

Object	Oriented	Programming	in
Java

Attend	class	lecturers	from	home
	
	

By	Vaskaran	Sarcar
ME,	MCA,	B.Sc.	(Math)

	

	
Copyright

“Object	Oriented	Programming	in	Java”

Copyright	2015	Vaskaran	Sarcar.

	

[Version:	1.0]

	

License	Notes
	

This	book	is	licensed	for	your	personal	development	only.	This	book	may	not
be	re-sold	or	given	away	to	other	people.	If	you	would	like	to	share	this	book
with	another	person,	please	purchase	an	additional	copy	for	each	recipient.	If
you’re	reading	this	book	and	did	not	purchase	it,	or	 it	was	not	purchased	for
your	use	only,	 then	please	 return	 to	your	 favorite	book	 retailer	and	purchase
your	own	copy.	Thank	you	for	respecting	the	hard	work	of	this	author.

Disclaimer	 and	 Terms	 of	 Use:	 Effort	 has	 been	 made	 to	 ensure	 that	 the
information	in	this	book	is	accurate	and	complete,	however,	the	author	and	the
publisher	do	not	warrant	 the	accuracy	of	 the	 information,	 text	and	graphics
contained	 within	 the	 book	 due	 to	 the	 rapidly	 changing	 nature	 of	 science,
research,	 known	 and	 unknown	 facts	 and	 internet.	 The	 Author	 and	 the
publisher	 do	 not	 hold	 any	 responsibility	 for	 errors,	 omissions	 or	 contrary
interpretation	 of	 the	 subject	matter	 herein.	 This	 book	 is	 presented	 solely	 for
motivational	and	informational	purposes	only.

	

A	letter	from	Author
	

Dear	Reader ,

Welcome	 to	 the	 journey.	 It	 is	 my	 privilege	 to	 enclose	 herewith	 Object	 Oriented
Programming	 in	 Java:	 Attend	 class	 lecturers	 from	 home.	 Before	 jump	 into	 the	 topic,	 I
want	to	highlight	few	points	about	the	topic	and	its	contents:

1.	The	aim	of	this	book	is	to	help	you	to	get	a	feel	of	a	Java	classroom	environment.	I	was
involved	 in	 teaching	 since	 2005.I	 have	 taken	 classes	 in	 both	 engineering	 and	 non-
engineering	 colleges.	 And	 fortunately	 most	 of	 my	 teaching	 involvement	 was	 based	 on
Java	and	its	advanced	topics.	That	is	the	true	motivation	to	introduce	a	book	like	this.

2.	This	book	will	not	discuss	how	to	write	an	if-else	statement	or	a	simple	while	loop	etc.
Your	teacher	expects	that	before	attending	the	class,	you	have	done	your	basic	homework.
Here	your	teacher	will	focus	on	the	basic	object	oriented	concepts	that	we	can	implement
in	Java.

3.	 With	 this	 book	 you	 will	 have	 a	 feel	 that	 you	 are	 learning	 Java	 in	 a	 classroom
environment-where	 your	 teacher	 will	 discuss	 about	 some	 problems/topics,	 ask	 you
questions	 and	 give	 you	 assignments.	 You	 will	 be	 encouraged	 to	 do	 those	 simple
assignments	before	entering	into	a	new	topic.	If	you	are	dedicated	to	this	subject	and	do
those	assignments,	you	will	surely	develop	the	confidence	on	this	language.

4.	In	a	semester,	there	is	a	certain	number	of	lectures	to	complete	the	fundamental	topics.
And	we	all	know	that	learning	is	a	continuous	process.	So,	this	book	is	not	for	those	who
want	to	learn	Java	in	24	hours	or	in	7	days.	It	is	up	to	you	only.	I	can	only	say	:	the	book
is	designed	for	you	in	such	a	way	that	after	completion	of	the	book,	you	will	develop	an
adequate	knowledge	on	the	topic,	you’ll	learn	the	key	features	of	this	powerful	language,
you’ll	 learn	 how	 we	 should	 write	 programs	 in	 Java	 and	 most	 importantly,	 how	 to	 go
further.

5.	Lastly	the	programs	are	tested	with	eclipse.	Though	it	is	not	mandatory	for	you	to	learn
eclipse.	 You	 can	 simply	 run	 these	 programs	 in	 your	 preferred	 IDE.	Author	 has	 chosen
eclipse	because	it	is	widely	used	to	develop	Java	applications.

													 The	Author

	

Contents
	

Contents

Basic	Terms

Installation

Introduction

Class

Inheritance

Overloading

Overriding

Abstract	Class

Interface

Package

OOPs	Concepts	Revisited

Use	of	static	keyword

Solution	to	the	Assignments

FAQ

Reference

Acknowledgements

About	the	Author

Basic	Terms
	

JVM

-It	stands	for	Java	Virtual	Machine.	When	we	compile	the	java	file,	we	get	a	.class	(not	an
.exe).This	file	contains	java	byte	code	which	is	interpreted	by	JVM.	It	 is	responsible	for
loading,	 verifying	 and	 executing	 the	 code	 .We	 say	 that	 JVM	 is	 platform	 dependent
because	 it	 is	 responsible	 to	 convert	 the	 bytecodes	 into	 the	 machine	 language	 for	 the
specific	computer/machine.

JRE

-It	 stands	 for	 Java	Runtime	 environment.	 It	 contains	 the	 JVM,	 the	 library	 files	 and	 the
other	supporting	files.	To	run	a	java	program,	the	JRE	must	be	installed	in	the	system.	So,
we	can	simply	say	JRE=JVM+	some	packages.

JDK

-It	stands	for	Java	Development	Kit.	It	provides	the	tool	which	we	need	to	develop	java
programs	 and	 JRE.	 This	 tools	 contains	 javac.exe,	 java.exe	 etc.	When	we	 launch	 a	 java
application,	 it	will	open	 the	JRE	and	 load	 the	class	and	 then,	 in	 turn,	 it	will	execute	 the
main	method.	So,	we	can	conclude	that	JDK=JRE+	Development	tools.

Bytecode

Bytecodes	are	machine	language	of	the	JVM.	They	provide	the	instruction	set	for	a	JVM.
In	 other	words,	 it	 is	 a	 virtual	machine	 language	 in	which	 java	 code	 is	 compiled.	 JVM
comes	 into	 the	 picture	 because	 it	 stands	 between	 these	 bytecodes	 and	 our	 physical
machine.

Platform

-We	use	the	term	platform	to	mean	where	the	program	will	run.	It	can	be	your	machine,
your	fully	developed	OS	etc.	When	we	say	a	language	is	platform	independent,	we	mean
that	the	code	of	a	programmer	will	not	vary	across	different	platforms.

So	once	 the	 java	 program	 is	 compiled,	we	get	 the	 bytecodes.	These	 bytecode	 format	 is
same	for	every	platform	(Windows/Linux/Solaris	etc.).So,	we	need	an	interpreter	who	will
interpret	 these	bytecode	and	will	produce	 the	machine	specific	codes.	Now	JVM	comes
into	the	picture.	Here	in	Java,	these	bytecodes	are	interpreted	by	JVM	which	is	available
for	 all	OS.	 So,	 to	 port	 the	 java	 program	 into	 a	 new	 platform,	we	 need	 to	 port	 the	 java
interpreter.

So	the	pair	-JVM	and	bytecode	make	Java	portable.

Note:	 So	 the	 bottom	 line	 is	 that	 the	 trio-	 JVM,	 JRE	 and	 JDK	 are	 platform	 dependent
(because	of	the	OS	dependence)	but	Java	is	platform	independent.

We	must	remember	the	simple	fact:	Any	machine	language	is	dependent	on	the	OS	of	the
machine.	 So,	 if	we	 have	 dependency	 on	 the	machine	 specific	OS,	we	 are	 not	 platform
independent.	Java	is	platform	independent	because	once	the	source	code	is	compiled	into

standard	bytecodes,	those	bytecodes	are	platform	independent.	Because	of	this	facility	Sun
Microsystem	is	created	the	slogan	WORA	(Write	Once	Run	Anywhere)	for	Java.

IDE

It	stands	for	Integrated	Development	Environment.	They	provide	the	facilities	for	software
development.	In	general,	they	are	very	smart-	they	provide	us	intelligent	code	completion
technique.	They	can	also	highlight/suggest	about	different	kinds	of	possible	 fixes	 in	our
code.	An	IDE	should	have	a	source	editor,	a	debugger	and	the	automation	tools	to	build
the	application.	IDE’s,	in	general,	contain	a	compiler	or	an	interpreter	(or	both).	We	have
used	eclipse	here	which	contains	both	of	these.

Installation
	

We	need	two	major	things.

1.	JDK

2.	IDE

Visit	the	page:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Or

To	download	JDK,	directly	go	here:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

You’ll	get	a	screen	containing	something	like	this:

Try	to	download	the	latest	version	based	on	your	system	configuration	(e.g.	32	bit/64	bit,
Windows/Linux	etc.)

To	download	eclipse	IDE:

Go	here.

https://eclipse.org/downloads/

As	mentioned	above	try	to	download	the	latest	version	based	on	your	system
configuration.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://eclipse.org/downloads/

Naming	Conventions
	

Class-	should	start	with	an	uppercase	letter	and	should	be	a	noun	e.g.	MyClass,	String	etc.

Interface/s-	should	start	with	an	uppercase	letter	and	should	be	an	adjective	e.g.	Runnable,
Remote

Method/s-	 They	 should	 start	 with	 a	 lowercase	 letter	 and	 be	 a	 verb	 e.g.	 main(),
showMyMethod()	etc.

Variable/s-	They	should	start	with	lowercase	letter	e.g.	myIntegerValue,	myDoubleValue,
myName	etc.

Package/s-	They	should	be	all	in	lower	case	latter	e.g.	mypackage,	package1	etc.

Constants-	They	should	be	in	uppercase	letters	e.g.	MY_CONSTANT	etc.

Apart	for	few	special	cases,	we	have	tried	to	maintain	these	conventions	across	the	book.

