

Macmillan Computer Science Series

A Abdellatif, J. Le Bihan, M. Limame, Oracle - A User's Guide
I. O. Angell, High-resolution Computer Graphics Using C
I. O. Angell and G. Griffith, High-resolution Computer Graphics Using Pascal
C. Bamford and P. Curran, Data Structures, Files and Databases, second edition
P. Beynon-Davies, Database Systems
P. Beynon-Davies, Information Systems Development, second edition
Linda E.M. Brackenbury, Design of VLSI Systems - A Practical Introduction
Alan Bradley, Peripherals for Computer Systems
P.C. Capon and PJ. Jinks, Compiler Engineering Using Pascal
B. S. Chalk, Computer Organisation and Architecture
Eric Davalo and Patrick Nalill, Neural Networks
Joyce Duncan, Lesley Rackley and Alexandria Walker, SSADM in Practice
D. England et al., A Sun User's Guide, second edition
Jean Ettinger, Programming in C++
lS. Florentin, Microprogrammed Systems Design
Michel Gauthier, Ada - A Professional Course
M.G. Hartley, M. Healey and P.G. Depledge, Mini and Microcomputer Systems
MJ. King and lP. Pardoe, Program Design Using JSP - A Practical Introduction,

second edition
Bernard Leguy, Ada - A Programmer's Introduction
M. Leonard, Database Design Theory
David Lightfoot, Formal Specification Using Z
AM. Lister and R.D. Eager, Fundamentals of Operating Systems,fifth edition
Tom Manns and Michael Coleman, Software Quality Assurance, second edition
G.P. McKeown and VJ. Rayward-Smith, Mathematical Foundations for Computing
B.AE. Meekings, T.P. Kudrycki and M.D. Soren, A book.on C, third edition
RJ. Mitchell, C++ Object-oriented Programming
R.J. Mitchell, Microcomputer Systems Using the STE Bus
RJ. Mitchell, Modula-2 Applied
J.P. Pardoe and M.l King, Object Oriented Programming Using C++

- An Introduction
Pham Thu Quang and C. Chartier-Kastler, MERISE in Practice
Ian Pratt, Artificial Intelligence
F.D. Rolland, Programming with VDM
S. Skidmore, Introducing Systems Analysis, second edition
S. Skidmore, Introducting Systems Analysis, second edition
AG. Sutcliffe, Human-Computer Interface Design, second edition
C.l Theaker and G.R. Brookes, Concepts of Operating Systems
M. Thorin, Real-time Transaction Processing
DJ. Tudor and U. Tudor, Systems Analysis and Design - A Compan'son of Structured

Methods
Al Tyrell, Eiffel Object-Oriented Progru,nming

Other titles
Ian O. Angell and Dimitrios Tsoubelis, Advanced Graphics on VGA and XGA Cards

Using Borland C++
N. Frude, A Guide to SPSSIPC+, second edition
Peter Grossman, Discrete Mathematicsfor Computing
H. Harper and A. Meadows, GNVQ Advanced Information Technology
Percy Mett, Introduction to Computing
P.D. Picton, Neural Networks
Tony Royce, COBOL - An Introduction
Tony Royce, Structured COBOL - An Introduction
Tony Royce, C Programming

Object Oriented Programming
Using C+ +

An Introduction

John Pardoe and Melv King

© J.P. Pardoe and M.J. King 1997

All rights reserved. No reproduction, copy or transmission of
this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or
transmitted save with written permission or in accordance with
the provision of the Copyright, Designs and Patents Act 1988,
or under the terms of any licence permitting limited copying
issued by the Copyright Licensing Agency, 90 Tottenham Court
Road, London WIP 9HE.

Any person who does any unauthorised act in relation to this
pUblication may be liable to criminal prosecution and civil
claims for damages.

The authors have asserted their rights to be identified as
the authors of this work in accordance with the
Copyright, Designs and Patents Act 1988.

First published 1997 by
MACMILLAN PRESS LTD
Houndmills, Basingstoke, Hampshire RG21 6XS
and London
Companies and representatives
throughout the world

ISBN 978-0-333-69241-7 ISBN 978-1-349-14449-5 (eBook)
DOI 10.1007/978-1-349-14449-5

A catalogue record for this book is available
from the British Library.

This book is printed on paper suitable
for recycling and made from fully
managed and sustained forest sources.

10987654321
06 05 04 03 02 01 00 99 98 97

Contents

Preface ix

1 Programming Concepts 1

1.1 Computer programs 1
1.2 The way a program uses the computer's memory 2
1.3 Input and output of data 4
1.4 Computer program development 6
1.5 The user requirements specification 6
1.6 The design stages 7
1.7 Detailed design using pseudo-code 7
1.8 The programming stage 8
1.9 Compiling, running and testing a program 8
1. 10 Documenting and maintaining pro grams 9
1.11 Writing high-quality computer programs 10
1.12 Exercises 10

2 Object Oriented Programming Concepts 12

2.1 Concept of a model 12
2.2 Object classes and objects 13
2.3 Inheritance 15
2.4 Encapsulation 17
2.5 Polymorphism 17
2.6 Modelling a system using object classes 17
2.7 Exercises 18

3 A First Program 21

3.1 The model for our first program 21
3.2 The C++ code for our first program 22
3.3 Coding style 26
3.4 Pseudo-code for a sequence 27
3.5 Exercises 28

v

vi Contents

4 An Introduction to Inheritance 29

4.1 Using a header file 29
4.2 Inheriting code from our first program into a second

program 31
4.3 Exercises 34

5 Arithmetic 36

5.1 Integers 36
5.2 Assignment statements and integer arithmetic 37
5.3 Real arithmetic 38
5.4 A model for a student's assessment in a subject 38
5.5 Using integer and real numbers, the ini tialise

function 42
5.6 The display functions 44
5.7 Exercises 46

6 An Introduction to Selection 49

6.1 Further development of a model for a student's
assessment in a subject 49

6.2 The if statement 49
6.3 The if-else statement 52
6.4 Relational operators 53
6.5 Nested selections 54
6.6 Compound statements 56
6.7 Exercises 57

7 Further Concepts for Selection 62

7.1 Further development of a model for a student's
assessment in a subject 62

7.2 Logical operators 62
7.3 Assigning and comparing characters 66
7.4 The swi tch statement 67
7.5 Exercises 71

Contents

8 Repetition

8.1 Refining the input processes for the student's marks
8.2 The whi le statement
8.3 The for statement
8.4 The do-while statement
8.5 Exercises

9 Functions

9.1 The function call
9.2 The function definition
9.3 A revised version of the student marks object class
9.4 Call by value parameters
9.5 Function results
9.6 Call by reference parameters
9.7 When to use call by value and call by reference
9.8 Exercises

10 Constructors and Destructors

10. 1 Constructors
10.2 Constructors with parameters
10.3 Destructors
10.4 Exercises

11 Introduction to Arrays

11.1 The need for arrays
11.2 Using an array
11.3 Exercises

12 Arrays of Objects

12.1 Using an array of objects
12.2 Aggregation
12.3 Exercises

13 Two-dimensional Arrays

13.1 Using a two-dimensional array
13.2 An alternative approach for entering the data
13.3 Exercises

74

74
77
80
82
85

88

88
89
90
91
93
96

101
101

106

106
109
111
112

114

114
114
121

124

124
128
129

132

132
138
140

vii

viii Contents

14 Object Lifetime and Dynamic Objects

14.1 Object lifetime
14.2 The scope of variables
14.3 The scope of objects
14.4 Dynamic variables
14.5 Dynamic objects
14.6 Exercises

15 Streams and Files

15.1 Disk files
15.2 Streams
15.3 File streams
15.4 Object persistence
15.5 Exercises

16 Introduction to Polymorphism

16.1 What is polymorphism?
16.2 Operator overloading
16.3 Operator functions
16.4 Function overloading
16.5 Generic functions
16.6 Exercises

Appendix A: Object Classes Used in Examples

Appendix B : Solutions to Exercises

Appendix C : C++ Keywords and Operators

Appendix D : The ASCn Character Set

Index

143

143
144
145
147
149
155

161

161
162
164
172
173

177

177
177
179
181
184
187

189

193

246

248

249

Preface

Aim of the book

The increasing use of object oriented techniques for software development is now
a fact of life.

• Increasingly large software projects must use object oriented techniques.
• It has been predicted that object oriented programming will provide the

focus for all new software development.
• The concepts of software reuse are becoming increasingly important.
The aim of this book is to provide an introductory course in the use of object

oriented computer programming using the C++ language. It has been especially
designed to teach those with no previous experience of computer programming.

Many student programmers learn more traditional, procedural approaches to
computer programming before tackling the quite different concepts found in
object oriented programming; many students find this switch difficult. Hence the
need for an introductory text that encourages students to understand basic
programming concepts and techniques within an object oriented framework.

Other books in this area have tended to incorporate so much material, much
of it difficult to assimilate, that the novice reader could well be discouraged. The
temptation to include too much has therefore been resisted. Complex terminology
has been eliminated or explained in simple terms.

What we have included are the basic concepts and terminology of object
oriented programming that will enable the reader to 'get started' and build up the
confidence to move on to more advanced texts.

Content of the book

The book develops the techniques of object oriented programming at the same
time as gradually introducing the language features of C++. Procedural aspects
that should be included in any introductory text, such as the use of structured
programming techniques, have been incorporated.

Many straightforward examples are used to introduce and illustrate both new
techniques and language features.

ix

x Preface

Chapter I covers basic concepts in order that the reader can appreciate what
a computer program is. The development of a program is then put in context by
describing briefly, in general terms, the various stages involved. Chapter 2
introduces the basic object oriented terminology and illustrates how object classes
are used to model a very simple system.

Having introduced a C++ program in chapter 3, the important concept of
inheritance and the use of a header file are covered in chapter 4.

Chapters 5 to 8 cover, within an object oriented context, facilities found in
most procedural languages, such as basic data types, arithmetic and control
constructs for selection and repetition. The need for, and the difference between,
the constructs for both selection and repetition are emphasised.

Chapter 9 concentrates on the use of programmer-defined functions; con­
cepts are introduced by referring to functions already used including those found
in standard C++ libraries. The next chapter on the use of constructors and
destructors is a natural development.

The need for arrays and their use is described in chapters 11 to 13. The
concept of an array of objects enables the difference between inheritance and
aggregation to be explained.

Scope rules and object lifetime are emphasised in chapter 14 before introduc­
ing the concept of pointers for dynamic variables and objects. Then chapter 15
covers the use of file streams in general and how they may be used to facilitate
object persistence.

Finally, in chapter 16, we introduce some of the fundamental concepts of
polymorphism and use appropriate C++ language constructs in straightforward
illustrative examples.

Use of the book

Each chapter starts with the learning objectives for the chapter and concludes with
a number of exercises. The chapters have been kept relatively short so that the
reader can use the exercises to ensure that concepts are understood and techniques
mastered in accordance with the objectives.

There are two types of exercise. The first type is a self-assessment question
designed to reinforce major points by referring the reader back to specific
examples in the chapter. The second type of exercise involves either amending
one or more of the example programs or writing a new program. The reader is
strongly advised to attempt all the exercises and for the second type to run the
program and get it working. Sample solutions to all the exercises are given in
appendix B.

An outline design, indicating how each function achieves a specific task, is
provided in most of the examples and all the practical exercises; it is written in a
form of structured English (pseudo-code). This emphasises to the reader the
importance of understanding 'how to solve the problem' before 'coding in C++'.
It also demonstrates how to write pseudo-code and provides appropriate help for
the novice when attempting the practical exercises.

Preface xi

A model and corresponding object class for a student's performance
(examination and practical mark) in a subject (module) is introduced in a
simplified form in chapter 5. This model is developed and refined in subsequent
chapters as additional features of object oriented programming are introduced.
This case study approach promotes the learning process as well as providing an
awareness of the reality of software systems development using object oriented
programming. A diagram showing all the object classes that are eventually used
and the relationship between them is given in appendix A. This diagram also
indicates where each class is first introduced in the text enabling the reader to
refer back, if necessary, for the full specification.

Acknowledgement

The authors are grateful to Neil Hepworth of South Bank University for his
helpful and constructive comments made while reviewing this book.

1 Programming Concepts

Objectives for this chapter
Familiarity with the programming terms:

• identifier, data type
• integer, float, character and string
• constants and variables
• source code and coding
• compiler, compilation, syntax errors
• program execution, run-time errors, logical errors
• testing, test data, bugs, debugging
• user requirements specification, program design, documentation and

maintenance
• sequence, iteration and selection constructs
• program characteristics: correctness, reliability, modifiability and clarity.

Understanding of:
• how the computer and the programmer identify data items
• how values may be given to data items
• how data are accepted and displayed.

1.1 Computer programs

A computer program is a sequence of instructions, often a very long sequence,
that can be held in a computer's internal storage area (memory) and executed at
speed. The instructions are normally first written down in a human-readable
form, called the source code or program code, and entered into the computer's
memory or a computer file via the keyboard. The source code is written using a
high-level programming language, ~uch as Pascal, C, C++, Ada, COBOL.
Instructions, written in these languages are referred to as program statements.
This source code has to be translated into a form that can be understood by the
electronics of the computer; this is known as the machine code and the
translation process is called compilation.

A computer program will normally take some data values, store the data
in memory and then manipulate the values to produce the required results. For
example, a simple program might take in ten temperature readings in degrees

1

2 Object Oriented Programming Using C++

Fahrenheit and convert them to degrees Celsius. A more complex program for a
company's payroll system would take in a great deal of data, staff names, tax
codes, salary grades and so on, in order to produce results in the form of
payshps and cheques or bank credits. The values that the program takes in are
known generally as the input data and the results are often referred to as the
output. This can be visualised as in figure 1.1.

Program

Data values .. held in memory manipulates data r- Results

stored in memory

Figure 1.1

1.2 The way a program uses the computer's memory

Within the computer itself, each unit of memory (called a byte) is accessed or
addressed by a unique reference number. In some cases a single byte is
addressed, in others two or more bytes are addressed as if they are one complete
unit of memory.

To make programs more readable, however, the programmer refers to
parts of the computer's memory by an identifying name, called an identifier.
Since different types of data are stored differently, we also need the concept of a
data type. The standard data types used in most computer programming
languages are: integer, float (or real), character, and string. An integer item
is restricted so that it will contain only whole numbers within a pre-specified
range, for example in the range -32,768 to +32,767. Data of type float is for
real numbers, that is numbers that may contain a decimal part. While integer
and float data items use more than one byte, an item of type character uses only
one byte and is restricted to contain just one character. The character may be
any that is recognised by the computer, including some special ones as well as
the usual letters of the alphabet and numbers. Finally, a text string is a number
of characters such as a person's name or the name of a product, stored in a
succession of bytes.

We can illustrate the way in which the programmer and the computer
access items of data by considering the diagram in figure 1.2.

If we imagine that the diagram represents a portion of the computer's
memory and that each cell is one byte, we can give a unique numerical
reference to each byte by using the column and row numbers. Hence the cell at
the top left-hand comer containing the letter B is referred to as byte 00, the one

Programming Concepts 3

to its right as byte 01 and the one directly beneath it as byte 10, and so on.

9 I I
Figure 1.2

Within a program, all we have to do is specify (or declare) the names of
the identifiers (in this case, a_letter, a_number, a_real_number and
a_char_string) and state which data type they are to contain (character,
integer, float, string), the computer references and in most cases the number of
bytes to be used are calculated during the compilation process.

Areas of computer memory reserved to hold data in a computer program
may have initial values (or constant values) pre-loaded into them automatically
when the program is first run, or values may be assigned to the areas during the
running of the program. This is illustrated in figure 1.3.

computer memory
constant value !!

computer memory
Identifier a_letter

Figure 1.3

computer memory
program statement

a_letter = 'B' ;

In this diagram, we have three areas of computer memory. At the top we
have a single byte that is of data type character and it contains the constant

4 Object Oriented Programming Using C++

value B that it will retain for the duration of the program. Not surprisingly, we
call this kind of data constant data. At the bottom of the diagram, we have also
a single byte that has been given the identifying name a_letter and the data
type character. Because a_letter may be given any value during the running
ofa computer program it is referred to as a variable identifier (or just variable
for short). The third area of memory shown is that which is needed to hold a
computer instruction written in the C++ language to change the value of the
identifier so that it contains the letter B; we call this kind of instruction an
assignment statement, it is one way of changing the values held in a computer
program's memory. Another way is depicted in figure 1.4.

computer memory
constant value 12

computer memory
Identifier a number

before

Figure 1.4

~
1 32121

after

Here the computer instruction shown, again in the C++ language, is one
that adds a fixed value (the constant number 12) to the existing contents of the
variable identifier a_number giving it a new value. Again, three areas of
memory are shown; the two data areas would be integers.

The above examples use elementary data types containing a single item of
data. Groups of data items may also be declared using a single identifier. The
components of these groups may all be of the same type or of a number of
different types.

1.3 Input and output of data

As mentioned in section 1 .1, a program will normally take in some input values
and produce results known as output.

The input values can be held in computer files on disk or typed at the
keyboard. In either case, the data are first stored in a small area of memory
called a buffer. When a computer program issues an instruction to read or
accept the data, the required value(s) are transferred into memory areas within

computer memory

Programming Concepts

computer memory
program sraremenr

cin.get (name_oCwrlter, 6) ;

Identifier name of writer L........L_.L..~_....L........I

mouse

Figure 1.5

monitor screen

screen buffer

computer memory
program statement

caut« animal« endl ;

I computer memory
L..-L_.L........L_...L.........I Identifier animal

Figure 1.6

5

the program. This general process for keyboard input is shown in figure l.5.
The program statement illustrated here is written in the C++ language.

Note that the programmer generally does not need to be concerned with

6 Object Oriented Programming Using C++

the buffer.
The process of producing output is almost the reverse of obtaining input

data. Writing data to a disk file and displaying data on the monitor screen also
involves a memory buffer that we do not need to concern ourselves with unduly.
For such output activities, we need to do two things: identify the memory area
from which the data will be taken and indicate where the output is to be placed;
the name of the computer file and in some cases the position in the file or the
position on the screen where the data are to be displayed. The general process
for displaying just one item on the screen is depicted in figure 1.6. Again, the
program statement is written in the C++ language.

1.4 Computer program development

The stages of computer program development are most often referred to as the
software life-cycle. A number of different models have been produced to
describe this life-cycle with the major differences being the breakdown of the
different stages and the way certain stages may be repeated or occur
concurrently.

In the following sections we describe the stages separately, but it should be
understood that the stages may overlap and that it may be necessary to return to
a previous stage. For example, the testing stage if not completed to the
developer's satisfaction could require adjustments at the programming stage.

A life-cycle model can be applied to a single computer program or a
collection of programs that make up a complete computer system.

1.5 The user requirements specification

The user requirements specification is normally a document that describes in
precise terms what is required of a computer program (or computer system). It
is produced after an analysis process in which systems analysts consult with the
probable eventual users of the system to explore the current and future
requirements in a specific business or technical area. It will be concerned with
what will actually be delivered to the users at the end of the development
process or each development stage.

The user requirements specification is the result of a refining process
whereby general statements of desire or intent to produce a computer system are
formalised; it becomes the foundation for the system's development. An
analysis process (called object oriented analysis or OOA) will define the
components (objects) of the real world that are to be modelled in the proposed
computer system. This will focus on the information that is required to be
processed as well as the functional requirements (specific activities).

The details of how the information needs of the system are to be met or
how the specific requirements are to be provided are not produced at this stage.

Programming Concepts 7

1.6 The design stages

The design stages translate the user requirements into a representation of the
proposed system that can be assessed for quality and can facilitate the
production of computer program code.

The systems design stage is concerned with all aspects of the system, not
just the production of computer programs. For example, the design of clerical
procedures and management of the system would need detailed consideration as
well as what the computer software is to achieve.

The software design stage is concerned with how the real-world objects
identified in the analysis stage are to be represented in the computer system and
how they may interact.

This will include how and where data are to be stored within computer
files or in computer memory during the running of computer programs. It will
involve the determination of what data are to be grouped together and what
types of data storage are needed for storing different kinds of values.

It will also include a definition of the relationship between the major
components of the system (or program) and design representations of the
detailed processes that the system requires.

1. 7 Detailed design using pseudo-code

As we shall see in the next chapter, a large program is normally broken down
into self-contained parts called functions. Each function consists of the steps
required to achieve a specific task; eventually it will be written in program
statements using the appropriate programming language. First, at this stage, the
tasks are written in an informal notation called pseudo-code.

Pseudo-code contains normal language statements to describe the actions
required and also more formalised control statements to indicate the logic. For
example, the normal language statements for the c++ statements shown in
figures 1.3 to 1.6 are:

Assign 'B' to a_letter
Add 12 to a number
Accept name of writer (from keyboard)
Display animal (on monitor screen)

Control statements are similar to C++ statements and will be described in
detail in the appropriate chapters.

We can describe the logic of most functions using the three constructs:
sequences, iterations and selections.

A sequence is a number of statements that will be executed in the order
written from top to bottom of the paper.

An iteration is the repetition of one or more statements.
A selection is a choice between two or more different actions depending

on the value of a data item or some other condition.

8 Object Oriented Programming Using C++

1.8 The programming stage

Writing computer programs involves far more than just learning a program­
ming language; it is very easy to write poor programs. Problems that we are
trying to solve by computer must be carefully defined. Then when the definition
or specification is clearly understood, we can design a solution to the problem
using pseudo-code. Only after the design process is complete should we
elaborate the design by producing programming language statements (or
program code) from it. This is known as the coding process or implementing
the design.

1.9 Compiling, running and testing a program

As mentioned in section 1. 1, a source program cannot be understood directly by
the computer; it must first be translated into an equivalent program in the
machine language (code) of the computer.

This process of translation (compilation), is performed by a program
stored within the computer called a compiler. This produces a machine­
readable form of the program that is combined with code from the compiler
libraries using a process called linking. This two-stage process produces a
machine language program that is then stored either in a disk file or in
computer memory, but it will only do this if there are no mistakes in the way
you have used the language. If there are syntax errors, that is, mistakes in the
program language grammar, then the compiler will produce error messages.

Once we have produced a program without syntax errors and have a
machine language program in computer storage, we can go to the next stage,
execution. The computer executes the machine code instructions and may
produce the results you require. However, at this stage further errors can occur.
Run-time (or execution) errors occur when the programmer has made a
mistake that was not a syntax error, but still contravenes the computer's rules
(for example, trying to divide a number by zero). In such cases an appropriate
run-time error message is produced.

Logical errors occur even when there are no syntax or run-time errors.
The symptoms for these errors are results that are not as expected. The design
may be wrong or they may arise because the programming language statements
are misused or in the wrong order.

The error messages will help us to find the syntax and run-time errors.
Detecting logical errors can obviously be more difficult. It is vitally important
that we test our program, possibly with a range of data values, known as test
data, to ensure that it works according to its specification. The task of finding
out why a program is not working to specification is called debugging. This is
because logical errors in programs are called bugs. If we discover that the
program is not correct for any reason, then we must change the contents of the
source program.

Programming Concepts 9

1.10 Documenting and maintaining programs

Documentation is that information concerning a program that is needed by both
users of the program and those with responsibility for maintaining the program.
The former need sufficient detail to enable them to use the program properly.
The latter need sufficient detail to enable them to modify, improve and correct
the program.

Good user documentation is essential if a program is to be a useful tool;
an outstanding piece of software is useless if no one knows how to use it. The
contents and style of a user guide will obviously vary depending on the target
audience. For example, a user guide for a software tool that is to be used by
experienced programmers will need almost no information about how to switch
the computer system on. However, a user guide for the general public, such as a
Windows 95 User Guide will need to contain instructions on how to tum on the
computer and how to use disks.

Good technical documentation is essential for maintaining a program.
We may have to correct errors or we may decide to add features and improve
the program. Programs have actually been thrown away because they are too
difficult to change. A technical manual should enable someone other than the
author, but who is familiar with the design methods and documentation
standards, to understand fully the program's purpose and the way that the
purpose has been achieved.

When do we write this documentation? The rule is, document as you go
along. Much of the user documentation should be written as we start to design a
program, it can serve as a set of specifications. As we proceed with the
development of a program, much of the technical documentation can be written.
This should ensure that the documentation will be of a high quality. If
documentation is left until the end of the project, important details are often
omitted.

When the program is complete and full-scale testing has been done, the
documentation should be reviewed to check that it meets its stated purpose and
that it is accurate and consistent with the finished program.

Maintenance can be defined as "anything that happens to program code
after the initial implementation". It can be classified into four areas: corrective
maintenance, adaptive maintenance, perfective maintenance and preventive
maintenance.

The most obvious form of maintenance is error fixing or corrective
maintenance. Here we concern ourselves with removing a known fault from a
program or system.

Adaptive maintenance is the act of modifying a software unit so that it
interfaces with a changing environment. It commonly occurs when changes in
hardware, the operating system or other system software force alterations to be
made to application programs.

Perlective maintenance is the most common type of maintenance
encompassing enhancements both to the function and the efficiency of the code.

10 Object Oriented Programming Using C++

It usually arises from requests for change to the user requirements specification.
Preventive maintenance is the process of changing software to improve

its future maintainability or to provide a better basis for future enhancements.

1.11 Writing high-quality computer programs

Writing computer programs is both exciting and creative. It also needs discip­
line and a systematic approach if the desired results are to be achieved. This is
because there may be many ways of writing a computer program but not all of
them will lead to the production of a program of the required quality.

To produce high-quality programs, we need to be aware of the four basic
criteria for quality. They are: correctness, reliability, modifiability and clarity.

Correctness is obviously an essential quality in that we would always wish
to ensure that a computer program does what it is supposed to do in the most
appropriate manner. It must satisfy its requirements or specification in all
aspects.

A computer program must also be reliable in that it will always produce
predictable results every time it is run. Most computer programs will operate on
different sets of data each time they are run hence there may be many different
results to be produced.

Of increasing importance as a requirement of high-quality software is
modifiability. Most computer programs will require some modification, or
maintenance, at some time because the requirements of the program may
change or better techniques are discovered or even to correct residual errors.

To be modifiable a computer program must be easy to understand. Hence
clarity is an essential characteristic of high-quality programs. It is easy to
produce over-complex programs. However, it should be noted that bad pro­
grammers produce unnecessarily complicated programs; good programmers
only ever produce simple, clearly understood programs.

Our goal should be to provide high-quality programs using a method of
proceeding from a statement of the program's requirements to high-quality
solution in a reasonable manner. Object oriented design and programming is a
means of achieving this.

1.12 Exercises

1.12.1 State in your own words what is meant by the following terms:
(a) Compilation of a computer program.
(b) Identifier.
(c) Data type.
(d) Variable.
(e) Keyboard buffer.

Programming Concepts 11

1.12.2 Answer the following questions:
(a) How does a computer programmer identify a particular part of the

memory in a computer program?
(b) What different kinds of data might you wish to use in a computer

program?
(c) What is an assignment statement?

1.12.3 State in your own words what is meant by the following terms:
(a) The user requirements specification.
(b) Pseudo-code.
(c) Testing.
(d) The reliability of a computer program.

1.12.4 Answer the following questions:
(a) Why is the software life-cycle not a strictly sequential set of

development stages?
(b) What type of errors may be discovered when compiling and then

testing a computer program?
(c) What is the process offault diagnosis more commonly called?
(d) What is the difference between user-documentation and technical

documentation?
(e) What are the four types of program or system maintenance?
(f) Why are simplicity and clarity necessary requisites of a good

computer program?

2 Object Oriented Programming Concepts

Objectives for this chapter
Familiarity with the object oriented tenns:

• object and object class
• object class data, object class behaviour and functions
• an instance of an object class
• inheritance, base class, derived class
• encapsulation
• private and public parts of an object class
• polymorphism.

Ability to:
• draw a diagram to represent a simple object class
• draw a diagram to illustrate inheritance of an object class
• model a simple object class in tenns of its data items and behaviour

(functions).

2.1 Concept of a model

Computer programs model or simulate real-world or imaginary-world objects
and their interactions. We can illustrate this by considering a simple computer
game in which the user guides a little figure around a maze. The little figure is
a model of a person who can walk around a maze. As with all models, because
they are models, they do not have all of the facilities of their real-world
counterparts. Our little figure may only be required to "walk" in each of the
four compass directions (because the walls of the maze are at right angles to
each other), and "recognise" when it reaches a wall, and "decide" which
direction to take next. Note that the verbs "walk", "recognise" and "decide"
describe the behaviour or the functions of the model. Other aspects of the
model might be its colour and the size of the figure. These attributes are
infonnation (or data) that describe the structure and nature of the model. They
do not necessarily influence the behaviour of the model, but may do so, for
example, if an aspect of the behaviour was a function to change the colour or
size.

We can describe a real-world object in tenns of its component parts (its

12

Object Oriented Programming Concepts 13

data) and what it does (its behaviour). When we produce a model of such an
object, we decide which features we are going to use in the model. First we look
at the component parts and choose what we need in our model; we may ask
ourselves "Which of the component parts of the object are important in our
simulation?" Next, we choose those functions of the behaviour of the object that
we wish to simulate.

In what sense do we produce a model or use simulation when developing a
computer program? Clearly, it is not in the same sense as building a model of a
person from clay or wood. Rather, we use pictures, words and numbers. We
manipulate these in the computer to give some desired affect possibly on the
monitor screen. For example, a model of a person in a computer would probably
consist of graphical representations of a person in different poses as well as
descriptive data in words concerning such things as the person's name and
numerical data for such things as size.

So, the model's data can be described in terms of graphics, words and
numbers, but what of the model's behaviour? Each aspect of the behaviour
represents a function to be defined. For example, our little figure in the maze
has a "walk" function. This would be quite a complicated function to imple­
ment; others in different simulations could be more straightforward. For
instance, if we were to produce a computer function to simulate the withdrawal
of money from a bank account, it might be just two simple calculations: subtract
sum of money from account; and add sum of money to contents of wallet.

Object oriented programming emphasises the interconnections between
data items and functional behaviour in a way that puts together information and
processing rather than processing alone. An object is a component imple­
mented in software such that it contains a definition of its data and the
functions (operations) that describe the object's behaviour or how the data is
used or interacts with its environment.

2.2 Object classes and objects

It would be very wasteful to describe uniquely each individual object as we need
them because most objects tend to have some things (data or behaviour) in
common with others. Often it is convenient to group objects together such as in
the field of zoology in grouping animal species with common characteristics.
Such groupings in programming are called object classes.

Object classes can be thought of as descriptions of categories or groups of
objects. For example, the object class car may have a description pertaining to
the relevant features that· apply to all cars. All cars have wheels and an engine;
they consume fuel and so on. The object class employee might have the
general description of all people employed in a certain situation; and would
likely comprise name, date of birth and current salary among other areas of
interest.

We can apply what we have already seen when introducing the notion of

14 Object Oriented Programming Using C++

models to object classes. What we know about the component parts of an object
class is called the member data (or attributes). The member data for an
employee could be name, date of birth and so on. The things we can do
with an object class or its data are called its behaviour. For example, we can
give an employee a pay rise or amend an employee's qualifications. The
definition of the member functions that define an object's behaviour is part of
an object class's description. Each function will normally consist of the actions
required to achieve a specific task.

One way of describing the object class for an employee is by means of an
object schema as given in figure 2.1.

Class: employee

name
date of birth
qualifications
telephone number

etc ..

Amend qualifications

Get telephone number
Calculate age
Display details

etc ..

Figure 2.1

t--Identification

r---Data

-Functions

Notice how we identify the object data and the object behaviour
(functions). In a full description, we would normally have one or more
functions for each item of data. If we asked "What can we do with each item of
data?", the answer would generate a list of functions. For example, if we asked
this question of just one data item, say telephone number, we would likely
generate: insert new number, amend existing number, delete

number, display full number, extract dialling code, and
perhaps many more.

An object is said to be an instance of an object class. This means that an
object is an implementation of an object class definition. We can liken an object
to a more complex version of a variable in a program; a variable has a type that
describes its characteristics (for example, an integer is a whole number within a
certain range); an object has an object class that describes its characteristics.
For example, we might have objects Jim_Brown and Dave_Thomas of the

Object Oriented Programming Concepts 15

object class employee.
Objects have all the data items and functions of their class. Hence, to

change Jim_Brown' s qualifications, we would use the function amend
qualifications. The object oriented terminology for this is that we "send a
message to the object"; so we send the message amend_qualifications
to Jim Brown.

2.3 Inheritance

If we develop the example of the object class employee, it is easy to see that
there are different kinds of employee all having a common set of characteristics
as described in the definition of the object class employee. Also we can see
that different kinds of employee would have additional, more specific,
characteristics depending on their position or type of work. For example, an
employee who is a manager might be responsible for a number of staff and may
have a secretary (who can be described by name or perhaps employee number).
We therefore need to use the attributes and behaviour from the original class
and extend them to include the particular characteristics of each type of
employee.

The concept of inheritance allows us to produce another class such that it
has all the data and functions of the class upon which it is based (called the
base class). The new class called a derived class can be thought of as a
specialised version of the more general base class.

So, a class that inherits the data and behaviour of another is called a
derived class often referred to as a descendant or a child class. The class that
provides the inherited characteristics is called the base class also referred to as
an ancestor or parent class.

The way in which a derived class is formed by inheritance from a base
class is depicted in the object schema shown in figure 2.2.

An entire inheritance (or classification) hierarchy (like a family tree) may
be constructed from a single class with a number of descendants. This is
illustrated in figure 2.3 where the base class employee has three descendants:
manager, secretary and technician. The manager derived class is
also a base class with one descendant: sales manager.

Note that the inheritance of data and behaviour in a program is usually
achieved by sharing the code and not duplicating it, so the inherited functions
and data do not actually exist in the derived class. To illustrate this, imagine we
wish to use the function get telephone number from the manager

class, the computer would first look for the function in manager, then on
failing to find it there it would look further up the class hierarchy until the
function is found.

16 Object Oriented Programming Using C++

Class: employee

name
date of birth
qualifications
telephone number

etc ..

Amend qualifications
Get telephone number
Calculate age
Display details

etc ..

I
manager

(base class &
derived class)

I
sales

manager

(derived class)

~

Figure 2.2

employee

(base class)

I
I

secretary

(derived class)

Figure 2.3

Derived class: manager

Decrease number of staff
Change secretary

etc ..

I
technician

(derived class)

Object Oriented Programming Concepts 17

2.4 Encapsulation

Putting data and functions together is called encapsulation. A basic principle
of object oriented programming is that member data should only be accessed via
the object's own functions. To achieve this, in all but exceptional cases,
member data items are described as private or protected. Functions may also
be private. If data or functions are to be accessed directly from outside the
object class, they are defined as public.

Encapsulation separates how an object class behaves from how it is
implemented and therefore allows the details of an object class to be modified
without requiring changes to applications that use the object class. The object
class can be treated as a black box, the programmer needs only to know what
functions can be requested and not how they are carried out.

2.5 Polymorphism

Polymorphism means having many forms. In object oriented programming it
refers to the way in which different objects may respond to the same message in
different ways depending on the type of the object. For example, manager and
technician objects should respond differently to the Display details
message. The functions need to be different even though the purpose of the
function is the same, that is, to display the details of the object concerned.

There are a number of ways to implement polymorphism, we will discuss
these later in the text.

2.6 Modelling a system using object classes

Suppose we wish to model the activities of a University; we could define an
object class person with derived classes student and tutor and an object
class course. To keep things simple, let us assume that these are the only
objects of interest and their data items are as follows.

person:

student:

tutor:

course:

name,
reference number,
year of joining the University.
as for person,
year of the course.
as for person,
years of teaching experience.
name,
number of students.

Again, to keep it simple, their functions are:

18 Object Oriented Programming Using C++

person:

student:

tutor:

course:

Ini tial.ise detail.s: to allow the entry of the
three data items for a person.
Display details: to display the values of all
three data items of a person.
Ini tialise details: to allow the entry of the
three data items for a person, plus the year of the
course.
Displ.ay detail.s: to display the values of all
three data items of a person, plus the year of the
course.
Ini tial.ise details: to allow the entry of the
three data items for a person, plus the years of
teaching experience.
Display detail.s: to display the values of all
three data items of a person, plus the years of
teaching experience.
Ini tial.ise details: to allow the entry of
course name and setting the number of students to
zero.
Add new s tuden t: to use the student initialise
details function and add one to the number of
students.
Display details: to display the course name
followed by the number of students on the course.

We can represent the relationship between the object classes using an
object schema similar to that shown in figure 2.2, as follows in figure 2.4. Note
that, in this case, for the derived classes the functions are over-ridden
(redefined) because they must be different for each class.

2.7 Exercises

2.7.1 State in your own words what is meant by the following object oriented
terms:
(a) An object class.
(b) A function.
(c) An attribute.
(d) Inheritance.
(e) Encapsulation.

2.7.2 Answer the following questions:
(a) In what way is an object similar to a variable?
(b) What are two other names given to derived classes?
(c) What is a software "black box"?

Object Oriented Programming Concepts

Derived class: studen

year of the course

Initialise

Display details

Class: person

name
reference no.

year of joining

Initialise

Display details

Class : course

name

number of students

Initialise

Display details

Add new student

Figure 2.4

Derived class: tutor

years of experience

Initialise

Display details

2.7.3 Please examine the object schema in figure 2.2 and answer the
following questions.
(a) What data members are inherited by the derived class manager

from employee?

19

(b) What other data members might the derived class manager have?
(c) What other derived classes do you think might be derived from the

class employee?

2.7.4 In a warehouse system, the following objects have been identified as
having the data items:

container: name,
location,
weight.

carton: as for container,
destination,
number of components.

20 Object Oriented Programming Using C++

case: as for container,
quality control reference.

The functions are:

container: Initialise details: to allow the entry of
the three data items for a container.

carton:

case:

Display details: to display the values of all
three data items of a container.
Ini tialise details: to allow the entry of
the three data items for a container, plus the
destination and number of components.
Display details: to display the values of all
three data items of a container, plus the
destination and number of components.
Amend the number of components.
Amend the destination.
Ini tialise details: to allow the entry of
the three data items for a container, plus the
quality control reference.
Display details: to display the values of
all three data items of a container, plus the quality
control reference.

Draw an object schema that shows the relationship between the class
container and the derived classes carton and case.

3 A First Program

Objectives for this chapter
Familiarity with the c++ programming terms and concepts:

• the #include directive
• the keywords class, public and protected

• program comments
• function prototype, definition, heading, result type, arguments
• the resolution operator : :
• the keyword void
• the data type char and a text string

• the object cou t
• the function s trcpy

• the main function
• object class definition
• member data and member functions
• declaring an object as an instance of an object class
• calling member functions.

Ability to:
• understand a simple c++ program that uses a single object class
• understand the pseudo-code for a sequence
• write a simple C++ program based on the example in the chapter.

3.1 The model for our first program

Let us examine a simple program that displays a message on the monitor
screen. We need an object class that defines the contents of the message and at
least two functions. We need a function to give an initial value to the message
and a function to display the contents of the message. With a little thought we
could probably specify other functions such as determining the position on the
screen or defining the colour of the background and foreground for the
message. However, we will keep it simple and produce a model of the problem
in the form of an object class with just two functions, as shown in the object
schema given in figure 3.1.

