responsibility for ex-
plicitly removing objects that are no longer needed or sensible (C++), or the system keeps
an eye out for whether an object is actually in use or not (Java). The latter approach, called
garbage collection, is typically implemented in a way that the system tracks references to
the object. When there are no remaining references (no valid handles to the object exist any
more), the system tags the object as eligible for recycling. The system periodically runs a
garbage collector that reclaims tagged objects’ space for the memory pool.

Manual disposal of objects, as C++ practices, places a burden on the programmer to be
aware of allocations and responsible for object cleanup. However, it also allows tight control
of the object life cycle and the ability to fully model object events, including exit or termi-
nation of an object from its domain. Garbage collection frees the programmer from memory
management chores, but restricts the ability to exercise end-of-life-cycle control.

C++ classes can have destructors, analogous to constructors, that run automatically at
the destruction of an object. Destructors take the form of a no-argument constructor, with the
~ before the class name: X::~X() { ... }. They never take arguments and have no return value.

Because C++ object destruction can be explicitly invoked and predictably executed, it
is common for the destructor to undo things a constructor has done. Most common is the al-
location and deallocation of dynamically created object members, but this pairing of func-
tionality may include increment/decrement of counts, acquisition and release of resources,
and so forth. Destructors can also be used to predictably invoke any logically necessary (of-
ten cleanup) behaviors that are required at end of object life.

Window :: ~Window ()
{

// erase the window and repaint the underlying region
}

The process of destruction is the inverse of construction: First, the destructor code runs, then
any members that themselves require destruction are in turn destructed (starting with their
destructors), and finally the whole of the memory is returned to the heap.

To explicitly destroy a dynamically allocated object, the delete operator is used. Empty
array brackets [] are used to differentiate the deletion of individual objects from the deletion
of a dynamically allocated array.

class X { ... }
...
X x1 = new X;
X* *x2 = new X[20];
...
delete x1;
delete [] x2;

After deleting a C++ object, it is advisable to immediately assign 0 to any pointers that were
pointing to it. Delete is implemented to have no effect when (accidentally) called on a null
pointer, whereas “double deleting” an object results in undefined—and often disastrous—
behavior.

18.4 Implementing Functionality 337

Java objects are not explicitly destroyed by the programmer. Java discerns when there
are no more references to an object in use, at which time the object becomes eligible to be
destroyed at the garbage collector’s convenience. The programmer can attempt to induce de-
struction, by explicitly setting reference variables to null to detach them from objects, and
may even suggest garbage collection, but cannot guarantee timely destruction of an object.

Java does allow classes to override Object’s finalize() method, which acts in a manner
similar to the C++ destructor. However, because the exact time of object destruction cannot
be triggered, you cannot rely on any operations within finalize() to occur at a predictable
time.

18.4.4 Link Creation
Links are forged and destroyed (valued or set to null) as objects interact with one another.
Referential links should be created in the course of whatever behavior (method) initiates an
association between objects, and destroyed in the course of whatever behavior terminates the
association. In general, you should avoid direct set methods in favor of operations that en-
capsulate data and forge links only under validated conditions.

To create a link in a one-way association, an object retains a handle to a parameter ob-
ject. For bidirectional links, handles can be exchanged, although it is usually preferable to
initiate the exchange from one side and encapsulate the other to ensure consistent logic and
full link updates. Which class governs the exchange is a matter of application logic.

In the following simplified Java example, Students maintain a list of current Courses,
and Courses maintain class lists of current Students. Because the decision to take a course is
generated by a student and conditioned on the student’s status, the creation of links is gov-
erned by the Student.addClass(Course) method. The addClass method in turn calls the
Course’s enroll(Student) method, which is accessible to Student due to the class’s shared
package. However, package access prevents public access to clients (in this case, the class
EnrollmentApplication), thereby restricting link creation to the orderly process prescribed by
Student’s addClass method.

// file Course.java
package school;
public class Course {

private String title;
private HashSet students = new HashSet();

public Course (String nm) { title = nm; }
public String courseName() { return title; }

boolean enroll(Student stu) {
// check that course isn't already full, etc.
// if ok, return result of HashSet.add method
return students.add(stu);

}

338 Chapter 18 / OO Languages

public void printClassList() {
System.out.println("Class List for " + courseName() +

":");
Iterator it = students.iterator();
while (it.hasNext())

System.out.println(
((Student)it.next()).studentName());

}
}

//file Student.java
package school;
public class Student {

private String name;
private HashSet classes = new HashSet();

public Student(String nm) { name = nm; }
public String studentName() { return name; }
public boolean addClass(Course crs) {

// validate student's ability to take this course;
// if ok, request course to enroll student;
// if course returns true, add course to list
return (crs.enroll(this)) ?

classes.add(crs) : false ;
}

public void printCourses() {
System.out.println("Courses for " + studentName() +

":");

Iterator it = classes.iterator();
while (it.hasNext())

System.out.println(
((Course)it.next()).courseName());

}
}

// file EnrollmentApplication.java
import local.school.*
public class EnrollmentApplication {

public static void main(String [] args) {

Student mike = new Student("mike");
Student bill = new Student("bill");
...
Course tt = new Course("Type Theory");

18.4 Implementing Functionality 339

mike.AddClass(tt);
bill.AddClass(tt);

tt.PrintClassList();
mike.PrintCourses()

}
}

Objects can be constructed with knowledge of their collaborators, and so establish links at
the time of object creation. Often, it is desirable to condition object creation on establishment
of links. In such cases, it is necessary to delegate construction to “factory” techniques that
examine criteria before invoking construction, as neither Java nor C++ constructors can re-
turn an error, nor can they abort the construction process. Factories may be classes, or simply
static methods (see Section 18.4.2).

Here (in C++), a Transaction will not be constructed until an account number is validat-
ed and a handle to the associated account obtained.

class Transaction {
...
protected:

// private or protected constructor to prevent
// public construction
Transaction(Account& acct) { ... }

public:
...
static Transaction* MakeTransaction

(const char* acctNumber) {
Account* acct;
// null pointer return indicates no transaction
if (/* account is not ok */) return 0;
// return a transaction for valid account
return new Transaction(*acct);
...

}
};

18.4.5 Link Destruction
Link destruction is generally the inverse of link creation. The activity that dictates the disso-
ciation of objects is the method where a referential link is typically broken. In most cases,
this simply means the handle attribute is set to a null value, or an entry is removed from a
collection of links. A Student might drop a Course,

// Student.dropClass(Course):
public boolean dropClass(Course crs) {

if (!classes.contains(crs)) return false;
if (!crs.drop(this)) return false;
classes.remove(classes.indexOf(crs));

340 Chapter 18 / OO Languages

return true;
}

// Course.drop(Student):
boolean drop(Student stu) {

if (!students.contains(stu)) return false;
students.remove(students.indexOf(stu));
return true;

}
When links involving independently existing objects have been created, typically each object
is intended to continue existence beyond the life of the link. Care must be taken that the ref-
erenced object is accessible through other references, or that a handle to a referenced object
is captured from a link-destroying method. Failure to do so can result in a memory leak
(C++) or an inaccessible object that may be garbage-collected in Java.

In C++, a common idiom is to pair constructor-destructor activity to implement the cre-
ation and destruction of links. Those links often reflect the acquisition and release of resourc-
es.

Links involving objects that are existentially dependent on one another may require de-
struction of one of the linked objects. This, in turn, may imply the updating or destruction of
other objects that may be linked to the dependent object, or suggest that the link sustaining
the dependent object not be destroyed. This is analogous to database operations, where
record deletion may be propagated (cascaded) to related records or prohibited in order to pre-
serve the integrity of existing records.

18.4.6 Derived Attributes
For accuracy and currency, it is always desirable to calculate fresh values from independent
data at the time of use. Usually the time required to compute fresh values is negligible when
weighed against the costs of managing updates and redundancy for stored derived data.

It is a common mistake to include redundant state data in objects. States can often be
determined by examining other attributes (in Java).

public class Account {
// wrong: redundant state data for overdrawn

private boolean overdrawn;
private float balance;
...

// compute state upon request instead
public boolean isOverdrawn() { return balance < 0; }
...

}
States can also be determined via links (here C++):

class Customer {
...
List<Account> accts;

public:

18.5 Practical Tips 341

...
bool hasOverdrawnAccount() {

// iterate through all accounts;
// return true if any are overdrawn

}
}

or may be implied by the presence of links (again, in C++):
class Telephone {

Telephone* connectedTo;
...
public:

// are we connected to another phone?
// if our link isn't null, we are...

bool isBusy() { return connectedTo != 0; }
...

}

18.5 Practical Tips
Here are tips for using C++ and Java to implement an OO design.

■ Enumerations. Use enumerated types for clarity and enforcement of domain values.
(Section 18.3.1)

■ Java packages. Avoid the default package and instead use named packages to manage
access control. (Section 18.3.3)

■ Access control. Declare all attributes and nonpublic methods as private. Relax encap-
sulation only if it is essential to do so. (Section 18.3.3)

■ C++ friend. Use the friend declaration sparingly, because it can compromise encapsu-
lation. (Section 18.3.3)

■ Java interfaces. Consider using Java interfaces as a workaround for multiple inherit-
ance in a model. An interface declares methods and constant fields and also provides a
type for accessing objects. (Section 18.3.4)

■ C++ private inheritance. Avoid private inheritance of classes in C++. Delegation is a
better strategy. (Section 18.3.4)

■ One-way associations. Use a one-way association when two-way association traversal
is not needed. One-way associations are easier to maintain and reduce object interde-
pendencies. (Section 18.3.5)

■ C++ reference and Java final. Note association ends that must be bound at initializa-
tion and cannot be changed. C++ references can fully enforce these semantics, and the
Java final property can partially enforce them. (Section 18.3.5)

■ Constructors. It is a very poor practice to define no constructors for a class. A construc-
tor should always initialize an object to a valid initial state. (Section 18.4.1)

342 Chapter 18 / OO Languages

■ C++ deletion. When deleting a C++ object, it is advisable to immediately set its point-
er(s) to 0. Delete has no effect for a null pointer, but accidental deletion of an already
deleted object can be disastrous. (Section 18.4.3)

■ Link destruction. When a link is destroyed, make sure the associated objects are acces-
sible through other handles or intentionally destroyed. Otherwise you have a memory
leak (C++) or an object that is inadvertently garbage collected (Java). (Section 18.4.5)

18.6 Chapter Summary
It is relatively easy to implement an OO design with an OO language, since language con-
structs are similar to design constructs. C++ and Java are the two dominant OO languages,
and hence the subject of this chapter.

The first step in implementing an OO design is to implement the structure specified by
the class model. Begin by assigning data types to attributes. Where possible, use numeric
values instead of strings. Numeric types typically allow better storage and processing effi-
ciency, as well as easier maintenance of attribute integrity.

Next define classes. It is best to work “outside in” by starting with the public interface.
Then add internal methods, attributes, and lesser classes as needed to support the interface
methods.

You should pay careful attention to access control—it provides the means to encapsulate
attributes and methods and limit access to them. The most basic specifiers are the same for
both C++ and Java. Only methods of the class can access private members. Any client can
access public members. The protected specifier in C++ limits member access to the class and
its subclasses. Java is more permissive, letting attributes and methods in the same package
also access protected attributes and methods. Java packages are important both for organiz-
ing code and controlling access. The C++ friend declaration allows selective access to pri-
vate members.

OO languages provide robust support for generalization through inheritance. C++ sup-
ports multiple inheritance, but Java is limited to single inheritance. However, Java does pro-
vide some of the benefits of multiple inheritance through the use of interfaces. A Java
interface is a class specification with no implementation.

In Java polymorphism is automatic, though you can prevent further subclassing by de-
claring a class as final. Similarly, a final qualifier applied to a method prevents the method
from being overridden. In contrast, polymorphism is not automatic in C++. To activate poly-
morphism, a method must be declared as virtual.

OO languages lack direct support for associations. However, you can readily implement
links with pointers/references or distinct association objects. One-way associations reduce
interdependencies among classes, so you should use them when traversal is needed in only
one direction. C++ offers two options for implementing association ends. A pointer lets a
link be changed or set to null. In contrast, a reference must be bound at initialization and can-

Bibliographic Notes 343

not be changed. Java lacks the full equivalent to the C++ reference—you can define an ob-
ject-type attribute as final, which ensures that a reference variable cannot be changed but
does not require binding at initialization.

When you need to traverse an association in both directions, you should use a two-way
implementation. You can bury a pointer/reference (or set of pointers/references) in each re-
lated class or use an association object. With two-way pointers/references, you have redun-
dancy and must be careful to keep both directions mutually consistent.

Once you have the structure in place, you can start implementing methods. You should
carefully define constructors for new objects and be sure to initialize them to a valid state.
Similarly, you should pay attention to destructors, being sure to release any system or pro-
gram resources that are no longer needed upon the end of the object.

You should seldom include redundant data in objects; for accuracy and reliability it is
usually better to calculate fresh values from independent data at the time of use.

Bibliographic Notes
[Stroustrup-94] provides an interesting discussion of language-design issues.

References
[Arnold-00] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language, Third

Edition. Boston: Addison-Wesley, 2000.
[Gosling-00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Specification,

Third Edition. Boston: Addison-Wesley, 2000. (Available online: http://java.sun.com/docs/books/
jls/)

[Liskov-88] Barbara Liskov. Data abstraction and hierarchy. SIGPLAN Notices, 23, 5 (May 1988).
[Stroustrup-94] Bjarne Stroustrup. The Design and Evolution of C++. Boston: Addison-Wesley, 1994.
[Stroustrup-97] Bjarne Stroustrup. The C++ Programming Language, Third Edition. Boston: Addi-

son-Wesley, 1997.

Figure 18.2 Key concepts for Chapter 18

abstract
access modifier
access specifier
association
concrete
constructor
data type

derived data
destructor
enumeration
final
friend
garbage collection
generalization

interface
namespace
new
overloading
package
pointer
polymorphism

private
protected
public
reference
static
virtual

../../../../../java.sun.com/docs/books/jls
../../../../../java.sun.com/docs/books/jls

344 Chapter 18 / OO Languages

Exercises
18.1 (1) Assign a data type to each attribute in Figure E18.1.

18.2 (4) Consider the model in Figure E18.2. For now, ignore the attributes, methods, and associa-
tion. See Exercise 15.10 for an explanation of the model.

a. Prepare C++ declarations for the classes and the inheritance. Pay careful attention to access
control.

Figure E18.1 Portion of a class diagram of a newspaper

* *1 1
Line

text

Column

xLocation
yLocation
width
length

Page

width
length
leftMargin
rightMargin
topMargin
bottomMargin

Figure E18.2 Portion of a class diagram of a card playing program

Card

suit:Suit
rank:Rank

display
compare

{ordered}

CardCollection

visibility:Visibility
location:Point

initialize
insert {abstract}
discard {abstract}

1 *

Hand

initialSize:integer

insert

DrawPileDiscardPileDeck

shuffle
deal

discard
sort

Pile

topOfPile
bottomOfPile
draw
insert
discard

initialize

discard

Exercises 345

b. Prepare Java declarations for the classes and the inheritance. Pay careful attention to access
control and packages.

18.3 (6) In Figure E18.2 visibility controls whether the front or the back of a card is displayed. Add
to your answer for Exercise 18.2 but, for now, continue to ignore the methods and association.
[Instructor’s note: You may want to give the students our answer to Exercise 18.2.]
a. In C++, add declarations for all attributes, except location. Also define the enumerations.
b. In Java, add declarations for all attributes, except location. Also define the enumerations.

18.4 (7) Add the CardCollection—Card association to your C++ and Java answers from Exercise
18.3. [Hint: You can use a template which is not explained in this book. You can answer the
exercise by considering the implementation of associations and reading about the standard li-
brary and templates on the Web or in a C++ language book.]

18.5 (6) Declare methods for your answer for Figure E18.2 for both C++ and Java. See Exercise
15.10 for an explanation of the methods.

18.6 Write C++ or Java code, including class declarations and methods, to implement the following
using pointers.
a. (9) One-to-one association that is traversed in both directions.
b. (6) One-to-many association that is traversed in the direction from one to many. The associ-

ation is unordered.
c. (6) One-to-many association that is traversed in the direction from one to many. The associ-

ation is ordered.
d. (8) Many-to-many association that is traversed in both directions. The association is ordered

in one direction, and unordered in the other direction.

18.7 (7) Describe strategies for managing memory, assuming that automatic garbage collection is not
available. Your answer should provide guidelines that a programmer could use during coding.
a. A system for text manipulation. The system often creates one large string in contiguous

memory from several smaller strings. You cannot waste memory and cannot set an upper
bound on string length or the number of strings to combine. Write pseudocode for a method
that combines strings, recovering memory that is no longer used.

b. A multipass compiler. Objects are created dynamically. Each pass examines the objects
created on the previous pass and produces objects to be used on the next pass. The computer
system on which the compiler will run has a practically unlimited virtual address space and
an operating system with a good swapping algorithm. The methods in the run-time library
for allocating and deallocating memory dynamically are inefficient. Discuss the relative
merits of two alternatives: (1) Forget about garbage collection and let the operating system
allocate a large amount of virtual memory. (2) Recover deallocated objects with garbage col-
lection.

c. Software that runs for a long time, such as banking software or an air traffic control
system. You have the same computer system and run-time library as described in Exercise
18.7(b). Discuss the relative merits of the two approaches.

d. A method which may create and return an object that uses a large block of memory.
Discuss the relative merits of the following two approaches: (1) Each time the method is
called, it destroys the object created the last time it was called, if any. (2) Each time the meth-
od is called, it may create a new object. It is up to the calling method to destroy the object
when it is no longer needed. Comment on these two approaches.

346 Chapter 18 / OO Languages

18.8 (6) How might you organize Figure E12.4 into Java packages?

18.9 (7) Write C++ and Java declarations for the model in Figure E18.3. Implement the entire model.
Be sure to consider access control and Java packages. Pay attention to constructors and destruc-
tors. Implement all associations as bidirectional. See the exercises in Chapter 12 for an expla-
nation of the model.

18.10 (6) Write C++ or Java code that corresponds to the pseudocode for Exercise 15.11. Make sure
that your code respects encapsulation. [Instructor’s note: You may want to give the students our
answer to Exercise 15.11.]

18.11 (8) Write C++ or Java code for each of the OCL expressions in Section 3.5.3. Assume that there
is a bidirectional implementation of associations. A specification, such as an OCL expression,
need not respect encapsulation, but the code you write should.

18.12 (6) Using C++ or Java, implement all associations involving the classes Box, Link, LineSegment,
or Point in Figure E18.4. Note that the editor allows links only between pairs of boxes.

18.13 (7) Implement the cut operation on the class Box in Figure E18.4 using C++ or Java. For sim-
plicity, cut simply deletes the things that are cut and does not store them in a buffer. Propagate
the operation from boxes to attached link objects. Update any associations that are involved. Be
sure to recover any memory that is released by the operation (for C++ only). You may assume
another method will update the display.

18.14 (7) Write a method using C++ or Java that will create a link between two boxes. Inputs to the
method are two boxes and a list of points. The method should update associations and create
object instances as needed. You may assume another method will update the display. Also write
a method to destroy a link.

18.15 (8) Using C++ or Java, implement the following queries on Figure E18.4:
a. Given a box, determine all other boxes that are directly linked to it.
b. Given a box, find all other boxes that are directly or indirectly linked to it.
c. Given a box and a link, determine if the link involves the box.
d. Given a box and a link, find the other box logically connected to the given box through the

other end of the link.

Figure E18.3 Partially completed class diagram for a scoring system

Trial

netScore

Event

startingTime

Figure

figureTitle
difficultyFactor
description

Competitor

name
age
address
telephoneNumber

rawScore

Judge

name
*1

*

*
*

1

*1

Exercises 347

e. Given two boxes, determine all links between them.
f. Given a selection and a sheet, determine which links connect a selected box to a deselected

box.
g. Given two boxes and a link, produce an ordered set of points. The first point is where the

link connects to the first box, the last point is where the link connects to the second box, and
intermediate points trace the link.

Figure E18.4 Class diagram for a diagram editor

Box

text
left
top
width
height

cut
select
deselect
toggleSelection

LineSegment

cut

Point

x
ySelection

cut
copy
move

Buffer

paste

Sheet

delete

Drawing

drawingName

addSheet
nextSheet
previousSheet
save
load

DrawingFile

fileName

1,2 2

2

* *

*

1 1

1

*

Link

select
deselect
toggleSelection

Collection

*
1

11

348

19

Databases

The OO paradigm is versatile and applies to databases as well as programming code. It might
surprise you, but you can implement UML models not only with OO databases but also with
relational databases. The resulting databases are efficient, coherent, and extensible.

You prepare a database by first performing the analysis steps described in Chapter 12
and constructing a domain model. The remaining methodology chapters in Part 2 apply
mostly to design of programming code and to a lesser extent to databases. This chapter re-
sumes where Chapter 12 ends. How can we map a model to database structures and tune the
result for fast performance? How can we couple the resulting database to programming
code? This chapter also includes a brief introduction to databases for new readers.

The chapter emphasizes relational databases because they dominate the marketplace.
OO databases are practical only for niche applications and are discussed at the end of the
chapter.

19.1 Introduction

19.1.1 Database Concepts
A database is a permanent, self-descriptive store of data that is contained in one or more
files. Self-description is what sets a database apart from ordinary files. A database contains
the data structure or schema—description of data— as well as the data.

A database management system (DBMS) is the software for managing access to a da-
tabase. One major objective of OO technology is to promote software reuse; for data-inten-
sive applications DBMSs can replace much application code. You are achieving reuse when
you use generic DBMS code, rather than custom-written application code. There are addi-
tional reasons for using a DBMS.

19.1 Introduction 349

■ Data protection. DBMSs protect data from accidental loss due to hardware crashes,
disk media failures, and application errors.

■ Efficiency. DBMSs have efficient algorithms for managing large quantities of data.

■ Sharing between users. Multiple users can access the database at the same time.

■ Sharing between applications. Multiple application programs (presumably related)
can read and write data to the same database. A database is a neutral medium that pro-
motes communication among programs.

■ Data quality. You can specify rules that data must satisfy. A DBMS can control the
quality of its data over and above facilities that application programs may provide.

■ Data distribution. You can partition data across various sites, organizations, and hard-
ware platforms. The DBMS keeps the fragmented data consistent.

■ Security. A DBMS can restrict reading and writing of data to authorized users.

19.1.2 Relational Database Concepts
A relational database has data that is perceived as tables. A relational DBMS (RDBMS)
manages tables of data and associated structures that increase the functionality and perfor-
mance of tables. RDBMSs have benefitted from a clear definition by an authoritative figure
(EF Codd, the inventor of relational databases) and a standard access language (SQL [Mel-
ton-93]). All RDBMSs support a common core of SQL for defining tables, manipulating data
in tables, and controlling access to tables. Variations exist for data types, performance tuning,
programming access, and system data, though the standard is gradually subsuming these ar-
eas. An RDBMS has three major aspects: data structure, operators, and constraints.

■ Data structure. A relational database appears as a collection of tables. Tables have a spe-
cific number of columns and an arbitrary number of rows with a value stored at each row-
column intersection. Figure 19.1 shows two sample tables. The Person table has five col-
umns and four rows; the Company table has three columns and three rows. The column
names in boldface are primary keys (to be explained). Note that Jane Brown lacks an em-
ployer. Null means that an attribute value is unknown or not applicable for a given row.

RDBMSs use special techniques—such as indexing, hashing, and sorting—to
speed access, because literal tables are much too slow for practical needs. These tuning
techniques are transparent and not visible in the commands for reading and writing to
tables. The RDBMS decides when tuning structures are helpful in processing a query,
and if so, automatically uses them. The RDBMS automatically updates tuning structures
whenever the corresponding tables are modified.

■ Operators. SQL provides operators for manipulating tables. The SQL select statement
reads the data in tables. The syntax looks something like (keywords are capitalized):

SELECT columnList
FROM tableList
WHERE predicateIsTrue

350 Chapter 19 / Databases

Logically (the actual implementation is more efficient) the RDBMS combines the
various tables into one temporary table. The column list specifies the columns to retain.
The predicate specifies the rows to retain. The RDBMS returns the resulting data as the
answer to the query. SQL has additional commands for inserting, deleting, and updating
data in tables.

Interactive SQL commands are set-oriented; they operate on entire tables rather
than individual rows or values. SQL provides a similar language for use with application
programs that has a row-at-a-time interface.

■ Constraints. An RDBMS can enforce many constraints (such as candidate, primary, and
foreign keys) that are defined as part of the database structure. An RDBMS refuses to
store data that violates constraints, returning an error to the user or requesting program.

A candidate key is a combination of columns that uniquely identifies each row in a
table. The combination must be minimal and include only those columns that are needed
for unique identification. No column in a candidate key can be null.

A primary key is a candidate key that is preferentially used to access the records in
a table. A table can have at most one primary key; normally each table should have a
primary key. The boldface in Figure 19.1 indicates the primary key of each table.

A foreign key is a reference to a candidate key (normally a reference to a primary
key) and is the glue that binds tables. In Figure 19.1 employer is a foreign key in the
Person table that refers to companyID in the Company table. It would not be permissible
to change Moe Brown’s employer to 1004, since the Company table does not define
1004. If the row for Ajax Widgets were deleted in the Company table, then both Jim
Smith rows would have to be deleted or have their employer set to null. The foreign-to-
primary-key binding forms a frequent navigation path between tables.

Figure 19.1 Sample tables. A relational DBMS presents data as tables.

Company table

companyID companyName address

1001 Ajax Widgets 33 Industrial Dr.

1002 AAA liquors 724 Short St.

1003 Win-more Sports 1877 Broadway

Person table

personID lastName firstName address employer

1 Smith Jim 314 Olive St. 1001

5 Brown Moe 722 Short St. 1002

999 Smith Jim 1561 Main Dr. 1001

14 Brown Jane 722 Short St. NULL

19.1 Introduction 351

19.1.3 Normal Forms
A normal form is a guideline for relational database tables that increases data consistency.
As tables satisfy higher levels of normal forms, they are less likely to store redundant or con-
tradictory data. Developers can violate normal forms for good cause, such as to increase per-
formance for a database that is read and seldom updated. Such a relaxation is called
denormalization. The important issue with normal forms is to violate them deliberately and
only when necessary.

Normal forms were first used in the 1970s and 1980s. At that time, developers built da-
tabases by creating a list of desired fields, which they then had to organize into meaningful
groups before storing them in a database. That was the purpose of normal forms. Normal
forms organize fields into groups according to dependencies between fields. Unfortunately,
it is easy to overlook dependencies. If any are missed, the resulting database structure may
be flawed.

UML models provide a better way to prepare databases. Instead of focusing on the fine
granularity of fields, developers think in terms of groups of fields—that is, classes. UML
models do not diminish the validity of normal forms—normal forms apply regardless of the
development approach.

However, UML modeling does eliminate the need to check normal forms. If develop-
ers build a sound model, it will intrinsically satisfy normal forms. The converse also
holds—a poor model is unlikely to satisfy normal forms. Furthermore, if developers can-
not build a sound model, they will probably be unable to find all the dependencies that are
required for checking normal forms. It is less difficult to build models than to find all the
dependencies.

The bottom line is that developers can still check normal forms if they want to after mod-
eling, but such a check is unnecessary.

19.1.4 Choosing a DBMS Product
In order to build an application, you must choose a specific DBMS product. Because the core
features have been set by the SQL standard, you should choose an RDBMS vendor according
to pragmatic concerns.

■ Market share. Oracle, IBM, and Microsoft are the major market players. The staying
power of other vendors is less clear. You may also want to consider an open-source
DBMS such as MySQL or PostgreSQL.

■ Vendor and third-party support. DBMSs are a big commitment for an organization
and require ongoing help.

■ Other applications. You reduce administrative and license costs if you use the same
vendor or a small number of vendors for your applications.

With each new product release the major vendors tend to jump ahead of the competition’s
features and performance benchmarks, only to be surpassed themselves when a competitor
has its own new release. Over the long term there tends to be little difference in features and
performance, so you should not dwell on them when choosing a product.

352 Chapter 19 / Databases

19.2 Abbreviated ATM Model
Figure 19.2 shows the portion of the ATM model that this chapter will use as an example.
We added CheckingAccount and SavingsAccount so that we can discuss generalization. We
also added the Address class to assist our explanation.

19.3 Implementing Structure—Basic
You can readily translate the class model into SQL code. Many tools will do this, but you
should still know the rules. Then you understand what the tools are doing and can spot check
their results. RDBMSs provide good support for classes and associations but lack support for
inheritance, so you must use a workaround. You should perform the following initial tasks.

■ Implement classes. [19.3.1]

■ Implement associations. [19.3.2]

■ Implement generalizations. [19.3.3]

■ Implement identity [19.3.4]

19.3.1 Classes
Normally you should map each class to a table and each attribute to a column (Figure 19.3).
You can add columns for an object identifier and associations (to be explained). The boldface
indicates the primary key. Keywords are in uppercase. Note that operations do not affect table
structure. We have chosen data types and not-null constraints that seem appropriate for the

Figure 19.2 Abbreviated ATM implementation class model used in this chapter

Issues

accountCode

Code
card

Bank

name 1

1

name

Customer
Account

balance
creditLimit

*1

1

* 1*

CardAuthorization

password
limit

0..1

0..1

*

*
getAmount

close

verifyPassword

verifyAmount
post getAccount

CashCard

serialNumber

tempAmount

createSavingsAccount
createCheckingAccount
createCashCard
verifyAmount

addAccount
removeAccount
close

CheckingAccount

protectFromOverdraft

SavingsAccount Address

address

0..1

1

19.3 Implementing Structure—Basic 353

problem. All our examples use Oracle syntax. The nn_customer1 and nn_customer2 are
names of the not-null constraints. The pk_customer is the name of the primary key constraint.

19.3.2 Associations
The implementation rules for associations depend on the multiplicity.

■ Many-to-many associations. Implement the association with a table and make the as-
sociation’s primary key the combination of the classes’ primary keys (Figure 19.4). If
the association has attributes, they become additional columns.

■ One-to-many associations. Each one becomes a foreign key buried in the table for the
“many” class (Figure 19.5). If there had been a name on the “one” end of the association,
we would have used it as the foreign key name. We presume that serialNumber is unique
for CashCard.

■ One-to-one associations. These seldom occur. You can handle them by burying a for-
eign key in either class table (Figure 19.6).

■ N-ary associations. They also seldom occur. You can treat them like many-to-many as-
sociations and create a table for the association. Typically, the primary key of the n-ary
association combines the primary keys of the related tables.

■ Association classes. An association class is an association that is also a class. It is easier
to establish the proper dependencies if you make each association class into a table, re-
gardless of the multiplicity.

Class
model

Tables

Customer table

customerID name tempAmount

Figure 19.3 Implementing classes. Make each class a table.

SQL code

CREATE TABLE Customer
(customer_ID NUMBER(30) CONSTRAINT nn_customer1 NOT NULL,
cust_name VARCHAR2(50) CONSTRAINT nn_customer2 NOT NULL,
temp_amount NUMBER(12,2),

CONSTRAINT pk_customer PRIMARY KEY (customer_ID));

name

Customer

getAmount
getAccount

tempAmount

354 Chapter 19 / Databases

■ Qualified associations. Qualified associations follow the same rules as the underlying
association without the qualifier. Thus we treat Figure 19.7 like a one-to-many associa-
tion (a bank has many accounts). The notation ckn (n is a number) denotes a candidate
key. Many qualified associations have a candidate key involving the qualifier.

■ Aggregation, composition. Aggregation and composition follow the same implemen-
tation rules as association.

Figure 19.4 Implementing many-to-many associations. Make each one a table.

Class
model

Tables

Account table

account
ID balance credit

Limit

CardAuthorization table

card
AuthorizationID password limit

Account

balance
creditLimit

*
CardAuthorization

password
limit

*

Account_CardAuthorization table

accountID
(references Account)

cardAuthorizationID
(references CardAuthorization)

CREATE TABLE Account
(account_ID NUMBER(30) CONSTRAINT nn_account1 NOT NULL,
balance NUMBER(12,2) CONSTRAINT nn_account2 NOT NULL,
credit_limit NUMBER(12,2),

CONSTRAINT pk_account PRIMARY KEY (account_ID));

CREATE TABLE Card_Authorization
(card_auth_ID NUMBER(30) CONSTRAINT nn_cardauth1 NOT NULL,
password VARCHAR2(50),
limit NUMBER(12,2),

CONSTRAINT pk_cardauth PRIMARY KEY (card_auth_ID));

CREATE TABLE Acct_CardAuth
(account_ID NUMBER(30) CONSTRAINT nn_acctca1 NOT NULL,
card_auth_ID NUMBER(30) CONSTRAINT nn_acctca2 NOT NULL,

CONSTRAINT pk_acctca PRIMARY KEY (account_ID, card_auth_ID));

SQL code

19.3 Implementing Structure—Basic 355

Figure 19.5 Implementing one-to-many associations. Bury each one as
a foreign key in the “many” class table.

Class
model

Tables

*1CardAuthorization

password
limit

CashCard

serialNumber

CashCard table

cash
CardID

serial
Number

cardAuthorizationID
(references CardAuthorization)

Card_Authorization code from Figure 19.4 ...