	

	

	

Introduction
	

History:

In	June	1991,	James	Gosling,	Mike	Sheridan	and	Patrick	Naughton	initiated	the	project	of
Java	language.	There	was	an	Oak	tree	outside	Gosling’s	office.	And	people	say	that	this	is
why,	 originally	 the	 language	was	 named	Oak.	Later	 they	 renamed	 the	 project	 as	Green
(Their	team	name	was	also	Green	team).	And	finally	they	renamed	it	to	Java.	The	Green
project	was	chartered	by	Sun	Microsystem.

The	team	members	wanted	such	a	name	that	will	be	very	much	unique	in	nature	and	at	the
same	time,	it	should	reflect	the	essence	of	upcoming	technologies	.So,	they	picked	names
like	“Dynamic”,	“Revolutionary”,	“Silk”,	“Jolt”,	“DNA”	etc.

James	Gosling	later	told	that	Java	was	one	of	the	top	choices	along	with	Silk.	But	finally
they	selected	Java	because	most	of	the	team	mates	liked	this	name.

Java	became	Open	source	on	November13,	2006.	Sun	finished	the	process	by	making	all
of	 Java’s	 core	 code	 available	 under	 free	 software/open-source	 distribution	 terms,	 (aside
from	a	small	portion	of	code	to	which	they	did	not	hold	the	copyright)	on	May	08,	2007.

Later	 Oracle	 Corporation	 purchased	 Sun	Microsystem	 and	 the	 acquisition	 process	 was
finished	on	January	27,	2010.

Primary	objective:

These	qualities	were	the	primary	focus	area	for	Java:

1.	Simple,	Object-oriented,	and	familiar.

2.	Robustness	and	Security

3.	Architecture-neutral	and	Portable.

4.	High	Performance	capabilities.

5.	Interpreted,	Threaded,	and	Dynamic.

	
Our	First	program:

Now	let	us	go	through	our	first	program.	We’ll	print	Hello	World	here.

	

package	javaclassnotes.programs;

	

public	class	HelloWorld

{

public	static	void	main(String	args[])

{

														System.out.println(“Hello	World.”);

}

}

Output:

	
Analysis:

	

1.	First	of	all,	throughout	the	book,	we	have	organized	the	programs	into	package/s.	But
for	this	program,	it	was	not	mandatory.	Once	we	go	through	the	chapters	on	package,	it
will	be	clear	to	us.

2.	 It	 is	 the	 basic	 structure	 of	 the	 main	 method.	 The	 meaning	 and	 significance	 of	 each
keyword	 will	 be	 clear	 to	 you	 gradually.	 So,	 for	 the	 time	 being,	 you	 must	 follow	 this
structure.

3.	Our	source	file	name	is	HelloWorld.java.	We	need	 to	use	 .java	extension	for	our	 java
files.	It	is	the	requirement	for	the	compiler.

4.	Java	is	case-sensitive.

5.

main-	The	program	will	start	from	here.

public-	 The	 access	 specifier.	 Access	 specifiers	 are	 used	 to	 control	 the	 visibility	 of	 the
members.

static-	 It	 allows	 us	 to	 call	 main()	 without	 instantiate	 a	 particular	 instance	 of	 the	 class.
We’ll	analysis	“static”	later.

void-return	type.

String	args[]-args	is	an	array	of	instances	of	String	class.	String	Objects	are	used	to	store
character	strings.

println-It	is	used	to	display	information.

System.out-	Difficult	to	explain	at	this	point.	Just	we	can	know	that	System	is	a	class	and
out	is	output	stream	associated	with	the	console.

	

Quiz:

What	will	be	the	output?

class	Hello	{

static	void	main(String	args[])

{

														System.out.println(“Hello	World.”);

}

}

Output:

So,	we	cannot	omit	the	keyword	public	here.
Quiz:

What	will	be	the	output?

class	Hello

{

public	static	int	main(String	args[])

{

														System.out.println(“Hello	World.”);

														return	0;

}

}

Output:

So,	remember	that	the	return	type	of	main	method	should	be	void.

Quiz:

What	will	be	the	output?

class	HelloWorld

{

static	public	void	main(String	args[])

{

														System.out.println(“Hello	World.”);

}

}

Output:

So,	we	can	see	that	we	can	change	the	order.	Instead	of	public	static	void	main(…)	,	we
can	write:	static	public	void	main(…).But	we’ll	always	use	the	convention.

Class
	
Class:

A	class	is	a	blueprint	or	a	template.	It	will	describe	about	the	behaviors	of	its	objects.

Object:

An	object	is	an	instance	of	a	class.

Object	Oriented	Programming	(OOP)	is	based	on	these	two	concepts.	With	a	class,	we	are
creating	a	new	datatype	and	objects	are	used	to	hold	the	data	(fields)	and	methods.	Object
behavior	can	be	exposed	through	these	methods.

Suppose,	we	say,	Sachin	is	a	Cricketer.	If	we	have	some	idea	about	cricket,	we	can	predict
that	either	Sachin	plays	as	a	batsman	or	as	a	bowler	or	as	a	wicketkeeper	 (or	as	an	all-
rounder).Here	Cricketer	is	a	class	and	Sachin	can	be	considered	as	an	object	of	that	class.

Now	come	back	 to	our	Cricketer	class	again.	Let	us	say,	Sourav	 is	a	cricketer.	Like	 the
same	manner,	we	can	predict	Sourav	is	a	batsman	or	a	bowler	or	a	wicketkeeper.	Now	we
can	see	both	Sachin	and	Sourav	are	objects	of	Cricketer	Class	but	 they	have	 individual
identity.	 Obviously	 Sourav	 and	 Sachin	 shows	 their	 skills	 in	 the	 game	 differently	 even
though	they	are	participating	in	the	same	game.

Consider	a	different	domain.	We	can	consider	our	pet	dog	or	cat	as	an	object	of	an	Animal
class.

Now	 come	 to	 the	 programming.	 Suppose	 our	 class	 name	 is	 A.	 Then	we	 can	 create	 an
object	“obA”	of	the	class	A	with	the	following	statement:

A	obA=new	A();

Actually,	the	above	line	can	be	decomposed	of	two	lines	as	below:

A	obA;

obA=new	A();

Initially	obA	is	a	reference.	Till	this	point,	there	is	no	memory	allocated.	But	once	the	new
comes	into	picture,	the	memory	is	allocated.

You	must	note	that	in	the	second	line,	class	name	is	followed	by	a	parentheses.	These	are
for	constructors.	Constructors	are	used	to	describe	what	will	happen	when	an	object	will
be	 created.	 Constructors	 can	 have	 different	 attributes.	 But	 if	 our	 class	 does	 not
specifically	define	a	constructor,	Java	will	supply	a	default	one.	In	the	above	example,	we
have	used	a	default	constructor.

	

A	simple	class	demonstration:

Here	our	class	name	is	ClassA.	It	has	only	one	field-i	which	is	of	type	int.	Here	the	value
of	 i	 already	 has	 the	 value	 5	 associated	with	 it.	 So,	we	 can	 predict	 that	 if	we	 create	 an

object	for	this	class,	the	object	of	that	class	will	have	an	integer	named	i	and	the	value	of	i
in	it	will	be	5.

For	your	 ready	 reference,	we	have	created	2	objects	obA	and	obB	 for	our	 class	ClassA
here.	We	 have	 tested	 the	 values	 of	 i	 inside	 the	 objects.	You	 can	 see	 that	 both	 have	 the
value	5.

class	ClassA

{

int	i=5;

}

class	ClassEx1

{

public	static	void	main(String	args[])

{

														System.out.println(“***	A	Simple	class	with	2	objects-obA	And	obB	***”);

														ClassA	obA=new	ClassA();

														ClassA	obB=new	ClassA();

														System.out.println(“obA.i	=”+	obA.i);

														System.out.println(“obB.i	=”+	obB.i);

													

}

}

Output:

	

Class	demonstration-2:

We	have	provide	our	own	constructor	here.	We	can	see	that	now	we	can	initialize	objects
with	 different	 values.	 obA	 has	 initialized	 integer	 i	 with	 the	 value	 20	 and	 obB	 has
initialized	the	integer		i	with	the	value	30.

class	ClassA

{

int	i;

ClassA(int	i)

{

		this.i=i;

}													

}

class	ClassEx3

{

public	static	void	main(String	args[])

{

														System.out.println(“***	A	Simple	class	with	2	objects-obA	And	obB	***”);

														System.out.println(“***	obA.i	And	obB.i	are	different	here	***”);

														ClassA	obA=new	ClassA(20);

														ClassA	obB=new	ClassA(30);

														System.out.println(“obA.i	=”+	obA.i);

														System.out.println(“obB.i	=”+	obB.i);

													

}

}

Output:

Students	ask:

Sir,	what	is	use	of	this	here?

	

Good	question.	“this”	is	used	to	refer	the	current	object.	We	can	omit	the	use	of	this	if	we
write	the	code	like	this:

class	ClassA

{

int	i;//instance	variable

ClassA(int	myInt)//myInt-local	variable

{

		i=myInt;

}													

}

We	are	familiar	with	the	code	like	this:	a=5;	here	we	are	assigning	5	into	a.	But	can	we
write	5=a;	?	No.	Compiler	will	raise	an	issue.

	

Here	myInt	 is	 our	 local	variable	 (seen	 inside	methods,	 blocks	 or	 constructors),	 i	 is	 our
instance	variable	(declared	inside	a	class	but	outside	a	method,	block	or	constructor)

	

So,	instead	of	myint,	if	we	use	i,	we	need	to	tell	compiler	about	our	intention.	It	should	not
be	confused	about	“which	value	 is	assigned	where”.	Here	we	are	assigning	the	value	of
the	 local	 variable	 to	 the	 instance	 variable	 and	 compiler	 should	 clearly	 understand	 our
intention.	With	this.i=i;	compiler	will	clearly	understand	the	value	of	the	local	variable	i
is	assigned	to	instance	variable	i.