21

22 Object Oriented Programming Using C++

Class : message f-- Identification

contents (of message) f-- Data

Initialise contents
r- Functions

Display contents

Figure3.!

3.2 The C++ code for our first program

Figure 3.2 contains the complete C++ code to display a message. Please accept
for the moment the necessity for what may appear to be many programming
statements for a straightforward task. The benefits of this approach will only
become apparent when we consider more complicated examples.

We will now explain this program line by line by repeating small parts of
the code with an explanation of the component parts.

The first two lines in our program are comments.

II HELLO.CPP
II A program to display the Hello World message

A comment is introduced by the two consecutive characters I I. Everything that
follows on that line is considered to be explanatory text that does not affect the
running of the program. Comments are ignored by the compiler and are
included to explain the program to a human reader. They can be placed
anywhere in a program, on lines by themselves as above, or towards the end of
a line containing a program statement. It is considered good programming
practice to include comments at the start of a program to explain its purpose. In
our case, we have the purpose preceded by the name of the file containing the
whole program.

Lines 3 and 4 are called include statements.

#include <iostream.h>
#include <string.h>

These lines are instructions to the compiler, known as directives. For the
moment we shall consider such statements as a means by which the compilation
system allows us to use certain of its features. In the first case, the way data is
sent to the monitor screen and read from the keyboard; the "io" is an
abbreviation for input and output and this statement enables us to use the object
cou t later in the program. In the second case, the way we may use groups of

A First Program

II HELLO.CPP
II A program to display the Hello World message
'include <iostream.h>
'include <string.h>
class message

(

public :
void initialise ()
void display ()

protected :
char contents [12]

void message: : initialise ()

strcpy (contents I "Hello World")
}

void message: : display ()

cout « contents « end!

void main ()

message hello ;
hello.initialise ()
hello. display ()
}

Figure 3.2

23

characters called strings; this statement enables us to use the function s trcpy
later in the program.

The section of code in lines 5 to 12 is a complete object class definition.

class message
{

public :
void initialise ()
void display ()

protected :
char contents [12]

} ;

24 Object Oriented Programming Using C++

The object class definition is introduced by the C++ keyword class followed
by the programmer-chosen class identifier message. The whole of the class
definition is bounded by braces { and }, and finally terminated by a semicolon.
Note that the layout of this section is not a necessary requirement of the C++
language, but indentation has been used to highlight the different component
parts.

Within the braces, we declare the functions and data associated with the
object class. We have two sections labelled by the C++ keywords public and
protected, note the colon that follows these keywords. We label parts of a
class definition in this way to enable or disable the general use of parts of an
object class. In general terms, those parts of an object class that are labelled
public may be used in any part of the program; those labelled protected

may only be used within the definition of the functions of the object class or its
descendants.

In the public part of the class definition, we have two function prototypes
called member function prototypes. These declare the object class functions.
In this case, functions to display and initialise a message. The format consists
of three parts: the result type, the identifier and the arguments. We will not
concern ourselves with the details of these parts other than in the context of
these simple examples. The result type here is void, meaning that the
functions do not produce anything that needs to be classified by type. The
programmer-chosen identifiers are display and initialise. The
arguments of a function are enclosed within parentheses. There are no
arguments for these functions, so we simply have the parentheses.

In the protected part of the class definition, we have the declaration of a
member data item:

char contents [12] ;

In this statement, we are declaring a text string to contain the contents of the
message. The keyword char introduces the declaration and defines the type of
data to be held, in this case characters. contents is the programmer-chosen
identifier for that part of memory where the string will be stored. [12] is the
maximum length of the string in characters. This includes an allowance of one
character to hold a special character to mark the end of the string. This is
necessary because text strings in C++ may vary in length up to the specified
maximum.

In lines 14 to 17 of the program we have the definition for the first of two
member functions.

void message: : initialise ()
{

strcpy (contents I "Hello World")
}

The first line of the function is its heading. This consists of the same three
parts as the associated prototype already described above. However, there are

A First Program 25

two differences. The programmer-chosen name initialise is preceded by
the object class identifier message followed by the scope resolution operator
: : . The technical details for this need not concern us at the moment; briefly, it
is needed so that the data defined in the class definition can be accessed within
the function. Notice also that there is no semicolon at the end of the function
heading, nor at the end after the closing brace.

The details of the function are enclosed within braces, we have just one
line that instructs the computer to make a copy of the text Hello World and
store that copy in the identifier contents. This line starts with strcpy
which is the name of a C++ function that does this. The words contents and
"Hello World" are called the arguments of the function strcpy and as
such are placed in parentheses after the function name. Note that arguments of
functions are separated by commas.

Lines 19 to 22 of the program contain the definition of the second
function.

void message: : display ()
{

cout « contents « end!

As with the previous function, the first line is the heading. Again, this
corresponds to the associated prototype with the inclusion of message: :.

Within the braces we have just one line that instructs the computer to
direct output to the monitor screen. This line starts with cou t, the name of an
object that has functions to achieve this. The output to be directed to the
monitor screen is specified by following cout with the operator « and a
definition of the output required. In this case we have two output definitions to
be handled by couto The first is the identifier contents; this indicates to
cou t that the string stored in this identifier is to be displayed on the monitor
screen. The second output definition is end! (an abbreviation for end of line);
this simply indicates to cou t that the current line must end and the screen
cursor is to be placed at the start of the next line.

Line 24 of our program is one that all of our programs will include (or one
very similar) to show where program execution begins.

void main ()

The parentheses indicate to the compiler that main is a function with no
arguments. The body of the main function is enclosed by braces (lines 25 and
29).

Line 26 is a declaration of the object hello as an instance of the class
message.

message hello ;

In effect, it makes a copy of all the members of message and gives them the
group identifier hello. This means that hello can be referred to within the

26 Object Oriented Programming Using C++

function main and that all the public parts of its class definition may be used.
We see this in the next two statements of the function (in lines 27 and 28).

hello. initialise () ;

The member function initialise for the object hello is called; this
means that the statement(s) within the function definition for initialise
are executed. Note the format, instance identifier then a full-stop (known as the
dot operator) then the member function identifier then the parentheses then a
semicolon. The result of the function being called will be that hello's copy of
contents will be given the value "Hello World". To see the way that this
is done, please refer again to the description of the function definition for
ini tialise of class message.

Finally, the display member function for the instance hello is called.

hello. display () ;

The result of this will be that the text stored in contents (that is, Hello
World) will be displayed on the monitor screen and the cursor placed at the
start of the next line. Again, to see the way that this is done, please refer to the
description of the function definition for display of class message.

Notice that the functions ini tialise and display were declared as
public because they are being used in the function main, which is outside
the definition of the object class. The string identifier contents was declared
as protected since it is only used within the definition of a member function
of the object class message.

3.3 Coding style

The layout of the program is of little concern to the compiler. Generally, spaces
are not significant. The use of spaces, comments and blank lines is left to the
discretion of the programmer. So, it is possible to produce a program that is
readily understood by the compiler but is not so easily read by the human
reader. You are encouraged to use a layout and style that ensure that your
programs are easy to follow and read.

The identifiers created by the programmer ate a matter of choice, but give
an opportunity to describe the data that is to be contained within them. Again,
you are encouraged to always use meaningful identifiers. Normally, an
identifier will not exceed 30 characters in length. It must start with either a
letter or the underscore character C) and its remaining characters may be
letters, digits or underscore characters.

Notice that the case used to write C++ is significant; for example,
strcpy is not the same as STRCPY. In our first program, we declared an
instance of message as hello, we could not then refer to it in the main
program by Hello.

Certain items of punctuation are mandatory parts of the C++ language. In

A First Program 27

our first program you will notice that declarations and statements end with a
semicolon. Also note that in lists, such as in the list of arguments of a function,
a comma is used to separate components.

C++ contains several keywords such as void, each of which has a
specific purpose. These keywords must be surrounded by one or more blank
characters and they must not be used as identifiers. The full list of C++
keywords is given in appendix C.

3.4 Pseudo-code for a sequence

As mentioned in section 1.7, a sequence using pseudo-code notation consists of
a number of statements to be executed presented in the order of execution.
Unless the components of a sequence are themselves controlling statements, the
statements will be in plain language with no formal syntax. However, we will
find that certain phrases tend to be used for like operations.

An example of a sequence using pseudo-code is given in figure 3.3. Here,
we show the basic actions of the function main from figure 3.2.

main
Declare object hello of type message
Call hello. initialise
Call hello.display

Figure 3.3

The first line identifies the function name. The next three are a sequence
of the actions to be performed in the order given.

A slightly more complex version of the function display could be described
in pseudo-code as in figure 3.4.

message: : display
Display screen headings
Display contents of message
Display screen footings

Figure 3.4

Here, the first line identifies the class and the function name. This is
followed by a sequence of three actions. Note that they are simply general
descriptions of the activities without relying on a formal syntax. The precise
details of what to display and where to display the data on the computer screen
would obviously need to be specified and implemented in the C++ code.
However, the generalisation 'display ... ' will suffice at the design stage.

28 Object Oriented Programming Using C++

3.5 Exercises

3.5.1 Please refer to the example in figure 3.2, then answer the following
questions:
(a) What is the purpose of lines I and 2? Ifthey were removed, what

effect would this have on the running of the program?
(b) Lines 3 and 4 permit the use of what C++ features?
(c) What do we call the program statements in lines 8 and 9? What do

we call the three component parts of each statement (excluding the
terminating semicolons)?

(d) What three things can you say about the data member declaration
in line 11?

(e) What are the differences between the function prototype in line 8
and the corresponding function heading in line 14.

(f) What does the member function ini tialise do?
(g) What does the member function display do?
(h) What is the point of line 24 (that is, void main ())?
(i) What does the declaration in line 26 do?
(j) The member functions are called in lines 27 and 28. Describe each

of the four components of the statements (excluding the
terminating semicolon).

(k) What happens when a function is called?
(I) Name the five identifiers that are declared and then used in this

example? What are the C++ rules for making up identifiers?
(m) Why are the functions ini tialise and display declared as

public?

3.5.2 Make changes as necessary to the example in figure 3.2 to achieve the
following revised specification.

Allow for two messages to be displayed, the first should be
Hello all computer users

and the second
What a fine day!

You should implement this by making the first two lines more
appropriate, by replacing the member data declaration in the class
definition by two similar statements, and by replacing the single
statement in both of the member functions by two similar statements.

3.5.3 Please refer to section 3.4, then answer the following questions:
(a) What will the first line of the pseudo-code for a function normally

contain?
(b) Give an example of a pseudo-code statement indicating that a

function is to be used.
(c) Rewrite the pseudo-code for the display function so that the

actions are performed in the reverse order.

4 An Introduction to Inheritance

Objectives for this chapter
Familiarity with the C++ programming terms and concepts:

• the member function cin. qet

• the data type char for a single character
• program files and header files
• use of a prompt for keyboard input
• deriving a new object class from an existing (base) class
• using header files and a derived class
• inheriting object class members.

Ability to:
• understand a simple C++ program that uses a header file
• understand a simple C++ program that uses a derived object class
• write pseudo-code for a simple function
• write simple C++ programs based on the examples in the chapter.

4.1 Using a header file

Our first program in chapter 3 would normally be typed into a single computer
file and presented to the compiler for translation and execution to produce the
required results. However, we could separate the object class definition and
member function definitions from the function main. Let us say that we put the
defintions in a file called messaqe. h and the function main in the file called
hello_m.cpp. The file messaqe.h is known as a header file and its
contents are shown in figure 4.1. The contents of the program file,
hello _ m. cpp, are shown in figure 4.2.

In figure 4.2 we have the same main function as in figure 3.2 (in chapter
3), preceded by the #include statement referencing the header file. When we
present the program file to the compiler, as part of the translation process the
code from the header file, in effect, replaces the #include statement, in the
sense that the compiler now regards the program file as being exactly the same
as the first program in figure 3.2.

Note that in chapter 3 and figure 4.1 the previous #include statements

29

30 Object Oriented Programming Using C++

II MESSAGE.H
II The object class message
#include <iostream.h>
#include <string.h>
class message

{

public :
void initialise ()
void display ()

protected :
char contents [12]

void message::initialise ()

strcpy (contents I "Hello World")
}

void message: : display ()

cout « contents « end!

Figure 4.1

II HELLO M.CPP
II A program to display the Hello World message
#include "message.h"
void main ()

{

message hello
hello.initialise ()
hello. display ()
}

Figure 4.2

reference facilities held in a compiler library and are identified by a name
enclosed in angle brackets <>; we now reference the message. h file and
enclose this name with ", to indicate that it is a file stored in the same directory
as the program file.

An Introduction to Inheritance 31

4.2 Inheriting code from onr first program into a second program

The statements in message. h can be reused in other programs that require
the object class message or derivatives based on it. For example, if we wished
to have an additional program that accepted any message from the keyboard
and then displayed it on the monitor screen, we have a similar model to that
described in figure 3. I, but need a different initialisation function. Instead of
simply assigning a value of "Hello World" to the contents of the
message, we need code to accept a string of characters into contents.

We could simply make a copy of message. h, call it a different name
and make modifications to the copy. However, there is a better solution to this
type of problem that avoids duplicating the code; rather it involves inheriting
the code from message. h by defining a new object class based on message,
but with a new member function ini tialise. Hence there is no code dupli­
cation, simply a replacement for that part which has different requirements.
The model of the new class any_message (the derived class) and its
derivation from the original class message (the base class) is represented by
the object schema shown in figure 4.3.

Class : message

contents (of message)

Initialise contents

Display contents

Derived class: any_message

.»-
Initialise contents

~ i.:.pll~:lill:" ... ·:.·.:~;i(;ii!:il V ________ _

Figure 4.3

As mentioned in chapter 2, notice how the arrows and shading indicate
those members of the derived class that have been inherited from the base class
without being changed; the lack of shading in the derived class indicates those
members that have been added or, in this case, redefined.

We implement this additional program by writing C++ code for a new
header file messagel. h and a new program file anymess. cpp. They are
shown in figures 4.4 and 4.5 respectively. The pseudo-code for the function
ini tialise is also given in figure 4.6.

Let us first describe the contents of the header file line by line.

II MESSAGE1.H
II The object class any_message

We have described comments before; these identify and reflect the purpose of
the new header file.

32 Object Oriented Programming Using C++

II MESSAGE1.H
II The object class any message
'include "message.h"
class any_message : public message

{

public :
void initialise ()

void any_message::initialise ()

char terminator ;
cout « "Enter message: "
cin.get (contents, 12)
cin.get (terminator) ;
}

Figure 4.4

II ANYMESS.CPP
II A program to display any message
'include "message1.h"
void main ()

{

any message do_message ;
do_message. initialise ()
do_message. display () ;
}

Figure 4.5

any_message::initialise
Declare terminator variable
Prompt for message
Accept message contents
Skip newline character

Figure 4.6

Line 3 is also familiar.
'include "message.h"

This statement is a directive to the compiler to take into account (or "include")
all the code found in the file message. h.

In lines 4 to 8, we define a new object class based on message as

An Introduction to Inheritance 33

previously defined in the file messaqe. h.

class any_messaqe : public messaqe
{

public :
void initialise ()

} ;

The first line in this section, introduced by the keyword class, specifies the
new object class, called any_ messaqe, derived from the object class
messaqe with all of its facilities made public in the new class. Note the
colon after the new class identifier and before the derivation type public.

The new object class inherits all of the public and protected components of
the class upon which it is based. So we inherit the member data contents
and two member functions called initialise and display in our new
object class. However, we need to redefine the initialisation function, so we
declare a public member function ini tialise as part of any_ messaqe;
as before, this is enclosed in braces.

In lines 10 to 16, we have the definition of the new member function
ini tialise.

void any_messaqe::initialise ()
{

char terminator ;
cout « "Enter messaqe: "
cin.qet (contents, 12)
cin.qet (terminator) ;
}

After the heading, we have four statements enclosed in braces as usual. The
first statement is a data declaration for a single character (indicated by the
keyword char). The function will refer to this area of data by the identifier
terminator. The second statement will display text on the monitor screen
inviting the user to type a message; this text is called a prompt. We have
already described the use of cou t to display data on the screen, in this case we
do not use end! because we want to keep the cursor on the same line. The
third statement will obtain the message from the keyboard. cin. qet is a
mechanism by which we can obtain, in this case, up to 11 characters from the
keyboard and store them in contents (with the end of string character being
automatically appended). Formally, qet is a member function of the object
cin provided by the compiler in iostream. h. The first argument of qet is
the identifier of an area to receive the data (con ten ts), the second is the
maximum length of the data (12) including the automatically appended end of
string character. It is assumed that after the data has been entered the user
presses the enter key. A side-effect of this is that the character generated when
the user presses enter (we will call it the newline character) is not transferred to

34 Object Oriented Programming Using C++

contents, and so to avoid it being used by mistake in some later processing,
we transfer it to another area called terminator. This is achieved by the
fourth statement using cin. get.

The main program, anymess. cpp given in figure 4.5, is very similar to
hello_m.cpp in figure 4.2. It has the same structure but references a
different header file and uses different identifiers. The differences are now
described.

In line 3 we have a different include statement.

#include "messagel.h"

The new header file is referenced (instead of message. h), but note that
messagel. h does, in turn, reference message. h.

The 3 statements of the function main refer to the derived class
any_message.

any_message do_message ;
do_message. initialise ()
do_message. display () ;

Here, we have the declaration of an instance of the new object class
any_message called do_message. Then we have the two member function
calls. The first invokes the new initialise function to prompt for and
receive the data. The second calls the inherited display function.

It is important to appreciate the relationship between the model in figure
4.3 and the three files that are used in the complete program. The base class
message is defined in message. h (figure 4.1). The file messagel. h
(figure 4.4) uses a #include statement to incorporate message.h and
defines the derived class any_message, which inherits the members of
message, but has a different, overriding, initialise function. The
program file anymess. cpp (figure 4.5) uses a #include statement to
incorporate messagel. h and contains the executable code based on an object
do_message of the class any_message.

4.3 Exercises

4.3.1 Please refer to the program in figures 4.1 and 4.2, then answer the
following questions:
(a) What is the difference between the two #include statements in

the header file message. h and the one in the program file
hello_m.cpp?

(b) What is the purpose of the UncI ude statement in the program
file hello _ m. cpp?

4.3.2 Please refer to the examples in figures 4.4 and 4.5, then answer the
following questions:

An Introduction to Inheritance

(a) Why is line 3 (the #include statement) included in the header
file messagel. h?

(b) The first line of the class definition in the header file

35

messagel. h consists of four words as well as the colon. What is
the purpose of each of the four words?

(c) How do you declare a data area for a single character?
(d) The cout statement in the header file messagel. h does not

have an end!, can you suggest why?
(e) What is the purpose ofthe first cin. get statement? Why does the

cin. get function have 12 as an argument when contents will
be of a maximum size of 11 ?

(f) What is the purpose of the second cin. get statement? Why is it
necessary?

(g) How does the compiler know which ini tialise member
function to use, the one in message. h or the one in
messagel. h.

4.3.3 Describe what changes are necessary to the program in figures 4.1 and
4.2 to achieve the following revised specification.

Allow for two messages to be displayed, the first should be
Hello all computer users

and the second
What a fine day!

You should replace the member data statement in the class definition
by two similar statements, and replace the statement in each of the
member functions by two similar statements.

4.3.4 Describe what changes are necessary to the program in figures 4.4 and
4.5 to achieve the following revised specification.

Allow for two messages to be displayed, the first should be
Hello boys

and the second
Hello girls

You should implement this by amending the program file
anymess . cpp only.

4.3.5 Produce a new header file forename. h (inheriting message from
message. h) and a new program file assign45. cpp to achieve the
following specification.

Prompt the user of the program to enter their forename, accept the
forename from the keyboard, then display it back on the screen. You
may assume that the forename will contain at most 11 characters.
Before writing the c++ code, produce pseudo-code for the function
ini tialise, a member of the class forename.

5 Arithmetic

Objectives for this chapter
Familiarity with the C++ programming terms and concepts:

• the data types int, lonq int and float

• the keyword cons t

• the arithmetic operators + - * / % ++
• the precedence of arithmetic operators
• integer and float variable declarations
• assignment statements that use arithmetic expressions
• cin and cout with int and float values
• the manipulator setprecision.

Ability to:
• develop an object class definition
• use a model and pseudo-code descriptions of the functions of an object

class to produce C++ code
• read and understand a simple C++ program that uses integer and real

numbers
• write simple C++ programs that use integer and real numbers.

5.1 Integers

In C++ every item of data is considered to be of a specific type. For example,
numbers such as 4 and 37 are examples of integers, whereas 6.75 and 2.5 are
examples of real numbers. Different data types are stored and manipulated
differently within the machine. Consequently, we must define the type of each
identifier whenever we declare it in a program.

We can declare the member data for an object class or variables within a
function by specifYing a type and an identifier (such as char terminator
in the function ini tialise referred to in the previous chapter). To declare
integer member data or variables, we use the type name int followed by an
appropriate identifier and a semicolon, for example

int years_of_aqe ;

A value of type int is a whole number lying within limits defined by the

36

Arithmetic 37

compiler. The minimum and maximum integer values for typical C++ systems
are -32768 to 32767. The values of all integer data items must lie within
these limits.

If a larger range is required, then one can use the type long int (this
can be abbreviated to long) which typically has a range of -2147483648 to
2147483647. Other integer types are also available.

5.2 Assignment statements and integer arithmetic

In the previous chapter, we used the function strcpy to store a string value in
the variable identifier contents using

strcpy (contents, "Hello World") ;

For other data types, including integers, a value is copied into a storage
location by means of an assignment statement. In its simplest form an
assignment statement consists of a variable identifier followed by the assign­
ment operator = followed by an expression that will give a value to be placed in
the variable. For example,

average_age = total_age / no_of_people ;

The result of this assignment statement would be that a new value is given to
the data item identified by average_age. The / symbol is used to denote
division. The full range of arithmetic operators used in integer expressions is
given in the table in figure 5.1.

Operator Meaning

++ increase by 1

-- decrease by 1

* multiply

/ divide

% give remainder after division

+ add

- subtract or ne~ate

Figure 5.1

Integer division produces a truncated result (not rounded up or down). For
example,

average_age = 124 / 5 ;

assigns the value 24 to average_age.

38 Object Oriented Programming Using C++

The % operator gives the remainder after division. For example,

left_over = 124 % 5 ;

assigns the value 4 to left_over.

The ++ and - - operators allow a shorthand for increasing and decreasing
by one. For example,

++ counter ;

increases the value already in counter by 1.
When an arithmetic expression involving sub-expressions is evaluated, the

normal priorities (precedence) of the above operators apply. Any sub-expression
in parentheses is evaluated first, then ++ and - - have priority over *, / and %,

which, in turn, have priority over + and -. When two operators of the same
priority are contained within an expression, evaluation is from left to right. The
full list of C++ operators in order of precedence is given in appendix C.

Notice that the spaces either side of the operators are optional, but are
included to aid readability.

5.3 Real arithmetic

If we want to use real numbers such as 23.75 or 0.5, we use the data type
float. As with integers we can declare float member data in class
definitions or variables in functions. For example,

float unit_price,
total_cost ;

Each C++ system defines limits on the range (the smallest and largest
allowable values) and precision (the maximum number of significant digits) of
numbers of type float. Any attempt to evaluate a value outside the given
range results in overflow (the result is too large) or underflow (the result is too
small). For very large or very small real numbers, we use the type double.

We use the same basic operators in real expressions that we have already
seen in integer expressions except for the % operator that obviously has an
application only with integers.

C++ allows you to mix integers and real numbers in arithmetic
expressions. As each part of the expression is evaluated, if both operands are
integers, the resulting value will be of type in t; but if either or both of the
operands are real numbers, the resulting value will be of type float.

5.4 A model for a student's assessment in a subject

A program is required to process a single student's examination mark and
practical mark for a single module. The module identity, student identity,
examination mark and practical mark will be obtained from the keyboard, then

Arithmetic 39

the sum of the marks and the weighted average of the marks will be displayed
after first displaying the identities and the marks. The weighted average is
given by (examination mark) x 0.75 + (practical mark) x 0.25.

A typical dialogue for this program is shown in figure 5.2. The first four
lines demonstrate the acquisition of the input values. The lines that follow are
output as a result of processing the input.

Enter module identity code GEOG
Enter student identity code MK321
Enter examination mark 67
Enter practical mark 56

student identity: MK321 for Module: GEOG
Exam mark is 67 Practical mark is 56
The sum of the marks is 123

student identity: MK321 for Module: GEOG
Exam mark is 67 Practical mark is 56
The weighted average of the marks is 64.3

Figure 5.2

We will use an approach similar to that outlined in the previous chapter to
develop the program.

The object class to achieve this will need six data items: a module identity
code, a student identity code, an examination mark, a practical mark, the
weighted average of the two marks, and the sum of the two marks. A function
will be needed to initialise the object by accepting both the identity codes (as
strings) and both the marks (as integers) from the keyboard, and then
calculating the sum of the marks and the weighted average. Other functions
will display the module and student identities, the marks, the sum of the marks,
and the weighted average of the marks.

The model for the object class is given in figure 5.3 and pseudo-code
representations of the functions are given in figure 5.4.

Notice that since we have to display the module and student identities and
the marks when displaying the sum of the marks and when displaying the
weighted average, we have described the functions display_ identi ties
and display_marks and then called them from both display_sum and
display_weighted_average.

Figure 5.5 shows that part of the header file marks. h that contains the
object class definition.

40 Object Oriented Programming Using C++

Class: student_marks f---Identification

module identity
student Identity
examination mark

-Data
practical mark
weighted average
sum of marks

Initialise

Display identities
Display marks -Functions
Display sum of marks

Display weighted average

Figure 5.3

student marks::initialise
Declare terminator variable
Prompt for and accept module identity
Prompt for and accept student identity
Prompt for and accept examination mark
Prompt for and accept practical mark
Calculate the sum of the marks
Calculate the weiqhted averaqe

student_marks: : display_identities
Display the module and student identities

student_marks::display_marks
Display the two marks

student_marks: : display_sum
Call display_identities
Call display_marks
Display the sum of the marks

student_marks: :display_weiqhted_averaqe
Call display_identities
Call display_marks
Display the weiqhted averaqe

Figure 5.4

Arithmetic

II MAlU(S.H

II The object class student marks
#include <iostream.h>
#include <iomanip.h>
class student marks

public :
void initialise ()
void display_identities ()
void display_marks ()
void display_sum () ;
void display_ weighted_average ()

protected :
char student_identity [9] ;
char module_identity [6] ;
int exam_mark,

practical_mark,
sum ;

float weighted_average

Figure 5.5

41

You will notice several statements that are similar to those found in our
previous examples. First notice a new #include statement.

#include <iomanip.h>

This statement references a compiler header file that contains manipulators for
formatting output. The need for this will become apparent when we look at the
output of a real number.

After the keyword protected, we have the declaration of six data
members.

char
char
int

student_identity [9]
module_identity [6] ;

exam_mark,
practical_mark,
sum ;

float weighted_average

The first two, strings, are similar to those used in the previous programs. The
next is a declaration of three integers. In this example, the declaration is in the
form of a list with the type in t preceding a list of three identifiers separated by
commas. It is not necessary to present identifiers of the same type in a list, we
could write them as separate declarations:

int practical_mark

42 Object Oriented Programming Using C++

in t exam_mark;
int sum;

The final declaration is for a real number. Declarations of real numbers
follow the same pattern as integers in that either a single programmer-chosen
identifier or a list of identifiers separated by commas follow the keyword for the
type float.

5.5 Using integer and real numbers, the ini tialise function

Figure 5.6 contains the ini tialise function from the header file marks. h.
It uses both integer and real arithmetic.

void student marks: : initialise ()

const float exam_weight = 0.75,
practical_weight = 0.25

char terminator ;
cout « "Enter module identity code "
cin.get (module_identity, 6) ;
cin.get (terminator) ;
cout « "Enter student identity code "
cin.get (student_identity, 9) ;
cout « "Enter examination mark "
cin » exam_mark ;
cout « "Enter practical mark "
cin »practical_mark ;
cin.get (terminator)
sum = exam_mark + practical_mark ;
weighted_average = exam_mark * exam_weight +

practical_mark * practical_weight

Figure 5.6

There are a number of new concepts introduced in this example, so we
will describe these line by line.

After the function heading and opening brace, we have the following in
lines 3 and 4.

const float exam_weight = 0.75,
practical_weight = 0.25

Recall that in the object class definition we had a data member described by:

float weighted_average ;

Now we have a declaration that is a list of two float constants. They are

Arithmetic 43

similar to variable declarations in the sense that storage is allocated for them
and they must be of a particular data type, but because they are introduced with
the keyword const they must be given a value that will not change. The
values to be permanently associated with the identifiers are placed after the
identifiers and are introduced by the = sign.

Using constant identifiers can make the program easier to maintain.
Suppose that these weightings are used in numerous assignment statements
throughout the function and at some time in the future their values have to be
changed. If the actual values have been used in the assignment statements, then
each statement will have to be changed. If constant identifiers are used, then we
only need to change the values in the cons t declaration.

The next six lines of the initialise member function are similar to
those in the example program in the previous chapter.

char terminator ;
cout « "Enter module identity code"
cin.get (module_identity, 6) ;
cin.get (terminator) ;
cout « "Enter student identity code " ;
cin.get (student_identity, 9) ;

We declare the char variable terminator, then use cout to display a
prompt, then use cin. get to obtain up to 5 characters from the keyboard for
the module identity, terminated when the user presses the enter key. We use
cin. get to skip over the character (newline) generated by using the enter key,
then use cout and cin. get to obtain the student identity. Note that in this
latter case, we do not need to follow the cin. get with another one to skip
over the newline character. This is because, as explained below, the next cin
statement ignores any such characters in the input stream.

The acquisition of the examination and practical marks follows a similar
pattern.

cout « "Enter examination mark "
cin » exam_mark ;
cout « "Enter practical mark "
cin » practical_mark ;
cin.get (terminator) ;

For each of the two integer marks, we have a prompt using cout followed by
cin. This use of cin does not need to reference the member function get, it is
simply followed by the operator » and the identifier for the appropriate data
item.

Note that when we accepted a string from the keyboard using cin. get,
we assumed that the end of the string would be signified by the newline
character. In this example, we make the same assumption for the integers.
However, there is a difference in the processing as we have already intimated.
When cin is used to obtain numeric data it will first ignore white-space

44 Object Oriented Programming Using C++

characters (that is, a blank, a tab, a newline or a carriage return) before
transferring the data value to the nominated area. So, we do not need to precede
cin by a statement to skip over a newline character, but it is good practice to
ensure that the final newline character is processed to avoid it being used by
mistake in some later processing.

The C++ code to calculate the sum of the two marks is a straightforward
example of using integer arithmetic.

sum = exam_mark + practical_mark ;

Here we have a single assignment statement that places the sum of the contents
of exam_mark and practical_mark into sum. The original contents of
sum are irrelevant to the calculation and are lost after the assignment has been
made.

In the last two lines of the ini tialise function we have the calculation
of the weighted average. This is an example of real arithmetic.

weighted_average = exam_mark * exam_weight +
practical_mark * practical_weight ;

The calculation of the weighted average is achieved in a single assignment
statement. Note that because of the precedence rules for the arithmetic
operators, the two multiplication operations are done first followed by the
addition of the results of the multiplication operations. Note also, that we are
using the constants declared at the beginning of the function. If we did not have
these constants, we would have written the assignment statement as:

weighted_average = exam_mark * 0.75 +
practical_mark * 0.25 ;

5.6 The display functions

Figures 5.7, 5.8, 5.9 and 5.10 contain the display_identities,
display_marks, display_sum and display_weighted_average
functions from the header file marks. h.

void student_marks::display_identities ()
{

cout « end! ;
cout « "Student identity: " « student identity

« " for Module: " « module_identity
« endl ;

Figure 5.7

Arithmetic

void student_marks::display_marks ()
{

cout « "Exam mark is " « exam mark «
" Practical mark is " « practical_mark
« end! ;

Figure 5.8

void student_marks: : display_sum ()

display_identities () ;
display_marks ()
cout « "The sum of the marks is " « sum «

end! ;

Figure 5.9

45

void student_marks::display_weighted_average ()

display_identities ()
display_marks () ;
cout « "The weighted average of the marks is "

« setprecision (1) « weighted_average «
end! ;

Figure 5.10

The display_sum function uses by now familiar code. After calling the
two functions display_identities and display_marks, we use cout
to display a message followed by the contents of sum.

If we had not calculated the sum in the initialise function, we could
have incorporated the calculation directly within the cout statement by:

cout « "The sum of the marks is " « exam mark +
practical_mark « end! ;

Likewise, after the heading for the display_weigh ted_average
function and the calls to display_ identi ties and display_marks,
we have a cou t statement to output the results.

cout « "The weighted average of the marks is "
« setprecision (1) « weighted_average «
end! ;

46 Object Oriented Programming Using C++

The statement to produce the output uses cou t as usual, but this time it has an
extra component, setprecision (1). This is known as a manipulator
because it manipulates the way in which the floating point output is to be
produced, in this case with one digit after the decimal point. Manipulators are
defined in the compiler header file iomanip. h. They are necessary because
the default or standard way for cou t to produce output is simply to take as
much space as it needs for the given values. For floating point output we may
not want many places of decimals, so we define the precision and get a rounded
result when necessary.

Finally, figure 5.11 is included to show a typical program file
(subject. cpp) that creates the object and invokes the member functions to
produce the dialogue given in figure 5.2.

II SUBJECT.CPP
II A program to produce the weighted average of a
II student's assessment marks for a subject
#include "marks.h"
void main ()

{

student_marks geography_MK321 ;
geography_MK321.initialise () ;
geography_MK321.display_sum () ;
geography_MK321.display_weighted_average ()
}

Figure 5.11

5.7 Exercises

5.7.1 Please refer to the example in figure 5.5, then answer the following
questions:
(a) In what other way could the lines declaring the integer variables

have been written?
(b) What keyword introduces the declaration of a real number?
(c) What is the purpose of the second #include statement?
(d) How many characters are allowed for in the student identity?

5.7.2 Please refer to the example in figure 5.6, then answer the following
questions:
(a) In the member function ini tialise, why do we not

immediately follow the third cin. get statement (for
student_ identi ty) with another one to skip over the newline
character?

(b) What is the assignment operator in C++?

Arithmetic

(c) What purpose does the keyword const serve in the data
declaration in ini tialise?

47

(d) With reference to the assignment statement that calculates the
weighted average, if exam_mark had the value 40 and
practical_mark had the value 50, would the weighted average
be computed as 42.5 or 20.0? Explain why you have chosen the
answer you have and why the alternative given is incorrect.

5.7.3 Please refer to the functions in figures 5.7 to 5.10, then answer the
following questions:
(a) If sum was not a data member, explain why the statement to calculate

the sum in the function ini tialise should be removed.
(b) Given that student_ identi ty has the value EG100,

module_identi ty has the value HIST, exam_mark has the
value 60 and practical_mark has the value 66, what would
be displayed on the monitor screen by the function
display_sum? Where does the screen cursor end up?

(c) What does the manipulator setprecision (1) do in
display_weighted_average?

5.7.4 Make changes as necessary to the example in figures 5.6 to achieve the
following revised specification.

The weighted average is computed by adding one fifth of the value of
the practical mark to four fifths of the value of the examination mark.

5.7.5 Produce a new header file marks55. h (inheriting
student marks from marks. h to derive a new class
student_marks _55) and a new program file assign55. cpp to
achieve the following specification.

Use the function ini tialise inherited from student marks to
prompt the user of the program to enter the identities and the two
marks (as before). Then call a function to compute the average (a
float data member) of the examination mark and the practical mark
(by dividing the sum by 2.0) without displaying the result. Then call a
separate function to display the two marks followed on a separate line
by the computed average; this function should use an inherited
function to display the two marks.

5.7.6 Produce a header file (circle. h) and a program file
(assign56. cpp) to produce a dialogue on the monitor screen as
demonstrated in figure 5.12. The specification is described by the
model in figure 5. 13 and the pseudo-code in figure 5.14 for the
member functions and figure 5.15 for the main program.

48 Object Oriented Programming Using C++

Enter radius of circle in centimetres 10
The area of the circle is 314.16 square ems
The circumference of the circle is 62.83 ems

Figure 5.12

Class: circle

radius (float)

pi (float)

Initialise pi and radius

Display area

Display circumference

Figure 5.13

circle::initialise
Declare terminator variable
Initialise pi = 3.1416
Prompt for and accept radius

circle::display_area
Declare area variable
Calculate area (nr2)
Display area

circle::display_circumference
Declare circumference variable

Calculate circumference (2nr)
Display circumference

Figure 5.14

main
Declare disk of type circle
Call disk. initialise
Call disk.display_area
Call disk.display_circumference

Figure 5.15

6 An Introduction to Selection

Objectives for this chapter
Familiarity with C++ programming terms and concepts:

• the keywords if, if-else

• relational expressions
• relational operators
• compound conditions
• nested selections.

Ability to:
• understand a simple C++ program that uses if, and if-else

• write simple C++ programs that use if, and if-else

• write pseudo-code using selection constructs.

6.1 Further development of a model for a student's assessment in a subject

As mentioned in section 1.7, a selection involves choosing between two or more
different actions depending on the value of a data item or some condition. We
can illustrate the concept of selecting different actions and the associated C++
language constructs by developing further the student marks example from
chapter 5. This will involve taking different actions depending on the values of
the examination mark and the practical mark.

We can use inheritance to derive a new class from student marks in
marks. h, called s tuden t _marks _1, with additional member functions.
The object schema in figure 6.1 shows how the revised model is derived. Figure
6.2 contains the new object class definition from marks1. h.

6.2 The if statement

As with most languages, C++ has a construct, namely the if statement,
enabling the programmer to choose between different actions according to the
value of a condition. The condition is an expression that gives a value of true or
false.

49

50 Object Oriented Programming Using C++

Class: student_marks

module identity
student identity

examination mark
practical mark
weighted average
sum of marks

Initialise

Display identities

Display marks

Display sum of marks

Display weighted average

II MARKS1.H

Derived class: student_marks_1

Figure 6.1

Test same mark
Test first class mark
Test marks

II The object class student marks 1
#include "marks.h"
class student marks 1 : public student marks

public :
void test_same_mark ()
void test first class mark ()
void test marks () ;

Figure 6.2

We will use a simple form of the if statement in the new member
function, test_same _mark, to display an appropriate message if the
practical mark and the examination mark have the same value. The pseudo­
code for this function is shown in figure 6.3.

In the selection, we have a single statement to be executed when the
condition specified in the IF is found to be true. The operation that is governed
by the condition is indented beneath the IF statement. Although not demon­
strated in this example, it is possible to have more than one operation that is

An Introduction to Selection

student marks 1::test same mark - - -
Call display_identities
Call display_marks
IF the marks are the same

Display same marks message
Display a blank line

Figure 6.3

51

executed when a condition is true, in which case they would be written at the
same indentation, as we shall see in section 6.6.

The C++ code from marksl. h for the function test same mark is
given in figure 6.4.

void student marks 1: :test same mark ()

display_identities () ;
display_marks () ;
if (exam_mark == practical_mark)

cout « "The marks are the same" « end!
cout « end! ;

Figure 6.4

Notice particularly the if statement in test_same _mark.

if (exam_mark == practical_mark)
cout « "The marks are the same" « end!