CREATE TABLE Cash_Card
(cash_card_ID NUMBER(30) CONSTRAINT nn_cashcard1 NOT NULL,
serial_num VARCHAR2(50) CONSTRAINT nn_cashcard2 NOT NULL,
card_auth_ID NUMBER(30) CONSTRAINT nn_cashcard3 NOT NULL,

CONSTRAINT pk_cashcard PRIMARY KEY (cash_card_ID),
CONSTRAINT uq_cashcard1 UNIQUE (serial_num));

SQL code

CardAuthorization
table
from Figure 19.4 ...

Figure 19.6 Implementing one-to-one associations. Bury a foreign
key in either class table.

1Customer

name
tempAmount

Address

address

0..1

Address table

addressID address customerID (references Customer)

Customer table
from

SQL code
Customer code from Figure 19.3 ...

CREATE TABLE Address
(address_ID NUMBER(30) CONSTRAINT nn_address1 NOT NULL,
address VARCHAR2(200) CONSTRAINT nn_address2 NOT NULL,
customer_ID NUMBER(30) CONSTRAINT nn_address3 NOT NULL,

CONSTRAINT pk_address PRIMARY KEY (address_ID));

Class
model

Tables Figure 19.3 ...

356 Chapter 19 / Databases

19.3.3 Generalizations
The implementation rules for generalization depend on whether there is single or multiple
inheritance.

■ Single inheritance. The simplest approach is to map the superclass and subclasses each
to a table, as Figure 19.8 shows. The generalization set name (accountType) indicates
the appropriate subclass table for each superclass record. For a multilevel generaliza-
tion, you apply the mappings one level at a time.

In the figure, note that the primary key names vary, but an object should have the
same primary key value throughout an inheritance hierarchy. Thus “Joe’s checking ac-
count” may have one row in the Account table with account_ID 101 and another row in

Figure 19.7 Implementing qualified associations. Treat each one like
the association without the qualifier.

Class
model

Tables

Bank table

bankID name (ck1)

accountCode
Bank

name 1

Account

balance
creditLimit0..1

Account table

account
ID balance credit

Limit

bankID (ck1)
(references

Bank)

account
Code
(ck1)

CREATE TABLE Bank
(bank_ID NUMBER(30) CONSTRAINT nn_bank1 NOT NULL,
bank_name VARCHAR2(50) CONSTRAINT nn_bank2 NOT NULL,

CONSTRAINT pk_bank PRIMARY KEY (bank_ID),
CONSTRAINT uq_bank1 UNIQUE (bank_name));

CREATE TABLE Account
(account_ID NUMBER(30) CONSTRAINT nn_account1 NOT NULL,
balance NUMBER(12,2) CONSTRAINT nn_account2 NOT NULL,
credit_limit NUMBER(12,2),
bank_ID NUMBER(30) CONSTRAINT nn_account3 NOT NULL,
account_code VARCHAR2(50) CONSTRAINT nn_account4 NOT NULL,

CONSTRAINT pk_account PRIMARY KEY (account_ID),
CONSTRAINT uq_account1 UNIQUE (bank_ID, account_code));

SQL code

19.3 Implementing Structure—Basic 357

Account

balance
creditLimit

CheckingAccount

protectFromOverdraft

SavingsAccount

Figure 19.8 Implementing generalizations (single inheritance). Map
the superclass and subclasses each to a table.

Class
model

Tables

Account table

accountID balance creditLimit accountType

SavingsAccount table

savingsAccountID
(references Account)

CheckingAccount table

checkingAccountID
(references Account)

protectFrom
Overdraft

CREATE TABLE Account
(account_ID NUMBER(30) CONSTRAINT nn_account1 NOT NULL,
balance NUMBER(12,2) CONSTRAINT nn_account2 NOT NULL,
credit_limit NUMBER(12,2),
account_type VARCHAR2(20) CONSTRAINT nn_account3 NOT NULL,

CONSTRAINT pk_account PRIMARY KEY (account_ID));

CREATE TABLE Checking_Account
(chk_acct_ID NUMBER(30) CONSTRAINT nn_chkacct1 NOT NULL,
protect_odrft VARCHAR2(1) CONSTRAINT nn_chkacct2 NOT NULL,

CONSTRAINT pk_chkacct PRIMARY KEY (chk_acct_ID));

CREATE TABLE Savings_Account
(sav_acct_ID NUMBER(30) CONSTRAINT nn_savacct1 NOT NULL,
CONSTRAINT pk_savacct PRIMARY KEY (sav_acct_ID));

SQL code

358 Chapter 19 / Databases

the Checking_Account table with chk_acct_ID 101. We prefer to tie ID names to class
names (account_ID, chk_acct_ID, and sav_acct_ID), rather than use the same name
(account_ID) for all the tables that implement a generalization—this makes it easier to
handle multilevel generalizations.

Note that you should not eliminate subclasses that have no attributes, such as Sav-
ingsAccount in Figure 19.8. Such a performance optimization is seldom important and
it complicates the enforcement of foreign key dependencies (Section 19.4.1).

■ Multiple inheritance. You can handle multiple inheritance from disjoint classes with
separate superclass and subclass tables. For multiple inheritance from overlapping
classes, you should use one table for each superclass, one table for each subclass, and
one table for the generalization.

19.3.4 Identity
Aside from special situations, such as temporary tables, every table should have a primary
key. Without any explanation, we have been using object identity. This is our preferred ap-
proach, but we should mention another approach that is also common in the database litera-
ture. Figure 19.9 shows the two options.

■ Object identity. Add an artificial number attribute (an object ID) to each class table and
make it the primary key. The primary key for each association table consists of identi-
fiers from the related classes.

Object identifiers have the advantage of being a single attribute, small, and uniform
in size. Most RDBMSs can efficiently allocate identifiers. However, object identifiers

Figure 19.9 Object vs. value-based identity. We recommend the use of
object identity.

Class
model

Bank table

bankID name
Tables—
object
identity

Account table

account
ID balance credit

Limit
bank

ID
account
Code

Tables—
value-
based
identity

Bank table

name

Account table

bankName account
Code balance credit

Limit

accountCode
Bank

name 1

Account

balance
creditLimit0..1

19.3 Implementing Structure—Basic 359

can make a database more difficult to read during debugging and maintenance. IDs also
complicate database merges; ID values may contend and need to be reassigned. You
should not display artificial numbers to users.

■ Value-based identity. Identify each object with some combination of real-world at-
tributes. The primary key for each association table consists of primary keys from the
related classes.

Value-based identity has different trade-offs. Primary keys have intrinsic meaning,
making it easier to debug the database. On the downside, value-based primary keys can
be difficult to change. A change may propagate to other tables. Some classes do not have
natural real-world identifiers.

We recommend that you use object identity for RDBMS applications. The resulting unifor-
mity and simplicity outweighs any additional debugging effort. Furthermore, object identity
is more consistent with the spirit of object orientation—that objects have intrinsic identity
apart from their properties. OO languages implement identity with pointers or look-up tables
into pointers; an ID is the equivalent database construct.

19.3.5 Summary of Basic Rules for RDBMS Implementation
Table 19.1 summarizes the basic rules for implementing RDBMS structure.

Table 19.1 Summary of basic rules for implementing relational databases.
These rules are embedded in most database generation tools.

Concept UML construct Recommended implementation rule

Class Class
Map each class to a table and each attribute to a col-
umn in the table

Association
(End names
become for-
eign key
names.)

Many-to-many Use distinct table

One-to-many
Use buried foreign key

One-to-one

N-ary
Use distinct table

Association class

Qualified Same rules as underlying nonqualified association

Aggregation
Aggregation

Same rules as association
Composition

Generalization

Single inheritance
Create separate tables for the superclass and each
subclassDisjoint multiple

inheritance

Overlapping mul-
tiple inheritance

Same as disjoint multiple inheritance + generalization
table to bind superclass and subclass records

360 Chapter 19 / Databases

19.4 Implementing Structure—Advanced
The prior section explained how to define tables for each construct in the UML class model.
Now we cover advanced aspects that boost performance and ensure data quality. You should
perform the following additional tasks.

■ Implement foreign keys. [19.4.1]

■ Implement check constraints. [19.4.2]

■ Implement indexes. [19.4.3]

■ Consider views. [19.4.4]

19.4.1 Foreign Keys
Foreign keys arise from generalizations and associations. When a foreign key is defined, the
RDBMS guarantees that there will be no dangling references—the RDBMS refuses to per-
form any updates that would cause a dangling reference. Since an application knows that de-
fined foreign keys will always be intact, it need not include error checking for them.

In addition, many RDBMSs can propagate the effects of deletions and updates that af-
fect foreign keys. When you use object identity, as we have suggested, there is no need to
propagate updates—IDs are invariant and never change. However, it is helpful to declare the
response to deletions, as we will now explain.

For generalizations you should specify on delete cascade for each subclass table. Figure
19.10 shows the foreign-key statements that we would add to Figure 19.8. Recall that gen-
eralization structures the description of an object, with each level providing part of the de-
scription. An application must combine superclass and subclass records to reconstitute an
entire object. Accordingly, with on delete cascade, deletion of a superclass record causes the
deletion of the corresponding subclass record, and this deletion propagates downward for
each generalization level.

In a similar manner we would like to propagate deletion of a subclass record upward to
the superclass, but SQL unfortunately does not support this reverse direction. To compen-
sate, you must write programming code to propagate deletions up a generalization hierarchy.

You should also declare foreign keys to enforce associations, as Figure 19.11 shows. The
appropriate deletion action—cascade or no action—depends on the model’s meaning. For

Figure 19.10 Maintaining foreign keys for generalization. Each subclass table should
specify on delete cascade for the foreign key to the superclass.

ALTER TABLE Checking_Account ADD CONSTRAINT fk_chkacct1
FOREIGN KEY chk_acct_ID
REFERENCES Account ON DELETE CASCADE;

ALTER TABLE Savings_Account ADD CONSTRAINT fk_savacct1
FOREIGN KEY sav_acct_ID
REFERENCES Account ON DELETE CASCADE;

19.4 Implementing Structure—Advanced 361

example, we might want the deletion of a customer record to cause the deletion of the corre-
sponding address record—this is on delete cascade (the first statement in Figure 19.11). Al-
ternatively, you might want to prevent the deletion of a customer who has accounts (to avoid
accidental loss of extensive data). The user must first delete all the accounts and only then
can delete the customer. In the SQL standard you prevent deletion by specifying on delete
no action; the Oracle equivalent is to omit a delete action (the second statement in Figure
19.11).

19.4.2 Check Constraints
SQL also has general constraints that can enforce the values of an enumeration. Such en-
forcement is especially helpful for implementing a generalization set name. Figure 19.12
adds a check constraint to the example of Figure 19.8.

19.4.3 Indexes
Most RDBMSs create indexes as a side effect of SQL primary key and candidate key
(unique) constraints. (An index is a data structure that maps column values into database ta-
ble rows.) You should also create an index for every foreign key that is not covered by a pri-
mary key or candidate key constraint. For example, the primary key for Acct_CardAuth
(Figure 19.4) causes an RDBMS to build an index that ensures fast access to account_ID as
well as account_ID + card_auth_ID. An additional index on card_auth_ID (Figure 19.13)
ensures that this field accessed alone is also fast.

These indexes are critically important. Foreign-key indexes enable quick combination
of tables. A lack of indexes can cause RDBMS performance to degrade by orders of magni-

Figure 19.11 Maintaining foreign keys for association. There are two possibilities,
which depend on the model’s meaning.

ALTER TABLE Address ADD CONSTRAINT fk_address1
FOREIGN KEY customer_ID
REFERENCES Customer ON DELETE CASCADE;

ALTER TABLE Account ADD CONSTRAINT fk_account2
FOREIGN KEY customer_ID
REFERENCES Customer;

Figure 19.12 Enforcing a generalization set name. An SQL check con-
straint can enforce the values of an enumeration.

ALTER TABLE Account ADD CONSTRAINT enum_account1
CHECK (account_type IN (’Checking_Account’,
’Savings_Account’));

362 Chapter 19 / Databases

tude. Foreign-key indexes should be an integral part of a database because they are straight-
forward to include and there is no good reason to defer them.

The database administrator (DBA) may define additional indexes for frequent queries
and use product-specific tuning mechanisms.

19.4.4 Views
You may wish to define a view for each subclass to consolidate inherited data and make ob-
ject access easier. A view is a table that an RDBMS dynamically computes. Figure 19.14
shows an example for the CheckingAccount subclass. You can freely read an object through
a view, but RDBMSs only partially support writing through views. The restrictions vary
across products.

19.4.5 Summary of Advanced Rules for RDBMS Implementation
Table 19.2 summarizes the advanced rules for implementing RDBMS structure.

Figure 19.13 Defining indexes. Every foreign key should be covered by an index.

CREATE INDEX index_acctca1 ON Acct_CardAuth (card_auth_ID);

Figure 19.14 A sample RDBMS view. You can use a view to consolidate the
object fragments that are stored for each generalization level.

CREATE VIEW view_checking_account AS
SELECT chk_acct_ID, balance, credit_limit, protect_odrft
FROM Account A, Checking_Account CA
WHERE A.account_ID = CA.chk_acct_ID;

Table 19.2 Summary of advanced rules for implementing relational databases.
These rules are embedded in most database generation tools.

Concept Advanced implementation rule

Class ■ Define a check constraint for each enumerated attribute.

Association,
Aggregation,
Composition

■ Enforce foreign keys. Specify on delete cascade or on delete no action,
depending on the model’s meaning.

■ Define a check constraint for each enumerated attribute.
■ Define indexes for any buried foreign keys not covered by primary and

candidate key constraints.

Generalization

■ Enforce foreign keys. Specify on delete cascade for each subclass ta-
ble.

■ Define a check constraint for each generalization set name.
■ Consider defining a view to consolidate inherited data and to ease read-

ing of objects.

19.5 Implementing Structure for the ATM Example 363

19.5 Implementing Structure for the ATM Example
Figure 19.15 puts together all the rules and shows the tables for Figure 19.2. Figure 19.16
shows SQL code that creates Oracle database structures. Each sequence statement creates a
counter that is used to allocate an ID. For example, seq_bank is used to allocate bank_ID as
each Bank object is created. We have organized the code logically, and it must be reordered
before execution. First execute the create table and create sequence statements, then the cre-
ate index statements, and finally the alter table statements. We have omitted the optional
views on CheckingAccount and SavingsAccount.

Figure 19.15 RDBMS tables for the abbreviated ATM model

CashCard table

cashCardID serialNumber cardAuthorizationID
(references CardAuthorization)

Bank table

bankID name (ck1)

Customer table

customerID name tempAmount

Account table

account
ID balance credit

Limit

bankID (ck1)
(references

Bank)

accountCode
(ck1)

account
Type

customerID
(references
Customer)

CardAuthorization table

card
AuthorizationID password limit

bankID (ck1)
(references

Bank)

cardCode
(ck1)

customerID
(references
Customer)

Account_CardAuthorization table

accountID
(references Account)

cardAuthorizationID
(references CardAuthorization)

SavingsAccount table

savingsAccountID
(references Account)

CheckingAccount table

checkingAccountID
(references Account)

protectFrom
Overdraft

Address table

address
ID address customerID

(references Customer)

364 Chapter 19 / Databases

Figure 19.16 SQL code for the abbreviated ATM model

CREATE TABLE Bank
(bank_ID NUMBER(30) CONSTRAINT nn_bank1 NOT NULL,
bank_name VARCHAR2(50) CONSTRAINT nn_bank2 NOT NULL,

CONSTRAINT pk_bank PRIMARY KEY (bank_ID),
CONSTRAINT uq_bank1 UNIQUE (bank_name));

CREATE SEQUENCE seq_bank;

CREATE TABLE Customer
(customer_ID NUMBER(30) CONSTRAINT nn_customer1 NOT NULL,
cust_name VARCHAR2(50) CONSTRAINT nn_customer2 NOT NULL,
temp_amount NUMBER(12,2),

CONSTRAINT pk_customer PRIMARY KEY (customer_ID));

CREATE SEQUENCE seq_customer;

CREATE TABLE Card_Authorization
(card_auth_ID NUMBER(30) CONSTRAINT nn_cardauth1 NOT NULL,
password VARCHAR2(50),
limit NUMBER(12,2),
bank_ID NUMBER(30) CONSTRAINT nn_cardauth2 NOT NULL,
card_code VARCHAR2(50) CONSTRAINT nn_cardauth3 NOT NULL,
customer_ID NUMBER(30) CONSTRAINT nn_cardauth4 NOT NULL,

CONSTRAINT pk_cardauth PRIMARY KEY (card_auth_ID),
CONSTRAINT uq_cardauth1 UNIQUE (bank_ID, card_code));

CREATE SEQUENCE seq_cardauth;

CREATE INDEX index_cardauth1 ON Card_Authorization
(customer_ID);

ALTER TABLE Card_Authorization ADD CONSTRAINT fk_cardauth1
FOREIGN KEY bank_ID
REFERENCES Bank;

ALTER TABLE Card_Authorization ADD CONSTRAINT fk_cardauth2
FOREIGN KEY customer_ID
REFERENCES Customer;

CREATE TABLE Checking_Account
(chk_acct_ID NUMBER(30) CONSTRAINT nn_chkacct1 NOT NULL,
protect_odrft VARCHAR2(1) CONSTRAINT nn_chkacct2 NOT NULL,

CONSTRAINT pk_chkacct PRIMARY KEY (chk_acct_ID));

ALTER TABLE Checking_Account ADD CONSTRAINT fk_chkacct1
FOREIGN KEY chk_acct_ID
REFERENCES Account ON DELETE CASCADE;

ALTER TABLE Checking_Account ADD CONSTRAINT enum_chkacct1
CHECK (protect_odrft IN (’Y’, ’N’));

19.5 Implementing Structure for the ATM Example 365

Figure 19.16 (continued) SQL code for the abbreviated ATM model

CREATE TABLE Account
(account_ID NUMBER(30) CONSTRAINT nn_account1 NOT NULL,
balance NUMBER(12,2) CONSTRAINT nn_account2 NOT NULL,
credit_limit NUMBER(12,2),
bank_ID NUMBER(30) CONSTRAINT nn_account3 NOT NULL,
account_code VARCHAR2(50) CONSTRAINT nn_account4 NOT NULL,
account_type VARCHAR2(20) CONSTRAINT nn_account5 NOT NULL,
customer_ID NUMBER(30) CONSTRAINT nn_account6 NOT NULL,

CONSTRAINT pk_account PRIMARY KEY (account_ID),
CONSTRAINT uq_account1 UNIQUE (bank_ID, account_code));

CREATE SEQUENCE seq_account;

CREATE INDEX index_account1 ON Account (customer_ID);

ALTER TABLE Account ADD CONSTRAINT fk_account1
FOREIGN KEY bank_ID
REFERENCES Bank;

ALTER TABLE Account ADD CONSTRAINT fk_account2
FOREIGN KEY customer_ID
REFERENCES Customer;

ALTER TABLE Account ADD CONSTRAINT enum_account1
CHECK (account_type IN (’Checking_Account’,
’Savings_Account’));

CREATE TABLE Acct_CardAuth
(account_ID NUMBER(30) CONSTRAINT nn_acctca1 NOT NULL,
card_auth_ID NUMBER(30) CONSTRAINT nn_acctca2 NOT NULL,

CONSTRAINT pk_acctca PRIMARY KEY (account_ID, card_auth_ID));

CREATE INDEX index_acctca1 ON Acct_CardAuth (card_auth_ID);

ALTER TABLE Acct_CardAuth ADD CONSTRAINT fk_acctca1
FOREIGN KEY account_ID
REFERENCES Account;

ALTER TABLE Acct_CardAuth ADD CONSTRAINT fk_acctca2
FOREIGN KEY card_auth_ID
REFERENCES Card_Authorization;

CREATE TABLE Savings_Account
(sav_acct_ID NUMBER(30) CONSTRAINT nn_savacct1 NOT NULL,
CONSTRAINT pk_savacct PRIMARY KEY (sav_acct_ID));

ALTER TABLE Savings_Account ADD CONSTRAINT fk_savacct1
FOREIGN KEY sav_acct_ID
REFERENCES Account ON DELETE CASCADE;

366 Chapter 19 / Databases

19.6 Implementing Functionality
Most often your purpose in using a database will be to build an application. Structural con-
cerns dominate a database, but the application’s functionality—the user interface, complex
logic, and other behavior—is also important. The use of UML models is an important first
step toward combining database and programming capabilities—UML models provide a
uniform way for thinking about both aspects. However, there are some additional function-
ality issues to consider.

■ Coupling a programming language to a database. [19.6.1]

■ Converting data. [19.6.2]

■ Encapsulation vs. query optimization. [19.6.3]

■ Use of SQL code. [19.6.4]

19.6.1 Coupling a Programming Language to a Database
Relational databases and conventional programming languages have divergent styles that
make them difficult to couple. Relational databases are declarative; developers describe the

Figure 19.16 (continued) SQL code for the abbreviated ATM model

CREATE TABLE Cash_Card
(cash_card_ID NUMBER(30) CONSTRAINT nn_cashcard1 NOT NULL,
serial_num VARCHAR2(50) CONSTRAINT nn_cashcard2 NOT NULL,
card_auth_ID NUMBER(30) CONSTRAINT nn_cashcard3 NOT NULL,

CONSTRAINT pk_cashcard PRIMARY KEY (cash_card_ID),
CONSTRAINT uq_cashcard1 UNIQUE (serial_num));

CREATE SEQUENCE seq_cashcard;

CREATE INDEX index_cashcard1 ON Cash_Card (card_auth_ID);

ALTER TABLE Cash_Card ADD CONSTRAINT fk_cashcard1
FOREIGN KEY card_auth_ID
REFERENCES Card_Authorization;

CREATE TABLE Address
(address_ID NUMBER(30) CONSTRAINT nn_address1 NOT NULL,
address VARCHAR2(200) CONSTRAINT nn_address2 NOT NULL,
customer_ID NUMBER(30) CONSTRAINT nn_address3 NOT NULL,

CONSTRAINT pk_address PRIMARY KEY (address_ID));

CREATE SEQUENCE seq_address;

CREATE INDEX index_address1 ON Address (customer_ID);

ALTER TABLE Address ADD CONSTRAINT fk_address1
FOREIGN KEY customer_ID
REFERENCES Customer ON DELETE CASCADE;

19.6 Implementing Functionality 367

data they want instead of how to get it. In contrast, most programming languages are imper-
ative and require that logic be reduced to a sequence of steps. Many techniques are available
for combining databases and programming languages, and it is important that you consider
all of your options.

■ Preprocessor and postprocessor. Preprocessors and postprocessors can be helpful for
batch applications. The basic idea is simple: Query the database and create an input file,
run the application, and then analyze the output and store the results in the database.

The downside is that database interaction via intermediate files can be awkward.
The preprocessor must request all database information before executing the applica-
tion, and output files with complex formats can be difficult to parse. This technique is
useful for old software or certified software that cannot be altered.

■ Script files. Sometimes all you need is a file of DBMS commands. For example, typing
@filename into interactive SQL (SQL Plus) of Oracle causes the commands in filename
to execute. Developers can use an operating system shell language to execute multiple
script files and to control their execution.

Script files are helpful for simple database interaction, such as creating database
structures. They are also useful for prototyping.

■ Embedded DBMS commands. Another technique is to intersperse SQL commands
with application code.

Many database books emphasize this technique. Unfortunately, such programs can
be difficult to read and maintain. The essential problem is that the conceptual basis for
an RDBMS is different than that for most programming languages. We discourage the
use of this approach.

■ Custom application programming interface (API). A better alternative to embedded
DBMS commands is to encapsulate database read and write requests within dedicated
application methods that collectively provide a database interface. You can write these
methods using a proprietary database-access language, such as Oracle’s PL/SQL, or a
standard language, such as ODBC or JDBC.

A custom API isolates database interaction from the rest of the application. An API
can help you partition the tasks of data management, application logic, and user inter-
face consistent with the spirit of encapsulation.

■ Stored procedures. A stored procedure is programming code that is stored in a database.
Some RDBMSs, such as SQL Server, require stored procedures for maximum effi-

ciency. Stored procedures also let applications share general-purpose functionality.
However, you should try to avoid placing application-specific functionality in stored
procedures—once the logic is placed in the database, any application can use it, com-
promising encapsulation. Stored procedures also vary widely across products.

■ Fourth-generation language (4GL). A fourth-generation language is a framework
for database applications that provides screen layout, simple calculations, and reports.

4GLs are widely available and can greatly reduce application development time.
They are best for straightforward applications and prototyping. They are not suitable for
applications with complex programming.

368 Chapter 19 / Databases

■ Generic layer. A generic layer hides the DBMS and provides simple data access com-
mands (such as getRecordGivenKey and writeRecord) [Blaha-98]. You can write appli-
cation code in terms of the layer and largely ignore the underlying DBMS.

A well-conceived generic layer can simplify application programming. However, it
can also impede performance and restrict access to database functionality.

■ Metadata-driven system. The application indirectly accesses data by first accessing
the data’s description (the metadata) and then formulating the query to access the data.
For example, an RDBMS processes commands by accessing the system tables first and
then the actual data.

Metadata-driven applications can be quite complex. This technique is suitable for
frameworks (see Chapter 14) and applications that learn.

Sometimes it is helpful to mix techniques. For example, a developer could use an API and
implement some functionality with stored procedures. Table 19.3 summarizes the coupling
techniques.

19.6.2 Data Conversion
Legacy data processing is important for seeding new applications and exchanging data
among applications. Many applications are poorly conceived, so it can be challenging and
time consuming to rework their data. There are several key issues.

Data interaction technique Recommendation

Preprocessor and
postprocessor

Consider for old batch software or certified software
that cannot be altered.

Script files
Consider for simple database interaction and proto-
typing.

Embedded DBMS commands
Use only when necessary. An API provides a better
approach.

Custom API Often a good choice.

Stored procedures
Good for general-purpose logic. Try to avoid placing
application-specific logic in stored procedures.

4GL
Consider for straightforward applications and proto-
typing.

Generic layer
Consider when performance is not demanding and
simple database functionality is needed.

Metadata driven Consider for frameworks and other special situations.

Table 19.3 Data interaction techniques. It is important to consider all options
for combining databases and programming languages.

19.6 Implementing Functionality 369

■ Cleansing data. You must repair errors in source data. Errors arise from user mistakes,
modeling flaws, database flaws, and application program errors. For example, an appli-
cation program may have missed some addresses with illegal postal codes. A combina-
tion of fields might be intended to be unique, but the data may have errors if the database
structure does not enforce uniqueness.

■ Handling missing data. You must decide how to handle missing data. Can you find it
elsewhere, do you want to estimate it, or can you use null values? You might want users
to help resolve missing data.

■ Moving data. It is common to migrate data from one application to another, either on a
one-shot or a recurring basis. A standard language, such as XML, can be helpful for han-
dling such data interchange.

■ Merging data. Data sources may overlap. For example, one system may contain account
information and another may contain address data. A new application may need both. For
complex sources, it is best to model them first and then decide how to merge them.

■ Changing data structure. Typically, source structures differ from target structures, so
you must adjust the data. For example, one application may store a phone number in a
single field; another may split country code, area code, and local phone number into sep-
arate fields. Corresponding fields may have different names, data types, and lengths.
There may be different data encodings; for example, sex can be encoded as male or fe-
male, M or F, 1 or 2, and so on.

You should begin processing by loading the data into staging tables that mirror the original
structure. For example, if the old application uses files and the new application uses a rela-
tional database, create one staging table for each file. Each column in a file maps to one col-
umn in a table with the same data type and length. Most RDBMSs have commands that
readily perform this kind of loading.

The staging tables get the data into the database so that it can be operated upon with SQL
commands. It is often better (less work, fewer errors, easier modification) to use SQL com-
mands than to write custom programming code. Staging tables enable the full power of da-
tabase queries to convert data from the old to the new format.

Often you can find alternative data sources. Customer data may be available from sales
records, customer service records, and an external marketing firm, for example. To resolve
redundancy, load the most accurate source first and then load the next most accurate and so
on. Before loading each source, place it in a staging table so that SQL can eliminate already
existing records. If you do not do this, you could load the same customer twice, for example.
This approach is a simple way to resolve conflicts in data, and it biases the database toward
the best sources.

19.6.3 Encapsulation vs. Query Optimization
Section 15.10.1 emphasized the importance of encapsulation (information hiding) and con-
sequently the need to limit class-model traversals. Unfortunately, there is a conflict between
the goals of encapsulation and the goals of RDBMS query optimization.

370 Chapter 19 / Databases

According to the principle of encapsulation, an object should access only directly relat-
ed objects. Indirectly related objects should be accessed indirectly via the methods of inter-
vening objects. Encapsulation increases the resilience of an application; local changes to an
application model cause local changes to the application code.

On the other hand, RDBMS optimizers take a logical request and generate an efficient
execution plan. If queries are broadly stated, the optimizer has greater freedom for devising
an efficient plan. RDBMS performance is usually best if you join multiple tables together in
a single SQL statement, rather than disperse logic across multiple SQL statements.

Thus encapsulation boosts resilience but limits optimization potential. In contrast,
broadly stating queries enables optimization, but a small change to an application can affect
many queries. For RDBMS applications, there is no simple resolution of this conflict. There
are three different situations.

■ Complex programming. You should encapsulate your code if the programming is in-
tricate and performance degradation is not too severe.

■ Easy programming and good query performance. You should broadly state queries
if doing so improves RDBMS performance and the programming code and queries are
relatively easy to write—and rewrite if the class model changes.

■ Easy programming and poor query performance. Somewhat paradoxically, you can
sometimes improve performance by fragmenting queries. Query optimizers are imper-
fect, and occasionally you will need to guide the optimizer manually.

19.6.4 Use of SQL Code
You can always write programming code for methods, but sometimes SQL provides a better
alternative. A skilled developer can write SQL code faster than programming code. Further-
more, SQL code can execute faster, has fewer defects (bugs), and is easier to extend. The per-
formance of SQL code benefits from reduced communication traffic (computation is
confined to the server) and robust internal RDBMS algorithms.

For example, referring to the full ATM model in Chapter 17, we might want to prepare
a monthly statement of transactions for each account. We could query the database and bring
the various pieces of data into memory. Alternatively, Figure 19.17 shows a SQL command
that provides the core data for a statement all at once. The names preceded with a colon are
programming variables that are passed into the SQL command.

19.7 Object-Oriented Databases
An object-oriented database is a persistent store of objects that mix data and behavior. With
an ordinary programming language, objects cease to exist when the program ends; with an
object-oriented database, objects persist beyond the confines of program execution. An ob-
ject-oriented DBMS (OO-DBMS) manages the data, programming code, and associated
structures that constitute an object-oriented database. In contrast to RDBMSs, OO-DBMSs
vary widely in their syntax and capabilities.

19.8 Practical Tips 371

OO-DBMSs are a relative newcomer to the database market. RDBMSs were commer-
cialized in the 1970s, but OO-DBMSs were not introduced until the 1990s. Two major mo-
tivations led to the development of OO-DBMSs.

■ Programmer frustration with RDBMSs. Many programmers don’t understand
RDBMSs and want something more familiar. RDBMSs are declarative (queries de-
scribe properties that requested data must satisfy), while most languages are imperative
(stated as a sequence of steps). Furthermore, RDBMSs awkwardly combine with most
languages, and programmers prefer a DBMS with a more seamless interface.

This is a poor reason for choosing an OO-DBMS. The reality is that RDBMSs dom-
inate the marketplace now and will for the foreseeable future. Programmers should not
be using an OO-DBMS out of frustration; they should learn to deal with RDBMSs.
RDBMS products are more mature and have proven features for reliability, scalability,
and administration.

■ Need for special features. RDBMSs lack the power that some advanced applications
need. OO-DBMSs offer advanced features, like rich data types and quick access to low-
level primitives.

This is a good reason for considering an OO-DBMS. If you have an advanced ap-
plication that is critical to your business, an OO-DBMS may ease development. Engi-
neering applications, multimedia systems, and artificial intelligence software can some-
times benefit from the use of an OO-DBMS.

You should be selective about deciding to use an OO-DBMS. OO-DBMSs are not popular
in the marketplace. OO-DBMS sales are only about 2% of RDBMS sales and have hit a pla-
teau [Leavitt-00]. Consequently, you should use OO-DBMSs only for compelling situations.

19.8 Practical Tips
Here are tips for using a relational database to implement an OO design.

Figure 19.17 Offloading functionality to SQL code. Sometimes it is better to
use SQL to implement a method than to write programming code.

