
Prof. Hardik A. Doshi
     9978911553
     
hardik.doshi@darshan.ac.in

3140705
Object Oriented 
Programming - I

Unit-1
Introduction to 
Java & 
Elementary 
Programming



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology22

Java Around the World



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology33

What Java is used for?



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology44

What Java is used for?
 Banking: To deal with transaction management.
 Retail: Billing applications that you see in a store/restaurant 

are completely written in Java.
 Information Technology: Java is designed to solve 

implementation dependencies.
 Android: Applications are either written in Java or use Java API.
 Financial services: It is used in server-side applications.
 Stock market: To write algorithms as to which company they 

should invest in.  
 Big Data: Hadoop MapReduce framework is written using Java.
 Scientific and Research Community: To deal with huge 

amount of data.



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology55

History of Java
 James Gosling, Patrick Naughton, Chris Warth, Ed Frank 

and Mike Sheridan (Green Team) at Sun Microsystems, 
Inc. conceived Java in 1991.

 Initially named as Oak language.

Oak JavaRenamed in 1995



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology66

What is Java?

• executes many statements instead of 
sequentially executing it

Concurrent

• supports encapsulation, inheritance and 
polymorphism 

Object Oriented

• follows the logic of “Write once, Run anywhere”

Independent



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology77

Java Buzzwords
Simple: Java inherits C/C++ syntax and many object-
oriented features of C++.

Object Oriented: “Everything is an object” paradigm, 
which possess some state, behavior and all the 
operations are performed using these objects.

Robust:  Java has a strong memory management 
system. It helps in eliminating error as it checks the 
code during compile and runtime.

Multithreaded: Java supports multiple threads of 
execution, including a set of synchronization 
primitives. This makes programming with threads 
much easier.



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology88

Java Buzzwords
Architectural Neutral: Java is platform independent 
which means that any application written on one 
platform can be easily ported to another platform.

Interpreted: Java is compiled to bytecodes, which are 
interpreted by a Java run-time environment. 

High Performance: Java achieves high performance 
through the use of bytecode which can be easily 
translated into native machine code. With the use of 
JIT ( Just-In-Time) compilers, Java enables high 
performance. 



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology99

Java Buzzwords

Dynamic: Java has ability to adapt to an evolving 
environment which supports dynamic memory 
allocation due to which memory wastage is reduced 
and performance of the application is increased.

Distributed: Java provides a feature which helps to 
create distributed applications. Using Remote 
Method Invocation (RMI), a program can invoke a 
method of another program across a network and 
get the output. You can access files by calling the 
methods from any machine on the internet.



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1010

Java’s Magic :  Bytecode
 Bytecode is a highly optimized 

set of instructions designed to 
be executed by the Java Virtual 
Machine(JVM).

 Bytecode makes Java Platform 
independent language.

Source code 
(Program)

Compile
r

Bytecode

JVM
(Windows

)
JVM

(Linux)
JVM 
(Mac)

Machine 
Code

Machine 
Code

.java file

.class file

Machine 
Code



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1111

Components of Java
 Java Virtual Machine (JVM)
 Java Runtime Environment (JRE)
 Java Development Kit (JDK) [Current Version: JDK 13.0.1]



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1212

Java Virtual Machine (JVM)
 JVM is 

• An abstract machine
• Provides a run-time environment to execute bytecode

 It follows 3 notations
1. Specification
2. Implementation
3. Runtime Instance

 It performs following operation:
• Loads code
• Verifies code
• Executes code
• Provides runtime environment



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1313

Java Runtime Environment (JRE)
 JRE refers to a runtime environment in which Java 

bytecode can be executed.
 It implements the JVM (Java Virtual Machine) and 

provides all the class libraries and other support files that 
JVM uses at runtime.

 Basically, it is an implementation of the JVM which 
physically exists. 



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1414

Java Development Kit ( JDK)
 It is the tool necessary to
• Compile
• Document
• Package Java programs

 The JDK completely includes JRE which contains tools for Java 
programmers.

 Along with JRE, it includes an 
• compiler (javac)
• application launcher (java / appletviewer)
• interpreter/loader
• archiver (jar)
• documentation generator (javadoc)
• other tools needed in Java development. 

 In short, it contains JRE + development tools.
 The Java Development Kit is freeware available on 

https://www.oracle.com/technetwork/java/javase/downloads/index.html

https://www.oracle.com/technetwork/java/javase/downloads/index.html


Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1515

JVM vs JRE vs JDK



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1616

JDK Version History
Version Release Date
JDK Beta 1995
JDK 1.0 January 1996
JDK 1.1 February 1997
J2SE 1.2 December 

1998
J2SE 1.3 May 2000
J2SE 1.4 February 2002
J2SE 5.0 September 

2004
Java SE 6 December 

2006

Version Release Date
Java SE 7 July 2011
Java SE 8 (LTS) March 2014
Java SE 9 September 

2017
Java SE 10 March 2018
Java SE 11 
(LTS)

September 
2018

Java SE 12 March 2019
Java SE 13 September 

2019



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1717

Installing JDK
 Download JDK for Windows platform (.exe) from 

https://www.oracle.com/technetwork/java/javase/downloads/index.html
 Install the executable of JDK
 Set the path variable of System variables by performing following steps
• Go to "System Properties" (Right click This PC  Properties  Advanced System → →

Settings)
• Click on the "Environment variables" button under the "Advanced" tab
• Then, select the "Path" variable in System variables and click on the "Edit" button
• Click on the "New" button and add the path where Java is installed, followed by \

bin. By default, Java is installed in C:\Program Files\Java\jdk-13.0.1 (If nothing else 
was specified when you installed it). In that case, You will have to add a new path 
with: C:\Program Files\Java\jdk-11.0.1\bin

• Then, click "OK", and save the settings
• At last, open Command Prompt (cmd.exe) and type java -version to see if Java is 

running on your machine

https://www.oracle.com/technetwork/java/javase/downloads/index.html


1

2

3

4



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1919

First Simple Program
class HelloWorld

{

public static void main(String[] args)

{

System.out.println("Hello World");

}

}
 The program prints “Hello World” on the console.



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2020

How to execute Java Program?
1. Save the program with the same name that of class 

which contains public static void main(String[] 
args).



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2121

How to execute Java Program?
2. Open command prompt (cmd) / terminal & navigate to 

desired directory / folder.

3. Compile the “.java” file with javac command.

4. Execute the “.class” file with java command without extension.



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2222

Closer look at First Sample Program

class HelloWorld

{

public static void main(String[] 
args)

{

System.out.println("Hello 
World");

}

}

class keyword declares that a new class is being 
defined

HelloWorld is an identifier that is the name of 
the class

All Java applications begin execution by calling 
main()

public keyword is an access modifier which makes 
main() be called outside of its class when program is 
started

static keyword allows main() to be called without 
instantiating an instance of the class
void keyword tells compiler that main() does not return 
a value

args is an array of command line 
arguments

System is a predefined class that provides access to 
system
out is the output stream connected to the 
console
println displays the string which is passed 
to it



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2323

Lexical Issues
 Whitespace

• It is a space, tab or newline
 Identifiers

• They are used for class names, method names and variable 
names.

• An identifier may be any descriptive sequence of
• uppercase(A…Z) and lowercase(a..z) letters
• Numbers(0..9)
• Underscore(_) and dollar-sign($) characters

AvgTemp count a4 $test this_is_ok

2count high-
temp

Not/ok



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2424

Lexical Issues
 Literals

• Constant value in Java is created using literal representation.

 Comments
• There are 3 types of comment in Java

1. Single-line  → //
2. Multiline  starts with → /* and ends with */
3. Documentation  starts with → /** and ends with */

100 98.6 ‘X’ “This is a test”



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2525

Lexical Issues
 Separators

( ) Parenthesis ‒ Used to contain list of parameters in 
method definition and invocation.

‒ Used for defining precedence in 
expressions, containing expressions in 
control statements and surrounding cast 
types.{ } Braces ‒ Used to contain values of automatically 
initialized arrays.

‒ Used to define block of code for classes, 
methods and local scopes.

. Period ‒ Used to separate package names from 
subpackages and classes.

‒ Used to separate variable or method 
from a reference variable.

[ ] Brackets ‒ Used to declare array types.
; Semicolon ‒ Terminates statements.
, Comma ‒ Separates consecutive identifiers in 

declaration



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2626

Lexical Issues
 Java Keywords

• 50 keywords
• Cannnot be used as names for variables, class or method
abstract continue for new switch
assert default goto package synchronize

d
Boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2727

Data Types

Java Datatypes

Integer
s

Floating-
point 

numbers
Characte

rs
Boolea

n

Primitiv
e

Non-
primitive

Clas
s



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2828

Primitive Data Types
Data Type Size Range Example
byte 1 Byte -128 to 127 byte  a = 10;
short 2 Bytes -32,768 to 32,767 short a = 200;
int 4 Bytes -2,147,483,648 to 

2,147,483,647
int a = 50000;

long 8 Bytes -9,223,372,036,854,775,808 
to 9,223,372,036,854,775,807

long a = 20;
float 4 Bytes 1.4e-045 to 3.4e+038 float a = 10.2f;

double 8 Bytes 4.9e-324 to 1.8e+308 double a = 10.2;

char 2 Bytes 0 to 65536  (Stores ASCII of 
character)

char a = ‘a’;

boolean Not 
defined

 true or false boolean a = true;



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2929

Escape Sequences
 Escape sequences in general are used to signal an 

alternative interpretation of a series of characters.
 For example, if you want to put quotes within quotes you 

must use the escape sequence, \", on the interior quotes.
System.out.println("Good Morning \"Jack\"");

Escape Sequence Description
\’ Single quote
\” Double quote
\\ Backslash
\r Carriage return
\n New Line
\t Tab



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3030

 Assigning a value of one type to a variable of another 
type is known as Type Casting.

 In Java, type casting is classified into two types,
• Widening/Automatic Type Casting (Implicit)

• Narrowing Type Casting(Explicitly done)

Type Casting



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3131

Automatic Type Casting
 When one type of data is assigned to other type of 

variable , an automatic type conversion will take place if 
the following two conditions are satisfied:
• The two types are compatible
• The destination type is larger than the source type

 Such type of casting is called “widening conversion”.
 Example:

int can always hold values of byte and short

public static void main(String[] args) {
byte b = 5;
// √ this is correct
int a = b;  

}



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3232

Casting Incompatible Types
 To create a conversion between two incompatible types, 

you must use a cast
 A cast is an explicit type conversion.
 Such type is called “narrowing conversion”.
 Syntax:

(target-type) value
 Example:

public static void main(String[] args) {
int a = 5;
// × this is not correct
byte b = a;  
// √ this is correct
byte b = (byte)a ; 

}



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3333

Operators
1. Arithmetic Operators
2. Relational Operators
3. Bitwise Operators
4. Logical Operators
5. Assignment Operators
6. Conditional / Ternary Operator
7. Instance of Operator



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3434

Arithmetic Operator
Operator Description Example

+ Addition A + B = 30

- Subtraction A - B = -10

* Multiplication A * B = 200

/ Division B / A = 2

% Modulus B % A = 0

++ Increment B++ = 21

-- Decrement B-- = 19

Note : A = 10 & B = 
20



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3535

Relational Operators Note : A = 10 & B = 
20

Operator Description Example

== Equals (A == B) is not true.

!= Not Equals (A != B) is true.

> Greater than (A > B) is not true.

< Less than (A < B) is true.

>= Greater than equals (A >= B) is not true.

<= Less than equals (A <= B) is true.

== Equals (A == B) is not true.



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3636

Bitwise Operators
Operato

r Description Example

& Binary AND Operator A & B = 12 which is 0000 
1100

| Binary OR Operator A | B = 61 which is 0011 
1101

^ Binary XOR Operator A ^ B = 49 which is 0011 
0001

~ Binary Ones Complement Operator
~A  = -61 which is 1100 0011 
in 2's complement form due 
to a signed binary number.

<< Binary Left Shift Operator A << 2 = 240 which is 1111 
0000

>> Binary Right Shift Operator. A >> 2 = 15 which is 1111

>>> Shift right zero fill operator. A >>>2 = 15 which is 0000 
1111

Note : A = 60 & B = 
13



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3737

Logical Operators 
Operator Description Example

&& Logical AND operator (A && B) is false.

|| Called Logical OR Operator (A || B) is true.