This statement will display the cou t message only if the contents of
exam_mark and practical_mark have the same value. The statement is
introduced by the keyword if, then a condition (or relational expression) in
parentheses followed by the statement to be executed when th~~dition is true.
The condition, in this example, uses the relational operator == which means
test the value of the operand (an expression or, in this case the single variable)
that appears to its left for equality with the value of the operand (expression or,
single variable) that appears to its right.

The comparison must give an answer of true (they are equal) or false (they are
not equal). If an answer of true is given, then the statement associated with the if
(the cout statement to display the message in this example) is executed followed by
the next statement after the if (that is, the cout statement to give a blank line). If
an answer of false is given, the cou t statement to display a message would be
ignored and the cout statement to give a blank line would be executed directly. We
can see the sequence of operations in the operation flow diagram at figure 6.5.

52 Object Oriented Programming Using C++

If statement

Test true
f--------..,.

condition

false

Next
statement

Statement
associated

with If

Figure 6.5

6.3 The if-else statement

A slightly different form of the if statement allows us to define actions for
both true and false results of the condition. This is demonstrated in the function
test_first_class_mark, where we display two different messages
depending on whether or not the examination mark is at least 70. The pseudo­
code for this function is given in figure 6.6.

Here, we have a single statement (Display first class exam
mark message) to be executed when the condition specified in the IF is
found to be true and a single statement (Display not first class

exam mark message) to be executed if the condition is not true. The
operations that are governed by both the condition and its alternative are
indented underneath the IF and ELSE respectively. Again, there could have
been a number of statements associated with the IF or the ELSE.

Considering the C++ code in figure 6.7, we note that in the if statement,
as in the first example, the comparison of the two operands must give an
answer of true (exam_mark is greater than or equal to 70) or false
(exam_mark is less than 70). If the answer is true, then the statement
associated with the if, the first cout statement, is executed. If the answer is
false, the statement associated with the keyword else, the second cout
statement, is executed. In either case the next statement, the cou t statement to
give a blank line, is always executed.

An Introduction to Selection

student marks l::test first class mark
call-displ~y_identities
Call display_marks
IF exam mark is at least 70

Display first class exam mark message
ELSE

Display not first class exam mark message
Display a blank line

Figure 6.6

void student marks 1: : test first class mark ()
{
display identities ()
display-marks () ;
if (exam_mark >= 70)

cout « "First class exam mark" « end! ;
else

cout « "Not a first class exam mark" « end!
cout « end! ;

Figure 6.7

53

Note the necessary semicolons that follow both the statement that is
associated with the if and the statement that is associated with the else (the
statements that display messages). The indentation style adopted is not a C++
rule, but is used to enhance the readability of the code.

The sequence of operations for the if-else statement is shown in the
operation flow diagram at figure 6.8.

6.4 Relational operators

A condition is evaluated as true or false when the value of an expression is
compared with the value of another expression in a number of ways. The type
of comparison depends on the relational operator that is used. The relational
operators that we use in C++ are shown in the table given in figure 6.9.

Four of the relational operators have two characters. These are always
written as consecutive characters; there must not be any spaces between them.

The operands in if statements may be complete expressions, so it is
necessary to establish an order of precedence for the relational operators and
other C++ operators such as the arithmetic operators. Relational operators have
lower priority than arithmetic operators. This means that arithmetic is done
first before a comparison is made in conditions such as the following.

(2 * exam mark -- practical_mark + 30)

54

Operator
--
!=
<
<=
>
>=

Object Oriented Programming Using C++

if-else statement

Test true
condition 1------___...

false Statement
associated

with If

Statement
'-------~ associated

with else

Next

statement

Figure 6.8

Type of comparison
equality
inequality (or not equal)
first operand less than second
first operand less than or equal to the second
first operand greater than second
first operand greater than or equal to the second

Figure 6.9

6.5 Nested selections

The statement associated with an if or an else may itself be a conditional
(if) statement. This means that we can write programs with many related
conditional statements.

In the function test_marks, we compare the examination mark with
the practical mark and display an appropriate message. The pseudo-code for
this function is shown in figure 6.10 and the C++ code from marksl. h is
shown in figure 6.11.

An Introduction to Selection

student marks l::test marks - -
Call display_identities
Call display_marks
IF the marks are the same

Display same marks message
ELSE IF exam mark is higher than practical mark

Display exam mark better message
ELSE

Display practical mark better message
Display a blank line

Figure 6.10

void student marks 1: :test marks ()

display_identities () ;
display_marks () ;
if (exam_mark == practical_mark)

cout « "The marks are the same" « end!
else if (exam_mark > practical_mark)

cout « "Exam mark is better" « end!
else

cout « "Practical mark is better" « end!
cout « end! ;

Figure 6.11

55

Let us consider the if-else statements in the function test marks.
We can now see that three different messages may be displayed representing the
three possibilities that could arise when comparing the two marks: they could
be the same, or the examination mark could be higher or the practical mark
could be higher.

For the first if statement, we have a cout statement to display "The
marks are the same" (to be executed if the condition is true) associated
with the if. The statement associated with the corresponding else (to be
executed if the condition is false) is another if-else statement with its own
condition and its own statements for if (true) and else (false). We say that
the second if-else is nested within the else part of the first. This concept
and the relationship of the statements is depicted in the operation flow diagram
in figure 6.12.

56 Object Oriented Programming Using C++

+
nested if-else statements

Test 1st true

condition

~
false Statement

associated
with 1st if

... Test 2nd true ...
condition

~ false
Statement
associated r------.
with 2nd if

Statement associated r-----.
with 2nd else

U

Next
statement

....

~
Figure 6.12

Notice that only one of the three messages will be displayed and that there
is no need to include the condition

if (practical_mark> exam_mark)

with the second else. If we reach this else then we know from the first two
conditions that the marks are not equal and the exam mark is not greater than
the practical mark. It follows that, at this point, the practical mark must be the
higher of the two.

6.6 Compound statements

We have so far assumed that the alternative actions are single statements. If we
want these actions to consist of a number of statements, then we use braces
{ ... } to make a sequence of statements into a single compound statement. As

An Introduction to Selection 57

we shall see later, compound statements will occur quite frequently in a number
of contexts.

Consider the revised version of test_marks given first in pseudo-code
in figure 6.13.

student marks l::test marks
Call display_identities
IF the marks are the same

Display same marks message
Display (same) mark

ELSE IF exam mark is higher than practical mark
Display exam mark better message
Display exam mark then practical mark

ELSE
Display practical mark better message
Display practical mark then exam mark

Display a blank line

Figure 6.13

Notice that in the pseudo-code, no braces are used; indentation is used to
convey the correct meaning.

The C++ code for the revised test_marks is given in figure 6.14. In this
example, we have more than one cou t statement, with braces around them, for
each path. Notice where we do and do not have semicolons, in particular, there
is no semicolon after any of the right braces (}). Also, notice that for compound
statements, we have used the indentation convention that we introduced earlier
for single statements.

Braces may also be used with a single statement, this is sometimes useful
in nested if statements to make the code more readable.

Finally, a sample program file (physics. cpp) that uses the header file
(marksl. h) is given in figure 6.15.

6.7 Exercises

6.7.1 Please refer to the example in figure 6.3, then answer the following
questions:
(a) What two basic programming constructs are used in the pseudo­

code?
(b) When will the same marks message not be produced?
(c) What would the sequence of operations be when both the exam

mark and the practical mark have a value of 50?
(d) How do we distinguish the operations that are performed when a

condition in an IF is true?

58 Object Oriented Programming Using C++

void student marks 1: : test marks ()

display_identities ()
if (exam_mark == practical_mark)

{

cout « "The marks are the same"
cout «" both are " « exam mark « end!

else if (exam_mark> practical_mark)

cout « "The exam mark is better" « end! ;
cout « "The exam mark is " « exam mark
cout « " the practical mark is " «

practical_mark « end! ;

else

cout « "The practical mark is better" «
end!

cout « "The practical mark is " «
practical_mark ;

cout « " the exam mark is " « exam mark
end! ;

cout « end!

Figure 6.14

II PHYSICS.CPP
II A proqram to test a student's marks
#include "marks1.h"
void main ()

{

student_marks_1 physics_MK110 ;
physics_MK110.initialise () ;
physics_MK110.test_same_mark ()
physicS_MK110.test_first_class_mark ()
physics_MK110.test_marks ()

Figure 6.15

«

An Introduction to Selection

6.7.2 Please refer to the example in figure 6.4, then answer the following
questions:
(a) What are the possible outcomes when a conditional expression is

evaluated?
(b) What are the three basic components of lines 5 and 6?
(c) Under what circumstances would the execution ofline 5 be

immediately followed by execution of the statement in line 7?

6.7.3 Please refer to the example in figure 6.7, then answer the following
questions:
(a) What are the five basic components of lines 5 to 8?

59

(b) Write two if statements (with no else) that give the equivalent
result to that obtained in lines 5 to 8? Is this code better or worse
than that given in the example? Give your reasoning.

(c) What is the 'greater than or equal to' operator in C++?

6.7.4 Please refer to the example in figure 6.11, then answer the following
questions:
(a) In what sense do we say that we have a nested selection here?
(b) Write three if statements (with no else) that give the equivalent

result to that obtained in lines 5 to 1O? Is this code better or worse
than that given in the example? Give your reasoning.

(c) What is the rule for when to use a semicolon and when not to in a
nested selection?

(d) The style of indentation of the nested if statements does not
highlight the nesting in the same way as the diagram in figure
6.12. Rewrite the code so as to use a different style of indentation
that relates more closely to the diagram?

6.7.5 Please refer to the example in figure 6.14, then answer the following
questions:
(a) What is a compound statement?
(b) What is the rule for when to use a semicolon and when not to in a

nested selection when we have compound statements?
(c) Rewrite the function test_marks without using compound

statements for any of the alternative actions in the if-else

statements. Hint: you will first need to define three new functions.

6.7.6 Rewrite the pseudo-code in figure 6.13 so that a blank line followed by
both marks followed by another blank line are displayed if the exam
mark and practical mark are both over 65; the exam mark followed by
a blank line are displayed if just the exam mark is over 65; the
practical mark followed by a blank line are displayed if just the
practical mark is over 65.

6.7.7 Rewrite the nested if-else statements in figure 6.14 as a single
if-else statement that displays either

60 Object Oriented Programming Using C++

The exam mark is worse
The marks are not the same

or The practical mark is worse
The marks are not the same

6.7.8 Produce a header file (rectang. h) and a program file
(assign68. cpp) to achieve the following specification.

A program is required to calculate the area and perimeter of a rectangle
and display the results with two decimal places. The user enters the
length and width; a value of zero for the width indicates that the
rectangle is a square. The dialogue on the screen will have the form
given in figure 6.16 or figure 6.17.

Enter length of rectangle in centimetres 16.81
Enter width of rectangle in centimetres 9.24
The area is 165.32 square centimetres
The perimeter is 52.10 centimetres

Figure 6.16

Enter length of rectangle in centimetres 11.46
Enter width of rectangle in centimetres 0
Rectangle is a square
The area is 131.33 square centimetres
The perimeter is 45.84 centimetres

Figure 6.17

The model is shown as an object schema in figure 6.18. The pseudo­
code is in figure 6.19 for the member functions and figure 6.20 for the
main program.

An Introduction to Selection

Class: rectangle

length (float)

width (float)

Initialise width and length

Display area

Display perimeter

Figure 6.18

rectangle: : initialise
Declare terminator variable
Prompt for and accept length
Prompt for and accept width (maybe zero)

rectangle: : display_area
Declare area variable
IF width is zero (rectangle is a square)

Display rectangle is a square message
Calculate area (length * length)

ELSE
Calculate area (length * width)

Display area

rectangle: : display_perimeter
Declare perimeter variable
IF rectangle is a square

Calculate perimeter (4 * length)
ELSE

Calculate perimeter (2 * length + 2 * length)
Display perimeter

Figure 6.19

main
Declare mouse_mat of type rectangle
Call mouse mat. initialise
Call mouse_mat. display_area
Call mouse mat. display perimeter

Figure 6.20

61

7 Further Concepts for Selection

Objectives for this chapter
Familiarity with C++ programming terms and concepts:

• logical operators! (not), && (and) and I I (or)
• assigning and comparing data of type char

• the keyword swi tch

• the use of a type cast.
Ability to:

• understand a simple C++ program that uses logical operators and swi tch

• write simple C++ programs that use logical operators and swi tch.

7.1 Further development of a model for a student's assessment in a subject

We can further illustrate the concept of selecting different actions and the
associated C++ language constructs by using a different development to the
student marks example from chapter 5. Again this will involve taking different
actions depending on the values of the examination mark and the practical
mark.

As in the previous chapter, we can use inheritance to derive a new class
from s tuden t _marks in marks. h, this time called s tuden t _marks _2.
The derived class will have two new member functions and a redefinition of the
function ini tialise as well as a new data member to hold a grade letter.
The object schema in figure 7.1 shows how the revised model is derived and
figure 7.2 contains the new object class definition from marks2 . h.

7.2 Logical operators

Conditional (or relational) expressions involving more than a single compar­
ison can be constructed using logical operators (and, or) to connect two or more
relational expressions. In addition a relational expression can be negated by the
use of another logical operator (not). The logical operators available in C++ are
shown in the table given in figure 7.3.

62

Further Concepts for Selection

Class: student_marks

module identity
student identity

examination mark

practical mark

weighted average

sum of marks

Initialise
Display identities

Display marks

Display sum of marks

Display weighted average

Derived class: studenCmarks_2

grade letter

Initialise

Test zeros

Display grade

Figure 7.1

II MARKS2.H
II The object class student marks 2
#include "marks.h"
class student marks 2 : public student marks

{

public :
void initialise ()
void test zeros ()
void display_grade ()

protected :
char grade_letter

} ;

Figure 7.2

Operator Meaning
! not (negation)
&& and
II or

Figure 7.3

63

64 Object Oriented Programming Using C++

The function tes t _zeros illustrates the use of logical operators. The
pseudo-code for this function is given in figure 7.4 and the C++ code is in
figure 7.5.

student marks 2::test zeros
IF both the marks are zero

Call display_identities
Display both marks zero message
Display a blank line

IF either mark is zero
Call display_identities
Display at least one mark zero message
IF the exam mark is not zero

Display exam mark not zero message
IF the practical mark is not zero

Display practical mark not zero message
Display a blank line

Figure 7.4

void student_marks_2::test_zeros ()
{

if «exam_mark :: 0) && (practical_mark 0»
{

display_identities () ;
cout « "Both marks are zero" « end!
cout « end! ;
}

if «exam_mark :: 0) I I (practical_mark:= 0»
{

display_identities ()

cout « "At least one mark is zero" « end!
if (exam_mark != 0)

cout « "The exam mark is not zero" «
end! ;

if (! (practical_mark:= 0»
cout « "The practical mark is not zero"

« end! ;
cout « end! ;

Figure 7.5

Further Concepts for Selection 65

Let us examine the first if statement in this example.

if «exam_mark == 0) && (practical_mark == 0»

In this statement, we have two conditional expressions joined by the logical
operator && (and). This means that both of the simple expressions must be true
for the whole compound expression to be true. The compound statement
associated with the if will only be executed if the examination mark is equal to
zero and the practical mark is equal to zero. If either of these two expressions is
false then the compound statement will not be executed.

Notice that each of the two simple conditional expressions is enclosed in
parentheses. This is not a requirement of the language because relational
operators have higher priority than logical operators, but it does help to make
the whole statement more clear. The whole of the compound conditional
expression, however, is enclosed by parentheses as a necessary part of the C++
language.

In the second if statement, we have two simple expressions joined by the
logical operator I I (or).

if «exam_mark == 0) I I (practical_mark == 0»

In this case, only one of the simple expressions needs to be true for the whole of
the compound conditional expression to be true. Therefore, if the examination
mark is zero the compound statement that follows will be executed irrespective
of the value of the practical mark. Similarly, if the practical mark is zero, the
compound statement will be executed irrespective of whether the examination
mark is zero or not. If both the marks happen to be zero, then again the
compound statement associated with the if will be executed.

The third if statement introduces the inequality operator.

if (exam_mark != 0)
cout « "The exam mark is not zero" « end! ;

One way of testing that a value is not zero is to use the! = (not equals) operator
as in the above. An alternative way of expressing this condition is given in the
fourth if statement.

if (! (practical_mark == 0»
cout « "The practical mark is not zero"

« end! ;

Here we use the ! (not) operator. The effect of this operator is to negate the
condition following it, that is, it changes false to true or true to false. In this
case, the cout statement will only be executed if 'practical mark equals zero'
is false.

From this example, we might conclude that using the ! = (not equals)
operator is easier. However, there are occasions when it is preferable to use the
! (not) operator. Suppose, for example, we wanted to change the test in the first
if to give the message "At least one mark is NOT zero", we would then use:

66 Object Oriented Programming Using C++

if (! «exam_mark == 0) && (practical_mark == 0»)
cout « "At least one mark is NOT zero" « endl

As with arithmetic operators, there are rules governing the order in which
logical operators are applied. The order of priority is ! (not), then && (and),
then I I (or). To negate the whole of the compound expression in the above
code, we have to put it in parentheses to override the precedence of the
operator.

7.3 Assigning and comparing characters

The object class student_marks_2 contains a new data item that will
contain a single letter (A, B, C, D or E) representing the grade obtained by the
student for a particular module. It is declared in marks2. h, figure 7.2, as:

char grade_letter ;

A value of type char is restricted to what can be contained in one byte. For
example, we have already used

char terminator ;

and stored the newline character in this variable.
Variables and constants of type char are usually used when processing

single characters such as a letter of the alphabet, a single digit or a punctuation
character. Within a C++ program, a value of type char is normally denoted by
a single character enclosed in apostrophes, for example

'0' '2' 'r' I? '

As with int and float, character values and variables can be used in
assignment statements, for example

grade_letter = 'B' ;

Most computers use the ASCII character codes. ASCII is the acronym
given to an international standard concerned with data communication. It
associates a unique numeric value for each character. For example, the digits
'0' though to '9' have values 48 to 57, the upper case letters 'A' through to 'z'
have values 65 to 90 and the lower case letters 'a' through to 'z' have values 97
to 122. (See Appendix D for the complete set of characters and corresponding
values.) This means that characters can be easily compared using the standard
relational operators; the ordering is given by the corresponding ASCII code.
For example, the following expressions would all yield true:

('F' < 'M') ('9' >= '2') ('a' != 'A')

The logical operator &&, introduced in the previous section, can be used to
determine whether or not a variable holds a value within a specific range. To
test whether or not the character held in char_value was a digit, we would
use:

Further Concepts for Selection

if «char_value >= '0') && (char_value <= '9'»
cout « "This is a digit" « encil ;

else
cout « "This is not a digit" « endl

7.4 The swi tch statement

67

We now illustrate a further selection construct of C++ by implementing the
display_grade function. This will display the calculated grade, a single
letter A, B, C, D or E, together with an encouraging message. The way in
which the grade is evaluated from the weighted average, as part of the new
ini tialise function, is explained later in this section. Figure 7.6 contains
the pseudo-code for the display_grade function.

student_marks_2::display_grade
Call display_identities
Display the grade letter
SWITCH on grade letter

CASE 'A' display 'Excellent'
CASE 'B' display 'Very good'
CASE 'C' display 'Pass, but you must try

harder'
DEFAULT display 'must try harder'

Move cursor to the next line

Figure 7.6

In this example, we introduce the multi-way selection with the word
SWITCH followed by a data item whose value is examined and then determines
one of the processing options. The alternative values under consideration are
next listed (indented) introduced by the word CASE followed by a statement (or
it could be a sequence of statements) to be executed when that value is present.
DEFAULT is a special case for all other values not specifically mentioned.

The C++ code for the function display_grade is given in figure 7.7.
Note that it contains the C++ selection construct swi tch. This is the code we
use when we want to select one of several different courses of action depending
on the value of a single expression, in this case the single character
grade_letter. Using switch, the desired course of action is selected
immediately after a single inspection of the value of grade_letter.

Following the keyword switch, we have an expression in parentheses
that must give an integer value or, as above, a character value. There follows,
enclosed within braces, any number of case groups. A case group consists of
the keyword case followed by a possible value of the expression, followed by a
colon, followed by one or more statements to be executed if the expression has

68 Object Oriented Programming Using C++

void student_marks_2::display_grade ()
{

display_identities ()
cout « "The grade is " « grade_letter « " "
switch (grade_letter)

{

case 'A'

case 'B'

case 'e'
default

cout « end! ;

cout « "Excellent"
break ;
cout « "Very good"
break ;
cout « "Pass, but you " . ,
cout « "must try harder" ;

Figure 7.7

the specified value. The case values must all be distinct constants of the same
type as the swi tch expression.

The break statement is optional. It must be used, however, if we want to
prevent the execution "falling through" to the following statements belonging
to other case groups. Optionally, as above, the case groups may be followed by a
defaul t group that specifies one or more statements to be executed if the
swi tch expression contains a value not matched in any of the case groups.

The operation flow diagram in figure 7.8 depicts the way in which the
tests in this specific example are carried out, and the way in which the presence
or absence of the break statement affects which statements will be executed.
Because there is no break at the end of the C group, the cout statement
associated with the defaul t group will also be executed for the C group.

Finally, to complete this development of the student marks example we
will describe a new (over-riding) initialise function. Here, we will make
use of the code in the original initialise function (declared in marks. h for the
object class s tuden t _marks) by first calling it and then using additional
code to calculate grade_letter. In this new code, we will again use the
swi tch statement. Figures 7.9 and 7.10 show the pseudo-code and the C++
code.

Notice how we first call the original initialise function from the
object class student_marks.

student_marks::initialise () ;

We must use the scope resolution operator (: :) to indicate that the
ini tialise function being called is the one defined in section 5.4 (see figure
5.4) for the object class student_marks (see figure 5.5).

Further Concepts for Selection 69

switch statement

• Test grade true ... Display
= 'A' Excellent

r-----------.,

false

~r

Test grade true Display

='8'
r Very good

false

~,

Test grade true Display
= 'C' ...

Pass

false

"
Display

Try harder
.....

Cursor to
next line

•
Figure 7.8

The additional code is a swi tch statement. Recall that the expression in
parentheses after swi tch must give an integer or character value. But, we are
dealing here with a real (float) number in weighted_average. We must,
therefore, convert the real number to integer form by means of a cast.

A cast is shown in this statement.

switch (int (weighted_average + 0.5) / 10)

Here we add 0.5 to weighted_average and reinterpret the result as an
integer by preceding the parenthesised expression with into We have added
0.5 to round up the weighted average because simply using the int cast alone
would cause the value to be truncated. This new integer value is then divided by

70 Object Oriented Programming Using C++

student marks 2::initialise
Call student marks::initialise
SWITCH on weighted average divided by 10

CASE 7, 8, 9, 10 set grade letter =
CASE 6 set grade letter =
CASE 5 set grade letter =
CASE 4 set grade letter
DEFAULT set grade letter

Figure 7.9

void student marks 2::initialise ()

student_marks::initialise () ;

'A'
'B'
'C'
'0'
'E'

switch (int (weighted_average + 0.5) / 10)
{

case 10
case 9
case 8
case 7 letter grade_ 'A'

break ;
case 6 grade_letter = 'B'

break ;
case 5 grade_letter = 'C'

break ;
case 4 grade_letter = '0'

break ;
default grade_letter = 'E'
}

Figure 7.10

10 to give a value between 0 and 10 which is now used as the basis of the
swi tch statement.

For example, suppose the weighted average is 39.6.

weighted_average + 0.5 is 40.1
int (weighted_average + 0.5) is 40
int (weighted_average + 0.5) / 10 is 4

and the corresponding case group then assigns 'D' to grade_letter.
This example illustrates how several constant values may be placed in

front of the same statement. This is used when the same action is to be taken for
several different selected values.

Further Concepts for Selection 71

case 10
case 9
case 8
case 7 grade_letter = 'A' ;

break ;

In our case, as all weighted averages of at least 69.5% attract a grade A, a
revised integer value of 10, 9, 8 or 7 should get grade A. So, we have the first
three of these values with no statement (just the colon and semicolon) so that in
each of these cases execution will "fall through" to the statement for case 7.

Notice the last 3 lines of the swi tch statement.

case 4 grade_letter = 'D'
break ;

default grade_letter = 'E'

All values below 4 are dealt with by the defaul t case, hence getting a grade
E.

7.5 Exercises

7.5.1 Please refer to the example in figure 7.5, then answer the following
questions:
(a) Give the three logical operators in their order of precedence.
(b) In line 9, which parentheses are a mandatory part of C++ and

which are not? Why are extra parentheses sometimes used?
(c) What is the not equals (or inequality) operator?
(d) Refer to line 16 and explain how the negation operator works.

7.5.2 Write an if-else statement that would display an appropriate
message depending on whether or not the value held in
grade_letter is in fact a valid grade (see section 7.3).

7.5.3 Please refer to the example in figure 7.7, then answer the following
questions:
(a) What is the type of grade_letter and what values may be

contained in a data item of this type?
(b) The expression following the keyword swi tch must give what

kind of value?
(c) What are the components of a case group?
(d) What is the effect of a break statement?
(e) What is the effect of a defaul t statement?
(f) What would be displayed on the monitor screen for a grade B, a

grade C and a grade D?

7.5.4 Please refer to the example in figure 7.10, then answer the following
questions:

72 Object Oriented Programming Using C++

(a) What effect does the expression of the swi tch statement give?
What is the resultant value when weighted_average is 23.2,
46.5 and 79.5? What are the corresponding values for
grade_letter?

(b) What happens if a case group contains no statement, as in lines 6,
7 and 8?

7.5.5 Produce a header file (marks75. h) that inherits
student_marks_2 frommarks2. h, incorporating one new
function display_average, and a program file
(assign75. cpp) to achieve the following specification.

Prompt the user of the program to enter the identities and the
examination and practical marks, then display the results of testing for
zero marks (as before). Then call a function, display_average,
which uses the inherited data item sum; provided the sum is not zero
the average is displayed with appropriate text, otherwise just an
appropriate message is displayed.

7.5.6 Produce a header file (marks76. h) that inherits
s tuden t _marks _ 2 from marks2 . h and a program file
(assign76. cpp) to achieve the following specification. Write the
pseudo-code for ini tialise before writing the C++ code.

Prompt the user of the program to enter the identities and the two
marks then display the grade (as before). Redefine the ini tialise
function to calculate a grade of A if both the exam and practical mark
are at least 75%, B for both marks between 50% and 74% inclusive
and C otherwise.

7.5.7 Produce a header file (convert. h) and a program file
(assign77 . cpp) to achieve the following specification.

A program is required to convert a number, in the range 1 to 100, to its
equivalent single character representation in Roman numerals. Any
number not capable of this simple conversion or outside the valid range
is reported as an error. The user enters the number at the keyboard. The
dialogue on the screen will have the form

Enter number 5
5 gives the Roman numeral V

or
Enter number 7
7 cannot be converted

The model is shown as an object schema in figure 7. 11 and the pseudo­
code in figure 7.12 for the member functions and figure 7.13 for the
main program.

Further Concepts for Selection

Class: convert

number

roman numeral

Get number

Convert to Roman numeral

Display Roman numeral

Figure 7.11

convert::get_number
Declare terminator variable
Prompt for and accept number

convert: : convert to roman numeral -
SWITCH on number

CASE 1 set roman numeral
CASE 5 set roman numeral
CASE 10 set roman numeral
CASE 50 set roman numeral
CASE 100 set roman numeral
DEFAULT set roman numeral

convert: : display_roman numeral
Display number

=
=
=
=
=
=

'I'
'V'
'X'
'L'
'C'
'? '

IF roman numeral is a question mark
Display error message

ELSE
Display text and roman numeral

Figure 7.12

main
Declare dial of type convert
Call dial.get_number
Call dial.convert to roman numeral - -
Call dial.display_roman_numeral

Figure 7.13

73

8 Repetition

Objectives for this chapter
Familiarity with C++ programming terms and concepts:

• while, for and do-while constructs
• a declaration with variable initialisation.

Ability to:
• understand a simple C++ program that uses while, for and do-while

• write simple C++ programs that use while, for and do-while

• use the 'read-ahead' technique with the while construct
• understand some concepts of data validation
• distinguish the need for the different types of repetition statement
• write pseudo-code using iteration constructs.

8.1 Refining the input processes for the student's marks

We have seen that programming requires the ability to make decisions.
Iterations (or repetitions) are used when we need to repeat actions either a
certain number of times or until a pre-determined condition has been reached.
The statements to be repeated are sometimes known as loops, and the process of
repetition as looping.

We can illustrate the way in which program statements can be repeated a
number of times by developing the student's marks example still further.
Suppose that both the practical mark and the examination mark have to be
calculated from a number of component marks and that the computer user
enters these marks one value at a time.

We will need to write a new initialise function to accomplish this
revised specification. To simplify matters, we will specify this so that it calls
qet_identities, qetyractical_mark, qet_exam_mark and
do_calculations. The new class definition inherits student_marks_2,
its derivation is depicted in the object schema in figure 8.1 and the C++ code
from marks2A. h is shown in figure 8.2.

The function qet_identities prompts for and accepts the module
and student identity. The function do _ calcula tions calculates the sum of
the exam mark and practical mark, the weighted average and the grade letter.

74

module identity

student identity

examination mark
practical mark
weighted average
sum of marks
grade letter

Initialise

Display identities

Display marks

Display sum of marks

Display weighted average

Test zeros

Display grade

II MARKS2A.H

Repetition

Derived class: student_marks_2A

Figure 8.1

Initialise

Get identities
Get practical mark
Get exam mark

Do calculations

II The object class student marks 2A
#include "marks2.h"
class student marks 2A : public student marks 2

{

public :
void get identities ()
void get-practical mark ()
void get=exam_mark-() ;
void do_calculations ()
void initialise () ;

Figure 8.2

75

The ini talise function (given in figure 8.3) is simply a sequence of
function calls. The functions get _ identi ties (given in figure 8.4) and
do_calculations (in figure 8.5) are simply extracts from previous versions
of ini tialise.

76 Object Oriented Programming Using C++

void student marks 2A: : initialise ()
{

get_identities ()
get_exam_mark ()
get_practical_mark ()
do calculations ()

Figure 8.3

void student marks_2A::get_identities ()
{

char termdnator ;
cout « "Enter student identity code "
cin.get (student_identity, 9)
cin.get (termdnator)
cout « "Enter module identity code "
cin.get (module_identity, 6)
cin.get (termdnator)
}

Figure 8.4

void student marks 2A::do calculations ()
{

const float exam weight = 0.75,
practical weight = 0.25

sum = exam_mark + pra~tical_mark ;
weighted average = exam mark * exam weight +

practical mark * pra~tical weight
switch (int (weighted_average-+ 0.5) / 10)

{
case 10
case 9
case 8
case 7

case 6

case 5

case 4

default
}

grade_letter = 'A'
break ;
grade_letter = 'B'
break ;
grade_letter = 'e'
break ;
grade_letter = '0'
break ;
grade_letter = 'E'

Figure 8.5

Repetition 77

8.2 The while statement

We will now develop the function qet_practical_mark with the specifi­
cation that a student's practical mark is the average of a variable number of
component marks. The computer user enters these component marks one value
at a time and signifies the end of the list of values by typing the impossibly high
mark 999. The pseudo-code for qet_practical_ mark is given in figure
8.6.

student_marks_2A: :qet-practical_mark
Declare variables
Initialise number of component marks (= 0)
Initialise total practical mark (= 0)
Prompt for and qet first practical component mark

(or 999)
WHILE practical component mark not 999

Add component mark to total practical mark
Increase number of component marks by 1
Prompt for and qet next practical component

mark (or 999)
Skip over final newline character
IF number of component marks > 0

Compute averaqe practical mark
ELSE

Practical mark is zero

Figure 8.6

In this pseudo-code, we have a sequence of seven components: four
elementary operations followed by a WHILE construct, then another elementary
operation followed by an IF-ELSE construct. The WHILE construct gives us
the ability to repeat a number of operations, in a loop, as long as a particular
condition remains true. The operations to be repeated, three in figure 8.6, are
indented under the WHILE which describes the appropriate condition. We do
not know in advance how many times we are to repeat the loop and as the
condition may never be true, the operations in the loop may never be executed.
Thus we say that the WHILE is an indeterminate iteration construct.

The C++ code for get_practical_ mark is given in figure 8.7
The fundamental repetitive control structure in C++, while, is used in

figure 8.7 to control the input of practical component marks. Let us consider
just this part of the code.

A component mark is obtained; if the mark is not 999 the repetition starts.
The four statements (in the compound statement) that accumulate the total
practical mark, count the number of component marks that make up the
practical mark and obtain the next component mark are executed repeatedly
while the component mark is not = 999. When a component mark of 999 is

78 Object Oriented Programming Using C++

void student_marks_2A: :qetyractical_mark ()
{

char terminator ;
int component_mark
int no_of_marks = 0 ;
int total_practical_mark = 0 ;
cout « "Enter first practical mark (or 999) "
cin » component_mark
while (component_mark != 999)

{

total_practical_mark += component_mark
++ no_of_marks ;
cout « "Enter next practical mark (or 999) "
cin » component_mark
}

cin.qet (terminator) ;
if (no_of_marks > 0)

practical_mark = total_practical_mark /
no of marks

else
practical_mark 0

Figure 8.7

reached, the repetition stops and the next statement is obeyed.
The statement that accumulates the practical mark by adding the

component mark uses the += operator; this allows a shorthand expression as
seen above for:

total_practical_mark = total_practical_mark +
component_mark ;

The condition (relational expression) of the while statement must be
enclosed within parentheses, and must give a true result for the associated
compound statement to be obeyed.

It must also eventually give a false result (that is, not true), otherwise we
would have a situation in which the loop would continue an infinite number of
times. Hence, the statement to be repeated should eventually do something to
make the condition false, as in the example above, where a mark of 999 must
eventually be obtained.

If the condition is false when it is first tested, the loop will not be
executed. In the above example, if the first mark obtained was 999, the four
statements would not be executed, so nothing would be added to
total_practical_ mark and no_of _marks would not be increased (they
would both remain as zero).

Repetition 79

The way in which the while loop operates in general is depicted in the
operation flow diagram given in figure 8.8.

while statement

~
false test

condition
....

true

~,

statement
to be

repeated

... next ...
statement

•
Figure 8.8

An important technique for processing a list of values terminated by a
special 'end' value is the so-called 'read-ahead technique'. This is illustrated in
the generalised pseudo-code given in figure 8.9.

Initialisation (totals and counters to zero)
Get the first value
WHILE continuing condition (value not 'end' value)

Process the current value
Get next value

Figure 8.9

Using this technique, we must get a value before we can test whether or
not we have reached the special 'end' value. This means that we must get a
value before entering the loop and we must get the next value as soon as the
current value has been processed within the loop. This technique ensures that a
program will be correct even when the sequence of values contains only the
special 'end' value.

Before we leave this example, there are two further programming features
that must be explained. First, note the following declaration.

80 Object Oriented Programming Using C++

int no_of_marks = 0 ;

Here we have declared an integer variable, but at the same time assigned to it
the initial value zero. The value of the variable will, under normal circum­
stances, change as the statements of the function are executed. It should
therefore not be confused with the value given in a constant declaration where
the value remains unchanged throughout the execution of the function that
owns it.

Now, recall the if-else statement that followed the while loop.

if (no_of_marks > 0)
practical_mark = total_practical_mark /

no of marks
else

practical_mark = 0 ;

This statement is necessary in case the while loop is not entered, and hence
no_of _marks is never increased from its initial value of zero. Division by
zero is not possible and in C++, as with most other programming languages, if
there is an attempt to do so, the program will stop with a run-time error. Note
also that practical_mark was declared as a member data item in the
original base class definition, so we must not declare it in this function.

8.3 The for statement

Let us now suppose that, in our example, the examination paper has five
questions and the examination mark is calculated by adding together these five
marks. The pseudo-code for the function get_exam _mark that obtains the
five marks and calculates the exam mark is shown in figure 8.10

student_marks_2A::get_exam_mark
Declare variables
Initialise exam mark (= 0)
FOR question number from 1 to 5 in steps of 1

Prompt for and get an exam question mark
Add exam question mark to exam mark

Skip over final newline character

Figure 8.10

In this pseudo-code we have a sequence of four components. Two
elementary operations are followed by a FOR construct then another elementary
operation. The FOR construct gives us the ability to repeat, in a loop, a number
of operations a pre-determined number of times. Often we may use a counter to
control the number of times the loop is repeated. In this case the counter is
question number and we specify the starting and ending values of the

Repetition 81

counter as well as the step value. The operations to be repeated, two in figure
8.10, are indented under the FOR.

The C++ code for get _ exam_mark is given in figure 8.11.

void student_marks_2A: :get_exam_mark ()
{

char terminator ;
int question_mark
exam_mark = 0 ;
for (int question_number = 1 ; question_number

<= 5 ; ++ question_number)
{

cout « "Enter examination mark no. " «
question_number « " " ;

cin » question_mark ;
exam_mark += question_mark
}

cin.get (terminator) ;
}

Figure 8.11

This type of repetition, where there is always an expression to be obeyed
before entering the loop (question_number initialised to I), a controlling
expression (question_number is less than or equal to 5), and an expression
that is to be obeyed at the end of each loop (increase the value of
question_number by 1) is very common. For this reason it is catered for by
a specific language construct: the for statement.

Notice that following the keyword for, we have the three components
using question_number (that is, the expression to be obeyed before
entering the loop, the controlling expression, and the expression to be obeyed at
the end of each loop). In the first expression, in this case, we declare the integer
variable at the same time as giving it an initial value.

The effect of the for statement in figure 8.11 is to repeat the associated
compound statement, first with question_number equal to 1, then 2, then
3, then 4 and finally 5.

We illustrate the way in which the for statement operates in the
operation flow diagram shown in figure 8.12.

The general form of the for statement can be written as:

for (expression-l ; expression-2 ; expression-3)
statement ;

which can be explained by the following equivalent code using while:

expression-l ;
while (expression-2)

82 Object Oriented Programming Using C++

false

statement
expression-3
}

for statement

do
expr-1

test
expr-2

(condition)

true

statement
to be

repeated

do
expr-3

next

statement

Figure 8.12

This implies that the while statement could be used instead of any for

statement. But the for statement should be used whenever we have a count­
controlled loop - that is a counter (question_number in our case) going
from an initial value (l in our case) to a final value (5 in our case) in steps (1 in
our case).

8.4 The do-while statement

The do-while statement is another loop control statement. Unlike the while
and for statements, it tests for another repetition at the bottom of the loop
instead of the top. This means that the statement to be repeated is executed at
least once. The concept is illustrated in the operation flow diagram in figure
8.13.

Repetition

do-while statement

statement
to be Ie------...

repeated

test true
condition 1--------'"

false

next

statement

Figure 8.13

83

As with while and for, several statements enclosed in braces to form a
compound statement, may be placed inside the loop.

The do-while statement makes explicit the fact that the loop is always
executed at least once and should be used when the loop has to be executed
once before the condition can be tested. This often occurs in an interactive
dialogue where the user input is validated to be correct. For example, in our
student's marks example, if each question is marked out of 20, we should really
insist that any examination question mark entered lies in the range 0 to 20.