SELECT T.date_time, U.amount, U.kind
FROM Bank B, Account A, Update U, Remote_Transaction T
WHERE B.bank_ID = A.bank_ID AND

A.account_ID = U.account_ID AND
U.transaction_ID = T.transaction_ID AND
B.bank_name = :aBankName AND
A.account_code = :anAccountCode AND
T.date_time >= :aStartDate AND
T.date_time <= :anEndDate

ORDER BY T.date_time;

372 Chapter 19 / Databases

■ Normal forms. Normal forms apply regardless of the development approach. However,
it is unnecessary to check them if you build a sound OO model. (Section 19.1.3)

■ Classes. Map each class to a table and each attribute to a column. (Section 19.3.1)

■ Associations. For simple one-to-one and one-to-many associations, use a buried foreign
key. For all other associations, use a distinct table. (Section 19.3.2)

■ Generalizations. For single inheritance, map the superclass and subclasses each to a ta-
ble. (Section 19.3.3)

■ Identity. We strongly advise that you use object identity. Doing so has several advan-
tages and little disadvantage. (Section 19.3.4)

■ Foreign keys. Define constraints to enforce all foreign keys. For each subclass, specify
on delete cascade for the foreign key to the superclass. For some association foreign
keys, you may also want to specify on delete cascade. (Section 19.4.1)

■ Enumerations. Use SQL check constraints to enforce them. (Section 19.4.2)

■ Indexes. Create an index for every foreign key that is not covered by a primary key or
candidate key constraint. You may want to define additional indexes for frequent que-
ries and use product-specific tuning mechanisms. (Section 19.4.3)

■ Views. You may want to define views to reconstitute objects that are fragmented across
generalization tables. Such views are convenient for reading, but RDBMSs only partial-
ly support writing through views. (Section 19.4.4)

■ Coupling to a programming language. Be deliberate about coupling a programming
language to a database. Consider all your options. (Section 19.6.1)

■ Data conversion. It is often helpful to load data into temporary staging tables. Then you
can write SQL code to do much of the data processing. SQL code is easier and faster to
write than programming code. (Section 19.6.2)

■ Encapsulation vs. query optimization. Be aware of the intrinsic conflict between these
two goals and make your best resolution on a case-by-case basis. (Section 19.6.3)

■ Object-oriented databases. Consider them only when application needs are compel-
ling. (Section 19.7)

19.9 Chapter Summary
A database management system (DBMS) is software that provides general-purpose func-
tionality for storing, retrieving, and controlling access to data. A DBMS protects data from
accidental loss and makes it available for sharing. Several paradigms are available, but the
development of new applications is dominated by relational DBMSs (RDBMSs). OO-
DBMSs are also available but pragmatic concerns limit their use.

OO models provide an excellent basis for thinking about databases. Developers can think
about a problem abstractly and defer the details of design and implementation. With a proper
implementation, sound OO models lead to extensible, efficient, and understandable databas-
es. Table 19.1 and Table 19.2 summarize the implementation rules for RDBMS structure.

Bibliographic Notes 373

You should be deliberate in coupling a programming language to a database. Further-
more, you should look for opportunities to substitute SQL code for programming effort.

Bibliographic Notes
Many good books explain DBMS and RDBMS principles. [Elmasri-00] is a premier text-
book that explains database concepts. [Chaudhri-98] has thoughtful examples of applica-
tions that use OO databases.

[Blaha-98] elaborates the material in this chapter and provides more details for files,
RDBMSs, and OO-DBMSs (specifically ObjectStore). Our approach to databases is consis-
tent with that of other authors, such as [Muller-99].

[Chang-03] presents middleware for combining databases with GUIs via intermediate
text files.

References
[Blaha-98] Michael Blaha and William Premerlani. Object-Oriented Modeling and Design for Data-

base Applications. Upper Saddle River, NJ: Prentice Hall, 1998.
[Chang-03] Peter H. Chang. A platform independent middleware architecture for accessing databases

on a database server on the Web. IEEE Conference on Electro/Information Technology. Indianap-
olis, 2003.

[Chaudhri-98] Akmal B. Chaudhri and Mary Loomis. Object Databases in Practice. Upper Saddle
River, NJ: Prentice Hall PTR, 1998.

[Elmasri-00] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems, Third
Edition. Redwood City, CA: Benjamin/Cummings, 2000.

[Leavitt-00] Neal Leavitt. Whatever happened to object-oriented databases? IEEE Computer, August
2000, 16–19.

[Melton-93] Jim Melton and Alan R. Simon. Understanding the New SQL: A Complete Guide. San
Francisco: Morgan Kaufmann, 1993.

[Muller-99] Robert J. Muller. Database Design for Smarties: Using UML for Data Modeling. San
Francisco: Morgan Kaufmann, 1999.

Figure 19.18 Key concepts for Chapter 19

candidate key
coupling a language to a database
data conversion
database
database management system (DBMS)
foreign key
identity
implementing associations
implementing classes

implementing generalizations
index
normal form
null
object-oriented DBMS (OO-DBMS)
primary key
relational DBMS (RDBMS)
SQL
view

374 Chapter 19 / Databases

Exercises
19.1 (8) Figure E19.1 shows four different class models for directed graphs. A directed graph con-

sists of a set of edges and a set of nodes. Each edge connects two nodes and has an arrow indi-
cating direction of flow. Any number of edges may connect to the same node. More than one
edge may connect a pair of nodes. An edge may connect a node to itself.

In Figure E19.1a a graph is a many-to-many association between nodes with directionality
indicated by from and to ends. In Figure E19.1b a graph is a many-to-many association between
edges. The qualifiers, end1 and end2, are enumerated types with possible values of to and from
indicating which ends of the edges connect. Figure E19.1c treats both nodes and edges as ob-
jects. Two associations, to and from, store connections, one for each end of an edge. Figure
E19.1d represents each connection as a qualified association. Each end of an edge connects to
exactly one node, and end is an enumerated type.

Which diagram most accurately models a graph? Explain the relative merits of each dia-
gram. What happens if more than one edge connects a given pair of nodes? Can an edge connect
a node with itself? What happens if only one edge connects to a node?

19.2 (6) Prepare tables for each model from the previous exercise. Be sure to show primary, candi-
date, and foreign keys. Use object identity.

19.3 (4) Write SQL code to create an empty database for the tables for Figure E19.1c and Figure
E19.1d from the previous exercise. Use your judgment to supply any missing information.

19.4 (3) Populate the database tables created by the SQL commands of Exercise 19.3 for the directed
graph in Figure E19.2.

19.5 For the class model in Figure E19.1d, prepare SQL queries for the following. For part (d) you
will need to augment SQL with pseudocode.
a. (3) Given the name of an edge, determine the two nodes that it connects.
b. (3) Given the name of a node, determine all edges connected to or from it.
c. (5) Given a pair of nodes, determine the edges, if any, that directly connect them in either

direction.

from to

to

from

Node

nodeName

Node

nodeName

Node

nodeName

Edge

edgeName

Edge

edgeName

Edge

edgeName

nodeNameedgeName

end1 end2

end

* * * *

**
*

11

1

Figure E19.1 Alternative class models for a directed graph

(a)

(c)

(b)

(d)

Exercises 375

d. (8) Given a node, determine the nodes that can be visited directly or indirectly from the given
node by traversing one or more edges (transitive closure). Each edge must be traversed from
its from end to its to end.

19.6 (6) Prepare tables for Figure E19.3. An expression is a binary tree of terms that is formed from
constants, variables, and arithmetic operators. Unary minus is not allowed.

19.7 (4) Write SQL code to create an empty database for the tables from the previous exercise.

19.8 (5) Show populated database tables created by the previous exercise for the expression
. Consider the parentheses in establishing the precedence of operators;

otherwise, ignore them in populating the database tables.

19.9 (7) Prepare tables for Figure E19.4. A document consists of numbered pages. Each page con-
tains many drawing objects—ellipses, rectangles, polylines, textlines, and groups of objects. El-
lipses and rectangles are embedded within a bounding box. A polyline is a series of line seg-
ments defined by vertex points. Textlines originate at a point and have a font. Treat all associ-
ations and aggregations as unordered. For this exercise disregard the ordering of points in a
polygon.

19.10 (7) Revise your tables from the previous exercise to treat the Polyline_Point association as or-
dered. That is, given a polyline, the database must be able to retrieve the points in the correct

e1

e2

e3e4

e5

e6

n1

n2

n3

n4n5

Figure E19.2 Sample directed graph

Figure E19.3 Class model for expressions

firstOperand

secondOperand

Term

1

1

Constant

value

Variable

name

Expression

binaryOperator

**

X Y 2⁄+() X 3⁄ Y–()⁄

376 Chapter 19 / Databases

order. [Instructor’s note: You may want to give the students the answer to the previous exer-
cise.]

19.11 (6) Modify your answer to Exercise 19.9 to reflect the revised class model in Figure E19.5. Dis-
cuss the merits of the revision. Disregard the ordering of Points in this exercise.

19.12 (5) Write SQL code to create an empty database for the tables from Exercise 19.9.

19.13 (5) Convert the SQL commands in Figure E19.6 into a class model. The tables store the straight-
line distances between pairs of cities.

19.14 (4) Using the tables from Exercise 19.13, write an SQL query that will determine the distance
between two cities, given the names of the two cities.

drawingObjectType

Figure E19.4 Class model for a desktop publishing system

2..*

vertices

Page

pageNumber

DrawingObject

lineThickness

Document

pageWidth
pageHeight
leftMargin
rightMargin

*1 *1

Ellipse Rectangle Polyline ObjectGroup

BoundingBox

leftEdge
topEdge
width
height

Point

x
y

Textline

alignment
text0..10..1 0..1

*1 1
1

0..1

Font

fontSize
fontFamily
isBold
isItalic
isUnderlined

0..1

*
1

{ordered}

Figure E19.5 Generalization of point to eliminate zero-or-one multiplicity

pointType

Polyline

Point

x
y

Textline

alignment
text

PolylinePoint TextlinePoint
*

1 1

1vertices

Polyline

Point

x
y

Textline

alignment
text0..1

*
1

0..1

Exercises 377

19.15 (5) Convert the SQL commands in Figure E19.7 into a class model. The tables store the straight-
line distances between pairs of cities.

19.16 (6) Using the tables in Exercise 19.15, write an SQL query that will determine the distance be-
tween two cities, given their names. Assume that the distance between a given pair of cities is
stored exactly once in the CityDistance table. (The application must enforce a constraint such
as city1ID < city2ID, so that the distance is entered only once.)

19.17 (6) Discuss the relative merits of the two approaches in the previous four exercises for storing
distance information.

19.18 (5) Discuss the similarities and differences between the database tables used to store edge and
node information in Exercises 19.1–19.5 and the tables used to store distance information be-
tween cities in Exercises 19.13–19.17. How does fact that there is exactly one straight-line dis-
tance between a pair of cities simplify the problem? Is the problem of storing distances between
cities more nearly like a directed graph or an undirected graph? Why?

CREATE TABLE City
(city_ID NUMBER(30) CONSTRAINT nn_city1 NOT NULL,
city_name VARCHAR2(255) CONSTRAINT nn_city2 NOT NULL,

CONSTRAINT pk_city PRIMARY KEY (city_ID),
CONSTRAINT uq_city1 UNIQUE (city_name));

CREATE SEQUENCE seq_city;

CREATE TABLE Route
(route_ID NUMBER(30) CONSTRAINT nn_route1 NOT NULL,
distance NUMBER(20,10)) CONSTRAINT nn_route2 NOT NULL,

CONSTRAINT pk_route PRIMARY KEY (route_ID));

CREATE SEQUENCE seq_route;

CREATE TABLE City_Distance
(city_ID NUMBER(30) CONSTRAINT nn_dist1 NOT NULL,
route_ID NUMBER(30) CONSTRAINT nn_dist2 NOT NULL,

CONSTRAINT pk_dist PRIMARY KEY (city_ID, route_ID));

CREATE INDEX index_dist1 ON City_Distance (route_ID);

ALTER TABLE City_Distance ADD CONSTRAINT fk_dist1
FOREIGN KEY city_ID
REFERENCES City;

ALTER TABLE City_Distance ADD CONSTRAINT fk_dist2
FOREIGN KEY route_ID
REFERENCES Route;

Figure E19.6 SQL commands for creating tables to store distances between cities

378 Chapter 19 / Databases

19.19 (7) Prepare tables and SQL commands to create an empty relational database for the model in
Figure E19.8.

CREATE TABLE City
(city_ID NUMBER(30) CONSTRAINT nn_city1 NOT NULL,
city_name VARCHAR2(255) CONSTRAINT nn_city2 NOT NULL,

CONSTRAINT pk_city PRIMARY KEY (city_ID),
CONSTRAINT uq_city1 UNIQUE (city_name));

CREATE SEQUENCE seq_city;

CREATE TABLE City_Distance
(city1_ID NUMBER(30) CONSTRAINT nn_dist1 NOT NULL,
city2_ID NUMBER(30) CONSTRAINT nn_dist2 NOT NULL,
distance NUMBER(20,10) CONSTRAINT nn_dist3 NOT NULL,

CONSTRAINT pk_dist PRIMARY KEY (city1_ID, city2_ID));

CREATE INDEX index_dist1 ON City_Distance (city2_ID);

ALTER TABLE City_Distance ADD CONSTRAINT fk_dist1
FOREIGN KEY city1_ID
REFERENCES City;

ALTER TABLE City_Distance ADD CONSTRAINT fk_dist2
FOREIGN KEY city2_ID
REFERENCES City;

Figure E19.7 SQL commands for creating tables to store distances between cities

Figure E19.8 Partial class model for a scoring system

Trial

netScore

Event

startingTime

Station

location

Meet

date
location

Competitor

name
age
address
telephoneNumber

rawScore

1 *

Judge

name

**

*1

*

1

*

*
*

1

*1

Exercises 379

19.20 (6) Build a class model of forks and philosophers for the dining philosophers problem. (See Ex-
ercise 3.28.) Prepare tables and SQL code to create an empty database for your model. Show
database contents for the situation in which each philosopher has exactly one fork.

19.21 (7) Prepare tables and SQL commands to create an empty relational database for the model in
Figure 3.27.

19.22 (8) Write an SQL query for each of the OCL expressions in Section 3.5.3.

380

20

Programming Style

As any chess player, cook, or skier can attest, there is a great difference between knowing
something and doing it well. Writing programs is no different. It is not enough to know the
basic constructs and to be able to assemble them. The experienced programmer follows prin-
ciples to make readable programs that live beyond the immediate need. These principles in-
clude programming idioms, rules of thumb, tricks of the trade, and cautionary advice. Good
style is important in all programming, but it is even more important in OO programming, be-
cause much of the benefit of the OO approach is predicated on producing reusable, extensi-
ble, and understandable programs.

20.1 Object-Oriented Style
Good programs do more than simply satisfy their functional requirements. Programs that fol-
low proper coding guidelines are more likely to be correct, reusable, extensible, and quickly
debugged. Most style guidelines that are intended for conventional programs also apply to
OO programs. In addition, facilities such as inheritance are peculiar to OO languages and
require new guidelines. We present OO style guidelines under the following categories, al-
though many guidelines contribute to more than one category.

■ Reusability [20.2]

■ Extensibility [20.3]

■ Robustness [20.4]

■ Programming-in-the-Large [20.5]

20.2 Reusability
Reusable software reduces design, coding, and testing cost by amortizing effort over several
applications. Reducing the amount of code also simplifies understanding, which increases

20.2 Reusability 381

the likelihood that the code is correct. Reuse is possible in conventional languages, but OO
languages greatly enhance the possibility of code reuse.

20.2.1 Kinds of Reusability
There are two kinds of reuse: sharing of newly written code within an application and reuse
of previously written code on new applications. Similar guidelines apply to both kinds of re-
use. Sharing of code within an application is a matter of discovering redundant code se-
quences and using programming-language facilities to consolidate them (refactoring). This
kind of code sharing almost always produces smaller programs and faster debugging.

Planning for future reuse takes more foresight and represents an investment. It is unlike-
ly that a class in isolation will be used for multiple applications. Programmers are more like-
ly to reuse carefully thought out subsystems, such as abstract data types, graphics packages,
and numerical analysis libraries. Patterns and frameworks can be helpful in this regard (see
Chapter 14).

20.2.2 Style Rules for Reusability
There are a number of rules that you can follow to promote reusability within your applica-
tion and across applications.

■ Keep methods coherent. A method is coherent if it performs a single function or a
group of closely related functions. If it does two or more unrelated things, break it apart
into smaller methods.

■ Keep methods small. If a method is large, break it into smaller methods. A method that
exceeds one or two pages is probably too large. By breaking a method into smaller parts,
you may be able to reuse some parts even when the entire method is not reusable.

■ Keep methods consistent. Similar methods should use the same names, argument or-
der, data types, return value, and error conditions. Maintain parallel structure when
possible. The methods for an operation should have consistent signatures and seman-
tics.

The Unix operating system offers many examples of inconsistent functions. For ex-
ample, in the C library, there are two inconsistent functions to output strings, puts and
fputs. The puts function writes a string to the standard output, followed by a newline
character; fputs writes a string to a specified file, without a newline character. Avoid
such inconsistency.

■ Separate policy and implementation. Policy methods make decisions, shuffle argu-
ments, and gather global context. Policy methods switch control among implementation
methods. Policy methods should check for status and errors; they should not directly
perform calculations or implement complex algorithms. Policy methods are often appli-
cation dependent, but they are simple to write and easy to understand.

Implementation methods perform specific detailed logic, without deciding whether
or why to do them. If implementation methods can encounter errors, they should only
return status, not take action. Implementation methods perform specific computations

382 Chapter 20 / Programming Style

on fully specified arguments and often contain complicated algorithms. Implementation
methods do not access global context, make decisions, contain defaults, or switch flow
of control. Because implementation methods are self-contained algorithms, they are
likely to be meaningful and reusable in other contexts.

Do not combine policy and implementation in a single method. Isolate the core of
the algorithm into a distinct, fully specified implementation method. This requires ab-
stracting out the particular parameters of the policy method as arguments in a call to the
implementation method.

For example, a method to scale a window by a factor of 2 is a policy method. It
should set the target scale factor for the window and call on an implementation method
that scales the window by an arbitrary scale factor. If you decide later to change the de-
fault scale factor to another value, such as 1.5, you just have to modify the parameter in
the policy method, without changing the implementation method that actually does the
work.

■ Provide uniform coverage. If input conditions can occur in various combinations,
write methods for all combinations, not just the ones that you currently need. For exam-
ple, if you write a method to get the last element of a list, also write one to get the first
element. By providing uniform coverage you not only boost reusability, but you also ra-
tionalize the scope of related methods.

■ Broaden the method as much as possible. Try to generalize argument types, precon-
ditions and constraints, assumptions about how the method works, and the context in
which the method operates. Take meaningful actions on empty values, extreme values,
and out-of-bounds values. Often a method can be made more general with a slight in-
crease in code.

■ Avoid global information. Minimize external references. Referring to a global object
imposes required context on the use of a method. Often the information can be passed
in as an argument. Otherwise store global information as part of the target object so that
other methods can access it uniformly.

■ Avoid methods with state. Methods that drastically change behavior depending on pre-
vious method history are hard to reuse. Try to replace them with stateless methods. For
example, a text-processing application requires insert and replace operations. One ap-
proach is to set a flag to insert or replace, then use a write operation to insert or replace
text depending on the current flag. A stateless approach uses two operations, insert and
replace, that do the same operations without a state setting. The danger of method states
is that an object left in a state in one part of an application can affect a method applied
later in the application.

20.2.3 Using Inheritance
The preceding guidelines improve the chance of sharing code. Sometimes, however, meth-
ods on different classes are similar but not similar enough to represent with a single inherited
method. There are several techniques of breaking up methods to inherit some code.

20.2 Reusability 383

■ Factor out commonality. The simplest approach is to factor out the common code into
a single method that is called by each method. The common method can be assigned to
an ancestor class. This is effectively a subroutine call, as Figure 20.1 shows.

■ Factor out differences. In some cases the best way to increase code reuse between sim-
ilar classes is to factor out the differences between the methods of different classes, leav-
ing the remainder of the code as a shared method. This approach is effective when the
differences between methods are small and the similarities are great. As Figure 20.2
shows, the common portion of two methods is made into a new method. The new meth-
od calls an operation that is implemented by different methods containing the code dif-
ferences for each subclass. Sometimes an abstract class must be added to hold the top-
level method. This approach makes it easier to add new subclasses, because only the dif-
ference code need be written.

A package for plotting numerical data illustrates factoring. DataGraph is an ab-
stract class that organizes common data and operations for its subclasses. One of Data-
Graph’s methods is draw, consisting of the following steps: draw border, scale data,
draw axes, plot data, draw title, and draw legend.

Subclasses of DataGraph, such as LineGraph, BarGraph, and ScatterGraph, draw
borders, titles, and legends the same way but differ in the way they scale data, draw axes,
and plot data. Each subclass inherits the methods drawBorder, drawTitle, and drawLe-
gend from abstract class DataGraph, but each subclass defines its own methods for
scaleData, drawAxes, and plotData. The method draw need be defined only once, on
class DataGraph, and is inherited by each subclass. Each time the draw method is in-
voked, it applies drawBorder, drawTitle, and drawLegend inherited from the superclass
and scaleData, drawAxis, and plotData supplied by the subclass itself. To add a new
subclass, only the three specialized methods need be written.

Figure 20.1 Code reuse via factoring out commonality. Place the common
code into a method that is called by the original methods.

method A method B

common method

Figure 20.2 Code reuse via factoring out differences. Place the difference
code in polymorphic methods of a common operation.

method A::M method B::M

common method
call operation M

384 Chapter 20 / Programming Style

■ Delegate. Sometimes it appears that use of inheritance would increase code reuse within
a program, when a true superclass/subclass relationship does not exist. Do not give in to
the temptation to use this implementation inheritance; use delegation instead. Inherit-
ance should be used only when the generalization relationship is semantically valid. In-
heritance means that each instance of a subclass truly is an instance of the superclass;
thus all operations and attributes of the superclass must uniformly apply to the subclass-
es. Improper use of inheritance leads to programs that are hard to maintain and extend.
OO languages are permissive in their use of inheritance and will not enforce the good
programming practice that we recommend.

Delegation provides a proper mechanism to achieve the desired code reuse. The
method is caught in the desired class and forwarded to another class for actual execution.
Since each method must be explicitly forwarded, unexpected side effects are less likely
to occur. The names of methods in the catching class may differ from those in the sup-
plier class. Each class should choose names that are most appropriate for its purposes.

■ Encapsulate external code. Often you will want to reuse code that may have been de-
veloped for an application with different interfacing conventions. Rather than inserting
a direct call to the external code, it is safer to encapsulate its behavior within a method
or a class. This way, the external routine or package can be changed or replaced, and
you will have to change your code in only one place.

For example, you may have a numerical analysis application but, knowing that re-
liable matrix-inversion software already exists, you do not want to reimplement the al-
gorithm. You could write a matrix class to encapsulate the functionality provided by the
external subroutine package. The matrix class would have, for example, an inverse
method that takes the tolerance-for-singularity as an argument and returns a new matrix
that is the inverse of the method’s target.

20.3 Extensibility
Most software is extended in ways that its original developers never expect. The reusability
guidelines enhance extensibility, as do the additional guidelines listed below.

■ Encapsulate classes. A class is encapsulated if its internal structure is hidden from oth-
er classes. Only methods on the class should access its implementation. Many compilers
are smart enough to optimize methods into direct access to the implementation, but the
programmer should not. Respect the information in other classes by never reaching in-
side the class for data.

■ Specify visibility for methods. Public methods are visible outside a class and have pub-
lished interfaces. Once a public method is used by other classes, it is costly to change
its interface, so carefully define and limit the number of public methods. In contrast, pri-
vate methods are internal to a class—they can be deleted or changed with impact limited
to other methods on the class. Protected methods have intermediate visibility—see Sec-
tion 18.1.

20.4 Robustness 385

Careful use of visibility (see Section 4.1.4) makes your classes easier to understand
and increases code resilience. Private and protected methods suppress unnecessary de-
tails from the user of a class, avoiding confusion. Unlike a public method, a private
method cannot be applied out of context, so it can rely on preconditions or state infor-
mation of the class.

■ Hide data structures. Do not export data structures from a method. Internal data struc-
tures are specific to a method’s algorithm. If you export them, you limit flexibility to
change the algorithm later.

■ Avoid traversing multiple links or methods. A method should have limited knowl-
edge of a class model. A method must be able to traverse links to obtain its neighbors
and must be able to call methods on them, but it should not traverse a second link from
the neighbor to a third class because the second link is not directly visible to it. Instead,
call a method on the neighbor object to traverse nonconnected objects; if the association
network changes, the method can be rewritten without changing the call.

Similarly, avoid applying a second method to the result of a method call unless the
class of the result is already known as an attribute, argument, or neighbor, or the result
class is from a lower-level library. Instead, write a new method on the original target
class to perform the combined method itself. The principles in this bullet were proposed
in [Lieberherr-89] as the “Law of Demeter.”

■ Avoid case statements on object type. Use polymorphism instead. Case statements can
be used to test internal attributes of an object but should not be used to select behavior
based on object type. The dispatching of operations based on object type is the whole
point of polymorphism, so don’t circumvent it.

■ Design for portability. Limit system dependencies to a few basic methods. You can
then more easily port software to other hardware platforms and software environments.
For example, if you are using a database, you might isolate database access. This would
make it easier to switch database vendors and possibly enable switching paradigm (such
as from relational to OO database).

20.4 Robustness
You should strive for efficient methods but not at the expense of robustness. A method is ro-
bust if it does not fail even if it receives improper parameters. In particular, you should never
sacrifice robustness against user errors.

■ Protect against errors. Software should protect itself against incorrect user input and
never let it cause a crash. Methods must validate input that could cause trouble.

There are two kinds of errors. Analysis uncovers errors that exist in the problem do-
main and determines an appropriate response. For example, an ATM should handle er-
rors for the card scanner and communications lines. On the other hand, low-level system
errors concern programming aspects. These low-level errors include memory allocation

386 Chapter 20 / Programming Style

errors, file input/output errors, and hardware faults. Your program should check for sys-
tem errors and at least try to die gracefully if nothing else is possible.

Try to guard against programming bugs as well, and give good diagnostic informa-
tion. During development, it is often worthwhile to insert internal assertions into the
code to uncover bugs, even though the checks will be removed for efficiency in the pro-
duction version. A strongly typed OO language provides greater protection against type
mismatches, but you can insert assertions in any language. In particular, you should
check array bounds.

■ Optimize after the program runs. Don’t optimize a program until you get it working.
Many programmers spend too much time improving code that seldom executes. Mea-
sure the performance within the program first; you may be surprised to find that most
parts consume little time. Study your application to learn what measures are important,
such as worst-case times and method frequencies. If a method may be implemented in
more than one way, assess the alternatives with regard to memory, speed, and imple-
mentation simplicity. In general, avoid optimizing more of the program than you have
to, since optimization compromises extensibility, reusability, and understandability. If
methods are properly encapsulated, you can replace them with optimized versions with-
out affecting the rest of the program.

■ Always construct objects in a valid state [Vermeulen-00]. Otherwise, you create a sit-
uation where someone might use the constructor and not call the right subsequent meth-
od. As a matter of good software practice, your code should always be logically sound.

■ Validate arguments. Public methods, those available to users of the class, must rigor-
ously check their arguments, because users may violate restrictions. Private and protect-
ed methods can improve efficiency by assuming that their arguments are valid, since the
implementor can rely on the public methods that call them for error checking.

Don’t write or use methods whose arguments can’t be validated. For example, the
infamous scanf function in Unix reads a line of input into an internal buffer without
checking the size of the buffer. This loophole has been exploited to write virus programs
that force a buffer overflow in system software that did not validate its arguments.

■ Avoid predefined limits. When possible use dynamic memory allocation to create data
structures without predefined limits. It is difficult to predict the maximum capacity ex-
pected of data structures in an application, so don’t set any limits. The day of fixed limits
on symbol table entries, user names, file names, compiler entries, and other things
should be long over. Most OO languages have excellent dynamic memory allocation fa-
cilities.

■ Instrument the program for debugging and performance monitoring. Just as a
hardware circuit designer instruments an IC board with test points, you should instru-
ment your code for testing, debugging, statistics, and performance. The level of debug-
ging that you must build into your code depends on your language’s programming en-
vironment. You can add debug statements to methods that conditionally execute de-
pending on the debug level. The debug statements print a message on entry or exit and
selective input and output values.

20.5 Programming-in-the-Large 387

You can better understand the behavior of classes by adding code to gather statis-
tics. Some operating systems, such as Unix, offer tools to create execution profiles of an
application. Typically, these tools report the number of times each method was called
and the amount of processor time spent in each method. If your system lacks comparable
tools, you can instrument your code for gathering statistics much like for debugging.

20.5 Programming-in-the-Large
Programming-in-the-large refers to writing large, complex programs with teams of program-
mers. Human communication becomes paramount on such projects and requires proper soft-
ware engineering practices. You should observe the following guidelines.

■ Do not program prematurely. Think long and carefully before you commit to code.
Ultimately, of course you must have code to deliver your application. But code is te-
dious to write and difficult to change. In contrast, models are much more malleable, be-
cause they are high level and suppress details. It is much better to work out your ideas
with models, gain a full understanding, and only then write the code.

■ Make methods readable. Meaningful variable names increase readability. Typing a
few extra characters costs less than the misunderstanding that can come later when an-
other programmer tries to decipher your variable names. Avoid confusing abbrevia-
tions, and use temporary variables instead of deeply nested expressions. Do not use the
same temporary variable for two different purposes within a method, even if their usage
does not overlap; most compilers will optimize this anyway. Minor improvements to ef-
ficiency are not worth compromising readability.

■ Keep methods understandable. A method is understandable if someone other than the
creator can understand the code (as well as the creator after a time lapse). Keeping meth-
ods small and coherent helps to accomplish this.

■ Use the same names as in the class model. The names used within a program should
match those in the class model. A program may need to introduce additional names for
implementation reasons, but you should preserve the names for concepts that carry for-
ward. This practice improves traceability, documentation, and understandability. It is
reasonable to adopt conventions such as uniform prefixes for consistency across appli-
cations, thereby avoiding name clashes.

■ Choose names carefully. Make sure that your names accurately describe the opera-
tions, classes, and attributes that they label. Follow a uniform style in devising names.
For example, you may name operations as “verbObject,” such as addElement or
drawHighlight. Be sure to define a vocabulary of verbs that are often used. For example,
don’t use both new and create unless they have different meanings. Many OO languages
automatically build method names from the class and operation names.

Similarly, do not use the same method name for semantically different purposes. As
Figure 20.3 shows, all methods with the same name should have the same signature
(number and types of arguments) and meaning.

388 Chapter 20 / Programming Style

■ Use programming guidelines. Project teams should use programming guidelines avail-
able in their organizations or external guidelines, such as [Vermeulen-00]. Guidelines
address issues such as the form of variable names, indentation style for control struc-
tures, method documentation headers, and in-line documentation.

■ Use packages. Group closely related classes into a package. (See Section 4.11.)

■ Document classes and methods. The documentation of a method describes its purpose,
function, context, inputs, and outputs as well as any assumptions and preconditions about
the state of the object. You should describe not only the details of an algorithm, but also
why it was chosen. Internal comments within the method should describe major steps.

■ Publish the specification. The specification is a contract between the producer and the
consumer of a class. Once a specification is written, the producer cannot break the con-
tract, for doing so would affect the consumer. The specification contains only declara-
tions, and the user should be able to use the class just by looking at the declarations. On-
line descriptions of a class and its features help promote the correct use of the class. Fig-
ure 20.4, Figure 20.5, and Figure 20.6 show sample specifications.

Figure 20.3 Method names. All methods with the same name should have
the same signature and meaning.

Correct Try to avoid

Matrix::invert() — performs matrix inversionCircle::area()
Rectangle::area() Figure::invert() — turns figure upside down

Figure 20.4 Class specification

Class name: Circle
Version: 1.0
Description: Ellipse whose major and minor axes are equal
Super classes: Ellipse
Features:

Private attributes:
center: Point — location of its center
radius: Real — its radius

Public methods:
draw (Window) — draws a circle in the window
intersectLine (Line): Set of Points — finds the intersection of a line and a circle,

returns set of 0–2 points
area (): Real — calculates area of circle
perimeter (): Real — calculates circumference of circle

Private methods: none

20.5 Programming-in-the-Large 389

Figure 20.5 Operation specification

Operation: intersectLine (line: Line) : Set of Points

Origin Class: GeometricFigure

Description: Returns a set of intersection points between the geometric object and
the line. The set may contain 0, 1, or more points. Each tangent point appears only
once. If the line is collinear with a line segment in the figure, only the two end
points of the segment are included.

Status: Abstract operation in the origin class, must be overridden.

Inputs:
self: GeometricFigure — figure to be intersected with line
line:Line — line to be intersected with circle

Returns:
A set of intersection points. Set may contain 0 or more points.

Side Effects: none

Errors:
If the figures do not intersect, returns an empty set.
If the line is collinear with a line segment in the figure, the set includes only the
end points of the segment.
If the figure is an area, then its boundary is used

Figure 20.6 Method specification

Method: Circle::intersectLine (line: Line) : Set of Points

Description: Given a circle and a line, finds the intersection, returns a set of 0–2 in-
tersection points. If the line is tangent to the circle, the set contains a single point.

Inputs:
self:Circle — circle to be intersected with line
line:Line — line to be intersected with circle

Returns:
A set of intersection points. Set may contain 0, 1, or 2 points.