! Called Logical NOT Operator !(A && B) is true.

Note : A = true & B = 
false



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3838

Assignment Operators
Operato

r Description Example

= Simple assignment operator C = A + B will assign value of 
A + B into C

+= Add AND assignment operator C += A is equivalent to C = C 
+ A

-= Subtract AND assignment operator C -= A is equivalent to C = C - 
A

*= Multiply AND assignment operator C *= A is equivalent to C = C 
* A

/= Divide AND assignment operator C /= A is equivalent to C = C / 
A

%= Modulus AND assignment operator C %= A is equivalent to C = C 
% A

<<= Left shift AND assignment operator C <<= 2 is same as C = C << 2
>>= Right shift AND assignment operator C >>= 2 is same as C = C >> 2
&= Bitwise AND assignment operator C &= 2 is same as C = C & 2

^= bitwise exclusive OR and assignment 
operator C ^= 2 is same as C = C ^ 2

|= bitwise inclusive OR and assignment 
operator C |= 2 is same as C = C | 2



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3939

Conditional Operator (Ternary)
 Conditional Operator ( ? : )

• Syntax:
variable x = (expression) ? value if true : value if false

• Example:

b = (a == 1) ? 20 : 30;



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4040

instanceof Operator
 instanceof Operator

• Syntax:
( Object reference variable ) instanceof (class/interface type)

• Example:
boolean result = name instanceof String;



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4141

Operator Precedence & Associativity
 How does java evaluate 1 + 10 * 9 ?

• (1 + 10 ) * 9  = 99   OR    1  + (10 * 9) = 91
 To get the correct answer for the given problem Java 

came up with Operator precedence. ( multiplication have 
higher precedence than addition so correct answer will 
be 91 in this case)

 For Operator, associativity means that when the same 
operator appears in a row, then to which direction the 
expression will be evaluated. (It would be from Left to 
Right)

 How does java evaluate 1 * 2 + 3 * 4 / 5 ???
2   +   12  / 5

2 + 2.4

4.4



Unit – 1: IntroductionUnit – 1: Introduction Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4242

Category  Operator  Associativity 
Postfix  () [] . (dot operator) Left to right 
Unary  ++ - - ! ~ Right to left 
Multiplicative   * / %  Left to right 
Additive   + -  Left to right 
Shift   >> >>> <<   Left to right 
Relational   > >= < <=   Left to right 
Equality   == !=  Left to right 
Bitwise AND  &  Left to right 
Bitwise XOR  ^  Left to right 
Bitwise OR  |  Left to right 
Logical AND  &&  Left to right 
Logical OR  ||  Left to right 
Conditional  ?:  Right to left 
Assignment  = += -= *= /= %= >>= <<= &= ^= |=  Right to left 
Comma  ,  Left to right 

Precedence of Java Operators



Prof. Hardik A. Doshi
     9978911553
     
hardik.doshi@darshan.ac.in

3140705
Object Oriented 
Programming - I

Unit – 7
JavaFX and Event-
driven programming 
and animations



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology22

What is JavaFX?

 JavaFX is a Java library used to build Rich Internet 
Applications (RIA).

 The applications developed using JavaFX can run on 
various devices such as Desktop Computers, Mobile 
Phones, TVs, Tablets, etc.

 To develop GUI Applications using Java programming 
language, the programmers rely on libraries such as 
Advanced Windowing Toolkit (AWT) and Swing. After the 
advent of JavaFX, these Java programmers can now 
develop GUI applications effectively with rich content.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology33

Need for JavaFX
 To develop Client Side Applications with rich features, the 

programmers used to depend on various libraries to add 
features such as Media, UI controls, Web, 2D and 3D, etc. 

 JavaFX provides a rich set of graphics and media API’s 
and it leverages the modern Graphical Processing Unit 
through hardware accelerated graphics.

 One can use JavaFX with JVM based technologies such as 
Java, Groovy and JRuby. If developers opt for JavaFX, 
there is no need to learn additional technologies.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology44

Features of JavaFX
 Written in Java
 FXML
 Scene Builder
 Swing Interoperability
 Built-in UI controls
 CSS like Styling
 Canvas and Printing API
 Rich set of API’s
 Integrated Graphics library
 Graphics pipeline



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology55

Architecture of JavaFX API

JavaFX API

Quantum Toolkit

JavaFX Graphics Engine

JDK API and Toolkit

Java Virtual Machine

Scene Graph

Win32 | GTK OpenGL | 
D3D Web kit G Streams

Prism Glass Web View Media



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology66

Architecture of JavaFX API
 Scene Graph

• A Scene Graph is the starting point of the construction of the GUI 
Application. It holds the (GUI) application primitives that are 
termed as nodes.

• A node is a visual/graphical object and it may include
• Geometrical (Graphical) objects
• UI controls
• Containers
• Media elements

 Prism
• Prism is a high performance hardware–accelerated graphical 

pipeline that is used to render the graphics in JavaFX. It can 
render both 2-D and 3-D graphics.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology77

Architecture of JavaFX API
 GWT (Glass Windowing Toolkit)

• GWT provides services to manage Windows, Timers, Surfaces and 
Event Queues. 

• GWT connects the JavaFX Platform to the Native Operating System.
 Quantum Toolkit

• It is an abstraction over the low-level components of Prism, Glass, 
Media Engine, and Web Engine. It ties Prism and GWT together and 
makes them available to JavaFX.

 WebView
• WebView is the component of JavaFX which is used to process HTML 

content. It uses a technology called Web Kit, which is an internal 
open-source web browser engine. This component supports 
different web technologies like HTML5, CSS, JavaScript, DOM and 
SVG.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology88

Architecture of JavaFX API
 Media Engine

• The JavaFX media engine is based on an open-source engine 
known as a Streamer. This media engine supports the playback of 
video and audio content.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology99

Stage
Scene

Scene Graph

JavaFX Application Structure

Root 
Nod

e
Branc

h 
Node

Leaf 
Nod

e

Leaf 
Nod

e

Leaf 
Nod

e



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1010

Stage
 A stage (a window) contains all the objects of a JavaFX application.
 It is represented by Stage class of the package javafx.stage.
 The primary stage is created by the platform itself. The created stage 

object is passed as an argument to the start() method of the 
Application class.

 A stage has two parameters determining its position namely Width and 
Height. 

 There are five types of stages available
• Decorated
• Undecorated
• Transparent
• Unified
• Utility

 You have to call the show() method to display the contents of a stage.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1111

Scene
 A scene represents the physical contents of a JavaFX 

application. It contains all the contents of a scene graph. 
 The class Scene of the package javafx.scene 

represents the scene object. At an instance, the scene 
object is added to only one stage.

 You can create a scene by instantiating the Scene Class. 
 You can opt for the size of the scene by passing its 

dimensions (height and width) along with the root node 
to its constructor.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1212

Scene Graph and Nodes
 A scene graph is a tree-like data structure (hierarchical) 

representing the contents of a scene. In contrast, a node 
is a visual/graphical object of a scene graph.

 A node may include
• Geometrical (Graphical) objects (2D and 3D) such as  Circle, −

Rectangle, Polygon, etc.
• UI Controls   Button, Checkbox, Choice Box, Text Area, etc.−
• Containers (Layout Panes) – Border Pane, Grid Pane, Flow Pane, 

etc.
• Media elements – Audio, Video and Image Objects.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1313

Scene Graph and Nodes
 The Node class of the package javafx.scene represents a node in 

JavaFX, this class is the super class of all the nodes.
Root Node  The first Scene Graph is known as the Root node. It is −
mandatory to pass the root node to the scene graph.
Branch Node/Parent Node  The node with child nodes are known as −
branch/parent nodes. The abstract class named Parent of the 
package javafx.scene is the base class of all the parent nodes, and 
those parent nodes will be of the following types
• Group  A group node is a collective node that contains a list of children nodes. −
• Region  It is the base class of all the JavaFX Node based UI Controls, such as −

Chart, Pane and Control.
• WebView  This node manages the web engine and displays its contents.−

Leaf Node  The node without child nodes is known as the leaf node. −
For example, Rectangle, Ellipse, Box, ImageView, MediaView are 
examples of leaf nodes.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1414

Steps to create JavaFX application
 Prepare a scene graph with the required nodes.
 Prepare a Scene with the required dimensions and add 

the scene graph (root node of the scene graph) to it.
 Prepare a stage and add the scene to the stage and 

display the contents of the stage.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1515

Prepare a Scene graph
 Since the root node is the first node, you need to create a 

root node and it can be chosen from the Group, Region or 
WebView.

 Group
A Group node is represented by the class named Group 
which belongs to the package javafx.scene, you can 
create a Group node by instantiating this class as shown 
below.

Group root = new Group();

Group root = new Group(NodeObject);



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1616

Prepare a Scene graph
 Region

It is the Base class of all the JavaFX Node-based UI Controls, such 
as −
• Chart  This class is the base class of all the charts and it belongs to −

the package javafx.scene.chart which embeds charts in 
application.

• Pane  A Pane is the base class of all the layout panes such as −
AnchorPane, BorderPane, DialogPane, etc. This class belong to a 
package that is called as  − javafx.scene.layout which inserts  
predefined layouts in your application.

• Control  It is the base class of the User Interface controls such as −
Accordion, ButtonBar, ChoiceBox, ComboBoxBase, HTMLEditor, etc. 
This class belongs to the package javafx.scene.control.

  WebView
This node manages the web engine and displays its contents.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1717

Preparing the Scene
 A JavaFX scene is represented by the Scene class of the 

package javafx.scene. 
Scene scene = new Scene(root,width,heigth);

 While instantiating, it is mandatory to pass the root 
object to the constructor of the Scene class whereas 
width and height of the scene are optional parameters to 
the constructor.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1818

Preparing the Stage
 Stage is the container of any JavaFX application and it provides a 

window for the application. It is represented by the Stage class 
of the package javafx.stage.

 An object of this class is passed as a parameter of the start() 
method of the Application class.

 Using this object, various operations on the stage can be 
performed like
• Set the title for the stage using the method setTitle().

primaryStage.setTitle("Sample application");

• Attach the scene object to the stage using the setScene() method.
primaryStage.setScene(scene); 

• Display the contents of the scene using the show() method as shown 
below.

primaryStage.show();



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1919

Lifecycle of JavaFX Application
 The JavaFX Application class has three life cycle methods.
start()  The entry point method where the JavaFX −
graphics code is to be written.
stop()  An empty method which can be overridden, −
here the logic to stop the application is written.
init()  An empty method which can be overridden, −
stage or scene cannot be created in this method.

 It also provides a static method named launch() to 
launch JavaFX application. This method is called from 
static content only mainly main method.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2020

Lifecycle of JavaFX Application
 Whenever a JavaFX application is launched, the following 

actions will be carried out (in the same order).
• An instance of the application class is created.
• init() method is called.
• start() method is called.
• The launcher waits for the application to finish and calls the 
stop() method.



import javafx.application.Application; 
import javafx.scene.Group; 
import javafx.scene.Scene; 
import javafx.scene.paint.Color; 
import javafx.stage.Stage;  
public class JavafxSample extends Application { 
@Override
public void start(Stage primaryStage) throws Exception {

Group root = new Group();
Scene scene = new Scene(root ,600, 300); 
scene.setFill(Color.BROWN);        
primaryStage.setTitle("Sample Application");    
primaryStage.setScene(scene);        
primaryStage.show(); 

   }    
   public static void main(String args[]){          
      launch(args);     
   }         
}

Create Scene Graph 
using Group, Region 
or WebView
Create Scene by 
adding Group (root) to 
it along with its width 
and height

Set the scene to the stage object 
(primaryStage) which is passed as an 
argument to start() using setScene() 
method



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2222

2D Shape
 2D shape is a geometrical figure that can be drawn on 

the XY plane like Line, Rectangle, Circle, etc.
 Using the JavaFX library, you can draw −

• Predefined shapes – Line, Rectangle, Circle, Ellipse, Polygon, 
Polyline, Cubic Curve, Quad Curve, Arc.

• Path elements – MoveTo Path Element, Line, Horizontal Line, 
Vertical Line, Cubic Curve, Quadratic Curve, Arc.