A new version of get _ exam_mark, incorporating a do-while
statement to validate the input, is shown in pseudo-code in figure 8.14.

student_marks_2A::get_exam_mark
Declare variables
Initialise exam mark (= 0)
FOR question number from 1 to 5 in steps of 1

DO
Prompt for and get an exam question mark

WHILE exam question mark is invalid
Add exam question mark to exam mark

Skip over final newline character

Figure 8.14

In this pseudo-code we have an initial sequence of four components. Two

84 Object Oriented Programming Using C++

elementary operations are followed by a FOR construct then another elementary
operation. The FOR statement will repeat a sequence of two operations: a 00-

WHILE construct followed by an elementary operation. In this case there is only
one operation to be repeated in the loop; this is indented under the DO.

The C++ code for this version of qet_ exam_mark is given in figure
8.15.

char terminator ;
int question_mark
exam_mark = 0 ;
for (int question number = 1 ; question_number

<= 5 ; ++ question_number)
{

do

cout « "Enter examination mark no. " «
question number « " "

cin » question_mark ;
}

while (! «question_mark >= 0) &&
(question_mark <= 20»)

exam_mark += question_mark
}

cin.qet (terminator) ;
}

Figure 8.15

The validation is achieved by repeatedly asking the user to input a mark
until a valid mark is entered (that is, it is in the required range) or, to put it
another way, while the user continues to enter an invalid mark.

Notice that the condition for continuing the inner loop:
while (! «question_mark >= 0) &&

(question_mark <= 20») ;
can only be evaluated once the user has entered a mark. Hence we have to test
the condition at the end of the loop and need a repetition of at least one
occurrence.

Repetition

8.5 Exercises

8.5.1 Please refer to the example in figure 8.7, then answer the following
questions:
(a) How many times would the statements in the while loop be

executed if the user of the program typed in 999 as the first
practical component mark?

85

(b) Which statement is executed next after the while when the value
of component_mark is 999?

(c) What would happen if the second cin » component_mark
was omitted?

(d) If the user typed in 50 then 60 then 999 for the practical mark
components, what would be contained in the variables
no_of_marks, total_practical_markand
component_mark after completion of the while loop?

(e) Why is the if statement necessary?

8.5.2 Please refer to the example in figure 8.11, then answer the following
questions:
(a) How many times is the first expression of the for statement

executed?
(b) How many times is the third expression of the for statement

executed?
(c) If the number of examination questions was reduced to four, what

statements would need to be changed?
(d) Why do we not use the read-ahead technique in this example?
(e) What changes would you make to rewrite the code in this example

using a while statement instead of the for statement. Which is
better, this code or that given in the example? Give your reasoning.

(f) If question_number was initialised to 0 rather than 1, what
effect would this have on the way we would code the relational
expression in the for statement?

8.5.3 Please refer to the example in figure 8.15, then answer the following
questions:
(a) Why must there be at least one repetition of the statements in a

do-while loop?
(b) What is the purpose of the do-while loop in this example?
(c) Write alternative code for the do_while loop using a while

loop. Is this code better or worse than that given in the example?
Give your reasoning.

(d) What changes would you make ifthe number of questions is
reduced to four with 25 marks for each question?

86 Object Oriented Programming Using C++

(e) For this revised specification, rewrite the compound condition for
the while using I I rather than! and &&. Hint: for which values is
the mark invalid?

8.5.4 Produce a header file (marks 8 4. h) that inherits
s tuden t _marks _ 2A from marks2A. h and incorporates new
versions of qet_ exam_mark and ini tialise. Produce
appropriate pseudo-code for these two functions before coding them.

The revised version of qet _exam_mark calculates the exam mark
by adding together an unknown number of examination question
marks (so there is no need to validate these marks). The user is
prompted for and enters a mark one value at a time and indicates that
there are no more by typing a -1.

The revised version of ini tialise must include all existing
features and validate the exam mark by ensuring that it is greater than
the practical mark.

8.5.5 Produce a header file (trianq. h) and a program file
(assiqn85. cpp) to achieve the specification described by the object
schema in figure 8.16 and the pseudo-code in figure 8.17 for the
member functions and figure 8.18 for the main program.

You should use prompts that ask for the dimensions in centimetres and
display the result to 2 decimal places with appropriate text.

Class: triangle

height (float)

base (float)

Initialise base and height

Display area

Figure 8.16

Repetition

triangle: : initialise
Declare terminator variable
DO

Prompt for and accept height
WHILE height < 10.0
DO

Prompt for and accept base
WHILE base < 12.5
Skip over final newline character

triangle::display_area
Declare area variable
Calculate area (height * base / 2)
Display area

Figure 8.17

main
Declare example of type triangle
FOR counter from 1 to 6 in steps of 1

Call example. initialise
Call example.display_area

Figure 8.18

87

9 Functions

Objectives for this chapter
Familiarity with C++ programming terms and concepts:

• function calls and definitions
• formal and actual parameters
• function results
• private member functions
• the return statement
• call by value and call by reference, alias parameters
• the address operator &

• integer values as true or false.
Ability to:

• understand the use of functions with both call by value and call by refer­
ence parameters

• write simple C++ programs that use functions with call by value and call
by reference parameters.

9.1 The function call

In all the previous examples, we have implemented the behaviour of objects by
writing member functions. Such functions have then been invoked or called by
statements such as

initialise () ;

or for instances of an object by statements such as

history.test_first_class_mark ()

In such cases, the function call exists as an executable statement with no
arguments. The effect of the call is to cause the statements of the function to be
executed; when completed, the calling function or program continues from the
next statement.

We have also used functions provided by C++ in standard libraries. For
example, we called the function strcpy found in <string. h> by

strcpy (contents I "Hello World")

88

Functions 89

Again, the function call exists as an executable statement but now it has two
arguments. The effect of the call is to cause the statements of the function to be
executed, that is, the string "Bello World" is copied into contents. Thus
the second argument is supplied to the function and does not have its value
changed by the function. The first argument, however, does have its value
changed by the function call.

A full range of mathematical functions is available in <math. h>. For
example we could call the pow (power) function as follows

volume = 3.14 * pow (radius, 2) * height;

The function pow takes two arguments. In this case, radius (a value to be
raised by a power) and 2 (the power used). It returns the result radius2 • The
function call appears in an expression and after execution is replaced by the
returned value.

We could also call the sqrt (square root) function as in the following
statement

sides = sqrt «height * height) + (width * width» ;

The function sqrt takes a single argument (an expression that gives a value of
type double) and returns a result of type double (double is an extended
form of type float). Here, the function call has a single value and appears on
the right-hand side of an assignment statement, but it could equally well have
been part of an expression. The effect of the call is to pass the value of the
argument (an expression in this case) to the function, which executes and
returns the square root of that value as the result of the function. The result is
then assigned to sides.

Thus a function can return a value either by changing one of its para­
meters or as the result of the function. Note that C++ allows for all functions to
return a result value as well as the possibility of having arguments whose values
mayor may not be changed.

9.2 The function definition

As we have seen, a function is a self-contained subprogram that can be called
(invoked) from a main program or another subprogram. These functions are
either held in C++ libraries or defined in the program or header file by a
function definition. This consists of the function heading followed by the
statements that belong to the function enclosed in braces, known as the body of
the function. Hence the general form of a function definition is:

result_type function_identifier (parameter_list)
{

statements

In fact, a main program is itself a function. Recall that we have started the

90 Object Oriented Programming Using C++

executable part of our programs with void main () which is a function
heading with no result type, as indicated by void, and an empty parameter
(argument) list.

9.3 A revised version of the student marks object class

Let us now develop a different version of the student_marks object class to
illustrate the use of function definitions with parameters and result values and
the way functions are called. We will again use student_marks_2 as the
base class, this time introducing both new and overriding member functions as
well as three new private functions. The derivation of the new object class is
depicted in the object schema given in figure 9.1 and the C++ code for the new
class definition is given in figure 9.2.

module identity

student identity

examination mark
practical mark
weighted average
sum of marks
grade letter

Initialise

Display identities

Display marks

Display sum of marks

Display weighted average

Test zeros

Display grade

Derived class: studenCmarks_2B

Display grade

Get identities

Get practical mark
Get exam mark
Do calculations
Display message (private)
Get practical component mark (private
Get exam question mark (private)

Figure 9.1

Functions

II MARKS2B.H
II The object class student marks 2B
#include "marks2.h"
class student marks 2B : public student marks 2

public :
void initialise ()

void identities get_ ()

void display_grade () ;
void get_practical_mark ()

void get_exam_mark () ;
void do calculations ()

private
void display_message (const char* message)
int get_practical_component_mark (const

char* ti tIe) ;
int get_exam_question_mark (int question_no,

int& mark) ;

Figure 9.2

91

The three member functions initialise, get_identities and
do_calculations are coded as in student_marks _2A (see figures 8.3,
8.4 and 8.5). The new function display_grade uses the private function
display_message, get_practical_mark uses the private function
get_practical_component_mark and get_exam_mark uses the
private function get_exam_question_mark. The private functions
may only be used within functions of the same class.

We will describe the new functions to illustrate various features of
function definitions, parameters and results.

9.4 Call by value parameters

First note the format of the first private function prototype.

void display_message (const char* message)

The result type is void, indicating that the function does not return a result
value. The function identifier is display_message and there is one para­
meter specified as const char* message which allows a string of
characters to be used, but not changed, by the function. Formally, char*
means that the parameter is of a type known as a pointer to a char; we will
consider pointers in chapter 14. The constant reference const indicates that
the contents of the argument will not be changed by the function. The identifier

92 Object Oriented Programming Using C++

void student_marks_2B::display_message (const
char* message)
{

cout « "Well done " « student_identity
« " you have obtained a grade "
« grade_letter « end! ;

cout « "This is a " « message « " result"
« end! ;

Figure 9.3

message gives a name to the parameter.
Now let us consider the function definition for display_message, this

is given in figure 9.3. The first line of the function definition is the function
header.

void student_marks_2B::display_message (const
char* message)

This contains the result type void followed by the function name
(including the class identifier and the scope resolution operator)
student_marks_2B: : display_message followed by the parameter list
in parentheses. In this case, the parameter list contains only one entry defining
a const char* parameter called message. Any parameter used in the
function definition, such as message in this case, is known as a formal
parameter. Notice that the header matches the prototype in terms of the result
type, function name and number and type of parameters.

The code in braces is referred to as the body of the function. In this case it
consists of two cout statements. The second statement uses the value of the
parameter message; it is sent to the output stream by couto

Since display_message has a single formal parameter, it must be
invoked by a function call containing a single expression of the appropriate type
as its argument. In the revised function display_grade, given as figure 9.4,
we see four calls to display_message. One of the calls is

display_message ("very good") ;

This is a function call to the function display_message with the argument
"very good". Any argument used in the function call is known as an actual
parameter. The C++ code in the body of the function definition for
display_message is now executed with the value of the actual parameter,
"very good", being substituted for the formal parameter, message. This
results in "very good" being displayed as part of a standard line of output:

This is a very good result

Functions

void student_marks_2B: : display_grade ()
{

switch (grade_letter)
{

case 'A' display_message
break ;

case 'B' display_message
break ;

case 'e' display_message
break ;

default display_message
}

Figure 9.4

("superb")

("very good")

(" reasonable")

("weak") ;

93

This example illustrates one advantage of using functions in that
display_message is used four times in display_grade but without
having to repeat the C++ code given in the definition of display_message.
It also demonstrates the purpose of a parameter. By using the formal parameter
message in the function definition, we are then able to substitute different
actual values at each call ..

As we have seen in previous chapters, a function does not necessarily have
to have parameters. The parameters are then said to be void. For example, we
have used a function call of the form

initialise () ;

The function prototype and definition heading is then of the form
void initialise (void)

or
void initialise ()

9.5 Function results

So far we have defined only functions that have a void result although we did
briefly describe the use of functions such as sqrt that do return a result. To
return a result after the execution of a function, the function must use the
keyword return.

Consider the private function get_practical_component_mark
prototyped in figure 9.2 by:

int get_practical_component_mark (const char* title) ;

In this function, we repeatedly prompt for a practical component mark

94 Object Oriented Programming Using C++

student_marks_2B: :get_practical_component_mark
(title)
Declare mark variable
DO

Prompt for a mark
Get a mark from keyboard

WHILE mark not valid (i.e. not 0-100,999)
Return valid mark

Figure 9.5

int student marks_2B::get_practical_component mark
(const char* title)
{

int mark ;
do

cout « "Enter " « title
« " practical mark (or 999) "

cin »mark ;
}

while (! «mark >= 0) && (mark <= 100)
I I (mark == 999»)

return mark ;
}

Figure 9.6

until a mark in the valid range of 0 to 100 or 999 is entered at the keyboard.
The parameter is used to provide either the string" first" or "next" for use
within the prompt. The valid mark is returned as the int result of the function.
The pseudo-code for this function is given in figure 9.5 and the c++ code in
figure 9.6.

We note that the function header has both a parameter and a result type:

int student_marks_2B: :get_practical_component_mark
(const char* title)

The parameter is of a similar form to that used in display_message. The
function result is defined by the in t preceding the function identifier. This
indicates that before the execution of the function is completed some integer
value must be returned as the function's result. In this example a valid practical
component mark value (or the end marker 999) is eventually obtained in the
int variable mark. When the function is called this is returned as the
function's result by means of return mark.

We can illustrate the way in which this function is called by reference to
the new member function get_practical_mark. This is shown in pseudo-

Functions

student_marks_2B::qet_practical_mark
Declare variables
Initialise number of component marks (= 0)
Initialise total practical mark (= 0)
Call qet_practical_component_mark
WHILE practical component mark not 999

Add component mark to total practical mark
Increase number of component marks by 1
Call qet_practical_component_mark

Skip over final newline character
IF number of component marks > 0

Compute averaqe practical mark
ELSE

Practical mark is zero

Figure 9.7

void student marks_2B: :qet_practical_mark ()
{
char terminator ;
int component_mark
int no_of_marks = 0 ;
int total_practical_mark = 0 ;
component_mark = qet_practical_component mark

("first")
while (component_mark != 999)

{

total practical mark += component_mark ;
++ no-of marks -
component_mark = qet_practical_component_mark

("next")

cin.qet (terminator)
if (no_of_marks > 0)

practical_mark = total_practical_mark /
no of marks

else
practical_mark = 0

Figure 9.8

95

code form as figure 9.7 and in C++ code in figure 9.8. This is very similar to
the function described in the previous chapter. The only difference is that we
now use the function calls:

component_mark = qet_practical_component_mark
("first")

96

and

Object Oriented Programming Using C++

component_mark = qet_practical_component_mark
("next") ;

In both instances the argument is passed to the function and substituted for the
formal parameter ti tIe to produce the appropriate prompt; a valid mark is
returned on completion of the function's execution to be assigned to the
variable component_mark.

9.6 Call by reference parameters

As we saw in figure 9.4, a function call can pass values to the function by
means of one or more parameters. For example

dispIay_ messaqe ("very qood") ;

There still remains the problem of how to define and use functions that
can be called and will then change the values of some of the arguments such as
when using strcpy. The answer to this lies in the way in which we specify the
formal parameters. An example is provided in the third of our private functions
defined in student_marks_2B: qet_exam_question_mark prototyped
as

int qet_exam_question_mark (int question_no,
int& mark) ;

In this function, we check the validity of a mark entered by the user at the
keyboard and interpret the mark as an integer value. A valid mark consists
solely of the digits between 0 and 9 and its value must be less than or equal to
the maximum mark of 20 for an examination question. The first parameter
passes across the question number for use in a prompt. The value of this
parameter will not be changed by the function, but as will be explained in the
next section there is no need to include const as we did with char*. The
second parameter is used to return the mark.

The function will return a result value of 1 for valid input and 0 for
invalid input. If the user enters 17, 1 is returned as the function result and 17 is
delivered as the value of the second parameter. If, for example, the user enters
any of 3.7, 4A2 or 28, 0 is returned as both the function result and the value of
the second parameter.

Note that in the second parameter after the type in t there follows the
address operator & (ampersand). This indicates that the formal parameter will
be used as an alias of the actual parameter. How does this work?

Let us examine the function definition given as pseudo-code in figure 9.9
and C++ in figure 9.10.

First, we will describe the function header.

int student_marks_2B::qet_exam_question_mark
(int question_no, int& mark)

Functions

student marks 2B: :qet exam question mark
(question_~o, mark) - -
Declare variable
Initialise error indicator and mark (= 0)
Prompt for an examination question mark
Get a character
WHILE current character is not end of line

IF current character is a diqit
Multiply current mark by 10
Add current character's value to mark

ELSE
Set error indicator = 1

Get next character
IF mark > 20 or error indicator = 1

Set mark to 0
Return 0 (invalid)

ELSE
Return 1 (valid)

Figure 9.9

int student marks 2B::qet exam question mark
(int question_~o, int&_mark)
{

char character ;
int error indicator = 0 ;
mark = 0 ;
cout « "Enter examination mark no. "

« question_no « " " ;
cin.qet (character)
while (character != '\n')

{

if «character >= '0') && (character <= '9'»
{

mark *= 10 ;
mark += character - 48
}

else
error indicator = 1

cin.qet (character)
}

if «mark> 20) II (error_indicator -- 1»
{

mark = 0
return 0

else
return 1

Figure 9.10

97

98 Object Oriented Programming Using C++

As with the prototype, again notice the address operator (&) associated with the
second type int and formal parameter mark in the parameter list. If the
address operator is added to the end of the data type this indicates that the
formal parameter is to be regarded as an alias of the actual parameter. This
means that when such a function is called, instead of simply using the value
contained in an actual parameter, the function uses the actual parameter itself.
Hence, when we specify a formal parameter in this way we allow the value of
its corresponding actual parameter to be changed by the function.

When get_exam _ ques tion _mark is called, for example in

valid_mark = get_exam_question_mark
(question_number, question_mark)

The value of the mark obtained in the function is placed directly into
ques tion _mark because mark is being used as an alias for
question_mark.

In the function definition, having declared a char variable called
character, initialised error_indicator and the parameter mark to
zero, then displayed the prompt, we use the read-ahead technique and obtain
the first character from the keyboard using cin. get (character).

Next we use a while statement to obtain a character at a time until the
end of line character has been recognised. Notice, first, the way the loop is
controlled.

while (character != '\n')

We use this form of loop because we will allow for the possibility of having an
'empty' number entered, that is just the end of line character. End of line is
indicated in C++ code using the special character constant '\n'.

If the character we are currently processing is a digit (in the range ° to 9),
then we add it to the mark so far, taking into account the position of the digit;
otherwise we set the error indica tor to 1.

if «character >= '0') && (character <= '9'»
{

mark *= 10 ;
mark += character - 48

else
error_indicator = 1 ;

cin.get (character) ;

So, if the character is a digit, we multiply the current value of mark by 10,
the *= operator allows the above shorthand for mark = mark * 10, then
add to it the digit value of character. In this latter operation, it is necessary
to subtract 48 from the value of character to convert it from the character
representation of a number to the number itself. This may seem a strange
concept subtracting a numeric value from a character, but recall (see section

Functions 99

7.3) that each character has an equivalent numeric value, hence C++ allows
such arithmetic. We then have the next read ahead: cin. get
(character) .

Let us explain the two arithmetic assignments using some sample data.
We will use the data 157\n (entered by typing 157 then pressing the enter
key). We enter the while loop with character containing the character value
'1' which is the numeric value 49 and mark containing zero. The table in
figure 9.11 traces the changing values of character and mark.

character
character value numeric value

On entry to the while '1' 49

mark *= 10

mark += character - 48

cin.get (character) '5' 53

mark *= 10

mark += character - 48

cin.get (character) '7' 55

mark *= 10

mark += character - 48

cin.get (character) '\n'

Figure 9.11

Finally, we must return the result of the function.
if «mark> 20) I I (error indicator == 1»

{

mark = 0
return 0

else
return 1 ;

mark

0

0

1

10

15

150

157

The return statement will return a value according to the function type.
Recall that our function has a type of into So, ifthe resultant value of mark is
greater than 20 (an invalid mark) or the error_indicator has been
changed from its initial value of zero to I, as well as setting the value of mark

to zero, the function returns the value 0, otherwise the value I is returned.
The context in which get_exam_question_mark is used can be

explained with reference to the revised get_exam _mark function which is
shown in pseudo-code as figure 9. 12 and C++ in figure 9.13.

lOa Object Oriented Programming Using C++

student_marks_2B: :get_exam_mark
Declare variables
Initialise exam mark (= 0)
FOR question number from 1 to 5 in steps of 1

DO
Call get_exam_question mark

WHILE not a valid mark
Add question mark to exam mark

int question_mark
int valid_mark ;
exam_mark = 0 ;

Figure 9.12

for (int question_number = 1 ; question_number
<= 5 ; ++ question_number)
{

do

valid_mark = get_exam_question_mark
(question_number, question_mark)

while (valid_mark == 0)
exam mark += question_mark

Figure 9.13

In this version, we have a declaration for the in t variable valid_mark,
which is used in the function call to get_exam _ ques tion _mark and the
relational expression of the do-while statement.

valid_mark = get_exam_question_mark
(question_number, question_mark)

while (valid_mark == 0)

After the function get_exam _ ques tion _mark is called, the previous
value of question_mark would be replaced by the value computed as mark
in the function. Also a zero or one would be returned by the function and would
be placed in valid_mark.

Now, note the use of valid_mark in the relational expression of the
while statement. We have previously explained that a relational expression

Functions JOJ

will either have a value of true or false. In C++, the values true and false are
represented by I and o. Alternatively, an integer value of 0 can be interpreted as
false and any non-zero integer value as true. So, in this case, if an invalid mark
has been obtained in the function, the function returns a zero which is
interpreted as false, hence the do-while condition could have been coded
simply as

while (! valid_mark) ;

The same technique could also have been used in the function
qet_exam_question_mark

if «mark> 20) II (error_indicator == 1»

could have been coded by

if «mark> 20) II error_indicator)

9.7 When to use call by value and call by reference

If we merely want to pass a value to a function we use a call by value
parameter, if we want a value returned from a function to the actual parameter
we use a call by reference.

With call by value, the value of the actual parameter is not changed by the
function, because the function uses separate store locations for the actual and
formal parameters. With a call by reference (alias) parameter, the value of the
actual parameter may be changed within the function, because the function
refers to the store location of the actual parameter.

For a call by value we normally just give the type as int, float etc. in
the parameter list of the prototype and function definition. For a call by
reference we include the address operator, for example, int&, float& etc. In
the display_Inessaqe function however, we used const char* for a call
by value parameter. Because of the way variable length strings are implemented
in C++, char* by itself would have been interpreted, in effect, as a call by
reference.

A function may have some parameters using call by value and some using
call by reference as illustrated in qet_exam_question_mark where the
first parameter (question_no) is call by value and the second (mark) a call
by reference.

9.8 Exercises

9.8.1 Please refer to section 9.4, and answer the following questions.
(a) How must a function prototype and a function heading correspond?
(b) How must a function heading and a function call correspond?
(c) In what way does a function prototype and a function header

differ?

102 Object Oriented Programming Using C++

(d) In the function display_message, what type of argument is
used?

(e) How is the body of a function delimited?
(f) What is the main advantage of using the function

display_message?

9.8.2 Please refer to the examples given in figures 9.6 and 9.8, then answer
the following questions.
(a) How is the result of a function defined?
(b) What is the purpose of the parameter in the function

get_practical_component_mark?
(c) What is the purpose of the return statement?
(d) Why is a do-while loop statement used in the function

get_practical_component_mark?
(e) How many times and how is the function

get_practical_ component_mark called?

9.8.3 Please refer to the examples given in figures 9.10 and 9.13, then
answer the following questions.
(a) If the address operator is added to the type ofa function parameter,

what does this indicate as to the relationship of the formal and
actual parameter?

(b) Why is the statement mark *= 10 used?
(c) Why is the statement mark += character - 48 used?
(d) What is the purpose of the return statement in this function?
(e) How is the function get_exam _question_mark called in

get_exam_mark?
(f) What would be the effect of calling the function

get_exam_question_mark when 1A4\n is entered?
(g) What would be the effect of calling the function

get_exam _question_mark when 134 \n is entered?
(h) What would be the effect of calling the function

get_exam _question_mark when only \n is entered?

9.8.4 For each of the following, write a suitable function prototype, function
heading and function call. For the function calls, write a C++
statement that will process the sum of the integers between 10 and 28.
(a) A function with two parameters to display the sum of all integers

within a specified range.
(b) A function with two parameters that returns as its result the sum of

all integers within a specified range.
(c) A function with three parameters that returns as the third

parameter the sum of all integers within a specified range.

9.8.5 Examine the function definitions given in figure 9.14, then answer the
questions below.

Functions

void swap_iterns_l (int& item_one, int& item_two)
{

int temp_item = item_one
item one item_two;
item two = temp_item

int temp_item = item_one
item one = item_two ;
item two = temp_item

Figure 9.14

(a) What is the effect of the function call swap _ i terns 1
(i tem _a, item_b) when item _a contains 5 and item_b
contains 3?

(b) What is the effect of the function call swap _ i terns _ 2
(i tem _a, item_b) when item _a contains 7 and i tem_b
contains 6?

9.8.6 Produce a header file (cal cuI. h) and a program file
(assign96. cpp) to simulate a simple calculator by producing a
dialogue of the following form.

Enter first operand 5.2
Enter second operand 7.3
Enter the operator *
5.2 * 7.3 = 37.96

103

You should display the result to 2 decimal places. A valid operand is
any number other than zero and a valid operator is + or - or * or /.

The model is given as an object schema in figure 9.15. The pseudo­
code is in figure 9. 16 for the member functions and figure 9.17 for the
main program. The function get _ valid_operand returns a
floa t value as its result and has a single parameter that should be
used as the prompt. The function get_valid _opera tor has a
single parameter that returns the operator as a single character.

104 Object Oriented Programming Using C++

Class: calculator

operand 1 (float)

operand 2 (float)

arithmetic operator

Initialise operands and operator

Display result
Get valid operand (private)
Get valid operator (private)

Figure 9.15

calculator: : initialise
Call qet_valid_operand for first operand
Call qet_valid_operand for second operand
Call qet_valid_operator

calculator::qet_valid_operand (prompt)
Declare variables
DO

Display prompt
Get an operand

WHILE operand = zero
Skip over final newline character
Return operand

calculator::qet valid operator (character)
Declare te~nator-variable
DO

Display prompt for the operator
Get a character
Skip over newline character

WHILE character is not an operator (+ - * I)
calculator::display_result

Declare result variable
SWITCH on operator

CASE ,+, Compute operand 1 + operand 2
CASE '-' Compute operand 1 - operand 2
CASE ,*, Compute operand 1 * operand 2
CASE 'I' Compute operand 1 I operand 2

Display operand 1 operator operand 2 = result

Figure 9.16

Functions

main
Declare example of type calculator
Call example. initialise
Call example. display_result

Figure 9.17

105

10 Constructors and Destructors

Objectives for this chapter
Familiarity with C++ programming terms and concepts:

• the default constructor
• programmer-defined constructors
• default parameters
• the default destructor.

Ability to:
• understand the use of constructors and destructors
• write simple C++ programs that use constructors with and without para­

meters.

10.1 Constructors

When an instance of an object class is created in a program, memory is reserved
for each member data item so that the state of the object, that is the values held
in each data area, can be preserved. No memory is reserved for the object's
functions since these remain unchanged for every instance of an object class;
only one copy, for the whole object class, needs to be in memory. However, the
value stored in module _ identi ty, say, after the appropriate function calls
could be different for each instance of the object class student_marks_2B.

Hence the need to reserve memory for the data areas.
In all our previous examples, a special function called a default

constructor is called automatically to reserve memory when each object is
created. In addition, a constructor may be explicitly defined for an object class
by the programmer. This too would be called automatically when each object of
the class is created.

A programmer may write one or more constructors for an object class. In
this chapter we will consider using only one, but in chapter 16 we will describe
the use of more than one constructor for an object class. A constructor written
by the programmer may be used for any form of processing. For example, we
could usefully use a constructor for initialisation of an object. The advantage of
doing this lies in the fact that a constructor does not have to be explicitly called;
it is, in effect, a function that is called automatically when an object is created.

106

Constructors and Destructors 107

Also, the programmer does not need to be concerned with the memory
reservation actions of a programmer-defined constructor; this is also done
automatically.

We can make a minor revision to the object class student_marks_2B
to illustrate the use of a constructor. The header file (marks2ba. h) using a
constructor and a program file (sum _1 . cpp) are now given for consideration
as figures 10.1 and 10.2.

I I MARKS2BA. H
II The object class student marks 2Ba using a
II constructor
#include "marks2b.h"
class student marks 2Ba

public :
student marks 2Ba ()

} ;

public student marks 2B

student marks 2Ba: : student marks 2Ba ()

initialise () ;

Figure 10.1

I I SUM l.CPP
II A program to display the sum of the exam and
II practical marks for 2 students in a single
II subject
#include "marks2ba.h"
void main ()

{

student_marks_2Ba geography_JP100
geography_JP100.display_sum () ;
student_marks_2Ba geography_MK110
geography_MK110.display_sum () ;
}

Figure 10.2

In the header file, note how the format of a constructor prototype differs
from that of a function prototype.

student_marks_2Ba () ;

There is no result type. Also, the name is that of the object class; a constructor
always takes the identity of the class to which it belongs. The constructor

J08 Object Oriented Programming Using C++

heading reflects the same rules. We have then used the ini tialise member
function in this programmer-defined constructor.

The simplified main program (sum _ 1 . cpp) creates two objects,
qeoqraphy_JP100 and qeoqraphy_MK110. An example of the screen
dialogue when this program is run is given in figure 10.3.

Enter student identity code JP100
Enter module identity code GEOG
Enter examination mark no. 1 55

Enter examination mark no. 5 65
Enter first practical mark (or 999) 75
Enter next practical mark (or 999) 999

student identity: JP100 for Module: GEOG
Exam mark is 63 Practical mark is 75
The sum of the marks is 138
Enter student identity code MK110
Enter module identity code GEOG
Enter examination mark no. 1 63

Enter examination mark no. 5 41
Enter first practical mark (or 999) 74
Enter next practical mark (or 999) 999

student identity: MK110 for Module: GEOG
Exam mark is 55 Practical mark is 74
The sum of the marks is 129

Figure 10.3

When the object qeoqraphy JP100 is created, the constructor is
executed; this in turn calls ini tialise resulting in the dialogue

Enter student identity code JP100
Enter module identity code GEOG

Enter next practical mark (or 999) 999

The next four lines of dialogue are produced by the function display_sum
for qeoqraphy_JP100.

The whole process is then repeated for the object qeoqraphy_ MK110.
To achieve the dialogue in figure 10.3 without the constructor, we would have
to include qeoqraphy_ JP100 . ini tialise () after the declaration of
qeoqraphy_JP100 and qeoqraphy_MK110. initialise () after the

Constructors and Destructors 109

declaration of qeoqraphy_ MKll0 in the main program (figure 10.2).

10.2 Constructors with parameters

We can use parameters with a constructor to particularise an object's
initialisation. Let us now make a further revision to the object class
student_marks_2B so that instead of the user providing the student and
module identities from the keyboard, this data is supplied from within a main
program and displayed on the monitor screen. A new version of the header file
and program file (marks2bb.h and sum_2.cpp) are given in figures 10.4
and 10.5.

II MARKS2BB.H
II The object class student marks 2Bb usinq a
II constructor with parameters
#include <strinq.h>
#include "marks2b.h"
class student marks 2Bb public student marks 2B

public :
student_marks_2Bb (const char* student_id,

const char* module_id)

student marks 2Bb::student marks 2Bb (const char*
student_id, const char* module_id = "MATHS")
{

cout « " Module " « module id « "
« student_id « end! ;

strcpy (module_identity, module_id) ;
strcpy (student_identity, student_id)
qet_exam_mark () ;
qet_practical_mark ()
do calculations ()

Figure 10.4

student "

Let us look more closely at the main parts of the header file. First the
constructor prototype.

student_marks_2Bb (const char* student_id,
const char* module_id) ;

The constructor prototype now has two parameters: a character string that will
be used for the student identity and a character string that will be used for the

110 Object Oriented Programming Using C++

II SUM 2.CPP
II A program to produce the sum of the exam and
II practical marks for a student in one subject and
II for a different student in another subject
#include "marks2bb.h"
void main ()

{

student marks_2Bb geography_MKllO ("MKllO",
"GEOG") ;

geography_MKllO.display_sum () ;
student marks 2Bb maths JP100 ("JP100")
maths_JP100.display_sum () ;
}

Figure 10.5

module identity.
The constructor heading needs to correspond to the prototype already

described.

student_marks_2Bb::student_marks_2Bb (const char*
student_id, const char* module_id = "MATHS")

As expected, the constructor heading incorporates the formal parameters
s tuden t _ id and module _ id as strings. But notice also, a new syntax
feature; after the usual parameter type and name for the second parameter, we
have the equals symbol and a string value. This is a way of defining a default
value for a constructor's parameter to be used if no value is supplied when an
object is created. In fact, any parameter for a function can have a default value
in C++.

The parameters from the constructor are used in the cou t statement and
then to update the member data.

cout « II Module II « module id «" student II

« student_id « end! ;
strcpy (student_identity, student_id)
strcpy (module_identity, module_id) ;

We copy the value from the parameter student_id into the member data
area s tuden t _ iden ti ty and the value from the parameter module _ id
into the member data area module _ iden ti ty using the s trcpy function.
Recall that to use strcpy, we must include the header file <string. h>.

The remainder of the constructor calls member functions to acquire the
marks and make the initial calculations as in previous versions of
ini tialise.

Now by examining the revised program file, we can see how the para­
meters are used. First the declaration of the geography_ MKllO object.

Constructors and Destructors 111

student marks_2Bb geography_MK110 ("MK110", "GEOG") ;

This specifies the string value "MK110" to be used as the first parameter of the
constructor. As we have seen this will be transferred to the data member
student_ identi ty for the geography_ MK110 object. Similarly, the
string value" GEOG" of the second parameter will be transferred to the data
member module _ identi ty of the same object.

The creation of the maths _ JP100 object has only one parameter.

student_marks_2Bb maths_JP100 ("JP100") ;

In this case "JP100" will be transferred to the data member
student_identity for the maths_JP100 object. The default parameter
(MATHS) will be used for the second parameter and will be placed in
module _ identi ty for this object. Note that when default parameters are
used, they must come at the end of the parameter list.

An example of the output when the program in sum _2 . cpp is executed
is given in figure 10.6.

Module GEOG Student MK110
Enter examination mark no. 1 55

Enter examination mark no. 5 65
Enter first practical mark (or 999) 75
Enter next practical mark (or 999) 999

Student identity: MK110 for Module: GEOG
Exam mark is 63 Practical mark is 75
The sum of the marks is 138
Module MATHS Student JP100

Enter examination mark no. 1 63

Enter examination mark no. 5 41
Enter first practical mark (or 999) 74
Enter next practical mark (or 999) 999

Student identity: JP100 for Module: MATHS
Exam mark is 55 Practical mark is 74
The sum of the marks is 129

Figure 10.6

10.3 Destructors

As constructors reserve memory (and execute other initialisation operations),
we have destructors to return memory to the memory management system. The
default destructor is called automatically for an instance of an object when "it
falls out of scope". What this means, in most cases, is that the memory is

112 Object Oriented Programming Using C++

always returned when the function in which an object is created finishes; the
object is no longer required.

Programmer-defined destructors are required when dynamic objects are
used, this will be covered in chapter 14.

10.4 Exercises

10.4.1 Please refer to the examples in figures 10.1 and 10.2, then answer the
following questions.
(a) What are the two main purposes of a constructor?
(b) How does a constructor prototype differ from a prototype of a

member function?
(c) What is the effect of the following statement?

student_marks_2Ba qeoqraphy_JP100

10.4.2 Please refer to the examples in figures 10.4 and 10.5, then answer the
following questions.
(a) How is a default parameter defined?
(b) What is the effect of the following statement?

student_marks_2Bb qeoqraphy_MKll0 ("MKll0",
"GEOG") ;

(c) What is the effect of the following statement?
student marks 2Bb maths JP100 ("JP100") ;

10.4.3 Make changes as necessary to the examples in figures 10.1 and 10.2 to
achieve the following revised specification.

The data are entered as before and the sum and weighted average are
displayed whenever a s tuden t _marks _ 2Ba object is created.

10.4.4 Produce a header file (cube. h) and a program file
(assigl04. cpp) to achieve the specification described by the model
in figure 10.7 and the pseudo-code in figure 10.8 for the member
functions and figure 10.9 for the main program.

A value for the member data should be obtained from a parameter of
the constructor and both member functions should be called in the
constructor.
The volume and area should be displayed, with appropriate text, to 2
decimal places.

Note, <math. h> includes a function pow to raise a value to a given
power. The mathematical expression y = xn is written in c++ as

y = pow (x, n) ;

Constructors and Destructors

Class: cube

length of side (float)

Cube (constructor)
Display volume
Display surface area

Figure 10.7

cube::cube (lenqth)
store lenqth of side
Call display_volume
Call display_surface_area

cube::display_volume
Declare volume variable
Calculate volume (lenqth3)

Display volume

cube::display_surface_area
Declare area variable
Calculate surface area (lenqth2 * 6)
Display surface area

Figure 10.8

main
Declare die (5.5) of type cube
Declare oxo (1.2) of type cube

Figure 10.9

113

11 Introduction to Arrays

Objectives for this chapter
Familiarity with the C++ programming terms and concepts:

• array declarations and bounds
• array indexes
• array initialisation.

Ability to:
• understand the need for arrays
• understand and write simple C++ programs that use one-dimensional

arrays.

11.1 The need for arrays

In many computer programs we often have to deal with an ordered collection of
related items of the same data type, which we need to store for later use in the
program. In such cases we do not store each item in a separate variable, but
rather as an ordered collection of storage areas identified by one name; we then
refer to an individual area by this name and its position in the set. For example,
the marks of all the students for a module could be regarded as an ordered
collection of integers; if we needed to store this data in a computer program we
could do so as an ordered collection of data items with one name, say marks.

11.2 Using an array

Let us consider a simple example. We have just twelve students, with student
numbers 0 to 11. A student is awarded a merit for a module if the mark exceeds
the average mark for that module. A program is required to read in the mark
for each student and display, below a heading, the student number and mark of
those who qualify for a merit. The original student_marks object class and
all the derived classes used so far have been concerned with the performance of
a single student in a single module. As we now have a module studied by twelve
students, we introduce a new object class module. A simple model for this
object class is given in as an object schema in figure 11.1.

There are two basic tasks to be accomplished, and for both of these we

114

Introduction to Arrays

Class: module

marks [12]

average mark

Get marks, calculate average

Display merits

Figure 11.1

need to access all twelve marks.
(i) Find the average of the twelve marks.

115

(ii) Compare each individual mark with the average and display the
student number and mark of those that exceed the average.

We could enter the data twice, once for each task, but clearly this would be
error-prone and time-consuming. We could store the data in a computer file and
then access the file, but again this could be very time-consuming if we had a
large amount of data. So we enter the data once in achieving task (i) and at the
same time store the data in a block of storage (known as an array). Next, we
access the array to achieve task (ii).