Side Effects: none

Errors:
If the figures do not intersect, returns an empty set.
If the line is tangent to the circle, returns the tangent point.
If the circle’s radius is 0, returns a single point if the point is on the line.

390 Chapter 20 / Programming Style

■ Avoid duplicated code. [Baker-95] cites two applications with one million lines of
code. (One was X-Windows.) She found that at least 12% of the code was gross dupli-
cation that could be easily eliminated. Such duplication comes from programmers copy-
ing and editing code when making bug fixes and other reasons of expedience. The side
effect is that the code swells in size, making it more difficult to maintain and understand.

20.6 Chapter Summary
Good style is important to maximize the benefits of OO programming; most benefits come
from greatly reduced maintenance and enhancement costs and the reuse of the new code
for future applications. OO programming style guidelines include conventional program-
ming style guidelines as well as principles uniquely applicable to OO concepts such as in-
heritance.

A major goal of OO development is maximizing reusability of classes and methods. Re-
use within a program is a matter of looking for similarities and consolidating them. Planning
for reuse by future applications takes more time and effort up front. Reusability is enhanced
by keeping methods small, coherent, and local. Separation of policy and implementation is
important. One way to use inheritance is by factoring a generic method into submethods,
some inherited from the origin class and some provided by each subclass. Delegation should
be used when methods must be shared but classes are not in a true generalization relation-
ship.

Most software is eventually extended. Extensibility is enhanced by encapsulation, min-
imizing dependencies, using methods to access attributes of other classes, and distinguishing
the visibility of methods.

Do not sacrifice robustness for efficiency. Because objects contain references to their
own classes, they are less vulnerable to mismatched typing than conventional program-
ming variables and can be checked dynamically to see that they match the assumptions
within a method. Programs should always protect against user and system errors. Asser-
tions are important, because they can catch programming bugs and can be removed during
production.

Writing large programs with teams of programmers requires more discipline, better doc-
umentation, and better communication than one-person or small applications. Writing read-
able, well-documented methods is essential.

Figure 20.7 Key concepts for Chapter 20

delegation
documentation
encapsulation
extensibility

optimization
programming-in-the-large
refactoring
reusability

robustness
visibility

Bibliographic Notes 391

Bibliographic Notes
OO programming must render application concepts into language constructs in a correct and
maintainable way, so good style is important. Most conventional programming principles ap-
ply to OO programming. [Kernighan-99] is a well-written style guide for programming.

[Brooks-95] has excellent advice for programming in the large. [Vermeulen-00] has de-
tailed programming guidelines for Java, but many of the ideas transcend Java.

References
[Baker-95] Brenda S. Baker. On finding duplication and near-duplication in large software systems.

Second IEEE Working Conference on Reverse Engineering. July 1995, Toronto, Ontario, 86–95.
[Brooks-95] Frederick P. Brooks, Jr. The Mythical Man-Month, Anniversary Edition. Boston: Addi-

son-Wesley, 1995.
[Kernighan-99] Brian W. Kernighan, Rob Pike. The Practice of Programming. Boston: Addison-Wes-

ley, 1999.
[Lieberherr-89] Karl J. Lieberherr, Arthur J. Riel. Contributions to teaching object-oriented design and

programming. OOPSLA’89 as ACM SIGPLAN 24, 11 (November 1989) 11–22.
[Vermeulen-00] Allan Vermeulen, Scott W. Ambler, Greg Bumgardner, Eldon Metz, Trevor Misfeldt,

Jim Shur, Patrick Thompson. The Elements of Java Style. Cambridge, UK: Cambridge University
Press, 2000.

Exercises
20.1 (4) One technique for code reuse is to use a method as an argument for another method. For ex-

ample, one operation that can be performed on a binary tree is ordered printing. The subroutine
print(node) could print the values in a tree rooted at node by a recursive call to Print(node.left-
Subtree) if there is a left subtree, followed by printing node.value, followed by a recursive call
for the right subtree. This approach could be generalized for other operations. List at least three
operations that could be performed on the nodes of a binary tree. Prepare pseudocode for a sub-
routine orderedVisit(node, method) that applies method to the nodes of the tree rooted at node,
in order.

20.2 (3) Combining similar methods into a single operation can improve code reuse. Revise, extend,
or generalize the following two methods into a single operation. Also list the attributes needed
to track both types of accounts.
a. cashCheck (normalAccount, check) If the amount of the check is less than the balance in nor-

malAccount, cash the check and debit the account. Otherwise, bounce the check.
b. cashCheck (reserveAccount, check) If the amount of the check is less than the balance in re-

serveAccount, cash the check and debit the account. Otherwise, examine the reserve balance.
If the check can be covered by transferring funds from the reserve without going over the
reserve limit, cash the check and update the balances. Otherwise, bounce the check.

20.3 (4) Figure E20.1 is a function coded in C to create a new sheet for a computer-aided design ap-
plication. A sheet is a named, displayable, two-dimensional region containing text and graphics.
Several sheets may be required to completely represent a system. The function given in the fig-

392 Chapter 20 / Programming Style

ure creates a new vertical or horizontal sheet and constructs a name from a root and a suffix.
The C functions it calls are strlen to compute the length of a string, strcpy to copy a string, strcat
to concatenate two strings, and malloc to allocate memory. The data types SheetType and Sheet
are defined outside of the function in the same module. The functions strlen, strcpy, and strcat
will cause a crash if they are called with 0 for any argument. As it stands, the subroutine is ex-
posed to several types of errors. The arguments rootName and suffix could be zero and sheetType
could be an illegal enumerated value. The call to malloc could fail to allocate memory.
a. Prepare a list of all the ways the function could fail. For each way, describe the consequenc-

es.
b. Revise the function so that it does not crash as a result of any of the errors you listed in part

a and so that it prints out a descriptive error message for each kind of error as an aid in de-
bugging programs in which it is called.

Sheet createSheet (sheetType, rootName, suffix)

SheetType sheetType;

char *rootName, *suffix;

{ char *malloc(), *strcpy(), *strcat(), *sheetName;

int strlen(), rootLength, suffixLength;

Sheet sheet, vertSheetNew(), horizSheetNew();

rootLength = strlen(rootName);

suffixLength = strlen(suffix);

sheetName = malloc(rootLength + suffixLength + 1);

sheetName = strcpy(sheetName, rootName);

sheetName = strcat(sheetName, suffix);

switch(sheetType)

{ case VERTICAL:

sheet = vertSheetNew();

break;

case HORIZONTAL:

sheet = horizSheetNew();

break;

}

sheet->name = sheetName;

return sheet;

}

Figure E20.1 Function to create a new named sheet

393

Part 4

Software Engineering

Chapter 21 Iterative Development 395
Chapter 22 Managing Modeling 403
Chapter 23 Legacy Systems 423

At this point, you have read and hopefully have learned from the first three parts of the book.
You are now familiar with OO concepts and the UML notation for expressing them. Further-
more, you have a process for applying the concepts and know how to handle the implemen-
tation details with the C++ and Java languages as well as databases. Part 4 builds on this
basic knowledge and elaborates some software engineering considerations.

We have stressed throughout the book that software development should be an iterative
process. Our presentation is confined by the medium of a book to be linear, but we do not
want to give readers the wrong impression. Software development rarely proceeds in a
straight line. Chapter 21 elaborates this theme of the iterative nature of software develop-
ment.

We find that most organizations are truly interested in OO technology, and especially
OO modeling. However, many organizations find it difficult to inject the technology in their
ranks and are unsure how to proceed. Chapter 22 has advice for how you can capitalize on
the potential of OO technology and assimilate it within your organization.

Lastly, few applications are truly new and created from scratch. In practice, new devel-
opment efforts build on the experiences of predecessor applications. Legacy systems can be
a rich source of requirements for their successor systems. Additional issues arise with legacy
systems such as data conversion and integration of related systems. Chapter 23 touches upon
these topics.

Part 4 completes the content of this book and prepares you to proceed with OO modeling
and its application on your own. As always, we welcome your comments and experiences to
deepen our own understanding. Please send us email (blaha@computer.org) if you have any
questions or comments.

This page intentionally left blank

395

21

Iterative Development

A written presentation, such as this book, might seem to imply a linear process, but that is
an unintended artifact of the medium. Software development is by its very nature iterative—
early stages lack perfect foresight and must be revisited to correct errors and make improve-
ments. Iterative development is the development of a system by a process broken into a
series of steps, or iterations, each of which provides a better approximation to the desired
system than the previous iteration [Rumbaugh-05].

21.1 Overview of Iterative Development
We favor an iterative approach to software development. In this chapter, we start by compar-
ing iterative development with two other common approaches: waterfall development (Sec-
tion 21.2) and rapid prototyping (Section 21.3). Then we explore the following issues of
iterative development.

■ Iteration scope. [21.4]

■ Performing an iteration. [21.5]

■ Planning the next iteration. [21.6]

■ Modeling and iterative development. [21.7]

■ Identifying risks. [21.8]

21.2 Iterative Development vs. Waterfall
In the 1980s and early 1990s the waterfall approach was the dominant life-cycle paradigm
[Larman-03]. As Figure 21.1 shows, with this approach, developers perform the software
stages in a rigid linear sequence with no backtracking. Each stage must complete before the
next stage begins.

396 Chapter 21 / Iterative Development

From experience, the software development community has found that the waterfall ap-
proach is not effective for building most applications [Sotirovski-01]. A waterfall is suitable
for well-understood applications with predictable outputs from analysis and design, but such
applications seldom occur. Most applications have substantial uncertainties in their require-
ments. Furthermore, a waterfall approach does not deliver a useful system until completion.
This makes it difficult to assess progress and correct a project that has gone awry.

In contrast, iterative development provides frequent milestones and uncovers pitfalls
early in development. When you catch difficulties early, a system is more malleable and ame-
nable to change; revisions are easier to make and less costly than if they are deferred. Itera-
tive development is clearly a better approach.

21.3 Iterative Development vs. Rapid Prototyping
With rapid prototyping (Figure 21.2) you quickly develop a portion of the software, use it,
and evaluate it. You then incorporate what you have learned and repeat the cycle. Eventually,
you deliver the final prototype as the finished application or, after a few prototypes, switch
to another approach.

Iterative development differs from rapid prototyping. Prototyping is proof of concept
and often throwaway by intent. In contrast, iterative development is not throwaway; subse-
quent iterations build on the progress of prior ones. With iterative development, some code
may be discarded due to revisions, but such throwaways are not the intent.

Testing

Figure 21.1 Waterfall approach. The waterfall approach is inflexible and un-
suitable for most application development.

Analysis

Design

Implementation

Figure 21.2 Rapid prototyping. Rapid prototyping has similar strengths to iterative
development. The difference is that rapid prototyping often throws
away code, while iterative development seeks to accumulate code.

Listen to the Quickly develop
customer a prototype

Customer evaluates
prototype

21.4 Iteration Scope 397

The strength of rapid prototyping is that it promotes communication with the customer
and helps to elicit requirements. Rapid prototyping can also be helpful to demonstrate tech-
nical feasibility, where there is a potentially difficult technology. The downside of rapid pro-
totyping is that it can be difficult to discard code. Customers often confuse a successful
prototype with a product, not realizing that a prototype is just a demonstration and may lack
a robust infrastructure. There is a natural reluctance to discard code; some customers regard
throwing away code as throwing away money and do not realize that the true value of the
prototype code is the lessons that are learned.

Iterative development has this same benefit, as long as iterations are kept small and are
shown often to the customer. Both rapid prototyping and iterative development provide fre-
quent checkpoints for assuring customers that development is going well. They also let de-
velopers resolve troublesome issues early in application development.

21.4 Iteration Scope
Iterative development consists of a series of iterations. The number of iterations and their du-
ration depends on the size of a project. For a short project (six months or less) you might
have iterations of two to four weeks. For a large multiyear project, iterations of three to four
months may be more effective. If iterations are too small, the overhead of iterations is too
high. If iterations are too large, there are insufficient checkpoints to assess the progress of an
application and make midstream corrections. You should strive for a uniform length of iter-
ations, but may occasionally need a longer length for deep infrastructure or difficult features.

Define the scope of an iteration—a good target is the minimum amount of work that rep-
resents material progress. Build mission-critical pieces early, as well as core pieces of code
that are frequently executed by the application. Also, make sure that you balance function-
ality across a system. Developers will have their favorite technologies and prefer different
aspects, but your overall plan must be balanced and targeted at realizing meaningful chunks
of the application as quickly as possible. Each iteration must provide at least one of the fol-
lowing: economic payback, added functionality, improved user interaction, better efficiency,
higher reliability, or strengthened infrastructure (for maintenance and future iterations).

Use cases provide a good basis for assignment. Each iteration can focus on a few use
cases. However, an iteration need not complete a use case, and a use case can be spread
across several iterations. For example, you might implement the core functionality in one it-
eration, more advanced functionality in another, and error handling in another. Don’t break
a use case across too many iterations, however. In addition to use cases, you must also assign
internal services—mechanisms and services that provide infrastructure or support for imple-
menting higher-level operations. These services will be identified during architectural plan-
ning and class design.

If something must be increased in priority, then something else must be decreased. This
prevents the syndrome of “everything is equally important.” Everything is never equally im-
portant, but managers and developers are frequently unwilling to make hard choices or to ad-
mit that there is not enough time. By maintaining the timing of iterations and adjusting their

398 Chapter 21 / Iterative Development

content, you are forced to be realistic about what you can do and where you are on the sched-
ule.

You need not release the results of each iteration to the customer. From a development
perspective, it is important to maintain momentum, stay on schedule, and make sure the dif-
ferent components of an application actually fit together. From the customer’s perspective,
it may be too much effort to install each iteration. A business may combine several incre-
ments before deployment to simplify logistics.

21.5 Performing an Iteration
Each iteration must start from a common baseline and finish with a new common baseline.
Developers must integrate all versions of system artifacts and check them in at the end of an
iteration. This permits everybody to work with a common set of assumptions and to keep up
to date with system changes. Following this rule is absolutely essential to success.

Some developers may find this rule inconvenient. It may seem more efficient to continue
development of a subsystem, without having to stop and integrate it with the rest of the sys-
tem. It is certainly less convenient for a development team to have to work in small pieces
and frequently coordinate with others. But it is crucial to the success of the project as a
whole. If teams keep to themselves for a long time, they tend to drift apart on assumptions,
interfaces, and other things. When integration does occur, it can be difficult and expensive.
Worse, it often happens that different subsystems have used incompatible assumptions; then
changes must be backed away or hacks put in place to paper over the differences.

A team must structure its work on an iteration to be able to finish it, check it in, test it,
and integrate it with the rest of the system. This requires some planning, but it pays off in the
long run with the whole system.

The second rule is that each iteration must produce an executable release. It is not
enough to write code that doesn’t run. Code that runs can be tested. Integration of sub-
systems can be tested and incompatibilities discovered and corrected early. Moreover, exe-
cutable code is the best measure of progress. It is very easy to delude oneself and others
about the progress of design if nothing has to run. It is easy to overlook major omissions and
to underestimate the difficulty of debugging and integrating subsystems.

Each iteration must include time for all of the development stages. You perform a mini-
waterfall within an iteration. That is, you step through analysis, design, implementation, test-
ing, and integration. The waterfall approach is a viable option on a small scale, permitting
the systematic development of functionality. The waterfall is a problem only if decisions can-
not be changed later. In the iterative process, bad decisions can be revisited in the next iter-
ation, so they do not threaten the project.

Make sure that you plan and allow enough time for testing. It is important to test as you
go, and not to defer tests until later iterations. The point of iterative development is to build
a reliable system in small steps.

21.6 Planning the Next Iteration 399

21.6 Planning the Next Iteration
After each iteration you should assess your progress and reconsider your plan for the next
iteration. Did the iteration take more or less time than estimated? Did you have the right mix
of developer skills available? Is the customer happy with the progress of the work? Have any
specific problems or issues surfaced for the next iteration? Is the software stable, or must you
allow for additional rework and refactoring in the next iteration?

Of course, if the prior iteration succeeded, you can continue with your plan. Otherwise,
do not be afraid to discard bad decisions and make midcourse corrections. Your application
will only be extensible, maintainable, and viable if it has a sound construction. You should get
feedback from users early and often—you want them to internalize what you are doing and
be thinking about its implications for their day-to-day business. Furthermore, they can help
you detect whether the scope of the software or the path of the iterations is getting off track.

21.7 Modeling and Iterative Development
Modeling is a natural complement to iterative development. One purpose of iterative devel-
opment is to discover problems in software early, and so too with modeling. [Sotirovski-01]
expresses this eloquently as a “fail fast” philosophy of iterative development. Problems are
inevitable, so you should root them out early. With skillful modeling, you can discover some
problems in models and reduce the amount of iteration—the net result is faster and better
development. Iterative development certainly is not an excuse for hacking code and forego-
ing the careful thought of modeling.

As Figure 21.3 shows, you should begin by carefully modeling an application to elicit
requirements and then building the model for the first iteration. Then you revisit the model
and do another iteration, and so on, continuing to proceed by interleaving modeling with it-
erative development. Modeling uncovers errors early and gives a sense of direction and con-
tinuity to a sequence of iterations. Modeling can be, and must be, done quickly so that it does
not slow the project timetable.

Table 21.1 compares modeling with iterative development. Both promote requirements
capture, but they do so in different ways. Modeling helps customers think about the potential

Iteration 2

Figure 21.3 Modeling and iterative development. Modeling can improve
the quality and productivity of incremental development.

Model 1 Iteration 1 Model 2

Model 3Iteration 4 Model 4 Iteration 3. . .

400 Chapter 21 / Iterative Development

of the software before it is even built. In contrast, iterative development shows customers the
evolving software so that they can comment and redirect development efforts.

Modeling is unmatched in its ability to improve application quality. [Brooks-87] con-
tends “that conceptual integrity is the most important consideration in system design.” (The
italics are his.) Modeling focuses on understanding and improving the essence of an appli-
cation. Iterative development involves frequent testing, and this also contributes to quality,
but the effect is less dramatic than with modeling.

Modeling improves productivity by quickly “failing” through thought experiments that
preclude wasted code. Iterative development also makes a major contribution to productivity
by forcing early integration, avoiding mismatched components and awkward revisions.

By definition, modeling does not deal with project tracking. Modeling concerns the ear-
ly part of software development, so it is unable to have much bearing on the tracking of an
entire project. Iterative development provides a great way for tracking projects—frequent
deliveries of executable code leave little room for argument about what work is complete and
what work remains. Consequently the schedule for a project becomes more predictable.

21.8 Identifying Risks
The key to planning an iteration is to mitigate risk. You should confront risks early, rather
than defer them to the end of the project (as might otherwise occur). There are many kinds
of risk to consider.

■ Technical risks. The proposed technical solution may fail or prove unacceptable. If you
address technical issues early, another solution can be found before it is too late and be-
fore the rest of the system is built on a faulty base.

Table 21.1 Comparing modeling with iterative development. Modeling and iterative
development have different trade-offs. They complement each other.

Modeling Iterative development

Requirements
capture

Excellent. Models help customers
understand software’s capabilities
and limitations before it is even built.

Excellent. Iterations show cus-
tomers the software so that they
can give frequent feedback.

Application
quality

Excellent. Modeling fosters abstrac-
tion and deep thought.

Good. Thorough and frequent
testing improves quality.

Development
productivity

Excellent. The deep thought reduc-
es rework.

Excellent. Frequent integration
reduces rework.

Project
tracking

Not applicable.
Excellent. Code deliveries pro-
vide frequent milestones.

21.9 Chapter Summary 401

■ Technology risks. External technology that you plan to use may not be available or may
not measure up to its claims. Resolve this by trying the necessary technology early in
the critical parts of the system.

■ User acceptance risks. The users may not like the user interface or the functionality of
the system. Iterative development lets users try part of the system early while its style
can be readily changed.

■ Schedule risks. There is always the chance the project will not finish on time. Iterative
development helps by providing an accurate measure of progress. If the schedule slips,
you can trim functionality. Furthermore, even if the project finishes late, you will have
an executable system to show at the deadline. A system with 90% functionality is much
better than a waterfall system with 90% of the system implemented but nothing opera-
tional.

■ Personnel risks. Key persons may leave the project at an inopportune time. Iterative de-
velopment provides frequent checkpoints with delivery of a stable system. Models en-
sure that the iterations are carefully considered and documented. It still will be difficult
to lose key personnel, but at least you have a chance of assimilating their replacements.

■ Market risks. The requirements for an application can always change. Modeling and
iterative development give you the flexibility and speed to respond.

At each iteration, you should identify risks, prioritize them, and address the highest-priority
risks first. In this way, you mitigate the biggest risks early in a project, when you have time
and the wherewithal to fall back to alternate approaches. Iterative plans must be prepared to
change. This requires both a managerial climate and a working environment that understands
and accepts change.

21.9 Chapter Summary
Software development is prone to miscommunication, oversights, misestimation, and un-
foreseen changes. Skillful modeling gives you a resilient application. Iterative development
gives you a resilient process for building the application. Iterative development provides fre-
quent milestones and uncovers pitfalls early in development.

Iterative development is different than a waterfall approach. A waterfall assumes perfect
foresight and a strict development sequence. The waterfall is a failed approach that has been
overemphasized in the literature.

Iterative development is also different than rapid prototyping. Rapid prototyping ad-
dresses difficult issues by exploring with throwaway code. In contrast, iterative development
divides progress into small increments that intrinsically have less chance of failure. Both are
valuable techniques.

The number of iterations and their duration depends on the size of a project. If iterations
are too small, the overhead of iterations is too high. If iterations are too large, there are in-
sufficient checkpoints to assess the progress of an application and make midstream correc-

402 Chapter 21 / Iterative Development

tions. Several weeks or months is usually an appropriate length. Define the scope of an
iteration by prioritizing risks. Attack high-priority risks first and reevaluate your priorities
based on the results of each iteration. It is important not to slip the schedule of an iteration
by increasing functionality once it is underway (scope creep), unless offsetting functionality
is removed.

It is important that you integrate subsystems throughout development, rather than wait-
ing to the end. If development teams keep to themselves, they tend to drift apart on assump-
tions and interfaces. With late integration, changes may have to be backed away or
differences hacked away. Also make sure each iteration delivers an executable release and
that it is tested. Executable code is the best measure of progress.

Modeling is a natural complement to iterative development. Both improve the quality,
productivity, and predictability of software development. Some developers seem to think that
modeling slows down development and gets in the way. But this is certainly not the case if
you model deeply and quickly.

There are a number of risks that threaten development of an application. You should
structure iterations to deal with the most serious risks first.

Bibliographic Notes
[Larman-03] provides a thorough history of iterative development with many literature references.

References
[Brooks-87] Frederick P. Brooks, Jr. No silver bullet: Essence and accidents of software engineering.

IEEE Computer, April 1987, 10–19.
[Larman-03] Craig Larman and Victor R. Basili. Iterative and incremental development: a brief histo-

ry. IEEE Computer, June 2003, 47–56.
[Rumbaugh-05] James Rumbaugh. The Unified Modeling Language Reference Manual, Second Edi-

tion. Boston: Addison-Wesley, 2005.
[Sotirovski-01] Drasko Sotirovski. Heuristics for iterative software development. IEEE Software,

May/June 2001, 66–73.

Figure 21.4 Key concepts for Chapter 21

development risk
integration
iteration scope

iterative development
modeling
prototype

rapid prototyping
testing
waterfall

403

22

Managing Modeling

Modeling is essential for developing quality software, but it can be difficult to put into prac-
tice. Many organizations genuinely want to use models, but stumble when it comes to actu-
ally building them. Modeling requires a change in culture that an organization must actively
foster.

22.1 Overview of Managing Modeling
In practice we find that many organizations are interested in using modeling but are unsure
of how to proceed. This chapter provides advice for assimilating modeling into an organiza-
tion and covers the following topics:

■ Kinds of models. [22.2]

■ Modeling pitfalls. [22.3]

■ Modeling sessions. [22.4]

■ Organizing personnel. [22.5]

■ Learning techniques. [22.6]

■ Teaching techniques. [22.7]

■ Tools. [22.8]

■ Estimating modeling effort. [22.9]

22.2 Kinds of Models
In practice there are several categories of models, each having different motivations, charac-
teristics, and content. We often see practitioners confuse these different kinds of models and
forget why they are building a particular model.

404 Chapter 22 / Managing Modeling

■ Application model. This is the most common reason for modeling and this book’s pri-
mary focus. An application model helps developers understand requirements and pro-
vides a basis for building the corresponding software. The ATM case study is an example.

■ Metamodel. Metamodels are similar to application models but are more complex. They
are often used for advanced applications. Frameworks (Chapter 14) and a class-model
editor are examples.

■ Enterprise model. An enterprise model describes an entire organization or some major
aspect of it. Application models and metamodels are used for building software; enter-
prise models are not. Instead, enterprise models are used for reconciling concepts across
applications and understanding the enterprise. By nature enterprise models have a broad
scope (over multiple applications) but they are seldom deep—they need cover only the
common concepts. A model of all of a bank’s software would be an example.

■ Product assessment. Models are also relevant when you are purchasing software. You
should prepare multiple models—a model of your requirements and a model of the soft-
ware for each of the most promising products. The requirements model is the same as
an application model, except that it can lack fine detail (you are not building it). Only
some vendors provide models for their products, but you can often construct your own
via reverse engineering [Blaha-04]. A model helps you assess the quality of the appli-
cation and understand its strengths and weaknesses as well as its scope. As an example,
you might decide to buy an ATM package rather than build one, and product assessment
models can clarify your decision making.

22.3 Modeling Pitfalls
The benefits of modeling are compelling, but there can be drawbacks that you should try to
mitigate.

■ Analysis paralysis. Some persons become so focused on modeling that they never finish.
This situation is most likely to arise with analysts who are not developers. It can also arise
with beginning modelers who are inefficient and unsure when modeling is complete.

Resolution. A project plan can help you avoid analysis paralysis by allotting time
to tasks. The plan should specify the effort for modeling and the intended deliverables.
Formal reviews can give you an indication of progress and model quality. It is helpful
if modelers have development experience.

■ Parallel modeling. On several occasions, we have seen organizations construct redun-
dant models with different paradigms. We often find OO and database modeling occur-
ring in parallel with no communication between the respective teams. OO teams tend to
be dominated by programmers who do not understand databases. Similarly, database
professionals have their accustomed techniques and are often unfamiliar with OO tech-
nology. This chasm in practice mirrors the chasm in the literature. The OO and database
communities have their own style and jargon, and few persons operate in both camps.
The current limitations of tools exacerbate the divide.

22.3 Modeling Pitfalls 405

Resolution. Oddly enough, the schism is more a matter of terminology and style,
rather than substance. Your best course of action is to be aware of culture gaps. Let de-
velopers construct models for both programming and databases if they find it helpful.
This is one way to cope with the limitations of current tools. In short, tolerate almost
anything to get developers to model, but if there are multiple models, insist that they be
frequently reconciled. Iterative development helps here—developers should reconcile
at each iteration.

■ Failure to think abstractly. Many persons cannot think abstractly and fail to learn the
skill of modeling. They quickly slip into programming mode and have trouble stepping
back from a problem. With models you indirectly realize an application, rather than just
directly write code.

Resolution. About the only cure is a lot of practice. Inexperienced modelers should
practice solving exercises. They should work on actual applications under the guidance
of a mentor. Those who are still not able to model should be assigned other tasks.

■ Excessive scope. The purpose of modeling is to represent the real world, but only the
portion relevant to your business objectives. Some people lose focus and model extra-
neous information. It can be reasonable to model a bit beyond your needs—after all, the
exact scope of an application is seldom known up front and is partially a matter of ne-
gotiation. However, you do not want to reach way beyond application needs, because
such a model is speculative and may never lead to something useful.

Resolution. You can mitigate this pitfall with a project plan and regular reviews.
Business experts need to understand what the modelers are doing, as this is their window
into the capabilities and limitations of the forthcoming application.

■ Lack of documentation. Much too often we encounter undocumented models. Dia-
grams alone are not sufficient; they need an explanation. A narrative should lead the
reader through each diagram and define terminology. It should explain subtleties and the
rationale for any controversial decisions as well as include examples to illustrate fine
points.

Resolution. You should insist on documentation, such as a model narrative or a data
dictionary, and carefully read it.

■ Lack of technical reviews. Similarly, we often encounter a lack of technical reviews.
Each person or small group works on its own application in isolation and does not share
experiences, knowledge, and talent. Developers do not discuss their projects, because
discussion is not relevant to their immediate deliverables and there is no management
encouragement. Just as business experts are a source of application requirements, devel-
opment peers are a source of computing techniques and lessons from related applica-
tions. Formal reviews help to remove errors prior to testing.

Resolution. All projects should receive at least one formal technical review, and
several reviews are ideal. If there is one review, it should take place after completion of
the core model and architecture. If there are several reviews, they should happen after
completion of the model and architecture for each major development iteration. Man-
agement should set the tone for a critical, uninhibited, and constructive discussion. They

406 Chapter 22 / Managing Modeling

should make continued project funding contingent on holding a review. Keep in mind
that these are technical reviews, not management reviews—the purpose of the reviews
is to deepen technology, not to inform management. [Boehm-01] notes that peer reviews
catch 60% of software defects, so technical reviews are clearly important. We advise
that the size of technical reviews be kept small (less than ten persons) and confined to
developers who are actively interested in the project.

22.4 Modeling Sessions
Chapter 12 explains domain analysis—the building of real-world models to clarify applica-
tion requirements. Once you become experienced at modeling, you can consider different
ways of engaging users and obtaining their input. We will characterize three alternatives—
back-room, round-robin, and live modeling—and discuss their trade-offs.

22.4.1 Back-Room Modeling
The most popular way to build a model is to talk to business experts, record their comments
(such as with a requirements statement or use cases), and then go off-line and model. Many
analysts prefer this back-room modeling approach, because they can focus on what the user
is saying and wrestle with the model later when they are alone. Over a series of meetings,
users answer questions and volunteer information that they think may be helpful. After each
meeting, the analyst incorporates the users’ comments, and the model gradually improves.
Typically, the model stays in the background and users do not see it.

It is better to meet with several users at once rather than have one-on-one meetings. A
multiuser meeting has a better chemistry, because users stimulate each other’s memory. Also
there is a risk of intimidation in a one-on-one session, which is less likely with multiple us-
ers. Most analysts prefer to meet with a group of users who share an interest. For example,
an analyst might meet separately with salespersons and engineers.

Back-room modeling has the following trade-offs.

■ Advantages. It requires the least skill and is appropriate for analysts who are tentative
with modeling.

■ Disadvantages. The painstaking cycle of interaction with users is cumbersome for
skilled modelers. The slow interaction can also be troublesome for users, because mul-
tiple interviews are required. Analysts must carefully transcribe information, or it will
be forgotten.

22.4.2 Round-Robin Modeling
Round-robin modeling is more complex than back-room modeling, but more efficient at
gathering requirements. The analyst still meets with small groups of users, segmented by in-
terest or functional area, but in round-robin modeling, the users see the model. As users ex-
press requirements, the analyst traverses the model and tries to resolve them. An analyst can
resolve simple issues during a meeting and complex issues afterward.

22.4 Modeling Sessions 407

We call this approach round-robin modeling, because an analyst shows the model to
each group in a series of meetings until all concerns are addressed. Several iterations are re-
quired, because one group might surface an issue that an analyst needs to confirm with a pre-
vious group. Back-room modeling also parades from group to group, but users don’t see the
model.

We initiate round-robin modeling with a seed model that is based on existing business
documentation. We don’t like to start with a blank sheet of paper, because it wastes time and
tries the patience of users. In contrast, a seed model stimulates discussion. Users see the an-
alyst as well prepared and can focus on deeper issues.

In the meetings, we tell the users that they are the business experts and that we need their
help in capturing requirements; we are the computer experts, and they should let us handle
the details. Generally, users heave a sigh of relief. We don’t dwell on formalisms and explain
notation as we go. Participants don’t have a problem, because we continually explain the
model.

Round-robin modeling has the following trade-offs.

■ Advantages. It requires fewer meetings than back-room modeling. Because the model
is prominent, an analyst can resolve some issues during meetings. In contrast, with
back-room modeling, the analyst just takes notes and may overlook needed details.

■ Disadvantages. It still requires several iterations, and it is inefficient to shuttle ideas
across the user groups. If there is contention, it can be difficult to reach agreement. The
analyst is in the uncomfortable position of being an intermediary among conflicting user
groups. Back-room modeling also shares this flaw. Some users do not understand mod-
els or may fear them, so the analyst must take care to allay their concerns.

22.4.3 Live Modeling
Live modeling is appropriate for expert modelers. We arrange a meeting of 10–20 persons
with a range of interests—developers, managers, and various kinds of business experts. Dur-
ing the meeting, we build a model on the fly, listening to suggestions, volunteering com-
ments, resolving names, and agreeing on scope. Usually, we can keep pace with the dialogue;
we pause a moment when we get overloaded. A projector displays the model, which we draw
with a modeling tool. A typical session lasts about two hours, and three sessions can usually
elicit 80 percent of the structure for a model with 50 classes. Large and complex models take
additional sessions. In between sessions, the modeler cleans up diagrams, documents the
model, and resolves open issues.