	

Class	demonstration-3:

Here	 we	 have	 used	 two	 constructors.	 Go	 through	 the	 program.	 Notice	 that	 we	 can
initialize	an	object	with	a	default	value	here.	If	the	default	constructor	is	used	during	the
creational	process	of	an	object,	 the	 instance	variable	 i	will	be	 initialized	with	7.	We	can
also	supply	different	values	through	the	non-default	constructor.

class	ClassA

{

int	i;

ClassA()

{

														this.i=7;

}

ClassA(int	i)

{

														this.i=i;

}

}

class	ClassEx3

{

public	static	void	main(String	args[])

{

														System.out.println(“***	A	Simple	class	with	2	objects-obA	And	obB	***”);

														System.out.println(“***	Different	type	of	constructors	are	used	here	***”);

														ClassA	obA=new	ClassA();

														ClassA	obB=new	ClassA(25);

														System.out.println(“obA.i	=”+	obA.i);

														System.out.println(“obB.i	=”+	obB.i);													

}

}

Output:

	

Assignment:

1.	Create	a	class	Vehicle.	The	class	should	have	two	fields-no_of_seats	and	no_of_wheels.
Create	 two	 objects-Motorcycle	 and	 Car	 for	 this	 class.	 Your	 output	 should	 show	 the
descriptions	for	Car	and	Motorcycle.
	

Inheritance
	

The	main	objective	of	inheritance	is	to	promote	reusability	and	eliminate	redundancy	(of
code).Here	a	child	class	obtains	the	features	of	its	parent	class.	By	parent	class	we	mean
the	 class	 which	 is	 at	 the	 higher	 level	 in	 the	 class	 hierarchy	 compared	 to	 another	 class
(which	is	termed	as	a	child	class).

Types:

In	general,	we	deal	with	4	types	of	inheritance.

Single	inheritance:	One	child	class	is	derived	from	one	base	class.

Figure:	Single	inheritance

The	format	of	code	is	like	this:

	 class	Parent

{

//your	code…

}

class	Child	extends	Parent

{

//your	code…

}

Hierarchical	inheritance:	Multiple	child	class	can	be	derived	from	one	base	class.

Figure:	Hierarchical	inheritance

The	format	of	code	is	like	this:

		 class	Parent

{

//your	code…

}

class	Child1	extends	Parent

{

//your	code…

}

class	Child2	extends	Parent

{

//your	code…

}

	

Multilevel	inheritance:	Here	the	parent	class	has	the	grandchild.

Figure:	Multilevel	inheritance

Teacher	asks:

Now	try	to	implement	the	concept	with	Java	code.

	

Solution:

The	format	of	code	is	like	this:

class	Parent

{

//your	code…

}

class	Child	extends	Parent

{

//your	code…

}

class	GrandChild	extends	Child

{

//your	code…

}

Multiple	inheritance:	Here	a	child	can	derive	from	multiple	Parents.

Figure:	Multiple	inheritance

Note	 that,	 Java	 does	 not	 support	 this	 type	 of	 inheritance	 (through	 class).i.e.in	 Java,	 a
child	 class	 cannot	 derive	 from	 more	 than	 one	 parent	 class.	 To	 deal	 with	 this	 type	 of
situation	we	need	to	understand	interfaces.

Note:	There	is	another	type	of	inheritance	which	is	termed	as	hybrid	inheritance.	This	is	a
combination	of	one	or	more	types	of	the	above	inheritance/s.

A	simple	program	on	Inheritance:

class	ParentClass

{

public	void	show()

		{

System.out.println(“I	am	in	Parent	Class”);

		}

}

class	ChildClass	extends	ParentClass

{

}

	

class	Example1

{

public	static	void	main(String	args[])

{

														ChildClass	child1=new	ChildClass();

//Calling		show()	through	ChildClass	object

														child1.show();

}

}

Output:

Students	ask:

Why	Java	does	not	support	multiple	inheritance	through	class?

	

The	main	reason	is	to	avoid	ambiguity.	They	can	cause	some	confusion	in	some	typical
scenarios	like	this:

Suppose	 in	 our	 parent	 class	 we	 have	 a	 method	 named	 show().	 The	 parent	 class	 has
multiple	 children-say	 child1	 and	 child	 2	who	 are	 overriding	 the	method	 differently	 for
their	own	purpose.	The	code	may	look	like	this:

class	Parent

{

public	void	show()

{

	 System.out.println 	(“I	am	in	Parent”);

}

}

class	Child1	extends 	Parent

{

public	void	show()

{

	 System.out.println 	(“I	am	in	Child-1”);

}

}

class	Child2	extends 	Parent

{

public	void	show()

{

	 System.out.println 	(“I	am	in	Child-2”);

}

}

Now	say	our	Grandchild	derives	from	both	Child1	and	Child2	but	it	has	not	overridden	the
method	show().

So,	 now	we	 have	 an	 ambiguity-From	which	 class,	GrandChild	will	 inherit/call	 show()-
Child1	or	Child	2.In	order	to	remove	this	type	of	ambiguity	Java	does	not	support	multiple
inheritance	 through	 class.	 This	 problem	 is	 known	 with	 a	 famous	 name-	 the	 Diamond
problem.

Teacher	asks:

Can	we	have	Hybrid	inheritance	in	Java?

	

Interesting	question.	Think	carefully.	Hybrid	inheritance	can	be	a	combination	of	 two	or
more	type	of	 the	above	inheritance/s.	So,	 the	answer	to	this	question	is	yes	till	 the	point
where	we	 are	 not	 trying	 to	 combine	 any	multiple	 inheritance	 through	 class.	And	 if	 our
intention	 is	 to	 make	 such	 a	 hybrid	 inheritance	 in	 which	 we	 need	 to	 have	 any	 kind	 of

multiple	inheritance	(through	class),	Java	will	not	support	that	concept.

	

Note:

Remember	 that	 in	 Java,	Object	 (in	 java.lang	 package)	 is	 the	 superclass	 for	 all	 classes.
Because	all	other	classes	directly	or	indirectly	is	an	inheritor	of	that	class.

	

Assignments:

1.	Write	a	Simple	Program	to	implement	Hierarchical	Inheritance.

2.	Write	a	Simple	Program	to	implement	Multilevel	Inheritance.

A	special	keyword:	super

In	Java,	we	have	a	special	keyword-super.	It	is	used	to	access	the	members	of	the	parent
class	(super	class)	in	an	efficient	way.	Whenever	a	child	class	wants	to	refer	its	immediate
parent,	it	should	use	this	keyword.

We	can	examine	the	use	of	super	with	this	simple	example.

package	javaclassnotes.testprograms;

	

class	A2

{													

int	a;

int	b;

A2(int	a,int	b)

{

														System.out.println(“I	am	in	Parent	constructor”);

														this.a=a;

														this.b=b;																											

}													

void	parentMethod()

{

														System.out.println(“I	am	a	Parent	method”);

}

}

class	B2	extends	A2

{

int	c;

B2(int	a,	int	b,int	c)

{

														super(a,b);

														System.out.println(“I	am	in	Child	constructor”);

														this.c=c;													

}

void	childMethod()

{

														System.out.println(“I	am	a	Child	method”);

														System.out.println(“Now	I	am	going	to	call	the	Parent	method”);

														super.parentMethod();

}

	

}

	

class	Test2

{

public	static	void	main(String	args[])

{

														System.out.println(“***	The	use	of	super	keyword	Demo***”);

														B2	obB2=new	B2(1,2,3);

														System.out.println(“a	in	ObB2=”+	obB2.a);

														System.out.println(“b	in	ObB2=”+	obB2.b);

														System.out.println(“c	in	ObB2=”+	obB2.c);

														obB2.childMethod();

}

}

	

Output:

We’ll	examine	another	use	of	super	with	the	following	example.	Here	we’ll	see	that	even
if	 the	 instance	variable	of	 the	parent	class	becomes	hidden	by	 the	child	class’s	 instance
variable,	super	can	allow	us	to	access	the	instance	variable	in	super	class.

package	javaclassnotes.testprograms;

	

class	A3

{													

int	a;

A3()

{

														a=25;//some	default	value

}

}

class	B3	extends	A3

{

int	a;//this	will	hide	a	in	A3

B3()

{

														super.a=12;//for	a	in	parent	class

														a=50;//for	a	in	B(child	class)

}

void	display()

{

														System.out.println(“a	in	parent	class=”+	super.a);

														System.out.println(“a	in	child	class=”+	a);

}

}

	

class	Test3

{

public	static	void	main(String	args[])

{

														System.out.println(“***The	use	of	super	Demo-2***”);

														B3	obB3=new	B3();

														obB3.display();

}

}

Output:

Note:

Students	ask:

Can	we	use	super	keyword	to	call	methods	that	are	hidden	by	a	subclass?

	

Yes.

	

Overloading
	

Teacher	asks:

Consider	the	below	program	segments.	Do	you	notice	any	specific	pattern?
int	sum(int	x,int	y)

{

														return	x+y;

}

double	sum(double	x,double	y)

{

														return	x+y;

}

String	sum(String	s1,String	s2)

{

														return	s1.concat(s2);

}

	

Students	respond:

Yes	sir.	We	are	seeing	all	of	the	methods	have	the	same	name	“sum”	but	from	their	method
bodies	it	appears	that	each	method	is	doing	different	things.

Teacher	says:	yes.	You	are	correct.	When	we	do	this	kind	of	coding,	we	term	it	as	method
overloading.	 But	 you	 should	 notice	 that	 though	 method	 names	 are	 same	 but	 method
signatures	are	different	here.

Students	ask:

What	is	method	signature?

Ideally	 method	 name	 with	 number	 and	 types	 of	 the	 parameters	 consist	 the	 method
signature.	 Java	 compiler	 can	 distinguish	 among	methods	with	 same	 name	 but	 different
parameter	list.	So,	for	Java	compiler,	double	sum(double	x,	double	y)	is	different	from	int
sum(int	x,	int	y).

	

Consider	 the	below	program.	Here	we	 represent	method	overloading	with	 the	 following
example:
package	javaclassnotes.programs;

class	Addition

{

int	sum(int	x,int	y)

{

														return	x+y;

}

double	sum(double	x,double	y)

{

														return	x+y;

}

String	sum(String	s1,String	s2)

{

														return	s1.concat(s2);

}

}

	

public	class	OverloadingEx

{

public	static	void	main(String	args[])

{

														System.out.println(“***Method	Overloading	Demo***”);

														Addition	additionOb=new	Addition();

														int	sumOfIntergers=additionOb.sum(10,20);

														System.out.println(“Sum	of	10	and	20	is	:”+sumOfIntergers);

														double	sumOfDoubles=additionOb.sum(10.5,20.7);

														System.out.println(“Sum	of	10.5	and	20.7	is	:”+sumOfDoubles);

														String	sumOfStrings=additionOb.sum(“Amit”,“Kumar”);

														System.out.println(“Concatenation	of	Amit	and	Kumar	is	:”+sumOfStrings);

}

}

	

Output:

Teacher	asks:

Is	it	an	example	of	method	overloading?