We can visualise the array, that is the data member marks [12], as
illustrated in figure 11.2.

I mo. •• I
0 2 3 4 5 6 7 8 9 10 11

I I
Figure 11.2

Notice that the array has one name but twelve store locations each capable
of holding a mark. Each of the twelve individual store locations (which we call
the elements of the array) is identified by means of its position or index. The
first store location is for the element of marks with an index of 0, the second
store location is for the element of marks with an index of 1, and so on. We
can access any particular element of the array, use its value in an expression,
and assign it a new value by referring to the name of the array together with the
index of the element we wish to address.

Consider the following code

marks [3] = 67
index = 7 ;
marks [index + 2] = marks [3] + 10

J16 Object Oriented Programming Using C++

this would result in

o 1 2 3456789 10 11

mark51~ __ ~ __ ~ __ -4 __ 6_7~ __ ~ __ ~~ __ ~ __ ~ __ ~_7_7-4 ____ ~~

The most straightforward way of entering the data is to simply enter the
marks in student number order, hence implying the student number (which is
also the array index) by the order in which the mark is entered. The first mark
entered would be for student with student number 0 and so on until all 12
marks have been entered. The pseudo-code for task (i) is given in figure 11.3
and for task (ii) in figure 11.4.

module: : get_marks
Declare terminator variable
Initialise total mark (=0)
FOR student index goes from 0 to 11 in steps of 1

Prompt for and accept mark into array element
indexed by student index

Add mark to total mark
Skip over final newline character
Compute average mark

module: : display_merits
Display headings

Figure 11.3

FOR student index goes from 0 to 11 in steps of 1
IF mark in array element indexed by student

index > average
Display student index as student number
Display mark in array element indexed by

student index

Figure 11.4

The C++ code for the above is given in figure 11.5 as the header file
(module. h) containing the object class module. A simple program file
(average. cpp) creating an object and using these functions is given in figure
11.6.

The object class definition in figure 11.5 contains two items of member
data. The first is the declaration of an array of integers to be used for storing the
marks:

int marks [no_ot_marks] ;

Arrays are declared by specifying the type of values to be stored (int) followed

Introduction to Arrays

I I MODULE.H
II The object class module
#include <iostream.h>

const int no of marks = 12
class module

public :
void get_marks ()
void display_merits ()

protected :
int marks [no_of_marks]
int average_mark

void module: : get_marks ()

char terminator ;
int total = 0 ;
for (int student index = 0 ; student_index <

no_of_marks ; ++ student_index)

cout « "Enter a mark for student no. "
« student_index « " : " ;

cin »marks [student_index]
total += marks [student_index]
}

cin.get (terminator)
average_mark = total I no of marks
}

void module::display_merits ()

cout « end! « "Students with merits" « end!
for (int student_index = 0 ; student_index <

no_of_marks ; ++ student_index)
{

if (marks [student_index] > average_mark)
cout « "No. " « student index «" "

«marks [student_index] « end! ;

Figure 11.5

117

1J8 Object Oriented Programming Using C++

II AVERAGE.CPP
II A program to get marks for 12 students and display
II those that are above the average
#include "module.h"
void main ()

module computing
computing. get_marks ()
computing. display_merits ()
}

Figure 11.6

by an identifier by which we will refer to all elements of the array (marks) and
the number of elements in the array (12, the value from the constant
no_of _marks) in square brackets. As the index of array elements always
starts at 0 in C++, this latter component also specifies the range of the indexes:
o to II.

Note that the constant no of marks is declared outside the class
declaration and can be used within the whole of the header file and any
program that includes it. We choose to use a constant here because we will refer
to the maximum number of elements of the array a number of times (in the for
loops and the calculation of the average). If we need to change the number of
elements in a future revision of the program, we need only make one change to
the constant value rather than searching for all occurrences of it.

The function get_marks uses a for loop to store the entries from the
keyboard in the array and to compute the total of these marks.

for (int student_index = 0 ; student_index <
no_of_marks ; ++ student_index)

cout « "Enter a mark for student no. "
« student_index « " : " ;

cin »marks [student_index] ;
total += marks [student_index]
}

The for statement declares the variable student index and uses it as a
counter to control the number of iterations of the loop. In the first repeated
statement, student_index is used in the prompt as the student number to
identify the mark to be entered. Next, cin is used to accept an integer from the
input stream into an element of the array marks. The element is indexed by
student_index, hence when the prompt asks for a mark for student no. 4,
the mark accepted from the input stream will be placed into the element of the
array with index == 4, that is the fifth element. Finally, the marks total (total)
is increased by the same value using the same syntax to identify the mark: array

Introduction to Arrays 119

identifier (marks) followed by the index to the required element
(student_index) in square brackets.

The display_ meri ts member function uses a similar for loop to
access each element of the array in turn. Within the body of the loop an
individual element is accessed twice using marks [student_index].

The method of entering the data in the above example is somewhat
restrictive. We could use a more flexible way by entering both the student
number and the mark for a student. In this case the data would not need to be in
student number order and it would not need to be complete, in that any mark
not entered for a student could be assumed to be zero. This would, of course,
necessitate initialising all elements of the array to zero before obtaining any
marks. The pseudo-code for this approach is given in figure 11. 7 and the C++
header file (module1. h) is given in figure 11.8.

module1: : get_marks
Declare variables
Initialise total mark (=0)
Initialise all array elements (=0)
Prompt for and accept 1st student number and mark
WHILE student number not 999

store mark in array element indexed by student
number

Add mark to total mark
Prompt for and accept next student number and

mark
Skip over final newline character
Compute average mark

Figure 11.7

Here we have inherited the class module but over-ridden the member
function get_marks. Notice first the technique for initialising all elements of
the array.

for (int index = 0 index < no of marks
++ index)
marks [index] = 0

We use a for loop that declares the variable index with an initial value of
zero. Each time round the loop an element of the marks array is set to zero
starting at the element with an index of zero through to the element with an
index of 11.

For the main loop, the while, we use a read-ahead technique because we
do not know at the outset how many times we are going to go round the loop.
As mentioned in chapter 5, when cin is used to obtain an integer value it will
first ignore any spaces and newline characters. So the student number and mark

120 Object Oriented Programming Using C++

II MODULEl.H
II The object class module 1
#include "module.h"
class module 1 : public module

public :
void get_marks ()

void module_l: : get_marks ()

char terminator ;
int student_number,

mark;
int total = 0 ;
for (int index = 0

++ index)
marks [index] = 0

index < no of marks

cout « "Enter student no. and mark: "
cin » student number » mark
while (student_number != 999)

{

marks [student_number] = mark
total += mark ;
cout « "Enter student no. and mark: "
cin » student number »mark ;

cin.get (terminator)
average_mark = total I no of marks
}

Figure 11.8

can be typed with any number of spaces between them. Within the body of the
loop we process the current student number and mark then get the next student
number and mark (the student number may be the end-marker 999).

marks [student_number] = mark ;
total += mark ;
cout « "Enter student no. and mark: "
cin » student_number » mark ;

We use the value obtained in student_number as an index in assigning the
value obtained in mark to the corresponding element of the array marks. Note
that in this simplified program we do not check that s tuden t _number is a
valid index, that is, in the range 0 to 11. If a user typed an invalid student

Introduction to Arrays 121

number, unpredictable results or a run-time error would occur because the first
line in the above code would attempt to assign mark to an element that does not
exist.

11.3 Exercises

11.3.1 Please refer to the example in figure 11.5, and answer the following
questions.
(a) What is the basic reason for using an array in this example?
(b) What three things need to be written to declare an array?
(c) What two things need to be written to access an element of an

array?
(d) Why is the for loop construct used here?
(e) What are the allowable index values for the array marks?
(t) If the students were now numbered from 1 to 12, what changes

would you make to get_marks and display_merits? Hint:
for each function, you only need to change the cou t statement
within the for loop.

11.3.2 Please refer to the example in figure 11.8, and answer the following
questions.
(a) Why is it necessary to initialise all elements of the array to zero?
(b) Why is a while loop used in get_marks?
(c) What would happen if a student number of 13, say, was entered?
(d) What changes would have to be made to calculate the average of

the marks actually entered at the keyboard?
(e) What two advantages does this approach for reading values into an

array have over the one used in figure 11.5?

11.3.3 Make changes to the example in figure 11.5 to achieve the following
revised specification.
(a) The number of marks is now 18.
(b) A merit is awarded for the highest mark in the group. This could

be awarded to more than one student so it is necessary to establish
the highest mark in get_marks and then use this in
display_ meri ts.

11.3.4 Make changes to the example in figure 11.8 to prevent the use of an
incorrect index. This can be achieved by repeatedly asking the user to
enter a student number and mark until a student number in the correct
range is entered (see, for example, figure 9.6). You should define a
new function get_ a_mark with the formal parameters
student_no and a_mark and replace the cout statement followed
by the cin in get_marks by a call to this new function.

122 Object Oriented Programming Using C++

11.3.5 Produce a header file (sales. h) and a program file
(assigl15. cpp) to achieve the following specification.

A program is required to accept 20 sales figures (as real numbers) in
order of sales person's reference number (in the range 10 to 29
inclusive). Then the reference number of each sales person who
achieved sales of at least 80% of the best sales figure is displayed. At
the end, the number of sales persons who have achieved this figure is
displayed.

A sample screen dialogue is shown in figure 11.9. The model for the
object class sales is given in figure 11.10 and the pseudo-code for
the member functions is in figure 11.11.

Enter sales figure for sales person
Enter sales figure for sales person
Enter sales figure for sales person
Enter sales figure for sales person
Enter sales figure for sales person

Enter sales figure for sales person
Sales person 12 achieved target
Sales person 13 achieved target
Sales person 18 achieved target
3 sales persons achieved target

Figure 11.9

Class: sales

sales figures [20]
best sales figure

Get sales figures
Display best

Figure 11.10

10: 10.4
11: 30.1
12: 100.2
13: 80.7
14: 50.4

29: 18.9

Introduction to Arrays

sales: : get_sales
Declare terminator variable
Initialise best sales figure (= 0)
FOR sales index from 0 to 19 in steps of 1

Prompt for sales figure (sales index + 10)
Accept sales figure into array
IF sales figure exceeds best sales figure

store sales figure as best sales figure
Skip over final newline character

sales::display_best
Declare and initialise count (= 0)
FOR sales index goes from 0 to 19 in steps of 1

123

IF sales figure in array (indexed by sales
index) exceeds 80% of best sales figure
Display reference number (sales index + 10)
Increase count by 1

Display count

Figure 11.11

12 Arrays of Objects

Objectives for this chapter
Familiarity with the C++ programming terms and concepts:

• arrays of objects
• aggregation.

Ability to:
• understand and write simple C++ programs that use arrays of objects
• distinguish between object aggregation (composition) and inheritance

(classification).

12.1 Using an array of objects

Consider a slight variation to the problem described in section 1l.2 of the
previous chapter. Suppose that we now want to obtain the twelve exam marks
for a module and display the exam mark and the student identity (as opposed to
student number) of those students whose exam mark is above the average.

In the previous chapter, we read in the mark for each student and store the
marks in an array, in t marks [no_of _marks], within the object class
module. As an alternative, we note that the student_marks object classes
already have member data for a student (for example, exam_mark, and
student_identi ty). So we could make use of this by defining a new object
class for a module (module_A) that has as one of its data members an array of
student_marks objects.

In the solution to this problem, we will use the derived object class
s tuden t _marks _ 2Bc that contains two extra necessary functions. The
header file for this, marks2bc. h, is given in figure l2.l.

The two public member functions simply return the values of member
data, exam_mark and student_identity. They are necessary because
these data items are described as protected in their original definition,
which means that they can only be accessed by objects of the class in which
they are declared or any derived classes, and we need to access them in the
object class module_A.

The second function, return_student_identity, has a result type
of char* which is formally a pointer to an item of type char. We will discuss

124

Arrays o/Objects

II MARKS2BC.H
II The object class student marks 2Bc
#include "marks2b.h"
class student marks 2Bc : public student marks 2B

public :
int return_exam_mark () ;
char* return_student_identity ()

int student marks 2Bc::return exam mark ()

return exam mark

return student_identity

Figure 12.1

Class: module_A

mark_table [12] (of object class student_marks_2Bc)

average mark

Get marks, calculate average

Display merits

Figure 12.2

125

pointers later. For the moment, please accept that it is the way in which we are
able to return a string as the result of a function.

The model for module _A is given in figure 12.2 and the C++ class
definition from module _a. h in figure 12.3.

In the previous chapter, we declared an array as

int marks [no_of_marks] ;

and noted that each element of the array holds a value of the integer type into
Similarly, when using the declaration for an array of objects, the format is the

126 Object Oriented Programming Using C++

I I MODULE_A.H

II The object class module A
#include "marks2bc.h"

const int no of marks = 12
class module A

protected :
int average_mark ;
student marks 2Bc mark table [no_of_marksl

public :
void get_marks ()
void display_ meri ts ()

Figure 12.3

same. The type of the elements is given first (the object class
student_marks _2Bc), followed by the array identifier (mark_table) and
the array size (the constant no_of _marks):

student_marks_2Bc mark_table [no_of_marksl ;

Each element of the array holds a value of the object class
s tuden t _marks _ 2Bc; in other words each element of mark_table is an
instance of this object class. Hence when an instance of the object class
module _A is created, this in turn creates the 12 instances of
student_marks _ 2Bc that make up this array.

The array is initialised in the function get_marks (shown as figure
12.4) and used in the function display_ meri ts (in figure 12.5).

void module_A: : get_marks ()
{

int total = 0 ;
for (int student_index = 0 ; student index <

no_of_marks ; ++ student_index)
{

mark_table [student_indexl.initialise ()
total += mark table

[student_indexl.return_exam_mark () ;

average_mark = total I no of marks
}

Figure 12.4

Arrays afObjects

void module_A: : display_merits ()
{

cout « end! « "Students with merits" « end!
for (int student_index = 0 ; student_index <

no_of_marks ; ++ student_index)

int mark = mark table
[student_indexl.return_exam mark ()

if (mark> average_mark)

127

cout « "Identity" « mark_table
[student_indexl.return_student_identity ()
«" ,,« mark « end! ;

Figure 12.5

We initialise each element ofthe array, a student_marks_2Bc object,
and accumulate the total exam mark in the function get_marks. Note that in
the body of the loop there is a function call to the inherited initialise
function as well as an assignment statement to accumulate the total.

mark_table [student_indexl.initialise ()
total += mark table

[student_indexl.return_exam_mark () ;

We call the initialise function for each of the objects in the array
using the index in student_index. Notice the format here. First, as usual,
we have the array identifier followed by the index in square brackets. Then we
have a the member access operator followed by the required member of the
object class, that is the function initialise. Next, in the assignment
statement, we add to the local variable total the result of calling the
return_exam _mark function for the object with the same index.

We use similar code in the member function display_ meri ts.

int mark = mark table
[student_indexl.return_exam_mark ()

if (mark> average_mark)
cout « "Identity" « mark_table

[student_indexl.return_student_identity ()
«" ,,« mark « end! ;

For each object in the array, we call the return_exam _mark function using
the index student_index. This statement and the extra variable (mark) are
not strictly necessary. They have been used to optimise the code, we use mark
instead of calling the function twice: once in the relational expression of the if

128 Object Oriented Programming Using C++

and again in the couto

In the cou t statement, we output the student identity of the currently
indexed object by calling the function return_ student_ identi ty.

Figure 12.6 is an example of a program file (meri ts. cpp) that uses the
object class module_A.

II MERITS.CPP
II A program to get exam marks for 12 students
II and display those that are above average
#include "module a.h"
void main ()

module_A computing
computing.get_marks ()
computing. display_ meri ts ()
}

Figure 12.6

Figure 12.7 is an abbreviated example of the dialogue that is seen on the
monitor screen when the program is run. As soon as the object computing is
created, memory is allocated for the array mark_table. Because the array is
an array of objects, this in tum creates the 12 instances of
s tuden t _marks _ 2Bc that make up this array.

When get_marks is called, each element of the array is initialised by
calling the initialise function of the object class student_marks_2Bc
that was inherited from student marks 2B. This causes the interactive - -
acquisition of the student and module identities and exam and practical marks
represented in figure 12.7. The last five lines are produced as a result of the call
to display_ meri ts.

12.2 Aggregation

This technique of using object classes in the definition of another object class is
an example of partial aggregation or composition. It is quite different from
inheritance where we have seen derived classes created from base classes. We
can distinguish the two by considering some examples. In chapter 2 we briefly
described an inheritance or classification hierarchy of a base class employee
from which were derived the derived classes manager, technician and
secretary. We say here that a manager or technician is 'a kind of employee'.
On the other hand, if we had an object class for say, a department, it could
comprise a manager object and a secretary object as well as other items. In this
case we say that the object class department is an aggregate or composition of
a manager object, a secretary object and so on.

Arrays of Objects

Enter student identity code MKl00
Enter module identity code COMP
Enter examination mark no. 1 20

Enter examination mark no. 5 14
Enter first practical mark (or 999) 999
Enter student identity code JG120

Enter examination mark no. 5 12
Enter first practical mark (or 999) 999

Enter student identity code JG200

Enter examination mark no. 5 18
Enter first practical mark (or 999) 999

students with merits
Identity MKl00 67
Identity SA140 68
Identity JG200 69

Figure 12.7

129

In the above example (see figure 12.2), the object class
student_marks_2Bc is a derived class of student marks 2B (an
example of inheritance) and the object class module _A contains an array of
objects of type s tuden t _marks _ 2Bc (an example of aggregation).

12.3 Exercises

12.3.1 Please refer to the example in figure 12.1, and answer the following
questions.
(a) Why are the two member functions of s tuden t _marks _ 2Bc

necessary?
(b) What are the result types for the two member functions?
(c) Which inherited function is used to obtain values for the inherited

data members? From which object class is it inherited?

12.3.2 Please refer to the example in figures 12.3 to 12.5, and answer the
following questions.
(a) Describe the three components of the array declaration in the

object class definition.

130 Object Oriented Programming Using C++

(b) How many times is the function ini tialise called in
get_marks? Describe what happens each time it is called (see
figure 8.3).

(c) Describe the coding optimisation used in display_ meri ts.
What are the advantages and disadvantages of its use?

(d) Give an example of inheritance and an example of partial
aggregation.

12.3.3 Produce two header files (person. h and members. h) and a
program file (assig123. cpp) to achieve the following specification.

The header file person. h has a simple object class definition as
indicated by the model given in figure 12.8 and the pseudo-code in
figure 12.9 to allow an object to be initialised with a person's surname
(a maximum of 14 characters) and display the surname.

A program is required to accept 10 surnames and then to display them
in the reverse order. The model for the object class members is given
in figure 12.10 and the pseudo-code for the member functions is in
figure 12.11.

Class: person

surname

Initialise
Display

Figure 12.8

person: : display
display surname

person::initialise
Declare terminator variable
Prompt for and accept surname
Skip over terminating character

Figure 12.9

Arrays a/Objects

Class: members

person list [10] (of object class person)

Get names

Display names (in reverse order)

Figure 12.10

members: : get_names
FOR person index goes from 0 to 9 in steps of 1

Call initialise for object person list
indexed by person index

members::display_names
Display heading "Membership in reverse order"
FOR person index goes from 9 down to 0 in steps

of 1
Call display for object person list indexed

by person index

Figure 12.11

131

13 Two-dimensional Arrays

Objectives for this chapter
Familiarity with the C++ programming terms and concepts:

• two-dimensional arrays
• the manipulator setw
• shorthand technique for initialising an array.

Ability to:
• understand and write simple C++ programs that use two-dimensional

arrays.

13.1 Using a two-dimensional array

One-dimensional arrays are arrays whose components are single data items
(single numbers, characters and so on). An array whose elements are them­
selves one-dimensional arrays is called a two-dimensional array. Likewise we
can define three-dimensional arrays and so on. Let us now consider an example
that processes a two-dimensional array.

Consider a table of student marks for a small course. Say we have six
students studying four modules as illustrated in figure 13. 1.

student index

0 1 2 3 4 5

0 15 5 50 60 44 55

1 25 35 50 51 60 55
module index

2 75 100 25 25 65 73

3 50 45 35 80 76 95

Figure 13.1

We could store the marks in a one-dimensional array of 24 elements, but
this is not very convenient if we want to access all the marks of a single student

132

Two-dimensional Arrays 133

or all the marks for one module. Just as places on a map need to be defined by
two co-ordinates, we find that a two-dimensional array allows us to access any
element by reference to two indexes. In our example, we can access any mark as
long as we know the index that tells us which module is required (module
index) and the index that tells us which student is required (student index).

We declare a two-dimensional array as follows.

const int no_of_modules = 4 ;
const int no_of_students = 6 ;

int marks [no of modules] [no of_students]

We can now think of a two-dimensional array as having rows and columns. In
figure 13.1, we can visualise an array where we have one row for each module
and one column for each student. Notice that the order of the constants in the
array declaration is important. The first one gives the number of rows (4) and
the second gives the number of columns (6). Then, to access an array element,
the first index will indicate the row and the second the column. Thus,
marks [2] [4] refers to the mark from row 3 (module index 2) and column
5 (student index 4) that has the value 65 in our example in figure 13.1.
Similarly, it can be seen that marks [1] [3] contains the value 51 and
marks [2] [0] has the value 75.

Let us now consider a problem that uses the above two-dimensional array
to store and access marks. We will produce a program to accept the marks from
the keyboard, then display the marks on the screen in the form of a table with
one row for each module and the module's average mark at the end of each
row. The output is given in figure 13.2, from which we can see that for each
row we must first output the module number, then the mark for each student,
and finally the average mark for the module.

0 1 2 3 4 5 Average
Module No. 0 15 5 50 60 44 55
Module No. 1 25 35 50 51 60 55
Module No. 2 75 100 25 25 65 73
Module No. 3 50 45 35 80 76 95

Figure 13.2

As when using a one-dimensional array, we have two tasks.
(i) Store the marks in the array.
(ii) Process the array to display the table.

38
46
60
63

Also, we can accept all 24 marks in a set order or enter the module number and
student number for each mark. We will describe both approaches. First, the
straightforward approach of entering all 24 marks module by module, that is all
six marks for module 0, followed by all six marks for module 1 and so on. A
model for a course with the necessary array as a data member and the required

134 Object Oriented Programming Using C++

functions is shown in figure 13.3. The pseudo-code for task (i), qet_ marks, is
given in figure 13.4 and for task (ii), display_marks, in figure 13.5.

Class: course

marks [4] [6]

Get marks

Display marks as a table

Figure 13.3

course::qet_marks
Declare terminator variable
FOR module index qoes from 0 to 3 in steps of 1

FOR student index qoes from 0 to 5 in steps
of 1
Prompt for mark
Accept mark into array element indexed by

module index and student index
Skip over final newline character

Figure 13.4

course::display_marks
Declare variable module total
Display column headinqs
FOR module index qoes from 0 to 3 in steps of 1

Initialise mark total for a module (=0)
Display row title
FOR student index qoes from 0 to 5 in steps

of 1
Display mark indexed by module index and

student index
Accumulate mark total for a module

Compute and display averaqe mark for a module

Figure 13.5

The structure of the nested for loops in qet_marks (figure 13.4) reflects
the order in which the marks are to be entered. Starting with a module index of
0, the student index goes from 0 to 5; this is repeated for a module index of I
then 2 then 3. Similarly, in display_marks (figure 13.5) the process of

Two-dimensional Arrays 135

dealing with a module, that is producing a row of the output, is repeated for a
module index of 0 then 1 then 2 then 3.

The C++ code for the above is given in figures 13.6 to 13.8. The class
definition of course from the header file (course. h) is given in figure 13.6,
the two member functions are shown separately in figures 13.7 and 13.8.

II COURSE.H
II The object class course
#include <iostream.h>
#include <iomanip.h>

const int no of modules = 4 ;
const int no of students = 6 ;

class course

public :
void qet _marks ()
void display_marks ()

protected :
int marks [no_of_modules] [no_of_students]

} ;

Figure 13.6

void course: : qet_ marks ()
{

char terminator ;
for (int module_index = 0 ; module_index <

no_of_modules ; ++ module_index)
{

for (int student_index = 0 ; student_index <
no of students ++ student_index)

cout « "Enter a mark for module no: "
« module index « " student no: "
« student index « " : "

cin »marks [module_index]
[s tuden t _index]

cin.qet (terminator)
}

Figure 13.7

136 Object Oriented Programming Using C++

void course: : display_marks ()
{

int module total
cout «

" o
« "Averaqe" « end!

1 2 3 4 5 "

for (int module_index = 0 ; module_index <
no_of_modules ; ++ module_index)
{

module_total = 0 ;
cout « "Module No. " « module index

« " " . ,
for (int student_index = 0 ; student_index <

no_of_students ; ++ student_index)
{

cout « setw (4) «marks [module_index]
[student_index] ;

module total += marks [module_index]
[student_index] ;

cout « setw (5) « module_total /
no of students « end! ;

Figure 13.8

The two-dimensional array is declared as a protected data member in the
class definition of course.

int marks [no_of_modules] [no_of_students] ;

As we have seen for single-dimension arrays, we specify the type of values to be
stored (int) followed by an identifier by which we will refer to all elements of
the array (marks) and the number of elements in the array. For two­
dimensional arrays we need two indexes, so we specify 4, the value from the
constant no_of _modules, and 6, the value from the constant
no of students.

The function qet_ marks uses two nested for loops to store the entries
from the keyboard in the array. The outer loop changes the value of
module_index from 0 to 3 in steps of 1. The inner loop changes the value of
s tuden t _index from 0 to 5 in steps of 1 four times. The first time when
module_index is 0, then when it is 1, then 2, then 3. Hence the body of the
inner loop is executed 24 times.

Note the statements that make up the body of the inner loop.

Two-dimensional Arrays

cout « "Enter a mark for module no: "
« module index « " student no: "
« student_index « " : " ;

cin »marks [module_index] [student_index]

137

The prompt uses both of the loop counters module_index and
s tuden t _index to identify the mark to be entered. Next, cin is used to
accept an integer from the input stream into an element of the array marks.
The element of the array is indexed by the two counters module_index and
student_index, hence when the prompt asks for a mark for module no. 0
student no. 4, the mark accepted from the input stream will be placed into the
element of the array with module_index = 0 and student_index = 4.

The display_marks member function uses similar nested for loops to
access each element of the array in turn starting at the first one in module 0,
that is the one with a module index of 0 and a student index of O. Notice that
for each module (0 to 3), the module total is set to zero, the row title is
produced, then the inner for loop processes all of the student marks for the
module, then the average mark for the module is computed and displayed. The
processing of the inner for loop displays the appropriate mark and accumulates
the module total.

cout « setw (4) «marks [module_index]
[student_index] ;

module_total += marks [module_index]
[student_index] ;

In the above, first notice a new feature. The manipulator setw is used to set the
field width (4 in this case) of the following output. The effect is that when a
mark is displayed, it will be right-justified in four character positions, for
example, a mark of 5 has three spaces output before the digit 5, a mark of 35
will be preceded by two spaces. This ensures that the marks are tabulated below
each other, irrespective of the number of digits involved, as illustrated by the
second column in the table in figure 13.2. The manipulator is defined in the
header file iomanip. h which we have already referred to. We use it also in
the final cou t statement of the function for the average mark.

As we can infer from the above, the identifier marks must always be used
in conjunction with two indexes. The first must always have a value in the
range 0 to 3 and the second in the range 0 to 5. Failure to ensure that the
indexes are within the correct ranges will cause the program to give
unpredictable results or cause a run-time error. In this program, we are safe in
that the values ofthe indexes are generated by the for statements. However, if
we mistakenly used s tuden t _index as the first index and module_index
as the second, we would have an index value greater than 3 for the first index;
this would cause the problems we have indicated.

138 Object Oriented Programming Using C++

13.2 An alternative approach for entering the data

The alternative approach to obtaining the data for the array is by accepting the
module number and student number with each mark, with the consequent
advantage that the marks do not need to be entered in any specific order; we
can use the default value of zero for any mark not entered by initialising the
array so that all elements are zero initially. The pseudo-code for a revised
get_marks function is given in figure 13.9 and the C++ code in figure 13.lD.

course: : get_marks (revised version)
Declare variables
Initialise all array elements (=0)
Prompt for and accept first module number,

student number and mark
WHILE module number not = 999

store mark in array element indexed by module
number and student number

Prompt for and accept next module number,
student number and mark

Skip over final newline character

Figure 13.9

To initialise all elements of the two-dimensional array we have:

for (int module_counter = 0 ; module_counter <
no_of_modules ; ++ module_counter)
for (int student_counter = 0 ;

student_counter < no_of_marks ;
++ student_counter)
marks [module_counter] [student_counter]

= 0 ;

Here, we have used nested for loops that declare counters with an initial value
of zero. Each time through the inner loop an element of the marks array is set
to zero starting at the element with a module index of zero and student index of
zero through to the element with a module index of 3 and a student index of 5.
It is necessary to use this technique when initialising an array that is a member
of an object class. However, there is a shorthand technique available for locally
declared arrays. For example, we can declare a one-dimensional array with all
elements initialised to zero by:

int totals [no_of_totals] = {OJ ;

Or, for a two-dimensional array with all elements zero, we can use:

float results [no_of_rows] [no_of_columns] = {OJ

For the main while loop, we again use a read-ahead technique. In the
body of this loop we process the current module number, student number and

Two-dimensional Arrays

void course::qet_marks ()
{

char termdnator ;
int module_number,

student_number,
mark

for (int module_counter = 0 ; module_counter <
no_of_modules ; ++ module_counter)
for (int student_counter = 0 ;

student_counter < no_of_marks ;

cout «

++ student_counter)
marks [module_counter] [student_counter]

= 0 ;

139

"Enter module no. student no. then mark: " ;
cin » module number » student number »mark ;
while (module_number != 999)

{

marks [module_number] [student_number]
= mark ;

cout «
"Enter module no. student no. then mark: "

cin » module number » student number
» mark ;

cin.qet (termdnator)
}

Figure 13.10

mark then get the next three values (the student number may be the end-marker
999).

marks [module_number] [student_number] = mark ;
cout

« "Enter module no. student no. then mark: "
cin » module number » student number » mark

We use the values obtained in module number and student number as - -
indexes in assigning the value obtained in mark to an element of the array
marks. Once more, we note that in this simplified program we do not check
that module_number or student_number has a valid index, that is, in
the ranges 0 to 3 and 0 to 5 respectively.

Finally, a simple program file (table. cpp) to create and use an object
of type course is provided in figure 13.11.

140 Object Oriented Programming Using C++

I I TABLE. cpp

II A program to get 6 marks for each of 4 modules
II and display as a table with row averages
#include "course.h"
void main ()

course diploma
diploma . get_marks ()
diploma . display_marks ()
}

Figure 13.11

13.3 Exercises

13.3.1 Please refer to the example in figures 13.6 to 13.8, and answer the
following questions.
(a) Why do we use a two-dimensional array rather than a one­

dimensional array here?
(b) Draw up a table under the headings module_index and

s tuden t index to illustrate the order in which these values
change when used in the cout (and cin) statements in
get_marks.

(c) What is the purpose of setw in display_marks?
(d) What might occur if we mistakenly used s tuden t _index as the

first index and module index as the second index when
accessing the array marks?

13.3.2 Please refer to the example in figure 13.10, and answer the following
questions.
(a) Why do we use for loops to initialise the two-dimensional array

and why are they nested?
(b) In this initialisation, what would be the effect of swapping the for

statements around, that is the inner one becomes the outer one and
vice versa?

13.3.3 Make changes to the example in figure 13.8 to achieve the following
revised specification.

The average mark is to be computed for each student and displayed as
the last row, that is at the foot of the appropriate column. Note that
you will need to use a one-dimensional array to hold the column
(student) totals; this will have to be initialised to all zeros.

Two-dimensional Arrays

13.3.4 Produce a header file (animals. h) and a program file
(assig134. cpp) to achieve the following specification.

141

A program is required to accept the age and weight, both integers, for
a number of animals from the keyboard. There are twenty valid
weights, namely the values between 20 and 39 inclusive, and ten valid
ages, namely the values between 5 and 14 inclusive. The program
displays a table on the monitor screen, as shown in figure 13.12,
giving the number of animals with each possible combination of
weight and age.

The model is given in figure 13. 13 and the pseudo-code for two
functions and a constructor is given in figure 13.14. The function
get_age _and_weight has two parameters; you should use
different identifiers for the actual and formal parameters. The program
file should include the objects cats and dogs as instances of the
class animals.

5yrs
20kgs 7
21kgs 5
22kgs 4
23kgs 2
24kgs 2

39kgs 0

6yrs 7yrs 8yrs
7 5
6 5
6 8
5 8
4 6

0 0

Figure 13.12

Class: animals

table [20] [10]

Get table (constructor)
Get age and weight
Display table

Figure 13.13

4
7
8
9
9

0

14yrs
0
0
0
0
1

15

142 Object Oriented Programming Using C++

animals: : animals
Declare variables
Initialise all array elements (=0)
Call get_age_and_weight (age, weight)
WHILE not end of the weights (age != 999)

Add 1 to table element indexed by (weight -
20) and (age - 5)

Call get_age_and_weight (age, weight)
Skip over final newline character

animals: : get_age and weight (the_age, the_weight)
DO

Prompt for and accept age and weight
WHILE not a valid age and weight

animals: : display_table
Display column headings
FOR weight index goes from 0 to 19 in steps of 1

Display row title
FOR age index goes from 0 to 9 in steps of 1

Display table indexed by weight index and
age index

Move cursor to next line

Figure 13.14

14 Object Lifetime and Dynamic Objects

Objectives for this chapter
Familiarity with the C++ programming terms and concepts:

• lifetime and scope
• the keyword static

• local variables and objects
• global variables and objects
• dynamic variables and objects
• memory allocation and addresses
• pointers and indirection
• NULL pointer value
• the function malloc

• arrow (-» and indirection (*) operators
• new and delete operators
• programmer-defined destructors.

Ability to:
• understand and write simple C++ programs that use dynamic objects.

14.1 Object lifetime

Some variables, including objects, exist for the complete duration of a pro­
gram's execution; others may exist for only part of the time that the program is
running, for example, just while a single function is being executed. As we
shall see in the next chapter, we may wish to preserve the state of an object
between different runs of a program or use an object in different programs.

The lifetime (period of existence) of any variable within a program,
including an object, may be determined automatically by the compiler using
what are called scope rules; alternatively it can be defined by the programmer
using features of the C++ language. We will first illustrate the basic concepts
using variables of type in t.

143

144 Object Oriented Programming Using C++

14.2 The scope of variables

Consider the function display_marks, based on an example from chapter
13, given in figure 14. 1.

II SCOPE1.H

const int no_of_modules = 4 ;
const int no of students = 6 ;

class course

public :
void display_marks ()

protected :
int marks [no_of_modules] [no_of_students]

void course: : display_marks ()

int module_total ;
for (int module_index = 0 ; module_index <

no_of_modules ; ++ module_index)
{

module_total = 0 ;
for (int student_index = 0 ; student_index <

no_of_students ; ++ student_index)

module total += marks [module_index]
[student_index] ;

cout « setw (5) « module total « end!

cout « "All module totals displayed" ;

Figure 14.1

The scope of a variable is that section of code in which the variable can be
used. The compiler uses the position of a variable declaration to define, auto­
matically, the scope of that variable. The variable module_total is declared
at the start of the function display_marks. This means that when
display_marks is called, memory is made available to it of the appropriate
size for an into Then when display_marks has finished, the memory is
released back to the system; module_total in effect no longer exists. We say

Object Lifetime and Dynamic Objects 145

that the scope of module total is within, or local to, the function
display_marks.

The variable student index is also local to the function
display_marks, but its scope is more limited. A variable may only be used
after it has been declared and within that part of the function enclosed by the
braces immediately outside of its declaration; for s tuden t _index that is
from line 8 of the function to the brace on line 15; for module_total that is
the entire function.

The same rules apply to cons t identifiers. Since they are declared at the
start of the header file, both the identifiers no_of _modules and
no_of _ s tuden ts are global to the program (header) file; they may be used
anywhere within the file or in any file, including the program file, that includes
this header file. They are used in the function display_marks and in the
declaration of the array marks in the object class definition.

The scope of the array marks is restricted by the C++ language (the
keyword protected) so that the array may only be used within functions of
the object class or any derived classes.

In all the above cases the declarations are automatic in the sense that the
lifetime of the identifier is determined by the scope rules. If we want the value
of a local variable in a function to be retained between calls to the function then
we must declare the variable as static. For example, if for some reason we did
not wish to lose the value of module total after each call to
display_marks was completed we would declare the variable as follows:

static int module_total ;

Now, if the first call resulted in a value of say 530 in module_total, when
display_marks is called for a second time, module_total would start
off with an initial value of 530.

This illustrates how the C++ keyword static can be used to extend the
lifetime of a variable. Note that even though its value is retained, the variable
module_total can still only be used within its normal scope, that is within
display_marks.

14.3 The scope of objects

We can apply exactly the same lifetime and scope rules to objects. For example,
consider the program file, given in figure 14.2, scope2. cpp that uses the
s tuden t _marks _ 2Ba object class from marks2ba . h.

Here we have a global declaration for the object history_ MK350 which
is then available throughout the program file. When the program is run, we say
that the object is instantiated or created; memory is allocated and the
initialisation specified within the programmer-written constructor is executed.
The object's lifetime is the complete duration of the program's execution; it will

146 Object Oriented Programming Using C++

II SCOPE2.CPP
II A program to illustrate the scope of objects
#include "marks2ba.h"

student_marks 2Ba historY_MK350
void main ()

{

for (int count = 1 ; count <= 3 ; ++ count)
{

student_marks 2Ba english_JP200 ;
english_JP200.display_identities ()
english_JP200.display_marks () ;
static student marks 2Ba french EP100
french_EP100.display_identities () ;
french_EP100.display_marks ()
}

history_MK350.display_identities ()
history_MK350.display_marks () ;
}

Figure 14.2

exist from its creation until the program completes and is unloaded from the
computer's memory.

The declaration of the object english _ JP200 is also automatic but it
has local scope. An instance of the object class will be created and the
constructor called each time round the for loop. Hence the member function
calls that follow will be for a new object each time. Each time the body of the
for loop completes the default destructor is used to release the memory
assigned to the object.

The declaration of the object french _ EP100 is static and it has local
scope. An instance of the object class will be created and the initialisation of the
object's state within the constructor will be done just once, the first time round
the for loop. The member function calls will use the same object each time
round the loop. We say that the state of the object french_EP100 persists, or
that it retains its state.

Figure 14.3 illustrates the major operations when this program is execut­
ed. Note, in particular, that the data acquisition operations in the constructor
occur once for each new object created, that is once for the global object
history_ MK350, once for the static local object french _ EP100 and three
times for the automatic local object english _ JP100 each with a different
value of counter.