The process is stimulated by the size and variety of the group; reluctant participants see
others react and want to get involved to air their point of view. Comments from one person
tend to trigger comments from another. We have been especially successful with skeptics.

It is acceptable to start live modeling with a clean sheet of paper, but the analyst should
prepare and learn about the application in advance. The ideas will come quickly, and the an-
alyst must be ready. Sometimes we prepare a seed model if we have prior information. Nor-
mally, we request that our client prepare a requirements statement to stimulate discussion if
there are any lulls.

408 Chapter 22 / Managing Modeling

We are active facilitators, not just passive recorders; we ask questions and probe the at-
tendees when answers seem unsatisfactory. We make suggestions on the basis of our experi-
ence. Ultimately, business experts make the final decisions. Occasionally, we encounter a
deep modeling issue that we defer until the next meeting.

Often there are animated discussions over names. These can be helpful. Good names
avoid misunderstandings. Also the discussions stimulate related information. We press busi-
ness experts to devise good names—names that are brief, crisp, and not subject to confound-
ing interpretations.

Live modeling has the following trade-offs.

■ Advantages. This is clearly the best way to obtain user input for proficient modelers.
We practice live modeling all the time, and clients are delighted by the rapid progress.
The participants have different areas of knowledge and different perceptions; by work-
ing together in the same meeting, they can reconcile their views.

A major side benefit is that the meetings induce the participants to talk to each oth-
er. Persons from different backgrounds who usually don’t have the time or inclination
are brought together and converse.

■ Disadvantages. An analyst has to be highly confident of modeling, able to run a meet-
ing, and adept with a modeling tool. Few developers have this combination of skills.
Live modeling is good at eliciting structure—classes and relationships. It is less effec-
tive at finding attributes, because it is difficult to coordinate a large group for fine detail.
Other input sources can provide attributes.

Live modeling is not suitable for difficult applications, such as applications with in-
tense metamodeling. For these situations we recommend back-room modeling.

Table 22.1 summarizes the trade-offs for the three kinds of modeling sessions.

Table 22.1 Trade-offs for different approaches to modeling sessions. Consider
different approaches to modeling and their trade-offs.

Back-room
modeling

Round-robin
modeling

Live modeling

Explanation
Record user com-
ments and build mod-
el offline

Show model to user
groups, but still build
it offline

Build model during a
meeting with all the
users

Required skill
level

Low Medium Very high

Productivity
(for a model with
50 classes)

Low
(about 15 meetings,
each 2 hours long)

Medium
(about 12 meetings
each 2 hours long)

Very high
(about 3 meetings,
each 2 hours long)

Net
recommendation

Best for a novice
modeler

Best for a modeler
with some application
experience

Best for a very expe-
rienced modeler

22.5 Organizing Personnel 409

22.5 Organizing Personnel
As Figure 22.1 shows, a large organization can most effectively service demand by placing
a few experts in a technology-oriented group that supports groups of developers organized
by business area. Table 22.2 clarifies the respective roles of the technology and application
groups.

The technology group takes the perspective of the entire organization. It promulgates
standards and computing techniques and supports the application groups. You should place
the best modelers and experts in the technology group, so that their skills are available to ev-
eryone. The technology group should not build applications; this is the purpose of the appli-
cation groups. Rather, the technology group should be the custodian of advanced skills. Keep
this group small to limit overhead.

Application groups have a different role. Their purpose is to learn about the business and
transfer knowledge across related applications. Application group members should work
closely with their business counterparts. Developers should be fluent with modeling, even
though the best modelers belong to the technology group.

Figure 22.1 Corporate structure. A technology group can provide expertise
for groups of developers organized by business area.

Technology group

Application
group

Application
group

Application
group. . .

Table 22.2 Technology vs. application groups. A large organization
needs both kinds of groups.

Technology group Application group

Perspective The entire organization A business area

Appropriate tasks

Promulgate standards and com-
puting techniques; maintain en-
terprise models; support the
application groups

Build applications; evalu-
ate products for potential
purchase

Required modeling skill Expert Fluent

Number of groups One per organization Many per organization

Size of group Small to limit overhead
As many as needed to
serve business area

410 Chapter 22 / Managing Modeling

Some firms use a different organization; they place all modelers in a technology group
and loan them out to perform modeling for application developers. We advise against this
arrangement. Modeling is such a stimulus to insight and dialog that it should be dispersed
across an entire computing organization. (For that matter, it is also beneficial if some busi-
ness and marketing staff learn about models.) Modeling is the lingua franca for software de-
velopment, and application developers should build models for themselves.

22.6 Learning Techniques
There are various actions that a person can take to learn about modeling. Some of these ac-
tions individuals can take on their own. Other actions require organizational support. This
advice pertains to students in universities as well as practitioners in industry.

■ Training and mentoring. Universities and commercial training houses both offer
courses that explain modeling concepts and how to apply them. It is best to receive train-
ing shortly before (ideally a few weeks ahead of) its use on an actual project. Try not to
receive training far in advance, or you will forget too much.

Reinforce training with mentoring. Developers will need active help as they seek to
apply the training material. Novice modelers will lack confidence that they are modeling
correctly and need experience on which to draw. It will not suffice to bring in outside re-
sources to service a project. There must be a transition of knowledge from the outside
resources to in-house developers.

■ Teaming. Application models should be constructed by small teams that initially con-
sist of developers, business experts, and external consultants. After several applications,
an organization should no longer need the external consultants, and the best in-house
modelers can provide expertise. The purpose of teaming is to disseminate knowledge
within a firm about both computing technology and the business.

■ Seminars. Periodic seminars provide cost-effective education. A firm should encourage
developers to present technical seminars. Seminars get developers talking and exchang-
ing ideas. They learn about the various projects and can leverage related efforts. Semi-
nars provide peer support for dealing with the difficulties of modeling.

■ Continual learning. Developers should strive to find new ideas and adopt the best prac-
tices of the larger software community. Periodic attendance at technical conferences and
professional meetings is helpful. Books and magazines can provide useful ideas.

■ Technical reviews. Formal technical reviews promote conversation and become a
learning experience for both the presenters and the reviewers. The reviews provide a fo-
rum for technical staff members to help one another. (See Section 22.3.)

22.7 Teaching Techniques
There are different ways to teach modeling that have various trade-offs.

22.8 Tools 411

■ Induction. A person learns to model only by doing it, not by talking about it. Over the
years we have tried a number of techniques and have found induction to be the quickest
way to start modeling. When we run modeling sessions (see Section 22.4), we forego
the preamble of a modeling tutorial (even though many attendees have never experi-
enced a model before) and jump right into modeling the application problem. After sev-
eral sessions, attendees have a good start on their application and have at the same time
started to learn about modeling.

■ Practice. Students should receive extensive hands-on practice and exercises. They
should solve problems from disparate domains, with different kinds of input, different
levels of abstraction, and varying difficulty.

■ Correction. Students often make modeling mistakes, and it is difficult to anticipate all
the possibilities. Part of the process of learning is for students to make mistakes and re-
ceive correction. They can learn both from their mistakes and the mistakes of their
peers—through joint work with other students and class presentations. An academic set-
ting can coerce the presentations, but in industrial courses we normally make presenta-
tions voluntary.

■ Implementation. It is important that students understand that models can be readily im-
plemented. They must realize that any model they can express can be implemented in a
robust, predictable, and efficient manner. However, once they grasp that point, they
need to set aside implementation concerns and think directly in terms of models.

■ Apprenticeship. Another way of teaching is individually rather than en masse with a
class. A new modeler can learn by forging a close working relationship with a skilled
modeler. This form of teaching is best for someone who has already started to learn.

■ Patterns. When we model, we always think in terms of patterns (Chapter 14). We en-
counter application situations, recognize their abstract mathematical underpinnings, and
then jump to a pattern. A pattern provides a tried and true solution to a standard problem
that has been studied by experts and is known to work well. There are many kinds of
patterns: analysis, architecture, design, and implementation. One problem with patterns
is recognizing when to apply them. Also even though they are important, patterns cover
only part of a model.

22.8 Tools
Any serious software development effort requires tools—tools for modeling, configuration
management, code generation, simulation, compiling, debugging, performance profiling,
and so forth. We do not attempt to cover tools completely here, because there are so many
kinds and such a variety of products. Instead, we focus on tools directly relevant to modeling
and mention some prominent vendors.

22.8.1 Modeling Tools
Large applications (50 classes or more) require a heavyweight modeling tool. The minor
benefit of a tool is that it increases productivity. The major benefit is that it can deepen think-

412 Chapter 22 / Managing Modeling

ing. Tools help experts build models more quickly and organize information about classes in
a form that is easy to search. Tools help novices observe syntax and avoid common mistakes.
IBM Rational Rose XDE, Rhapsody, Magic Draw, Together/J, and Enterprise Architect are
heavyweight tools for the UML notation.

Small applications are less demanding and do not absolutely require a heavyweight
modeling tool. Nevertheless, it is still a good idea to use a tool for small applications—mod-
eling is essential to clear thinking, and the use of a tool eases model construction. Given the
availability of inexpensive tools, as well as site licenses, there is seldom a good reason for
not using a modeling tool.

22.8.2 Configuration Management Tools
Serious applications involve a number of files—files for programs (source code, compiled
code, and executable code), documentation (for users, administrators, and maintainers), and
data (configuration data, metadata, and test data). In practice it is difficult to coordinate all
these files, and that is the purpose of configuration management tools. The tools improve de-
veloper efficiency and reduce the risk of losing useful work.

[Pressman-97] lists five major tasks that constitute configuration management.

■ Identification. A configuration management tool must provide a mechanism for iden-
tifying each configuration file and relating it to other files.

■ Version control. An organization must be able to track copies of a file as it evolves over
time. Sometimes it is necessary to revert to old files (such as when trying to find the
cause of a bug).

■ Change control. An organization must determine who can approve changes as well as
synchronize the work of collaborating developers. Check-in and check-out of files is a
popular protocol.

■ Auditing. A configuration management tool keeps a log of access activity. Users can
access the log and determine the precise revisions to particular files, who made the
changes, and the date of changes.

■ Status accounting. There must be a means for reporting changes to others.
You can get by without configuration management for models if a single person is doing
modeling and that person is disciplined about backups. However, an ad-hoc approach be-
comes increasingly difficult as the number of models and modelers increases. When you
must manage many models and coordinate multiple persons, you should use configuration
management software.

Prominent configuration management tools include IBM Rational’s ClearCase, Merant
PVCS, Microsoft’s Visual SourceSafe, and the public-domain tool CVS.

22.8.3 Code Generators
Many modeling tools can generate application code. The typical modeling tool can generate
data declarations for a program and a database, if you are using one. Some tools can generate

22.9 Estimating Modeling Effort 413

algorithmic code, but that is more difficult. For example, a tool might generate programming
code for a state diagram.

Regardless of the tools used, developers should be careful with generated code and spot-
check it for correctness and efficiency. Some tools generate bad code with flaws that are sub-
tle and difficult to catch. Also, to our surprise, some tools have had gross errors in their out-
puts. If your developers pay attention to tool output, they will better understand what the tool
is doing.

22.8.4 Simulation Tools
Tools can also be used to predict the behavior and performance of a finished application.
Some modeling tools can simulate the performance and behavior of the finished software in
advance of building it. For example, i-Logix’s Statemate can simulate state diagrams.

22.8.5 Repository
Repositories are also important to application development, because they store metadata that
lets the various tools communicate. A repository sits at the center of tool usage. Because they
involve metadata, repositories are difficult to deploy, but effective use of a repository can le-
verage your usage of the individual tools. Allen System Group, Computer Associates, IBM,
and Microsoft have repository products.

22.9 Estimating Modeling Effort
Any software development effort is an economic proposition. Business people estimate the
cost of building the software along with the resulting revenues and cost savings. Modeling
is generally a small part (much less than 10%) of the overall application effort. The following
factors affect modeling effort.

■ Application complexity. Tangible applications are simpler; highly abstract applica-
tions take longer. For example, it is easier to build software for handling customer calls
than to build a system for all kinds of customer interaction.

■ Proficiency. A skilled modeler can work an order of magnitude faster than an inexpe-
rienced one. In addition, a skilled modeler is more likely to produce a quality model with
thoughtful abstractions.

■ Tools. It helps if the developer has access to a powerful modeling tool and is skilled with
it.

■ Model size. The time to construct a model is not linear with its size. Modeling time is
roughly proportional to the number of classes to the one-and-one-half power. Thus, con-
struction for a model with 500 classes takes about 30 times longer than for one with 50.

■ Reviews. Thorough review reduces the number of iterations needed for a model.
Given all these factors, most models require from two weeks to six months of effort.

414 Chapter 22 / Managing Modeling

22.10 Chapter Summary
This chapter has covered several topics to help an organization assimilate the technology of
modeling.

In practice, there are several categories of models—application, meta, enterprise, and
product assessment—with different motivations, characteristics, and content. Many devel-
opers overlook how to properly use modeling for the various categories. For example, an en-
terprise model cannot contain all the details of the covered applications, or it will become
unwieldy. Models can also be used to guide purchase evaluations.

Models have many benefits, but like any technology they also entail risks. We identified
some major risks and noted actions that an organization can take to mitigate them.

There are different ways that you can engage users in the process of modeling. We listed
several kinds of interactions—back room, round robin, and live—along with their trade-offs.

There are various actions that a person can take to learn about modeling, including train-
ing, mentoring, teaming, seminars, continual learning, and technical reviews.

Similarly, there are different ways to teach modeling. One of the most successful is in-
duction—a person learns to model only by doing it, not by talking about it. Teachers should
give students extensive practice with models and give them the opportunity to have their mis-
takes corrected. Students must understand that models can be readily implemented but they
should directly think in terms of models. Advanced modelers will recognize patterns and ap-
ply them.

Any serious software development effort requires tools. We listed tools relevant to mod-
eling and gave some criteria for choosing tools. We also gave some guidelines for estimating
modeling effort.

Bibliographic Notes
This book says little about management issues, such as project planning, project estimation,
costing, metrics, personnel assignment, and team dynamics. These are all important topics,
but other books cover them, such as [Pressman-97] and [Blaha-01].

Figure 22.2 Key concepts for Chapter 22

abstraction
application model
apprenticeship
back-room modeling
code generation
configuration management
continuing education
documentation
enterprise model

estimation
induction
live modeling
mentoring
metamodel
model review
modeling pitfall
modeling tool
pattern

peer support
product assessment
repository
round-robin modeling
seminar
simulation tools
teaming
technical review
training

References 415

In [Colwell-03] Bob Colwell recalls some of his first-hand experiences with design re-
views and stresses their importance to high-quality work.

[Berndtsson-04] describes his experiences with teaching three configurations of OO
analysis and design courses over a nine-year period. He presents data for the following con-
clusions.

■ Programming success is not an indicator of modeling success. 65% of students who
did well in an OO programming course performed poorly in an OO modeling course.

■ Modeling success is an indicator of programming success. 84% of students who did
well in an OO modeling course also did well in an OO programming course.

■ Abstraction is the key difficulty with modeling. There is a strong correlation in grades
between an OO modeling course (high abstraction) and a distributed systems course (al-
so high abstraction).

[Box-00] concludes that OO technology involves more abstraction than the older technique
of structured technology. The authors consider abstraction to be the difficult learning action.

References
[Berndtsson-04] Mikael Berndtsson. Teaching object-oriented modeling and design. Draft paper,

2004.
[Blaha-01] Michael R. Blaha. A Manager’s Guide to Database Technology: Building and Purchasing

Better Applications, Upper Saddle River, NJ: Prentice Hall, 2001.
[Blaha-04] Michael Blaha. A copper bullet for software quality improvement. IEEE Computer, Febru-

ary 2004, 21–25.
[Boehm-01] Barry Boehm and Victor R. Basili. Software defect reduction top 10 list. IEEE Computer,

January 2001, 135–137.
[Box-00] Roger Box and Michael Whitelaw. Experiences when migrating from structured analysis to

object-oriented modeling. Fourth Australasian Computing Education Conference, Melbourne,
Australia, December 4–6, 2000, 12–18.

[Colwell-03] Bob Colwell. Design reviews. IEEE Computer, October 2003, 8–10.
[Pressman-97] Roger S. Pressman. Software Engineering: A Practitioner’s Approach, Fourth Edition.

New York: McGraw-Hill, 1997.

416

23

Legacy Systems

Most development does not involve new applications but rather evolves existing ones. Rarely
can you build an application completely from scratch. Even if you do get to build a new ap-
plication, you will often need to gather information from existing applications and integrate
with them. You can salvage requirements, ideas, data, and code.

It is difficult to modify an application if you don’t understand its design. If an applica-
tion was previously designed using OO models and they are accurate, you can use the models
to understand and evolve the application. If the models are lacking or have been lost, you
should start by building a model of the existing design.

23.1 Reverse Engineering
Reverse engineering is the process of examining implementation artifacts and inferring the
underlying logical intent. Reverse engineering has its origins in the analysis of hardware—
where the practice of deciphering designs from finished products is commonplace [Rekoff-
85]. Models facilitate reverse engineering, because they can express both abstract concepts
and implementation decisions.

When building new applications, the purpose of reverse engineering is to salvage useful
information. It is not intended to perpetuate past flaws. The reverse engineer must determine
what to preserve and what to discard. You should regard reverse-engineered models as mere-
ly one source of requirements for a new application.

Reverse engineering requires judgment—interpretative decisions by the developer—
and cannot be fully automated. Tools can assist with the sheer volume of code to be reverse
engineered and the rote. However, it is difficult for the current tools to accept human deci-
sions. Many modeling tools can generate an initial model, but this model is little more than
a visual representation of the program structure. The reverse engineer must overcome at least
two problems with the program code: retrieving obscure or lost information and uncovering
implicit behavior.

23.1 Reverse Engineering 417

23.1.1 Reverse Engineering vs. Forward Engineering
As Table 23.1 shows, reverse engineering is the inverse to normal development (forward en-
gineering); you start with the actual application and work backward to deduce the require-
ments that spawned the software.

23.1.2 Inputs to Reverse Engineering
When performing reverse engineering, you must be resourceful and consider all inputs. The
available information varies widely across problems.

■ Programming code. The programming source code can be a rich information source.
Tools can help you understand the flow of control and the data structure. Comments and
suggestive names of variables, functions, and methods can deepen your understanding.

■ Database structure. If the application has a database, you can also learn from it. The
database specifies the data structure and many constraints—precisely and explicitly.

■ Data. If data are available, you can discover much of the data structure. A thorough ap-
plication program or disciplined users may yield data of better quality than the data
structure enforces. For large systems, you may have to sample the data to reach tentative
conclusions, and then explore further for verification. Examination cannot prove many
propositions, but the more data you encounter, the more likely will be the conclusion.

■ Forms and reports. Suggestive titles and layouts can clarify data structure and process-
ing logic. Form and report definitions are especially helpful if their binding to variables

Table 23.1 Forward engineering vs. reverse engineering. Reverse engineering is
the opposite of forward engineering and requires a different mindset.

Forward engineering Reverse engineering

Given requirements, develop an applica-
tion.

Given an application, deduce tentative re-
quirements.

More certain. The developer has require-
ments and must deliver an application that
implements them.

Less certain. An implementation can yield dif-
ferent requirements, depending on the re-
verse engineer’s interpretation.

Prescriptive. Developers are told how to
work.

Adaptive. The reverse engineer must find out
what the developer actually did.

More mature. Skilled staff readily available. Less mature. Skilled staff sparse.

Time consuming (months to years of
work).

Can be performed 10 to 100 times faster than
forward engineering (days to weeks of work).

The model must be correct and complete
or the application will fail.

The model can be imperfect. Salvaging par-
tial information is still useful.

418 Chapter 23 / Legacy Systems

is available. An empirical approach is to enter known, unusual values to establish the
binding between forms and the underlying variables.

■ Documentation. Problems vary in their quality, quantity, and kind of documentation.
Documentation provides context for reverse engineering. User manuals are especially
helpful. Data dictionaries—lists of important entities and their definitions—may be
available. Be careful with all documentation, because it can become stale and inconsis-
tent with application code.

■ Application understanding. If you understand an application well, you can make bet-
ter inferences. Application experts may be available to answer questions and explain ra-
tionale. You may be able to leverage models from related applications.

■ Test cases. Test cases are intended to exercise the normal flow of control and unusual
situations. Sometimes they provide useful clues.

23.1.3 Outputs from Reverse Engineering
Reverse engineering has several useful outputs.

■ Models. The model conveys the software’s scope and intent. It provides a basis for un-
derstanding the original software and building any successor software.

■ Mappings.You can tie model attributes to variables. Less precisely, you can bind pro-
gramming code to state and interaction models.

■ Logs. Reverse engineers should record their observations and pending questions. A log
documents decisions and rationale.

23.2 Building the Class Model
Begin by constructing a class model of the application so that you can understand the classes
and relationships. We suggest building the class model using three distinct phases: imple-
mentation recovery, design recovery, and analysis recovery.

23.2.1 Implementation Recovery
First quickly learn about the application and create an initial class model. If the program is
written in an OO language, you can recover classes and generalizations directly. Otherwise
you must study the data structures and operations and manually determine classes. The sys-
tem may lack a proper design, so the result may not be pleasing. Try to avoid making any
inferences other than determining classes at this point. It is helpful to have an initial model
focused on the implementation.

23.2.2 Design Recovery
Next probe the application to recover associations. The typical implementation of an associ-
ation is as a single pointer attribute. The multiplicity in the forward direction is usually clear.

23.3 Building the Interaction Model 419

In contrast, the multiplicity in the reverse direction is typically not declared, and you must
determine it from general knowledge or examination of the code.

Many implementations use a collection of pointers to implement an association with
“many” multiplicity. Then the initial generated model points to the collection class, rather
than the class of the elements. You should move the association to the class of the elements
and adjust the multiplicity accordingly. Collection classes are mechanisms and should not
appear in most analysis or design models. You can mark them on associations as recom-
mended implementation for a “many” direction.

Sometimes pointers will implement both association directions. In those cases, you must
identify the matching pointers and consolidate them. You should suspect any two classes that
have pointer attributes to each other. If you reverse engineer the initial model with a tool, it
will have one association for each pointer. You should remove one association and move its
information to the reverse direction of the other.

Multiplicity typically has a lower limit of 0 or 1. The lower limit is ‘0’ if the target object
is initialized somewhere in the source code, but it is uncertain when initialization will hap-
pen. The lower limit is ‘1’ if the target object is initialized at object creation time, such as in
the constructor or the class initialization block.

23.2.3 Analysis Recovery
Finally, you interpret the model, refine it, and make it more abstract. Remove any remaining
design artifacts and eliminate any errors. Be sure to get rid of all redundant information or
mark it as such. It’s also a good time to reconsider the model. Is it readable and coherent?
Reconcile the reverse engineering results with models of other applications and documenta-
tion. Show your model to application experts and incorporate their advice.

If your source code is not object oriented, you will have to infer generalizations by rec-
ognizing similarities and differences in structure and behavior. Similarly, you will have to
use your application understanding and careful study of the code to determine aggregations
and compositions. For example, objects with coincident lifetimes suggest composition. You
will also need to understand the application and code to determine qualifiers and association
classes.

You can add packages to organize the classes, associations, and generalizations. You can
combine the classes in several code files into one package or split a large code file across
multiple packages.

23.3 Building the Interaction Model
The purpose of each method is usually clear enough, but the way that objects interact to carry
out the purposes of the system is often hard to understand from the code. The problem is that
code is inherently reductionist: it describes how each piece works by itself. But the meaning
of the system as a whole is holistic: the emergent interactions among objects give it meaning.
The interaction model can give you a broad understanding.

420 Chapter 23 / Legacy Systems

You can add methods to the class model by using slicing. A slice is a subset of a program
that preserves a specified projection of its behavior [Weiser-84]. You can perform slicing by
marking some initial code to retain. Then, recursively, mark all statements used by the re-
tained code. The accumulated code lets you project an excerpt of behavior from the original
program. Thus slicing provides a means for converting procedural code into an OO repre-
sentation that is centered about objects.

Programmers naturally think in terms of slicing as [Weiser-82] notes. The power of slic-
es comes from four facts: 1) they can be found automatically, 2) slices are generally smaller
than the program from which they originated, 3) they execute independently of one another,
and 4) each reproduces exactly a projection of the original program’s behavior [Weiser-84].

You can use an activity diagram to represent an extracted method so that you can under-
stand the sequence of processing and the flow of data to various objects. You can then con-
struct sequence diagrams from the activity diagrams for simplification.

23.4 Building the State Model
If you are studying a user interface, a state model can be quite helpful. Otherwise, state mod-
els are not prominent in most other kinds of application code.

If you do need to construct a state model, you can proceed as follows. As an input, you
have sequence diagrams from building the interaction model. You need to fold the various
sequence diagrams for a class together, by sequencing events and adding conditionals and
loops as Chapter 13 describes.

You can augment the information in the sequence diagrams by studying the code and
doing dynamic testing. It is helpful to find all the possible states for each class that has a state
model. Initiation and termination correspond to construction and destruction of objects.

23.5 Reverse Engineering Tips
As you perform reverse engineering and build class, interaction, and state models, it will help
if you keep in mind the following tips.

■ Distinguish suppositions from facts. Reverse engineering yields hypotheses. You must
thoroughly understand the application before reaching firm conclusions. As reverse engi-
neering proceeds, you may need to revisit some of your earlier decisions and change
them.

■ Use a flexible process. We adjust the reverse engineering process to fit the problem.
Problem styles and the available inputs vary widely. You must use your wits for reverse
engineering. You are solving a large puzzle.

■ Expect multiple interpretations. There is no single answer as in forward engineering.
Alternative interpretations can yield different models. The more information that is avail-
able, the less judgments should vary among reverse engineers.

23.6 Wrapping 421

■ Don’t be discouraged by approximate results. It is worth a modest amount of time to
extract 80 percent of an application’s meaning. You can use the typical forward engineer-
ing techniques (such as interviewing knowledgeable users) to obtain the remaining 20
percent. Many people find this lack of perfection uncomfortable, because it is a paradigm
shift from forward engineering.

■ Expect odd constructs. Developers, even the experts, occasionally use uncommon
constructs. In some cases, you won’t be able to produce a complete, accurate model, be-
cause that model never existed.

■ Watch for a consistent style. Software is typically designed using a consistent strategy,
including consistent violations of good design practice. Usually, you can look at an ex-
cerpt of the software and deduce the underlying strategy.

23.6 Wrapping
Some applications are brittle and poorly understood—they may have been written long ago,
have missing documentation, and lack guidance from the original developers. Changes can
threaten their viability and risk introducing bugs. Consequently, many organizations limit
changes to such applications. They prefer to isolate the code and build a wrapper around it.

A wrapper is a collection of interfaces that control access to a system. It consists of a
set of boundary classes that provide the interfaces, and it should be designed to follow good
OO principles. The boundary classes’ methods call the existing system using the existing op-
erations. A boundary method may involve several existing operations and bundle data from
several places. Often the calls to legacy code are messy, but the boundary classes hide the
details from the outside. The source code can either be OO or non-OO. Wrapping preserves
the form of legacy software and accesses its functionality.

Many existing applications have functionality that is confusing, unpredictable, or com-
plex. Often it is possible to extract a core of functionality that is more fundamental, simpler
to use, and better tested. In this case, a wrapper provides a clean interface for exposing the
core functionality. Some features of the original application are lost, but they are usually the
most dubious ones.

If you are adding new functionality, it can usually be added as a separate package. De-
sign this package using good OO principles. Try to minimize interactions with the existing
system, and keep them as uniform as possible.

For an example consider a Web application. The original code may be a legacy banking
application written in Cobol and running on old hardware. Wrapping can expose the Cobol
logic as OO methods that can then be attached to a modern Web interface. The legacy code
still must be maintained, but its maintenance is little affected by the existence of the Web in-
terface. The actual code that executes for the Web application is ugly, but it works as long as
maintenance on the underlying Cobol logic does not disrupt the wrapper’s methods.

Wrapping is usually just a temporary solution, because a wrapper is heavily constrained
by the organization (often accidental) of the legacy software. Eventually the combination of

422 Chapter 23 / Legacy Systems

the original old code, the wrapper, and new code in a different format become so unwieldy
that it must be rewritten.

Sneed suggests the use of XML as a gateway for communication between the legacy
software on the inside and the modern world on the outside. Programmers with different lev-
els of sophistication and modernity can interact via the intermediary of XML [Sneed-01]. He
also observes that wrapping serves both a technological and a social purpose. The maintain-
ers of the old code do not have their artifacts disrupted with wrapping. Wrapping lets pro-
gram maintainers keep their mental models of the software intact. This helps with the day-
to-day maintenance of the wrapped code.

23.7 Maintenance
Much of the software literature treats maintenance as being monolithic, but we think the
viewpoint of Rajlich and Bennett is more perceptive. According to [Rajlich-00], software
moves through five stages.

■ Initial development. Developers create the software.

■ Evolution. The software undergoes major changes in functionality and architecture. Re-
factoring can be used to maintain software quality.

■ Servicing. The available technical talent has been reduced, either by circumstances or
by deliberate decision. Software changes are limited to minor fixes and simple function-
ality changes. At this stage the software begins its inexorable slide to obsolescence.
Wrapping becomes an appropriate technology during this stage.

■ Phaseout. The vendor continues to receive revenue from the product but is now plan-
ning its demise.

■ Closedown. The product is removed from the market, and customers are redirected to
other software.

These five stages do not have a rigid wall between them, but there is a continual decline in
the technical quality of the software as it proceeds through its lifetime. Also the authors note
that individual versions of software can experience these life stages, only to be replaced by
successor versions.

The software engineering goal is to slow the decline and keep software in the evolution
and servicing stages as long as possible. In any case, management wants to avoid an acci-
dental slippage of the software and only let the transitions proceed with forethought.

23.8 Chapter Summary
Most development does not involve new applications but rather evolves existing ones. Ac-
cordingly, as a software engineer you must be able to evolve existing applications and inte-
grate with them. You can salvage requirements, ideas, data, and code from existing

Bibliographic Notes 423

applications. Reverse engineering is a critical technology when dealing with legacy applica-
tions.

The purpose of reverse engineering is to salvage information from old systems and carry
it forward. Reverse engineering is not intended to perpetuate past flaws—you discard any
flaws that you find. Reverse engineering provides merely one source of requirements for new
applications, but it is an important source. There can be a variety of inputs to reverse engi-
neering, all of which you should be prepared to exploit. The primary outputs from reverse
engineering are models.

Begin by building the class model, emphasizing classes, associations, and generaliza-
tions. We suggest building the class model using three distinct phases—implementation re-
covery, design recovery, and analysis recovery—that involve increasing amounts of
decisions and interpretation about the software.

Next build the interaction model, being sure to tie your understanding of behavior to the
class model. You can start with procedural code and use slicing to extract portions of the log-
ic that are centered about objects. Hence slicing provides a means for taking the content of
procedural code and restructuring it as OO code. Ultimately you express the interaction
model as a collection of activity and sequence diagrams.

Finally, if you need it, build the state model. The sequence diagrams provide a helpful
intermediary to state diagrams.

Reverse engineering is much different than forward engineering and consequently re-
quires a different mindset. We provided a number of tips to help with the changed mindset.

Wrapping is another technique for dealing with legacy applications. You can regard the
legacy application as a black box and build interfaces around it. New applications then ac-
cess the legacy logic via the intermediary of the wrapper.

Bibliographic Notes
[Bachman-89] explains that most information systems build on past work and only the oc-
casional project truly involves new work. We note that this claim applies not only to infor-
mation systems but also to software in general.

[Chikofsky-90] has been influential in standardizing reverse engineering terminology.
[Kollmann-01] explains how to recover a class model from source code and test executions.
The test executions often do not prove hypotheses about the class model, but they can help
understanding and are suggestive. [Sneed-96] presents a basic approach to taking a proce-
dural COBOL program and converting it to an OO representation.

Figure 23.1 Key concepts for Chapter 23

forward engineering
maintenance

re-engineering
reverse engineering

slice
wrapper

424 Chapter 23 / Legacy Systems

References
[Bachman-89] Charles W. Bachman. A personal chronicle: Creating better information systems, with

some guiding principles. IEEE Transactions on Knowledge and Data Engineering 1, 1 (March
1989), 17–32.

[Chikofsky-90] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery:
A taxonomy. IEEE Software, January 1990, 13–17.

[Kollmann-01] Ralf Kollmann and Martin Gogolla. Application of UML associations and their adorn-
ments in design recovery. IEEE Eighth Working Conference on Reverse Engineering, October
2001, Stuttgart, Germany, 81–90.

[Rajlich-00] Vaclav T. Rajlich and Keith H. Bennett. A staged model for the software life cycle. IEEE
Computer, July 2000, 66–71.

[Rekoff-85] MG Rekoff, Jr. On Reverse Engineering. IEEE Transactions on Systems, Man, and Cy-
bernetics SMC-15, 2 (March/April 1985), 244–252.

[Sneed-96] Harry M. Sneed. Object-oriented COBOL recycling. IEEE Third Working Conference on
Reverse Engineering, November 1996, Monterey, CA, 169–178.

[Sneed-01] Harry M. Sneed. Wrapping legacy COBOL programs behind an XML interface. IEEE
Eighth Working Conference on Reverse Engineering, October 2001, Stuttgart, Germany, 189–
197.