	

int	sum(int	x,int	y)

{

														return	x+y;

}

int	sum(int	x,int	y,int	z)

{

														return	x+y+z;

}

Answer:	Yes.

Teacher	asks:

Is	it	an	example	of	method	overloading?

int	sum(int	x,int	y)

{

														return	x+y;

}

double	sum(int	x,int	y)

{

														return	x+y;

}

Answer:	 No.	 Compiler	 will	 not	 consider	 “return	 type”	 to	 differentiate	 these	 methods.
Return	type	is	not	considered	as	a	part	of	method	signature.

Students	ask:

Sir,	can	we	have	constructor	overloading?

Definitely.	You	can	write	a	similar	program	for	constructor	overloading.

package	javaclassnotes.testprograms;

	

class	A1

{

A1()

{

														System.out.println(“Constructor	with	no	argument”);

}

A1(int	a)

{

														System.out.println(“Constructor	with	one	integer	argument”);

}

A1(int	a,double	b)

{

														System.out.println(“Constructor	with	one	integer	argument	and	one	double
argument”);

}

}

class	Test1

{

public	static	void	main(String	args[])

{

														System.out.println(“***Constructor	Overloading	Demo***”);

														A1	ob1=new	A1();

														A1	ob2=new	A1(2);

														A1	ob3=new	A1(2,3.7);													

}

}

Output:

Students	ask:

Sir,	it	appears	to	me	that	it	is	also	method	overloading.	What	is	the	difference	between	a
constructor	and	a	method?

Notice	carefully.	A	constructor	has	the	same	name	as	class	and	also	it	has	no	return	type.
So,	you	can	consider	a	constructor	as	a	special	kind	of	method	which	has	the	same	name
as	 class	 and	 no	 return	 type.	 But	 there	 are	 many	 other	 difference:	 the	 main	 focus	 of	 a
constructor	is	to	initialize	objects.	They	cannot	be	called	directly.

Students	ask:

So	Sir,	can	we	write	code	like	this?

class	A1

{

//It	is	a	constructor.	It	has	no	return	type.

A1()

{

														System.out.println(“Constructor	with	no	argument”);

}

//It	is	a	method.	It	has	return	types.

void	A1()

{

														System.out.println(“I	am	a	method”);

}

}

Sure.	Now,	the	following	lines	inside	main	function

A1	ob1=new	A1();

														ob1.A1(5);													

can	create	output	like	this:

	

Overriding
	

Sometimes	 we	 want	 to	 redefine	 or	 modify	 the	 behavior	 of	 our	 parent	 class.	 Method
overriding	comes	into	picture	in	such	a	scenario.	Consider	the	below	program.	Note	that,
here	showMe()	method	has	the	same	signature	in	both	the	parent	class	and	its	child	class.

package	javaclassnotes.programs;

class	ParentClass

{

public	void	showMe()

{

														System.out.println(“I	am	in	Parent	class”);

}

}

class	ChildClass	extends	ParentClass

{

public	void	showMe()

{

														System.out.println(“I	am	in	Child	class”);

}

}

class	OverridingEx

{

public	static	void	main(String	args[])

{

														System.out.println(“***Method	Overriding	Demo***”);

														ChildClass	childOb=new	ChildClass();

														childOb.showMe();

}

}

Output:

Dynamic	Method	Dispatch:

This	 is	 an	 extremely	 important	 concept	 in	 Java.	 Java	 can	 implement	 runtime
polymorphism	through	this	technique.	This	technique	is	considered	to	implement	runtime
polymorphism	 because	 the	 call	 to	 an	 overridden	 method	 is	 resolved	 dynamically	 at
runtime.	Java	will	call	the	appropriate	method	based	on	the	object	which	we	are	referring.

package	javaclassnotes.programs;

class	MyParentClass

{

public	void	showMe()

{

														System.out.println(“I	am	in	Parent	class”);

}

}

class	MyChildClass	extends	MyParentClass

{

public	void	showMe()

{

														System.out.println(“I	am	in	Child	class”);

}

}

class	DynamicMethodDispatchEx

{

public	static	void	main(String	args[])

{

														System.out.println(“***Dynamic	Method	Dispatch	Demo***”);

														MyParentClass	parent=new	MyParentClass();

														parent.showMe();

														MyChildClass	childOb=new	MyChildClass();

														/*Parent	class	reference	to	a	child	object*/

														parent=childOb;

														childOb.showMe();

}

}

Output:

Points	to	remember:

Through	a	parent	class	reference,	we	can	refer	a	child	class	object	but	the	reverse	is	not
applicable.

So,

MyParentClass	parent=new	MyChildClass();	is	ok	but

MyChildClass	child=new	MyParentClass();	will	raise	error.
	

Teacher	asks:

Now	there	may	be	some	situation	where	we	want	a	restriction:	A	method	in	the	parent
should	not	be	overridden	by	its	child.	How	can	we	achieve	that?

In	many	 interviews,	 you	 can	 face	 this	 question.	We	must	 remember	 that	we	 can	prevent
overriding	by	the	use	of	static,	private	or	final	keywords.	But	here	we	discuss	only	the	use
of	 “final”.	 It	 is	 very	 much	 helpful	 because	 compiler	 itself	 will	 prevent	 the	 process	 of
overriding.

class	ParentClass

{

//Use	of	final	to	prevent	overriding

final	public	void	showMe()

{

														System.out.println(“I	am	in	Parent	class”);

}													

}

class	ChildClass	extends	ParentClass

{

//Cannot	override	now:	It	is	not	allowed

public	void	showMe()

{

														System.out.println(“I	am	in	Child	class”);

}

}

So,	with	the	above	code,	compiler	will	raise	the	error.

	

Abstract	Class
	

These	are	incomplete	classes	and	we	cannot	instantiate	objects	from	this	type	of	classes.

In	general,	if	a	class	contains	at	least	one	incomplete/abstract	method,	the	class	itself	is	an
abstract	 class.	 By	 the	 term	 “abstract	 method”-	 we	 mean	 that	 the	 method	 has	 the
declaration	(or	signature)	but	no	implementation.

The	technique	is	useful	when	the	super	class	can	define	a	generalized	form	(that	will	be
shared	by	its	subclasses)	and	passes	the	responsibilities	to	fill	the	details	to	its	subclasses.

A	simple	abstract	class	demo:

Implementation-1:

package	javaclassnotes.programs;

abstract	class	MyAbstractClass

{

public		abstract	void	showMe();

}

class	MyConcreteClass	extends	MyAbstractClass

{

@Override

public	void	showMe()

{

														System.out.println(“I	am	from	concrete	class:”);

														System.out.println(“I	am	supplying	the	method	body	for	showMe()”);

	

}													

}

class	AbstractClassEx

{

public	static	void	main(String	Args[])

{

														System.out.println(“***Abstract	class	Demo***”);

														//Illegal:Cannot	instantiate

														//MyAbstractClass	abstractOb=new	MyAbstractClass();

														MyConcreteClass	concreteOb=new	MyConcreteClass();

														concreteOb.showMe();

}

	

}

Output:

An	abstract	class	can	contain	concrete	methods	also.	The	child	class	may	or	may	not
override	those	methods.

Implementation-2:

package	javaclassnotes.programs;

abstract	class	AbstractClass

{

public		abstract	void	showMe();

public	void	completeMethod1()

{

														System.out.println(”	Originally,I	am	from	completeMethod1	in
MyAbstractClass.But,I	am	complete.”);													

}

public	void	completeMethod2()

{

														System.out.println(”	Originally,I	am	from		completeMethod2	in
MyAbstractClass.But,I	am	also	complete.”);													

}

}

class	ConcreteClass	extends	AbstractClass

{

@Override

public	void	showMe()

{

														System.out.println(“I	am	from	concrete	class:”);

														System.out.println(“I	am	supplying	the	method	body	for	showMe()”);

	

}

//It	wants	to	override	completeMethod1()	in	MyAbstractClass

public	void	completeMethod1()

{

														System.out.println(“I	am	overriding	completeMethod1	of
MyAbstractClass.”);													

}

}

class	AbstractClassEx2

{

public	static	void	main(String	Args[])

{

														System.out.println(“***Abstract	class	Demo2***”);

														ConcreteClass	concreteOb=new	ConcreteClass();

														concreteOb.showMe();

														//It	will	show	that	completeMethod1	is	redefined	in	MyConcreteClass.

														concreteOb.completeMethod1();

														//It	will	show	the	details	of	completeMethod2	defined	in	MyAbstractClass.

														concreteOb.completeMethod2();

														//Following	declaration	will	be	fine

														AbstractClass	abstractRef=new	ConcreteClass();

														abstractRef.completeMethod1();

}

}

	

Output:

Can	we	implement	the	concept	of	dynamic	method	dispatch	here?

Yes.	Following	declaration	will	be	perfectly	fine	and	it	will	call	CompleteMethod1	of	the
ConcreteClass.

AbstractClass	abstractRef=new	ConcreteClass();

abstractRef.completeMethod1();

Students	ask:

Can	an	abstract	class	contain	fields?

Yes.

Following	 example	 will	 demonstrate	 how	 we	 can	 use	 the	 concept	 of	 dynamic	 method
dispatch	here.	Also,	the	program	will	show	that	an	abstract	class	contain	fields.