Object Lifetime and Dynamic Objects

Data acquisition (constructor called) for history_ MK350
Data acquisition (constructor called) for english_JP200(counter = 1)
Display identities and marks for english_JP200
Data acquisition (constructor called) for french _ EPIOO
Display identities and marks for french _ EPIOO
Data acquisition (constructor called) for english _ JP200(counter = 2)
Display identities and marks for english_JP200
Display identities and marks for french _ EPIOO
Data acquisition (constructor called) for english _JP200(counter = 3)
Display identities and marks for english _ JP200
Display identities and marks for french EPIOO
Display identities and marks for history_ MK350

Figure 14.3

14.4 Dynamic variables

147

In all our programs so far, we have been able to establish the need for each
variable or object when the program is written and reserve appropriate memory
by declaring an identifier. Sometimes, however, we do not know whether we
need a variable or object until after the program has begun execution. For
example, we may have a program that needs to store data about an unknown
number of students. We could guess the maximum number and use array
storage or we could use disk storage. In the former case this could lead to a
large amount of redundant memory if the guess is too high, or the program
having to be stopped if the guess is too low. In the latter case, the program
would execute more slowly because it takes more time to write the data to a disk
than to store it in memory.

The solution to this problem is to use dynamic data storage. Instead of
reserving memory when an identifier is declared, a program is coded so that it
obtains random access memory as the need arises during execution. The one
draw-back to this is that we cannot use programmer chosen identifiers for such
areas of memory; identifiers have meaning only within the source code not the
executable object code. We overcome this problem by using a system of pointers
to the locations or addresses of such areas of memory. Figure 14.4 is a
demonstration C++ program that shows how an area of memory may be
obtained and then used indirectly by using a pointer to its address.

There are a number of new programming features in this example. First
we have the declaration of a pointer variable.

int* int_pointer = NULL ;

The asterisk after the type int indicates the declaration of a variable that is to

148 Object Oriented Programming Using C++

II DYNAMIC.CPP
II Demonstrates the use of a simple dynamic
II variable
#include <stdlib.h>
#include <iostream.h>
void main ()

{

int* int-pointer = NULL ;
int_pointer = (int*) malloc (sizeof (int»
if (int_pointer == NULL)

{

cout « "No memory available" « endl
exit (1) ;

*int_pointer = 45 ;
cout « "Address of memory used is "

« int_pointer « endl ;
cout « "Contents of memory used is "

« *int_pointer « endl ;
free (int_pointer)

Figure 14.4

point to (or contain an address of) a memory area. Such variables are often
called pointer variables. In this example, the identifier int_pointer has
also been initialised. By convention, a pointer variable is not initialised to zero,
but what is called a 'null value' is used; in C++ this is the constant NULL.
While not necessary in this simple example, it is wise to consider the use of
pointer variable initialisation.

The next statement looks somewhat complex. It is not necessary for you to
understand it fully at this stage. It is one of the ways that memory can be
allocated when a program is running.

int_pointer = (int*) malloc (sizeof (int» ;

The function malloc attempts to allocate memory and if successful gives the
address (or pointer value) as the result of the function call; in this instance to be
stored in int_pointer. The amount of memory to be allocated is given by
the argument of malloc, computed here by using the operator sizeof to
determine the amount necessary for an into The cast (int*) is necessary to
convert the result from malloc specifically to a pointer to an into

Note that to use malloc we need to include the header file that references
it, hence we have used #include <stdlib. h>.

Memory is not inexhaustible, so we need to ensure that memory has been

Object Lifetime and Dynamic Objects

correctly allocated. We do this by testing the pointer variable.

if (int_pointer == NULL)
{

cout « "No memory available" « endl
exit (1) ;

149

If malloc is unable to allocate sufficient memory, it returns a value of NULL.
SO, we simply test for this value. If we have been given a return value of NULL,
we display a message then use the exi t function found in the library
<stdlib. h> to terminate the program. The argument I is a convention for
abnormal program termination.

Next, we assign a value to the allocated memory area using the indirection
operator * before the pointer variable.

*int_pointer = 45 ;

We say that 45 is assigned to the memory area pointed to by int_pointer,
or the memory area at the address in int_pointer. This concept is
illustrated by the next four lines of the program.

cout « "Address of memory used is "
« int_pointer « endl ;

cout « "Contents of memory used is "
« *int_pointer « endl ;

This gives the following output.

Address of memory used is Ox912d0004
Contents of memory used is 45

The first cout gives the contents of int_pointer which is a large strange­
looking number that is one way of showing a memory address. The second
cou t, because it uses the indirection operator *, displays the contents of the
memory whose address is stored in int_pointer.

Finally, we return the memory to the system.

free (int_pointer) ;

This is not strictly necessary in this program because memory is returned to the
system automatically when a program terminates. However, we should always
consider returning memory when it is no longer needed. The function free,
found in <stdlib. h>, does this by taking as an argument a pointer variable
containing a memory address.

14.5 Dynamic objects

Dynamic objects use the same principles as other dynamic variables. Let us
consider an object class, that can have up to 10 s tuden t _marks _ 2Ba
objects. A user may add a new object or remove the last object added, so the

150 Object Oriented Programming Using C++

Class: module_B

student [10] (of pointers to student_marks_2Ba)
student index

Initialise index and array (constructor)

Get a student

Remove a student

Return memory (destructor)

Figure 14.5

I I MODULE_B.H

II The object class module B
#include <stdlib.h>
#include "marks2Ba.h"
const int maximum students = 10
class module B

protected :
student marks 2Ba* student [maximum_students]
int student index

public :
module _ B () ;
... module _ B () ;
void get_student ()
void remove student ()

Figure 14.6

number of objects being held at anyone time will vary between 0 and 10. As a
new object is added, the exam mark and practical mark are displayed. The
model for the class (module_B) is given as figure 14.5 and the class definition
is given in figure 14.6.

The first data member is an array of pointer variables

student_marks_2Ba* student [maximum_students]

Here, we define the array called s tuden t with 10 elements. The array type is
student_marks_2Ba followed by *. You will recall that when a type is
followed by asterisk, this indicates a pointer variable. So, we have an array of
10 pointer variables to the object class student_marks _ 2Ba.

Object Lifetime and Dynamic Objects 151

The second data member, student_index, is used to store the position
in the array of the pointer variable to the last s tuden t _marks _ 2Ba object to
be added. This will have the value 0 when there is just one object, 1 when there
are two objects and so on.

Following the constructor prototype module _ B (), we have a similar
piece of code.

-module_B () ;

This is the prototype of a programmer-defined destructor. In chapter 10, we
briefly mentioned that when the function in which an object is created finishes
a default destructor is automatically called to return the memory used by the
object. This does not include any additional memory allocated dynamically
during the execution of one of the object's member functions. In these cases we
must incorporate a programmer-defined destructor. This is declared in the
object class definition in the same way as for a constructor except that the
identifier is prefixed by the - (tilde) character. Also, a destructor does not have
arguments.

Figures 14.7 and 14.8 show the constructor and destructor for the
module _ B object class.

module B: : module B ()

student index = -1
for (int counter = 0 ; counter <

maximum_students ; ++ counter)
{

student [counter] = NULL ;

Figure 14.7

module B: : -module B ()

for (int counter = 0 ; counter <=
student index ++ counter)

delete student [counter] ;

Figure 14.8

In the constructor, we first initialise the member data item
student index to -1. We do this because the first index for an array

152 Object Oriented Programming Using C++

element in C++ is zero, so when we have none we will use -1. Note that we
cannot do this as part of the object class definition. The C++ rule is that all
initialisation of data members must be done in a constructor. Next, we have a
simple for loop to initialise the array of pointers so that each element has a
value of NULL. As with other pointer variables, it is wise to ensure that they
contain an initial NULL value.

The purpose of the destructor is to ensure that any memory allocated for
dynamic objects (this is done in the member function get_student) is
returned to the memory management system. This is done using the delete
operator which is executed in a for loop.

delete student [counter] ;

When using pointers to most data types we use the function free, as we saw in
the previous section, to return memory. For pointers to objects we use the
operator delete followed by a pointer variable containing the memory
address, in this case an element of our pointer array student.

The member function get_student illustrates the way in which we
obtain a dynamic object. It is given in figure 14.9.

void module_B: : get_student ()
{

if (student_index < maximum students - 1)
{

++ student index
student [student_index]

new student_marks_2Ba ;
if (student [student_index] == NULL)

{

cout « "No memory available" « end!
exit (1) ;

student [student_index]->display_marks ()

else
cout « "Too many students" « end!

Figure 14.9

In this function, we first test that we have not already obtained the
maximum number of student_marks _ 2Ba objects; we have only allocated
sufficient space to store pointers for 10.

Next, after increasing s tuden t _index, we request memory for and
create a dynamic object, then, as in the previous section, check that memory has
been allocated.

Object Lifetime and Dynamic Objects

student [student_index] = new student_marks 2Ba
if (student [student_index] == NULL)

{

eout « "No memory available" « end!
exit (1) ;

153

Here, we use the operator new followed by the object class as opposed to the
function malloe for other data types. This operator causes memory to be
allocated to hold an object (of class student_marks_2Ba). and store the
address in the pointer array element student [student_index]. When
this is done, the constructor for the object class is called automatically. This
invokes the inherited initialise function (defined in the base class
student_marks_2B in marks2b.h), the user is prompted for the student
and module identity codes and exam and practical marks, that are used to
initialise the object.

Once the dynamic object has been created, we use it when calling the
member function display_marks. We have a new syntax for the function
call.

Since student [student_index] points to the memory area
allocated to the object, we could have called the member function, as in
previous examples, by using the dot operator:

(*student [student_index]) . display_marks ()

For dynamic objects, an easier way to access a particular member is to use the
pointer variable followed by the arrow operator (-» as in this example:

student [student_index]->display_marks () ;

The second member function remove _ s tuden t illustrates the way in
which we remove a dynamic object. It is given in figure 14.10.

void module B:: remove student ()

if (student_index >= 0)
{

eout « "Student removed"
student [student_index]->

display identities () ;
delete student [student_index]
student [student_index] = NULL

student index

else
eout « "No students left" « end!

Figure 14.10

154 Object Oriented Programming Using C++

This function is designed to remove the last student_marks _ 2Ba
object created. So we must first ensure that there is one by testing
student_index. Given that there is at least one, we then display the module
and student identities of the last object created by using

student [student_index]->display_identities () ;

We use the current value of student_index as an index to the pointer array
s tuden t, then the arrow operator followed by the function call to
display_identities.

To delete the last object created, we again use the current value of
s tuden t _index as an index to the pointer array s tuden t. Once we have
deleted the object (that is returned its memory to the system), we re-initialise
the pointer variable to NULL and decrease s tuden t _index.

When introducing dynamic variables at the start of the previous section,
we mentioned that they should be used instead of arrays when, for example,
there is a need to store data about an unknown number of students. The use of
an array in this example to hold the pointer values for objects is somewhat
restrictive and artificial. We need to know the maximum number of objects that
are to be used even though we do not have to reserve storage for them at the
outset. Ideally we would like to have truly dynamic data storage that does not
rely on knowing the maximum number of students. This involves using data
structures such as linked lists, stacks or trees that are outside the scope of this
book. Happily, most C++ compilers provide container class libraries that
provide the necessary facilities.

Finally, consider the program file arrayy. cpp that makes use of the
module _ B class. This is given in figure 14.11.

The program provides a simple menu system to which the user responds
by typing a capital A to add a student, R to remove a student and E to exit from
the program. A simplified example of the dialogue produced by the program is
shown in figure 14. 12.

Note that when computing . get_student () is executed, the data
acquisition dialogue between

Enter student identity code JKIOO
and

Enter next practical mark (or 999) 75

is produced by the constructor for s tuden t _marks _ 2Ba being called
automatically, as explained above, at the statement

student [student_index] = new student_marks_2Ba ;

The next line in the dialogue: "Exam mark is 77 Practical mark
is 75", is produced by

student [student_index]->display_marks () ;

in the same call to get_student.

Object Lifetime and Dynamic Objects

II ARRAY P.CPP
II Illustrates the use of an array of pointers to
II an object class
#include "module_b.h"
void main ()

module_B computing
char option,

terminator ;
do

cout « "Enter option: 'A' add a student"
« end!

cout « " 'R' remove a student"
« endl

cout « " 'E' end this run"
« endl

cout « "Enter option: "
cin.get (option) ;
cin.get (terminator) ;
if (option == 'A')

computing.get_student ()
else if (option == 'R')

computing. remove_student ()

while (option != 'E') ;

Figure 14.11

14.6 Exercises

14.6.1 Please refer to the example in figure 14.1, then answer the following
questions:
(a) Name two local variables. What is the scope of these local

variables?
(b) Name a global constant and a global array. What is their scope?
(c) What is the effect of declaring a variable as static?

14.6.2 Please refer to the example in figure 14.2, then answer the following
questions:
(a) Name the object that has global scope. What is its lifetime?

155

156 Object Oriented Programming Using C++

Enter option: 'A' add a student
'R' remove a student
'E' end this run

Enter option: R
No students left
Enter option: 'A' add a student

'R' remove a student
'E' end this run

Enter option: A
Enter student identity code JKl00
Enter module identity code GEOG
Enter examination mark no. 1 19
Enter examination mark no. 2 15
Enter examination mark no. 3 12
Enter examination mark no. 4 20
Enter examination mark no. 5 11
Enter first practical mark (or 999) 75
Enter next practical mark (or 999) 999
Exam mark is 77 Practical mark is 75
Enter option: 'A' add a student

'R' remove a student
'E' end this run

Enter option: R
Student removed
Student identity: JKl00 for Module: GEOG
Enter option: 'A' add a student

'R' remove a student
'E' end this run

Enter option: E

Figure 14.12

(b) Name the automatic object that has local scope. What is its
lifetime?

(c) Explain the difference between the declaration of the object
enqlish _JP200 and the object french _ EP100. What effect
does this have on the calls to display_ identi ties and
display_marks?

14.6.3 Please refer to the example in figure 14.4, then answer the following
questions:
(a) How is a pointer variable declared and initialised?
(b) In general terms, what does the function malloc do?
(c) Why is int_pointer tested for a value of NULL?

Object Lifetime and Dynamic Objects

(d) What is the difference between *int_pointer and
int_pointer? Use the output of the two cout statements to
explain.

14.6.4 Please refer to the examples in figures 14.6 to 14.8, then answer the
following questions:
(a) How do we declare a pointer to an object?
(b) How is a programmer-declared destructor defined?
(c) What is the purpose of the constructor module _ B?
(d) Why is the destructor ... module _B necessary?
(e) What does the delete operator do?

157

14.6.5 Please refer to the examples in figures 14.9 and 14.10, then answer the
following questions:
(a) What is the effect of the statement containing the new operator?
(b) What is the -> (arrow) operator used for?
(c) What is the purpose of the five statements associated with the if

in the member function remove student?

14.6.6 Make changes as necessary to module _b. h in figures 14.6 to 14.10
to achieve the following revised specification.
(a) After a student has been added, the message" student added"

is displayed followed on the next line by the output from the
function display_ identi ties.

(b) When remove _ s tuden t is called, the object pointed to in the
first array element is deleted (if there is one). After this, each
pointer should be moved along the array. That is, the one in the
element indexed by 1 should be moved to that indexed by 0, the
one indexed by 2 moved to that indexed by 1 and so on. Finally the
last element is given a null value. Hint: use a for loop with a
counter going from 1 to student_index.

14.6.7 Produce two header files (car. hand carsales. h) and a program
file (assig147. cpp) to achieve the following specification.

The header file car. h has a simple object class definition as
indicated by the model given in figure 14.13 and the pseudo-code in
figure 14.14. The model name is a string with a maximum of 15
characters and the registration mark is a string with a maximum of 7
characters.

A program is required to accept the model name and registration mark
for 10 cars from the keyboard. Then the user is prompted with the
choice of either 'selling' a car or ending the run. 1f the 'sell' option is
selected, the user is prompted for the registration of the car to be sold.
If the registration is present, the car is deleted and an appropriate
message displayed; otherwise a message indicating that the car could

158 Object Oriented Programming Using C++

not be found is displayed. At the end, a list of the cars left in stock is
displayed. An abbreviated example dialogue is given in figure 14.15.

The model for the object class car_sales is given in figure 14.16,
the pseudo-code for carsales. h is in figure 14.17 and
assig147 . cpp is in figure 14.18.

In the function sell_car you will need to compare strings to
determine if the registration mark accepted from the keyboard matches
that of the object pointed to in an array element and returned by the
member function return_registration of the object class car.
To compare strings in C++, we use the function strcmp found in
<string. h>. This function returns a value of zero if the two strings
have the same contents, hence you will need to write a conditional
statement such as the following.

if (! strcmp (cars_in_stock [car_index]->
return_registration (), this_registration»

Recall that a value of zero may be considered false and a value of non­
zero true in a conditional statement. Hence in the above example, if
strcmp finds the two strings to be the same it returns zero = false.

Class: car

model

registration

Get model and registration (constructor)
Display model and registration
Return registration mark

Figure 14.13

car: : car
Declare termdnator variable
Prompt for and accept model name
Prompt for and accept registration mark

car: : display_details
Display model name and registration mark

char* car::return_registration
Return registration mark

Figure 14.14

Object Lifetime and Dynamic Objects

Enter model name Fiesta 1.3 L
Enter registration P123ABC

Enter model name Escort 1.5 0
Enter registration R4MO
Enter option: 'S' sell a car

'E' end this run
Enter option: S
Enter registration of car to be sold A1JAK
Car not found
Enter option: S
Enter registration of car to be sold R4MO
Car sold R4MO
Enter option: 'S' sell a car

'E' end this run
Enter option: E
Cars left in stock
Model Fiesta 1.3 L Registration P132ABC

Model Mondeo 1.9 0 Registration R999COP

Figure 14.15

Class: car_sales

cars_in_stock [10] (of painters to car)

Get details into array (constructor)

Display list from array (destructor)
Sell car (remove from array)

Figure 14.16

159

160 Object Oriented Programming Using C++

car sales::car sales - -FOR counter goes from 0 to 9 in steps of 1
Create new car object, store pointer in array

indexed by counter
IF insufficient memory

Display message and exit

car sales::~car sales
Display heading "Cars left in stock"
FOR counter goes from 0 to 9 in steps of 1

IF array element indexed by counter != NULL
Call display_details for car object

pointed to in array indexed by counter
Delete car object pointed to in array

element indexed by counter

car sales::sell car
Declare variables
Prompt for and accept registration mark
Declare and initialise car index and found (=0)
WHILE not (found or car index = maximum of 10)

IF array indexed by car index != NULL
IF registration mark matches that pointed

to in array indexed by car index
Set found = 1
Display car sold message
Delete car object pointed to in array

element indexed by car_index
Reset array element indexed by

car index to NULL
Increase car index by 1

IF not found
Display "Car not found"

Figure 14.17

main
Declare object ford of type car sales
Declare variables
DO

Display options and accept user response
IF response = 'S'

Call ford. sell car
WHILE option != 'E'

Figure 14.18

15 Streams and Files

Objectives for this chapter
Familiarity with the C++ programming terms and concepts:

• serial and sequential files
• streams and file streams
• the of stream and ifstreamclasses
• opening and closing files
• the function eof (end of file)
• object persistence.

Ability to:
• understand and write simple C++ programs that use file streams.

15.1 Disk files

In all the examples considered so far, input data has been entered at the key­
board and output from the program has been displayed on the monitor screen.
However, instead of entering data at the keyboard, we could store the data in a
disk file and use this as the input to our program. Also, instead of displaying
data on the monitor screen, the program could write the data to a disk file
which could be read by the user or processed later by another program.

Computer files on disk can be structured or organised in a variety of ways
to facilitate their creation or to enable efficient access to their component parts.
As this is rather a large subject we will confine our discussion in this chapter to
a description of the most basic and, as it turns out, the most commonly used file
structures: serial or sequential files.

Serial or sequential files may consist simply of a number of simple data
items, such as integers representing a collection of prices, stored one after the
other like music items are stored on an audio cassette.

Alternatively, serial or sequential files may consist of a number of grouped
data items called records. For example, a wages file would contain the details of
all employees. The details for each employee, such as name, basic wage, hours
worked and so on, would be stored together in a record. We refer to these
components of a record as fields. When we access this type of file we would
normally access a complete record.

161

162 Object Oriented Programming Using C++

When writing to serial or sequential files, it is only possible to write a new
data item immediately after the last one already written. Similarly, when
reading from serial or sequential files, it is only possible to read the next data
item in sequence. Further, once we have read a data item it is impossible to
access any of the preceding data items except by closing the file, re-opening it
and reading through the file from the beginning.

A serial file is one that has been created with no relationship between its
data items or records other than a temporal one; the item written to the file first
is placed first, the one written last is placed last. If a serial file contains data
items that have been sorted such that there is a relationship between the data
items based on the value of one or more key fields, then it becomes a sequential
file. For example, if the records in a serial personnel file are sorted into
ascending order of employee identification number then it would be known as a
sequential file.

15.2 Streams

In C++, input and output to any device whether it be the monitor screen or a
disk file are viewed as a stream of characters. Various functions are available in
C++ libraries to provide facilities for input and output without the programmer
being concerned with the physical aspects of the device. For example, when the
user types characters at the keyboard they enter an input stream (an area in
memory) waiting for the program to use them. The programmer does not need
to know where this stream is held or write special functions to extract the
different types of data that might be represented. Data is held in memory in a
different form to the way we see it on the monitor screen or in a file.
Consequently, for both input and output the data has to be converted from one
form to the other, but the programmer does not have to be concerned with this.

In the examples in previous chapters, we have concerned ourselves with
input from the keyboard and output to the monitor screen, and have used the
two objects cin and couto We will now review these and then, in the next
section, examine objects for handling disk files.

Consider the following statement.

cout « "Enter examination mark no. "
« question_number « I I ;

Here, we have a prompt that uses the pre-defined stream object cout with its
own special operator « (the insertion operator). In fact this operator has
multiple uses depending on the operand that follows it. In the above, the first
«has a string operand; the specified characters will be displayed on the
screen. The second « has an int operand; the value of the integer will be
converted so that it can be displayed on the screen. The third « has a single
character, a space, as its operand; the space will be displayed. Having multiple
uses for an operator is called operator overloading; we will discuss this in the

Streams and Files 163

next chapter.
Now consider a statement using cin.

cin » mark ;

Again, cin is a pre-defined stream object with its own special operator » (the
extraction operator). This operator too has multiple uses depending on the
operand that follows it. In the above, if the operand mark is of type in t, then
numeric characters will be taken from the input stream and placed in mark as
an integer value. As well as the obvious conversion that takes place, the process
must know how many characters to convert and deal with any white-space
characters. (Remember that a white-space character is a blank, a tab, a newline
or a carriage return.) It does this by first ignoring any white-space characters
then processing the numeric characters up to the next non-numeric character
(usually a white-space character). This means that we can process several
values in one cin statement. For example,

cin » exam_mark » practical_mark

If we typed the following characters

3 5 I newline I
the first two blanks would be skipped over and the value 137 would be placed
in exam_mark. Then the tab and the following blank would be ignored and
the value 35 placed in practical_mark.

If the operand of » is a character or a string of characters, then white­
spaces are again ignored. This can be a problem when we wish to read strings
with embedded blanks or read a single white-space character. For example, we
might type the following as input

o I newline

with a program that executes the following statement

cin » character » message ;

where character is of type char and message is a twelve-character string.
Now the first blank is skipped, then A is placed in character. The second
blank is skipped and just big is placed in message. The remaining characters
from the third blank onwards would remain in the input stream awaiting
further input operations.

To overcome this problem we use the member function get:

cin.get (character) ;
cin.get (message, 12) ;

By using get, we obtain the first blank in character and the complete
string A big hello is placed in message. As we have previously observed
the newline character remains in the input stream.

Notice that get has two different forms or signatures; this is an example

164 Object Oriented Programming Using C++

of an overloaded function. As with overloaded operators, we shall return to this
subject in the next chapter.

15.3 File streams

Serial or sequential files are processed as streams in C++, so we use a similar
approach to that outlined above when reading from, or writing to, a file. There
are some fundamental differences however. First, while there is normally only
one keyboard and one monitor screen associated with a program there may be
many different files. It is therefore necessary to instantiate stream objects for
each file and be able to associate the stream object with the name of the file as
known to the computer's operating system. Second, there may be variations in
the way in which we use the data in files. For example, we may create a
completely new version of an output file, or we may add data to the end of an
existing file. Third, when we have finished using a file in a program we should
close it to allow other programs or operating system processes to use it.

Let us now look at an example of an object class that has a function that
writes data to a file and another function that reads the data from the file. The
problem being solved is similar to that used in chapters II and 12 on arrays;
namely, to display the identity and exam mark of those students whose exam
mark is above the average for a particular module. This time we store the data
in a file rather than an array. When using an array, the data will be lost once
the program finishes. If for any reason, we need to retain certain data values
after the program has finished, then obviously we have to write the values to a
file as opposed to storing them in an array. The object class is given in
diagrammatic form in figure 15.1, the start of the C++ code in module _c. h is
given in figure 15.2. Note that, as we did in chapter 12 where we used an array
of objects, we inherit the object class student_marks _ 2Bc from the header
file marks2bc . h.

Class: module_C

student (pointer to student_marks_2Bc)

average mark

Get student data, write to a file and compute

the average mark
Read student data from file, display those

that are above the average

Set average mark to a given number

Figure 15.1

Streams and Files

II MODULE C.B
II The object class module C
#include <fstream.h>
#include <stdlib.h>
#include "marks2bc.h"
class module C

public :
void write_students ()
void read_students ()
void set_average (int given_average)

protected :
int average_mark
student marks 2Bc* student

Figure 15.2

module C::write students
Create a new output file stream "student.dat"
Declare local variables
Initialise total and count to zero
DO

Create new student marks object
Call initialise for student marks object
Get exam mark
Write exam mark student id. to output stream
Add exam mark to total
Increase count by 1
Delete student object
Prompt for and get repeat request

WHILE repeat requested
Compute average mark
Close output stream

Figure 15.3

165

The function to obtain student data and write it to a file is given as
pseudo-code in figure 15.3, the C++ code from module _c. h is given in figure
15.4.

The first thing we do in wri te _students is to create a new output file
stream for the file to be called s tuden t . da t by using

of stream output_file ("student.dat")

166 Object Oriented Programming Using C++

void module_C::write_students ()
{

of stream output_file ("student.dat")
char repeat_character,

terminator ;
total = 0 int

int
do

count = 0 ;

student = new student marks 2Bc
if (student == NULL)

{

cout « "No memory available" « end!
exi t (1)

student->initialise ()
int exam mark = student->return exam mark ()
output_file « exam_mark « '

« student->return_student_identity ()
« end! ;

total += exam mark
++ count ;
delete student ;
cout « "Press A for another, E to end"
cin.get (repeat_character)
cin.get (terminator)
}

while (repeat character
average_mark = total /
output_file. close () ;

'A')
count ;

)

Figure 15.4

Here we instantiate an object of the of stream class found in the header
file fstream. h and open a new output file of the specified name. Alternative­
ly, we could have instantiated the object and used the open function to open
the file:

of stream output_file ;
output_file. open ("student. dat")

Either way, we need to specify a parameter containing the file name; this
associates the programmer-chosen name for the object, output_file, with
the name of the file as known to the operating system, s tuden t . da t.

Also, because there are a number of different modes of opening a file,

Streams and Files 167

there is a second parameter, the opening mode, which may be specified as an
integer value or by system specified constant values. We have not used it here
as the default value is to open a new file for output, that is for writing to.

The different opening modes are given in figure 15.5 together with the
integer values that would be used as the second parameter.

Opening Mode Integer Parameter Value
open for reading I
open for writing 2
open and move to end of file 4
append additions at end of file 8
if file already exists delete contents 16
if file does not exist, fail on open 32
if file already exists, fail on open 64

Figure 15.5

After creating a new object in memory and calling the initialise function
for it, the exam mark is obtained by using the return_exam _mark function.
The next statement puts the exam mark and the student identity into the output
file stream.

output_file « exam_mark « ' ,
« student->return_student_identity ()
« end! ;

Notice that the format is the same as when using cout, we use the« operator
for each item to be placed in the stream: an integer value from exam_mark,
followed by a single space character (to act as a separator), followed by the
string that represents the student identity returned from the
return_student_identity function, followed by an end of line
(newline) symbol.

If two student objects were created in the do-while loop, the output
stream would contain the following with a stream pointer positioned after the
second newline ready for subsequent items.

I 3 I 5 I I MI K 11 I 0 I 0 I newline I 7 11 I I J I P I 2 11 I 5 I newline I
When the user chooses to type any character other than the letter A at the

repeat request prompt, the loop is terminated and the average mark is
computed. Then the file stream is closed by

output_file. close () ;

This has been included to demonstrate the function even though in this
particular case it is not necessary to close the output file stream. This is because
at this point the write_students function would be terminated and the
object output_file would fall out of scope. Hence the destructor for

168 Object Oriented Programming Using C++

output_file would be called automatically and this in turn would call the
close function as required. The effect of close for an output file is to ensure
that all of the stream data has been written to the output file and that the file is
returned to the control of the operating system so that it can be used by other
processes. The file s tuden t . da t would then contain

35 MinOO
71 JP215

The function to read this file and display those students with an exam
mark above the average is given as pseudo-code in figure 15.6. This illustrates
the 'read-ahead' technique, first introduced in chapter 8 (see figure 8.9), that
proves very useful when processing data from an input file.

module C: : read students
Declare local variables
Create an input file stream for "student.dat"
Read first exam mark
Display heading
WHILE not at the end of the input stream

Skip over separator
Read student identity
IF exam mark > average mark

Display student identity and exam mark
Read next exam mark

Close input stream

Figure 15.6

Notice in particular the position of the read statements. We attempt to read
an exam mark before we enter the WHILE loop and as the last statement within
the loop. If either read is unsuccessful because we are already at the end of the
file stream then the end of file stream state is set accordingly and we are able to
test that state in the condition that controls the loop. This technique is necessary
because the end of input file stream state is only set when we have already read
the last item in the file and another attempt to read from it is made, so we must
attempt to read before we can test for end of input. It is also convenient, because
it allows for the situation when we have an empty file.

The other two read statements are used once only within the loop and
follow logically after a successful read of an exam mark; a space as a separator
and a student identity string must follow an exam mark.

The C++ code for the function read students from module c. h is
given in figure 15.7.

First, we note the creation of the input file stream object by

ifstream input_file ("student.dat") ;

Here we instantiate an object of the ifstream class as opposed to the

Streams and Files

void module C::read students ()

char identity [9]
int exam mark
char separator ;
ifstream input_file ("student.dat")
if (! input_file)

{

cout « "Student file not available" « endl
exi t (1) ;

input_file » exam_mark ;
cout « end! « "Students with merits" « endl
while (! input_file.eof(»

{

input_file. get (separator)
input_file. get (identity, 9)
if (exam_mark> average_mark)

cout « "Student " « identity « ,,\t"
« setw (3) « exam_mark « end! ;

input_file » exam mark
}

input_file. close () ;
}

Figure 15.7

169

of stream class that we used for an output file. This creates the object and
opens an input file of the specified name. Again, we could have instantiated the
object and used the open function to open the file:

ifstream input_file ;
input_file. open (" student. dat")

As with the output file, we specify the file name as the first parameter and may
use an integer value to specify an opening mode as an optional second
parameter. There is no need for the integer parameter in this case because the
default is to open a file that already exists for reading.

In this example, we are quite sure that we will always have
s tuden t . da t available because we will always use the function
write_students before using read_students. However, it is good
practice to guard against the possible error situation where the input file may
not be available to the program. We do so by implementing code such as below.

if (! input_file)
{

170 Object Oriented Programming Using C++

cout « "student file not available" « endl
exi t (1) ;

We may test the state of the object as above. If it is true, the file has been
opened correctly, if false, it has not. Here, if false, we simply display an error
message then issue an exi t statement to exit from the program.

The syntax for reading items from the file stream is exactly as for cin.
We may use the operator » as well as the ifstream member function get.
We use the former to obtain an exam mark by

input_file » exam_mark ;

and the latter to skip over the separator and obtain the student identity string by

input_file. get (separator) ;
input_file. get (identity, 9) ;

Since objects of the ifstream class interpret input exactly the same way as
cin, the two statements above could be replaced by

input_file » identity;

provided there are no spaces in the identity.
To detect the end of the input stream, we use the member function eof

(end of file) as follows

while (! input_file.eof(»

If the stream pointer has reached the end of the input stream and an attempt is
made to read another value, true is returned otherwise false.

One further point from the example is demonstrated in the code that
displays the student identity and exam mark:

cout « "Student" « identity « ,,\t"
« setw (3) « exam_mark « end! ;

The output produced here will be tabulated such that the exam marks will
always be vertically aligned, even though the string identity may vary in
length for different students. The control character "\ t" (tab) causes the
screen cursor to be moved to the next horizontal tabulation position.

A simple program meri ts2. cpp is given in figure 15.8 to illustrate how
the object class module _ C may be used.

Figure 15.9 is an example of the dialogue produced on the monitor screen
when the program is executed. The interactive acquisition of the student and
module identities and the exam and practical marks is produced by repeatedly
calling the function initialise within the do-while loop of
wri te students. The list at the end is produced by the call to
read students.

After meri ts2 . cpp has executed there will remain a file called
student.dat containing some of the member data, exam_mark and
student_identity, of the student marks 2Bc objects created in

Streams and Files

II MERITS2.CPP
II A program to get exam marks for a number of
II students and display those that are above the
II average
#include "module c.h"
void main ()

module_C computing
computing. write_students ()
computing. read_students () ;
}

Figure 15.8

Enter student identity code MK321
Enter module identity code COMP
Enter examination mark no. 1 17

Enter examination mark no. 5 18
Enter first practical mark (or 999) 999
Press A for another, E to end A

Enter student identity code J.K456
Enter module identity code COMP
Enter examination mark no. 1 12

Enter examination mark no. 5 7
Enter first practical mark (or 999) 999
Press A for another, E to end E

students with merits
Student MK321 80
Student EP582 92

Figure 15.9

171

write_students. We can illustrate this by executing another program,
meri ts3. cpp, given in figure 15.10.

Here we create a module _ C object then use the function set_average
to give the data member average_mark a value of 20. The member function
set_average, from module _c. h, is given in figure 15.11.

Having already stored the exam_mark and s tuden t _ iden ti ty for a
number of students in s tuden t . da t, we can then call the read _ s tuden ts

172 Object Oriented Programming Using C++

II MERITS3.CPP
II A program to display marks above 20% from the
II file student.dat
#include "module c.h"
void main ()

module_C computing
computing. set_average (20)
computing. read_students ()
}

Figure 15.10

void module_C::set_average (int given_average)
{

average_mark = given_average
}

Figure 15.11

member function to read the file and hence display the identity and exam mark
of those that have got more than 20%.

Note that we cannot directly access average_mark here because it is a
protected data member of module_C. We could have made it a public
member to facilitate this, but normally it is not considered good practice to
allow public access to data members; rather we should always use functions to
set the values of data members or, as we have already seen, to return the values
of data members (for example, return_student_identity).

15.4 Object persistence

In previous chapters, we have considered objects that exist only during the
execution of the program in which they are defined. Such objects are known as
transient objects. The lifetime of transient objects ends when a program
completes and is unloaded from computer memory.

Persistent objects exist between program runs; their lifetime extends
beyond the end of a single program execution. For an object to be persistent, it
must be stored in a disk file. Strictly, it is not possible to store everything about
an object using a disk file that is organised in a standard way. However, it is
possible to store the state of an object as represented by the current values of an
object's member data. From the stored data it is possible to recreate the state of
such an object although strictly this would mean creating a new one and using a
mechanism to reinitialise the member data values to those stored in the disk
file.

Streams and Files 173

In the previous section we have demonstrated in a simplified way how the
values held in the member data of objects may be stored in a disk file, then how
that data may be retrieved and used. Some of the member data of the
s tuden t _marks _ 2Bc objects, created when meri ts2 . cpp was run,
persisted beyond the execution of that program and were then used in
meri ts3 . cpp.

15.5 Exercises

15.5.1 Please refer to sections 15.1 and 15.2, then answer the following
questions:
(a) What is the difference between a serial disk file and a sequential

disk file?
(b) Why is cin. get (character) sometimes used in preference

to cin » character?
(c) Why is cin. get (message, 12) sometimes used in

preference to cin » message?

15.5.2 Please refer to the example in figure 15.4, then answer the following
questions:
(a) Give two ways of creating and opening a file stream for output.
(b) What is an opening mode?
(c) Why is output_file. close () not necessary in the

wri te students function?
(d) What is the difference in the way in which we actually write output

to a a disk file as opposed to the monitor screen?
(e) Can you suggest a reason for writing the blank character between

the exam mark and the student identity? Is it necessary?

15.5.3 Please refer to the example in figures 15.6 and 15.7, then answer the
following questions:
(a) Why is the technique of reading the exam mark before entering the

loop and as the last statement within the body of the loop
necessary?

(b) What beneficial effect does the above technique also provide?
(c) Give two ways of creating and opening a file stream for input.
(d) Why is it usually necessary to use the statement

if (! input_file)?
(e) How do we detect the end of the input file stream?

15.5.4 Please refer to the start of section 15.3 and section 15.4, then answer
the following questions.
(a) What are three fundamental differences that should be noted when

using disk files for input and output as opposed to the keyboard
and monitor screen?

174 Object Oriented Programming Using C++

(b) What is a persistent object and how is object persistence normally
implemented?

(c) Explain why an array cannot be used to implement object
persistence.

15.5.5 Make changes as necessary to module _c. h in figures IS.2, lS.4 and
lS.7 to achieve the following revised specification.
(a) Remove all references to the average mark and its evaluation.
(b) Write the practical mark to s tuden t . da t between the exam

mark and the student identity. You may assume the function
return _practical_mark of the object class
student marks 2Bc. - -

(c) Change the read_students function so that it displays the
student identity, exam mark and practical mark of those students
that have achieved over SO% in both the exam mark and the
practical mark.

15.5.6 Produce a header file (ages. h) and a program file
(assig156. cpp) to achieve the specification described by the model
in figure lS.12, the pseudo-code in figures lS.13 and lS.14 and the
sample dialogue in figure IS. IS.

Write another program file (assig157 . cpp) that will now use the
data in the file ages. da t to display the table up to a maximum age
of IS as opposed to 21 in the first program.

Class: ages

maximum age

Get ages and frequencies
Display table

Set maximum age

Figure 15.12

Streams and Files

ages::get_ages_and_frequencies
Create a new output file stream "ages.dat"
Declare local variables
FOR age from 1 to 25 in steps of 1

Prompt for and accept frequency
IF frequency not zero

Write age and frequency to output stream
Close output stream

ages: : display_table
Declare local variables
Display headings
Create an input file stream for "ages.dat"
Read first age from input stream
WHILE not end of stream and age <= maximum age

Read frequency from input stream
Display age and frequency
Read next age from input stream

Close input stream

ages: :set_maximum_age (given age)
Assign given age to maximum age

Figure 15.13

main
Create object horses of type ages
Call horses.get_ages_and_frequencies
Call horses.set_maximum_age (21)
Call horses.display table

Figure 15.14

175

176 Object Oriented Programming Using C++

Enter frequency for age 1 0
Enter frequency for age 2 0
Enter frequency for age 3 20
Enter frequency for age 4 0
Enter frequency for age 5 23

Enter frequency for age 25 0

TABLE OF ACCIDENT FREQUENCIES BY AGE UP TO AGE 21

3 years 20
5 years 23

12 years 24

21 years 36

Figure 15.15

16 Introduction to Polymorphism

Objectives for this chapter
Familiarity with the C++ programming terms and concepts:

• operator overloading
• operator functions
• function overloading
• a signature
• friend functions
• using more than one constructor in a single object class
• parametric polymorphism and templates
• generic functions.