[Weiser-82] M. Weiser. Programmers use slices when debugging. Communications of the ACM 25, 7
(July 1982), 446–452.

[Weiser-84] M. Weiser. Program slicing. IEEE Transactions on Software Engineering 10, 4 (July
1984), 352–357.

425

Appendix A

UML Graphical Notation

The inside covers of the book summarize the graphical notations for the class, state, and in-
teraction models. You can use these four pages as a quick reference while constructing or
reading diagrams. However, we must caution you that a novice cannot simply take these four
pages and understand them. To understand the concepts represented by the notation, refer to
the chapters of Part 1. To learn how to apply the notation and concepts within the software
development life cycle, consult the chapters in Part 2 and 3. The index can also help you find
relevant material in the book.

With the exception of the label for each construct and a few descriptive comments, all
of the diagram elements, text names, and punctuation symbols shown are part of the nota-
tion. The names in these diagrams (such as Class, attribute1, operation, and event2) indicate
what kind of element they are examples of. You may wish to modify the syntax of names and
the declarations of attributes and signatures to make them consistent with the syntax of your
implementation language.

Most of the items shown are optional, especially during early stages of modeling. Even
in design, it is unwise to overspecify by including superfluous names and notations. For ex-
ample, when an association is labeled by end names, it is usually not necessary to give the
association itself a name. We have not indicated which elements are optional, because we
wanted to show only the actual UML notation wherever possible, without obscuring it with
an additional metanotation.

Please feel free to copy the notation summaries on the inside covers. You can obtain an
electronic copy at www.modelsoftcorp.com.

www.modelsoftcorp.com

426

Appendix B

Glossary

The following terms are used in OO modeling for analysis, design, and implementation.

abstract class a class that has no direct instances. The UML notation is to italicize an
abstract class name or place the keyword {abstract} below or after the name. (Contrast
with concrete class.)

abstract operation an operation that lacks an implementation. A concrete descendant class
must provide a method to implement the operation. The UML notation is to italicize an
abstract operation name or place the keyword {abstract} after its name.

abstraction the ability to focus on essential aspects of an application while ignoring details.

access modifier (in Java) the means of controlling access to methods and data via public,
private, protected, and package visibility.

access specifier (in C++) the means of controlling access to methods and data via public,
private, and protected visibility as well as a friend declaration.

activation the period of time for an object’s execution. The UML notation is a thin rect-
angle. (Synonymous with focus of control.)

active object an object that has its own thread of control. (Contrast with passive object.)

activity a specification of executable behavior.

activity diagram a diagram that shows the sequence of steps that make up a complex
process.

activity token a token that can be placed on an activity symbol to show the progress of an
execution.

actor a direct external user of a system. The UML notation is a “stick man” icon.

aggregation a kind of association in which a whole, the assembly, is composed of parts.
Aggregation is often called the “a-part-of” or “parts-explosion” relationship and may be

Appendix B / Glossary 427

nested to an arbitrary number of levels. Aggregation bears the transitivity and antisym-
metry properties. The UML notation is a small hollow diamond superimposed on the
association end next to the assembly class. (Contrast with composition.)

analysis the development stage in which a real-world problem is examined to understand
its requirements without planning the implementation.

ancestor class a class that is a direct or indirect superclass of a given class. (Contrast with
descendant class.)

API (acronym) application programming interface.

application analysis the second substage of analysis that addresses the computer aspects of
the application that are visible to users.

application programming interface a collection of methods that provide the functionality
of an application.

architecture the high-level plan or strategy for solving an application problem.

assembly (for an aggregation) a class of objects that is composed of part objects.

association a description of a group of links with common structure and common seman-
tics. The UML notation is a line between classes that may consist of several line
segments.

association class an association that is also a class. Like the links of an association, the
instances of an association class derive identity from instances of the related classes.
Like a class, an association class can have attributes, operations, and participate in asso-
ciations. The UML notation is a box (a class box) attached to the association by a dashed
line.

association end an end of an association. A binary association has two ends, a ternary has
three ends, and so forth.

attribute a named property of a class that describes a value held by each object of the class.
The UML notation lists attributes in the second compartment of the class box.

automatic transition an unlabeled transition that automatically fires when the activity
associated with the source state is completed.

bag an unordered collection of elements with duplicates allowed. The UML notation is to
annotate an association end with {bag}.

base class (in C++) a superclass.

batch transformation (architectural style) a sequential input-to-output transformation, in
which inputs are supplied at the start and the goal is to compute an answer. There is no
ongoing interaction with the outside world. (Contrast with continuous transformation.)

boundary class a class of objects that provide a staging area for communications between
a system and an external source.

call-by-reference (in a programming language) a mechanism that passes arguments to a
method by passing the address of each argument. (Contrast with call-by-value.)

428 Appendix B / Glossary

call-by-value (in a programming language) a mechanism that passes arguments to a method
by passing a copy of the data values. If an argument is modified, the new value will not
take effect outside of the method that modifies it. (Contrast with call-by-reference.)

candidate key (in a relational database) a combination of columns that uniquely identifies
each row in a table. The combination must be minimal and include only those columns
that are needed for unique identification. No column in a candidate key can be null.

cardinality the count of elements that are in a collection. (Contrast with multiplicity.)

change event an event that is caused by the satisfaction of a boolean expression. The intent
of a change event is that the expression is continually tested—whenever the expression
changes from false to true the event happens. The UML notation is the keyword when
followed by a parenthesized boolean expression. (Contrast with guard condition.)

changeability an indication whether a property (such as an association end) can be modi-
fied after the initial value is created. The possibilities are changeable (can be updated)
and readonly (can only be initialized).

class a description of a group of objects with similar properties (attributes), common
behavior (operations and state diagrams), similar relationships to other objects, and
common semantics. The UML notation is a box with the name in the top compartment.

class design the development stage for expanding and optimizing the analysis models so
that they are amenable to implementation.

class diagram a graphic representation that describes classes and their relationships,
thereby describing possible objects. (Contrast with object diagram.)

class model a description of the structure of the objects in a system including their identity,
relationships to other objects, attributes, and operations.

classification a grouping of objects with the same data structure and behavior.

client a subsystem that requests services from another subsystem. (Contrast with server.)

coherence a property of an element, such as a class, an operation, or a package, such that it
is organized on a consistent plan and all its parts fit together toward a common goal.

completion transition a transition that automatically fires when the activity associated with
the source state is completed.

composite state a state that provides shared behavior for nested states. (Contrast with
nested state.)

composition a form of aggregation with two additional constraints. A part can belong to at
most one assembly. Furthermore, once a part has been assigned an assembly, it has a
coincident lifetime with the assembly. The UML notation is a small solid diamond
superimposed on the association end next to the assembly class. (Contrast with
aggregation.)

concrete class a class that can have direct instances. (Contrast with abstract class.)

concurrent two or more activities or events whose execution may overlap in time.

Appendix B / Glossary 429

condition (see guard condition).

constraint a boolean condition involving model elements such as objects, classes,
attributes, associations, and generalization sets. The UML notation for simple
constraints is a text string enclosed in braces or placed in a “dog-eared” comment box.
For complex constraints, you can use the Object Constraint Language.

constructor (in C++ and Java) an operation that initializes a newly created instance of a
class. (Contrast with destructor.)

container class a class of container objects. Examples include sets, arrays, dictionaries, and
associations.

container object an object that stores a collection of other objects and provides various
operations to access or iterate over its contents.

continuous transformation (architectural style) a system in which the outputs actively
depend on changing inputs and must be periodically updated. (Contrast with batch
transformation.)

control the aspect of a system that describes the sequences of operations that occur in
response to stimuli.

controller an active object that manages control within an application.

database a permanent, self-descriptive store of data that is contained in one or more files.
Self-description is what sets a database apart from ordinary files.

database management system the software for managing access to a database.

data dictionary the definition of all modeling elements (classes, associations, attributes,
operations, and enumeration values) and an explanation of the rationale for key
modeling decisions.

DBMS (acronym) database management system.

default value the value used to initialize an attribute or method argument.

delegation an implementation mechanism in which an object, responding to an operation
on itself, forwards the operation to another object.

denormalization the violation of normal forms. Developers should violate normal forms
only for good cause, such as to increase performance for a bottleneck. (See normal
form.)

derived class (in C++) a subclass.

derived element (in UML) an element that is defined in terms of other elements. Classes,
attributes, and associations can all be derived. Do not confuse the UML term derived
with the C++ derived class. A C++ derived class refers to the subclass of a generaliza-
tion and has nothing to do with UML’s meaning of derived element. The UML notation
is a slash preceding the element name.

descendant class a class that is a direct or indirect subclass of a given class. (Contrast with
ancestor class.)

430 Appendix B / Glossary

destructor (in C++) an operation that cleans up an existing instance of a class that is no
longer needed. (Contrast with constructor.)

development the construction of software.

development life cycle an approach for managing the process of building software.

development stage a step in the process of building software. This book covers the
following sequence of development stages: system conception, domain analysis, appli-
cation analysis, system design, class design, implementation modeling, and
implementation. Even though the development stages are ordered, all portions of an
application need not proceed in tandem. We do not mean to imply waterfall
development.

dictionary an unordered collection of object pairs with duplicates allowed. Each pair binds
a key to an element. You can then use the key to look up the element.

direction whether an argument to an operation/method is an input (in), output (out), or an
input argument that can be modified (inout).

do-activity an activity that continues for an extended time. The UML notation is “do /”
followed by the do-activity name.

domain analysis the first substage of analysis that focuses on modeling real-world things
that carry the semantics of an application.

dynamic binding a form of method resolution that associates a method with an operation
at run time, depending on the class of one or more target objects.

dynamic simulation (architectural style) a system that models or tracks objects in the real
world.

effect a reference to a behavior that is executed in response to an event. The UML notation
for an effect is a slash (“/”) followed by the activity name.

encapsulation the separation of external specification from internal implementation.
(Synonymous with information hiding.)

enterprise model a model that describes an entire organization or some major aspect of an
organization.

Entity-Relationship (ER) model a graphical approach to modeling originated by Peter
Chen that shows entities and the relationships between them. The UML class model is
based on the ER model.

entry activity an activity that is executed upon entry to a state. The UML notation is to list
an entry activity within a state preceded by “entry /”. (Contrast with exit activity.)

enumeration a data type that has a finite set of values. The UML notation is the keyword
«enumeration» above the enumeration name in the top section of a box. The second
section lists the enumeration values.

ER (acronym) Entity-Relationship model.

event an occurrence at a point in time. (Contrast with state.)

Appendix B / Glossary 431

event-driven control an approach in which control resides within a dispatcher or monitor
that the language, subsystem, or operating system provides. Developers attach applica-
tion methods to events, and the dispatcher calls the methods when the corresponding
events occur (“callback”). (Contrast with procedure-driven control.)

exit activity an activity that is executed just before exit from a state. The UML notation is
to list an exit activity within a state preceded by “exit /”. (Contrast with entry activity.)

extend (use case relationship) a relationship that adds incremental behavior to a use case.
Note that the extension adds itself to the base; in contrast, for an include relationship the
base explicitly incorporates the inclusion. The UML notation is a dashed arrow from the
extension use case to the base use case. The keyword «extend» annotates the arrow.
(Contrast with include.)

extensibility a property of software such that new kinds of objects or functionality can be
added to it with little or no modification to existing code.

extent (of a class) the set of objects for a class.

feature an attribute or an operation.

final (for a Java class) a directive that prevents further subclassing.

final (for a Java method) a directive that prevents the method from being overridden.

fire to cause a transition to occur.

focus of control the period of time for an object’s execution. The UML notation is a thin
rectangle. (Synonymous with activation.)

foreign key (in a relational database) a reference to a candidate key (normally a reference
to a primary key). It is the glue that binds tables.

forward engineering the building of an application from general requirements through to
an eventual implementation. (Contrast with reverse engineering.)

fourth-generation language a framework for straightforward database applications that
provides screen layout, simple calculations, and reports.

framework a skeletal structure of a program that must be elaborated to build a complete
application.

friend (in C++) a declaration that permits selective access to members. The class containing
the friend declaration grants access to a named function, method, or class.

garbage collection (in a programming language) a mechanism for automatically deallo-
cating data structures that can no longer be accessed and are therefore not needed.

generalization an organization of elements (such as classes, signals, or use cases) by their
similarities and differences. The UML notation is a triangle with the apex next to the
superelement. (Contrast with specialization.)

generalization set name an enumerated attribute that indicates which aspect of an object is
being abstracted by a particular generalization.

432 Appendix B / Glossary

guard condition a boolean expression that must be true in order for a transition to occur. A
guard condition is checked only once, at the time the event occurs, and the transition
fires if the condition is true. The UML notation is to list a guard condition in square
brackets after an event.

identifier one or more attributes in an implementation that unambiguously differentiate an
object from all others.

identity the inherent property of an object which distinguishes each object from all others.

implementation the development stage for translating a design into programming code and
database structures.

implementation inheritance an abuse of inheritance that seeks to reuse existing code, but
does so with an illogical application structure that can compromise future maintenance.

implementation method (style) a method that implements specific computations on fully
specified arguments, but does not make context-dependent decisions. (Contrast with
policy method.)

implementation modeling the development stage for adding fine details to a model that
transcend languages. Implementation modeling is the immediate precursor to the actual
implementation.

include (use case relationship) a relationship that incorporates one use case within the
behavior sequence of another use case. The UML notation is a dashed arrow from the
source (including) use case to the target (included) use case. The keyword «include»
annotates the arrow. (Contrast with exclude.)

index a data structure that maps one or more attribute values into the objects or database
table rows that hold the values. Indexes are used for optimization (to quickly locate
objects and table rows) and to enforce uniqueness.

information hiding (see encapsulation)

inheritance the mechanism that implements the generalization relationship.

integration testing testing of code from multiple developers to determine how the classes
and methods fit together. (Contrast with unit testing and system testing.)

interaction model the model that describes how objects collaborate to achieve results. It is
a holistic view of behavior across many objects, whereas the state model is a reductionist
view of behavior that examines each object individually.

interactive interface (architectural style) a system that is dominated by interactions
between the system and agents, such as humans, devices, or other programs.

interface (in Java) an uninstantiable class specification the contains only constants and
method declarations.

iterative development the development of a system by a process broken into a series of
steps, or iterations, each of which provides a better approximation to the desired system
than the previous iteration. (Contrast with rapid prototyping and waterfall
development.)

Appendix B / Glossary 433

iterator (in a programming language) a construct that controls iteration over a range of
values or a collection of objects.

layer a subsystem that provides multiple services, all of which are at the same level of
abstraction. A layer can be built on subsystems at a lower level of abstraction. (Contrast
with partition.)

leaf class a class with no subclasses. It must be a concrete class. In Java, this is the same as
a final class.

library a collection of classes that are reusable across applications.

life cycle (see development life cycle).

lifeline the period of time during which an object exists.

link a physical or conceptual connection among objects. A link is an instance of an associ-
ation. The UML notation is a line between objects that may consist of several line
segments.

lock a logical object associated with some defined subset of a resource that gives the lock
holder the right to access the resource directly.

member (in C++) data or methods of a class.

metaclass a class describing other classes.

metadata data that describes other data.

method the implementation of an operation for a class. The UML notation lists methods in
the third compartment of the class box. (Contrast with operation.)

method caching (in a programming language) an optimization of method searching in
which the address of a method is found the first time an operation is applied to an object
of a class and then stored in a table attached to the class.

method resolution (in a programming language) the process of matching an operation on
an object to the method appropriate to the object’s class.

methodology (in software engineering) a process for the organized production of software
using a collection of predefined techniques and notational conventions.

model an abstraction of some aspect of a problem. We express models with various kinds
of diagrams.

modularity the organization of a system into groups of closely related objects.

multiple inheritance a type of inheritance that permits a class to have more than one super-
class and to inherit features from all ancestors. (Contrast with single inheritance.)

multiplicity (of an association end) the number of instances of one class that may relate to
a single instance of an associated class. Multiplicity is a constraint on the size of a
collection. The UML notation is a numeric interval or the special symbol “*” denoting
“many” (zero or more). (Contrast with cardinality.)

434 Appendix B / Glossary

multiplicity (of an attribute) the possible number of values for each instantiation of an
attribute. The most common specifications ar a mandatory single value [1], an optional
single value [0..1], and many [*].

namespace (in C++) a means for providing a semantic scope for symbols to alleviate name
conflicts.

n-ary association an association involving three or more association ends. The UML
symbol is a diamond with lines connecting to the related classes. If the association has
a name, it is written in italics next to the diamond.

navigability the direction of traversal of a binary association in an implementation. The
possibilities are none, either direction, or both directions. The UML shows navigability
with an arrowhead on the association end attached to the target class.

navigation a traversal of associations and generalizations in a class model to go from source
objects to target objects.

nested state a state that shares behavior from its composite state and adds additional
behavior of its own. (Contrast with composite state.)

new (in C++ and Java) the operator to create objects.

normal form (in a relational database) a guideline for relational database design that
increases data consistency.

n-tier architecture an extension of the three-tier architecture, permitting any number of
application layers. (Contrast with three-tier architecture.)

null a special value denoting that an attribute value is unknown or not applicable.

object a concept, abstraction, or thing that can be individually identified and has meaning
for an application. An object is an instance of a class.

Object Constraint Language (OCL) a language for defining constraints that is part of the
UML. You can also use the OCL to navigate class models.

object diagram a graphical representation that shows individual objects and their relation-
ships. (Contrast with class diagram.)

object identity (in a relational database) the use of an artificial number to identify each
record in a table. (Contrast with value-based identity.)

Object Management Group (OMG) a standards forum that is the owner of the UML.

object-orientation (OO) a strategy for organizing systems as collections of interacting
objects that combine data and behavior.

OCL (acronym) Object Constraint Language.

OMG (acronym) Object Management Group.

OO (acronym) object-oriented.

OO database a database that is perceived as objects that mix data and behavior. (Contrast
with relational database.)

Appendix B / Glossary 435

OO-DBMS a DBMS that provides persistent objects in addition to the transient objects
provided by OO programming languages. (Contrast with relational DBMS.)

OO development a software development technique that uses objects as a basis for the
construction of software.

OO programming language a language that supports objects (combining identity, data,
and operations), method resolution, and inheritance.

operation a function or procedure that may be applied to or by objects in a class. (Contrast
with method.)

ordered a sorted collection of elements with no duplicates allowed. The UML notation is
to annotate an association end with {ordered}. (Contrast with sequence.)

origin class the topmost class in an inheritance hierarchy that defines a feature.

overloading (in a programming language) binding the same name to multiple methods
whose signatures differ in number or types of arguments. A call to an overloaded oper-
ation is resolved at compile time based on the types of the calling arguments.

override to define a method for an operation that replaces an inherited method for the same
operation.

package (class modeling construct) a group of elements (classes, associations, generaliza-
tions, and lesser packages) with a common theme. The UML notation is a box with a
tab; the package name is placed in the box.

package (referring to visibility) accessible by methods of classes in the same package as the
containing class.

partition a subsystem that provides a particular kind of service in parallel to other
subsystems. A partition may itself be built from lower-level subsystems. (Contrast with
layer.)

passive object an object that does not have its own thread of control. (Contrast with active
object.)

pattern a parameterized excerpt of a model that is important and recurring. It is mathemat-
ical in nature and worthy of reuse across multiple applications.

peer two or more subsystems that are mutually interdependent for services. (Contrast with
client and server.)

persistent object an object that is stored in a database and can span multiple application
executions. (Contrast with transient object.)

policy method (style) a method that makes context-dependent decisions but calls on imple-
mentation methods for detailed computations. (Contrast with implementation method.)

polymorphism takes on many forms; the property that an operation may behave differently
on different classes.

436 Appendix B / Glossary

primary key (in a relational database) a candidate key that is preferentially used to access
the records in a table. A table can have at most one primary key; normally each table
should have a primary key.

private (referring to visibility) accessible by methods of the containing class only.

procedure-driven control an approach in which control resides within the program code.
Procedures request external input and then wait for it; when input arrives, control
resumes within the procedure that made the call. The location of the program counter
and the stack of procedure calls and local variables define the system state. (Contrast
with event-driven control.)

programming-in-the-large the creation of large, complex programs with teams of
programmers.

protected (referring to C++ visibility) accessible by methods of the containing class and
any of its descendant classes.

protected (referring to Java visibility) accessible by methods of the containing class, any of
its descendant classes, and classes in the same package as the containing class.

public (referring to visibility) accessible by methods of any class.

qualified association an association in which one or more attributes (called qualifiers)
disambiguate the objects for a “many” association end. The UML notation is a small box
on the end of the association line near the source class.

qualifier an attribute that distinguishes among the objects at a “many” association end. The
UML notation is to place a qualifier in a small box on the end of the association line near
the source class.

race condition a situation in which the order of receiving concurrent signals can affect the
final state of an object.

rapid prototyping the quick development of a portion of a system for experimentation and
evaluation. Prototyping is proof of concept and often throwaway by intent. (Contrast
with iterative development and waterfall development.)

real-time system (architectural style) an interactive system for which time constraints on
actions are particularly tight or in which the slightest timing failure cannot be tolerated.

refactoring changes to the internal structure of software to improve its design without
altering its external functionality.

reference an attribute value in one object that refers to another object.

reflection a property of a system such that it can examine its own structure dynamically and
reason about its own state.

region a portion of a state diagram.

reification the promotion of something that is not an object into an object.

relational database a database in which the data are perceived as tables. (Contrast with OO
database.)

Appendix B / Glossary 437

relational DBMS a DBMS that manages tables of data and associated structures that
increase the functionality and performance of tables. (Contrast with OO-DBMS.)

responsibility something that an object knows or something it must do. A responsibility is
not a precise concept; it is meant to get the thought process going.

reverse engineering the process of examining implementation artifacts and inferring the
underlying logical intent. (Contrast with forward engineering.)

robust a property of software such that it does not fail catastrophically when some of its
design assumptions are violated.

scenario a sequence of events that occur during one particular execution of a system.

schema the structure of the data in a database.

scope an indication if a feature applies to an object or a class. An underline distinguishes
features with class scope (static) from those with object scope.

sequence a sorted collection of elements with duplicates allowed. The UML notation is to
annotate an association end with {sequence}. (Contrast with ordered.)

sequence diagram a diagram that shows the participants in an interaction and the sequence
of messages among them.

server a subsystem that provides a service to other subsystems. (Contrast with client.)

service a group of related functions or operations that share some common purpose.

shopping-list operation an operation that is meaningful in its own right. Bertrand Meyer
coined the term shopping list because discovery of such an operation is driven by the
intrinsic meaning of a class and not by the needs of a particular application. Sometimes
the real-world behavior of classes suggests operations.

signal an explicit one-way transmission of information from one object to another. The
UML notation is the keyword «signal» above the signal class name in the top section of
a box. The second section lists the signal attributes.

signal event the event of sending or receiving a signal.

signature the number and types of the arguments for an operation and the type of its result.

single inheritance a type of inheritance in which a class may have only a single superclass.
(Contrast with multiple inheritance.)

software engineering a systematic, disciplined, and quantifiable approach to the develop-
ment, operation, and maintenance of software.

specialization the refinement of a class into variants. Specialization has the same meaning
as generalization but takes a top-down perspective. In contrast, generalization takes a
bottom-up perspective. (Contrast with generalization.)

SQL the standard language for interacting with a relational database.

state an abstraction of the values and links of an object. The UML notation is a rounded box
containing an optional state name. (Contrast with event.)

438 Appendix B / Glossary

state diagram a graph whose nodes are states and whose directed arcs are transitions
between states.

state model a description of those aspects of a system concerned with time and the
sequencing of operations. The state model consists of multiple state diagrams, one state
diagram for each class with important temporal behavior.

static (in C++ and Java) data and methods that belong not to an instance of a class, but to
the class itself.

stored procedure (in a relational database) a method that is stored in a database.

strong typing (in a programming language) a requirement that the type of each variable
must be declared. (Contrast with weak typing.)

subclass a class that adds specific attributes, operations, state diagrams, and associations for
a generalization. (Contrast with superclass.)

submachine a state diagram that may be invoked as part of another state diagram. The UML
notation for invoking a submachine is to list a local state name followed by a colon and
the submachine name.

substate a state that expresses an aspect of concurrent behavior for a parent state.

subsystem a major piece of a system that is organized around some coherent theme. A
system may be divided into subsystems using either partitions or layers.

superclass the class that holds common attributes, operations, state diagrams, and associa-
tions for a generalization. (Contrast with subclass.)

swimlane a column in an activity diagram that shows the person or organization who
performs activities; a partition.

system an application that is the subject of interest.

system architecture (see architecture).

system boundary the outline of the scope of a system determining what the system includes
and what the system omits.

system conception the development stage that deals with the genesis of an application.

system design the development stage during which the developer devises the architecture
and establishes general design policies.

system testing the checking of an entire application. (Contrast with unit testing and integra-
tion testing.)

table (in a relational database) an organization of data that has a specific number of columns
and an arbitrary number of rows.

ternary association an association among three association ends. The UML symbol is a
diamond with lines connecting to the related classes. If the association has a name, it is
written in italics next to the diamond.

this (in C++ and Java) the default name of the target object of a method.

Appendix B / Glossary 439

thread of control a single path of execution through a program, a state model, or some
other representation of control flow.

three-tier architecture an approach that separates data management, application function-
ality, and the user interface. The data management layer holds the database schema and
data. The application layer holds the methods that embody the application logic. The
user-interface layer manages the forms and reports that are presented to the user.
(Contrast with n-tier architecture.)

time event an event caused by the occurrence of an absolute time or the elapse of a time
interval. The UML notation for an absolute time is the keyword when followed by a
parenthesized expression involving time. The notation for a time interval is the keyword
after followed by a parenthesized expression that evaluates to a time duration.

transaction manager (architectural style) a database system whose main function is to
store and access information.

transient object an object that exists only in memory and disappears when an application
terminates execution. Thus a transient object is an ordinary programming object.
(Contrast with persistent object.)

transition an instantaneous change from one state to another. The UML notation is a line
(with possibly multiple line segments) from the origin state to the target state; an arrow-
head points to the target state.

transitive closure (from graph theory) the set of nodes that are reachable by some sequence
of edges.

UML (acronym, trademark of the OMG) Unified Modeling Language.

Unified Modeling Language (trademark of the OMG) a comprehensive suite of object-
oriented models intended to represent software and other kinds of applications fully. The
UML has been developed under the auspices of the OMG.

UML1 informal term for the first release of the UML approved in 1997.

UML2 informal term for the second release of the UML approved in 2004. This book is
based on UML2.

unit testing testing by developers of their own code for classes and methods. (Contrast with
integration testing and system testing.)

use case a coherent piece of functionality that a system can provide by interacting with
actors. The UML notation is an ellipse with the use case name inside.

use case diagram a graphical notation for summarizing actors and use cases.

user interface an object or group of objects that provides the user of a system with a
coherent way to access its domain objects, commands, and application options.

value a piece of data. A value is an instance of an attribute.

value-based identity (in a relational database) the use of some combination of real-world
attributes to identify each record in a table. (Contrast with existence-based identity.)

440 Appendix B / Glossary

view (in a relational database) a table that a relational DBMS dynamically computes.

virtual (in C++) an operation that can be overridden by a descendant class.

visibility the ability of a method to reference a feature from another class. The UML
denotes visibility with the following prefixes. The possibilities are public (“+”),
protected (“#”), private (“-”), and package (“~”).

waterfall development the development life cycle of performing the software development
stages in a rigid linear sequence with no backtracking. (Contrast with iterative develop-
ment and rapid prototyping.)

weak typing (in a programming language) the lack of a requirement that the type of each
variable be declared. (Contrast with strong typing.)

wrapper a collection of interfaces that allow access into a system.

441

Answers to Selected Exercises

We selected answers with the following criteria: exercises with short answers in the core chapters, ex-
ercises that extend chapters by introducing new material, key exercises in a series of questions, an-
swers that clarify subtle or difficult points, and prototypes for real problems. Most exercises have mul-
tiple correct answers, so use our answers only as a guide and not as a test of correctness.

1.5b. Criminal investigations can use combinations of photographs, fingerprinting, blood-typing,
DNA analysis, and dental records to identify people, living and/or deceased, who are involved
in, or the subject of, a criminal investigation.

d. Telephone numbers are adequate for identifying almost any telephone in the world. In general
a telephone number consists of a country code plus a province, city, or area code, plus a local
number plus an optional extension number. Businesses may have their own telephone systems
with other conventions. Depending on the relative location of the telephone that you are call-
ing, parts of the number may be implied and can be left out, but extra access digits may be re-
quired to call outside the local region.

In North America most local calls require 7 digits. Long distance calls in North America
use an access digit (0 or 1) + area code (3 digits) + local number (7 digits). Dialing Paris re-
quires an access code (011) + country code (33) + city code (1) + local number (8 digits). The
access code is not part of the identifier.

g. One way that employees are given restricted, after-hours access to a company is through the
use of a special, electronically readable card. Of course, if an employee loses a card and does
not report it, someone who finds it could use it for unauthorized entry. Other approaches in-
clude a picture ID which requires inspection by a guard, fingerprint readers, and voice recog-
nition.

1.8a. Electron microscopes, eyeglasses, telescopes, bomb sights, and binoculars are all devices that
enhance vision in some way. With the exception of the scanning electron microscope, all these
devices work by reflecting or refracting light. Eyeglasses and binoculars are designed for use
with two eyes; the rest of the objects on the list are designed for use with one eye. Telescopes,
bomb sights, and binoculars are used to view things far away. A microscope is used to magnify
something that is very small. Eyeglasses may enlarge or reduce, depending on whether the pre-

442 Selected Answers

scription is for a nearsighted or a farsighted person. Some other classes that could be included
in this list are optical microscopes, cameras, and magnifying glasses.

b. Pipes, check valves, faucets, filters, and pressure gauges are all plumbing supplies with certain
temperature and pressure ratings. Compatibility with various types of fluids is also a consider-
ation. Check valves and faucets may be used to control flow. With the exception of the pressure
gauge, all of the items listed have two ends and have a pressure-flow characteristic for a given
fluid. All of the items are passive. Some other classes include pumps, tanks, and connectors.

2.3a. For a transatlantic cable, resistance to salt water is the main consideration. The cable must lie
unmaintained at the bottom of the ocean for a long time. Interaction of ocean life with the cable
and the effect of pressure and salinity on cable life must be considered. The ratio of strength/
weight is important to avoid breakage while the cable is being installed. Cost is an important
economic factor. Electrical parameters are important for power consumption and signal distor-
tion.

c. Weight is very important for wire that is to be used in the electrical system of an airplane, be-
cause it affects the total weight of the plane. Toughness of the insulation is important to resist
chafing due to vibration. Resistance of the insulation to fire is also important to avoid starting
or feeding electrical fires in flight.

3.2 Figure A3.2 shows a class diagram for polygons and points. The smallest number of points re-
quired to construct a polygon is three.

The multiplicity of the association depends on how points are identified. If a point is iden-
tified by its location, then points are shared and the association is many-to-many. On the other
hand, if each point belongs to exactly one polygon, then several points may have the same co-
ordinates. The next answer clarifies this distinction.

3.3a. Figure A3.3 shows objects and links for two triangles with a common side in which a point
belongs to exactly one polygon.

b. Figure A3.4 shows objects and links for two triangles with a common side in which points may
be shared.

3.20 Graphs occur in many applications. Several variations of the model are possible, depending on
your viewpoint. Figure A3.23 accurately represents undirected graphs as described in the ex-
ercise. Although not quite as accurate, your answer could omit the class UndirectedGraph.

We have found it useful for some graph related queries to elevate the association between
vertices and edges to the status of a class as Figure A3.24 shows.

3.23 Figure A3.27 shows a class diagram describing directed graphs.The distinction between the
two ends of an edge is accomplished with a qualified association. Values of the qualifier end
are from and to.

Figure A3.28 shows another representation of directed graphs. The distinction between the
two ends of an edge is accomplished with separate associations.

Figure A3.2 Class diagram for polygon and points

Polygon
Point

xCoord
yCoord

3..*

{ordered}

1

Selected Answers 443

:Point

xCoord=1
yCoord=0

:Point

xCoord=0
yCoord=1

Figure A3.3 Object diagram where each point belongs to exactly one polygon

:Point

xCoord=1
yCoord=0

:Point

xCoord=-1
yCoord=0

:Point

xCoord=-1
yCoord=0

:Point

xCoord=0
yCoord=-1

:Polygon

:Polygon

Figure A3.4 Object diagram where each point can belong to multiple polygons

:Point

xCoord=0
yCoord=1

:Point

xCoord=1
yCoord=0

:Point

xCoord=-1
yCoord=0

:Point

xCoord=0
yCoord=-1

:Polygon

:Polygon

2

UndirectedGraph

Figure A3.23 Class diagram for undirected graphs

* *

*

1 1

Vertex

vertexName

Edge

edgeName

444 Selected Answers

The advantage of the qualified association is that only one association must be queried to
find one or both vertices that a given edge is connected to. If the qualifier is not specified, both
vertices can be found. By specifying from or to for the end qualifier, you can find the vertex
connected to an edge at the given end.