Implementation-3:

package	javaclassnotes.programs;

abstract	class	AbstractClass3

{

public	int	myInt=5;

public		abstract	void	showMe();

public	void	completeMethod1()

{

														System.out.println(“I	am	originally	from	completeMethod1	in
MyAbstractClass.But,I	am	complete.”);													

}													

}

class	ConcreteClass3	extends	AbstractClass3

{

@Override

public	void	showMe()

{

														System.out.println(“I	am	from	concrete	class:”);

														System.out.println(“I	am	supplying	the	method	body	for	showMe()”);

	

}													

}

class	AbstractClassEx3

{

public	static	void	main(String	Args[])

{

														System.out.println(“***Abstract	class	Demo3***”);

														AbstractClass3	abstractRef=new	ConcreteClass3();

														abstractRef.completeMethod1();

														System.out.println(“myInt	in	AbstractClass3=”+abstractRef.myInt);													
													

}

	

}

	

Output:

Students	ask:

Suppose	in	a	class	we	have	50+	methods	and	out	of	that	only	one	is	an	abstract	method.
Still	we	need	to	mark	the	class	as	abstract?

	

Yes.	 If	a	class	contains	at	 least	one	abstract	method,	 the	class	 itself	 is	abstract.	You	can
think	from	a	general	point	of	view-an	abstract	keyword	is	used	in	a	sense	to	represent	the
incompleteness.	 So,	 if	 your	 class	 contains	 one	 incomplete	 method,	 your	 class	 itself	 is
incomplete	and	hence	need	to	mark	by	the	keyword	abstract.

So,	the	simple	formula	is:	whenever	your	class	has	at	least	an	abstract	method,	your	class
itself	is	an	abstract	class.

	

Teacher	asks:

Now	 consider	 a	 reverse	 scenario.	 Suppose,	 you	 have	marked	 your	 class	 abstract	 but
there	is	no	abstract	method	in	it	like	this:

	

abstract	class	AbstractClass

{

public	void	completeMethod1()

{

														System.out.println(“A	complete	method”);													

}

public	void	completeMethod2()

{

														System.out.println(“Another	complete	method.”);													

}													

}

Can	we	compile	the	program?

Yes.	Still	it	will	compile	but	till	this	point,	you	cannot	create	object	for	this	class.

Students	ask:

So	sir,	how	you	can	create	object	from	an	abstract	class?

	

We	mentioned	already	that	we	cannot	create	objects	from	an	abstract	class.

Students	ask:

Sir,	it	appears	to	me	that	an	abstract	class	has	virtually	no	use	if	it	is	not	extended.	Is	the
understanding	correct?

	

Yes.

Students	ask:

If	a	class	extends	an	abstract	class,	it	has	to	implement	all	the	abstract	methods?

	

It	 may	 or	 may	 not	 implement	 all	 the	 abstract	 methods	 in	 the	 parent	 class.	 The	 simple
formula	is	that	if	you	want	to	create	objects	of	a	class,	the	class	needs	to	be	complete	i.e.	it
should	 not	 contain	 any	 abstract	 methods.	 So,	 if	 the	 child	 class	 cannot	 provide
implementation	(i.e.	body)	of	all	the	abstract	methods,	it	should	be	marked	again	with	the
keyword	abstract	like	the	below	example.

abstract	class	AbstractClass

{

public	abstract	void	inCompleteMethod1();

public	abstract	void	inCompleteMethod2();													

}

abstract	class	child1	extends	AbstractClass

{

@Override

public	void	inCompleteMethod1()

{

														System.out.println(“Implementing	the	inCompleteMethod1()”);													

													

}													

}

Students	ask:

A	concrete	class	is	a	class	which	is	not	abstract-is	the	understanding	correct?

	

Yes.

Students	ask:

Can	we	tag	a	method	with	both	abstract	and	final?

	

No.	Just	think,	by	declaring	abstract,	you	want	overriding	and	by	declaring	final,	you	want
to	prevent	overriding.

Students	ask:

Can	we	have	constructor	overriding	in	Java?

No.

Interface
	

With	the	interface,	we	declare	what	we	are	going	to	implement	but	we	are	not	specifying
how	we	are	going	to	that.	These	are	similar	to	classes	but	with	no	instance	variables	and
all	of	their	methods	are	declared	without	a	body	(i.e.	methods	are	actually	abstract).

We	can	 support	dynamic	method	 resolution	during	 run	 time	with	 the	help	of	 interfaces.
Once	defined,	a	class	can	implement	any	number	of	interfaces.

Implementation-1:

package	javaclassnotes.programs;

interface	MyInterface

{

void	show();

}

class	MyClass	implements	MyInterface

{

@Override

public	void	show()

{

														System.out.println(“MyClass	is	implementing	the	Interface	method.”);													
													

}

}

	

public	class	InterfaceEx1

{

public	static	void	main(String	args[])

{

														System.out.println(“***Interface	Example.Demo-1***”);

														MyClass	myClassOb=new	MyClass();

														myClassOb.show();

}

	

}

Output:

Implementation-2:

Interface	has	two	methods.	But	a	class	is	implementing	only	one.	Then	the	class	itself
becomes	abstract.

package	javaclassnotes.programs;

	

interface	MyInterface2

{

void	show1();

void	show2();

}

abstract	class	MyClass2	implements	MyInterface2

{

@Override

public	void	show1()

{

														System.out.println(“MyClass2	is	implementing	the	show1()
method.”);																											

}

}

Note:	 So	 the	 formula	 is:	 A	 class	 needs	 to	 implement	 all	 the	 methods	 defined	 in	 the
interface.	Otherwise,	it	will	be	an	abstract	class.

Implementation-3:

A	class	is	implementing	multiple	interfaces.

package	javaclassnotes.programs;

interface	MyInterface3A

{

void	show3A();

}

interface	MyInterface3B

{

void	show3B();

}

class	MyClass3	implements	MyInterface3A,MyInterface3B

{

@Override

public	void	show3A()

{

														System.out.println(“MyClass3	is	implementing	the	show3A()	method	of
Interface3A”);																											

}

@Override

public	void	show3B()	{

														System.out.println(“MyClass3	is	implementing	the	show3B()	method	of
Interface3B”);													

													

}

}

public	class	InterfaceEx3	{

public	static	void	main(String	args[])

{

														System.out.println(“***Interface	Example.Demo-3***”);

														MyClass3	myClassOb=new	MyClass3();

														myClassOb.show3A();

														myClassOb.show3B();

}

}

	

Output:

	

	

Students	Ask:

In	 the	 above	 program,	method	 names	were	 different	 in	 interfaces.	 But	 if	 both	 of	 the
interfaces	contain	the	same	method	name,	can	we	implement	them?

	

Go	through	the	following	implementation.

Implementation-4:

package	javaclassnotes.programs;

	

//Both	of	the	interface	have	the	same	method	name	“show()”.

interface	MyInterface4A

{

void	show();

}

interface	MyInterface4B

{

void	show();

}

class	MyClass4	implements	MyInterface4A,MyInterface4B

{

@Override

public	void	show()

{

														System.out.println(“MyClass4	is	implementing	the	show()	method	“);													
													

}

}

public	class	InterfaceEx4	{

public	static	void	main(String	args[])

{

														System.out.println(“***Interface	Example.Demo-4***”);

													

														//All	the	3	callings	are	legal.

														MyClass4	myClassOb=new	MyClass4();

														myClassOb.show();

													

														MyInterface4A	inter4A=myClassOb;

														inter4A.show();

													

														MyInterface4B	inter4B=myClassOb;

														inter4B.show();													

													

}

}

	

Output:

	

	

Students	ask:

Can	an	interface	extend/implement	another	interface?

	

It	can	extend	but	not	implement	(by	definition).

	

Implementation-5:

	

package	javaclassnotes.programs;

	

interface	Interface1

{

void	showInterface1Method();

}

interface	Interface2

{

void	showInterface2Method();

}

//Interface	extending	another	interfaces

interface	Interface3	extends	Interface1,Interface2

{

void	showInterface3Method();

}

class	MyClass5	implements	Interface3

{

//Now	MyClass5	needs	to	implement	methods	from	Interface1,Interface2	and
Interface3

@Override

public	void	showInterface1Method()	{

														System.out.println(“MyClass5	is	implementing	the	showInterface1()	method
“);													

													

}

@Override

public	void	showInterface2Method()	{

														System.out.println(“MyClass5	is	implementing	the	showInterface2()	method
“);																											

}

@Override

public	void	showInterface3Method()	{

														System.out.println(“MyClass5	is	implementing	the	showInterface3()	method
“);																											

													

}													

}

public	class	InterfaceEx5	{

public	static	void	main(String	args[])

{

														System.out.println(“***Interface	Example.Demo-5***”);

														System.out.println(“***Interface		can	extend	interfaces***”);																											

														MyClass5	myClassOb=new	MyClass5();

														myClassOb.showInterface1Method();																											

														myClassOb.showInterface2Method();

														myClassOb.showInterface3Method();																											

}

}

	

Output:

	

	

Tag/Tagging	interface:

An	interface	which	is	empty	is	termed	as	a	tag/tagging	interface.

//tagging	interface

interface	ITaggingInterface

{

}

	

Teacher	asks:

Can	you	tell	me:	Why	we	need	a	tagging	interface?

	

1.	We	can	create	a	common	parent.

2.	A	class	can	claim	membership	 in	 the	 set	e.g.	 if	our	class	 implements	 the	Serializable
interface,	it	becomes	serializable.	So,	our	class	actually	becomes	an	interface	type	through
polymorphism.	Even	a	class	that	is	implementing	a	tagging	interface,	need	not	define	any

new	method	because	the	interface	itself	does	not	have	any	such	method.

	

Teacher	asks:

Can	you	tell	me:	What	is	the	difference	between	an	abstract	class	and	an	Interface?

	

1.	An	 abstract	 class	 can	 have	 concrete	methods	 in	 it	 but	 an	 interface	 cannot	 have	 that.
[We’ll	come	to	 this	point	 later.	Now	in	Java	8,	we	have	a	keyword	called	“default”.	We
can	use	this	keyword	in	an	interface	to	provide	some	default	implementation,	see	below	in
our	implementation-6].

2.	An	abstract	class	can	have	only	one	parent	class	(can	extend	from	another	abstract	class
or	 concrete	 class),	 an	 interface	 can	 have	 multiple	 parent	 interfaces.	 An	 interface	 can
extend	from	other	interface/s	only.