• 2D shape by parsing SVG path.
 Each of the above mentioned 2D shape is represented by 

a class which belongs to the package 
javafx.scene.shape. The class named Shape is the 
base class of all the 2-Dimensional shapes in JavaFX.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2323

Classes for Shape (javafx.scene.shape)

Shape Class Example
Line Line Line line = new Line(); 

line.setStartX(100.0); 
line.setStartY(150.0); 
line.setEndX(500.0); 
line.setEndY(150.0); 

Rectangle & 
Rounded 
Rectangle

Rectangl
e

Rectangle rectangle = new 
Rectangle();  
rectangle.setX(150.0f); 
rectangle.setY(75.0f); 
rectangle.setWidth(300.0f); 
rectangle.setHeight(150.0f);
rectangle.setArcWidth(30.0); 
rectangle.setArcHeight(20.0);

Circle Circle Circle circle = new Circle(); 
circle.setCenterX(300.0f); 
circle.setCenterY(135.0f); 
circle.setRadius(100.0f);



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2424

Classes for Shape (javafx.scene.shape)

Shape Class Example
Ellipse Ellipse Ellipse ellipse = new Ellipse(); 

ellipse.setCenterX(300.0f); 
ellipse.setCenterY(150.0f); 
ellipse.setRadiusX(150.0f); 
ellipse.setRadiusY(75.0f); 

Polygon Polygon Polygon polygon = new Polygon(); 
 
polygon.getPoints().addAll(new 
Double[]{ 
         300.0, 50.0, 
         450.0, 150.0, 
         300.0, 250.0, 
         150.0, 150.0, 
      }); 



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2525

Classes for Shape (javafx.scene.shape)

Shape Class Example
Polyline Polyline Polyline polyline = new Polyline();  

polyline.getPoints().addAll(new 
Double[]{        
         200.0, 50.0, 
         400.0, 50.0, 
         450.0, 150.0,          
         400.0, 250.0, 
         200.0, 250.0,                
   
         150.0, 150.0, 
      }); Cubic 

Curve
CubicCurve CubicCurve cubicCurve = new 

CubicCurve(); 
cubicCurve.setStartX(100.0f); 
cubicCurve.setStartY(150.0f); 
cubicCurve.setControlX1(400.0f); 
cubicCurve.setControlY1(40.0f); 
cubicCurve.setControlX2(175.0f); 
cubicCurve.setControlY2(250.0f); 
cubicCurve.setEndX(500.0f); 
cubicCurve.setEndY(150.0f);



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2626

Classes for Shape (javafx.scene.shape)

Shape Class Description
Quad Curve QuadCurve QuadCurve quadCurve = new 

QuadCurve();  
quadCurve.setStartX(100.0); 
quadCurve.setStartY(220.0f); 
quadCurve.setEndX(500.0f); 
quadCurve.setEndY(220.0f); 
quadCurve.setControlX(250.0f); 
quadCurve.setControlY(0.0f); Arc Arc Arc arc = new Arc();
arc.setCenterX(100.0);
arc.setCenterY(100.0);
arc.setRadiusX(100.0);
arc.setRadiusY(100.0);
arc.setStartAngle(0.0);
arc.setLength(100.0);



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2727

JavaFX - Colors
 javafx.scene.paint package provides various classes 

to apply colors to an application. This package contains 
an abstract class named Paint and it is the base class of 
all the classes that are used to apply colors.

 Using these classes, you can apply colors in the following 
patterns 
• Uniform  color is applied uniformly throughout node.−
• Image Pattern  fills the region of the node with an image −

pattern.
• Gradient  the color applied to the node varies from one point to −

the other. It has two kinds of gradients namely Linear Gradient 
and Radial Gradient.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2828

Creating instance of Color
 Instance of Color class can be created by providing Red, 

Green, Blue and Opacity value ranging from 0 to 1 in double.
Color color = new Color(double red, double green, 

double blue, double opacity);
 Example 

Color color = new Color(0.0,0.3,0.2,1.0);
 Instance of Color class can be created using following 

methods also
Color c = Color.rgb(0,0,255);      //passing RGB values

Color c = Color.hsb(270,1.0,1.0);  //passing HSB values

Color c = Color.web("0x0000FF",1.0);//passing hex code

for web



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2929

Applying Color to the Nodes
 setFill(Color) method is used to apply color to nodes 

such as Shape, Text, etc.
 setStroke(Color) method is used to apply strokes to the 

nodes.

//Setting color to the text 

Color color = new Color.BEIGE 

text.setFill(color); 

//Setting color to the stroke 

Color color = new Color.DARKSLATEBLUE 

circle.setStroke(color);



import javafx.application.Application; 
import javafx.scene.*; 
import javafx.scene.paint.Color; 
import javafx.stage.Stage; 
import javafx.scene.shape.Circle; 
public class ColorExample extends Application { 

@Override 
public void start(Stage stage) { 

Circle circle = new Circle();    
circle.setCenterX(300.0f); 
circle.setCenterY(180.0f); 
circle.setRadius(90.0f); 
circle.setFill(Color.DARKRED);    
circle.setStrokeWidth(3); 
circle.setStroke(Color.DARKSLATEBLUE);
Group root = new Group(circle); 
Scene scene = new Scene(root, 600, 300);  
stage.setTitle("Color Example"); 
stage.setScene(scene); 
stage.show(); 

} 
public static void main(String args[]){ 

launch(args); 
} 

}



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3131

JavaFX – Image
 You can load and modify images using the classes 

provided by JavaFX in the package 
javafx.scene.image. 

 JavaFX supports the image formats like Bmp, Gif, Jpeg, 
Png.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3232

Loading an Image
 Class Image of javafx.scene.image package is used to load an image
 Any of the following argument is required to the constructor of the class
• An InputStream object of the image to be loaded or
FileInputStream inputstream = new FileInputStream ("C:\\image.jpg"); 

Image image = new Image(inputstream);

• A string variable holding the URL for the image.
Image image = new Image("http://sample.com/res/flower.png");

 After loading image in Image object, view is set to load 
the image using ImageView class

ImageView imageView = new ImageView(image);



import java.io.FileInputStream;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.stage.Stage;
 
public class ImageExample extends Application {  
   @Override 
   public void start(Stage stage) throws Exception {

Image image = new Image(new FileInputStream("C://image.jpeg"));  
ImageView imageView = new ImageView(image); 
imageView.setX(50); 
imageView.setY(25); 
imageView.setFitHeight(455); 
imageView.setFitWidth(500); 
imageView.setPreserveRatio(true);  
Group root = new Group(imageView);  
Scene scene = new Scene(root, 600, 500);  
stage.setTitle("Loading an image");  
stage.setScene(scene);
stage.show(); 

   }
   public static void main(String args[]) { 

launch(args); 
   } 
}



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3434

Layout Panes
 After constructing all the required nodes in a scene, we 

will generally arrange them in order.
 This arrangement of the components within the 

container is called the Layout of the container. 
 JavaFX provides several predefined layouts such as HBox, 

VBox, Border Pane, Stack Pane, Text Flow, Anchor Pane, 
Title Pane, Grid Pane, Flow Panel, etc.

 Each of the above mentioned layout is represented by a 
class and all these classes belongs to the package 
javafx.layout. The class named Pane is the base class 
of all the layouts in JavaFX.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3535

Layout Panes (javafx.scene.layout)
Sr. Shape & Description
1 HBox

• The HBox layout arranges all the nodes in our application in a 
single horizontal row.

• The class named HBox of the 
package javafx.scene.layout represents the text horizontal box 
layout.2 VBox

• The VBox layout arranges all the nodes in our application in a 
single vertical column.

• The class named VBox of the 
package javafx.scene.layout represents the text Vertical box 
layout.3 BorderPane

• The Border Pane layout arranges the nodes in our application 
in top, left, right, bottom and center positions.

• The class named BorderPane of the package 
javafx.scene.layout represents the border pane layout.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3636

Layout Panes (javafx.scene.layout)
Sr. Shape & Description
4 StackPane

• The stack pane layout arranges the nodes in our application 
on top of another just like in a stack. The node added first is 
placed at the bottom of the stack and the next node is placed 
on top of it.

• The class named StackPane of the package javafx.scene.layout 
represents the stack pane layout.

5 TextFlow
• The Text Flow layout arranges multiple text nodes in a single 

flow.
• The class named TextFlow of the package javafx.scene.layout 

represents the text flow layout.6 AnchorPane
• The Anchor pane layout anchors the nodes in our application 

at a particular distance from the pane.
• The class named AnchorPane of the package 

javafx.scene.layout represents the Anchor Pane layout.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3737

Layout Panes (javafx.scene.layout)
Sr. Shape & Description
7 TilePane

• The Tile Pane layout adds all the nodes of application in the 
form of uniformly sized tiles.

• The class named TilePane of the package javafx.scene.layout 
represents the TilePane layout.8 GridPane

• The Grid Pane layout arranges the nodes in our application as 
a grid of rows and columns. This layout comes handy while 
creating forms.

• The class named GridPane of the package javafx.scene.layout 
represents the GridPane layout.9 FlowPane

• The flow pane layout wraps all the nodes in a flow. A 
horizontal flow pane wraps the elements of the pane at its 
height, while a vertical flow pane wraps the elements at its 
width.

• The class named FlowPane of the package javafx.scene.layout 
represents the Flow Pane layout.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3838

Creating a Layout
 To create a layout, you need to −

• Create node.
• Instantiate the respective class of the required layout.
• Set the properties of the layout.
• Add all the created nodes to the layout.



import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.geometry.Insets;
import javafx.scene.*;
import javafx.scene.control.*;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
public class HBoxExample extends Application {   

@Override 
public void start(Stage stage) {       

TextField textField = new TextField();       
Button playButton = new Button("Play");       
Button stopButton = new Button("stop"); 
HBox hbox = new HBox();    
hbox.setSpacing(10);    
hbox.setMargin(textField, new Insets(20, 20, 20, 20)); 
hbox.setMargin(playButton, new Insets(20, 20, 20, 20)); 
hbox.setMargin(stopButton, new Insets(20, 20, 20, 20));  
ObservableList<Node> list = hbox.getChildren();  
list.addAll(textField, playButton, stopButton);       
Scene scene = new Scene(hbox);  
stage.setTitle("Hbox Example"); 
stage.setScene(scene); 
stage.show(); 

} 
public static void main(String args[]){ 

launch(args); 
} 

}



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4040

JavaFX - Events
 In GUI applications, web applications and graphical 

applications, whenever a user interacts with the 
application (nodes), an event is said to have been 
occurred.

 For example, clicking on a button, moving the mouse, 
entering a character through keyboard, selecting an item 
from list, scrolling the page are the activities that causes 
an event to happen.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4141

JavaFX - Events
 JavaFX provides support to handle a wide varieties of events. The class 

named Event of the package javafx.event is the base class for an event.
 JavaFX provides a wide variety of events. Some of them are as follows:
1. Mouse Event  occurs when a mouse is clicked. −

Class - MouseEvent 
Actions - mouse clicked, mouse pressed, mouse released, mouse moved, 
mouse entered target, mouse exited target, etc.

2. Key Event  indicates the key stroke occurred on a node. −
Class – KeyEvent
Actions - key pressed, key released and key typed.

3. Drag Event  occurs when the mouse is dragged.−
Class - DragEvent. 
Actions - drag entered, drag dropped, drag entered target, drag exited 
target, drag over, etc.

4. Window Event  occurs when window showing/hiding takes place. −
Class - WindowEvent
Actions – window hiding, window shown, window hidden, window showing, 
etc.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4242

Event Handling
 Event Handling is the mechanism that controls the event 

and decides what should happen, if an event occurs. This 
mechanism has the code which is known as an event 
handler that is executed when an event occurs.