The advantage of using two separate associations is that you eliminate the need to manage
enumerated values for the qualifier end.

3.25 Figure A3.30 shows a class diagram for car loans in which pointers are replaced with associa-
tions.

In this form, the arguably artificial restriction that a person have no more than three em-
ployers has been eliminated. Note that in this model an owner can own several cars. A car can
have several loans against it. Banks loan money to persons, companies, and other banks.

3.28 Figure A3.34 shows a class diagram for the dining philosophers problem. The one-to-one as-
sociations describe the relative locations of philosophers and forks. The InUse association de-
scribes who is using forks. Other representations are possible, depending on your viewpoint.
An object diagram may help you better understand this problem.

3.31 The following OCL expression computes the set of airlines that a person flew in a given year.

2
Incidence

Figure A3.24 Class diagram for undirected graphs in which the incidence between
vertices and edges is treated as a class

UndirectedGraph

* *

* 11

1 1

Vertex

vertexName

Edge

edgeName

end

DirectedGraph

Figure A3.27 Class diagram for directed graphs using a qualified association

* *

* 1

11

Edge

edgeName

Vertex

vertexName

DirectedGraph

from

to

Figure A3.28 Class diagram for directed graphs using two associations

* *
1 1

*
*

1

1

Vertex

vertexName

Edge

edgeName

Selected Answers 445

aPassenger.Flight->SELECT(getYear(date)=aGivenYear).
Airline.name->asSet
The OCL asSet operator eliminates redundant copies of the same airline.

3.34 Figure E3.13 (a) states that a subscription has derived identity. Figure E3.13 (b) gives subscrip-
tions more prominence and promotes subscription to a class.

The (b) model is a better model. Most copies of magazines have subscription codes on their
mailing labels; this could be stored as an attribute. The subscription code is intended to identify
subscriptions; subscriptions are not identified by the combination of a person and a magazine,
so we should promote Subscription to a class. Furthermore, a person might have multiple sub-
scriptions to a magazine; only the (b) model can readily accommodate this.

4.2 The class diagram in Figure A4.2 generalizes the classes Selection, Buffer, and Sheet into the
superclass Collection. This is a desirable revision. The generalization promotes code reuse, be-
cause many operations apply equally well to the subclasses. Six aggregation relationships in
the original diagram, which shared similar characteristics, have been reduced to two. Finally,
the structure of the diagram now captures the constraint that each Box and Line should belong
to exactly one Buffer, Selection, or Sheet.

4.4 Figure A4.3 shows a class diagram for a graphical document editor. The requirement that a
Group contain 2 or more DrawingObjects is expressed as a multiplicity of 2..* on DrawingOb-
ject in its aggregation with Group. The fact that a DrawingObject need not be in a Group is
expressed by the zero-one multiplicity.

It is possible to revise this diagram to make a Circle a special case of an Ellipse and to make
a Square a special case of a Rectangle.

Company

Owner

name
Car

model
year

Loan

accountNumber
interestRate
currentBalance

Owns

Borrows

Lien
Lends

Employment

Figure A3.30 Proper class diagram for car loans

BankPerson

birthdate
address *

*

*

*

*

*1

1

1

1

Figure A3.34 Class diagram for the dining philosopher problem

rightDiner leftFork

Philosopher Fork

leftDiner rightFork

0..2InUse
1 1

11

0..1

forkUser

446 Selected Answers

We presume that a DrawingObject belongs to a Sheet and has a coincident lifetime with it.
Similarly, we presume that a Sheet belongs to one Document for its lifetime. Hence both are
composition relationships.

4.5 Figure A4.4 shows a class diagram with several classes of electrical machines. We have in-
cluded attributes that were not requested.

4.6 Figure A4.5 converts the overlapping combination of classes into a class of its own to eliminate
multiple inheritance.

4.7 Figure A4.6 is a metamodel of the following UML concepts: class, attribute, association, as-
sociation end, multiplicity, class name, and attribute name.

4.10 The class diagram in Figure E4.3 does support multiple inheritance. A class may have multiple
generalization roles of subclass participating in a variety of generalizations.

4.11 To find the superclass of a generalization using Figure E4.3, first query the association be-
tween Generalization and GeneralizationRole to get a set of all roles of the given instance of
Generalization. Then sequentially search this set of instances of GeneralizationRole to find the
one with roleType equal to superclass. (Hopefully only one instance will be found with role-

Selection Buffer Sheet

Box Collection Line LineSegment Point

2

Figure A4.2 Generalization of the classes Selection, Buffer, and Sheet into the class Collection

* 1 1 *

*

1 * 1..2 2

Document Sheet

DrawingObject

Text GeometricObject Group

2..*

Figure A4.3 Class diagram for a graphical document editor that supports grouping

Circle Ellipse Rectangle Line Square

1 *
1

*

0..1

Selected Answers 447

Type equal to superclass, which is a constraint that the model does not enforce.) Finally, scan
the association between GeneralizationRole and Class to get the superclass.

Figure A4.9 shows one possible revision which simplifies superclass lookup. To find the
superclass of a generalization, first query the association between Generalization and Super-
classRole. Then query the association between SuperclassRole and Class to find the corre-
sponding instance of Class.

{overlapping}

Figure A4.4 Partial taxonomy for electrical machines

ElectricalMachine

voltage
horsepower
efficiency
numberOfPoles

AC

frequency

DC

SynchronousMotor

ratedFieldVoltage
synchronousSpeed

InductionMotor

ratedSpeed

UniversalMotor PermanentMagnetMotor

Figure A4.5 Elimination of multiple inheritance

ElectricalMachine

voltage
horsepower
efficiency
numberOfPoles

AC

frequency

DCACDC

SynchronousMotor

ratedFieldVoltage
synchronousSpeed

InductionMotor

ratedSpeed

UniversalMotor PermanentMagnetMotor

448 Selected Answers

Figure A4.10 shows another metamodel of generalization that supports multiple inherit-
ance. To find the superclass of a generalization using this metamodel, simply query the Super-
class association.

We do not imply that the metamodel in Figure A4.10 is the best model of generalization,
only that it simplifies the query given in the exercise. The choice of which model is best de-
pends on the purpose of the metamodel.

The following query finds the superclass, given a generalization for Figure E4.3.

■ aGeneralization.GeneralizationRole->SELECT(roleType=‘superclass’).Class

The following query finds the superclass, given a generalization for Figure A4.9.

■ aGeneralization.SuperclassRole.Class

The following query finds the superclass, given a generalization for Figure A4.10.

■ aGeneralization.superclass

4.16 The simple class model in Figure A4.14 is sufficient for describing the given recipe data.

Figure A4.6 Metamodel for some UML concepts

Association AssociationEnd

multiplicity

Class

className

Attribute

attributeName
1 * 1 0..1* *

*0..1

GeneralizationRole

SubclassRole

Figure A4.9 Metamodel of generalizations with separate subclass and superclass roles

SuperclassRole

Generalization

generalizSetName

Class

className

*
*
1

*

1

11

1

Figure A4.10 Simplified metamodel of generalization relationships

Generalization

generalizSetName

Class

className

*

* *

1

superclass
subclass

Selected Answers 449

4.17 Figure A4.15 shows our initial solution to the exercise—merely adding an association that
binds original ingredients to substitute ingredients. This model has two flaws.

The first problem is that the model awkwardly handles interchangeable ingredients. For ex-
ample, in some recipes you can freely substitute butter, margarine, and shortening for each oth-
er. Figure A4.15 would require that we store each possible pair of ingredients. Thus we would
have the following combinations of original and substitute ingredients—(butter, margarine),
(butter, shortening), (margarine, butter), (margarine, shortening), (shortening, butter), and
(shortening, margarine).

The second problem is that the substitutability of ingredients does not always hold, but can
depend on the particular recipe.

Figure A4.16 shows a better class model that remedies both flaws.

Figure A4.14 A simple class model for recipes

Ingredient

ingredientName

Recipe

recipeName
quantity

Task

taskDescription{ordered}

quantityUnits
comment quantity

quantityUnits

inputoutput

baseIngredient*

*

*

*

* *
*0..1

Figure A4.15 Initial class model for recipes with alternate ingredients

Ingredient

ingredientName

Recipe

recipeName
quantity

Task

taskDescription{ordered}

substituteIngredient

originalIngredient

Initial
inferior
solution

quantityUnits
comment quantity

quantityUnits

inputoutput

baseIngredient*

*

*

*

* *
*0..1

*

*

Figure A4.16 Correct class model for recipes with alternate ingredients

Ingredient

ingredientName

Recipe

recipeName
quantity

Task

taskDescription{ordered}

Correct
solution

EquivalenceSetquantityUnits
comment quantity

quantityUnits

baseIngredient

inputoutput*

*

*
0..1 * *

*

*

*
**

0..1

450 Selected Answers

5.2 In Figure A5.2 the event A refers to pressing the A button. In this diagram, releasing the button
is unimportant and is not shown (although you must obviously release the button before you
can press it again). Note that a new button event cannot be generated while any button is
pressed. You can consider this a constraint on the input events themselves and need not show
it in the state diagram (although it would not be wrong to do so).

5.6 Figure A5.6 shows the completed state diagram for the motor control.

5.11 Figure A5.11 shows the state diagram. Note that even simple state diagrams can lead to com-
plex behavior. A change event occurs whenever the candle is taken out of its holder or when-
ever it is put back. The condition at north is satisfied whenever the bookcase is behind the wall.
The condition at north, east, south, or west is satisfied whenever the bookcase is facing front,
back, or to the side.

When you first discovered the bookcase, it was in the Stopped state pointing south. When
your friend removed the candle, a change event drove the bookcase into the Rotating state.
When the bookcase was pointing north, the condition at north put the bookcase back into the
Stopped state. When your friend reinserted the candle, another change event put the bookcase
into the Rotating state until it again pointed north. Pulling the candle out generated another
change event and would have caused the bookcase to rotate a full turn if you had not blocked
it with your body. Forcing the bookcase back is outside the scope of the control and does not
have to be explained.

Display time
do / show hours

and minutes

Set hours
do / show hours

Set minutes
do / show minutes

A A

A

B / advance hour B / advance minute

Figure A5.2 State diagram for a simple digital watch

DigitalWatch

Too Hot

RunningStarting

Off
on is asserted

on is no longer asserted

motor is running

motor is overheated
motor is overheated

do / apply power to run do / apply power

on is no longer asserted

reset [motor is not overheated]

Figure A5.6 State diagram for a motor control

winding and apply
power to start winding to run winding

MotorControl

Selected Answers 451

When you put the candle back again, another change event was generated, putting the book-
case into the Rotating state once again. Taking the candle back out resulted in yet another
change event, putting the bookcase into the Stopping state. After 1/4 turn, the condition at
north, east, south or west was satisfied, putting the bookcase into the Stopped state.

What you should have done at first to gain entry was to take the candle out and quickly put
it back before the bookcase completed 1/4 turn.

6.1 The headlight (Figure A6.1) and wheels (Figure A6.2) each have their own state diagram. Note
that the stationary state for a wheel includes several substates.

We have shown default initial states for the headlight and wheels. The actual initial state of
the wheels may be arbitrary and could be any one of the power off states. The system operates
in a loop and does not depend on the initial state, so you need not specify it. Many hardware
systems have indeterminate initial states.

StoppingRotating
Stopped

[at north, east, south, or west]

[at north]
do / rotate bookcase do / rotate bookcase

change change

Figure A5.11 State diagram for bookcase control

BookcaseControl

Figure A6.1 State diagram for a toy train headlight

OffOn
power off

power on

TrainHeadlight

Figure A6.2 State diagram for the wheels of a toy train

Forward

Reverse

power on

power on

power on

power on

power off

power off

power off

power off

Stationary

TrainWheels

452 Selected Answers

6.3 Figure A6.4 adds Motor On to capture the commonality of the starting and running state. We
have shown a transition from the Off state to the Starting state. We could instead have shown
a transition from Off to Motor On and made Starting the initial state of Motor On. Note that the
activity apply power to run winding has been factored out of both starting and running states.

6.4 Figure A6.5 revises the motor state diagram. Note that a transition from Off to either Forward
or Reverse also causes an implicit transition to Starting, the default initial state of the lower
concurrent subdiagram. An off request causes a transition out of both concurrent subdiagrams
back to state Off.

Too Hot

Running
Starting

Off
on is asserted motor is running

motor is overheated

do / apply power to

on is no longer asserted

reset [motor is not overheated]

start winding

Motor On
do / apply power to run winding

Figure A6.4 State diagram for a motor control using nested states

MotorControl

Starting
entry / start timer

Forward
do / energize forward contactor

Running

Reverse
do / energize reverse contactor

off request
timeout

do / energize running contactor

reverse request

forward request

Off

Figure A6.5 Revised state diagram for an induction motor control

On
MotorControl

Selected Answers 453

7.1 Here are answers for a physical bookstore.

a. Some actors are:

■ Customer. A person who initiates the purchase of an item.

■ Cashier. An employee who is authorized to check out purchases at a cash register.

■ Payment verifier. The remote system that approves use of a credit or debit card.

b. Some use cases are:

■ Purchase items. A customer brings one or more items to the checkout register and pays for
the items.

■ Return items. The customer brings back items that were previously purchased and gets a
refund.

c. Figure A7.1 shows a use case diagram.

d. Here is a normal scenario for each use case. There are many possible answers.

■ Purchase items.
Customer brings items to the counter.
Cashier scans each customer item.
Cashier totals order, including tax.
Cashier requests form of payment.
Customer gives a credit card.
Cashier scans card.
Verifier reports that credit card payment is acceptable.
Customer signs credit card slip.

■ Return items.
Customer brings purchased item to the counter.
Customer has receipt from earlier purchase.
Cashier notes that payment was in cash.
Cashier accepts items and gives customer a cash refund.

e. Here is an exception scenario for each use case. There are many possible answers.

■ Purchase items.
Customer brings items to the counter.
Cashier scans each customer item.
An item misscans and cashier goes to item display to get the item price.

Figure A7.1 Use case diagram for a physical bookstore checkout system

Bookstore Checkout System

Customer

Payment verifier

purchase
items

return
items

Cashier

454 Selected Answers

■ Return items.
Customer brings purchased item to the counter.
Customer has no receipt from earlier purchase.
Customer is given a credit slip, but no refund.

f. Figure A7.2 shows a sequence diagram for the first scenario in (d). Figure A7.3 shows a se-
quence diagram for the second scenario in (d).

7.8 Figure A7.12 shows an activity diagram for computing a restaurant bill.

8.1 Here are answers for an electronic gasoline pump.

a. Figure A8.1 shows a use case diagram.

bring items to counter

total order

request form of payment

give credit card

scan card

accept card

sign credit card slip

scan items

:CheckoutSystem :Cashier :Verifier

scan card

Figure A7.2 Sequence diagram for a purchase of items

:Customer

bring items to counter

note cash payment

give cash

give receipt

:CheckoutSystem :Cashier:Customer

Figure A7.3 Sequence diagram for a return of items

Selected Answers 455

b. There are two actors:

■ Customer. A person who initiates the purchase of gas.

■ Cashier. A person who handles manual credit card payments and monitors the sale of gas.

c. There are four use cases:

■ Purchase gas. Obtain gas from the electronic gas pump and pay for it with cash.

■ Purchase car wash. A customer also decides to purchase a car wash and pays for it with
cash.

■ Pay credit card outside. Instead of cash, pay for the gas and optional car wash with a credit
card that is directly handled by the gas system.

■ Pay credit card inside. Instead of cash, pay for the gas and optional car wash with a credit
card that is manually handled by the cashier.

8.6 Figure A8.6 computes the contents of a portfolio of stocks.

Figure A7.12 Activity diagram for computing a restaurant bill

total items add tax credit coupons and certificates

[six or more][less than six]

add 18%customer determines gratuity

Figure A8.1 Use case diagram for an electronic gasoline pump

Electronic Gasoline Pump

Customer

purchase
gas

purchase
car wash

Cashier

«include»

pay credit
card outside

pay credit
card inside

«extend» «extend»

456 Selected Answers

11.1 Here is elaboration for an antilock braking system for an automobile.

a. An antilock braking system could target the mass market. If the antilock system was inexpen-
sive and safer than current technology, it could be government mandated and installed on all
cars. (Further study would be needed to determine what price is “inexpensive” and what would
be a “significant” safety improvement.)

There would be several stakeholders. Auto customers would expect improved safety and
minimal detriment to drivability. Auto manufacturers would want to minimize the cost and
quantify the benefit so they could tout the technology in their advertising. The government
would be looking for a statistical safety improvement without compromising fuel efficiency.

If the new system was inexpensive, worked well, and did not hurt drivability, all car owners
could be potential customers. An expensive antilock system could be a premium option on
high-end cars.

b. Desirable features would include: effective prevention of brake locking, ability to detect ex-
cessive brake wear, and acquisition of data to facilitate auto maintenance. Some undesirable
features would be: reduced fuel efficiency, reduced drivability, and greater maintenance com-
plexity.

c. An antilock system must work with the brakes, steering, and automotive electronics.

d. There would be a risk that an antilock braking system could fail, leading to an accident and a
lawsuit. Also it might be difficult to understand fully how the antilock system would interact
with the brakes.

12.9 The following tentative classes should be eliminated.

■ Redundant classes. Child, Contestant, Individual, Person, Registrant (all are redundant
with Competitor).

■ Vague or irrelevant classes. Back, Card, Conclusion, Corner, IndividualPrize, Leg, Pool,
Prize, TeamPrize, Try, WaterBallet.

■ Attributes. address, age, averageScore, childName, date, difficultyFactor, netScore, raw-
Score, score, teamName.

■ Implementation constructs. fileOfTeamMemberData, listOfScheduledMeets, group, num-
ber.

■ Derived class. ageCategory is readily computed from a competitor’s age.

■ Operations. computeAverage, register.

Figure A8.6 Sequence diagram for computing the contents of a portfolio of stocks

getTransactions (endDate)

transactionSet

computeContents (date)

stockContents :=

:Portfolio :Transaction

sum(transactionSet)

:StockMgmtSoftware

initialComposition +

Selected Answers 457

■ Out of scope. routine.

After eliminating improper classes we are left with Competitor, Event, Figure, Judge, League,
Meet, Scorekeeper, Season, Station, Team, and Trial.

12.12 We use a combination of the OCL and pseudocode to express our queries.
[Some of our answers to these problems traverse a series of links. Chapter 15 explains that

each class should have limited knowledge of a class model and that operations for a class
should not traverse associations that are not directly connected to it. We have violated this prin-
ciple here to simplify our answers. A more robust answer would define intermediate operations
to avoid these lengthy traversals.]

a.Find all the members of a given team.

Team::retrieveTeamMembers ()
returns set of competitors

return self.competitor;
c.Find the net score of a competitor for a given figure at a given meet. There are several ways to

answer this question, one of which is listed below.

Competitor::findNetScore (figure, meet)
returns netScore

event:= meet.event intersect figure.event;
/* the above code should return exactly one */
/* event (otherwise there is an implementation */
/* error). This is a constraint implicit in the */
/* problem statement that is not expressed in */
/* the class model. */

trial := event.trial intersect self.trial;
if trial == NIL then return ERROR
else return trial.netScore;
end if

e.Find the average score of a competitor over all figures in a given meet.

Competitor::findAverage (meet) returns averageScore
trials:= meet.event.trial intersect

self.trial;
if trials == NIL then return ERROR
else

compute average as in answer (d)
return average;

end if
g.Find the set of all individuals who competed in any events in a given season.

Season::findCompetitorsForAnyEvent ()
returns set of competitors

return self.meet.event.trial.competitor;

12.14 The revised diagrams are shown in Figure A12.7–Figure A12.10. Figure A12.7 is a better mod-
el than the ternary because dateTime is really an attribute. Figure A12.8 is also better than the
ternary because UniversityClass is likely to be a class with attributes, operations, and other re-
lationships. The third ternary is not atomic because the combination of a Seat and a Concert
determine the Person. The fourth ternary also is not atomic; this one can be restated as two bi-
nary associations.

13.14 The application manages data for competitive meets in a swimming league. The system stores
swimming scores that judges award and computes various summary statistics.

13.15 Actors are competitor, scorekeeper, judge, and team.

458 Selected Answers

13.16 Here are definitions for the use cases. Figure A13.12 shows a use case diagram.

■ Register child. Add a new child to the scoring system and record the name, age, address,
and team name. Assign the child a number.

■ Schedule meet. Assign competitors to figures and determine their starting times. Assign
scorekeepers and judges to stations.

■ Schedule season. Determine the meets that comprise a season. For each meet, determine
the date, the figures that will be performed, and the competing teams.

■ Score figure. A scorekeeper observes a competitor’s performance of a figure and assigns
what he/she considers to be an appropriate raw score.

■ Judge figure. A judge receives the scorekeepers’ raw scores for a competitor’s perfor-
mance of a figure and determines the net score.

Doctor Patient

Figure A12.7 Class diagram for appointments

*1 * 1Appointment

dateTime

Student UniversityClass University

Professor

Figure A12.8 Class diagram for university classes

* * * 1

*
1

Seat Concert

Person

Figure A12.9 Class diagram for reservations

* *

*
0..1

Edge Vertex
To

From

Figure A12.10 Class diagram for directed graphs

*

*

1

1

Selected Answers 459

■ Compute statistics. The system computes relevant summary information, such as top in-
dividual score for a figure and total team score for a meet.

13.21 Figure A13.14 shows a partial shopping list of operations.

14.6 Figure A14.1 shows one possible partitioning.

14.7 A single program provides faster detection and correction of errors and eliminates the need to
implement an interface between two programs. With a single program, any errors that the sys-
tem detects in the process of converting the class diagram to a database schema can be quickly
communicated to the user for correction. Also, the editing and the conversion portions of the
program can share the same data, eliminating the need for an interface such as a file to transfer
the class diagram from one program to another.

Splitting the functionality into two programs reduces memory requirements and decouples
program development. The total memory requirement of a single program would be approxi-
mately equal to the sum of the requirements of two separate programs. Since both programs
are likely to use a great deal of memory, performance problems could arise if they were com-
bined. Using two separate programs also simplifies program development. The two programs
can be developed independently, so that changes made in one are less likely to impact the oth-
er. Also, two programs are easier to debug than one monolithic program. If the interface be-
tween the two programs is well defined, problems in the overall system can be quickly identi-
fied within one program or the other.

Another advantage of splitting the system into two programs is greater flexibility. The ed-
itor can be used with other back ends, such as generating language code declarations. The re-
lational database schema generator can be adapted to other graphical front ends.

14.10 Here is an evaluation of each solution.

a.Do not worry about it at all. Reset all data every time the system is turned on. This is the
cheapest, simplest approach. It is relatively easy to program, since all that is needed is an ini-

Figure A13.12 Use case diagram for the swimming league scoring system

register child

Swimming league scoring system

Competitor

Scorekeeper

schedule meet

schedule season

score figure

judge figure

compute statistics

Team

Judge

460 Selected Answers

tialization routine on power-up to allow the user to enter parameters. However, this approach
cannot be taken for systems that must provide continuous service or that must not lose data dur-
ing power loss.

Figure A13.14 Partial class diagram for a scoring system including operations

Scorekeeper

name

Trial

netScore

Event

startingTime

Station

location

Team

name

Season

startingDate
endingDate

Meet

date
location

Figure

figureTitle
difficultyFactor
description

Competitor

name
age
address
telephoneNumber

League

rawScore

*1 1 * * *

Judge

name

**

*1

*

*

1

1

*

*
*

1

*

1

1

*

*

1

*

*

scheduleMeet registerCompetitor
scheduleEvent

verifyCompetitors

computeMeetAverage
computeSeasonAverage

printMeetScores
computeMeetAverage
computeSeasonAverage

computeNetScore

user interface file interfaceconstruct expression

command processing

line semantics

line syntax

apply
operation substitute rationalize evaluate

save load

operating system

Figure A14.1 Block diagram for an interactive polynomial symbolic manipulation system

work work

Selected Answers 461

c.Keep critical information on a magnetic disk drive. Periodically make full and/or incre-
mental copies on magnetic tape. This approach is moderately expensive and bulky. In the
event of a power failure, the system stops running. An operating system is required to cope
with the disk and tape drive. An operator is required to manage the tapes, which would pre-
clude applications where unattended operation is required.

e.Use a special memory component. This approach is relatively cheap and is automatic. How-
ever, the system cannot run when power is off. Some restrictions may apply, such as a limit on
the number of times data can be saved or on the amount of data that can be saved. A program
may be required to save important parameters as power is failing.

14.11a.Four-function pocket calculator. Do not worry about permanent data storage at all. All of the
other options are too expensive to consider. This type of calculator sells for a few dollars and
is typically used to balance checkbooks. Memory requirements are on the order of 10 bytes.

c.System clock for a personal computer. Only a few bytes are required, but the clock must con-
tinue to run with the main power off. Battery backup is an inexpensive solution. Clock circuits
can be designed that will run for 5 years from a battery.

e.Digital control and thermal protection unit for a motor. On the order of 10 to 100 bytes are
needed. This application is sensitive to price. An uninterruptable power supply is too expen-
sive to consider. Tape and disk drives are too fragile for the harsh environment of the applica-
tion. Use a combination of switches, special memory components, and battery backup. Switch-
es are a good way to enter parameters, since an interface is required anyway. Special memory
components can store computed data. A battery can be used to continue operation with power
removed but presents a maintenance problem in this application. We would question the last
requirement, seeking alternatives such as assuming that the motor is hot when it is first turned
on or using a sensor to measure the temperature of the motor.

14.12a.A description of the diagram, ignoring tabs, spaces, and line feeds, is:

(DIAGRAM
(CLASS

(NAME “Polygon”))
(CLASS

(NAME “Point”)
(ATTRIBUTE “x”)
(ATTRIBUTE “y”))

(ASSOCIATION
(END (NAME “Polygon”) ONE)
(END (NAME “Point”) MANY)))

14.13 The hardware approach is fastest, but incurs the cost of the hardware. The software approach
is cheapest and most flexible, but may not be fast enough. Use the software approach whenever
it is fast enough. General-purpose systems favor the software approach, because of its flexibil-
ity. Special-purpose systems can usually integrate the added circuitry with other hardware.

Actually, there is another approach, firmware, that may be used in hardware architectures.
Typically, in this approach a hardware controller calculates the CRC under the direction of a
microcoded program, which is stored in a permanent memory that is not visible externally. We
will count this approach as hardware.

a.Floppy disk controller. Use a hardware approach. Flexibility is not needed, since a floppy
disk controller is a special-purpose system. Speed is needed, because of the high data rate.

462 Selected Answers

c.Memory board in the space shuttle. Use hardware to check memory. This is an example of
a specific application, where the function can probably be integrated with the circuitry in the
memory chips. The data rate is very high.

e.Validation of an account number. Use a software approach. The data rate is very low. (The
system handling the account number is probably running on a general-purpose computer.)

15.6 Figure A15.1 enforces a constraint that is missing in Figure E15.1: Each BoundingBox corre-
sponds to exactly one Ellipse or Rectangle. One measure of the quality of an class model is
how well its structure captures constraints.

We have also shown BoundingBox as a derived object, because it could be computable from
the parameters of the graphic figure and would not supply additional information.

15.9 The derived association in Figure A15.3 supports direct traversal from Page to Line. Derived
entities have a trade-off—they speed execution of certain queries but incur an update cost to
keep the derived data consistent with changes in the base data. The Page_Line association is
the composition of the Page_Column and Column_Line associations.

15.13 The code listed below sketches out a solution. This code lacks internal assertions that would
normally be included to check for correctness. For example, error code should be included to
handle the case where the end is a subclass and the relationship is not generalization. In code
that interacts with users or external data sources, it is usually a good idea to add an error check
as an else clause for conditionals that “must be true.”

traceInheritancePath (class1, class2): Path
{

path := new Path;
// try to find a path from class1 as descendant of class2

classx := class1;
while classx is not null do

add classx to front of path;
if classx = class2 then return path;
classx := classx.getSuperclass();

Ellipse Rectangle

/BoundingBox

Figure A15.1 Revised class diagram for a bounding box

GraphicsPrimitive
1 1

Page

Figure A15.3 A revised newspaper model that can directly determine the page for a line

Column
1 * Line

1 *

/ Page_Line

1 *

Selected Answers 463

// didn’t find a path from class1 up to class2
// try to find a path from class2 as descendant of class 1

path.clear();
classx := class2;
while classx is not null do

add classx to front of path;
if classx = class1 then return path;
classx := classx.getSuperclass();

// the two classes are not directly related
// return an empty path
path.clear();
return path;

}

Class::getSuperclass (): Class
{

for each end in self.connection do:
if the end is a Subclass then:

relationship := end.relationship;
if relationship is a Generalization then:

otherEnds := relationship.end;
for each otherEnd in otherEnds do:

if otherEnd is a Superclass then:
return otherEnd.class

return null;
}

15.16 Figure A15.5 shows the revised model. Political party membership is not an inherent property
of a voter but a changeable association. The revised model better represents voters with no par-
ty affiliation and permits changes in party membership. If voters could belong to more than
one party, then the multiplicity could easily be changed. Parties are instances, not subclasses,
of class PoliticalParty and need not be explicitly listed in the model; new parties can be added
without changing the model and attributes can be attached to parties.

15.18 The left model in Figure A15.6 shows an index on points using a doubly qualified association.
The association is sorted first on the x qualifier and then on the y qualifier. Because the index
is an optimization, it contains redundant information also stored in the Point objects.

PoliticalPartyVoter
member registeredIn

Figure A15.5 A revised model that reifies political party

* 0..1

Point
Collection

Point
Collection

Point

x
y

Strip

Point

x
y

x

{sorted}

y x

{sorted}

y

{sorted}

Figure A15.6 Models for sorted collections of points

*1

Doubly qualified association Singly qualified association

1 0..1 1 *

464 Selected Answers

The right model shows the same diagram using singly qualified associations. We intro-
duced a dummy class Strip to represent all points having a given x-coordinate. The right model
would be easier to implement on most systems, because a data structure for a single sort key
is more likely to be available in a class library. The actual implementation could use B-trees,
linked lists, or arrays to represent the association.

The code listed below specifies search, add, and delete methods.
PointCollection::search (region: Rectangle): Set of Point
{

make a new empty set of points;
scan the x values in the association until x ≥ region.xmin;
while the x qualifier ≤ region.xmax do:

scan the y values for the x value until y ≥ region.ymin;
while the y qualifier ≤ region.ymax do:

add (x,y) to the set of points;
advance to the next y value;

advance to the next x value;
return the set of points;

}

PointCollection::add (point: Point)
{

scan the x values in the association until x ≥ point.x;
if x = point.x then

scan the y values for the x value until y ≥ point.y
insert the point into the association at the current

location;
}

PointCollection::delete (point: Point)
{

scan the x values in the association until x ≥ point.x;
if x = point.x then

scan the y values for the x value until y ≥ point.y
if y = point.y then

for each collection point with the current x,y value
if collection point = point

then delete it and return
report point not found error and return

}
Note that the scan operation should be implemented by a binary search to achieve logarithmic
rather than linear times. A scan falls through to the next statement if it runs out of values.

17.2 An arrow indicates that the association is implemented in the given direction.

■ Text <–> Box. The user can edit text and the box must resize, so there should be a pointer
from text to box. Text is allowed only in boxes, so we presume that a user may grab a box
and move it, causing the enclosed text to also move. So there should be a pointer from box
to text.

■ Connection <–> Box. A box can be dragged and move its connections, so there must be
pointers from box to connections. Similarly, a link can be dragged and move its connections
to boxes, so there must also be a pointer from connection to box. There is no obvious or-
dering.

■ Connection <–> Link. Same explanation as previous bullet.

Selected Answers 465

■ Collection –> ordered Box. Given a collection, we must be able to find the boxes. There
does not seem to be a need to traverse the other way. There likely is an ordering of boxes,
regarding their foreground / background hierarchy for visibility.

■ Collection –> ordered Link. Same explanation as previous bullet.

18.6a. Here is Java code to implement a bidirectional, one-to-one association between classes A and
B, using a pointer (reference variable) in each class. Each class maintains its own association
end and calls on the associated class to maintain the other side. Each class contains an internal
attribute, _updateInProgress, that breaks the potential infinite recursion. We show only the at-
tributes and methods needed to implement the association.

We demonstrate class A; class B would contain the same code, but classes A and B and ob-
jects a and b would be substituted with B, A, b, and a, respectively. Thus the field private B b
would become private A a, and the method A.SetB(B newB) would become B.SetA(A newA).
Note that we have minimized error handling as well as omitted boolean or enumerated returns
and proper exception handling.

This code assumes the most rigid of access control. Classes are presumed to exist in sepa-
rate packages and so can access only each other's public elements.