Ability to:
• understand the fundamentals of polymorphism and use some of the C++

language constructs that support them.

16.1 What is polymorphism?

Polymorphism literally means "having many forms". In C++, both operators
and functions can have many forms in that they can be adapted so that while
the meaning of their operation is the same their implementation will allow for
their use with different types of data. In practice, this means that we can use
both operators and function names to achieve different things depending on the
context in which they are used.

It is not possible, nor even desirable, to discuss all of the different types of
polymorphism in an introductory book. For this reason, we will just introduce
some of the fundamental concepts using simple illustrative examples.

16.2 Operator overloading

We have seen that the arithmetic operators work with both int and float
values. For example,

int integer_number = 23 + 51 ;
float real number = 5.7 + 7.2 ;

177

178 Object Oriented Programming Using C++

are both normal expressions using the + operator. However, it is apparent that
the + operator is doing two different jobs depending on its context. If its
operands are of type in t it performs integer arithmetic, if its operands are of
type float it does real arithmetic. Similarly, the insertion operator, «, used
with cout performs different output conversions depending on the type of its
operand. For example,

cout « integer_number « " - " « real_number ;

would output the first value according to the rules for the output of values of
type in t, then a string of 3 characters, then the real number according to the
rules for the output of values of type float.

These examples illustrate that operators must, in many situations, be
capable of a form of polymorphism; in the above cases, the ability to perform
the same operation, addition and output, on different types of data.

Further, in C++, there are a number of operators that combine two oper­
ands and allow each operand to be of a different data type. For example,

real_number = integer_number + 5.75 ;

is evaluated by first converting the value in integer_number to a float
value then using real arithmetic to produce the required float result. This
process is called coercion and will occur according to rules built into the C++
language for operations with operands of different types.

Sometimes, we need to change the rules by imposing a conversion on an
expression or a single variable. We do this by using a type cast. For example,

float real number = 3.5 ;
cout « real number « ' , « int (real_number) «

, , « int (real_number + 0.5) « end! ;

will output

3.5 3 4

that is, the original real value, the truncated integer value and the rounded
value. The integer values are produced by imposing a type cast on the
expression, achieved by preceding the expression by the type in t.

The assignment operator is overloaded to allow the assignment of many
different data types. This also includes the assignment of objects. For example,
we can make a copy of all of the attributes of an object by:

student_marks_2B first_student,
second student

first_student. initialise () ;
second student = first student

All corresponding data members in second_student will now contain the
same values that were given to first_student when initialise was
called.

This facility to overload the assignment operator is provided by the C++

Introduction to Polymorphism 179

compiler. However, it is possible for a programmer to produce an operator
function that defines another way of assigning one object to another. Also, we
may wish to use other operators whose operands are objects. To do this we must
define our own overloaded version(s) of such operators using the operator
function facility.

16.3 Operator functions

Let us suppose that we wanted to compare objects. Continuing our student
marks theme, we may wish to establish which student is 'best'. It would be
convenient to be able to use the relational operator> to compare two objects. Of
course, we would need to define what we mean by greater than in terms of the
attributes of the object class.

Let us consider another derived class of s tuden t _marks _ 2B, shown in
figure 16.1, that illustrates one way in which we may implement an overloaded
relational operator for objects.

II MARKS2BD.H
II The object class student marks 2Bd
#include "marks2b.h"
class student marks 2Bd : public student marks 2B

public :
friend int operator> <student_marks_2Bd

student_i, student marks 2Bd student_2)

int operator> <student_marks_2Bd student_i,
student_marks_2Bd student_2)
{

if <student_i.exam_mark > student_2.exam_mark)
return 1

else
return 0

Figure 16.1

We inherit all of student_marks_2B and add just one new function
known as a friend function. Note the rather different prototype.

friend int operator> <student_marks_2Bd student_i,
student_marks_2Bd student_2) ;

First, we have the keyword friend before the result type into Then we have
the keyword opera tor followed by the operator designation >. Two

180 Object Oriented Programming Using C++

parameters are specified, both of the object class student_marks _ 2Bd.
A friend function does not belong to an object class so it does not have a

scope resolution operator in its definition. However, it does have access to the
data members of the class in which it is declared as friend.

The function definition for opera tor > simply compares the exam
mark of the object that is its first parameter with the exam mark of the object
that is its second parameter:

if (student_l.exam_mark > student_2.exam_mark)
return 1

else
return 0

So, we have defined what we mean by an object of type
student_marks_2Bd being greater than another object of that type. We
return I (true) or 0 (false).

We use instances of student_marks_2Bd and operator > in a
program to determine which of a number of student marks is best (assuming
there is only one). The pseudo-code for the program is given in figure 16.2 and
the program file top_stud. cpp is given in figure 16.3.

main
Declare variables including best student object
Call initialise for best student
DO

Declare current student object
Call initialise for current student
IF current student > best student

Copy current student into best student
Prompt for and accept repeat request

WHILE repeat request = A
Display "The best student is:"
Call display identities for best student

Figure 16.2

Here we first create an instance of student marks 2Bd called
best_student which is initialised using the inherited function
ini tialise. Then, in a loop, we create and initialise further instances of
student_marks_2Bd (called student) that are then compared in turn
with best_student. If student is better (greater), then it is copied into
best_student. When the loop terminates (the user types any other character
than A), The identities of the bes t _ s tuden t are displayed.

In this simple example the condition could just as easily be expressed as:

if (student.return_exam_mark () >
best student.return exam mark ())

Introduction to Polymorphism

II TOP STUD.CPP
II A program to get a number of marks and display
II the best student
#include "marks2Bd.h"
void main ()

{

char repeat_character,
terminator ;

student marks 2Bd best student
best student. initialise () ;
do

student_marks_2Bd student ;
student. initialise () ;
if (student > best_student)

best_student = student ;
cout « "Press A for another, E to end"
cin.get (repeat_character)
cin.get (terminator)
}

while (repeat_character -- 'A')
cout « "The best student is:" ;
best_student. display_identities ()
}

Figure 16.3

181

assuming that we have the required function described in previous examples.
But the definition of what constitutes a better student_marks object could
well be much more complicated and in such cases it would be better if the
complexity was 'hidden' in the operator function allowing the simplicity of
coding demonstrated in our example to be used elsewhere in the program file.

16.4 Function overloading

A number of library functions exhibit the characteristics of polymorphism in
that they are able to operate on different types of data. For example the maths
functions pow and sqrt will work with both int and float parameters.

We can construct our own overloaded functions. Consider the example
given in figure 16.4 (examp16a. h) and figure 16.5 (overload. cpp).

In this example, we have three different implementations of the member
function display, designed to handle three different data types in an
appropriate way. When the program is run we would get the following output
on the monitor screen:

182 Object Oriented Programming Using C++

II EXAMP16A.H
II The object class examp16a
#include <iostream.h>
#include <iomanip.h>
class examp16a

{

public :
void display (int integer)
void display (float real) ;
void display (char character)

void examp16a::display (int integer)
{

cout « "Integer output: " « integer « endl

void examp16a::display (float real)

cout « "Real output: " « setprecision (3)
« real « end! ;

void examp16a::display (char character)
{

cout « "Character output: " « character
« end! ;

Figure 16.4

II OVERLOAD. cpp
II A sample program to demonstrate an overloaded
II function with three implementations
#include "examp16a.h"
void main ()

{

examp16a example
char letter = 'A' ;
int integer_number = 23 ;
float real number = 56.825
example.di;play (letter) ;
example.display (integer_number)
example.display (real_number)
}

Figure 16.5

Introduction to Polymorphism

Character output: A
Integer output: 23
Real output: 56.825

183

The correct output is produced because of the compiler's ability to distinguish
between the three different versions of display. It does this by recognising
that each implementation has a different signature in this case characterised by
the type of the parameter.

In chapter 10 it was mentioned that a programmer may write one or more
constructors for an object class. Since each constructor must have the identifier
of the class to which it belongs, the facility for overloading functions is clearly
needed to accomplish this.

We can demonstrate the use of two constructors in a single object class by
making minor changes to the example in the previous section, that of deter­
mining the 'best' student. Consider the revised header file (marks2be. h),
given in figure 16.6 and the revised program file (top _ s tu2 . cpp), given in
figure 16.7.

In the program file in figure 16.7, we notice two declarations of the object
class student marks 2Be:

student marks 2Be best student (0) ;

and
student marks 2Be student ;

The difference in signature is obvious, the first has a parameter, the second
does not. The compiler would have no difficulty when creating the objects in
applying the correct constructor. The first declaration would cause the
invocation of the constructor that is defined second in the header file:

student marks 2Be: : student marks 2Be - -(int initial_mark)
{

exam mark = initial_mark ;

So the data member exam_mark would be given a value of O. The second
declaration would cause the first constructor to be used and the function
initialise to be called:

student marks 2Be::student marks 2Be ()
{

initialise () ;
}

The net result of these changes is that the object bes t _ s tuden t is first
given a default value of zero for the exam mark rather than being initialised in
full as in the original example. Within the loop an object student is then
initialised in the more usual way upon creation using a constructor calling
ini tialise. When the two objects are first compared, since the exam mark
in best_student is zero, student will be assigned to best_student.

184 Object Oriented Programming Using C++

II MARKS2BE.H
II The object class student marks 2Be
#include "marks2b.h"
class student marks 2Be : public student marks 2B

{

public :
friend int operator > (student marks 2Be

student_l, student_marks_2B; stud;nt_2)
student marks 2Be () ;
student marks 2Be (int initial_mark)

student marks 2Be: : student marks 2Be ()
{

initialise () ;

student marks 2Be: : student marks 2Be - -(int initial_mark)
{

exam mark = ini tial mark

int operator> (student_marks_2Be student_l,
student_marks_2Be student_2)
{
if (student_l.exam_mark > student_2.exam_mark)

return 1
else

return 0

Figure 16.6

16.5 Generic functions

Generic functions facilitate polymorphism by providing a single implement­
ation for all data types. This is achieved by building templates. For example,
we could write a simple generic function to return the greater of two items. The
items could be any data type including objects for which the operator > is
defined.

Consider the template, defined in its own header file examp16b. h, given
in figure 16.8.

Introduction to Polymorphism

II TOP STU2.CPP
II A program to get a number of marks and display
II the best student
#include "marks2be.h"
void main ()

{

char repeat_character,
terminator ;

student marks 2Be best student (0)
do

student_marks_2Be student ;
if (student > best_student)

best_student = student ;
cout « "Press A for another, E to end"
cin.get (repeat_character)
cin.get (terminator)
}

while (repeat_character == 'A')
cout « "The best student is:" ;
best_student. display_identities ()
}

Figure 16.7

II EXAMP16B.H
II A template for functions to return the greater
II of two items
template <class T> T greater (T first, T second)

{

if (first > second)
return first ;

else
return second ;

Figure 16.8

185

The template definition must begin with the keyword template
followed by the template parameter in angular brackets, <>. In this case, there
is only one argument a type name T identified by the keyword class. We use
T by convention (it could be any name); it is an alias for any data type. There
follows the function result type, the generic data type T, followed by the
template function identifier, greater, followed by the function parameters:

186 Object Oriented Programming Using C++

first and second of the generic data type T.
The body of the template function is much the same as any simple

function. In this case the two function parameters are compared and the one
that is greater is returned as the function result.

Now let us see how we can use this template function in a simple program
that processes two integers. The program is in the file generic. cpp, given in
figure 16.9.

II GENERIC.CPP
II Uses template to demonstrate comparison of
II two integers
'include <iostream.h>
'include "examp16b.h"
void main ()

{

int first_integer,
second_integer

" . I cout « "Please enter two integer values:
cin » first_integer » second_integer ;
cout « "Greater of the two integers is " «

greater (first_integer, second_integer)
« end! ;

Figure 16.9

When the program is compiled, a version of greater is generated that
uses the template and an understanding of the way in which two integers may
be compared using the operator> (that is the standard way built into the
compiler). The output when the program is executed is:

Please enter two integer values: 6S 43
Greater of the two integers is 65

To demonstrate the genericity of the template function, we can also use it
in another simple program that now processes two objects of type
student_marks _ 2Be, which you will recall has the operator> defined for
it. This program is in the file generic2. cpp and is given in figure 16.10.

This time a different version of greater is generated by the compiler
using the template and a different understanding of the> operator as defined in
the object class student_marks_2Be. The output (abbreviated) from this
program is given in figure 16.11.

When the objects are created, the constructor without a parameter is called
and the dialogue to initialise their data members occurs. When greater is
called, the operator function opera tor >, defined in the class definition, is
used to return the 'greater' of the two objects.

Introduction to Polymorphism

II GENERIC2.CPP
II Uses template to demonstrate comparison of
II two objects
#include "examp16b.h"
#include "marks2be.h"
void main ()

{

student marks_2Be first_student,
second student

cout « endl « "The better student is:"
greater (first_student,

second_student) . display_identities ()

Figure 16.10

Enter student identity code MK234
Enter module identity code BIOL
Enter examination mark no. 1 18

Enter examination mark no. S 12
Enter first practical mark (or 999) 999
Enter student identity code JP600
Enter module identity code BIOL
Enter examination mark no. 1 13

Enter examination mark no. S 10
Enter first practical mark (or 999) 999

The better student is:
Student identity: MK234 for Module: BIOL

Figure 16.11

16.6 Exercises

16.6.1 Please refer to section 16.2, then answer the following questions.
(a) In what way is the + operator overloaded?
(b) What is coercion?
(c) What is a type cast? Under what circumstances do you think we

might need to use a type cast?
(d) Describe the way in which the overloading ofthe assignment

operator can be useful in object oriented programming.

187

188 Object Oriented Programming Using C++

16.6.2 Please refer to the example in figures 16.1 to 16.3, then answer the
following questions.
(a) Describe the components of the prototype for the operator function> .
(b) Where is a friend function declared as friend? Does it belong to

an object class?
(c) Give the C++ code for a new version of the function operator>

that satisfies the specification: an object of class
student_marks _2Bd is greater than another if the practical
mark is higher and the examination mark is not zero.

16.6.3. Please refer to the example in figures 16.4 and 16.5, then answer the
following questions.
(a) What output would be displayed for:

example.display ('B') ;

(b) How does the compiler distinguish between the three versions of
the function display?

16.6.4 Please refer to the example in figures 16.6 and 16.7, then answer the
following questions.
(a) How does the compiler distinguish between the two constructors?
(b) What would be the effect of the following in top _ s tu2 . cpp?

student_marks_2Be excellent_student (100) ;

16.6.5 Please refer to the examples in figures 16.8 to 16.10, then answer the
following questions.
(a) Describe the five components of the template definition header?
(b) What must be defined for a data type or object so that it can be

used with the template qrea ter?

16.6.6 Make changes as necessary to the example in figures 16.1 and 16.3 so
that the worst student's identities are displayed. The worst student is
the one with the lowest practical mark and you may assume that there
is only one.

16.6.7 Make changes as necessary to the example in figures 16.4 and 16.5 to
include a further version of display that will output a character then
an integer then a real number on three lines in the same format as for
the existing versions. Hint: call the existing versions of display.

16.6.8 Produce a header file (temp168 . h) containing a template for
functions that will return the highest value of three items (you may
assume that all three values are different). Demonstrate the use of this
template by producing a program file (assiq168. cpp) that prompts
for and accepts three integers and displays the one with the highest
value, then creates three student_marks _ 2Be objects and displays
the identities for the 'best' student.

Appendix A : Object Classes Used in Examples

A model and corresponding object class for a student's performance (examin­
ation and practical mark) in a subject (module) is introduced in chapter 5. This
model is developed and refined in subsequent chapters.

This appendix contains a diagram showing all the object classes that are
eventually used and the relationship between them. The diagram also indicates
where each class is first introduced in the text enabling the reader to refer back,
if necessary, for the full specification.

189

190 Object Oriented Programming Using C++

student_marks in marks.h
(see figure 5.5 page 41)

student_identity

module_identity

exam mark -
practical_mark

sum

weighted_average

initialise ()

display_identities ()

display_marks ()

display_sum 0
display_weighted_average 0

1
I I

student_marks_1 in marks1.h student_marks_2 in marks2.h
(see figure 6.2 page 50) (see figure 7.2 page 63)

test same mark 0 grade_letter
test first class mark 0 test zeros 0 - -
test marks 0 display_grade () -

initialise ()

I
I I

student_marks_2A in marks2a.h student_marks_2B in marks2b.h
(see figure 8.2 page 75) (see figure 9.2 page 91)

get_identities 0 get_identities ()

get-practical_mark () display_grade ()

get_exam_mark () get-practical_mark ()

do calculations () get_exam_mark 0 -
initialise () do calculations () -

initialise 0

I

c5 Q 8 Q 6

Appendix A - Object Classes Used in Examples 191

student_marks_2Ba In marks2ba.h
(see figure 10.1 page 107)

student_marks_2Bb In marks2bb.h
(see figure 10.4 page 109)

student marks 2Ba ()

student_marks_2Bc In marks2bc.h
(see figure 12.1 page 125)

return_exam _mark ()

return_student_identity ()

student marks 2Bb ()

student_marks_2Bd In marks2bd.h
(see figure 16.1 page 179)

operator > (as friend)

student_marks_2Be In marks2be.h
(see figure 16.6 page 184)

student_marks_2Be ()

student marks 2Be (initial_mark)

operator > (as friend)

module In module.h
(see figure 11.5 page 117)

marks [12] of int

average_mark

get_marks ()

display merits ()
- I

I
module_1 in module1.h

(see figure 11.8 page 120)

get_marks ()

192 Object Oriented Programming Using C++

module_A In module_a.h
(see figure 12.3 page 126)

mark_table [12] of student marks 2Bc

average_mark

get_marks ()

display_merits ()

course In course.h
(see figure 13.6 page 135)

marks [4] [6] of int

get_marks ()

display_marks ()

module_B In mOdule_b.h
(see figure 14.6 page 150)

student [10] of pointer to student marks 2Ba

student index

module_B ()

-module_B ()

get_student ()

remove student ()

module_C In module_c.h
(see figure 15.2 page 165)

student (pointer to student marks_2Bc)
average_mark

write_students ()

read_students ()

set_average (given_average)

Appendix B : Solutions to Exercises

Chapter 1

1.12.1
(a) Compilation of a computer program is the computer process of

translating the source code produced by the programmer into the
machine code as understood by the electronics of the computer.

(b) An identifier is the name given by a programmer to an item of data in a
computer program.

(c) A data type is the specification of a kind of data, such as character or
whole number, and its range of acceptable values.

(d) A variable is a named storage area of a particular data type whose value
may be changed a number of times during the execution of a program.

(e) The keyboard buffer is a small piece of computer memory into which the
values of the keys that are pressed are placed pending their transfer to a
computer program's memory.

1.12.2
(a) By a programmer-chosen identifier.
(b) The usual pre-defined data types are: integer, real (or float), character

and string.
(c) An assignment statement is a program instruction that changes the value

of a variable.

1.12.3
(a) The user requirements specification is a document which describes in

precise terms what is required of a computer system. It is produced after
consultation with the probable eventual users of the system to explore
the current and future requirements in a specific business or technical
area.

(b) Pseudo-code is a notation used to describe programs or functions. It
contains normal language statements to describe the actions required,
and also control statements to indicate the logic.

(c) Testing is the activity of trying to discover errors that may exist in a
computer program.

(d) A computer program is reliable if it always produces predictable results
on different sets of data.

193

194 Object Oriented Programming Using C++

1.12.4
(a) Problems at one stage might lead back to a previous stage or stages. For

example, the testing stage if not completed to the developer's satisfaction
could require adjustments at the programming stage.

(b) Syntax errors may occur when a program is compiled. Run-time and
logical errors may occur when testing a program.

(c) Debugging.
(d) User documentation is information that explains how to use the

program. Technical documentation should contain sufficient datail to
enable those responsible for maintaining the software to make changes
when necessary.

(e) Corrective, adaptive, perfective and preventive maintenance.
(f) Nearly all computer programs will require some modification, or

maintenance, during their lifetime. To be modifiable the end product
must be easy to understand.

Chapter 2

2.7.1
(a) A group of objects having the same characteristics (data and behaviour).
(b) Functions define the behaviour of an object class. Each function includes

the actions required to achieve a specific task.
(c) An item of data that is part of an object class and describes something

about it.
(d) Using the data and behaviour of one object class in the production of a

derived class.
(e) Defining the data and behaviour of an object class at one time in a single

definition.

2.7.2
(a) A variable has a type that describes its characteristics. An object has an

object class that describes its characteristics.
(b) Descendant or child classes.
(c) A piece of software whose users know what it does but not necessarily

how it does it.

2.7.3
(a) name, date of birth, qualifications, telephone number (and others not

named).
(b) name of secretary, number of staff and others, such as incentive bonus,

company car details etc.
(c) office worker, technician, clerk, and many others.

2.7.4

Derived class: carton

destination

no. of components

Initialise

Display details

Amend no. of
components

Amend destination

Chapter 3

3.5.1

Appendix B - Solutions to Exercises

Class: container

name
location ,

weight

Initialise

Display details

Derived class: case

quality control ref.

Initialise

Display details

(a) Lines 1 and 2 are C++ comments. Their purpose is to describe the
program to the human reader. If they were removed, it would have no
effect on the running of the program.

(b) Lines 3 and 4 permit the use of screen output, keyboard input and
strings.

(c) Lines 8 and 9 are member function prototypes. The first part identifies
the result type, the second part is the function identifier (name) and the
third part is called the function arguments.

(d) The identifying name is contents, it will be used to store characters,
to a maximum length of 12 including the end of string character.

(e) In the function heading, the identifier is preceded by the object class
identifier and the resolution operator. Also, there is no semicolon at the
end of the function heading.

(t) The characters Hello World are stored in contents.

(g) The string stored in contents will be displayed on the monitor screen
and then the cursor will be placed at the start of the next line.

(h) It indicates the point in the file at which program execution begins.
(i) Line 26 declares an object as an instance of the class message giving it

the identifier hello.

195

196 Object Oriented Programming Using C++

(j) The first component is hello which identifies the object of the class
message. The second is the dot operator (.). The third is the member
function identifier (ini tialise or display). The fourth is the
empty argument list (the open and close parentheses).

(k) The statement(s) within the function definition are executed.
(I) message, ini tialise, display, contents and hello.

Normally an identifier will not exceed 30 characters. It must start with
either a letter of the alphabet or the underscore character, with its
remaining characters being letters, digits or underscore characters.
Keywords must not be used as identifiers.

(m) To allow their use in a function that does not belong to the object class
message.

3.5.2,.-_____________________ -,

II MESSAGES.CPP
II A program to display two messages
'include <iostream.h>
'include <string.h>
class message

{

public :
void initialise ()
void display ()

protected :
char contents 1 [25]
char contents 2 [17]

void message: : initialise ()

strcpy (contents_1,
"Hello all computer users")

strcpy (contents_2, "What a fine day!")
}

void message: : display ()

cout « contents 1 « end!
cout « contents 2 « end!

Appendix B - Solutions to Exercises

void main ()
{

3.5.3

message hello
hello. initialise ()
hello. display ()
}

(a) The class and the function name.
~)Call hello.initialise
(c) message: : display

Chapter 4

4.3.1

Display screen footings
Display contents of message
Display screen headings

(a) The ones in the header file have the included file surrounded by < and>
which indicates that the file is to be found in the compiler library. The
one in the program file has the included file surrounded by quotation
marks (") which indicate that the file is to be found in the same
directory as the program file.

~) The message. h header file is included in the program file
hello_m. cpp to allow hello_m. cpp to use the facilities described
in message. h.

4.3.2
(a) The line is included to enable the derived class any_message to be

derived from the class message whose definition is contained in
message.h.

~) The keyword class starts a new object class definition.
any_message is the identifier of the new class which is derived from
the class message. The derivation type public allows the facilities of
the class message to be publicly accessed by the new class.

(c) You declare a data area for a single character by using the keyword (data
type) char followed by an appropriate identifier.

(d) The cout statement does not have an endl so that the user-entered
message will be appear on the same line of the screen as the prompt.

(e) The first cin. get statement gets up to II characters from the keyboard
and stores them in the area called contents. The 12 is to allow for the
automatic appending of the end of string character.

197

198 Object Oriented Programming Using C++

(f) The second cin. get gets the newline character and stores it in the
variable terminator. It is necessary because the user must type a
newline character to end the message, but the first cin . get does not
process it.

(g) The ini tialise function is invoked in the program file for the object
do_message which is of class any_message. The declaration of
any_message has its own member function called ini tialise,
hence this is used rather than inheriting the function ini tialise
from the class message.

4.3.3
The new member data statements should be as follows (note the sizes).

char contents_l [25] ;
char contents_2 [17] ;

The statements for the function ini tialise are:
strcpy (contents_I, "Hello all computer users")
strcpy (contents_2, "What a fine day!")

The statements for the function display are:
cout « contents_l « endl ;
cout « contents_2 « end! ;

The program will now produce the correct results without changing the
program file hello _ m. cpp, but the comment in line 2 should be changed
to indicate that the program is now displaying two messages.

4.3.4
As the ini tialise function requests a message (of up to 11 characters)
from the user and the display function displays this message, all that is
required is for the two functions to be called again. The following code
should be added at the end of the function main:

4.3.5

do_message. initialise ()
do_message.display () ;

forename: : initialise
Declare terminator variable
Prompt for forename
Accept forename
Skip over newline character

Chapter 5

5.7.1

Appendix B - Solutions to Exercises

I I FORENAME. H
II The object class forename
#include "message.h"
class forename : public message

public :
void initialise ()

void forename::initialise ()

char terminator ;
cout « "Enter forename: "
cin.get (contents, 12)
cin.get (terminator) ;
}

II ASSIGN45.CPP
II A program to display a forename
#include "forename.h"
void main ()

{

forename name
name. initialise ()
name. display ()
}

(a) They could have been written as three separate declarations:
int exam_mark ;
int practical_mark ;
int sum ;

(b) float is the keyword that introduces the declaration ofa real number.
(c) The second #include statement allows the use of the manipulator

setprecision.
Cd) Eight (plus one for the end of string character).

199

200 Object Oriented Programming Using C++

5.7.2
(a) In this case, we do not need to skip over the newline character because

the cin statement to obtain exam_mark will automatically ignore such
a character.

(b) The assignment operator is = (the equals sign).
(c) const is used to indicate that the data areas that follow will be assigned

a constant (permanent) value that will not change.
(d) The weighted average would be 42.5. The rules for operator precedence

means that the multiplication operations are done first, that is 40 * 0.75
(= 30) and 50 * 0.25 (= 12.5); then the addition 30 + 12.5 (= 42.5). An
incorrect answer of 20 would be obtained if the operators were executed
strictly from left to right, e.g. 40 * 0.75 (= 30); then 30 + 50 (= 80); then
80 * 0.25 (= 20).

5.7.3
(a) The purpose of sum is to provide a data area to contain the sum of the

two marks. It is not strictly necessary because the computation of the
sum need not be a separate statement but could have been done in the
cout statement in ctisplay_ sum as follows:
cout « "The sum of the marks is " «

exam_mark + practical_mark « end!
(b) Three lines are displayed after a blank line as follows.

student identity: EG100 for Module: HIST
Exam mark is 60 Practical mark is 66
The sum of the marks is 126

The cursor ends up at the beginning of the next line under the T of the
word The.

(c) It causes the floating point value in weighted_average to be output
with one decimal place.

5.7.4
Only the data declarations would have to be changed:

const float exam_weight = 0.8,
practical_weight = 0.2 ;

Appendix B - Solutions to Exercises

5.7.5

II MARKS55.H
II The object class student marks 55
#include "marks.h"
class student marks 55 : public student marks

{

public :
void compute_average ()
void display_marks_and_average ()

protected :
float average

average = sum I 2.0 ;
}

display_marks () ;
cout « "The average of the marks is "

« setprecision (1) « average « end!

II ASSIGN55.CPP
II A program to produce the average of a
II student's assessment marks for a subject
#include "marks55.h"
void main ()

{

student_marks_55 arithmetic_AB100 ;
arithmetic_AB100.initialise ()
arithmetic_AB100.compute_average ()
arithmetic_AB100.display_marks_and_average ()
}

201

202 Object Oriented Programming Using C++

5.7.6

II CIRCLE.H
II The object class circle
#include <iostream.h>
#include <iomanip.h>
class circle

public :
void initialise ()
void display_area ()
void display_circumference ()

protected :
float radius,

pi ;

void circle::initialise ()

char terminator
pi = 3.1416 ;
cout «

"Enter radius of circle in centimetres "
cin » radius ;
cin.get (terminator)
}

void circle::display_area ()

float area ;
area = pi * radius * radius ;
cout « "The area of the circle is "

« setprecision (2) « area
« " square ems" « endl ;

void circle: : display_circumference ()

float circumference ;
circumference = 2 * pi * radius ;
cout « "The circumference of the circle is "

« setprecision (2) « circumference
« " ems" « end! ;

Appendix B - Solutions to Exercises

II ASSIGNS6.CPP
II A program to display the area and circumference
II of a circle
#include "circle.h"
void main ()

circle disk
disk. initialise ()
disk.display_area ()
disk.display_circumference ()
}

Chapter 6

6.7.1
(a) A sequence and a selection with no alternative statement specified.
(b) When the marks are not equal.
(c) Call display_identities

Call display_marks
Display same marks message
Display a blank line

(d) The operations are indented.

6.7.2
(a) True or false.
(b) The keyword if. A relational expression (condition) in parentheses. A

statement to be executed if the condition is true.
(c) When exam_mark is not the same as practical_mark the

condition in line 5 is false, hence the statement in line 7 is executed
directly.

6.7.3
(a) The keyword if. A relational expression (condition) in parentheses. A

statement to be executed if the condition is true. The keyword else. A
statement to be executed if the condition is false.

(b)
if (exam_mark >= 70)

cout « "First class exam mark" « end! ;
if (exam_mark < 70)

cout « "Not a first class exam mark" « end!

The code gives the equivalent result but it is not as good as that in figure
6.7. When the first condition is false we know that the exam mark must
be less than 70. This means that the else part of the code in figure 6.7

203

204 Object Oriented Programming Using C++

does not include if (exam_mark < 70). The second if in the
above code, however, does need to include this second condition.

(c) The 'greater than or equal to' operator is >=.

6.7.4
(a) The second if statement is entirely enclosed within the else part

associated with the first if. That is, it is executed only when the first if
statement's condition is false.

(b)
if (exam_mark == practical_mark)

cout « "The marks are the same" « end!
if (exam_mark> practical_mark)

cout « "Exam mark is better" « end!
if (practical mark> exam_mark)

cout « "Practical mark is better" « end!

The code is inferior to that in figure 6.11 because all three conditions are
mutually exclusive. As in the previous question the final test is
unnecessary because 'practical mark better' is the only possible outcome
if the first two conditions prove false.

(c) A semicolon is required after each statement to be executed when the
condition is true or false, but not after the relational expression.

(d)

6.7.5

if (exam_mark == practical_mark)
cout « "The marks are the same" « end!

else
if (exam_mark > practical_mark)

cout « "Exam mark is better" « end!
else

cout « "Practical mark is better" « end!

(a) A compound statement is a sequence of statements enclosed by braces.
(b) A semicolon is not used after the right brace of a compound statement.

So, the only semicolons used are those that separate the individual
statements within a compound statement.

Appendix B - Solutions to Exercises

(c).r-______________________________________ ~

cout « "The marks are the same" « encU ;
cout «" both are " « exam mark « encU

void exam_better ()

cout « "The exam mark is better" « encU ;
cout « "The exam mark is " « exam mark
cout « " the practical mark is " «

practical_mark « encU ;

void practical_better ()

cout « "The practical mark is better"
« encU ;

cout « "The practical mark is " «
practical_mark ;

cout « " the exam mark is " « exam mark
« encU ;

void student marks l::test marks ()

display_identities ()
if (exam_mark == practical_mark)

same_mark ()
else if (exam_mark > practical_mark)

exam_better ()
else

practical_better ()
cout « encU ;

205

206 Object Oriented Programming Using C++

6.7.6,--_____________________ ----,

6.7.7

6.7.8

student marks l::test marks - - -
Call display_identities
IF exam mark and practical mark over 65

Display a blank line
Display exam mark and practical mark

ELSE IF exam mark over 65
Display exam mark

ELSE IF practical mark over 65
Display practical mark

Display a blank line

if (exam_mark < practical_mark)
{

cout « "The exam mark is worse" « end!
cout « "The marks are not the same" « end!

else if (practical_mark < exam_mark)

cout « "The practical mark is worse" « end!
cout « "The marks are not the same" « endl ;

I I RECTANG. H

II The object class rectangle
#include <iostream.h>
#include <iomanip.h>
class rectangle

{

public :
void initialise ()
void display_area ()
void display_perimeter ()

protected :
float length,

width ;

Appendix B - Solutions to Exercises

void rectangle: : initialise ()
{

char terminator ;
cout «

"Enter length of rectangle in centimetres "
cin » length ;
cout «

"Enter width of rectangle in centimetres "
cin » width ;
cin.get (terminator)
}

void rectangle::display_area ()

float area ;
if (width == 0)

{

cout « "Rectangle is a square" « endl
area = length * length ;

else
area = length * width ;

cout « "The area is "
« setprecision (2) « area
« " square centimetres" « endl

void rectangle: : display_perimeter ()

float perimeter ;
if (width == 0)

perimeter
else

4 * length

perimeter = 2 * length + 2 * width
cout « "The perimeter is "

« setprecision (2) « perimeter
« " centimetres" « endl ;

207

208 Object Oriented Programming Using C++

II ASSIGN68.CPP
II A program to display the area and perimeter of a
II rectangle
#include "rectang.h"
void main ()

{

rectangle mouse_mat ;
mouse_mat. initialise ()
mouse_mat. display_area ()
mouse_mat. display_perimeter ()
}

Chapter 7

7.5.1
(a) The three logical operators, in order of precedence, are! (not) && (and)

I I (or).
(b) Only the outermost pair of parentheses are necessary to satisfY the syntax

rules of C++. The extra parentheses are used to help clarifY the code.
(c) The inequality operator is ! =.
(d) The relational expression in the innermost parentheses is evaluated. Ifit

yields true, then the negation operator changes it to false and the
statement after the if is not executed; if it yields false, the negation
operator changes this to true and the statement after the if is executed.

7.5.2
if «grade_letter >= 'A') && (grade_letter <= 'E'»

cout « "We have a valid grade letter" ;
else

cout « "We have an invalid grade letter"

7.5.3
(a) grade_letter is of type char. Any value that can be stored in one

byte. This usually means a letter of the alphabet, a single digit or a
punctuation character.

(b) An integer value or a character value.
(c) The keyword case, followed by a possible value of the swi tch

expression, followed by a colon followed by one or more statements to be
executed when the expression has the specified value.

(d) A break statements stops the execution of further statements within
switch.

(e) If the value of the swi tch expression is not found in any of the case
groups, the statements associated with defaul t are executed.

Appendix B - Solutions to Exercises

(t) Grade B gives "The grade is B Very good".

7.5.4

Grade C gives "The grade is C Pass, but you must try harder".
Grade D gives "The grade is D must try harder".

(a) The expression gives an integer value which represents the most
significant digit of the weighted average when rounded to the nearest
integer. If the weighted average is 23.2 the resultant value is 2. If the
weighted average is 46.5 the resultant value is 4. If the weighted average
is 79.5 the resultant value is 8. The corresponding values for
grade_letter are 'E', 'D' and 'A'.

(b) If the value of the switch expression matches the value of such a case
group, execution drops down to the next statement. In this example, the
assignment of 'A' to grade_letter.

7.5.5

II MARKS75.H
II The object class student marks 75
#include "marks2.h"
class student marks 75 : public student marks 2

(

public :
void display_average ()

if (sum != 0)
cout « "Average mark is " « sum I 2

« end! ;
else

cout « "Sum of marks is zero" « end!

II ASSIGN75.CPP
II A program to display the average of a student's
II marks in a subject
#include "marks75.h"
void main ()

{

student_marks_75 bioloqy_WE200
bioloqy_WE200.initialise () ;
bioloqy_WE200.test_zeros () ;
bioloqy_WE200.display_average ()
}

209

210 Object Oriented Programming Using C++

7.5.6

student marks 76: : initialise
Call student marks::initialise
IF both exam mark and practical mark

Set grade letter to 'A'
ELSE IF exam mark and practical mark

Set grade letter to 'B'
ELSE

Set grade letter to 'C'

II MARKS76.H
II The object class student marks 76
#include "marks2.h"

exceed

exceed

class student marks 76 : public student marks 2

public :
void initialise ()

void student marks 76::initialise ()

student_marks: : initialise () ;

74

49

if «exam_mark> 74) && (practical_mark> 74»
grade_letter = 'A'

else if «exam_mark> 49) && (practical_mark>
49»
grade_letter 'B'

else
grade_letter = 'C'

II ASSIGN76.CPP
II A program to display a student's marks and
II grades in a course
#include Imarks76.h"
void main ()

{

student marks_76 chemistry_SE300
chemistry_SE300.initialise ()
chemistry_SE300.display_grade ()
}

Appendix B - Solutions to Exercises

7.5.7

II CONVERT.H
II The object class convert
#include <iostream.h>
class convert

public :
void qet_ number ()
void convert to roman numeral ()
void display_roman_numeral ()

protected :
int number
char roman numeral

void convert::qet_number ()

char terminator i

cout «
"Enter number "

cin » number i

cin.qet (terminator)
}

void convert: : convert to roman numeral ()

switch (number)

case 1 roman numeral 'I' -
break i

case 5 roman numeral 'V'
break i

case 10 roman numeral = 'X' -
break i

case 50 roman numeral = 'L'
break i

case 100 roman numeral = 'C'
break i

default roman numeral = '? '
}

2Jl

212 Object Oriented Programming Using C++

void convert: :display_roman_numeral ()
{

cout « number ;
if (roman_numeral == '?')

cout « " cannot be converted" « end!
else

cout « " gives the Roman numeral " «
roman numeral « end! ;

II ASSIGN77.CPP
II A program to convert a number to a roman numeral
#include "convert.h"
void main ()

{

convert dial
dial . get_number ()
dial. convert_to _roman_numeral ()
dial. display_roman _numeral ()
}

Chapter 8

8.5.1
(a) None at all.
(b) The cin . get (terminator) statement.
(c) The loop would continue indefinitely adding the first component mark to

the total practical mark, increasing the number of marks by 1 and
displaying the prompt.

(d) no_of _marks would contain 2.
total_practical_ mark would contain 110.
component_mark would contain 999.

(e) It is necessary to avoid the possibility of attempting to divide by zero
which would cause an execution error. no of marks would be zero if
the first value typed was 999.

8.5.2
(a) The first expression is executed once only.
(b) The third expression is executed once for each time the statements of the

loop are executed, that is, 5 times in this example.
(c) The second expression of the for statement would need the 5 changing

to 4.