3.	Members	of	an	interface	is	by	default	public.	An	abstract	class	can	have	other	flavors
e.g.	private,	protected	etc.

4.	Variables	in	an	interface	is	by	default	static	final.	An	abstract	class	can	have	non-final
variables.

	

Students	ask:

Sir,	then	how	we	decide-whether	we	should	use	an	abstract	class	or	an	interface?

	

Good	question.	 I	believe	 that	 if	we	want	 to	have	some	centralized	or	default	behavior/s,
abstract	 class	 is	 a	 better	 choice	 .Because	 here	 we	 can	 provide	 some	 default
implementation(in	 case	 of	 abstract	 class).On	 the	 other	 hand,	 interface	 implementation
starts	 from	a	 scratch.	They	 indicate	 some	kind	 of	 rules-what	 to	 be	 done	 (e.g.	 you	must
implement	the	method)	but	they	will	not	enforce	you	how	to	be	done.	Also	interfaces	are
preferred	when	we	are	trying	to	implement	the	concept	of	multiple	inheritance.

But	 at	 the	 same	 time	 we	 also	 remember	 that	 if	 we	 need	 to	 add	 a	 new	 method	 in	 an
interface,	 then	we	need	 to	 track	down	all	 the	 implementation/s	of	 that	 interface	and	we
need	to	put	 the	concrete	implementation	for	that	method	in	all	 those	places.	An	abstract
class	 is	 ahead	 here-we	 can	 add	 a	 new	 method	 in	 an	 abstract	 class	 with	 a	 default
implementation	and	our	existing	code	can	run	smoothly.

	

So,	now	Java	has	 taken	 special	 care	 to	 this	point	and	Java	8	has	 introduced	 the	use	of
default	 keyword.	 In	 Java	 8,	we	 can	 prefix	 the	word	 default	 before	 our	 intended	method
signature	 and	 can	 provide	 a	 default	 implementation.	 Interface	 methods	 are	 public	 by
default,	so,	we	do	not	need	to	mark	it	by	the	keyword	public.

	

Implementation-6:

	

Consider	the	below	implementation:

	

package	javaclassnotes.programs;

interface	MyDefaultInterface

{

void	show();

default	void	defaultMethod()

{

														System.out.println(“It	is	a	default	implementation	in	the	interface”);

}

}

class	MyClass6	implements		MyDefaultInterface

{

@Override

public	void	show()

{

														System.out.println(“MyClass	is	implementing	the	Interface	method.”);													
													

}

}

	

public	class	UseOfDefaultEx

{

public	static	void	main(String	args[])

{

														System.out.println(“***Interface	Example.Demo-6***”);

														System.out.println(“***Use	of	default***”);

														MyDefaultInterface	interfaceOb=new	MyClass6();

														interfaceOb.show();

														interfaceOb.defaultMethod();

}

}

	

Output:

	

	

Assignment:

You	have	 two	classes-	A	and	B.	Class	A	 is	containing	an	abstract	method	showA().You
also	have	an	Interface	called	Inter.	In	Inter,	you	have	a	method	showInter().Now	write	a
simple	program	where	B	will	implement	the	methods	defined	in	A	and	Inter.

	

Package
	

Consider	 a	 simple	 scenario.	Can	you	use	 the	 same	class	name	 twice	 in	 a	 java	 file?	No.
Compiler	will	raise	the	issue	and	it	will	point	towards	this	naming	collision.	So	we	need	to
choose	unique	naming	conventions	each	time	whenever	we	are	going	to	define	a	class.	But
we	 must	 remember	 that	 in	 real	 world	 programming,	 class	 name	 should	 be	 meaningful
enough	and	so	there	is	a	possibility	that	two	different	programmer	in	a	project	are	going	to
choose	 the	 same	 name	 for	 their	 class.	 Then	 how	 we	 can	 deal	 with	 those	 situations?
Package	will	rescue	us	in	those	scenarios.

We	can	bundle	our	classes/interfaces	etc.	 inside	our	own	packages.	Packages	help	us	 to
avoid	naming	conflicts	and/or	to	control	the	visibility.	We	can	control	the	visibility	inside
a	package	in	such	a	way	that	our	particular	class	may	or	may	not	be	exposed	to	outside
world	(both	inside	and	outside	packages).

Packages	are	 reflected	as	directories.	Creating	a	package	 in	eclipse	 is	quite	easy.	We	do
not	 even	 think	 about	 how	 Java	 runtime	 is	 going	 to	 find	 the	 proper	 packages	 or	 classes
inside	 it.	 Otherwise,	 we	 need	 to	 put	 special	 attention	 to	 the	 CLASSPATH	 environment
variable.

We	must	remember	about	the	following	points:

1.	Package	statement	should	be	on	top	of	our	source	file.	If	we	do	not	explicitly	define	this
statement,	then	all	the	classes/interfaces	etc.	will	be	in	the	current	default	package.

2.	When	one	class	refers	another	class	inside	the	same	package,	package	statement	need
not	to	be	included.

Otherwise	we	need	 to	use	 fully	qualified	class	name	 like	<packagename>.<classname>
or	we	need	to	use	import	statement.

	

3.	Whole	package	can	be	imported	like:

import		<packagename>.*;

Or	if	we	want	to	import	only	a	particular	class	from	a	package,	use:

import		<packagename>.<classname>

	

4.	The	name	of	the	package	must	follow	the	directory	structure.

	

Creating	a	Package	in	Eclipse	IDE:

1.	Click	File	menu	->	New	->Package

2.	Supply	the	required	information	and	click	finish.

3.	 Now	 you’ll	 see	 the	 package	 in	 your	 package	 explorer	 view	 e.g.	 it	may	 look	 like	 as
below:

[Note:	here	in	this	package,	already	there	are	some	packages	and	classes-which	we	made
earlier.]

4.	 Now	 Right	 click	 the	 package	 name->new->Class/Package	 etc	 to	 put	 classes/sub
packages	etc.	inside	the	created	package.	It	may	have	the	following	structure:

[Note:	here	in	this	package,	already	there	are	some	classes-which	we	made	earlier.]

Implementation:

Now	let	us	go	through	an	example.	Consider	two	travel	companies-a	and	b.	Company	a
conducts	tours	for	Goa	and	Kerala.	Company	b	conducts	tours	for	Goa	and	Andaman.	Any
tourist	can	seek	information	from	them	for	any	particular	tour	package.

Here	we	have	covered	both	of	the	following	scenarios:

1.	Less	challenging	situation:

Only	 Company	 a	 conducts	 tour	 for	 Kerala	 and	 Only	 company	 b	 conducts	 tour	 for
Andaman.

2.	More	Challenging	situation:

Notice	 that	 both	 of	 the	 companies	 are	 providing	 tour	 for	Goa.	And	we	 need	 to	 get	 the
information	 through	 the	GoaPackage	Class.	 [See	 both	 the	 packages	 are	 using	 the	 same
class	name]

Eclipse	Package	Explorer	View:

//	GoaPackage.java	[For	Company	A,	in	tour.company.a	package]

package	tour.company.a;

public	class	GoaPackage

{

int	basic_price=10000;

public	void	ShowPrice()

{

														System.out.println(“***Tariff	for	Goa	tour	in	Company	A***”);

														System.out.println(“For	two	person	,	Goa	tour	package	is	Rs.	“+	basic_price*2
);

														System.out.println(“For	four	person	,	Goa	tour	package	is	Rs.	“+

basic_price*4);

														System.out.println(“**************”);

}

}

	

// 	KeralaPackage.java	[For	Company	A,	in	tour.company.a	package]

package	tour.company.a;

	

public	class	KeralaPackage

{

int	basic_price=7000;

public	void	ShowPrice()

{

														System.out.println(“***Tariff	for	Kerala	tour	in	Company	A***”);

														System.out.println(“For	two	person	,	Kerala	tour	package	is	Rs.	“+
basic_price*2);

														System.out.println(“For	four	person	,	Kerala	tour	package	is	Rs.	“+
basic_price*4);

														System.out.println(“**************”);

}

}

//	AndamanPackage.java	[For	Company	B,	in	tour.company.b	package]

package	tour.company.b;

public	class	AndamanPackage

{

int	basic_price=12000;

public	void	ShowTariff()

{

														System.out.println(“***Tariff	for	Andaman	tour	in	Company	B***”);

														System.out.println(“For	two	person	,	Andaman	tour	package	is	Rs.	“+
basic_price*2);

														System.out.println(“For	four	person	,	Andaman	tour	package	is	Rs.	“+
basic_price*4);

														System.out.println(“**************”);

}

}

//	GoaPackage.java	[For	Company	B,	in	tour.company.b	package]

package	tour.company.b;

public	class	GoaPackage

{

int	basic_price=15000;

int	serviceTax=2000;

public	void	ShowTariff()

{

														int	forTwoPerson=basic_price*2	+serviceTax;

														int	forFourPerson=basic_price*4	+serviceTax;

														System.out.println(“***Tariff	for	Goa	tour	in	Company	B***”);

														System.out.println(“In	Company	A:For	two	person	,	Goa	tour	package	is	Rs.
“+	forTwoPerson);

														System.out.println(“In	Company	A:For	four	person	,	Goa	tour	package	is	Rs.
“+	forFourPerson);

														System.out.println(“****************”);

}

}

//Our	main

package	javaclassnotes.programs;

/*

import	tour.company.a.KeralaPackage;

import	tour.company.a.GoaPackage;

//or,	simply	use	the	following	statement*/

import	tour.company.a.*;

//For	company	B	packages

import	tour.company.b.*;

	

public	class	PackageEx	{

public	static	void	main(String	args[])

{

														System.out.println(“***Package	Example	Demo***”);

														//	Only	CompanyA	has	KeralaPackage

														KeralaPackage	keralaPackageInA=new	KeralaPackage();

														keralaPackageInA.ShowPrice();

														//Only	CompanyB	has	AndamanPackage

														AndamanPackage	companyBAndamanPackage=new	AndamanPackage();

														companyBAndamanPackage.ShowTariff();

														//Company	A	and	B	both	have	package	for	//Goa.

														tour.company.a.GoaPackage	companyAGoaPackage=new
tour.company.a.GoaPackage();

														//GoaPackage	companyAGoaPackage=new	//GoaPackage();

														companyAGoaPackage.ShowPrice();

														tour.company.b.GoaPackage	companyBGoaPackage=new
tour.company.b.GoaPackage();

														companyBGoaPackage.ShowTariff();

}

	

}

	

Output:

	

Note:

1.	Remember	that	in	Java,	all	classes	in	java.lang	package,	are	imported	by	default.

2.	You	must	remember	the	visibility	control	mechanism	with	the	following	table:

	 public protected private Default/No

modifier

Same	class Yes Yes Yes Yes

Subclass	in
same
package

Yes Yes No Yes

Non-
subclass	in
same
package

Yes Yes No Yes

Subclass	in
different
package

Yes Yes No No

Non-
subclass	in
different
package

Yes No No No

OOPs	Concepts	Revisited
	

The	fundamental	features	of	object	oriented	programming	is	as	below:

1.	Class	and	Object

2.	Polymorphism

3.	Abstraction

4.	Encapsulation

5.	Inheritance

6.	Message	passing

7.	Dynamic	binding.

	

Teacher	asks:

Can	you	tell	me	how	we	have	covered	these	in	Java?