 JavaFX provides handlers and filters to handle events. In 
JavaFX every event has 
• Target  The node on which an event occurred. A target can be a −

window, scene, and a node.
• Source  The source from which the event is generated will be the −

source of the event.
• Type  Type of the occurred event; in case of mouse event – −

mouse pressed, mouse released are the type of events.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4343

Phases of Event Handling
 Target selection
 Route Construction
 Event Capturing Phase
 Event Bubbling Phase



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4444

Target selection
 When an action occurs, the system determines which 

node is the target based on internal rules:
 Key events - the target is the node that has focus.
 Mouse events - the target is the node at the location of 

the cursor.
 Gesture events - the target is the node at the center point 

of all touches at the beginning of the gesture.
 Swipe events - the target is the node at the center of the 

entire path of all of the fingers.
 Touch events - the target for each touch point is the node 

at the location first pressed.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4545

Route Construction
 Whenever an event is generated, the default/initial route 

of the event is determined by construction of an Event 
Dispatch chain. It is the path from the stage to the source 
node.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4646

Event Capturing Phase
 After the construction of the event dispatch chain, the 

root node of the application dispatches the event. 
 This event travels to all nodes in the dispatch chain (from 

top to bottom). 
 If any of these nodes has a filter registered for the 

generated event, it will be executed. 
 If none of the nodes in the dispatch chain has a filter for 

the event generated, then it is passed to the target node 
and finally the target node processes the event.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4747

Event Bubbling Phase
 In the event bubbling phase, the event is travelled from 

the target node to the stage node (bottom to top). 
 If any of the nodes in the event dispatch chain has a 

handler registered for the generated event, it will be 
executed. 

 If none of these nodes have handlers to handle the 
event, then the event reaches the root node and finally 
the process will be completed.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4848

Event Handlers and Filters
 Event filters and handlers are those which contains 

application logic to process an event. 
 A node can register to more than one handler/filter. In 

case of parent–child nodes, you can provide a common 
filter/handler to the parents, which is processed as 
default for all the child nodes.

 During the event capturing phase, a filter is executed and 
during the event bubbling phase, a handler is executed. 

 All the handlers and filters implement the interface 
EventHandler of the package javafx.event.



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology4949

Handling Mouse Event



import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.scene.*;
import javafx.scene.input.MouseEvent;
import javafx.stage.Stage;

public class JavafxSample extends Application {
    public static void main(String[] args) {
        launch(args);
    }
    @Override
    public void start(Stage primaryStage) {

Group root = new Group();
Scene scene = new Scene(root, 300, 250);
scene.setOnMouseClicked(mouseHandler);

       scene.setOnMouseDragged(mouseHandler);
       scene.setOnMouseEntered(mouseHandler);
       scene.setOnMouseExited(mouseHandler);
       scene.setOnMouseMoved(mouseHandler);
       scene.setOnMousePressed(mouseHandler);
       scene.setOnMouseReleased(mouseHandler);
 
       primaryStage.setScene(scene);
       primaryStage.show();
    }



EventHandler<MouseEvent> mouseHandler = new 
EventHandler<MouseEvent>()
   {
         @Override
     public void handle(MouseEvent mouseEvent) {
     System.out.println(mouseEvent.getEventType() + "\n" + 

"X : Y - " 
+ mouseEvent.getX() + " : " + mouseEvent.getY() + "\n" + 
"SceneX : SceneY - " 
+ mouseEvent.getSceneX()+" : "+mouseEvent.getSceneY() + 
"\n" + "ScreenX : ScreenY - " 
+ mouseEvent.getScreenX()+" : "+mouseEvent.getScreenY());
}

   }; 
}



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology5252

Handling Key Event



import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.input.KeyEvent;
import javafx.scene.text.Font;
import javafx.scene.text.FontPosture;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;
 
public class JavafxSample extends Application {
    public static void main(String[] args) {
        launch(args);
    }
    @Override
    public void start(Stage primaryStage) {
        Text text = new Text();
        text.setX(10.0);
        text.setY(100.0);
        text.setFont(Font.font("verdana", FontWeight.BOLD, FontPosture.REGULAR, 
15));
        Group root = new Group(text);
        Scene scene = new Scene(root, 300, 250);
        scene.setOnKeyPressed(new EventHandler<KeyEvent>() {
            public void handle(KeyEvent ke) {
                text.setText("Key Pressed: " + ke.getCode().toString());
            }
        });
        primaryStage.setScene(scene);
        primaryStage.show();
    }  
}



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology5454

Inner Class / Nested Class
 Inner classes are class within Class.
 Inner class instance has special relationship with Outer class. This 

special relationship gives inner class access to member of outer 
class as if they are the part of outer class.

 Additionally, it can access all the members of outer class including 
private data members and methods.

 Syntax
//outer class 
class OuterClass 
{ 
//inner class 
class InnerClass 
{
}
}



Unit – 7: JavaFXUnit – 7: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology5555

Inner Class Example
class Outer {

int outer_x = 100;
void test() {

Inner inner = new Inner();
inner.display();

}
class Inner {

void display() {
System.out.println("Display : outer_x-" + 
outer_x);
}

}
}
public class InnerClassDemo {

public static void main(String[] args) {
Outer outer = new Outer();
outer.test();
}

}



Prof. Hardik A. Doshi
     9978911553
     
hardik.doshi@darshan.ac.in

3140705
Object Oriented 
Programming - I

Unit – 8
JavaFX UI 
Controls & 
Multimedia



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology22

Label

 Label is used to display a short text or an image, it is a non-
editable text control. 

 It is useful for displaying text that is required to fit within a 
specific space.

 Label can only display text or image and it cannot get focus.
 Constructor for the Label class are:

Constructor Description
Label() Creates an empty Label
Label(String text) Creates Label with supplied 

text
Label(String text, 
Node graphics)

Creates a Label with the 
supplied text and graphic.



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology33

Label Example
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.stage.Stage;

public class LabelExample extends Application  {
    @Override
    public void start(Stage primaryStage) throws Exception {
        
        Label label = new Label("Welcome to JavaFX");

        Scene scene = new Scene(label, 200, 200);
primaryStage.setTitle("JavaFX Demo");

        primaryStage.setScene(scene);
        primaryStage.show();
    }
    public static void main(String[] args) {
        launch(args);
    }
}



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology44

Button
 Button control enables an application to have some 

action executed when the application user clicks the 
button.

 The button control can contain text and/or a graphic. 
 When a button is pressed and released a ActionEvent is 

sent. Some action can be performed based on this event 
by implementing an EventHandler to process the 
ActionEvent. 

 Buttons can also respond to mouse events by 
implementing an EventHandler to process the 
MouseEvent.



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology55

Button
 Constructor for the Button class are:

Constructor Description
Button() Creates a button with an 

empty string for its label.
Button(String 
text)

Creates a button with the 
specified text as its label.

Button(String 
text, Node 
graphic)

Creates a button with the 
specified text and icon for its 
label.



import javafx.application.Application;
import javafx.event.*;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
public class ButtonDemo extends Application {

@Override
public void start(Stage primaryStage) {

Button btn = new Button();
Label lbl = new Label();
btn.setText("Click Me...");
btn.setOnAction(new EventHandler<ActionEvent>() {

@Override
public void handle(ActionEvent event) {

lbl.setText("Button Clicked");
}

});
HBox root = new HBox();
root.setMargin(btn, new Insets(20,20,20,20));
root.setMargin(lbl, new Insets(20,20,20,20));
root.getChildren().add(btn);
root.getChildren().add(lbl);
primaryStage.setTitle("Button Demo");
primaryStage.setScene(new Scene(root, 250, 100));
primaryStage.show();

}
public static void main(String[] args) {

launch(args);
}

}

Button Example



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology77

Checkbox
 The Check Box is used to provide more than one choices 

to the user. 
 It can be used in a scenario where the user is prompted 

to select more than one option.
 It is different from the radiobutton in the sense that, we 

can select more than one checkboxes in a scenerio.
 Constructor for the Checkbox class are:

Constructor Description
CheckBox() Creates a check box with an 

empty string for its label.
CheckBox(String 
text)

Creates a check box with the 
specified text as its label.



import javafx.application.Application;  
import javafx.scene.Scene;  
import javafx.scene.control.*;  
import javafx.scene.layout.HBox;  
import javafx.stage.Stage;  
public class CheckboxDemo extends Application {  

public static void main(String[] args) {  
launch(args);     

}  
@Override  
public void start(Stage primaryStage) throws Exception {  

Label l = new Label("What do you listen: ");  
CheckBox c1 = new CheckBox("Big FM");  
CheckBox c2 = new CheckBox("Radio Mirchi");  
CheckBox c3 = new CheckBox("Red FM");  
CheckBox c4 = new CheckBox("MY FM");  
HBox root = new HBox();  
root.getChildren().addAll(l,c1,c2,c3,c4);  
root.setSpacing(5);  
Scene scene=new Scene(root,450,100);  
primaryStage.setScene(scene);  
primaryStage.setTitle("CheckBox Example");  
primaryStage.show();  

}  
}

Checkbox Example



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology99

RadioButton
 The Radio Button is used to provide various options to 

the user. 
 The user can only choose one option among all. 
 A radio button is either selected or deselected. 
 It can be used in a scenario of multiple choice questions 

in the quiz where only one option needs to be chosen by 
the student.

 Constructor for the RadioButton class are:Constructor Description
RadioButton() Creates a radio button with an 

empty string for its label.
RadioButton(Strin
g text)

Creates a radio button with the 
specified text as its label.



import javafx.application.Application;  
import javafx.scene.Scene;
import javafx.scene.control.*;  
import javafx.scene.layout.VBox;  
import javafx.stage.Stage;  
public class RadioButtonDemo extends Application {  

public static void main(String[] args) {  
launch(args);     

}  
@Override  
public void start(Stage primaryStage) throws Exception { 

Label lbl = new Label("Which country is origin of Corona Virus?");
ToggleGroup group = new ToggleGroup();  
RadioButton button1 = new RadioButton("Italy");  
RadioButton button2 = new RadioButton("China");  
RadioButton button3 = new RadioButton("Spain");  
RadioButton button4 = new RadioButton("USA");  
button1.setToggleGroup(group); 
button2.setToggleGroup(group); 
button3.setToggleGroup(group);
button4.setToggleGroup(group);
VBox root=new VBox();  
root.setSpacing(10);  
root.getChildren().addAll(lbl,button1,button2,button3,button4);  
Scene scene=new Scene(root,400,300);  
primaryStage.setScene(scene);  
primaryStage.setTitle("Radio Button Example");  
primaryStage.show();  

}  
}

RadioButton Example



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1111

TextField
 Text input component that allows a user to enter a single 

line of unformatted text.
 Constructor for the TextField class are:

Constructor Description
TextField() Creates a TextField with 

empty text content.
TextField(String 
text)

Creates a TextField with 
initial text content.



import javafx.application.Application;  
import javafx.scene.Scene;  
import javafx.scene.control.*;  
import javafx.scene.layout.GridPane;  
import javafx.stage.Stage;  
public class TextFieldDemo extends Application {  

public static void main(String[] args) {  
launch(args);     

}  
@Override  
public void start(Stage primaryStage) throws Exception {  

Label user_id=new Label("User ID");  
Label password = new Label("Password");  
TextField tf1=new TextField();  
TextField tf2=new TextField();  
Button b = new Button("Submit");  
GridPane root = new GridPane();  
root.addRow(0, user_id, tf1);  
root.addRow(1, password, tf2);  
root.addRow(2, b);  
Scene scene=new Scene(root,300,200);  
primaryStage.setScene(scene);  
primaryStage.setTitle("Text Field Example");  
primaryStage.show();  

}  
}

TextField Example



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1313

TextArea
 Text input component that allows a user to enter multiple 

lines of plain text.
 Constructor for the TextArea class are:

Constructor Description
TextArea() Creates a TextArea with 

empty text content.
TextArea(String 
text)

Creates a TextArea with 
initial text content.



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1414

TextArea Example
public class TextAreaDemo extends Application  {
public static void main(String[] args) {
        Application.launch(args);
    }
    @Override
    public void start(Stage primaryStage) throws Exception {

TextArea textArea = new TextArea();
VBox vbox = new VBox(textArea);
Scene scene = new Scene(vbox, 300, 100);
primaryStage.setTitle("TextArea Demo");
primaryStage.setScene(scene);
primaryStage.show();

    }
}



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1515

ComboBox
 A combo box is a typical element of a user interface that 

enables users to choose one of several options. 
 A combo box is helpful when the number of items to 

show exceeds some limit, because it can add scrolling to 
the drop down list.

 Constructor for the ComboBox class are:
Constructor Description
ComboBox() Creates a default ComboBox 

instance with an empty items list 
and default selection model.