Appendix B - Solutions to Exercises

(d) We do not use the read-ahead technique here because the relational
expression used to control the for loop does not depend on a special
'end' value being obtained. The number of times we need to go round
the loop is predefined, so there is no need for a special 'end' value.

(e) The for would be replaced by
int question_number = 1 ;
while (question_number <= 5)

and
++ queston_number ;

would be included as the last statement in the compound statement
associated with the while.
The code in the example is better. It expresses the count-controlled
repetition, question_number going from 1 to 5 in steps of 1, more
concisely.

(f) The relational expression would need to be (question_number <

8.5.3

5) or (ques tion _number <= 4). Note also, that the prompt would
ask for exam mark 0 then 1 then 2 and so on.

(a) Because the statements after do must be executed before the condition
following while can be tested for the first time.

(b) The do-while loop is necessary in this example to ensure that any
mark entered by the user outside the range 0 to 20 is ignored. It provides
a simple validation check.

(c) cout « "Enter examination mark no. " «
question_number « " "

cin » question_mark ;
while (! «question_mark >= 0) &&

(question_number <= 20»)
{

cout « "Enter examination mark no. " «
question_number « " "

cin » question_mark ;
}

Having to repeat the code before and inside the while loop makes it
inferior to that in figure 8.15.

(d) The second expression of the for statement would need the 5 changing
to 4. The second condition in the while would need the 20 changing
to 25.

(e) while «question_number < 0) II
(question_number> 25»

213

214 Object Oriented Programming Using C++

8.5.4

student_marks_84::get_exam_mark
Declare variables
Initialise exam mark (=0)
Prompt for and get first exam question mark
WHILE exam question mark not -1

Add exam question mark to exam mark
Prompt for and get next exam question mark

Skip over final newline character

student marks 84::initialise
Call get_identities
Call get_practical_mark
DO

Call get_exam_mark
WHILE exam mark not greater than practical mark
Call do calculations

II MARKS84.H
II The object class student marks 84
#include "marks2A.h"
class student marks 84 : public student marks 2A

{

public :
void initialise ()
void get_exam_mark ()

char terminator ;
int question_mark
exam_mark = 0 ;
cout « "Enter first exam mark (or -1 to end) "
cin » question_mark
while (question_mark != -1)

{

exam_mark += question_mark
cout «

"Enter next exam mark (or -1 to end) "
cin » question_mark
}

cin.get (terminator) ;
}

Appendix B - Solutions to Exercises

void student marks 84::initialise ()

8.5.5

get_identities () ;
get_practical_mark ()
do

get_exam_mark ()
while (exam_mark <= practical_mark)
do calculations ()

I I TRIANG.H
II The object class triangle
#include <iostream.h>
#include <iomanip.h>
class triangle

{

public :
void initialise ()
void display_area ()

private :
float height,

base ;

void triangle::initialise ()

char terminator ;
do

cout «
"Enter height of triangle in centimetres "

cin » height ;
}

while (height < 10.0)
do

cout «
"Enter base of triangle in centimetres "

cin » base ;
}

while (base < 12.5)
cin.get (terminator) ;
}

215

216 Object Oriented Programming Using C++

void triangle::display_area ()
{

float area ;
area = height * base I 2 ;
cout « "The area of the triangle is "

« setprecision (2) « area
« " square centimetres" « end! ;

II ASSIGN85.CPP
II A program to display area of triangle
#include "triang.h"
void main ()

{
triangle example
for (int counter = 1

counter)
{

counter <= 6

example. initialise ()
example. display area ()
} -

Chapter 9

9.8.1

++

(a) The result type, the function identifier and the types and order of the
parameters must be the same.

(b) The actual parameters must correspond in terms of order and type.
(c) The prototype is terminated with a semi-colon. Though not mentioned in

the text, it is not mandatory for the parameter identifiers to be included
in the prototype.

(d) A string constant, that is a string value that cannot be changed within
the function.

(e) By using braces.
(t) It is called a number oftimes with a different parameter each time so

saving repetitive coding.

9.8.2
(a) A type such as int or float precedes the function identifier.
(b) It is used to enhance the prompt by including "first" or "next".
(c) To transmit the required value as the result of a function.
(d) The prompt and get must be executed at least once before the mark can

be tested. do-while is the most appropriate construct in such cases.

Appendix B - Solutions to Exercises

(e) It is called twice. Each time in an assignment statement, for example
component_mark get_practical_component_mark

("first") ;

9.8.3
(a) The formal parameter is regarded as an alias of the actual parameter and

hence its value can be changed within the function.
(b) As each successive digit is processed, the previous value of mark is

multiplied by 10.
(c) The character that has been obtained by cin. get is a character in the

ASCII set that has values of 48 to 57 for the digits '0' to '9'. We need to
do arithmetic with the digits so we subtract 48 to give a correct
arithmetic representation. This value is then added to mark.

(d) The return statement causes a value of 0 or 1, that is an indicator of
the validity of the mark, to be returned as the result value of the function
call.

(e) In the following assignment statement:
valid_mark = get_exam_question_mark

(question_number, question_mark) ;
(f) The A would be invalid so the value 0 would be returned as the second

parameter with a function result of O.
(g) The value 0 would be returned as the second parameter, and the function

result would return a value of 0 indicating an invalid number.
(h) The second parameter would be given a value of 0 and a function result

of 1 would be returned.

9.8.4
(a) void display sum integers (int first_number, int

last_number) ;
void display_sum_integers (int first_number, int

last_number)
display sum integers (10, 28) ;

(b)int sum=integers (int first_number, int
second number) ;

int sum_i~tegers (int first_number, int
second_number)

answer = sum integers (10, 28) ;
(c) void sum_integers (int first_number, int

second_number, int& result) ;

9.8.5

void sum_integers (int first_number, int
second number, int& result)

sum_integers (10, 28, answer) ;

(a) i tern_ a would be changed to have a value of 3 and i tern _b would be
changed to have a value of 5. This occurs because call by reference using
alias parameters is used.

217

218 Object Oriented Programming Using C++

(b) item _a and item b would retain their initial values whatever they
were because call by value parameters are used; the original values are
not changed.

9.8.6
II CALCUL.H
II The object class calculator
#include <iostream.h>
#include <iomanip.h>
class calculator

public :
void initialise ()
void display_result ()

private :
float qet_valid_operand (const char* prompt)
void qet_valid_operator (char& character) ;

protected :
float operand_l,

operand_2 ;
char arithmetic_operator

void calculator: : initialise ()

operand_l = qet_valid_operand
("Enter first operand ") ;

operand_2 = qet_valid_operand
("Enter second operand ")

qet_valid_operator (arithmetic_operator)
}

float calculator::qet_valid_operand (const char*
prompt)
{

float operand
char terminator
do

cout « prompt
cin » operand
}

while (operand == 0)
cin.qet (terminator)
return operand ;

Appendix B - Solutions to Exercises

void calculator::qet_valid_operator (char&
character)
{

char terminator
do

cout « "Enter the operator "
cin.qet (character)
cin.qet (terminator)
}

while (! «character == '+') I I
(character == '-') I I (character
I I (character == 'I'»)

void calculator: : display_result ()

float result ;
switch (arithmetic_operator)

{

case ,+, result = operand_
break ;

case ' -' result = operand_
break ;

i +

i -

, *')

operand_2

operand_2

case ' *' result = operand_ i * operand_2
break ;

case '/ ' result = operand_ i / operand_2
break ;

cout « operand_i « " " « arithmetic_operator
« " " « operand_2 « " = "
« setprecision (2) « result « end! ;

II ASSIGN96.CPP
II Implements a simple calculator
#include "calcul.h"
void main ()

{

calculator example ;
example. initialise ()
example.display_result ()
}

219

220 Object Oriented Programming Using C++

Chapter 10

10.4.1
(a) To reserve memory for an instance of an object and to perform

initialisation when an object is created.
(b) There is no result type for a constructor and a constructor has the same

identifier as the object class.
(c) An instance of the object class student_marks _ 2Ba called

geography_ JP100 is created, then the ini tialise function is
called.

10.4.2
(a) After the usual type and identifier, we use an equals sign followed by a

value of the appropriate type.
(b) An instance of the object class student_marks _ 2Bb called

geography_MInlO is created, then
Module GEOG Student MKllO

is displayed, then the data members module _ iden ti ty and
s tuden t _ iden ti ty are initialised with the values GEOG and MKll 0
respectively, then get_exam _mark, get _practical_mark and
do calculations are called.

(c) An instance of the object class student_marks _2Bb called
maths_JP100 is created, then

10.4.3

Module MATHS Student JP100"
is displayed, then the data members module _ identi ty and
s tuden t _ iden ti ty are initialised with the values MATHS and
JP100 respectively, then the functions get_exam _mark,
get _practical_mark and do _ calcula tions are called.

In figure 10.1, the only change necessary is to include the following two
function calls after the call to ini tialise in the constructor
student marks 2Ba.

display_sum () ;
display_ weighted_average ()

In figure 10.2, remove the calls to the function display_sum.

Appendix B - Solutions to Exercises

10.4.4

II CUBE.H
II The object class cube
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
class cube

public :
cube (float length)
void display_volume ()
void display_surface_area ()

protected :
float length_of_side

} ;

cube::cube (float length)

length_of_side = length
display_volume ()
display_surface_area ()
}

void cube: : display_volume ()

float volume
volume = pow (length_of side, 3)
cout « "The volume of the cube is "

« setprecision (2) « volume
« " cubic centimetres" « end!

void cube::display_surface_area ()

float area ;
area = pow (length_of_side, 2) * 6 ;
cout « "The surface area of the cube is "

« setprecision (2) «area
« " square centimetres" « end!

221

222 Object Oriented Programming Using C++

II ASSIG104.CPP
II A program to display area and volume of 2 cubes
#include "cube.h"
void main ()

(

cube die (5.5)
cube oxo (1.2)
}

Chapter 11

11.3.1
(a) We need to access the data twice. Once in computing the total (and

hence the average), then again when comparing each mark against the
average.

(b) The data type of each element, the identifier and the number of
elements.

(c) The array identifier and the index value of the element required.
(d) In both cases the number of iterations is known before entering the loop.
(e) 0 to 11 inclusive.
(t) The cou t in get_marks would be changed to:

11.3.2

cout « "Enter a mark for student no. "
« student_index + 1 « " : " ;

The second cout in display_marks would be changed to:
cout « "No. " « student index + 1 «" "

« marks [student_index] « end! ;

(a) A mark might not be entered for some students. So not every element of
the array will necessarily be given a value from the keyboard. We need
to specify a default value for such elements.

(b) The while loop is used here because we do not know at the outset the
number of iterations required.

(c) If a student number of 13 was entered, this would be used as an array
index value and would cause unpredictable results or a run-time error
because it is outside the range declared for the array.

(d) A counter, marks_count say, would need to be declared and
initialised to zero at the beginning of get_marks. Then for each mark
stored in the array the marks_count would be increased by 1. The
average mark would be computed by dividing total by the
marks count.

Appendix B - Solutions to Exercises

(e) Not all elements have to be entered (so a default value may be given
when initialising the array). The values do not need to be entered in any
specific order.

11.3.3
(a) The only change we need to make is to change no_of _marks in the

const declaration to 18.
(b) We change the name of the protected data member average_mark to

highes t _mark then compute a value for it by changing get_marks
to:

11.3.4

char terminator i

highest mark = 0 i
for (int student_index = 0 i student index <

no_of_marks i ++ student_index)
{

cout « "Enter a mark for student no. "
« student_index « " : " i

cin »marks [student_index] i

if (marks [student_index] > highest_mark)
highest_mark = marks [student_index]

cin.get (terminator)

Then use highest_mark by changing the if statement in
display_marks to:
if (marks [student_index] = highest_mark)

cout « "No. " « student index «" "
« marks [student_index] « end! i

Include the prototype
void get_a_mark (int& student_no, int& a_mark)

in the class definition. Define the function get _ a_mark.
void get_a_mark (int& student_no, int& a_mark)

{
do

cout « Enter student no. and mark: "
cin » student_no » a_mark i

while «(student no < 0) I I (student_no >=
no_of_marks»-&& (student_no != 999» i

Note that an alternative form of the condition is

while (! «student_no >= 0) && (student_no <
no_of_marks) I I (student_no = 999»)

223

224 Object Oriented Programming Using C++

Replace the cout followed by the cin in get_marks with

get_a_mark (student_number, mark)

11.3.5

II SALES.H
II The object class sales
#include <iostream.h>

const int no of sales = 20
class sales

public :
void get_sales ()
void display_best ()

protected :
float sales_figures [no_of sales]
float best_sales_figure

void sales::get_sales ()

char terminator ;
best_sales_figure = 0 ;
for (int sales_index = 0 ; sales_index <

no of sales ; ++ sales_index)

cout «
"Enter sales figure for sales person " «
sales_index + 10 « ": " ;

cin » sales_figures [sales_index]
if (sales_figures [sales_index] >

best_sales_figure)
best_sales_figure = sales_figures

[sales_index]

cin.get (terminator)
}

Appendix B - Solutions to Exercises

void sales::display_best ()
{

int count = 0 ;
for (int sales_index = 0 ; sales_index <

no_of_sales ; ++ sales_index)
{

if (sales_figures [sales_index] >=
best_sales_figure * 0.8)
{

cout « "Sales person" « sales index +
10 « " achieved target" « end! ;

++ count ;
}

cout « count «
" sales persons achieved target" «end!

II ASSIG115.CPP
II A program to get sales figures for 20 sales
II people and display those that achieved target
#include "sales.h"
void main ()

{

sales year_1997 ;
year_1997.qet_sales ()
year_1997.display_best ()
}

Chapter 12

12.3.1
(a) The member data exam_mark and student_identity are declared

as protected in their original definition, which means they can only
be accessed by objects in which they are declared (the base class) or
objects of a derived class. In this example we need to access them in the
object class module_A.

(b) The result type of return_stude nt_mark is into The result type of
return _student_identi ty is char* (a pointer to an item of type
char).

(c) The function ini tialise. It is inherited from the object class
student marks 2B.

225

226 Object Oriented Programming Using C++

12.3.2
(a) The type of each element is the object class student_marks 2Bc,

the array identifier is mark_table, and the array size is the constant
no of marks.

(b) The function ini tialise is called 12 times, once for each object in
the array mark_table. When it is called, the member data for the
object are given initial values by calls to the functions
qet_identities,qet_exam_mark, qet_practical_mark,
and do calculations.

(c) The function return_exam _mark is invoked to store the exam mark
for the mark_table [s tuden t _index] in mark. The variable
mark is then used twice in the following if statement. The function
could have been used directly in the if statement, but this would have
meant invoking it twice which would incur a small increase in execution
time. This advantage is partly offset by the disadvantage of using an
extra variable which incurs a small increase in memory requirements.

(d) The inheritance hierarchy that includes student_marks_2Bc as a
derived class of student_marks _2B is an example of inheritance.
The array of objects of type student_marks _ 2Bc found in the object
class module _A is an example of aggregation.

12.3.3

II PERSON.S
II The object class person
#include <iostream.h>
class person

{

public :
void display ()
void initialise ()

protected :
char surname [15] ;

void person: : display ()

cout « surname « end!

Appendix B - Solutions to Exercises

void person::initialise ()
{

char terminator ;
cout « "Enter surname: "
cin.get (surname, 15)
cin.get (terminator)
}

II MEMBERS.H
II The object class members
#include "person.h"

const int no of members = 10
class members

protected
person person_list [no_of_members)

public :
void get_names ()
void display_names ()

void members::get_names ()

for (int person_index = 0 ; person_index <
no_of_members ; ++ person_index)
{

person_list [person_index).initialise ()
}

void members: : display_names ()

cout « end! « "Membership in reverse order"
« endl ;

for (int person_index = no of members - 1 ;
person_index >= 0; -- person_index)
{

person_list [person_index).display ()
}

227

228 Object Oriented Programming Using C++

II ASSIG123.CPP
II A program to get a list of names and
II display it in the reverse order
'include "members.h"
void main ()

{

members club
club. get_names () ;
club. display_names ()
}

Chapter 13

13.3.1
(a) We use a two dimensional array because it is easier to think of the data

in terms of rows (module data) and columns (student data) rather than a
list.

(b)

module index student index
0 0
0 1
0 2
0 3
0 4
0 5
1 0
1 1
1 2
1 3
1 4
1 5
2 0

2 1
2 2
2 3
2 4
2 5
3 0
3 1
3 2
3 3
3 4
3 5

Appendix B - Solutions to Exercises

(c) This manipulator ensures that the displayed numerical data is properly
tabulated. Its function is to set a field width for the next item of data to
be displayed. All items will have the same field width regardless of value
by right-justifying the data and adding leading spaces as necessary.

(d) We might attempt to access an array element with, say, index values of
[5] [3] which is illegal because the maximum index value allowed for
the first index in the array's declaration is 3. Unpredictable results or a
run-time error would occur.

13.3.2
(a) We use for loops because we know at the outset the number of

iterations required. It is convenient to use two for loops nested because
we can process each row by the outer loop and each element within that
row by the inner loop.

(b) In this case there would be no difference other than the order in which
the array elements are set to zero. In other cases, for example when
accepting data from the keyboard, this would be more significant
because it would affect the order in which the data are to be entered.

13.3.3
Declare an array initialised to zero.
int student_totals [no_of_students] = to} i

Add the following line after the code to add to module_total.
student_totals [student_index] += marks

[module_index] [student_index]

Add the following code at the end of the function.
cout «" Averages " ;
for (int student_index = 0 ; student_index <

no_of_students i ++ student_index)
cout « setw (4) « student_totals

[student_index] / no of modules
cout « end! ;

229

230 Object Oriented Programming Using C++

13.3.4

I I ANIMALS. B
II The object class animals
#include <iostream.h>
#include <iomanip.h>

const int no_of_weights = 20
const int no_of_ages = 10

class animals

public :
animals ()
void get_age_and weight (int& the_age,

int& the_weight) ;
void display_table () ;

protected :
int table [no_of_weights] [no_of_ages]

} ;

animals::animals ()

char terminator
int weight,

age ;
for (int weight_counter = 0 ; weight counter <

no_of_weights ; ++ weight_counter)
for (int age_counter = 0 ; age_counter <

no_of_ages ; ++ age_counter)
table [weight_counter] [age_counter] = 0

get_age_and_weight (age, weight) ;
while (age != 999)

{

++ table [weight - 20] [age - 5]
get_age_and_weight (age, weight)
}

cin.get (terminator) ;
}

Appendix B - Solutions to Exercises

void animals::get_age_and_weight (int& the_age,
int& the_weight)

do

cout « "Enter age then weight: "
cin » the_age » the_weight ;
}

while «the age> 14) && (the_age < 5) &&
(the_weight> 39) && (the_weight < 20)
&& (the_age != 999»

void animals::display_table ()

cout « " 5yrs 6yrs 7yrs 8yrs "
« "9yrs 10yrs 11yrs 12yrs 13yrs 14yrs"
« end! ;

for (int weight_index = 0 ; weight_index <
no_of_weights ; ++ weight_index)
{

cout « weight_index + 20 « "kgs"
for (int age_index = 0 ; age_index <

no_of_ages ; ++ age_index)
{

cout « setw (6) « table [weight_index)
[age_index]

cout « end! ;

II ASSIG134.CPP
II A program to display the number of animals with
II each possible combination of weight and age
#include "animals.h"
void main ()

{

animals cats,
dogs ;

cats.display_table ()
dogs.display_table ()
}

231

232 Object Oriented Programming Using C++

Chapter 14

14.6.1
(a) module_total is local to the function display_marks; its scope is

the whole of that function. student index is local to the braces
immediately outside its declaration (lines 6 and 15 of the function).

(b) no _of_modules and no _of_students are global constants. Their
scope is the entire course. h file and any file that includes it.
The array marks is global, it may be used in the header file or any file
that includes it, but being protected it may only be used within functions
of the object class course or any derived classes.

(c) A static variable is initialised only once. Its value is retained when it
goes out of scope.

14.6.2
(a) The object history_MK350 has global scope. Its lifetime is the

duration of the execution of the whole of the program.
(b) The automatic object english _ JP200 has local scope. Its lifetime is

during a single execution of the body of the for statement.
(c) While both english_JP200 and french_EP100 are local in scope,

english _ JP200 is automatic while french _ EP100 is static. The
execution of display_ identi ties and display_marks for the
object english _JP200 will relate to a new object each time the
functions are called (that is, each time round the loop). The execution of
these functions for french_ EP100 will relate to the same object each
time they are called.

14.6.3
(a) The type is followed by an asterisk. Initialisation is normally to a null

value represented by the constant NULL.

(b) The function malloc obtains memory of a specified size from the
memory management system and returns the address of the memory
obtained as a pointer.

(c) Ifmalloc is unable to obtain sufficient memory a null value is
returned. This is tested to ensure that the program does not proceed
when memory is not available.

(d) When int_pointer is used, a memory address is given. When

14.6.4

* in t _poin ter is used, it dereferences the variable so that the
contents of the memory whose address is in int....,pointer is given.

(a) In the same way as any variable. We follow the type (class name) with
an asterisk.

Appendix B - Solutions to Exercises

(b) A programmer-declared destructor is defined in the same way as a
constructor except that the identifier is preceded by ... (tilde) and there
are no arguments.

(c) The constructor is used to initialise s tuden t _index to -1 and each
element of student, the array of pointers, to a null value.

(d) The destructor is necessary so that the memory obtained for dynamic
objects is released back to the memory management system.

(e) The delete operator returns the memory ofthe object whose address is
given.

14.6.5
(a) The new operator allocates memory for an object and the address ofthe

memory is then stored in an element of the array, which is an object
pointer variable.

(b) The arrow operator (- » is used to access a particular member of an
object's class indirectly through a pointer to the object.

(c) The first statement simply displays a message. The second statement
calls the function display_ identi ties, inherited by the class
student_marks _ 2B, for the object pointed to by the element ofthe
array student indexed by student_index. The third statement
returns the memory of the object whose address is contained in the
currently indexed array element. The fourth statement sets the value of
that element to NULL. The fifth statement decreases student index
by I to maintain an accurate count of the objects currently in use.

14.6.6
(a) The following two statements should be included in qet_student

immediately before the call to display_marks.

cout « "student added" ;
student [student_indexl->display_identities ()

(b) The function remove _ s tuden t should be revised as follows.

233

234 Object Oriented Programming Using C++

void module B::remove student ()

if (student [0] != NULL)
{

cout « "Student removed"
student [O]->display_identities ()
delete student [0]
for (int counter = 1 ; counter <=

student_index ; ++ counter)
{

student [counter - 1] = student [counter]
}

student [student_index] = NULL ;
student index

else
cout « "No students left" « end!

14.6.7

II CAR.B
II The object class car
#include <iostream.h>
class car

public
car ()
void display_details ()
char* return_registration ()

protected :
char model [16] ;
char registration [8]

car: : car ()

char terminator
cout « "Enter model name "
cin.get (model, 16) ;
cin.get (terminator)
cout « "Enter registration "
cin.get (registration, 8)
cin.get (terminator)
}

Appendix B - Solutions to Exercises

void car: : display_details ()
{

cout « "Model " « model « " Registration "
« registration « endl ;

char* car::return_registration ()

return registration ;

I I CARSALES. H
II The object class car sales
#include <stdlib.h>
#include <string.h>
#include "car.h"
const int maximum cars = 10
class car sales

protected :
car* cars in stock [maximum_cars]

public :
car_sales ()
... car_sales ()
void sell car ()

car sales::car_sales ()

for (int counter = 0
++ counter)
{

counter < maximum cars

cars_in_stock [counter] = new car ;
if (cars_in_stock [counter] == NULL)

{

cout « "No memory available" « endl
exit (1)

235

236 Object Oriented Programming Using C++

car sales::-car sales ()

cout « "Cars left in stock" « end! ;
for (int counter = 0 ; counter < maximum cars

++ counter)
{

if (cars in_stock [counter] != NOLL)

cars_in_stock [counter]->
display_details ()

delete cars in stock [counter]
}

char this_registration [8]
char terminator ;
cout « "Enter registration of car to be sold "
cin.get (this_registration, 8)
cin.get (terminator)
int car_index = 0,

found = 0 ;
while (! «found) I I (car_index ==

maximum_cars)))
{

if (cars_in_stock [car_index] != NOLL)

if (! strcmp (cars_in_stock [car_index]->
return_registration (),
this_registration»
{

found = 1 ;
cout « "Car sold" « this_registration

« end! ;
delete cars_in_stock [car_index]
cars in stock [car_index] = NOLL

++ car index

if (! found)
cout « "Car not found" « end!

Appendix B - Solutions to Exercises

II ASSIG147.CPP
II A simple car sales program
#include "carsales.h"
void main ()

{

car sales ford ;
char option,

do
terminator ;

cout « "Enter option: 'S' sell a car"
« end!

cout « " 'E' end this run"
« end!

cout « "Enter option: "
cin.get (option) ;
cin.get (terminator) ;
if (option == 'S')

ford. sell_car () ;

while (option != 'E') ;
}

Chapter 15

15.5.1
(a) The components of a serial disk file exist in creation order, whereas the

components of a sequential file have been sorted into some order based
on the values contained in key fields.

(b) cin » character will skip past White-space characters; to read
such characters, cin. get (character) should be used.

(c) cin » message will skip past white-space characters then transfer
characters to message up to the first white-space character; if the
message could contain spaces then cin. get (message, 12)
should be used to transfer up to 11 characters terminated by the newline
character.

15.5.2
(a) You can use

of stream object_name ("filename. ext")
or

ofstream object_name
object_name. open (" filename. ext")

237

238 Object Oriented Programming Using C++

(b) An opening mode is an integer value (or constant) that represents a way
in which a file stream may be opened.

(c) At the point in which it is executed, the stream object output_file
falls out of scope due to the function finishing. When this happens the
object's destructor is called which includes a close function call.

(d) The only difference to the programmer is that the disk file stream is
associated with an identifier of type ofstream (or ifstream) as
opposed to the pre-declared object cou t.

(e) It is used as a separator between the exam mark and the student identity.

15.5.3

It would not be necessary if the first character of the student identity was
always a non-numeric character because the read operation for the exam
mark would terminate correctly upon recognising the first character of
the student identity.

(a) The technique is necessary because the end of input stream state is only
set when we have already read the last item in the file and another
attempt to read from it is made.

(b) The technique will allow files of any length, even zero-length (empty)
files, to be processed.

(c) You can use

ifstream object_name ("filename. ext")
or

ifstream object_name
object_name. open ("filename.ext")

(d) The file to be used in an input stream may not exist or may not be
available to the program.

(e) We use the eof function of the object class ifstream;
input_file. eof () returns the value true.

15.5.4

(a) There may be many disk files used in a program, but only one keyboard
and monitor screen. There are a number of different ways in which we
may organise data in disk files. When we have finished with a file it
should be closed so that it can be re-used in other programs.

(b) A persistent object exists between program runs. It must normally be
implemented using some form of disk storage.

(c) An array uses memory that is allocated for the duration of a program
run. Its contents are lost when the program finishes.

Appendix B - Solutions to Exercises

15.5.5

I I MODULE_C.B
II The object class module C (amended)
#include <fstream.h>
#include <std!ib.h>
#include "marks2bc.h"
class module C

public :
void write_students ()
void read students ()

protected :
student marks 2Bc* student

} ;

void module_C: :write_students ()
{

of stream output_file ("student.dat")
char repeat_character,

do
terminator ;

student = new student marks 2Bc
if (student == NULL)

{

cout « "No memory available" « end!
exit (1)

student->initialise ()
output_file « student->return_exam mark ()

« ' , « student->return_practical_mark ()
« ' , « student->return_student_identity
() « end! ;

delete student ;
cout « "Press A for another, E to end"
cin.get (repeat_character)
cin.get (terminator)
}

while (repeat_character -- 'A')
output_file. close ()
}

239

240 Object Oriented Programming Using C++

void module C::read students ()
{

char identity [9] ;
in t exam_mark,

practical_mark
char separator ;
ifstream input_file ("student.dat")
if (! input_file)

{

cout « "Student file not available" « end!
exit (1) ;

input_file » exam_mark ;
cout « end! « "Students with merits" « end!
while (! input_file.eof())

{

input_file » practical_mark
input_file. get (separator) ;
input_file.get (identity, 9)
if «exam mark> 50) && (practical mark> 50))

cout « "Student " « identity « ,,\t"
« setw (3) « exam_mark « "\t"
« setw (3) « practical_mark « end!

input_file » exam mark
}

input_file. close () ;
}

15.5.6

I I AGES.H

II The object class ages
#include <fstream.h>
#include <iostream.h>
#include <std!ib.h>
#include <iomanip.h>
class ages

{

public :
void get_ages and frequencies ()
void display_table () ;
void set_maximum_age (int given_age)

protected :
int maximum_age

} ;

Appendix B - Solutions to Exercises

void ages::get_ages_and_frequencies ()
{

of stream output_file ("ages.dat") ;
int age,

frequency ;
for (age = 1 ; age <= 25 ; ++ age)

{

cout « "Enter frequency for age II « age
« '

cin » frequency ;
if (frequency != 0)

output_file « age « ' , « frequency
« end! ;

output_file. close ()

void ages::display_table ()
{

int age,
frequency

cout « end! « "TABLE OF ACCIDENT FREQUENCIES II

« "BY AGE UP TO AGE II « maximum_age
« end! « end! ;

ifstream input_file ("ages.dat")
if (! input_file)

{

cout « "Ages file not available" « end!
exit (1) ;

input_file » age ;
while «! input_file.eof(» &&

(age <= maximum_age»
{

input_file » frequency
cout «" "« setw (2) « age « II years"

« "\t" « setw (4) « frequency « end! ;
input_file » age ;
}

input_file. close () ;
}

241

242 Object Oriented Programming Using C++

void ages: :set_maximum_age (int given_age)
{

maximum_age = given_age

II ASSIG156.CPP
II A program to get accident frequencies for all
II ages and display a table up to age 21
#include "ages.h"
void main ()

{

ages horses
horses.get ages_and_frequencies ()
horses.set_maximum_age (21)
horses.display_table () ;
}

II ASSIG157.CPP
II A program to read the file ages.dat
II and display a table up to age 15
#include "ages.h"
voi.d mai.n ()

{

ages horses
horses. set maximum_age (15)
horses.display_table () ;
}

Chapter 16

16.6.1
(a) It is overloaded in the sense that, although it retains the same meaning,

it does different jobs depending on the context in whi~h it is used. For
example, it may be used to perform integer arithmetic or real arithmetic.

(b) Coercion is the automatic conversion of an expression to a different form
to enable arithmetic to be performed on it.

(c) A type cast is a means of imposing the conversion of a value to another
type. We may use it whenever a conversion from one type to another is
required (and there is no coercion), such as converting a float value to an
integer.

(d) The assignment operator allows the assignment of different data types,
so that it may be used to make a copy of a complete object.

Appendix B - Solutions to Exercises

16.6.2
(a) The keyword friend is used to denote that it may have access to the

data members of student_marks _ 2Bd objects. The result type is
into The identifier in the prototype is the keyword operator followed
by the operator >. Finally the types of the parameters to be used are as
usual specified in parentheses: two objects of the class
student marks 2Bd. - -

(b) A friend function must be declared as friend in the object class it
wishes to have access to. It is not part of that object class.

(c) if «student_1.practical_mark >
student_2.practical_mark) &&
(student_l.exam_mark != 0»
return 1

else
return 0

16.6.3
(a) Character output: B
(b) They each have a different signature: a different type for the parameter.

16.6.4

Hence, for example, a function call with an actual parameter of the type
int will call the version of display with the formal parameter of the
type into

(a) They each have a different signature: one has a parameter, the other
does not. So, an object instantiation with an actual parameter will call
the constructor with the parameter, an object instantiation with no actual
parameter will call the constructor without a parameter.

(b) The object excellent_student would be created and the second
constructor would be called. This would initialise the data member
exam mark to 100.

16.6.5
(a) The keyword template is followed by the template's parameter in

angular brackets, in this case the class T. Then there is the function
result type: the class T, followed by the function identifier greater.
This is followed by the function's formal parameters in parentheses, in
this case two items of class T, first and second.

(b) The operator > must be defined by the compiler or as an operator
function.

16.6.6
We change the header file marks2bd. h by replacing the operator
function opera tor > with the new operator function opera tor <.

243

244 Object Oriented Programming Using C++

friend int operator < (student_marks_2Bd
student_a, student marks 2Bd student_b)

int operator < (student_marks_2Bd student_a,
student_marks_2Bd student_b)
{

if (student_a.practical_mark <
student_b. practical_mark)
return 1

else
return 0

We change the program file top_stud. cpp so that all references to
best_student are replaced by worst_student. We change the
relational operator ofthe if statement from> to <. Finally, we change
the text of the cou t statement.

16.6.7
In examp16a. h, we declare the member function

void display (char a_char, int a_int,
float a_real) ;

for the class examp16a, then include the definition

void examp16a::display(char a_char, int a_int,
float a_real)
(

display (a_char)
display (a_int) ;
display (a_real)
}

In overload. cpp, we add the statement

example. display (letter, integer_number,
real_number)

Appendix B - Solutions to Exercises

16.6.8

II TEMP168.H
II A template for functions to return the highest
II value of three items
template <class T> T greatest (T first, T second,

T third)
{

if «first> second) && (first> third»
return first ;

else if (second > third)
return second ;

else
return third ;

II ASSIG168.CPP
II A program to display the highest value of three
II integers and the best of three students
#include "temp168.h"
#include "marks2be.h"
void main ()

{

int first_integer,
second_integer,
third_integer ;

char terminator ;
cout « "Please enter three integer values: "
cin » first_integer » second_integer »

third_integer ;
cin.get (terminator)
cout « "Greatest of the three integers is " «

greatest (first_integer, second_integer,
third_integer) « endl ;

student marks 2Be first_student,
second_student,
third_student ;

cout « endl « "Best student is:"
greatest (first_student, second student,

third_student) . display_identities () ;

245

Appendix C : C++ Keywords and Operators

C.I Keywords

asm auto break case

catch char class const

continue default delete do

double else enum extern

float for friend goto

if inline int long

new operator private protected

public register return short

signed sizeof static struct

switch template this throw

try typedef union unsigned

virtual void volatile while

246

Appendic C - C++ Keywords and Operators 247

C.2 Operators

Precedence Operator Meaning
1 .. scope resolution

2= member access
2= -> member access
2= [] subscripting
2= () function call
2= () grouping
2= sizeof size of item
3= ++ incrementation
3= decrementation
3= not
3= unary minus
3= + unary plus
3= & address
3= * dereferencing
3= new allocate
3= delete deallocate
3= () type cast
4= * multiply
4= / divide
4= % give remainder
5= + addition
5= subtraction
6= « insertion (and shift left)
6= » extraction (and shift right)
7= < less than
7= <= less than or equal to
7= > greater than
7= >= greater than or equal to
8= == equal to
8= != not equal to
9 && logical and
10 II logical or

11= = assignment
11= *= multiply and assignment
11= /= divide and assignment
11= %= give remainder and assignment
11= += add and assignment
11= -= subtract and assignment
12 comma

Appendix D : The ASCII Character Set

0 nul 32 space 64 @ 96
I soh 33 ! 65 A 97 a
2 stx 34 " 66 B 98 b
3 etx 35 # 67 C 99 c
4 eot 36 $ 68 D 100 d
5 enq 37 % 69 E 101 e
6 ack 38 & 70 F 102 f
7 bel 39 I 71 G 103 g
8 bs 40 (72 H 104 h
9 ht 41) 73 I 105 i
10 If 42 * 74 J 106 j
11 vt 43 + 75 K 107 k
12 ff 44 , 76 L 108 I
13 cr 45 - 77 M 109 m
14 so 46 78 N 110 n
15 si 47 / 79 0 III 0

16 die 48 0 80 P 112 P
17 del 49 1 81 Q 113 q
18 dc2 50 2 82 R 114 r
19 dc3 51 3 83 S 115 s
20 dc4 52 4 84 T 116 t
21 nak 53 5 85 U 117 u
22 syn 54 6 86 V 118 v
23 etb 55 7 87 W 119 w
24 can 56 8 88 X 120 x
25 em 57 9 89 Y 121 Y
26 sub 58 90 Z 122 z
27 esc 59 , 91 [123 {
28 fs 60 < 92 \ 124 I
29 gs 61 = 93] 125 }
30 rs 62 > 94 1\ 126 -
31 us 63 ? 95 - 127 del

The characters with values 0 to 31 and 127 are special (control) characters of
no general concern to the novice programmer. They are given for completeness.

248

Index

'include, 22, 29

A

adaptive maintenance, 9
aggregation, 128
alias, 96, 98
arguments, 24
arithmetic operators, 37
array, 115
array index, 115
arrow operator, 153
assignment statement, 37

B

base class, 15
behaviour, 12, 14
break,68
buffer, 4
bugs, 8
byte, 2

c
call by reference, 96
call by value, 91
case, 67
case groups, 67
cast, 69

249

char, 24, 33, 66
character, 2
cin, 162
cin.qet,33
class, 24, 33
close, 167
coding, 8
coercion, 178
compilation, 1
compiler, 8
compiler libraries, 8
composition, 128
compound statement, 56
const,91
constant, 4
constructor, 106
corrective maintenance, 9
cout, 25, 162

D

data type, 2
debugging, 8
default, 68
default constructor, 106
default destructor, III
delete, 152
derived class, 15
destructor (programmer-defined),

151
dot operator, 26
double, 38
do-while, 82

250 Object Oriented Programming Using C++

dynamic data storage, 147

E

encapsulation, 17
encU,25
exit, 149

F

float, 2, 38
for, 80
free, 149
friend, 179
fstream. h, 166
function call, 88
function definition, 89
function results, 93

G

generic functions, 184
get, 170
global scope, 145

H

high-level programming language,
I

I

identifier, 2, 24
if,49
if-else, 52
ifstream, 168
inheritance, 15
input data, 2
instance, 14
int, 36

integer, 2
iomanip.h, 41, 46
iostream. h, 22, 33
iteration, 7

L

linking, 8
local scope, 145
logical errors, 8
logical operators, 63
long int, 37

M

machine code, 1
main, 25
maintenance, 9
malloe,148
manipulator, 41,46
member data, 14,24
member function prototypes, 24
member functions, 14

N

new, 153
NULL,148

o
object, 13, 14
object classes, 13
ofstream, 166
open, 166, 169
operator, 179
operator function, 179
operator overloading, 177
output, 2

p

perfective maintenance, 9
persistent objects, 172
pointer variables, 148
polymorphism, 17
pow, 89
preventive maintenance, 10
private, 17
program code, 1
program statements, 1
protected, 17,24
pseudo-code, 7
public, 17,24,33

R

relational expression, 51
relational operator, 51, 53
relational operators, 54
result type, 24
return, 93
run-time error, 8

s

scope, 143
scope resolution operator, 25
selection, 7
sequence, 7
setprecision, 46
setw,137
signature, 183
source code, 1

Index

specification, 8
sqrt,89
static variables, 145
stdlib.h,148
strcpy,25
string, 2
string. h, 22
switch,67
syntax errors, 8

T

technical documentation, 9
template, 185
test data, 8
transient objects, 172
type cast, 178

u
user documentation, 9

v
variable, 4
variable identifier, 4
void, 24

w

while, 77
white-space, 43

251