	

1.	Class	and	Object-Almost	in	every	example,	we	have	used	classes	and	objects.

2.	Polymorphism-Method	overloading	and	overriding.

3.	Abstraction-Abstract	classes	and	Interfaces.

4.	Encapsulation-Each	class	can	be	an	example.	A	more	effective	example	can	be	a	class
with	a	private	member	and	getter-setter.

5.	Inheritance-Examples	in	inheritance.

6.	 Message	 passing-	 Mostly	 observed	 in	 a	 multithreaded	 environment.	 But	 also	 the
dynamic	method	dispatch	example	can	be	treated	in	this	category.

7.	 Dynamic	 binding	 –Through	 the	 example	 in	 the	 dynamic	 method	 dispatch	 (method
overriding).

	

Students	ask:

What	are	the	different	types	of	polymorphism?

	

1.	Compile	time	polymorphism-Which	method	needs	to	call	is	resolved	by	the	compiler.
So,	it	is	also	known	as	early	binding.	Since	the	call	is	resolved	early,	it	is	faster	in	general.

2.	Run	 time	polymorphism	 (Or,	Dynamic	Polymorphism)	–Which	method	needs	 to	 call
will	 be	 decided	 during	 runtime.	 That	 is	why,	 it	 is	 also	 known	 as	 late	 binding	 and	 it	 is
slower	compared	to	early	binding.

	

Students	ask:

Does	Java	support	pointers	like	C/C++?

	

No.	One	of	the	main	reason	is	we	can	access	beyond	our	intended	data	boundary	which	is
really	 dangerous.	 Apart	 from	 this,	 if	 we	 support	 pointers,	 memory	 management	 will
become	tedious,	because,	in	many	cases,	they	are	error-prone.	We	believe,	as	long	as	we
are	in	the	Java	execution	environment,	we’ll	never	feel	the	need	of	using	a	pointer.

	

Use	of	static	keyword
	

Sometimes	we	need	variables	that	can	be	used	without	creating	any	object	of	that	class.	To
serve	 that	 purpose,	 we	 tag	 the	 member/s	 with	 the	 keyword	 static.	When	 a	 member	 is
preceded	with	the	keyword	static,	 the	member	can	be	accessed	before	any	object	of	that
class	is	created	i.e.	we	do	not	need	to	reference	any	object	in	this	context.

Consider	the	below	example:

Implementation-1:

package	javaclassnotes.programs;

	

class	StaticDemo1

{

//static	members

static	int	myStaticInt=5;

static	String	myStaticString=“I	am	a	static	string”;

//Non	static	members

int	myNonStaticInt=25;

}

public	class	StaticEx1

{

public	static	void	main(String	args[])

{

														System.out.println(“***Use	of	static	variables***”);

														//We	can	call	static	members	with	the	class	name	itself

														//No	need	to	create	objects

														System.out.println(“myStaticInt	value	is	:	“+StaticDemo1.myStaticInt);

														System.out.println(“myStaticString	value	is	:	“+StaticDemo1.myStaticString);

														//Error:We	cannot	call	instance	variable	with	class	name.

														//System.out.println(“myNonStaticInt	value	is	:
“+StaticDemo1.myNonStaticInt);

	

}

}

	

Output:

Analysis:	 We	 can	 see	 that	 we	 are	 accessing	 the	 static	 members	 with	 <classname>.
<member	Name>	i.e.	we	do	not	need	to	create	an	object	to	access	those	variables.

Implementation-2:

Let	 us	 go	 through	 another	 example.	Here	we’ll	 test	 static	 variables	 initialization	with	 a
static	method	and	a	static	block.

package	javaclassnotes.programs;

class	StaticEx2

{

//static	members

static	int	myStaticInt=1;

static	String	myStaticString=“No	string”;

//instance	variable

int	nonStaticInt=25;

//static	method

static	void	setValuesToStaticMembers()

{

														System.out.println(“I	am	inside	the	static	method	now.”);													

														System.out.println(“myStaticInt=”+	myStaticInt);													

														System.out.println(“myStaticString=”+	myStaticString);													

//error:Can	access	only	static	fields	from	here

														//System.out.println(“myNonStaticInt=”+	myNonStaticInt);													

}													

//static	block

static

{

														System.out.println(“I	am	a	static	block”);													

														System.out.println(“Before	my	change	:”);													

														System.out.println(“myStaticInt=”+	myStaticInt);													

														System.out.println(“myStaticString=”+	myStaticString);													

														System.out.println(“I	am	changing	the	values	now…”);													

														myStaticInt=5;

														myStaticString=“I	am	a	static	string”;																											

}

public	static	void	main(String	args[])

{

														System.out.println(“***Use	of	static	methods	and	static	blocks***”);

														StaticEx2.setValuesToStaticMembers();

}

}

Output:

Analysis:

Look	at	the	output	carefully.	Look	at	the	order	of	the	output.	You	can	see	the	statements	in
the	static	block	printed	on	the	top	of	output.	Even	before	the	execution	of	the	static	block,
the	 static	 variables	 were	 initialized.	 Later	 static	 block	 changed	 the	 values	 (which	 are
reflected	clearly	when	we	call	the	static	method).

It	is	because	as	soon	as	a	static	class	loaded,	all	static	statements	run.

You	should	notice	another	important	characteristic	also:	Static	methods	can	access	only
static	members.

Also	note	that	our	static	method	is	nested	here.

	

Rules	of	Thumb:

	

1.	Static	methods	can	only	other	static	methods.

2.	Static	methods	can	access	only	static	fields.

3.	Static	methods	cannot	refer	this	or	super.

	

Students	ask:

Can	we	create	static	class?

	

Yes.	But	there	is	a	constraint.	The	static	class	should	be	inside	of	another	class	i.e.	it	must
be	nested.	Java	does	not	allow	us	to	create	top	level	static	class.

The	class	which	contains	the	static	class	is	termed	as	an	outer	class.

Consider	the	below	example.	Here	we	have	shown	how	to	create	and	use	a	nested	static
class	and	a	nested	non-static	(Inner	class).

	

Implementation-3:

package	javaclassnotes.programs;

//Java	doesn’t	allow	us	to	create	top-level	static	classes,it	must	be		nested.

class	OuterClass

{

//static	class

static	class	MyStaticClass

{

														public	static	void	showStaticMethod()

														{

																												System.out.println(“I	am	a	static	method”);

														}																											

}

//non	static	inner	class

public	class	MyNonStaticClass

{

														public	void	showNonStaticMethod()

														{

																												System.out.println(“I	am	a	NonStatic	method”);

														}

}

}

	

class	StaticClassEx

{

public	static	void	main(String	args[])

{

														System.out.println(“***Static	and	Inner	Class	Demo***”);

														//Call	Static	method																											
OuterClass.MyStaticClass.showStaticMethod();

														//CallNonStatic	method

														OuterClass.MyNonStaticClass	obNonStatic=(new	OuterClass()).new
MyNonStaticClass();

														obNonStatic.showNonStaticMethod();					

}

}

	

Output:

	

	

Students	ask:

What	is	an	inner	class?

As	described	above,	a	non-static	nested	class	is	termed	as	an	Inner	class.	It	can	access	all
the	variables	and	methods	of	the	outer	class.

	

Students	ask:

From	static	class,	can	we	access	the	variables	of	Outer	class?

	

Answer	 is	 yes	 if	 and	 only	 if	 those	 variables	 are	 static.	 Consider	 the	 below	 example.
Following	code	snippet	is	fine:

class	OuterClass

{

static	int	outer_int=25;

//static	class

static	class	MyStaticClass

{

														public	static	void	showStaticMethod()

														{

																												System.out.println(“I	am	a	static	method”);

																												System.out.println(“Outer_int	=”	+outer_int);

														}																											

}

}

But	if	outer_int	is	non-static,	compiler	will	raise	an	issue.

	

Assignment:

1.	Suppose	you	have	formed	a	cricket	 team.	Now	your	 team	is	going	 to	play	against	an
opponent	team.	You	must	be	aware	of	the	fact	that	which	team	will	bat	(or	bowl)	first	will
be	decided	 through	 the	 toss	and	you	need	 to	send	your	captain	for	 that.	So,	at	 first,	you
must	elect	a	captain.	At	the	same	time,	you	must	be	aware	that	you	can	select	one	and	only
one	captain.	So,	if	you	do	not	have	any	such	captain,	you	will	select	one	and	send	him	for
toss.	 Otherwise,	 you	 simply	 send	 the	 already	 nominated	 captain	 for	 the	 toss.	 Can	 you
design	this?

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Solution	to	the	Assignments
Class

1.	Create	a	class	Vehicle.	The	class	should	have	two	fields-no_of_seats	and	no_of_wheels.
Create	 two	 objects-Motorcycle	 and	 Car	 for	 this	 class.	 Your	 output	 should	 show	 the
descriptions	for	Car	and	Motorcycle.