ComboBox(ObservableList<T> 
items)

ComboBox(ObservableList<T> 
items)
Creates a default ComboBox 
instance with the provided items 
list and a default selection model.



import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
public class ComboBoxDemo extends Application  {
    @Override
    public void start(Stage primaryStage) throws Exception {
        Label lbl = new Label("Select Captian: ");
    ObservableList<String> options = 
FXCollections.observableArrayList(
                "M.S.Dhoni",
                "S.R.Tendulkar",
                "S.C.Ganguly"
            );
        ComboBox<String> comboBox = new ComboBox<String>(options);
        HBox hbox = new HBox();
        hbox.getChildren().addAll(lbl,comboBox);
        Scene scene = new Scene(hbox, 200, 120);
        primaryStage.setTitle("ComboBox Experiment 1");
        primaryStage.setScene(scene);
        primaryStage.show();
    }
    public static void main(String[] args) {
        Application.launch(args);
    }
}

ComboBox Example



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1717

ListView
 A ListView displays a horizontal or vertical list of items 

from which the user may select, or with which the user 
may interact.

 Constructor for the ListView class are:Constructor Description
ListView() Creates a default ListView which 

will display contents stacked 
vertically.

ListView(ObservableList<
T> items)

Creates a default ListView which 
will stack the contents retrieved 
from the provided ObservableList 
vertically.



import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
public class ListViewDemo extends Application  {
    @Override
    public void start(Stage primaryStage) throws Exception {
        Label lbl = new Label("Select Players: ");

    ObservableList<String> options = 
            FXCollections.observableArrayList(
                "Dhoni","Tendulkar","Sehwag","Ganguly"
            );
    ListView<String> list = new ListView<String>(options);
    list.setPrefSize(200, 50);

        HBox hbox = new HBox();
        hbox.getChildren().addAll(lbl,list);
        Scene scene = new Scene(hbox, 400, 300);
        primaryStage.setTitle("List Demo");
        primaryStage.setScene(scene);
        primaryStage.show();
    }
    public static void main(String[] args) {
        Application.launch(args);
    }
}

ListView Example



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1919

ScrollBar
 JavaFX Scroll Bar is used to provide a scroll bar to the 

user so that the user can scroll down the application 
pages.

 Either a horizontal or vertical bar with increment and 
decrement buttons and a "thumb" with which the user 
can interact. Typically not used alone but used for 
building up more complicated controls such as the 
ScrollPane and ListView.

 Constructor for the ScrollBar class are:
Constructor Description
ScrollBar() Creates a new horizontal ScrollBar.



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2020

ScrollBar Example
import javafx.application.Application;
import javafx.scene.*;
import javafx.scene.control.ScrollBar;
import javafx.stage.Stage;
public class ScrollBarDemo extends Application {

public static void main(String[] args) {
launch(args);

}
@Override
public void start(Stage stage) {

ScrollBar sc = new ScrollBar();
sc.setMin(0);
sc.setMax(100);
sc.setValue(50);
Group root = new Group();
Scene scene = new Scene(root, 250, 100);
stage.setScene(scene);
root.getChildren().add(sc);
stage.setTitle("ScrollBar Demo");
stage.show();

}
}



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2121

Slider
 The Slider Control is used to display a continuous or 

discrete range of valid numeric choices and allows the 
user to interact with the control. 

 It is typically represented visually as having a "track" and 
a "knob" or "thumb" which is dragged within the track. 
The Slider can optionally show tick marks and labels 
indicating the different slider position values.

 The three fundamental variables of the slider are min, 
max, and value. The value should always be a number 
within the range defined by min and max. min should 
always be less than or equal to max. min defaults to 0, 
whereas max defaults to 100.



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2222

Slider
 Constructor for the Slider class are:

Constructor Description
Slider() Creates a default Slider instance.
Slider(double 
min, double max, 
double value)

Constructs a Slider control with 
the specified slider min, max 
and current value values.



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2323

Slider Example
import javafx.application.Application;  
import javafx.scene.Scene;  
import javafx.scene.control.Slider;  
import javafx.scene.layout.StackPane;  
import javafx.stage.Stage;  
public class SliderDemo extends Application{  
    @Override  
    public void start(Stage primaryStage) throws Exception {  

    Slider slider = new Slider(1,100,20);
    slider.setShowTickLabels(true);
    slider.setShowTickMarks(true);

        StackPane root = new StackPane();  
        root.getChildren().add(slider);  
        Scene scene = new Scene(root,300,200);  
        primaryStage.setScene(scene);  
        primaryStage.setTitle("Slider Example");  
        primaryStage.show();
    }  
    public static void main(String[] args) {  
        launch(args);     
    }
}



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2424

Video
 In the case of playing video, we need to use the 

MediaView node to display the video onto the scene.
 For this purpose, we need to instantiate the MediaView 

class by passing the Mediaplayer object into its 
constructor. Due to the fact that, MediaView is a JavaFX 
node, we will be able to apply effects to it.



import java.io.File;  
import javafx.application.Application;  
import javafx.scene.Group;  
import javafx.scene.Scene;  
import javafx.scene.media.Media;  
import javafx.scene.media.MediaPlayer;  
import javafx.scene.media.MediaView;  
import javafx.stage.Stage;  
public class JavaFXVideoDemo extends Application  
{  
    public void start(Stage primaryStage) throws Exception {  
        String path = "G:\\demo.mp4";  
        Media media = new Media(new File(path).toURI().toString());  
        MediaPlayer mediaPlayer = new MediaPlayer(media);  
        MediaView mediaView = new MediaView(mediaPlayer);  
        mediaPlayer.setAutoPlay(true);  
        Group root = new Group();  
        root.getChildren().add(mediaView);  
        Scene scene = new Scene(root,1366,768);  
        primaryStage.setScene(scene);  
        primaryStage.setTitle("Playing video");  
        primaryStage.show();  
    }  
    public static void main(String[] args) {  
        launch(args);  
    }    
} 

Video Example



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2626

Audio
 We can load the audio files with extensions 

like .mp3,.wav and .aifff by using JavaFX Media API. We 
can also play the audio in HTTP live streaming format. 

 Instantiate javafx.scene.media.Media class by passing 
the audio file path in its constructor to play the audio 
files.



Unit – 8: JavaFXUnit – 8: JavaFX Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2727

Audio Example
import java.io.File;  
import javafx.application.Application;  
import javafx.scene.media.Media;  
import javafx.scene.media.MediaPlayer;  
import javafx.stage.Stage;  
public class JavaFXAudioDemo extends Application  
{    
    public void start (Stage primaryStage) throws Exception {  
        String path = "G://demo.mp3";  
        Media media = new Media(new 
File(path).toURI().toString());  
        MediaPlayer mediaPlayer = new MediaPlayer(media);  
        mediaPlayer.setAutoPlay(true);  
        primaryStage.setTitle("Playing Audio");  
        primaryStage.show();  
    }  
    public static void main(String[] args) {  
        launch(args);  
    }  
}



Prof. Hardik A. Doshi
     9978911553
     
hardik.doshi@darshan.ac.in

2150704
Object Oriented 
Programming with 
JAVA

Unit – 9 
IO 
Programming



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology22

Stream
 The java.io package contains all the classes required for 

input-output operations. 
 All streams represent an input source and an output 

destination. 
 The stream in the java.io package supports all the 

datatype including primitive.
 A stream can be defined as a sequence of data. 
 There are two kinds of Streams

• Byte Stream
• Character Stream



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology33

Byte Streams
 Byte streams provide a convenient means for handling 

input and output of bytes.
 Byte streams are used, for example, when reading or 

writing binary data.



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology44

FileOutputStream
 Java FileOutputStream is an output stream for writing 

data to a file.
 FileOutputStream will create the file before opening it 

for output.
 On opening a read only file, it will throw an exception.

Java 
Applicatio

n
1011011101 …. File



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology55

FileOutputSteam – Methods
Sr
.

Method

1 void write(byte[] b)
This method writes b.length bytes from the specified byte array to this file 
output stream.2 void write(byte[] b, int off, int len)
This method writes len bytes from the specified byte array starting at offset 
off to this file output stream.

3 void write(int b)
This method writes the specified byte to this file output stream.

4 void close()
This method closes this file output stream and releases any system 
resources associated with this stream.



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology66

FileOutputStream - Example
class FileOutDemo {

public static void main(String args[]) {
try {

FileOutputStream fout = new 
FileOutputStream("abc.txt");
String s = "Sourav Ganguly is my favorite player";
byte b[] = s.getBytes();
fout.write(b);
fout.close();
System.out.println("Success...");

} catch (Exception e) {
System.out.println(e);

}
}

}



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology77

FileInputStream
 FileInputStream class is used to read bytes from a file.
 It should be used to read byte-oriented data for example 

to read image, audio, video etc.

Java 
Applicatio

n
1011011101 …. File



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology88

FileInputSteam – Methods
Sr
.

Method

1 public int read() 
the next byte of data, or -1 if the end of the file is reached.2 public int read(byte[] b) 
b - the buffer into which the data is read.
Returns: the total number of bytes read into the buffer, or -1.

3 public int read(byte[] b, int off, int len) 
b - the buffer into which the data is read.
off - the start offset in the destination array b
len - the maximum number of bytes read.
Returns: the total number of bytes read into the buffer, or -1

4 public long skip(long n) 
n - the number of bytes to be skipped.
Returns: the actual number of bytes skipped.

5 public int available()
an estimate of the number of remaining bytes that can be read

6 public void close()
Closes this file input stream and releases any system resources associated.



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology99

Example (FileInputStream)
class SimpleRead {

public static void main(String args[]) {
try {

FileInputStream fin = new 
FileInputStream("abc.txt");
int i = 0;
while ((i = fin.read()) != -1) {

System.out.println((char) i);
}
fin.close();

} catch (Exception e) {
 System.out.println(e);

}
}

}



Ex
am

pl
e 

of
 B

yt
e 

St
ea

m
s import java.io.*;

public class CopyFile {
public static void main(String args[]) throws 
IOException {

FileInputStream in = null;
FileOutputStream out = null;
try {

in = new FileInputStream("input.txt");
out = new FileOutputStream("output.txt");
int c;
while ((c = in.read()) != -1) {

out.write(c);
}

} finally {
if (in != null) {

in.close();
}
if (out != null) {

out.close();
}

}
}

}



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1111

Character Streams
 Character Streams provide a convenient means for 

handling input and output of characters.
 Internationalization is possible as it uses Unicode.



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1212

Reader
 The Java Reader class is the base class of all Reader's in 

the I-O API.
 Subclasses include a FileReader, FileWriter, 
BufferedReader, BufferedWriter, 
InputStreamReader, StringReader and several 
others.

 Here is a simple Java IO Reader example:

 Combining Readers with InputStream

Reader reader = new FileReader("c:\\data\\
myfile.txt");
int data = reader.read();
while (data != -1) {

char dataChar = (char) data;
data = reader.read();

}

Reader reader = new InputStreamReader("c:\\data\\
myfile.txt");



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1313

Writer
 The Java Writer class is the base class of all Writers in 

the I-O API. 
 Subclasses include BufferedWriter, PrintWriter, 
StringWriter and several others.

 Here is a simple Java IO Writer example:

 Combining Readers With OutputStreams

Writer writer = new FileWriter("c:\\data\\file-
output.txt");
writer.write("Hello World Writer");
writer.close();

Writer writer = 
new OutputStreamWriter("c:\\data\\file-output.txt");



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1414

FileWriter
 FileWriter is useful to create a file writing characters into 

it.
 This class inherits from the OutputStreamWriter class.
 Constructors of FileWriter class are as follows:Sr. Constructor

1 FileWriter(File file)
Constructs a FileWriter object given a File object.

2 FileWriter (File file, boolean append)
Constructs a FileWriter object given a File object, it will append 
if  second parameter is true.

3 FileWriter(String file)
Constructs a FileWriter object from the path given in 
parameter.

4 FileWriter (String file, boolean append)
Constructs a FileWriter object from the path given, it will 
append if  second parameter is true.



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1515

FileWriter – Methods
Sr. Methods
1 public void write (int c) throws IOException

Writes a single character.
2 public void write (char [] str) throws IOException

Writes an array of characters.
3 public void write(String str)throws IOException

Writes a string
4 public void write(String str,int off,int len)throws IOException

Writes a portion of a string. Here off is offset from which to start 
writing characters and len is number of character to write.