// in Java
// class A with a one-to-one association to class B

import BPackage.*;

public class A {
private B b = null;
private boolean _updateInProgress = false;

// Check if A has a B
public boolean hasB () {

return b != null;
}

// Given an A, bind newB to it with a one-to-one association.
public void setB (B newB) {

if (newB == null) return; // don't "associate" to null;
// caller should call RemoveB instead!

if (_updateInProgress) return; // break mutual recursion
if (b == newB) return; // this A already bound to newB
if (newB.hasA()) return;

// newB must lack an association
if (hasB()) removeB();

// remove current b, if any; only 1:1 allowed

_updateInProgress = true;
newB.setA(this);

// request newB to update its end of association
b = newB; // update this end of association
_updateInProgress = false;

466 Selected Answers

}

// Remove the one B that may be associated.
// Note that a 1-to-1 assoc does not need a remove argument.
public void removeB() {

if (hasB() == false) return; // no B to remove!
if (_updateInProgress) return; // break mutual recursion

_updateInProgress = true;
b.removeA();

// request B to remove its end of association
b = null; // remove this end of association
_updateInProgress = false;

}
};

Often, classes that mention one another in their interfaces are packaged together and may
therefore have more extensive and privileged knowledge of one another. In such cases, it may
reasonable for one side or another of an association to take responsibility for maintaining both
association ends. This can provide optimization, centralize update code, and avoid the need for
devices (see _updateInProgress in code) to terminate recursion. However, it may imply an in-
creased level of code dependency among associated classes.

This is not necessarily “bad” or “disencapsulating.” A logical dependency already exists,
expressed in the interface(s). The ability to restrict operations to selected callers may result in
safer, more accurate, more encapsulated (from the public view) code, even as it exposes select-
ed internals to an associated class. Consider the case where the ability to trigger termination of
a link should be restricted to the linked object itself. In Java, the publicly available remove()
methods would instead be given default package access, and by packaging A and B together,
invocation of those methods would be reserved for call only across the link and not by those
outside the package.

Alternatively, A and B might selectively expose their pointers and allow one end of the as-
sociation to perform all update activities. We offer the essentials of such a C++ solution.

//in C++
class B; // forward declaration

class A {

friend class B; // or per function if B has been declared:
// friend void B::setA(A&);
// friend void B::removeA();

B* b;

void removeB(); // B can ask A to remove B; others cannot

public:

bool hasB () { return b != 0; }

Selected Answers 467

void setB (B& newB);
// or use pointer parameter to allow null b

};

void A::setB(B& newB)
{

if (b == &newB) return; // this A already bound to newB
if (newB.hasA()) return; // newB must lack an association
if (hasB()) removeB();

// remove current b, if any; only 1:1 allowed

b = &newB; // update this end of association
b->a = this;

}

void A::removeB()
{

if (!hasB()) return; // no B to remove!
if (b->a != this) return; // whoops -- not bidirectional!

b->a = 0; // remove old b's pointer to this A
b = 0; // remove this end of association

}

19.13 We infer that a Route has 2 Cities from the problem statement. We could not deduce that from
the SQL code alone.

19.14 SQL code to determine distance between two cities for Figure E19.6.

SELECT distance
FROM Route R, City C1, City C2,
 City_Distance CD1, City_Distance CD2
WHERE C1.city_ID = CD1.city_ID AND

CD1.route_ID = R.route_ID AND
R.route_ID = CD2.route_ID AND

 CD2.city_ID = C2.city_ID AND
 C1.city_name = :aCityName1 AND
 C2.city_name = :aCityName2;

19.15 Here is the class diagram.

19.16 SQL code to determine distance between two cities for Figure E19.7. We don’t know which
name is 1 and which name is 2, so the SQL code allows for either possibility.

Figure A19.12 Class model for Figure E19.6

CityDistance

2City

cityName

Route

distance

*

468 Selected Answers

SELECT distance
FROM City C1, City C2, City_Distance CD
WHERE C1.city_ID = CD.city1_ID AND
 CD.city2_ID = C2.city_ID AND

((C1.cityName = :aCityName1 AND
C2.cityName = :aCityName2) OR

(C1.cityName = :aCityName2 AND
C2.cityName = :aCityName1));

19.17 We make the following observations about Figure A19.12 and Figure A19.13.

■ Figure A19.12 has an additional table. Figure A19.12 could store multiple routes between
the same cities with different distances. Given the lack of explanation about route in the
problem statement (is it a series of roads with different distances or is it the distance by
air?), this may or may not be a drawback.

■ Figure A19.13 is awkward because of the symmetry between city1 and city2. Either data
must be stored twice with waste of storage, update time, and possible consistency problems,
or special application logic must enforce an arbitrary constraint.

We need to know more about the requirements to choose between the models.

20.3a. This is an example of poor programming style. The assumption that the arguments are legal
and the functions called are well behaved will cause trouble during program test and integra-
tion.

The following statements will cause the program to crash if the argument to strlen is zero:

rootLength = strlen(rootName);
suffixLength = strlen(suffix);

The following statement will assign zero to sheetName if the program runs out of memory,
causing a program crash during the call to strcpy later in the function:

sheetName = malloc(rootLength + suffixLength + 1);

The following statements will cause the program to crash if any of the arguments are zero:

sheetName = strcpy(sheetName, rootName);
sheetName = strcat(sheetName, suffix);

If sheetType is invalid, the switch statement will fall through, leaving sheet without an assigned
value. Also, it is possible that the call to vertSheetNew or the call to horizSheetNew could re-
turn zero for some reason. Either condition would make it possible for the following statement
to crash:

sheet->name = sheetName;

distance

Figure A19.13 Class model for Figure E19.7

CityDistance

City

cityName

*

*

469

Index

A
abstract class 69–70, 81, 163, 326

convention for 70
notation for 69

abstract operation 69, 326
notation for 70

abstract signal 114, 125, 163
abstract use case 149, 163
abstraction 16, 22, 76, 93, 199–200, 405, 415

exercise 212–213
access control 341

in C++ 315, 322–325
in Java 317, 322–325

accidents of software 3
activation 152
active object 152
active value 283
activity 99–103, 141–143

entry 100–101, 103, 113
exit 100–101, 103, 113
notation for 99, 140, 142

activity diagram 140–144, 154–157, 223
notation for 140, 155, 156
practical tips 143–144

activity token 143
actor 131–132, 134–136

finding 217
notation for 134–135

Ada 288
aggregation 64, 66–69, 163–164, 191

and concurrency 114–115
exercise 83, 84
implementing

for a programming language 310
for a relational database 354

notation for 67
vs. association 67
vs. composition 67–68

agile programming 311
algorithm, design of 274–278
allocation

of subsystems to processors 248–250
analysis 4, 167–169, 181–215, 216–239, 299

application analysis 168–169, 216–239
building application class model 224–227
building application interaction model 216–

224
building application state model 227–233
building domain class model 183–201
building domain interaction model 204
building domain state model 201–204
choosing packages 201
data dictionary 187
domain analysis 168, 181–215
finding associations 187–192
finding attributes 192–194
finding classes 183–186
iteration of 196–199, 204–206
shifting abstraction 199–200
testing access paths 196

470 Index

using generalization 194–196
ancestor class 38
antisymmetry 66, 67
a-part-of. See aggregation
API 367
application model 4, 168–169

construction of 216–234
application programming interface. See API
architecture 5, 167, 169, 240, 244–246

canonical architectures 256–262
association 27–36, 66

as a class 33–36
convention for 28
directionality 28
exercise 84
finding 187–192
implementing 306–310, 341

for a relational database 353–354, 360–
361

in C++ 329–331
in Java 329–331

importance of 28, 50
meaning of 30
n-ary 64–66, 81, 83, 189–190, 310
notation for 28
qualified 36, 45, 48, 64, 78, 191, 193, 310
ternary 64–66, 81, 83, 189–190
traversal of 31, 64, 65
vs. aggregation 67

association class 33–36, 78, 193–194
exercise 55, 59
implementing 310

for a relational database 353
in C++ 330
in Java 330

notation for 33
traversal of 45
vs. class 36

association end 31–32, 48, 63–64
bag 33, 51, 310
changeability 64
multiplicity 29–31, 48, 64, 78, 191
navigability 64
notation for 31, 65
ordered 32, 64, 78, 310
sequence 33, 51, 310
uniqueness of name 32
visibility 64

attribute 2, 23–24
convention for 24
finding 192–194
missing compartment 26
multiplicity 61, 78
notation for 24, 26, 61
scope 62

autoboxing (in Java) 316

B
bag 33, 45, 48, 51, 310
batch transformation 257
boundary class 226, 289, 421
boundary condition 255
branch (in activity diagram) 142

notation for 142

C
C 288
C++ 62, 76, 288, 314–347

access control 315, 322–325
constructor 332–334
destructor 335–337
friend 323, 341
implementing

association 329–331
association class 330
class 322
data type 318–322
enumeration 320–322
generalization 325–329

namespace 315, 324
practical tips 341–342

candidate key 83, 350
cardinality 30, 61
change event 92

vs. guard condition 95
notation for 92

changeability 64
class 2, 22

abstract 69–70, 81
ancestor 38
concrete 69–70, 81
convention for 23
descendant 38
finding 183–186
implementing

Index 471

for a relational database 352–353
in C++ 322
in Java 322

notation for 23, 26
class descriptor 75
class design 5, 167, 169, 270–297, 300
class generalization 37–41, 163

vs. enumeration 61
class icon 80, 81
class library 242–243
class model 6, 17, 19, 21–59, 60–87, 161

construction of 183–201, 224–227
vs. Entity-Relationship (ER) 50
navigation 43–47
practical tips 48–49, 81, 197–198
reverse engineering 418–419
vs. other models 123–124, 162–164, 224,

227, 233
classification 2
classifier 126, 163
client-server architecture 244
CLOS 25
closed architecture 245
command 225
Common Lisp Object System. See CLOS
completion transition 102
composite state 112
composition 67–68, 73, 163–164

implementing 310
for a relational database 354

notation for 68
vs. aggregation 67–68

concrete class 69–70, 81
convention for 70
notation for 69

concrete signal 125
concrete use case 149
concurrency 90, 114–118, 124, 143, 246–248,

254, 311, 349
notation for 115, 143
synchronization 116

condition. See guard condition
constraint 77–78, 81

exercise 83
in a relational database 350
on link 29
notation for 72, 78
on generalization set 77

on link 78
on object 77

constructor 316, 332–334, 341
container class 276
continuous transformation 258
control 17, 253–255

concurrent 254
event-driven 254
implementation of 226–227
merge 117, 143
procedure-driven 253–254
split 117, 143

controller 226–227
convention for

abstract class 70
association 28
attribute 24
class 23
concrete class 70
generalization 37
link 28
object 23
operation 25
package 80, 81
propagation 69
scope 62
state 92
state diagram 99
transition 95
value 24

D
data conversion 368–369, 372
data dictionary 187, 405, 418
data flow diagram 19
data type

enumeration 60–61, 81, 194
implementing

in C++ 318–322
in Java 318–322

database 24, 250–252, 348–379
See also DBMS
object-oriented 62, 370–371, 372
relational 349–370
vs. files 251

database layer 368
database management system. See DBMS

472 Index

DBMS 76, 116, 260–261, 348–349
See also database
choosing a product 351

delegation 72
as a substitute for multiple inheritance 73–75
to avoid improper inheritance 287–288, 328,

341, 384
Demeter, law of 289, 292, 370, 385
denormalization 351
deployment 167, 170
derived entity 79–80, 81, 186, 190, 340–341

exercise 86
for design optimization 281–283
notation for 79

descendant 38
destructor 316, 335–337, 342
development life cycle 170–171, 298–299

iterative 171, 395–402
rapid prototyping 396–397
waterfall 170–171, 395–396

development stage 167–170
analysis 4, 167–169, 181–215, 216–239, 299
class design 5, 169, 270–297, 300
implementation 5, 169, 303–313
system conception 4, 168, 173–179, 299
system design 5, 169, 240–269, 300

DFD. See data flow diagram
diagram layout 48
directed graph

exercise 57, 374–375
direction (of an argument) 26
directionality (of association) 28
distribution 62, 140, 311, 349
do-activity 100

notation for 100
documentation 49, 388
domain model 4, 168

construction of 183–204
dynamic model 19
dynamic simulation 259–260

E
effect 99
encapsulation 6, 28, 369–370, 372, 384
enterprise model 404
Entity-Relationship (ER) model 50
entry activity 100–101, 103, 113

notation for 101
enumeration 60–61, 194, 341

implementing
for a relational database 361, 372
in C++ 320–322
in Java 320–322

notation for 61
vs. generalization 61, 81, 195

essence of software 3, 8
event 90–92

finding 203, 219, 220–222, 229
notation for 99

event-driven control 254
exit activity 100–101, 103, 113

notation for 101
extend (for use case) 148, 151

notation for 148
extensibility 384–385

improved by use of inheritance 286
extent 62, 81

F
feature 2, 25, 62
file 250–252
final (in Java) 327
finding

associations 187–192
attributes 192–194
classes 183–186
generalizations 194–196

finite state machine. See state diagram
firing of transition 94
flowchart 140
focus of control 152
folding association attributes into a class 34, 48
foreign key 350, 360–361, 372

indexing 361–362
Fortran 288
fourth-generation language (4GL) 367
framework 243–244
friend (in C++) 315, 323, 341
functional model 19

G
garbage collection 317, 336, 337
generalization 7, 48, 163

See also inheritance

Index 473

class generalization 37–41
convention for 37
exercise 84
finding 194–196
implementing

for a relational database 356–358, 360,
362

in C++ 325–329
in Java 325–329

notation for 37
signal generalization 114
use case generalization 149–150
uses of 40
vs. enumeration 61, 195

generalization set name 39
global resource 252–253
guard condition 95, 103

vs. change event 95
notation for 95

guardian object 252
guidelines for programming 380–391

H
hardware 248–250
higraph 126

I
IDEF1X (database notation) 50
identity 1, 22, 24, 51, 73, 75, 193

exercise 12, 57–58
for a relational database 358–359

implementation 5, 167, 169
for a programming language 303–313, 314–

347
for a relational database 348–379
vs. policy 289–290, 381–382

include (for use case) 147–148, 150, 151
notation for 147

index 281–282, 361–362, 372
information hiding 6, 288–289, 369–370, 372, 384
inheritance 2, 7, 37–41, 48

See also generalization
abstracting out common behavior 285–287
misuse for implementation 41, 287–288, 384
multiple inheritance 70–75, 196
notation for 37
rearranging classes and operations 285

instance 2, 22
integration testing 311
interaction model 6, 18, 19, 131–146, 147–160,

162, 311
construction of 204, 216–224
reverse engineering 419–420
vs. other models 162–164, 224, 227, 233

interactive interface 259
interface (in Java) 316, 326, 341
is-a. See generalization
iterative development 171, 196–199, 395–402

J
Java 62, 76, 288, 314–347

access control 317, 322–325
constructor 332–334
implementing

association 329–331
association class 330
class 322
data type 318–322
enumeration 320–322
generalization 325–329

interface 316, 326, 341
package 316–317, 322–323, 323–324, 341
practical tips 341–342

K
key

candidate 350
foreign 350, 372
primary 350

L
law of Demeter 289, 292, 370, 385
layer 245–246
legacy data 368–369
library. See class library
lifeline 137, 152
link 27–36

convention for 28
creation 337–339
destruction 339–340
notation for 28

Lisp 76
lock 252

474 Index

M
maintenance 167, 170, 422
memory management 315, 317, 332–340
mentoring 410
merging control 117, 143

notation for 118, 143
metaclass 76
metadata 75–76, 368
metamodel 404

exercise 85, 86, 130
method 2, 25, 62
model 15–18

class 6, 17, 19, 21–59, 60–87, 161
interaction 6, 18, 19, 131–146, 147–160, 162,

311
relationship among 18, 123–124, 162–164
state 6, 17, 19, 90–109, 110–130, 161–162,

311
modeling effort 413
modeling personnel 409–410
modeling pitfall 404–406
modeling session 406–408
multiple classification 72, 73
multiple inheritance 70–75, 81, 196, 341

exercise 85, 86
implementing

for a relational database 358
in C++ 328
in Java 326

kinds of 71–72
notation for 72
workarounds 73–75

multiplicity 29–31, 48, 64, 78, 191
for an attribute 61, 78
notation for 29
vs. cardinality 30

N
name, importance of 48, 387
namespace (in C++) 315, 324
n-ary association 63, 64–66, 81, 83, 189–190, 310

implementing
for a programming language 66, 329
for a relational database 353

notation for 65
navigability 64
nested state 111–113, 163

notation for 112
nested state diagram 110–111

notation for 111
new 332
normal form 351, 372
notation for

abstract class 69
abstract operation 70
activity 99, 101, 140, 142
activity diagram 140, 155, 156
actor 134–135
aggregation 67
association 28
association class 33
association end 31
attribute 24, 26, 61
branch 142
change event 92
class 23, 26
composition 68
concrete class 69
concurrency 115, 143
constraint 72, 78
derived entity 79
do-activity 100
enumeration 61
event 99
generalization 37
guard condition 95
inheritance 37
link 28
merging control 118, 143
multiple inheritance 72
multiplicity 29
n-ary association 65
nested state 112
nested state diagram 111
object 23
operation 25, 26
package 80
qualified association 36
qualifier 36
scope 62
sequence diagram 152, 153, 154
signal 91
signal generalization 114
splitting control 117, 143
state 92, 97

Index 475

state diagram 98
ternary association 65
time event 92
transition 95
use case 134–135
use case diagram 134–135
use case extension 148
use case generalization 149
use case inclusion 147
value 24
visibility 63

null 46, 61, 349

O
object 1, 21–22

convention for 23
creation 332–334
destruction 335–337
notation for 23

Object Constraint Language. See OCL
object diagram 23
object flow 156–157
object identity

for a relational database 358–359, 372
in C++ 320
in Java 320

Object Management Group. See OMG
Object Modeling Technique. See OMT
object-oriented, meaning of 1
object-oriented database 62, 370–371, 372
OCL

exercise 346
OCL (Object Constraint Language) 44–47, 51, 65

exercise 59, 208–209, 210–211, 379
OMG (Object Management Group) 9
OMT (Object Modeling Technique) 9, 19, 50
OO-DBMS. See object-oriented database
open architecture 245
operation 2, 25

abstract 69
assigning to a class 276–278
convention for 25
finding 233–234
missing compartment 26
notation for 25, 26
query 79
scope 62

shopping-list operation 234, 236, 276
optimization of design 280–283
ordering 32, 33, 64, 78, 310
overloading (of methods) 315
override 40–41, 49

P
package 80–81, 81, 290, 388

choosing during analysis 201
convention for 80, 81
Java 316–317, 322–323, 323–324, 341
notation for 80
visibility 62, 317

partition 245–246
part-whole relationship. See aggregation
passive object 152
pattern 200, 206, 243–244, 284, 411
peer-to-peer architecture 244
performance 241
Petri net 105
pointer 28, 48

exercise 57
policy vs. implementation 289–290, 381–382
polymorphism 2, 7, 25, 40, 315
postprocessor 367
practical tips

activity diagram 143–144
C++ 341–342
class model 48–49, 81, 197–198
Java 341–342
relational database 371–372
sequence diagram 140, 154
state model 103, 124–125
use case diagram 135–136, 150–151

preprocessor 367
primary key 350
private 62, 315, 317, 341
procedure-driven control 253–254
product assessment 404
programming language 24, 62, 72, 76, 116

Ada 288
C 288
C++ 76, 288, 314–347
CLOS 25
coupling to a relational database 366–368,

372
Fortran 288

476 Index

Java 76, 288, 314–347
Lisp 76
Smalltalk 76

programming style 380–391
programming-in-the-large 387–390
propagation 67, 68–69

convention for 69
protected 62, 315, 317, 324
public 62, 315, 317

Q
qualified association 36, 48, 64, 78, 191, 193, 310

implementing
for a programming language 329
for a relational database 354

notation for 36
traversal of 45

qualifier 36, 64, 193
notation for 36

query operation 79
query optimization 369–370, 372

R
race condition 102
rapid prototyping 396–397
RDBMS. See relational database
real-time system 260
refactoring 280, 383
reference 28, 48

exercise 57
reference (in C++) 315
reification 76, 284

exercise 86, 130
relational database 349–370

coupling to a programming language 366–
368, 372

data conversion 368–369
implementing

association 353–354, 360–361
class 352–353
generalization 356–358, 360
identity 358–359

practical tips 371–372
relational DBMS. See relational database
requirements 176–178, 205–206
responsibility 273–274
reuse 40, 71, 201, 242–244, 348, 380–384

reverse engineering 416–421
review 49, 311, 405–406, 413, 415
risk (of development) 400–401
robustness 385–387

S
scenario 136–137, 219–220, 311
schema 348
scope 62, 81, 83

convention for 62
notation for 62

script file 367
sequence 33, 48, 51, 310
sequence diagram 137–138, 152–154, 222

notation for 152, 153, 154
practical tips 140, 154

service 244
shopping-list operation 234, 236, 276
signal 91

abstract 114, 125
concrete 125
notation for 91
sending 102–103

signal event 91
signal generalization 114, 163

notation for 114
signature 25, 40, 63
simulation, dynamic 259–260
slicing 420
Smalltalk 76
specialization 40
splitting control 117, 143

notation for 117, 143
SQL code

vs. programming code 370
SQL language 349–370
state 92–94

composite 112
convention for 92
final 97
finding 202
initial 97
nested 111–113
notation for 92, 97

statechart 126
state diagram 76, 95–103

construction of 229–230

Index 477

convention for 99
nested 110–111
notation for 98
one-shot vs. continuous 96

state model 6, 17, 19, 90–109, 110–130, 161–162,
311

construction of 201–204, 227–233
practical tips 103, 124–125
reverse engineering 420
vs. other models 123–124, 162–164, 233

static 81, 334–335
stored procedure 367
subclass 2, 37
submachine 111
substate 118
subsystem 244–246
superclass 2, 37
swimlane 155
synchronization 116
system architecture. See architecture
system boundary 217
system conception 4, 167, 168, 173–179, 299
system design 5, 167, 169, 240–269, 300
system testing 311–312

T
table (in RDBMS) 349–350
ternary association 63, 64–66, 81, 83, 189–190

exercise 211
implementing

for a programming language 329
for a relational database 353

notation for 65
promotion to a class 66

testing 5, 167, 169–170, 310–312, 386–387, 398
of class model 196

this 331
thread of control 248
time event 92

notation for 92
tool (for software development) 411–413
training 167, 170, 410
transaction manager 260–261
transformation 303–306, 312
transition 94–95

completion 102
convention for 95

notation for 95
transitive closure 66
transitivity 66
traversal of association 64, 65
trigger 68

U
UML 9, 10, 11, 19, 50, 51, 83

UML2 vs. UML1 33, 106, 126, 163
undirected graph

exercise 56–57, 376–377
Unified Modeling Language. See UML
unit testing 311
use case 6, 132–136, 272–274, 311, 397

finding 218–219
notation for 134–135

use case diagram 131–136, 147–151
notation for 134–135
practical tips 135–136, 150–151

use case extension 148, 151, 223
notation for 148

use case generalization 149–150, 163, 223
notation for 149

use case inclusion 147–148, 150, 151, 223
notation for 147

user interface 259
specification of 225–226

V
value 23–24

convention for 24
difference from object 24
notation for 24

view
for a relational database 362, 372

virtual method (in C++) 315, 327
visibility 62–63, 64, 315, 317, 384–385

notation for 63

W
waterfall development 170–171, 395–396
wrapper 421–422

X
XML 369, 422

This page intentionally left blank

Diagram for inside cover page number 1

Class1 Class2

Association Class:

attribute
 ...

operation
 ...

AssocName

ClassName

Class:

ClassName

attribute
attribute : DataType[attMult]
attribute : DataType[attMult] = defaultValue

operation
operation (arg1:Name1, ...) : ResultType

Association:

Class1 Class2
AssociationName

Multiplicity of Associations:

Class Exactly one

Class Many (zero or more)

Class Optional (zero or one)

Class One or more
1..*

Superclass

Subclass1 Subclass2

Generalization (Inheritance):

Class

Ordered, Bag, Sequence:

{ordered}

Class Model Notation — Basic Concepts

Qualified Association:

Class1 Class2qualifier

 ...

 ...

assocEndNm2assocEndNm1

Object:

objectName:ClassName

objectName:ClassName

attributeName = value
 ...

Link:

object1:Class1 object2:Class2AssociationName

1

0..1

*

*

Class
{bag}

*

Class
{sequence}

*

PackageName

Package: «enumeration»

enumValue1
enumValue2

EnumName

 ...

Enumeration:

...informal text...

Comment:

Diagram for inside cover page number 2

Class Model Notation — Advanced Concepts

Visibility:

Derived Attribute:

Class

/ attribute

Derived Class:

/ ClassName Class1 Class2

Derived Association:

Constraint on Objects:

Constraint on Links:

Class

attrib1
attrib2

{ attrib1 ≥ 0 }

Aggregation:

PartClass1 PartClass2

Ternary Association:

Class1 Class2

Class3

AssociationName

Abstract and Concrete Class:

ConcreteSubclass2ConcreteSubclass1

concreteOperation1 concreteOperation1

AbstractSuperclass

abstractOperation1

/ AssociationName

Composition:

PartClass1 PartClass2

+publicOperation
#protectedOperation

ClassName

-privateOperation
~packageOperation

**
*1

1

1 *
1

AssemblyClass

AssemblyClass

A1

A2

{subset}Class1 Class2* *
*1

concreteOperation2

Subclass

Superclass1 Superclass2

Multiple Inheritance, Disjoint:

Superclass

Class1 Class2

Subclass2Subclass1 Subclass3

{overlapping}

Multiple Inheritance, Overlapping:

concreteOperation3concreteOperation2

Diagram for inside cover page number 3

State Model Notation

Event causes Transition between States:

event (attribs) [condition] / effect

Initial and Final States:

 Activities while in a State:

State
entry / effect1

State1 State2

do / activity
event1 / effect2

Nested State:

Concurrency within an Object:

CompositeState

NestedState1 NestedState2

Substate2

Substate1

Substate4

Substate3

exit / effect4
...

event1

event3

event1

event2

event2

. . .

FinishStart State

CompositeState

Entry and Exit Points:

stateDiagName

event2 / effect3

Substate2

Substate1

Splitting of control:

event0

Substate4

Substate3

Synchronization of control:

event3

event4

event1

event2

CompositeState

Diagram for inside cover page number 4

oper1 (a,b)

result2

createC (x)

oper2 (m, n)

result1

objectC

objectA objectB

Interaction Model Notation

useCase2

useCase1

SubjectName

Actor2

Actor1

useCase3

Use Case Diagram:

Sequence Diagram:

activity1

activity2 activity3

activity5

activity6

activity4

[condition1]

[condition2]

Activity Diagram:

Use Case Relationships:

baseUC includedUC
«include»

baseUC extensionUC
«extend»

childUC2

parentUC

childUC1

Activity Diagram with Swimlanes:

Actor1 Actor2 Actor3

activity1

activity2

activity3

Activity Diagram with Object Flows:

:Class
[state]activity1 activity2

:Classactivity1 activity2

	Cover
	Title Page
	Copyright Page
	Acknowledgements
	Contents
	Preface
	What You Will Find
	Who Should Read This Book?
	Comparison With Other Books
	Changes From the First Edition
	Web Site
	Acknowledgements
	Chapter 1 Introduction
	1.1 What Is Object Orientation?
	1.2 What Is OO Development?
	1.3 OO Themes
	1.4 Evidence for Usefulness of OO Development
	1.5 OO Modeling History
	1.6 Organization of This Book
	Bibliographic Notes
	References
	Exercises

	Part 1: Modeling Concepts
	Chapter 2 Modeling as a Design Technique
	2.1 Modeling
	2.2 Abstraction
	2.3 The Three Models
	2.4 Chapter Summary
	Bibliographic Notes
	Exercises

	Chapter 3 Class Modeling
	3.1 Object and Class Concepts
	3.2 Link and Association Concepts
	3.3 Generalization and Inheritance
	3.4 A Sample Class Model
	3.5 Navigation of Class Models
	3.6 Practical Tips
	3.7 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 4 Advanced Class Modeling
	4.1 Advanced Object and Class Concepts
	4.2 Association Ends
	4.3 N-ary Associations
	4.4 Aggregation
	4.5 Abstract Classes
	4.6 Multiple Inheritance
	4.7 Metadata
	4.8 Reification
	4.9 Constraints
	4.10 Derived Data
	4.11 Packages
	4.12 Practical Tips
	4.13 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 5 State Modeling
	5.1 Events
	5.2 States
	5.3 Transitions and Conditions
	5.4 State Diagrams
	5.5 State Diagram Behavior
	5.6 Practical Tips
	5.7 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 6 Advanced State Modeling
	6.1 Nested State Diagrams
	6.2 Nested States
	6.3 Signal Generalization
	6.4 Concurrency
	6.5 A Sample State Model
	6.6 Relation of Class and State Models
	6.7 Practical Tips
	6.8 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 7 Interaction Modeling
	7.1 Use Case Models
	7.2 Sequence Models
	7.3 Activity Models
	7.4 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 8 Advanced Interaction Modeling
	8.1 Use Case Relationships
	8.2 Procedural Sequence Models
	8.3 Special Constructs for Activity Models
	8.4 Chapter Summary
	References
	Exercises

	Chapter 9 Concepts Summary
	9.1 Class Model
	9.2 State Model
	9.3 Interaction Model
	9.4 Relationship Among the Models

	Part 2: Analysis and Design
	Chapter 10 Process Overview
	10.1 Development Stages
	10.2 Development Life Cycle
	10.3 Chapter Summary
	Bibliographic Notes
	Exercises

	Chapter 11 System Conception
	11.1 Devising a System Concept
	11.2 Elaborating a Concept
	11.3 Preparing a Problem Statement
	11.4 Chapter Summary
	Exercises

	Chapter 12 Domain Analysis
	12.1 Overview of Analysis
	12.2 Domain Class Model
	12.3 Domain State Model
	12.4 Domain Interaction Model
	12.5 Iterating the Analysis
	12.6 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 13 Application Analysis
	13.1 Application Interaction Model
	13.2 Application Class Model
	13.3 Application State Model
	13.4 Adding Operations
	13.5 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 14 System Design
	14.1 Overview of System Design
	14.2 Estimating Performance
	14.3 Making a Reuse Plan
	14.4 Breaking a System into Subsystems
	14.5 Identifying Concurrency
	14.6 Allocation of Subsystems
	14.7 Management of Data Storage
	14.8 Handling Global Resources
	14.9 Choosing a Software Control Strategy
	14.10 Handling Boundary Conditions
	14.11 Setting Trade-off Priorities
	14.12 Common Architectural Styles
	14.13 Architecture of the ATM System
	14.14 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 15 Class Design
	15.1 Overview of Class Design
	15.2 Bridging the Gap
	15.3 Realizing Use Cases
	15.4 Designing Algorithms
	15.5 Recursing Downward
	15.6 Refactoring
	15.7 Design Optimization
	15.8 Reification of Behavior
	15.9 Adjustment of Inheritance
	15.10 Organizing a Class Design
	15.11 ATM Example
	15.12 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 16 Process Summary
	16.1 System Conception
	16.2 Analysis
	16.3 Design

	Part 3: Implementation
	Chapter 17 Implementation Modeling
	17.1 Overview of Implementation
	17.2 Fine-tuning Classes
	17.3 Fine-tuning Generalizations
	17.4 Realizing Associations
	17.5 Testing
	17.6 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 18 OO Languages
	18.1 Introduction
	18.2 Abbreviated ATM Model
	18.3 Implementing Structure
	18.4 Implementing Functionality
	18.5 Practical Tips
	18.6 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 19 Databases
	19.1 Introduction
	19.2 Abbreviated ATM Model
	19.3 Implementing Structure—Basic
	19.4 Implementing Structure—Advanced
	19.5 Implementing Structure for the ATM Example
	19.6 Implementing Functionality
	19.7 Object-Oriented Databases
	19.8 Practical Tips
	19.9 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Chapter 20 Programming Style
	20.1 Object-Oriented Style
	20.2 Reusability
	20.3 Extensibility
	20.4 Robustness
	20.5 Programming-in-the-Large
	20.6 Chapter Summary
	Bibliographic Notes
	References
	Exercises

	Part 4: Software Engineering
	Chapter 21 Iterative Development
	21.1 Overview of Iterative Development
	21.2 Iterative Development vs. Waterfall
	21.3 Iterative Development vs. Rapid Prototyping
	21.4 Iteration Scope
	21.5 Performing an Iteration
	21.6 Planning the Next Iteration
	21.7 Modeling and Iterative Development
	21.8 Identifying Risks
	21.9 Chapter Summary
	Bibliographic Notes
	References

	Chapter 22 Managing Models
	22.1 Overview of Managing Models
	22.2 Kinds of Models
	22.3 Modeling Pitfalls
	22.4 Modeling Sessions
	22.5 Organizing Personnel
	22.6 Learning Techniques
	22.7 Teaching Techniques
	22.8 Tools
	22.9 Estimating Modeling Effort
	22.10 Chapter Summary
	Bibliographic Notes
	References

	Chapter 23 Legacy Systems
	23.1 Reverse Engineering
	23.2 Building the Class Model
	23.3 Building the Interaction Model
	23.4 Building the State Model
	23.5 Reverse Engineering Tips
	23.6 Wrapping
	23.7 Maintenance
	23.8 Chapter Summary
	Bibliographic Notes
	References

	Appendix A: UML Graphical Notation
	Appendix B: Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	Answers to Selected Exercises
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