Uml	Class	Diagram:

Implementation:

[No	need	to	include	package	statements.	But	once	you	understand	the	concept	of	package,
we’ll	see	that	it	is	very	much	handy	to	make	an	organized	structure	for	our	programs.]

package	javaclassnotes.assignments;

class	MyVehicle

{

int	no_of_wheels;

int	no_of_seats;

MyVehicle(int	wheels,int	seats)

{

														no_of_wheels=wheels;

														no_of_seats=seats;

}

public	void	showVehicle()

{

														System.out.print(“Description:”);

														System.out.println(“\n*************”);

														System.out.println(“It	has	“+	no_of_wheels+”	wheels”);

														System.out.println(“It	has	“+	no_of_seats+”	seats\n”);

}													

}

	

class	ClassAssignment_1_Demo

{

public	static	void	main(String	args[])

{

														System.out.print(“***Assignment	on	Class***\n\n	“);

														MyVehicle	car=new	MyVehicle(4,4);

														MyVehicle	motorCycle=new	MyVehicle(2,0);

														System.out.print(“Car	“);

														car.showVehicle();

														System.out.print(“Motorcycle	“);

														motorCycle.showVehicle();

}

	

}

	

Output:

	

	

Inheritance
1.	Write	a	Simple	Program	to	implement	Hierarchical	Inheritance.

Uml	Class	Diagram:

Implementation:

package	javaclassnotes.assignments;

	

class	Vehicle

{

public	void	showVehicle()

{

														System.out.println(“I	am	in	Vehicle”);

}													

}

class	Car	extends	Vehicle

{

public	void	showVehicle()

{

														System.out.println(“I	am	in	Car”);

}													

}

class	Motorcycle	extends	Vehicle

{

public	void	showVehicle()

{

														System.out.println(“I	am	in	Motorcycle”);

}													

}

	

class	HierarchicalInheritanceEx

{

public	static	void	main(String	args[])

{

														System.out.println(“***Hierarchical	Inheritance	Demo***”);																											

														Car	c=new	Car();

														c.showVehicle();

														Motorcycle	m=new	Motorcycle();

														m.showVehicle();

}

}

Output:

2.	Write	a	Simple	Program	to	implement	Multilevel	Inheritance.

We	could	write	the	program	like	the	above	program	(See	our	code	structure	in	the	chapter
on	Inheritance).Just	for	a	variety,	we	are	using	only	constructors	here.	If	you	want	to	see
the	concrete	methods	implementation,	just	uncomment	the	codes	in	the	below	program.

Uml	Class	Diagram:

Implementation:
package	javaclassnotes.assignments;

	

class	Parent

{

public	Parent()

{

														System.out.println(“I	am	in	Parent	constructor”);													

}

/*public	void	showMe()

{

														System.out.println(“I	am	a	Parent”);

}														*/

}

class	Child	extends	Parent

{

public	Child()

{

														System.out.println(“I	am	in	Child	constructor”);													

}

/*public	void	showMe()

{

														System.out.println(“I	am	a	Child”);

}														*/

}

class	GrandChild	extends	Child

{

public	GrandChild()

{

														System.out.println(“I	am	in	GrandChild	constructor”);													

}

/*public	void	showMe()

{

														System.out.println(“I	am	a	GrandChild”);

}*/													

}

	

class	MultilevelInheritanceEx

{

public	static	void	main(String	args[])

{

														System.out.println(“***Multilevel	Inheritance	Demo***”);

														//Parent	p=new	Parent();

														//p.showMe();

														Child	c=new	Child();

														//c.showMe();

														GrandChild	g=new	GrandChild();

														//g.showMe();

}

}

	

Output:

Note	 the	 output.	 Whenever	 we	 want	 to	 initiate	 a	 child	 class	 object,	 the	 parent	 class
constructors	called	automatically	first.	This	is	why,	Child	class	constructor	called	Parent
class	constructor	first.	Similarly,	our	GrandChild	class	constructor	called	its	parent	(i.e.
Child	 class	 constructor)	 which	 in	 turn	 called	 its	 parent	 (i.e.	 Parent	 class	 constructor)
constructor	first.
	

Use	of	static	keyword
1.		Suppose	you	have	formed	a	cricket	team.	Now	your	team	is	going	to	play	against	an
opponent	team.	You	must	be	aware	of	the	fact	that	which	team	will	bat	(or	bowl)	first	will
be	decided	 through	 the	 toss	and	you	need	 to	send	your	captain	for	 that.	So,	at	 first,	you
must	elect	a	captain.	At	the	same	time,	you	must	be	aware	that	you	can	select	one	and	only
one	captain.	So,	if	you	do	not	have	any	such	captain,	you	will	select	one	and	send	him	for
toss.	 Otherwise,	 you	 simply	 send	 the	 already	 nominated	 captain	 for	 the	 toss.	 Can	 you
design	this?

Uml	Class	Diagram:

Implementation:

package	javaclassnotes.assignments;

	

class	NominateACaptain

{

private	static	NominateACaptain	_captain;

//We	make	the	constructor	private	to	prevent	the	use	of	“new”														

private	NominateACaptain()	{	}

//	public	static	synchronized	MakeACaptain	getCaptain()

public	static		NominateACaptain	getCaptain()

{																						

														//	Lazy	initialization

														if	(_captain	==	null)

														{	_captain	=	new	NominateACaptain();

														System.out.println(“We	have	selected	the	captain	for	our	team”);

														}

														else

														{

																												System.out.print(”	We	already	have	a	Captain.”);

																												System.out.println(”	We’ll	send	for	the	toss.”);

														}

														return	_captain;

	

}													

}

	

class	StaticAssignmentDemo

{

public	static	void	main(String[]	args)

{

														System.out.println(“***Static	Assignment	Demo***\n”);																											

														System.out.println(“Trying	to	make	a	captain	for	our	team”);

														NominateACaptain	c1	=	NominateACaptain.getCaptain();

														System.out.println(“Trying	to	make	another	captain	for	our	team”);

														NominateACaptain	c2	=	NominateACaptain.getCaptain();

														if	(c1	==	c2)

														{

																												System.out.println(“c1	and	c2	are	same	instance”);

														}

	

}

}

	

Output:

	

	

FAQ
	

Now	it	is	the	time	to	test	your	understanding	.Please	go	through	the	questions.	If	there	is
any	doubt,	please	go	back	to	the	respective	topic.

1.	What	is	a	class?

2.	What	is	an	object?

3.	Differentiate	between	object	and	reference?

4.	Can	we	implement	multiple	inheritance	in	Java?

5.	Can	we	implement	hybrid	inheritance	in	Java?

6.	Differentiate	between	an	abstract	class	and	an	interface.

7.		Differentiate	between	method	overloading	and	method	overriding.

8.	How	you	can	implement	dynamic	polymorphism	in	Java?

9.”Package	statement	should	always	come	on	top”-is	it	true?

10.	What	is	JVM?

11.	Differentiate	between	JRE	and	JDK.

12.	What	is	an	inner	class?

13.	How	you	can	create	a	static	class	in	java?

14.	How	you	can	implement	abstraction	and	encapsulation	in	Java?

15.	Differentiate	between	a	static	binding	and	a	dynamic	binding	in	Java.

16.	What	is	use	of	“super”	in	Java?

17.	What	is	the	use	of	“this”	in	Java?

18.	What	is	use	of	“default”	in	Java?

19.	Can	you	an	abstract	class	without	an	abstract	method?

20.	Can	you	inherit	constructors?

21.	What	is	the	use	of	“final”	in	Java?

22.	Differentiate	between	an	instance	method	and	a	class	method	(static	method)?

23.	Can	you	create	a	static	block?	What	is	its	use?

24.	What	is	the	default	package	in	Java?

25.	Does	java	support	pointers?

Reference
	

http://www.javatpoint.com/

http://www.tutorialspoint.com/

http://beginnersbook.com/

https://docs.oracle.com/javase/tutorial

http://freefeast.info/difference-between/difference-between-runtime-polymorphism-and-
compile-time-polymorphism/

http://www.javabeat.net/what-is-the-difference-between-jrejvm-and-jdk/

http://www.geeksforgeeks.org/static-class-in-java/

http://javarevisited.blogspot.in/2015/04/3-ways-to-prevent-method-overriding-in.html

http://mindprod.com/jgloss/interfacevsabstract.html

http://www.programmerinterview.com/index.php/java-questions/interface-vs-abstract-
class/

http://www.javaworld.com/article/2077421/learn-java/abstract-classes-vs-interfaces.html

Acknowledgements

	
My	sincere	 thanks	 to	my	 family,	my	 friends,	my	great	 teachers	 and	 to	 all	 of	 them	who
supported	this	project	directly	or	indirectly.	Though	it	is	my	book	but	I	believe	that	with
the	 help	 of	 these	 extraordinary	 people	 only,	 I	 was	 able	 to	 complete	 this	 work.	 Again
thanks	to	all	of	them	who	helped	me	to	fulfil	this	project	to	motivate	others	in	Java.

	

	

About	the	Author

	
Vaskaran	Sarcar	(ME	(Software	Engineering),	MCA,	B	Sc.	(Math))	is	a	Senior	Software
Engineer	at	Hewlett	Packard	India	Software	Operation	Pvt.	Ltd.	He	is	working	at	the	HP
India	PPS	R&D	division	since	August,	2009.	He	is	also	the	author	of	the	books-	Design
Patterns	in	C#,	Design	Patterns	in	JAVA,	Java	Design	Patterns	(A	revised	and	enhanced
version-coming	 in	 December,2015),	 Operating	 System:	 Computer	 Science	 Interview
Series,	Easy	manifestation	and	Sweetheart,	You	Can	Also	Manifest	Your	Goal.	He	devoted
his	 early	 years	 (2005-2007)	 in	 teaching	 in	 various	 engineering	 colleges.	 Later	 he	 got
MHRD-GATE	Scholarship	(India)	from	2007-2009.Reading	and	learning	new	things	are
passion	 for	 him.	 You	 can	 catch	 him	 for	 any	 comments,	 suggestions	 or	 further
improvements	at:	vaskaran@rediffmail.com.

	
##

	Contents
	Basic Terms
	Installation
	Introduction
	Class
	Inheritance
	Overloading
	Overriding
	Abstract Class
	Interface
	Package
	OOPs Concepts Revisited
	Use of static keyword
	Solution to the Assignments
	FAQ
	Reference
	Acknowledgements
	About the Author