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1616

FileReader
 FileReader is useful to read data in the form of characters 

from a text file.
 This class inherit from the InputStreamReader Class.
 Constructors of FileReader class are as follows:

Sr. Constructor
1 FileReader(File file)

Creates a FileReader , given the File to read from.
2 FileReader(String fileName)

Creates a new FileReader , given the name of the file to read 
from.

3 FileReader(FileDescripter fd)
Creates a new FileReader , given the FileDescripter to read 
from.



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1717

FileReader (Cont.)
Sr. Methods
1 public int read () throws IOException

Reads a single character. This method will block until a character is 
available, an I/O error occurs, or the end of the stream is reached.

2 public int read(char[] cbuff) throws IOException
Reads characters into an array. This method will block until some input 
is available, an I/O error occurs, or the end of the stream is reached.

3 public abstract int read(char[] buff, int off, int len) throws 
IOException
Reads characters into a portion of an array. This method will block 
until some input is available, an I/O error occurs, or the end of the 
stream is reached.
Parameters:

cbuf – Destination buffer
off – Offset at which to start storing characters
len – Maximum number of characters to read

4 public long skip(long n) throws IOException
Skips characters. This method will block until some characters are 
available, an I/O error occurs, or the end of the stream is reached.



Ex
am

pl
e 

Fi
le

Re
ad

er
/F

ile
W

rit
er

import java.io.*;

public class CopyFile {
public static void main(String args[]) throws 
IOException {

FileReader in = null;
FileWriter out = null;
try {

in = new FileReader("input.txt");
out = new FileWriter("output.txt");
int c;
while ((c = in.read()) != -1) {

out.write(c);
}

} finally {
if (in != null) {

in.close();
}
if (out != null) {

out.close();
}

}
}

}



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1919

BufferedReader
 The java.io.BufferedReader class reads text from a 

character-input stream, buffering characters so as to 
provide for the efficient reading of characters, arrays, 
and lines.

 Following are the important points about 
BufferedReader:
• The buffer size may be specified, or the default size may be used.
• Each read request made of a Reader causes a corresponding 

read request to be made of the underlying character or byte 
stream.

Sr. Constructor
1 BufferedReader(Reader in)

This creates a buffering character-input stream that uses a default-
sized input buffer.

2 BufferedReader(Reader in, int sz)
This creates a buffering character-input stream that uses an input 
buffer of the specified size.



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2020

BufferedReader – Example
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

class BufferedReaderDemo {
public static void main(String[] args) throws IOException 
{

FileReader fr = new FileReader("input.txt");
BufferedReader br = new BufferedReader(fr);
char c[] = new char[20];
br.skip(8);
if (br.ready()) {

System.out.println(br.readLine());
br.read(c);
for (int i = 0; i < 20; i++) {

System.out.print(c[i]);
}

}
}

}



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2121

BufferedReader (Cont.)
Sr. Methods
1 void close()

This method closes the stream and releases any system resources 
associated with it.

2 int read()
This method reads a single character.

3 int read(char[] cbuf, int off, int len)
This method reads characters into a portion of an array.

4 String readLine()
This method reads a line of text.

5 void reset()
This method resets the stream.

6 long skip(long n)
This method skips characters.



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2222

File class
 Java File class represents the files and directory 

pathnames in an abstract manner. This class is used for 
creation of files and directories, file searching, file 
deletion etc.

 The File object represents the actual file/directory on the 
disk. Below given is the list of constructors to create a File 
object.

Sr. Constructor
1 File(String pathname) 

Creates a new File instance by converting the given pathname string 
into an abstract pathname.

2 File(String parent, String child) 
Creates a new File instance from a parent pathname string and a child 
pathname string.

3 File(URI uri)
Creates a new File instance by converting the given file: URI into an 
abstract pathname.



import java.io.File;
class FileDemo {

public static void main(String args[]) { 
File f1 = new File("FileDemo.java");
System.out.println("File Name: " + f1.getName());
System.out.println("Path: " + f1.getPath());
System.out.println("Abs Path: " + f1.getAbsolutePath());
System.out.println("Parent: " + f1.getParent());
System.out.println(f1.exists() ? "exists" : "does not 
exist");
System.out.println(f1.canWrite() ? "is writeable" : "is 
not writeable");
System.out.println (f1.canRead () ? "is readable" : "is 
not readable");
System.out.println ("is " + (f1.isDirectory() ? "" : "not" 
+ " a directory"));
System.out.println(f1.isFile() ? "is normal file" : "might 
be a named pipe");
System.out.println(f1.isAbsolute() ? "is absolute" : "is 
not absolute");
System.out.println("File last modified: " + 
f1.lastModified());
System.out.println("File size: " + f1.length() + " 
Bytes");

}
}



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2424

Methods of File Class
Sr
.

Method

1 public boolean isAbsolute() 
Tests whether this abstract pathname is absolute. Returns true if this 
abstract pathname is absolute, false otherwise

2 public String getAbsolutePath() 
Returns the absolute pathname string of this abstract pathname.

3 public boolean canRead() 
Tests whether the application can read the file denoted by this abstract 
pathname. Returns true if and only if the file specified by this abstract 
pathname exists and can be read by the application; false otherwise.

4 public boolean canWrite() 
Tests whether the application can modify to the file denoted by this abstract 
pathname. Returns true if and only if the file system actually contains a file 
denoted by this abstract pathname and the application is allowed to write 
to the file; false otherwise.

5 public boolean exists() 
Tests whether the file or directory denoted by this abstract pathname 
exists. Returns true if and only if the file or directory denoted by this 
abstract pathname exists; false otherwise



Unit – 9: IOUnit – 9: IO Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2525

Methods of File Class (Cont.)
Sr. Method
6 public boolean isDirectory() 

Tests whether the file denoted by this abstract pathname is a directory. 
Returns true if and only if the file denoted by this abstract pathname exists 
and is a directory; false otherwise.

7 public boolean isFile()
Tests whether the file denoted by this abstract pathname is a normal file. A 
file is normal if it is not a directory and, in addition, satisfies other system-
dependent criteria

8 public long lastModified() 
Returns the time that the file denoted by this abstract pathname was last 
modified. Returns a long value representing the time the file was last 
modified, measured in milliseconds since the epoch (00:00:00 GMT, January 
1, 1970).

9 public long length() Returns the length of the file denoted by this abstract 
pathname.

10 public boolean delete() Deletes the file or directory.
11 public String[] list() 

Returns an array of strings naming the files and directories in the directory 
denoted by this abstract pathname.



Prof. Hardik A. Doshi
     9978911553
     
hardik.doshi@darshan.ac.in

3140705
Object Oriented 
Programming - I

Unit – 10
Collection 
Framework



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology22

Collection
 The Collection in Java is a framework that provides an 

architecture to store and manipulate the group of 
objects.

 Java Collections can achieve all the operations that you 
perform on a data such as searching, sorting, insertion, 
manipulation, and deletion.

 Java Collection means a single unit of objects. Java 
Collection framework provides many interfaces (Set, List, 
Queue, Deque) and classes (ArrayList, Vector, LinkedList, 
PriorityQueue, HashSet, LinkedHashSet, TreeSet).



Hierarchy of 
Collection 

Framework



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology44

Collection Interface - Methods
Sr. Method & Description

1 boolean add(E e)
It is used to insert an element in this collection.

2 boolean addAll(Collection<? extends E> c)
It is used to insert the specified collection elements in the invoking 
collection.

3 void clear()
It removes the total number of elements from the collection.

4 booelan contains(Object element)
It is used to search an element.

5 boolean containsAll(Collection<?> c)
It is used to search the specified collection in the collection.

6 boolean equals(Object obj)
Returns true if invoking collection and obj are equal. Otherwise returns 
false.

7 int hashCode()
Returns the hashcode for the invoking collection.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology55

Collection Interface - Methods
Sr. Method & Description

8 boolean isEmpty()
Returns true if the invoking collection is empty. Otherwise returns false.

9 Iterator iterator()
It returns an iterator.

10 boolean remove(Object obj)
Removes one instance of obj from the invoking collection. Returns true if 
the element was removed. Otherwise, returns false.

11 boolean removeAll(Collection<?> c)
It is used to delete all the elements of the specified collection from the 
invoking collection.

12 boolean retainAll(Collection<?> c)
It is used to delete all the elements of invoking collection except the 
specified collection.

13 int size()
It returns the total number of elements in the collection.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology66

Collection Interface - Methods
Sr. Method & Description

14 Object[] toArray()
Returns an array that contains all the elements stored in the invoking 
collection. The array elements are copies of the collection elements.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology77

List Interface
 The List interface extends Collection and declares 

the behavior of a collection that stores a sequence of 
elements.

 Elements can be inserted or accessed by their position in 
the list, using a zero-based index. 

 A list may contain duplicate elements.
 List is a generic interface with following declaration

interface List<E>

where E specifies the type of object.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology88

List Interface (example)
import java.util.*;
public class CollectionsDemo {
   public static void main(String[] args) {
      List a1 = new ArrayList();
      a1.add("Sachin");
      a1.add("Sourav");
      a1.add("Shami");
      System.out.println("ArrayList Elements");
      System.out.print("\t" + a1);

      List l1 = new LinkedList();
      l1.add("Mumbai");
      l1.add("Kolkata");
      l1.add("Vadodara");
      System.out.println();
      System.out.println("LinkedList Elements");
      System.out.print("\t" + l1);
   }
}

Here ArrayList 
& LinkedList 
implements 

List Interface



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology99

List Interface - Methods
Sr. Method & Description

1 void add(int index, Object obj)
Inserts obj into the invoking list at the index passed in index. Any pre-
existing elements at or beyond the point of insertion are shifted up. Thus, 
no elements are overwritten.

2 boolean addAll(int index, Collection c)
Inserts all elements of c into the invoking list at the index passed in 
index. Any pre-existing elements at or beyond the point of insertion are 
shifted up. Thus, no elements are overwritten. Returns true if the 
invoking list changes and returns false otherwise.

3 Object get(int index)
Returns the object stored at the specified index within the invoking 
collection.

4 int indexOf(Object obj)
Returns the index of the first instance of obj in the invoking list. If obj is 
not an element of the list, .1 is returned.

5 int lastIndexOf(Object obj)
Returns the index of the last instance of obj in the invoking list. If obj is 
not an element of the list, -1 is returned.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1010

List Interface (methods) (cont.)
Sr. Method & Description

6 ListIterator listIterator( )
Returns an iterator to the start of the invoking list.

7 ListIterator listIterator(int index)
Returns an iterator to the invoking list that begins at the specified index.

8 Object remove(int index)
Removes the element at position index from the invoking list and 
returns the deleted element. The resulting list is compacted. That is, the 
indexes of subsequent elements are decremented by one

9 Object set(int index, Object obj)
Assigns obj to the location specified by index within the invoking list.

10 List subList(int start, int end)
Returns a list that includes elements from start to end-1 in the 
invoking list. Elements in the returned list are also referenced by the 
invoking object.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1111

Iterator
 Iterator interface is used to cycle through elements in a collection, 

eg. displaying elements.
 ListIterator extends Iterator to allow bidirectional traversal 

of a list, and the modification of elements.
 Each of the collection classes provides an iterator( ) method 

that returns an iterator to the start of the collection. By using this 
iterator object, you can access each element in the collection, one 
element at a time.

 To use an iterator to cycle through the contents of a collection, 
follow these steps:
1. Obtain an iterator to the start of the collection by calling the collection's 

iterator( ) method.
2. Set up a loop that makes a call to hasNext( ). Have the loop iterate as long 

as hasNext( ) returns true.
3. Within the loop, obtain each element by calling next( ).



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1212

Iterator - Example
import java.util.*;
public class IteratorDemo {

public static void main(String args[]) {
ArrayList<String> al = new ArrayList<String>();
al.add("C");
al.add("A");
al.add("E");
al.add("B");
al.add("D");
al.add("F");
System.out.print("Contents of list: ");
Iterator<String> itr = al.iterator();
while(itr.hasNext()) {

Object element = itr.next();
System.out.print(element + " ");

}
}

}



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1313

Iterator - Methods
Sr. Method & Description

1 boolean hasNext()
Returns true if there are more elements. Otherwise, returns false.

2 E next()
Returns the next element. Throws NoSuchElementException if 
there is not a next element.

3 void remove()
Removes the current element. Throws IllegalStateException if an 
attempt is made to call remove() that is not preceded by a call to 
next()



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1414

Comparator
 Comparator interface is used to set the sort order of the object 

to store in the sets and lists.
 The Comparator interface defines two methods: compare( ) 

and equals( ).
 int compare(Object obj1, Object obj2)

obj1 and obj2 are the objects to be compared. This method 
returns zero if the objects are equal. It returns a positive value 
if obj1 is greater than obj2. Otherwise, a negative value is 
returned.

 boolean equals(Object obj)

obj is the object to be tested for equality. The method returns 
true if obj and the invoking object are both Comparator 
objects and use the same ordering. Otherwise, it returns false.



import java.util.*;
class Student {

String name;
int age;
Student(String name, 
int age){

this.name = name;
this.age = age;

}
}

public class ComparatorDemo {  
public static void main(String args[]){  

ArrayList<Student> al=new ArrayList<Student>();  
al.add(new Student("Vijay",23));  
al.add(new Student("Ajay",27));  
al.add(new Student("Jai",21));
System.out.println("Sorting by age");  
Collections.sort(al,new AgeComparator());  
Iterator<Student> itr2=al.iterator();  
while(itr2.hasNext()){  

Student st=(Student)itr2.next();  
System.out.println(st.name+" "+st.age);  

}  
}  

}

class AgeComparator implements 
Comparator<Object>{  

public int compare(Object o1,Object o2){  
Student s1=(Student)o1;  
Student s2=(Student)o2;  
if(s1.age==s2.age) return 0;  
else if(s1.age>s2.age) return 1;  
else return -1;  

}  
}  



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1616

Vector Class
 Vector implements a dynamic array. 
 It is similar to ArrayList, but with two differences:

• Vector is synchronized.
• Vector contains many legacy methods that are not part of 

the collection framework
 Vector proves to be very useful if you don't know the 

size of the array in advance or you just need one that 
can change sizes over the lifetime of a program.

 Vector is declared as follows:
Vector<E> = new Vector<E>;



import java.util.*;  
public class VectorDemo {  
       public static void main(String args[]) {  
          //Create an empty vector with initial capacity 4  
          Vector<String> vec = new Vector<String>(4);  
          //Adding elements to a vector  
          vec.add("Tiger");  
          vec.add("Lion");  
          vec.add("Dog");  
          vec.add("Elephant");  
          //Check size and capacity  
          System.out.println("Size is: "+vec.size());  
          System.out.println("Default capacity is: "+vec.capacity());  
          //Display Vector elements  
          System.out.println("Vector element is: "+vec);  
          vec.addElement("Rat");  
          vec.addElement("Cat");  
          vec.addElement("Deer");  
          //Again check size and capacity after two insertions  
          System.out.println("Size after addition: "+vec.size());  
          System.out.println("Capacity after addition is: "+vec.capacity());  
          //Display Vector elements again  
          System.out.println("Elements are: "+vec);  
          //Checking if Tiger is present or not in this vector         
          if(vec.contains("Tiger"))  
          {  
             System.out.println("Tiger is present at the index " +vec.indexOf("Tiger"));  
          }  
          else  
          {  
             System.out.println("Tiger is not present in the list.");  
          }  
          //Get the first element  
          System.out.println("The first animal of the vector is = "+vec.firstElement());   
          //Get the last element  
          System.out.println("The last animal of the vector is = "+vec.lastElement());   
       }  
}



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1818

Vector - Constructors
Sr. Constructor & Description

1 Vector( )
This constructor creates a default vector, which has an initial size of 
10

2 Vector(int size)
This constructor accepts an argument that equals to the required 
size, and creates a vector whose initial capacity is specified by size:

3 Vector(int size, int incr)
This constructor creates a vector whose initial capacity is specified 
by size and whose increment is specified by incr. The increment 
specifies the number of elements to allocate each time that a 
vector is resized upward

4 Vector(Collection c)
creates a vector that contains the elements of collection c



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1919

Vector - Methods
Sr. Method & Description

7 boolean containsAll(Collection c)
Returns true if this Vector contains all of the elements in the 
specified Collection.

8 Enumeration elements()
Returns an enumeration of the components of this vector.

9 Object firstElement()
Returns the first component (the item at index 0) of this vector.

10 Object get(int index)
Returns the element at the specified position in this Vector.

11 int indexOf(Object elem)
Searches for the first occurence of the given argument, testing for 
equality using the equals method.

12 boolean isEmpty()
Tests if this vector has no components.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2020

Vector - Methods (cont.)
Sr. Method & Description

13 Object lastElement()
Returns the last component of the vector.

14 int lastIndexOf(Object elem)
Returns the index of the last occurrence of the specified object in 
this vector.

15 Object remove(int index)
Removes the element at the specified position in this Vector.

16 boolean removeAll(Collection c)
Removes from this Vector all of its elements that are contained in 
the specified Collection.

17 Object set(int index, Object element)
Replaces the element at the specified position in this Vector with 
the specified element.

18 int size()
Returns the number of components in this vector.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2121

Stack
 Stack is a subclass of Vector that implements a 

standard last-in, first-out stack.
 Stack only defines the default constructor, which creates 

an empty stack.
 Stack includes all the methods defined by Vector and 

adds several of its own.
 Stack is declared as follows:

Stack<E> st = new Stack<E>();

where E specifies the type of object.



import java.util.*;
public class StackDemo {
   static void showpush(Stack<Integer> st, int a) {
      st.push(new Integer(a));
      System.out.println("push(" + a + ")");
      System.out.println("stack: " + st);
   }
   static void showpop(Stack<Integer> st) {
      System.out.print("pop -> ");
      Integer a = (Integer) st.pop();
      System.out.println(a);
      System.out.println("stack: " + st);
   }
   public static void main(String args[]) {
      Stack<Integer> st = new Stack<Integer>();
      System.out.println("stack: " + st);
      showpush(st, 42);
      showpush(st, 66);
      showpush(st, 99);
      showpop(st);
      showpop(st);
      showpop(st);
      try {
         showpop(st);
      } catch (EmptyStackException e) {
         System.out.println("empty stack");
      }
   }
}



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2323

Stack - Methods

Sr. Method & Description

1 boolean empty()
Returns true if the stack is empty, and returns false if the stack 
contains elements.

2 E peek()
Returns the element on the top of the stack, but does not remove it.

3 E pop()
Returns the element on the top of the stack, removing it in the process.

4 E push(E element)
Pushes element onto the stack. Element is also returned.

5 int search(Object element)
Searches for element in the stack. If found, its offset from the top of 
the stack is returned. Otherwise, -1 is returned.

 Stack includes all the methods defined by Vector and adds 
several methods of its own.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2424

Queue
 Queue interface extends Collection and declares the 

behaviour of a queue, which is often a first-in, first-out 
list.

 LinkedList and PriorityQueue are the two classes 
which implements Queue interface

 Queue is declared as follows:
Queue<E> q = new LinkedList<E>();

Queue<E> q = new PriorityQueue<E>();

where E specifies the type of object.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2525

Queue Example
import java.util.*;
public class QueueDemo {

public static void main(String[] args) {
Queue<String> q = new LinkedList<String>();
q.add("Tom");
q.add("Jerry"); 
q.add("Mike");
q.add("Steve");
q.add("Harry");
System.out.println("Elements in Queue:"+q);
System.out.println("Removed element: 
"+q.remove());
System.out.println("Head: "+q.element());
System.out.println("poll(): "+q.poll());
System.out.println("peek(): "+q.peek());
System.out.println("Elements in Queue:"+q);

}
}



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2626

Queue - Methods
Sr. Method & Description

1 E element()
Returns the element at the head of the queue. The element is not 
removed. It throws NoSuchElementException if the queue is empty.

2 boolean offer(E obj)
Attempts to add obj to the queue. Returns true if obj was added and 
false otherwise.

3 E peek()
Returns the element at the head of the queue. It returns null if the 
queue is empty. The element is not removed.

4 E poll()
Returns the element at the head of the queue, removing the element 
in the process. It returns null if the queue is empty.

5 E remove()
Returns the element at the head of the queue, returning the element 
in the process. It throws NoSuchElementException if the queue is 
empty.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2727

PriorityQueue
 PriorityQueue extends AbstractQueue and 

implements the Queue interface.
 It creates a queue that is prioritized based on the queue's 

comparator. 
 PriorityQueue is declared as follows:

PriorityQueue<E> = new PriorityQueue<E>;
 It builds an empty queue with starting capacity as 11.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2828

PriorityQueue - Example
import java.util.*;
public class PriorityQueueExample {
    public static void main(String[] args) {
        PriorityQueue<Integer> numbers = new 
PriorityQueue<>();
        numbers.add(750);
        numbers.add(500);
        numbers.add(900);
        numbers.add(100);
        while (!numbers.isEmpty()) {
            System.out.println(numbers.remove());
        }
    }
}



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology2929

PriorityQueue - Constructors
Sr. Constructor & Description

1 PriorityQueue()

Creates a PriorityQueue with the default initial capacity (11) that orders its elements 
according to their natural ordering.

2 PriorityQueue(Collection<? extends E> c)

Creates a PriorityQueue containing the elements in the specified collection.

3 PriorityQueue(int initialCapacity)
Creates a PriorityQueue with the specified initial capacity that orders its elements 
according to their natural ordering.

4 PriorityQueue(int initialCapacity, Comparator<? super E> 
comparator)
Creates a PriorityQueue with the specified initial capacity that orders its elements 
according to the specified comparator.

5 PriorityQueue(PriorityQueue<? extends E> c) 
Creates a PriorityQueue containing the elements in the specified priority queue.

6 PriorityQueue(SortedSet<? extends E> c)

Creates a PriorityQueue containing the elements in the specified sorted set.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3030

PriorityQueue - Methods
Sr. Method & Description

1 boolean add(E e)
Inserts the specified element into this priority queue.

2 void clear()
Removes all of the elements from this priority queue.

3 Comparator<E> comparator()
Returns the comparator used to order the elements in this queue, 
or null if this queue is sorted according to the natural ordering of 
its elements.

4 boolean contains(Object o)
Returns true if this queue contains the specified element.

5 Iterator<E> iterator()
Returns an iterator over the elements in this queue.

6 boolean offer(E e)
Inserts the specified element into this priority queue.



Unit – 10: Collection FrameworkUnit – 10: Collection Framework Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology3131

PriorityQueue - Methods
Sr. Method & Description

7 E peek()
Retrieves, but does not remove, the head of this queue, or returns 
null if this queue is empty.

8 E poll()
Retrieves and removes the head of this queue, or returns null if this 
queue is empty.

9 boolean remove(Object o)
Removes a single instance of the specified element from this 
queue, if it is present.

10 int size()
Returns the number of elements in this collection.

11 Object[] toArray()
Returns an array containing all of the elements in this queue.



Prof. Hardik A. Doshi
     9978911553
     
hardik.doshi@darshan.ac.in

3140705
Object Oriented 
Programming - I

Unit – 11
Sets & Maps



Unit – 11: Sets & MapsUnit – 11: Sets & Maps Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology22

List v/s Sets
List Set
Lists allow duplicates. Sets allow only unique 

elements.

When to use List and Set?
Lists - If insertion order is maintained during insertion and allows 
duplicates.
Sets – If unique collection without any duplicates without maintaining 
order.

List is an ordered collection. Sets is an unordered 
collection.Popular implementation of 

List interface includes 
ArrayList, Vector and 
LinkedList.

Popular implementation of 
Set interface includes 
HashSet, TreeSet and 
LinkedHashSet.



Unit – 11: Sets & MapsUnit – 11: Sets & Maps Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology33

Singleton & Unmodifiable Collection
 java.util.Collections.singleton() method is a 

java.util.Collections class (static) method. 
 It creates a immutable set over a single specified 

element. 
 An application of this method is to remove an element 

from Collections like List and Set.



Unit – 11: Sets & MapsUnit – 11: Sets & Maps Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology44

Example
myList : {"God", "code", "Practice", " Error", 

 "Java", "Class", "Error", "Practice", 
"Java" }

 To remove all "Error" elements from the list at once, we 
use  singleton() method as, 

myList.removeAll(Collections.singleton("Error"
));

 After using singleton() and removeAll(), we get 
following.
{"God", "code", "Practice", "Java", "Class", 

"Practice", "Java"}



Unit – 11: Sets & MapsUnit – 11: Sets & Maps Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology55

Maps
 A map is an object that stores associations between keys 

and values, or key/valuepairs. 
 Given a key, you can find its value. Both keys and values 

are objects. 
 The keys must be unique, but the values may be 

duplicated. Some maps can accept a null key and null 
values, others cannot.

 Maps don't implement the Iterable interface. This means 
that you cannot cycle through a map using a for-each 
style for loop. Furthermore, you can’t obtain an iterator 
to a map.



Unit – 11: Sets & MapsUnit – 11: Sets & Maps Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology66

Map Interfaces
Interface Description
Map Maps unique keys to values.
Map.Entry Describes an element (a key/value pari) 

in a map. This is an inner class of Map.
NavigableMap Extends SortedMap to handle the 

retrieval of entries based on closest-
match searches.

SortedMap Extends Map so that the keys are 
maintained in ascending order.



Unit – 11: Sets & MapsUnit – 11: Sets & Maps Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology77

Map Classes
Class Description
AbstractMap Implements most of the Map interface.
EnumMap Extends AbstractMap for use with enum 

keys.
HashMap Extends AbstractMap to use a hash 

table.
TreeMap Extends AbstractMap to use a tree.
WeakHashMap Extends AbstractMap to use a hash table 

with weak keys.
LinkedHashMap Extends HashMap to allow insertion-

order iterators.
IdentityHashMap Extends AbstractMap and uses reference 

equality when comparing documents.



Unit – 11: Sets & MapsUnit – 11: Sets & Maps Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology88

HashMap Class
 The HashMap class extends AbstractMap and 

implements the Map interface. 
 It uses a hash table to store the map. This allows the 

execution time of get() and put() to remain constant even 
for large sets. 

 HashMap is a generic class that has declaration:
class HashMap<K,V>



import java.util.*;
class HashMapDemo {

public static void main(String args[]) {
// Create a hash map.
HashMap<String, Double> hm = new HashMap<String, Double>();
// Put elements to the map
hm.put("John Doe", new Double(3434.34));
hm.put("Tom Smith", new Double(123.22));
hm.put("Jane Baker", new Double(1378.00));
hm.put("Tod Hall", new Double(99.22));
hm.put("Ralph Smith", new Double(-19.08));
// Get a set of the entries.
Set<Map.Entry<String, Double>> set = hm.entrySet();
// Display the set.
for(Map.Entry<String, Double> me : set) {

System.out.print(me.getKey() + ": ");
System.out.println(me.getValue());

}
System.out.println();
//Deposit 1000 into John Doe's account.
double balance = hm.get("John Doe");
hm.put("John Doe", balance + 1000);
System.out.println("John Doe's new balance: " +
hm.get("John Doe"));

}
}



Unit – 11: Sets & MapsUnit – 11: Sets & Maps Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1010

HashMap - Constructors
Sr. Constructor & Description

1 HashMap()
Constructs an empty HashMap with the default initial capacity (16) 
and the default load factor (0.75).

2 HashMap(int initialCapacity)
Constructs an empty HashMap with the specified initial capacity 
and the default load factor (0.75).

3 HashMap(int initialCapacity, float loadFactor)
Constructs an empty HashMap with the specified initial capacity 
and load factor.

4 HashMap(Map<? extends K,? extends V> m)
Constructs a new HashMap with the same mappings as the 
specified Map.



Prof. Hardik A. Doshi
     9978911553
     
hardik.doshi@darshan.ac.in

3140705
Object Oriented 
Programming - I

Unit – 12
Concurrency / 
Multithreading



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology22

What is Multithreading?
 Multithreading in Java is a process of executing multiple 

threads simultaneously.
 A thread is a lightweight sub-process, the smallest unit of 

processing. 
 Multiprocessing and multithreading, both are used to 

achieve multitasking.
 Threads use a shared memory area. They don't allocate 

separate memory area so saves memory, and context-
switching between the threads takes less time than 
process.



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology33

Life cycle of a Thread

new

runnable

timed 
waitingwaiting terminate

d

Program starts 
thread

unlock

sig
nal

sig
nalAll

await

lock aw
ai

t
sl

ee
p

In
te

rv
al

ex
pi

re
s

Thread completes

Task



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology44

Life cycle of a Thread (Cont.)
 A thread goes through various stages in its life cycle. For 

example, a thread is born, started, runs, and then dies. 
 There are 5 stages in the life cycle of the Thread
• New: A new thread begins its life cycle in the new state. It remains in this state 

until the program starts the thread. It is also referred to as a born thread.
• Runnable: After a newly born thread is started, the thread becomes runnable. A 

thread in this state is considered to be executing its task.
• Waiting: Sometimes a thread transitions to the waiting state while the thread 

waits for another thread to perform a task. A thread transitions back to the 
runnable state only when another thread signals waiting thread to continue.

• Timed waiting: A runnable thread can enter the timed waiting state for a 
specified interval of time. A thread in this state transitions back to the runnable 
state when that time interval expires or when the event it is waiting for occurs.

• Terminated: A runnable thread enters the terminated state when it completes 
its task or otherwise terminates.



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology55

Creating a Thread in Java
 There are two ways to create a Thread

1. extending the Thread class
2. implementing the Runnable interface



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology66

1) Extending Thread Class
 One way to create a thread is to create a new class that 

extends Thread, and then to create an instance of that 
class. 

 The extending class must override the run( ) method, 
which is the entry point for the new thread. 

 It must also call start( ) to begin execution of the new 
thread.



class NewThread extends Thread {
NewThread() {

super("Demo Thread");
System.out.println("Child thread: " + this);
start(); // Start the thread

}
public void run() {

try {
for (int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);
Thread.sleep(500);

}
} catch (InterruptedException e) {
    System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");

}
}
class ExtendThread {

public static void main(String args[]) {
new NewThread(); // create a new thread
try {

for (int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e) {
     System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");

}
}



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology88

2) Implementing Runnable Interface
 To implement thread using Runnable interface, Runnable 

interface needs to be implemented by the class.
class NewThread implements Runnable

 Class which implements Runnable interface should override 
the run() method which containts the logic of the thread.

public void run( ) 
 Instance of Thread class is created using following constructor.

Thread(Runnable threadOb, String threadName);
 Here threadOb is an instance of a class that implements the 
Runnable interface and the name of the new thread is 
specified by threadName. 

 start() method of Thread class will invoke the run() 
method.



class NewThread extends Thread {
NewThread() {

super("Demo Thread");
System.out.println("Child thread: " + this);
start(); // Start the thread

}
public void run() {

try {
for (int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);
Thread.sleep(500);

}
} catch (InterruptedException e) {
    System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");

}
}
class ExtendThread {

public static void main(String args[]) {
new NewThread(); // create a new thread
try {

for (int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e) {
     System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");

}
}

class NewThread implements Runnable {

Thread t = new Thread(this, "Demo Thread");
System.out.println("Child thread: " + t);
t.start(); // Start the thread



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1010

Thread using Executor Framework
 Steps to execute thread using Executor Framework are as 

follows:
1. Create a task (Runnable Object) to execute
2. Create Executor Pool using Executors
3. Pass tasks to Executor Pool
4. Shutdown the Executor Pool



import java.util.concurrent.*; 
class Task implements Runnable { 

private String name; 
public Task(String s) { 

name = s; 
} 
public void run() { 

try { 
for (int i = 1; i<=5; i++) { 

System.out.println(name+" - task number - "+i);
Thread.sleep(1000); 

} 
System.out.println(name+" complete"); 

} 
catch(InterruptedException e) { 
      e.printStackTrace(); 
} 

}
}
public class ExecutorThreadDemo { 

public static void main(String[] args) { 
Runnable r1 = new Task("task 1"); 
Runnable r2 = new Task("task 2"); 
Runnable r3 = new Task("task 3"); 
Runnable r4 = new Task("task 4"); 
Runnable r5 = new Task("task 5"); 
ExecutorService pool = Executors.newFixedThreadPool(3); 
pool.execute(r1); 
pool.execute(r2); 
pool.execute(r3); 
pool.execute(r4); 
pool.execute(r5); 
pool.shutdown(); 

} 
}



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1212

Thread Synchronization
 When we start two or more threads within a program, there may 

be a situation when multiple threads try to access the same 
resource and finally they can produce unforeseen result due to 
concurrency issues.

 For example, if multiple threads try to write within a same file 
then they may corrupt the data because one of the threads can 
override data or while one thread is opening the same file at the 
same time another thread might be closing the same file.

 So there is a need to synchronize the action of multiple threads 
and make sure that only one thread can access the resource at a 
given point in time. 

 Java programming language provides a very handy way of 
creating threads and synchronizing their task by using 
synchronized methods & synchronized blocks.



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1313

Problem without synchronization (Example)
class Table {
  void printTable(int n) {
    for (int i = 1; i <= 5; i++) {
      System.out.print(n * i + " ");
      try {
        Thread.sleep(400);
      } catch (Exception e) {
        System.out.println(e);
      }
    }
  }
}

class MyThread1 extends 
Thread {
  Table t;
  MyThread1(Table t) {
    this.t = t;
  }
  public void run() {
    t.printTable(5);
  }
}
class MyThread2 extends 
Thread {
  Table t;
  MyThread2(Table t) {
    this.t = t;
  }
  public void run() {
    t.printTable(100);
  }
}

public class TestSynchronization {
  public static void main(String 
args[]){
    Table obj = new Table();
    MyThread1 t1 = new MyThread1(obj);
    MyThread2 t2 = new MyThread2(obj);
    t1.start();
    t2.start();
  }
}



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1414

Solution with synchronized method
class Table {
  synchronized void printTable(int n) 
{
    for (int i = 1; i <= 5; i++) {
      System.out.print(n * i + " ");
      try {
        Thread.sleep(400);
      } catch (Exception e) {
        System.out.println(e);
      }
    }
  }
}

class MyThread1 extends 
Thread {
  Table t;
  MyThread1(Table t) {
    this.t = t;
  }
  public void run() {
    t.printTable(5);
  }
}
class MyThread2 extends 
Thread {
  Table t;
  MyThread2(Table t) {
    this.t = t;
  }
  public void run() {
    t.printTable(100);
  }
}

public class TestSynchronization {
  public static void main(String 
args[]){
    Table obj = new Table();
    MyThread1 t1 = new MyThread1(obj);
    MyThread2 t2 = new MyThread2(obj);
    t1.start();
    t2.start();
  }
}



Unit – 12: ConcurrencyUnit – 12: Concurrency Darshan Institute of Engineering & 
Technology
Darshan Institute of Engineering & 
Technology1515

Solution with synchronized blocks
class Table {
  void printTable(int n) {
    for (int i = 1; i <= 5; i++) {
      System.out.print(n * i + " ");
      try {
        Thread.sleep(400);
      } catch (Exception e) {
        System.out.println(e);
      }
    }
  }
}

class MyThread1 extends 
Thread {
  Table t;
  MyThread1(Table t) {
    this.t = t;
  }
  public void run() {
    synchronized (t) {
      t.printTable(5);
    }
  }
}

public class TestSynchronization {
  public static void main(String 
args[]){
    Table obj = new Table();
    MyThread1 t1 = new MyThread1(obj);
    MyThread2 t2 = new MyThread2(obj);
    t1.start();
    t2.start();
  }
}

class MyThread1 extends 
Thread {
  Table t;
  MyThread1(Table t) {
    this.t = t;
  }
  public void run() {
    synchronized (t) {
      t.printTable(100);
    }
  }
}


	3140705_OOP---I_GTU_Study_Material_PDF_Unit-1
	3140705_OOP---I_GTU_Study_Material_PDF_Unit-7
	3140705_OOP---I_GTU_Study_Material_PDF_Unit-8
	3140705_OOP---I_GTU_Study_Material_PDF_Unit-9
	3140705_OOP---I_GTU_Study_Material_PDF_Unit-10
	3140705_OOP---I_GTU_Study_Material_PDF_Unit-11
	3140705_OOP---I_GTU_Study_Material_PDF_Unit-12

